
An Analysis and Solution of the Sensor
Scheduling Problem

Mesut Yavuz1 and David Jeffcoat2

1 Research and Engineering Education Facility, University of Florida, Shalimar, FL
yavuz@reef.ufl.edu

2 Air Force Research Laboratory, Munitions Directorate, Eglin AFB, FL
david.jeffcoat@eglin.af.mil

Abstract. This chapter addresses the scheduling problem of a sensor
that constantly collects information from multiple sites. In the existing
literature, the problem is solved by probabilistic approaches, potentially
generating schedules in which a site is not visited for a long time. To
overcome this deficiency, this chapter presents a deterministic approach
formulated as an integer linear program. Upon showing that the prob-
lem is NP-Hard, the chapter develops valid lower and upper bounds
and proposes two constructive heuristic methods. Tested via an exten-
sive computational study, the heuristic methods are proven efficient and
effective in solving the problem.

1 Introduction

This chapter is concerned with scheduling a single sensor to maintain an estimate
of a dynamic physical attribute (e.g., position) of multiple targets. The research
builds on previous work by Tiwari et al. [9], Yerrick et al. [11] and Yerrick
et al. [12]. Tiwari et al. [9] present a feasibility criterion for a single sensor
to maintain a bounded estimate of an attribute at multiple locations. Yerrick
et al. [11] demonstrate by simulation the feasibility criterion presented in [9] and
develop a heuristic to find a good sensor motion model given the dynamics of the
system under observation. Yerrick et al. [12] provide an optimal sensor coverage
solution for two sensor motion models given a model of the observed system’s
dynamics. All three papers consider probabilistic strategies for the motion of
the single sensor among the sites. A similar model in the literature is known as
the traveling inspector model [4, 5]. In this chapter, we focus on deterministic
methods to schedule the sensor’s motion. A deterministic approach overcomes
one disadvantage of probabilistic motion: with any random motion strategy,
there is nonzero probability that a particular site will not be visited at all in any
finite time horizon.

Figure 1 provides an illustration for a three-site scenario. At the time instant
pictured, the sensor is focused on site three. In its current position, the sensor
can observe the characteristics of site three, but cannot observe sites one or
two. In the next discrete time step, we assume that the sensor can move (or
refocus) from site three to either of the other two sites, or can maintain its

M.J. Hirsch et al. (Eds.): Adv. in Cooper. Ctrl. & Optimization, LNCIS 369, pp. 167–177, 2007.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2007

168 M. Yavuz and D. Jeffcoat

current position. At each time step, since the sensor focuses on exactly one of
the sites, the sensor’s processor can update its information for only one site and
must estimate the rest. Therefore, information loss at a site increases with the
number of time steps that the site has not been visited. Sites may have different
rates of change, and, hence, the criticality of information loss may vary among
the sites. A successful sequence is one that balances the visit frequencies of the
sites to minimize overall information loss. The goal of this chapter is to develop
methods to construct such sequences.

Site 3

Site 1

Site 2

Fig. 1. Three site example

The remainder of this chapter is organized as follows. In Section 2 we formulate
the problem as an integer linear programming problem and in Section 3 we
analyze its properties. In Section 4 we develop a lower and an upper bound
on the objective function of our model. In Section 5 we propose two heuristic
solution procedures and in Section 6 we evaluate their performance. In Section 7,
we conclude by summarizing our contribution and discussing possible future
research directions.

2 A Mathematical Model

Let xi,t be the binary decision variable denoting whether the sensor is scheduled
to visit site i at time t, and yi,t denote the last time site i was visited as of the end
of time t. Note that yi,t = t happens only in time intervals in which the sensor
visits site i. When the sensor is focused on site i, it updates the status of the site.
In other words, we have perfect information of the site in that time step. Since the
sensor cannot focus on more than one site at the same time, focusing on one site
means losing information about the current states of the other sites. The extent of
the information loss depends on the activity rate of a site. We can afford to ignore
less active sites for a large number of time steps, whereas more active sites must be
visited frequently. In this chapter, we assume that there is no cost for movement
or observation; our whole concern is the cost of lost information.

