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Abstract. This chapter presents an extension of cost-cumulant control
theory over a finite horizon for a class of stochastic zero-sum differential
games wherein the evolution of the states of the game in response to
decision strategies selected by two players from sets of admissible con-
trols is described by a stochastic linear differential equation and a stan-
dard integral-quadratic cost. A direct dynamic programming approach
for the Mayer optimization problem is used to solve for a multi-cumulant
based solution when both players measure the states and minimize the
first finite number of cumulants of the standard integral-quadratic cost
associated with this special class of differential games. This innovative
decision-making paradigm is proposed herein to provide not only a mech-
anism in which the conflicting interests of noncooperative players can be
optimized, but also an analytical tool which is used to provide a com-
plete statistical description of the global performance of the stochastic
differential game.

1 Introduction

This chapter considers a closed-loop two-person zero-sum linear-quadratic game
wherein the dynamics of the game in response to control variables selected by
both players from a class of linear-feedback controllers is described by a stochas-
tic linear differential equation. In seeking optimal control strategies whose respec-
tive objectives are minimization and maximization of a finite linear combination
of the first k cost cumulants of an integral-quadratic random cost associated with
the class of linear stochastic systems over a finite horizon, the recently devel-
oped statistical control theory [7]-[17] is extended herein. The extension which
is manifested through the resulting cumulant-generating equations, now allows
the incorporation of classes of linear feedback controllers to affect and predict
more accurately the effects of non-Gaussian perturbations on the accuracy of
system performance via a complete statistical description. In other words, using
these high-order cost cumulants, it is possible to obtain an approximation of the
system performance distribution.
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Since the formulation of multi-cumulant and zero-sum games is parameter-
ized both by the number of cost cumulants and by the scalar coefficients in the
linear combination, it may be viewed both as a generalization of linear-quadratic
Gaussian control, when the first cost cumulant is optimized and of two-person
zero-sum differential games when a certain denumerable linear combination of
cost cumulants is optimized. The set of coupled matrix Riccati differential equa-
tions is introduced, whose solvability leads to the existence of the closed-loop
feedback saddle points for the corresponding multi-cumulant and zero-sum game
under some additional mild conditions. It is worth mentioning that the multi-
cumulant and zero-sum game is an initial cost problem, in contrast with the more
traditional terminal cost class of investigations. One may address an initial cost
problem by introducing changes of variables which convert it to a terminal cost
problem. However, this modifies the natural context of cost cumulants, which it
is preferable to retain. Instead, one may take a more direct dynamic program-
ming approach to the initial cost problem. Such an approach is illustrative of
the more general concept of the principle of optimality, an idea tracing its roots
back to the 17th century.

2 Problem Formulation

Let’s consider a zero-sum stochastic differential game with two noncooperative
players, identified as u1 and u2. Suppose (t0, x0) ∈ [t0, tf ] × R

n is fixed and
a system input noise w(t) � w(t, ω) : [t0, tf ] × Ω �→ R

p is an p-dimensional
stationary Wiener process defined with {Ft}t≥0 being its natural filtration on
a complete filtered probability space (Ω, F , {Ft}t≥0, P) over [t0, tf ] with the
correlation of increments

E
{
[w(τ) − w(ξ)][w(τ) − w(ξ)]T

}
= W |τ − ξ|, W > 0 .

Also, decision sets U1 ∈ L2
Ft

(Ω; C([t0, tf ]; Rm1)) and U2 ∈ L2
Ft

(Ω; C([t0, tf ]; Rm2))
are assumed to be the subsets of Hilbert space of R

m1-valued and R
m2-valued,

square integrable processes on [t0, tf ] that are adapted to the σ-field Ft generated
by w(t), respectively. Associated with each (u1, u2) ∈ U1×U2 is a standard finite-
horizon integral-quadratic form (IQF) random cost J : [t0, tf ] × R

n × U1 ×U2 �→
R

+ (for which the first player, u1 tries to minimize, while the second player, u2
attempts to maximize it) such that

J(t0, x0; u1, u2) = xT (tf )Qfx(tf )

+
∫ tf

t0

[
xT (τ)Q(τ)x(τ) + uT

1 (τ)R11(τ)u1(τ) − uT
2 (τ)R22(τ)u2(τ)

]
dτ , (1)

where the system states of the game, x(t) � x(t, ω) : [t0, tf ] × Ω �→ R
n belong

to the Hilbert space L2
Ft

(Ω; C([t0, tf ]; Rn)) with E
{∫ tf

t0
xT (τ)x(τ)dτ

}
< ∞ and

evolve according to the stochastic differential equation
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dx(t) = (A(t)x(t) + B1(t)u1(t) + B2(t)u2(t)) dt + G(t)dw(t) (2)
x(t0) = x0 .

The system coefficient matrices A ∈ C([t0, tf ]; Rn×n), B1 ∈ C([t0, tf ]; Rn×m1),
B2 ∈ C([t0, tf ]; Rn×m2) and G ∈ C([t0, tf ]; Rn×p) are deterministic bounded
matrix-valued functions. The terminal penalty weighting Qf ∈ R

n×n, the state
weighting Q ∈ C([t0, tf ]; Rn×n) and control weightings R11 ∈ C([t0, tf ]; Rm1×m1),
and R22 ∈ C([t0, tf ]; Rm2×m2) are deterministic bounded matrix-valued functions
with properties of symmetry and positive semi-definiteness. In addition, R11(t)
and R22(t) are invertible.

To put this stochastic differential game in a class of closed-loop feedback
control, it is observed that the system (2) is linear and the performance measure
(1) is quadratic. Therefore, it is reasonable to assume that the players choose
control actions that are optimal within the class of memoryless perfect-state
strategies, γ1 : [t0, tf ] × L2

Ft
(Ω; C([t0, tf ]; Rn)) �→ L2

Ft
(Ω; C([t0, tf ]; Rm1)) and

γ2 : [t0, tf ] × L2
Ft

(Ω; C([t0, tf ]; Rn)) �→ L2
Ft

(Ω; C([t0, tf ]; Rm2))

u1(t) = γ1(t, x(t)) = K1(t)x(t) , (3)
u2(t) = γ2(t, x(t)) = K2(t)x(t) , (4)

where the admissible gains K1 ∈ C([t0, tf ]; Rm1×n) and K2 ∈ C([t0, tf ]; Rm2×n)
are deterministic bounded matrix-valued functions defined in appropriate senses.

