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Abstract. In this paper, we present an online optimization approach for coordi-
nating large-scale robot teams in both convex and non-convex polygonal environ-
ments. In the former, we investigate the problem of moving a team of m robots
from an initial shape to an objective shape while minimizing the total distance
the team must travel within the specified workspace. Employing SOCP tech-
niques, we establish a theoretical complexity of O(k1.5m1.5) for this problem
with O(km) performance in practice – where k denotes the number of linear in-
equalities used to model the workspace. Regarding the latter, we present a multi-
phase hybrid optimization approach. In Phase I, an optimal path is generated over
an appropriate tessellation of the workspace. In Phase II, model predictive con-
trol techniques are used to identify optimal formation trajectories over said path
while guaranteeing against collisions with obstacles and workspace boundaries.
Once again employing SOCP, we establish complementary complexity measures
of O(l3.5m1.5) and O(l1.5m3.5) for this problem with O(l3m) and O(lm3) per-
formance in practice – where l denotes the length of the optimization horizon.

1 Introduction

The robotics community has seen a tremendous increase in multi-agent systems re-
search in recent years. This has been driven in part by the maturation of the underly-
ing technology: advances in embedded computing, sensor and actuator technology, and
perhaps most significantly pervasive wireless communication. However, the primary
motivation is the diverse range of applications envisaged for large-scale robot teams,
defined herein as formations ranging from tens to thousands of robots. These include
support of first responders in search and rescue operations, autonomous surveillance
and monitoring in support of military and homeland security operations, and environ-
mental monitoring. Unfortunately, the effective coordination of a large-scale robot team
in an arbitrary environment is a non-trivial problem – one that will need to be solved in
order for such systems to find widespread use.

In this paper, we investigate an optimization approach to the coordination task. This
is motivated by the realization that the effective operation of such a team is inherently
a constrained resource allocation problem. A finite number of nodes are required to
perform some task (e.g. area surveillance), perhaps with performance objectives (e.g.
maximize coverage), while subjected to resources that are dictated by communication
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and sensor ranges, motion constraints, environmental constraints, etc.. More precisely,
we characterize the coordination task as an optimization problem geared towards mini-
mizing the total distance traversed while transitioning the team to a new shape config-
uration subject to polygonal environmental constraints.

While the optimization construct has many advantages, its potential for use in multi-
agent systems has never been fully realized due to scalability concerns. Complete so-
lutions to problems of interest typically scale in super-linear time with the number of
robots and/or the size of the environment. In this work, we leverage recent advances in
convex optimization theory to develop motion planning strategies for effectively coor-
dinating robot teams in both convex and non-convex polygonal work environments. In
both cases, the proposed strategy in practice scales linearly with the number of team
members. The result is a rich, optimization-based framework for coordinating a large-
scale team of fully actuated robots in real-time.

2 Related Work

Control and coordination of mobile robots in polygonal environments has been exten-
sively studied in the literature. Belta et al. proposed a computational framework for
generating provably correct control laws for fully-actuated robots as well as unicycles
in an arbitrary polygonal workspace [1]. In [15], Kloetzer and Belta define a compu-
tational framework for the deployment of robots in both 2D and 3D rectangular en-
vironments. In this work, obstacles were modeled as polytopes and robot motion was
constrained to lie within polyhedral sets. Lindemann and LaValle also considered robot
control in polygonal spaces [16]. In particular, they focused upon “car-like” vehicles
with bounded path curvature constraints. In their work they partition the polygonal en-
vironment into a collection of convex cells before developing safe control laws that
obey specified smoothness constraints. Conner et al. considered global control laws
based upon the utility of local potential functions [6]. They partition the environment
into discrete cells and then associate each with control laws which they model as vector
fields.

