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Abstract. This chapter discusses problems dealing with cooperative
control of multiple agents moving in a region. An appropriate search
strategy for the whole system can be embodied: hierarchical, coordi-
nated, or cooperative. Geometrical and computational aspects of many-
target search problems are considered. Nonlinear and bilinear processes
of search for moving objects are proposed. Search problems of ecologi-
cal danger objects and detection of biological and chemical agents using
multi-spectral information are also considered.

Multiagent coordination problems are studied in detail. This problem
is addressed for a class of targets for which control Lyapunov functions
can be derived. We describe such a multiagent system by a hierarchi-
cal structure, which can be simplified using a fiber bundle. Then, using
geometrical techniques, we study controllability, observability, and op-
timality problems. In addition, we also consider a cooperative problem
when the agents motions must satisfy a separation constraint through-
out the encounter to be conflict-free. A classification of maneuvers based
on different commutative diagrams is introduced using their fiber bun-
dle representation. In the case of two agents, these optimality conditions
allow us to construct optimal maneuvers geometrically.

1 Introduction

Modern game theory basically deals with dynamical systems on smooth man-
ifolds. However, many practical systems like multiple agents do not have such
structures. Axiomatic control theories should adequately be reflected, in terms of
their internal language of notions and control problems [1]. In terms of these the-
ories, the control structures can make up various hierarchies. According to [2], the
most general structure is represented by a controllability-reachability structure
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over which the optimal control structure is built. This approach regarding the
structure of optimal control and Yang–Mills Fields was discussed in [3] and [4].

In this chapter, the multiagent coordination problem is studied. This problem
is addressed for a class of targets in which control Lyapunov functions can be
found. The main result is a suite of prepositions about formation maintenance,
task completion time, and formation velocity. It is also shown how to moderate
the requirement that, for each individual target, there exists a control Lyapunov
function.

We discuss mathematical aspects of Unified Game Theory (UGT) and the
Theory of Control Structures (TCS). We consider a game as a hierarchical struc-
ture. It is assumed that each agent can be described by a fiber bundle. A joint
maneuver has to be chosen to guide each agent from its starting position to
its target position while avoiding conflicts. Among all the conflict-free joint ma-
neuvers, we aim to determine the one with the least overall cost. The cost of
an agents maneuver is its energy, and the overall cost is a weighted sum of the
maneuver energies of all individual agents, where the weights represent priorities
of the agents.

As an example, we consider the hierarchical structure of such multi-agent
system on Figure 1. Each agent of the system can be described by a stochastic
or deterministic differential equation with a control. In this chapter, we first
reduce the model to a hierarchical geometric representation using fiber bundles.
Then we consider an integrated geometrical model where the separated model of
agents are integrated into a single model. For example, the interaction between
six robots, as seen in Figure 2, can be described by a hierarchical structure.
This integrated model allows for solving of controllability, observability, and
cooperative control problems.

In Section 2, we demonstrate the power of the satisficing solution method-
ology for cooperative control problems regarding many-target search. An ap-
propriate search strategy for the whole system can be embodied: hierarchical,
coordinated, or cooperative. Geometrical and computational aspects of many-
target search problems are considered. In Section 3, we analyze in detail the
relationship between gauge fields, identification problems, and control systems.
We consider a Lie group related to Yang–Mills gauge groups. We show that the
estimation algebra of the identification problem is a subalgebra of the current
algebra. Section 4 focuses on nonlinear control systems and Yang–Mills fields.
This section is devoted to geometric models of multiagent systems as controlled
dynamical-information objects. It is shown that these systems can be described
by commutative diagrams which allow analysis of symmetries. Conclusions are
drawn in Section 5.

2 Coordination for Different-Type Objects and Search
Strategies

This section is dedicated to the development of methods for solving the problems
of interception of multiple mobile targets by a group of unmanned vehicles.
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Fig. 2. Hierarchical structure of multiple robot

Emphasis will be paid on the following aspects: Interaction of controlled object
groups; Active coordination for different-type objects; Implementation of new
pursuit strategies; Investigation of group pursuit problems; and Search strategies.

2.1 Interaction of Controlled Object Groups

Methods and strategies will be devised for interception of multiple mobile targets
(evaders), on the basis of the by-interval decomposition principle. This princi-
ple assumes that at the initial instant of time the interceptors (pursuers) and
the targets are divided into subgroups, each consisting of either multiple pur-
suers and single target or single pursuer and multiple targets. Such targets’
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distribution can be performed either on the basis of certain experience or by
using discrete optimization methods. As a result, the complicated process of a
groups interaction is decomposed into a number of independent subproblems of
group or successive pursuit, whereby the term ‘group pursuit’ is meant the pur-
suit of a single evader by multiple pursuers, and by the term ‘successive pursuit’
we mean the pursuit of multiple evaders by a single pursuer.

Fig. 3. Pursuit along the ‘pursuit curve’

Let us fix the first instant of time when one of the mobile targets is intercepted
and therefore can be excluded from further analysis. As a result, the newly
freed pursuers can be included into other subgroups. At the instant tk, let us
perform a new decomposition of the pursuers and the remaining targets into
subgroups, analogous to the first step. Analyzing the obtained problems of group
and successive pursuit, we find the next instant tk+1 of interception of next
target(s). At the instant tk+1, a new target distribution is performed, and the
process repeats.

It this manner, the process of optimization of controlled object interaction is
reduced to the iterative procedure, which assumes solving the following typical
problems:

1. Target distribution problem.
2. Group pursuit problem.
3. Successive pursuit problem.

The suggested procedure is particularly advantageous for sufficiently large
numbers of mobile targets and pursuers, because in this case it reduces a com-
plex original problem into a number of considerably less complicated processes,
evolving in parallel, and makes it feasible for computer simulation on parallel
computers. The problems of group and successive pursuit can be solved by using
the Method of Resolving Functions (MRF) [5,6].

This method proved to be efficient in solving the group pursuit problem. It
makes it feasible to study all known (classical) methods of pursuit from the
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unified standpoint. In particular, the MRF fully substantiates Parallel Pursuit
Guidance Law, well known to designers of rocket and aerospace techniques [6].

Fig. 4. Proportional navigation guidance law

Line of Sight (LOS) Guidance Law. This strategy has been long known
from Euler’s time [7]. It implies that at each instant of time the pursuer’s velocity
is directed along the Line of Sight (LOS) (Figure 3). The problem of finding
the form of a trajectory of the pursuer, moving in the plane under the LOS
Guidance Law was first formulated by Leonardo da Vinci [7]. It was solved by
Pierre Bouguer in 1732 [8]. Despite simplicity in realization, this strategy fails to
account for possible mistakes of the evader and frequently yields capture times
significantly longer then optimal. The LOS strategy appears as a specific case of
the Extremal Targeting Rule (ETR) in [9].

It is possible to formulate ETR in terms of support functions that essentially
facilitate constructing the pursuer control and make it feasible to present the
latter in explicit form. A modified ETR version for solving the problems of
group and successive pursuit is discussed in [5].

Proportional Navigation (PN) Guidance Law. This method is well known
to engineers involved in design of aerospace techniques [6]. The basic idea is that
the angular velocity of the bearing, ϕ

′
, varies proportionally with the angular

velocity of the LOS, θ
′
, ϕ

′
= kθ

′
, where k is a navigation constant. The geometry

behind this method is shown on Figure 4.
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Fig. 5. Parallel pursuit

Note that when k = 1, the PN and LOS guidance laws coincide. Furthermore,
as k approaches infinity the PN guidance law turns into the strategy of Parallel
Pursuit (PP) [10]. The PP strategy implies that the lines of sight are parallel in
the course of pursuit.