For a given initial condition (t0, x0) ∈ [t0, tf ] × R
n and subject to strategies

(3)-(4), the dynamics of the game (2) is given by

dx(t) = [A(t) + B1(t)K1(t) + B2(t)K2(t)] x(t)dt + G(t)dw(t) , (5)
x(t0) = x0 ,

and its IQF cost in the form of a Chi-square random variable, follows

J(t0, x0; K1, K2) = xT (tf )Qfx(tf )

+
∫ tf

t0

xT (τ)
[
Q(τ) + KT

1 (τ)R11(τ)K1(τ) − KT
2 (τ)R22(τ)K2(τ)

]
x(τ)dτ . (6)

It is necessary to develop a procedure for generating cost cumulants of the two-
player zero-sum differential game by adapting the parametric method in [5] to
characterize a moment-generating function. These cost cumulants are then used
to form performance index in the cost-cumulant control optimization. This ap-
proach begins with a replacement of the initial condition (t0, x0) by any arbitrary
pair (α, xα). Thus, for the given admissible feedback gains K1 and K2, the cost
functional (6) is seen as the “cost-to-go”, J (α, xα)

J(α, xα) � xT (tf )Qfx(tf )

+
∫ tf

α

xT (τ)
[
Q(τ) + KT

1 (τ)R11(τ)K1(τ) − KT
2 (τ)R22(τ)K2(τ)

]
x(τ)dτ .
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The moment-generating function of the vector-valued random process (5) is given
by the definition

ϕ (α, xα; θ) � E {exp (θJ (α, xα))} , (7)

where the scalar θ ∈ R
+ is a small parameter. What follows next is the cumulant-

generating function

ψ (α, xα; θ) � ln {ϕ (α, xα; θ)} , (8)

in which ln{·} denotes the natural logarithmic transformation of an enclosed
entity.

Theorem 1. Cost Cumulant Generating Function.
For all α ∈ [t0, tf ] and the small parameter θ ∈ R

+, define

ϕ (α, xα; θ) � � (α; θ) exp
(
xT

αΥ (α; θ)xα

)
, (9)

υ (α; θ) � ln{� (α; θ)} . (10)

Then, the cost-cumulant generating function is expressed by

ψ (α, xα; θ) = xT
αΥ (α; θ)xα + υ (α; θ) , (11)

where the scalar solution υ (α; θ) solves the time-backward differential equation
with the terminal boundary condition υ (tf ; θ) = 0

d

dα
υ (α; θ) = −Tr

{
Υ (α; θ)G (α) WGT (α)

}
, (12)

and the matrix-valued solution Υ (α; θ) satisfies the time-backward differential
equation together with its terminal-valued condition Υ (tf ; θ) = θQf

d

dα
Υ (α; θ) = −[A(α) + B1(α)K1(α) + B2(α)K2(α)]T Υ (α; θ)

− Υ (α; θ)[A(α) + B1(α)K1(α) + B2(α)K2(α)]

− 2Υ (α; θ)G(α)WGT (α)Υ (α; θ)

− θ
[
Q(α) + KT

1 (α)R11(α)K1(α) − KT
2 (α)R22(α)K2(α)

]
. (13)

In addition, the auxiliary solution �(α; θ) is satisfying the time-backward differ-
ential equation with the terminal boundary condition � (tf ; θ) = 1

d

dα
� (α; θ) = −� (α; θ)Tr

{
Υ (α; θ)G (α)WGT (α)

}
. (14)

Proof. For any given θ, let � (α, xα; θ) � exp (θJ (α, xα)). The moment-
generating function becomes

ϕ (α, xα; θ) = E {� (α, xα; θ)} ,
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with time derivative of

d

dα
ϕ (α, xα; θ) = −ϕ (α, xα; θ) θxT

α

[
Q(α) + KT

1 (α)R11(α)K1(α)

− KT
2 (α)R22(α)K2(α)

]
xα .

Using the standard Ito’s formula in [1], one gets

dϕ (α, xα; θ) = E {d� (α, xα; θ)} ,

= E
{

�α (α, xα; θ) dα + �xα (α, xα; θ) dxα

+
1
2
Tr

{
�xαxα(α, xα; θ)G(α)WGT (α)

}
dα

}
,

= ϕα (α, xα; θ) dα

+ ϕxα (α, xα; θ)
[
A(α) + B1(α)K1(α) + B2(α)K2(α)

]
xαdα

+
1
2
Tr

{
ϕxαxα (α, xα; θ) G (α) WGT (α)

}
dα ,

when combined with (9) leads to

− ϕ (α, xα; θ) θxT
α

[
Q(α) + KT

1 (α)R11(α)K1(α) − KT
2 (α)R22(α)K2(α)

]
xα

=
d

dα� (α; θ)
� (α; θ)

ϕ (α, xa; θ) + ϕ (α, xα; θ)xT
α

d

dα
Υ (α; θ)xα + ϕ (α, xα; θ)

{
xT

α

[
A(α)

+ B1(α)K1(α) + B2(α)K2(α)
]T

Υ (α; θ)xα

+ xT
αΥa(α; θ) [A(α) + B1(α)K1(α) + B2(α)K2(α)] xα

}

+ϕ (α, xα; θ)
{

2xT
αΥ (α; θ)G(α)WGT (α)Υ (α; θ)xα+Tr

{
Υ (α; θ)G(α)WGT (α)

}}
.

To have constant and quadratic terms independent of xα, it is required that

d

dα
Υ (α; θ) = −[A(α) + B1(α)K1(α) + B2(α)K2(α)]T Υ (α; θ)

− Υ (α; θ)[A(α) + B1(α)K1(α) + B2(α)K2(α)]

− 2Υ (α; θ)G (α)WGT (α) Υ (α; θ)

− θ
[
Q(α) + KT

1 (α)R11(α)K1(α) − KT
2 (α)R22(α)K2(α)

]
,

d

dα
� (α; θ) = −� (α; θ)Tr

{
Υ (α; θ)G (α)WGT (α)

}
,

with the terminal conditions Υ (tf ; θ) = θQf and � (tf ; θ) = 1. Finally, the re-
maining time-backward differential equation satisfied by υ (α; θ) is given by

d

dα
υ (α; θ) = −Tr

{
Υ (α; θ)G (α)WGT (α)

}
, υ (tf ; θ) = 0 .

