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Preface

Optimal control of cooperative systems continues to be at the forefront of re-
search initiatives in the military sciences. Recently, cooperative system research
has expanded from the military domain to other engineering disciplines, includ-
ing drug design and disaster recovery. While there exist many powerful tech-
niques for optimal cooperative control problems, this area is still considered one
of the most difficult in the applied sciences. Thus, there must be continual im-
provements and new insight directed to the modeling and analysis of optimal
cooperative control problems. This present volume, as well as volumes from pre-
vious years, clearly illustrate novel solutions from some of the best and brightest
optimal cooperative control researchers.

This volume represents the most recent in a series of publications discussing
recent research and challenges in the field of optimal cooperative control. Most
of the chapters in this book were presented at the Seventh International Confer-
ence on Cooperative Control and Optimization, which took place in Gainesville,
Florida, January 31 – February 2, 2007. It is our belief that this book will be
an invaluable resource to faculty, researchers, and students in the fields of opti-
mization, control theory, computer science, and applied mathematics.

We gratefully acknowledge the financial support of the Air Force Research
Laboratory, The Center for Applied Optimization at The University of Florida,
and Raytheon, Inc. We thank the contributing authors, the anonymous refer-
ees, and Springer Publishing for making the conference so successful and the
publication of this book possible.

Michael J. Hirsch
Panos M. Pardalos

Robert Murphey
Don Grundel
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Locating RF Emitters with Large UAV Teams

Paul Scerri, Robin Glinton, Sean Owens, and Katia Sycara

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213, USA

{pscerri, rglinton, owens, katia}@cs.cmu.edu
Gerald Fudge and Joshua Anderson

L-3 Communications Integrated Systems
Greenville, TX 75402, USA

{Gerald.L.Fudge, Joshua.D.Anderson}@L-3com.com

Abstract. This chapter describes a principled, yet computationally ef-
ficient way for a team of UAVs with Received Signal Strength Indica-
tor (RSSI) sensors to locate radio frequency emitting ground vehicles
in a large environment. Such a capability has a range of both civilian
and military applications. RSSI sensor readings are noisy and multiple
emitters will cause ambiguous, overlapping signals to be received by the
sensor. Generating a probability distribution over emitter locations re-
quires integrating multiple signals from different UAVs into a Bayesian
filter, hence requiring cooperation between the UAVs. To build a co-
herent distributed picture given communication limitations, the UAVs
share only those sensor readings that induce the largest changes in their
local filter. Each UAV translates its probability distribution into a map
of information entropy and then plans a path that will maximize the re-
duction in entropy (or conversely provides the highest information gain.)
Planned paths are shared with a subset of other UAVs to minimize over-
lapping search. Experiments in a medium fidelity simulation environment
show the approach to be lightweight and effective. Live flight results with
lightweight Class I UAVs validate our approach.

1 Introduction

The rapidly improving availability of small, unmanned aerial vehicles (UAVs)
and their ever decreasing cost is leading to considerable interest in multi-UAV
applications. However, while UAVs have become smaller and cheaper, there is a
lack of sensors that are light, small and power efficient enough to be used on a
small UAV yet are capable of taking useful measurements of objects often several
hundred meters below them. Static or video cameras are one option, however
image processing normally requires human input or at least computationally
intensive offboard processing, restricting their applicability to very small UAV
teams. In this chapter, we look at how teams of UAVs can use very small Re-
ceived Signal Strength Indicator (RSSI) sensors whose only capability is to detect
the approximate strength of a Radio Frequency (RF) signal, to search for and

M.J. Hirsch et al. (Eds.): Adv. in Cooper. Ctrl. & Optimization, LNCIS 369, pp. 1–20, 2007.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2007



2 P. Scerri et al.

accurately locate such sources. RSSI sensors give at most an approximate range
to an RF emitter and will be misleading when signals overlap. Applications of
such UAV teams range from finding lost hikers or skiers carrying small RF bea-
cons to military reconnaissance operations. Moreover, the core techniques have
a wider applicability to a range of robotic teams that rely on highly uncertain
sensors, e.g., search and rescue in disaster environments.

Many of the key technologies required to build a UAV team for multi-UAV
applications have been developed and are reasonably mature and effective [1,2].
However, for large UAV teams with very noisy sensors, key problems remain,
specifically, much previous work is formally grounded but impractical [3]. Often
the coordination and planning algorithms and the representations of the envi-
ronment are not appropriate for more than two or three UAVs and targets. For
example, some solutions require a UAV to know the planned paths of all other
UAVs in order to plan its own path [8], but this is infeasible (both in terms
of communication and computation) when the number of UAVs is large. Other
approaches only solve part of the problem, e.g., estimating locations from sensor
readings [12] or planning cooperative paths [11], but do not combine these ele-
ments in an integrated solution, although there are some exceptions [4]. Signal
processing techniques for creating probability distributions from noisy signals
have been extensively studied, but rarely have distributed filters versions been
created and those that have been do not scale to larger teams [9].

Our approach to this problem has three key elements that enable locating
RF emitters with large teams of lightweight UAVs. The first key element is a
distributed filter to localize RF emitters in the environment. Each UAV has a
Binary Bayesian Grid Filter [7] where a value of a cell in the grid represents the
probability that there is an emitter in the corresponding location on the ground.
Due to limitations on available communication bandwidth, it is infeasible for
UAVs to share their entire distribution, instead they share a small subset of
their sensor readings with others in the team. Hence, departing from previous
approaches that elicited a model of what teammates know in order to choose
what to send [9], we started from the assumption that if some information leads
to large local information gain, it will probably do so for much of the team. We
investigated two information gain based heuristics for choosing which readings
to share with teammates. The first heuristic is to send sensor readings that have
the greatest impact on the UAV’s local probability distribution. The second
heuristic is to create a parallel probability distribution based purely on readings
received from teammates and send sensor readings that have the biggest impact
on that distribution. Intuitively, the first heuristic sends readings that were most
important for the local UAV, while the second sends sensor readings that are
most important to the team, given a local model of what the team knows. Exper-
iments show that the first heuristic results in better team behavior than sending
random messages, but the second heuristic performs worse than random.

The second element of the approach is to tightly couple estimates of the cur-
rent locations of the emitters to the UAV path planning process. Specifically,
a probability distribution over emitter locations is translated into a map of the
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information entropy in the environment. UAVs plan paths through areas of maxi-
mum entropy, hence maximizing expected information gain. The UAVs plan only
a relatively short distance ahead in each planning cycle. This approach allows
the UAVs to be reactive to new information, which is critical when sensors are
highly uncertain and the domain is dynamic. For example, if a UAV traverses
an area, but the sensor readings do not provide an accurate picture of that area,
the entropy will remain high and the UAV will consider re-traversing the area.
Notice that the entropy map coupled with the path planner looking to maximize
information gain provides an integrated way for trading off between going to the
locations where there will be most information gain and locations that can be
quickly reached.

The third key element of the approach is a very lightweight, computationally
inexpensive method for cooperative path planning. The important application
feature underlying the approach is that due to the high uncertainty and dynami-
cism in the environment, some overlap of paths is acceptable (or even desirable),
provided that the UAVs mainly spread out and search areas of maximum en-
tropy. Our approach is for each UAV to share its planned path with some other
members of the team. When planning, each UAV estimates the change in en-
tropy that would be induced by those paths being flown by others and plans
on the resulting entropy map. If the most current path of a particular UAV is
not known the most recent location is used to roughly estimate where that UAV
might be searching.

2 Problem

This chapter presents a method for localizing an unknown number of RF emitters
using a team of UAVs. UAVs are outfitted wth RSSI sensors which detect the
power of an RF signal at a position in space. The UAVs must maintain a belief
over the state of all emitters in the environment in a decentralized manner.

The emitters are represented by the set: E = {e1 . . . en} where n is not
known to the team of UAVs. Emitters are all assumed to be emitting at a single
known frequency.1 Emitters are mobile and emit intermittently. The homoge-
neous UAVs are represented by the set: U = {u1 . . . um}. Each ui flies a path
given by ui(t). During flight a UAV takes sensor readings, zt(loc) which are
the received signal power at a location loc = {x, y, z} where {x, y, z} gives the
Euclidean coordinates of a point in space relative to a fixed origin. The power
of the signal received is a result of three components. The first component,
Γ (loc, ei) = econst

dist(loc,ei)2
, where dist(loc, ei) is the Euclidean distance between

loc and ei and econst is a constant that gives the power at dist(loce1 , ei) = 0,
is due to the sources themselves. The second component, EN(loc, E), is due to
multi-path and attenuation of the signal due to environmental factors. Multi-
path occurs when a reflected component of the signal arrives at a receiver and
in combination with an attenuated direct signal results in a perturbed source

1 This will be relaxed in future work.
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location estimate. Finally ε gives typical zero-mean normally distributed sensor
noise. The total power received at a location (loc) in space is then given by:

zt(loc) =
∑

ei∈E

Γ (loc, ei) + EN(loc, E) + ε ∼ N (0, σ)

Figure 1 shows some signals that will be received at different distances from
a single emitter (i.e., no overlap). This is the basic signal model used in the
simulation results below and closely represents real data collected from RSSI
sensors on a physical UAV. The x-axis shows the distance and the y-axis shows
the signal strength in dB (which is a log scale.) There are two important things to
notice about this signal. First, it is very noisy, with high variation at all distances
from the emitter, with some background noise high enough to represent being
close to the emitter. Second, it has a very long “tail”, i.e., at a reasonable distance
from the emitter there is still useful information in the signal. Figure 2 shows the
sensor readings when the UAV flies near one emitter and then another. Notice
the overlap in the signals between the emitters, which are about 350m apart.

Fig. 1. Sensor readings taken from different distances from an RF emitter

The sensor readings taken by the ith UAV, up until time t are zi
t0 . . . zi

t.
Each UAV maintains a posterior distribution P over emitter locations given by
P i

t (e1 . . . en|zi
t0 . . . zi

t). The UAVs proactively share sensor readings to improve
each other’s posterior distribution. At time t each ui can send some subset of
locally sensed readings: zi

t ⊂ zi
t0 . . . zi

t.
The true configuration of the emitters in the environment at time t is repre-

sented as a distribution Q such that

Qt(e1 . . . en) = 1

when e1 . . . en gives the true configuration of the emitters at t. The objective
is to minimize the divergence between the team belief and the true state of the
emitters, while minimizing the cost of UAV flight path, and minimizing the total
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Fig. 2. Sensor readings taken when flying between two emitters, first near one, then
near the other

number of messages shared between UAVs. The following function expresses this
mathematically:

min
ui

∑

t

∑

ui∈U

β1Cost(ui(t)) + β2DKL(P i
t ‖Q) + β3|zi

t|

where DKL denotes the Kullback Leibler divergence and β1...3 are weights which
control the importance of the individual factors in the optimization process.

3 Algorithm

The most important feature of the overall algorithm is the tight integration of
all the key elements to maximize performance at a reasonable computational
and communication cost. A Binary, Bayesian Grid Filter (BBGF) maintains an
estimate of the current locations of any RF emitters in the environment. This
distribution is translated into a map of the entropy in the environment. The
entropy is captured in a cost map. UAVs plan paths with a modified Rapidly-
expanding Randomized Tree (RRT) planner that maximize the expected change
in entropy that will occur due to flying a particular path. The most important
incoming sensor readings, as computed by the KL information gain they cause,
are forwarded to other members of the team for integration into the BBGFs
of other UAVs. Planned paths are also shared so that other UAVs can take
into account the expected entropy gain of other UAVs when planning their own
paths. The paths of other UAVs are also captured in a cost map. Additional cost
maps, perhaps capturing results of terrain analysis or no-fly zones, can be easily
added to the planner.

3.1 Implementation

The overall, integrated process aims to balance the desire to have a principled,
formally grounded approach, yet be lightweight and robust enough to be prac-
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tical for a team of UAVs. The hardware independent components (planners,
filters, etc.) are isolated from the hardware specific components (sensor drivers,
autopilot) to allow the approach to be quickly integrated with different UAVs
or moved from simulation to physical UAVs. The hardware independent compo-
nents are encapsulated in a proxy which will either be on the physical UAV or
on a UAV ground station, depending on the vehicle. In the experiments below,
the simulations use exactly the same proxy code as the live flight experiments
with physical UAVs. Figure 3 shows the main components and information flows
from the perspective of one UAV-proxy.

Fig. 3. Block diagram of architecture

4 Distributed State Estimation

In this section, we describe the filter used to estimate the locations of the emitters
and the decisions individual UAVs make about sending information to one another.

4.1 Binary, Bayesian Grid Filter

The filter uses a grid representation, where each cell in the grid represents the
probability that there is an emitter in the area on the ground corresponding to
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that location.2 For a grid cell c the probability that it contains an emitter is
written P (c). The grid as a whole acts as the posterior P i

t (e1 . . . en|zi
t0 . . . zi

t).
To make calculations efficient, we represent probabilities in log odds form,

i.e., lt = logP (i). Updates on grid cells are done in a straightforward Bayesian
manner.

lt = lt−1 + log
P (ei|zt)

1 − P (ei|zt)
− log

P (ei)
1 − P (ei)

where P (ei|zt) is a inversion of the signal model, with the standard deviation
extended for higher powered signals, i.e.,

P (ei|zt) =

⎧
⎨

⎩

1√
2π(σ2

1)
e−

1
2 (zt−Γ )2 if zt ≥ Γ

1√
2π(σ2

2)
e−

1
2 (zt−Γ )2 otherwise

where σ1 > σ2 scales the standard deviation on the noise to take into account
structural environmental noise and overlapping signals. Intuitively, overlapping
and other effects might make the signal stronger than expected, but they are
less likely to make the signal weaker than expected. Figure 4 shows a plot of the
(log) probability (y-axis) of a signal of a particular strength (x-axis) when the
emitter is 500 m from the sensor.

Fig. 4. Mapping between probability and signal strength

Notice that there is no normalization process across the grid because the
number of emitters is not known. If the number of emitters were known, a
normalization process might be able to change the probability of emitters even
in areas where no sensor readings had been taken. Initial values of grid cells are
set to values reflecting any prior knowledge or some small uniform value if no
knowledge is available.
2 A quad-tree or other representation might reduce memory and computational re-

quirements in very large environments, but the algorithmic complexity is not justified
for reasonable sized domains.
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Entropy. The UAVs will fly to areas of maximum entropy, hence the proba-
bility distribution has to be translated into an entropy distribution. We assume
independence between grid cells, so entropy can be calculated on a grid cell by
grid cell basis. Specifically, the entropy, H , of a grid cell i is:

H(i) = P (i)log(P (i)) + (1 − P (i))log(1 − P (i))

Figure 5 shows how probability and entropy are related.

Fig. 5. Mapping between probability of an emitter and entropy. The broken line shows
the probability and the unbroken line the entropy.

4.2 Information Sharing Approaches

For UAVs to plan the best possible paths, i.e., ones that lead to the greatest
information gain for the team, it is important that each member of the team
have an accurate picture of the distribution. Hence, UAVs must share local
sensor readings with other members of the team. However, it is not scalable to
simply send all sensor readings, nor is it likely to be particularly useful since
some readings will not change the distribution very much. In this section, we
describe a number of heuristics that are used to decide which sensor readings to
pass around the team.

There are two reasons why we choose to share sensor readings rather than
sharing probability distributions. First, for arbitrary probability distributions it
is difficult to find concise representations that can be easily sent. Second, each
UAV will have different confidence in different parts of its distribution and this
confidence would need to be calculated and communicated with the distribution.
While these problems are not insurmountable, they justify first trying the simpler
approach of sending raw sensor readings.

Rosencrantz and Thrun [9] developed an approach to distributed particle fil-
ters that relied on teammates providing some information about what they know,
so that the most appropriate information can be sent to each teammate. While
such an approach clearly has some benefits in terms of getting the right infor-
mation to the right team members, it does not scale to larger teams, from either
a computational or communication perspective.
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Instead, by using only local information to determine what readings to send
and allowing other team members to decide whether those readings are for-
warded, we reduce computational and communication complexity. Specifically,
each agent looks at each sensor reading they get, either directly from their sen-
sors or from other agents. If they think that this reading is sufficiently useful,
they will create a token containing both the sensor reading and a time to live,
TTL. The TTL is initially set to some small number (see 4.2). The token is
randomly forwarded to a teammate3. The team member receiving the reading
will integrate it into its own probability distribution. Each token has a unique
identifier which is used to ensure sensor readings are only incorporated into the
filter once. If the receiving agent finds the reading useful, it will increase the
TTL on the token, otherwise it will decrease the TTL. While TTL > 0 and not
all team members have been visited by the token, it will continue to be passed
around the team, but as soon as TTL = 0 propagation stops. In this way, read-
ings that are widely useful to the team are widely shared because many UAVs
will increment the TTL, but those that are not widely useful will either be not
shared at all or shared with only a small portion of the team (see 4.2).

The UAVs increment the TTL on tokens with sensor readings that lead to a
new distribution with a KL-difference from the original distribution above some
threshold α. Formally, the UAV increases the TTL on a token containing, zt(l),
iff:

DKL(P i
t (e1 . . . en|zi

t0 . . . zi
t))||P (e1 . . . en|zt0 . . . zi

t−1)) =

∑

i

P i
t (e1 . . . en|zi

t0 . . . zi
t) log

P i
t (e1 . . . en|zi

t0 . . . zi
t)

P i
t (e1 . . . en|zt0 . . . zi

t−1)
> α

Intuitively, the UAVs are sending the most important readings from their
perspective. In the results below, we refer to this heuristic as H LOCAL KL.

However, in some situations, information that does not seem important lo-
cally, may be important to the rest of the team. For example, a sequence of
readings might slowly change the local perspective, with none of the readings
having large enough KL information to send, but overall having high value.
A second KL-difference heuristic utilizes a second probability distribution over
emitters locations, but created only from sensor readings received on incoming
tokens or sent on out-going tokens. Intuitively, this second distribution models
the team’s perspective of the BBGF. The heuristic H TEAM KL increases the
TTL on tokens where the sensor reading leads to a KL-difference greater than
the threshold on this model of the team’s perspective on the BBGF. In exper-
iments below we baseline the approach by sending random readings, denoted
H RAND.

Analysis. In this section we describe an analytical approach to modeling the
propagation of sensor readings using the H LOCAL KL or H TEAM KL

3 More intelligent approaches than completely random can be envisioned, but random
sending minimizes computational requirements at the UAV and works effectively.
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heuristics. Let p denote the probability that an agent will compute a new dis-
tribution with KL-divergence greater than the threshold α, given a new sensor
reading. We assume that for a given sensor reading, p is identical for all m agents,
and all agents will make a decision independently of the others. We also assume
that an agent will never forward a reading to another agent that has already seen
it; this can be implemented by attaching a history of recipients to the token.

Let c be the TTL increment. Because no agent ever receives the same reading
twice, the total number of agents that ultimately receive a token always has the
form T = ic + 1, where i ∈ {0, 1, 2, . . .}. The distribution of T for values less
than m is given exactly by

Pr(T = ic + 1) = pi(1 − p)ic−i+1
c∑

x1=1

2c∑

x2=x1+1

· · ·
(i−2)c∑

xi−2=xi−3+1

(i − 1)c − xi−2 (1)

and the expected value of T can be calculated directly by

〈T 〉 =

⎛

⎝
�(m−1)/c�∑

i=0

(ic + 1)Pr(T = ic + 1)

⎞

⎠

+m

⎛

⎝1 −
�(m−1)/c�∑

i=0

Pr(T = ic + 1)

⎞

⎠ (2)

Calculating 〈T 〉 from Eq. 2 can be cumbersome for large teams, but for-
tunately significant insight into the behavior of the system can be obtained
without resorting to brute calculation. An agent receiving a sensor reading
will forward it to pc other agents on average. When pc < 1 and m 
 c,
Pr(T = m) ≈ 0 and the expected value of T can be approximated by the
geometric series 〈T 〉 ≈

∑∞
j=0 (pc)j = 1 + pc/(1 − pc). When pc > 1, on average

each forwarding of a token will result in even more agents forwarding the sensor
reading, and hence Pr(T = m) > 0 even for very large m. As p increases from
1/m to 1, 〈 T

m 〉 increases to 1, primarily because Pr(T = m) increases toward 1.
Intuitively, when pc > 1, if enough of the team receives a reading, it becomes
very likely that eventually all of the agents will receive the reading. Mathemat-
ically this is shown by the the fact that the probability of a token stopping
before reaching all of the team decreases exponentially with the accumulated
TTL. The use of an initial TTL greater than 1 takes advantage of this fact and
greatly increases 〈T 〉 for p > 1/c, although it has a much lesser effect when
p < 1/c.

The dramatic change in behavior at p = 1
c offers a promising way to choose c.

Suppose that sensor readings are of two types, either useful to the team or useless
to the team, and that agents correctly classify useful readings with probability p
(and thus forward them) and incorrectly classify useless readings with probability
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1 − q (and thus forward them with probability q). This causes both useful and
useless readings to be forwarded through the team, and we wish to choose c such
that the fraction of useful messages passed is maximized. Since the number of
messages passed for a reading is equal to the number of agents that receive the
reading, we wish to maximize the ratio〈Tp〉/(〈Tp〉 + 〈Tq〉), where Tp, Tq are the
number of agents that ultimately receive useful and useless readings, respectively.
As long as p > q, this can be accomplished by choosing c such that q < 1

c < p.
This is quite powerful because as long as agents are correct more often than
they are wrong (a quite reasonable assumption), then q < 1/2 < p, and so c = 2
suffices to dramatically reduce the fraction of useless messages. Figure 6 shows
the effect of different values of c on 〈Tp〉/(〈Tp〉 + 〈Tq〉) for p = 0.8 and q = 0.3
and m = 500; for these settings the optimal choice is c = 2.
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Fig. 6. The ratio of useful messages to total messages for a team of 500 agents that
forward useful readings with probability p = 0.8 and forward useless readings with
probability q = 0.3. The fraction of useful messages is maximized at c = 2.

5 Cooperative Search

In this section, we describe the cooperative path planning for maximizing the
team’s expected information gain and, hence, its estimate of emitter locations.

Shortly before traversing a path, the UAV plans its next path, using an RRT
planner as described below. The path is encapsulated in a token and forwarded
to some of the other team members. It is not critical for the token to reach
all other team members, although team performance will be better if it does.
UAVs store all the paths they receive via tokens. When planning new paths a
change in entropy due to other UAVs flying their planned paths is assumed by
the planner. Effectively, the entropy is reduced in areas where other UAVs plan
to fly, reducing the incentive for flying in those areas. If the UAV does not know
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the current planned path of a particular UAV, it takes the last known location
of that UAV, i.e., typically the last point on the last plan from that UAV, and
assumes that the UAV moved randomly from there.4 Using this technique, the
UAVs mostly search different parts of the environment, but will sometimes have
overlapping paths. Importantly, the approach is computationally and communi-
cation efficient, scalable and very robust to message loss.

5.1 Modified RRT Planner

Once the UAV has the entropy map and knowledge of the paths of other UAVs,
it needs to actually plan a path that maximizes the team’s information gain. We
chose to apply an RRT planner [6,5] because it is fast, capable of handling large,
continuous search spaces and able to handle non-trivial vehicle dynamics.

However, efficient RRT planners typically rely on using a goal destination to
guide which points in the space to expand to. In this case, there is no specific
goal, the UAV should just find a path that maximizes information gain. Initial
tests with an RRT planner showed them to be inefficient in such cases. Moreover,
the RRT planner did not handle the subtle features of the entropy map well. To
make the planner more efficient for this particular problem, it was necessary to
change a key step in the algorithm. Specifically, instead of picking a new point
in space to expand the nearest node towards, a promising node is selected and
expanded randomly outwards in a number of directions. This modified search
works something like a depth first search, but with the RRT qualities of being
able to quickly handle large, continuous search spaces and vehicle dynamics.
Notice that this change also eliminates the most computationally expensive part
of a normal RRT planner, the nearest neighbor computation, making it much
faster.

Algorithm 5.1 shows the modified RRT planning process. Input to the algo-
rithm includes a cost map encoding the goals of the vehicle and another cost
map with the known paths of other vehicles. Lines 1-5 initialize the algorithm,
creating a priority queue (plist) and initial node (n). The ordering of the priority
queue is very important for the functioning of the algorithm, since the highest
priority node will be expanded. The function ComputePriority uses both the
cost of the node and the number of times it has been expanded to determine a
priority. Intuitively, the algorithm works best if good nodes that have not been
expanded too many times previously are expanded. The main search loop is
lines 6-17 and is repeated 20,000 times (about 10ms on a standard desktop.)
The highest priority node is taken off the queue (then added again with new pri-
ority). This node, representing the most promising path, is expanded 10 times
in the inner loop, lines 10-17. The expansion creates a new node, representing
the next point on a path, extending the previous best path by a small amount.
The Expand function is designed so that all new nodes lead to kinematically fea-
sible paths. The function ComputeCost then determines the cost for the new

4 In future work, we may take into account that the other UAV will also be attempting
to maximize entropy and thereby create better models of what it intends to do.



Locating RF Emitters with Large UAV Teams 13

search node, taking into account the cost of the node it succeeds and the cost
maps. The cost map representing other paths will return positive infinity if the
new node leads to a path segment that would lead to a collision. The expanded
nodes are added to the priority list for possible future expansion and the process
continues. Finally, the node with the lowest cost is returned. The best path is
found by iterating back over the prev pointers from the best node.

Algorithm 1. RRT Planning Process
RRTPlanner(x, y, CostMaps, time, state)
(1) plist ← []
(2) n ← 〈x, y, t, cost = 0, prev = ∅, priority = 0〉
(3) n ← ComputePriority(n)
(4) plist.insert(n)
(5) best = n
(6) foreach 20000
(7) n ← plist.removeF irst()
(8) n.priority ← ComputePriority(n)
(9) plist.insert(n)
(10) foreach 10
(11) n′ ← Expand(n)
(12) n′.prev = n
(13) n′.cost = Cost(n, CostMaps)
(14) n′.priority ← ComputePriority(n′)
(15) plist.insert(n′)
(16) if n′.cost < best.cost
(17) best ← n
(18) Return best

The planning process plans several kilometers and takes less then 0.5s on a
standard desktop machine, even with other proxy processes continuing in paral-
lel.

Using the Planner. If the UAV only plans a short distance ahead, it can fail to
find plans that lead it to high value areas that are a long distance away. However,
if the UAV plans long paths, it loses reactivity to new information (both sensor
readings and plans of others). Our approach is to allow the UAV to plan long
paths, but only use the first small piece of the path. In this way, the UAV will
reach high value, distant areas by repeatedly creating plans to that area and
executing part of the plan, but it can also react quickly to new information.

6 Experiments

In this section, we present empirical simulation results of the approach described
above. The approach is implemented with the Machinetta proxy [10] framework
integrated with either the Sanjaya UAV simulation environment or with an OP-
NET simulation environment. The signal model is derived from real data from
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an RSSI sensor flown on a real UAV. The code used is exactly the same code as
being used in an ongoing flight test, with the exception of the code between the
proxy and the autopilot. Unless otherwise noted, the simulated environment is
50km by 50km and there were four RF emitters in the environment. The results
below represent several hundred hours of simulated flying time, with each data
point an average of five runs. The simulator and proxies are spread out over up
to 15 desktop computers and communication is via multi-cast UDP resulting in
around 3% message loss. These experiments are conducted in simulation due to
the practical difficulty of conducting experiments with large numbers of physical
UAVs. This approach was validated at L-3 Communications Integrated Systems
in a series of live flight tests in late 2006 involving up to four Class I UAVs under
autonomous control by the Machinetta proxies.

Information Sharing Experiments. In the first experiment, we looked at the
three different information sharing heuristics. Figure 7 shows the average KL-
divergence from the ground truth over time. Ground truth is modeled as tight 1

r2

probability around the real emitter location. The figure shows that all the infor-
mation sharing algorithms were effective at determining the location of the emit-
ters, but that H LOCAL KL was substantially better than the other heuristics.
Interestingly, sending random sensor readings, H RAND, around the team was
clearly better than H TEAM KL, sending readings according to a model of the
team. Figure 8 gives one possible reason for this, i.e., that H TEAM KL sent
very few readings around. H LOCAL KL gives a low number of messages along
with its good KL-divergence, showing it to be clearly the best heuristic.
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Fig. 7. The KL-divergence over time for three different information sharing algorithms

Number of UAVs and Number of Emitters. The second experiment varied
both the number of emitters and number of UAVs in the environment. Figure 9
shows that more UAVs led to a faster decrease in the KL-divergence, showing
that the additional UAVs were useful. Interestingly, more UAVs actually made
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Fig. 8. The number of messages sent between UAVs for three different information
sharing algorithms

reducing the KL-divergence faster. We hypothesize that this was because the
UAVs were able to use the additional signals in the environment to quickly
identify RF emitter locations.

Intermittent Signals. The next experiment varied how often the RF emitters
were giving off a signal that could be detected, see Figure 10. The four emitters
had periods ranging from 5 seconds to 30 minutes, then the percentage of that
period that they were on for was varied from 25% to 100%. Curiously, the KL-
divergence appears better when the emitter is off more. However, this is only
due to a quirky interaction between the KL-divergence measurement and the
very noisy sensors. Specifically, the noisy sensors do not allow the UAVs to very
precisely locate the emitters, so believing that they were not there at all could
actually lower the KL-divergence. Figure 11 shows an oscillation in the number
of messages sent between UAVs as emitters turn on and off.

Probability of Collision. One of the issues that must be addressed in any
practical autonomous UAV system is the possibility of collision. In this experi-
ment, we examine how the probability of intra-system collision (collision between
UAVs within the autonomous UAV system) varies with the number of UAVs. We
note that our path planning approach will naturally tend to avoid collisions be-
cause of the tendency for the UAVs to spread out in order to maximize entropy
gain as they coordinate their path planning. Nonetheless, because of software
time delay, communications bandwidth, wind, navigation error, etc., the prob-
ability of collision is non-zero, especially if a large number of UAVs is covering
the same region. For the simulation illustrated in Figure 12, the search area is
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Fig. 9. The impact on KL-divergence of changing the number of UAVs and the number
of RF emitters

1 square kilometer, the UAVs are all flying at the same altitude, and simulated
wind is 5 m/sec, with wind gust standard deviation of 2 m/sec. For the purposes
of this simulation, a collision is defined to occur anytime the distance between
a pair of UAVs is less than 5 meters. The time interval for the probability of
collision metric is from the start of the mission until the entropy map is 80

Live Flight Experiments. Live flight experiments with teams of up to 4 UAVs
demonstrate the validity of the overall approach. The RSSI sensor, shown in Fig-
ure 13 and weighing only a few ounces, was selected to be suitable for integration
on a lightweight Class I UAV, such as the Procerus UAV shown in Figure 14. In
the experiments, the Procerus UAVs are hand launched, then once all are in the
air, the control is handed over to the Machinetta proxies. The proxy software
is hosted on a ground station rather than the on-board processor in order to
minimize on-board processing requirements for the experimental system. As dis-
cussed earlier, the simulations and live flight tests use the same proxy software.
This joint simulation / live flight development environment not only minimizes
simulation artifacts, but also accelerates the overall development by allowing
a rapid cycle of algorithm and code development, simulation, live flight tests,
post-mission analysis, and back to algorithm and code development. Figure 15
illustrates some of the preliminary live flight results in a side-by-side comparison
with simulation results for a 1 square kilometer region with three UAVs. The
bottom half of Figure 15 shows the entropy map (left-hand side) and BBGF
resulting from a live flight test at roughly the 20 minute point. The top half of
Figure 15 shows the corresponding simulation results. From this, we can see that
the emitter localization (shown in light green in the BBGFs on the right hand
side) is, not surprisingly, somewhat better for the simulation than for the live
flight test. Analysis of a series of live flight tests and simulations indicate that
one significant factor is sporadic loss of communications during the live flights.
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Fig. 10. The KL-divergence over time for four different percentages of time the RF
emitters emit

Fig. 11. The number of messages over time, for different levels of intermittency

The UAV autopilot is programmed to circle anytime during loss of communica-
tions in order to allow for quick visual identification of data link problems and
to provide for taking manual control of the UAV if necessary. Upon restoration
of communications, the autopilot automatically goes back to control of its proxy.
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Fig. 12. Probability of collision versus number of UAVs in 1 square kilometer search
area

Fig. 13. RSSI sensor used for live flight experiments

Fig. 14. Procerus UAV with 60” wingspan used for live flight experiments
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Fig. 15. Example simulation and live flight comparison of entropy and BBGF maps
for similar scenario

7 Related Work

The application presented in this chapter builds on a large body of previous
work spanning a range of areas.

In [9] a method for distributed probabilistic state estimation is presented. In
this work agents share local beliefs with neighbors through a query-answer proto-
col. There are several difficulties with this approach for our application. Firstly,
for a UAV team the concept of a neighbor is problematic, since UAVs move so
quickly neighbors change often and simply keeping up with who a UAVs neigh-
bors are can be expensive. Secondly, information exchanges are strictly between
pairs. This fact, in combination with the KL-divergence criteria for determining
the importance of information to be shared, puts excessive responsibility on local
agents to determine the importance of local information to the team. Further-
more, each shared reading is only shared with a single neighbor. This limits the
potential of shared readings to contribute to the entire team and therefore limits
team search optimization. In contrast, our approach enables readings with high
utility to the team to propagate to the entire team. Consider for example if a
UAV flies directly over an emitter, clearly such a reading should be shared with
the entire team.

In [12,13] the locations of sources are detected using information theoretic
techniques. This work depends on a fixed array of receivers and as such does
not contend with the added complexity of incorporating moving sensors into the
formulation or proactive path planning for sensors to improve source localization.

In [4] a multiple UAV team is used to localize a group of emitters. In that
work, a single UAV broadcasts all sensor readings to teammates. To ameliorate
the exponential cost of this sharing paradigm, UAVs form sub-teams which each
maintain a separate subteam posterior. The main drawback of this approach is
that it is not possible to optimize search paths over the entire team. In fact, with
this approach all optimization occurs within small sub-teams.
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8 Conclusions

This chapter presented an integrated approach to finding RF emitters with a
large team of UAVs. Simulation and live flight experiments show the approach
to be effective, light-weight and robust. The key to the scalability and robustness
was to find algorithms that can exploit information provided by the team but not
rely on it. The most critical aspect of this was to design algorithms where local
knowledge was exploited to make coordination decisions. While local knowledge
was not always accurate, many local decisions make for good overall behavior
because on average local decisions are good.
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Out-of-Order Sigma-Point Kalman Filtering for
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Abstract. This chapter outlines our research efforts toward developing
a cooperative target localization method based on multiple autonomous
unmanned aerial vehicles (UAVs) that are outfitted with heterogeneous
sensors. The current focus of the research includes (1) optimizing the
UAV trajectories to place them at desired locations at desired times
to capture target locations, (2) cooperative sensor scheduling, and (3)
intelligent fusing of multiple sensor measurements to accurately estimate
the position and velocity of a target. The focus of this paper is the
sensor-fusion task. One might consider addressing this problem using
some form of Kalman filter. However, a complicating factor in the present
application is that sensor readings arrive out-of-sequence to the sensor-
fusion process. For example, there is non-deterministic latency in the
inter- and intra-UAV communication channels. We address this problem
by developing an out-of-order sigma-point Kalman filter (O3SPKF).

1 Introduction

Detecting and localizing targets using multiple cooperative heterogeneous sen-
sors is a challenging problem that can directly impact military and law-enforce-
ment applications such as intelligence, surveillance, and reconnaissance as well
as civilian applications such as search-and-rescue and forest-fire early detec-
tion. The particular solution of our interest must address a number of chal-
lenging requirements: (a) covert/passive sensing must be used; (b) the dynamic
characteristics of the target are unknown; (c) the target is episodically mobile;
and (d) the target is intermittently occluded from particular sensing mecha-
nism(s). The cooperative method proposed in this paper plays an important
role in our larger overall goal to develop a multiple cooperative UAV system
that can autonomously search, detect, and localize multiple targets [1,2]. Our
solution addresses these requirements using a flight of small autonomous UAVs
with heterogeneous sensing capabilities. Multiple autonomous UAVs offer certain
advantages over other conventional sensor platforms. They offer robustness in
the presence of a loss of members; can quickly search a large area; can operate
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using a decentralized but cooperative control algorithm, requiring minimal hu-
man intervention; and they are small and relatively inexpensive, allowing quick
and easy deployment.

Each UAV carries a suite of one or more sensors including perhaps: radio
frequency (RF) sensors to detect and determine direction-of-arrival (DOA), time-
difference-of-arrival (TDOA) and/or frequency-difference-of-arrival (FDOA);
infrared sensors to detect heat signatures; and optical image sensors. Due to
cost considerations and payload constraints, it is not desirable for every UAV
to have a full complement of sensing capability. In our implementation, when a
target is initially detected by one UAV, a small formation of UAVs comprising
complementary heterogeneous sensors is autonomously assembled to localize the
target. The UAVs then cooperatively locate the target by combining the sensor
information collected by heterogeneous sensors onboard the UAVs. The output
of the localization process gives an estimate of the target’s position and velocity
and provides error bounds on the estimate.

We integrate dynamic sensor fusion and target localization using a modified
sigma-point Kalman filter (SPKF). SPKFs are a generalization of the ubiquitous
Kalman filter [3,4] to problems with nonlinear descriptions.1 The problem specif-
ically addressed in this chapter is that sensor readings may arrive out-of-sequence
to the fusion process due, for example, to non-deterministic communication-
channel latency between UAVs. A similar issue was solved in [11] where the
latency was known and deterministic. However, in our case, the latency is not
known a priori and is variable, so we take quite a different approach, which we
have named the “out-of-order sigma-point Kalman filter” (O3SPKF).

This chapter proceeds by first outlining several approaches that may be taken
to handle out-of-order measurements. Sigma-point Kalman filters are then re-
viewed to provide background for the development of the O3SPKF. To illustrate
the results, we then give an example model of target dynamics, the overall sim-
ulation system used, and some results. Finally, we close with some concluding
remarks.

2 Approaches to Handling Out-of-Sequence
Measurements

There are a number of straightforward approaches to handling out-of-sequence
measurements that might be considered in a target-localization application.
These include the methods that we call the “simple approach” and the “buffered
approach,” which will be described below. The O3SPKF method is perhaps not
quite as straightforward, but has performance advantages, as will be shown. All
of these methods are based on sigma-point Kalman filtering, which is itself ex-
plained in Section 3. We limit ourselves to this one technology to make a valid
1 One variety of SPKF is the unscented Kalman filter (UKF) [5,6,7], which has been

used to locate targets using TDOA measurements [8]. We use the central difference
Kalman filter (CDKF) [9,10] here since it has slightly higher theoretic accuracy [10]
and requires fewer algorithm parameters be tuned.
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comparison of results.2 The differences between the methods we describe in this
chapter reside in either (1) how the data is made available to the SPKF, as in
the “simple” approach and in the “buffered” approaches, or (2) how the SPKF
is modified to be able to accommodate out-of-sequence measurements, as in the
O3SPKF approach.

Before we outline the methods themselves, it is instructive to consider the
method for evaluating their performance. A number of important metrics might
be considered: What is the computational complexity of the algorithm? What
is the required amount of auxiliary memory/storage for the algorithm? What
is the estimation accuracy of the algorithm? For the methods described in this
chapter, the first two questions are quite straightforward to answer. The third
requires more discussion. The issue lies in the question “How does one compute
a localization error estimate at an arbitrary time, since the filter is only updated
at random, asynchronous points in time?”

To clarify this explanation, we define some notation. Let tm be the time a
particular measurement is taken, ta be the time that measurement arrives for
processing (ta = tm + dt, where dt is the transport/processing delay), tf be the
time the measurement arrives at the filter (tf = ta +dq, where dq is the queueing
delay), tx be the time associated with the filter’s most recent state estimate, and
t be the present (real) time. Further, let x(t) be the true state at time t and x̂(t)
be an estimate of the state corresponding to time t.

Control decisions need to be made based on x̂(t); however, the filter only
“knows” x̂(tx) corresponding to the timestamp of the measurement most recently
incorporated into the filter’s estimate. Since (with probability one) t �= tx, we
must define a means to propagate the filter’s most recent estimate x̂(tx) forward
in time to predict x̂(t). This can be done using the target’s motion-model state
equation. Note that x̂(tx) has incorporated all measurements with tf < t, but
has not necessarily incorporated all measurements with ta < t or tm < t due
to the delays involved. We begin to suspect that there will be a definite cost
to transmission latency: not all measurements taken prior to the present time
will be included in the target position estimate, thus degrading accuracy of the
state prediction. Furthermore, there will be a cost to queueing latency since the
greater the difference t − tx, the greater length of time we need to predict over,
further degrading accuracy. The ad-hoc methods that we describe in this chapter
to process out-of-sequence measurements take the approach of trying to manage
queueing latency to improve the accuracy of the estimates. We will see that the
O3SPKF approach improves on these ad-hoc methods by adding no latency, and
making better use of all available measurements.

The Simple Approach to Handling Out-of-Sequence Measurements. Since we sus-
pect that latency will degrade our real-time estimate of target state, our first
ad-hoc approach is to simply discard all measurements that arrive at the filter

2 We have found the SPKF to give a very good tradeoff between computational com-
plexity and accuracy of location estimates, but we recognize that if additional compu-
tational resources were available, a technology such as a particle filter might produce
even more accurate estimates.
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out-of-sequence. That is, if a particular measurement has tm < tx, that mea-
surement is discarded. We call this the “simple” approach.
The Buffered Approach to Handling Out-of-Sequence Measurements. The simple
approach has the beneficial property that it adds no latency (dq = 0). However,
many potentially useful measurements are discarded. We will see later, that if
the simple approach is used with UAVs having multiple sensors, it is possible
that only the measurements taken by one of these sensors are used if the pro-
cessing time required by the sensors is quite different. Therefore, we seek means
whereby dq may be adjusted to provide improved target state estimates without
introducing significant complexity.

The method we call the “buffered” approach is one way to do this. We form a
buffer of N measurements. The oldest measurement in the buffer has timestamp
denoted tmin. When a new measurement arrives, we compare its timestamp tm
against tmin. If tm < tmin, the measurement is discarded, as in the simple ap-
proach. However, if tm ≥ tmin, the oldest buffer measurement is removed from
the buffer and is used to update the SPKF, and the presently received measure-
ment is added to the buffer. The filter time tx will be updated to tmin. If the
buffer is very large, few measurements will be discarded—which we expect will
result in near-optimal estimation of x̂(tx)—but since the difference between t
and tx will generally be large—we expect poorer estimation of x̂(t). If the buffer
is very small, many measurements will be discarded—resulting in poor estima-
tion performance of x̂(tx) and by extension of x̂(t)—but the difference between
t and tx will generally be small. In the limit as the buffer size goes to zero, the
buffered approach becomes the simple approach, and there will be some size N
that optimizes the estimation performance of x̂(t).

When determining the buffer size N , one might consider modeling the inter-
UAV transmission latency (the dominant effect) as an exponential random vari-
able, as is common in communication theory. Then, if μ is the expected latency,
68% of measurements are received with dt < μ, 86% of measurements are received
with dt < 2μ, and 95% of measurements are received with dt < 3μ. We might
then choose N = �kμ/Ts�×number of UAVs×number of sensors per UAV, where
k ∈ {1, 2, 3} selects the average percentage of measurements queued and used in
the filter, and Ts is the inter-sample interval for each sensor.

The O3SPKF Approach to Handling Out-of-Sequence Measurements. The simple
and buffered approaches both result in measurements arriving at the SPKF
in order (either by discarding all out-of-sequence measurements, or using the
buffering mechanism to sort the great majority of measurements in-order, while
still discarding a few out-of-sequence measurements). The approach we propose
in this chapter is fundamentally different from either of these in that it modifies
the SPKF itself to be able to accommodate the out-of-sequence measurements.
If a new measurement arrives with tm ≥ tx, it is incorporated in the filter state
using the standard SPKF steps and tx is updated to tm. However, if a new
measurement arrives with tm < tx, an alternate sequence of steps is executed to
update the filter state estimate using the novel information regarding the system
state at time tx in this stale measurement, and the filter time remains at tx.
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The O3SPKF is not a buffering method, so incurs no additional latency (dq =
0). Furthermore, it never discards measurements; therefore, we expect that it will
give better estimates than the other two approaches. Also, the O3SPKF is of the
same computational complexity as SPKF, so we incur no processing penalty for
using it. However, because the O3SPKF does not discard any measurements (as
do the simple and buffered methods), it will execute more often. Finally, since
the O3SPKF does not buffer measurements it has no additional auxiliary storage
requirements.

We note in passing that there are some other approaches to fusing out-of-
order measurements that bear some similarity to O3SPKF, which we did not
consider while preparing this chapter. One method maintains a buffer of sen-
sor data, but unlike the simple buffered methods proposed above, updates the
SPKF immediately upon receiving a new measurement. The SPKF state and co-
variance estimates are stored along with the corresponding measurement in the
buffer. When an out-of-order measurement arrives, the filter state is updated by
first “rolling back” to the estimate immediatly prior to that measurement, and
the SPKF algorithm is applied repeatedly to all following measurements in the
buffer—potentially resulting in many SPKF update steps per new data point.
This method gives the best achievable results, but we did not consider it due
to its requirements of a potentially large buffer and challenges in a real-time
implementation. A second method is similar—upon receiving an out-of-order
measurement, a Kalman smoother is run backward in time from tx to tm (po-
tentially requiring many iterations of the smoother steps as each data point is
considered again) to make a smoothed estimate of the state at time tm. The
present measurement is then incorporated into x̂(tm) via a measurement update
equation, and the state estimate is re-propagated to time tx [12]. The O3SPKF
has similar steps to this method: It also propagates the present state back in
time, but it always does this in one step (not requiring a buffer of measure-
ments). Additionally, it does not update the state estimate at time tm; rather,
covariance calculations are performed using the present and prior data that allow
direct updating of the state estimate at time tx using the old measurement.

We now present the SPKF and the O3SPKF. Readers familiar with either the
UKF or SPKF might skim the next section to discover the notation that we use,
and to see how we partition the SPKF into six steps which are then mirrored in
the O3SPKF in Section 4.

3 Sigma-Point Kalman Filters (SPKF)

Kalman filters are an intelligent (and sometimes optimal) way to estimate the
unmeasurable “state” x(t) of some dynamic system given measurements of a
signal u(t) possibly affecting that state (the dynamic “input”, sometimes called
a forcing function), and measurements y(t) (the dynamic “output”) related to
linear or nonlinear combinations of members of that state and u(t) . Here, we
assume that the state of the target to be estimated comprises its position and
velocity: that is, x(t) = [px(t), py(t), vx(t), vy(t)]T , where px(t) is the “x” position
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coordinate of the target, py(t) is the “y” position coordinate of the target, vx(t)
is the “x” velocity of the target and vy(t) is the “y” velocity of the target.
(We could easily extend this to three dimensions by simply adding extra state
elements pz(t) and vz(t).) The state vector x(t) is assumed to have dynamics
that can be modeled in a “state-space” form. For example, a relationship that
can be used with some kinds of Kalman filter is:

ẋ(t) = f(x(t), u(t), w(t), t) (1)
y(t) = h(x(t), u(t), v(t), t), (2)

where w(t) is an unmeasurable “process noise” that is often modeled as a zero-
mean white Gaussian random process, v(t) is unmeasurable “sensor noise” that
is also modeled as a zero-mean white Gaussian random process, f(·) is the “state
equation” function that captures the dynamics of the state, and h(·) is the “mea-
surement equation” or “output equation” function that describes how the sensor
measurements relate to the state.

Creating an optimum estimate x̂(t) of the true state x(t) is a very challenging
problem in general. Very close approximations to the optimum estimate can
be made using particle filters, but these are too computationally intensive for
our application. Alternative suboptimal solutions can be derived by assuming
that the state estimation error always retains a Gaussian probability density
function—this assumption is the basis of the original Kalman filter, the extended
Kalman filter, and the sigma-point Kalman filters to be discussed. Then, rather
than having to propagate the entire density function through time, we need only
to evaluate the conditional mean and covariance of the state vector once each
sampling interval and make updates to the estimates using the following two
relationships:

x̂+(tx) = x̂−(tx) + L(tx, tm)
(
y(tm) − ŷ(tm)

)
(3)

Σ+
x̃(tx) = Σ−

x̃(tx) − L(tx, tm)Σ−
ỹ(tm)L(tx, tm)T , (4)

where the superscript T is the matrix/vector transpose operator, and

x̂+(tx) = E
[
x(tx) | Y

+]
(5)

x̂−(tx) = E
[
x(tx) | Y

−]
(6)

ŷ(tm) = E
[
y(tm) | Y

−]
(7)

Σ−
x̃(tx) = E

[
(x(tx) − x̂−(tx))(x(tx) − x̂−(tx))T

]
= E

[
x̃−(tx)x̃−(tx)T

]
(8)

Σ+
x̃(tx) = E

[
(x(tx) − x̂+(tx))(x(tx) − x̂+(tx))T

]
= E

[
x̃+(tx)x̃+(tx)T

]
(9)

Σ−
ỹ(tm) = E

[
(y(tm) − ŷ(tm))(y(tm) − ŷ(tm))T

]
= E

[
ỹ(tm)ỹ(tm)T

]

= E
[
ỹ(tm)ỹ(tm)T

]
(10)

L(tx, tm) = E
[
(x(tx) − x̂−(tx))(y(tm) − ŷ(tm))T

] (
Σ−

ỹ(tm)

)−1

= Σ−
x̃(tx)ỹ(tm)

(
Σ−

ỹ(tm)

)−1
. (11)
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While this is a linear recursion, we have not directly assumed that the system
model is linear. In the notation we use, time tx indicates the timestamp of the
measurement closest in time to the present and tm indicates the timestamp
of the most recently received measurement. (In the literature, no distinction is
usually made between tx and tm. However, they will not be equal if measurements
arrive at the Kalman filter out-of-sequence, which is the topic of this chapter).
The decoration “circumflex” indicates an estimated quantity (e.g., x̂ indicates
an estimate of the true quantity x). A superscript “−” indicates an a priori es-
timate (i.e., an estimate of a quantity’s value at some point in time based on all
sensor data except the most recently received measurement) and a superscript
“+” indicates an a posteriori estimate (i.e., an estimate of a quantity’s value
at some point in time based on all sensor data including the most recently re-
ceived measurement). The decoration “tilde” indicates the error of an estimated
quantity (e.g., x̃ is the difference between x and x̂). The symbol Σxy = E [xyT ]
indicates the auto- or cross-correlation of the variables in its subscript. (Note
that often these variables are zero-mean, so the correlations are identical to
covariances). Also, for brevity of notation, we often use Σx to indicate the same
quantity as Σxx. The symbol Y

+ indicates the set of all sensor readings taken
up to and including the most recently received measurement, while Y

− indicates
the set of all sensor readings excluding the most recently received measurement.

Equations (3) through (11) (and approximations thereof) may be used to
derive either the Kalman filter, the extended Kalman filter, or the sigma-point
Kalman filter. All members of this family of filters comply with a structured
sequence of six steps per iteration, as outlined here.

General step 1: State estimate time update. For each measurement received,
first assign tp = tx (the prior value of the filter time), then set tx = max(tx, tm)
(the updated value of the filter time). For in-order measurements this results in
tx = tm > tp; for out-of-order measurements, this results in tx = tp > tm. An
updated state prediction x̂−(tx) of the value of x(tx) is then made, based on
a priori information and the system model using (1) and (6).

General step 2: Error covariance time update. The second step is to determine
the predicted state-estimate error covariance matrix Σ−

x̃(tx) based on a priori
information and the system model using (8).

General step 3: Estimate system output y(tm). The third step is to estimate the
system’s output corresponding to the timestamp of the most recently received
measurement using present a priori information and (2) and (7).

General step 4: Estimator gain matrix L(tx, tm). The fourth step is to com-
pute the estimator gain matrix by evaluating (11). We again emphasize that
the literature generally makes no distinction between tx and tm. However, this
distinction is key to the O3SPKF developed herein, of which the most important
aspect is the ability to compute the correct value for L(tx, tm).
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General step 5: State estimate measurement update. The fifth step is to com-
pute the a posteriori state estimate by updating the a priori estimate using the
estimator gain and the output prediction error using (3).

General step 6: Error covariance measurement update. The final step computes
the a posteriori error covariance matrix using (4). The estimator output com-
prises x̂+(tx) and Σ+

x̃(tx). The estimator then waits until the next measurement
is received, and returns to Step 1.

The standard Kalman filter is obtained by replacing (1) and (2) with linear
state-space equations using a fixed sampling interval, resulting in closed-form
equations for Steps 1–6. When the system equations are nonlinear, however,
we must make some approximations to evaluate the expectation operators, and
might consider the extended Kalman filter. A better alternative is the sigma-
point Kalman filter, which has the same computational complexity as the ex-
tended Kalman filter, but more accurately approximates these steps.

SPKF computes estimates of the mean and covariance of the output of a non-
linear function using a small fixed number of function evaluations. A set of points
(sigma points) is chosen as input to the function so that the (possibly weighted)
mean and covariance of the points exactly matches the a priori mean and covari-
ance of the input random variable being modeled. These points are then passed
through the nonlinear function, resulting in a transformed set of output points.
The a posteriori mean and covariance that are sought are then approximated by
the mean and covariance of these points. Note that the sigma points comprise
a fixed small number of vectors that are calculated deterministically—unlike
particle filter methods.