An Analysis and Solution of the Sensor Scheduling Problem 169

We associate with each site i a fixed cost ai and a variable cost bi of infor-
mation loss. More specifically, a fixed penalty of not visiting a certain site is
incurred for each time step in which the sensor is away from the site. In ad-
dition, a variable cost is incurred for each time unit that has passed since the
sensor’s last visit to that site, providing ever-increasing motivation for the sensor
to return to a neglected site. (The cost parameters implicitly model the activity
level at a site or the importance of a site.) The objective function in our model
minimizes the maximum penalty incurred for a sensor schedule defined over a
finite time horizon. If we are given a planning horizon consisting of T periods,
then the following integer linear program can be formulated.

Minimize C (1)
Subject to
C + aixi,t + biyi,t ≥ ai + bit, ∀i = 1, .., n; ∀t = 1, .., T (2)

n∑

i=1

xi,t = 1, ∀t = 1, .., T (3)

yi,t − yi,t−1 ≤ txi,t, ∀i = 1, .., n; ∀t = 1, .., T (4)
yi,t ≤ t, ∀i = 1, .., n; ∀t = 1, .., T (5)
yi,0 = 0, ∀i = 1, .., n (6)

C > 0, (7)
xi,t ∈ {0, 1}, ∀i = 1, .., n; ∀t = 1, .., T (8)

yi,t ∈ {0} ∪ Z
+, ∀i = 1, .., n; ∀t = 1, .., T (9)

The model is built as a fully linear model, that is, the objective function and
constraints are all linear functions of the decision variables. Note that defining
C as a variable and defining it in a constraint is critical for the linearity of the
formulation. The objective function of the model (1) simply aims to minimize
the maximum cost defined by the first constraint (2). More specifically, C ≥
ai(1 − xi,t) + bi(t − yi,t), for all i and t. Constraint (3) assures that the sensor
visits exactly one site in each stage. Constraints (4) and (5) together assure that
yi,t is updated only when the sensor is on site i, and remains constant at other
times. Constraint (6) initializes variable y. Finally, constraints (7-9) define the
decision variables C, x and y as nonnegative, binary and nonnegative-integer
variables, respectively.

3 Structural Properties of the Problem

The optimization model of the previous section is built upon a given sequence
length, T . However, in practice, we may not be given such a length but asked
to find infinitely long sequences. This property, regardless of the computational
complexity of the formulated integer programming model, makes the problem
a challenging one. This property motivates us to study the problem from a dif-
ferent perspective, that is, periodic scheduling. If an infinite sequence can be

170 M. Yavuz and D. Jeffcoat

constructed such that the objective function value is C, every site i must be
visited by a period pi where ai + (pi − 1)bi ≤ C and ai + pibi > C. Various
periodic scheduling problems arise in the context of computer and telecommu-
nications systems, and have received significant academic interest. Consider a
satellite with finite memory capacity that needs to download its memory peri-
odically. If we have multiple satellites each serviced by a single download facility,
then construction of a download sequence would constitute a periodic scheduling
problem. The first result we use from the periodic scheduling literature proves
the computational complexity of the sensor scheduling problem as follows.

Theorem 1. The sensor scheduling problem is NP-hard.

Proof. Bar-Noy et al. [1] show that the periodic scheduling problem is NP-hard,
with a reduction from the graph coloring problem. Here, we reduce the peri-
odic scheduling problem to our problem. An instance of the periodic scheduling
problem is given as follows.

Given m machines and service intervals p1, p2, .., pm such that ρ =
∑m

i=1 1/pi

≤ 1, does there exist an infinite maintenance service schedule of these machines
in which consecutive maintenance times for machine i are exactly pi time-slots
apart and no more than one machine is serviced in a single time-slot?

For a given instance of the periodic scheduling problem, we first create m sites
with ai = 0 and bi = C/pi, where C is an arbitrarily selected constant. Next,
we find the smallest positive integers c and d such that c/d = 1 −

∑m
i=1 1/pi (if∑m

i=1 1/pi = 1, then we assign c = d = 0). Then we create c additional sites
each with ai = 0 and bi = C/d. Note that d = 0 is only possible when c = 0,
in which case no additional sites are created. If we can find a solution to this
problem with n = m + c sites such that maximum cost is at most C, then in
that solution the first m sites will be visited exactly every pi time-slots, since
the density (ρ) is now 1. �
Theorem 2. There exists an optimal solution in which no site is visited in two
consecutive stages.