��
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Now cost cumulants can be generated for the zero-sum stochastic differential
game by looking at a MacLaurin series expansion of the cumulant-generating
function

ψ (α, xα; θ) =
∞∑

i=1

κi(α, xα)
θi

i!
=

∞∑

i=1

∂(i)

∂θ(i) ψ(α, xα; θ)
∣
∣
∣∣
θ=0

θi

i!
, (15)

in which κi(α, xα)’s are called the cost cumulants. Note that the series coefficients
can be computed using (11)

∂(i)

∂θ(i) ψ(α, xα; θ)
∣
∣∣
∣
θ=0

= xT
α

∂(i)

∂θ(i) Υ (α; θ)
∣
∣∣
∣
θ=0

xα +
∂(i)

∂θ(i) υ(α; θ)
∣
∣∣
∣
θ=0

. (16)

In view of results (15) and (16), cost cumulants for the stochastic differential
game problem can be obtained as

κi(α, xα) = xT
α

∂(i)

∂θ(i) Υ (α; θ)
∣
∣
∣∣
θ=0

xα +
∂(i)

∂θ(i) υ(α; θ)
∣
∣
∣∣
θ=0

, (17)

for any finite 1 ≤ i < ∞. For notational convenience, the following definitions
are introduced:

H(α, i) � ∂(i)

∂θ(i) Υ (α; θ)
∣
∣
∣
∣
θ=0

and D(α, i) � ∂(i)

∂θ(i) υ(α; θ)
∣
∣
∣
∣
θ=0

. (18)

The next theorem yields an attractive method of generating cost cumulants in
time domain. This computational method is preferred to that of (16) in the
formulation of cost-cumulant control problems.

Theorem 2. Cost-Cumulants in Zero-Sum Stochastic Differential Games.
Suppose that (A, B1) and (A, B2) are uniformly stabilizable. The players choose
control strategies (u1(t), u2(t)) = (K1(t)x(t), K2(t)x(t)) for the zero-sum differ-
ential game characterized by (5) and (6). For k ∈ Z

+ fixed and 1 ≤ i ≤ k, the
kth cost cumulant in the zero-sum stochastic game is given by

κk(t0, x0; K1, K2) = xT
0 H(t0, k)x0 + D(t0, k) , (19)

in which the cumulant variables {H(α, i)}k
i=1 and {D(α, i)}k

i=1 evaluated at α =
t0 satisfy the following differential equations (with the dependence of H(α, i) and
D(α, i) upon the admissible gains K1 and K2 suppressed)

d

dα
H(α, 1) = − [A(α) + B1(α)K1(α) + B2(α)K2(α)]T H(α, 1)

− H(α, 1) [A(α) + B1(α)K1(α) + B2(α)K2(α)]

− Q(α) − KT
1 (α)R11(α)K1(α) + KT

2 (α)R22(α)K2(α) , (20)
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and, for 2 ≤ i ≤ k

d

dα
H(α, i) = − [A(α) + B1(α)K1(α) + B2(α)K2(α)]T H(α, i)

− H(α, i) [A(α) + B1(α)K1(α) + B2(α)K2(α)]

−
i−1∑

j=1

2i!
j!(i − j)!

H(α, j)G(α)WGT (α)H(α, i − j) , (21)

together with 1 ≤ i ≤ k

d

dα
D(α, i) = −Tr

{
H(α, i)G(α)WGT (α)

}
, (22)

where the terminal conditions H(tf , 1) = Qf , H(tf , i) = 0 for 2 ≤ i ≤ k and
D(tf , i) = 0 for 1 ≤ i ≤ k.

Proof. The cost-cumulant expression in (19) is readily justified by using the re-
sult (17) and the definitions (18). What remains is to show that the solutions
H(α, i) and D(α, i) for 1 ≤ i ≤ k indeed satisfy (20)-(22). Note that the equa-
tions (20)-(22) are satisfied by the solutions H(α, i) and D(α, i) and can be
obtained by repeatedly taking the derivative with respect to θ of (12)-(13) to-
gether with the assumption A(α) + B1(α)K1(α) + B2(α)K2(α) is stable for all
α ∈ [t0, tf ]. ��

In the subsequent development, the subset of symmetric matrices of the vector
space of all n × n matrices with real elements is denoted by S

n. Now, let the
k-tuple variables H and D be defined as follows

H(·) � (H1(·), . . . , Hk(·)) and D(·) � (D1(·), . . . , Dk(·)) ,

for each element Hi ∈ C1([t0, tf ]; Sn) of H and Di ∈ C1([t0, tf ]; R) of D having
the representations

Hi(·) � H(·, i) andDi(·) � D(·, i)

with the right members satisfying the dynamic equations (20)-(22) on the horizon
[t0, tf ]. For ease of presentation, the following mappings are introduced:

Fi : [t0, tf ] × (Sn)k × R
m1×n × R

m2×n �→ S
n

Gi : [t0, tf ] × (Sn)k �→ R
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where the actions are given by

F1(α, H, K1, K2) � − [A(α) + B1(α)K1(α) + B2(α)K2(α)]T H1(α)
− H1(α) [A(α) + B1(α)K1(α) + B2(α)K2(α)]

− Q(α) − KT
1 (α)R11(α)K1(α) + KT

2 (α)R22(α)K2(α)

Fi(α, H, K1, K2) � − [A(α) + B1(α)K1(α) + B2(α)K2(α)]T Hi(α)
− Hi(α) [A(α) + B1(α)K1(α) + B2(α)K2(α)]

−
i−1∑

j=1

2i!
j!(i − j)!

Hj(α)G(α)WGT (α)Hi−j(α) , 2 ≤ i ≤ k

Gi(α, H) � −Tr
{
Hi(α)G(α)WGT (α)

}
, 1 ≤ i ≤ k .

