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Abstract. A set of objects of interest is to be sequentially inspected by
a Micro Aerial Vehicle (MAV) equipped with a camera. Upon arriving
at an object of interest, an image of the object is sent to a human op-
erator, who, upon inspecting the image, sends his feedback to the MAV.
The feedback from the operator may consist of the pose angle of the
object and whether he has seen any distinguishing features of the object.
Upon receiving the feedback, the MAV uses this information to decide
whether it should perform a secondary inspection of the object of interest
or continue to the next object. A secondary inspection has a reward (or
value or information gain) that is dependent on the operator’s feedback.
There is an associated cost of reinspection and it depends on the delay
of the operator’s feedback. It seems reasonable to let the MAV loiter for
a while near the most recently inspected object of interest so that it ex-
pends a small amount of endurance from the reserve after receiving the
feedback from the operator. The objective is to increase the information
and hence, the total expected reward about the set of objects of interest.
Since the endurance of the MAVs is limited, the loiter time near each
object of interest must be carefully determined. This paper addresses
the determination of the optimal loiter time through the use of Stochas-
tic dynamic programming. Numerical results are presented that show the
optimal loiter time is a function of the maximum expected operator delay.

1 Introduction

The following inspection scenario is considered. A set of n objects of interest Oi,
i = 1, ..., n, is sequentially visited by an MAV equipped with a camera. Upon ar-
riving at an object of interest, an image of the object is sent to a human operator
for classification. The operator, upon inspecting the image, sends his feedback,
e.g., the object’s pose angle and whether he has seen a distinguishing feature in
the object’s image, to the MAV. When the operator’s feedback is received, the
MAV must make a decision whether it should revisit the object for a secondary
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inspection. The information gain (reward) associated with a secondary inspection
is dependent on the feedback from the operator. Each MAV has a finite endurance
reserve and a revisit of an object requires expenditure from the reserve. This ex-
penditure is a function of the operator’s delay and the action that the MAV decides
to take. The operator functions as a sensor/classifier in the inspection loop and
the MAV decides on the course of action. The objective of the decision making is
to maximize the total expected reward given the constraints on the endurance.

The MAV makes decisions sequentially based on the information available to
it - operator’s delay and feedback about the object, the number of objects left to
be visited by the MAV, and the current reserve. While the operator’s delay, τi,
associated with the ith object is a random variable (whose probability density
function (p. d. f) f(τi) is known), we emphasize that the realized value of this
random variable may only be known at the time of decision making. We do
not allow for the possibility of the MAV revisiting an object more than once or
revisiting an object after it has decided to go to the next object in the sequence.
At the time of making a decision, the actions that we allow the MAVs to take are
the following: loiter around the object; move onto the next object; or revisit the
object. Associated with the ith object, there is a continuous decision variable,
ui, which indicates the maximum allowable loitering time and a binary decision
variable, vi, which indicates whether the object should be revisited.

The motivation for the introduction of loitering is as follows: If the MAV were
to move away from the object after the first visit, then the time (and hence,
expenditure of the reserve) for a revisit is at least twice the operator’s delay; by
allowing the MAV to loiter near the object, the time to get back is shortened. If
the operator’s feedback is received by the MAV before the maximum allowable
loiter time, only then does the MAV take a decision about revisiting the object;
otherwise, it will go to the next object in the sequence. Since the objective is to
increase the information about the set of objects of interest and since the MAV’s
endurance reserve c1 is limited, the maximum allowable loiter time associated
with the objects must be carefully determined.

The paper is organized as follows. In Section 2, a stochastic optimal control
problem which models the class of decision scenarios at hand is formulated. In
Section 3, the method of Dynamic Programming is brought to bear on the se-
quential decision problem and numerical results corroborating the methodology
presented for the decision problems considered in this paper are provided. In
Section 4, a generalization of the present formulation is explored. Conclusions
are drawn in Section 5.

We use the following notation throughout the paper:

i Index of stage in a Stochastic Dynamic Program (SDP)
p a priori probability
ri Running reward for the ith stage
ui Decision variable at the ith stage
τi Delay in communicating the first observation
f(τi) Probability density function (p.d.f) of the operator delay τi

τ0 Fixed communication delay
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2 Stochastic Optimal Control

The Dynamic Program (DP) has n stages and one state variable, ci - the en-
durance reserve on arrival to Oi. The operator’s delay at Oi, 0 ≤ τi ≤ τmax is
a random variable whose realization may not be known at the time of making
a decision. The p.d.f. of τi is f(τi) and is assumed known. The decision/control
variable is ui, the maximal loiter or waiting time at Oi.
The nonlinear dynamics are driven by the control variable u and by the random
variable τ :

ci+1 = ci − min (ui, τi) i = 1, ..., n (1)

The initial reserve, c1, is known. The control variable is constrained according
to

0 ≤ ui ≤ min(ci, τmax) (2)

and the random variable τi is characterized by its p.d.f. f(τ).