It is known that, in the case of simple motions, the strategy of parallel pursuit
yields the optimal capture time (Figure 5) [5,6]. The MRF approach allows one
to extend the ideology of parallel pursuit to wide classes of pursuit problems,
where parallel pursuit is meant in a generalized sense. On the MRF basis, the
authors have obtained important results concerning both the group and the suc-
cessive pursuit [6]. In addition, necessary and sufficient conditions for solvability
of the group pursuit problem were derived, together with explicit formulas for
controlling functions [6].

2.2 Actions Coordination for Different-Type Objects

In the case of unmanned aerial vehicles (UAV) and unmanned ground vehicles
(UGV), this problem becomes more complicated in view of state constraints,
as one group of objects is moving in the air, while the other in the plane. This
difficulty was successfully overcome in solving the problem of soft landing (e.g.,
airplanes landing on an aircraft carrier) [11].

2.3 Implementation of New Pursuit Strategies

In practice, when pursuing a moving target it is sometimes important for the
pursuer not only to rapidly intercept the target, but also to conceal its approach.
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This requirement is ensured by the pursuit strategy called Motion Camouflage
(Figure 6). Motion camouflage is observed in insects, especially dragonflies [12].

In this strategy the pursuer camouflages itself against a fixed background
object (reference point) so that the evader observes no relative motion between
the pursuer and the fixed object (e.g., the sun). The pursuer simply remains on
the line between the evader and the reference point, so it seems to be stationary
from the evaders perspective [13,14]. If the reference point is at infinity, we obtain
the parallel pursuit strategy described above. The motion camouflage strategy
can be immediately applied to autonomous system control. For example, low
observability behaviors have obvious applications in UAVs and guided missiles.

Fig. 6. Motion camouflage

2.4 Investigation of Group Pursuit Problems

The problems of search and observation for mobile targets constitute an impor-
tant branch of the theory of conflict-controlled processes. Fundamental studies
are provided in and [15,16,17,18]. The main feature of such problems is that
only information on probability density of the current target state is available
to the pursuing object(s), rather than the exact position. Using the probability
density evolving according to the Fokker-Planck-Kolmogorov equation [17,18],
we developed an approach (cell model of search), which is based on discretiza-
tion of the search process both temporally and spatially. This process is bilinear
and may appear as a Markovian or semi-Markovian chain. The detection prob-
ability or the average detection time are utilized as the performance criteria.
The Pontryagin’s discrete maximum principle and the Bellman dynamic pro-
gramming method, respectively, were used to optimize the performance criteria.
Game problems for the processes, described by the Ito equation, are studied
in [18].

The problem of determining sea clutter dynamics and the application of recon-
struction methodology in detection and classification of small targets has been
considered in [19]. We explore the use of dynamical system techniques, optimiza-
tion methods and statistical methods to estimate the dynamical characteristics
of sea clutters. We assume that radar information is in a form of nonlinear time
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series. Hence we employ a dynamical approach for characterizing a radar signal,
based on nonlinear estimation of dynamical characteristics, by forming a vector
of these characteristics, and modeling the evolution of dynamical processes over
time.

For the Navy domain, [6] created a decision support system tailored for the
search for submarines in various tactical episodes. It is based on the above men-
tioned scheme of searching for mobile targets. Cases of discrete, continuous, and
cyclic search, in their number conducted by a tactical group, were treated, as well
as search performed in a hidden way, with the use of contemporary tools (e.g.,
UAV, UGV). For searches, performed by a tactical group, cases of information
exchange within a group and individual search were analyzed. The problem of
search for multiple targets was also studied. In this framework, we are planning
to apply the achieved theoretical results and gained experience for the creation of
methods and algorithms of search for multiple mobile targets by multiple-agent
unmanned vehicles (both aerial and ground).

2.5 Cellular Search Model

Let us consider a search region which can be divided into a finite number of
cells (states) i = 1, . . . , n. A pursuer in state i at time t is able to move with
probability pi(t), thus

pi(t) ≥ 0 ∀ i = 1, . . . , n (1)
n∑

i=1

pi(t) = 1, t = 0, 1, . . . . (2)

Denote p(t) =
(

p1(t), . . . , pn(t)
)

. The dynamics of the pursuer can be described

by the discrete differential equation

p(t + 1) = U∗(t)p(t), t = 0, 1, . . . , (3)

where U(t) is a stochastic square matrix of order n, and U∗(t) is the conjugate
matrix, which play the role of control parameters and satisfy the constraints

ui,i1(t) ≥ 0 ∀ i, i1 = 1, . . . , n (4)
n∑

i1=1

ui,i1(t) = 1 ∀ i = 1, . . . , n. (5)

Suppose that an evasion object can be found in any state j = 1, ... , m at time t
with probability qj(t), i.e.,

qj(t) ≥ 0 ∀ j = 1, . . . , m (6)
m∑

j=1

qj(t) = 1, t = 0, 1, . . . . (7)
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Denote q(t) =
(

q1(t), ... , qm(t)
)

. The dynamics of the evasion object can be

described by the discrete differential equation

q(t + 1) = V ∗(t)q(t), t = 0, 1, . . . , (8)

where V (t) is a stochastic square matrix of order m, and V ∗(t) is the conju-
gate matrix elements, which play the role of control parameters and satisfy the
constraints

vjj1 (t) ≥ 0, ∀ j, j1 = 1, . . . , m (9)
m∑

j1=1

vj,j1(t) = 1, j = 1, . . . , m. (10)

The problem of optimal probability detection can be reduced to a conflict
control problem of finite state

W0(T ) = (c, x(T )), c = (0, . . . , 0, 1) (11)

of the bilinear discrete process

x(t + 1) = A(U(t), V (t))x(t), t = 0, 1, . . . , (12)

where W0(T ) is the probability of detection for time T .
Let rij be the probability of detection of the evasion object for the ith pursuer

state and jth evasion state. Then the joint probability of evasion transition from
j to j1 at the moment t under undetected condition of the evasion object until
time t is determined by the equation

f(i, i1, j, j1) = uii1(t)vjj1 (t)(1 − rij). (13)

Denote by F (u(t), v(t)) the matrix function of dimension m · n with elements
f(i, i1, j, j1, t), where u(t) is vector function with n2 components {uii1(t)}, v(t)
is vector function with m2 components {vjj1(t)}.

This problem can be described by the optimization model

ω+ = min
V

max
U

W0(T )

= min
V (0)

max
U(0)

. . . min
V (T−1)

max
U(T−1)

W0(T ) (14)

ω− = max
U

min
V

W0(T )

= max
U(0)

min
V (0)

. . . max
U(T−1)

min
V (T−1)

W0(T ) (15)

where U = U(0), . . . , U(T − 1), V = V (0), . . . , V (T − 1), and W0(T ) is the de-
tection probability in time T .

The mean value of the target detection time is determined by the equation

τ(u, v) = (W (0), Nξ), (16)
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where N =
∑∞

t=0 F t(u, v), and ξ is the column vector with all components equal
to one. It is evident that matrix N = (1−F (u, v))−1 exists and can be considered
the problem of optimization of the mean target detection time.

The deviation of target detection for fixed control is given by the equation

D(u, v) = (W (0), (2N − E)Nξ − (Nξ)sq), (17)

where E is the single matrix and (Nξ)sq is the vector with components which
equal the square of components of vector Nξ.

3 Geometrical Aspects of Multiagent Coordination

Investigations of controlled multiagent objects have been under active develop-
ment for last few years. Despite the achievements that have been made in this
area, effective mathematical methods for investigating such systems have not
yet been developed. One possible approach is the differential geometry methods
of system theory [20,21]. This section is devoted to one of the problems of this
area of research, that of developing a method for analyzing a class of mathe-
matical models of symmetric controlled processes. Assuming that the process is
described by a commutative diagram [20,21] which is based on the lamination
concept, we propose a geometric method for ‘‘identifying’’ its hidden structure.

Investigation of geometrical aspects of multiagent coordination is one of the
most essential stages in the creation of new strategies. The goal of the experimen-
tal and theoretical research is the implementation of optimal strategy using com-
plex structure non-equilibrium processes in such systems. To investigate these
processes it is required to develop the corresponding mathematical methods. In
this context we propose an approach, which is based on the assumption that
one can use models from mathematical system theory to adequately describe
informational processes. The essence of this approach is in the following.

