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Abstract. In the literature, e.g. [10], one can find the so-called basic
UAV mission target assignment in which m UAVs each with a capac-
ity limit q visit n targets in a cooperative manner (and return to their
departure points) such that the cost incurred by each UAV’s travel is
minimized. In [10], we proposed a mixed integer linear program (MILP)
formulation which exactly solves the problem, as well as four alternative
MILP formulations which are computationally less intensive (and there-
fore suited for real-time purposes) yet yield a theoretically guaranteed
sub-optimal solution. In this chapter, we further consider timing con-
straints imposed on some p of the targets, so-called prime targets. This
consideration is often required for scenarios in which prime targets must
be visited in a pre-defined time interval, and mathematically results in
the addition of several integer linear constraints to the previous MILP
formulation making the problem computationally intractable. We pro-
pose a novel procedure of adding these cumbersome timing constraints
to the previous MILP formulation, in order to avoid increasing too much
computational cost under practically valid assumptions. We first show
that the proposed procedure still guarantees the previously claimed the-
oretical solution quality associated with the basic mission. We then show
through extensive numerical simulations that under certain conditions,
our algorithms return solutions which are still computationally manage-
able.

Keywords: Unmanned aerial vehicles (UAV); target assignment; mixed
integer linear program; timing constraints.

1 Introduction and Problem Statement

In [10], for a given number m of UAVs Ui (i = 1, 2, . . . , m, m ≥ 2) at corre-
sponding positions T i

0, and a number n of targets Tj (j = 1, 2, . . . , n, n ≥ m)
within a terrain X, we consider a mission in which the UAVs visit all the targets
in a cooperative manner (and return to where they departed from) such that the
cost (reflecting UAV operating time and risk) incurred by each UAV’s travel is
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minimized whilst keeping the number of targets visited by a single UAV below
a certain limit q. More precisely, we would like to calculate T∗

T∗ ≡ min
j

max
A(j)i

T(j)∗i , (1)

where T∗ is the least maximum cost among all UAVs in visiting their assigned
targets (and returning to their departure points), A is the set of feasible tar-
get assignments to UAVs, A(j) (∈ A) is one of the feasible assignments, A(j)i

is the sub-assignment given to the ith UAV within A(j) and finally T(j)∗i is
the optimal cost of completing the sub-assignment A(j)i by the ith UAV. We
note that the objective functional to be minimized is appropriate for balancing
workloads across UAVs. In this chapter, we further consider the same problem
with practical timing constraints. This is basically due to the frequent presence
of so-called prime targets that must be visited in a fixed time interval in many
UAV applications. As a result, we require that the solution assignment to (1)
be chosen such that a UAV visits a prime target Tk within a given time window
[tαk , tβk ].1 In addition, the total number of prime targets is limited by p, and the
maximum number of prime targets which a UAV is capable of handling is limited
by q′ (≤ q), in order to increase the probability of mission success.

There is a large number of papers dealing with various target assignment
problems. These include Weapon-target assignment [1,14], timetabling [20,22],
the celebrated Travelling Salesman Problem [19] and more generally capacity-
limited vehicle routing problems [9,17]. We note that these problems are slightly
different from the problem in the present context, in that (i) we may not require
UAVs to return to their starting positions; (ii) we minimize the individual tour
cost for balanced workload, not the total cost incurred by the whole mission; (iii)
UAVs do not necessarily depart from the same depot. There is also much litera-
ture available on coordinated target assignment of UAVs, for example [2,3,4,5],
and some of which add the timing and precedence constraints to the original
problem [3,11,15,16]. As the underlying problem is known to be NP-hard, it is
often fruitless to approach the problem in a direct or exact manner. Neverthe-
less, as many papers have shown, direct MILP formulations offer a promising
way forward in terms of providing an optimal solution to the problem in spite
of the computational demands [3,22]. As an example of the MILP approaches,
we note the petal algorithm introduced in [2,5]. It considers all feasible task
assignments (so-called petals), i.e. identifies all possible sequences of waypoints,
for every UAV subject to its capabilities, and subsequently constructs the short-
est paths connecting the waypoints as well as avoiding threats. Then, a MILP
formulation is employed to find the best assignment in terms of the underlying
cost. As implied by the numerical tests shown in [5], the petal algorithm becomes
computationally problematic for a large number of targets, e.g. n > 12, due to
the exhaustive consideration of all feasible petals. As an alternative method,