Proof. It is clear that when n > 1, the minimum cost for site i = 1, .., n will be
at least ai + bi, since at least one of the other sites must be visited between two
consecutive visits to site i. Therefore, at any stage in the sequence, staying at the
same site results in a zero cost for site i, whereas it increases the variable cost
for all other sites i′ �= i by bi′ . Hence, staying at the same site can only increase
the maximum cost with respect to the other sites and it can never decrease the
maximum cost factor at that site. Using this property, any optimal solution to
the problem can be converted to another optimal solution in which no site is
visited in two consecutive stages. �
Corollary 1. Instances with two sites (n = 2) are trivial.

Proof. This result directly follows from Theorem 2: if an optimal solution exists
such that the sensor never stays at the same site in two consecutive stages and
there are only two sites, then in each stage there is exactly one site that the
sensor can focus on. �

An Analysis and Solution of the Sensor Scheduling Problem 171

Corollary 2. maxi(ai + bi) is a lower bound for C.

Proof. From Theorem 2 we know that an optimal solution to the sensor’s sched-
ule can be found by constantly moving between the sites. Therefore, there will
be at least one time-slot in which a site (i) is not visited, thus the cost incurred
at site i will be at least ai + bi. Since the objective function C is greater than or
equal to those cost factors, it must be at least as large as the largest of them,
which completes the proof. �

4 Lower and Upper Bounds on the Objective Function

Corollary 2 provides a loose lower bound on C. Before obtaining a tight lower
bound, we first elaborate our discussion on periodic scheduling. A special version
of the periodic scheduling class of problems is known as pinwheel scheduling, see
[2, 3] for further reading. In the pinwheel scheduling problem, a number (n) of
tasks each with a possibly distinct period (pi) are aimed to be scheduled such
that two consecutive executions of task i are not separated by more than pi

time steps. The sensor scheduling problem reduces to the pinwheel scheduling
problem for a given C, and, hence, is a general case thereof. An instance of the
pinwheel scheduling problem is characterized by its density ρ =

∑n
i=1 1/pi. It is

well known that instances with ρ > 1 cannot be scheduled. Instances with ρ ≤ 1
may or may not be scheduled. A widely believed conjecture is that all instances
with ρ ≤ 5/6 are schedulable. However, no one to date has been able to prove
or disprove this conjecture.

We use the properties of the pinwheel scheduling problem to develop a tight
lower bound and conjecture an upper bound. Both bounds are obtained using the
search procedure, i.e., Algorithm Search on C(n,a,b,ρU), depicted in Figure 2.
The algorithm first uses Corollary 2 to find the minimum C value that is possible,
and then performs an increasing search on C until a pinwheel instance with a
density less than or equal to the designated threshold is obtained. In a basic
setting, if a and b are integer vectors, the search can be performed by increasing
C by one. Our algorithm performs the search intelligently in that it calculates
the smallest candidate for the increased C value that will change at least one
pi value. Therefore, it is guaranteed that every time C is increased, a pinwheel
instance with a lower density is obtained. We also denote the optimal solution
of the sensor scheduling problem by C∗.

Theorem 3. CL = Search on C (n,a,b,1) is a lower bound for C∗.

Proof. The proof is based upon the following two simple observations: ρ is non-
increasing in C and there is no feasible schedule with ρ > 1. Thus, terminating
the search when ρ ≤ 1 assures that the minimum C value that may be schedu-
lable is returned. �

Proposition 1. CC = Search on C(n,a,b,5/6) is always schedulable, and,
hence, is an upper bound for C∗.

172 M. Yavuz and D. Jeffcoat

Algorithm Search on C(n,a,b,ρU)
BEGIN
1. Set pi = 2, i = 1, 2, .., n.
2. Set Ci = ai + bi, i = 1, 2, .., n.
3. Set C = maxi Ci.
4. Set ρ =

∑n
i=1

1
pi

.
5. While ρ > ρU

BEGIN
6. Set pi =

⌊
C−ai

bi

⌋
+ 1, i = 1, 2, .., n.

7. Set C′
i = ai + pibi, i = 1, 2, .., n.

8. Set C′ = mini C′
i.

9. Update ρ =
∑n

i=1
1
pi

.
10. If ρ > ρU , then update C = C′.

END.
END.

Fig. 2. Pseudo-code for Algorithm Search on C(n,a,b,ρU)

This is a direct extension of the conjecture on the schedulability of pinwheel
instances. Therefore, its proof does not exist in the literature and is out of the
scope of this chapter.

