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Abstract. The study of unmanned aerial systems (UAS) has been an
active research topic in recent years due to the rapid growth of UAS
real-world applications driven by the Global War on Terrorism (GWOT).
UAS are defined as a complete unmanned system including control sta-
tion, data links, and vehicle. Unmanned aerial vehicle (UAV) refers to
the vehicle element of the UAS. Currently UAS operate standalone, in-
dependent of neighboring UAS and used primarily for reconnaissance.
However UAS roles are expanding to the point where UAV swarms will
operate as cooperative autonomous units. The reason is that coopera-
tively controlled multiple UAS have the potential to complete mission
critical complicated tasks with the higher efficiency and failure toler-
ance, such as coordinated navigation to a target, coordinated terrain
exploration and search and rescue operations.

This chapter presents study results associated with real-time trajec-
tory planning and cooperative formation flying algorithms for use in
performing multi-UAV cooperative operations. Closed form analytical
and simulation results were used along with a UAS simulation test bed
for evaluating and verifying these algorithms in multi-UAV cooperative
scenarios. The full kinematics constraints of the UAV model is explicitly
used, ensuring the planned trajectories and formations are feasible. Two
operational modes are implemented for every UAV, one corresponding
to the search phase, the other corresponding to the cooperative flying
phase. Each phase is executed upon receiving commands. Finally this
chapter discusses the use of this simulation environment for multi-UAV
cooperative operator training.

1 Introduction

In order to provide a comprehensive solution for the trajectory planning problem,
it should be recognized that the motion-planning of robots is analogous to the
real-time trajectory planning of a group of UAV. Therefore, leveraging past
research efforts devoted to the motion-planning problem of robots is directly
applicable. Some popular approaches among them are potential fields, splines,
and numerical methods such as the D* and A* search algorithm.
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For the potential fields approach in [1] and [2], the trajectories are expelled
away from obstacles by pre-built repulsive potential fields around the obstacles,
and the goal is surrounded by an attractive potential field. This approach gen-
erally has multiple local minima and requires massive computational resources
when applied to 3D applications.

To illustrate this, consider the repulsive potential field:

U(r) =
1
r2 .

The attractive potential field is defined as

U(r′) = r′2,

where r, r′ are the corresponding distances. A robot is to reach its goal along
the gradient direction of its overall potential, that is,

U(r, r′) = U(r) + U(r′) =
1
r2 + r′2.

This scalar field has local minima close to the goal point. If a robot approches
a local minima, it will become stuck. When multiple obstacles are injected into
the scenario, the potential becomes more complicated.

For the splines approach in [3], a sequence of splines is used to generate a path
through a given set of waypoints. However, prior knowledge of the waypoints may
not be available due to the unknown environment and the kinematic constraints
of the robots are not considered in splines. Thus, the trajectory may not be
applicable to a specific robot.

In a common cubic spline method, each section of the path could be described
by the parametric equations:

x(u) = axu3 + bxu2 + cxu + dx

y(u) = ayu
3 + byu

2 + cyu + dy,

where u ∈ [0 1]. This type of parameterization concentrates on the smooth
property at the connection of various segements, rather than the kinematic con-
straints of the robot. The trajectory obtained by this method may not be feasible
for specific types of robots.

In search based methods, A* (proposed in [4]) utilizes a heuristic function to
guide the search direction to the goal, thus making it more efficient than the
Dijkstra algorithm and ensures an optimal solution from initial point to end
point can be found, if one exists. However it requires all of the map information.
To deal with dynamic environments, it needs to do a complete recalculation each
time the map information is updated, making it inefficient. A typical heuristic
index used in A* is:

f(n) = h(n) + g(n),

where f(n) is the overall cost for a node, h(n) is the cost already spent from the
start node to the current node, and g(n) is the estimated cost from the current
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node to the end node. Generally g(n) can be taken as the Euclidean distance
between the current and end nodes.

