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Abstract. This chapter considers the cooperative control of aerial mu-
nitions during the attack phase of a mission against ground targets. It
is assumed that sensor information from multiple munitions is avail-
able to refine an estimate of the target location. Based on models of
the munition dynamics and sensor performance, munition trajectories
are designed that enhance the ability to cooperatively estimate the tar-
get location. The problem is posed as an optimal control problem using
a cost function based on the variances in the target-location estimate.
These variances are computed by fusing the individual munition mea-
surements in a weighted least squares estimate. Numerical solutions are
found for several examples both with and without considering limitations
on the munitions’ field of view. These examples show large reductions in
target-location uncertainty when these trajectories are used compared to
other naively designed trajectories. This reduction in uncertainty could
enable the attack of targets with greater precision using smaller, cheaper
munitions.

1 Introduction

Research is in progress on the cooperative control of air armament designed to
detect, identify, and attack ground targets. One class of this type of armament
are wide-area search munitions, which can be deployed in an area of unknown
targets. Current development is focused on possibilities of enhancing munition
capabilities through cooperative control. This chapter presents a new concept
for developing trajectories that enhance munitions’ capability to cooperatively
estimate target locations.

The tasks of intercepting a chosen target and estimating the target’s location
can represent competing requirements in the path planning of a munition. In a
general sense, the problem posed here is to plan a path to a target while simulta-
neously estimating that target’s location. This can be considered a simultaneous
localization and planning (SLAP) problem. Whereas SLAP problems can be
studied for a single agent, many interesting behaviors emerge when cooperative
agents are considered.

Important work exists in the literature on the two related problems of coop-
erative search [1,2,3] and the design of optimal trajectories for single observers
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[4,5,6,7,8,9,10]. Much of the work in optimal trajectories has focused on bearings-
only measurements of a target, often focused on sonar applications. Fawcett
investigated the impact of maneuvers on the Cramer-Rao lower bound for the
target-state estimate [4]. Frew and Rock investigated a method to minimize a
measure of the estimate error covariance [9]. Other works have studied optimal
trajectories for cooperative observers [11,12]. These works have focused on re-
connaissance of a target, relating the performance index to the quality of the
target-location estimate at the end of the mission or a time interval.

Several related topics also capture aspects of both cooperative search and tra-
jectory design. Dohner et al. used a Lyapunov approach to drive a vehicle swarm
to an uncertain target location while simultaneously maintaining swarm spacing
to ensure observability of the target [13]. Passino et al. developed a distributed
cooperative search algorithm where decisions were made planning into the future
to minimize a cost function representing several subgoals, such as covering areas
in large uncertainty and minimizing overlap with other agents [14].

It is noteworthy that the problem considered in this chapter, trajectory de-
sign to enhance target-location estimation, is in some ways the dual of another
problem that has received considerable attention, trajectory design to minimize
detection by an enemy radar [15,16,17,18]. Pachter et al. have considered another
related problem that used cooperative vehicles to project phantom tracks to an
enemy radar [19,20].

This chapter extends thefieldofoptimalobservor trajectories to thecooperative-
attack application. The methods presented in this chapter will be illustrated for
a planar problem with two munitions and one target; the methods apply though
to three-dimensional cases with general numbers of munitions and targets. In
the following section, models for the munition motion and sensor performance
are presented. Next, the SLAP trajectory design is posed as an optimal control
problem. Several example numerical solutions are then presented. Finally, the
performance of a target-location estimation algorithm is evaluated along the
SLAP trajectories and compared to alternative trajectories.

2 Model Development

A scenario can be considered with the two-dimensional plane populated by n
munitions and m fixed targets. The following developments will illustrate the
method for two munitions and one target. The state of each munition is given
by its position in two dimensional space, x1 = [x1 y1]T and x2 = [x2 y2]T. A
constant-speed kinematic model is used to describe the motion of the munitions.
The heading angles of the munitions are ψ1 and ψ2, and the speed of each
munition is v.

