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Abstract. Unmanned aerial vehicles (UAVs) are excellent platforms for
detecting and tracking objects of interest on or near the ground due to
their vantage point and freedom of movement. This paper presents a co-
operative vision-based estimation and tracking system that can be used
in such situations. The method is shown to give better results than could
be achieved with a single UAV, while being robust to failures. In addi-
tion, this method can be used to detect, estimate and track the location
and velocity of objects in three dimensions. This real-time, vision-based
estimation and tracking algorithm is computationally efficient and can
be naturally distributed among multiple UAVs. This chapter includes the
derivation of this algorithm and presents flight results from several real-
time estimation and tracking experiments conducted on MIT’s Real-time
indoor Autonomous Vehicle test ENvironment (RAVEN).

Keywords: Cooperative multi UAV vision tracking estimation.

1 Introduction

Unmanned Aerial Vehicles (UAVs) have attracted significant interest in recent
years. Due to improvements in embedded computing, communications, and sens-
ing technologies, UAVs have become increasingly capable of carrying out sophis-
ticated tasks. Because UAVs lack a human occupant and are generally simpler
and less expensive than their manned counterparts, they are well suited to per-
form a wide range of “dull, dirty and/or dangerous” missions. Examples of such
missions include traffic monitoring in urban areas, search and rescue operations,
military surveillance, and border patrol [5].

For many mission scenarios, the deployment of video cameras onboard UAVs
is of particular interest due to the richness of information and real-time situ-
ational assessment capabilities that can be provided by the video stream. Re-
searcher have used onboard cameras for remote detection of forest fires [3J6l7]. In
addition, a number of researchers have used vision-based techniques for object
detection, tracking and surveillance [IJ2[T0]. The measurements of the target
location are inherently nonlinear in the single-vehicle case because the observed
state variables are measured angles to the target. As such, numerous researchers
have investigated using nonlinear estimators, such as Extended Kalman Filters
and Unscented Kalman Filters [4l9], to determine the target state. In addi-
tion, observations from multiple vantage points are required to provide depth
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perception and to obtain a good estimate of the target’s position and orienta-
tion. Geometrically, using only a single observation (via a single camera), the
UAV can only determine a ray along which the target lies. Therefore, the UAV
must be maneuvered around the target to provide multiple vantage points to
gain a more accurate position estimate of the vehicle. However, if the object of
interest is moving, the UAV may not be able to complete the necessary maneu-
vers to gain a more accurate estimate.

In this chapter, we present a vision-based estimation and tracking algorithm
that exploits cooperation between multiple UAVs in order to provide accurate
target state estimation and allow good tracking of the target without the need for
a single vehicle to execute maneuvers to gain better vantage points. The method
uses an optimization technique to combine the instantaneous observations of all
UAVs, allowing for very rapid estimation. Furthermore, the algorithm can be
naturally distributed among all participating UAVs with very modest communi-
cation bandwidth requirements and is computationally efficient, making it well
suited to implementation on real-time applications. The vision processing is done
in a manner designed to be robust to noise in the video stream, which is often
present, especially in applications where the video signal is wirelessly transmit-
ted. Flight results from several estimation and tracking experiments conducted
on MIT’s Real-time indoor Autonomous Vehicle test ENvironment (RAVEN)
are presented [8].

2 Vision Based Tracking and Estimation: A Cooperative
Approach

Using multiple UAVs in the real-time, vision-based detection, estimation and
tracking problem is advantageous for a number of reasons. First, multiple UAVs
provide redundancy, allowing for continued tracking even when individual vehi-
cles experience failures. Second, the presence of obstructions in the environment
may temporarily block the field of view of a UAV as it attempts to observe the
target. Using multiple UAVs with different lines of sight increases the proba-
bility that the target will remain observable to the group of UAVs even when
individual vehicles’ lines of sight are blocked. Third, because more observations
are available at a given time, multiple UAVs working together can estimate the
target’s state more accurately than a single UAV could.

In addition, the cooperative UAV vision tracking problem can be reformu-
lated as a linear estimation problem. Using the observed bearings of the target
from each UAV, an estimate of the absolute target position can be obtained by
minimizing the errors in distance from the estimate to each measurement. This
estimate is then used as a measurement input to a simple linear Kalman filter
that uses the target location as the state variables {x,y,z}.