For a compact formulation, the product mappings are established as such

F1 × · · · × Fk : [t0, tf ] × (Sn)k × R
m1×n × R

m2×n �→ (Sn)k

G1 × · · · × Gk : [t0, tf ] × (Sn)k �→ R
k

along with the corresponding notations F � F1 ×· · ·×Fk and G � G1 ×· · ·×Gk.
Thus, the dynamic equations of motion (20)-(22) can be rewritten as

d

dα
H(α) = F(α, H(α), K1(α), K2(α)) , H(tf ) = Hf (23)

d

dα
D(α) = G(α, H(α)) , D(tf ) = Df , (24)

where the terminal values Hf = (Qf , 0, . . . , 0) and Df = (0, . . . , 0).
Note that the product system uniquely determines H and D once the admis-

sible feedback gains K1 and K2 are specified. Hence, H and D are considered
as H(·, K1, K2) and D(·, K1, K2), respectively. The performance index in cost-
cumulant control can now be formulated in the admissible feedback gains K1
and K2.

Definition 1. Performance Index in Cost-Cumulant Control.
Fix k ∈ Z

+ and the sequence μ = {μi ≥ 0}k
i=1 with μ1 > 0. Then for the given

initial condition (t0, x0), the performance index φ0 : [t0, tf ] × (Sn)k × R
k �→ R

+

of the finite-horizon cost-cumulant control is defined by

φ0 (t0, H(t0, K1, K2), D(t0, K1, K2)) �
k∑

i=1

μiκi(K1, K2)

=
k∑

i=1

μi

[
xT

0 Hi(t0, K1, K2)x0 + Di(t0, K1, K2)
]

, (25)

where additional parametric design freedom μi mutually chosen by players rep-
resent different levels of influence as they deem important to the overall cost dis-
tribution. Symmetric solutions {Hi(t0, K1, K2) ≥ 0}k

i=1 and {Di(t0, K1, K2) ≥
0}k

i=1 evaluated at α = t0 satisfy (23)-(24).
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For the given terminal data (tf , Hf , Df ), the classes K1
tf ,Hf ,Df ;μ and K2

tf ,Hf ,Df ;μ
of admissible feedback gains may be defined as follows.

Definition 2. Admissible Feedback Gain Strategies.
Let the compact subsets K1 ⊂ R

m1×n and K2 ⊂ R
m2×n be the sets of allowable

gain values. For the given k ∈ Z
+ and the sequence μ = {μi ≥ 0}k

i=1 with
μ1 > 0, the sets of admissible control strategies K1

tf ,Hf ,Df ;μ and K2
tf ,Hf ,Df ;μ are

assumed to be the classes of C([t0, tf ]; Rm1×n) and C([t0, tf ]; Rm2×n) with values
K1(·) ∈ K1 and K2(·) ∈ K2 for which solutions to the dynamic equations of
motion (23)-(24) exist on the finite horizon [t0, tf ].

Then one may state the cost-cumulant control optimization problem for the
zero-sum stochastic differential game.

Definition 3. Optimization Problem.
Suppose that k ∈ Z

+ and the sequence μ = {μi ≥ 0}k
i=1 with μ1 > 0 are fixed.

Then, the cost-cumualnt control optimization problem over [t0, tf ] is given by

min
K1(·)∈K1

tf ,Hf ,Df ;μ

max
K2(·)∈K2

tf ,Hf ,Df ;μ

φ0 (t0, H(t0, K1, K2), D(t0, K1, K2)) (26)

subject to the dynamic equations (23)-(24) for α ∈ [t0, tf ].

Next, the fundamental theorem of calculus and stochastic differential rules is
utilized to derive the existence of a saddle point.

Theorem 3. Existence of a Saddle Point.
Consider the linear-quadratic zero-sum stochastic differential game

dx(t) = [A(t) + B1(t)K1(t) + B2(t)K2(t)] x(t)dt + G(t)dw(t) ,

x(t0) = x0 ,

which in turn, is associated with the finite-horizon IQF cost

J(t0, x0; K1, K2) = xT (tf )Qfx(tf )

+
∫ tf

t0

xT (τ)
[
Q(τ) + KT

1 (τ)R11(τ)K1(τ) −KT
2 (τ)R22(τ)K2(τ)

]
x(τ)dτ .

For any given k ∈ Z
+ and the sequence μ = {μi ≥ 0}k

i=1 with μ1 > 0, there
exists a saddle point (K∗

1 , K∗
2 ) ∈ K1

tf ,Hf ,Df ;μ × K2
tf ,Hf ,Df ;μ such that there hold

φ0 (t0, H(t0, K∗
1 , K2), D(t0, K∗

1 , K2)) ≤ φ0 (t0, H(t0, K∗
1 , K∗

2 ), D(t0, K∗
1 , K∗

2 ))
φ0 (t0, H(t0, K∗

1 , K∗
2 ), D(t0, K∗

1 , K∗
2 )) ≤ φ0 (t0, H(t0, K1, K

∗
2 ), D(t0, K1, K

∗
2 )) .

It is now concluded that the existence of a saddle point yields both necessary
and sufficient conditions for the minimax problem to be equivalent to the corre-
sponding maximin problem. In other words, the Issacs condition holds according
to [3]. The value function, V(ε, Y, Z) for the game starting at the time-states
triple (ε, Y, Z) is defined as follows.
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Definition 4. Value Function.
The value function V : [t0, tf ] × (Sn)k × R

k �→ R
+ ∪ {+∞} associated with the

Mayer problem is defined by

V(ε, Y, Z) � min
K1(·)∈K1

ε,Y,Z;μ

max
K2(·)∈K2

ε,Y,Z;μ

φ0 (t0, H(t0, K1, K2), D(t0, K1, K2))

= max
K2(·)∈K2

ε,Y,Z;μ

min
K1(·)∈K1

ε,Y,Z;μ

φ0 (t0, H(t0, K1, K2), D(t0, K1, K2)) ,

for any (ε, Y, Z) ∈ [t0, tf ] × (Sn)k × R
k.

Conventionally, set V(ε, Y, Z) = ∞ when either K1
ε,Y,Z;μ or K2

ε,Y,Z;μ is empty.
The development in the sequel is motivated by the excellent treatment in [4],
and is intended to follow it closely. Unless otherwise specified, the dependence
of trajectory solutions H and D on the admissible gains K1 and K2 is omitted
for notational clarity.