ẋ1 = v cosψ1 ; ẋ2 = v cosψ2

ẏ1 = v sin ψ1 ; ẏ2 = v sin ψ2 (1)

ẋi = fi (ψi) , i ∈ {1, 2} (2)

Here, the heading angles are treated as control variables.
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Additionally, each munition is considered to carry a sensor that is capable of
measuring the target location in the xy plane. Again, the end goal will be to
design trajectories that improve the estimation of the target location. Therefore,
a model is needed of the sensor measurements and their uncertainties. The target
has a position described by xT = [xT yT ]T. The measurement of this target
location by each munition, z̃1 = [x̃T,1 ỹT,1]T and z̃2 = [x̃T,2 ỹT,2]T, is modeled
as shown below.

x̃T,1 = xT + wx,1(0, σx,1) ; x̃T,2 = xT + wx,2(0, σx,2)
ỹT,1 = yT + wy,1(0, σy,1) ; ỹT,2 = yT + wy,2(0, σy,2) (3)

The measurement errors from each munition are assumed to be independent
of the errors from the other munition. The x and y measurement errors from
each individual munition, however, are treated as correlated Gaussian random
variables with zero mean and standard deviations of σx,i and σy,i, where i ∈
{1, 2}. It is these uncertainties that will drive the trajectory design, and they
can be selected to model a particular sensor design.

The error in the target-location measurements from an individual munition is
treated as following a zero-mean jointly-Gaussian distribution that is uncorre-
lated in the down-range and cross-range directions, relative to the true target and
munition locations. The errors in these directions, wd,i(0, σd,i) and wc,i(0, σc,i),
can therefore be treated as independent Gaussian random variables. The stan-
dard deviations in the down-range and cross-range directions are modeled as
functions of the range from the munition to the target.

σd,i = 0.1ri ; σc,i = 0.01ri (4)

This models a sensor that is more accurate when close to the target and more
accurate in the transverse direction than in the radial direction. The uncertainty
in the measurement of the target location by the ith munition is illustrated in
Fig. 1.

From the down-range and cross-range variables, the errors and the covariance
matrix in the x and y coordinates can be found.

[
wx,i

wy,i

]
=

[
cos θi sin θi

− sin θi cos θi

] [
wd,i

wc,i

]
(5)

Pi =
[

σ2
x,i σxy,i

σxy,i σ2
y,i

]
=

[
cos θi sin θi

− sin θi cos θi

] [
σ2

d,i 0
0 σ2

c,i

] [
cos θi − sin θi

sin θi cos θi

]
(6)

Here, θi is the bearing angle of the target relative to the ith munition. The range
and bearing angle for each target-munition pair are computed as shown below.

ri =
√

(xT − xi)
2 + (yT − yi)

2 (7)

θi = tan−1
(

yT − yi

xT − xi

)
(8)
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Fig. 1. Measurement of the target by the ith munition and the associated error prob-
ability ellipse

The significance of Eq. (6) is that it models the quality of the measurements
from the ith munition based on its position relative to the target.

The measurements provided by both munitions can be fused into a single
instantaneous estimate of the target location. This is done using a weighted least-
squares estimator (WLSE) [21,22]. The measurements of the target location from
each munition are grouped into a measurement vector z̃ = [x̃T,1 ỹT,1 x̃T,2 ỹT,2]T.
This produces a linear measurement model in terms of the target location.

z = HxT + w (9)

H =
[
1 0 1 0
0 1 0 1

]T

; w =
[
wx,1 wy,1 wx,2 wy,2

]T (10)

Here, w is the vector of measurement errors. The covariance of this error vector
is given by arranging the covariances from each munition.