Specifically, if the input random vector x has mean x̄ and covariance Σx̃, then
p + 1 = 2 × dim(x) + 1 sigma points are generated as the set

X =
{
x̄, x̄ + γ

√
Σx̃, x̄ − γ

√
Σx̃

}
,

with members of X indexed from 0 to p, where γ is a tuning parameter (see below
for an example), and where the matrix square root R =

√
Σ computes a result

such that Σ = RRT . Typically, the efficient Cholesky decomposition [13,14] is
used, resulting in a lower-triangular R. The reader can verify that the weighted
mean and covariance of X equal the original mean and covariance of random
vector x for a specific set of {γ, α(m), α(c)} if we define the weighted mean as
x̄ =

∑p
i=0 α

(m)
i Xi, the weighted covariance as Σx̃ =

∑p
i=0 α

(c)
i (Xi − x̄)(Xi − x̄)T ,

Xi as the ith column of X , and both α
(m)
i and α

(c)
i as real scalars with the neces-

sary (but not sufficient) conditions that
∑p

i=0 α
(m)
i = 1 and

∑p
i=0 α

(c)
i = 1. The

various sigma-point methods differ only in the choices taken for these weight-
ing constants. The two most common methods are the unscented Kalman fil-
ter (UKF) [5,6,7,15] and the central difference Kalman filter (CDKF) [9,10].
The CDKF has only one “tuning parameter” h, which makes implementation
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simpler. It also has marginally higher theoretic accuracy than the UKF [10], so
we focus on this method in the application sections later. Using the CDKF,

γ = h, (h =
√

3 for Gaussian distributions)

α
(m)
0 = α

(c)
0 =

h2 − dim(x)
h2

α
(m)
i = α

(c)
i =

1
2h2 , i �= 0

To use SPKF in a general estimation problem, with nonlinear state and output
equations, we first define an augmented random vector xa that combines the
randomness of the state, process noise, and sensor noise. This augmented vector
is then used as the state in the estimation process. However, we will assume a
linear state equation with zero-mean process noise and additive zero-mean sensor
noise to the otherwise nonlinear output equation. This allows the SPKF steps
to be somewhat simplified. The model we use is:

x(t) = A(t0)x(t − t0) + wt0 (t), t0 > 0
y(t) = h(x(t), u(t)) + v(t),

where A(t0) is a state-transition matrix that represents the homogeneous dynam-
ics of the state over a generic time interval t0. For a given t0, A(t0) is a constant
matrix; however, in this work we receive measurements at random times, so we
must treat t0 and therefore A(t0) as variable in the development of the algorithm.

In this section, we will assume that measurements arrive in-sequence, such
that when the measurement arrives at the sensor-fusion process tm ≥ tx. We
will call this case the “In-order SPKF.”

In-order SPKF step 1: State estimate time update. First, assign tp = tx (the
prior value of the filter time), then set tx = max(tx, tm) = tm. We desire to
estimate x̂−(tx) using prior information regarding x(tp) and the state equation.
To do so, we compute sigma points X+(tp) corresponding to the prior state and
covariance estimates. These p + 1 vectors are

X+(tp) =
{
x̂+(tp), x̂+(tp) + γ

√
Σ+

x̃(tp), x̂
+(tp) − γ

√
Σ+

x̃(tp)

}
.

Sigma points corresponding to a prediction of the state at time tx are generated
by evaluating the process equation f(·) using all X+

i (tp) (where the subscript i
denotes that the ith vector is being extracted from the original set), yielding the
a priori sigma points X−

i (tx). The state prediction is a weighted average of the
X−

i (tx). In general,

x̂−(tx) = E
[
f(x(tp), u(tx), w(tx)) | Y

−]

≈
p∑

i=0

α
(m)
i X−

i (tx).
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However, this simplifies for our linear state equation. If t0 = tm − tp,

x̂−(tx) = E
[
At0x(tp) + wt0(tx) | Y

−]

=
p∑

i=0

α
(m)
i X−

i (tx) =
p∑

i=0

α
(m)
i A(t0)X+

i (tp)

= A(t0)x̂+(tp).

In-order SPKF step 2: Error covariance time update. Using the a priori sigma
points from Step 1, the a priori covariance estimate is computed as

Σ−
x̃(tx) =

p∑

i=0

α
(c)
i

(
X−

i (tx) − x̂−(tx)
)(

X−
i (tx) − x̂−(tx)

)T
+ Σwt0

.

For our linear state equation, this again simplifies:

Σ−
x̃(tx) = A(t0)Σ+

x̃(tp)A(t0)T + Σwt0
.

In-order SPKF step 3: Predict system output y(tm) = y(tx). The system out-
put is predicted by evaluating the model output equation using the sigma points
describing the state at time tm. The in-order case has tm = tx, so we first com-
pute the points Y−

i (tm) = h(X−
i (tm), u(tm)) = h(X−

i (tx), u(tm)). The output
estimate is then

ŷ(tm) = E
[
h(x(tx), u(tm)) + v(tm) | Y

−]

≈
p∑

i=0

α
(m)
i h(X−

i (tx), u(tm))

=
p∑

i=0

α
(m)
i Y−

i (tm).

In-order SPKF step 4: Estimator gain matrix L(tx, tm). To compute the esti-
mator gain matrix, we must first compute the required covariance matrices.

Σ−
ỹ(tm) =

p∑

i=0

α
(c)
i

(
Y−

i (tm) − ŷ(tm)
)(

Y−
i (tm) − ŷ(tm)

)
+ Σv

Σ−
x̃(tx)ỹ(tm) =

p∑

i=0

α
(c)
i

(
X−

i (tx) − x̂−(tx)
)(

Y−
i (tm) − ŷ(tm)

)
.

Then, we simply compute L(tx, tm) = Σ−
x̃(tx)ỹ(tm)

(
Σ−

ỹ(tm)

)−1
.

In-order SPKF step 5: State estimate measurement update. The a posteriori
state estimate is computed using (3).
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Table 1. Summary of variable sample period in-order SPKF using linear state equation
and additive noises

Nonlinear state-space model:

x(t)= A(t0)x(t − t0) + wt0(t)
y(t)= h(x(t), u(t)) + v(t),

where wt0(t) and v(t) are independent, zero-mean Gaussian noise processes of
covariance matrices Σwt0

and Σv, respectively.

Definition: Let p = 2 × dim(x(t)).
Initialization: At time zero, set tx = 0 and

x̂+(0)= E
�
x(0)

�
Σ+

x̃(0) = E
�
(x(0) − x̂+(0))(x(0) − x̂+(0))T

�

Computation: For each sample occurring in-order, (i.e., tm ≥ tx) compute:

Initialize time pointers: tp = tx , tx = tm, and t0 = tx − tp.
State est. time update: x̂−(tx) = A(t0)x̂+(tp).
Error cov. time update: Σ−

x̃(tx) = A(t0)Σ+
x̃(tp)A(t0)T + Σwt0

.

Output estimate: X −(tx) =
�

x̂−(tx), x̂−(tx) + γ
�

Σ−
x̃(tx),

x̂−(tx) − γ
�

Σ−
x̃(tx)

�
.

Yi(tm) = h(X −
i (tx), u(tm)).

ŷ(tm) =
�p

i=0 α
(m)
i Yi(tm).

Estimator gain matrix: Σ−
ỹ(tm) =

p�
i=0

α
(c)
i

�
Yi(tm) − ŷ(tm)

	�
Yi(tm) − ŷ(tm)

	T

+Σv.

Σ−
x̃(tx)ỹ(tm) =

p�
i=0

α
(c)
i

�
X −

i (tx) − x̂−(tx)
	�

Yi(tm) − ŷ(tm)
	T

.

L(tx, tm) = Σ−
x̃(tx)ỹ(tm)



Σ−

ỹ(tm)

�−1
.

State est. meas. update: x̂+(tx) = x̂−(tx) + L(tx, tm)
�
y(tm) − ŷ(tm)

	
.

Error cov. meas. update: Σ+
x̃(tx) = Σ−

x̃(tx) − L(tx, tm)Σ−
ỹ(tm)L

T (tx, tm).

In-order SPKF step 6: Error covariance measurement update. The state esti-
mate error covariance matrix is updated directly from the optimal formulation:
Σ+

x̃(tx) = Σ−
x̃(tx) − L(tx, tm)Σ−

ỹ(tm)L(tx, tm)T .

For reference, the in-order SPKF optimized for a linear state equation and
additive sensor noise is summarized in Table 1.
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4 Out-of-Order Sigma-Point Kalman Filters (O3SPKF)

This chapter introduces a novel variant of the SPKF that allows the filter to
be updated using out-of-sequence sensor data. That is, the filter state estimate
may already be updated to time tx using data sensed at tx when a new piece of
information arrives that is the result of a sensor reading taken at time tm < tx.
The most common reasons for such out-of-sequence data include: inter- and intra-
UAV communication latency, and processing latency. Ideally, this old sensor data
should not be discarded, since it still contains information related to the target’s
present state, but its impact should be discounted appropriately, based on how
stale the measurement is.

A similar problem was treated in [11], where a SPKF needed to be updated
based on time-lagged sensor data from a global positioning system (GPS) unit.
In their work, however, the time lag was constant and known a priori. In our
case, the time lag is not constant, neither is it known a priori. However, we do
assume that sensor data has a time-stamp on it so that we can calculate the time
lag. Nevertheless, reference [11] gives us a clue as to how to modify the SPKF
to our purposes.

In this section, we will assume that measurements arrive out-of-sequence; that
is, tm < tx.

Out-of-order SPKF steps 1 and 2: State estimate time update: First, assign
tp = tx (the prior value of the filter time), then set tx = max(tx, tm) = tx.
We desire to estimate x̂−(tx) using prior information regarding x(tp) and the
state equation. However, since tx has not been changed by this measurement,
we simply retain the prior values of x̂−(tx) = x̂+(tx) and Σ−

x̃(tx) = Σ+
x̃(tx).

Out-of-order SPKF step 3: Estimate system output y(tm) �= y(tx): When using
out-of-sequence measured data to update the SPKF, the state update equation
maintains the same linear form x̂+(tx) = x̂−(tx)+L(tx, tm)(y(tm)− ŷ(tm)). The
key insight from [11] is that in such a case, L(tx, tm) should be calculated via
Eq. (11) instead of using the standard SPKF formulation where tx = tm. In
order to compute this update, we require an estimate ŷ(tm) and the covariances
required to compute L(tx, tm). These in turn require sigma points representing
x̂−(tx) and ŷ(tm). The first are easily computed:

X−(tx) =
{
x̂−(tx), x̂−(tx) + γ

√
Σ−

x̃(tx), x̂
−(tx) − γ

√
Σ−

x̃(tx)

}
.

It remains to calculate the sigma points to represent the distribution of ŷ(tm)—
we can do so using the output equation h(·) to find these output sigma points if
we are able to calculate the sigma points representing x̂−(tm). To do so, consider
the following specific form of a state equation where we define the time interval
t0 = tx − tm

3

3 Note that the particular form of a linear state equation given above is not necessary
for this general idea to work; however, if the equation is nonlinear, it must be locally
Lipschitz. Sigma points representing x(tx) and wt0(tx) must be propagated backward
in time to compute the mean and covariance estimates of x(tm).
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x(tx) = A(t0)x(tm) + wt0(tx)
x(tm) = A(t0)−1x(tx) − A(t0)−1wt0 (tx)

x̂−(tm) = E [x(tm)|Y−] = A(t0)−1x̂−(tx),

where Y
− is the history of all measurements, excluding the “new” measurement

taken at time tm. Therefore, we can “predict” a prior state estimate given the
present state estimate. The prior covariance can also be computed, and is found
to be

Σ−
x̃(tm) = A(t0)−1

(
Σ−

x̃(tx) + Σwt0

)
A(t0)−T .

Using these two quantities, we can compute the desired sigma points representing
x̂−(tm) as

X−(tm) =
{
x̂−(tm), x̂−(tm) + γ

√
Σ−

x̃(tm), x̂
−(tm) − γ

√
Σ−

x̃(tm)

}
.

These sigma points are passed through the output equation h(·) to first form
Y−

i (tm) = h(X−
i (tm), u(tm)) and then ŷ−(tm) as before.

Out-of-order SPKF steps 4–6: The remaining steps are straightforward now
that we have a means for calculating the sigma points corresponding to y(tm).
The entire O3SPKF for a linear state equation and additive sensor noise is
summarized in Table 2.

5 An Example Model of Motion

In order to use any Kalman filtering technique to localize a target, we re-
quire a model of the target’s dynamics. Due to the non-cooperative nature of
the target we wish to localize in our present research, this model cannot be
known a priori; therefore, we must employ an approximate model. Here, we
use a “nearly constant velocity” (NCV) model of dynamics. For a state vector
x(t) = [px(t), py(t), vx(t), vy(t)]T , where px(t) is the “x” position coordinate of
the target, py(t) is the “y” position coordinate of the target, vx(t) is the “x”
velocity of the target and vy(t) is the “y” velocity of the target, we have:

ẋ(t) =

⎡

⎢⎢⎣

0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

⎤

⎥⎥⎦

︸ ︷︷ ︸
A

x(t) + w(t)

y(t) = h(x(t), u(t)) + v(t),

where the stochastic signals w(t) and v(t) are assumed to be Gaussian and
white, and sensor noise v(t) has covariance matrix Σv and process noise w(t)
has covariance matrix Σw(t) = diag(0, 0, σ2, σ2). The output equation depends
on h(·), which itself depends on the sensor being used to produce a measurement
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Table 2. Summary of variable sample period out-of-order SPKF using linear state
equation and additive noises

Nonlinear state-space model:

x(t)= A(t0)x(t − t0) + wt0(t)
y(t)= h(x(t), u(t)) + v(t),

where wt0(t) and v(t) are independent, zero-mean Gaussian noise processes of
covariance matrices Σwt0

and Σv, respectively.

Definition: Let p = 2 × dim(x(t)).
Initialization: At time zero, set tx = 0 and

x̂+(0)= E
�
x(0)

�
Σ+

x̃(0) = E
�
(x(0) − x̂+(0))(x(0) − x̂+(0))T

�

Computation: For each sample occurring out-of-order, (i.e., tm < tx) compute:

Initialize time pointers: t0 = tx − tm.
Output estimate: x̂−(tm) = A(t0)−1x̂+(tx).

Σ−
x̃(tm) = A(t0)−1



Σ+

x̃(tx) + Σwt0

�
A(t0)−T .

X −(tm) =
�

x̂−(tm), x̂−(tm) + γ
�

Σ−
x̃(tm),

x̂−(tm) − γ
�

Σ−
x̃(tm)

�
.

Yi(tm) = h(X −
i (tm), u(tm)).

ŷ(tm) =
�p

i=0 α
(m)
i Yi(tm).

Estimator gain matrix: X+(tx) =
�

x̂+(tx), x̂+(tx) + γ
�

Σ+
x̃(tx),

x̂+(tx) − γ
�

Σ+
x̃(tx)

�
.

Σ−
ỹ(tm) =

p�
i=0

α
(c)
i

�
Yi(tm) − ŷ(tm)

	�
Yi(tm) − ŷ(tm)

	T

+Σv.

Σ−
x̃(tx)ỹ(tm) =

p�
i=0

α
(c)
i

�
X+

i (tx) − x̂+(tx)
	�

Yi(tm) − ŷ(tm)
	T

.

L(tx, tm) = Σ−
x̃(tx)ỹ(tm)



Σ−

ỹ(tm)

�−1
.

State est. meas. update: x̂+(tx) = x̂−(tx) + L(tx, tm)
�
y(tm) − ŷ(tm)

	
.

Error cov. meas. update: Σ+
x̃(tx) = Σ−

x̃(tx) − L(tx, tm)Σ−
ỹ(tm)L

T (tx, tm).

and perhaps a measurable input signal u(t). This model says, in effect, that the
target velocity is generally constant except via perturbations to its acceleration
through w(t), and that measurements may be taken that somehow relate to the
position and velocity of the target.

We will be updating the Kalman filter at non-deterministically separated dis-
crete points in time. Therefore, we need to be able to integrate the effect of w(t)
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on x(t) over a variable period t0 (the integral essentially performing a convolu-
tion) and result in a variable-sample-rate discrete-time model of the form:

x(t + t0) = A(t0)x(t) + wt0(t)
y(t) = h(x(t), u(t)) + v(t).

(We see that the output equation is unchanged). We compute A(t0) = eAt0 ,
where e(·) is the matrix-exponential function. We further compute [16]

Σwt0
=

∫ t0

0
eA(t0−τ)ΣweAT (t0−τ) dτ

to evaluate the equivalent discrete-time noise covariance based on the continuous-
time noise covariance. For the NCV model, the state equation becomes

x(t + t0) =

⎡

⎢⎢⎣

1 0 t0 0
0 1 0 t0
0 0 1 0
0 0 0 1

⎤

⎥⎥⎦

︸ ︷︷ ︸
A(t0)

x(t) + wt0(t)

where Σwt0
can be evaluated analytically, and is found to be

Σwt0
=

⎡

⎢⎢⎢⎢⎣

t30σ2

3 0 t20σ2

2 0
0 t30σ2

3 0 t20σ2

2
t20σ2

2 0 t0σ
2 0

0 t20σ2

2 0 t0σ
2

⎤

⎥⎥⎥⎥⎦
.

This model is suitable for use with either the in-order SPKF or the out-of-order
SPKF as developed in this chapter.

6 Performance Comparisons

Results indicative of the performance of the simple, buffered, and O3SPKF ap-
proaches were generated via simulation of multiple UAVs locating a mobile tar-
get. Target and UAV trajectories were generated using the United States Air
Force Academy (USAFA) multiple-UAV simulator, to be described next. The
overall methodology for generating results will then be discussed.

6.1 The USAFA Multiple UAV Simulation System Control
Architecture

In this section, we briefly present the distributed control architecture we devel-
oped to search, detect, and locate ground targets using multiple UAVs. The pur-
pose is to provide readers the proper context in which the out-of-order Sigma
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Point Kalman Filter technique allows us to achieve our overall goal. As mentioned
earlier, the overall goal is to develop a cooperative multiple heterogeneous UAVs
system for military applications. In particular, we are interested in developing a
distributed control architecture for each UAV that can optimize transmitted sen-
sor information obtained by nearby UAVs. Collectively, the multiple UAVs coop-
erate to search, detect, and locate ground targets. To that end, we have developed
the following control architecture.

The control architecture is made of a behavior-based state machine with four
different states shown in Fig. 1: Global Search (GS), Approach Target (AT),
Locate Target (LT), and Target Re-acquisition (TR). Each UAV operates in one
of the four states at a time. The switch between two operating states is based
on the current state of a UAV, sensor values obtained from the UAV and other
neighboring UAVs, and state data transmitted from other UAVs in the mission
area. For details of the switching conditions, see Table 3.

Fig. 1. Decision state machine for UAV state selection. The numbered events that
trigger each particular directional connector are listed in Table 3.

Each UAV starts in the GS state when launched. During this state, a UAV
uses a set of heuristic rules to guide its movement. The rules include visiting
locations with little or no recent history, moving away from other nearby UAVs
to maximize the search coverage, and moving straight, if possible, to reduce
fuel use. Once a target is detected, the UAV that detected the target switches
to the AT state and approaches the target, while other UAVs that receive the
target detection information will independently decide whether to approach the
detected target or continue to operate in the current operating state based on
the estimated distance of the target, the number of UAVs that are approaching
the target, and the estimated number of targets in the mission area that have
not been detected. Once a UAV is within a region from which it can safely locate
the target, it switches the operating state from AT to LT and flies around the
target with a pre-determined orbit. Other UAVs that committed to help locate
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Table 3. List of events that trigger decisions to change states in the decision state
machine of each UAV

# From To Event
1 GS AT New target (e.g., RF emitter) detected by UAV’s sensor.
2 GS AT Decision to cooperate with an ongoing localization effort.
3 AT LT UAV arrives at orbit range from target’s estimated position.
4 AT GS Target becomes occluded (e.g., emitter stops transmitting).
5 AT GS Decision to abandon an ongoing localization effort.
6 LT GS Target successfully located.
7 LT TR Target becomes occluded (e.g., emitter stops transmitting).
8 TR AT Target detected by UAV’s sensor.
9 TR GS Maximum time for TR reached.

the target also switch to the LT state as they enter the orbit. As the UAVs
fly around the target, they position themselves to maximize collective sensing
capabilities while combining sensor data among the UAVs on the orbit. It is this
state of our operation where the current work on O3SPKF is used to combine
multiple sensor information obtained by the UAVs. A target may disappear from
the sensors before it is localized within a desired accuracy. For example, for a
radio frequency signal emitting target, it may stop emitting before it can be
located. For such situations, UAVs who are operating in the LT state switch to
the TR state. During this state, a UAV engages in a search pattern similar to
a global search except in a smaller scale to continue to look for the lost target.
The UAV will continue in this state either until the target reappears at which
time it switches back to the LT state or when a pre-determined time interval
has elapsed at which time it switches to the GS state.

Figure 2 shows a screenshot of the simulator in action. The emitter location
is indicated by a white cross in the center of the large circle—the emitter leaves
behind it a fading trail of crosses showing its path. The large circle indicates the
desired orbiting radius of the UAVs—this is not possible in practice due to the ran-
dom motion of the targets, but is approximated by the UAV control alg-
orithm. The small squares denote the UAV positions (two in this case). Lines
are drawn between the UAVs and their target-position estimates, with the SPKF
state three-sigma uncertainty denoted by the ellipse centered on the target po-
sition estimate.

6.2 The Simulation Process

The following methodology was employed

– First, the USAFA Multiple UAV Simulation System was used to generate
the trajectories of a mobile target and the UAVs tracking it. UAV locations
were initialized by randomly placing them within a 2 km radius of the tar-
get. The UAV flight paths were then controlled to converge to an orbit of
0.5 km distance from the target, with inter-UAV angles of 90◦ for a two-UAV
simulation and ±120◦ for a three-UAV simulation. Locations of the target
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Fig. 2. Screenshot of simulation system in action

and UAVs were recorded once per second (of simulated time). Targets moved
according to the NCV model with σ = 2 × 10−4, with maximum velocity
limited to 20 km/h. Nominal UAV velocity was 100 km/h.

– Secondly, randomness was applied to the simulated data. Measurement re-
quests were made to each sensor at a nominal sample rate of 1 Hz, corre-
sponding to the original data. Random clock timing jitter uniformly dis-
tributed between −5 ms and 5 ms was applied to each measurement time
(locations of target and UAV were interpolated at these instants from the
original data). Two sensors per UAV were simulated:

• One sensor providing target emission DOA information, with measure-
ment timestamp of 0.05 s after the measurement was requested, and a
sensor-data processing time uniformly distributed between [0.06 s, 0.061 s]
(the randomness accounts for timing uncertainty in a multi-threaded pro-
cessing system), and Gaussian sensor noise with zero mean and standard
deviation of 6 deg. These characteristics correspond roughly to a radio-
frequency (RF) DOA sensor that we are currently building for a prototype
UAV.

• A second sensor also providing DOA information, with measurement
timestamp of 0.01 s after the measurement was requested, and a sensor-
data processing time uniformly distributed between [0.2 s, 0.22 s], and
Gaussian sensor noise with zero mean and standard deviation of 3 deg.
These characteristics correspond roughly to a camera-based DOA sensor
that we are building for a prototype UAV. The measurement process
is much faster than for the RF sensor, but requires a longer processing
time.
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Fig. 3. Example of localization error improvement over time. “Ideal” = no-latency
SPKF result.

We note that the “simple approach” will never make use of the data from the
second sensor. We therefore expect that results using this approach will be
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Fig. 4. Simulation summary performance plots. “Ideal” = no-latency SPKF result.

quite poor, and that even a buffer of one sample could improve performance
significantly.
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Random latency was also added to those data traveling from one UAV to
another. This was computed using an exponential random variable with dif-
fering means, as reported in the results sections below.

– The output sensor data and UAV position data from the second step were
then used as input to the ideal method, the simple method, the buffered
method with differing buffer lengths, and the O3SPKF (the “ideal method”
is a post-processing method that sorts all data in order by tm, then applies
an SPKF to it. This provides a performance bound that is not achievable in
practice since the sorting process is non-causal). Target state estimates and
uncertainties were output whenever they were updated.

– True position data from the first step and estimated position data from the
third step were compared.

6.3 Results

Simulations using the above methodology were run for scenarios comprising two
UAVs localizing a target and three UAVs localizing a target. In each case 500
simulations were run, with the data being processed by each of the methods,
and the results averaged in a root-mean-square (RMS) sense. Figure 3 shows a
representative plot of the average localization error versus time for an expected
latency of 5 s. The ideal (non-achievable) case is best, as expected, followed by
O3SPKF, the buffered method with three different buffer lengths, and then the
simple method. Note that the the “Bufferk” method denotes a buffer length
N = �kμ/Ts� × number of UAVs × number of sensors per UAV. The poor re-
sults of the simple method are not difficult to explain since the majority of the
sensor readings are discarded. Perhaps surprisingly, the buffered method with
the smallest buffer performed best—it appears that discarding data is not as
costly as a stale state estimate (due to a larger prediction time) when the target
is moving.

Various latencies were simulated, and summary results are presented in Fig. 4.
Communication latencies of 0.2 s (the value we expect in our prototype UAV
system), and 1 s through 5 s were simulated (again, the RMS average of the final
localization error of 500 simulations per data point are plotted). We see that
all methods degrade quite gently with increasing latency, and that the O3SPKF
performs best of all.

7 Conclusions

In this chapter we address the problem of sensor fusion to localize a target when
some of the measurements arrive at the sensor-fusion process out-of-order.We pro-
pose that sigma-point Kalman filtering is a good approach to sensor fusion, but is
not able to handle the out-of-order measurements directly. Several simple reme-
dies are presented, which include discarding out-of-order measurements, or alter-
nately buffering a number of measurements before presenting them to the sensor-
fusion process so that the majority of them may be retained and sorted in order.
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The problem with simply discarding out-of-order measurements is that they do
contain useful data regarding the target position, and it is not wise to throw away
this information. The problem with buffering measurements is that the fusion pro-
cess has added delay built into it, so that its state estimate
is stale—this estimate must then be propagated forward in time to the present in
order to make control decisions, and the propagation step adds error that
increases with the amount of time required for the propagation.

We present an alternate approach to either of these ad-hoc methods. We re-
derive the sigma-point Kalman filter such that the modified filter, which we call
the out-of-order sigma-point Kalman filter (O3SPKF), is able to directly incor-
porate the out-of-order measurements without buffering and without discarding
measurements. If a measurement arrives at the sensor-fusion process in-order,
the standard SPKF steps are executed. If a measurement arrives at the sensor-
fusion process out-of-order, the modified O3SPKF steps are executed. Since no
measurements are discarded by the O3SPKF, it must execute its steps more fre-
quently than the methods that do discard sensor data. (For example, the buffered
methods for k ∈ {1, 2, 3} retain on average 68%, 86%, and 95% of the measure-
ments received (respectively), so the number of iterations of the SPKF required
by the buffered methods are similarly that fraction of the number of iterations
required by the O3SPKF.) However, per iteration, the computational complex-
ity of O3SPKF is the same as SPKF, it does not require memory overhead for
buffering, and it gave the best simulation results of all the methods attempted.
In conclusion, the O3SPKF works very well, and is an excellent candidate for
sensor fusion for the application of locating targets using multiple UAVs.
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Abstract. This chapter presents an extension of cost-cumulant control
theory over a finite horizon for a class of stochastic zero-sum differential
games wherein the evolution of the states of the game in response to
decision strategies selected by two players from sets of admissible con-
trols is described by a stochastic linear differential equation and a stan-
dard integral-quadratic cost. A direct dynamic programming approach
for the Mayer optimization problem is used to solve for a multi-cumulant
based solution when both players measure the states and minimize the
first finite number of cumulants of the standard integral-quadratic cost
associated with this special class of differential games. This innovative
decision-making paradigm is proposed herein to provide not only a mech-
anism in which the conflicting interests of noncooperative players can be
optimized, but also an analytical tool which is used to provide a com-
plete statistical description of the global performance of the stochastic
differential game.

1 Introduction

This chapter considers a closed-loop two-person zero-sum linear-quadratic game
wherein the dynamics of the game in response to control variables selected by
both players from a class of linear-feedback controllers is described by a stochas-
tic linear differential equation. In seeking optimal control strategies whose respec-
tive objectives are minimization and maximization of a finite linear combination
of the first k cost cumulants of an integral-quadratic random cost associated with
the class of linear stochastic systems over a finite horizon, the recently devel-
oped statistical control theory [7]-[17] is extended herein. The extension which
is manifested through the resulting cumulant-generating equations, now allows
the incorporation of classes of linear feedback controllers to affect and predict
more accurately the effects of non-Gaussian perturbations on the accuracy of
system performance via a complete statistical description. In other words, using
these high-order cost cumulants, it is possible to obtain an approximation of the
system performance distribution.
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Since the formulation of multi-cumulant and zero-sum games is parameter-
ized both by the number of cost cumulants and by the scalar coefficients in the
linear combination, it may be viewed both as a generalization of linear-quadratic
Gaussian control, when the first cost cumulant is optimized and of two-person
zero-sum differential games when a certain denumerable linear combination of
cost cumulants is optimized. The set of coupled matrix Riccati differential equa-
tions is introduced, whose solvability leads to the existence of the closed-loop
feedback saddle points for the corresponding multi-cumulant and zero-sum game
under some additional mild conditions. It is worth mentioning that the multi-
cumulant and zero-sum game is an initial cost problem, in contrast with the more
traditional terminal cost class of investigations. One may address an initial cost
problem by introducing changes of variables which convert it to a terminal cost
problem. However, this modifies the natural context of cost cumulants, which it
is preferable to retain. Instead, one may take a more direct dynamic program-
ming approach to the initial cost problem. Such an approach is illustrative of
the more general concept of the principle of optimality, an idea tracing its roots
back to the 17th century.

2 Problem Formulation

Let’s consider a zero-sum stochastic differential game with two noncooperative
players, identified as u1 and u2. Suppose (t0, x0) ∈ [t0, tf ] × R

n is fixed and
a system input noise w(t) � w(t, ω) : [t0, tf ] × Ω �→ R

p is an p-dimensional
stationary Wiener process defined with {Ft}t≥0 being its natural filtration on
a complete filtered probability space (Ω, F , {Ft}t≥0, P) over [t0, tf ] with the
correlation of increments

E
{
[w(τ) − w(ξ)][w(τ) − w(ξ)]T

}
= W |τ − ξ|, W > 0 .

Also, decision sets U1 ∈ L2
Ft

(Ω; C([t0, tf ]; Rm1)) and U2 ∈ L2
Ft

(Ω; C([t0, tf ]; Rm2))
are assumed to be the subsets of Hilbert space of R

m1-valued and R
m2-valued,

square integrable processes on [t0, tf ] that are adapted to the σ-field Ft generated
by w(t), respectively. Associated with each (u1, u2) ∈ U1×U2 is a standard finite-
horizon integral-quadratic form (IQF) random cost J : [t0, tf ] × R

n × U1 ×U2 �→
R

+ (for which the first player, u1 tries to minimize, while the second player, u2
attempts to maximize it) such that

J(t0, x0; u1, u2) = xT (tf )Qfx(tf )

+
∫ tf

t0

[
xT (τ)Q(τ)x(τ) + uT

1 (τ)R11(τ)u1(τ) − uT
2 (τ)R22(τ)u2(τ)

]
dτ , (1)

where the system states of the game, x(t) � x(t, ω) : [t0, tf ] × Ω �→ R
n belong

to the Hilbert space L2
Ft

(Ω; C([t0, tf ]; Rn)) with E
{∫ tf

t0
xT (τ)x(τ)dτ

}
< ∞ and

evolve according to the stochastic differential equation
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dx(t) = (A(t)x(t) + B1(t)u1(t) + B2(t)u2(t)) dt + G(t)dw(t) (2)
x(t0) = x0 .

The system coefficient matrices A ∈ C([t0, tf ]; Rn×n), B1 ∈ C([t0, tf ]; Rn×m1),
B2 ∈ C([t0, tf ]; Rn×m2) and G ∈ C([t0, tf ]; Rn×p) are deterministic bounded
matrix-valued functions. The terminal penalty weighting Qf ∈ R

n×n, the state
weighting Q ∈ C([t0, tf ]; Rn×n) and control weightings R11 ∈ C([t0, tf ]; Rm1×m1),
and R22 ∈ C([t0, tf ]; Rm2×m2) are deterministic bounded matrix-valued functions
with properties of symmetry and positive semi-definiteness. In addition, R11(t)
and R22(t) are invertible.

To put this stochastic differential game in a class of closed-loop feedback
control, it is observed that the system (2) is linear and the performance measure
(1) is quadratic. Therefore, it is reasonable to assume that the players choose
control actions that are optimal within the class of memoryless perfect-state
strategies, γ1 : [t0, tf ] × L2

Ft
(Ω; C([t0, tf ]; Rn)) �→ L2

Ft
(Ω; C([t0, tf ]; Rm1)) and

γ2 : [t0, tf ] × L2
Ft

(Ω; C([t0, tf ]; Rn)) �→ L2
Ft

(Ω; C([t0, tf ]; Rm2))

u1(t) = γ1(t, x(t)) = K1(t)x(t) , (3)
u2(t) = γ2(t, x(t)) = K2(t)x(t) , (4)

where the admissible gains K1 ∈ C([t0, tf ]; Rm1×n) and K2 ∈ C([t0, tf ]; Rm2×n)
are deterministic bounded matrix-valued functions defined in appropriate senses.

For a given initial condition (t0, x0) ∈ [t0, tf ] × R
n and subject to strategies

(3)-(4), the dynamics of the game (2) is given by

dx(t) = [A(t) + B1(t)K1(t) + B2(t)K2(t)] x(t)dt + G(t)dw(t) , (5)
x(t0) = x0 ,

and its IQF cost in the form of a Chi-square random variable, follows

J(t0, x0; K1, K2) = xT (tf )Qfx(tf )

+
∫ tf

t0

xT (τ)
[
Q(τ) + KT

1 (τ)R11(τ)K1(τ) − KT
2 (τ)R22(τ)K2(τ)

]
x(τ)dτ . (6)

It is necessary to develop a procedure for generating cost cumulants of the two-
player zero-sum differential game by adapting the parametric method in [5] to
characterize a moment-generating function. These cost cumulants are then used
to form performance index in the cost-cumulant control optimization. This ap-
proach begins with a replacement of the initial condition (t0, x0) by any arbitrary
pair (α, xα). Thus, for the given admissible feedback gains K1 and K2, the cost
functional (6) is seen as the “cost-to-go”, J (α, xα)

J(α, xα) � xT (tf )Qfx(tf )

+
∫ tf

α

xT (τ)
[
Q(τ) + KT

1 (τ)R11(τ)K1(τ) − KT
2 (τ)R22(τ)K2(τ)

]
x(τ)dτ .
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The moment-generating function of the vector-valued random process (5) is given
by the definition

ϕ (α, xα; θ) � E {exp (θJ (α, xα))} , (7)

where the scalar θ ∈ R
+ is a small parameter. What follows next is the cumulant-

generating function

ψ (α, xα; θ) � ln {ϕ (α, xα; θ)} , (8)

in which ln{·} denotes the natural logarithmic transformation of an enclosed
entity.

Theorem 1. Cost Cumulant Generating Function.
For all α ∈ [t0, tf ] and the small parameter θ ∈ R

+, define

ϕ (α, xα; θ) � � (α; θ) exp
(
xT

αΥ (α; θ)xα

)
, (9)

υ (α; θ) � ln{� (α; θ)} . (10)

Then, the cost-cumulant generating function is expressed by

ψ (α, xα; θ) = xT
αΥ (α; θ)xα + υ (α; θ) , (11)

where the scalar solution υ (α; θ) solves the time-backward differential equation
with the terminal boundary condition υ (tf ; θ) = 0

d

dα
υ (α; θ) = −Tr

{
Υ (α; θ)G (α) WGT (α)

}
, (12)

and the matrix-valued solution Υ (α; θ) satisfies the time-backward differential
equation together with its terminal-valued condition Υ (tf ; θ) = θQf

d

dα
Υ (α; θ) = −[A(α) + B1(α)K1(α) + B2(α)K2(α)]T Υ (α; θ)

− Υ (α; θ)[A(α) + B1(α)K1(α) + B2(α)K2(α)]

− 2Υ (α; θ)G(α)WGT (α)Υ (α; θ)

− θ
[
Q(α) + KT

1 (α)R11(α)K1(α) − KT
2 (α)R22(α)K2(α)

]
. (13)

In addition, the auxiliary solution �(α; θ) is satisfying the time-backward differ-
ential equation with the terminal boundary condition � (tf ; θ) = 1

d

dα
� (α; θ) = −� (α; θ)Tr

{
Υ (α; θ)G (α)WGT (α)

}
. (14)

Proof. For any given θ, let � (α, xα; θ) � exp (θJ (α, xα)). The moment-
generating function becomes

ϕ (α, xα; θ) = E {� (α, xα; θ)} ,
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with time derivative of

d

dα
ϕ (α, xα; θ) = −ϕ (α, xα; θ) θxT

α

[
Q(α) + KT

1 (α)R11(α)K1(α)

− KT
2 (α)R22(α)K2(α)

]
xα .

Using the standard Ito’s formula in [1], one gets

dϕ (α, xα; θ) = E {d� (α, xα; θ)} ,

= E
{

�α (α, xα; θ) dα + �xα (α, xα; θ) dxα

+
1
2
Tr

{
�xαxα(α, xα; θ)G(α)WGT (α)

}
dα

}
,

= ϕα (α, xα; θ) dα

+ ϕxα (α, xα; θ)
[
A(α) + B1(α)K1(α) + B2(α)K2(α)

]
xαdα

+
1
2
Tr

{
ϕxαxα (α, xα; θ) G (α) WGT (α)

}
dα ,

when combined with (9) leads to

− ϕ (α, xα; θ) θxT
α

[
Q(α) + KT

1 (α)R11(α)K1(α) − KT
2 (α)R22(α)K2(α)

]
xα

=
d

dα� (α; θ)
� (α; θ)

ϕ (α, xa; θ) + ϕ (α, xα; θ)xT
α

d

dα
Υ (α; θ)xα + ϕ (α, xα; θ)

{
xT

α

[
A(α)

+ B1(α)K1(α) + B2(α)K2(α)
]T

Υ (α; θ)xα

+ xT
αΥa(α; θ) [A(α) + B1(α)K1(α) + B2(α)K2(α)] xα

}

+ϕ (α, xα; θ)
{

2xT
αΥ (α; θ)G(α)WGT (α)Υ (α; θ)xα+Tr

{
Υ (α; θ)G(α)WGT (α)

}}
.

To have constant and quadratic terms independent of xα, it is required that

d

dα
Υ (α; θ) = −[A(α) + B1(α)K1(α) + B2(α)K2(α)]T Υ (α; θ)

− Υ (α; θ)[A(α) + B1(α)K1(α) + B2(α)K2(α)]

− 2Υ (α; θ)G (α)WGT (α) Υ (α; θ)

− θ
[
Q(α) + KT

1 (α)R11(α)K1(α) − KT
2 (α)R22(α)K2(α)

]
,

d

dα
� (α; θ) = −� (α; θ)Tr

{
Υ (α; θ)G (α)WGT (α)

}
,

with the terminal conditions Υ (tf ; θ) = θQf and � (tf ; θ) = 1. Finally, the re-
maining time-backward differential equation satisfied by υ (α; θ) is given by

d

dα
υ (α; θ) = −Tr

{
Υ (α; θ)G (α)WGT (α)

}
, υ (tf ; θ) = 0 .

��
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Now cost cumulants can be generated for the zero-sum stochastic differential
game by looking at a MacLaurin series expansion of the cumulant-generating
function

ψ (α, xα; θ) =
∞∑

i=1

κi(α, xα)
θi

i!
=

∞∑

i=1

∂(i)

∂θ(i) ψ(α, xα; θ)
∣∣∣∣
θ=0

θi

i!
, (15)

in which κi(α, xα)’s are called the cost cumulants. Note that the series coefficients
can be computed using (11)

∂(i)

∂θ(i) ψ(α, xα; θ)
∣∣∣∣
θ=0

= xT
α

∂(i)

∂θ(i) Υ (α; θ)
∣∣∣∣
θ=0

xα +
∂(i)

∂θ(i) υ(α; θ)
∣∣∣∣
θ=0

. (16)

In view of results (15) and (16), cost cumulants for the stochastic differential
game problem can be obtained as

κi(α, xα) = xT
α

∂(i)

∂θ(i) Υ (α; θ)
∣∣∣∣
θ=0

xα +
∂(i)

∂θ(i) υ(α; θ)
∣∣∣∣
θ=0

, (17)

for any finite 1 ≤ i < ∞. For notational convenience, the following definitions
are introduced:

H(α, i) � ∂(i)

∂θ(i) Υ (α; θ)
∣∣∣∣
θ=0

and D(α, i) � ∂(i)

∂θ(i) υ(α; θ)
∣∣∣∣
θ=0

. (18)

The next theorem yields an attractive method of generating cost cumulants in
time domain. This computational method is preferred to that of (16) in the
formulation of cost-cumulant control problems.

Theorem 2. Cost-Cumulants in Zero-Sum Stochastic Differential Games.
Suppose that (A, B1) and (A, B2) are uniformly stabilizable. The players choose
control strategies (u1(t), u2(t)) = (K1(t)x(t), K2(t)x(t)) for the zero-sum differ-
ential game characterized by (5) and (6). For k ∈ Z

+ fixed and 1 ≤ i ≤ k, the
kth cost cumulant in the zero-sum stochastic game is given by

κk(t0, x0; K1, K2) = xT
0 H(t0, k)x0 + D(t0, k) , (19)

in which the cumulant variables {H(α, i)}k
i=1 and {D(α, i)}k

i=1 evaluated at α =
t0 satisfy the following differential equations (with the dependence of H(α, i) and
D(α, i) upon the admissible gains K1 and K2 suppressed)

d

dα
H(α, 1) = − [A(α) + B1(α)K1(α) + B2(α)K2(α)]T H(α, 1)

− H(α, 1) [A(α) + B1(α)K1(α) + B2(α)K2(α)]

− Q(α) − KT
1 (α)R11(α)K1(α) + KT

2 (α)R22(α)K2(α) , (20)
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and, for 2 ≤ i ≤ k

d

dα
H(α, i) = − [A(α) + B1(α)K1(α) + B2(α)K2(α)]T H(α, i)

− H(α, i) [A(α) + B1(α)K1(α) + B2(α)K2(α)]

−
i−1∑

j=1

2i!
j!(i − j)!

H(α, j)G(α)WGT (α)H(α, i − j) , (21)

together with 1 ≤ i ≤ k

d

dα
D(α, i) = −Tr

{
H(α, i)G(α)WGT (α)

}
, (22)

where the terminal conditions H(tf , 1) = Qf , H(tf , i) = 0 for 2 ≤ i ≤ k and
D(tf , i) = 0 for 1 ≤ i ≤ k.

Proof. The cost-cumulant expression in (19) is readily justified by using the re-
sult (17) and the definitions (18). What remains is to show that the solutions
H(α, i) and D(α, i) for 1 ≤ i ≤ k indeed satisfy (20)-(22). Note that the equa-
tions (20)-(22) are satisfied by the solutions H(α, i) and D(α, i) and can be
obtained by repeatedly taking the derivative with respect to θ of (12)-(13) to-
gether with the assumption A(α) + B1(α)K1(α) + B2(α)K2(α) is stable for all
α ∈ [t0, tf ]. ��

In the subsequent development, the subset of symmetric matrices of the vector
space of all n × n matrices with real elements is denoted by S

n. Now, let the
k-tuple variables H and D be defined as follows

H(·) � (H1(·), . . . , Hk(·)) and D(·) � (D1(·), . . . , Dk(·)) ,

for each element Hi ∈ C1([t0, tf ]; Sn) of H and Di ∈ C1([t0, tf ]; R) of D having
the representations

Hi(·) � H(·, i) andDi(·) � D(·, i)

with the right members satisfying the dynamic equations (20)-(22) on the horizon
[t0, tf ]. For ease of presentation, the following mappings are introduced:

Fi : [t0, tf ] × (Sn)k × R
m1×n × R

m2×n �→ S
n

Gi : [t0, tf ] × (Sn)k �→ R
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where the actions are given by

F1(α, H, K1, K2) � − [A(α) + B1(α)K1(α) + B2(α)K2(α)]T H1(α)
− H1(α) [A(α) + B1(α)K1(α) + B2(α)K2(α)]

− Q(α) − KT
1 (α)R11(α)K1(α) + KT

2 (α)R22(α)K2(α)

Fi(α, H, K1, K2) � − [A(α) + B1(α)K1(α) + B2(α)K2(α)]T Hi(α)
− Hi(α) [A(α) + B1(α)K1(α) + B2(α)K2(α)]

−
i−1∑

j=1

2i!
j!(i − j)!

Hj(α)G(α)WGT (α)Hi−j(α) , 2 ≤ i ≤ k

Gi(α, H) � −Tr
{
Hi(α)G(α)WGT (α)

}
, 1 ≤ i ≤ k .

For a compact formulation, the product mappings are established as such

F1 × · · · × Fk : [t0, tf ] × (Sn)k × R
m1×n × R

m2×n �→ (Sn)k

G1 × · · · × Gk : [t0, tf ] × (Sn)k �→ R
k

along with the corresponding notations F � F1 ×· · ·×Fk and G � G1 ×· · ·×Gk.
Thus, the dynamic equations of motion (20)-(22) can be rewritten as

d

dα
H(α) = F(α, H(α), K1(α), K2(α)) , H(tf ) = Hf (23)

d

dα
D(α) = G(α, H(α)) , D(tf ) = Df , (24)

where the terminal values Hf = (Qf , 0, . . . , 0) and Df = (0, . . . , 0).
Note that the product system uniquely determines H and D once the admis-

sible feedback gains K1 and K2 are specified. Hence, H and D are considered
as H(·, K1, K2) and D(·, K1, K2), respectively. The performance index in cost-
cumulant control can now be formulated in the admissible feedback gains K1
and K2.

Definition 1. Performance Index in Cost-Cumulant Control.
Fix k ∈ Z

+ and the sequence μ = {μi ≥ 0}k
i=1 with μ1 > 0. Then for the given

initial condition (t0, x0), the performance index φ0 : [t0, tf ] × (Sn)k × R
k �→ R

+

of the finite-horizon cost-cumulant control is defined by

φ0 (t0, H(t0, K1, K2), D(t0, K1, K2)) �
k∑

i=1

μiκi(K1, K2)

=
k∑

i=1

μi

[
xT

0 Hi(t0, K1, K2)x0 + Di(t0, K1, K2)
]

, (25)

where additional parametric design freedom μi mutually chosen by players rep-
resent different levels of influence as they deem important to the overall cost dis-
tribution. Symmetric solutions {Hi(t0, K1, K2) ≥ 0}k

i=1 and {Di(t0, K1, K2) ≥
0}k

i=1 evaluated at α = t0 satisfy (23)-(24).
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For the given terminal data (tf , Hf , Df ), the classes K1
tf ,Hf ,Df ;μ and K2

tf ,Hf ,Df ;μ
of admissible feedback gains may be defined as follows.

Definition 2. Admissible Feedback Gain Strategies.
Let the compact subsets K1 ⊂ R

m1×n and K2 ⊂ R
m2×n be the sets of allowable

gain values. For the given k ∈ Z
+ and the sequence μ = {μi ≥ 0}k

i=1 with
μ1 > 0, the sets of admissible control strategies K1

tf ,Hf ,Df ;μ and K2
tf ,Hf ,Df ;μ are

assumed to be the classes of C([t0, tf ]; Rm1×n) and C([t0, tf ]; Rm2×n) with values
K1(·) ∈ K1 and K2(·) ∈ K2 for which solutions to the dynamic equations of
motion (23)-(24) exist on the finite horizon [t0, tf ].

Then one may state the cost-cumulant control optimization problem for the
zero-sum stochastic differential game.

Definition 3. Optimization Problem.
Suppose that k ∈ Z

+ and the sequence μ = {μi ≥ 0}k
i=1 with μ1 > 0 are fixed.

Then, the cost-cumualnt control optimization problem over [t0, tf ] is given by

min
K1(·)∈K1

tf ,Hf ,Df ;μ

max
K2(·)∈K2

tf ,Hf ,Df ;μ

φ0 (t0, H(t0, K1, K2), D(t0, K1, K2)) (26)

subject to the dynamic equations (23)-(24) for α ∈ [t0, tf ].

Next, the fundamental theorem of calculus and stochastic differential rules is
utilized to derive the existence of a saddle point.

Theorem 3. Existence of a Saddle Point.
Consider the linear-quadratic zero-sum stochastic differential game

dx(t) = [A(t) + B1(t)K1(t) + B2(t)K2(t)] x(t)dt + G(t)dw(t) ,

x(t0) = x0 ,

which in turn, is associated with the finite-horizon IQF cost

J(t0, x0; K1, K2) = xT (tf )Qfx(tf )

+
∫ tf

t0

xT (τ)
[
Q(τ) + KT

1 (τ)R11(τ)K1(τ) −KT
2 (τ)R22(τ)K2(τ)

]
x(τ)dτ .

For any given k ∈ Z
+ and the sequence μ = {μi ≥ 0}k

i=1 with μ1 > 0, there
exists a saddle point (K∗

1 , K∗
2 ) ∈ K1

tf ,Hf ,Df ;μ × K2
tf ,Hf ,Df ;μ such that there hold

φ0 (t0, H(t0, K∗
1 , K2), D(t0, K∗

1 , K2)) ≤ φ0 (t0, H(t0, K∗
1 , K∗

2 ), D(t0, K∗
1 , K∗

2 ))
φ0 (t0, H(t0, K∗

1 , K∗
2 ), D(t0, K∗

1 , K∗
2 )) ≤ φ0 (t0, H(t0, K1, K

∗
2 ), D(t0, K1, K

∗
2 )) .

It is now concluded that the existence of a saddle point yields both necessary
and sufficient conditions for the minimax problem to be equivalent to the corre-
sponding maximin problem. In other words, the Issacs condition holds according
to [3]. The value function, V(ε, Y, Z) for the game starting at the time-states
triple (ε, Y, Z) is defined as follows.
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Definition 4. Value Function.
The value function V : [t0, tf ] × (Sn)k × R

k �→ R
+ ∪ {+∞} associated with the

Mayer problem is defined by

V(ε, Y, Z) � min
K1(·)∈K1

ε,Y,Z;μ

max
K2(·)∈K2

ε,Y,Z;μ

φ0 (t0, H(t0, K1, K2), D(t0, K1, K2))

= max
K2(·)∈K2

ε,Y,Z;μ

min
K1(·)∈K1

ε,Y,Z;μ

φ0 (t0, H(t0, K1, K2), D(t0, K1, K2)) ,

for any (ε, Y, Z) ∈ [t0, tf ] × (Sn)k × R
k.

Conventionally, set V(ε, Y, Z) = ∞ when either K1
ε,Y,Z;μ or K2

ε,Y,Z;μ is empty.
The development in the sequel is motivated by the excellent treatment in [4],
and is intended to follow it closely. Unless otherwise specified, the dependence
of trajectory solutions H and D on the admissible gains K1 and K2 is omitted
for notational clarity.

Theorem 4. Necessary Conditions.
The value function evaluated along any trajectory corresponding to a pair of
control strategy gains feasible for its terminal states is a non-increasing function
of time. The value function evaluated along any optimal trajectory is constant.

It is important to note that these properties are necessary conditions for op-
timality. The next theorem shows that these conditions are also sufficient for
optimality.

Theorem 5. Sufficient Condition.
Let W(ε, Y, Z) be an extended real-valued function defined on

[t0, tf ] × (Sn)k × R
k

such that W(ε, Y, Z) = φ0
(
ε, Y, Z

)
.

Let tf , Hf , Df be given terminal conditions, and suppose that, for each trajec-
tory pair (H, D) corresponding to a control strategy pair (K1, K2) in K1

tf ,Hf ,Df ;μ ×
K2

tf ,Hf ,Df ;μ, W(α, H(α), D(α)) is finite and non-increasing on [t0, tf ].
If (K∗

1 , K∗
2 ) is a control strategy pair in K1

tf ,Hf ,Df ;μ × K2
tf ,Hf ,Df ;μ such that

for the corresponding trajectory pair (H∗, D∗), W(α, H∗(α), D∗(α)) is constant
then the pair (K∗, K∗

2 ) is a saddle point and W(tf , Hf , Df ) = V(tf , Hf , Df ).

Corollary 1. Restriction of Strategy Gains.
Let (K∗

1 , K∗
2 ) be an optimal control strategy pair in K1

tf ,Hf ,Df ;μ × K2
tf ,Hf ,Df ;μ

and (H∗, D∗) the corresponding trajectory pair of dynamic equations

d

dα
H(α) = F(α, H(α), K1(α), K2(α)) , H(tf ) = Hf

d

dα
D(α) = G(α, H(α)) , D(tf ) = Df .