Formations of robot teams have also been extensively studied. As a complete sur-
vey is beyond the scope of this paper, we instead focus on those where the notion of
shape – defined differently under different contexts – was of significant relevance to
the research. Das et al. described a vision-based formation control framework [8]. This
focused on achieving and maintaining a given formation shape using a leader-follower
framework. Control of formations using Jacobi shape coordinates was addressed by
Zhang et al [22]. The approach was applied to a formation of a small number of robots
which are modeled as point masses. Abstraction based control was used by Belta and
Kumar as a mechanism to coordinate a large number of fully actuated mobile robots
moving in formation [2]. The main idea was to map the configuration space of the
robots Q to a lower dimensional manifold A. The concept of shape refers to the area
spanned by the robots. A local controller was designed based on the state of the robot
and the state on the manifold A.

There has also been significant interest in applying optimization based techniques to
coordinate robot teams and deploy sensor networks. Contributions in this area include
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the work by Cortes et al [7]. Here the focus is on autonomous vehicles performing
distributed sensing tasks. Recently Feddema et al. applied decentralized optimization
based control to solve a variety of multi-robot problems [12]. Optimal motion planning
was considered by Belta and Kumar [3]. In this work, the authors generate a family of
optimal smooth trajectories for a set of fully actuated mobile robots.

3 Defining the Coordination Problem

In developing our strategies, we first consider the problem of transitioning a robot team,
constrained to lie within a convex polygonal space, to a new shape formation while
minimizing the total distance that the team must travel. As the operating environment
is assumed both convex and polygonal, we define it as the affine set:

Ec = {x ∈ R
2 : Acx ≤ bc} (1)

where Ac ∈ R
k×2 with k denoting the the finite number of linear inequalities used to

model the team workspace.
Since the coordination problem is defined as a function of shape, it is imperative to

first solidify what is precisely meant by this term, as it is often defined differently in
different contexts. For our purposes, we adopt the traditional definition of shape that is
often employed in statistical shape analysis [11]:

Definition 1. The shape of a formation is the geometrical information that remains
when location, scale, and rotational effects are removed.

Thus, formation shape is invariant under the Euclidean similarity transformations of
translation, rotation, and scale [11].

Given this definition, we can now provide a formal statement of the coordination
problem. We begin by letting Q = [q1, . . . , qm]T ∈ R

m×2 denote the concatenated
coordinates of the objective shape formation with respect to some world frame W and
by letting S = [s1, . . . , sm]T ∈ R

m×2 denote an instance of our objective shape with
respect to some local frame F . Given our convex polygonal workspace Ec, we see that
solving the coordination problem reduces to identifying the optimal similarity trans-
formation that when applied to S ⊂ F yields an equivalent shape Q ⊂ EC ⊂ W
such that our total distance objective is minimized with respect to Q and the initial
robot positions P = [p1, p2, . . . , pm]T . In other words, we must identify the optimal
transformation parameters [α, θ, tx, ty]T such that qi = αR(θ)si + [tx, ty]T ∈ Ec for
i = 1, . . . , m where α ∈ R+, R(θ) ∈ SO(2) and tx, ty ∈ R. Given these observations,
the coordination problem can be formulated as the following constrained non-linear
optimization problem:

min f(q) =
m∑

i=1
‖ qi − pi ‖2

s.t. qi = αR(θ)si + [tx, ty]T , i = 1, . . . , m
qi ∈ Ec, i = 1, . . . , m
α > 0, θ ∈ [0, 2π)

(2)
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Fig. 1. (Left) The initial formation pose for 101 nodes living in a convex heptagonal (7-sided)
environment. (Center) The final formation trajectories to achieve the desired shape configuration
while ensuring maximal sensor network coverage in Ec. (Right) The final formation pose (red)
after achieving the optimal configuration overlaid with the optimal solution (blue) obtained when
the environmental model is ignored. The respecitve optimal parameters were α = 59.85 with
[tx, ty]T = [5.585, 5.169]T and α = 80 with [tx, ty]T = [9.893, 4.530]T . In this example, θ
was fixed at 7.5o, and scale was constrained to α ∈ [10, 80].