R =
[

P1 0
0 P2

]
(11)

The instantaneous WLSE of the ith target location and the associated covariance
are given by the following.

x̂T =
(
HTR−1H

)−1
HTR−1z̃ (12)

P =
(
HTR−1H

)−1
(13)

Considering the first of Eqs. (10), the WLSE reduces to the following.

x̂T =
[
x̂T

ŷT

]
=

(
P−1

1 + P−1
2

)−1 (
P−1

1 z̃1 + P−1
2 z̃2

)
(14)

More importantly for the current purposes, the covariance of this combined
estimate is related to the individual covariances of the measurements from each
munition.

P =
[

σ2
x σxy

σxy σ2
y

]
=

(
P−1

1 + P−1
2

)−1
(15)
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The covariance P now models the quality of the combined target-location esti-
mate based on the positioning of the two munitions relative to the target. For
cases with more than two munitions, similar expressions can be developed com-
bining the measurements of each of the munitions. Additionally, for cases with
multiple targets corresponding expressions can be used for the covariance of each
target-location estimate.

3 Problem Formulation

The task of designing trajectories for the munitions in order to enhance the esti-
mation performance can now be posed as the following optimal control problem.
Consider the state vector x = [x1 y1 x2 y2]T. The heading angles of the mu-
nitions can be organized into a control vector u = [ψ1 ψ2]T. The state vector
evolves according to the state equation found by grouping Eq. (2), ẋ = f(u) =
[fT

1 fT
2 ]T. For boundary conditions, the initial positions of the munitions will be

considered a given, and the final position of munition 1 is required to be the
target location, x1(tF ) = xT and y1(tF ) = yT . The final position of munition 2
is free.

The goal will be to find the trajectories that minimize the following cost
function, which is based on the WLSE covariance.

J =
∫ tF

0

(
σ2

x + σ2
y

)
dt (16)

The variances of each target location are functions of the states describing the
munition configuration. Clearly, this cost function emphasizes the uncertainty
over the entire trajectory. Previous works have used performance indices related
to the uncertainty at the end of the trajectory or a specified interval [11,12].
Compared to those alternative indices, the cost function used here encourages
reduction in uncertainty earlier in the trajectory. It is also noted that other cost
functions could be based on the determinant or other metrics of the covariance
matrix.

Introducing the costates λ(t) = [λ1 λ2 λ3 λ4]T, a time-varying vector of La-
grange multipliers, the Hamiltonian can be defined.

H = σ2
x + σ2

y + λTf(u) (17)

From this, the first-order necessary conditions are derived [23].

∂H

∂u
=

(
∂f

∂u

)T

λ = 0 (18)

λ̇ = −∂H

∂x
= − ∂

∂x

(
σ2

x + σ2
y

)
(19)

From Eq. (18) the control law for the heading angles as a function of the costates
can be found.

∂H

∂ψ1
= −λ1v sin ψ1 + λ2v cosψ1 = 0 (20)
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Fig. 2. Heading angle, field-of-view half angle, bearing angle of ith munition relative
to the target

∂H

∂ψ2
= −λ3v sin ψ2 + λ4v cosψ2 = 0 (21)

To find a minimum in the cost, the following curvature condition is additionally
imposed.

∂2H

∂ψ2
1

= −λ1v cosψ1 − λ2v sin ψ1 > 0 (22)

∂2H

∂ψ2
2

= −λ3v cosψ2 − λ4v sin ψ2 > 0 (23)

This gives the optimal control as the following.

ψ1 = tan−1
(

−λ2

−λ1

)
; ψ2 = tan−1

(
−λ3

−λ4

)
(24)

The costate equations, governing the evolution of λ are given by Eq. (19). These
can be found by applying the chain rule to Eqs. (4), (6-8), and (15); however,
they are rather extended and are not reproduced here. The terminal conditions
for the problem are the specified conditions, x1(tF ) = xT and y1(tF ) = yT , and
the necessary conditions, λ3(tF ) = λ4(tF ) = H(tF ) = 0.