Then, the restriction of the pair (K∗
1 , K∗

2 ) to [t0, α] is an optimal control strategy
pair for the control problem with the terminal-valued condition (α, H∗(α), D∗(α))
when t0 ≤ α ≤ tf .
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Both necessary and sufficient conditions implied by these properties for a control
gain to be optimal give hints that one may find a function W(ε, Y, Z) : [t0, tf ]×
(Sn)k × R

k �→ R
+ such that W(ε, Y, Z) = φ0

(
ε, Y, Z

)
, W(ε, Y, Z) is constant

on the corresponding trajectory pair, and W(ε, Y, Z) is non-increasing on other
trajectories.

Note that the value function V(ε, Y, Z) is supposed to be continuously dif-
ferentiable in (ε, Y, Z) which then results in the uniqueness of a saddle point
(K∗

1 , K∗
2 ). Formally speaking, the result regarding the differentiability of the

value function, which is adapted from [4], is stated as follows.

Theorem 6. Differentiability of Value Function.
Let admissible feedback gains K∗

1 (α, H, D) and K∗
2 (α, H, D) constitute a saddle

point. Further, let t0(ε, Y, Z) and (H(t0(ε, Y, Z); ε, Y), D(t0(ε, Y, Z); ε, Z)) be
the initial time and initial states for the trajectories of

d

dα
H(α) = F(α, H, K∗

1 (α, H, D), K∗
2 (α, H, D)) ,

d

dα
D(α) = G(α, H) ,

with the terminal-valued condition (ε, Y, Z). Then, the value function V(ε, Y, Z)
is differentiable at each point at which t0(ε, Y, Z) and H(t0(ε, Y, Z); ε, Y) and
D(t0(ε, Y, Z); ε, Z) are differentiable with respect to (ε, Y, Z).

As a tenet of transition from the principle of optimality, a family of games based
on different starting points is now considered. Let’s begin with an interlude of
time, ε in mid-play. At its commencement, the path has reached some definitive
points. Consider all possible (H, D) which may be reached at the end of the
interlude for all possible choices of (K1, K2). Suppose that for each endpoint,
the game beginning there has already been solved. Then the value function
V(ε, H, D) resulting from each choice of (K1, K2) is known, and they are to be
so chosen as to render it minimax. As the duration of the interlude approaches
tf , this leads to a sufficient condition to Hamilton-Jacobi-Isaacs (HJI) equation.
By adapting to the initial-cost problem and the terminologies present in the cost-
cumulant control, the HJI equation satisfied by the value function V(ε, Y, Z) is
then given.

Definition 5. Playable Set.
Let the playable set Q be defined as

Q �
{
(ε, Y, Z) ∈ [t0, tf ] × (Sn)k × R

k such thatK1
ε,Y,Z;μ × K2

ε,Y,Z;μ �= 0
}

.

Theorem 7. HJI Equation-Mayer Problem.
Let (ε, Y, Z) be any interior point of the playable set Q at which the value func-
tion V(ε, Y, Z) is differentiable. Then V(ε, Y, Z) satisfies the partial differential
inequality
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0 ≥ ∂

∂ε
V(ε, Y, Z) +

∂

∂ vec(Y)
V(ε, Y, Z) · vec(F(ε, Y, K1, K2))

+
∂

∂ vec(Z)
V(ε, Y, Z) · vec(G(ε, Y)) ,

for all (K1, K2) ∈ K1 × K2.
If there exists a saddle point (K∗

1 , K∗
2 ) ∈ K1

ε,Y,Z;μ × K2
ε,Y,Z;μ, then the partial

differential equation of differential games

0 = min
K1∈K1

max
K2∈K2

{
∂

∂ε
V(ε, Y, Z) +

∂

∂ vec(Y)
V(ε, Y, Z) · vec(F(ε, Y, K1, K2))

+
∂

∂ vec(Z)
V(ε, Y, Z) · vec(G(ε, Y))

}
(27)

is satisfied together with V(t0, H0, D0) = φ0(t0, H0, D0) and vec(·) the vectorizing
operator of enclosed entities. The optimum in (27) is achieved by the left limit
(K∗

1 (ε)−, K∗
2 (ε)−) of the optimal strategy pair at ε.

The construction of a scalar-valued function which is a candidate for the value
function is discussed in the following theorem.

Theorem 8. Verification Theorem.
Fix k ∈ Z

+. Let W(ε, Y, Z) be a continuously differentiable solution of the HJI
equation

0 = min
K1∈K1

max
K2∈K2

{
∂

∂ε
V(ε, Y, Z) +

∂

∂ vec(Y)
V(ε, Y, Z) · vec(F(ε, Y, K1, K2))

+
∂

∂ vec(Z)
V(ε, Y, Z) · vec(G(ε, Y))

}

and satisfy the boundary condition

W(t0, H0, D0) = φ0 (t0, H0, D0) , for (t0, H0, D0) ∈ M , (28)

where M = {t0} × (Sn)k × R
k.

Let (tf , Hf , Df ) be a point of Q, (K1, K2) a control strategy pair in K1
tf ,Hf ,Df ;μ×

K2
tf ,Hf ,Df ;μ and H and D the corresponding solutions of the equations

d

dα
H(α) = F(α, H(α), K1(α), K2(α)) , H(tf ) = Hf

d

dα
D(α) = G(α, H(α)) , D(tf ) = Df .
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Then, W(α, H(α), D(α)) is a non-increasing function of α. If (K∗
1 , K∗

2 ) is a
control strategy pair in K1

tf ,Hf ,Df ;μ × K2
tf ,Hf ,Df ;μ defined on [t0, tf ] with corre-

sponding solution, H∗ and D∗ of the above equations such that for α ∈ [t0, tf ]

0 =
∂

∂ε
W(α, H∗(α), D∗(α))

+
∂

∂ vec(Y)
W(α, H∗(α), D∗(α)) · vec(F(α, H∗(α), K∗

1 (α), K∗
2 (α)))

+
∂

∂ vec(Z)
W(α, H∗(α), D∗(α)) · vec(G(α, H∗(α))) , (29)

then (K∗
1 , K∗

2 ) is a saddle-point strategy pair in K1
tf ,Hf ,Df ;μ × K2

tf ,Hf ,Df ;μ and

W(ε, Y, Z) = V(ε, Y, Z) , (30)

where V(ε, Y, Z) is the value function.

It is observed that to have a saddle-point solution (K∗
1 , K∗

2 ) in K1
tf ,Hf ,Df ;μ ×

K2
tf ,Hf ,Df ;μ defined and continuous for all α ∈ [t0, tf ], the solution H(α) to

(23) when evaluated at α = t0 must also exist. Therefore, it is necessary that
H(α) is finite for all α ∈ [t0, tf ). Moreover, the solution of (23) exists and is
continuously differentiable in a neighborhood of tf . Applying the results from
[2], these solutions can further be extended to the left of tf as long as H(α)
remains finite. Hence, the existence of unique and continuously differentiable
solutions to (23) are certain if H(α) are bounded for all α ∈ [t0, tf ). As the
result, the candidate value functions V(α, H, D) are continuously differentiable
as well.

Theorem 9. Necessary and Sufficient Conditions for a Saddle-Point Solution.
(K∗

1 , K∗
2 ) is a saddle-point strategy if and only if H(α) is bounded for all α ∈

[t0, tf ).

3 Multi-cumulant Saddle-Point Solution

Recall that the optimization problem being considered herein is in “Mayer form”
and can be solved by applying an adaptation of the Mayer form verification
theorem of dynamic programming given in [4]. In the framework of dynamic
programming, it is often required to denote the terminal time and states of a
family of optimization problems as (ε, Y, Z) rather than (tf , Hf , Df ). That is,
for ε ∈ [t0, tf ] and 1 ≤ i ≤ k, the states of the system (23)-(24) defined on
the interval [t0, ε] have terminal values denoted by H(ε) ≡ Y and D(ε) ≡ Z.
Since the cumulant-based performance index (25) is quadratic affine in terms
of arbitrarily fixed x0, this observation then suggests a solution to (27) may be
sought in the form

W(ε, Y, Z) = xT
0

k∑

i=1

μi(Yi + Ei(ε))x0 +
k∑

i=1

μi(Zi + Ti(ε)) , (31)
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where the parametric functions of time Ei ∈ C1([t0, tf ]; Sn) and Ti ∈ C1([t0, tf ]; R)
are yet to be determined. The next theorem shows how the partial differential
equation in the notation of W(ε, Y, Z) looks like using inverse vectorizing trans-
formation.

Corollary 2. Time Derivative of a Candidate Function.
Fix k ∈ Z

+ and let (ε, Y, Z) be any interior point of the reachable set Q at
which the real-valued function (31) is differentiable. Then, the time derivative of
W(ε, Y, Z) is found to be

d

dε
W(ε, Y, Z) =

k∑

i=1

μi

(
Gi(ε, Y) +

d

dε
Ti(ε)

)

+ xT
0

k∑

i=1

μi

(
Fi(ε, Y, K1, K2) +

d

dε
Ei(ε)

)
x0 . (32)

The substitution of this hypothesized solution (31) into (27) and making use of
the result (32) yield

0 = min
K1∈K1

max
K2∈K2

{
∂

∂ε
W(ε, Y, Z)+

∂

∂ vec(Y)
W(ε, Y, Z) ·vec(Fi(ε, Y, K1, K2))

+
∂

∂ vec(Z)
W(ε, Y, Z) · vec(Gi(ε, Y))

}

= min
K1∈K1

max
K2∈K2

{
xT

0

(
k∑

i=1

μi
d

dε
Ei(ε)

)
x0 +

k∑

i=1

μi
d

dε
Ti(ε)

+ xT
0

(
k∑

i=1

μiFi(ε, Y, K1, K2)

)
x0 +

k∑

i=1

μiGi(ε, Y)

}
. (33)

It is important to observe that

k∑

i=1

μiFi(ε, Y, K1, K2) = − [A(ε) + B1(ε)K1 + B2(ε)K2]
T

k∑

i=1

μiYi

−
k∑

i=1

μiYi [A(ε) + B1(ε)K1 + B2(ε)K2]

− μ1Q(ε) − μ1K
T
1 R11(ε)K1 + μ1K

T
2 R22(ε)K2

−
k∑

i=2

μi

i−1∑

j=1

2i!
j!(i − j)!

YjG(ε)WGT (ε)Yi−j ,

k∑

i=1

μiGi(ε, Y) = −
k∑

i=1

μiTr
{
YiG(ε)WGT (ε)

}
.
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Differentiating the expression within the bracket of (33) with respect to K1 and
K2 yield the necessary conditions for an extremum of the performance index
(25) on [t0, ε],

−2BT
1 (ε)

k∑

i=1

μiYiM0 − 2μ1R11(ε)K1M0 = 0 ,

−2BT
2 (ε)

k∑

i=1

μiYiM0 + 2μ1R22(ε)K2M0 = 0 .

Because M0 is an arbitrary rank-one matrix, it must be true that

K1(ε, Y, Z) = −R−1
11 (ε)BT

1 (ε)
k∑

r=1

μ̂rYr , (34)

K2(ε, Y, Z) = R−1
22 (ε)BT

2 (ε)
k∑

r=1

μ̂rYr , (35)

where μ̂r � μi/μ1 for μ1 > 0. Substituting the gain expressions (34) and (35)
into the right member of the HJI equation (33) yields the value of the minimax

xT
0

[
k∑

i=1

μi
d

dε
Ei(ε) − AT (ε)

k∑

i=1

μiYi −
k∑

i=1

μiYiA(ε)

− μ1Q(ε) +
k∑

r=1

μ̂rYrB1(ε)R−1
11 (ε)BT

1 (ε)
k∑

i=1

μiYi

+
k∑

i=1

μiYiB1(ε)R−1
11 (ε)BT

1 (ε)
k∑

s=1

μ̂sYs −
k∑

r=1

μ̂rYrB2(ε)R−1
22 (ε)BT

2 (ε)
k∑

i=1

μiYi

−
k∑

i=1

μiYiB2(ε)R−1
22 (ε)BT

2 (ε)
k∑

s=1

μ̂sYs −μ1

k∑

r=1

μ̂rYrB1(ε)R−1
11 (ε)BT

1 (ε)
k∑

s=1

μ̂sYs

+ μ1

k∑

r=1

μ̂rYrB2(ε)R−1
22 (ε)BT

2 (ε)
k∑

s=1

μ̂sYs

−
k∑

i=2

μi

i−1∑

j=1

2i!
j!(i − j)!

YjG(ε)WGT (ε)Yi−j

]
x0

+
k∑

i=1

μi
d

dε
Ti(ε) −

k∑

i=1

μiTr
{
YiG(ε)WGT (ε)

}
. (36)

It is now necessary to exhibit time-dependent functions {Ei(·)}k
i=1 and {Ti(·)}k

i=1
which will render the left side of (36) equal to zero for ε ∈ [t0, tf ], when {Yi}k

i=1
are evaluated along solution trajectories of the cumulant-generating equations.
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Studying the expression (36) reveals that Ei(·) and Ti(·) for 1 ≤ i ≤ k satisfying
the time-backward differential equations

d

dε
E1(ε) = AT (ε)H1(ε) + H1(ε)A(ε) + Q(ε)

− H1(ε)B1(ε)R−1
11 (ε)BT

1 (ε)
k∑

s=1

μ̂sHs(ε)

−
k∑

r=1

μ̂rHr(ε)B1(ε)R−1
11 (ε)BT

1 (ε)H1(ε)

+ H1(ε)B2(ε)R−1
22 (ε)BT

2 (ε)
k∑

s=1

μ̂sHs(ε)

+
k∑

r=1

μ̂rHr(ε)B2(ε)R−1
22 (ε)BT

2 (ε)H1(ε)

+
k∑

r=1

μ̂rHr(ε)B1(ε)R−1
11 (ε)BT

1 (ε)
k∑

s=1

μ̂sHs(ε)

−
k∑

r=1

μ̂rHr(ε)B2(ε)R−1
22 (ε)BT

2 (ε)
k∑

s=1

μ̂sHs(ε) , (37)

and, for 2 ≤ i ≤ k

d

dε
Ei(ε) = AT (ε)Hi(ε) + Hi(ε)A(ε)

− Hi(ε)B1(ε)R−1
11 (ε)BT

1 (ε)
k∑

s=1

μ̂sHs(ε)

−
k∑

r=1

μ̂rHr(ε)B1(ε)R−1
11 (ε)BT

1 (ε)Hi(ε)

+ Hi(ε)B2(ε)R−1
22 (ε)BT

2 (ε)
k∑

s=1

μ̂sHs(ε)

+
k∑

r=1

μ̂rHr(ε)B2(ε)R−1
22 (ε)BT

2 (ε)Hi(ε)

+
i−1∑

j=1

2i!
j!(i − j)!

Hj(ε)G(ε)WGT (ε)Hi−j(ε) , (38)

together with

d

dε
Ti(ε) = Tr

{
Hi(ε)G(ε)WGT (ε)

}
, 1 ≤ i ≤ k , (39)
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will work. Furthermore, at the boundary condition, it is necessary to have
W (t0, H0, D0) = φ0 (t0, H0, D0). Or, equivalently, xT

0
∑k

i=1 μi(Hi0 + Ei(t0))x0 +∑k
i=1 μi(Di0 + Ti(t0)) = xT

0
∑k

i=1 μiHi0x0 +
∑k

i=1 μiDi0. Thus, matching the
boundary condition yields the corresponding initial value conditions Ei(t0) = 0
and Ti(t0) = 0 for (37)-(39). Applying the feedback gains specified in (34) and
(35) along the solution trajectories of (23)-(24), these equations become Riccati-
type

d

dε
H1(ε) = −AT (ε)H1(ε) − H1(ε)A(ε) − Q(ε)

+ H1(ε)B1(ε)R−1
11 (ε)BT

1 (ε)
k∑

s=1

μ̂sHs(ε)

+
k∑

r=1

μ̂rHr(ε)B1(ε)R−1
11 (ε)BT

1 (ε)H1(ε)

− H1(ε)B2(ε)R−1
22 (ε)BT

2 (ε)
k∑

s=1

μ̂sHs(ε)

−
k∑

r=1

μ̂rHr(ε)B2(ε)R−1
22 (ε)BT

2 (ε)H1(ε)

−
k∑

r=1

μ̂rHr(ε)B1(ε)R−1
11 (ε)BT

1 (ε)
k∑

s=1

μ̂sHs(ε)

+
k∑

r=1

μ̂rHr(ε)B2(ε)R−1
22 (ε)BT

2 (ε)
k∑

s=1

μ̂sHs(ε) , (40)

and, for 2 ≤ i ≤ k

d

dε
Hi(ε) = −AT (ε)Hi(ε) − Hi(ε)A(ε)

+ Hi(ε)B1(ε)R−1
11 (ε)BT

1 (ε)
k∑

s=1

μ̂sHs(ε)

+
k∑

r=1

μ̂rHr(ε)B1(ε)R−1
11 (ε)BT

1 (ε)Hi(ε)

− Hi(ε)B2(ε)R−1
22 (ε)BT

2 (ε)
k∑

s=1

μ̂sHs(ε)

−
k∑

r=1

μ̂rHr(ε)B2(ε)R−1
22 (ε)BT

2 (ε)Hi(ε)

−
i−1∑

j=1

2i!
j!(i − j)!

Hj(ε)G(ε)WGT (ε)Hi−j(ε) , (41)
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together, for 1 ≤ i ≤ k

d

dε
Di(ε) = −Tr

{
Hi(ε)G(ε)WGT (ε)

}
(42)

where the terminal-valued conditions H1(tf ) = Qf , Hi(tf ) = 0 for 2 ≤ i ≤
k and Di(tf ) = 0 for 1 ≤ i ≤ k. Thus, whenever these equations (40)-(42)
admit solutions {Hi(·)}k

i=1 and {Di(·)}k
i=1, then the existence of {Ei(·)}k

i=1 and
{Ti(·)}k

i=1 satisfying (37)-(39) are assured. By comparing the equations (37)-(39)
to those of (40)-(42), one may recognize that these sets of equations are related
to one another by

d

dε
Ei(ε) = − d

dε
Hi(ε) and

d

dε
Ti(ε) = − d

dε
Di(ε)

for 1 ≤ i ≤ k. Enforcing the initial value conditions of Ei(t0) = 0 and Ti(t0) = 0
uniquely implies that

Ei(ε) = Hi(t0) − Hi(ε) and Ti(ε) = Di(t0) − Di(ε)

for all ε ∈ [t0, tf ] and yields a value function

W(ε, Y, Z) = V(ε, Y, Z)

= xT
0

k∑

i=1

μiHi(t0)x0 +
k∑

i=1

μiDi(t0) ,

for which the sufficient condition (29) of the verification theorem is satisfied.
Therefore, the respective feedback gains (34) and (35) for Player 1 and Player 2
optimizing the performance index (25), become optimal

K∗
1 (ε) = −R−1

11 (ε)BT
1 (ε)

k∑

r=1

μ̂rH∗
r(ε) , (43)

K∗
2 (ε) = R−1

22 (ε)BT
2 (ε)

k∑

r=1

μ̂rH∗
r(ε) . (44)

Theorem 10. Multi-Cumulant Saddle-Point Solution.
Consider the linear-quadratic zero-sum stochastic differential game (5)-(6) in
which the pairs (A, B1) and (A, B2) are uniformly stabilizable on [t0, tf ]. Let
k ∈ Z

+ and the sequence μ = {μi ≥ 0}k
i=1 with μ1 > 0. Then, the optimal

cost-cumulant control via state-feedback is achieved by the saddle-point gains

K∗
1 (α) = −R−1

11 (α)BT
1 (α)

k∑

r=1

μ̂rH∗
r(α) , (45)

K∗
2 (α) = R−1

22 (α)BT
2 (α)

k∑

r=1

μ̂rH∗
r(α) , (46)
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where additional parametric design freedom μ̂r � μi/μ1 mutually selected by
Players 1 and 2 represent different levels of influence as they deem important to
the global performance of the game and {H∗

r(α) ≥ 0}k
r=1 are the optimal solutions

of the time-backward differential equations

d

dα
H∗

1(α) = − [A(α) + B1(α)K∗
1 (α) + B2(α)K∗

2 (α)]T H∗
1(α)

− H∗
1(α) [A(α) + B1(α)K∗

1 (α) + B2(α)K∗
2 (α)]

− Q(α) − K∗T
1 (α)R11(α)K∗

1 (α) + K∗T
2 (α)R22(α)K∗

2 (α) , (47)

and, for 2 ≤ r ≤ k

d

dα
H∗

r(α) = − [A(α) + B1(α)K∗
1 (α) + B2(α)K∗

2 (α)]T H∗
r(α)

− H∗
r(α) [A(α) + B1(α)K∗

1 (α) + B2(α)K∗
2 (α)]

−
r−1∑

s=1

2r!
s!(r − s)!

H∗
s(α)G(α)WGT (α)H∗

r−s(α) , (48)

with the terminal-boundary conditions H∗
1(tf ) = Qf , and H∗

r(tf ) = 0 when
2 ≤ r ≤ k.

4 Conclusions

This paper dealt with a class of two-player zero-sum differential games modeled
in a stochastic environment for realistic conditions. Both players were assumed
to have exact knowledge of the state, the payoff functional and the control capa-
bilities of each. Matrix differential equations for generating statistics of the IQF
random cost used in this game were derived. A more direct dynamic program-
ming approach was used to solve for a saddle-point solution that can address
both control strategy selection and performance analysis aspects. This saddle-
point solution was computed by two multi-cumulant control gains within the
class of linear memoryless-feedback strategies which then minimized a linear
combination of first k cumulants of the IQF random cost of the game. Hope-
fully, these results will make some new theoretical contributions and performance
analysis tools to differential game communities. Finally, this theoretical devel-
opment provides framework and analyses to applications of boost phase missile
interception whose the solution offers two optimal conflicting guidance laws: (1)
a hit-to-kill homing guidance law for intercepting boosting ballistic missiles in
minimum time and divert fuel and (2) an evasion strategy for a ballistic missile
to achieve burnout before the kill vehicle arrives, and force the kill vehicle use
maximum divert fuel. Future work will address the efficacy of the theoretical
work herein via numerical simulation results.
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Abstract. Motivated by recent research on multiobjective optimization,
we focus on the problem of m interconnected systems characterized by
multiple decision makers with limited centralized information. Two types
of variables occur: local variables that appear in a single component and
global variables which provide the connection between the m systems
and appear in all of them. From the point of view of one system, the
problem is seen as optimization of local costs using local control vari-
ables coupled with global variables, subject to local constraints. This is
a decomposition of the general centralized vector optimization problem
into a set of decentralized cooperative optimization problems with lo-
cal mathematical models, coupled through constraints. In this chapter,
we provide a method for solving this problem by using a decomposition
technique combined with an exact penalty method.

1 Introduction

Modern industrial production systems demand methods for the automation and
the optimization of their production processes, in order to improve their effi-
ciency and adaptability to the flexibility and reactivity requested by the new
global market. Generally, the management of multi-agent systems is difficult be-
cause their automation requires an approach to optimization that seeks to ensure
global goals that are met by the collaboration of the agents which usually are
only aware of their local surroundings. One approach is to solve this problem
globally, but centralized algorithms scale very poorly with the large size of the
problem because of the computational effort involved. This chapter presents a
decentralized cooperative technique for multiobjective optimization which makes
the initial problem more computationally manageable.

There are a lot of important contributors to this domain. Much of the current
research on decentralized optimization uses a setup where each system solves
a local problem and communicates the optimal solution to its neighbors (see
Inalhan et al. [13]). The challenge in this case is how to achieve cooperation
between all the systems.

Heiskanen [12] presents a decentralized method for computing Pareto-optimal
solutions in multiparty negotiations over continuous issues. The method is called

M.J. Hirsch et al. (Eds.): Adv. in Cooper. Ctrl. & Optimization, LNCIS 369, pp. 65–80, 2007.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2007
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decentralized because its use does not require decision makers to know each oth-
ers’ value functions and neither does it require anyone outside to know all value
functions. The computation of Pareto-optimal solutions in a decentralized man-
ner is interesting because of the negotiators’ frequent failure to achieve efficient
agreements in practice (see, for example Sebenius [22]) and their unwillingness
to disclose private information due to strategic reasons.

A decentralized cooperative optimization method is proposed by Kuwata and
How [14]. In this chapter, the approach is limited to a scalar global objective. The
key difference is that when there are active coupling constraints, they are modi-
fied; therefore, this procedure could worsen the local performance, but increases
the global performance.

For the particular case of a multi-agent system for which the objective function
may be written as a sum of functions, the approach of decomposition technique
received a great deal of attention, see the work of Benders [2], Geoffrion [10],
Tammer [23], Braun [3], de Miguel [16].

In another approach for generating Pareto-optimal solutions in conflict sit-
uations, there is a mediator who works as a neutral coordinator and gathers
information on decision makers’ preferences during an interactive procedure (see
Teich [24] and [25]).

Stochastic search algorithms imitating natural evolution have been developed
and used for simulation and optimization. Traditionally, evolutionary algorithms
have been used for scalar optimization. Especially during recent years, evolution-
ary algorithms have been applied to multiobjective programming (see Fonseca
and Fleming [7], Hanne [11], Barrico and Antunes [1]).

In this chapter, we focus on the multiobjective optimization problem with
objective functions and constraints depending on local variables and global vari-
ables. First, we seek the optimal solution for each of the m systems solved in-
dependently and we obtain the ideal point. Using the ideal point, the initial
problem is transformed into an equivalent one which allows the decomposition
into m subproblems. Each subproblem is then solved. The key difference is that
the new approach recognizes that each system should consider sacrifices to its
local performance if it is possible to reap a larger benefit to overall m systems
performance. Indeed, after the optimization of each system, a master problem
which gathers all the information from the optimal solutions is solved and the
values of the global variables are improved by taking into account the ensemble
of systems. The fact that each new iteration for the particular subproblem i,
i = 1, m, begins with a starting point that was improved for increasing the per-
formance of the ensemble, emphasizes the cooperative character of our method.

2 Preliminaries

Many optimization problems combine objective and constraint functions cor-
responding to a set of interconnected systems. In this chapter we consider m
systems, each with their own independent cost function fi, i = 1, m, and local
constraints. We are concerned with those problems in which only a few of the
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variables, known as global variables, appear in all systems, while the remaining
variables occur in only single systems.

Let f : Rn × Rp → Rm be the vectorial cost function defined by f (x, y) =

(f1 (x1, y) , ..., fi (xi, y) , ..., fm (xm, y)), where xi ∈ Rni ∀i = 1, m,

m∑

i=1

ni = n,

x =
(
xT

1 , ..., xT
m

)T ∈ Rn; xi represents the vector of local variables of the ith

system, i = 1, m, and y ∈ Rp the vector of global variables.
The centralized optimization problem (CP ) is defined as

min
(x,y)∈Rn×Rp

f (x, y) = (f1 (x1, y) , ..., fi (xi, y) , ..., fm (xm, y))

s.t. gi (xi, y) ≥ 0, i = 1, m,
(1)

where gi = (gi1, ..., gimi) : Rn ×Rp → Rmi is the vector function that formalizes
the mi constraints of the ith system, i = 1, m.

Let X =
{
(x, y) ∈ Rn × Rp

∣∣gi (xi, y) ≥ 0, i = 1, m
}

be the set of feasible
solutions of the problem (CP ) .

Definition 1. (x∗, y∗) ∈ X is a Pareto-optimal solution of the problem 1 if there
is no (x, y) ∈ X and j ∈ {1, ..., m} such that fi (xi, y) ≤ fi (x∗

i , y
∗) , ∀i = 1, m

and fj (xj , y) < fj

(
x∗

j , y
∗) .

Methodological approaches in multiobjective optimization are mostly based on
the calculation of one or several, usually efficient solutions which can be inter-
preted as compromise solutions. Only for specific types of the general multiob-
jective optimization problem, (e.g, linear multiobjective optimization problems)
have algorithms been developed for computing the complete efficient set. Often
it is not only difficult but also not desirable to calculate the usually uncountable
efficient set because the decision maker is interested in the selection of one al-
ternative of his multicriteria decision problem; therefore, the proposed method
does not look for the entire efficient set.

3 Decentralized Optimization Via Decomposition
Technique

We consider the nonlinear programming problem (Pi) associated to the ith sys-
tem

min
(xi,y)∈Rni×Rp

fi (xi, y)

s.t. gi (xi, y) ≥ 0.
(2)

Let (x∗
i , y

∗) the global optimal solution of the problem 2 and fi (x∗
i , y

∗) = z∗i ∈
R the corresponding optimal value. In this case, z∗ = (z∗1 , ..., z∗m) is called the
ideal point for 1 because, usually, z∗ = (z∗1 , ..., z∗m) ∈ Rm is not attainable. Indi-
vidually, the z∗i are attainable but to find a point z∗ which can simultaneously
minimize each fi, i = 1, m, is very difficult.
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Now, given (x, y) ∈ X ⊂ Rn × Rp, we define the regret function (Yu [26])

r (x, y) = (‖f (x, y) − z∗‖2)
2 =

m∑

i=1

(fi (xi, y) − z∗i )2 .

We say that (x̃, ỹ) ∈ X is a compromise solution of 1 with respect to the
l2-norm if it is the solution of the problem

min
(x,y)∈Rn×Rp

‖f (x, y) − z∗‖2
2 =

m∑

i=1

(fi (xi, y) − z∗i )2 (3)

s.t. gi (xi, y) ≥ 0, i = 1, m

Note that r (x, y) treats each (fi (xi, y) − z∗i )2 as having the same importance in
the regret function. In multiple-criteria problems, the criteria may have different
degrees of importance; a weight vector w = (w1, ..., wm) ≥ 0 may be assigned
to signal the different degrees of importance. Therefore we define r (x, y; w) =
(
‖f (x, y) − z∗‖w,2

)2
=

m∑

i=1

w2
i (fi (xi, y) − z∗i )2 =

m∑

i=1

(wifi (xi, y) − wiz
∗
i )2.

The concept of compromise solution has a natural extension to include the
weighted regret function. In fact, the weight vector w changes the scale of each
criterion. Once the scale is adjusted, the regret function is reduced to that of
equal weight. Thus, without loss of generality, we will focus on the equal weight
case 3.

In the sequel, we will use the notation f̃i (xi, y) = (fi (xi, y) − z∗i )2 . Therefore
the problem 3 is equivalent with

min
(x,y)∈Rn×Rp

m∑

i=1

f̃i (xi, y)

s.t. gi (xi, y) ≥ 0, i = 1, m

(4)

The interest for problems having the same structure as 4 and two types of
variables that can be seen as local and global is justified by the wide applicability
in the following practical example.

Example 1. A practical problem that can be formalized like a centralized opti-
mization problem is presented in Escudero et al. [6]. In this paper, a modeling
framework for the solution of hydroelectric power management problem with un-
certainty in the values of the water inflows and outflows is presented. The prob-
lem under study is maximizing the hydropower generated along a time horizon
by a multireservoir power system. We note that a multi-objective formulation
could be very useful. Its formulation relies on a basic network, where the nodes
represent the reservoirs and the arcs correspond to the sections that connect the
reservoirs. Each node of the network can be considered as a component system
within the optimization problem. The global variables are the amounts of water
stored in the reservoirs at the end of each time period. Local variables include
the amount of water released for generation at each hydropower plant and the
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energy generated using each of the thermal plants. Therefore, due to these fea-
tures, this problem can by formalized as in 1 and solved using the algorithm
presented in the next section.

Next, we allow the vector of global variables to take a different value yi ∈ Rp

within each of the subproblems 4. The l2-norm ‖yi − u‖2 is used to force the
global variables yi to take the same value, equal to the so-called target variables
u ∈ Rp, for all systems. Therefore, the resulting problem is

min
u,x,y

m∑

i=1

f̃i (xi, yi)

s.t. gi (xi, yi) ≥ 0, i = 1, m

‖yi − u‖2
2 ≤ 0, i = 1, m

(5)

where y =
(
yT
1 , ..., yT

m

)T ∈ Rmp.
If we eliminate the global variables, problem 5 breaks into m independent

subproblems:
min
xi,yi

f̃i (xi, yi)

s.t. gi (xi, yi) ≥ 0,

‖yi − u‖2
2 ≤ 0.

(6)

where gi = (gi1, ..., gimi) : Rn × Rp → Rmi . We consider the equivalent form of
the problem 6:

min
xi,yi

f̃i (xi, yi)

s.t. − gij (xi, yi) ≤ 0, j = 1, mi,

‖yi − u‖2
2 ≤ 0.

(7)

For the sake of clarity we use the notation −gi,mi+1 (xi, yi) = ‖yi − u‖2
2 =

p∑

j=1

(yij − uj)
2
. The problem formulation using the decomposition method is:

min
u

m∑

i=1

f̃∗
i (u) , (8)

where f̃∗
i (u) is the optimal value in 7 corresponding to the optimal solution

(x∗
i , y

∗
i ):

f̃∗
i (u) = min

xi,yi

f̃i (xi, yi)

s.t. − gij (xi, yi) ≤ 0, j = 1, mi + 1.
(9)

We present theoretical results that ensure the convergence of the algorithm in
Section 5 based on an exact penalty method. We choose this approach for solving
problem 9 because exact penalty methods have the ability to handle degenerate
problems and inconsistent constraint linearizations.
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4 Penalty Method

Penalty methods have undergone three stages of development. First, they were
seen as vehicles for solving constrained optimization problems by means of un-
constrained optimization techniques. In the second stage, the penalty problem
is replaced by a sequence of linearly constrained subproblems. These formula-
tions, which are related to the sequential quadratic approach, are much more
effective than the unconstrained approach but they leave open the question of
how to choose the penalty parameter. In the most recent stage of development,
penalty methods adjust the penalty parameter at every iteration so as to achieve
a prescribed level of linear feasibility. The choice of the penalty parameter then
ceases to be a heuristic and becomes an integral part of the step computation,
see Byrd et al. [4] and [5], Price [18], Fulga [8] and [9]. Therefore, we propose an
algorithm for solving problem 7 that combines penalty methods so as to ensure
balanced progress toward feasibility and optimality.

Throughout this chapter we assume that at each local minimizer of the non-
linear programming problem 9, an appropriate constraint qualification holds,
thereby ensuring that any optimal point (x∗

i , y
∗
i ) satisfies the following Karush-

Kuhn-Tucker conditions: there exists a vector of Lagrange multipliers λ∗
i =(

λ∗
i1, ..., λ

∗
i, mi+1

)
∈ Rmi+1 such that
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−gij (x∗
i , y

∗
i ) ≤ 0 ; j = 1, mi + 1

λ∗
ij ≥ 0 ; j = 1, mi + 1

λ∗
ij · (−gij (x∗

i , y
∗
i )) = 0 ; j = 1, mi + 1

∇f̃i (x∗
i , y

∗
i ) −

mi+1∑
j=1

λ∗
ij · ∇gij (x∗

i , y
∗
i ) = 0.

(10)

The nonlinear programming problem is not solved directly; instead a non-diffe-
rentiable exact penalty function Φi is minimized, where the exact penalty func-
tion is constructed so that local minimizers of the nonlinear programming prob-
lem are also local minimizers of the penalty function Φi. The term exact refers
to the fact that exact solutions are computed for finite values of the penalty pa-
rameters. Therefore, exact penalty functions avoid the ill-conditioning associated
with large penalty parameter since they need no longer be driven to infinity. This
advantage comes with an important difficulty: as a consequence of the use of ex-
act penalty functions the problem optimal-value function becomes nonsmooth.
The method that we propose handles this aspect quite well.

Following the approach in Price [18], we consider the penalty function

Φi (xi, yi) = f̃i (xi, yi) + μ · θ (xi, yi) +
1
2
ν · θ2 (xi, yi) , (11)

with μ > 0, ν ≥ 0 and the degree of infeasibility, θ (xi, yi) , is defined as

θ (xi, yi) = max
1≤ j≤mi+1

{
[−gij (xi, yi)]+

}
, (12)

where [y]+ = max {0; y}. The penalty function Φi may be viewed as a hybrid of a
quadratic penalty function based on the infinity norm and the single parameter
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exact penalty function of [15], [17] and [21]. Clearly θ is continuous ∀ (xi, yi) ∈
Rn × Rp, but it is usually not differentiable for some (xi, yi) . However, the
directional derivative

D(p,q)θ (xi, yi) = lim
α↘0

θ (xi + αp, yi + αq) − θ (xi, yi)
α

exists for any (xi, yi) , (p, q) ∈ Rn × Rp. Definition 12 implies that for any
(xi, yi) , (p, q) ∈ Rn × Rp the directional derivative takes the form

D(p,q)θ (xi, yi) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

max
i∈I(xi,yi)

(
−
(
pT , qT

)
∇gij (xi, yi)

)
, if
{

θ (xi, yi) > 0
I (xi, yi) 
= ∅

,

max
i∈I(xi,yi)

[
−
(
pT , qT

)
∇gij (xi, yi)

]
+ , if

{
θ (xi, yi) = 0
I (xi, yi) 
= ∅

0 if I (xi, yi) = ∅

(13)
where I (xi, yi) = {j |−gij (xi, yi) = θ (xi, yi)} .

Definition 2. For fixed values of μ > 0 and ν ≥ 0, a point (x∗
i , y

∗
i ) is a critical

point of Φi if and only if for all (p, q) ∈ Rn × Rp the directional derivative
D(p,q)Φi (x∗

i , y
∗
i ) is non-negative.

Given a suitable choice of the penalty parameters, problem 9 may be replaced
by the problem

{
min Φi (xi, yi)

(xi, yi) ∈ Rn × Rp.
(14)

Definition 3. The solution set of the penalty function problem 14 with fixed
values for μ > 0, ν ≥ 0 is defined as the set of critical points of Φi.

Theorem 1. Let (x∗
i , y

∗
i ) be an optimal solution of the nonlinear programming

problem 9 at which Karush-Kuhn-Tucker conditions 10 hold and let λ∗
i ∈ Rmi+1

be a vector of Lagrange multipliers satisfying these conditions for which ‖λ∗
i ‖1

is minimal. If μ > ‖λ∗
i ‖1 then (x∗

i , y
∗
i ) is a critical point of Φi. Conversely, if

(x∗
i , y

∗
i ) is both feasible and a critical point of Φi for some μ > 0, ν ≥ 0, then

(x∗
i , y

∗
i ) is a Karush-Kuhn-Tucker point of the nonlinear programming problem

9.

Proof. The Karush-Kuhn-Tucker conditions 10 and definition 12 imply θ
(x∗

i , y
∗
i ) = 0 and λ∗

ij = 0, ∀j /∈ I (x∗
i , y

∗
i ) . Therefore, combining 10 with 13,

for any (p, q) ∈ Rn × Rp we have

D(p,q)Φi (x∗
i , y

∗
i ) =

(
pT , qT

)
∇f̃i (x∗

i , y
∗
i ) + μD(p,q)θ (x∗

i , y
∗
i ) =

=
(
pT , qT

)
⎡

⎣
mi+1∑

j=1

λ∗
ij∇gij (x∗

i , y
∗
i )

⎤

⎦+ μD(p,q)θ (x∗
i , y

∗
i ) ≥
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≥

⎡

⎢⎣−
∑

j∈I(x∗
i ,y∗

i )
λ∗

ij + μ

⎤

⎥⎦D(p,q)θ (x∗
i , y

∗
i ) =

= (μ − ‖λ∗
i ‖1) max

i∈I(xi,yi)

[
−
(
pT , qT

)
∇g (x∗

i , y
∗
i )
]
+ ≥ 0.

We obtain D(p,q)Φi (x∗
i , y

∗
i ) ≥ 0, ∀ (p, q) ∈ Rn ×Rp and thus, x∗ is a critical point

of Φi.

Conversely, if (x∗
i , y

∗
i )is a critical point of Φi for some fixed μ > 0, ν ≥ 0, then

D(p,q)Φi (x∗
i , y

∗
i ) ≥ 0, ∀ (p, q) ∈ Rn × Rp. For any (xi, yi) sufficiently close to

(x∗
i , y

∗
i ) we have

Φi (xi, yi) = Φi (x∗
i , y

∗
i ) + D(xi−x∗

i ,yi−y∗
i )Φi (x∗

i , y
∗
i ) + o ‖(xi − x∗

i , yi − y∗
i )‖

≥ Φi (x∗
i , y

∗
i ) + o ‖(xi − x∗

i , yi − y∗
i )‖ .

If (xi, yi) is a feasible point, Φi (xi, yi) = f̃i (xi, yi) and (x∗
i , y

∗
i ) satisfies Karush-

Kuhn-Tucker conditions 10 and the theorem is proved.
Penalty problem 14 is solved by an iterative process. In order to determine a

suitable descent direction at the k-th iterate, a continuous piecewise quadratic
approximation to Φi near the current point is defined:

ψk
i (p, q) = f̃i

(
xk

i , yk
i

)
+
(
pT , qT

)
∇f̃i

(
xk

i , yk
i

)
+

+
1
2
(
pT , qT

)
Hk
(
pT , qT

)T
+ μkζ (p, q) +

1
2
νk · ζ2 (p, q) ,

where

ζ (p, q) = max
1≤ j≤mi+1

{[
−gij

(
xk

i , yk
i

)
−
(
pT , qT

)
∇gij

(
xk

i , yk
i

)]
+

}

and Hk is positive definite. Clearly ψk
i is strictly convex in (p, q) and there-

fore ψk
i has an unique global minimizer

(
pk, qk

)
which also solves the quadratic

programming problem
(
P k

i

)
:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min
p,q,ζ

(
pT , qT

)
∇f̃i

(
xk

i , yk
i

)
+ 1

2

(
pT , qT

)
Hk
(
pT , qT

)T +

+μkζ (p, q) + 1
2νk · ζ2 (p, q)

gij

(
xk

i , yk
i

)
+
(
pT , qT

)
∇gij

(
xk

i , yk
i

)
≥ −ζ, j = 1, mi + 1

ζ ≥ 0.

(15)

Theorem 2. Let
(
pk, qk, ζk

)
be the unique solution of the quadratic program-

ming problem
(
P k

i

)
, with Hk positive definite. Let λk

i denote an optimal La-

grange multiplier vector, which need not be unique, for which
∥∥∥λk

i

∥∥∥
1

is minimal.

If
(
pk, qk

)

= (0, 0), ζk ≤ θ

(
xk

i , yk
i

)
and μ + νθ

(
xk

i , yk
i

)
≥
∥∥∥λk

i

∥∥∥
1

then
(
pk, qk

)
is

a descent direction for Φi at
(
xk

i , yk
i

)
.
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Proof. The Karush-Kuhn-Tucker conditions for problem
(
P k

i

)
are

⎧
⎪⎨

⎪⎩

−gij

(
xk

i , yk
i

)
−
(
pT , qT

)
∇gij

(
xk

i , yk
i

)
− ζk ≤ 0; λk

ij ≥ 0

λk
ij

(
−gij

(
xk

i , yk
i

)
−
(
pT , qT

)
∇gij

(
xk

i , yk
i

)
− ζk

)
= 0

ζk ≥ 0; λζ ≤ 0; λζζ
k = 0

(16)

and ⎧
⎪⎪⎨

⎪⎪⎩

∇f̃i

(
xk

i , yk
i

)
+ Hk

(
pk T

, qkT
)T

−
mi+1∑
j=1

λk
ij∇gij

(
xk

i , yk
i

)
= 0

μk + νkζk −
mi+1∑
j=1

λk
ij + λζ = 0.

(17)

Therefore, combining 16 and 17 we find

D(pk,qk)Φi

(
xk

i , yk
i

)
= −

(
pk T

, qkT
)

Hk
(
pk T

, qkT
)T

+
mi+1∑

j=1

λk
ij

(
−∇gij

(
xk

i , yk
i

)
− ζk

)
(18)

+
(
μk + νkθ

(
xk

i , yk
i

))
D(pk,qk)θ

(
xk

i , yk
i

)
.

Since ζ is convex on Rn × Rp, we have

ζ
(
pk, qk

)
−θ
(
xk

i , yk
i

)
= ζ
(
pk, qk

)
−ζ (0, 0)≥ D(pk,qk)ζ (0, 0)= D(pk,qk)θ

(
xk

i , yk
i

)
.

Applying this result to 18 we obtain

D(pk,qk)Φi

(
xk

i , yk
i

)
≤ −

(
pk T

, qkT
)

Hk
(
pk T

, qkT
)T

+
(
−
∥∥∥λk

i

∥∥∥
1

+ μk + νkθ
(
xk

i , yk
i

))(
ζk − θ

(
xk

i , yk
i

))
≤ 0.

and thus,
(
pk, qk

)
is a descent direction of Φi in

(
xk

i , yk
i

)
and the theorem is

proved.
The convergence properties of the algorithm are summarized in the following:

Theorem 3. Assume that the sequence of iterates
{(

xk
i , yk

i

)}
is bounded, the

sequence of matrices
{
Hk
}

generated is bounded in norm and the penalty pa-
rameters μ, ν are altered only a finite number of times. Then, every cluster point
of the sequence of iterates

{(
xk

i , yk
i

)}
generated by the algorithm is a critical

point of Φi (xi, yi; μ, ν) , where μ, ν are at their finite values.

The following algorithm is based on the preceding theoretical results.



74 C. Fulga

5 Penalty Algorithm

Step 1. Initialization
k = 1, μ1 = 1, ν1 = 1, H1 = I, ε = 10−5, ρ = 0.02, δ = 10−8, θcross = 1,

θcap = 10, k1 = 1.5, k2 = 2, k3 = 1.2, k4 = 5, δ = 10−8.
Step 2. Update H and the penalty parameters
This step is omitted from the first iteration. The matrix H is updated using

the Broyden-Fletcher-Goldfarb-Shanno update provided this maintains pos-
itive definiteness; otherwise H is not updated. The penalty parameters are
updated as follows:

(i) If θ
(
xk

i , yk
i

)
≤ θcross and μk < k1

∥∥∥λk
i

∥∥∥
1
, then μk+1 = k2

∥∥∥λk
i

∥∥∥
1

and

νk+1 = νk.
(ii) If θ

(
xk

i , yk
i

)
> θcrossand μk +νkθ

(
xk

i , yk
i

)
< k3

∥∥∥λk
i

∥∥∥
1
, then μk+1 = μk

and νk+1 =
k4‖λk

i ‖1
−μk

θ(xk
i ,yk

i )
.

Otherwise, the penalty parameters are not altered.

Step 3. Solve the
(
P k

i

)
problem

If θ
(
xk

i , yk
i

)
≤ θcap, then solve

(
P k

i

)
; the solution will be denoted by

(
pk, qk, ζk

)

and the algorithm proceeds to Step 4.

If θ
(
xk

i , yk
i

)
> θcap, the capping constraint ζ ≤ θ

(
xk

i , yk
i

)
is also imposed in

(
P k

i

)
. Then, this problem is solved and the solution is denoted by

(
pk, qk, ζk

)
.

If the capping constraint is not active at the
(
P k

i

)
’s solution, the algorithm

proceeds directly to Step 4. Otherwise, the penalty parameters are updated as
described in Step 2, except that

∥∥∥λk
i

∥∥∥
1

is replaced by μk+νkθ
(
xk

i , yk
i

)
+|ξ| ,where

ξ is the Lagrange multiplier of the capping constraint. The
(
P k

i

)
problem is then

solved again.

Step 4. Attempt the proposed step
If (i) Φi

(
xk

i , yk
i

)
− Φi

(
xk

i + pk, yk
i + qk

)
≥ ρ
[
Ψk

i (0, 0) − Ψk
i

(
pk, qk

)]

(ii) θ
(
xk

i + pk, yk
i + qk

)
≤ θ
(
xk

i , yk
i

)
are satisfied, then the proposed step

(
pk, qk

)

is accepted and the algorithm proceeds to step 7. Otherwise, the execution
continues at the next step.

Step 5. Calculate the Maratos effect correction vector
Solve the following quadratic problem for the second order correction

(
uk, vk

)
:

{
min
t∈Rn

‖ (u, v)‖2
2

gij

(
xk

i + pk, yk
i + qk

)
+
(
uT , vT

)
∇gij

(
xk

i , yk
i

)
≤ 0, ∀j ∈ Jk

i

where Jk
i is the set of indices of the constraints active at the

(
P k

i

)
’s solution in

Step 3 and ‖(u, v)‖2 =
(

n∑
i=1

|ui|2 +
p∑

i=1
|vi|2

)1/2

.

If
∥∥(uk, vk

)∥∥
2 ≥

∥∥(pk, qk
)∥∥

2then set
(
uk, vk

)
= (0, 0) .
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Step 6. Arc search
Consider successive values of the sequence 1, 1

2 , 1
4 , 1

8 , ...as trial values of α. The
number of trial values for α is counted in Nα. If

(
uk, vk

)
= (0, 0), then omit

the first member of the sequence. Accept the first trial value which satisfies

(i) Φi

(
xk

i , yk
i

)
− Φi

(
xk

i + rk (α) , yk
i + sk (α)

)
≥ ρα

[
Ψk

i (0, 0) − Ψk
i

(
pk, qk

)]

where rk (α) = αpk + α2uk and sk (α) = αqk + α2vk;
(ii) θ

(
xk

i + rk (α) , yk
i + sk (α)

)
≤ θ
(
xk

i , yk
i

)
.

After a satisfactory value of α has been found, set(
xk+1

i , yk+1
i

)
=
(
xk

i + rk (α) , yk
i + sk (α)

)
and go to Step 7. If Nα > 10 with-

out finding a satisfactory value for α then, in order to get a feasible point, Rosen’s
method [19], [20] is employed; the new direction is

(
pk, qk

)
= N

(
NT N

)−1
w,

where N is the matrix of normed column vectors of the linearly independent gra-
dients of the violated constraints and w is the vector whose components are the
absolute values of the constraint functions for the violated constraints . Then,
go to Step 5.

Step 7. Check the stopping conditions
The algorithm halts if either the length of the previous step∥∥(xk

i , yk
i

)
−
(
xk−1

i , yk−1
i

)∥∥
2 ≤ δ or both of the following conditions hold:

(i) θ
(
xk

i , yk
i

)
< ε

(ii)

∥∥∥∥∥∇f̃i

(
xk

i , yk
i

)
−
∑

j∈M

λk
ij∇gij

(
xk

i , yk
i

)
∥∥∥∥∥

2

< ε,

where M =
{

j
∣∣gij

(
xk

i , yk
i

)
|< ε

}
. Otherwise, k is incremented, and the al-

gorithm proceeds to Step 2.

6 Decentralized Algorithm

The algorithm in this section coordinates the solution to the m subproblems
to find the minimizer to the original problem. The coordination is carried out
by the master problem 7, an optimization problem whose objective function is
defined using information gathered from the subproblem solutions.

If we set the global variables to a fixed value, the problem breaks into m in-
dependent subproblems. At each iteration of the optimization algorithm solving
the master problem, all of the m subproblems are solved and information is ex-
changed between the master problem and the subproblems. The master problem
is used to find the optimal value of the global variables.

Step 1. Initialization

Initialize the target variables u = u0 ∈ Rp, the Hessian approximation matrix
H0 = I, the maximal number of iterations N and the optimality tolerance ε.
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Step 2. Solve (Pi) , i = 1, m

Solve problem (Pi) using the Penalty Algorithm and let (x∗
i , y

∗
i ) be the optimal

solution, i = 1, m. The optimal value of the objective function in (Pi) depends
on the current iteration uk, therefore we use the notation f̃∗

i (uk) = f̃i (x∗
i , y

∗
i ) ,

i = 1, m.

Step 3. Attempt the proposed target value

With the notation F (uk) =
m∑

i=1

f̃∗
i (uk) we check if uk is the optimal solution of

the master problem 8.

– If ‖∇F (uk)‖ < ε then stop.
– If k = N , then stop.
– If ‖uk − uk−1‖ < ε then stop.

Otherwise, go to Step 4.

Step 4. BFGS update

Hk and uk are updated by the BFGS formula.

a) Obtain sk by solving Hksk = −∇F (uk) .
b) Perform a line search to find the optimal αk in the direction found, then

update uk+1 = uk + αksk.
c) Denote yk = ∇F (uk+1) − ∇F (uk) .

d) Hk+1 = Hk + ykyT
k

yT
k sk

− HksksT
k Hk

sT
k Hksk

.

Then k is incremented and algorithm proceeds to step 2.

Remark 1. Note that we don’t use the actual Hessian matrix of F even if avail-
able, but instead, use the current approximation of it. The idea behind quasi-
Newton methods is to start with a positive definite, symmetric approximation
to H, usually the unit matrix, and build up the approximating Hk’s in such a
way that the matrix Hk remains positive definite and symmetric. Far from the
minimum, this guarantees that we always move in a descent direction. Close to
the minimum, the updating formula approaches the true Hessian and we have
the convergence of Newton’s method.

7 Computational Results

In this section we consider the initial multiobjective problem 1 already trans-
formed into the equivalent nonlinear problem 4. We use a test-problem from de
Miguel [16]:
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min
x,y

k1 ‖y − a‖2
2 +

1
2
k2 ‖x11 − y‖2

2 +
1
2
k2 ‖x21 + y‖2

2 + +
1
2

‖x12‖2
2 +

1
2

‖x22‖2
2

s.t.