Unfortunately, this formulation is non-convex due to the 2m non-linear constraints
used to capture the full set of similarity transformations (as a function of [α, θ, tx, ty]T )
that characterize the desired shape geometry S. To remedy this, we employ our results
from [9]. In this work, we showed that the optimization variables [α, θ, tx, ty]T can be
implicitly rewritten as a function of the optimal shape configuration Q. More precisely,
we can supplant the non-linear equalities in (2) with the following linear (homogenous)
constraints (while retaining all original problem information):

‖ s2 ‖2 (qx
i − qx

1 ) − (sx
i , −sy

i )
T (q2 − q1) = 0

‖ s2 ‖2 (qy
i − qy

1) − (sy
i , sx

i )T (q2 − q1) = 0

}

i = 3, . . . , m (3)

by defining without loss of generality [ α, θ, tx, ty ]T �
[

‖q2−q1‖2
‖s2‖2

, arctan
q

y
2 −q

y
1

qx
2 −qx

1
, qx

1 , qy
1

]T

.

Given this constraint set, we can now write (2) in convex form; however, doing
so would be premature as the objective is non-smooth due to the Euclidean norms
inherent in its definition. To handle this, we simply introduce m auxiliary variables
[t1, t2, . . . , tm]T . Doing so allows us to rewrite our non-smooth objective function as a
sum of upper bounds on the given Euclidean measures. In other words, the introduction
of these variables induces m second-order cone constraints.

Making these adjustments, we can now formally state the coordination problem as
the following SOCP in standard form:

min
q

f(t) = 1T
mt

s.t. ‖ qi − pi ‖2 ≤ ti, i = 1, . . . , m[
Aw I
As 0

] [
q
r

]

=
[

b
0

]

r ≥ 0

(4)

where As ∈ R
2(m−1)×2m corresponds to the coefficient structure for the linear equali-

ties given in (3) and Aw ∈ R
km×2m denotes the structure for the linear inequalities used

to model Ec. We also introduce km non-negative slack variables r = [r1, . . . , rkm]T .
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As SOCPs are convex programs, a local minimum corresponds to a global minimum.
This allows optimal solutions to be obtained through a variety of ways such as descent
techniques [13] or (more efficiently) by interior point methods (IPMs) [4,13].

Figure 1 illustrates a simple application of our framework for a team of 101 robots
charged with maximizing sensor network coverage within a convex heptagonal (7-
sided) space. In this case, θ was fixed at 7.5o, and scale was constrained to α ∈
[10, 80].

3.1 On Complexity

In this section, we solve (4) by adapting the logarithmic penalty-barrier approach out-
lined in [4]. In so doing, we establish a theoretical complexity of O(k1.5m1.5), where
k once again denotes the number of linear inequalities used to model Ec.

Like other IPMs, the total complexity of the penalty-barrier approach is largely de-
fined by solving a linear system of equations. In this case, Equality-constrained New-
ton’s method (ENM) is used for internal minimization and the linear system is in KKT
form. As solving this system provides a solution to the Newton step sub-problem, we
accordingly refer to it as the “Newton KKT system.” We show that by reformulating (4),
we can band the coefficient matrix to solve the system in O(km) time via algorithms
that exploit knowledge of matrix bandwidth.

Reformulating the Coordination Problem. Problem (4) can be restated in a relaxed
form suitable for solving via the barrier approach by simply augmenting the objective
function with log-barrier terms corresponding to both the problem’s conic inequalities
as well as the inequalities used to ensure the non-negativity of the associated slack
variables. Doing so yields the following equivalent problem statement:

min f(q, t, r) = τl1T
mt −

m∑

i=1
log (t2i − (qi − pi)T (qi − pi)) −

km∑

i=1
log ri

s. t.
[
Aw I
As 0

] [
q
r

]

=
[

b
0

] (5)

where τl is the inverse log-barrier scaler for the lth iteration. Essentially, solving our
SOCPs reduces to solving a sequence of convex optimization problems of this form,
where after each iteration τl+1 is chosen such that τl+1 > τl [4].

Banding the Newton KKT System. During each iteration of the log-barrier approach,
we aim to minimize the second-order Taylor approximation of our objective function
as a function of the Newton step, δx = [δq, δr]T , subject to Aδx = 0. As a result,
obtaining δx is equivalent to analytically solving the KKT conditions associated with
this equality-constrained sub-problem. In other words, we must solve the following
linear system of equations [4]:

[
H ÂT

Â 0

] [
δx
v

]

=
[

−g
0

]

(6)
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where H and g respectively denote the evaluated Hessian and gradient of the objective
function given in (5) at x, v is the corresponding dual variable for δx, and Â =

[
Aw I
As 0

]
.