1 In the literature, one may find precedence constraints, i.e. some target must be visited
before other targets. However, we here assume that this can be viewed as a special
case of the aforementioned timing constraints.
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tabu search based methods are also useful for this purpose [17,18]. When time
is critical, heuristic or non-exact methods have been considered, even if global
optimality may not be achieved [4,9]. Among many heuristics, we note the It-
erated Optimal Tour Partitioning (IOTP) algorithm proposed in [9,13], mainly
for multi-vehicle-single-depot routing with capacity constraints. With the IOTP
algorithm, it is claimed that one can obtain a tour whose cost is at most 2− 1/q
times of the optimal tour cost, where q is the capacity of vehicles.

In conclusion, what would be desirable is a direct MILP formulation combined
with a non-exact method in such a way that the advantages of each are enjoyed.
As inspired by the solution strategy introduced in [10] for the target assignment
problem without timing constraints, we reduce the possibly large MILP associ-
ated with the original time-critical target assignment problem down to smaller
MILPs while minimizing the loss of optimality, followed by solving the smaller
MILPs exactly. Since this approach involves only small MILPs, it is therefore
computationally tractable. We note that a similar approach has been recently
proposed in [21] in which the problem in question is interpreted as a mixed ver-
sion of the minimum cost network flow problem and the travelling salesman prob-
lem. The two problems are then approached by a promising heuristic employing
linear programming, MILP and tabu search in order to reduce the computational
complexity. However, no formal analysis on the algorithm performance, for exam-
ple something like (16), is given, and therefore the algorithm may not be suitable
for particular problem parameters. Our main challenges (contributions) are to
ensure the previously claimed performance bounds in [10] and to allow only a
slight increase of computational cost even after adding timing constraints. To
this end, we first briefly describe two algorithms, which were introduced in [10],
and their performance bounds in Section 2.1. We then show in Section 2.2 and
2.3 how the timing constraints in question can be incorporated into the existing
MILPs with the performance bounds unchanged. In Section 3, we examine the
computational aspect of our modified algorithms through extensive simulations.
Concluding remarks are presented in Section 4.

2 Algorithms

2.1 Two Algorithms

The two algorithms (denoted by H2 and H3) introduced in [10] need a feasible
network of UAVs’ flying routes as their input. One can create such a feasible
network of UAVs’ flying routes by defining significant waypoints and links con-
necting the waypoints, and assigning cost (again, reflecting UAV operating time
and risk) to the links. For illustration, Fig. 1 shows two UAV starting posi-
tions (T 1

0 and T 2
0 ), two targets (T1 and T2) and two obstacles (dashed objects).

In order to identify significant waypoints, the two obstacles are approximated
by two rectangles. The corner points of the rectangles then become part of the
set of waypoints along with T 1

0 , T 2
0 , T1 and T2. The feasible network of the two

UAVs’ flying routes is the set of links connecting the waypoints. Each link carries
the cost of travel based on its length and possible risks on it.
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Fig. 1. A rectangular cover of two objects (the dashed area) and the corresponding
construction of links

Given the network of UAVs’ flying routes, the algorithm H2 (respectively,
H3) is devised for the problem without (respectively, with) the UAV’s return
constraint. The basic principle behind the algorithms is that the original prob-
lem of possibly large size is handled by two solution steps each of which involves
a problem of relatively small size. The first step in the present context solves
a MILP for finding m groups of targets such that each group is disjoint and
contains exactly one UAV and less than or equal to q targets. The second step
finds an optimal order of visiting the assigned targets for each UAV by solving
another MILP. These two MILPs are computationally manageable as long as
q is small (≤ 4). The first grouping step is crucial in terms of both solution
quality and computational complexity. The algorithms H2 and H3 employ the
objective functionals which minimize the Tj-to-Tk cost and the T i

0-to-Tj-to-Tk

cost for each j, k, respectively, where Tj or Tk is the starting position of the ith
UAV or a target position to be covered by the ith UAV. The following are the
formal descriptions of H2 and H3. For detailed explanation on the constraints
in the MILPs below, see [10].