The running payoff is

ri(ui, τi) =

{
1 if τi < ui

0 otherwise
(3)

The payoff function

J(u1, ..., un; c1) = Eτ1,...,τn (
n∑

i=1

ri(ui, τi) ) (4)

The optimal strategy is a state feedback control law u∗
i (ci), i = 1, ..., n.

3 Dynamic Programming Recursion

The stochastic optimal control problem (1)-(4) is solved using the method of
Dynamic Programming (DP). We emphasize that the realization of the random
variable may not be known at the time of making a decision.
We shall require the following definition:

p(u) ≡
∫ τmax

u

f(τ)dτ

The term p(ui) is the probability that the MAV comes out empty handed, that
is, the MAV leaves the vicinity of Oi after waiting for a time ui without receiving
the operator’s feedback.

The value function Vi(ci) is the maximal expected reward at the time of
making a decision concerning Oi, given the endurance reserve of the MAV at Oi

is ci.
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The DP recursion is established as follows: For each ui ∈ [0, min{ci, τmax}],

Vi(ci|ui, τi) = ri(ui, τi) + Vi+1(ci − min(ui, τi))
⇒ Vi(ci|ui) = Eτi[ri(ui, τi) + Vi+1(ci − min(ui, τi))]

= [0 + Vi+1(ci − ui)]p(ui) +
∫ ui

0
[1 + Vi+1(ci − τ)]f(τ)dτ

Vi(ci) = max
0≤ui≤min (ci,τmax)

Eτi ( ri(ui, τi) + Vi+1(ci+1(ci, ui, τi)) )

= max
0≤ui≤min (ci,τmax)

{[0 + Vi+1(ci − ui)]p(ui) +∫ ui

0
[1 + Vi+1(ci − τi)]f(τi)dτi}

= max
0≤ui≤min (ci,τmax)

[p(ui)Vi+1(ci − ui) + 1 − p(ui) +∫ ui

0
Vi+1(ci − τi)f(τi)dτi]

Hence, the DP recursion is

Vi(ci)=1+ max
0≤ui≤min (ci,τmax)

[p(ui)Vi+1(ci−ui)−p(ui)+
� ui

0
Vi+1(ci−τi)f(τ )dτ ] (5)

Assuming that the value function, Vi+1, is known, the above recursion allows
one to compute the value function Vi. The optimal control,

u∗
i (ci)=arg max

0≤min ci,τmax
[p(ui)Vi+1(ci−ui)−p(ui)+

∫ ui

0
Vi+1(ci − τi)f(τ)dτ ].(6)

For one to begin the recursion, the value function Vn must be specified. This is
presented in the next subsection.

3.1 The Boundary Condition

Obviously, at time n

u∗
n(cn) = cn

Hence, if cn > τmax, rn = 1 and therefore Vn(cn) = 1. If, however, cn ≤ τmax,
then

Vn(cn) = Eτn ( rn(cn, τn) )
= 0 · p(cn) + 1 · (1 − p(cn))
= 1 − p(cn)

Thus, the boundary condition is

Vn(cn) =

{
1 if cn > τmax

1 − p(cn) if 0 ≤ cn ≤ τmax

(7)



Sequential Inspection Using Loitering 285

3.2 Computing Suboptimal Value Functions

In the examination of sensitivity of the value function to a perturbation in the
probability distribution of the operator’s feedback delay, one is interested in the
computation of suboptimal value functions. Let Ui(c) be the sub-optimal value
function for a given strategy. Let fp(τ) denote the perturbed distribution and
τ̃max denote the maximum value of the corresponding delay. Let p̃(c) denote the
integral ∫ τ̃max

c

fp(τ)dτ.

The function Ui(c) may be computed recursively as follows:

Un(c) =

{
1 − p̃(c) c ∈ [0, τ̃max],
1 c ≥ τ̃max

and

Ui(c|u∗
i (c)) = 1 + [p̃(u∗

i )Ui+1(ci − u∗
i ) − p̃(u∗

i ) +
∫ u∗

i

0
Ui+1(ci − τi)fp(τ)dτ ].

3.3 Numerical Implementation

For the purposes of implementation, we discretize the cumulative density func-
tion, fc(τ)(:=

∫ τ

0 f(η)dη) and deal with the corresponding discrete probability
density function. We specifically assume the following: the maximum reserve
cmax and the maximum number of objects of interest (Nmax) are known a priori.
Further, we assume the reserve to be an integer multiple of a fixed increment
of reserve, Δ, i.e., c = kΔ for some k ≥ 0, and that the fixed delay, τ0 and the
delay, τ are also integral multiples of a fixed increment of reserve, i.e., τ = lΔ for
some integral l, l0 ≥ 0. Since the delay can only take discrete values (which are
integral multiples of Δ), one may approximate the continuous p.d.f by a discrete
p.d.f. for f(τ) as: P (τ = lΔ) = pl and hence,

f(τ) =
∞∑

j=1

pjδ(τ − jΔ),

where δ(k) = 1 if k = 0 and is 0 otherwise.
The value function Vn(kΔ) may be readily computed from the discretization

of the cumulative distribution function as follows:

Vn(kΔ) =
∑
l≤k

pl.