Undoubtedly, solving (6) is the bottleneck of the algorithm, requiring O(k3m3) basic
operations in a naive implementation; however, we will show that it can be solved very
efficiently by simply reposing the problem given in (5).

Noting that the coefficient matrix of (6) is symmetric indefinite, we employ Gaussian
elimination with non-symmetric partial pivoting. The performance of this technique suf-
fers significantly when the linear system in question features dense rows and/or columns
due to fill-in [21]. In particular, the algorithm could yield a worst-case performance of
O(k3m3) when solving an instance of (6) associated with the nominal problem formu-
lation given in (5). To illustrate this point, we include Figure 2 (Left) which shows the
corresponding non-zero sparsity structure of the Newton KKT system. As the rows of
system are permuted during reduction, the dense rows and columns respectively located
in the upper-right and lower-left quadrants of (6) could introduce a solid sub-block of
order km×km, which itself would require O(k3m3) basic operations to reduce. Such a
workload is highly impractical, especially when considering large-scale configurations
that inherently feature 1000’s of decision variables.

To address this issue, we present the following auxiliary formulation of (5) that fa-
cilitates transforming the Newton KKT system into a mono-banded form:

min f(q, t, r) = τl1T
mt −

m�
i=1

log (t2i − (qi − pi)T (qi − pi)) −
km�
i=1

log ri

s. t.
‖ s2 ‖2 (qx

i − cx
ik+1) − (sx

i , −sy
i )T (d(i−1)k+1 − cik+1) = 0, i = 3, . . . , m

‖ s2 ‖2 (qy
i − cy

ik+1) − (sy
i , sx

i )T (d(i−1)k+1 − cik+1) = 0, i = 3, . . . , m

aT
j w(i−1)k+j + r(i−1)k+j = b(i−1)k+j , i = 1, . . . , m, j = 1, . . . , k

w(i−1)k+j = w(i−1)k+j+1, i = 1, . . . , m, j = 1, . . . , k − 1
w(i−1)k+1 = qi, i = 1, . . . , m
ci = ci+1, i = 1, . . . , km − 1
di = di+1, i = 1, . . . , km − k − 1
c1 = q1

d1 = q2

(7)

In this formulation, the shape constraints are given by the first two sets of equali-
ties while the environmental bounds are given by the third. Essentially, the additional
c and d variables allow us to “chain” the values of q1 and q2 respectively through the
corresponding Newton KKT system, which eliminates the dense row and column fea-
tures that would otherwise be present. Similarly, as the k linear inequalities defining Ec

bound the final objective position of each node (i.e. qi), we introduce k auxiliary vari-
ables (i.e. w) for each node in order to locally chain qi. Doing so ensures a bandwidth
that will ultimately remain independent of both k and m.

Given this augmented formulation, our claim is that the system can be made mono-
banded. To show this, we begin by defining the nominal solution vector for the coeffi-
cient structure of (6) as follows:

�
δηT , δκT

1 , . . . , δκT
m−2, δζ

T , μT
�T

(8)
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Fig. 2. (Left) The nominal Newton KKT system structure for a team of 15 robots constrained to
a pentagonal workspace. (Center) The augmented Newton KKT system for the same configura-
tion. This system is derived from (8) and (9). (Right) The banded system with lower and upper
bandwidths of 37. The bandwidth is independent of both team size and the number of constraints
used to model Ec. In this form, the system is now solvable in O(km).

δη =

�
��������������

δq1

δt1
δw1

δr1

δc1

...
δwk

δrk

δck

�
�������������	

δκi =

�
������������������

δqi+1

δti+1

δcik+1

δd(i−1)k+1

δwik+1

δrik+1

...
δc(i+1)k

δdik

δw(i+1)k

δr(i+1)k

�
�����������������	

δζ =

�
��������������

δqm

δtm

δc(m−1)k+1

δd(m−2)k+1

δw(m−1)k+1

δr(m−1)k+1
...