The above conditions have not accounted for limitations in the field of view
of the vehicle sensors. This assumes either a sensor that has unlimited field of
view or is gimbal mounted in order to view a target regardless of the vehicle
orientation and heading. A sensor that is fixed mounted on the vehicle, though,
may only offer a limited field of view relative to the vehicle heading. In this case
a hard constraint can be enforced on the trajectory of the ith munition to keep
the target in view. The field of view angle is labeled 2φ and is illustrated in
Fig. 2.
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Two inequality constraint functions can be enforced to keep the target in the
field of view of the ith munition. For example, the following constraints keep the
target in the field of view of munition 1.

c1 = ψ1 − θ1 − φ ≤ 0 ; c2 = −ψ1 + θ1 − φ ≤ 0 (25)

Note that the bearing angles are functions of the states, and the heading an-
gles are the controls. Arranging any desired constraints into a vector function
c(x, u) ≤ 0 and introducing a second set of Lagrange multipliers μ, a revised
Hamiltonian is developed [23].

H = σ2
x + σ2

y + λTf(u) + μTc(x, u) (26)

During periods when one or more of these constraints are active, the target is
kept on the edge of the field of view of the munition. The value of μ is calculated
from the revised stationary condition.

∂H

∂ψ1
= −λ1v sinψ1 + λ2v cosψ1 + μT ∂c

∂ψ1
= 0

∂H

∂ψ2
= −λ3v sinψ2 + λ4v cosψ2 + μT ∂c

∂ψ2
= 0 (27)

The costate equations are revised as shown below.

λ̇ = −∂H

∂x
= − ∂

∂x

(
σ2

x + σ2
y

)
+

(
∂c

∂x

)T

μ (28)

The two-point boundary-value problem can now be posed to solve for λ(t0)
and tF subject to the derived necessary conditions and the boundary conditions.
When the field-of-view constraints are inactive or simply neglected, the necessary
conditions are Eqs. (2), (19), and (24). When the field-of-view constraint is
active, the necessary conditions are Eqs. (2), (27), and (28).

For cases with more than two munitions or more than one target, the terminal
conditions could be specified by prechosen target-munition attack pairings. The
final states for any munitions not assigned a target would be free. For multi-
ple targets, the cost function could be augmented by summing the additional
variances from their target-location estimates. For complex scenarios with many
targets and munitions, difficulty may arise in the application of the field-of-view
constraints. It may be desirable to let targets pass in and out of the field of view
of some munitions.

For any scenario, the solution of the problem produces munition trajectories
designed to reduce the uncertainty in the target-location estimates. These are
referred to as the SLAP trajectories. Note that in a real-time application, the use
of the true target positions as boundary conditions would not be possible. These
must be estimated, which is the motivation behind finding the SLAP trajectories
in the first place. Here, though, the true locations are used to illustrate the
concept and potential benefit of these trajectories.
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4 Sample SLAP Trajectories

The following are several example SLAP trajectories that have been found us-
ing a sequential quadratic programming algorithm to numerically search for the
optimization parameters. Each of the examples considers the scenario of two
munitions and one target. Munition 1 is assigned to attack the target, and mu-
nition 2 is free to assist in the estimation of the target location. Two different
initial conditions are considered, and solutions are presented with and without
the field-of-view constraint. Here, a munition speed of v = 300 ft/sec and a half
field-of-view angle of φ = 45 deg were used.

The first set of initial conditions are x1(0) = 0 ft, y1(0) = −2000 ft, x2(0) =
100 ft, and y2(0) = −2000 ft. The target is located at xT = yT = 0 ft. This
problem was first solved neglecting any field-of-view constraints. The solution
parameters found for this case are shown in Table 1 under problem 1.