Some dynamic system, S, which implements a transformation, F , or an input
informational action, U , into an output one, X , is considered. It is assumed that
one can affect the information-transforming process by a reconfiguring action
that changes the dynamic behavior, structure, symmetry, etc. of the process.
We refer to the objects described in the preceding S as dynamic information-
transforming agents (DITA).

The connection between the input and output actions is necessary for obtain-
ing answers to questions about the method of programming the entire system,
optimizing the flow of informational signals, and the interconnections among the
global system properties (stability, controllability, etc.) and the corresponding lo-
cal properties of the various subsystems. One has to answer those questions also
when solving pattern–recognition problems, constructing an associative memory.
A generalized description of an DITA that contains a large number of subsys-
tems (e.g., a neural network) is postulated in this section: the controlled process
in the DITA is described adequately by a commutative diagram which general-
izes the concept of a nonlinear controlled dynamic system on a manifold. Taking
into account the symmetry concept which is characteristic of classical mechanics
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[22], one has to transfer it to the DITA, ‘‘identify’’ the hidden structure of the
informational process, and demonstrate that the proposed model admits local
and/or global decompositions into smaller dimensionality feedback subsystems.

We note that the decomposition idea was first applied to discretely symmetric
automatic control systems [23]. Continuous symmetry group dynamic systems
were considered by [20]. While substantive results on the decomposability of
systems with symmetries have been obtained [24], this question remains open
for DITAs.

In this section, we investigate the problem of how to coordinate a collection
of targets in such a way that they maintain a given formation relative to each
other. The main assumption about the dynamics of the individual robots that
we initially make in this paper is that they have control Lyapunov functions
(CLFs). Based on this assumption, an abstract and theoretically sound coordi-
nation strategy can be developed.

3.1 Necessary Concepts and Definitions

Some definitions and concepts that are necessary for describing the DITA struc-
ture and the conditions for its decomposability are presented in this section. The
necessary notions about manifolds, connectedness, and distributions are given
in [25]. We introduce the definition of a nonlinear DITA.

Definition 1. We refer a triple, F (B, M, ψ), where B is a smooth fiber over
M with the projection π : B → M ; πM is the natural projection of TM on
M ; and ψ is a smooth mapping such that the diagram presented in Figure 7 is
commutative, by a ‘‘geometrical model of the agent’’.

We interpret the M manifold as the state space and the π−1(x) ∈ B layer as the
space of input action values which depends in the general case on the current
system state. If one chooses the coordinates (x, u), which correspond to the Bx

layer, then this definition of the agent, F , corresponds locally to the nonlinear
transformation ψ : (x, u) → (x, ψ(x, u)) and the dynamic system

ẋ(t) = ψ(x(t), u(t)), u(t) ∈ U, (18)

where x is the state vector, u = (u1, u2) are the control actions, u1(·, ·) is the
vector of the coded input informational action which depends in general on time
and on the current state, and u2(·, ·) is the action used to reconfigure the dynamic
properties of the agents and to train it.

The control algorithm, u2, inputs to the system the capability of transforming
the set of input actions into a set of output signals that allows one to identify
the input images uniquely. In essence, it realizes the decoding process, which
identifies the input images. In the simplest case, it can be realized on the basis
of the successive input action segmentation method. Such a method facilitates a
unique separation of the input images by the use of the simplest binary decoding
rule.
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Fig. 7. Diagram of a nonlinear controlled DITA

Our primary object of study is a collection of targets, whose dynamics can be
described by the following set of controlled differential equations:

ẋi(t) = ψ(x(t), u(t)) = fi(xi) + gi(xi)ui, i = 1, . . . , n, (19)

where fi, gi ∈ C∞, xi ∈ R
n, and ui = R

pi . Now, a desired formation in R
nm is

simply a set (x10, . . . , xm0) ∈ R
nm, and we define this set implicitly through the

null set of a so-called formation function.

3.2 Coordinated Control

By using the Lyapunov formation functions derived from the individual target,
we can now shift our attention to actually controlling the evolution of the forma-
tion. The one parameter that we can control is the time evolution of the desired
positions. We do this by specifying the trajectory that we want the so-called
virtual leader, x0(s(t)), to follow.

This nonphysical leader is a reference point in the state space with respect to
which we can define the rest of the formation. We denote the trajectory executed
by the virtual leader as x0(s(t)) = p(s(t)). Intuitively, one might want to set
s(t) = t. But, due to robustness considerations, we incorporate error feedback
into the time evolution of s and let ṡ be given by

ṡ = min
[ v0

δ + ‖∂p(s)
∂s ‖

,
−(∂F

∂x )T

δ + |∂F
∂s |

[ σ(FU )
σ(F (s, x))

]]
. (20)

Here, δ > 0 is a small positive constant that prevents ṡ from becoming sin-
gular, and FU is the bound or something smaller chosen by the user. It can be
shown to be an upper bound on the Lyapunov formation function F (s, x). The
idea is that the formation is being respected as long as F (s, x) ≤ FU . Further-
more, v0 is the nominal velocity that we want the formation to move with, and
it holds that ‖ẋ0(s(t))‖ ≈ m0 when small.

3.3 Symmetry of Multiagent Coordination

Definition 2. Let M be a smooth manifold. We say that the smooth mapping
Q : G×M → M such that: i) Q(e, x) = x for all x ∈ M , and ii) Q(g, Q(h, x)) =
Q(gh, x) for any g, h ∈ G, and all x ∈ M , is the left action (or G-action) of the
G Lie group on M .
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We fix one of the variables for various time instants and examine the Q action
as a function of the remaining variables. Let Qg : M → M denote the function
x 	→ Q(g, x) and Qx : G → M denote the function g 	→ Q(g, x). We note that
since (Qg)−1 = Q−1

g , Qg is a diffeomorphism. We introduce the definition of
group action on a manifold.

Definition 3. Let Q be the action of G on M . We say that the set G · x =
{Qg(x)|g ∈ G} is the orbit (Q-orbit) of the point x ∈ M . The action is free at x
if g 	→ Qg(x) is one-to-one. It is free on M if and only if it is free at all x ∈ M .

We now introduce the concept of global symmetry of a controlled DITA.

Definition 4. Let F̂ (B, M, ψ) be a nonlinear controlled DITA, and θ and Q be
actions of G on B and M , respectively. Then, F has symmetry (G, θ, Q) if the
diagram presented in Figure 8 is commutative for all g ∈ G.

B
�Bg

B

�

π

M
�

�
����	





�





�

����	
TM TM

ψ

πM

ψ

πM

TQg

Qg

M
�

π

Fig. 8. A commutative diagram of an DITA with symmetries

We consider, within the framework of the presented definition, the special case
in which the symmetry lies ‘‘entirely within the state space’’.

Definition 5. Let B = M × U , where U is some manifold. Then, (G, Q) is a
symmetry of the state space of system F̂ (B, M, ψ) if (G, θ, Q) is a symmetry of
F̂ for θg = (Qg, IdU ) : (x, u) → (Qg(x), u).

Global state space symmetry can be defined only for a DITA Bx, which is a trivial
lamination, since otherwise the input spaces would depend on the state and the
problem is made substantially more complicated. We introduce the definition of
local symmetry.

Definition 6. We assume that Q : G×M → M is an action and that ε ∈ TeG.
Then, Qξ(R × M → M) : (t, x) 	→ Q(exp tξ, x), where exp : TeG → G is the
usual exponential mapping, is the R-action on M , and Qξ is the complete flow
on M . We say that the corresponding vector field on M , which is defined by the
expression

ξm(x) =
d

dt
Q(exp tξ, x)

∣∣∣
t=0

, (21)

is the infinitesimal action generator, which corresponds to ξ.
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Let Xt denote the flow of the vector field X , i.e., Xt = Ft(X0). It is obvious from
the definition of the infinitesimal generator that if (G, θ, Q) is a symmetry of the
F̂ (B, M, ψ) system, then the diagram presented in Figure 9 is commutative for
all t ∈ R and ξ ∈ TeG.