δwmk

δrmk

�
�������������	

μ =

�
��

v1

...
v(7m−6)k+2m

�
�	

where the δ variables correspond to the primal Newton step components associated with
each of the respective system variables.

In order to yield the mono-banded form, we begin by stating the constraint/row per-
mutation for A that yields the tri-banded system appearing Figure 2 (Center). We as-
sume that A is already arbitrarily constructed with random row and column permuta-
tions. For the sake of clarity, we group constraints by associating them with the respec-
tive nodes that introduce them into the system. In doing so, we employ a slight abuse
of notation by allowing the variable qi to also denote the ith robot in the configuration.
That stated, we can now define the constraints associated with q1:

qx
1 = cx

1

qy
1 = cy

1
qx
1 = wx

1

qy
1 = wy

1
aT
1 w1 + r1 = b1


�����
����


� 	1

cx
j−1 = cx

j

cy
j−1 = cy

j

wy
j−1 = wy

j

wy
j−1 = wy

j

aT
j wj + rj = bj


�����
����


� 	j , j = 2, . . . , k
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Similarly for q2, we associate

cx
k = cx

k+1

cy
k = cy

k+1
qx
2 = dx

1

qy
2 = dy

1
qx
2 = wx

k+1

qy
2 = wy

k+1
aT

k+1wk+1 + rk+1 = bk+1


���������
��������


� 	k+1

cx
k+j−1 = cx

k+j

cy
k+j−1 = cy

k+j

dx
j−1 = dx

j

dy
j−1 = dy

j

wy
k+j−1 = wy

k+j

wy
k+j−1 = wy

k+j

aT
k+jwk+j + rk+j = bk+j


���������
��������


� 	k+j , j = 2, . . . , k

For 3 ≤ i ≤ (m − 1), we define the constraints associated with qi as:

cx
(i−1)k = cx

(i−1)k+1

cy
(i−1)k = cy

(i−1)k+1

dx
(i−2)k = dx

(i−2)k+1

dy
(i−2)k = dy

(i−2)k+1

‖ s2 ‖2 (qx
i − cx

(i−1)k+1) = (sx
i , −sy

i )T (d(i−2)k+1 − c(i−1)k+1)
‖ s2 ‖2 (qy

i − cy
(i−1)k+1) = (sy

i , sx
i )T (d(i−2)k+1 − c(i−1)k+1)

qx
i = wx

(i−1)k+1

qy
i = wy

(i−1)k+1

aT
(i−1)k+1w(i−1)k+1 + r(i−1)k+1 = b(i−1)k+1


��������������
�������������


� 	(i−1)k+1

cx
(i−1)k+j−1 = cx

(i−1)k+j

cy
(i−1)k+j−1 = cy

(i−1)k+j

dx
(i−2)k+j−1 = dx

(i−2)k+j

dy
(i−2)k+j−1 = dy

(i−2)k+j

wy
(i−1)k+j−1 = wy

(i−1)k+j

wy
(i−1)k+j−1 = wy

(i−1)k+j

aT
(i−1)k+jw(i−1)k+j + r(i−1)k+j = b(i−1)k+j


����������
���������


� 	(i−1)k+j , j = 2, . . . , k

Finally, we associate the remaining constraints with qm:

cx
(m−1)k = cx

(m−1)k+1

cy
(m−1)k = cy

(m−1)k+1

dx
(m−2)k = dx

(m−2)k+1

dy
(m−2)k = dy

(m−2)k+1

‖ s2 ‖2 (qx
m − cx

(m−1)k+1) = (sx
m, −sy

m)T (d(m−2)k+1 − c(m−1)k+1)
‖ s2 ‖2 (qy

m − cy
(m−1)k+1) = (sy

m, sx
m)T (d(m−2)k+1 − c(m−1)k+1)

qx
m = wx

(m−1)k+1

qy
m = wy

(m−1)k+1

aT
(m−1)k+1w(m−1)k+1 + r(m−1)k+1 = b(m−1)k+1


��������������
�������������


� 	(m−1)k+1

wy
(m−1)k+j−1 = wy

(m−1)k+j

wy
(m−1)k+j−1 = wy

(m−1)k+j

aT
(m−1)k+jw(m−1)k+j + r(m−1)k+j = b(m−1)k+j


�

 � 	(m−1)k+j , j = 2, . . . , k

Again we employ a slight abuse of notation by letting each �j also denote the ini-
tial row indices of the constraints with which it is associated. Preserving the relative
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ordering of the constraints as they appear in the respective definition of each �j , we
provide the following row permutation for A. This ordering yields the tri-banded form
as it appears in 2 (Center):