Theorem 4. Necessary Conditions.
The value function evaluated along any trajectory corresponding to a pair of
control strategy gains feasible for its terminal states is a non-increasing function
of time. The value function evaluated along any optimal trajectory is constant.

It is important to note that these properties are necessary conditions for op-
timality. The next theorem shows that these conditions are also sufficient for
optimality.

Theorem 5. Sufficient Condition.
Let W(ε, Y, Z) be an extended real-valued function defined on

[t0, tf ] × (Sn)k × R
k

such that W(ε, Y, Z) = φ0
(
ε, Y, Z

)
.

Let tf , Hf , Df be given terminal conditions, and suppose that, for each trajec-
tory pair (H, D) corresponding to a control strategy pair (K1, K2) in K1

tf ,Hf ,Df ;μ ×
K2

tf ,Hf ,Df ;μ, W(α, H(α), D(α)) is finite and non-increasing on [t0, tf ].
If (K∗

1 , K∗
2 ) is a control strategy pair in K1

tf ,Hf ,Df ;μ × K2
tf ,Hf ,Df ;μ such that

for the corresponding trajectory pair (H∗, D∗), W(α, H∗(α), D∗(α)) is constant
then the pair (K∗, K∗

2 ) is a saddle point and W(tf , Hf , Df ) = V(tf , Hf , Df ).

Corollary 1. Restriction of Strategy Gains.
Let (K∗

1 , K∗
2 ) be an optimal control strategy pair in K1

tf ,Hf ,Df ;μ × K2
tf ,Hf ,Df ;μ

and (H∗, D∗) the corresponding trajectory pair of dynamic equations

d

dα
H(α) = F(α, H(α), K1(α), K2(α)) , H(tf ) = Hf

d

dα
D(α) = G(α, H(α)) , D(tf ) = Df .

Then, the restriction of the pair (K∗
1 , K∗

2 ) to [t0, α] is an optimal control strategy
pair for the control problem with the terminal-valued condition (α, H∗(α), D∗(α))
when t0 ≤ α ≤ tf .
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Both necessary and sufficient conditions implied by these properties for a control
gain to be optimal give hints that one may find a function W(ε, Y, Z) : [t0, tf ]×
(Sn)k × R

k �→ R
+ such that W(ε, Y, Z) = φ0

(
ε, Y, Z

)
, W(ε, Y, Z) is constant

on the corresponding trajectory pair, and W(ε, Y, Z) is non-increasing on other
trajectories.

Note that the value function V(ε, Y, Z) is supposed to be continuously dif-
ferentiable in (ε, Y, Z) which then results in the uniqueness of a saddle point
(K∗

1 , K∗
2 ). Formally speaking, the result regarding the differentiability of the

value function, which is adapted from [4], is stated as follows.

Theorem 6. Differentiability of Value Function.
Let admissible feedback gains K∗

1 (α, H, D) and K∗
2 (α, H, D) constitute a saddle

point. Further, let t0(ε, Y, Z) and (H(t0(ε, Y, Z); ε, Y), D(t0(ε, Y, Z); ε, Z)) be
the initial time and initial states for the trajectories of

d

dα
H(α) = F(α, H, K∗

1 (α, H, D), K∗
2 (α, H, D)) ,

d

dα
D(α) = G(α, H) ,

with the terminal-valued condition (ε, Y, Z). Then, the value function V(ε, Y, Z)
is differentiable at each point at which t0(ε, Y, Z) and H(t0(ε, Y, Z); ε, Y) and
D(t0(ε, Y, Z); ε, Z) are differentiable with respect to (ε, Y, Z).

As a tenet of transition from the principle of optimality, a family of games based
on different starting points is now considered. Let’s begin with an interlude of
time, ε in mid-play. At its commencement, the path has reached some definitive
points. Consider all possible (H, D) which may be reached at the end of the
interlude for all possible choices of (K1, K2). Suppose that for each endpoint,
the game beginning there has already been solved. Then the value function
V(ε, H, D) resulting from each choice of (K1, K2) is known, and they are to be
so chosen as to render it minimax. As the duration of the interlude approaches
tf , this leads to a sufficient condition to Hamilton-Jacobi-Isaacs (HJI) equation.
By adapting to the initial-cost problem and the terminologies present in the cost-
cumulant control, the HJI equation satisfied by the value function V(ε, Y, Z) is
then given.

Definition 5. Playable Set.
Let the playable set Q be defined as

Q �
{
(ε, Y, Z) ∈ [t0, tf ] × (Sn)k × R

k such thatK1
ε,Y,Z;μ × K2

ε,Y,Z;μ �= 0
}

.

Theorem 7. HJI Equation-Mayer Problem.
Let (ε, Y, Z) be any interior point of the playable set Q at which the value func-
tion V(ε, Y, Z) is differentiable. Then V(ε, Y, Z) satisfies the partial differential
inequality
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0 ≥ ∂

∂ε
V(ε, Y, Z) +

∂

∂ vec(Y)
V(ε, Y, Z) · vec(F(ε, Y, K1, K2))

+
∂

∂ vec(Z)
V(ε, Y, Z) · vec(G(ε, Y)) ,

for all (K1, K2) ∈ K1 × K2.
If there exists a saddle point (K∗

1 , K∗
2 ) ∈ K1

ε,Y,Z;μ × K2
ε,Y,Z;μ, then the partial

differential equation of differential games

0 = min
K1∈K1

max
K2∈K2

{
∂

∂ε
V(ε, Y, Z) +

∂

∂ vec(Y)
V(ε, Y, Z) · vec(F(ε, Y, K1, K2))

+
∂

∂ vec(Z)
V(ε, Y, Z) · vec(G(ε, Y))

}

(27)

is satisfied together with V(t0, H0, D0) = φ0(t0, H0, D0) and vec(·) the vectorizing
operator of enclosed entities. The optimum in (27) is achieved by the left limit
(K∗

1 (ε)−, K∗
2 (ε)−) of the optimal strategy pair at ε.