One improvement of the A* method is found in D* (proposed in [5] and [6]).
The D* search algorithm does not require all of the map information. It starts
with a priori map and at each time the map data is updated, it invokes a lo-
calized A* search to make incremental changes to the path. Its performance
is compromised relative to the performance of the A* search. Both search al-
gorithms require heavy computational resources and do not take a kinematic
model into account.

By acknowledging the limitations of these techniques, we can improve on these
methods by leveraging this information and create an approach that determines
a real-time collision-free path for a UAV. In this chapter a parametric solution
is proposed to address the limitations of the above techniques. The kinematic
constraints are considered, resulting in a class of smooth trajectories. A solution
is proposed to design a local decentralized cooperative control for a group of
UAV to fly along an arbitrary set of waypoints.

2 Trajectory Planning

The objective of trajectory planning is to find a feasible and smooth trajec-
tory that leads the UAV along its starting waypoint to its final waypoint. In
this chapter, trajectory planning is based on the following kinematic model of
UAV:

ṙx = vr1 cos(rθ)
ṙy = vr1 sin(rθ) (1)
ṙθ = vr2,

where (rx, ry) are the world coordinates of the UAV, rθ is the heading angle, vr1
is the longitudinal velocity, and vr2 is the angular velocity.

2.1 Parameterized Feasible Trajectories

By analyzing the kinematics model described by (1), it can be established that
the trajectory is defined by some smooth function ry = f(rx). Given initial and
final conditions q0 = (r0

x, r0
y, r0

θ) and qf = (rf
x , rf

y , rf
θ ), the model imposes four

constraints on the trajectory. That is, the position and first derivative of each end
has to match the boundary value. Thus, when the trajectory is parameterized
by a polynomial, it should have at least four coefficients. To achieve a class of
trajectories, the coefficients could be more than four. In this application, the
trajectory is parameterized by a 4th order polynomial. That is,

ry = a0 + a1rx + a2r
2
x + a3r

3
x + a4r

4
x, (2)
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where a0, a1, a2, a3 are coefficients to be solved and a4 is free. Given the boundary
conditions q0 and qf the solution to the coefficients are:

⎡
⎢⎢⎣

a0
a1
a2
a3

⎤
⎥⎥⎦ = (B)−1(Y − Aa4),

where

B =

⎡
⎢⎢⎣

1 r0
x (r0

x)2 (r0
x)3

0 1 2r0
x 3(r0

x)2

1 rf
x (rf

x)2 (rf
x)3

0 1 2rf
x 3(rf

x)2

⎤
⎥⎥⎦ , Y =

⎡
⎢⎢⎣

r0
y

tan(r0
θ)

rf
y

tan(rf
θ )

⎤
⎥⎥⎦ , A =

⎡
⎢⎢⎣

(r0
x)4

4(r0
x)3

(rf
x)4

4(rf
x)3

⎤
⎥⎥⎦ .

2.2 Trajectory Planning for Avoiding Dynamic Obstacles

To deal with the changing environment, as the new obstacle information becomes
available, the parameterized trajectory given by (2) may require updates. The
updating could be satisfied by a piecewise polynomial parametrization. Let T be
the time for a UAV to complete its maneuver from the initial configuration q0
to its final configuration qf , and Ts be the sampling period, such that k̄ = T/Ts

is an integer. When k = 0, the initial condition is q0. For k̄ > k > 0, the initial
condition is given by qk = (rk

x, rk
y , rk

θ ), the terminal condition is always qf .
By using the new initial condition, the path planning method described in the
previous subsection can be used for real-time replanning as k increases. In the
latter part of this chapter, all the notations with superscript k or subscript k
indicate they are in the kth sampling period.