B
�ξBt

B

�

π

M
�

�
����	





�





�

����	
TM TM

ψ

πM

ψ

πM

T (ξM)t

(ξM )t
M
�

π

Fig. 9. Diagram of a symmetric DITA

On the basis of the local commutativity property we present the following
definition of infinitesimal DITA symmetry.

Definition 7. Let F̂ (B, M, ψ) be a nonlinear DITA. Then, (G, θ, Q) is an in-
finitesimal symmetry of F if, for each x0 ∈ M , there exist an open neighborhood
Ô of the point xO and ξ > 0 such that

(ξM )t ∗ ψ(ξ) = ψ((ξb)t(b)), (22)

for all b ∈ π−1(Ô), |t| < ξ, and ‖ ξ ‖< 1, ξ ∈ TeG, where ‖ · ‖ is an arbitrary
fixed norm on TeG.

One can define an infinitely small state space symmetry for nontrivial lamina-
tions of the input actions manifold when one can introduce integrable connec-
tivity. For this we introduce Definition 8.

Definition 8. Let H(·) be an integrable connectivity on B and (G, θ, Q) be
a symmetry of F . Then, (G, θ, Q) is an infinitesimal state space symmetry
if ξB(b) ∈ H(b) for all ξ ∈ TeG, that is, the infinitesimal generators θ are
horizontal.

We introduce a definition of feedback equivalence of two DITAs in analogy with
[20].

Definition 9. A system, F (B, M, ψ), is feedback equivalent to a system,
F ′(B, M, ψ̃), if there exists an isomorphism, γ : B → B, such that the diagram
presented in Figure 10 is commutative.

Isomorphism means that, for x ∈ M , γx is a mapping from the layer over x′ into
the layer over x′, and it is a diffeomorphism. Consequently, this corresponds to
a ‘‘control feedback’’.
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Fig. 10. Diagram of feedback-equivalent DITAs

3.4 The Local Structure of DITAs with Symmetries

Since we are interested in the local structure of an DITA, we have to assume that
the system has an infinitesimal symmetry, which satisfies some nonsingularity
condition. For this, we set the dimensionality of M to n and that of G to k,
where k < n. We note that the action Q : G × M → M is free at the point
m ∈ M if Qm : G → M is one-to-one. This is equivalent to saying that the
tangent mapping Q is of full rank, that is, rank Q = dimG. Hence, Q is free on
M if and only if it is free in some neighborhood of m. We say that an action
which satisfies this condition is nonsingular at the point m.

The basic result of this section is that the existence of an infinitesimal sym-
metry in a neighborhood of a singular point in an DITA makes it possible to
decompose the system into a cascade union of simpler subsystems. The structure
of these subsystems depends, in general, on the symmetry group G. If, for exam-
ple, G has a nontrivial center, then one of the subsystems is in fact a quadrature
subsystem.

In addition, let C = {h ∈ G | hg = gh ∀ g ∈ G} be the center of the G
group to which the kernel, C+, of the Lie semialgebra TeG, which has the same
dimensionality as C, corresponds. Hence, if G has an l-dimensional center, there
exist linearly independent vectors ξ1, . . . , ξk ∈ TeG such that [ξi, ξj ] = 0 for all
1 ≤ i ≤ l and 1 ≤ j ≤ k.

Using the results in [20,26] that deal with the properties of systems with
symmetries as applied to DITAs, one can formulate the following theorems.

Theorem 1. Let us assume that F̂ (B, M, ξ) is a controlled DITA with an in-
finitesimal state space symmetry, (G, θ, Q), that G has an l-dimensional cen-
ter, and that Q is nonsingular at the point m ∈ M . Then, the B coordinates
(x1, . . . , xn, u) in a neighborhood of m exist such that F̂ is given in these coor-
dinates by the expression.

Using the obtained results for systems with infinitesimal state space symme-
tries, one can propose the structure of the decomposed system. It suffices to
demonstrate that the decomposed system with infinitesimal symmetry is lo-
cally feedback-equivalent to the original system with infinitesimal state space
symmetry.
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Fig. 11. Local structure of DITA with infinitesimal symmetries

Definition 10. Let F̂ (B, M, ψ) be a controlled DITA and Ô be an open subset
of M . Then, we say that a system of the form F̂ (π−1(Ô), Ô, ψ)|π−1(O) is F̂ |Ô
(F̂ bounded on Ô).

Theorem 2. Let F̂ (B, M, ψ) have an infinitesimal symmetry (G, θ, Q) and Q
be nonsingular at the point m. There exists a neighborhood of m and a system
F with infinitesimal symmetry (G, θ, Q) such that F̂ |Ô is feedback equivalent to
the system F̂ .

Let F̂ (B, M, ψ) be a controlled DITA with symmetry (G, θ, Q) and Q be nonsin-
gular at the point m. Then, in a neighborhood of m, F̂ is feedback-equivalent to
F̂ with infinitesimal symmetry and has the structure shown in Figure 11, where
γ is the feedback function, the Li are nonlinear subsystems of dimensions n − k
and k − l, respectively, and Q is an l -dimensional ‘‘quadrature’’ system

ẋi = fi(x1, . . . , xn−k, u), i = 1, . . . , n − k (23)
ẋj = fj(x1, . . . , xn−1, u), i = n − k + 1, . . . , k. (24)

3.5 The Global Structure of DITA

The decomposability of a DITA with global symmetries is the result of factoring
the DITA state space, which follows from the properties of a symmetry. We
introduce the definition of proper action.
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Definition 11. Let Q be a G-action on M . We say that Q acts properly if
(g, m) → m is a proper mapping, that is, if the pre-images of compact sets are
compact.

This definition is equivalent to the following assertion: whenever xn converges on
M and Qgn(xn) converges on M , gn includes a subsequence, which converges in
G. Hence, if G is compact, this condition is satisfied automatically. Membership
in the same Q-orbit is an equivalence relation on M . Let M/G be the set of
equivalence classes and p : M → M/G be specified by the relation p(m) = Gm.
We introduce on M/G a relations topology, that is, V ⊂ M/G is open if and
only if p−1(V ) is open on M . In general, M/G can be a rather poor space.

If G acts freely and properly on M , then M/G is a smooth manifold and
p : M → M/G is the principal lamination with Lie group G. We introduce the
following constraints on the principal lamination:

1. p is a smooth full-rank function;
2. p : M → M/G has a cross section (that is, a smooth mapping σ : M/G → M

such that p ·σ is the identity mapping on M/G if and only if M is equivalent
to M/G × G;

3. the topological conditions which guarantee the existence of a section, that
is, if M/G or G is a contraction mapping, a cross section must exist, are
specified.

We formulate a theorem, which is necessary for obtaining a global factorization
of the DITA state space. Let Qm : G → G ·m be specified by g → Q(G, m). The
following result about the global structure of a DITA with symmetries holds.

Theorem 3. We assume that F̂ (M ×U, M, ψ) is a controlled DITA with a state
space symmetry (C, Q). Then, if Q is free and proper, and p : M → M/G has a
cross section σ, then F̂ is isomorphic to the system

ẏ = Ψ(y, u) (25)

ġ = (TeLg)(TeQσ(y))−1 [Ψ(σ(y), u) − (Tyσ)Ψ(y, u)] , (26)

defined on M/G × G.

Assertion 1. Let the DITA F (M × U, M, ψ) have a symmetry (G, θ, Q) such
that Q is free and proper. Then, there exists a system F with symmetry (G, Q)
to which F is feedback equivalent under the condition that p : M → M/G has a
cross section σ.