At this point, we focus on obtaining a valid upper bound on C∗, based on a
special type of periodic scheduling problem in the context of just-in-time (JIT)
manufacturing. An ultimate goal of the JIT philosophy is to manufacture prod-
ucts at the exact time of demand, and, thus, minimize the costs associated
with carrying inventories as well as backlogging or losing orders. Since the exact
time of demand cannot be known in advance, demand is assumed uniformly dis-
tributed over the planning horizon. Accordingly, an ideal manufacturing schedule
would produce each product in the exact rate of its demand. For example, if de-
mand is expected to be 10 units for a given product in a 30-day horizon, then
we should produce one unit every three days. For more on the JIT scheduling
problem, we refer the reader to [6, 7, 10]

Steiner and Yeomans [8] address the JIT scheduling problem and prove that
there always exists a sequence in which the ideal and actual cumulative pro-
duction quantities of a product differ by at most one. Here, each product has
a demand di in the planning horizon. The total demand D =

∑
i di defines the

length of the sequence, and, hence, the length of the planning horizon. Ideal
cumulative production quantity up to stage k is defined by kdi/D. Actual cu-
mulative production quantity is the number of units of a product sequenced in
the first k stages.

The JIT scheduling problem is similar to the sensor and pinwheel scheduling
problems in structure, that is, the goal of evenly spacing products/sites/tasks
over the sequence is common to all. Building on this point, we define a period
pi = D/di for the production of i. Steiner and Yeomans’s result [8] shows that
there always exists a sequence that produces exactly one unit of product i in
stages (r − 1)pi + 1, .., rpi, for all r = 1, 2, .., di. Revisiting the above example,
this result means that exactly one unit is produced in stages 1-3, one in 4-6, and

An Analysis and Solution of the Sensor Scheduling Problem 173

so forth. Here, note that sequencing the product in stages 1 − 6 − 7 − 12 − . . . is
possible; we relate this result to the sensor scheduling problem as follows.

Lemma 1. For an instance of the sensor scheduling problem, if p is the vec-
tor of periods obtained using CL; then a sequence always exists such that two
consecutive visits to site i are at most 2pi − 1 time steps apart.

Proof. Let LCM be the least common multiplier of p1, p2, .., pn. We can create
an instance of the JIT scheduling problem by creating n products each with
a demand of di = LCM/pi. The summation of the demands may be less than
LCM , in which case the gap should be filled by creating dummy products with a
demand of 1 so that the dummies do not have an effect on the sequence. Through
JIT scheduling, one can obtain a sequence where product i is produced exactly
once in stages (r − 1)pi + 1, .., rpi for all r = 1, 2, .., di and i = 1, 2, .., n. Also
note that both di and pi are integers. The largest possible distance between the
positions r and (r+1)th copies of product i is (r+1)pi −((r−1)pi +1) = 2pi−1,
for r = 1, 2, .., di − 1. �

Theorem 4. CU = 2CL − mini ai is a valid upper bound on C∗.

Proof. Given a CL, we obtain the periods for each site with pi =
⌊

CL−ai

bi

⌋
+ 1.

From Lemma 1, we know that we can always find a sequence in which two con-
secutive visits to site i are at most 2

⌊
CL−ai

bi

⌋
+1 time steps apart. Therefore the

cost of information loss for site i is Ci = ai +(2
⌊

CL−ai

bi

⌋
)bi ≤ ai +2

⌊
CL − ai

⌋
=

2CL − ai. �

5 Heuristic Solution Approaches

The sensor scheduling problem is NP-Hard as shown earlier in this chapter.
Furthermore, infinitely long sequences are sought as complete solutions to the
problem. These two facts render exact solution methods impractical. Therefore,
developing time-efficient constructive heuristic procedures is beneficial.

A constructive heuristic starts with a null solution, which is an empty sequence
in our case. Recalling decision variable yi,t of our optimization model, we assume
yi,0 = 0 for all i = 1, 2, .., n. In other words, it is assumed that at the beginning,
we have perfect information about all sites. In each stage, exactly one site is
visited, and, hence, there is exactly one i satisfying yi,t = t (t = 1, 2, . . .). For
the n − 1 sites not visited in stage t, we have yi,t = yi,t−1. Now we define a time
since the last visit to site i by stage t: zi(t) = t − yi,t. Note that in each stage
exactly one zi(t) = 0 and the remaining n − 1 are positive integers. Moreover,
zi(t) increases in t until site i is visited.