[
�T
1 , �T

2 , . . . , �T
mk

]T
(9)

Given this definition of A as well as (8), the mono-banded form of (6) can be con-
structed. Symmetrically applying the permutation that yields the following Newton
KKT system solution vector ordering:

[
λT , γT , ξT

1 , . . . , ξT
(m−3), χ

T
]T

(10)

λ =

�
����������������������

δq1

δt1
v1

...
v5k

δw1

δr1

δc1

...
δwk

δrk

δck

�
���������������������	

γ =

�
��������������������������

δq2

δt2
v5k+1

...
v12k

δck+1

δd1

δwk+1

δrk+1

...
δc2k

δdk

δw2k

δr2k

�
�������������������������	

ξi =

�
��������������������������

δqi+2

δti+2

v(7i+5)k+2i−1
...

v(7i+12)k+2i

δc(i+1)k+1

δdik+1

δw(i+1)k+1

δr(i+1)k+1
...

δc(i+2)k

δd(i+1)k

δw(i+2)k

δr(i+2)k

�
�������������������������	

χ =

�
����������������������

δqm

δtm

v(7m−9)k+2m−5)
...

v(7m−6)k+2m

δc(m−1)k+1

δd(m−2)k+1

δw(m−1)k+1

δr(m−1)k+1
...

δwmk

δrmk

�
���������������������	

produces a mono-banded coefficient structure having a respective upper and lower
bandwidths of 37.

Figure 2 illustrates the process of transforming the KKT system via our approach.
The “augmented” Newton KKT system derived from the permutations given in (8) and
(9) is shown in Figure 2 (Center). Taking the coefficient structure of (6) in this form
and symmetrically permuting its rows and columns according to (10) yields the mono-
banded system appearing in Figure 2 (Right). It can now be solved in O(km) using a
band-diagonal LU -based solver [20].

Applying these alterations effectively reduces the per-iteration complexity of the
penalty-barrier method to O(km) for the coordination problem. As the iteration com-
plexity of the barrier approach scales as O(

√
km), we see that the total complexity is

O(k1.5m1.5) in theory. However, it should be emphasized that this bound is highly con-
servative as it is well-known that iteration complexity scales as O(1) in practice [4]. As
such, solving the coordination problem will require a number of basic operations that
grows more like O(km). In other words, the computational workload scales linearly
with the number environmental constraints and the configuration size.

3.2 Simulation Results

The results presented thus far correspond to an application of a simple penalty-barrier
approach. Although effective, such an IPM is not typically used in practice as more
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Fig. 3. (Left) MOSEK CPU utilization time for teams operating in a heptagonal environment.
When problem structure is fully exploited (m � 500), the trend becomes highly linear with r2 =
0.9822. (Right) The highly linear trends for teams operating in heptagonal and tetradecagonal
(14-sided) environments. Regarding the latter, we have r2 = 0.9645.

sophisticated and robust solvers exist [17,19]. As such, we carried-out a sequence of
trials whereby the coordination problem was solved using the MOSEK industrial solver
package, which utilizes a homogenous self-dual IPM [19]. For our trials, we varied the
given team size m from 10 to 1000 at intervals of 5 with the mean CPU time being
recorded over a sample size of 10 trials for each value. All problems were solved using
a standard desktop PC having a 3.0 GHz Pentium 4 processor and 2.0 GB of RAM.