Combining Theorem 3 and Assertion 1, we obtain the following corollary:

Corollary 1. Let DITA F̂ (M × U, M, ψ) have a symmetry (G, θ, Q), Q be free
and proper, and p : M → M/G have a cross section. Then, there exists a model
of DITA F with state space symmetry (G, Q) to which F̂ is feedback-equivalent.
Consequently, F has a global structure.
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3.6 The Feasibility of Applying the Results to the Investigation of
Agents

It is of interest to investigate the decomposability of DITAs composed of neural-
like agents that are described by the system

ẋ(t) = ψ(x(t), u(t)). (27)

One can define for Equation (27) a decomposed system L as a nontrivial cas-
cade of subsystem L1 and L2. If the Lie algebra L̂(L) is the semidirect sum of
finite-dimensional subalgebra L1 and the ideal of L2, it has a nontrivial cas-
cade decomposition into subsystems L1 and L2 such that L̂(L1) = L1, and
L̂(L2) = L2. Using this fact and Levy’s theorem one can demonstrate that if
L̂(L) is finite-dimensional, the DITA admits a nontrivial decomposition into a
parallel cascade of Li systems with simple Lie algebras followed by a cascade
of one-dimensional systems, Lj. As a result, the basic informational transforma-
tion is done in subsystems with simple Lie algebras. The state space, M , of the
original system, L, is adopted here as the state space of these systems. There-
fore, despite the fact that the system has been partitioned into simpler parts,
the overall dimensionality of these parts is, in general, larger than that of the
original system. (One can reduce at the local level this dimensionality by replac-
ing the Li system by matrix equivalents defined on the exponential functions of
the Lie algebras that correspond to them.) These results can be compared with
the conditions for decomposability obtained by analyzing the DITA symmetries
described in this section for which the subsystem dimensionality equals that of
the original system. No assumptions about the finite dimensionality of the Lie
algebra are required here. We consider a class of neural nets described by the
linear-analytic equations

ẋ(t) = f(x) +
k∑

i=1

uigi(x). (28)

One can formulate the necessary and sufficient conditions for parallel-cascade
decomposability by Lie algebras. In doing so, one can pose the condition that
each component of the input action be applied to only one of the subsystems,
that is, the decomposition procedure partition the inputs into disjoint subsets.
However, such an approach cannot be applied to the decomposition of an DITA
with scalar input.

If DITA F̂ (B, M, ψ) has an infinitesimal symmetry (G, θ, Q), local commu-
tativity of the diagram means that ψ ∗ εB = εm and π ∗ εB = εn. Let ΔB =
span{ε | εB ∈ TeG} and the same hold for Δm. Then, ψ∗ΔB ⊂ Δm, π∗ΔB = Δ,
and Δm is a controlled invariant distribution. Models of neural networks, includ-
ing affine ones, have invariant distributions that induce decompositions of the
system into simpler subsystems. However, since the symmetry conditions are
constraints, the decompositions are obtained as more detailed and structured.

A class of dynamic information-transforming systems that are described by a
commutative diagram is examined in this section. Constraints on systems with
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symmetry under which one can expose, explicitly the hidden structure of the
controlled process are formulated. We show that the effect of the DITA on the
information-transforming process depends substantially on the type of system
symmetry. The informational process is subject here to the action of cascade
groups, transformations, or the action of a dynamic-transformation operator
with feedback. The obtained results can be expanded to adaptive learning sys-
tems by introducing the corresponding optimization models. When doing so, one
can expect that a DITA, of which the quality functional is invariant in symmetry-
conserving transformations, will be described adequately by a nonlinear system
with optimal feedback and will have a differential-geometric structure, which is
of interest from the point of view of applications.

4 Fiber Bundles and Observability

In the last decade, important work has been done on a differential geometric
approach to nonlinear input state-output systems, which in local coordinates
have the form

ẋ = g(x, u), y = h(x), (29)

where x is the state of the system, u is the input, and y is the output. Most of
the attention has been directed to the formulation in this context of fundamen-
tal system theoretic concepts like controllability, observability, minimality, and
realization theory.

In spite of some very natural formulations and elegant results that have been
achieved, there are certain disadvantages in the whole approach, from which we
summarize the following points:

1. Normally, the equations
ẋ = g(x, u) (30)

are interpreted as a family of vector fields on a manifold parameterized by
u; i.e., for every fixed u, g(·, u) is a globally defined vector field. We propose
another framework by looking at (30) as a coordinization of the following
diagram.

B
�g

TX
�

�
�

���

�
�

�
���

X
where B is a fiber bundle above the state space manifold X and the fibers
of B are the state dependent input spaces, while TX is as usual the tangent
bundle of X (the possible velocities at every point of X).

2. The ‘‘usual’’ definition of observability has some drawbacks. In fact, observ-
ability is defined as distinguishable; i.e., for every x1, x2 ∈ X , there exists a
certain input function (in principle, dependent on x1 and x2) such that the
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output function of the system starting from x1 under the influence of this
input function is different from the output function of the system starting
from x2 under the influence of the same input function. Of course, from a
practical point of view this notion of observability is not very useful, and also
is not in accord with the usual definition of observability or reconstructibility
for general systems.

3. In the class of nonlinear systems (29), memoryless systems

y = h(u) (31)

are not included. Of course, one could extend the system (29) to the form

ẋ = g(x, u), y = h(x, u), (32)

but this gives, if one wants to regard observability as distinguishability, the
following rather complicated notion of observability. As can be seen, dis-
tinguishability of (32) with y ∈ R

p, u ∈ R
m and x ∈ R

n is equivalent to
distinguishability of

ẋ = g(x, u), y = h(x), (33)

where h : R
n → (Rp)R

m

is defined by h(x)(u) = h(x, u). Also, checking the
Lie algebra conditions for distinguishability for the system (33) is not very
easy.

�

V

↑

I →

Fig. 12. Ideal diode for the I − V characteristic

4. It is often not clear how to distinguish a priori between inputs and outputs.
Especially in the case of a nonlinear system, it could be possible that a
separation of what we call external variables in input variables and output
variables should be interpreted only locally. An example is the (nearly) ideal
diode given by the I − V characteristic in Figure 12. For I < 0 it is natural
to regard I as the input and V as the output, while for V > 0 it is natural to
see V as the input and I as the output. An input-output description should
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be given in the scattering variables (I − V, I + V ). Moreover, in the case
of nonlinear systems it can happen that a global separation of the external
variables in inputs and outputs is simply not possible. This results in a
definition of a system, which is a generalization of the usual input-output
framework. It appears that various notions like the definitions of autonomous
(i.e., without inputs), memoryless, time-reversible, Hamiltonian and gradient
systems are very natural in this framework.

4.1 Nonlinear Model of Agents

The (say C∞) agents can be represented in the commutative diagram

B
�f

TX × W
�

�
�

���

π πx

�
�

�
���

X
(34)

where (all spaces are smooth manifolds) B is a fiber bundle above X with pro-
jection π, TX is the tangent bundle of X , πx the natural projection of TX on
X and f is a smooth map. W is the space of external variables (think of the
inputs and the outputs). X is the state space and the fiber π−1(x) in B above X
represents the space of inputs (to be seen initially as dummy variables), which
is state dependent e.g., forces acting at different points of a curved surface.

This definition formalizes the idea that at every point x ∈ X we have a set of
possible velocities, elements of TX , and possible values of the external variables,
elements of W , namely the space

f(π−1(x)) ⊂ TxX × W. (35)

We denote the system (34) by Σ(X, W, B, f). It is easily seen that in local
coordinates x for X , v for the fibers of B, w for W , and with f factored as
f = (g, h), the system is given by

ẋ = g(x, v), w = h(x, v). (36)

Of course one should ask how this kind of system formulation is connected with
the usual input-output setting. In fact, by adding more and more assumptions
successively to the very general formulation (34) we shall distinguish among three
important situations, of which the last is equivalent to the ‘‘usual’’ interpretation
of system (29).