Step 1. Sub-optimal partitioning: Consider an optimization problem F2 (re-
spectively, F3), as shown below, that solves for xij (xij = 1 if the jth target is
assigned to the ith UAV) to partition the underlying set of targets into m subsets
Ti (i = 1, 2, . . . , m) such that (i) each Ti contains at most q elements; (ii) the
travelling cost Tj-to-Tk (respectively, T i

0-to-Tj-to-Tk) for each j, k is minimized,
where Tj or Tk is the starting position of the ith UAV or belongs to Ti; (iii) each
target is covered by exactly one UAV.

Step 2. Optimal path-planning: For each Ti, consider FE (respectively, FEret),
as shown below, that solves for ak

ij (ak
ij = 1 if the ith UAV visits the kth tar-

get after j − 1 targets, so that the ith UAV visits Txi1 , Txi2, . . . in turn, where
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xij =
∑n

k=1 ak
ij) to obtain the optimal path of visiting all the targets contained

in Ti by the ith UAV.

FE : minimize r

subject to

n∑

k=1

ak
ij ≤ 1 ∀i, j (2)

m∑

i=1

q∑

j=1

ak
ij = 1 ∀k (3)

ak
ij ∈ {0, 1} ∀i, j, k (4)
n∑

k=1

ak
i(j+1) ≤

n∑

k=1

ak
ij ∀i, j (5)

av
ij + aw

i(j+1) + aw
ij + av

i(j+1) = 2 yj
iη(v,w) + ỹj

iη(v,w) ∀i, j, v, w (6)

yiη(v,w) =
∑

j

yj
iη(v,w) ∀i, v, w (7)

yj
iη(v,w) ∈ {0, 1}, ỹj

iη(v,w) ∈ [0, 1] ∀i, j, v, w (8)
n∑

k=1

C0(i, k) ak
i1 +

n−1∑

v=1

n∑

w=v+1

c(η(v, w)) yiη(v,w) ≤ r ∀i (9)

where i ∈ {1, 2, . . . , m}, j ∈ {1, 2, . . . , q} for (2)-(4) or j ∈ {1, 2, . . . , q − 1}
for (5)-(8), k ∈ {1, 2, . . . , n}, v, w ∈ {1, 2, . . . , n} (v < w), η(v, w) = (v − 1)n −
v(v −1)/2+w− v. In (9), C0(i, k) (respectively, c(η(v, w))) is the travelling cost
from T i

0 to Tk (respectively, from Tv to Tw).

FEret: minimize r

subject to (2)–(8) and

ak
i1 = bk

i1 ∀i, k

bk
i(j−1) −

n∑

k=1

ak
ij ≤ bk

ij ≤ bk
i(j−1) +

n∑

k=1

ak
ij ∀i, j, k

ak
ij ≤ bk

ij ≤ ak
ij + (1 −

n∑

k=1

ak
ij) ∀i, j, k

n∑

k=1

C0(i, k) (ak
i1 + bk

iq) +
n−1∑

v=1

n∑

w=v+1

c(η(v, w)) yiη(v,w) ≤ r ∀i

where i ∈ {1, 2, . . . , m}, j ∈ {2, 3, . . . , q}, k ∈ {1, 2, . . . , n}.
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F2: minimize r

subject to

n∑

j=1

xij ≤ q ∀i (10)

m∑

i=1

xij = 1 ∀j (11)

yiη(j,k) ≤ xij + xik

2
≤ yiη(j,k) +

1
2

∀i, j, k (j < k) (12)

C0(i, j)xij ≤ r ∀i (13)
c(η(j, k)) yiη(j,k) ≤ r ∀i, j, k (j < k) (14)
xij , yiη(j,k) ∈ {0, 1} ∀i, j, k (j < k) (15)

where i ∈ {1, 2, . . . , m}, j, k ∈ {1, 2, . . . , n} and η(j, k) = (j − 1)n − j(j − 1)/2 +
k − j.