Fig. 1. A UAV in the presence of moving obstacle

Figure 1 illustrates a UAV moving from q0 to qf . The radius of the UAV
envelope, r, and the sensing range, Rs are known. At the beginning of the kth
sampling period, there is a moving obstacle in the sensing range of the UAV,
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the radius of the obstacle envelop is R with center at (xk, yk). In this sampling
period, its velocity is vk

o and assumed to be linear, and the values for the data
is obtained by onboard sensors. The trajectory (2) is rewritten as:

ry = ak
0 + ak

1rx + ak
2r

2
x + ak

3r3
x + ak

4r
4
x. (3)

The obstacle avoidance criterion is:

(ry − yk − vk
o,yτ)2 + (rx − xk − vk

o,xτ)2 ≥ (r + R)2, (4)

where τ = t − (t0 + kTs) for t ∈ [t0 + kTs, t0 + T ].
According to the results in Sect. 2.1,

[ak
0 ak

1 ak
2 ak

3 ]T = (Bk)−1(Y k − Akak
4), (5)

where

Bk =

⎡
⎢⎢⎣

1 rk
x (rk

x)2 (rk
x)3

0 1 2rk
x 3(rk

x)2

1 rf
x (rf

x)2 (rf
x)3

0 1 2rf
x 3(rf

x)2

⎤
⎥⎥⎦ , Y k =

⎡
⎢⎢⎣

rk
y

tan(rk
θ )

rf
y

tan(rf
θ )

⎤
⎥⎥⎦ , Ak =

⎡
⎢⎢⎣

(rk
x)4

4(rk
x)3

(rf
x)4

4(rf
x)3

⎤
⎥⎥⎦ .

It is not necessary to consider the collision avoidance criterion for all t ∈
[t0 + kTs, t0 + T ]. Since the collision may only happen when the UAV’s x (or
y) coordinate is within a certain range. Specifically, the potential collision range
obtained from the x coordinate is when rx ∈ [xk+vk

o,xτ−r−R, xk+vk
o,xτ+r+R].

From this condition, a potential collision time interval could be solved as [t∗, t̄∗].
It is only in this time interval that the collision avoidance condition is checked.

Substituting (3) and (5) into (4), one obtains the following inequality:

g2(rx, k)(ak
4)2 + g1(rx, k, τ)ak

4 + g0(rx, k, τ)|τ=t−t0−kTs ≥ 0, (6)

for all t ∈ [t∗, t̄∗], where

g2(rx, k) = [r4
x − h(rx)(Bk)−1Ak]2

g1(rx, k, τ) = 2[r4
x − h(rx)(Bk)−1Ak][h(rx)(Bk)−1Y k − yk − vk

o,yτ ]

g0(rx, k, τ) = [h(rx)(Bk)−1Y k − yk − vk
o,yτ ]2 + (rx − xk − vk

o,xτ)2 − (r + r)2

h(rx) = [1 rx r2
x r3

x].

Inequality (6) describes the adjustable coefficient ak
4 , and as long as the chosen

ak
4 satisfies this inequality, the obstacle is avoided. For multiple moving obstacles,

each obstacle would impose a constraint similar to (6) on ak
4 . When ak

4 satisfies
all the constraints simultaneously, all obstacles are avoided.

Figure 2 shows the actual path that the UAVs travelled during the search
phase, where the small dots represent static obstacles.
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Fig. 2. Trajectory generated in search phase

3 Cooperative Control

In recent years there has been rapid progress in the study of cooperative and
formation control for a group of mobile autonomous robots. The reason for this
is that cooperatively controlled multiple robots have the potential to complete
complicated tasks with a higher efficiency and failure tolerance, such as coor-
dinated navigation to a target, coordinated terrain exploration and search and
rescue operations.

Motivated by the flocking behavior of birds in flight, Reynolds introduced
a computer animation model for cohesion, separation, and alignment in [10].
Subsequently, a simple discrete-time model (Vicsek model) was given in [11] for
the heading alignment of autonomous particles moving in the plane. Simulation
results verified the correctness of the Vicsek model. More recently, a theoretical
explanation of Vicsek’s model was presented in [12] using results from graph the-
ory. The conditions on the connectivity of undirected sensor graphs are given for
overall system convergence. This result was extended to networks with directed
sensor graphs in [13], [14].