⎧
⎪⎪⎨

⎪⎪⎩

e ≤ x11 + y ≤ 2e
−x11 + y ≤ e

e ≤ x21 − y ≤ 2e
−x21 − y ≤ e

(19)

where y = (y1, ..., ym) ∈ Rm is the vector of global variables and x1 = (x11, x12),
x2 = (x21, x22) ∈ Rm×Rr are the vectors of local variables of the first and second
system respectively, and e = (1, ..., 1)T ∈ Rm. In [16] problem 19 is solved by
considering a different subproblem for each component of the m-dimensional
vectors y, x11, x21 using the fact that x12 = x22 = 0 ∈ Rr. The theoretical
solution (see [16]) (x∗

1, x
∗
2, y

∗) is given by
⎛

⎝
x∗

11i

x∗
21i

y∗
i

⎞

⎠ =

⎛

⎝
1 − y∗

i

1 + y∗
i

k1
k1+4k2

a

⎞

⎠

and x∗
12 j = x∗

22 j = 0, ∀i = 1, m and j = 1, r if 0 ≤ a ≤ 1
2 + 2k2

k1
.

Instead of solving m subproblems, our method requires solving only two sub-
problems (Pi) , i = 1, 2, one for each system. We solve problem 19 using our
decentralized algorithm for a = 1.5, k1 = k2 = 1 and m = 3, r = 2.

min
u,x,y

1
2

‖y1 − 1.5‖2
2 +

1
2

‖x11 − y‖2
2

s.t.

⎧
⎨

⎩

e ≤ x11 + y ≤ 2e
−x11 + y ≤ e
‖y1 − u‖ ≤ 0.

(20)

min
u,x,y

1
2

‖y2 − 1.5‖2
2 +

1
2

‖x21 + y‖2
2

s.t.

⎧
⎨

⎩

e ≤ x21 − y ≤ 2e
−x21 − y ≤ e
‖y2 − u‖ ≤ 0.

(21)

The theoretical solution (x∗
1, x

∗
2, y

∗), where x∗
1 = (x∗

11, x
∗
12) =

(x∗
111, x

∗
112, x

∗
113, x

∗
121, x

∗
122), x∗

2 = (x∗
21, x

∗
22) = (x∗

211, x
∗
212, x

∗
213, x

∗
221, x

∗
222) ∈

R3 × R2, y∗ = (y∗
1 , y∗

2 , y
∗
3) ∈ R3, is given by

⎛

⎝
x∗

11i

x∗
21i

y∗
i

⎞

⎠ =

⎛

⎝
0.7
1.3
0.3

⎞

⎠

and x∗
12 j = x∗

22 j = 0, ∀i = 1, 3 and j = 1, 2. The algorithm was tested and the
results are listed in the table bellow. The optimal solution is marked with (∗) .
Figure 5.1 depicts the variation of the objective function of the master problem,
F (u) . The thin line represents the theoretical curve and the thick one the curve
obtained using our algorithm.
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Target variable Theoretical solution Algorithm solution
ui yi x1j x2j yi x1j x2j

0.05 0.05 0.95 1.05 0.055768 0.944232 1.044221
0.15 0.15 0.85 1.15 0.155774 0.844225 1.144226
0.25 0.25 0.75 1.25 0.255779 0.744221 1.244244
0.30* 0.30* 0.70* 1.30* 0.305774* 0.695266* 1.294247*
0.35 0.35 0.65 1.35 0.355772 0.644227 1.344244
0.45 0.45 0.55 1.45 0.455773 0.544226 1.444274
0.55 0.55 0.45 1.55 0.525773 0.485803 1.514153
0.65 0.65 0.35 1.65 0.655773 0.344229 1.644248
0.75 0.75 0.25 1.75 0.755773 0.244226 1.744223
0.85 0.85 0.15 1.85 0.865773 0.134223 1.844266
0.95 0.95 0.05 1.95 0.955773 0.04222 1.944162

Fig. 5.1. Master problem objective function

8 Conclusions

This chapter presents an efficient method for solving multiobjective optimiza-
tion problems. The problem is the model of m interconnected systems. Each
system has an objective function and constraints which depend on local and
global variables. This centralized problem is decomposed in m subproblems and
a master problem gathering informations from the solutions of the subproblems
is constructed and then solved. Each subproblem is solved by a penalty-based
algorithm; the convergence of the algorithm is established.

This decentralized algorithm offers significant reduction in computational time
due to the possibility of parallel processing. Computational results show that the
combined algorithm is effective in practice.
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Abstract. This chapter considers the cooperative control of aerial mu-
nitions during the attack phase of a mission against ground targets. It
is assumed that sensor information from multiple munitions is avail-
able to refine an estimate of the target location. Based on models of
the munition dynamics and sensor performance, munition trajectories
are designed that enhance the ability to cooperatively estimate the tar-
get location. The problem is posed as an optimal control problem using
a cost function based on the variances in the target-location estimate.
These variances are computed by fusing the individual munition mea-
surements in a weighted least squares estimate. Numerical solutions are
found for several examples both with and without considering limitations
on the munitions’ field of view. These examples show large reductions in
target-location uncertainty when these trajectories are used compared to
other naively designed trajectories. This reduction in uncertainty could
enable the attack of targets with greater precision using smaller, cheaper
munitions.

1 Introduction

Research is in progress on the cooperative control of air armament designed to
detect, identify, and attack ground targets. One class of this type of armament
are wide-area search munitions, which can be deployed in an area of unknown
targets. Current development is focused on possibilities of enhancing munition
capabilities through cooperative control. This chapter presents a new concept
for developing trajectories that enhance munitions’ capability to cooperatively
estimate target locations.

The tasks of intercepting a chosen target and estimating the target’s location
can represent competing requirements in the path planning of a munition. In a
general sense, the problem posed here is to plan a path to a target while simulta-
neously estimating that target’s location. This can be considered a simultaneous
localization and planning (SLAP) problem. Whereas SLAP problems can be
studied for a single agent, many interesting behaviors emerge when cooperative
agents are considered.

Important work exists in the literature on the two related problems of coop-
erative search [1,2,3] and the design of optimal trajectories for single observers

M.J. Hirsch et al. (Eds.): Adv. in Cooper. Ctrl. & Optimization, LNCIS 369, pp. 81–93, 2007.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2007
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[4,5,6,7,8,9,10]. Much of the work in optimal trajectories has focused on bearings-
only measurements of a target, often focused on sonar applications. Fawcett
investigated the impact of maneuvers on the Cramer-Rao lower bound for the
target-state estimate [4]. Frew and Rock investigated a method to minimize a
measure of the estimate error covariance [9]. Other works have studied optimal
trajectories for cooperative observers [11,12]. These works have focused on re-
connaissance of a target, relating the performance index to the quality of the
target-location estimate at the end of the mission or a time interval.

Several related topics also capture aspects of both cooperative search and tra-
jectory design. Dohner et al. used a Lyapunov approach to drive a vehicle swarm
to an uncertain target location while simultaneously maintaining swarm spacing
to ensure observability of the target [13]. Passino et al. developed a distributed
cooperative search algorithm where decisions were made planning into the future
to minimize a cost function representing several subgoals, such as covering areas
in large uncertainty and minimizing overlap with other agents [14].

It is noteworthy that the problem considered in this chapter, trajectory de-
sign to enhance target-location estimation, is in some ways the dual of another
problem that has received considerable attention, trajectory design to minimize
detection by an enemy radar [15,16,17,18]. Pachter et al. have considered another
related problem that used cooperative vehicles to project phantom tracks to an
enemy radar [19,20].

This chapter extends thefieldofoptimalobservor trajectories to thecooperative-
attack application. The methods presented in this chapter will be illustrated for
a planar problem with two munitions and one target; the methods apply though
to three-dimensional cases with general numbers of munitions and targets. In
the following section, models for the munition motion and sensor performance
are presented. Next, the SLAP trajectory design is posed as an optimal control
problem. Several example numerical solutions are then presented. Finally, the
performance of a target-location estimation algorithm is evaluated along the
SLAP trajectories and compared to alternative trajectories.

2 Model Development

A scenario can be considered with the two-dimensional plane populated by n
munitions and m fixed targets. The following developments will illustrate the
method for two munitions and one target. The state of each munition is given
by its position in two dimensional space, x1 = [x1 y1]T and x2 = [x2 y2]T. A
constant-speed kinematic model is used to describe the motion of the munitions.
The heading angles of the munitions are ψ1 and ψ2, and the speed of each
munition is v.

ẋ1 = v cosψ1 ; ẋ2 = v cosψ2

ẏ1 = v sin ψ1 ; ẏ2 = v sin ψ2 (1)

ẋi = fi (ψi) , i ∈ {1, 2} (2)

Here, the heading angles are treated as control variables.
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Additionally, each munition is considered to carry a sensor that is capable of
measuring the target location in the xy plane. Again, the end goal will be to
design trajectories that improve the estimation of the target location. Therefore,
a model is needed of the sensor measurements and their uncertainties. The target
has a position described by xT = [xT yT ]T. The measurement of this target
location by each munition, z̃1 = [x̃T,1 ỹT,1]T and z̃2 = [x̃T,2 ỹT,2]T, is modeled
as shown below.

x̃T,1 = xT + wx,1(0, σx,1) ; x̃T,2 = xT + wx,2(0, σx,2)
ỹT,1 = yT + wy,1(0, σy,1) ; ỹT,2 = yT + wy,2(0, σy,2) (3)

The measurement errors from each munition are assumed to be independent
of the errors from the other munition. The x and y measurement errors from
each individual munition, however, are treated as correlated Gaussian random
variables with zero mean and standard deviations of σx,i and σy,i, where i ∈
{1, 2}. It is these uncertainties that will drive the trajectory design, and they
can be selected to model a particular sensor design.

The error in the target-location measurements from an individual munition is
treated as following a zero-mean jointly-Gaussian distribution that is uncorre-
lated in the down-range and cross-range directions, relative to the true target and
munition locations. The errors in these directions, wd,i(0, σd,i) and wc,i(0, σc,i),
can therefore be treated as independent Gaussian random variables. The stan-
dard deviations in the down-range and cross-range directions are modeled as
functions of the range from the munition to the target.

σd,i = 0.1ri ; σc,i = 0.01ri (4)

This models a sensor that is more accurate when close to the target and more
accurate in the transverse direction than in the radial direction. The uncertainty
in the measurement of the target location by the ith munition is illustrated in
Fig. 1.

From the down-range and cross-range variables, the errors and the covariance
matrix in the x and y coordinates can be found.

[
wx,i

wy,i

]
=

[
cos θi sin θi

− sin θi cos θi

] [
wd,i

wc,i

]
(5)

Pi =
[

σ2
x,i σxy,i

σxy,i σ2
y,i

]
=

[
cos θi sin θi

− sin θi cos θi

] [
σ2

d,i 0
0 σ2

c,i

] [
cos θi − sin θi

sin θi cos θi

]
(6)

Here, θi is the bearing angle of the target relative to the ith munition. The range
and bearing angle for each target-munition pair are computed as shown below.

ri =
√

(xT − xi)
2 + (yT − yi)

2 (7)

θi = tan−1
(

yT − yi

xT − xi

)
(8)
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x

y

(x  ,y  )i i

ri

θi

σd,i
σc,i

T T(x   ,y   )

Fig. 1. Measurement of the target by the ith munition and the associated error prob-
ability ellipse

The significance of Eq. (6) is that it models the quality of the measurements
from the ith munition based on its position relative to the target.

The measurements provided by both munitions can be fused into a single
instantaneous estimate of the target location. This is done using a weighted least-
squares estimator (WLSE) [21,22]. The measurements of the target location from
each munition are grouped into a measurement vector z̃ = [x̃T,1 ỹT,1 x̃T,2 ỹT,2]T.
This produces a linear measurement model in terms of the target location.

z = HxT + w (9)

H =
[
1 0 1 0
0 1 0 1

]T

; w =
[
wx,1 wy,1 wx,2 wy,2

]T (10)

Here, w is the vector of measurement errors. The covariance of this error vector
is given by arranging the covariances from each munition.

R =
[

P1 0
0 P2

]
(11)

The instantaneous WLSE of the ith target location and the associated covariance
are given by the following.

x̂T =
(
HTR−1H

)−1
HTR−1z̃ (12)

P =
(
HTR−1H

)−1
(13)

Considering the first of Eqs. (10), the WLSE reduces to the following.

x̂T =
[
x̂T

ŷT

]
=

(
P−1

1 + P−1
2

)−1 (
P−1

1 z̃1 + P−1
2 z̃2

)
(14)

More importantly for the current purposes, the covariance of this combined
estimate is related to the individual covariances of the measurements from each
munition.

P =
[

σ2
x σxy

σxy σ2
y

]
=

(
P−1

1 + P−1
2

)−1
(15)
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The covariance P now models the quality of the combined target-location esti-
mate based on the positioning of the two munitions relative to the target. For
cases with more than two munitions, similar expressions can be developed com-
bining the measurements of each of the munitions. Additionally, for cases with
multiple targets corresponding expressions can be used for the covariance of each
target-location estimate.

3 Problem Formulation

The task of designing trajectories for the munitions in order to enhance the esti-
mation performance can now be posed as the following optimal control problem.
Consider the state vector x = [x1 y1 x2 y2]T. The heading angles of the mu-
nitions can be organized into a control vector u = [ψ1 ψ2]T. The state vector
evolves according to the state equation found by grouping Eq. (2), ẋ = f(u) =
[fT

1 fT
2 ]T. For boundary conditions, the initial positions of the munitions will be

considered a given, and the final position of munition 1 is required to be the
target location, x1(tF ) = xT and y1(tF ) = yT . The final position of munition 2
is free.

The goal will be to find the trajectories that minimize the following cost
function, which is based on the WLSE covariance.

J =
∫ tF

0

(
σ2

x + σ2
y

)
dt (16)

The variances of each target location are functions of the states describing the
munition configuration. Clearly, this cost function emphasizes the uncertainty
over the entire trajectory. Previous works have used performance indices related
to the uncertainty at the end of the trajectory or a specified interval [11,12].
Compared to those alternative indices, the cost function used here encourages
reduction in uncertainty earlier in the trajectory. It is also noted that other cost
functions could be based on the determinant or other metrics of the covariance
matrix.

Introducing the costates λ(t) = [λ1 λ2 λ3 λ4]T, a time-varying vector of La-
grange multipliers, the Hamiltonian can be defined.

H = σ2
x + σ2

y + λTf(u) (17)

From this, the first-order necessary conditions are derived [23].

∂H

∂u
=

(
∂f

∂u

)T

λ = 0 (18)

λ̇ = −∂H

∂x
= − ∂

∂x

(
σ2

x + σ2
y

)
(19)

From Eq. (18) the control law for the heading angles as a function of the costates
can be found.

∂H

∂ψ1
= −λ1v sin ψ1 + λ2v cosψ1 = 0 (20)
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Fig. 2. Heading angle, field-of-view half angle, bearing angle of ith munition relative
to the target

∂H

∂ψ2
= −λ3v sin ψ2 + λ4v cosψ2 = 0 (21)

To find a minimum in the cost, the following curvature condition is additionally
imposed.

∂2H

∂ψ2
1

= −λ1v cosψ1 − λ2v sin ψ1 > 0 (22)

∂2H

∂ψ2
2

= −λ3v cosψ2 − λ4v sin ψ2 > 0 (23)

This gives the optimal control as the following.

ψ1 = tan−1
(

−λ2

−λ1

)
; ψ2 = tan−1

(
−λ3

−λ4

)
(24)

The costate equations, governing the evolution of λ are given by Eq. (19). These
can be found by applying the chain rule to Eqs. (4), (6-8), and (15); however,
they are rather extended and are not reproduced here. The terminal conditions
for the problem are the specified conditions, x1(tF ) = xT and y1(tF ) = yT , and
the necessary conditions, λ3(tF ) = λ4(tF ) = H(tF ) = 0.

The above conditions have not accounted for limitations in the field of view
of the vehicle sensors. This assumes either a sensor that has unlimited field of
view or is gimbal mounted in order to view a target regardless of the vehicle
orientation and heading. A sensor that is fixed mounted on the vehicle, though,
may only offer a limited field of view relative to the vehicle heading. In this case
a hard constraint can be enforced on the trajectory of the ith munition to keep
the target in view. The field of view angle is labeled 2φ and is illustrated in
Fig. 2.
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Two inequality constraint functions can be enforced to keep the target in the
field of view of the ith munition. For example, the following constraints keep the
target in the field of view of munition 1.

c1 = ψ1 − θ1 − φ ≤ 0 ; c2 = −ψ1 + θ1 − φ ≤ 0 (25)

Note that the bearing angles are functions of the states, and the heading an-
gles are the controls. Arranging any desired constraints into a vector function
c(x, u) ≤ 0 and introducing a second set of Lagrange multipliers μ, a revised
Hamiltonian is developed [23].

H = σ2
x + σ2

y + λTf(u) + μTc(x, u) (26)

During periods when one or more of these constraints are active, the target is
kept on the edge of the field of view of the munition. The value of μ is calculated
from the revised stationary condition.

∂H

∂ψ1
= −λ1v sinψ1 + λ2v cosψ1 + μT ∂c

∂ψ1
= 0

∂H

∂ψ2
= −λ3v sinψ2 + λ4v cosψ2 + μT ∂c

∂ψ2
= 0 (27)

The costate equations are revised as shown below.

λ̇ = −∂H

∂x
= − ∂

∂x

(
σ2

x + σ2
y

)
+

(
∂c

∂x

)T

μ (28)

The two-point boundary-value problem can now be posed to solve for λ(t0)
and tF subject to the derived necessary conditions and the boundary conditions.
When the field-of-view constraints are inactive or simply neglected, the necessary
conditions are Eqs. (2), (19), and (24). When the field-of-view constraint is
active, the necessary conditions are Eqs. (2), (27), and (28).

For cases with more than two munitions or more than one target, the terminal
conditions could be specified by prechosen target-munition attack pairings. The
final states for any munitions not assigned a target would be free. For multi-
ple targets, the cost function could be augmented by summing the additional
variances from their target-location estimates. For complex scenarios with many
targets and munitions, difficulty may arise in the application of the field-of-view
constraints. It may be desirable to let targets pass in and out of the field of view
of some munitions.

For any scenario, the solution of the problem produces munition trajectories
designed to reduce the uncertainty in the target-location estimates. These are
referred to as the SLAP trajectories. Note that in a real-time application, the use
of the true target positions as boundary conditions would not be possible. These
must be estimated, which is the motivation behind finding the SLAP trajectories
in the first place. Here, though, the true locations are used to illustrate the
concept and potential benefit of these trajectories.
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4 Sample SLAP Trajectories

The following are several example SLAP trajectories that have been found us-
ing a sequential quadratic programming algorithm to numerically search for the
optimization parameters. Each of the examples considers the scenario of two
munitions and one target. Munition 1 is assigned to attack the target, and mu-
nition 2 is free to assist in the estimation of the target location. Two different
initial conditions are considered, and solutions are presented with and without
the field-of-view constraint. Here, a munition speed of v = 300 ft/sec and a half
field-of-view angle of φ = 45 deg were used.

The first set of initial conditions are x1(0) = 0 ft, y1(0) = −2000 ft, x2(0) =
100 ft, and y2(0) = −2000 ft. The target is located at xT = yT = 0 ft. This
problem was first solved neglecting any field-of-view constraints. The solution
parameters found for this case are shown in Table 1 under problem 1.

Table 1. Solution parameters and cost for sample SLAP trajectories

solution
parameters problem 1 problem 2 problem 3 problem 4
λ1(0) 29.495 32.226 30.550 32.453
λ2(0) −12.028 −12.745 −14.236 −15.170
λ3(0) −28.822 −49.167 30.551 49.532
λ4(0) −13.460 −40.658 14.258 40.001
tF (sec) 8.0950 7.6325 8.2146 7.6769
J 1.59 × 104 1.70 × 104 1.89 × 104 2.02 × 104

The trajectories generated by these values are shown in Fig. 3(a). The marks
along the trajectories in the figure indicate one-second intervals of flight time.
In this case the SLAP trajectories are roughly symmetric about the y axis.
Munition 1 intercepts the target at tF as required by the boundary conditions,
but munition 2 also approaches the target very closely. Intuitively this is because
the measurement errors from either munition are reduced as the munition closes
the range with the target. Instead of traveling directly to the target, however,
near the initial time both munitions sweep out in the ±x directions. This gives
the munitions differing perspectives on the target allowing them to compensate
for the relatively large downrange errors in each other’s measurements.

In the trajectories for problem 1, both munitions sweep out aggressively such
that the target would be out of their fields of view during the initial stages of
the trajectories. To correct for this, problem 2 is posed to enforce that both
munitions keep the target within view. Problem 2 is identical to problem 1 in
all other aspects. The solutions for this problem are shown in Table 1 and the
corresponding trajectories are shown in Fig. 3(b).

In this case, the field-of-view constraint is active over the entire trajectory
of munition 2. It is prevented from swinging wide during the initial periods,
and instead munition 2 keeps the target on the edge of its field of view for the
entire flight. The field-of-view constraint is also initially active for munition 1.
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Fig. 3. SLAP trajectories for problems 1 and 2

After a short period, though, munition 1 turns to head more directly toward the
target. Again, the intuitive behaviors of closing range to the target and achieving
differing points of view are present in the SLAP trajectories for problem 2. The
motions are restricted, however, by the field-of-view constraint.

Next, a different initial condition can be considered with munition 2 moved
to an initial position x2(0) = 0 ft, and y2(0) = 2000 ft. Instead of starting nearby
munition 1, munition 2 now starts on the opposite side of the target relative to
munition 1. The solution for this case when neglecting the field-of-view constraint
is shown as problem 3 in Table 1. The SLAP trajectories for this problem are
shown in Fig. 4(a). The trajectories for the two munitions are nearly symmetric
about the x axis. Similar to problem 1, the munitions sweep to the side to obtain
differing viewpoints before closing in on the target.

The solution for the above initial conditions when applying the field-of-view
constraint is listed as problem 4 in Table 1. The SLAP trajectories for this
problem are shown in Fig. 4(b). The constraint is active for the early part of the
trajectory of munition 1 and for the entire flight of munition 2.
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Fig. 4. SLAP trajectories for problems 3 and 4
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5 Estimation Performance

The impact of the SLAP trajectories on the target-location estimation can now
be evaluated. Although the trajectories were designed using a cost function based
on the variances from a continuous WLSE algorithm, the estimation performance
will be evaluated using a recursive weighted least squares estimation (RWLSE)
algorithm with discrete measurement updates. First, the algorithm will be op-
erated for a single munition following a trajectory from the initial condition
straight to the target location (STT trajectory). Second, the estimation is per-
formed for two munitions both following STT trajectories. Finally, the algorithm
is implemented using two munitions following the field-of-view constrained SLAP
trajectories. In each case, noisy measurements were simulated using the measure-
ment model in Eq. (4).

The munition sensors were assumed to collect measurements of the target
location at a rate of 10 Hz. The RWLSE algorithm operated as follows to deter-
mine the estimate and the uncertainty at the kth time step [21,22]. The current
estimate is computed as follows.

Kk = Pk−1H
T (

HPk−1H
T + R

)−1
(29)

x̂
(T )
k = x̂

(T )
k−1 + Kk

(
z̃k − Hx̂

(T )
k−1

)
(30)

The current covariance matrix is computed as shown.

Pk =
[

σ2
x,k σxy,k

σxy,k σ2
y,k

]
=

(
P−1

k−1 + HT
k R−1

k Hk

)−1
(31)

To compare the estimation performance along the different trajectories, the size
of the one-sigma uncertainty ellipsoid in the target-location estimate can be used
as a metric. At the kth time step, this is given by the product of π with the
square root of the product of the eigenvalues of Pk. In particular, the ellipsoid
size at tF −2 sec will be highlighted. Although tF is different for each trajectory,
at this point in time munition 1 is roughly 600 ft from the target.

Using the initial condition of x1(0) = 0 ft, y1(0) = −2000 ft the STT trajec-
tory has a flight time given by tF = 6.67 sec. Using a single munition on an
STT trajectory, at tF − 2 sec the one-sigma uncertainty ellipse has an area of
81.5 ft2. For x2(0) = 100 ft, and y2(0) = −2000 ft, adding measurements from
munition 2 on an STT trajectory reduces the uncertainty to 39.7 ft2. When the
two munitions follow the SLAP trajectory shown in Fig. 3b, however, the area
is reduced to 9.1 ft2.

The error histories for a sample simulation with noisy measurements and
three-sigma error bounds (±3σx,k and ±3σy,k) generated by the RWLSE algo-
rithm are shown in Fig. 5. Figure 5(a) shows the errors in the x and y estimates
of the target location using the STT trajectories. Figure 5(b) show the errors
using the SLAP trajectories. Clearly, both trajectories give similar good per-
formance in estimating the x component of the target location, but the SLAP
trajectories provide much better estimation of the y component.
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Fig. 5. Estimation errors using (a) STT and (b) SLAP trajectories with x2(0) = 100 ft,
and y2(0) = −2000 ft

Moving munition 2 to the initial condition x2(0) = 0 ft, and y2(0) = 2000 ft
obviously does not change the results when only measurements from munition
1 are considered. For the cases with two munitions, however, the uncertainty
areas at tF − 2 sec are 40.8 ft2 for the STT trajectories and 9.3 ft2 for the SLAP
trajectories. For these initial conditions, the error histories for a sample simu-
lation with noisy measurements and three-sigma error bounds generated by the
RWLSE algorithm are shown in Fig. 6.

These results give an indication of the impact of trajectory design on esti-
mation performance. Significantly, for either initial condition, adding a second
munition to help in the target-location estimation without paying attention to
trajectory design improves performance to approximately half of the uncertainty
achieved with a single munition. Careful use of the SLAP trajectories, however,
further reduces the uncertainty to less than one quarter of what is achieved using
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Fig. 6. Estimation errors using (a) STT and (b) SLAP trajectories with x2(0) = 0 ft,
and y2(0) = 2000 ft
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the STT trajectories. The SLAP trajectories benefit both from being delayed,
which allows collection of more measurements, and their paths, which improve
the quality of the measurements.

6 Conclusions

The results in the previous section demonstrate the impact that careful trajec-
tory design can have on target-location estimation. Adding a second munition
when following STT trajectories does significantly improve estimation perfor-
mance. The use of the SLAP trajectories, however, reveals much greater further
improvement. Furthermore, the complexity and cost of the second munition and
communication between the two has already been accepted in taking the first
step. The second step of following the SLAP trajectories only requires careful
trajectory design.

Improvements in estimation performance like those demonstrated here could
have significant impact on munition design and cost. More accurate target-
location estimation could allow more accurate strike capability or the ability
to attack targets that are difficult to detect. It is anticipated that the reduction
in uncertainty early in the trajectory could be critical for the precision strike of
these difficult targets; however, further work is needed to demonstrate the impact
of these estimation enhancements on guidance and control performance. Com-
bined, these effects could enable the use of smaller, cheaper munitions against
targets in cluttered environments while limiting collateral damage.

The calculus-of-variations approach, used here, to solve for SLAP trajectories
allowed for model-based trajectory design. This approach may not be the best ap-
proach, however, for real-time implementation. Future work for this application
may require different solution approaches. The intuition gained from calculus-
of-variations based sample solutions may allow the development of heuristic so-
lutions that are better suited for real-time implementation.
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Abstract. In this paper, we present an online optimization approach for coordi-
nating large-scale robot teams in both convex and non-convex polygonal environ-
ments. In the former, we investigate the problem of moving a team of m robots
from an initial shape to an objective shape while minimizing the total distance
the team must travel within the specified workspace. Employing SOCP tech-
niques, we establish a theoretical complexity of O(k1.5m1.5) for this problem
with O(km) performance in practice – where k denotes the number of linear in-
equalities used to model the workspace. Regarding the latter, we present a multi-
phase hybrid optimization approach. In Phase I, an optimal path is generated over
an appropriate tessellation of the workspace. In Phase II, model predictive con-
trol techniques are used to identify optimal formation trajectories over said path
while guaranteeing against collisions with obstacles and workspace boundaries.
Once again employing SOCP, we establish complementary complexity measures
of O(l3.5m1.5) and O(l1.5m3.5) for this problem with O(l3m) and O(lm3) per-
formance in practice – where l denotes the length of the optimization horizon.

1 Introduction

The robotics community has seen a tremendous increase in multi-agent systems re-
search in recent years. This has been driven in part by the maturation of the underly-
ing technology: advances in embedded computing, sensor and actuator technology, and
perhaps most significantly pervasive wireless communication. However, the primary
motivation is the diverse range of applications envisaged for large-scale robot teams,
defined herein as formations ranging from tens to thousands of robots. These include
support of first responders in search and rescue operations, autonomous surveillance
and monitoring in support of military and homeland security operations, and environ-
mental monitoring. Unfortunately, the effective coordination of a large-scale robot team
in an arbitrary environment is a non-trivial problem – one that will need to be solved in
order for such systems to find widespread use.

In this paper, we investigate an optimization approach to the coordination task. This
is motivated by the realization that the effective operation of such a team is inherently
a constrained resource allocation problem. A finite number of nodes are required to
perform some task (e.g. area surveillance), perhaps with performance objectives (e.g.
maximize coverage), while subjected to resources that are dictated by communication
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springerlink.com c© Springer-Verlag Berlin Heidelberg 2007
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and sensor ranges, motion constraints, environmental constraints, etc.. More precisely,
we characterize the coordination task as an optimization problem geared towards mini-
mizing the total distance traversed while transitioning the team to a new shape config-
uration subject to polygonal environmental constraints.

While the optimization construct has many advantages, its potential for use in multi-
agent systems has never been fully realized due to scalability concerns. Complete so-
lutions to problems of interest typically scale in super-linear time with the number of
robots and/or the size of the environment. In this work, we leverage recent advances in
convex optimization theory to develop motion planning strategies for effectively coor-
dinating robot teams in both convex and non-convex polygonal work environments. In
both cases, the proposed strategy in practice scales linearly with the number of team
members. The result is a rich, optimization-based framework for coordinating a large-
scale team of fully actuated robots in real-time.

2 Related Work

Control and coordination of mobile robots in polygonal environments has been exten-
sively studied in the literature. Belta et al. proposed a computational framework for
generating provably correct control laws for fully-actuated robots as well as unicycles
in an arbitrary polygonal workspace [1]. In [15], Kloetzer and Belta define a compu-
tational framework for the deployment of robots in both 2D and 3D rectangular en-
vironments. In this work, obstacles were modeled as polytopes and robot motion was
constrained to lie within polyhedral sets. Lindemann and LaValle also considered robot
control in polygonal spaces [16]. In particular, they focused upon “car-like” vehicles
with bounded path curvature constraints. In their work they partition the polygonal en-
vironment into a collection of convex cells before developing safe control laws that
obey specified smoothness constraints. Conner et al. considered global control laws
based upon the utility of local potential functions [6]. They partition the environment
into discrete cells and then associate each with control laws which they model as vector
fields.

Formations of robot teams have also been extensively studied. As a complete sur-
vey is beyond the scope of this paper, we instead focus on those where the notion of
shape – defined differently under different contexts – was of significant relevance to
the research. Das et al. described a vision-based formation control framework [8]. This
focused on achieving and maintaining a given formation shape using a leader-follower
framework. Control of formations using Jacobi shape coordinates was addressed by
Zhang et al [22]. The approach was applied to a formation of a small number of robots
which are modeled as point masses. Abstraction based control was used by Belta and
Kumar as a mechanism to coordinate a large number of fully actuated mobile robots
moving in formation [2]. The main idea was to map the configuration space of the
robots Q to a lower dimensional manifold A. The concept of shape refers to the area
spanned by the robots. A local controller was designed based on the state of the robot
and the state on the manifold A.

There has also been significant interest in applying optimization based techniques to
coordinate robot teams and deploy sensor networks. Contributions in this area include
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the work by Cortes et al [7]. Here the focus is on autonomous vehicles performing
distributed sensing tasks. Recently Feddema et al. applied decentralized optimization
based control to solve a variety of multi-robot problems [12]. Optimal motion planning
was considered by Belta and Kumar [3]. In this work, the authors generate a family of
optimal smooth trajectories for a set of fully actuated mobile robots.

3 Defining the Coordination Problem

In developing our strategies, we first consider the problem of transitioning a robot team,
constrained to lie within a convex polygonal space, to a new shape formation while
minimizing the total distance that the team must travel. As the operating environment
is assumed both convex and polygonal, we define it as the affine set:

Ec = {x ∈ R
2 : Acx ≤ bc} (1)

where Ac ∈ R
k×2 with k denoting the the finite number of linear inequalities used to

model the team workspace.
Since the coordination problem is defined as a function of shape, it is imperative to

first solidify what is precisely meant by this term, as it is often defined differently in
different contexts. For our purposes, we adopt the traditional definition of shape that is
often employed in statistical shape analysis [11]:

Definition 1. The shape of a formation is the geometrical information that remains
when location, scale, and rotational effects are removed.

Thus, formation shape is invariant under the Euclidean similarity transformations of
translation, rotation, and scale [11].

Given this definition, we can now provide a formal statement of the coordination
problem. We begin by letting Q = [q1, . . . , qm]T ∈ R

m×2 denote the concatenated
coordinates of the objective shape formation with respect to some world frame W and
by letting S = [s1, . . . , sm]T ∈ R

m×2 denote an instance of our objective shape with
respect to some local frame F . Given our convex polygonal workspace Ec, we see that
solving the coordination problem reduces to identifying the optimal similarity trans-
formation that when applied to S ⊂ F yields an equivalent shape Q ⊂ EC ⊂ W
such that our total distance objective is minimized with respect to Q and the initial
robot positions P = [p1, p2, . . . , pm]T . In other words, we must identify the optimal
transformation parameters [α, θ, tx, ty]T such that qi = αR(θ)si + [tx, ty]T ∈ Ec for
i = 1, . . . , m where α ∈ R+, R(θ) ∈ SO(2) and tx, ty ∈ R. Given these observations,
the coordination problem can be formulated as the following constrained non-linear
optimization problem:

min f(q) =
m∑

i=1
‖ qi − pi ‖2

s.t. qi = αR(θ)si + [tx, ty]T , i = 1, . . . , m
qi ∈ Ec, i = 1, . . . , m
α > 0, θ ∈ [0, 2π)

(2)
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Fig. 1. (Left) The initial formation pose for 101 nodes living in a convex heptagonal (7-sided)
environment. (Center) The final formation trajectories to achieve the desired shape configuration
while ensuring maximal sensor network coverage in Ec. (Right) The final formation pose (red)
after achieving the optimal configuration overlaid with the optimal solution (blue) obtained when
the environmental model is ignored. The respecitve optimal parameters were α = 59.85 with
[tx, ty]T = [5.585, 5.169]T and α = 80 with [tx, ty]T = [9.893, 4.530]T . In this example, θ
was fixed at 7.5o, and scale was constrained to α ∈ [10, 80].

Unfortunately, this formulation is non-convex due to the 2m non-linear constraints
used to capture the full set of similarity transformations (as a function of [α, θ, tx, ty]T )
that characterize the desired shape geometry S. To remedy this, we employ our results
from [9]. In this work, we showed that the optimization variables [α, θ, tx, ty]T can be
implicitly rewritten as a function of the optimal shape configuration Q. More precisely,
we can supplant the non-linear equalities in (2) with the following linear (homogenous)
constraints (while retaining all original problem information):

‖ s2 ‖2 (qx
i − qx

1 ) − (sx
i , −sy

i )
T (q2 − q1) = 0

‖ s2 ‖2 (qy
i − qy

1) − (sy
i , sx

i )T (q2 − q1) = 0

}
i = 3, . . . , m (3)

by defining without loss of generality [ α, θ, tx, ty ]T �
[

‖q2−q1‖2
‖s2‖2

, arctan
q

y
2 −q

y
1

qx
2 −qx

1
, qx

1 , qy
1

]T

.

Given this constraint set, we can now write (2) in convex form; however, doing
so would be premature as the objective is non-smooth due to the Euclidean norms
inherent in its definition. To handle this, we simply introduce m auxiliary variables
[t1, t2, . . . , tm]T . Doing so allows us to rewrite our non-smooth objective function as a
sum of upper bounds on the given Euclidean measures. In other words, the introduction
of these variables induces m second-order cone constraints.

Making these adjustments, we can now formally state the coordination problem as
the following SOCP in standard form:

min
q

f(t) = 1T
mt

s.t. ‖ qi − pi ‖2 ≤ ti, i = 1, . . . , m[
Aw I
As 0

] [
q
r

]
=

[
b
0

]

r ≥ 0

(4)

where As ∈ R
2(m−1)×2m corresponds to the coefficient structure for the linear equali-

ties given in (3) and Aw ∈ R
km×2m denotes the structure for the linear inequalities used

to model Ec. We also introduce km non-negative slack variables r = [r1, . . . , rkm]T .
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As SOCPs are convex programs, a local minimum corresponds to a global minimum.
This allows optimal solutions to be obtained through a variety of ways such as descent
techniques [13] or (more efficiently) by interior point methods (IPMs) [4,13].

Figure 1 illustrates a simple application of our framework for a team of 101 robots
charged with maximizing sensor network coverage within a convex heptagonal (7-
sided) space. In this case, θ was fixed at 7.5o, and scale was constrained to α ∈
[10, 80].

3.1 On Complexity

In this section, we solve (4) by adapting the logarithmic penalty-barrier approach out-
lined in [4]. In so doing, we establish a theoretical complexity of O(k1.5m1.5), where
k once again denotes the number of linear inequalities used to model Ec.

Like other IPMs, the total complexity of the penalty-barrier approach is largely de-
fined by solving a linear system of equations. In this case, Equality-constrained New-
ton’s method (ENM) is used for internal minimization and the linear system is in KKT
form. As solving this system provides a solution to the Newton step sub-problem, we
accordingly refer to it as the “Newton KKT system.” We show that by reformulating (4),
we can band the coefficient matrix to solve the system in O(km) time via algorithms
that exploit knowledge of matrix bandwidth.

Reformulating the Coordination Problem. Problem (4) can be restated in a relaxed
form suitable for solving via the barrier approach by simply augmenting the objective
function with log-barrier terms corresponding to both the problem’s conic inequalities
as well as the inequalities used to ensure the non-negativity of the associated slack
variables. Doing so yields the following equivalent problem statement:

min f(q, t, r) = τl1T
mt −

m∑
i=1

log (t2i − (qi − pi)T (qi − pi)) −
km∑
i=1

log ri

s. t.
[
Aw I
As 0

] [
q
r

]
=

[
b
0

] (5)

where τl is the inverse log-barrier scaler for the lth iteration. Essentially, solving our
SOCPs reduces to solving a sequence of convex optimization problems of this form,
where after each iteration τl+1 is chosen such that τl+1 > τl [4].

Banding the Newton KKT System. During each iteration of the log-barrier approach,
we aim to minimize the second-order Taylor approximation of our objective function
as a function of the Newton step, δx = [δq, δr]T , subject to Aδx = 0. As a result,
obtaining δx is equivalent to analytically solving the KKT conditions associated with
this equality-constrained sub-problem. In other words, we must solve the following
linear system of equations [4]:

[
H ÂT

Â 0

] [
δx
v

]
=

[
−g
0

]
(6)
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where H and g respectively denote the evaluated Hessian and gradient of the objective
function given in (5) at x, v is the corresponding dual variable for δx, and Â =

[
Aw I
As 0

]
.

Undoubtedly, solving (6) is the bottleneck of the algorithm, requiring O(k3m3) basic
operations in a naive implementation; however, we will show that it can be solved very
efficiently by simply reposing the problem given in (5).

Noting that the coefficient matrix of (6) is symmetric indefinite, we employ Gaussian
elimination with non-symmetric partial pivoting. The performance of this technique suf-
fers significantly when the linear system in question features dense rows and/or columns
due to fill-in [21]. In particular, the algorithm could yield a worst-case performance of
O(k3m3) when solving an instance of (6) associated with the nominal problem formu-
lation given in (5). To illustrate this point, we include Figure 2 (Left) which shows the
corresponding non-zero sparsity structure of the Newton KKT system. As the rows of
system are permuted during reduction, the dense rows and columns respectively located
in the upper-right and lower-left quadrants of (6) could introduce a solid sub-block of
order km×km, which itself would require O(k3m3) basic operations to reduce. Such a
workload is highly impractical, especially when considering large-scale configurations
that inherently feature 1000’s of decision variables.

To address this issue, we present the following auxiliary formulation of (5) that fa-
cilitates transforming the Newton KKT system into a mono-banded form:

min f(q, t, r) = τl1T
mt −

m�
i=1

log (t2i − (qi − pi)T (qi − pi)) −
km�
i=1

log ri

s. t.
‖ s2 ‖2 (qx

i − cx
ik+1) − (sx

i , −sy
i )T (d(i−1)k+1 − cik+1) = 0, i = 3, . . . , m

‖ s2 ‖2 (qy
i − cy

ik+1) − (sy
i , sx

i )T (d(i−1)k+1 − cik+1) = 0, i = 3, . . . , m

aT
j w(i−1)k+j + r(i−1)k+j = b(i−1)k+j , i = 1, . . . , m, j = 1, . . . , k

w(i−1)k+j = w(i−1)k+j+1, i = 1, . . . , m, j = 1, . . . , k − 1
w(i−1)k+1 = qi, i = 1, . . . , m
ci = ci+1, i = 1, . . . , km − 1
di = di+1, i = 1, . . . , km − k − 1
c1 = q1

d1 = q2

(7)

In this formulation, the shape constraints are given by the first two sets of equali-
ties while the environmental bounds are given by the third. Essentially, the additional
c and d variables allow us to “chain” the values of q1 and q2 respectively through the
corresponding Newton KKT system, which eliminates the dense row and column fea-
tures that would otherwise be present. Similarly, as the k linear inequalities defining Ec

bound the final objective position of each node (i.e. qi), we introduce k auxiliary vari-
ables (i.e. w) for each node in order to locally chain qi. Doing so ensures a bandwidth
that will ultimately remain independent of both k and m.

Given this augmented formulation, our claim is that the system can be made mono-
banded. To show this, we begin by defining the nominal solution vector for the coeffi-
cient structure of (6) as follows:

�
δηT , δκT

1 , . . . , δκT
m−2, δζ

T , μT
�T

(8)
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Fig. 2. (Left) The nominal Newton KKT system structure for a team of 15 robots constrained to
a pentagonal workspace. (Center) The augmented Newton KKT system for the same configura-
tion. This system is derived from (8) and (9). (Right) The banded system with lower and upper
bandwidths of 37. The bandwidth is independent of both team size and the number of constraints
used to model Ec. In this form, the system is now solvable in O(km).

δη =

�
��������������

δq1

δt1
δw1

δr1

δc1

...
δwk

δrk

δck

�
�������������	

δκi =

�
������������������

δqi+1

δti+1

δcik+1

δd(i−1)k+1

δwik+1

δrik+1

...
δc(i+1)k

δdik

δw(i+1)k

δr(i+1)k

�
�����������������	

δζ =

�
��������������

δqm

δtm

δc(m−1)k+1

δd(m−2)k+1

δw(m−1)k+1

δr(m−1)k+1
...

δwmk

δrmk

�
�������������	

μ =

�
��

v1

...
v(7m−6)k+2m

�
�	

where the δ variables correspond to the primal Newton step components associated with
each of the respective system variables.

In order to yield the mono-banded form, we begin by stating the constraint/row per-
mutation for A that yields the tri-banded system appearing Figure 2 (Center). We as-
sume that A is already arbitrarily constructed with random row and column permuta-
tions. For the sake of clarity, we group constraints by associating them with the respec-
tive nodes that introduce them into the system. In doing so, we employ a slight abuse
of notation by allowing the variable qi to also denote the ith robot in the configuration.
That stated, we can now define the constraints associated with q1:

qx
1 = cx

1

qy
1 = cy

1
qx
1 = wx

1

qy
1 = wy

1
aT
1 w1 + r1 = b1


�����
����

� 	1

cx
j−1 = cx

j

cy
j−1 = cy

j

wy
j−1 = wy

j

wy
j−1 = wy

j

aT
j wj + rj = bj


�����
����

� 	j , j = 2, . . . , k
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Similarly for q2, we associate

cx
k = cx

k+1

cy
k = cy

k+1
qx
2 = dx

1

qy
2 = dy

1
qx
2 = wx

k+1

qy
2 = wy

k+1
aT

k+1wk+1 + rk+1 = bk+1


���������
��������

� 	k+1

cx
k+j−1 = cx

k+j

cy
k+j−1 = cy

k+j

dx
j−1 = dx

j

dy
j−1 = dy

j

wy
k+j−1 = wy

k+j

wy
k+j−1 = wy

k+j

aT
k+jwk+j + rk+j = bk+j


���������
��������

� 	k+j , j = 2, . . . , k

For 3 ≤ i ≤ (m − 1), we define the constraints associated with qi as:

cx
(i−1)k = cx

(i−1)k+1

cy
(i−1)k = cy

(i−1)k+1

dx
(i−2)k = dx

(i−2)k+1

dy
(i−2)k = dy

(i−2)k+1

‖ s2 ‖2 (qx
i − cx

(i−1)k+1) = (sx
i , −sy

i )T (d(i−2)k+1 − c(i−1)k+1)
‖ s2 ‖2 (qy

i − cy
(i−1)k+1) = (sy

i , sx
i )T (d(i−2)k+1 − c(i−1)k+1)

qx
i = wx

(i−1)k+1

qy
i = wy

(i−1)k+1

aT
(i−1)k+1w(i−1)k+1 + r(i−1)k+1 = b(i−1)k+1


��������������
�������������

� 	(i−1)k+1

cx
(i−1)k+j−1 = cx

(i−1)k+j

cy
(i−1)k+j−1 = cy

(i−1)k+j

dx
(i−2)k+j−1 = dx

(i−2)k+j

dy
(i−2)k+j−1 = dy

(i−2)k+j

wy
(i−1)k+j−1 = wy

(i−1)k+j

wy
(i−1)k+j−1 = wy

(i−1)k+j

aT
(i−1)k+jw(i−1)k+j + r(i−1)k+j = b(i−1)k+j


����������
���������

� 	(i−1)k+j , j = 2, . . . , k

Finally, we associate the remaining constraints with qm:

cx
(m−1)k = cx

(m−1)k+1

cy
(m−1)k = cy

(m−1)k+1

dx
(m−2)k = dx

(m−2)k+1

dy
(m−2)k = dy

(m−2)k+1

‖ s2 ‖2 (qx
m − cx

(m−1)k+1) = (sx
m, −sy

m)T (d(m−2)k+1 − c(m−1)k+1)
‖ s2 ‖2 (qy

m − cy
(m−1)k+1) = (sy

m, sx
m)T (d(m−2)k+1 − c(m−1)k+1)

qx
m = wx

(m−1)k+1

qy
m = wy

(m−1)k+1

aT
(m−1)k+1w(m−1)k+1 + r(m−1)k+1 = b(m−1)k+1


��������������
�������������

� 	(m−1)k+1

wy
(m−1)k+j−1 = wy

(m−1)k+j

wy
(m−1)k+j−1 = wy

(m−1)k+j

aT
(m−1)k+jw(m−1)k+j + r(m−1)k+j = b(m−1)k+j


�
 � 	(m−1)k+j , j = 2, . . . , k

Again we employ a slight abuse of notation by letting each �j also denote the ini-
tial row indices of the constraints with which it is associated. Preserving the relative
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ordering of the constraints as they appear in the respective definition of each �j , we
provide the following row permutation for A. This ordering yields the tri-banded form
as it appears in 2 (Center): [

�T
1 , �T

2 , . . . , �T
mk

]T
(9)

Given this definition of A as well as (8), the mono-banded form of (6) can be con-
structed. Symmetrically applying the permutation that yields the following Newton
KKT system solution vector ordering:

[
λT , γT , ξT

1 , . . . , ξT
(m−3), χ

T
]T

(10)

λ =

�
����������������������

δq1

δt1
v1

...
v5k

δw1

δr1

δc1

...
δwk

δrk

δck

�
���������������������	

γ =

�
��������������������������

δq2

δt2
v5k+1

...
v12k

δck+1

δd1

δwk+1

δrk+1

...
δc2k

δdk

δw2k

δr2k

�
�������������������������	

ξi =

�
��������������������������

δqi+2

δti+2

v(7i+5)k+2i−1
...

v(7i+12)k+2i

δc(i+1)k+1

δdik+1

δw(i+1)k+1

δr(i+1)k+1
...

δc(i+2)k

δd(i+1)k

δw(i+2)k

δr(i+2)k

�
�������������������������	

χ =

�
����������������������

δqm

δtm

v(7m−9)k+2m−5)
...

v(7m−6)k+2m

δc(m−1)k+1

δd(m−2)k+1

δw(m−1)k+1

δr(m−1)k+1
...

δwmk

δrmk

�
���������������������	

produces a mono-banded coefficient structure having a respective upper and lower
bandwidths of 37.

Figure 2 illustrates the process of transforming the KKT system via our approach.
The “augmented” Newton KKT system derived from the permutations given in (8) and
(9) is shown in Figure 2 (Center). Taking the coefficient structure of (6) in this form
and symmetrically permuting its rows and columns according to (10) yields the mono-
banded system appearing in Figure 2 (Right). It can now be solved in O(km) using a
band-diagonal LU -based solver [20].

Applying these alterations effectively reduces the per-iteration complexity of the
penalty-barrier method to O(km) for the coordination problem. As the iteration com-
plexity of the barrier approach scales as O(

√
km), we see that the total complexity is

O(k1.5m1.5) in theory. However, it should be emphasized that this bound is highly con-
servative as it is well-known that iteration complexity scales as O(1) in practice [4]. As
such, solving the coordination problem will require a number of basic operations that
grows more like O(km). In other words, the computational workload scales linearly
with the number environmental constraints and the configuration size.

3.2 Simulation Results

The results presented thus far correspond to an application of a simple penalty-barrier
approach. Although effective, such an IPM is not typically used in practice as more
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Fig. 3. (Left) MOSEK CPU utilization time for teams operating in a heptagonal environment.
When problem structure is fully exploited (m � 500), the trend becomes highly linear with r2 =
0.9822. (Right) The highly linear trends for teams operating in heptagonal and tetradecagonal
(14-sided) environments. Regarding the latter, we have r2 = 0.9645.

sophisticated and robust solvers exist [17,19]. As such, we carried-out a sequence of
trials whereby the coordination problem was solved using the MOSEK industrial solver
package, which utilizes a homogenous self-dual IPM [19]. For our trials, we varied the
given team size m from 10 to 1000 at intervals of 5 with the mean CPU time being
recorded over a sample size of 10 trials for each value. All problems were solved using
a standard desktop PC having a 3.0 GHz Pentium 4 processor and 2.0 GB of RAM.

In Figure 3 (Left) the CPU utilization trend is provided for a team confined to oper-
ations in a heptagonal (7-sided) environment. Notice that below ≈ 500 nodes, the com-
plexity scales cubicly (r2 = 0.9933). This appears to be the result of the solver not fully
exploiting problem structure in obtaining its solution. Beyond 500 this is not the case
as performance is highly linear with linear regression analysis revealing r2 = 0.9822.
Perhaps more importantly, we see that solutions for configurations having up to 1000
nodes are obtainable in less than 0.45 seconds.

Figure 3 (Right) shows the highly-linear performance trends for robot teams operat-
ing respectively in heptagonal and tetradecagonal (14-sided) environments. Moreover,
the linear growth of the complexity as a function of k is evident by considering the
comparative performance ratio t14

t7
which remains essentially constant as m → 1000.

Together, these results highlight the efficacy of our approach.

4 Coordination in Non-convex Polygonal Environments

We now compose our previous results into a more general instance of the coordination
task. Specifically, we consider motion planning in an arbitrary polygonal environment
with obstacles. As the space of feasible robot positions is no-longer convex by assump-
tion, solving this problem directly would require more general and less-efficient non-
linear programming techniques that guarantee only convergence to local minima. Thus,
in an effort to obtain a similar complexity results as those seen in Section 3.1, we pro-
pose a hybrid multi-phase optimization approach over a discrete convex tessellation of
the work environment.
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4.1 Generalizing the Coordination Problem

As noted, we assume that the configuration space C for the robot team is a polygonal
environment with obstacle subspace O and free space Cfree such that Cfree = C − O.
Using exact cell decomposition methods (e.g. triangulation, trapezoidal decomposition,
etc.), Cfree can be tessellated into convex polygonal cells C1, . . . , Cz , where Cfree =⋃z

i=1 Ci [5]. The resulting partition induces an undirected graph G = (V, E), where
vertex vi ∈ V corresponds to cell Ci, and edge eij ∈ E implies that there exists a
common edge between Ci and Cj . Paths between cells can then be efficiently computed
using traditional graph optimization algorithms (e.g. [10]). The coordination problem
can then be reposed as transitioning the formation from cell to cell along the specified
path. In the sequel, we assume a triangulation partition of Cfree. We also assume that
the union of adjacent cells Cij = Ci

⋃
Cj ∀ (Ci, Cj) ∈ E is convex. This is hardly

restrictive as it is straightforward to refine any pair of adjacent triangles to three such
triangles where both of the resulting adjacent pairs meet this constraint.

Remark 1. Given two adjacent cells (Ci, Cj) ∈ E, where Cij = Ci

⋃
Cj is convex, if

node xi ∈ Ci and xj ∈ Cj , then by convexity λxi + (1 − λ)xj ∈ Cij , λ ∈ [0, 1]. This
implies that for a formation of m nodes with initial pose Xi = (xi1, . . . , xim)T ∈ R

2m

in triangle Ci, and final pose Xj in triangle Cj , the paths of each node will remain
entirely in Cij ⊆ Cfree. This guarantees against collisions with obstacles.