Table 1. Solution parameters and cost for sample SLAP trajectories

solution
parameters problem 1 problem 2 problem 3 problem 4
λ1(0) 29.495 32.226 30.550 32.453
λ2(0) −12.028 −12.745 −14.236 −15.170
λ3(0) −28.822 −49.167 30.551 49.532
λ4(0) −13.460 −40.658 14.258 40.001
tF (sec) 8.0950 7.6325 8.2146 7.6769
J 1.59 × 104 1.70 × 104 1.89 × 104 2.02 × 104

The trajectories generated by these values are shown in Fig. 3(a). The marks
along the trajectories in the figure indicate one-second intervals of flight time.
In this case the SLAP trajectories are roughly symmetric about the y axis.
Munition 1 intercepts the target at tF as required by the boundary conditions,
but munition 2 also approaches the target very closely. Intuitively this is because
the measurement errors from either munition are reduced as the munition closes
the range with the target. Instead of traveling directly to the target, however,
near the initial time both munitions sweep out in the ±x directions. This gives
the munitions differing perspectives on the target allowing them to compensate
for the relatively large downrange errors in each other’s measurements.

In the trajectories for problem 1, both munitions sweep out aggressively such
that the target would be out of their fields of view during the initial stages of
the trajectories. To correct for this, problem 2 is posed to enforce that both
munitions keep the target within view. Problem 2 is identical to problem 1 in
all other aspects. The solutions for this problem are shown in Table 1 and the
corresponding trajectories are shown in Fig. 3(b).

In this case, the field-of-view constraint is active over the entire trajectory
of munition 2. It is prevented from swinging wide during the initial periods,
and instead munition 2 keeps the target on the edge of its field of view for the
entire flight. The field-of-view constraint is also initially active for munition 1.
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Fig. 3. SLAP trajectories for problems 1 and 2

After a short period, though, munition 1 turns to head more directly toward the
target. Again, the intuitive behaviors of closing range to the target and achieving
differing points of view are present in the SLAP trajectories for problem 2. The
motions are restricted, however, by the field-of-view constraint.

Next, a different initial condition can be considered with munition 2 moved
to an initial position x2(0) = 0 ft, and y2(0) = 2000 ft. Instead of starting nearby
munition 1, munition 2 now starts on the opposite side of the target relative to
munition 1. The solution for this case when neglecting the field-of-view constraint
is shown as problem 3 in Table 1. The SLAP trajectories for this problem are
shown in Fig. 4(a). The trajectories for the two munitions are nearly symmetric
about the x axis. Similar to problem 1, the munitions sweep to the side to obtain
differing viewpoints before closing in on the target.

The solution for the above initial conditions when applying the field-of-view
constraint is listed as problem 4 in Table 1. The SLAP trajectories for this
problem are shown in Fig. 4(b). The constraint is active for the early part of the
trajectory of munition 1 and for the entire flight of munition 2.
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Fig. 4. SLAP trajectories for problems 3 and 4
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5 Estimation Performance

The impact of the SLAP trajectories on the target-location estimation can now
be evaluated. Although the trajectories were designed using a cost function based
on the variances from a continuous WLSE algorithm, the estimation performance
will be evaluated using a recursive weighted least squares estimation (RWLSE)
algorithm with discrete measurement updates. First, the algorithm will be op-
erated for a single munition following a trajectory from the initial condition
straight to the target location (STT trajectory). Second, the estimation is per-
formed for two munitions both following STT trajectories. Finally, the algorithm
is implemented using two munitions following the field-of-view constrained SLAP
trajectories. In each case, noisy measurements were simulated using the measure-
ment model in Eq. (4).

The munition sensors were assumed to collect measurements of the target
location at a rate of 10 Hz. The RWLSE algorithm operated as follows to deter-
mine the estimate and the uncertainty at the kth time step [21,22]. The current
estimate is computed as follows.

Kk = Pk−1H
T (

HPk−1H
T + R

)−1
(29)

x̂
(T )
k = x̂

(T )
k−1 + Kk

(
z̃k − Hx̂

(T )
k−1

)
(30)

The current covariance matrix is computed as shown.