Clearly, if lΔ > τmax = DmaxΔ, then Vn(lΔ) = 1. The optimal decision, u∗
n is

specified by the following equation:

u∗
n(kΔ) = kΔ.
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The recursive equations for the value functions, Vi(kΔ), i < n, can be expressed
as follows:

Vi(kΔ) = 1 + min
0≤j≤min{k,Dmax}

(
∑
l>j

Vi+1((k − j)Δ) −
∑
l>j

pl +
∑
l≤j

Vi+1(k − l)pl).

The corresponding optimal decisions are:

u∗
i (kΔ)=Δ arg min

0≤j≤min{k,Dmax}
(
∑
l>j

Vi+1((k − j)Δ)−
∑
l>j

pl +
∑
l≤j

Vi+1(k − l)pl).

Real-time Implementation: Once the Vi(c) and u∗
i (c) is computed for each

c ∈ [0, Cmax] and i = 1, . . . , Nmax, it is stored as two matrices in the MAV’s
on-board processor. From the knowledge of c and the number of objects to visit,
one can compute the relevant optimal decision (waiting time) from the table.
If the operator does not provide any feedback before the optimal waiting time,
then the MAV moves onto the next object; if he does provide feedback, it will
revisit the object.

3.4 Numerical Results

We have considered the following case: The maximum number, Nmax of objects
to visit is 20, the maximum reserve, cmax = 1000 units, the maximum delay is
200 units and Δ = 1 unit. The operator delay is initially assumed to be uniform.
The corresponding value functions and optimal decisions are shown in Figures 1
and 2.

From Figure 1, we can see that the expected number of revisits increases
monotonically with the reserve and the number of objects to visit. From Fig-
ure 2, for any fixed reserve (smaller than the maximum operator’s feedback
delay), the optimal wait time decreases with the number of the objects to visit.
This is consistent with our intuition. In particular if the number of objects is
arbitrarily large, then the optimal waiting time is the minimum delay of 1 unit
and the maximum number of revisits that are possible is c if the initial reserve
is c units.

In order to examine the sensitivity of the optimal strategy to the distribu-
tion of the operator’s feedback delay, we perturbed the distribution. When we
refer to a sub-optimal value function, we decide on a revisit based on the op-
timal waiting time obtained when the operator’s delay is uniformly distributed
between 1 and 200 seconds. An optimal value function will correspond to the
optimal waiting time associated with the perturbed distribution. We considered
four perturbed distributions and associated with each perturbed distribution
there is a sub-optimal revisit function and a sub-optimal value function. The
case when the operator’s feedback delay is randomly (as opposed to uniformly)
distributed between 1 and 200 units of reserve shows little difference with the
optimal (uniform) revisit and value functions.
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Fig. 1. Value function for uniform operator delay

Three other cases with varying degrees of randomness in operator delay were
tested and similar results were found. The trends remained the same with mi-
nor variations in the expected number of revisits and the optimal waiting time.
While the overall performance (expected number of revisits) is sensitive to the
maximum operator delay assumed in the derivation of the optimal decisions, it
is not sensitive to the exact distribution of the delay. In particular, if the maxi-
mum delay was underestimated, the performance deteriorated (i.e., the expected
number of revisits was significantly smaller than the case corresponding to the
knowledge of the exact value of the maximum delay) and if the maximum delay
was overestimated, the degradation in the performance was insignificant. Essen-
tially, it is better to overestimate the maximum value of the operator’s feedback
delay as opposed to underestimating it.

4 Generalization: Including an Endurance Cost When
Revisiting an Object

Suppose there are L different ways to revisit an object. Suppose there is an
overhead cost of τij units of reserve when the ith object is revisited in the jth way.
Let vij be a binary variable that takes a value 1 if the ith object is revisited in the
jth way and is 0 otherwise. Then, the governing constraints may be expressed as:
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Fig. 2. Optimal wait for uniform operator delay

ci+1 = ci − min(ui, τi) −
L∑

j=1

τijvij (8)

0 ≤ ci − min(ui, τi) −
L∑

j=1

τijvij , (9)

L∑
j=1

vij =

{
1 if ui ≥ τi and τi ≤ ci − minj τij

0 otherwise.
(10)

The last constraint indicates that a MAV will always revisit an object in ex-
actly one way if the operator’s feedback delay is smaller than the waiting time
associated with the object provided it has sufficient reserve and will not revisit
otherwise.