Let us assume that such a path Cp = {C1, . . . , Cl} ⊆ Cfree has been specified by a
higher level planner. The coordination problem can then be written as follows:

Problem 1. Given a path specification Cp = {C1, . . . , Cl}, a corresponding shape
specification S = {S1, . . . , Sl}, and an initial formation pose X0, find a motion se-
quence X = {X1, . . . , Xl} for the formation such that

1. Xi ∼ Si, i = 1, . . . , l

2. Xi ∈ Ci, i = 1, . . . , l

3. The distance traveled by the formation is minimized in accordance with the criteria
from Problem 4.

In solving Problem 1, we employ optimization techniques from model predictive con-
trol [14,18]. In this context however, the length of the horizon is not defined by time,
but rather the length of the path over which the optimization problem is solved.

To constrain the pose of the formation during each step of the horizon, each triangle
can be modeled as a set of three linear inequality constraints on the position of each
robot

cT
ikxij ≤ 0, i = 1, . . . , l, j = 1, . . . , m, k = 1, 2, 3 (11)

In a slight abuse of notation, we also let Ci = (c11, . . . , cm3)T ∈ R
3m× 2m denote

the set of linear constraints on the formation pose such that Xi ∈ Ci We can now write
the solution to Problem 1 for our total distance metric as

min
X

l∑
i=1

m∑
j=1

tij , i = 1, . . . , l, j = 1, . . . , m

s.t. ‖ xij − xi−1,j ‖2≤ tij
AiXi = 0
CiXi ≤ 0

(12)
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Fig. 4. (Left) Cpath as specified by the higher level planner. (Center) The corresponding mo-
tion sequence obtained from solving the associated SOCP. The formation is guaranteed to follow
Cpath while minimizing the total distance traveled, avoiding obstacles, and maintaining the de-
sired formation shape. In this example, both the orientation and minimum scale for the formation
were constrained. (Right) The associated linear system remains mono-banded, and in this case,
the bandwidth is defined as a function of the configuration size m.

where Ai are the constraints associated with shape Si as defined in Section 3. By now,
we can readily recognize the form of this problem as a SOCP. More significantly per-
haps, the corresponding KKT matrix corresponds to the chaining of l instances of our
single step problem. As a result, the associated linear system will remain mono-banded;
however, in this case the bandwidth will grow as either a function of m or l depending
upon the selected permutation of the augmented KKT system. As such, we conclude
the theoretical complexity is O(l1.5m3.5) or O(l3.5m1.5) – once again depending upon
the chosen ordering. In cases where the problem demands l  m – i.e. the horizon
length far exceeds the team size – a permutation yielding a bandwidth as a function of
m is best. Similarly, when the problem requires m  l, the bandwidth is best defined
as a function of horizon length as that yields the best performance bound.

Once again, these theoretical results are highly conservative as iteration complexity
scales as O(1) in practice [4]. Thus, solving the generalized coordination problem will
require a number of basic operations that scales more like O(l3m) (or O(lm3)). In the
former case, complexity scales linearly with configuration size making it well-suited
for coordinating a large-scale robot team.

4.2 Simulation Results

A sample simulation trial for a formation of 16 robots is shown in Figure 4. The path
of the formation is specified by a higher level planner after a discrete optimization
phase on the corresponding graph G (Left). The formation then solves the continuous
optimization problem specified in (12). The resulting path of the formation is shown
in Figure 4 (Right). In this example, the optimization was over the entire path length
(l = 16), the shape was held constant, and the minimum scale of the formation was
specified as a premise for inter-robot collision avoidance.

5 Discussion and Future Work

In this paper, we developed strategies for coordinating large-scale robot teams in both
convex and non-convex polygonal environments. We began by formulating the coor-
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dination problem as a constrained optimization problem in which the objective was to
minimize the distance a team, living in a convex polygonal workspace, must travel while
transitioning to a new objective shape configuration. We showed that this problem can
be formulated as a convex mathematical program. Solving with a log-barrier IPM, we
also showed that its solvable in O(k1.5m1.5) time in theory with O(km) performance
in practice – where k denotes the number of affine constraints used to model the convex
workspace and m denotes the configuration size.

After establishing these results, we then extended them to solve the coordination
problem in a non-convex polygonal workspace. By using an appropriate tessellation
of the environment along with model predictive control techniques, we showed that a
large-scale team of robots can obtain an objective position while successfully avoiding
collisions with both workspace boundaries and static obstacles. This problem is also
presented in convex form, and we showed that complexity scales as O(l3.5m1.5) with
O(l3m) performance in practice – when the bandwidth of the IPM’s core linear system
is defined as a function of the optimization horizon length l. In the case where band-
width is defined in terms of configuration size m, the theoretical complexity is then
O(l1.5m3.5) with O(lm3) performance in practice.

We are currently extending these results to a more general multi-objective frame-
work for large-scale coordination in SE(2). Such an extension is invaluable as many
applications require teams of robots to perform well with respect to multiple goals.
Additionally, we are exploring the possibility of extending the framework to SE(3).
However, such an extension is not obvious as a direct formulation of the coordination
problem in this higher dimensional space introduces imaginary terms. As a result, al-
ternate approaches and possible relaxations are being evaluated to achieve this end.
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UAV Splay State Configuration for Moving

Targets in Wind

Derek Kingston and Randal Beard

Brigham Young University

Abstract. Cooperative surveillance problems require members of a team
to spread out in some fashion to maximize coverage. In the case of single
target surveillance, a team of UAVs angularly spaced (i.e. in the splay
state configuration) provides the best coverage of the target in a wide
variety of circumstances. In this chapter we propose a decentralized algo-
rithm to achieve the splay state configuration for a team of UAVs tracking
a moving target. We derive the allowable bounds on target velocity to
generate a feasible solution as well as show that, near equilibrium, the
overall system is exponentially stable. Monte Carlo simulations indicate
that the surveillance algorithm is asymptotically stable for arbitrary ini-
tial conditions. We conclude with high fidelity simulation tests to show
the applicability of the splay state controller to actual unmanned air
systems.

1 Introduction

A primary use of unmanned air vehicle (UAV) systems is in surveillance and
reconnaissance missions [1] [2]. We investigate the use of a team of multiple
UAVs orbiting a target with application to target tracking and convoy support.

The payload of choice for most small UAVs is a camera. The objective of
our work is to develop a cooperative guidance strategy to distribute UAV agents
around an orbit spaced equally in angle. The equal angle spacing allows the team
to cooperatively overcome possible line-of-sight occlusions, i.e. equal spacing
gives the team the best chance to track a target in the presence of occlusions.
We note that for two UAVs carrying radar sensors, line-of-sight angles separated
by 90 degrees provide better statistical performance in the tracking problem [3]
and when the team size is greater than two, equal spacing has good performance.
In a general surveillance mission, the equal spacing of the sensors provides the
best overall coverage of a target and its surroundings.

The design of a spacing controller is strongly influenced by the capabilities of
the UAVs on the team. For instance, helicopters can hover at a specific location
and thereby maintain persistant coverage of a ground based target, however
fixed-wing aircraft must fly above the stall velocity, and may therefore not be
able to maintain persistent coverage. Furthermore, fixed-wing aircraft fly most
efficiently at a fixed, nominal airspeed. One approach to equal spacing is to
adjust the local velocity of the agents along the desired orbit. However, for small
allowable velocity bounds, the convergence to the equilibrium configuration may

M.J. Hirsch et al. (Eds.): Adv. in Cooper. Ctrl. & Optimization, LNCIS 369, pp. 109–128, 2007.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2007
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be sluggish. Additionally, maintaining fixed-wing aircraft at their constant fuel
efficient velocity is desirable from a mission duration standpoint. In this chapter
we develop a spacing controller that steers the UAVs to the desired configuration
while holding a constant airspeed.

Other researchershave studied the problemof spacing fixed-speed UAVs around
a possibly moving target. Paley et al. introduce the notion of the splay state con-
figuration and give an elegant control solution for fixed target problems [4]. Their
approach relies on invariant set arguments to show that the splay state configura-
tion is the stable equilibrium of the system. The main drawback of their work is
the inability to specify the orbit center. The splay state configuration is shown to
be stable around the collective center of mass not a specific target location which
makes tracking a moving target infeasible without modifications. Additionally, the
control signal exhibits slow transient response for large initial errors.

Paley’s splay state configuration work is extended by Klein and Morgansen
in [5] to moving targets. By choosing a control signal that preserves the invariant
sets introduced by Paley, they are able to design an algorithm to track a moving
target in the splay state configuration with 3 UAVs. Unfortunately, the method
does not currently extend to team sizes other than N = 3.

Frew and Lawrence [1] use vector field notions to steer a team of two UAVs to an
orbit centered on a moving target. A limit cycle is designed as the equilibrium of
the vector field dynamics and is modified to account for spacing errors. No formal
proof is offered in their method and only team sizes of N = 2 are considered.

The unique features of our approach are the ability to include an arbitrary
number of team members in a moving target scenario and the determination of
bounds on target velocity for which the algorithm satisfies the UAV’s kinematic
constraints. Additionally, the transient response is qualitatively better than other
approaches.Of note is that our algorithm is completely decentralized where agents
base their actions only on communication from immediate team members. This
allows for dynamic changes to the team to be accounted for without global com-
munication or replanning. A drawback to our approach is that global stability is
not conclusively shown, although Monte-Carlo simulations indicate that the splay
state configuration is the globally stable equilibrium of the system.

The aim of this chapter is to present a stable, decentralized spacing controller
for fixed velocity UAVs tracking moving targets in the presence of wind. Section 2
formally defines the notion of equal spacing and describes the mathematical
model that we use for the UAVs. Section 3 establishes the heading design for
a group of UAVs monitoring a stationary target. In Section 4, we analyze the
stability of the system for the stationary target case. These results are extended
to the moving target/wind case in Section 5 and we conclude with simulation
results in Section 6. Concluding remarks are offered in Section 7.

2 Problem Description

In a variety of applications the ability for a team of UAVs to spread out in some
manner increases the efficiency of the team as a whole. For single target surveil-
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lance, a team of UAVs spaced equally around an orbit centered on the target
gives the best line-of-sight coverage in the presence of occlusions. This chapter
focuses on constructing a desired heading for each UAV in the team to achieve
equal spacing. The desired heading is calculated based on the distance away from
the desired orbit and the spacing error from the splay state configuration.

Definition 1 (Splay State Configuration). A set of agents I, all of which
are following the same periodic trajectory, is said to have reached the splay state
configuration if for each agent i, the time difference of arrival to a specific point
on the trajectory between agent i and its two immediate neighbors is constant for
all i ∈ I.

Definition 1 describes the splay state configuration as equally spaced in time
along a periodic trajectory. When agents pass a reference point (arbitrarily cho-
sen) on the trajectory at equal time intervals, the team has reached the splay
state configuration. For simple circular trajectories, the splay state configuration
is achieved when agents are equally spaced in angle around the circle perime-
ter. Note that equal angular spacing matches the definition of the splay state
configuration in [4]. Definition 1 extends the splay state notion to non-circular
trajectories which occur when the center of the desired orbit is changing in time
due to wind or target motion.

Consider a circular trajectory with all agents traveling at constant speed V .
The time difference of arrival corresponds to the angle separation between neigh-
bors. When the angle between all agents is the same then the splay state con-
figuration has been reached, i.e. the agents are equally spaced in angle around
the circle. Now consider the trajectory shown in Figure 1, which is an example
of a UAV orbiting a moving target. Note that as the target speed increases, the
ability for the UAV to maintain an orbit around the target depends on its ability
to make increasingly sharp turns. Constraints on the turning radius of the UAV
will lead to a threshold value of target speed where feasible tracking is no longer
possible (see Section 5). In a moving reference frame (with the target in the

Fig. 1. For a UAV orbiting a moving target, the trajectory exhibits loops corresponding
to the times when the UAV and the target are moving in opposite directions and long
arcs when both are moving in the same direction

center) the motion of the UAV traces out a circle, but the splay state configura-
tion does not correspond to equal spacing in angle around that circle. Since the
target is moving, a much greater amount of time is spent on the part of the tra-
jectory where the UAV and the target are moving in the same direction. When
the target and UAV are moving in opposite directions, the UAV quickly travels
around a large portion of the circle. Figure 2 shows the splay state configuration
for 5 UAVs when the target is moving at 75% of V in zero wind conditions.
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Fig. 2. A target moving at 75% of UAV speed has a splay state configuration with 5
vehicles that corresponds to the spacing in this figure. Note that at the bottom of the
orbit, the target and the UAV are moving in the same direction, so the UAV slowly
turns the corner. However, at the top of the orbit, the UAV and the target are moving
in opposite directions, so the UAV quickly moves around the arc.

2.1 UAV Modeling

To maximize fuel efficiency each UAV maintains a constant airspeed. Addition-
ally, we assume that all UAVs fly at a fixed altitude. A kinematic model for a
constant airspeed, constant altitude UAV in wind, is given by

ṗN = Va cosψ + Vw cosψw

ṗE = Va sin ψ + Vw sin ψw

ψ̇ = g
Va

tanφ

φ̇ = u

(1)

where (pN , pE) are the (North, East) coordinates of the UAV in a flat earth
model, ψ is the heading of the UAV (with the ψ̇ equation given by the coordi-
nated turn assumption), φ is the roll angle, Va is the constant airspeed of the
vehicle, Vw is the magnitude of the wind vector and ψw is the heading of the
wind vector (note that this is not the meteorological definition of wind heading,
i.e. ψw is the direction the wind is blowing to as opposed to the direction the
wind is blowing from). In addition to these dynamics, a constraint on roll angle
−φmax ≤ φ ≤ φmax is enforced that stall conditions are avoided.

We consider the motion of the UAV relative to a target position. Let

x = pN − qN

y = pE − qE
(2)

where (qN , qE) is the position of the target. The dynamics of (1) become



UAV Splay State Configuration for Moving Targets in Wind 113

ẋ = Va cosψ + Wx

ẏ = Va sin ψ + Wy

ψ̇ = g
Va

tan φ

φ̇ = u

(3)

where Wx = Vw cosψw − q̇N and Wy = Vw sin ψw − q̇E . Target velocity and
wind are indistinguishable with respect to the relative motion of the UAV to the
target. This allows the control design to maintain constant airspeed and account
for wind disturbances and target motion with only regard to (Wx, Wy).

Model (3) can be reduced further by letting

u =
gVaω̇

g2 + V 2
a ω2

where ω is the heading rate of the UAV, i.e. ω = g
Va

tan φ. Model (3) then
becomes the kinematic unicycle model

ẋ = Va cosψ + Wx

ẏ = Va sin ψ + Wy

ψ̇ = ω
(4)

where we constrain |ω| ≤ g
Va

tan(φmax) to ensure that |φ| ≤ φmax. The constraint
on ω can be thought of as a curvature constraint on the system kinematics
from which it follows that the UAV can be considered a Dubins-type vehicle.
This model has shown great value for design of UAV systems as it captures the
essential navigational kinematics of UAV motion while at the same time being
of low enough order to allow tractable analysis [2] [6] [7].

The heading design and analysis is performed at a level of abstraction greater
than the unicycle level by computing a desired heading ψd and using it as a
feed-forward term to the model (4). Feedback is then introduced at the control
signal ω while maintaining the saturation constraints on ω. Let

ω = ψ̇d + ν (5)

where ν is the feedback term driving ψ to ψd. This chapter shows that ψd can
be chosen so that a team of UAVs with individual dynamics

ẋ = Va cosψd

ẏ = Va sin ψd (6)

can reach the splay state configuration. Control gains in the calculation of ψd

can then be chosen to allow the saturation constraints on ω to be satisfied. Note
that ψd can be considered a sliding surface along which the specifications of the
mission are satisfied. If ψ reaches ψd in finite time via the feedback term ν, then
the overall system can be guaranteed to converge to the splay state configuration.
Theoretically, a sliding mode controller of the form

ν = βsign(ψ − ψd)
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ensures that ψ reaches ψd in finite time, however in practice, a control law of
the form

ν = βsat
(

ψ − ψd

ε

)

is used, where β is a positive control gain. We do not show the overall system
stability with this control strategy, but refer the reader to [8] where this choice
of ν is shown to ensure path convergence for an arbitrary path in the single UAV
case.

2.2 Orbit Dynamics

We will be concerned with the behavior of UAV teams while orbiting a target
at a fixed radius Rnom. To analyze the stability of the orbit system, we make a
change of variables by letting

R =
√

x2 + y2

θ = tan−1
(

y
x

) (7)

where R is the distance of the UAV from the target and θ is the “clock angle”
of the UAV around the orbit.

In the static target, no wind case (i.e. Wx = Wy = 0), the dynamics of R and
θ can be calculated as follows. Let

χ � ψ − ψp (8)

be the difference between the actual heading, ψ, and the heading of the tangent
vector to the orbit, i.e. ψp = θ + π/2. Therefore Ṙ can be calculated as

Ṙ = d
dt

√
x2 + y2

= xẋ+yẏ√
x2+y2

= Va

R [x cosψ + y sin ψ] .

Since ψ = χ + θ + π/2, we obtain

Ṙ =
Va

R
[−x sin(χ + θ) + y cos(χ + θ)] .

Using the relations x
R = cos θ and y

R = sin θ we get that

Ṙ = −Va [cos θ sin(χ + θ) − sin θ cos(χ + θ)]
= −Va

{
sin χ cos2 θ + cosχ sin θ cos θ − cosχ sin θ cos θ + sinχ sin2 θ

}

⇒ Ṙ = −Va sin χ .

Similar arguments are used to derive the equation of motion for θ resulting in

Ṙ = −Va sin χ

θ̇ = Va
R cosχ .

(9)
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In the case of a moving target and/or wind, the motion is abstracted by
calculating the path heading ψp, i.e. the heading which the UAV should be
traveling if directly on the path. By accounting for target motion and wind via
the ψp term, the radial orbit dynamics remain identical to those in (9) [8]. We
show in Section 5 the calculation of ψp for moving targets.

To accommodate the multiple UAV splay state configuration, a spacing term
is defined. For the static target, no wind scenario, the separation of the ith agent
from the angular mean of its neighbors is

δθi =
1
2

((θi − θi−1) − (θi+1 − θi)) (10)

where a ring topology is assumed (i.e. addition is defined modulo N). The term
δθi captures how far away agent i is from being equally spaced between its two
immediate neighbors on the ring. When all agents are on the nominal radius with
spacing terms δθi equal to zero, then the team has achieved the splay state config-
uration. Although the calculation of δθi is more complicated in the moving target
case, the principle is the same: δθi captures how far away from the splay state
configuration agent i is with regards to its immediate neighbors along the ring.

A visual representation of the notation used to describe the desired heading
calculation is shown in Figure 3 where di is the radial error from the nominal
radius, i.e. di � Ri − Rnom.

ψp
1δθ

1

δθ
2

δθ
3

d
2

Fig. 3. Spacing error and radial error are combined to construct a desired heading
for each UAV. Radial error is determined by the distance from the desired orbit (di)
and spacing error is the distance from the angular center of an agent’s two immediate
neighbors (δθi).

3 Heading Calculation for Non-moving Targets

This section details the construction of a desired heading to achieve the splay state
configuration in the case of zero wind and a non-moving target. The basis of the
splay state configuration controller is the calculation of an appropriate heading
command that steers the agents to the proper steady state behavior. By creating
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a desired heading for the UAV, a reliable, robust heading controller can be used
to track the heading commands. For a single UAV, a desired heading of the form

ψd = ψp + tan−1(kd) (11)

will draw the agent onto the path, where d is the distance from the path and
ψp is the heading along the path at d = 0 [8]. Using definition (8) equation (11)
can be reduced to

χ = tan−1(kd) . (12)

Note that when d is large, the commanded heading is almost perpendicular to
the heading along the path, effectively steering the UAV toward the path before
beginning to follow it. For a simple orbit maneuver, ψp is selected to be tangent to
the circle of interest along the ray connecting the agent and the target position.
The radial distance of the agent from the nominal orbit constitutes d and a
heading field constructed via (11) is shown in Figure 4. The gain k determines
how aggressive the field is in steering the agent to the desired path.

Fig. 4. A single UAV orbiting a stationary target has a commanded heading computed
at each point given by (11). Note that when the agent is far from the orbit, the heading
steers it toward the target. As it gets near the desired trajectory, the desired heading
transitions to tangent to the nominal circular motion.

The constraint on ω is satisfied when

max |ω| = max |ψ̇d| + β ≤ ωmax

where ωmax = g
Va

tan(φmax) and β is the maximum control allowed for the feed-
back control term (see Equation (5)). Due to the relationship in Equation (11),
the term max |ψ̇d| can be bounded by

max |ψ̇d| < max |ψ̇p| + max |χ̇| .
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The term max |ψ̇p| can be determined using a priori knowledge or an estimate
of the path to be tracked (e.g. moving orbit, straight line, etc.); for stationary
orbits, |ψ̇p| = Va/Rnom. The term max |χ̇| directly depends on the strength of
the field through the gain k. Recalling that χ = tan−1(kd) gives

|χ̇| =

∣∣∣∣∣
kḋ

1 + (kd)2

∣∣∣∣∣ =
∣∣∣∣
−kVa sin χ

1 + (kd)2

∣∣∣∣ ≤ kVa

which when coupled with knowledge of ψ̇p, the gain k can be chosen so as not
to violate the UAV turn rate/roll angle constraints.

For a single UAV, a commanded heading of the form χ = tan−1(kd) guar-
antees asymptotic convergence to an orbit at radius Rnom about the target.
A simple Lyapunov argument supports this assertion. Letting W = 1

2χ2 and
using (9) gives

Ẇ = χχ̇ =
−kVaχ sinχ

1 + (kd)2
. (13)

Since χ ∈ (−π/2, π/2) (χ is the output of an inverse tangent), the term χ sin χ
is always greater than zero for nonzero χ. Therefore, Ẇ < 0 and χ → 0 asymp-
totically. By LaSalle’s invariance principle [9], it follows that d → 0. Again we
note that a complete proof for system (4) requires a sliding mode controller to
guarantee that ψ reaches ψd in finite time, however, this can be relaxed as in [8].
Qualitatively, the commanded heading simply points the UAV directly toward
the target if d is large and transitions to tangent to the orbit when near Rnom.

To account for spacing, the single agent heading command (11) is augmented
as

ψd
i = ψp

i + tan−1(kdi − γδθi) (14)

where γ is a control gain weighting the value of spacing the UAVs to the value
of converging to Rnom. The spacing term effectively increases the radius of the
orbit when a UAV is too close to the agent in front of it and decreases the radius
of the orbit if it is behind. This allows agents to “catch up” when the spacing
is not at the desired state. An example of the heading field for an agent when
δθ = π/2 is shown in Figure 5. Notice the agent is drawn away from the nominal
radius to allow the agent in front to increase its angular separation.

By constructing δθi to be only a function of its immediate neighbors, the
error signal (heading field calculation) is local to each agent in the system. This
allows the implementation to be completely decentralized. The advantage to
decentralization is that the overall system will scale to any number of agents
and be robust to insertion and deletion of team members. When agents are
tasked to leave the formation for high priority assignments, the rest of the group
can adjust to a new configuration without any centralized planning. Similarly,
if a new agent is added (e.g. returns from a high priority task) the group will
adjust through local interaction without any global communication.
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Fig. 5. A single UAV orbiting a stationary target with spacing error π/2 has desired
heading given by (14). Note that a positive spacing error will cause the agent to effec-
tively increase its radius, allowing the neighbor in front to gain distance and increase
their relative spacing.

4 Stability Analysis

In the static target, no wind case, the splay state configuration coincides with the
team members being equally spaced around an orbit. This section investigates
the stability of the entire system when each agent follows the heading defined
by (14). Figure 6 shows the behavior exhibited by a team of three UAVs.

A complete Lyapunov argument (or other method) may be used to determine
the stability of the system to the splay state configuration. We have been unable
to find a Lyapunov function that shows the stability of the entire system. For
this reason, the convergence of the team of UAVs using (14) to the splay state
configuration is argued as follows. We first show that the radial error is bounded
by a function of the control gains k and γ. Near equilibrium, the overall system
is shown to be exponentially stable. Finally, Monte-Carlo simulations are used
to investigate system stability for initial conditions lying in the bounded region.

4.1 Ultimately Bounded

Lemma 1. The system of agents described by (6) when following heading (14)
is ultimately bounded in radial error di, i.e.

|di| ≤ Rδ (15)

where Rδ � γπ/k is less than Rnom.
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Fig. 6. Three UAVs following the heading defined by (14) converge to the splay state
configuration along a non-moving orbit

Proof. For any agent, δθi is constrained to the region (−π, π), i.e. agent cannot
have an angular spacing error greater than π radians. If |di| > Rδ, then

sign(kidi − γδθi) = sign(di)
⇒ sign(χi) = sign(di)
⇒ sign(sinχi) = sign(di)
⇒ sign(−Va sin χi) = sign(−di)
⇒ sign(ḋi) = sign(−di)
⇒ diḋi < 0 .

Therefore, the Lyapunov function W = d2
i has a negative definite derivative

whenever di is outside the bound (15). When |di| > γπ/k, the kdi terms dom-
inates the γδθi term in (14) effectively steering the UAV to reduce radial error
regardless of spacing error. Therefore, |d| is decreasing when |d| > γπ/k and so
all di are ultimately bounded to the region (−Rδ, Rδ).

4.2 Local Stability

The splay state configuration in the no wind, non-moving target case corresponds
to all the UAVs traveling on the orbit equally spaced, i.e. di = 0 and δθi = 0
for all agents on the team. The change of variables introduced in Section 2.2
allows analysis of the system dynamics where each UAV has equations of motion
determined by (9). Rewriting (9) using the definition of δθi in (10) to evaluate
the error signals for each agent, we obtain

ḋi = −Va sin χi

δ̇θi = Va
Ri

cosχi − 1
2

[
Va

Ri+1
cosχi+1 + Va

Ri−1
cosχi−1

]
.

(16)

In the calculation of the linearization of (16), it is helpful to compute the par-
tial derivatives of χi with respect to the system state variables di and δθi. Since
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χi = tan−1 (kdi − γδθi), the partial derivatives evaluated at the equilibrium
point di = 0, δθi = 0 are calculated as

∂χi
∂di

= k

∂χi
∂d¬i

= 0
∂χi
∂δθi

= −γ

∂χi
∂δθ¬i

= 0

(17)

where ¬i represents any value in I not equal to i. The partial derivative of ḋi

can be calculated as
∂

∂∗

(
ḋi

)
=

∂

∂∗ (−Va sinχi) = −Va cosχi

(
∂

∂∗χi

)
. (18)

The matrix composing the partial derivatives of the system dynamics (16) has
the structure

F =
[

A B
C D

]
�

⎡

⎢⎢⎣

∂
∂di

(ḋi)
∣∣∣∣

∂
∂δθi

(ḋi)

∂
∂di

(δ̇θi)
∣∣∣∣

∂
∂δθi

(δ̇θi)

⎤

⎥⎥⎦ . (19)

Combining (18) with (17), the matrices A and B are calculated as A = −kVaIN

and B = γVaIN where IN is the N × N identity matrix.
The linearization of the δθ dynamics reveals the ring structure inherent in the

spacing calculation used to construct the desired heading. The function δ̇θi is
composed of terms

Va

Ri
cosχi

which when linearized become
Va

R2
i

(
∂

∂∗Ri

)
cosχi − Va

Ri
sin χi

(
∂

∂∗χi

)
.

At the equilibrium, the only term that does not become zero is the term contain-
ing ∂Ri/∂di. Note that since Ri does not depend on δθi, the partial derivative
with respect to δθi will be zero. The linearized dynamics of δθi become

∂
∂di

(
δ̇θi

)
= −Va

Rnom
2

∂
∂di±1

(
δ̇θi

)
= 1

2
Va

Rnom
2

∂
∂δθi

(
δ̇θi,¬i

)
= 0 .

(20)

We conclude that the matrix D in (19) is simply the zero matrix of size N × N
and matrix C is a circulant matrix

C =
1
2

Va

Rnom
2

⎡

⎢⎢⎢⎣

−2 1 0 · · · 0 1
1 −2 1 · · · 0 0
...

...
...

. . .
...

...
1 0 0 · · · 1 −2

⎤

⎥⎥⎥⎦ . (21)
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Of particular note is the structure of C

C =
1
2

Va

Rnom
2 (−2IN + CN ) (22)

where

CN =

⎡

⎢⎢⎢⎣

0 1 0 · · · 0 1
1 0 1 · · · 0 0
...

...
...

. . .
...

...
1 0 0 · · · 1 0

⎤

⎥⎥⎥⎦ (23)

is the adjacency matrix corresponding to the ring graph of size N . The eigen-
values of F can be formulated in terms of the eigenvalues of C which are known
using results from algebraic graph theory [10].

Lemma 2. Consider the matrix

F =
[
−kVaIN γVaIN

C 0N

]
(24)

where C is given by (21), IN is the N × N identity matrix and 0N is an N × N
matrix of zeros. The eigenvalues of F are given by

λj = −1
2
kVa ±

√(
1
2
kVa

)2

+ γVaμj for j = 1 . . .N (25)

where

μj =
1
2

Va

Rnom
2

(
2 cos

(
2π

N
(j − 1)

)
− 2

)
(26)

is an eigenvalue of C.

Proof. We begin by showing that the eigenvalues of C are given by (26). From (22)
we conclude that

μj =
1
2

Va

Rnom
2 (−2 + γj)

where γj is an eigenvalue of CN . Results from algebraic graph theory show that
the eigenvalues of CN are

γj = 2 cos
(

2π

N
(j − 1)

)
for j = 1 . . .N .

Let λ be an eigenvalue of F and x its corresponding eigenvector. Partition x

into blocks corresponding with the blocks of F , i.e. x =
[
xT

d xT
δθ

]T where both xd

and xδθ are of length N . The eigenvector relationship Fx = λx can be written

− kVaxd + γVaxδθ = λxd ⇒ γVaxδθ = (λ + kVa) xd (27)

Cxd = λxδθ . (28)
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From (27) we see that

xδθ =
λ + kVa

γVa
xd (29)

which when applied to (28) yeilds

Cxd =
(

λ(λ + kVa)
γVa

)
xd .

Note that this is exactly the eigenvector relationship for the matrix C where
Cx = μx for

μ =
(

λ(λ + kVa)
γVa

)
.

Solving this for λ yields Equation (25).

Theorem 1. Consider the matrix F as defined in (24). All eigenvalues except
for λ = 0 of F are located in the open left half plane. Additionally, the eigenvec-
tors associated with λ = 0 and λ = −kVa span a subspace of R

2N orthogonal to
the remaining 2N − 2 eigenvectors of F .

Proof. Equation (25) gives the relationship of the eigenvalues of F to the eigen-
values of C. Only a single eigenvalue of C is equal to zero, all other N −1 values
are strictly less than zero. The zero eigenvalue in C maps to the eigenvalues
λ = −kVa and λ = 0 in F . The remaining eigenvalues of C (all strictly less than
zero) have discriminant strictly less than (1

2kVa)2 thus ensuring that each λ has
real part in the open left half plane.

The proof of Lemma 2 gives the relationship between the eigenvectors of C and
those of F via (29) where xd is the eigenvector of C corresponding to eigenvalue

μ =
(

λ(λ + kVa)
γVa

)
.

Since C is a symmetric matrix, its eigenvectors form an orthonormal basis of
R

N . Note that C has constant row sums of zero, so the eigenvector associated
with the zero eigenvalue of C is the vector of all ones, 1. Due to the orthogonality
of the eigenvectors of C, 1T uj = 0 for all eigenvectors of C, uj �= 1. Using (29),
the eigenvectors for λ = 0 and λ = −kVa are

x0 =
[

1
k
γ 1

]
, x−kVa =

[
1
0

]
. (30)

The inner product of these eigenvectors with all other eigenvectors of F can be
written as

[
1T k

γ
1T

] [
uj

λ+kVa

γVa
uj

]
= 0 and

[
1T 0T

] [
uj

λ+kVa

γVa
uj

]
= 0 .

Corollary 1. The linearization of system (16) is exponentially stable.
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Proof. Linearization of (16) yields the state equation ẋ = Fx where F is given
in equation (24), and whose solution is x(t) = eFtx0. By Theorem 1 all but
one eigenvalue is in the open left half plane, so any part of the initial condition
x0 that lies in the span of the eigenvectors associated with those eigenvalues
exponentially decays to zero. By definition of δθi, the constraint

N∑

i=1

δθi = 0 (31)

must hold for any state vector associated with the original system. The eigenvec-
tors associated with λ = 0 and λ = −kVa are given in (30). These eigenvectors
form a subspace orthogonal to all other eigenvectors in the linearized system. To
lie in the subspace spanned by the eigenvectors (30), all δθi must be equal. How-
ever, the only vector δθ that satisfies the constraint (31) and is in this subspace
is δθ = 0, which is either along the eigenvector associated with λ = −kVa or
in the subspace spanned by the remaining eigenvectors of the system. In other
words, it is impossible to have an initial condition in the subspace spanned by
the eigenvector associated with λ = 0. Therefore, the initial condition x0 lies in
the space spanned by eigenvectors whose eigenvalues are in the open left half
plane and the linearized system is exponentially stable.

4.3 Global Stability

The system (16) is ultimately bounded to di ∈ (−Rδ, Rδ), δθi ∈ (−π, π)
and locally asymptotically stable. Monte-Carlo simulations are used to infer the
stability of the system in the remaining region between the ultimate bound and
the equilibrium path.

The Monte-Carlo simulations use the model (4) with desired heading given
by (14). For team sizes N = 2, 3, 4, 5, and 6, a set of 10,000 simulations with
random initial conditions in di and δθi were run to verify the stability of the
system. An error metric

e(t) =

√√√√
N∑

i=1

di(t)2 + δθi(t)2

captures the error from the splay state configuration at time t. The largest error
at t = 100 seconds over all 50,000 simulations was 2e−4 indicating that the
actual region of convergence is likely to be global.

5 Extension to Moving Targets

The ability for a UAV to orbit a target in the presence of wind or target motion
is crucial. Modifications to the static target, no wind case can be made to allow
UAVs to track moving targets.
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To extend the approach of (14) to moving targets, the path heading term ψp

must be calculated to allow a UAV to remain on a moving orbit. Essentially, the
steady state behavior of a UAV on the orbit is determined by ψp: while following
ψp at d = 0, a UAV should remain on the moving orbit.

Consider the behavior of a particle orbiting a constant speed target at fixed
radius Rn then

xp(t) = Rn cos(θ(t)) + Wxt
yp(t) = Rn sin(θ(t)) + Wyt

(32)

where Wx and Wy are the velocity of the orbit center. Differentiating (32) results
in the expression

ẋp = −Rnθ̇ sin θ + Wx

ẏp = Rnθ̇ cos θ + Wy .
(33)

The path heading is chosen as

ψp = tan−1
(

ẏp

ẋp

)
(34)

which is the direction of the vector that is tangent to the moving orbit. To ensure
that the UAV maintains constant airspeed, the magnitude of the tangent vector
must equal V . This constraint allows the calculation of θ̇ from (33) as

V 2
a = (ẋp)2 + (ẏp)2 =

(
−Rnθ̇ sin θ + Wx

)2
+

(
Rnθ̇ cos θ + Wy

)2

⇒ θ̇2
(
R2

n

)
+ θ̇ (2RnWy cos θ − 2RnWx sin θ) +

(
W 2

x + W 2
y − V 2

a

)
= 0

⇒ θ̇ = − 1
Rn

(Wy cos θ − Wx sin θ)±
1

Rn

√
(Wy cos θ − Wx sin θ)2 −

(
W 2

x + W 2
y − V 2

a

)
.

(35)

The discriminant in (35) shows that when the magnitude of the velocity of the
target is greater than the speed of the UAV, a real solution does not exist. In
practical terms, this means that for the agent to properly maintain its orbit
around the target, the speed of the wind plus the speed of the target cannot
exceed the speed of the UAV.

The turn rate constraint of the UAV must also be accounted for in determining
the allowable magnitude of motion that can be feasibly tracked. Disregarding the
other components of heading rate,

∣∣∣ψ̇p
∣∣∣ ≤ g

Va
tan(φmax) (36)

ensures that the path satisfies the turn rate constraints. The maximum value
of ψ̇p depends on Vw, the magnitude of the motion in the system (note V 2

w =
W 2

x + W 2
y ). To ensure that the orbit can feasibly be followed with regard to the

turn constraints of the UAV, Vw must satisfy

(2Vw + Va)(Vw + Va)2

RnV 2
a

≤ g

Va
tan(φmax) . (37)
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Intuitively, a UAV can follow a moving target in wind if the magnitude of the
wind and target velocity are not too great to violate the velocity or turn rate
constraints of the UAV. For example, a UAV with maximum bank angle of 35
degrees, airspeed of 15 meters per second and desired orbit of 100 meters can
track a target with speed less than 5.17 m/s.

With ψp determined by (34), a desired heading of (11) can be used for a single
UAV to follow a moving target in the presence of wind given that the turn rate
constraint of the UAV is satisfied. For multiple UAVs, the definition of the splay
state configuration is used to develop a spacing error term. Note that achieving
equal angle spacing around a moving orbit is impossible when the velocity of
the UAVs is held constant. For this reason, the actual time along the steady-
state orbit between neighbors is used to compute the error from the splay state
configuration. Similar to the static target case, the timing error is computed
by assuming that all UAVs are on the desired orbit (i.e. di = 0). Consider two
agents on the orbit with clock angles θi and θj . The time difference from agent i
to agent j is given by Ti→j = t− t0 such that θ(t) = θj where θ(t) is determined
by solving the initial value problem

θ̇ = − 1
Rn

(Wy cos θ − Wx sin θ)±
1

Rn

√
(Wy cos θ − Wx sin θ)2 −

(
W 2

x + W 2
y − V 2

a

)

θ(t0) = θi .

(38)

The timing error for a specific agent i can then be defined as

δti =
1
2

(
T(i−1)→i − Ti→(i+1)

)
. (39)

The δt term is used in exactly the same manner as the δθ term in the static
target case, i.e. a desired heading is calculated as

ψd
i = ψp

i + tan−1(kdi − γδti) . (40)

Many of the stability notions from the non-moving target case carry over to
the moving target case. A maximum δt exists since agents can only be of finite
angle apart. Therefore, for large errors in radial distance d, the kdi term will
dominate the heading calculation and force the system to be ultimately bounded.
A linearization of the system dynamics for the moving target case also shows
many similarities to static case. In particular the upper two blocks of the state
matrix are identical to the blocks in the static target linearization. We postulate
that the lower blocks are identical up to a positive scale factor, i.e. the circulant
structure of the lower left block is preserved which allows us to conclude linear
stability via the same arguments as in the static target case. Additionally, Monte-
Carlo simulations are used to indicate that the system converges to the splay
state configuration in the moving target case. For team sizes N = 2, 3, and 4,
a set of 1,000 simulations with random initial conditions in di, δti and Vw were
run to verify the stability of the system. An error metric
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e(t) =

√√√√
N∑

i=1

δti(t)2

captures the error from the splay state configuration at time t. The largest error
at t = 100 seconds over 3,000 simulations was 0.5 indicating that control (40)
leads to convergence to the splay state configuration. Figure 7 shows typical
behavior of 4 UAVs orbiting a moving target. The timing error from the splay
state configuration for this scenario is shown in Figure 8.

Fig. 7. Trajectories of 4 UAVs orbiting a moving target trace out routes similar to
those in this figure
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Fig. 8. Error from the splay state configuration for 4 UAVs tracking a moving target
is driven to zero using (40)

6 Simulation Results

The splay state controller is based upon choosing a heading that draws the UAVs
to the splay state configuration. The design of the heading command is accom-
plished by assuming a simple kinematic model given by (4). To validate the
design, the splay state controller is tested in high fidelity simulation. Each UAV
is simulated with full 6 degree of freedom dynamics model with aerodynamic
parameters that match the small UAVs flown at BYU [11]. Additionally, the hu-
man interface and autopilot code are emulated to match actual flight conditions
as closely as possible.

Trajectories of 3 UAVs that loiter at fixed locations and are then commanded
to reach the splay state configuration are shown in Figure 9. The radial error of
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a UAV is approximately one meter and the spacing error about 3 degrees. These
errors are due mainly to the update rate of the team - each UAV only commu-
nicates to its neighbors when a new GPS packet is received at approximately 1
Hertz.

Fig. 9. High fidelity simulation results of the splay state controller indicate that the
method can be effective in actual implementation

Despite design of the splay state controller in a low-order environment, ap-
plication of the control in high fidelity simulation shows that the splay state
controller may be effective in hardware implementation.

7 Conclusions and Future Work

This chapter has developed a decentralized splay state controller for a team
of UAVs monitoring a target. In the static case (i.e. non-moving target and
no wind), the controller spaces UAVs equally around an orbit centered on the
target. The decentralized nature of the control strategy allows the the team
to be robust to insertion, deletion and re-assignment of team members. The
controller is shown to be linearly stable in the static target case and Monte-
Carlo simulations indicate global stability in all cases. By defining an appropriate
measure of spacing around the orbit, the splay state configuration can be reached
for moving targets in the presence of wind. High fidelity simulation results show
that the controller may be practical in actual hardware implementation.

There are still many open questions in regards to the convergence of a team of
UAVs to the splay state configuration. Monte-Carlo simulations indicate that the
region between the ultimate bound and the equilibrium is stable, but a formal
proof of this assertion remains an open problem. Additionally, the design of the
commanded heading is based on a low-order UAV model. Extending the analysis
to the model (1) and finding an appropriate control u, rather than relying on a
sliding mode inner-loop control, is also an important extension.
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Abstract. We investigate the benefits of employing a suitable risk-based
metric to determine in real-time the high level actions that an agile sen-
sor should execute during a mission. Faced with a barrage of compet-
ing goals, a sensor resource manager must optimize system performance
while simultaneously meeting all requirements. Numerous authors advo-
cate the use of information-theoretic measures for driving sensor tasking
algorithms, wherein the relative value of different sensing actions is cal-
culated in terms of the expected gain in information. In this chapter,
motivated by the sensor resource allocation problem in missile defense,
we deviate from the information-based trend and propose an approach
for determining sensor tasking decisions based on risk, or expected loss
of defended assets. We present results of a missile defense simulation
that illustrate the advantages of our risk-based objective function over
its information-theoretic and rule-based counterparts.

Keywords: Sensor Resource Management, Risk, Missile Defense1.

1 Introduction

This chapter addresses what we refer to as the sensor resource allocation prob-
lem, the problem of tasking a multi-modal sensor to perform high level sensing
actions, e.g., search, track maintenance, and discrimination, over the course of
a mission. A multi-modal sensor can collect data on objects and areas of in-
terest using a variety of sensing modalities. This flexibility has led to marked
improvements in detection of targets, kinematic estimation, and classification
capabilities. At the same time, this large palette of sensing actions has also in-
troduced challenges concerning the timely and efficient use of limited sensing
resources. This chapter focuses on a specific sensor resource management prob-
lem that appears in the context of ballistic missile defense (BMD).

To date, a majority of sensor systems employ a prioritization scheme to de-
termine which actions should be taken during a data collection interval. In this
approach, a slew of Boolean conditions are quickly checked and then actions are
1 The United States Missile Defense Agency approved this work for public release

(07-MDA-2387).
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chosen based on some pre-specified action plan. While this method has its advan-
tages – requirements can be plainly stated, Boolean conditions are typically easy
to verify in real-time, and the decision chain is traceable – it suffers in several
notable ways. First, an approach based on a fixed set of rules cannot be com-
pletely adaptable to the evolving battlespace environment and can therefore be
far from optimal. Second, adjustment of priorities is a delicate, time-consuming
procedure. As new requirements are introduced into the system, it is difficult to
ensure that the conditions are appropriately agreed upon so that a new require-
ment’s priority is properly set. Third, glitches and irregularities in algorithm
behavior may be difficult to diagnose due to tacit assumptions and makeshift
implementation choices.

To circumvent these deficiencies, numerous suggestions have been propounded
that provide a single metric able to automatically and simultaneously capture
the complex tradeoffs involved when choosing between sensor allocations. A met-
ric that has received considerable attention is entropy, which attempts to mea-
sure the uncertainty associated with random variables of interest. Within this
information-theoretic framework, authors typically focus on Shannon entropy
[6,12,15], Kullback-Leibler divergence [8,11,17,18], and Rényi divergence [9,10].
In this approach, sensor tasking decisions are made based on the principle that
actions should be chosen to maximize the information expected to be extracted
from the scene of interest. Within a Bayesian estimation framework, a good mea-
sure of the quality of a sensing action is the reduction in entropy of the posterior
distribution that is expected to be induced by a measurement. For instance,
when evaluating the benefits of a track update (or propagation without an up-
date), these algorithms use the logarithm of the ratio of the determinants of the
a priori and a posteriori covariance matrices as a measure of sensor effectiveness.

Although the use of entropy for judging a sensor’s performance can be justified
for a conventional battlefield situation, we believe that it is not the most suitable
metric for BMD. Indeed, for traditional military applications, e.g., surveillance of
enemy troops, ground target tracking, etc., the battlespace has infinite variability
and the ultimate objective often cannot be stated precisely. The goal of a sensor
or system of sensors in this situation may only be to maximize the amount of
information collected for subsequent use in decision making. In contrast, the
situation arising in BMD can be stated in precise terms (i.e., we have finite
number of objects, each with finite degrees of freedom) and the underlying goal
of BMD is clear and always the same – to minimize our losses from an enemy’s
missile attack. We will use the term risk for the expected value of this loss and
consider risk reduction as a driver for a sensor’s action, by which its performance
should be judged. We briefly note that other authors [3,4,19] have considered a
similar metric, but they may define it in different terms or apply it in different
contexts.

The chapter is organized as follows. In the next section, we introduce discrim-
ination risk and discuss the meaning of cost coefficients. The expressions for risk
reduction are derived in Section 3. In Section 4, we describe a myopic approach
to scheduling based on risk reduction and a heuristic approach to non-myopic
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scheduling. In Section 5, we present the results of a missile defense simulation
that compares our risk-based approach with other competing methods. Conclu-
sions are presented in Section 6.

2 Discrimination Risk and the Cost Coefficients

Consider the following situation: an object is to be classified into one of two
classes, C1 (threat) or C2 (nonthreat). Let pi be the current probability that the
object belongs to class Ci, i = 1, 2 . An object that is classified as a threat will
be fired upon and destroyed by an interceptor, while an object that is classified
as a nonthreat will be left unscathed. Let c12 denote the cost of an interceptor
and c21 the cost of leakage, i.e., the cost of misclassifying a threat as a nonthreat.
Then, the risk of declaring an object as belonging to class i, for i = 1, 2, is given
by

R1 = c12 ,

R2 = c21p1 .
(2.1)

Note that while R2 depends on the probability p1, R1 does not depend on a
probability because once an interceptor is launched, its cost is incurred regardless
of whether or not the object was a threat.

The decision rule for class selection minimizes the risk R; that is, the object
is declared to belong to the class Ci with the smallest Ri:

R = min
i=1,2

Ri = min (c12, c21p1). (2.2)

We assume that c12 < c21, i.e., the cost of an interceptor is less than the cost of
leakage, otherwise the decision is always made in favor of C2 and the problem
becomes trivial. Observe that while p1 grows from zero to the “critical value”
c12/c21, the decision is made in favor of C2 (nonthreat) and the risk of this
decision grows linearly from zero to c12. Similarly, while p1 grows from c12/c21
to 1, the decision is made in favor of C1 (threat), and its risk remains constant
at c12, representing the loss of an interceptor.

Regarding the origin and value of the cost coefficients c12 and c21, it is a
common misconception that the cost of an interceptor is just the monetary price
of its production and is, therefore, negligible with respect to the potential loss of
defended assets (quantified by a cost of leakage). We argue, however, that this
line of reasoning is incorrect. Indeed, interceptors are our last defense against a
missile attack. Moreover, at any given moment, we have a limited supply of them,
which cannot be increased instantaneously. Expending interceptors now depletes
their availability for future defense. Consequently, the cost of interceptors should
regulate their use and reflect the balance between the demand for them now (or
in the near future, before new interceptors can be produced) and their current
supply. As such, the cost of interceptors has nothing or very little to do with
the price of their production; rather, this cost is just a parameter, which should
be selected by a commanding entity in such a way that expending interceptors
at their current cost would be optimum with respect to the current military
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and political situation. Guidelines for how cost coefficients should be set are
suggested in [14].

3 Risk Reduction

In this section, we derive expressions for the risk reduction due to two critical
sensor actions, discrimination and tracking, and show that the expected value
of the discrimination part of risk reduction is always nonnegative. In the first
subsection we consider discrimination risk when the target can be classified into
one of two classes, e.g., lethal and nonlethal. We then proceed by incorporating
the risk due to the uncertainty in a target’s kinematic state, which we call track
risk, and conclude by considering the combined influence of classification and
kinematic uncertainties on risk estimation in a general case of n classes.

3.1 Discrimination Risk in the Case of Two Classes

Suppose a sensor is trying to classify an object into one of two possible classes.
If the sensor has an opportunity to collect an additional measurement on this
object before making a classification decision, the risk associated with this ob-
ject may be reduced. We now derive an expression for the expected value of this
risk reduction. Let x be the feature which we measure and let p(x|i), i = 1, 2
be the corresponding class-conditional probability density functions (PDFs). We
assume that a sufficient amount of time has passed from the previous measure-
ment of x so that the new measurement can be considered independent from the
previous one. Then after the new value of x is measured, the probabilities are
updated according to Bayes’ rule and the new probabilities become

p′i =
p(x|i)pi

p(x)
, i = 1, 2, (3.1)

where p(x) =
∑2

i=1 p(x|i)pi is the PDF of the feature x. The updated risk of a
classification decision, which is based on probabilities p′i, is

R′ = min (c12, c21p
′
1) = min

[
c12, c21

p(x|1) p1

p(x)

]
, (3.2)

and its expected value is

〈R′〉 =
∫

R′p(x) dx =
∫

min [ c12p(x), c21p1p(x|1) ] dx. (3.3)

Using the normalization of p(x|i), we have from Equation (3.3)

〈R′〉 ≤ min
[∫

c12p(x) dx,

∫
c21p1p(x|1) dx

]
= min (c12, c21p1) = R, (3.4)

which means that the expected value of the new risk after an additional measure-
ment is never larger than the old risk. This is a desirable mathematical property
as we never anticipate, in expectation, to increase risk by collecting more infor-
mation. Note that risk itself (as opposed to its expected value) can increase after
an additional measurement due to an atypical result of the measurement.



A Risk-Based Approach to Sensor Resource Management 133

3.2 Track Risk

Imperfect knowledge of a target’s kinematic state may lead to an additional risk,
which we term track risk. As before, we assume that the object may be either a
threat (C1) or a nonthreat (C2). The case of several classes may be considered
in a similar fashion (see Section 3.3). Since in the case of a nonthreat decision
we will not shoot at the target, the risk of this decision remains the same as in
Equation (2.1). The risk of a threat decision, however, will change. Namely, if we
make this decision and shoot at the target, there is still some probability pmiss

that the interceptor will miss, in which case, with probability p1, we will suffer
a loss of c21 . Correspondingly, the term c21p1pmiss should be added to the risk
of a threat decision, where we assume that only one interceptor is fired at the
target. As a result, with track risk taken into account, instead of Equation (2.1),
we will have

R1 = c12 + c21p1pmiss ,

R2 = c21p1 .
(3.5)

Apparently, R1 = c12 + pmissR2 . Therefore, if pmiss is sufficiently large, R1
might become larger than R2 even when p1 is large (e.g., even when p1 = 1).
In particular, this will always be the case when pmiss = 1. In this situation, a
nonthreat decision should be made regardless of the value of p1 . Thus, as one
would expect, we should not shoot (and waste) an interceptor if the interceptor
is guaranteed to miss the target in the first place.

The probability pmiss depends on, among other factors, a state estimation
error covariance matrix Σ. With each successive track measurement, Σ changes
as described by Kalman filtering equations, and so pmiss and R1 will change
accordingly. This change will measure the risk reduction utility of a track mea-
surement. Namely, the corresponding risk reduction is ΔR = R(Σ) − R(Σ′) ,
where Σ′ is a state error covariance matrix after the measurement and R(Σ) =
min [c21p1 , c12 + c21p1pmiss(Σ)] .

3.3 Modifications to Discrimination Risk Due to the Presence of
Track Risk

Here we consider the situation when an object is to be classified into one of n
classes C1, . . . , Cn. We denote the current probabilities as pk, k = 1, . . . , n, and
introduce the set of nonnegative costs ckl of declaring an object a member of class
k when in fact it belongs to class l. Consequently, Rk =

∑n
l=1 cklpl is the risk of

declaring an object a member of class Ck. In keeping with the convention that
C1 represents the class of lethal objects, we will set c1l = cint for all l = 1, . . . , n,
where cint is the cost of an interceptor. The risk of a threat decision R1 will then
be the same as in Equation (2.1).