The statement of the multi-UAV vision-based detection, estimation and track-
ing problem is as follows. Assume that there are n UAVs, each equipped with a
camera. The location of each UAV is given by

X; = X; + 0X;, X; € R3 (].)
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Fig. 1. Five vehicle coordinated flight test on MIT’s RAVEN [§]

where X; is the estimated position of the UAV (as given by the UAV’s onboard
navigation sensors), and 6x; is a random variable that captures the uncertainty
in the UAV’s position. The distribution of éx; is assumed to be known.

From each UAV, there is a director vector to the target

d; =d; +6d;, d; € R (2)

where again d; is the estimated (unit-length) direction vector generated by the
vision system, described below, and éd; represents uncertainty in the direction
vector (i.e., uncertainty in the precise direction in which the camera is pointing).
Assume that .

6did; =0 (3)

This assumption is reasonable given that d; is most naturally characterized by
uncertainty in the angles from the camera to the target, so that d7'd; ~ 1. Again,
assume that the distribution of 6d; is known. Finally, a weight w; is associated
with each UAV’s estimate. This weight may be used to account for differences in
the quality of each UAV’s estimate (i.e, differences in video quality). Note that
given x; and d;, the target must lie along the ray

L) =x+XNdi, X >0 (4)

In order to solve this problem, the true position of the object, q, must be
estimated given the set of all measurements {X;,d; : ¢ = 1,...,n}. This estimate
q should minimize the error

E(q) = wihi(q) (5)
=1

where h;(q) is the square of the minimum distance from q to the ray 1;(\;):

hi(a) = min lla—L)|]? = min lla — (xi + Xedy)| (6)
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Minimizing h,(q) with respect to \; yields the result
hi(a) = a"a— 24" x; + x] x; — (df q — d} x;)? (7)

Substituting this result into Eq.[Bl and minimizing F(q) with respect to q yields
the equation that the optimal estimate must satisfy:

Aq* =b (8)
where

A= f: w; (I —d,dy) (9)

i=1
b = Zwi (Xi - (XZTCl,)dZ) (10)
i=1

However, A and b cannot be calculated by the algorithm directly because only
the the noisy measurements x; and d; are known. To compensate for these errors,
A and b are expanded by substituting Eqs. [l and Bl into Egs. @ and After
dropping second-order terms and grouping the known and unknown terms, the
equations become

A=A+5A (11)
b=b+éb (12)
where
A = w; I — &Z&ZT (13)
> i (1-a.dr)
SA == w;(sd;d] +df éd;) (14)

i=1
n

b=> w (x - (xfai)&i) (15)

i=1

8b = " wi(6x; — (X} 6d;)d; — (¢6x] di)d; — (%] d;)éd;) (16)
1=1

Note that A and b are known terms, because they involve only quantities that
are measured directly. 6.4 and éb are random variables because they involve the
uncertain quantities 6x; and 6d;. The optimal estimate can now be written as

q“=A"'b=(A+6A) " (b+6b) (17)

We assume that the error terms are small (§A < A). Expanding the matrix
inverse function in a Taylor series around A gives

(A+6A) P~ AL — A6 AAT (18)
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Thus, Eq. [I7 becomes

— A b+ A5 — A SAATD — A5 AA 6 (19)
~ G+ A '6b — A6 A4 (20)

where I
él* :Aflb (21)

is the optimal estimate which can be calculated from the measurements. The
error 6q* in the estimate is

6q" = A"t6b— A6 AA D (22)

Since the probability distributions of the random variables ¢6x; and dd; are
known, the covariance of éq* can be calculated. This covariance is needed in
order to implement the Kalman filter, discussed below.

Eq. 2l demonstrates that the optimal estimate q* can be computed in time
that is linear in the number of measurements to the object, n. Aand b can be
constructed in linear time since they are sums over all rays. Once A and b are
known, Eq. 2Tl can be solved in constant time by inverting the 3 x 3 matrix A.
Since the entire process runs in linear time with respect to n, this method is
very computationally efficient. Note that if there is only a single vehicle, n =1,
the matrix A is singular and Eq. Il cannot be solved. In this case, a single
vehicle would have to make an additional assumption about the location of the
vehicle, such that it was located on the ground (z = 0), in order to calculate
a solution. In all other cases, however, A is invertible as long as the observed
direction vectors d; are not all parallel to each other. As long as the observation
points X; are not the same, which cannot happen since the UAVs cannot occupy
the same physical point in space, a solution can always be found.