1. Suppose the map h restricted to the fibers of B is an immersive map into W
(this is equivalent to assuming that the matrix ∂h/∂v is injective). Then:

Lemma 1. Let h, restricted to the fibers of B, be an immersion into W . Let
(x, v) and w be points in B and W respectively such that h(x, v) = w. Then
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locally around (x, v) and w there are coordinates (x, v) ∈ B, coordinates
(w1, w2) ∈ W and a map h such that h has the form

(x, v) � h > (w1, w2) = (h(x, v), v). (37)

Proof. The lemma follows from the implicit function theorem. Hence, locally
we can interpret a part of the external variables, i.e., w1, as the outputs, and
a complementary part, i.e., w2, as the inputs. If we denote w1 by y and w2
by u, then system (36) has the form, only locally,

ẋ = y(x, u), y = h(x, u). (38)

2. Now we not only assume that ∂h/∂v is injective, which results in a local
input-output parametrization (38), but we also assume that the output set
denoted by Y is globally defined. Moreover, we assume that W is a fiber
bundle above Y , so that p : W → Y , and that h is a bundle morphism (i.e.,
maps fibers of B into fibers of W ). Then:

Lemma 2. Let h : B → W be a bundle morphism, which is a diffeo-
morphism restricted to the fibers. Let x ∈ X and y ∈ Y be such that
h(π−1(x)) = p−1(y). Take coordinates x ∈ X around x and coordinates
y ∈ Y around y. Let (x, v) be a point in the fiber above x and let (y, u) be
a point in the fiber above y such that h(x, v) = (y, u). Then there are local
coordinates v around v for the fibers of B, coordinates u around u for the
fibers of W and a map h : X → Y such that h has the form

(x, v) � h > (y, u) = (h(x), v). (39)

Proof. Choose a locally trivializing chart (0, φ) of W around y. Then φ :
p−1(0) → 0 × U , with U the standard fiber of W . Take local coordinates u
around u ∈ U . Then (y, u) forms a coordinate system for W around (y, u).
Because h is a bundle morphism, it has the form

(x, v) � h > (y, u) = (h(x), h′(x, v)), (40)

where (x, v) is a coordinate system for B around (x, v). Now adapt this last
coordinate system by defining

v = (h′)−1(x, u) with x fixed. (41)

Because h restricted to the fibers is a diffeomorphism, v is well defined and
(x, v) forms a coordinate system for B in which h has the form

(x, v) � h > (y, u) = (h(x), u). (42)

Hence under the conditions of Lemma 2 our system is locally (around x ∈ X
and y ∈ Y ) described by

ẋ = g(x, u), y = h(x). (43)
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This input-output formulation is essentially the same as the one proposed
by Brockett and Takens, who take the input spaces as the fibers of a bundle
above a globally defined output space Y . In fact, this situation should be
regarded as the normal setting for nonlinear control systems.

3. Take the same assumptions as in 2 and assume moreover that W is a trivial
bundle, i.e., W = Y × U , and that B is a trivial bundle, i.e., B = X × V .
Because h is a diffeomorphism on the fibers, we can identify U and V . In
this case the output set Y and the input set U are globally defined, and the
system is described by

ẋ = g(x, u), y = h(x), (44)

where for each fixed u, g(·, u) is a globally defined vector field on X . This is
the ‘‘usual’’ interpretation of (29).

Some remarks are in order:

Remark 1. When h restricted to the fibers of B is not an immersion we have
a situation where we could speak of ‘‘hidden inputs’’. In fact, in this case there
are variables in the fibers of B which can affect the internal state behavior via
the equation ẋ = g(x, v) but which cannot be directly identified with some of the
external variables.

Remark 2. The splitting of the external variables into inputs and outputs as
described in Lemma 1 is of course by no means unique. This fact has interesting
implications, even in the linear case, which is beyond the scope of this chapter.

Remark 3. From Lemma 2 it is clear that the coordinization of the fibers of
the bundle W uniquely determines, via h, the coordinization of the fibers of B.
It should be remarked that a coordinization of the fibers of W is locally equiv-
alent to the existence of an (integrable) connection on the bundle W , and that
one coordinization is linked to another by what is essentially an output feedback
transformation, i.e., a bundle isomorphism from W into itself.

Remark 4. A beautiful example of this kind of system is the Lagrangian system.
Here the output space is equal to the configuration space Q of a mechanical
system. The state space X is the configuration space with the velocity space,
so X = TQ. The space W is equal to T ∗Q (the cotangent bundle of Q), with
the fibers of T ∗Q representing the external forces. When we denote the natural
projection of TQ on Q by ρ, then B is just ρ∗T ∗Q (the pullback bundle via ρ).
Now given a function L : TQ → R (called the Lagrangian) we can construct a
symplectic form d(∂L/∂q̇) ∧ dq (with (q, q̇) coordinates for TQ) on TQ, which
uniquely determines a map g : B → TTQ. Finally, in coordinates the system is
given by

q̈ = F (q, q̇) +
∑

j

ujZj(q, q̇), y = q, (45)

with the vector fields F (q, q̇) and Zj(q, q̇) satisfying certain conditions. Moreover
the vector fields Zj commute, i.e., [Zi, Zj ] = 0 for all i, j, a fact which has a
very interesting interpretation.
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Remark 5. Most cases where B can be taken as trivial are generated by a space
X such that TX is a trivial bundle. For instance, when X is a Lie group TX is
automatically trivial.

4.2 Minimality

We want to give a definition of minimality for a general nonlinear agent.

Definition 12. Let Σ(X, W, B, f) and Σ′(X ′, W, B′, f ′) be two smooth systems.
Then we say Σ′ � Σ if there exist surjective submersions φ : X → X ′, Φ : B →
B′ such that the following diagram commutes.

B
�f

TX × W
�

�
�

���

�
�

�
���

X
(46)

Σ is called equivalent to Σ′ (denoted Σ ∼ Σ′) if φ and Φ are diffeomorphisms.
We call Σ minimal if Σ′ � Σ ⇒ Σ′

∼ Σ.

B






�

f

W
�

×

id

�Φ
B′

�
�

�
�

���

f ′

W

�

π

X

TX

�
�

�
�

���

πX

�
φ∗

×

�
φ

X ′

TX ′







�

πX′

�

π′

Remark 6. This definition formalizes the idea that we call Σ′ less complicated
than Σ (Σ′ � Σ) if Σ′ consists of a set of trajectories in the state space, smaller
than the set of trajectories of Σ, but which generates the same external behavior.
(The external behavior Σe of Σ(X, W, B, f) consists of the possible functions w :
R → W generated by Σ(X, W, B, f). Hence, when we define Σ := {(x, w) : R →
X × W |x that are absolutely continuous and (ẋ(t), w(t)) inf(π−1(x(t))) a.e.},
then Σe is just the projection of Σ on W R).
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Remark 7. Notice that we only formalize the regular case by asking that Φ and
φ be surjective as well as submersive. In fact we could, for instance, allow that
at isolated points φ or Φ are not submersive. However, we do not discuss this
problem here, and treat only the regular case as described in Definition 12.

Remark 8. Notice that Σ1 � Σ2 and Σ2 � Σ1 need not imply Σ1 ∼ Σ2. This
fact leads to very interesting problems, which again are out of scope for this
chapter.

Of course, Definition 12 is an elegant but rather abstract definition of minimality.
From a differential geometric point of view it is very natural to see what these
conditions of commutativity mean locally. In fact, we will see in Theorem 5 that
locally these conditions of commutativity do have a very direct interpretation.
But first we have to state some preparatory lemmas and theorems.