Taking track risk into account implies corrections to our expressions for ex-
pected risk after an additional discrimination measurement. Indeed, during the
time interval between discrimination measurements, the error covariance matrix
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evolves from its current value Σ to some new value Σ′, as is typically described
by Kalman filtering equations without a track measurement. The current risk of
declaring the object as a member of class k is

Rk =
n∑

l=1

cklpl + δ1kcleakpmiss(Σ)p1 , (3.6)

where δ1k is the Kronecker delta, equal to 1 for k = 1 and 0 otherwise, and cleak

is the cost of leakage. Correspondingly, the current risk is

R(Σ, p) = min
k

Rk = min
k

[
n∑

l=1

cklpl + δ1kcleakpmiss(Σ)p1

]
. (3.7)

After a discrimination measurement, class probabilities get updated and Σ gets
propagated. The new risk becomes

R(Σ′, p′) = min
k

[
n∑

l=1

cklp
′
l + δ1kcleakpmiss(Σ′)p′1

]

= min
k

[
n∑

l=1

ckl
p(x|l) pl

p(x)
+ δ1kcleakpmiss(Σ′)

p(x|1) p1

p(x)

]
,

(3.8)

and its expected value is

〈R(Σ′, p′)〉 =
∫

R(Σ′, p′) p(x) dx

=
∫

min
k

[
n∑

l=1

cklp(x|l)pl + δ1kcleakpmiss(Σ′)p(x|1)p1

]
dx ,

(3.9)

while the expected risk reduction is 〈ΔR〉 = R(Σ, p)−〈R(Σ′, p′)〉. Following the
same logic as in the derivation of Equation (3.4), one can show that the expected
value of the discrimination part of the decision risk [represented by the first term
in Equation (3.9)] never grows as a result of a discrimination measurement.

4 Sensor Resource Management Algorithms

Having derived expressions for risk and risk reduction associated with kinematic
estimation and classification, we now incorporate these calculations into various
sensor resource management (SRM) algorithms, wherein a resource manager
tasks a sensor to perform actions in an effort to minimize expected risk. After
describing myopic and far-sighted SRM algorithms, we outline how a far-sighted
risk-based approach can be extended to facilitate hierarchical control in a mul-
tisensor system.



A Risk-Based Approach to Sensor Resource Management 135

4.1 Myopic Sensor Resource Management

Using the expressions for risk reduction derived in the previous section, it is
straightforward to suggest a myopic resource management algorithm for a single
sensor which strives to achieve the fastest possible rate of risk reduction (RRR)
over the next data collection interval. Prior to every data collection interval, we
assume the sensor has the choice of applying one of several waveforms to any
target. If there are nw available waveforms and nt targets, then there are a total
of ntnw action-object pairs from which to choose. For each pair we can calculate
the fraction fij = ERRij/di, where ERRij is the expected risk reduction due to
the application of waveform i to target j, and di is the amount of sensor resources
or duty required to perform action i. Obviously, fij represents the rate at which
the risk is expected to decrease due to resources spent. Being myopic, we would
like to maximize this rate, and so, the algorithm selects the action-object (here,
the waveform-object) pair that maximizes fij .

4.2 Far-Sighted Sensor Resource Management

The myopic algorithm just described minimizes expected risk after the next sen-
sor action is taken. If that were the time when a final decision had to be made,
then this algorithm would be optimal. This, however, is rarely the case, as the
information collected now is usually used (much) later. An ideal planner would,
instead, have a far-sighted planning horizon and be able to enumerate all possible
action-object pairs up to some future deadline for all threats. For each threat, it
would compute the expected risk resulting from a sequence of actions taken up
to that deadline. Finally, based on the risk associated with the various action
sequences, it would then task the sensor with the best possible action-object
pair for next planning interval, allow the system to evolve, and then repeat the
process. A standard approach to tackling such a problem is to formulate it as
a finite-horizon Markov Decision Process, also known as Stochastic Dynamic
Program, although some authors reserve the latter name to characterize solu-
tion methods for this class of problems. Classic references include [1,2,13,20].
Although we have investigated a number of approximate dynamic programming
approaches, our formulations and solution methods lie outside the scope of this
discussion. Instead, we briefly describe a heuristic approach for far-sighted SRM,
akin to the “critical ratio” algorithm given in Feinberg et al. [5], which will also
set the stage for our discussion of hierarchical control in multisensor resource
management.

Our heuristic approach is based on the observation that the myopic algorithm
leads to the appearance of an expected residual loss, or residual risk, i.e., a risk
which is impossible or very difficult to eliminate once it has been incurred. For
example, residual risk appears if the sensor fails to detect a new target before
it leaves a search volume, or fails to collect enough information about a target
which is due to be intercepted. Obviously, resource management should be done
in such a way as to avoid the appearance of residual risk. The reason it appears
in the myopic approach is that the sensor fails to accomplish some goals by their
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corresponding deadlines. We therefore conclude that for critical tasks similar to
those just mentioned, goals and corresponding deadlines should be imposed on
the resource manager in addition to the objective of maximizing RRR.

Let N be the total number of tasks the sensor is executing, where by task we
mean a particular sensor activity, such as tracking or discrimination, performed
on a particular object. For every task i, let di be the remaining time until the
deadline by which this task should be accomplished, i.e., its goal should be
achieved. Goals and deadlines are set by a so-called battle manager. We will
assume that given the goal i for task i and the current state of our knowledge,
we have some predictive capability to determine a conservative estimate of the
expected time ti the sensor needs to spend on the corresponding task in order to
accomplish it. On every iteration, the algorithm orders tasks according to their
deadlines, so that d1 ≤ d2 ≤ · · · ≤ dN , and for every k = 1, . . . , N , it checks if
there is enough time left to accomplish the first k tasks with some safety margin.
In other words, the algorithm verifies if α

∑k
i=1 ti < dk, k = 1, . . . , N, where α

is a “safety factor” which should be greater than 1. If this inequality holds for
all k, then there is no need to worry about deadlines, and the algorithm follows
the original RRR logic. If, however, for some k the inequality is violated, then
the algorithm finds the “most critical” task index k̂ such that

k̂ = argmax
k

(
α

k∑

i=1

ti − dk

)
(4.1)

and schedules a measurement required by the task k̂. If this measurement takes
time τ to be executed, then after this measurement both tk̂ and dk̂ become

smaller by τ , and α
∑k̂

i=1 ti − dk̂ becomes smaller by (α − 1)τ . Since α > 1, the
task is now less critical than it was before the measurement. In the event it is
impossible to satisfy all deadlines, the algorithm first sacrifices the task with the
smallest residual risk.

4.3 A Hierarchical Multisensor Control Architecture

Thus far, we have limited our discussion to risk-based resource management al-
gorithms for a single sensor in missile defense. We assumed that for each task,
a sensor has a corresponding goal and deadline, which can be incorporated into
a risk-based approach for optimizing the set of actions taken in the subsequent
data collection interval. In this section, we describe a natural extension of our
risk-based approach to a hierarchical decision-making architecture for multisen-
sor resource management. Such hierarchical approaches have gained increasing
attention over the past decade in the reinforcement learning domain [16], and
are well suited for the missile defense problem in which a distributed architec-
ture is already in place. This hierarchical architecture facilitates solution of the
(intractable) global problem of assigning all sensors a set of actions to perform
over the course of a mission by decomposing the larger long-term problem into
smaller short-term problems. In this way, a hierarchical architecture exploits a
“divide-and-conquer” mentality for solving complex, large-scale problems.
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In the current missile defense decision-making architecture, a Battle Manager
(BM) acts as a commanding entity that tasks participants (e.g., sensors, plat-
forms, and interceptors) throughout a given mission to collect information or
execute some plan. A BM maintains an integrated picture of the battlespace,
or in dynamic programming terminology, the state of the system, including (1)
target-related information like track accuracy, classification, predicted impact
point, and estimated time to impact, (2) sensor-related information, including
sensor capabilities and current tasking, and (3) weapon system-related informa-
tion, including the number of available interceptors and interceptor capabilities.

The ability of our approach towards sensor resource management to accom-
modate goals and deadlines allows us to naturally insert it into a general hi-
erarchical framework of system management for coordinating multiple sensors.
Given all available information about existing missile complexes, which consist
of one or more targets spawned from the same object, the BM interacts with
individual sensors with some periodicity, known as a Battle Manager Planning
Interval (BMPI), collecting information obtained during the previous data col-
lection interval, and giving assignments for the next interval. Based on known
trajectories of the missile complexes relative to the positions of the sensors and
known performance characteristics of the sensors, the BM creates a battle plan.
For each BMPI and for each missile complex, the plan specifies which sensor or
sensors will observe this missile complex, and with which task (tracking and/or
discrimination). Search can be considered on the same grounds as a sensor ac-
tivity related to a potential additional threat. Included in the plan, therefore, is
the expected improvement of our knowledge of this missile complex’s tracking
and classification characteristics (or of the presence of a threat in a search vol-
ume). The plan is designed in such a way as to provide the smallest expected
loss of defended assets and gets updated every BMPI according to the evolving
situation. The generation of a battle plan is a separate (and complex) problem,
which is not considered here. We do, however, consider the interaction of the
BM with individual sensors assuming this problem has been solved.

In our hierarchical structure this interaction is organized as follows. At the
beginning of each BMPI, after computing its own long-term plan, the BM assigns
each sensor a set of targets and search volumes along with the associated cost
coefficients and search/track/discrimination goals corresponding to the expected
improvements mentioned above. The natural deadline for these goals is the end
of this BMPI, although in certain situations the deadline could vary. Since it is
possible for a sensor to achieve all of its goals by the corresponding deadlines and
still have some remaining resources, the BM also informs each sensor about other
targets, not assigned to it, and the value of their cost coefficients. Now each sensor
finds itself in a situation described in the previous section: it faces a number of
targets with associated cost coefficients, goals, and deadlines. Accordingly, each
sensor acts as described above, without regard to the presence of other sensors,
by attempting to determine an optimal plan over a shorter time horizon (a
BMPI) that simultaneously meets all goals and deadlines while minimizing risk.
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The results are reported to the BM at the end of a BMPI and will be used for
updating the battle plan and creating an assignment list for the next BMPI.

5 Simulation Results

A low fidelity simulation environment was constructed in MATLAB to test and
compare myopic sensor resource management algorithms that assign track and
discrimination actions to multiple objects based on a heuristic policy or the
maximization of a single objective function. The application of far-sighted ap-
proaches, which incorporate search management, is not considered here, but is
discussed in [14].

We assume a single sensor has just begun tracking N objects. There is only
one lethal target, known as a re-entry vehicle (RV), amongst the targets. At each
time step, an action-object pair is selected depending on the algorithm used, and
that action is then performed on that object. Each action takes the same amount
of time to complete. Each object is assumed to belong to one of three classes
(lethal objects belong to class 1), and classification is based on the measure-
ment of three independent features. We assume that class-conditional PDFs are
known and are Gaussian for each feature (see Figure 1). The sensor can make
an observation on exactly one feature at a time when performing a discrimina-
tion action. This assumption could easily be relaxed. If the manager decides to
measure a particular feature of an object, then the result of this measurement is
generated as a random variable whose distribution corresponds to this feature’s
distribution for the true class of the observed object. An object’s posterior prob-
ability of belonging to any class is then computed using Bayes’ rule, where we
have made the simplifying assumption that observations are independent from
one time step to the next.

We assume a simple tracking model of a target moving with a constant velocity
without a process noise. We model the probability that an interceptor success-
fully “kills” a target (probability of kill for short) as a function of a track’s error
covariance matrix. In particular, we used a sigmoidal function of the form

pkill(x) =
1 + exp(−m/s)

1 + exp((x − m)/s)

to determine the probability of kill, where x denotes the Euclidean norm of
a track’s position error, m defines the “midpoint,” i.e., the point at which
pkill(x) ≈ 1/2, and s represents the “spread” of the curve. Note that small values
of s result in near step functions where pkill is either close to one or zero. Such a
function could easily be extended to incorporate additional factors beyond just
the position error of track (e.g., velocity errors, classification information, etc.).
In fact, Kalandros and Pao [7] give several examples of why more information
may be necessary.

As described in Section 2, cost coefficients are needed to compute the risk of
making a particular decision. We set the cost of incorrectly declaring a threat a
nonthreat to 6, the cost of incorrectly declaring a nonthreat as a threat to 1, and
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Fig. 1. Class-conditional PDFs used in simulations

the cost of incorrectly classifying a nonthreat as a different type of nonthreat
to 0.2. We assume there are three objects, and, in truth, object i belongs to class
i, i = 1, 2, 3. (Initial results with more than three objects demonstrated that our
conclusions remain the same.)

For general class-conditional PDFs, the expected risk reduction from an ad-
ditional measurement cannot be computed analytically. Thus, we turned to nu-
merical integration techniques in our computations.

There are six different planners (or resource management algorithms) that we
tested for comparison. At each planning interval (each time step), the planner
assigns the sensor to perform a single action on a specific object during the
subsequent time interval. The planners (and their symbols used in the figure
legends) are:

1. Risk Reduction Planner (maxRRR): Enumerates all action-object pairs and
determines which action-object pair will yield the largest expected reduction
in risk.

2. Information Gain Planner (maxInfoG): Enumerates all action-object pairs
and determines which action-object pair will yield the largest expected in-
formation gain.

3. Improved Information Gain Planner (maxIInfoG): Operates exactly like the
Information Gain Planner except there is no information gain for performing
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a track update on an object whose track error is below a pre-defined thresh-
old.

4. Highest Probability of RV Planner (maxPRV): Identifies the object with the
largest current probability of lethality (i.e., of being a re-entry vehicle) and
randomly generates an action to be performed on this object. The purpose of
this planner is to dispel the oft-held belief that spending the most resources
on the most threatening object is an optimal use of resources.

5. Highest Risk Object Planner (maxRiskObject): Identifies the object with
the largest current risk and randomly generates an action to be performed
on this object.

6. Round Robin Planner (RoundRobin): First performs action 1 on all objects,
then action 2, and so on.

The different resource management algorithms were compared with respect
to five different metrics: (1) average loss; (2) average probability of correct clas-
sification of the lethal object; (3) average probability of correct classification of
all nonlethal objects; (4) average track quality of the lethal object; and (5) aver-
age track quality of all nonlethal objects. In general, we found that all planners
maintain a very high track quality on the object it believes to be lethal and a
sufficient track quality on all remaining objects. Results with respect to the first
three metrics are described below.

As one would expect, the risk reduction planner, which strives to reduce risk
as quickly as possible, outperforms all other planners in the average loss category
(see Figure 2). What is interesting is that the planner that attempts to maxi-
mize pure information gain (maxInfoG) over the course of the mission dedicates
the majority of its resources to performing track maintenance actions. Under
the assumptions of this simulation, this corroborates our initial statement that
metrics based on pure information gain may not be well suited in the context of
missile defense.

To give a more mathematical explanation as to why a purely information-
based approach may yield inferior results, consider the following classification
problem involving an object that can belong to one of n possible classes C1, . . . ,
Cn, where C1 is the class of lethal objects and all other classes represent various
nonlethal objects. The object’s class can be represented as a discrete random
variable X , which must take on one of the values x1, . . . , xn with probabilities
p1, . . . , pn, respectively. It is well known that the (Shannon) entropy of the ob-
ject’s class, H(X) = −

∑n
i=1 pi log2 pi, is maximized when all of the pi are equal

because the object is equally likely to belong any of the n classes. In a similar
way, suppose that an object has been perfectly classified as a nonlethal object,
i.e., p1 = 0, but that the exact type of nonlethal object is completely unknown,
i.e., p2 = . . . = pn = 1/(n − 1). Then, the entropy associated with this object is
still relatively large. However, from the standpoint of risk, or expected loss, this
object is of little concern. One could then argue that it would be an inappropri-
ate use of scarce resources to determine precisely what class of nonlethal object
it is, when its associated risk has already been determined to be zero.
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Fig. 2. Performance comparison of different resource managers
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Fig. 3. Discrimination performance of different resource managers. P{RV} is the prob-
ability that an object is lethal.

Besides average loss, it is illustrative to compare the various planners based on
two importantquestions related to classification: (1)Howwellwere the targets clas-
sified? (2) How long did it take the sensor to classify the targets?Focusing solely on
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classification, one would expect an ideal sensor to quickly classify threatening
objects as threatening and identify nonthreatening objects as nonthreatening.
The sensor could then provide higher quality information in less time to an in-
terceptor whose goal is to prosecute all threatening targets and reduce expected
loss. It turns out that this goal is achieved as a byproduct of the risk reduc-
tion planner, and is illustrated in Figure 3. To understand this, recall that a
nonzero probability of lethality directly contributes to the risk of a nonthreat
decision. Consequently, if the cost of leakage is relatively high and several ob-
jects have a probability of lethality well above zero, then it is beneficial to per-
form additional classification measurements in order to reduce this probability.
Reducing this probability is one way to possibly decrease total risk. Thus, a
natural consequence of the risk reduction planner is to reduce the probability of
lethality on all nonthreatening objects by performing additional discrimination
actions.

6 Conclusions and Future Work

This chapter advocates the use of a risk-based objective function for sensor re-
source management in the context of missile defense. After presenting a formal
description of the equations and update formulas needed to compute risk and
risk reduction quantities, we outlined a risk-based approach to single-sensor re-
source management as well as a hierarchical approach to multisensor control.
We performed a comparative analysis of various myopic approaches for tasking
a sensor to track and discriminate targets (without the presence of deadlines)
and found that maximizing the expected rate of risk reduction produced superior
results.

Although not presented in this work, we have conducted an investigation of
a modified rate of risk reduction method when presented with Battle Manager
goals and deadlines [14]. Future research includes refinement of a mathemati-
cal solution methodology as needed to solve a finite-horizon dynamic program.
Likewise, we are currently working to incorporate the risk due to possible mis-
association of closely-spaced targets, which adds yet another layer of complex-
ity into our formulation. It can be shown that our risk-based approach is also
applicable in a situation when some contextual information is available for dis-
crimination. Although the calculations become more involved, the results will be
very similar. Finally, we are continuing to develop and test our proposed hierar-
chical resource management approach and the associated dynamic programming
techniques involved.
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Abstract. We propose a graph theory approach for planar autonomous
exploration. We first partition the planar space using Peano-Cesaro tri-
angular tiling and then construct an edge adjacency dual graph of the
tiling pattern. The dual graph of the Peano Cesaro triangulation is ob-
tained by defining a vertex for each triangular tile and drawing an edge
between two tiles that share an edge. In the presence of obstacles we ana-
lyze the subgraph induced by the non-obstacle tiles in the dual graph. We
prove the existence of Hamiltonian cycles in this induced subgraph for
a certain class of obstacles. We also prove the non-existence of Hamilto-
nian cycles for certain other obstacle configurations. We present heuristic
based algorithms and compare their results for the cases where we have a
definitive answer to the existence of Hamiltonian cycles. Examples with
figures are included to illustrate the concept.

1 Introduction

Exploratory path planning with obstacle avoidance finds application in areas
involving autonomous search/exploration tasks like mine sweeping, rescue oper-
ations, locating survivors in a disaster struck area, ocean exploration, monitoring
coast lines, protecting borders etc. Some other exciting commercial applications
of interest involve autonomous coverage applications for lawn mowing and vac-
uum cleaning robots.

Autonomous path planning and obstacle avoidance has been studied by nu-
merous researchers and over the years quite a few interesting approaches have
been proposed. [7] and [10] present a comprehensive treatment of these ap-
proaches. In this chapter, we bring together concepts from the fields of space
filling curves, graph theory and path planning and merge them to gain insights
into the optimal solutions of a problem of considerable practical interest. We pro-
pose a graph theory approach to the exploratory path planning problem. The
existing approaches are based mainly on heuristic and there exist no provable
guarantees. Graph theory has been applied for path planning problems earlier in
[9] by Jun and D’Andrea, the difference is that the authors use hexagonal cells

M.J. Hirsch et al. (Eds.): Adv. in Cooper. Ctrl. & Optimization, LNCIS 369, pp. 145–165, 2007.
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which are not well suited for multi-resolution decomposition and it is not clear
whether an irregular decomposition of the exploration space is possible. In [14]
and [15], the Savla et al. tile the exploration space with bead tiles. The bead
tiles are constructed assuming a Dubin’s vehicle model for the UAVs (with a
maximum allowable radius of curvature of the planned paths). The bead tiles
even though they encode the mobility constraints satisfactorily, but again there
is no mention of irregular decomposition. We believe our approach of Peano-
Cesaro tiling is more flexible in terms of representation of the exploration space.
However, it remains to be seen how the novel ideas proposed in this chapter com-
pare with the existing exploratory path-planning approaches in terms of actual
implementation on a real system. The concept of Peano-Cesaro tiling used in
this paper for path planning application, has been successfully used for pattern
based image compression in our earlier work [5].

In this chapter, we use Peano-Cesaro sweep [13] to partition the territory map
(including obstacles, if any) into triangular tiles and use the associated Sierpinski
tour for exploration. The Peano-Cesaro sweep is a space filling heuristic. Space
filling heuristics have been successfully used to solve the Traveling Salesman
Problem in a time efficient manner [3], [12]. Even though the solutions obtained
are suboptimal, the savings in computation time are immense. The authors in
[3] have proved a bounded distance from the global optimum. The Sierpinski
space filling curve has been proven to be optimal in terms of the overall tour
length when compared to other space filling curves like the Hilbert curve [1].

We represent the mobility constraint of the autonomous vehicle by allowing
moves only between tiles that share a side in one time step. We overlay the
Peano-Cesaro tiling pattern with a graph, where the tiles are represented by
vertices and the edges represent allowed moves. This graph is the same as the
edge adjacency dual graph of the Peano-Cesaro triangulation. If the planar region
has obstacles, in order to disallow movement to the obstacle tiles, we remove the
obstacle vertices and edges incident on them from the dual graph. The resulting
graph is a subgraph induced by the non-obstacle vertices of the dual graph.
Our objective then is to find a cyclic tour of the induced subgraph such that it
includes all the non-obstacle tiles. In practical implementation, this is equivalent
to exploring a planar region with obstacles in the most efficient manner, so that
it is possible to visit all the non-obstacle regions and also save fuel, time and
energy.

A no repetition cyclic tour of the vertices of a graph is known as a Hamil-
tonian cycle. Thus, an optimal exploration tour, in the presence of obstacles, is
a Hamiltonian cycle in the subgraph induced by the non-obstacle tiles in the
dual graph. In general, determining whether a graph is Hamiltonian is an NP-
complete problem. But, in this paper we use the special properties of the induced
dual subgraph to prove existence of Hamiltonian cycles for a certain class of ob-
stacles. Similar work for Triangulated Irregular Networks has been done in [2],
which has immense application in computer graphics.

The contribution of this chapter can be summarized under three specific head-
ings: Firstly we have devised an algorithm called ESSENTIAL-CHAINS, which
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starts with an assumption that a given dual subgraph is Hamiltonian and then
proceeds by logical reasoning collecting all components of the graph which prov-
ably are essential components of the Hamiltonian cycle, if one exists. For certain
obstacle configurations the algorithm comes up with a counter example thus
proving that the dual subgraph is non-Hamiltonian. Secondly we prove the ex-
istence of Hamiltonian cycles for a special class of obstacles. Lastly we have
devised a few heuristics based algorithms to find the minimum repetition tours
for a given obstacle configuration. We compare the result of the heuristics based
algorithms, based on the attainable optimum established using our existence
results.

In section 2, we introduce the ideas of Peano-Cesaro sweep and the associ-
ated Sierpinski bucketing tour. In section 3 we use the concepts from section 2
and graph theory to pose a combinatorial optimization problem for exploratory
path planning in the presence of obstacles. In section 4 we prove existence and
non-existence results of Hamiltonian cycles for a certain class of obstacle config-
urations. In section 5 we present algorithms to find long cycles in our graph of
interest. Finally in section 6, we sum up the contributions of this paper.

2 Peano-Cesaro Tiling and the Associated Sierpinski
Bucketing Tour

2.1 Peano-Cesaro Fractal Sweep

The central idea behind a fractal sweep is to find a recursive mapping that takes
the unit interval into the plane. The key concepts in such constructions are
initiator, generator, sweep and rules of arms placement. An example of a fractal
is the Peano-Cesaro fractal sweep as illustrated in figure 1(a). If production of
the fractal, as in Peano-Cesaro fractal sweep, proceeds indefinitely, a trace that
is everywhere continuous but nowhere differentiable would be obtained. The
generator of a fractal consists of arms, each treated as scaled down initiators for
the next stage of construction. Patterns that replicate the generator as recursion
deepens are called self-similar [11] and admit to the concept of dimensionality
D = log N/ log(1/r) where, N is the number of arms of the generator and r is
the similarity ratio defined as the length of an arm of the generator to that of the
initiator. Thus, the Peano-Cesaro curve, in which the generator has two arms
(N = 2), each (r = 1/

√
2) factor of the length of the initiator, has dimensionality

D = log 2/ log
√

2 = 2. Fractals defined over the plane with D close to 1 are
smoother and better behaved than those with D close to 2, which are more
plane-filling. Fractals with D > 2 exhibit chaotic behavior by multiply crossing
regions trapped by the fractal sweep. Brownian motion is a primary example of
sweep patterns with D > 2, while Koch curve [11] has 1 < D < 2.

A sweep is a walk from the start to the end of the initiator along a defined
path and this path defines the fractal. Taking one of the diagonals of the unit
square U on the plane as the initiator, the Peano-Cesaro fractal sweep can be
developed using the generator shown in figure 1(a), and the following rule of
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(a) Peano-Cesaro fractal
sweep.

(b) Peano-Cesaro tiling and the associated Sierpinski
bucketing tour.

Fig. 1. Peano-Cesaro fractal sweep and tiles

placement: At every even (odd) stage L = 1, walk along (L − 1)th sweep
and place the generator to the right (left) of each and every arm. Four
stages of the Peano-Cesaro fractal sweep in figure 1(b) are indicated by directed
paths all beginning and ending at a corner of the unit square U . Note that
the Peano-Cesaro sweep as illustrated in figure 1(b) shows no region crossing
behavior. To be more accurate, the sweep is linear-wise degenerate, as it visits
the vertices of the tiles generated multiple times - for instance the center of U in
stage 2 of the decomposition is visited four times, which in fact can be proven
to be the maximum degeneracy for all recursion levels. However, the sweep is
planar-wise non-degenerate (non-crossing), precisely because D = 2.

The Peano-Cesaro sweep tiles the unit square U with right-angled isosceles
triangles. A tile is composed of the current initiator forming the hypotenuse
(denoted by B), and the first and second arms of the corresponding generator
as the other two sides (denoted by F and S respectively.) The number of tiles
is doubled each time the sweep is advanced by one recursion stage (also referred
to as recursion level), yielding 2L triangular tiles at the Lth stage (L ≥ 1). The
domain U is decomposable to any desired degree and tiling is always regular
and isotropic such that at every level of decomposition each tile is visited by
the sweep (in the sense that it traverses the two (F and S) sides of the tile
defined by the arms of the generator). These are the properties that make the
Peano-Cesaro sweep amenable to analysis of the neighborhood of a triangular
tile and, as we shall discuss in this chapter, highly suitable for autonomous
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Unmanned Vehicle (UV) path planning, object avoidance and also cooperative
strategies for exploration and goal-seeking missions amongst a team of UVs.
The decomposition procedure highlighted above can be represented by a binary
tree structure wherein nodes on left (right) branches are recursively assigned the
values 0(1). This, in a natural way, maps each tile with a binary code sequence
indicating a tree descent inheritance from the root (representing the unit square
U) to tiles/nodes at various levels of the tree. Denoting a code sequence by
C, a tile at the Lth recursion level may be expressed by C = c1 · · · cL, where
ci ∈ {0, 1}, i = 1 · · ·L. Tiles at stages 1, 2 and 3 in figure 1(b) carry their
code sequences. Later we use the decimal equivalents of these code sequences to
distinguish tiles, we will refer to this decimal indexing as the Sierpinski ordering.
This concept of distinguishing regions in space using indexing of the subdivisions
has also been analyzed in [1], where it was proved that the Sierpinski ordering
is the best in terms of preserving spatial adjacency information.

The Peano-Cesaro sweep in figure 1(b) shows four regular stages of tiling and as
mentioned the isotropic and self-similarity properties of the tiles ensure that all re-
gions of U at any recursion level have equal probability of being visited, where the
probability measure is proportional to the area of the tile at the specific recursion
level. These properties, which turn out to be important for single or cooperative
autonomous path planning, are not met in most of the other fractal patterns - the
reader is invited to consult [11] for a number of examples such as the snowflake, the
monkeys tree and the dragon sweep formations. The regular tiling pattern in fig-
ure 1(b), though extremely efficient and simple, is not mandatory. Figure 2 shows
two (non-homogenous) deviations of the regular decomposition. Figure 2(a) de-
picts an example of variable tile size Peano-Cesaro decomposition along with its
associated Sierpinski sweep. The deviation in figure 2(b) is more drastic, where
tile splitting is no longer constrained to the mid-point of B side, though the topo-
logical structure of the binary decomposition is left invariant.

(a) Variable size decomposition. (b) Irregular adaptive decomposi-
tion.

Fig. 2. Non-homogenous Peano-Cesaro tiling
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2.2 Sierpinski Bucketing Tour

The Peano-Cesaro sweep in figure 1(b) induces what is referred to as a Sierpinski
Bucketing tour according to the following rule [8]:

Whenever a tile is swept by the Peano-Cesaro fractal sweep, connect the
center of the tile to the center of the preceding tile visited by the Peano-Cesaro
sweep.
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Fig. 3. Sierpinski Tour for decomposition levels 5 and 6

Application of the above rule to regular (and irregular) sweeps yields the
regular (and irregular) Sierpinski tours. Figure 3 illustrates the Sierpinski tour
for level 5 and 6. Sierpinski tour generation algorithm forms the basis for au-
tonomous agent path planning whether on an exploratory or surveillance mis-
sions starting and ending at the same location or a goal oriented mission starting
from a source location to a destination. The hierarchical (multi-resolution) na-
ture of the Peano-Cesaro tiling, represented by sparse binary tree structures,
entirely carries over to the Sierpinski tour. This hierarchical behavior is highly
desirable for path planning missions in situations where the autonomous agent is
required to probe more carefully and search finer grain territories while cruising
at distance in open spaces (see figure 2(a)) for a scenario. Thus, if the gran-
ularity of tiles in the 3rd stage of Sierpinski tour in figure 1(b) is not suffi-
cient, the autonomous agent can easily penetrate one (or more) level(s) deeper
into the tree and search the region according to the 4th (or nth in general)
stage of the Sierpinski tour where granularity shrinks at a rate of two per level.
Due to the fractal dimension of the Peano-Cesaro sweep D = 2, the Sierpinski
tour drains U to any level given a sufficiently large n, where n is the recur-
sion level. This property guarantees an exploratory tour from a point A and
back to A, or a Hamiltonian chain from a point A to a point B, if such a path
exists.
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3 Exploring a Planar Region with Minimum Number of
Repetitions in the Presence of Obstacles

In section 2 we proposed Peano-Cesaro tiling and the associated Sierpinski buck-
eting tour as tools to generate way points for a planar autonomous mobile agent.
If the agent follows the Sierpinski tour, it visits each tile in the planar region
and returns to its origin. The problem of generating exploration way points in
an obstacle strewn space is of extreme practical interest. Consider for example,
an autonomous patrol boat, to be used for exploration of a coastline which is full
of small islands. For the purpose of this paper we assume that the territory map
of the planar region is available to the autonomous agent. Application of the
proposed tools to path-planning and obstacle avoidance with local sensors and
in the presence of mobile obstacles is an avenue of current and future research.
It is often the case that the capability of an autonomous agent is limited by it’s
battery life. For an exploration application it is desirable that the autonomous
agent visits every tile in the planar space with obstacles. This mission should
be accomplished with minimum repetitions of the tiles to extend battery life. In
this section we pose a combinatorial optimization problem to find a cyclic tour
that visits all the non-obstacle tiles, with minimum number of repetitions.

Let L be the level of decomposition of the planar region. This will result in
the decomposition of the planar region into 2L tiles. Let the tiles be numbered
from 0 to 2L − 1 under the regular Sierpinski ordering, as defined in section 2.
We will call the set of all tiles as T . We now state our main assumption for this
section.

Assumption 1 (Obstacle set). Any obstacle in the planar region can be rep-
resented as a union of tiles. Let O be the set of tiles marked as obstacles. We
call O the obstacle set.

We need the above assumption to retain the mathematical structure of the prob-
lem. For exploration applications this assumption does not create any limitations
as it is always possible (as shown in section 2) to set the decomposition level L
sufficiently high such that the obstacle can be closely approximated by a set of
contiguous tiles.

Constraint 1 (Allowed moves). If the autonomous vehicle is at tile i at time
instant t, then at time t + 1, it can only move to the side neighbors of tile i.

This assumption conforms to the mobility constraints of unmanned surface ve-
hicles. We now state the problem objective:

Given a set of covering tiles T and the obstacle set O. Under con-
straint 1, find a cyclic tour that covers all the tiles in the set T −O at
least once, with minimum number of revisits of tiles.

In order to analyze the performance of any algorithm that tries to find a cyclic
tour with minimum number of tile revisits, it is important that the minimum
number of repetitions needed for a given obstacle configuration be known. In the
following section we present and prove a few existence results.
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4 Results on Existence and Non-existence of Hamiltonian
Cycles

We analyze the optimization problem from section 3 using results from graph
theory. We first create a edge adjacency dual graph. For each triangular tile
we have a vertex in the dual graph and an undirected edge exists between two
vertices if and only if it is possible to move between the corresponding tiles under
Constraint 1. We refer to the set of all tiles in the plane as T .

The following definition puts these concepts in a mathematically precise for-
mulation.

Definition 1. The edge adjacency dual graph is an undirected graph S =
(VS , ES), such that for every tile in T , there is a vertex in VS and for a pair of
vertices x, y ∈ VS , xy ∈ ES if and only if x and y are reachable from each other
in one time step under Constraint 1.

Note that the dual graph is a 2-connected graph and the vertices can have
maximum degree 3. Since vertices in the dual graph represent tiles, in this section
we will use the terms tile and vertex interchangeably. We now define Hamiltonian
cycles and graphs.

Definition 2. For a graph with more than two vertices, a Hamiltonian cycle
is a cycle that contains each vertex of the graph exactly once. If a graph has a
Hamiltonian cycle, it is called Hamiltonian.

A cyclic tour of the planar region that visits all the tiles with no revisits is a
Hamiltonian cycle in the associated dual graph.

The Sierpinski tour, as defined in section 2, is a Hamiltonian cycle in S. Thus
the dual graph, S, is a Hamiltonian graph. Now since we know that T −O ⊆ VS ,
T − O induces a subgraph S′ in S. This can be represented as S′ = S[T − O]
following the notation of [6].

The existence of Hamiltonian cycle in S′, implies that a cyclic exploration
tour exists that visits all the tiles in the obstacle strewn planar region with no
revisits.

The problem of verifying whether a graph contains a Hamiltonian cycle has
been studied for over a hundred years. It is well known that the Hamiltonian-
cycle problem is NP complete [4]. We prove existence and non-existence of Hamil-
tonian cycles for different obstacle configurations using special properties of the
dual graph. The optimum of the combinatorial optimization problem described
earlier, is zero repetitions in the case a Hamiltonian cycle exists. Once we know
that a Hamiltonian cycle exists, we can evaluate the distance from optimum for
heuristic based algorithms.

Definition 3. A simple cycle is a cycle without any chords. Here, a chord is
defined as an edge that joins two vertices of a cycle but is not itself an edge of
that cycle.

As evident in figures 4(a) and 4(b), simple cycles in the dual graph either have
4 or 8 nodes. Such simple cycles look like squares or octagons respectively.
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(a) S for L = 7. (b) S for L = 8. (c) Induced subgraph S ′ in
the presence of an obstacle.

Fig. 4. S and S ′

Definition 4. All tiles that share an edge or a vertex with the boundary of the
square region will be referred to as the periphery tiles. We will call all the
other tiles as interior tiles.

Our first result establishes non-existence of Hamiltonian cycles when the number
of tiles in the obstacle set is odd.

Proposition 1 (Properties)

1. If L > 1, S is 2-connected.
2. S and S′ are bipartite graphs.
3. |O| is odd then S′ is non-Hamiltonian

Proof

1. L > 1 implies |T | = |VS | > 2. One needs to remove at least two vertices
from VS , such that the subgraph induced by the remaining vertices on S is
disconnected. Hence S is 2-connected.

2. All cycles in S have even number of vertices, therefore by proposition 1.6.1
in [6] we know S is a bipartite graph. S′ being the induced subgraph retains
the bipartite property.

3. If S′ is disconnected or 1-connected, then the results hold trivially. If S′ is
2-connected, then because |O| is odd, |VS′ | = |T − O| is also odd. Now if a
Hamiltonian cycle exists it will have an odd number of vertices in it, which
is a contradiction because S′ is bipartite. Hence S′ is non-Hamiltonian.

The above result proves non-existence of Hamiltonian cycles. We now develop an
algorithm which can prove non-existence of Hamiltonian cycles for a larger class
of obstacles by logical reasoning. We refer to this algorithm as ESSENTIAL-
CHAINS. We need to first define what we mean by a chain.

Definition 5

1. A tree is a connected graph that does not have any cycles.
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2. A chain is a tree, in which all vertices have degree less than or equal to 2.
There are exactly 2 vertices with degree 1 in a chain, which we refer to as
the terminal vertices of a chain.

The ESSENTIAL-CHAINS algorithm starts with the assumption that S′ is
Hamiltonian. It then finds chains in S′ that should form parts of any exist-
ing Hamiltonian cycle. For some obstacle scenarios, the algorithm ends up with
a contradiction, hence proving S′ is non-Hamiltonian. To develop concepts for
this algorithm, we begin with the following definition:

Definition 6

1. Chain edge: An edge xy ∈ ES′ is a chain edge, if either x or y or both have
degree 2. We refer to the set of all chain edges as Ec

S′ .
2. Chain vertex: A vertex x ∈ VS′ is a chain vertex, if one of the edges

incident on x is a chain edge. We refer to the set of all chain vertices as
V c
S′ .

Consider the following simple observations:

Proposition 2

1. If S′ is Hamiltonian, then any Hamiltonian cycle of S′ will contain all the
edges in Ec

S′ .
2. If S′ is Hamiltonian and |Ec

S′ | = |VS′ |, then there exists a unique Hamilto-
nian cycle in S′

3. All degree 2, degree 1 or disconnected vertices in S′ are either periphery tiles
or they share an edge with an obstacle tile.

4. If S′ is Hamiltonian, a Hamiltonian cycle of S′ must contain exactly two of
the edges, incident on the every vertex in VS′ .

Proof

1. By definition of Hamiltonian cycle must visit all vertices in S′. Every edge
in Ec

S′ is incident to a degree 2 vertex. Therefore, in order to visit the degree
2 vertices, the Hamiltonian cycle must traverse through all edges in Ec

S′ .
2. Any Hamiltonian cycle in S′ has |VS′ | edges, and we already know all mem-

bers of Ec
S′ should be part of every Hamiltonian cycle that exists. Hence

there is a unique choice for a Hamiltonian cycle.
3. Follows by observation.
4. Follows from the definition of Hamiltonian cycle.

If S′ has any disconnected or degree 1 vertex then it is trivially non-Hamiltonian.
From proposition 1, we know if |O| is odd, then S′ is non-Hamiltonian. Thus the
added utility of ESSENTIAL-CHAINS algorithm is evident when the obstacle set
has an even number of tiles and S′ is 2-connected. For the rest of the discussion
on ESSENTIAL-CHAINS algorithm we will assume |O| is even and S′ is 2-
connected.
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4.1 ESSENTIAL-CHAINS Algorithm

The ESSENTIAL-CHAINS algorithm begins by assuming, S′ is Hamiltonian.
The input to ESSENTIAL-CHAINS is the graph S′. There are three possible
outcomes of ESSENTIAL-CHAINS:

1. Either the algorithm comes up with a contradiction and exits abruptly, thus
proving S′ is non-Hamiltonian. Or,

2. it finds a graph K whose components are chains. These chains are essential
components of any Hamiltonian cycle of S′. Or,

3. it comes up with a K, such that VK = VS′ , thus finding a unique Hamiltonian
cycle K for S′.

We refer to the neighborhood set of x in S′ as nS′(x) and the neighborhood
set in K as nK(x). Using the same notation, for an x ∈ K, dK(x) and dS′(x)
refer to the degree of the vertex x in K and S′ respectively.

As a first step of ESSENTIAL-CHAINS, we add all chain vertices of S′ and
all chain edges incident on them, into the vertex and edge set of K respectively.

K = (VK , EK)
First-Step(S′)
1 Initialize VK = {} , EK = {}
2 for all x, such that x ∈ VS′ , s.t. dS′(x) = 2
3 do Let y, z ∈ nS′(x)
4 if ∃ a path between y and z in K
5 then S′ is non-Hamiltonian EXIT
6 else VK ← VK ∪ x ∪ y ∪ z
7 EK ← EK ∪ xy ∪ xz

Note that after the execution of FIRST-STEP, VK = V c
S′ and EK = Ec

S′ . The
next module is central to the ESSENTIAL-CHAINS algorithm. This module
loops over all vertices which are in VK , and are degree 3 in S′. We update a
candidate set Xc, after execution of this module.

Essential-Chains()
1 Initialize Xc = {x : x ∈ VK , dS′(x) = 3}
2 while Xc 	= {}
3 do
4 Pick an x ∈ Xc Let nS′(x) = {y, z, w}
5 switch
6 case dK(x) = 1 : Let y ∈ nK(x) and z, w /∈ nK(x)
7 switch
8 case ∃ a path in K between z and w :
9 switch

10 case dK(z) = 2 and dK(w) = 2 :
11 S′ is non-Hamiltonian EXIT
12 case dK(z) = 2 and dK(w) = 1 :
13 VK ← VK ∪ w
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14 EK ← EK ∪ xw
15 if K has changed
16 then UPDATE Xc([w, z], x)
17 case ∃ a path in K between z and x :
18 if dK(w) 	= 2
19 then if path-length in K between z, x < |VS′ |
20 then VK ← VK ∪ w
21 EK ← EK ∪ xw
22 if K has changed
23 then UPDATE Xc([w, z], x)
24 else S′ is Hamiltonian and K
25 is the unique Hamiltonian
26 cycle EXIT
27 else S′ is non-Hamiltonian EXIT
28 case dK(x) = 2 :
29 Let y, z ∈ nK(x) and w /∈ nK(x)
30 switch
31 case dS′(w) = 2 : S′ is non-Hamiltonian EXIT
32 case dS′(w) = 3 : Let nS′(w) = {a, b, x}
33 VK ← VK ∪ w ∪ a ∪ b
34 EK ← EK ∪ aw ∪ bw
35 if K has changed
36 then UPDATE Xc([a, b, w, y, z], x)
37 case dK(x) = 3 :
38 S′ is non Hamiltonian EXIT
39 Xc ← Xc − x

The function UPDATE Xc(Y, x), first selects all vertices in Y with degree
3 in S′, lets call this set of vertices Y3 ⊂ Y . The function deletes all previous
occurrences of the elements of Y3 from Xc and then adds the elements of Y3 right
after the occurrence of x. The function then deletes x from Xc before returning.

We now illustrate the execution of the ESSENTIAL-CHAINS algorithm using
an example

Consider L = 5 and O = {3, 4}, as shown in figure 5. Figure 5(a), shows
K after the execution of the FIRST-STEP. The candidate set Xc after FIRST-
STEP is initialized to {10, 12, 13, 18, 21, 26, 27, 29} Now we present a step by step
execution of the ESSENTIAL-CHAINS algorithm

1. Pick x = 10 from Xc, dK(x = 10) = 2, {y, z, w} = {9, 11, 13}. The control
goes to the case in line 32, finds {a, b} = 14, 12 and adds edge 12 − 13 to
K, figure 5(b). Y = {13, 9, 11, 12, 14}, Y3 = {13, 12} UPDATE Xc returns
{12, 13, 18, 21, 26, 27, 29}.

2. Pick x = 12, dK(x = 12) = 2, {y, z, w} = {11, 13, 19}. Again in line 32,
the algorithm finds {a, b} = 18, 20, adds edges 18 − 19, 19 − 20 and vertices
{19, 20} to K, figure 5(c). Y = {19, 11, 13, 18, 20}, Y3 = {19, 13, 18, 20}
UPDATE Xc returns {20, 18, 13, 19, 21, 26, 27, 29}.
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(a) K after FIRST-STEP.
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(b) K after x = 10 is
picked.
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(c) K after x = 12 is
picked.
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(d) K after x = 20 is
picked.
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(e) K after x = 27 is
picked.

Fig. 5. Illustration of ESSENTIAL-CHAINS algorithm. Graph K is shown using thick
edges.

3. Pick x = 20, dK(x = 20) = 1, {y, z, w} = {19, 27, 21}. There exists a path in
K between x = 20 and z = 27, and its length is less than |VS′ |. Therefore,
control goes to the case in line 20, and adds edge 20 − 21 to K, figure 5(d).
Y = Y3 = {21, 27} and UPDATE Xc returns {27, 21, 18, 13, 19, 26, 29}.

4. Pick x = 27, dK(x = 27) = 1, {y, z, w} = {28, 20, 26}. There exists a path in
K between z = 20 and w = 26, dK(z = 20) = 2 and dK(w = 26) = 1. There-
fore, control goes to the case in line 12, and adds edge 27 − 26 to K, figure
5(e). Y = Y3 = {20, 26} and UPDATE Xc returns {26, 21, 18, 13, 19, 29}.

5. For the remaining elements in Xc, K does not change. Therefore, there are
no further additions to Xc. The algorithm eventually terminates when Xc be-
comes empty. In this case, for the given obstacle configuration, the algorithm
finds the unique Hamiltonian cycle.

In figure 6(a) the ESSENTIAL-CHAINS algorithm finds a contradiction.
When vertex 37 is picked from the candidate set Xc, the set nS′(37)−nK(37) =
{36, 34}. Both 34 and 36 have degree 2 in K, thus the algorithm concludes that
S′ is non-Hamiltonian. This can be seen in the following manner: under the as-
sumption that a Hamiltonian cycle exists, K should contain exactly two edges
incident on every node. One edge incident on 37 is already a member of K. For
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the other edge, one has a choice between 37 − 34 and 37 − 36. Now since two
edges incident on each of the vertices 36 and 34 are already in K, for both choices
37 − 34 and 37 − 36, a degree 3 vertex will result. This is a contradiction.

In figure 6(b), ESSENTIAL-CHAINS is unable to determine whether S′ is
Hamiltonian or not. The thick edges are essential in a Hamiltonian cycle if one
exists. Our main result of this paper, proves that S′ Hamiltonian for obstacle
configuration shown in figure 6(b).

(a) Non-Hamiltonian graph: There is a
contradiction for vertex 37 in the lower
left corner.

(b) Indeterminate result by
ESSENTIAL-CHAINS.

Fig. 6. Outcomes of ESSENTIAL-CHAINS

4.2 Main Result

The main result of the chapter is a positive result. But before we present our
main result we need the following Lemma to prove it.

Lemma 1. Let L be odd and V ⊂ VS such that the induced subgraph S[V ] is a
rectangular lattice with octagons on the four corners. Then S[V ] is Hamiltonian.

Proof. We prove this lemma by mathematical induction on the dimension of the
lattice. First step verification: the lattice is 1 × 1. In other words, if V is such
that S[V ] is an octagon, then S[V ] is trivially Hamiltonian.

All chains of octagons with interleaving squares can be proved to be Hamil-
tonian using induction as shown in figure 7(a). Now we know that all chains
of m octagons with interleaving squares are Hamiltonian. As our new induc-
tion hypothesis, we assume that a rectangular lattice m × n of octagons with
interleaving squares is Hamiltonian. Now as shown in figure 7(b), we apply the
induction step again to prove that the rectangular lattice of dimension m+1×n
bounded by octagons on the four sides is Hamiltonian.
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(a) Hamiltonian cycle in m × 1 lat-
tice of octagons.

(b) Hamiltonian cycle in m × n lat-
tice of octagons.

Fig. 7. Odd level dual graph for any rectangular region is Hamiltonian

Theorem 1. If the induced graph S[O] is a simple cycle, and ESSENTIAL-
CHAINS does not come up with a contradiction, then S′ is Hamiltonian.

Proof. We prove this result by explicitly showing that a Hamiltonian cycle can
be constructed in S′. Here we give a sketch of the proof for an odd level of
decomposition L = 2k+1. Since S[O] is a simple cycle, it can only be a square or
an octagon. If S[O] is an octagon, it partitions the entire graph into rectangular
regions, both when it is an interior octagon (figure 8(a)) and a periphery octagon
(figure 8(b)). Now we know by Lemma 1 that the rectangular partitions of the
graph are Hamiltonian. The Hamiltonian cycles of each of these rectangular
partitions can be stitched together to form one Hamiltonian cycle for S′, as
shown in figure 8(e). If S[O] is a square, then for all the squares that exist on
the periphery of the graph, the ESSENTIAL-CHAINS algorithm finds a counter
example, thus proving the non-existence of a Hamiltonian cycle. However, for
other squares, ESSENTIAL-CHAINS does not come up with a contradiction and
for all such cases, a bounding cycle can be found (figures 8(c) and 8(d)). Again,
as in the case of an octagon, the rectangular partitions created are Hamiltonian,
by Lemma 1. Stitching together Hamiltonian cycles as shown in figure 8(f) gives
us a Hamiltonian cycle for S′.

The above result holds true for even values of L and the proof is very similar to
the one above.

Theorem 1 presents a lot of interesting and intriguing research questions. The
idea of finding a bounding box and connecting Hamiltonian cycles can be used
when the planar region to be explored has multiple disconnected obstacles. This
idea can also be utilized for collaborative exploration by multiple vehicles, where
each vehicle is assigned a rectangular partition and it executes the optimum
cyclic tour computed for that particular partition. Collaborating vehicles can
also exploit the multiple connecting edges their optimal cycles to those of their
partners and switch tours. This may be helpful when the collaborating agents
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(a) (b) (c) (d)

(e) (f)

Fig. 8. Illustration of proof of the main result

are heterogenous and a vehicle with a certain kind of capability is needed at a
certain location. A stronger and more useful result will be: to find the largest
dimension of a bounding box such that if the obstacle configuration results in
a non-Hamiltonian S′ for this bounding box, the obstacle configuration will
result in non-Hamiltonian S′ for any bounding box, no matter how large it is.
We are currently investigating the properties of the dual graph to gain further
insight into the problem. The eventual aim of this research is to characterize
the minimum number of repetitions of tiles for all obstacle configurations and
to find provable algorithms to find the optimal cyclic tours. We now present a
few heuristics based algorithms. Using results from this section we evaluate the
performance of the algorithms for obstacle configurations where we know the
optimum.

5 Algorithm Development and Comparison

In section 4.1, we described the ESSENTIAL-CHAINS algorithm that deter-
mines the set of chains K (as in figure 6(a)) that are essential in a Hamiltonian
cycle, if one exists. As we observed in figure 6(b), the algorithm can terminate
without a conclusive answer to the existence of a Hamiltonian cycle. In this
section, we describe a heuristic based cycle maximization algorithm that tries
to find the longest cycle in the induced dual subgraph S′. Later in this section,
we show that the cycle maximization algorithm does not necessarily find the
optimal solution. We also show that by including a few conditions, we can make
the cycle maximization step always output a Hamiltonian cycle for the class of
obstacles considered in Theorem 1.
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5.1 Pre-cycle Computation

In this section, we present the first stage of the cycle maximization algorithm. We
refer to this as the pre-cycle computation step. In the presence of obstacles, the
Sierpinski tour gets partitioned into one or more chains as shown in figure 9(a).
The idea is to use these chains to find a Hamiltonian cycle in S′. We describe
the algorithm in more detail below.

Group the obstacle tiles into k subsets O1, O2, · · ·Ok, where each subset Oi

is the largest set such that all its members have continuous Sierpinski ordering.
For example (figure 9(a)), for the Sierpinski decomposition level L = 7, let
O be {47, 80, 81, 82}. It turns out, for this example, k = 2, O1 = {47} and
O2 = {80, 81, 82}.

The k subsets, O1, O2, · · · , Ok, generate an equal number of chain parti-
tions P1, P2, · · · , Pk as shown in figure 9(a). In our example, the two sub-
sets O1 and O2 create two chain partitions P1 = {48, 49, · · ·78, 79} and P2 =
{83, 84, · · ·126, 127, 0, 1, 2, · · · , 45, 46} respectively.

After finding the chain partitions, we find the candidate bridges. A candidate
bridge is essentially a pair of vertices (x, y) in the induced subgraph S′ such that
the edge xy ∈ ES′ (figure 9(a)). In other words, tiles that correspond to x and
y in the original Peano-Cesaro triangulation are adjacent. To find the candidate
bridges for a subset, say, Oi = {wm+1, wm+2, · · · , wm+r}, we first identify the
pair of vertices (u, v) such that u is the largest tile index less than (m+1) and v
is the smallest tile index greater than (m + r). In our example, (u, v) = (46, 48)
corresponding to the subset O1 and (79, 83) corresponding to the subset O2.

Now, for each subset Oi, starting from the pair (u, v), we search (tile indices
lesser than u for x and tile indices greater than v for y) for the first occurrence
of a pair of vertices (x, y) ∈ S′, where, x and y are defined in the previous
paragraph. Geometrically interpreting the figure 9(a), we search (outwards and
starting from the pair (u, v)) for the pair of vertices (x, y) ∈ S′ that minimizes
the distance dc between them. Here, the distance dc between two vertices u and
v is expressed as:

dc = min(abs(u − v) − 1, 2L − abs(u − v) − 1) (1)

where L is the Peano-Cesaro decomposition level, abs() is the absolute value
function and min() returns the minimum value. In the above example, the two
candidate bridge pairs (x, y) determined are (46, 49) and (73, 86) for O1 and O2
respectively. The pre-cycle computation outputs a cycle (figure 9(b)) which is
the input to the cycle maximization step discussed in the next section.