One recent development on designing decentralized local cooperative control
is based on matrix theory. Up until now, less restrictive, but successful results
have been established in [7]. Given a group of robots that can be feedback lin-
earized into a certain form and their sensing communication matrix satisfies a
sequentially complete condition, their production results in a matrix with iden-
tical rows, where all the state errors of the group of robots converge, and thus
cooperative control is achieved.
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3.1 Objectives of Cooperative Control

In general, the control objective for cooperative control is to make the states (or
error states) of a group of dynamical systems converge to the same steady state.
When applied to formation flying, a group of UAVs converge to a formation
when the error states from a group of desired trajectories converge to zero. This
is because the states of the group of UAVs in the kinematics model are exactly
their position and heading.

3.2 Cooperative Control Algorithm

In order to simplify the design procedure, define the following diffeomorphic
state and control transformations

φ1 = rx + L cos(rθ), φ2 = ry + L sin(rθ),

and [
v1
v2

]
=

[
cos(rθ) −L sin(rθ)
sin(rθ) L cos(rθ)

] [
vr1
vr2

]
.

The UAV model can be transformed into the single integrator model as follows
with the stable internal dynamics

φ̇ = v, (7)

where φ = [φ1, φ2]T and v = [v1, v2]T .
For an arbitrary path H , a formation can be defined by using its Frenet

frame FH(t), which moves with the path. Let e1(t) ∈ �2 and e2(t) ∈ �2 be
the orthonormal base of FH(t), and ψd(t) = [ψd

1(t), ψd
2(t)] ∈ �2 be the origin of

FH(t). A formation consists of q UAVs in FH(t), denoted by {P1, · · · , Pq}, where

Pi = di1(t)e1(t) + di2(t)e2(t), i = 1, · · · , q

with di(t) = [di1(t), di2(t)] ∈ �2 being the desired coordinates for the ith robot in
FH(t). It is clear that the rigid formation can be modeled when di(t) is constant.
The desired position for the ith robot is then

ψd
i (t) = ψd(t) + di1(t)e1(t) + di2(t)e2(t). (8)

To map (7) into the canonical form proposed in [7], define the following de-
centralized state transformation

xi(t) = φi − ψd
i , v = ψ̇d

i − φi + ψd
i + ui.

It follows that
ẋi = Aixi + Biui, yi = Cixi,

where ui is the cooperative control for ith robot, and

Ai =
[
−1 0
0 −1

]
, Bi =

[
1 0
0 1

]
, Ci =

[
1 0
0 1

]
.



210 H. Yuan et al.

To capture the nature of information flow, define the following sensing/
communication matrix:

S(t) =

⎡
⎢⎢⎢⎣

S1(t)
S2(t)

...
Sq(t)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

s11 s12(t) · · · s1q(t)
s21(t) s22 · · · s2q(t)

...
...

...
...

sq1(t) sq2(t) · · · sqq

⎤
⎥⎥⎥⎦ ,

where sii ≡ 1; sij(t) = 1 if the states of the jth UAV is known by the ith UAV at
time t; otherwise sij(t) = 0. The general class of cooperative controls are given
in the following expression: for i = 1, · · · , q,

ui =
q∑

j=1

Gij(t)[sij(t)yj ], (9)

where sij(t) is the entry in the sensing/communication matrix, Gij is a 2 × 2
block in gain matrix G that reflects the influence of jth UAV’s output to the
control of ith UAV, it could be designed in the following form:

Gij(t) =
sij(t)∑q

η=1 siη(t)
Kc, j = 1, · · · , q, (10)

where the design parameter Kc ∈ �2×2 is a constant, nonnegative, and row
stochastic matrix.