In Figure 3 (Left) the CPU utilization trend is provided for a team confined to oper-
ations in a heptagonal (7-sided) environment. Notice that below ≈ 500 nodes, the com-
plexity scales cubicly (r2 = 0.9933). This appears to be the result of the solver not fully
exploiting problem structure in obtaining its solution. Beyond 500 this is not the case
as performance is highly linear with linear regression analysis revealing r2 = 0.9822.
Perhaps more importantly, we see that solutions for configurations having up to 1000
nodes are obtainable in less than 0.45 seconds.

Figure 3 (Right) shows the highly-linear performance trends for robot teams operat-
ing respectively in heptagonal and tetradecagonal (14-sided) environments. Moreover,
the linear growth of the complexity as a function of k is evident by considering the
comparative performance ratio t14

t7
which remains essentially constant as m → 1000.

Together, these results highlight the efficacy of our approach.

4 Coordination in Non-convex Polygonal Environments

We now compose our previous results into a more general instance of the coordination
task. Specifically, we consider motion planning in an arbitrary polygonal environment
with obstacles. As the space of feasible robot positions is no-longer convex by assump-
tion, solving this problem directly would require more general and less-efficient non-
linear programming techniques that guarantee only convergence to local minima. Thus,
in an effort to obtain a similar complexity results as those seen in Section 3.1, we pro-
pose a hybrid multi-phase optimization approach over a discrete convex tessellation of
the work environment.
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4.1 Generalizing the Coordination Problem

As noted, we assume that the configuration space C for the robot team is a polygonal
environment with obstacle subspace O and free space Cfree such that Cfree = C − O.
Using exact cell decomposition methods (e.g. triangulation, trapezoidal decomposition,
etc.), Cfree can be tessellated into convex polygonal cells C1, . . . , Cz , where Cfree =⋃z

i=1 Ci [5]. The resulting partition induces an undirected graph G = (V, E), where
vertex vi ∈ V corresponds to cell Ci, and edge eij ∈ E implies that there exists a
common edge between Ci and Cj . Paths between cells can then be efficiently computed
using traditional graph optimization algorithms (e.g. [10]). The coordination problem
can then be reposed as transitioning the formation from cell to cell along the specified
path. In the sequel, we assume a triangulation partition of Cfree. We also assume that
the union of adjacent cells Cij = Ci

⋃
Cj ∀ (Ci, Cj) ∈ E is convex. This is hardly

restrictive as it is straightforward to refine any pair of adjacent triangles to three such
triangles where both of the resulting adjacent pairs meet this constraint.

Remark 1. Given two adjacent cells (Ci, Cj) ∈ E, where Cij = Ci

⋃
Cj is convex, if

node xi ∈ Ci and xj ∈ Cj , then by convexity λxi + (1 − λ)xj ∈ Cij , λ ∈ [0, 1]. This
implies that for a formation of m nodes with initial pose Xi = (xi1, . . . , xim)T ∈ R

2m

in triangle Ci, and final pose Xj in triangle Cj , the paths of each node will remain
entirely in Cij ⊆ Cfree. This guarantees against collisions with obstacles.

Let us assume that such a path Cp = {C1, . . . , Cl} ⊆ Cfree has been specified by a
higher level planner. The coordination problem can then be written as follows:

Problem 1. Given a path specification Cp = {C1, . . . , Cl}, a corresponding shape
specification S = {S1, . . . , Sl}, and an initial formation pose X0, find a motion se-
quence X = {X1, . . . , Xl} for the formation such that

1. Xi ∼ Si, i = 1, . . . , l

2. Xi ∈ Ci, i = 1, . . . , l

3. The distance traveled by the formation is minimized in accordance with the criteria
from Problem 4.

In solving Problem 1, we employ optimization techniques from model predictive con-
trol [14,18]. In this context however, the length of the horizon is not defined by time,
but rather the length of the path over which the optimization problem is solved.