5.2 Cycle Maximization

Denote the cycle found in section 5.1 by C (figure 9(b)). The cycle C is the input
to the cycle maximization step. Denote the set of vertices in the cycle C by VC .
We call the graph S[VS′ − VC ] as G. Now if S′ is 2-connected, there exists at
least 2 vertices in C whose neighborhood set nS′() in S′ has vertices in G. Let
us denote two such vertices in C by xC and yC . Let their neighbors in G be xG
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(a) Finding chains and bridges. (b) Output of pre-cycle computation.

Fig. 9. Illustration for finding partition chains, finding bridges and computing pre-cycle

(a) Illustration of cycle
maximization.

(b) Final solution cycle computed by the cy-
cle maximization step.

Fig. 10. Cycle maximization and its output

and yG respectively (figure 10(a)). The algorithm now finds the shortest path in
G between xG and yG . Let us denote the distance of this shortest path as dG .
Therefore the distance between xC and yC in G is dG + 2. Now if dG + 2 > dC ,
where dC is the shortest path distance between xC and yC in C, then it is possi-
ble to increase the number of nodes in the initial cycle C. This can be done by
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(a) Initial cycle C (thick lines) determined
by the pre-cycle computation step.

(b) A Hamiltonian cycle (thick lines) de-
termined as the solution cycle using cycle
maximization step.

Fig. 11. Illustration of cycle maximization. In this example, cycle maximization comes
up with a Hamiltonian cycle (an optimal solution in this case).

(a) Essential Chains generated. (b) Hamiltonian cycle solution.

Fig. 12. Performance of ESSENTIAL-CHAINS algorithm

replacing the path in C between xC and yC by the path between them in G. The
algorithm terminates when no such increase in the cycle length is possible. This
concept is illustrated in figure 10(a).
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After all the possible replacements are done, the resulting cycle C is the final
solution cycle. Figure 10(b) illustrates a solution cycle determined using the
cycle maximization step. For certain cases, cycle maximization finds the optimal
tour as illustrated in figures 11(a) and 11(b).

In order to assess the performance of our heuristic based cycle maximization
algorithm, we need to determine the minimum number of repetitions attainable.
For this, we ran our ESSENTIAL- CHAINS algorithm and the computed set
of essential chains, K, is illustrated in figure 12(a). Now by observation, we
join the computed essential chains to find a Hamiltonian cycle for this obstacle
configuration as shown in figure 12(b). Thus, for this example, we observe that
our heuristic based cycle maximization algorithm is four vertices away from the
attainable optimal solution.

We also observe that the vertices missed (50, 83, 84, 85) by the cycle maximiza-
tion step (figure 10(b)) were a part of the essential chains set, K (figure 12(a)).
Therefore, it may be possible that by forcing the cycle maximization not to drop
vertices that are essential, the optimal solution can always be obtained. We are
currently working on conditions, which, if included in the cycle maximization
step, can always output the optimal tour for the class of obstacles described in
Theorem 1.

6 Conclusion

In this chapter we use Peano-Cesaro tiling to divide the exploration region into
triangular tiles, with some tiles marked as obstacles. The problem of finding the
minimum repetition cyclic tour of the non-obstacle tiles, under mobility con-
straints has been posed using results from graph theory, where vertices and edges
represent tiles and allowed moves respectively. The resulting graph is referred to
as S′. We have devised an algorithm that collects all the essential components of
a Hamiltonian cycle (assuming one exists). The algorithm determines whether
S′ is Hamiltonian or not in some cases. In cases where the number of obstacle
tiles is sufficiently low, and the obstacles are far away from the boundary of
the region, the algorithm does not provide a deterministic answer. However, it
does output chains that are essential components of a Hamiltonian cycle, if one
exists. The main result is: S′ is Hamiltonian if the obstacle tiles form a simple
cycle. We also provide a heuristic algorithm and compare its performance for
the obstacle scenarios where the minimum number of repetitions is known.

Acknowledgements

The authors would like to acknowledge the help provided by Dr. Junxian Wang,
UtopiaCompression Corporation for the preliminary part of this work. This work
was supported under NASA phase II SBIR grant number NNM06AA08C.



Constructing Optimal Cyclic Tours 165

References

1. J. J. Bartholdi and P. Goldsman. Continuous Indexing of Hierarchical Subdivi-
sions of the Globe. International Journal of Geographical Information Science,
15(6):489–522, 2001.

2. J. J. Bartholdi and P. Goldsman. The Vertex-Adjacency Dual of a Triangulated
Irregular Network has a Hamiltonian Cycle. Operations Research Letters, 32:304–
308, 2004.

3. J. J. Bartholdi and L. K. Platzman. Heuristics based on spacefilling curves for
combinatorial problems in the plane. Management Science, 34(3):291–305, 1988.

4. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algo-
rithms. The MIT Press, second edition.

5. UtopiaCompression Corporation. Advanced, Disruptive Intelligent Based Image
Compression Technologies. National Institute of Standards and Technology: Ad-
vanced Technology Program (Final report), Nov 2006.

6. R. Diestel. Graph Theory. Springer, second edition.
7. S. Hutchinson G. Kantor W. Burgard L. Kavraki S. Thrun H.Choset, K. Lynch.

Principles of Robot Motion: Theory, Algorithms, and Implementation. MIT Press,
2005.

8. H. Imai. Worst-case Analysis for Planar Matching and Tour Heuristics with Bucket-
ing Techniques and Spacefilling Curves. Journal of the Operations Research Society
of Japan, 29(1):43–68, 1986.

9. M. Jun and R. D’Andrea. Path Planning for Unmanned Aerial Vehicles in Uncer-
tain and Adversarial Environments, chapter 6, pages 95–111. Cooperative Control:
Models, Applications and Algorithms. Kluwer Academic Publisher, 2002.

10. S. M. LaValle. Planning Algorithms. Cambridge University Press, 2006.
11. B. Mandelbrot. The Fractal Geometry of Nature. W. H. Freedman and Co., 1983.
12. L. K. Platzman and J. J. Bartholdi. Spacefilling curves and the planar trav-

elling salesman problem. Journal of the Association for Computing Machinery,
36(4):719–737, 1989.

13. H. Sagan. Space filling curves. Springe-Verlag, 1994.
14. K. Savla, F. Bullo, and E. Frazolli. On Traveling Salesperson Problems for Du-

bin’s Vehicle: Stochastic and Dynamic Environments. Proceedings of the IEEE
Conference on Decision and Control, 2005.

15. K. Savla, F. Bullo, and E. Frazolli. Traveling Salesperson Problems for the Dubin’s
Vehicle. IEEE Transactions on Automatic Control, June 2006.



An Analysis and Solution of the Sensor

Scheduling Problem

Mesut Yavuz1 and David Jeffcoat2

1 Research and Engineering Education Facility, University of Florida, Shalimar, FL
yavuz@reef.ufl.edu

2 Air Force Research Laboratory, Munitions Directorate, Eglin AFB, FL
david.jeffcoat@eglin.af.mil

Abstract. This chapter addresses the scheduling problem of a sensor
that constantly collects information from multiple sites. In the existing
literature, the problem is solved by probabilistic approaches, potentially
generating schedules in which a site is not visited for a long time. To
overcome this deficiency, this chapter presents a deterministic approach
formulated as an integer linear program. Upon showing that the prob-
lem is NP-Hard, the chapter develops valid lower and upper bounds
and proposes two constructive heuristic methods. Tested via an exten-
sive computational study, the heuristic methods are proven efficient and
effective in solving the problem.

1 Introduction

This chapter is concerned with scheduling a single sensor to maintain an estimate
of a dynamic physical attribute (e.g., position) of multiple targets. The research
builds on previous work by Tiwari et al. [9], Yerrick et al. [11] and Yerrick
et al. [12]. Tiwari et al. [9] present a feasibility criterion for a single sensor
to maintain a bounded estimate of an attribute at multiple locations. Yerrick
et al. [11] demonstrate by simulation the feasibility criterion presented in [9] and
develop a heuristic to find a good sensor motion model given the dynamics of the
system under observation. Yerrick et al. [12] provide an optimal sensor coverage
solution for two sensor motion models given a model of the observed system’s
dynamics. All three papers consider probabilistic strategies for the motion of
the single sensor among the sites. A similar model in the literature is known as
the traveling inspector model [4, 5]. In this chapter, we focus on deterministic
methods to schedule the sensor’s motion. A deterministic approach overcomes
one disadvantage of probabilistic motion: with any random motion strategy,
there is nonzero probability that a particular site will not be visited at all in any
finite time horizon.

Figure 1 provides an illustration for a three-site scenario. At the time instant
pictured, the sensor is focused on site three. In its current position, the sensor
can observe the characteristics of site three, but cannot observe sites one or
two. In the next discrete time step, we assume that the sensor can move (or
refocus) from site three to either of the other two sites, or can maintain its

M.J. Hirsch et al. (Eds.): Adv. in Cooper. Ctrl. & Optimization, LNCIS 369, pp. 167–177, 2007.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2007
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current position. At each time step, since the sensor focuses on exactly one of
the sites, the sensor’s processor can update its information for only one site and
must estimate the rest. Therefore, information loss at a site increases with the
number of time steps that the site has not been visited. Sites may have different
rates of change, and, hence, the criticality of information loss may vary among
the sites. A successful sequence is one that balances the visit frequencies of the
sites to minimize overall information loss. The goal of this chapter is to develop
methods to construct such sequences.

Site 3

Site 1

Site 2

Fig. 1. Three site example

The remainder of this chapter is organized as follows. In Section 2 we formulate
the problem as an integer linear programming problem and in Section 3 we
analyze its properties. In Section 4 we develop a lower and an upper bound
on the objective function of our model. In Section 5 we propose two heuristic
solution procedures and in Section 6 we evaluate their performance. In Section 7,
we conclude by summarizing our contribution and discussing possible future
research directions.

2 A Mathematical Model

Let xi,t be the binary decision variable denoting whether the sensor is scheduled
to visit site i at time t, and yi,t denote the last time site i was visited as of the end
of time t. Note that yi,t = t happens only in time intervals in which the sensor
visits site i. When the sensor is focused on site i, it updates the status of the site.
In other words, we have perfect information of the site in that time step. Since the
sensor cannot focus on more than one site at the same time, focusing on one site
means losing information about the current states of the other sites. The extent of
the information loss depends on the activity rate of a site. We can afford to ignore
less active sites for a large number of time steps, whereas more active sites must be
visited frequently. In this chapter, we assume that there is no cost for movement
or observation; our whole concern is the cost of lost information.
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We associate with each site i a fixed cost ai and a variable cost bi of infor-
mation loss. More specifically, a fixed penalty of not visiting a certain site is
incurred for each time step in which the sensor is away from the site. In ad-
dition, a variable cost is incurred for each time unit that has passed since the
sensor’s last visit to that site, providing ever-increasing motivation for the sensor
to return to a neglected site. (The cost parameters implicitly model the activity
level at a site or the importance of a site.) The objective function in our model
minimizes the maximum penalty incurred for a sensor schedule defined over a
finite time horizon. If we are given a planning horizon consisting of T periods,
then the following integer linear program can be formulated.

Minimize C (1)
Subject to
C + aixi,t + biyi,t ≥ ai + bit, ∀i = 1, .., n; ∀t = 1, .., T (2)

n∑

i=1

xi,t = 1, ∀t = 1, .., T (3)

yi,t − yi,t−1 ≤ txi,t, ∀i = 1, .., n; ∀t = 1, .., T (4)
yi,t ≤ t, ∀i = 1, .., n; ∀t = 1, .., T (5)
yi,0 = 0, ∀i = 1, .., n (6)

C > 0, (7)
xi,t ∈ {0, 1}, ∀i = 1, .., n; ∀t = 1, .., T (8)

yi,t ∈ {0} ∪ Z
+, ∀i = 1, .., n; ∀t = 1, .., T (9)

The model is built as a fully linear model, that is, the objective function and
constraints are all linear functions of the decision variables. Note that defining
C as a variable and defining it in a constraint is critical for the linearity of the
formulation. The objective function of the model (1) simply aims to minimize
the maximum cost defined by the first constraint (2). More specifically, C ≥
ai(1 − xi,t) + bi(t − yi,t), for all i and t. Constraint (3) assures that the sensor
visits exactly one site in each stage. Constraints (4) and (5) together assure that
yi,t is updated only when the sensor is on site i, and remains constant at other
times. Constraint (6) initializes variable y. Finally, constraints (7-9) define the
decision variables C, x and y as nonnegative, binary and nonnegative-integer
variables, respectively.

3 Structural Properties of the Problem

The optimization model of the previous section is built upon a given sequence
length, T . However, in practice, we may not be given such a length but asked
to find infinitely long sequences. This property, regardless of the computational
complexity of the formulated integer programming model, makes the problem
a challenging one. This property motivates us to study the problem from a dif-
ferent perspective, that is, periodic scheduling. If an infinite sequence can be
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constructed such that the objective function value is C, every site i must be
visited by a period pi where ai + (pi − 1)bi ≤ C and ai + pibi > C. Various
periodic scheduling problems arise in the context of computer and telecommu-
nications systems, and have received significant academic interest. Consider a
satellite with finite memory capacity that needs to download its memory peri-
odically. If we have multiple satellites each serviced by a single download facility,
then construction of a download sequence would constitute a periodic scheduling
problem. The first result we use from the periodic scheduling literature proves
the computational complexity of the sensor scheduling problem as follows.

Theorem 1. The sensor scheduling problem is NP-hard.

Proof. Bar-Noy et al. [1] show that the periodic scheduling problem is NP-hard,
with a reduction from the graph coloring problem. Here, we reduce the peri-
odic scheduling problem to our problem. An instance of the periodic scheduling
problem is given as follows.

Given m machines and service intervals p1, p2, .., pm such that ρ =
∑m

i=1 1/pi

≤ 1, does there exist an infinite maintenance service schedule of these machines
in which consecutive maintenance times for machine i are exactly pi time-slots
apart and no more than one machine is serviced in a single time-slot?

For a given instance of the periodic scheduling problem, we first create m sites
with ai = 0 and bi = C/pi, where C is an arbitrarily selected constant. Next,
we find the smallest positive integers c and d such that c/d = 1 −

∑m
i=1 1/pi (if∑m

i=1 1/pi = 1, then we assign c = d = 0). Then we create c additional sites
each with ai = 0 and bi = C/d. Note that d = 0 is only possible when c = 0,
in which case no additional sites are created. If we can find a solution to this
problem with n = m + c sites such that maximum cost is at most C, then in
that solution the first m sites will be visited exactly every pi time-slots, since
the density (ρ) is now 1. �
Theorem 2. There exists an optimal solution in which no site is visited in two
consecutive stages.

Proof. It is clear that when n > 1, the minimum cost for site i = 1, .., n will be
at least ai + bi, since at least one of the other sites must be visited between two
consecutive visits to site i. Therefore, at any stage in the sequence, staying at the
same site results in a zero cost for site i, whereas it increases the variable cost
for all other sites i′ �= i by bi′ . Hence, staying at the same site can only increase
the maximum cost with respect to the other sites and it can never decrease the
maximum cost factor at that site. Using this property, any optimal solution to
the problem can be converted to another optimal solution in which no site is
visited in two consecutive stages. �
Corollary 1. Instances with two sites (n = 2) are trivial.

Proof. This result directly follows from Theorem 2: if an optimal solution exists
such that the sensor never stays at the same site in two consecutive stages and
there are only two sites, then in each stage there is exactly one site that the
sensor can focus on. �
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Corollary 2. maxi(ai + bi) is a lower bound for C.

Proof. From Theorem 2 we know that an optimal solution to the sensor’s sched-
ule can be found by constantly moving between the sites. Therefore, there will
be at least one time-slot in which a site (i) is not visited, thus the cost incurred
at site i will be at least ai + bi. Since the objective function C is greater than or
equal to those cost factors, it must be at least as large as the largest of them,
which completes the proof. �

4 Lower and Upper Bounds on the Objective Function

Corollary 2 provides a loose lower bound on C. Before obtaining a tight lower
bound, we first elaborate our discussion on periodic scheduling. A special version
of the periodic scheduling class of problems is known as pinwheel scheduling, see
[2, 3] for further reading. In the pinwheel scheduling problem, a number (n) of
tasks each with a possibly distinct period (pi) are aimed to be scheduled such
that two consecutive executions of task i are not separated by more than pi

time steps. The sensor scheduling problem reduces to the pinwheel scheduling
problem for a given C, and, hence, is a general case thereof. An instance of the
pinwheel scheduling problem is characterized by its density ρ =

∑n
i=1 1/pi. It is

well known that instances with ρ > 1 cannot be scheduled. Instances with ρ ≤ 1
may or may not be scheduled. A widely believed conjecture is that all instances
with ρ ≤ 5/6 are schedulable. However, no one to date has been able to prove
or disprove this conjecture.

We use the properties of the pinwheel scheduling problem to develop a tight
lower bound and conjecture an upper bound. Both bounds are obtained using the
search procedure, i.e., Algorithm Search on C(n,a,b,ρU ), depicted in Figure 2.
The algorithm first uses Corollary 2 to find the minimum C value that is possible,
and then performs an increasing search on C until a pinwheel instance with a
density less than or equal to the designated threshold is obtained. In a basic
setting, if a and b are integer vectors, the search can be performed by increasing
C by one. Our algorithm performs the search intelligently in that it calculates
the smallest candidate for the increased C value that will change at least one
pi value. Therefore, it is guaranteed that every time C is increased, a pinwheel
instance with a lower density is obtained. We also denote the optimal solution
of the sensor scheduling problem by C∗.

Theorem 3. CL = Search on C (n,a,b,1) is a lower bound for C∗.

Proof. The proof is based upon the following two simple observations: ρ is non-
increasing in C and there is no feasible schedule with ρ > 1. Thus, terminating
the search when ρ ≤ 1 assures that the minimum C value that may be schedu-
lable is returned. �

Proposition 1. CC = Search on C(n,a,b,5/6) is always schedulable, and,
hence, is an upper bound for C∗.
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Algorithm Search on C(n,a,b,ρU )
BEGIN
1. Set pi = 2, i = 1, 2, .., n.
2. Set Ci = ai + bi, i = 1, 2, .., n.
3. Set C = maxi Ci.
4. Set ρ =

∑n
i=1

1
pi

.
5. While ρ > ρU

BEGIN
6. Set pi =

⌊
C−ai

bi

⌋
+ 1, i = 1, 2, .., n.

7. Set C′
i = ai + pibi, i = 1, 2, .., n.

8. Set C′ = mini C′
i.

9. Update ρ =
∑n

i=1
1
pi

.
10. If ρ > ρU , then update C = C′.

END.
END.

Fig. 2. Pseudo-code for Algorithm Search on C(n,a,b,ρU )

This is a direct extension of the conjecture on the schedulability of pinwheel
instances. Therefore, its proof does not exist in the literature and is out of the
scope of this chapter.

At this point, we focus on obtaining a valid upper bound on C∗, based on a
special type of periodic scheduling problem in the context of just-in-time (JIT)
manufacturing. An ultimate goal of the JIT philosophy is to manufacture prod-
ucts at the exact time of demand, and, thus, minimize the costs associated
with carrying inventories as well as backlogging or losing orders. Since the exact
time of demand cannot be known in advance, demand is assumed uniformly dis-
tributed over the planning horizon. Accordingly, an ideal manufacturing schedule
would produce each product in the exact rate of its demand. For example, if de-
mand is expected to be 10 units for a given product in a 30-day horizon, then
we should produce one unit every three days. For more on the JIT scheduling
problem, we refer the reader to [6, 7, 10]

Steiner and Yeomans [8] address the JIT scheduling problem and prove that
there always exists a sequence in which the ideal and actual cumulative pro-
duction quantities of a product differ by at most one. Here, each product has
a demand di in the planning horizon. The total demand D =

∑
i di defines the

length of the sequence, and, hence, the length of the planning horizon. Ideal
cumulative production quantity up to stage k is defined by kdi/D. Actual cu-
mulative production quantity is the number of units of a product sequenced in
the first k stages.

The JIT scheduling problem is similar to the sensor and pinwheel scheduling
problems in structure, that is, the goal of evenly spacing products/sites/tasks
over the sequence is common to all. Building on this point, we define a period
pi = D/di for the production of i. Steiner and Yeomans’s result [8] shows that
there always exists a sequence that produces exactly one unit of product i in
stages (r − 1)pi + 1, .., rpi, for all r = 1, 2, .., di. Revisiting the above example,
this result means that exactly one unit is produced in stages 1-3, one in 4-6, and
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so forth. Here, note that sequencing the product in stages 1 − 6 − 7 − 12 − . . . is
possible; we relate this result to the sensor scheduling problem as follows.

Lemma 1. For an instance of the sensor scheduling problem, if p is the vec-
tor of periods obtained using CL; then a sequence always exists such that two
consecutive visits to site i are at most 2pi − 1 time steps apart.

Proof. Let LCM be the least common multiplier of p1, p2, .., pn. We can create
an instance of the JIT scheduling problem by creating n products each with
a demand of di = LCM/pi. The summation of the demands may be less than
LCM , in which case the gap should be filled by creating dummy products with a
demand of 1 so that the dummies do not have an effect on the sequence. Through
JIT scheduling, one can obtain a sequence where product i is produced exactly
once in stages (r − 1)pi + 1, .., rpi for all r = 1, 2, .., di and i = 1, 2, .., n. Also
note that both di and pi are integers. The largest possible distance between the
positions r and (r+1)th copies of product i is (r+1)pi −((r−1)pi +1) = 2pi−1,
for r = 1, 2, .., di − 1. �

Theorem 4. CU = 2CL − mini ai is a valid upper bound on C∗.

Proof. Given a CL, we obtain the periods for each site with pi =
⌊

CL−ai

bi

⌋
+ 1.

From Lemma 1, we know that we can always find a sequence in which two con-
secutive visits to site i are at most 2

⌊
CL−ai

bi

⌋
+1 time steps apart. Therefore the

cost of information loss for site i is Ci = ai +(2
⌊

CL−ai

bi

⌋
)bi ≤ ai +2

⌊
CL − ai

⌋
=

2CL − ai. �

5 Heuristic Solution Approaches

The sensor scheduling problem is NP-Hard as shown earlier in this chapter.
Furthermore, infinitely long sequences are sought as complete solutions to the
problem. These two facts render exact solution methods impractical. Therefore,
developing time-efficient constructive heuristic procedures is beneficial.

A constructive heuristic starts with a null solution, which is an empty sequence
in our case. Recalling decision variable yi,t of our optimization model, we assume
yi,0 = 0 for all i = 1, 2, .., n. In other words, it is assumed that at the beginning,
we have perfect information about all sites. In each stage, exactly one site is
visited, and, hence, there is exactly one i satisfying yi,t = t (t = 1, 2, . . .). For
the n − 1 sites not visited in stage t, we have yi,t = yi,t−1. Now we define a time
since the last visit to site i by stage t: zi(t) = t − yi,t. Note that in each stage
exactly one zi(t) = 0 and the remaining n − 1 are positive integers. Moreover,
zi(t) increases in t until site i is visited.

As discussed earlier in the chapter, for a given C, we can derive visit periods pi

for each site and reduce the problem to an instance of the pinwheel scheduling
problem. If this instance is schedulable, then zi(t) ∈ {0, 1, .., pi}, for all i =
1, 2, .., n and t = 1, 2, . . . Therefore, the number of different values the vector
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z(t) can take is finite. This result implies that after a finite number of steps, the
z(t) vector will repeat itself. That is, if we can identify such a stage, we can build
a cyclic sequence by repeating the stages between consecutive occurrences of the
same z(t). This result constitutes a main principle used in both our heuristic
procedures. Another common principle is based upon Theorem 2, prohibiting
the sensor from staying focused on the same site in two consecutive stages. In
other words, our constructive heuristics evaluate all sites but the one that has
been just visited for the next move, in all stages.

Our first constructive heuristic is a greedy procedure. It starts with the initial
visit history as described above (z(0) = 0). It evaluates all n sites that can be
visited in the first stage. The selection of the site to visit is made to minimize the
penalty of information loss, i.e., penalty of not visiting a site. After the selection
the visit history is updated. Note that in the later stages the method evaluates
n−1 sites for its next visit. Repeating this simple selection and update operations
until a repetition in the visit history is observed constitutes the framework of our
greedy heuristic. We improve its performance by adding a look-ahead feature.
The heuristic still evaluates n − 1 possible sites to visit in each stage, but makes
the decision based on the cost observed in the next � stages. Larger � values are
expected to yield better (lower cost) solutions on the average, however it is not
guaranteed. On the other hand, the number of operations to perform increases
with �, rendering small � values more computationally efficient. We call our first
heuristic greedy with look-ahead (GLA).

Our second heuristic is an alternative greedy approach that dynamically sets
a deadline to visit each site and then selects the site with the earliest deadline for
the sensor’s next move. More specifically, it starts with a small C and calculates
periods pi for each site to achieve that C value. For each i = 1, 2, .., n and
t = 1, 2, .., the deadline for the next visit to site i is set to yi,t−1 + pi. Then, the
site with the earliest deadline is selected for the next visit (ties can be broken
arbitrarily). However, if the C value at hand is too small, then in some stage
the method will unavoidably have more than one site that must be visited in
that stage. Since this is infeasible, the method increases C until at most one site
must be visited in that stage. The termination again is based on observing a
repetition in the visit history. We call this heuristic dynamic deadlines (DD).

6 Computational Study

We consider four different numbers of sites: n ∈ {4, 6, 8, 10}. The number of
sites can also be considered the problem size. For each problem size, we pseudo-
randomly create 100 test instances with bi ∈ {1, .., 10} and ai ∈ {11, .., 100}.
Therefore, we have a total of 400 test instances.

In this study, for each instance, we first obtain CL, CU and CC . Then, we
run the two heuristics. From our preliminary experiments we have observed that
� = n works best. Therefore, we run the GLA method with � = n only.

We know that CU is always greater than CL and less than 2CL. However,
we cannot make such clear inferences about CC . Therefore, we are interested in
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the relative position of CC to CL and CU . We calculate the relative position
with (CC − CL)/(CU − CL). Similarly, we calculate the relative positions of
the solutions obtained by the GLA and DD heuristics, as well. For example,
if the relative position of the GLA method’s solution is calculated as 0.25, we
understand it is located at 25% of the distance from the lower bound to the upper
bound. In other words, smaller values represent better solutions. CL, CU and
CC are computed almost instantly, thus we are not concerned about their time
consumption. The heuristic methods, on the other hand, can take a significant
amount of computation time depending on the problem size. The results are
summarized in Figures 3 and 4.
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Fig. 3. Relative positions

Our two heuristics perform well in general as their relative position is al-
ways closer to the lower bound than the upper bound. Hence, we state that our
methods are effective in solving the sensor scheduling problem. When the two
heuristics are compared, we see that GLA outperforms DD on all problem sizes.
Computation time of both methods increases significantly with problem size,
DD taking longer than GLA. Thus, we state that GLA heuristic is superior to
DD. Even so, the results show that both methods are computationally efficient
in that they solve the problem in seconds.

The conjectured upper bound is found to be tighter than the valid upper
bound developed in this chapter. Furthermore, the conjectured upper bound
seems to work better than the heuristic methods on larger problem sizes. How-
ever, a sequencing procedure is not known in the existing literature to support
the conjecture. Therefore, with their negligible computational burden and high
performance, the heuristics proposed in this chapter can be used to solve the
sensor scheduling problem in practice.
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7 Conclusions

This chapter addresses the scheduling problem of a sensor that constantly col-
lects information from multiple sites. In the earlier work, the problem is solved
by probabilistic approaches, potentially generating schedules in which a site is
not visited for a long time. To overcome this deficiency, this chapter presents a
deterministic approach formulated as an integer linear program. Upon showing
that the problem is NP-Hard, the chapter develops valid lower and upper bounds
and proposes two constructive heuristic methods. Tested via an extensive com-
putational study, the heuristic methods are efficient and effective in solving the
problem.

The results also pinpoint the need to prove the widely believed “5/6” conjec-
ture of the pinwheel scheduling literature and to develop efficient algorithms to
solve the pinwheel scheduling problem. In the existing literature, algorithms de-
veloped for the pinwheel problem either require a small number (2-3) of distinct
periods or have low density guarantees. A comprehensive scheduling method for
the pinwheel is therefore critical for the solution of the sensor scheduling problem
in the general case.

The problem studied in this chapter belongs to a rich and relatively unex-
plored area. Promising future research directions in the area include multiple
sensors in a cooperative framework and non-unit switch-over/observation times
between the sites, with a combination of the two being the ultimate goal. Also,
investigation of the problem under time-variant site dynamics, and comparison of
the deterministic heuristic procedures with probabilistic approaches are possible
future research directions.
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Abstract. Unmanned aerial vehicles (UAVs) are excellent platforms for
detecting and tracking objects of interest on or near the ground due to
their vantage point and freedom of movement. This paper presents a co-
operative vision-based estimation and tracking system that can be used
in such situations. The method is shown to give better results than could
be achieved with a single UAV, while being robust to failures. In addi-
tion, this method can be used to detect, estimate and track the location
and velocity of objects in three dimensions. This real-time, vision-based
estimation and tracking algorithm is computationally efficient and can
be naturally distributed among multiple UAVs. This chapter includes the
derivation of this algorithm and presents flight results from several real-
time estimation and tracking experiments conducted on MIT’s Real-time
indoor Autonomous Vehicle test ENvironment (RAVEN).

Keywords: Cooperative multi UAV vision tracking estimation.

1 Introduction

Unmanned Aerial Vehicles (UAVs) have attracted significant interest in recent
years. Due to improvements in embedded computing, communications, and sens-
ing technologies, UAVs have become increasingly capable of carrying out sophis-
ticated tasks. Because UAVs lack a human occupant and are generally simpler
and less expensive than their manned counterparts, they are well suited to per-
form a wide range of “dull, dirty and/or dangerous” missions. Examples of such
missions include traffic monitoring in urban areas, search and rescue operations,
military surveillance, and border patrol [5].

For many mission scenarios, the deployment of video cameras onboard UAVs
is of particular interest due to the richness of information and real-time situ-
ational assessment capabilities that can be provided by the video stream. Re-
searcher have used onboard cameras for remote detection of forest fires [3,6,7]. In
addition, a number of researchers have used vision-based techniques for object
detection, tracking and surveillance [1,2,10]. The measurements of the target
location are inherently nonlinear in the single-vehicle case because the observed
state variables are measured angles to the target. As such, numerous researchers
have investigated using nonlinear estimators, such as Extended Kalman Filters
and Unscented Kalman Filters [4,9], to determine the target state. In addi-
tion, observations from multiple vantage points are required to provide depth
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perception and to obtain a good estimate of the target’s position and orienta-
tion. Geometrically, using only a single observation (via a single camera), the
UAV can only determine a ray along which the target lies. Therefore, the UAV
must be maneuvered around the target to provide multiple vantage points to
gain a more accurate position estimate of the vehicle. However, if the object of
interest is moving, the UAV may not be able to complete the necessary maneu-
vers to gain a more accurate estimate.

In this chapter, we present a vision-based estimation and tracking algorithm
that exploits cooperation between multiple UAVs in order to provide accurate
target state estimation and allow good tracking of the target without the need for
a single vehicle to execute maneuvers to gain better vantage points. The method
uses an optimization technique to combine the instantaneous observations of all
UAVs, allowing for very rapid estimation. Furthermore, the algorithm can be
naturally distributed among all participating UAVs with very modest communi-
cation bandwidth requirements and is computationally efficient, making it well
suited to implementation on real-time applications. The vision processing is done
in a manner designed to be robust to noise in the video stream, which is often
present, especially in applications where the video signal is wirelessly transmit-
ted. Flight results from several estimation and tracking experiments conducted
on MIT’s Real-time indoor Autonomous Vehicle test ENvironment (RAVEN)
are presented [8].

2 Vision Based Tracking and Estimation: A Cooperative
Approach

Using multiple UAVs in the real-time, vision-based detection, estimation and
tracking problem is advantageous for a number of reasons. First, multiple UAVs
provide redundancy, allowing for continued tracking even when individual vehi-
cles experience failures. Second, the presence of obstructions in the environment
may temporarily block the field of view of a UAV as it attempts to observe the
target. Using multiple UAVs with different lines of sight increases the proba-
bility that the target will remain observable to the group of UAVs even when
individual vehicles’ lines of sight are blocked. Third, because more observations
are available at a given time, multiple UAVs working together can estimate the
target’s state more accurately than a single UAV could.

In addition, the cooperative UAV vision tracking problem can be reformu-
lated as a linear estimation problem. Using the observed bearings of the target
from each UAV, an estimate of the absolute target position can be obtained by
minimizing the errors in distance from the estimate to each measurement. This
estimate is then used as a measurement input to a simple linear Kalman filter
that uses the target location as the state variables {x,y,z}.

The statement of the multi-UAV vision-based detection, estimation and track-
ing problem is as follows. Assume that there are n UAVs, each equipped with a
camera. The location of each UAV is given by

xi = x̂i + δxi, xi ∈ R
3 (1)
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Fig. 1. Five vehicle coordinated flight test on MIT’s RAVEN [8]

where x̂i is the estimated position of the UAV (as given by the UAV’s onboard
navigation sensors), and δxi is a random variable that captures the uncertainty
in the UAV’s position. The distribution of δxi is assumed to be known.

From each UAV, there is a director vector to the target

di = d̂i + δdi, di ∈ R
3 (2)

where again d̂i is the estimated (unit-length) direction vector generated by the
vision system, described below, and δdi represents uncertainty in the direction
vector (i.e., uncertainty in the precise direction in which the camera is pointing).
Assume that

δdT
i d̂i = 0 (3)

This assumption is reasonable given that d̂i is most naturally characterized by
uncertainty in the angles from the camera to the target, so that dT

i di ≈ 1. Again,
assume that the distribution of δdi is known. Finally, a weight wi is associated
with each UAV’s estimate. This weight may be used to account for differences in
the quality of each UAV’s estimate (i.e, differences in video quality). Note that
given xi and di, the target must lie along the ray

li(λi) = xi + λidi, λi ≥ 0 (4)

In order to solve this problem, the true position of the object, q, must be
estimated given the set of all measurements {x̂i, d̂i : i = 1, . . . , n}. This estimate
q should minimize the error

E(q) =
n∑

i=1

wihi(q) (5)

where hi(q) is the square of the minimum distance from q to the ray li(λi):

hi(q) = min
λi

||q − li(λi)||2 = min
λi

||q − (xi + λidi)||2 (6)
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Minimizing hi(q) with respect to λi yields the result

hi(q) = qT q − 2qT xi + xT
i xi − (dT

i q − dT
i xi)2 (7)

Substituting this result into Eq. 5 and minimizing E(q) with respect to q yields
the equation that the optimal estimate must satisfy:

Aq� = b (8)

where

A =
n∑

i=1

wi

(
I − didT

i

)
(9)

b =
n∑

i=1

wi

(
xi − (xT

i di)di

)
(10)

However, A and b cannot be calculated by the algorithm directly because only
the the noisy measurements x̂i and d̂i are known. To compensate for these errors,
A and b are expanded by substituting Eqs. 1 and 2 into Eqs. 9 and 10. After
dropping second-order terms and grouping the known and unknown terms, the
equations become

A = Â + δA (11)

b = b̂ + δb (12)

where

Â =
n∑

i=1

wi

(
I − d̂id̂T

i

)
(13)

δA = −
n∑

i=1

wi(δdid̂T
i + d̂T

i δdi) (14)

b̂ =
n∑

i=1

wi

(
x̂i − (x̂T

i d̂i)d̂i

)
(15)

δb =
n∑

i=1

wi(δxi − (x̂T
i δdi)d̂i − (δxT

i d̂i)d̂i − (x̂T
i d̂i)δdi) (16)

Note that Â and b̂ are known terms, because they involve only quantities that
are measured directly. δA and δb are random variables because they involve the
uncertain quantities δxi and δdi. The optimal estimate can now be written as

q� = A−1b = (Â + δA)−1(b̂ + δb) (17)

We assume that the error terms are small (δA � Â). Expanding the matrix
inverse function in a Taylor series around Â gives

(Â + δA)−1 ≈ Â−1 − Â−1δAÂ−1 (18)
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Thus, Eq. 17 becomes

q� = Â−1b̂ + Â−1δb − Â−1δAÂ−1b̂ − Â−1δAÂ−1δb (19)

≈ q̂� + Â−1δb − Â−1δAÂ−1b̂ (20)

where
q̂� = Â−1b̂ (21)

is the optimal estimate which can be calculated from the measurements. The
error δq� in the estimate is

δq� = Â−1δb − Â−1δAÂ−1b̂ (22)

Since the probability distributions of the random variables δxi and δdi are
known, the covariance of δq� can be calculated. This covariance is needed in
order to implement the Kalman filter, discussed below.

Eq. 21 demonstrates that the optimal estimate q̂� can be computed in time
that is linear in the number of measurements to the object, n. Â and b̂ can be
constructed in linear time since they are sums over all rays. Once Â and b̂ are
known, Eq. 21 can be solved in constant time by inverting the 3 x 3 matrix Â.
Since the entire process runs in linear time with respect to n, this method is
very computationally efficient. Note that if there is only a single vehicle, n = 1,
the matrix Â is singular and Eq. 21 cannot be solved. In this case, a single
vehicle would have to make an additional assumption about the location of the
vehicle, such that it was located on the ground (z = 0), in order to calculate
a solution. In all other cases, however, Â is invertible as long as the observed
direction vectors d̂i are not all parallel to each other. As long as the observation
points x̂i are not the same, which cannot happen since the UAVs cannot occupy
the same physical point in space, a solution can always be found.

Once the estimate q̂� is known, it can be used as the measurement into a sim-
ple linear Kalman filter based on the assumed dynamics of the target vehicle [1].
This paper uses a system model with state vector

X = [x, y, z, ẋ, ẏ, ż]T (23)

The discrete time system dynamics are then given by

Xk+1 = AXk + vk (24)
Yk = q̂� = CXk + δq� (25)

where vk is the process noise and δq� is the measurement noise. The process
noise covariance is assumed to be known, and the covariance of δq� is found as
discussed above. A and C are given by

A =

⎛

⎜⎜⎜⎜⎜⎜⎝

1 0 0 Δt 0 0
0 1 0 0 Δt 0
0 0 1 0 0 Δt
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞

⎟⎟⎟⎟⎟⎟⎠
C =

⎛

⎝
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

⎞

⎠ (26)
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where Δt is the sampling rate of the filter. Using these dynamics, a linear Kalman
filter can be easily designed and implemented. This filter can be run on each
UAV; the only requirement is that the UAVs communicate their locations xi and
estimation directions di to each other. Since each of these quantities is a three
dimensional vector, this method requires only six numbers to be transmitted
by each UAV, making it well suited for environments where communication
bandwidth is limited.

3 Hardware and Software Setup

A real-time, vision-based tracking system was implemented on the quadrotor
platform. The motivation behind implementing the vision system was to allow
the quadrotors to carry their own sensor payloads and make decisions based on
their own sensor data instead of relying upon artificially synthesized sensor data,
allowing for a more realistic overall hardware platform.

The hardware setup consists of two Draganfly quadrotors outfitted with a
Draganfly SAVS wireless camera. The SAVS camera broadcasts to a diversity
receiver on the ground. The receiver is connected to a PC with a LifeView
FlyVideo 3000FM video capture card. The Intel OpenCV video capture and
processing library is used to interface with the video card and provide a software
API for accessing and processing the images.

3.1 Persistent Object Filter

Given the low-power nature of the wireless camera’s transmitter, the presence of
RF noise, and other impediments to receiving a clear video signal, it is important
that the vision tracking system be able to function even when the received video
stream is noisy. Experimental data from several wireless cameras shows that
noise is often present in the processed images from the camera (as shown in
Figure 2).

An expected but important characteristic of the noise seen in the video stream
is that it is highly uncorrelated from one frame to the next (as shown in Fig-
ure 2). Based on this observation, a filtering algorithm was designed to extract
the features of the images that are persistent across multiple frames while re-
jecting the transient noise components. The key component of the algorithm is
a dynamic list P of objects which have been seen in previous frames. By com-
paring the objects in P with the objects that are in the current frame, denoted
by C, the algorithm can decide which objects in C have appeared before, and
these objects are given higher weight in the filter.

A detailed description of the algorithm follows.

1 set C = ∅; (The set of objects in the current frame)
2 set P = ∅; (The set of persistent objects)
3 while true do:
4 for p in P do:
5 p.f = false; (Mark p as ”not found”)
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Fig. 2. Two images taken within one second of each other showing noise in the video
stream

6 end for;
7 F = getCurrentFrame(); (Get the current image frame)
8 G=preprocessFrame(F ); (Downsample image and convert to binary image)
9 C = findObjectsInFrame(G); (Find objects in the current frame)
10 for c in C do:
11 f = false;
11 for p in P do:
12 if (‖c.x − p.x‖ < εx) and (|c.A − p.A| < εA) do:

(Determine whether c is similar to p in terms of location in the
image x and area a)

13 p.f = true; (Mark p as ”found”)
14 p.n = p.n + 1; (Add 1 to the running frame count of p)
15 f = true;
16 break; (Since p is determined, there is no need to continue

examining the other elements of P )
17 end for; (Ends for p in P )
18 if f == false do:
19 P.push(c); (If c is not found anywhere in P , append c to P )
20 end if;
21 end for; (Ends for c in C)
22 for p in P do:
23 if p.f == false do: (If p was not found in this frame...)
24 p.n=p.n − 1; (...subtract 1 from the running frame count of p)
25 end if;
26 if p.n == 0 do: (If the frame count of p is zero...)
27 P.pop(p); (...remove p from P )
28 end if;
29 end for;
30 end while;
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Fig. 3. Left: First experiment configuration. Right: First experiment results. Mean
estimation error: x = -0.0265 m, y = 0.0368 m. Standard deviation: σx = 0.0082 m,
σy = 0.0083 m

The current implementation detects objects based on image intensity, al-
though other schemes for object recognition are possible as well. Continuous
dark areas (“blobs”) in the image are assumed to be objects of interest. The
preprocessing step in Line 7 of the algorithm downsamples the image (this is to
allow faster processing of the image) and applies a threshold filter in order to
convert it to a binary image. This binary image is then passed to a function in
Line 8 that detects the centers of each object in the image.

Once the objects are found, the filtering algorithm is applied. The output of
the filter is a list of persistent objects in the video stream. The positions of these
objects can then be estimated.

4 Results

A number of multi-vehicle vision tracking experiments were conducted to verify
the performance of the vision estimation and tracking system. Two vehicles
equipped with Draganfly SAVS camera systems were used as the test platform.
A small, radio-controlled truck (shown in Figure 2) was used as a target.

In the first experiment, the goal of the UAVs was to hover with the target in the
field of view and cooperatively estimate its position. Figure 3 shows the configu-
ration of the experiment using a screenshot from a real-time 3D data visualization
tool that was developed for use with the system. The visualization tool shows the
locations of the UAVs and target, as well as the rays from each UAV’s camera (red
lines) and the cooperatively estimated position of the target (yellow sphere with
vertical yellow line). Data is displayed in real-time as the system is running, and
can also be logged and played back later for analysis purposes.

Results of the first experiment are shown in Figure 3. The scatter plot shows
the estimated X-Y positions of the target over a period of about 60 secs of
flight. Note that during this time, the UAVs were subject to disturbances in
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Fig. 4. Second experiment configuration

the form of wind (from ambient air currents as well as propeller wash from the
neighboring UAV) which caused them to execute small corrective pitch and roll
maneuvers to maintain their assigned hover locations. In the presence of these
disturbances, the estimated position of the target remained within 0.04 m of its
true location, an excellent result considering that the target itself is over 0.2 m
in length. Note that the estimator also gives the Z position of the target (not
plotted in Figure 3), and the estimated Z position was also within 0.04m of the
true location.

The second experiment shows the advantage of cooperation in the vision es-
timation problem. In this experiment, two UAVs hovered near a target vehicle
which drove up a ramp at constant speed. The goal of the vehicles was to es-
timate the position and velocity of the target as it moved up the ramp, using
both the cooperative estimation method and the noncooperative, single vehicle
estimation method. Figure 4 shows the experiment setup, including the ramp
and ground vehicle. Note that the arrow protruding from the estimated position
of the target shows the estimated velocity, which is clearly aligned with the slope
of the ramp.

Figure 5 shows that as the target vehicle moves up the ramp, the estimated
error for the noncooperative estimation technique grows due to the fact that the
target vehicle is farther from the ground. Without another UAV’s perspective,
the single UAV is unable to accurately determine the position of the target.
Furthermore, the single UAV is unable to determine the velocity of the target
well, since it is unable to estimate the ground object’s z-axis velocity. Meanwhile,
the cooperative estimates for target position and velocity remain very accurate
in all three dimensions.

The third experiment incorporated active tracking into the detection and
estimation problem. Two UAVs were commanded to detect a ground vehicle
and estimate its position. The estimated position was then passed to a tasking
system that generated waypoints for the UAVs to follow. The waypoints were
chosen in a way that was designed to keep the ground vehicle in the field of view
of the UAVs, thus enabling them to continue tracking. In this case, the tasking



188 B. Bethke, M. Valenti, and J. How

Fig. 5. Second experiment results: cooperative and noncooperative estimated
trajectory

system kept one UAV two meters south of the ground vehicle and the other UAV
two meters west of the ground vehicle.

Results of the third experiment are shown in Figure 6. The results show that
the UAVs were able to estimate the position of the ground vehicle well (within
about 5cm) even while they were moving cooperatively in order to keep the
vehicle in the field of view of both UAVs. Note that in this experiment, the
ground vehicle moved enough that it would have been outside the field of view
of both UAVs at times had the UAVs not moved along with it.

Fig. 6. Results of cooperative estimation and tracking
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5 Conclusions

This paper has demonstrated a cooperative target estimation algorithm that
is well-suited for real-time implementation and can be distributed among the
cooperating vehicles. This approach to target tracking may be advantageous in
terms of performance and robustness when multiple vehicles are available to
perform the tracking. Flight results indicate that the algorithm performs well in
tracking both stationary and maneuvering targets.
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Abstract. This chapter presents a new framework for multiple vehicle
systems modeling and control, emphasizing team behavior in a multi-
level, multi-resolution way. To set the common reference trajectory for
team vehicles, a waypoint selection strategy is proposed taking into ac-
count the dimensions of the free space and practical aspects of motion
generation. The multi-vehicle cooperative parking strategy is proposed
so that a “class” of problems can be solved by formation reconfiguration.
The study focuses on several cases corresponding to different scenarios.

1 Introduction

Coordination of multi-vehicle systems to fulfill a mission will yield more bene-
fits than single vehicles performing solo missions. Recent years have seen much
research work on this field [[7], [8], [11], [9]]. One motivation for cooperative au-
tonomous vehicle systems is to follow global trajectories and accomplish task as
has been done by single vehicles so that the input trajectory and path following
strategy are mainly designed for the leader. Team members will share specific
information and achieve the final goal by formation reconfiguration [10].

Usually, the reconfiguration mode will be set corresponding to different type
of cooperative control problems. In some of them, rigid formation is kept since
the common reference state will be assigned to individual vehicles. In other
problems, each vehicle will access the information from its neighbor and the team
behavior is determined by recurring local inter-vehicle communication. Also,
the combination of the above two kinds of problems exists. That is, the team
members have similar missions. They keep rigid formation in some of the scenario
and reconfigure their formation for a new situation. Under some circumstances
in this process, the temporal/sequenced formation is required.

Our problem falls into the last scope. We are interested in teams of vehi-
cles “going somewhere(transition)”, and ultimately, “doing something(ultimate
task)”. A new model for multiple vehicle systems during transition phase has
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been proposed in [11], emphasizing team behavior in a multi-level, multi-
resolution way. This framework integrates issues like team formation and path
following, so that tasks can easily be allocated to individual and teams of vehi-
cles. The movement of the leader is modeled as a discrete state system within a
cellular map, and the movement of the follower is modeled as a hybrid system,
including the leader-follower interface.

To set the common reference trajectory, we present a waypoint selection strat-
egy taking into account the dimensions of the free space and practical aspects
of motion generation. A mainline approach and a number of special cases are
investigated. The maneuvering task is finished by approaching the target cell
and stabilizing to the final parking position. A multi-vehicle cooperative parking
framework is proposed based on the above model and the waypoint selection
strategy.

This chapter is organized as follows: in Section 2, we give the models of lead-
ing vehicle, leader-follower interface and following vehicles. A Waypoint selection
strategy in constrained domain and a multi-vehicle cooperative parking frame-
work are introduced in Section 3. After that, we provide simulations with a
Dubin’s car model in Section 4. Conclusions are drawn in Section 5.

2 A Model During Transition Phase

For autonomous multi-vehicle navigation, coordination of multi-vehicle systems
to fulfill a mission will yield more benefits than single vehicles performing solo
missions. In this field, how to simplify vehicle dynamics by systems modeling
is important for efficiently realizing the transition among different formation
modes.

The model framework proposed in [11] embodies the idea of decomposition
and synthesis for large scale systems. We repeat the key concepts here for com-
pleteness. In the original paper [11] we considered convoy type driving along
roadways. Here, we shall consider motion in larger open areas, hence the need
for path planning. The hierarchical layered structure is shown in Figure 1. A
graph can be used to represent the map where vehicles are moving on, with
vertices representing crossings and edges representing roads.

Consider a planar digraph G = (V, E), where V is the vertex set and E is the
edge set, and eij = (vi, vj) ∈ V × V . If at one moment ek = ei, and at the next
moment ek+1 = ej, the adjacency matrix A is defined as

[A]ji =
{

1, if ek = ei and ek+1 = ej

0, otherwise

Where Aji means j−th row, i−th column element of A. Consider a physical
road map located in a coordinated system Ω0 corresponding to the digraph G.
Each road can be divided into segments that are connected as a chain, in an
approximate sense. We call these segment cells and name these cells along the
edge direction as sij

m = sm(eij) with ascending subscripts m ∈ {1, 2, . . . , Neij },
where Neij ∈ N is the number of cells on edge eij .
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Fig. 1. Hierarchical layered model structure

2.1 Leader Model

With cellular structure modeling, the dynamics of the leader is modeled as a
discrete system in a slow time scale. Between “jumps” from one cell to the next,
there is a continuous movement of the follower in a fast time scale.

The cellular movement of the leader is described as

xk+1 = ς(xk, uk) = xk ⊕ uk

=
{

(sk + uk, ej), sk + uk ≤ Nej

(sk + uk − Nej , ej+1), otherwise. (1)

and control variable uk takes “quantized” values such as

uk =

⎧
⎪⎪⎨

⎪⎪⎩

0, stop,
1, 1st speed level,
· · · · · ·
umax, max speed level.

(2)

The evolution of road states is as follows.

ej+1 = Ajej (3)

2.2 Leader-Follower Interface

An interface is usually needed to connect two types of systems. This operation
defines the rotation of each cell and consequently builds a one-to-one mapping
for any position between two cells spatially.

Position Mapping. To better describe the movement of the leader and the
followers in a common framework, the following notation system is introduced
in [4].
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Let T = [ti, tf ] ⊂ R be the time zone of interest. Introduce time index

T = {[τ ′
0, τ1], [τ ′

1, τ2], . . . , [τ ′
n−1, τn]} (4)

where τi ∈ T for all i, τ ′
0 = ti, τn = tf , and τi = τ ′

i ≤ τi+1 for all i = 1, 2, . . . , n−1.
Position mapping for t ∈ [τ ′

i , τi+1) corresponds to in-cell dynamics while that
for t = τi corresponds to inter-cell dynamics.

Coordinate Rotation. A coordinate system Ω̃ij
m will be built within each cell

sij
m, with the origin set at the center gij

m. One of the axes nij
m can be chosen as the

normal of the arc passing through the cell center, and the other axis, therefore,
can be chosen as nij⊥

m which rotates nij
m by π/2 counterclockwise, as the tangent

of the arc.
The rotation of Ω̃ij

m with respect to Ω0 is recorded in matrix

Rij
m =

[
cosφij

m − sinφij
m

sin φij
m cosφij

m

]
(5)

where φij
m = ∠nij

m. As a result, Ω̂ij
m is the corresponding upright coordinate

rotated by Ω̃ij
m and they are constrained by the relationship, Ω̃ij

m = Rij
mΩ̂ij

m. An

tangentnormal

n
ij
m

n
ij
m

ij
mg

0

ij
m

1

ij
m

1

ij
m

ˆ ij
m

ˆ 0x

ẑ
ij
m

ij
m

O

Fig. 2. Illustration for coordinate systems in cells

illustration for the above concept is provided in Figure 2.