Once the estimate q* is known, it can be used as the measurement into a sim-
ple linear Kalman filter based on the assumed dynamics of the target vehicle [J.
This paper uses a system model with state vector

X: [xay7z7i7yaé]T (23)

The discrete time system dynamics are then given by
Xpt1 = AX,, + vy, (24)
Y, =q = CXy + 6q" (25)

where vy is the process noise and 6q* is the measurement noise. The process
noise covariance is assumed to be known, and the covariance of 6q* is found as
discussed above. A and C' are given by

100At 0 0
010 0 At 0
0010 0 At 100000
A= c=(010000 (26)
0001 0 0 001000
0000 1 0
0000 0 1
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where At is the sampling rate of the filter. Using these dynamics, a linear Kalman
filter can be easily designed and implemented. This filter can be run on each
UAYV; the only requirement is that the UAVs communicate their locations x; and
estimation directions d; to each other. Since each of these quantities is a three
dimensional vector, this method requires only six numbers to be transmitted
by each UAV, making it well suited for environments where communication
bandwidth is limited.

3 Hardware and Software Setup

A real-time, vision-based tracking system was implemented on the quadrotor
platform. The motivation behind implementing the vision system was to allow
the quadrotors to carry their own sensor payloads and make decisions based on
their own sensor data instead of relying upon artificially synthesized sensor data,
allowing for a more realistic overall hardware platform.

The hardware setup consists of two Draganfly quadrotors outfitted with a
Draganfly SAVS wireless camera. The SAVS camera broadcasts to a diversity
receiver on the ground. The receiver is connected to a PC with a LifeView
FlyVideo 3000FM video capture card. The Intel OpenCV video capture and
processing library is used to interface with the video card and provide a software
APT for accessing and processing the images.

3.1 Persistent Object Filter

Given the low-power nature of the wireless camera’s transmitter, the presence of
RF noise, and other impediments to receiving a clear video signal, it is important
that the vision tracking system be able to function even when the received video
stream is noisy. Experimental data from several wireless cameras shows that
noise is often present in the processed images from the camera (as shown in
Figure 2)).

An expected but important characteristic of the noise seen in the video stream
is that it is highly uncorrelated from one frame to the next (as shown in Fig-
ure [2). Based on this observation, a filtering algorithm was designed to extract
the features of the images that are persistent across multiple frames while re-
jecting the transient noise components. The key component of the algorithm is
a dynamic list P of objects which have been seen in previous frames. By com-
paring the objects in P with the objects that are in the current frame, denoted
by C, the algorithm can decide which objects in C' have appeared before, and
these objects are given higher weight in the filter.

A detailed description of the algorithm follows.

set C' = ); (The set of objects in the current frame)
set P = 0; (The set of persistent objects)
while true do:
for p in P do:
p.f = false; (Mark p as "not found”)

T W N~
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Fig. 2. Two images taken within one second of each other showing noise in the video
stream

6 end for;

7 F = getCurrentFrame(); (Get the current image frame)

8 G=preprocessFrame(F); (Downsample image and convert to binary image)
9 C = findObjectsInFrame(G); (Find objects in the current frame)

10 for ¢ in C' do:

11 f = false;

11 for p in P do:

12 if (||e.x — p.z|| <€) and (Je.A — p.A| < €4) do:

(Determine whether ¢ is similar to p in terms of location in the
image = and area a)

13 p.f = true; (Mark p as ”found”)

14 p.n=pn+1; (Add 1 to the running frame count of p)

15 f = true;

16 break; (Since p is determined, there is no need to continue
examining the other elements of P)

17 end for; (Ends for p in P)

18 if f == false do:

19 P.push(c); (If ¢ is not found anywhere in P, append ¢ to P)

20 end if;

21 end for; (Ends for ¢ in C)
22 for p in P do:

23 if p.f == false do: (If p was not found in this frame...)

24 p.n=p.n — 1; (..subtract 1 from the running frame count of p)
25 end if;

26 if p.n == 0 do: (If the frame count of p is zero...)