3.3 Trajectory Parameterization for Arbitrary Waypoints

In Sect. 3.2, a formation in the Frenet frame FH(t) is proposed. In most applica-
tions, the path of the frame H is not given. Instead, it is desired that the group
of UAVs fly through a set of specified waypoints. Suppose a set of waypoints
(wi, zi), i = 0, 1, 2, 3 is given. The following parameterization approach can be
used to find the path H .

z = z0
(w − w1)(w − w2)(w − w3)

(w0 − w1)(w0 − w2)(w0 − w3)
+ z1

(w − w0)(w − w2)(w − w3)
(w1 − w0)(w1 − w2)(w1 − w3)

+z2
(w − w0)(w − w1)(w − w3)

(w2 − w0)(w2 − w1)(w2 − w3)
+ z3

(w − w0)(w − w1)(w − w2)
(w3 − w0)(w3 − w1)(w3 − w2)

.

Assuming the origin of the frame has a constant overall velocity V (which
means the corresponding UAV in the formation has a constant cruise speed),
and first waypoint is (w0, z0), with a start time at t0, then the whole timing
profile of the Frenet frame ψd(t) can be obtained as the following:

ψd
1(t) = w0 +

∫ t

t0

V√
1 + (dz/dw)2

dt

ψd
2(t) = z0 +

∫ t

t0

V√
1 + (dw/dz)2

dt.

Combining with (8), the desired trajectory of all the UAVs can be determined.
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4 Simulation

The simulation program was developed in Microsoft Visual Studio .Net 2003
and used with an evaluation copy of the Qt Class library provided by Trolltech.
Figure 3 is a flow chart of the simulation program that describes how the code
and modules are organized.

Fig. 3. Simulation platform

4.1 Simulation Prototype

The simulation scenario consists of six UAVs searching within a rectangular area.
In the first phase (search phase) the six UAVs perform a complete coverage search
over the entire area. In the second phase (cooperative control phase) waypoints
are sent to the UAVs via XMPP protocol from the Human Machine Interface
(HMI). The six UAVs will converge to a triangular formation and fly along these
waypoints.

Table 1. Geographical coordinates of Kabul city

Longitude(DEG) Latitude(DEG)
Low-left 69.122650 34.491754
Up-left 69.121734 34.583547
Up-right 69.246323 34.583034
Low-right 69.245865 34.492267
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Table 2. Initial configuration of UAVs

Longitude(DEG) Latitude(DEG) Heading(RAD)
UAV 1 69.121734 34.537651 7π/12
UAV 2 69.163263 34.583547 −11π/12
UAV 3 69.204793 34.583547 −11π/12
UAV 4 69.246323 34.537651 −5π/12
UAV 5 69.204793 34.491754 π/12
UAV 6 69.163263 34.491754 π/12

Table 3. Position of static obstacle

Longitude(DEG) Latitude(DEG) Radius(meter)
OBS 1 69.23 34.56 600
OBS 2 69.22 34.52 600
OBS 3 69.14 34.53 600
OBS 4 69.18 34.525 600

Table 4. Waypoints in cooperative fly

Trajectory 1 Trajectory 2
WP 1 69.122192 34.5376505 69.1173846 34.5314035
WP 2 69.147018 34.5461272 69.1438258 34.5559345
WP 3 69.196671 34.5648806 69.1938001 34.5779071
WP 4 69.246323 34.5830341 69.2183311 34.5579971

The geographical coordinates of the search area are listed in Table 1. To model
static obstacles, moving obstacles with a velocity of zero were used. The initial
configuration of the UAV and obstacles are listed in Tables 2 and 3.

In the cooperative flying phase, the two sets of waypoints that the formation
should pass are listed in Table 4.