Let us look at Diagram (46). Because Φ is a submersion it induces an involutive
distribution D on B given by

D := {Z ∈ TB|Φ∗Ż = 0} (47)

(the foliation generated by D is of the form Φ−1(c) with c constant). In the
same way φ induces an involutive distribution E on X . Now the information in
the diagram (46) is contained in three subdiagrams (we assume f = (g, h) and
f ′ = (g′, h′)):

B
�Φ

B′

�

h

W
��

id
W
�

h′ I

B
�Φ B′

�

π

X
�

φ
X ′
�

π′ II

B �Φ B′

�

g

TX
�

φ∗
TX ′

�

g′ III
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Lemma 3. Locally the diagrams I, II, III are equivalent, respectively, to

I ′ : D ⊂ ker dh (48)
II ′ : π∗D = E (49)

III ′ : g∗D ⊂ TE = Tπ∗(D). (50)

Proof. I ′ and II ′ are trivial. For III ′ observe that, when φ induces a distribution
E on X , then φ∗ induces the distribution TE on TX .

Now we want to relate conditions I ′, II ′, III ′ with the theory of nonlinear
disturbance decoupling. Consider in local coordinates the system

ẋ = f(x) +
m∑

i=1

uigi(x) on a manifold X. (51)

We can interpret this as an affine distribution on manifold.

Theorem 4. Let D ∈ A(Δ0). Then the condition

[Δ, D] ⊆ D + Δ0 (52)

(we call such a D ∈ A(Δ0)Δ(mod Δ0) invariant) is equivalent to the two con-
ditions: a) there exists a vector field F ∈ Δ such that [F, D] ⊆ D and b) there
exist vector fields Bi ∈ Δ0 such that span {Bi} = Δ0 and [Bi, D] ⊂ D.

With the aid of this theorem the disturbance decoupling problem is readily
solved. The key to connecting our situation with this theory is given by the
concept of the extended system, which is of interest in itself.

Definition 13. (Extended system). Let

B
�f

TX × W
�

�
�

���

π πX

�
�

�
���

X
Then we define the extended system of Σ(X, W, B, f) as follows: We define

Δ0 as the vertical tangent space of B, i.e.,

Δ0 := {Z ∈ TB|π∗Z = 0}. (53)

Note that Δ0 is automatically involutive. Now take a point (x, v) ∈ B. Then
g(x, v) is an element of TxX . Now define

Δ(x, v) := {Z ∈ T(x,v)|π∗Z = g(x, v)}. (54)

So Δ(x, v) consists of the possible lifts of g(x, v) in (x, v). Then it is easy to see
that Δ is an affine distribution on B, and that Δ − Δ = Δ0. We call the affine
system (Δ, Δ0) on B constructed in this way, together with the output function
h : B → W , the extended system Σe(X, W, B, f). We have the following:
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Lemma 4. i) Let D be an involutive distribution on B such that D ∩ Δ0 has
constant dimension. Then π∗D is a well-defined and involutive distribution on
X if and only if D + Δ0 is an involutive distribution. ii) Let D be an involutive
distribution on B and let D ∩ Δ0 have constant dimension. Then the following
two conditions are equivalent: a)π∗D is a well-defined and involutive distribution
on X, and g∗D ⊂ Tπ∗D and b) [Δ, D] ⊂ D + Δ0.

Proof. i) Let D + Δ0 be involutive. Because D and Δ0 are involutive this is
equivalent to [D, Δ0] ⊂ D + Δ0. Applying Theorem 4 to this case gives a basis
{Z1, . . . , Zk} of D such that [Zi, Δ0] ⊆ Δ0. In coordinates (x, u) for B, the last
expression is equivalent to Zi(x, u) = (Zix, Ziu(x, u)), where Zix and Ziu are
the components of Zi in the x- and u-directions, respectively. Hence π∗D =
span {Z1x, . . . , Zkx} and is easily seen to be involutive. The converse statement
is trivial.

ii) Assume i); then there exist coordinates (x, u) for B such that D =
{∂/∂x1, . . . , ∂/∂xx} (the integral manifolds of D are contained in the sections
u = const ). Then g∗D ⊂ Tπ∗D is equivalent to

(
∂g

∂xi

)

jecomp
= 0 (55)

with i = 1, . . . , k and j = k + l, . . . , n (n is the dimension of X). From these
expressions [Δ, D] ⊂ D + Δ0 readily follows. The converse statement is based
on the same argument.

Now we are prepared to state the main theorem of this section. First we have to
give another definition.

Definition 14. (Local minimality). Let Σ(X, W, B, f) be a smooth system. Let
x ∈ X. Then Σ(X, W, B, f) is called locally minimal (around x) if when D and
E are distributions (around x) which satisfy conditions I ′, II ′, III ′ of Lemma 3,
then D and E must be the zero distributions.

It is readily seen from Definition 12 that minimality of Σ(X, W, B, f) locally
implies local minimality (locally every involutive distribution can be factored
out). Combining Lemma 3, Definition 13 and Lemma 4 we can state:

Theorem 5. Σ(X, W, B, f = (g, h)) is locally minimal if and only if the ex-
tended system Σe(X, W, B, f = (g, h)) satisfies the condition that there exist no
nonzero involutive distribution D on B such that

i) [Δ,D] ⊂ D + Δ0, (56)
ii) D ⊂ ker dh. (57)

Remark 9. It is very surprising that the condition of minimality locally comes
down to a condition on the extended system, which is in some sense an infinites-
imal version of the original system.
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Remark 10. Actually there is a conceptual algorithm to check local minimality.
Define

Δ−1(Δ0 + D) := {vector fields Z on B |[Δ, Z] ⊆ Δ0 + D}. (58)

Then we can define the sequence {Dμ}, μ = 0, 1, 2, . . . as follows:

D0 = ker dh, (59)

Dμ = Dμ−1 ∩ Δ−1(Δ0 + Dμ−1), μ = 1, 2, . . . . (60)

Then {Dμ}, μ = 0, 1, 2, . . ., is a decreasing sequence of involutive distributions,
and for some k � dim(ker dh)Dk = Dμ for all μ � k. Then Dk is the maximal
involutive distribution which satisfies

i) [Δ, Dk] ⊂ Dk + Δ0, (61)

ii) Dk ⊂ ker dh. (62)

From Theorem 5 it follows that Σ(X, W, B, f) is locally minimal if and only if
Dk = O.

4.3 Observability

It is natural to suppose that our definition of minimality has something to do
with controllability and observability. However, because the definition of a non-
linear system (34) also includes autonomous systems, (i.e., no inputs), minimality
cannot be expected to imply, in general, some kind of controllability. In fact an
autonomous linear system

ẋ = Ax, y = Cx (63)

is easily seen to be minimal if and only if (A, C) is observable. Moreover, it
seems natural to define a notion of observability only in the case that the system
(34) has at least a local input-output representation; i.e., we make the standing
assumption that (∂h/∂v) is injective (see Lemma 1). Therefore, locally we have
as our system

ẋ = g(x, u), y = h(x, u) (64)

for every possible input-output coordinization (y, u) of W . For such an input-
output system local minimality implies the following notion of observability,
which we call local distinguishability.

Proposition 1. Choose a local input-output parametrization as in (64). Then
local minimality implies that the only involutive distribution E on X which
satisfies i) [g(·, u), E] ⊂ E for all u (E is invariant under g(·, u)) and ii)
E ⊂ ker dxh(·, u) for all u (dxh means differentiation with respect to x) is
the zero distribution.
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Proof. Let E be a distribution on X which satisfies i) and ii). Then we can lift E
in a trivial way to a distribution D on B by requiring that the integral manifolds
of D be contained in the sections u = const . Then one can see that D satisfies
[Δ, D] ⊂ D + Δ0 and D ⊂ ker dh. Hence D = 0 and E = 0.

Corollary 2. Suppose there exists an input-output coordinization

ẋ = g(x, u), y = h(x). (65)

Then local minimality implies local weak observability.