In plain words, the problem may be stated as follows: The MAV can revisit
objects after it receives a feedback from the operator in one of L ways. The MAV
does not revisit if the operator does not provide his feedback within the optimal
waiting time associated with each object in the specified sequence. A revisit of
the ith object in the jth way fetches a reward or payoff of βij . At the time of
receiving the feedback, if it happens to be smaller than the optimal waiting time,
the MAV must decide which of the L following ways it should revisit so as to
maximize the total expected payoff.
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One can think of a different waiting time for each way of revisiting the object;
however, for simplicity, we do not consider such a scheme in this paper.

Mathematically, the payoff for visiting the ith object in the kth way is feasible
only if the operator’s feedback delay is smaller than the waiting time set for that
object and there is sufficient reserve to revisit the object of interest. Hence,

ri(ui, τi|vik = 1) =

{
βik if τi ≤ min{ci − τikvik, ui, τmax}
0 otherwise.

We shall assume, henceforth, the following: βi1 > βi2 > . . . > βiL and corre-
spondingly, τi1 > τi2 > . . . > τiL. This assumption implies that to get a higher
payoff, one must pay a higher overhead cost (reserve).

Let

J = Eτ1,...,τn [
n∑

i=1

L∑
j=1

ri(ui, τi|vij = 1)vij︸ ︷︷ ︸
ri(ui,τi,vij)

].

The term J indicates the total expected payoff for any given set of decisions,
ui, vij , j = 1, . . . , L, i = 1, . . . , n. The objective of the optimization is to maxi-
mize the expected payoff, J , over the possible set of decisions, ui, i = 1, . . . , n
and vij , j = 1, . . . , L, i = 1, . . . , n.

Let

Vi(ci) := max
uk,vkj , i≤k≤n, 1≤j≤L

Eτi,...,τn [
n∑

k=i

L∑
j=1

rk(uk, τk, vik)]. (11)

One can then use DP to get the following recursion:
Vi(ci|ui, τi) =

{
Vi+1(ci − ui) if τi > min{ui, ci − τiL},

max1≤j≤L{βij+Vi+1(ci−τij − τi) : ci−τi−τij ≥ 0} otherwise.

Let Dij := {τ : j = argmax1≤k≤L{βij + Vi+1(ci − τik − τi) : ci − τi − τik ≥ 0}}.
Therefore,

Vi(ci|ui) = Eτ (Vi(ci|ui, τi))

=
∫ τmax

min(ui,ci−τiL)
Vi+1(ci − ui)f(τ)dτ +

L∑
j=1

∫
τ∈Dij

(βij + Vi+1(ci − τij − τi))f(τ)dτ.

Hence,

Vi(ci) = max
ui∈(0,min(ci,τmax))

Vi(ci|ui).
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The boundary condition that completes the recursion and enables the deter-
mination of all the value functions. Clearly, the waiting time if there is only one
object to visit is equal to the reserve—u∗

n(cn) = cn and correspondingly:

Vn(cn|τn) =

{
βnj τn ∈ (cn − τn,j−1, cn − τnj ]
0 τn > cn − τnL.

Let τn,0 = cn and

Vn(cn) =
L∑

j=1

∫ cn−τn,j

cn−τn,j−1

βnjf(τ)dτ.

Once the value functions are computed, the computation of optimal waiting
time is straight forward:

u∗
i (ci) = argmaxui∈(0,min(ci,τmax))Vi(ci|ui), i = 1, . . . , n − 1,

u∗
n(cn) = cn.

The optimal decisions to revisit are as follows:

v∗ij(ci, τi) =

{
1 if τi ∈ Dij(ci, u

∗
i (ci)),

0 otherwise.

5 Conclusion

We have observed in numerical simulations that the performance (i.e., the ex-
pected number of revisits) of the sequential inspection decision system is sensitive
to the assumed value of the maximum operator delay, but not sensitive to the ac-
tual distribution of the delay. The structure of the strategy is reasonably simple
for its actual real-time implementation on the MAVs: We store the optimal wait
time as a function of the reserve and the number of objects to visit and based on
the operator’s delay, decide on the future course of action. If the operator’s delay
is smaller than the optimal wait time associated with the MAV’s reserve and the
number of objects to revisit, an appropriate action for revisiting the object is
taken; otherwise, it is optimal for the MAV to continue to the next object in the
sequence. The optimal loiter time comes from solving the stochastic dynamic
programming problem.
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