As discussed earlier in the chapter, for a given C, we can derive visit periods pi

for each site and reduce the problem to an instance of the pinwheel scheduling
problem. If this instance is schedulable, then zi(t) ∈ {0, 1, .., pi}, for all i =
1, 2, .., n and t = 1, 2, . . . Therefore, the number of different values the vector

174 M. Yavuz and D. Jeffcoat

z(t) can take is finite. This result implies that after a finite number of steps, the
z(t) vector will repeat itself. That is, if we can identify such a stage, we can build
a cyclic sequence by repeating the stages between consecutive occurrences of the
same z(t). This result constitutes a main principle used in both our heuristic
procedures. Another common principle is based upon Theorem 2, prohibiting
the sensor from staying focused on the same site in two consecutive stages. In
other words, our constructive heuristics evaluate all sites but the one that has
been just visited for the next move, in all stages.

Our first constructive heuristic is a greedy procedure. It starts with the initial
visit history as described above (z(0) = 0). It evaluates all n sites that can be
visited in the first stage. The selection of the site to visit is made to minimize the
penalty of information loss, i.e., penalty of not visiting a site. After the selection
the visit history is updated. Note that in the later stages the method evaluates
n−1 sites for its next visit. Repeating this simple selection and update operations
until a repetition in the visit history is observed constitutes the framework of our
greedy heuristic. We improve its performance by adding a look-ahead feature.
The heuristic still evaluates n − 1 possible sites to visit in each stage, but makes
the decision based on the cost observed in the next � stages. Larger � values are
expected to yield better (lower cost) solutions on the average, however it is not
guaranteed. On the other hand, the number of operations to perform increases
with �, rendering small � values more computationally efficient. We call our first
heuristic greedy with look-ahead (GLA).

Our second heuristic is an alternative greedy approach that dynamically sets
a deadline to visit each site and then selects the site with the earliest deadline for
the sensor’s next move. More specifically, it starts with a small C and calculates
periods pi for each site to achieve that C value. For each i = 1, 2, .., n and
t = 1, 2, .., the deadline for the next visit to site i is set to yi,t−1 + pi. Then, the
site with the earliest deadline is selected for the next visit (ties can be broken
arbitrarily). However, if the C value at hand is too small, then in some stage
the method will unavoidably have more than one site that must be visited in
that stage. Since this is infeasible, the method increases C until at most one site
must be visited in that stage. The termination again is based on observing a
repetition in the visit history. We call this heuristic dynamic deadlines (DD).

6 Computational Study

We consider four different numbers of sites: n ∈ {4, 6, 8, 10}. The number of
sites can also be considered the problem size. For each problem size, we pseudo-
randomly create 100 test instances with bi ∈ {1, .., 10} and ai ∈ {11, .., 100}.
Therefore, we have a total of 400 test instances.

In this study, for each instance, we first obtain CL, CU and CC . Then, we
run the two heuristics. From our preliminary experiments we have observed that
� = n works best. Therefore, we run the GLA method with � = n only.

We know that CU is always greater than CL and less than 2CL. However,
we cannot make such clear inferences about CC . Therefore, we are interested in

An Analysis and Solution of the Sensor Scheduling Problem 175

the relative position of CC to CL and CU . We calculate the relative position
with (CC − CL)/(CU − CL). Similarly, we calculate the relative positions of
the solutions obtained by the GLA and DD heuristics, as well. For example,
if the relative position of the GLA method’s solution is calculated as 0.25, we
understand it is located at 25% of the distance from the lower bound to the upper
bound. In other words, smaller values represent better solutions. CL, CU and
CC are computed almost instantly, thus we are not concerned about their time
consumption. The heuristic methods, on the other hand, can take a significant
amount of computation time depending on the problem size. The results are
summarized in Figures 3 and 4.

0.000

0.050

0.100

0.150

0.200

0.250

4 6 8 10

Number of sites

A
ve

ra
g

e
re

la
ti

ve
 p

o
si

ti
o

n

GLA DD

Fig. 3. Relative positions

Our two heuristics perform well in general as their relative position is al-
ways closer to the lower bound than the upper bound. Hence, we state that our
methods are effective in solving the sensor scheduling problem. When the two
heuristics are compared, we see that GLA outperforms DD on all problem sizes.
Computation time of both methods increases significantly with problem size,
DD taking longer than GLA. Thus, we state that GLA heuristic is superior to
DD. Even so, the results show that both methods are computationally efficient
in that they solve the problem in seconds.