The construction of a scalar-valued function which is a candidate for the value
function is discussed in the following theorem.

Theorem 8. Verification Theorem.
Fix k ∈ Z

+. Let W(ε, Y, Z) be a continuously differentiable solution of the HJI
equation

0 = min
K1∈K1

max
K2∈K2

{
∂

∂ε
V(ε, Y, Z) +

∂

∂ vec(Y)
V(ε, Y, Z) · vec(F(ε, Y, K1, K2))

+
∂

∂ vec(Z)
V(ε, Y, Z) · vec(G(ε, Y))

}

and satisfy the boundary condition

W(t0, H0, D0) = φ0 (t0, H0, D0) , for (t0, H0, D0) ∈ M , (28)

where M = {t0} × (Sn)k × R
k.

Let (tf , Hf , Df ) be a point of Q, (K1, K2) a control strategy pair in K1
tf ,Hf ,Df ;μ×

K2
tf ,Hf ,Df ;μ and H and D the corresponding solutions of the equations

d

dα
H(α) = F(α, H(α), K1(α), K2(α)) , H(tf ) = Hf

d

dα
D(α) = G(α, H(α)) , D(tf ) = Df .
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Then, W(α, H(α), D(α)) is a non-increasing function of α. If (K∗
1 , K∗

2 ) is a
control strategy pair in K1

tf ,Hf ,Df ;μ × K2
tf ,Hf ,Df ;μ defined on [t0, tf ] with corre-

sponding solution, H∗ and D∗ of the above equations such that for α ∈ [t0, tf ]

0 =
∂

∂ε
W(α, H∗(α), D∗(α))

+
∂

∂ vec(Y)
W(α, H∗(α), D∗(α)) · vec(F(α, H∗(α), K∗

1 (α), K∗
2 (α)))

+
∂

∂ vec(Z)
W(α, H∗(α), D∗(α)) · vec(G(α, H∗(α))) , (29)

then (K∗
1 , K∗

2 ) is a saddle-point strategy pair in K1
tf ,Hf ,Df ;μ × K2

tf ,Hf ,Df ;μ and

W(ε, Y, Z) = V(ε, Y, Z) , (30)

where V(ε, Y, Z) is the value function.

It is observed that to have a saddle-point solution (K∗
1 , K∗

2 ) in K1
tf ,Hf ,Df ;μ ×

K2
tf ,Hf ,Df ;μ defined and continuous for all α ∈ [t0, tf ], the solution H(α) to

(23) when evaluated at α = t0 must also exist. Therefore, it is necessary that
H(α) is finite for all α ∈ [t0, tf ). Moreover, the solution of (23) exists and is
continuously differentiable in a neighborhood of tf . Applying the results from
[2], these solutions can further be extended to the left of tf as long as H(α)
remains finite. Hence, the existence of unique and continuously differentiable
solutions to (23) are certain if H(α) are bounded for all α ∈ [t0, tf ). As the
result, the candidate value functions V(α, H, D) are continuously differentiable
as well.

Theorem 9. Necessary and Sufficient Conditions for a Saddle-Point Solution.
(K∗

1 , K∗
2 ) is a saddle-point strategy if and only if H(α) is bounded for all α ∈

[t0, tf ).

3 Multi-cumulant Saddle-Point Solution

Recall that the optimization problem being considered herein is in “Mayer form”
and can be solved by applying an adaptation of the Mayer form verification
theorem of dynamic programming given in [4]. In the framework of dynamic
programming, it is often required to denote the terminal time and states of a
family of optimization problems as (ε, Y, Z) rather than (tf , Hf , Df ). That is,
for ε ∈ [t0, tf ] and 1 ≤ i ≤ k, the states of the system (23)-(24) defined on
the interval [t0, ε] have terminal values denoted by H(ε) ≡ Y and D(ε) ≡ Z.
Since the cumulant-based performance index (25) is quadratic affine in terms
of arbitrarily fixed x0, this observation then suggests a solution to (27) may be
sought in the form

W(ε, Y, Z) = xT
0

k∑

i=1

μi(Yi + Ei(ε))x0 +
k∑

i=1

μi(Zi + Ti(ε)) , (31)
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where the parametric functions of time Ei ∈ C1([t0, tf ]; Sn) and Ti ∈ C1([t0, tf ]; R)
are yet to be determined. The next theorem shows how the partial differential
equation in the notation of W(ε, Y, Z) looks like using inverse vectorizing trans-
formation.

Corollary 2. Time Derivative of a Candidate Function.
Fix k ∈ Z

+ and let (ε, Y, Z) be any interior point of the reachable set Q at
which the real-valued function (31) is differentiable. Then, the time derivative of
W(ε, Y, Z) is found to be

d

dε
W(ε, Y, Z) =

k∑

i=1

μi

(
Gi(ε, Y) +

d

dε
Ti(ε)

)

+ xT
0

k∑

i=1

μi

(
Fi(ε, Y, K1, K2) +

d

dε
Ei(ε)

)
x0 . (32)

The substitution of this hypothesized solution (31) into (27) and making use of
the result (32) yield

0 = min
K1∈K1

max
K2∈K2

{
∂

∂ε
W(ε, Y, Z)+

∂

∂ vec(Y)
W(ε, Y, Z) ·vec(Fi(ε, Y, K1, K2))

+
∂

∂ vec(Z)
W(ε, Y, Z) · vec(Gi(ε, Y))

}

= min
K1∈K1

max
K2∈K2

{

xT
0

(
k∑

i=1

μi
d

dε
Ei(ε)

)

x0 +
k∑

i=1

μi
d

dε
Ti(ε)

+ xT
0

(
k∑

i=1

μiFi(ε, Y, K1, K2)

)

x0 +
k∑

i=1

μiGi(ε, Y)

}

. (33)

It is important to observe that

k∑

i=1

μiFi(ε, Y, K1, K2) = − [A(ε) + B1(ε)K1 + B2(ε)K2]
T

k∑

i=1

μiYi

−
k∑

i=1

μiYi [A(ε) + B1(ε)K1 + B2(ε)K2]

− μ1Q(ε) − μ1K
T
1 R11(ε)K1 + μ1K

T
2 R22(ε)K2

−
k∑

i=2

μi

i−1∑

j=1

2i!
j!(i − j)!