To constrain the pose of the formation during each step of the horizon, each triangle
can be modeled as a set of three linear inequality constraints on the position of each
robot

cT
ikxij ≤ 0, i = 1, . . . , l, j = 1, . . . , m, k = 1, 2, 3 (11)

In a slight abuse of notation, we also let Ci = (c11, . . . , cm3)T ∈ R
3m× 2m denote

the set of linear constraints on the formation pose such that Xi ∈ Ci We can now write
the solution to Problem 1 for our total distance metric as

min
X

l∑

i=1

m∑

j=1
tij , i = 1, . . . , l, j = 1, . . . , m

s.t. ‖ xij − xi−1,j ‖2≤ tij
AiXi = 0
CiXi ≤ 0

(12)
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Fig. 4. (Left) Cpath as specified by the higher level planner. (Center) The corresponding mo-
tion sequence obtained from solving the associated SOCP. The formation is guaranteed to follow
Cpath while minimizing the total distance traveled, avoiding obstacles, and maintaining the de-
sired formation shape. In this example, both the orientation and minimum scale for the formation
were constrained. (Right) The associated linear system remains mono-banded, and in this case,
the bandwidth is defined as a function of the configuration size m.

where Ai are the constraints associated with shape Si as defined in Section 3. By now,
we can readily recognize the form of this problem as a SOCP. More significantly per-
haps, the corresponding KKT matrix corresponds to the chaining of l instances of our
single step problem. As a result, the associated linear system will remain mono-banded;
however, in this case the bandwidth will grow as either a function of m or l depending
upon the selected permutation of the augmented KKT system. As such, we conclude
the theoretical complexity is O(l1.5m3.5) or O(l3.5m1.5) – once again depending upon
the chosen ordering. In cases where the problem demands l 
 m – i.e. the horizon
length far exceeds the team size – a permutation yielding a bandwidth as a function of
m is best. Similarly, when the problem requires m 
 l, the bandwidth is best defined
as a function of horizon length as that yields the best performance bound.

Once again, these theoretical results are highly conservative as iteration complexity
scales as O(1) in practice [4]. Thus, solving the generalized coordination problem will
require a number of basic operations that scales more like O(l3m) (or O(lm3)). In the
former case, complexity scales linearly with configuration size making it well-suited
for coordinating a large-scale robot team.

4.2 Simulation Results

A sample simulation trial for a formation of 16 robots is shown in Figure 4. The path
of the formation is specified by a higher level planner after a discrete optimization
phase on the corresponding graph G (Left). The formation then solves the continuous
optimization problem specified in (12). The resulting path of the formation is shown
in Figure 4 (Right). In this example, the optimization was over the entire path length
(l = 16), the shape was held constant, and the minimum scale of the formation was
specified as a premise for inter-robot collision avoidance.

5 Discussion and Future Work

In this paper, we developed strategies for coordinating large-scale robot teams in both
convex and non-convex polygonal environments. We began by formulating the coor-
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dination problem as a constrained optimization problem in which the objective was to
minimize the distance a team, living in a convex polygonal workspace, must travel while
transitioning to a new objective shape configuration. We showed that this problem can
be formulated as a convex mathematical program. Solving with a log-barrier IPM, we
also showed that its solvable in O(k1.5m1.5) time in theory with O(km) performance
in practice – where k denotes the number of affine constraints used to model the convex
workspace and m denotes the configuration size.

After establishing these results, we then extended them to solve the coordination
problem in a non-convex polygonal workspace. By using an appropriate tessellation
of the environment along with model predictive control techniques, we showed that a
large-scale team of robots can obtain an objective position while successfully avoiding
collisions with both workspace boundaries and static obstacles. This problem is also
presented in convex form, and we showed that complexity scales as O(l3.5m1.5) with
O(l3m) performance in practice – when the bandwidth of the IPM’s core linear system
is defined as a function of the optimization horizon length l. In the case where band-
width is defined in terms of configuration size m, the theoretical complexity is then
O(l1.5m3.5) with O(lm3) performance in practice.

We are currently extending these results to a more general multi-objective frame-
work for large-scale coordination in SE(2). Such an extension is invaluable as many
applications require teams of robots to perform well with respect to multiple goals.
Additionally, we are exploring the possibility of extending the framework to SE(3).
However, such an extension is not obvious as a direct formulation of the coordination
problem in this higher dimensional space introduces imaginary terms. As a result, al-
ternate approaches and possible relaxations are being evaluated to achieve this end.
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