F3: minimize r

subject to

n∑

j=1

xij ≤ q ∀i

m∑

i=1

xij = 1 ∀j

yiη ≤ xij + xik

2
≤ yiη +

1
2

∀i, j, k (j < k)

2 C0(i, j)xij ≤ r ∀i, j

C0(i, j)xij + c(η(j, k)) yiη(j,k) ≤ r ∀i, j, k (j < k)
xij , yiη(j,k) ∈ {0, 1} ∀i, j, k (j < k)

where i ∈ {1, 2, . . . , m}, j, k, l ∈ {1, 2, . . . , n} and η(j, k) = (j−1)n−j(j−1)/2+
k − j.

The performance bound for H2 is obtained by the two facts that (i) T∗ is
less than the Tj-to-Tk cost for any i, j; (ii) one can create a UAV’s feasible path
which sequentially visits all the (at most q) targets within the assigned group
from the first grouping step. Similarly, the performance bound for H3 is due to
the facts that (i) T∗ is less than the T i

0-to-Tj-to-Tk cost for any i, j, k when the
UAV’s return constraint is imposed; (ii) one can create a feasible path such that
a UAV goes back to its departure point every time after it sequentially visits
two targets within the associated group. As a result, H2 and H3 guarantee
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1 ≤ T
T∗ ≤ q (16)

and

1 ≤ T
T∗ ≤ 2

⌈q

3

⌉
− κ, (17)

respectively, where T is the maximum of actual costs incurred by each UAVs’
travel using H2 or H3, and κ = 1 if q = 3k + 1 (k = 0, 1, . . .); otherwise κ = 0.
Note that the performance bound (17) is guaranteed only if every UAV can go
back to its departure point every time after visiting two targets, because of the
second fact used for deriving the bound. This assumption may fail when timing
constraints are imposed in the next section. See the proof of Proposition 1.

2.2 Incorporation of Timing Constraints into the Existing
Framework

For incorporation of timing constraints into the existing framework, we need
two kinds of T i

0-to-Tj and Tv-to-Tw costs over the same network of UAVs’ flying
routes. One kind, denoted by C0(i, j) and C(v, w), is used for being minimized
and reflects both flight time and risk information due to threats. The other
kind, denoted by C0(i, j) and C(v, w), is used in concert with timing constraints
and solely contains flight time information. The latter is computationally not as
cumbersome as the former because algorithms to be introduced do not require
T i

0-to-Tj and Tv-to-Tw costs for all j, v, w. In fact, for the ith UAV the first
grouping step of the new algorithms needs C0(i, j) and C(v, w) for all j, v and
w, but C0(i, j′) and C(v′, w′) only for j′, v′ and w′ such that Tj′ , Tv′ and Tw′

are prime targets.
Clearly, the first grouping step of H2 or H3 must be modified such that

prime targets are assigned to a UAV such that the UAV can actually reach the
assigned prime targets within the required time intervals. For this purpose, as
the targets are grouped by the same technique used for H2 or H3, we impose
the additional constraint such that each UAV visits its assigned prime targets
prior to non-prime targets. As a result, the new grouping step provides each
UAV with a feasible assignment accounting for timing constraints, along with
an explicit order of visiting prime targets. Note that the additional constraint,
which forces each UAV to visit prime targets prior to non-prime targets in the
first step, is however neglected in the second step in which the optimal path
for each UAV to visit all the assigned targets is computed. The second step
is basically the same as before, in the sense that one exactly solves the time-
critical target assignment problem but now of small size. For an illustration of
the new algorithm, as shown in Fig. 2, suppose the new grouping step returns
the assignment such that a UAV at T0 covers two non-prime targets, T1 and T2,
and two prime targets, T3 and T4, with their associated time windows, [0, 10]
and [0, 50], respectively. Then, although the new grouping step directs the UAV
to visit T3 and T4 (dotted line) prior to T1 and T2, the second step disregards the
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Fig. 2. An illustration of the new algorithm