The sensing/communication pattern in the simulation are randomly changing
among the following three matrices at each sampling period:

S1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
1 1 0 0 0 0
0 1 1 0 0 0
0 0 1 1 0 0
0 0 0 1 1 0
0 0 0 0 1 1

⎤
⎥⎥⎥⎥⎥⎥⎦

S2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
1 1 0 0 0 0
1 0 1 0 0 0
1 0 0 1 0 0
1 0 0 0 1 0
1 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

S3 =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
1 1 0 0 0 0
0 1 1 0 0 0
1 0 0 1 0 0
0 1 0 0 1 0
0 0 0 1 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

The design parameter Kc in (10) is:
[

0 1
1 0

]
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4.2 Simulation Results

To determine the route in the search phase, a minimum number of circles that fit
the sensing range of the UAVs are placed in area [9] with the union of these circles
covering the entire area. The centers of these circles are the waypoints that will
be traveled along to form the route. Next, each UAV determines the waypoints to
use. This is done by a Voronoi algorithm, which means each waypoint belongs to
the nearest UAV. Finally, each UAV will choose the nearest waypoint as its first
waypoint, and then by applying a computational geometry algorithm, the UAV
will travel to the nearest unvisited waypoint relative to its current position (going
clockwise). This method forces the UAVs to travel in a counterclockwise path.
This phase uses the path planing and obstacle avoidance algorithms discussed
in Sect. 2.

One case for the search phase and two cases for the cooperative flying phase
are simulated. The results for the search phase are shown in Fig. 2. Figures 4
and 5 show the results for the cooperative control phase. By sending different
sets of waypoints, the six UAVs fly on different paths in the given triangular
formation. After receiving the waypoints, the program first uses the approach
discussed in Sect. 3.3 to parameterize the desired trajectories through the set of
waypoints, then applies the algorithm presented in Sect. 3. The two figures of
the cooperative control phase illustrate that after a transient process, the UAVs
gradually converges to their desired trajectory.

Fig. 4. Trajectory generated in formation fly phase

5 UAS Test Bed

The Unmanned Aerial System Test Bed (UAS Test Bed) is a web-based infras-
tructure for UAS operational “what if” assessments and development of training
strategies developed by L-3 Communications, Link Simulation and Training. It
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Fig. 5. Trajectory generated in formation fly phase

is built on commercial web, gaming and open source technologies. The Physics-
Based Urban Environment provides and manages a common view or state of the
virtual environment that the UAS application interacts with. The Multi-Trainer
Servers host the UAV, Ground Control Station (GCS) and communication mod-
els, which interface to the Physics-Based Urban Environment through a set of
APIs. The GCS interfaces to the Human Computer Interface (HCI) through web-
based services and protocols. The GCS interfaces to the UAV models through
Data Links in the communications layer.

The HCI component provides a tailored trainee interface depending on GCS
configuration and desired training position (e.g. vehicle or sensor operator). The
HCI’s primary displays are used for situation assessment with secondary displays
used to assess vehicle or subsystem health. An example generic web based GCS
HCI is used to demonstrate the test bed vehicle controls, sensor controls and
situation assessment. The HCI is connected to the server side GCS logic, which
in turn communicates to UAV models through protocols such as STANAG 4586.
Figure 6 illustrates the basic infrastructure in the UAS test bed framework, and
Fig. 7 shows the components in the HCI.

The user interacts with this framework and connects to the HCI through a
web portal. As a trainee, a user can download and run the HCI while logged
into the UAVS web portal, which is their gateway to the simulation. Prior to
launching the HCI, the trainee can configure their training session by providing
initial parameters and attributes for the vehicle and GCS, and selecting a specific
mission. Once the configuration is complete, the trainee can join the simulation
as any position they have permissions for. The HCI contains multiple components
that are controlled by various roles or positions. A trainee’s role is dependent on
initial registration parameters and determines group permissions while logged
into the web portal. User permissions or authority is based on the training role,
and used to determine the available features accessable through the web portal
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Fig. 6. UAS test bed framework infrastructure

Fig. 7. UAS human control interface

and HCI. Instructors and mission commanders can manipulate all areas of the
HCI. Vehicle operators drive the flight controls and execute routes and loiter
zones for a single UAV. Sensor operators control the payload steering and zoom
for a single UAV. Operators can handoff control to drive other UAVs in the
simulation.