YjG(ε)WGT (ε)Yi−j ,

k∑

i=1

μiGi(ε, Y) = −
k∑

i=1

μiTr
{
YiG(ε)WGT (ε)

}
.
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Differentiating the expression within the bracket of (33) with respect to K1 and
K2 yield the necessary conditions for an extremum of the performance index
(25) on [t0, ε],

−2BT
1 (ε)

k∑

i=1

μiYiM0 − 2μ1R11(ε)K1M0 = 0 ,

−2BT
2 (ε)

k∑

i=1

μiYiM0 + 2μ1R22(ε)K2M0 = 0 .

Because M0 is an arbitrary rank-one matrix, it must be true that

K1(ε, Y, Z) = −R−1
11 (ε)BT

1 (ε)
k∑

r=1

μ̂rYr , (34)

K2(ε, Y, Z) = R−1
22 (ε)BT

2 (ε)
k∑

r=1

μ̂rYr , (35)

where μ̂r � μi/μ1 for μ1 > 0. Substituting the gain expressions (34) and (35)
into the right member of the HJI equation (33) yields the value of the minimax

xT
0

[
k∑

i=1

μi
d

dε
Ei(ε) − AT (ε)

k∑

i=1

μiYi −
k∑

i=1

μiYiA(ε)

− μ1Q(ε) +
k∑

r=1

μ̂rYrB1(ε)R−1
11 (ε)BT

1 (ε)
k∑

i=1

μiYi

+
k∑

i=1

μiYiB1(ε)R−1
11 (ε)BT

1 (ε)
k∑

s=1

μ̂sYs −
k∑

r=1

μ̂rYrB2(ε)R−1
22 (ε)BT

2 (ε)
k∑

i=1

μiYi

−
k∑

i=1

μiYiB2(ε)R−1
22 (ε)BT

2 (ε)
k∑

s=1

μ̂sYs −μ1

k∑

r=1

μ̂rYrB1(ε)R−1
11 (ε)BT

1 (ε)
k∑

s=1

μ̂sYs

+ μ1

k∑

r=1

μ̂rYrB2(ε)R−1
22 (ε)BT

2 (ε)
k∑

s=1

μ̂sYs

−
k∑

i=2

μi

i−1∑

j=1

2i!
j!(i − j)!

YjG(ε)WGT (ε)Yi−j

]

x0

+
k∑

i=1

μi
d

dε
Ti(ε) −

k∑

i=1

μiTr
{
YiG(ε)WGT (ε)

}
. (36)

It is now necessary to exhibit time-dependent functions {Ei(·)}k
i=1 and {Ti(·)}k

i=1
which will render the left side of (36) equal to zero for ε ∈ [t0, tf ], when {Yi}k

i=1
are evaluated along solution trajectories of the cumulant-generating equations.
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Studying the expression (36) reveals that Ei(·) and Ti(·) for 1 ≤ i ≤ k satisfying
the time-backward differential equations

d

dε
E1(ε) = AT (ε)H1(ε) + H1(ε)A(ε) + Q(ε)

− H1(ε)B1(ε)R−1
11 (ε)BT

1 (ε)
k∑

s=1

μ̂sHs(ε)

−
k∑

r=1

μ̂rHr(ε)B1(ε)R−1
11 (ε)BT

1 (ε)H1(ε)

+ H1(ε)B2(ε)R−1
22 (ε)BT

2 (ε)
k∑

s=1

μ̂sHs(ε)

+
k∑

r=1

μ̂rHr(ε)B2(ε)R−1
22 (ε)BT

2 (ε)H1(ε)

+
k∑

r=1

μ̂rHr(ε)B1(ε)R−1
11 (ε)BT

1 (ε)
k∑

s=1

μ̂sHs(ε)

−
k∑

r=1

μ̂rHr(ε)B2(ε)R−1
22 (ε)BT

2 (ε)
k∑

s=1

μ̂sHs(ε) , (37)

and, for 2 ≤ i ≤ k

d

dε
Ei(ε) = AT (ε)Hi(ε) + Hi(ε)A(ε)

− Hi(ε)B1(ε)R−1
11 (ε)BT

1 (ε)
k∑

s=1

μ̂sHs(ε)

−
k∑

r=1

μ̂rHr(ε)B1(ε)R−1
11 (ε)BT

1 (ε)Hi(ε)

+ Hi(ε)B2(ε)R−1
22 (ε)BT

2 (ε)
k∑

s=1

μ̂sHs(ε)

+
k∑

r=1

μ̂rHr(ε)B2(ε)R−1
22 (ε)BT

2 (ε)Hi(ε)

+
i−1∑

j=1

2i!
j!(i − j)!

Hj(ε)G(ε)WGT (ε)Hi−j(ε) , (38)

together with

d

dε
Ti(ε) = Tr

{
Hi(ε)G(ε)WGT (ε)

}
, 1 ≤ i ≤ k , (39)
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will work. Furthermore, at the boundary condition, it is necessary to have
W (t0, H0, D0) = φ0 (t0, H0, D0). Or, equivalently, xT

0
∑k

i=1 μi(Hi0 + Ei(t0))x0 +
∑k

i=1 μi(Di0 + Ti(t0)) = xT
0

∑k
i=1 μiHi0x0 +

∑k
i=1 μiDi0. Thus, matching the

boundary condition yields the corresponding initial value conditions Ei(t0) = 0
and Ti(t0) = 0 for (37)-(39). Applying the feedback gains specified in (34) and
(35) along the solution trajectories of (23)-(24), these equations become Riccati-
type

d

dε
H1(ε) = −AT (ε)H1(ε) − H1(ε)A(ε) − Q(ε)

+ H1(ε)B1(ε)R−1
11 (ε)BT

1 (ε)
k∑

s=1

μ̂sHs(ε)

+
k∑

r=1

μ̂rHr(ε)B1(ε)R−1
11 (ε)BT

1 (ε)H1(ε)

− H1(ε)B2(ε)R−1
22 (ε)BT

2 (ε)
k∑

s=1

μ̂sHs(ε)

−
k∑

r=1

μ̂rHr(ε)B2(ε)R−1
22 (ε)BT

2 (ε)H1(ε)