direction and yields the path (solid line), T1 → T3 → T2 → T4. This is because
T0 is closer to T1 than T3, and also T3 is closer to T2 than T4. Note that this
change is allowed because the timing constraints are still not violated. Based
on the brief description of the new algorithms H̃2 and H̃3, the following result
immediately follows. The formal description of H̃2 will be given later.

Proposition 1. If tαk = 0 for every k, the algorithm H̃2 guarantees the bound
(16) for every positive integer q′, where q′ is the maximum number of prime
targets visited by a UAV. However, H̃3 guarantees the bound (17) only for q′ < 3.

Proof. First note that under the condition that tαk = 0, no feasible assignments
are lost by the new grouping step. In fact, for any feasible target Tk assignment to
a UAV, one can always construct a feasible path such that the UAV visits prime
targets prior to non-prime targets as long as tαk = 0 for all k. This immediately
implies that the new algorithm H̃2 guarantees the same bound as (16). However,
when q′ ≥ 3, this violates the underlying assumption used to derive (17) that
one can create a feasible path such that a UAV goes back to its departure point
every time after the UAV sequentially visits two targets within the associated
group. This proves the claim.

As noted before, it is often desirable to have small q′ in order to increase the
probability of mission success, in which case the new algorithms are still appli-
cable in practice.

2.3 MILPs Including Timing Constraints

One can find the necessary (integer linear) constraints for the grouping with
no timing constraints in [10]. We thus focus here on developing methods of
converting timing constraints into integer linear constraints.
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To begin, let us first define integer grouping variables xij (i ∈ {1, 2, . . . , m}
and j ∈ {1, 2, . . . , n}) which represent the relationship between the ith UAV
and the jth target, i.e. xij = 1 if the jth target is assigned to the ith UAV;
xij = 0 otherwise. For the consideration of timing constraints, we then consider
q′ rooms (numbered from 1 to q′) for each UAV. Each room may hold at most
one identifier (ID) of prime target and has to be filled in ascending order, so
that the resultant path of the ith UAV becomes T i

0 → Tz1 → Tz2 . . . → Tzq̃′ ,
where zj (j ∈ {1, 2, . . . , p}) is the ID of the jth prime target and q̃′ ≤ q′. For
this purpose, we define other integer variables ak

ij (similar to the one previously
defined in FE), where i, j and k run from 1 to m, 1 to q′ and 1 to p, respectively,
in order to capture the relationship between the ith UAV, its jth room and the
kth prime target. Similarly, we also define integer variables zk

ij , where i, j and k
run from 1 to m, 1 to q′ and 1 to n, respectively. The difference between a and
z is that a pertains to the ID (numbered from 1 to p) assigned to a prime target
amongst only p prime targets, whereas z pertains to the ID (numbered from 1 to
n) assigned to a prime target amongst all n targets. This seemingly unnecessary
definition of z becomes useful when the connection between a and x need to be
made later. The following are the integer linear constraints for implementing the
aforementioned verbal expressions:

p∑

k=1

ak
ij ≤ 1 ∀i, j and

m∑

i=1

q′
∑

j=1

ak
ij = 1 ∀k (18)

for i ∈ {1, 2, . . . , m}, j ∈ {1, 2, . . . , q′} and k = {1, 2, . . . , p}, and
p∑

k=1

ak
i(j+1) ≤

p∑

k=1

ak
ij ∀i, j (19)

for i = {1, 2, . . . , m} and j = {1, 2, . . . , q′ − 1}.
Next, we consider the flight time from T i