Observers can view the UAVs on a map, as well as their sensor output, while
planners can only view the map. The map displays all UAVs in the simulation,
their inertial states, and all routes and loiter zones that can be executed by the
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vehicle operators. All users can communicate via voice-over Internet protocol
(VOIP) on various channels.

6 UAS Cooperative Control Test Bed Framework

For the UAS Cooperative Control Test Bed, an interface was created, that incor-
porated the aforementioned cooperative control algorithms, and integrated them
into the UAS Test Bed for evaluating their effectiveness using multi-UAV based
scenarios. The main areas of integration within the HCI were the moving-map
application and the Core UAV Control System (CUCS) communication inter-
face. For the moving-map application, a table of inertial states was added and
the ability to interpret additional configuration files. These configuration files
provide the locations of static obstacles and targets that are to be displayed on
the map. A data translator is used to map the inertial states provided by the
cooperative control interface to the UAS interface. Search areas, static obstacles,
targets, and pre-defined routes are defined in XML files to be used during the
exercise. Figure 8 illustrates the components after integrating the algorithm into
the testbed.

Fig. 8. Integrated simulation platform

Once the program is executed, the UAVs begin searching their respective areas
and communicate using the STANAG 4586 [15] standard messages transmitted
using the Jabber protocol [16]. The vehicle operator controls the UAVs through
a virtual UAV, which can be any one of the UAVs in the formation or the GCS.
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This virtual UAV communicates with the formation and they will collectively
cooperate to achieve their goal. During the real-time simulation, the following
capabilities can be demonstrated:

– Planning the Coverage Search Path
Once the exercise begins, a search area and the location of static obstacles

and targets are uploaded to each UAV. The UAV then generates an initial
route that will cover their entire search area, while avoiding the static obsta-
cles. If there are any known dynamic obstacles in the path, the UAV’s initial
route will reflect this and avoid these entities. Figure 9 shows a snapshot of
the working scenario of HCI during the searching phase. The trajectories of
the UAVs correspond to Fig. 2.

Fig. 9. UAVs flying pre-defined search area

– Real-Time Trajectory Generation
As the UAVs search they continually communicate with each other their

current inertial state and obtain inertial states from other vehicles. Using this
information, the UAVs re-plan their route to avoid flying into one another
while avoiding obstacles.

– Dynamic and Static Obstacle Avoidance
During the initial planning and re-planning of the search route, the UAV

trajectory will avoid known static obstacles in its path. Other vehicles’ inertial
states, not limited to UAVs, are also communicated to the HCI’s CUCS inter-
face. The UAV uses these locations and velocities to continuously re-plan their
route to avoid these dynamic obstacles during search and formation flying.
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– Convergence to Specified Targets
The descriptions of specified targets are uploaded to each UAV upon start

of the simulation. The UAV sensor will scan the search area for these targets.
Once the target is identified, the UAV will communicate this to the other
UAVs. After either all targets have been located or all UAVs have searched
the area, the UAVs will converge to the specified targets and begin a loiter
pattern.

– Formation Fly Along a Specified Route
Routes are described in XML and can be uploaded to the virtual UAV

and executed. Once the route is executed, the UAVs will generate a new path
to fly this route in a formation specified by the XML. The route planning
is a cooperative process between all the UAVs in the formation. They com-
municate their routes to the virtual UAV and re-plan the routes collectively
in order to successfully fly the specified route in formation while avoiding
obstacles. Figure 10 shows how the group of UAVs flow along a specified set
of waypoints, their trajectories correspond to Fig. 4.

Fig. 10. UAVs flying in formation along a pre-defined route

Given autonomous and cooperative control of multiple UAVs is an emerging
capability, there are no real world examples illustrating the operational concepts
or training procedures. The integration of cooperative control algorithms with
the UAS test bed gives us a platform and ability to perform “what if” scenarios
necessary to understand the implications of these capabilities to assess mission
performance, operating policy and potential training gaps.
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