Proof. As can be seen from Proposition 1, local minimality in this more re-
stricted case implies that the only involutive distribution E on X which satisfies
i) [g(·, u), E] ⊂ E for all u and ii)E ⊂ ker dh, is the zero distribution. It can be
seen that the biggest distribution which satisfies i) and ii) is given by the null
space of the codistribution P generated by elements of the form

Lg(·,u1)Lg(·,u2) · · · Lg(·,uk)dh, with uj arbitrary. (66)

Because this distribution has to be zero, the codistribution P equals T ∗
xX , in

every ∈ X . This is, apart from singularities (which we don’t want to consider),
equivalent to local weak observability.

Moreover, let (65) be locally weakly observable. Then all feedback transforma-
tions u 	→ v = α(x, u) which leave the form (65) invariant (i.e., y is only the
function x) are exactly the output feedback transformations u 	→ v = α(y, u). It
can be easily seen in local coordinates that after such output feedback is applied,
the modified system is still locally weakly observable.

In Proposition 1 and its corollary we have shown that local minimality implies
a notion of observability, which generalizes the usual notion of local weak observ-
ability. Now we will define a much stronger notion. Let us denote the (defined
only locally) vector field ẋ = g(x, u) for fixed u by gu and the function h(x, u)
by hu (with g and h as in (64)).

Definition 15. Let Σ(X, W, B, f) = (g, h) be a smooth nonlinear system. It is
called strongly observable if for every possible input-output coordinization (64)
the autonomous system

ẋ = gu(x), y = hu(x) (67)

with u constant is locally weakly observable, for all u.

Remark 11. Let Σ(X, W, B, f = (g, h)) be strongly observable. Take one input-
output coordinization (y, u). The system has the form (in these coordinates)

ẋ = g(x, u), y = h(x, u). (68)

Because the system is strongly observable, every constant input-function (con-
stant in this coordinization) distinguishes between two nearby states. However, in
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every other input-output coordinization every constant (i.e., in this coordiniza-
tion) input function also distinguishes. This implies that in the first coordiniza-
tion every C∞ input function distinguishes. Because the C∞ input functions
are dense in a reasonable set of input functions, every input function in this
coordinization distinguishes.

Proposition 2. Consider the Pfaffian system constructed as follows:

P = dhu + Lgudhu + Lgu(Lgudhu) + · · · + Ln−1
gu dhu, (69)

with n the dimension of X and Lgu the Lie derivative with respect to gu. As is
well known, the condition that the Pfaffian system P as defined above satisfies
the condition Px = T ∗

x X for all x ∈ X (the so called observability rank condition)
implies that the system

ẋ = gu(x), y = hu(x) (70)

is locally weakly observable. Hence, when the observability rank condition is sat-
isfied for all u, the system is strongly observable.

We will call the Pfaffian system P the observability codistribution.

Remark 12. As is known, local weak observability of the system

ẋ = gu(x), y = hu(x) (71)

implies that the observability rank condition (i.e., dimPx = T ∗
xX) is satisfied

almost everywhere (in fact, in the analytic case everywhere). Because we don’t
want to go into singularity problems, for us local weak observability and the
observability rank condition are the same.

Remark 13. It is easily seen that when for one input-output coordinization the
observability rank condition for all u is satisfied, then for every input-output
coordinization the observability rank condition for all u is satisfied. This follows
from the fact that the observability rank condition is an open condition.

4.4 Controllability

The aim of this section is to define a kind of controllability which is ‘‘dual’’ to the
definition of local distinguishability (Proposition 1). The notion of controllability
we shall use is the so-called ‘‘strong accessibility’’.

Definition 16. Let ẋ = g(x, u) be a nonlinear system in local coordinates. De-
fine R(T, x0) as the set of points reachable from x0 in exactly time T ; in other
words,

R(T, x0) := {x1 ∈ X | ∃ state trajectory x(t) generated by g

� x(0) = x0 ∧ x(T ) = x1}. (72)
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We call the system strongly accessible if for all x0 ∈ X , and for all T > 0 the set
R(T, x0) has a nonempty interior.

For systems of the form (in local coordinates)

ẋ = f(x) +
m∑

i=1

uigi(x) (73)

(i.e., affine systems) we can define A as the smallest Lie algebra which contains
{g1, . . . , gm} and which is invariant under f (i.e., [f, A] ⊂ A). It is known that
Ax = TxX for every x ∈ X implies that the system (73) is strongly accessible.
In fact, when the system is analytic, strong accessibility and the rank condition
Ax = TxX for every x ∈ X , are equivalent. We call A the controllability distri-
bution and the rank condition the controllability rank condition. Now it is clear
that for affine systems (73) this kind of controllability is an elegant ‘‘dual’’ of
local weak observability.

It is well known that the extended system (see Definition 13) is an affine
system. Hence for this system we can apply the rank condition described above.
This makes sense because the strong accessibility of Σ(X, W, B, f) is very much
related to the strong accessibility of Σe(X, W , B, f), which can be seen from
the following two propositions.

Proposition 3. If Σe(X, W, B, f = (g, h)) is strongly accessible, then
Σ(X, W, B, f = (g, h)) is strongly accessible as well.

Proof. In local coordinates the dynamics of Σe and Σ are given by

I ẋ = g(x, u) (Σ), (74)
II ẋ = g(x, v) (Σe), (75)

v̇ = u. (76)

It is easy to show that if for Σe one can steer to a point x1 then the same is
possible for Σ (even with an input that is smoother).

The converse is more difficult to prove:

Proposition 4. Let Σ(X, W, B, f = (g, h)) be strongly accessible. In addition,
let the fibers of B be connected. Then Σe(X, W, B, f = (g, h)) is strongly
accessible.

Proof. Consider the same representation of Σ and Σe as in the proof of Propo-
sition 3. Let x0 ∈ X and x1 be in the (nonempty) interior of RΣ(x0, T ) (the
reachable set of system Σ). Then it is possible to reach x1 from x0 by an input
function v(t) which cannot be generated by the differential equation v̇ = u .
However, we know that the set of the v generated in this way is dense in L2.
(For this we certainly need that the fibers of B are connected.) Because we only
have to prove that the interior of a set is nonempty, this makes no difference.
Now it is obvious from the equations

ẋ = g(x, v), v̇ = u (77)
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that if we can reach an open set in the x-part of the (extended) state, then it is
surely possible in the whole (x, v)-state.

5 Conclusions

In this chapter, cooperative control of multiple agents was studied. Methods and
algorithms were explored for solving the problem of vehicle group interaction,
when one group of vehicles is moving in a plane (UGV) and another in a halfspace
(UAV-s). We have already analyzed an analogous situation, when one object (a
pursuer) is moving in a halfspace while the other (an evader) - in a plane, in
solving the problem of ‘‘soft meeting’’. Nonlinear and bilinear Markovian models
are proposed for solution of the game theoretic problem of searching for a moving
object in discrete time over a finite set of states.

The multiagent coordination problem has been studied. This problem is ad-
dressed for a class of targets for which control Lyapunov functions can be found.
The main result is a suite of propositions about formation maintenance, task
completion time, and formation velocity. It is also shown how to moderate the
requirement that, for each individual target, there exists a control Lyapunov
function.

The connection between cooperative control and Yang–Mills fields has been
established. A geometric model of a controlled agent as dynamic information-
transforming system was examined. A description of the information-transforming
system within the framework of the geometric formalism was also proposed. After
a classification of the fiber bundle types of conflict and conflict-free maneuvers, a
weighted energy can be proposed as the cost function to select the optimal one.
Various local and global controllability and observability conditions are derived.
For the general multi-agent case, a convex optimization algorithm is proposed to
find the optimal multi-legged maneuvers. To completely characterize the optimal
conflict-free maneuvers, many issues remain to be addressed.

Possible directions of future research include the analysis of the proposed
mathematical models in terms of its performance and its robustness with respect
to uncertainty of the agents positions and velocities, and a more realistic study
for the agent dynamics. Summing up, we can say that the combined problems
of ‘‘search and tracking’’ and ‘‘pursuit and evasion’’ for multiple different-type
pursuing objects and multiple evaders will be solved in the next step.
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