0 to the first room for the ith UAV, and
from the jth room to the (j+1)th room. The former is simply

∑p
k=1 C0(i, k)ak

i1,
and thus we need

p∑

k=1

tαk ak
i1 ≤

p∑

k=1

C0(i, k)ak
i1 ≤

p∑

k=1

tβkak
i1

where i ∈ {1, 2, . . . , m}, for satisfying the associated timing constraints. However,
the latter is not trivial.2 The MILP expression of the flight time between targets
requires the introduction of the additional auxiliary variables dj

iη(v,w) and d̃j
iη(v,w)

which are defined through the following equality:

av
ij + aw

i(j+1) + aw
ij + av

i(j+1) = 2 dj
iη(v,w) + d̃j

iη(v,w) (20)

dj
iη(v,w) ∈ {0, 1}, d̃j

iη(v,w) ∈ [0, 1] (21)

2 The present approach to the latter is similar to the one in [10], but the derivation of
the linear inequality constraints corresponding to timing constraints is novel in the
chapter.
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for all i, j, v, w, where i ∈ {1, . . . , m}, j ∈ {1, . . . , q′−1}, v, w ∈ {1, 2, . . . , p} (v <
w) and η(v, w) = (v−1)p−v(v−1)/2+w−v. The flight time from T i

0 to Tzj (via
Tz1 ,. . . ,Tz(j−1)) then becomes

p∑

k=1

C0(i, k)ak
i1 +

j−1∑

u=1

p−1∑

v=1

p∑

w=v+1

c(η(v, w)) du
iη(v,w)

where c is a one-dimensional form of two-dimensional C. Equality (20) enables
dj

iη(v,w) to be 1 only if av
ij = aw

i(j+1) = 1 or aw
ij = av

i(j+1) = 1. In other words,

dj
iη(v,w) is set to 1 only if the vth and wth targets are assigned to the consecutive

jth and (j + 1)th (or (j + 1)th and jth) rooms of the ith UAV.
As a result, the timing constraints imposed on the targets occupying the

second to last rooms for the ith UAV may be now represented as the following:
p∑

k=1

tαk ak
ij ≤

p∑

k=1

C0(i, k)ak
i1 +

j−1∑

u=1

p−1∑

v=1

p∑

w=v+1

c(η(v, w)) du
iη(v,w) ≤

p∑

k=1

tβkak
ij (22)

for each j ∈ {1, 2, . . . , q′}. The left inequality is fine, but the right inequality
causes a problem when some of the rooms for a UAV are empty, i.e. less than
q′ prime targets are assigned to a UAV, thereby forcing the a variables corre-
sponding to unoccupied rooms to be zero. For this reason, we use the following
method:

p∑

k=1

C0(i, k)ak
i1 +

j−1∑

u=1

p−1∑

v=1

p∑

w=v+1

c(η(v, w)) du
iη(v,w) ≤

p∑

k=1

tβkak
ij + M(1 −

p∑

k=1

ak
ij)(23)

where M > 0 is a large constant number. This makes the right inequality vacuous
whenever a room is unoccupied, i.e.

∑p
k=1 ak

ij = 0 for some i, j.
The final task for grouping targets is to make the relationship between vari-

ables a and x. The main difficulty in doing this is that x is defined for all n
targets, but a for only p prime targets. In order to resolve this problem, we
recall the integer variable z, as defined at the beginning of this section, and
consider the following linear constraints:

p∑

k=1

(ID)kak
ij =

n∑

k=1

kzk
ij ∀ i, j (24)

n∑

k=1

zk
ij ≤ 1 ∀ i, j (25)

q′
∑

j=1

zu
ij ≤ xiu ∀ i, u (26)

where i, j and u run from 1 to m, 1 to q′ and 1 to n, respectively, and the
constant one-dimensional array (ID)k (k ∈ {1, 2, . . . , p}) contains a unique iden-
tifier (number from 1 to n) for each prime target. The equality (24) and inequal-
ity (25) basically perform the function: if the ith UAV’s jth room is occupied
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by the target with ID (ID)k, then zk
ij is enabled and subsequently xik is set to