−
k∑

r=1

μ̂rHr(ε)B1(ε)R−1
11 (ε)BT

1 (ε)
k∑

s=1

μ̂sHs(ε)

+
k∑

r=1

μ̂rHr(ε)B2(ε)R−1
22 (ε)BT

2 (ε)
k∑

s=1

μ̂sHs(ε) , (40)

and, for 2 ≤ i ≤ k

d

dε
Hi(ε) = −AT (ε)Hi(ε) − Hi(ε)A(ε)

+ Hi(ε)B1(ε)R−1
11 (ε)BT

1 (ε)
k∑

s=1

μ̂sHs(ε)

+
k∑

r=1

μ̂rHr(ε)B1(ε)R−1
11 (ε)BT

1 (ε)Hi(ε)

− Hi(ε)B2(ε)R−1
22 (ε)BT

2 (ε)
k∑

s=1

μ̂sHs(ε)

−
k∑

r=1

μ̂rHr(ε)B2(ε)R−1
22 (ε)BT

2 (ε)Hi(ε)

−
i−1∑

j=1

2i!
j!(i − j)!

Hj(ε)G(ε)WGT (ε)Hi−j(ε) , (41)
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together, for 1 ≤ i ≤ k

d

dε
Di(ε) = −Tr

{
Hi(ε)G(ε)WGT (ε)

}
(42)

where the terminal-valued conditions H1(tf ) = Qf , Hi(tf ) = 0 for 2 ≤ i ≤
k and Di(tf ) = 0 for 1 ≤ i ≤ k. Thus, whenever these equations (40)-(42)
admit solutions {Hi(·)}k

i=1 and {Di(·)}k
i=1, then the existence of {Ei(·)}k

i=1 and
{Ti(·)}k

i=1 satisfying (37)-(39) are assured. By comparing the equations (37)-(39)
to those of (40)-(42), one may recognize that these sets of equations are related
to one another by

d

dε
Ei(ε) = − d

dε
Hi(ε) and

d

dε
Ti(ε) = − d

dε
Di(ε)

for 1 ≤ i ≤ k. Enforcing the initial value conditions of Ei(t0) = 0 and Ti(t0) = 0
uniquely implies that

Ei(ε) = Hi(t0) − Hi(ε) and Ti(ε) = Di(t0) − Di(ε)

for all ε ∈ [t0, tf ] and yields a value function

W(ε, Y, Z) = V(ε, Y, Z)

= xT
0

k∑

i=1

μiHi(t0)x0 +
k∑

i=1

μiDi(t0) ,

for which the sufficient condition (29) of the verification theorem is satisfied.
Therefore, the respective feedback gains (34) and (35) for Player 1 and Player 2
optimizing the performance index (25), become optimal

K∗
1 (ε) = −R−1

11 (ε)BT
1 (ε)

k∑

r=1

μ̂rH∗
r(ε) , (43)

K∗
2 (ε) = R−1

22 (ε)BT
2 (ε)

k∑

r=1

μ̂rH∗
r(ε) . (44)

Theorem 10. Multi-Cumulant Saddle-Point Solution.
Consider the linear-quadratic zero-sum stochastic differential game (5)-(6) in
which the pairs (A, B1) and (A, B2) are uniformly stabilizable on [t0, tf ]. Let
k ∈ Z

+ and the sequence μ = {μi ≥ 0}k
i=1 with μ1 > 0. Then, the optimal

cost-cumulant control via state-feedback is achieved by the saddle-point gains

K∗
1 (α) = −R−1

11 (α)BT
1 (α)

k∑

r=1

μ̂rH∗
r(α) , (45)

K∗
2 (α) = R−1

22 (α)BT
2 (α)

k∑

r=1

μ̂rH∗
r(α) , (46)
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where additional parametric design freedom μ̂r � μi/μ1 mutually selected by
Players 1 and 2 represent different levels of influence as they deem important to
the global performance of the game and {H∗

r(α) ≥ 0}k
r=1 are the optimal solutions

of the time-backward differential equations

d

dα
H∗

1(α) = − [A(α) + B1(α)K∗
1 (α) + B2(α)K∗

2 (α)]T H∗
1(α)

− H∗
1(α) [A(α) + B1(α)K∗

1 (α) + B2(α)K∗
2 (α)]

− Q(α) − K∗T
1 (α)R11(α)K∗

1 (α) + K∗T
2 (α)R22(α)K∗

2 (α) , (47)

and, for 2 ≤ r ≤ k

d

dα
H∗

r(α) = − [A(α) + B1(α)K∗
1 (α) + B2(α)K∗

2 (α)]T H∗
r(α)

− H∗
r(α) [A(α) + B1(α)K∗

1 (α) + B2(α)K∗
2 (α)]

−
r−1∑

s=1

2r!
s!(r − s)!

H∗
s(α)G(α)WGT (α)H∗

r−s(α) , (48)

with the terminal-boundary conditions H∗
1(tf ) = Qf , and H∗

r(tf ) = 0 when
2 ≤ r ≤ k.

4 Conclusions

This paper dealt with a class of two-player zero-sum differential games modeled
in a stochastic environment for realistic conditions. Both players were assumed
to have exact knowledge of the state, the payoff functional and the control capa-
bilities of each. Matrix differential equations for generating statistics of the IQF
random cost used in this game were derived. A more direct dynamic program-
ming approach was used to solve for a saddle-point solution that can address
both control strategy selection and performance analysis aspects. This saddle-
point solution was computed by two multi-cumulant control gains within the
class of linear memoryless-feedback strategies which then minimized a linear
combination of first k cumulants of the IQF random cost of the game. Hope-
fully, these results will make some new theoretical contributions and performance
analysis tools to differential game communities. Finally, this theoretical devel-
opment provides framework and analyses to applications of boost phase missile
interception whose the solution offers two optimal conflicting guidance laws: (1)
a hit-to-kill homing guidance law for intercepting boosting ballistic missiles in
minimum time and divert fuel and (2) an evasion strategy for a ballistic missile
to achieve burnout before the kill vehicle arrives, and force the kill vehicle use
maximum divert fuel. Future work will address the efficacy of the theoretical
work herein via numerical simulation results.
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