Pk =
[

σ2
x,k σxy,k

σxy,k σ2
y,k

]
=

(
P−1

k−1 + HT
k R−1

k Hk

)−1
(31)

To compare the estimation performance along the different trajectories, the size
of the one-sigma uncertainty ellipsoid in the target-location estimate can be used
as a metric. At the kth time step, this is given by the product of π with the
square root of the product of the eigenvalues of Pk. In particular, the ellipsoid
size at tF −2 sec will be highlighted. Although tF is different for each trajectory,
at this point in time munition 1 is roughly 600 ft from the target.

Using the initial condition of x1(0) = 0 ft, y1(0) = −2000 ft the STT trajec-
tory has a flight time given by tF = 6.67 sec. Using a single munition on an
STT trajectory, at tF − 2 sec the one-sigma uncertainty ellipse has an area of
81.5 ft2. For x2(0) = 100 ft, and y2(0) = −2000 ft, adding measurements from
munition 2 on an STT trajectory reduces the uncertainty to 39.7 ft2. When the
two munitions follow the SLAP trajectory shown in Fig. 3b, however, the area
is reduced to 9.1 ft2.

The error histories for a sample simulation with noisy measurements and
three-sigma error bounds (±3σx,k and ±3σy,k) generated by the RWLSE algo-
rithm are shown in Fig. 5. Figure 5(a) shows the errors in the x and y estimates
of the target location using the STT trajectories. Figure 5(b) show the errors
using the SLAP trajectories. Clearly, both trajectories give similar good per-
formance in estimating the x component of the target location, but the SLAP
trajectories provide much better estimation of the y component.
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Fig. 5. Estimation errors using (a) STT and (b) SLAP trajectories with x2(0) = 100 ft,
and y2(0) = −2000 ft

Moving munition 2 to the initial condition x2(0) = 0 ft, and y2(0) = 2000 ft
obviously does not change the results when only measurements from munition
1 are considered. For the cases with two munitions, however, the uncertainty
areas at tF − 2 sec are 40.8 ft2 for the STT trajectories and 9.3 ft2 for the SLAP
trajectories. For these initial conditions, the error histories for a sample simu-
lation with noisy measurements and three-sigma error bounds generated by the
RWLSE algorithm are shown in Fig. 6.

These results give an indication of the impact of trajectory design on esti-
mation performance. Significantly, for either initial condition, adding a second
munition to help in the target-location estimation without paying attention to
trajectory design improves performance to approximately half of the uncertainty
achieved with a single munition. Careful use of the SLAP trajectories, however,
further reduces the uncertainty to less than one quarter of what is achieved using
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Fig. 6. Estimation errors using (a) STT and (b) SLAP trajectories with x2(0) = 0 ft,
and y2(0) = 2000 ft
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the STT trajectories. The SLAP trajectories benefit both from being delayed,
which allows collection of more measurements, and their paths, which improve
the quality of the measurements.

6 Conclusions

The results in the previous section demonstrate the impact that careful trajec-
tory design can have on target-location estimation. Adding a second munition
when following STT trajectories does significantly improve estimation perfor-
mance. The use of the SLAP trajectories, however, reveals much greater further
improvement. Furthermore, the complexity and cost of the second munition and
communication between the two has already been accepted in taking the first
step. The second step of following the SLAP trajectories only requires careful
trajectory design.

Improvements in estimation performance like those demonstrated here could
have significant impact on munition design and cost. More accurate target-
location estimation could allow more accurate strike capability or the ability
to attack targets that are difficult to detect. It is anticipated that the reduction
in uncertainty early in the trajectory could be critical for the precision strike of
these difficult targets; however, further work is needed to demonstrate the impact
of these estimation enhancements on guidance and control performance. Com-
bined, these effects could enable the use of smaller, cheaper munitions against
targets in cluttered environments while limiting collateral damage.

The calculus-of-variations approach, used here, to solve for SLAP trajectories
allowed for model-based trajectory design. This approach may not be the best ap-
proach, however, for real-time implementation. Future work for this application
may require different solution approaches. The intuition gained from calculus-
of-variations based sample solutions may allow the development of heuristic so-
lutions that are better suited for real-time implementation.
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