1 by (26).
By putting all the aforementioned constraints together, H̃2 can be described

as follows:

Step 1. Sub-optimal partitioning: Consider an optimization problem F̃2, as
shown below, that solves for xij (xij = 1 if the jth target is assigned to the ith
UAV) to partition the underlying set of targets into m subsets Ti (i = 1, 2, . . . , m)
such that (i) each Ti contains at most q elements; (ii) the travelling cost Tj-to-Tk

for each j, k is minimized, where Tj or Tk is the starting position of the ith UAV
or belongs to Ti; (iii) each target is covered by exactly one UAV.

Step 2. Optimal path-planning: For each Ti, consider F̃E (see the remark below)
in order to obtain the optimal path of visiting all the targets contained in Ti by
the ith UAV.

F̃2: minimize r

subject to (10)–(15), (18)–(21), the left inequality of (22) and (23)–(26).

We do not further elaborate on the MILPs associated with the first step of H̃3,
in which the UAV’s return constraints are considered, and the second steps of
both H̃2 and H̃3 and their associated programs F̃E and F̃Eret, because all these
MILPs can be easily constructed using the aforementioned techniques. Instead,
we remark that the numbers of binary variables newly introduced to accommo-
date timing constraints for the first step and the second step of both algorithms
are mq′(p(p + 1)/2 + n) − mp(p − 1)/2 and 0, respectively, and the numbers of
newly added constraints are approximately mq′(p(p−1)+6)+mn+p and 2mp,
respectively. In the next section, we investigate via extensive numerical simula-
tions how much these added variables and constraints affect the performance of
the algorithms.

3 Numerical Simulations

We first present an introductory example showing how timing constraints change
the solution to a basic target assignment problem. Figure 3 shows an example
scenario and solution paths chosen when no timing constraints are considered.
The scenario consists of 3 UAVs, 4 non-prime targets, 5 prime targets, and both
the maximum number of targets and the maximum number of prime targets
visited by a single UAV are 3, i.e. m = 3, n = 9, p = 5, q = 3 and q′ = 3. The
scenario also contains five threats which are each marked as “x”. The threats
create a joint probabilistic risk distribution (contour lines in the figure) and the
risk is determined using the deterministic formulae found in [10]. In the figure,
ten contour lines representing the risks ranged from 0.1 to 1 are plotted for each
threat. The closer a line is to a threat source the higher the risk. The targets
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Fig. 3. Example solution paths (solid line for UAV 1, dashed line for UAV 2 and dotted
line for UAV 3) when no timing constraints are considered

labeled with #1, #2, #3, #4 and #9 are supposed to be prime targets which
are required to be visited by a UAV before 100 (min) after the mission starts,
but their associated timing constraints are neglected at this time.

Following the aforementioned procedure of creating a network of UAVs’ flying
routes, we identify nodes including the UAV starting positions, the target posi-
tion and the corner points of the smallest rectangles which cover the risky area
due to the threats. We then associate each segment (joining two distinct nodes)
with a cost weighting of 90% to the total risk (scaled to 1) along the segment
and 10% to the length (scaled to 1) of the segment, and subsequently compute
necessary travelling costs C0, C, C0 and C. Under the assumption that UAVs fly
at a constant speed of 2 (km/min) and an altitude of 2 (km) in the operational
range of [0, 200] × [0, 200] (km), algorithm H2 returns the solution paths shown
in Fig. 3. The first UAV first visits #1, then #8 and finally #9, the second UAV
visits #5, #6 and #7, and the third UAV #4, #3 and #2 in turn. As easily
noticed, two prime targets (#2 and #9) are visited after, not before, 100 (min).
However, the modified algorithm H̃2 accounting for the timing requirements re-
turns completely different solution paths, as shown in Fig. 4. This time, the first
UAV first visits #8, then #9 and finally #5, the second UAV visits #3, #1 and
#7, and the third UAV visits #4, #2 and #6 in turn. Note that every prime
target is visited within the required time window.