27 P.pop(p); (...remove p from P)

28 end if;

29 end for;

30 end while;
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Fig. 3. Left: First experiment configuration. Right: First experiment results. Mean
estimation error: x = -0.0265 m, y = 0.0368 m. Standard deviation: o, = 0.0082 m,
oy = 0.0083 m

The current implementation detects objects based on image intensity, al-
though other schemes for object recognition are possible as well. Continuous
dark areas (“blobs”) in the image are assumed to be objects of interest. The
preprocessing step in Line 7 of the algorithm downsamples the image (this is to
allow faster processing of the image) and applies a threshold filter in order to
convert it to a binary image. This binary image is then passed to a function in
Line 8 that detects the centers of each object in the image.

Once the objects are found, the filtering algorithm is applied. The output of
the filter is a list of persistent objects in the video stream. The positions of these
objects can then be estimated.

4 Results

A number of multi-vehicle vision tracking experiments were conducted to verify
the performance of the vision estimation and tracking system. Two vehicles
equipped with Draganfly SAVS camera systems were used as the test platform.
A small, radio-controlled truck (shown in Figure [2]) was used as a target.

In the first experiment, the goal of the UAVs was to hover with the target in the
field of view and cooperatively estimate its position. Figure [Blshows the configu-
ration of the experiment using a screenshot from a real-time 3D data visualization
tool that was developed for use with the system. The visualization tool shows the
locations of the UAVs and target, as well as the rays from each UAV’s camera (red
lines) and the cooperatively estimated position of the target (yellow sphere with
vertical yellow line). Data is displayed in real-time as the system is running, and
can also be logged and played back later for analysis purposes.

Results of the first experiment are shown in Figure 8l The scatter plot shows
the estimated X-Y positions of the target over a period of about 60 secs of
flight. Note that during this time, the UAVs were subject to disturbances in
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Fig. 4. Second experiment configuration

the form of wind (from ambient air currents as well as propeller wash from the
neighboring UAV) which caused them to execute small corrective pitch and roll
maneuvers to maintain their assigned hover locations. In the presence of these
disturbances, the estimated position of the target remained within 0.04 m of its
true location, an excellent result considering that the target itself is over 0.2 m
in length. Note that the estimator also gives the Z position of the target (not
plotted in Figure [J), and the estimated Z position was also within 0.04m of the
true location.

The second experiment shows the advantage of cooperation in the vision es-
timation problem. In this experiment, two UAVs hovered near a target vehicle
which drove up a ramp at constant speed. The goal of the vehicles was to es-
timate the position and velocity of the target as it moved up the ramp, using
both the cooperative estimation method and the noncooperative, single vehicle
estimation method. Figure [ shows the experiment setup, including the ramp
and ground vehicle. Note that the arrow protruding from the estimated position
of the target shows the estimated velocity, which is clearly aligned with the slope
of the ramp.

Figure (B shows that as the target vehicle moves up the ramp, the estimated
error for the noncooperative estimation technique grows due to the fact that the
target vehicle is farther from the ground. Without another UAV’s perspective,
the single UAV is unable to accurately determine the position of the target.
Furthermore, the single UAV is unable to determine the velocity of the target
well, since it is unable to estimate the ground object’s z-axis velocity. Meanwhile,
the cooperative estimates for target position and velocity remain very accurate
in all three dimensions.

The third experiment incorporated active tracking into the detection and
estimation problem. Two UAVs were commanded to detect a ground vehicle
and estimate its position. The estimated position was then passed to a tasking
system that generated waypoints for the UAVs to follow. The waypoints were
chosen in a way that was designed to keep the ground vehicle in the field of view
of the UAVs, thus enabling them to continue tracking. In this case, the tasking
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system kept one UAV two meters south of the ground vehicle and the other UAV

two meters west of the ground vehicle.

Results of the third experiment are shown in Figure[ll The results show that
the UAVs were able to estimate the position of the ground vehicle well (within
about 5cm) even while they were moving cooperatively in order to keep the
vehicle in the field of view of both UAVs. Note that in this experiment, the
ground vehicle moved enough that it would have been outside the field of view
of both UAVs at times had the UAVs not moved along with it.

Cooperative Target Estimation and Tracking

1.5F
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T

y (m)

+ UAV1
x UAV 2

o estimated target location
true target location

x (m)

Fig. 6. Results of cooperative estimation and tracking
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5 Conclusions

This paper has demonstrated a cooperative target estimation algorithm that
is well-suited for real-time implementation and can be distributed among the
cooperating vehicles. This approach to target tracking may be advantageous in
terms of performance and robustness when multiple vehicles are available to
perform the tracking. Flight results indicate that the algorithm performs well in
tracking both stationary and maneuvering targets.
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