The conjectured upper bound is found to be tighter than the valid upper
bound developed in this chapter. Furthermore, the conjectured upper bound
seems to work better than the heuristic methods on larger problem sizes. How-
ever, a sequencing procedure is not known in the existing literature to support
the conjecture. Therefore, with their negligible computational burden and high
performance, the heuristics proposed in this chapter can be used to solve the
sensor scheduling problem in practice.

176 M. Yavuz and D. Jeffcoat

0

1

2

3

4

5

6

7

8

9

4 6 8 10

Number of sites

S
o

lu
ti

o
n

 t
im

e
(s

ec
o

n
d

s)

GLA DD

Fig. 4. Computation times

7 Conclusions

This chapter addresses the scheduling problem of a sensor that constantly col-
lects information from multiple sites. In the earlier work, the problem is solved
by probabilistic approaches, potentially generating schedules in which a site is
not visited for a long time. To overcome this deficiency, this chapter presents a
deterministic approach formulated as an integer linear program. Upon showing
that the problem is NP-Hard, the chapter develops valid lower and upper bounds
and proposes two constructive heuristic methods. Tested via an extensive com-
putational study, the heuristic methods are efficient and effective in solving the
problem.

The results also pinpoint the need to prove the widely believed “5/6” conjec-
ture of the pinwheel scheduling literature and to develop efficient algorithms to
solve the pinwheel scheduling problem. In the existing literature, algorithms de-
veloped for the pinwheel problem either require a small number (2-3) of distinct
periods or have low density guarantees. A comprehensive scheduling method for
the pinwheel is therefore critical for the solution of the sensor scheduling problem
in the general case.

The problem studied in this chapter belongs to a rich and relatively unex-
plored area. Promising future research directions in the area include multiple
sensors in a cooperative framework and non-unit switch-over/observation times
between the sites, with a combination of the two being the ultimate goal. Also,
investigation of the problem under time-variant site dynamics, and comparison of
the deterministic heuristic procedures with probabilistic approaches are possible
future research directions.

An Analysis and Solution of the Sensor Scheduling Problem 177

Bibliography

[1] A. Bar-Noy, R. Bhatia, J.S. Naor, and B. Schieber. Minimizing service
and operations costs of periodic scheduling. Mathematics of Operations
Research, 27:518–544, 2002.

[2] D. Chen and A. Mok. The pinwheel: A real-time scheduling problem, chap-
ter 27. Chapman & Hall/CRC, 2004.

[3] E.A. Feinberg and M.T. Curry. Generalized pinwheel problem. Mathemat-
ical Methods of Operations Research, 62:99–122, 2005.

[4] J. Filar. Player aggregation in the traveling inspector model. IEEE Trans-
actions on Automatic Control, 30:723–729, 1985.

[5] J.A. Filar and T.A. Schultz. The traveling inspector model. OR Spectrum,
8:33–36, 1986.

[6] J. Miltenburg. Level schedules for mixed-model assembly lines in just-in-
time production systems. Management Science, 35(2):192–207, Feb. 1989.

[7] Y. Monden. Toyota Production System: An Integrated Approach to Just-
In-Time. Engineering & Management Press, third edition, 1998.

[8] G. Steiner and S. Yeomans. Level schedules for mixed-model, just-in-time
processes. Management Science, 39(6):728–735, June 1993.

[9] A. Tiwari, M. Jun, D. Jeffcoat, and R. Murray. The dynamic sensor coverage
problem. In Proceedings of the 16th International Federation of Automatic
Control (IFAC) World Congress, Prague, Czech Republic, July 2005.

[10] M. Yavuz and E. Akcali. Production smoothing in just-in-time manufactur-
ing systems: A review of the models and solution approaches. International
Journal of Production Research, 2007. Forthcoming.

[11] N. Yerrick, A. Tiwari, and D. Jeffcoat. An investigation of a dynamic
sensor motion strategy. In Proceedings of the 6th Cooperative Control and
Optimization Conference, Gainesville, FL, February 2006. World Scientific.

[12] N. Yerrick, M. Yavuz, and D. Jeffcoat. Two sensor motion models for
the dynamic sensor coverage problem. Military Operations Research, 2007.
Forthcoming.

	An Analysis and Solution of the Sensor Scheduling Problem
	Introduction
	A Mathematical Model
	Structural Properties of the Problem
	Lower and Upper Bounds on the Objective Function
	Heuristic Solution Approaches
	Computational Study
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