Next we proceed with investigating the effect of timing constraints on the total
computational time needed for executing H̃2 and H̃3. We first recall from the
results in [10] that H2 and H3 show the performance of yielding solutions within
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Fig. 5. The total computation times needed for executing �H2 (solid line) and �H3 (dot-
ted line) when m = 3 and n = 10

6 seconds on average as well as guaranteeing T/T∗ < 1.5 for up to m = 5, q = 4
and n = 20. As timing constraints may greatly decelerate the speed of finding
T∗, i.e. solving the problem exactly, we here especially focus on investigating the
computational performance of H̃2 and H̃3 versus various m, n and p. To this end,
for fixed m, n, p, q and q′ we create one hundred random scenarios with various
UAV starting positions (∈ X2 (km)), where Xh = [0, 200] × [0, 200] × h (km),
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(b) m = 5, n = 20 and p = 5
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(c) m = 5, n = 20 and p = 6

Fig. 6. The total computation times needed for executing �H2 (solid line) and �H3 (dot-
ted line) when m = 5 and n = 20; 100+ denotes the number greater or equal to
100

the target positions (∈ X2), the number of threats (∈ {5, 6, . . . , 10}), the threat
locations (∈ X0) and the threat ranges (7 or 25 (km)). We again assume that
UAVs fly at a constant speed of 2 (km/min), and every prime target must be
visited within 100 (min) from the mission starting. All numerical tests are done
with a personal computer equipped with an Intel(R) Pentium 4 CPU 3.40GHz.

Figure 5(a) shows the results when the scenarios consist of 3 UAVs, 10 non-
prime targets, no prime target and the maximum number of targets visited
by a single UAV set to 4. The dotted (respectively, solid) line shows the total
computational times when the UAV’s return constraint is (respectively, not)
considered. Note that all the computations are done in 0.6 (sec). However, when
the number of prime targets gets increased to 6 and the maximum number of
prime targets visited by a single UAV is set to 2, one can see several peaks,
as shown in Fig. 5(b). Although many cases (93%) are handled within less than
10 (sec), the figure shows that timing constraints can greatly complicate the basic
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assignment problem. Similar observations follow from Fig. 6. As expected, for the
cases in which 5 UAVs cover 20 targets with no timing constraints and each UAV
is restricted to visit at most 4 targets, the proposed algorithms manage to deal
with all the cases within 6 (sec) on average, as depicted in Fig. 6(a). However,
when 5 of the 20 targets become prime targets and each UAV is further restricted
to visit at most two prime targets, Fig. 6(b) suggests that the computational
burden dramatically increases for several cases. The situation becomes worse
when the number of prime targets gets increased to 6, as seen in Fig. 6(c).
However, in spite of the presence of such unpleasant scenarios, we note that for
more than 90% of the tested cases, H̃2 and H̃3 return solutions within 20 (sec)
when the sum of the numbers of UAVs and targets (including prime targets)
is less than or equal to 25, the maximum number of targets visited by a single
UAV is less than or equal to 4 and the number of prime targets is less than or
equal to 5 or 6 depending on the numbers of UAVs and targets.

4 Concluding Remarks

We have considered the UAV-to-target assignment problem especially focused
on the presence of time-critical (prime) targets. Our main challenges (contribu-
tions) in doing this are to keep the previously guaranteed theoretical bounds (16)
and (17) and to allow only a slight increase of computational cost after including
time-critical targets. We analytically show that by means of adding several in-
teger linear constraints to the previous MILP formulation, the bounds still hold
under a mild condition (q′ < 3). In the numerical experiments, for more than
90% of the tested cases the newly proposed algorithms returned solutions within
20 (sec) when the sum of the numbers of UAVs and targets (including prime
targets) is less than or equal to 25, the maximum number of targets visited by
a single UAV is less than or equal to 4 and the number of prime targets is less
than or equal to 5 or 6 depending on the numbers of UAVs and targets.
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