Continuous and Discrete Evolution. During the in-cell phase, in the individ-
ual up-right coordinate in Figure 2, for t ∈ [τ ′

i , τi+1], x(t) ≡ x(τ ′
i ), g(t) ≡ g(τ ′

i),
R−1(τ ′

i) = (Rij
m)−1. Assume the leading vehicle stays in cell sij

m. The leader’s
position in Ω0 is g(t) = gij

m and in Ω̂ij
m is

x̂(t) ≡ 0, ∀t ∈ [τ ′
i , τi+1] (6)
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Let ẑ(t) = (Rij
m)−1(z(t) − g(t)) represent the position of the follower in Ω̂ij

m

with respect to the leader. The movement of followers is simplified from ż(t) =
ζ(z(t), g(t)) to

˙̂z(t) = ζ̂(ẑ(t), 0) = ζ̂(ẑ(t)), ∀t ∈ [τ ′
i , τi+1] (7)

In the global rotated coordinate

g(t) ≡ g(τ ′
i), ∀t ∈ [τ ′

i , τi+1] (8)

z(t) = g(t) + R(τ ′
i)ζ̂(R−1(τ ′

i)(z(t) − g(t)), 0), (9)
∀t ∈ [τ ′

i , τi+1]

3 Waypoint Selection for Parking Maneuver

Maximum curvature and space limit are the two most important factors when
generating parking trajectories autonomously. Considering the nonholonomic
constraint of rolling without slipping, the common reference trajectory for team
vehicles is not allowed to make sharp turns. Especially when the operation area
is a constrained domain, waypoints should be selected to satisfy both the vehicle
dynamics and the area constraints. The problem is related to many others, from
a so-called SOFA problem, to path planning algorithms like A-star, to poten-
tial field approaches. It has a number of new applications, on the ground with
autonomous cars, in the air, with UAV’s flying around buildings.

We will consider parking maneuvers in a constrained parking zone. In this
zone, upper bound for trajectory curvature is required. The vehicle’s pose (po-
sition and orientation) should be adjusted to a suitable one before entering the
parking bay. We prefer forward maneuvers unless straight reverse is necessary
in several special cases. Therefore, the waypoint selection strategy should take
into account the dimensions of the free space and practical aspects of motion
generation. The strategy is designed in a hybrid framework.

3.1 High Level Decomposition of Configuration Space

Different from the other parking maneuver cases [[5],[6],[2]], which usually con-
centrate on how to enter the parking bay by robotic behavior from a relatively
friendly initial posture, we care how to make use of the open space to adjust a
vehicle’s posture so that it can enter the parking bay smoothly.

In the higher level, first we divide the whole parking spot into a few cells
around the goal parking position and specify the area near the parking bay
as the target cell. This cell is a highly constrained area since as long as the
vehicle entered this cell the “pose” must meet some requirements so that parking
maneuver can be easily finished within this small cell. Secondly, the planar cell
structure is extended to three dimensional space in which the orientation is
expressed by the third dimension. And now, given a vehicle pose, we can index
it by (x, y, z) information of each cubic cell. Finally, for each cell that has a
different pose, a corresponding waypoint selection method is developed in the
lower level considering vehicle dynamic motion constrains.
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The configuration space decomposition is described in Figure 3. We use park-
ing bay fixed coordinate system. The directed arrow denotes the vehicle which
has a certain length and direction. The origin (xp, yp) is the parking bay position.
The constant R is the minimum turning radius for the vehicle. The two gray cells
constitute the highly constrained area. In this area, the vehicle’s position should
not be inside the two quarter circles no matter what its direction is. It should
enter the gray rectangular from the upper side.

S1S2S3

S4 S5 S6

S7S8

S9

S10

X

Y(symmetric axis)

(Xp,Yp)

highly constrained area

RR

P1

P2
P3

P4

P5

P6
P7

P8

vehicle postures

R

Fig. 3. Configuration space decomposition

Since (x, y) only gives the position information, the third dimension z can
denote the heading direction. In the upper left of Figure 3, the z axis is divided
to eight levels. That is

P1 = π
2 , P2 ∈ (0, π

2 ), P3 = 0, P4 ∈ (−π
2 , 0),

P5 = −π
2 , P6 ∈ (−π, −π

2 ), P7 = π, P8 ∈ (π
2 , π).

Thus for each section in the planar plane, it has eight levels in the 3 dimensional
space.

It is worth noting that by this decomposition method, only half plane solution
need to be given since the whole open space is symmetry by y axis. We will only
analyze the right half plane. In this part, S1 is a friendly area. As long as the
vehicle is in this section, it will be easy to find a maneuver adjusting “pose”.
Our basic idea is to find solution for S1 and drive the vehicle to this section first
when the initial position is in other sections. To simplify the algorithm, we try
to merge the sections having the same waypoint selection method. In total, ten
sections in each z level are needed.

Now the problem can be rephrased as follows. Given a vehicle pose (indexed
by x0, y0, z0) and the parking bay (the origin of the configuration space), find a
waypoint selection strategy so that the vehicle system will start from (x0, y0, z0)
and converge to (0, 0, 0).
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Fig. 4. Six typical maneuvers

3.2 Low Level Waypoint Selection

In the low level, both the vehicle desired (parking) position and its initial
position is defined as two points in the configuration space. The maneuver-
ing task is finished by approaching the target cell and stabilizing to the fi-
nal parking position. A mainline approach and a number of special cases are
investigated.

Considering the initial position in S1, we mentioned that this section is a
friendly section and the vehicle can drive to the parking bay easily by some
maneuver. For different z levels, we define corresponding waypoints and they
could be connected by “real-time dynamic trajectory smoothing algorithm[1]”
so that a feasible trajectory will be provided to the vehicle. Typical lower level
waypoint selection strategy is shown in Table 1. For different initial posture, dif-
ferent selected waypoints are given. The length of the line segment connecting
the waypoints is n ∗ R where n is an integer and R is the minimum turning
radius, a parameter of the vehicle. The waypoints should be selected so that an
obtuse angle or right angle is formed by adjacent line segments connecting way-
points. This method could ensure an arc tangent to both adjacent line segments
exists.

A few cubic cells such as S4:P4/P5/P6, S5:P6, S8:P1 and so on, need straight
reverse maneuver. Otherwise, there will be no solution.

This method is a resolution-complete algorithm. A solution is guaranteed
if it exists at a given resolution when modeling the search space by grids [3].
The completeness of the geometric planner assures the completeness of the al-
gorithm. The resulting trajectory could be tracked by the leader of a team of
vehicles.
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Table 1. Six typical maneuvers in S1. Note: (xp, yp) is the target parking position and
θ0 is the initial yaw angle.

Method Initial posture Selected waypoints
M1 P1 (x0, y0,

π
2 ) (x0, y0) → (x0, y0 + r) → (xp, y0 + r) → (xp, yp)

M2
P2(x0, y0, (0, π

2 ))
P3(x0, y0, 0)

(x0, y0) → (x0 + r cos θ0, y0 + r sin θ0)
→ (x0 + r cos θ0, y0 + r sin θ0 + 2r) →

(xp, y0 + r sin θ0 + 2r) → (xp, yp)

M3 P4 (x0, y0, (0, −π
2 ))

(x0, y0) → (x0 + r cos θ0, y0 + r sin θ0)
→ (x0 + r cos θ0 + 2r, y0 + r sin θ0)

→ (x0 + r cos θ0 + 2r, y0 + r sin θ0 + 2r)
→ (xp, y0 + r sin θ0 + 2r) → (xp, yp)

M4 P5 (x0, y0, −π
2 )

(x0, y0) → (x0 + r cos θ0, y0 + r sin θ0)
→ (xp, y0 + r sin θ0) → (xp, yp)

M5
P6(x0, y0, (−π

2 , −π))
P8(x0, y0, −π)

(x0, y0) → (x0 + r cos θ0, y0 + r sin θ0) →
(xp − 2r, y0 + r sin θ0) → (xp − 2r, y0 + r sin θ0 + 2r)

→ (xp, y0 + r sin θ0 + 2r) → (xp, yp)
M6 P7 (x0, y0, π) (x0, y0) → (xp, y0) → (xp, yp)

3.3 Multi-vehicle Cooperative Parking

Based on the proposed model and the waypoint selection strategy, a multi-
vehicle cooperative parking framework is proposed to solve a “class” of problems.
Consider several teams of vehicles entering the parking zone by passing a road
segment (Figure 5). They aim at different parking bays. Figure 6 and Figure 7
give the function hierarchy and inter car coordination level for the leaders of each
team. The leader of the first team L1 is the master of the communication group
and can trigger other leaders. By inter car coordination level, the vehicles will
park team by team and the vehicles in the same team will park into by forma-
tion reconfiguration. The trajectory for the leader is generated by the waypoint
selection method provided before. The transition phase model introduced before
will be used here for easy formation reconfiguration. “Shifted” domains can help
(plans can be transmitted between leaders).

L1

L2

F11

F12

F21

F22

L1F11F12

Fig. 5. Cooperative parking
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4 Simulation Results

To illustrate the validity of the above design, several typical parking trajectories
are provided. In the following figures, z axis denotes the angle (rad) between
vehicle heading direction and parking lot direction. Figure 8 shows the parking
trajectory in configuration space and in the x− y plane for initial position in S1
and heading angle ∈ P2. Vehicle configuration converging to the origin means it
enters the parking bay.

Figure 9 shows two different cases in which the initial position is in S1 and
S6 respectively. In the first case, the vehicle entered the parking bay by method
M1. While in the second one, the vehicle traveled to left half plane first. By
symmetry, similar maneuver methods are defined in this area just as M1 to M6
in right half plane. Once the vehicle entered the left half plane, the waypoints
will be selected by searching the maneuver in corresponding indexed cubic cell.
Figure 10 shows the parking process in configuration space. The vehicle made
use of the open area to adjust its heading direction along its trajectory and
entered the parking bay at the required angle.

Two other cases are shown in Figure 11. One of them is a special case in
which straight reverse is unavoidable. At the intersection point, though the two
trajectories have the same position, they are in different z level (different heading
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direction) and will have different waypoint selection method which can be seen
from configuration space clearly (Figure 12).

5 Conclusions

This paper presents a new framework for multiple vehicle system modeling and
control, emphasizing the team behavior in a multi-level, multi-resolution way.
After the search space is modeled by a coarse grid, with fixed cells, a complete
algorithm is developed for waypoint selection taking into account the dimensions
of the free space and practical aspects of motion generation. The trajectory gen-
erated from these waypoints can be fed as reference inputs to leader vehicles of
each team. Multiple vehicle cooperative parking is among the most meaningful
application of the proposed algorithm. Following a typical hybrid system design
procedure as illustrated, a “class” of problems can be solved by formation recon-
figuration based on the proposed transition phase model and waypoint selection
methods.
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Abstract. The study of unmanned aerial systems (UAS) has been an
active research topic in recent years due to the rapid growth of UAS
real-world applications driven by the Global War on Terrorism (GWOT).
UAS are defined as a complete unmanned system including control sta-
tion, data links, and vehicle. Unmanned aerial vehicle (UAV) refers to
the vehicle element of the UAS. Currently UAS operate standalone, in-
dependent of neighboring UAS and used primarily for reconnaissance.
However UAS roles are expanding to the point where UAV swarms will
operate as cooperative autonomous units. The reason is that coopera-
tively controlled multiple UAS have the potential to complete mission
critical complicated tasks with the higher efficiency and failure toler-
ance, such as coordinated navigation to a target, coordinated terrain
exploration and search and rescue operations.

This chapter presents study results associated with real-time trajec-
tory planning and cooperative formation flying algorithms for use in
performing multi-UAV cooperative operations. Closed form analytical
and simulation results were used along with a UAS simulation test bed
for evaluating and verifying these algorithms in multi-UAV cooperative
scenarios. The full kinematics constraints of the UAV model is explicitly
used, ensuring the planned trajectories and formations are feasible. Two
operational modes are implemented for every UAV, one corresponding
to the search phase, the other corresponding to the cooperative flying
phase. Each phase is executed upon receiving commands. Finally this
chapter discusses the use of this simulation environment for multi-UAV
cooperative operator training.

1 Introduction

In order to provide a comprehensive solution for the trajectory planning problem,
it should be recognized that the motion-planning of robots is analogous to the
real-time trajectory planning of a group of UAV. Therefore, leveraging past
research efforts devoted to the motion-planning problem of robots is directly
applicable. Some popular approaches among them are potential fields, splines,
and numerical methods such as the D* and A* search algorithm.

M.J. Hirsch et al. (Eds.): Adv. in Cooper. Ctrl. & Optimization, LNCIS 369, pp. 203–219, 2007.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2007
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For the potential fields approach in [1] and [2], the trajectories are expelled
away from obstacles by pre-built repulsive potential fields around the obstacles,
and the goal is surrounded by an attractive potential field. This approach gen-
erally has multiple local minima and requires massive computational resources
when applied to 3D applications.

To illustrate this, consider the repulsive potential field:

U(r) =
1
r2 .

The attractive potential field is defined as

U(r′) = r′2,

where r, r′ are the corresponding distances. A robot is to reach its goal along
the gradient direction of its overall potential, that is,

U(r, r′) = U(r) + U(r′) =
1
r2 + r′2.

This scalar field has local minima close to the goal point. If a robot approches
a local minima, it will become stuck. When multiple obstacles are injected into
the scenario, the potential becomes more complicated.

For the splines approach in [3], a sequence of splines is used to generate a path
through a given set of waypoints. However, prior knowledge of the waypoints may
not be available due to the unknown environment and the kinematic constraints
of the robots are not considered in splines. Thus, the trajectory may not be
applicable to a specific robot.

In a common cubic spline method, each section of the path could be described
by the parametric equations:

x(u) = axu3 + bxu2 + cxu + dx

y(u) = ayu
3 + byu

2 + cyu + dy,

where u ∈ [0 1]. This type of parameterization concentrates on the smooth
property at the connection of various segements, rather than the kinematic con-
straints of the robot. The trajectory obtained by this method may not be feasible
for specific types of robots.

In search based methods, A* (proposed in [4]) utilizes a heuristic function to
guide the search direction to the goal, thus making it more efficient than the
Dijkstra algorithm and ensures an optimal solution from initial point to end
point can be found, if one exists. However it requires all of the map information.
To deal with dynamic environments, it needs to do a complete recalculation each
time the map information is updated, making it inefficient. A typical heuristic
index used in A* is:

f(n) = h(n) + g(n),

where f(n) is the overall cost for a node, h(n) is the cost already spent from the
start node to the current node, and g(n) is the estimated cost from the current
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node to the end node. Generally g(n) can be taken as the Euclidean distance
between the current and end nodes.

One improvement of the A* method is found in D* (proposed in [5] and [6]).
The D* search algorithm does not require all of the map information. It starts
with a priori map and at each time the map data is updated, it invokes a lo-
calized A* search to make incremental changes to the path. Its performance
is compromised relative to the performance of the A* search. Both search al-
gorithms require heavy computational resources and do not take a kinematic
model into account.

By acknowledging the limitations of these techniques, we can improve on these
methods by leveraging this information and create an approach that determines
a real-time collision-free path for a UAV. In this chapter a parametric solution
is proposed to address the limitations of the above techniques. The kinematic
constraints are considered, resulting in a class of smooth trajectories. A solution
is proposed to design a local decentralized cooperative control for a group of
UAV to fly along an arbitrary set of waypoints.

2 Trajectory Planning

The objective of trajectory planning is to find a feasible and smooth trajec-
tory that leads the UAV along its starting waypoint to its final waypoint. In
this chapter, trajectory planning is based on the following kinematic model of
UAV:

ṙx = vr1 cos(rθ)
ṙy = vr1 sin(rθ) (1)
ṙθ = vr2,

where (rx, ry) are the world coordinates of the UAV, rθ is the heading angle, vr1
is the longitudinal velocity, and vr2 is the angular velocity.

2.1 Parameterized Feasible Trajectories

By analyzing the kinematics model described by (1), it can be established that
the trajectory is defined by some smooth function ry = f(rx). Given initial and
final conditions q0 = (r0

x, r0
y, r0

θ) and qf = (rf
x , rf

y , rf
θ ), the model imposes four

constraints on the trajectory. That is, the position and first derivative of each end
has to match the boundary value. Thus, when the trajectory is parameterized
by a polynomial, it should have at least four coefficients. To achieve a class of
trajectories, the coefficients could be more than four. In this application, the
trajectory is parameterized by a 4th order polynomial. That is,

ry = a0 + a1rx + a2r
2
x + a3r

3
x + a4r

4
x, (2)
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where a0, a1, a2, a3 are coefficients to be solved and a4 is free. Given the boundary
conditions q0 and qf the solution to the coefficients are:

⎡

⎢⎢⎣

a0
a1
a2
a3

⎤

⎥⎥⎦ = (B)−1(Y − Aa4),

where

B =

⎡

⎢⎢⎣

1 r0
x (r0

x)2 (r0
x)3

0 1 2r0
x 3(r0

x)2

1 rf
x (rf

x)2 (rf
x)3

0 1 2rf
x 3(rf

x)2

⎤

⎥⎥⎦ , Y =

⎡

⎢⎢⎣

r0
y

tan(r0
θ)

rf
y

tan(rf
θ )

⎤

⎥⎥⎦ , A =

⎡

⎢⎢⎣

(r0
x)4

4(r0
x)3

(rf
x)4

4(rf
x)3

⎤

⎥⎥⎦ .

2.2 Trajectory Planning for Avoiding Dynamic Obstacles

To deal with the changing environment, as the new obstacle information becomes
available, the parameterized trajectory given by (2) may require updates. The
updating could be satisfied by a piecewise polynomial parametrization. Let T be
the time for a UAV to complete its maneuver from the initial configuration q0
to its final configuration qf , and Ts be the sampling period, such that k̄ = T/Ts

is an integer. When k = 0, the initial condition is q0. For k̄ > k > 0, the initial
condition is given by qk = (rk

x, rk
y , rk

θ ), the terminal condition is always qf .
By using the new initial condition, the path planning method described in the
previous subsection can be used for real-time replanning as k increases. In the
latter part of this chapter, all the notations with superscript k or subscript k
indicate they are in the kth sampling period.

Fig. 1. A UAV in the presence of moving obstacle

Figure 1 illustrates a UAV moving from q0 to qf . The radius of the UAV
envelope, r, and the sensing range, Rs are known. At the beginning of the kth
sampling period, there is a moving obstacle in the sensing range of the UAV,
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the radius of the obstacle envelop is R with center at (xk, yk). In this sampling
period, its velocity is vk

o and assumed to be linear, and the values for the data
is obtained by onboard sensors. The trajectory (2) is rewritten as:

ry = ak
0 + ak

1rx + ak
2r

2
x + ak

3r3
x + ak

4r
4
x. (3)

The obstacle avoidance criterion is:

(ry − yk − vk
o,yτ)2 + (rx − xk − vk

o,xτ)2 ≥ (r + R)2, (4)

where τ = t − (t0 + kTs) for t ∈ [t0 + kTs, t0 + T ].
According to the results in Sect. 2.1,

[ak
0 ak

1 ak
2 ak

3 ]T = (Bk)−1(Y k − Akak
4), (5)

where

Bk =

⎡

⎢⎢⎣

1 rk
x (rk

x)2 (rk
x)3

0 1 2rk
x 3(rk

x)2

1 rf
x (rf

x)2 (rf
x)3

0 1 2rf
x 3(rf

x)2

⎤

⎥⎥⎦ , Y k =

⎡

⎢⎢⎣

rk
y

tan(rk
θ )

rf
y

tan(rf
θ )

⎤

⎥⎥⎦ , Ak =

⎡

⎢⎢⎣

(rk
x)4

4(rk
x)3

(rf
x)4

4(rf
x)3

⎤

⎥⎥⎦ .

It is not necessary to consider the collision avoidance criterion for all t ∈
[t0 + kTs, t0 + T ]. Since the collision may only happen when the UAV’s x (or
y) coordinate is within a certain range. Specifically, the potential collision range
obtained from the x coordinate is when rx ∈ [xk+vk

o,xτ−r−R, xk+vk
o,xτ+r+R].

From this condition, a potential collision time interval could be solved as [t∗, t̄∗].
It is only in this time interval that the collision avoidance condition is checked.

Substituting (3) and (5) into (4), one obtains the following inequality:

g2(rx, k)(ak
4)2 + g1(rx, k, τ)ak

4 + g0(rx, k, τ)|τ=t−t0−kTs ≥ 0, (6)

for all t ∈ [t∗, t̄∗], where

g2(rx, k) = [r4
x − h(rx)(Bk)−1Ak]2

g1(rx, k, τ) = 2[r4
x − h(rx)(Bk)−1Ak][h(rx)(Bk)−1Y k − yk − vk

o,yτ ]

g0(rx, k, τ) = [h(rx)(Bk)−1Y k − yk − vk
o,yτ ]2 + (rx − xk − vk

o,xτ)2 − (r + r)2

h(rx) = [1 rx r2
x r3

x].

Inequality (6) describes the adjustable coefficient ak
4 , and as long as the chosen

ak
4 satisfies this inequality, the obstacle is avoided. For multiple moving obstacles,

each obstacle would impose a constraint similar to (6) on ak
4 . When ak

4 satisfies
all the constraints simultaneously, all obstacles are avoided.

Figure 2 shows the actual path that the UAVs travelled during the search
phase, where the small dots represent static obstacles.
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Fig. 2. Trajectory generated in search phase

3 Cooperative Control

In recent years there has been rapid progress in the study of cooperative and
formation control for a group of mobile autonomous robots. The reason for this
is that cooperatively controlled multiple robots have the potential to complete
complicated tasks with a higher efficiency and failure tolerance, such as coor-
dinated navigation to a target, coordinated terrain exploration and search and
rescue operations.

Motivated by the flocking behavior of birds in flight, Reynolds introduced
a computer animation model for cohesion, separation, and alignment in [10].
Subsequently, a simple discrete-time model (Vicsek model) was given in [11] for
the heading alignment of autonomous particles moving in the plane. Simulation
results verified the correctness of the Vicsek model. More recently, a theoretical
explanation of Vicsek’s model was presented in [12] using results from graph the-
ory. The conditions on the connectivity of undirected sensor graphs are given for
overall system convergence. This result was extended to networks with directed
sensor graphs in [13], [14].

One recent development on designing decentralized local cooperative control
is based on matrix theory. Up until now, less restrictive, but successful results
have been established in [7]. Given a group of robots that can be feedback lin-
earized into a certain form and their sensing communication matrix satisfies a
sequentially complete condition, their production results in a matrix with iden-
tical rows, where all the state errors of the group of robots converge, and thus
cooperative control is achieved.
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3.1 Objectives of Cooperative Control

In general, the control objective for cooperative control is to make the states (or
error states) of a group of dynamical systems converge to the same steady state.
When applied to formation flying, a group of UAVs converge to a formation
when the error states from a group of desired trajectories converge to zero. This
is because the states of the group of UAVs in the kinematics model are exactly
their position and heading.

3.2 Cooperative Control Algorithm

In order to simplify the design procedure, define the following diffeomorphic
state and control transformations

φ1 = rx + L cos(rθ), φ2 = ry + L sin(rθ),

and [
v1
v2

]
=

[
cos(rθ) −L sin(rθ)
sin(rθ) L cos(rθ)

] [
vr1
vr2

]
.

The UAV model can be transformed into the single integrator model as follows
with the stable internal dynamics

φ̇ = v, (7)

where φ = [φ1, φ2]T and v = [v1, v2]T .
For an arbitrary path H , a formation can be defined by using its Frenet

frame FH(t), which moves with the path. Let e1(t) ∈ �2 and e2(t) ∈ �2 be
the orthonormal base of FH(t), and ψd(t) = [ψd

1(t), ψd
2(t)] ∈ �2 be the origin of

FH(t). A formation consists of q UAVs in FH(t), denoted by {P1, · · · , Pq}, where

Pi = di1(t)e1(t) + di2(t)e2(t), i = 1, · · · , q

with di(t) = [di1(t), di2(t)] ∈ �2 being the desired coordinates for the ith robot in
FH(t). It is clear that the rigid formation can be modeled when di(t) is constant.
The desired position for the ith robot is then

ψd
i (t) = ψd(t) + di1(t)e1(t) + di2(t)e2(t). (8)

To map (7) into the canonical form proposed in [7], define the following de-
centralized state transformation

xi(t) = φi − ψd
i , v = ψ̇d

i − φi + ψd
i + ui.

It follows that
ẋi = Aixi + Biui, yi = Cixi,

where ui is the cooperative control for ith robot, and

Ai =
[
−1 0
0 −1

]
, Bi =

[
1 0
0 1

]
, Ci =

[
1 0
0 1

]
.
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To capture the nature of information flow, define the following sensing/
communication matrix:

S(t) =

⎡

⎢⎢⎢⎣

S1(t)
S2(t)

...
Sq(t)

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

s11 s12(t) · · · s1q(t)
s21(t) s22 · · · s2q(t)

...
...

...
...

sq1(t) sq2(t) · · · sqq

⎤

⎥⎥⎥⎦ ,

where sii ≡ 1; sij(t) = 1 if the states of the jth UAV is known by the ith UAV at
time t; otherwise sij(t) = 0. The general class of cooperative controls are given
in the following expression: for i = 1, · · · , q,

ui =
q∑

j=1

Gij(t)[sij(t)yj ], (9)

where sij(t) is the entry in the sensing/communication matrix, Gij is a 2 × 2
block in gain matrix G that reflects the influence of jth UAV’s output to the
control of ith UAV, it could be designed in the following form:

Gij(t) =
sij(t)∑q

η=1 siη(t)
Kc, j = 1, · · · , q, (10)

where the design parameter Kc ∈ �2×2 is a constant, nonnegative, and row
stochastic matrix.

3.3 Trajectory Parameterization for Arbitrary Waypoints

In Sect. 3.2, a formation in the Frenet frame FH(t) is proposed. In most applica-
tions, the path of the frame H is not given. Instead, it is desired that the group
of UAVs fly through a set of specified waypoints. Suppose a set of waypoints
(wi, zi), i = 0, 1, 2, 3 is given. The following parameterization approach can be
used to find the path H .

z = z0
(w − w1)(w − w2)(w − w3)

(w0 − w1)(w0 − w2)(w0 − w3)
+ z1

(w − w0)(w − w2)(w − w3)
(w1 − w0)(w1 − w2)(w1 − w3)

+z2
(w − w0)(w − w1)(w − w3)

(w2 − w0)(w2 − w1)(w2 − w3)
+ z3

(w − w0)(w − w1)(w − w2)
(w3 − w0)(w3 − w1)(w3 − w2)

.

Assuming the origin of the frame has a constant overall velocity V (which
means the corresponding UAV in the formation has a constant cruise speed),
and first waypoint is (w0, z0), with a start time at t0, then the whole timing
profile of the Frenet frame ψd(t) can be obtained as the following:

ψd
1(t) = w0 +

∫ t

t0

V√
1 + (dz/dw)2

dt

ψd
2(t) = z0 +

∫ t

t0

V√
1 + (dw/dz)2

dt.

Combining with (8), the desired trajectory of all the UAVs can be determined.
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4 Simulation

The simulation program was developed in Microsoft Visual Studio .Net 2003
and used with an evaluation copy of the Qt Class library provided by Trolltech.
Figure 3 is a flow chart of the simulation program that describes how the code
and modules are organized.

Fig. 3. Simulation platform

4.1 Simulation Prototype

The simulation scenario consists of six UAVs searching within a rectangular area.
In the first phase (search phase) the six UAVs perform a complete coverage search
over the entire area. In the second phase (cooperative control phase) waypoints
are sent to the UAVs via XMPP protocol from the Human Machine Interface
(HMI). The six UAVs will converge to a triangular formation and fly along these
waypoints.

Table 1. Geographical coordinates of Kabul city

Longitude(DEG) Latitude(DEG)
Low-left 69.122650 34.491754
Up-left 69.121734 34.583547
Up-right 69.246323 34.583034
Low-right 69.245865 34.492267
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Table 2. Initial configuration of UAVs

Longitude(DEG) Latitude(DEG) Heading(RAD)
UAV 1 69.121734 34.537651 7π/12
UAV 2 69.163263 34.583547 −11π/12
UAV 3 69.204793 34.583547 −11π/12
UAV 4 69.246323 34.537651 −5π/12
UAV 5 69.204793 34.491754 π/12
UAV 6 69.163263 34.491754 π/12

Table 3. Position of static obstacle

Longitude(DEG) Latitude(DEG) Radius(meter)
OBS 1 69.23 34.56 600
OBS 2 69.22 34.52 600
OBS 3 69.14 34.53 600
OBS 4 69.18 34.525 600

Table 4. Waypoints in cooperative fly

Trajectory 1 Trajectory 2
WP 1 69.122192 34.5376505 69.1173846 34.5314035
WP 2 69.147018 34.5461272 69.1438258 34.5559345
WP 3 69.196671 34.5648806 69.1938001 34.5779071
WP 4 69.246323 34.5830341 69.2183311 34.5579971

The geographical coordinates of the search area are listed in Table 1. To model
static obstacles, moving obstacles with a velocity of zero were used. The initial
configuration of the UAV and obstacles are listed in Tables 2 and 3.

In the cooperative flying phase, the two sets of waypoints that the formation
should pass are listed in Table 4.

The sensing/communication pattern in the simulation are randomly changing
among the following three matrices at each sampling period:

S1 =

⎡

⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
1 1 0 0 0 0
0 1 1 0 0 0
0 0 1 1 0 0
0 0 0 1 1 0
0 0 0 0 1 1

⎤

⎥⎥⎥⎥⎥⎥⎦
S2 =

⎡

⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
1 1 0 0 0 0
1 0 1 0 0 0
1 0 0 1 0 0
1 0 0 0 1 0
1 0 0 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎦
S3 =

⎡

⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
1 1 0 0 0 0
0 1 1 0 0 0
1 0 0 1 0 0
0 1 0 0 1 0
0 0 0 1 0 1

⎤

⎥⎥⎥⎥⎥⎥⎦

The design parameter Kc in (10) is:
[

0 1
1 0

]
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4.2 Simulation Results

To determine the route in the search phase, a minimum number of circles that fit
the sensing range of the UAVs are placed in area [9] with the union of these circles
covering the entire area. The centers of these circles are the waypoints that will
be traveled along to form the route. Next, each UAV determines the waypoints to
use. This is done by a Voronoi algorithm, which means each waypoint belongs to
the nearest UAV. Finally, each UAV will choose the nearest waypoint as its first
waypoint, and then by applying a computational geometry algorithm, the UAV
will travel to the nearest unvisited waypoint relative to its current position (going
clockwise). This method forces the UAVs to travel in a counterclockwise path.
This phase uses the path planing and obstacle avoidance algorithms discussed
in Sect. 2.

One case for the search phase and two cases for the cooperative flying phase
are simulated. The results for the search phase are shown in Fig. 2. Figures 4
and 5 show the results for the cooperative control phase. By sending different
sets of waypoints, the six UAVs fly on different paths in the given triangular
formation. After receiving the waypoints, the program first uses the approach
discussed in Sect. 3.3 to parameterize the desired trajectories through the set of
waypoints, then applies the algorithm presented in Sect. 3. The two figures of
the cooperative control phase illustrate that after a transient process, the UAVs
gradually converges to their desired trajectory.

Fig. 4. Trajectory generated in formation fly phase

5 UAS Test Bed

The Unmanned Aerial System Test Bed (UAS Test Bed) is a web-based infras-
tructure for UAS operational “what if” assessments and development of training
strategies developed by L-3 Communications, Link Simulation and Training. It
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Fig. 5. Trajectory generated in formation fly phase

is built on commercial web, gaming and open source technologies. The Physics-
Based Urban Environment provides and manages a common view or state of the
virtual environment that the UAS application interacts with. The Multi-Trainer
Servers host the UAV, Ground Control Station (GCS) and communication mod-
els, which interface to the Physics-Based Urban Environment through a set of
APIs. The GCS interfaces to the Human Computer Interface (HCI) through web-
based services and protocols. The GCS interfaces to the UAV models through
Data Links in the communications layer.

The HCI component provides a tailored trainee interface depending on GCS
configuration and desired training position (e.g. vehicle or sensor operator). The
HCI’s primary displays are used for situation assessment with secondary displays
used to assess vehicle or subsystem health. An example generic web based GCS
HCI is used to demonstrate the test bed vehicle controls, sensor controls and
situation assessment. The HCI is connected to the server side GCS logic, which
in turn communicates to UAV models through protocols such as STANAG 4586.
Figure 6 illustrates the basic infrastructure in the UAS test bed framework, and
Fig. 7 shows the components in the HCI.

The user interacts with this framework and connects to the HCI through a
web portal. As a trainee, a user can download and run the HCI while logged
into the UAVS web portal, which is their gateway to the simulation. Prior to
launching the HCI, the trainee can configure their training session by providing
initial parameters and attributes for the vehicle and GCS, and selecting a specific
mission. Once the configuration is complete, the trainee can join the simulation
as any position they have permissions for. The HCI contains multiple components
that are controlled by various roles or positions. A trainee’s role is dependent on
initial registration parameters and determines group permissions while logged
into the web portal. User permissions or authority is based on the training role,
and used to determine the available features accessable through the web portal
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Fig. 6. UAS test bed framework infrastructure

Fig. 7. UAS human control interface

and HCI. Instructors and mission commanders can manipulate all areas of the
HCI. Vehicle operators drive the flight controls and execute routes and loiter
zones for a single UAV. Sensor operators control the payload steering and zoom
for a single UAV. Operators can handoff control to drive other UAVs in the
simulation.

Observers can view the UAVs on a map, as well as their sensor output, while
planners can only view the map. The map displays all UAVs in the simulation,
their inertial states, and all routes and loiter zones that can be executed by the
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vehicle operators. All users can communicate via voice-over Internet protocol
(VOIP) on various channels.

6 UAS Cooperative Control Test Bed Framework

For the UAS Cooperative Control Test Bed, an interface was created, that incor-
porated the aforementioned cooperative control algorithms, and integrated them
into the UAS Test Bed for evaluating their effectiveness using multi-UAV based
scenarios. The main areas of integration within the HCI were the moving-map
application and the Core UAV Control System (CUCS) communication inter-
face. For the moving-map application, a table of inertial states was added and
the ability to interpret additional configuration files. These configuration files
provide the locations of static obstacles and targets that are to be displayed on
the map. A data translator is used to map the inertial states provided by the
cooperative control interface to the UAS interface. Search areas, static obstacles,
targets, and pre-defined routes are defined in XML files to be used during the
exercise. Figure 8 illustrates the components after integrating the algorithm into
the testbed.

Fig. 8. Integrated simulation platform

Once the program is executed, the UAVs begin searching their respective areas
and communicate using the STANAG 4586 [15] standard messages transmitted
using the Jabber protocol [16]. The vehicle operator controls the UAVs through
a virtual UAV, which can be any one of the UAVs in the formation or the GCS.
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This virtual UAV communicates with the formation and they will collectively
cooperate to achieve their goal. During the real-time simulation, the following
capabilities can be demonstrated:

– Planning the Coverage Search Path
Once the exercise begins, a search area and the location of static obstacles

and targets are uploaded to each UAV. The UAV then generates an initial
route that will cover their entire search area, while avoiding the static obsta-
cles. If there are any known dynamic obstacles in the path, the UAV’s initial
route will reflect this and avoid these entities. Figure 9 shows a snapshot of
the working scenario of HCI during the searching phase. The trajectories of
the UAVs correspond to Fig. 2.

Fig. 9. UAVs flying pre-defined search area

– Real-Time Trajectory Generation
As the UAVs search they continually communicate with each other their

current inertial state and obtain inertial states from other vehicles. Using this
information, the UAVs re-plan their route to avoid flying into one another
while avoiding obstacles.

– Dynamic and Static Obstacle Avoidance
During the initial planning and re-planning of the search route, the UAV

trajectory will avoid known static obstacles in its path. Other vehicles’ inertial
states, not limited to UAVs, are also communicated to the HCI’s CUCS inter-
face. The UAV uses these locations and velocities to continuously re-plan their
route to avoid these dynamic obstacles during search and formation flying.
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– Convergence to Specified Targets
The descriptions of specified targets are uploaded to each UAV upon start

of the simulation. The UAV sensor will scan the search area for these targets.
Once the target is identified, the UAV will communicate this to the other
UAVs. After either all targets have been located or all UAVs have searched
the area, the UAVs will converge to the specified targets and begin a loiter
pattern.

– Formation Fly Along a Specified Route
Routes are described in XML and can be uploaded to the virtual UAV

and executed. Once the route is executed, the UAVs will generate a new path
to fly this route in a formation specified by the XML. The route planning
is a cooperative process between all the UAVs in the formation. They com-
municate their routes to the virtual UAV and re-plan the routes collectively
in order to successfully fly the specified route in formation while avoiding
obstacles. Figure 10 shows how the group of UAVs flow along a specified set
of waypoints, their trajectories correspond to Fig. 4.

Fig. 10. UAVs flying in formation along a pre-defined route

Given autonomous and cooperative control of multiple UAVs is an emerging
capability, there are no real world examples illustrating the operational concepts
or training procedures. The integration of cooperative control algorithms with
the UAS test bed gives us a platform and ability to perform “what if” scenarios
necessary to understand the implications of these capabilities to assess mission
performance, operating policy and potential training gaps.
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Abstract. Closed formation control for multiple unmanned ground vehicles 
(UGVs) is studied in this chapter. The leading-following strategy with a virtual 
leader is applied to coordinate the whole formation group so that only local 
information is sufficient for every UGV to maintain close formation. Error-
shaping memory-based control is designed for formation path tracking. The 
salient feature of this approach lies in its simplicity in design and 
implementation, and no need for detailed information on external disturbances 
and uncertainties. The performance of the proposed method is verified via real-
time experiment on various formation operations. 

Keywords: formation control, leader-follower strategy, memory-based control, 
real-time experiment. 

1   Introduction 

The problem of coordinating the motion of multiple agents has attracted significant 
attention in recent years. Nature is abundant in marvelous examples of cooperative 
behavior, such as animal aggregation, fish schooling, bird flocking, bee dancing, ant 
colony, traffic flow evolution, cell migration, etc. Bio-inspired by such behaviors, 
formation control of multiple autonomous vehicles has been an important theme and 
considerable efforts have been devoted to this research for the possible applications in 
broad areas like formation flying of unmanned aerial vehicles (UAVs) [2]-[5], 
coordinated movement of a cluster of Unmanned Ground Vehicles (UGVs) [6]-[9], 
satellite formation and Multiple spacecraft formation flying (MSFF) [10]. 

The “Leader-Follower” Strategy is one of three conventional methods of formation 
control, in which an agent acted as a group leader and other agents would just follow 
the cohesion/ separation/ alignment rules, resulting in leading-following [1]. The 
advantage of this strategy is that it ensures all agents eventually align with each other 
and group into a tight formation with common heading direction, no collision and no 
need for global knowledge and computation. However, the leader-follower strategy 
always involves a singularity that results in uncontrollability as the followers are 
driven to move in parallel with the leader [2],[9]. This work addresses the idea of 
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virtual leader based formation control [11],[12], in which a virtual leader is applied to 
replace the real leader and all mobile vehicles are considered as “follower” so that all 
vehicles can group into any formation shape. 

In fact, the problem of formation control is a two-leveled hybrid architecture, 
which includes: 1) motion coordination level, like leader-follower coordination 
strategy, where the trajectory planning is achieved; and 2) control level, where the 
developed control algorithm is applied. In the control level, this work addresses error 
shaping memory-based control, which improves the memory-based control algorithm 
mentioned in [13]-[15]. The fundamental idea behind this method is to use certain 
gathered information (i.e., current tracking error, most recent tracking errors, and 
previous control experiences) to generate new control commands. The salient feature 
of the proposed approach lies in its simplicity in design and implementation, and no 
need for detailed information on external disturbances and uncertainties. 

In this work, we have successfully implemented the leader-follower coordination 
strategy and memory based control algorithm for formation control of multiple 
UGVs. A series of simulation and real-time experiments are developed to verify the 
effectiveness of virtual leader-follower coordination strategy and error shaping 
memory-based control in what follows. 

2   Real-Time Testbed of UGV and Its Modeling 

Unanticipated challenges and issues often are exposed in test fields before a 
theoretical control algorithm is applied in a real-world scenario. Real-time verification 
is essential for any control algorithm before its practical implementation. Therefore, 
we have built the real-time testbed “P3-DS1401” based on Pioneer 3 robot, shown in 
Figure 1, developed by the Center of Cooperative Systems at North Carolina 
Agricultural and Technical State University, in cooperation with dSPACE Inc. This 
robot is an agile, versatile intelligent mobile robotic platform, which is equipped with 
three kinds of powerful sensing tools, a high-performance driving module and an 
intelligent real-time rapid control prototyping tool-MicroAutoBox(DS1401) [16]. 

 

Fig. 1. A three wheeled robots and its schematic. 
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The dynamic equations for the motion of the three wheeled robot are given by 
[17][18] 

cxlr FFFum ++=&  (1) 

bFdFFJ cylro −−= 2/)(θ&&  (2) 

where u is the heading speed of the robot, θ is its orientation angle; m is the mass of 
the robot, Jo is its moment of inertia with respect to the point O, Fr and Fl are the 
forces generated by right and left driving wheels respectively, Fcx and Fcy stand for the 
friction forces of the caster in xb and yb directions, d denotes the distance of two 
driving wheels, and b is the distance from the caster to axle of two driving wheels, 
shown in figure 1. 

The dynamics of wheel-DC motor assembly can be described as 

rrmrtrw rFIKJ θηθ &&& −−=  (3) 

llmltlw rFIKJ θηθ &&& −−=  (4) 

where θr and θl are rotating angles of two driving wheels, Jw is the moment of inertia 
of the driving wheel, r denotes the radius of the driving wheel, η is the friction 
coefficient, Kt is the motor torque constant, Imr and Iml are motor currents of right and 
left driving motors respectively. For the P3-DS1401 testbed, the motor current of the 
driving motor is proportional to the control current; i.e. Imr = KamIcr and Iml=KamIcl, 
where Kam is the current amplification factor, Icr and Icl are control currents of two 
driving motors. 

Geometrically, u,θ&  and θr, θl have the following relation 

2/)( ru slsrrr θθθθ &&&& −−+=  (5) 

drslsrrr /)( θθθθθ &&&&& +−−=  (6) 

where θsr and θsl denote the slip angle of the two driving wheels. 
From (1)-(6), consequently, we have 
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3   Virtual Leader Based Formation 

The “leader-Follower Strategy” is adopted since it is easy to control multiple vehicles 
in a desired formation and it is suitable for describing the vehicle formation. The 
formation geometry of UGVs can be determined by the relative position between the 
virtual leader and the followers, which is illustrated as Figure 2, where (x,y) are the 
ground coordinates, (xVL, yVL) and (xF, yF) are the global positions of the virtual leader 
and the follower, respectively, uVL, and uF are leader’s and follower’s linear velocities, 
θVL and θF are their orientation angles respectively, ρ and ϕ are the follower’s relative 
distance and orientation angle with respect to the virtual leader. The objective of the 
formation control is to drive the relative position and angle of the followers to the 
desired value, i.e., ρ→ρ d and ϕ→ϕ d (subscript ‘d’ means desired value). 

Based on this coordination strategy, the separation errors of follower j in the x and 
y directions referring to the global frame are easily determined via 

)cos( j
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The kinematic equations of the virtual leader and follower j are given as 
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Fig. 2. Virtual leader based Leading-following configuration 
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Then, the error rates can be expressed as 
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Note that det(C)=ρd cosϕd, and the matrix C is invertible only if ϕd ≠ ±π/2. This 
requirement is easily satisfied because ρd and ϕd can be chosen arbitrarily for the case 
of virtual leader based formation. 

Consequently, the formation error dynamic equation of the follower j is derived as: 
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Combining (16) with (7) leads to 
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Therefore, the objective of formation control for P3-DS1401 robots can be converted 
to make efforts to design the control current I to drive the formation error E to zero 
based on the error dynamic equation (17).  

4   Error Shaping Memory-Based Control 

Apparently, (17) denotes a highly nonlinear system, where H, including the side slip 
of two driving wheels, motion states, external disturbances and system uncertainties, 
is too complex to determine its precise information; the matrix G also involves 
uncertainties, arising from mass change, imprecise measurement of moment of inertia 
Jo and Jw, and estimation of motor torque constant Kt and current amplification factor 
Kam. Therefore, the control design should be very challenging to deal with such 
disturbances and uncertainties. In our work, memory-based control [15] is applied and 
successfully implemented to real-time formation control of multi-UGVs. The main 
idea behind this method is to use certain gathered information (i.e., current tracking 
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error, most recent tracking errors, and previous control experiences) to generate new 
control commands without the need for detailed information on external disturbances 
and uncertainties. 

However, offline simulation often showed extremely large control signals maybe 
appear for the memory-based control at very beginning of control if the initial control 
error is large, which limits this control algorithm to be applied to real-time control 
cases. To eliminate such limitation, an error shaping method is developed, which can 
be expressed as: design memory-based control algorithm based on the dynamic 
equation of the shaping error, which is defined as 

)exp()]()([)()( thEhEEEtS jjjjj αββ −+−+= &&  (20) 

where α and β are any positive numbers, h denotes the sampling period, )(hE& and 

E(h) are the first sampling values of E& and E, respectively. Note that, the shaping 
error has three properties: 
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which implies the formation error E and error rate E&  will approach ideal error 
response )exp()( thE j α− and )exp()( thE j α−& , that is the source of the name- 

“Error shaping” method; 
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formation error and error rate approach to zero as time goes to infinity. 

That is to say, if the memory-based controller is designed based on the shaping error 
(20) to achieve ||S j(t)|| goes to zero, then the objective of formation control can be 
ensured without effect of large initial error. Therefore, the control objective can be 
converted to design the controller based on (20). 
From (17) and (20), we have 

(.)(.) jjjjj HGICS ζ++=&  (21) 

with 
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According to the control algorithm in [15], the first order memory-based controller 
can be determined as 
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and the error performances of such controller are 
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Note that, the boundaries of (24) and (25), generally, are very small. For example, if 
the sampling period h=0.001sec, then 100m/sec speed of H(.) only involves 0.1mm/β 
formation error and 0.2mm/sec error rate. That means high precise control can be 
achieved by the first order memory-based controller (23). Meanwhile, extremely large 
signals are eliminated according to the property 1) of the shaping error. 

5   Simulation and Real-Time Experiment 

To verify the effectiveness of the proposed virtual leader based coordination strategy 
and the error shaping memory-based control method, three sets of experiments are 
developed on formation control of three agents (one virtual leader, two mobile 
robots). Some parameters of the P3-DX robot and simulation parameters are listed in 
Table 1. experiment 1 presents two robots driven by a virtual leader to follow a 
circular path, experiment 2 proposes two robots go out to Lab and return again, and 
experiment 3 tests formation change from parallel formation to leading-following 
formation and back to parallel formation. All results of experiment 1, including error 
performance and control signals of offline simulation, error performance and control 
signals of real-time experiment, and real-time control performance, are shown as 
Figure 3-Figure 5. For experiment 2 and 3, only real-time control performances are 
posted in this work because all three experiments have similar error performance and 
control signals. 

The figure 3 and figure 4 show that the error shaping memory-based control works 
well. Both formation errors of two robots in offline simulation and real-time 
experiments converge to zero smoothly and quickly, and no extremely large signal 
appears in offline simulation, with control signals of both robots bounded and smooth. 
The figures 5-7 are real-time control performances of formation motion, including 
fixed formation and dynamic formation (formation change). These three experiments 
show that the virtual leader based formation control is successfully applied to real-
time formation control cases. 

Table 1. Physical parameters of the P3-DX robot and simulation parameters 

Robot Parameters Value Simulation Parameters Value 

d 32 [cm] α 0.8 
r 9.5 [cm] β 1.5 
b 30 [cm] h 0.001[sec] 
m 10 [kg]   
Jo 0.520 [kg. m2 ]   
Jw 0.013 [kg. m2 ]   
Kt 10 [N/A]   

Kam 20   
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Fig. 3. Control signals and formation performance for offline simulation of experiment 1 

-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
-1.5

-1

-0.5

0

0.5

1

1.5

0 10 20 30 40 50 60 70 80
-0.2

0

0.2

0.4

0.6
Control signals of Robot1

0 10 20 30 40 50 60 70 80
-0.4

-0.2

0

0.2

0.4

0.6

time (sec)

Control signals of Robot2

right

left

 

Fig. 4. Formation performance and control signals for real-time control case of experiment 1 

 

Fig. 5. Experiment 1: real-time control performance of two UGVs following circular path 



 Virtual Leader Based Formation Control of Multiple UGVs 229 

 

Fig. 6. Real-time control performance of experiment 2: two UGVs going out of door and return  

 

Fig.7. Real-time control performance of experiment 3: formation change (parallel, leading-
following, position switching) 

6   Conclusions 

This work addressed the implementation of virtual leader based formation control of 
multi-UGVs in real-time control cases.  A virtual leader was applied to coordinate a 
group of mobile vehicles so that all vehicles can group into any desired formation 
shape. Error shaping memory-based control was developed to deal with the problem 
of virtual leader based formation control. More importantly, both virtual leader based 
coordination strategy and error shaping memory-based control were successfully 
implemented in real-time experiments in this work, and the experiment results have 
shown virtual leader coordination strategy is more flexible to manage a formation 
group and error shaping method is an effective approach to convert the theoretical 
memory-based control algorithm to real-time control field. 



230 W. Cai et al. 

References 

1. H. Tanner, A. Jadbabaie and G. J. Pappas, “Stable Flocking of Mobile Agentsrt I: Fixed 
Topology,” in Proc. Conf. Decision and Control, Maui, HI, Dec. 2003, pp. 2010-2015. 

2. Song, Y.D.; Yao Li; Liao, X.H.; “Orthogonal transformation based robust adaptive close 
formation control of multi-UAVs”, American Control Conference, 2005. Proceedings of 
the 2005 8-10 June 2005 Page(s):2983 - 2988 vol. 5. 

3. Galzi, D.; Shtessel, Y.; “UAV formations control using high order sliding modes”, 
American Control Conference, 2006 14-16 June 2006. 

4. Gu, Y.; Seanor, B.; Campa, G.; Napolitano, M.R.; Rowe, L.; Gururajan, S.; Wan, S.; 
“Design and Flight Testing Evaluation of Formation Control Laws”, Control Systems 
Technology, IEEE Transactions on Volume 14,  Issue 6,  Nov. 2006 Page(s):1105–1112. 

5. Regmi, A.; Sandoval, R.; Byrne, R.; Tanner, H.; Abdallah, C.T.; “Experimental 
implementation of flocking algorithms in wheeled mobile robots” American Control 
Conference, 2005. Proceedings of the 2005 8-10 June 2005 Page(s):4917-4922 vol. 7 

6. Takahashi, H.; Ohnishi, K.; “Autonomous decentralized control for formation of multiple 
mobile-robots considering ability of robot”, Industrial Electronics Society, 2003. IECON 
'03. The 29th Annual Conference of the IEEE Volume 3, 2-6 Nov. 2003. 

7.  Zhi-Dong Wang; Takano, Y.; Hirata, Y.; Kosuge, K.; “A pushing leader based 
decentralized control method for cooperative object transportation”, Intelligent Robots and 
Systems, 2004. (IROS 2004). Proceedings. 2004 IEEE/RSJ International Conference on 
Volume 1, 28 Sept.-2 Oct. 2004 Page(s):1035 - 1040 vol.1. 

8. Regmi, A.; Sandoval, R.; Byrne, R.; Tanner, H.; Abdallah, C.T.; “Experimental 
implementation of flocking algorithms in wheeled mobile robots”, American Control 
Conference, 2005. Proceedings of the 2005 8-10 June 2005 Page(s):4917-4922 vol. 

9. Zhao Sun, Bin Li, XH Liao, Wenchuan Cai, Liguo Weng, Long Ni, and Y.D. Song. 
“Robust Adaptive Cooperative Control of Multiple UGVs”. 6th International Conference 
on Cooperative Control and Optimization, 1630–1700, 2006. 

10. Liguo Weng; Wenchan Cai; Ran Zhang; Song, Y.D.; “Bio-Inspired Control Approach to 
Multiple Spacecraft Formation Flying”, e-Science and Grid Computing, 2006. e-Science 
'06. Second IEEE International Conference on Dec. 2006 Page(s):120-120. 

11. Leonard, N.E.; Fiorelli, E.; Virtual leaders, artificial potentials and coordinated control of 
groups, Decision and Control, 2001. Proceedings of the 40th IEEE Conference, Dec. 2001 

12. Hong Shi; Long Wang; Tianguang Chu; “Virtual Leader Approach to Coordinated Control 
of Multiple Mobile Agents with Asymmetric Interactions”, Decision and Control, 2005 
and 2005 European Control Conference. CDC-ECC '05. 44th IEEE Conference Dec. 2005. 

13. Y. D. Song, “Memory-Based Control Methodology for Nonlinear Systems”, Technical 
Report EE-9, North Carolina A&T State University, 1995. 

14. Deng, X.Y.; Song, Y.D.; Anderson, J.N.; “Performance of a Memory-Based Approach to 
the Control of Robotic Manipulators”, System Theory, 1997 Proceedings of the Twenty-
Ninth Southeastern Symposium on 9-11 March 1997. 

15. Song, Y.D.; “Memory-based Control of Nonlinear Dynamic Systems Part I - Design and 
Analysis”; Industrial Electronics and Applications, 2006 1ST IEEE Conference,May 2006. 

16. W.C. Cai, L.G. Weng, R. Zhang, B. Li , F. Stewart, A. Dhaliwal and Y. D. Song, 
“Development of Real-time Control Test-bed for Unmanned Mobile Vehicles,”  in Proc. 
32 Annu. Conf. IEEE Industrial Electronics Paris, FRANCE, November 7 - 10, 2006. 

17. Yulin Zhang, Daehie Hong, Jae H. Chung, and Steven A. Velinsky, “Dynamic Model 
Based Robust Tracking Control of a Differentially Steered Wheeled Mobile Robot”, in 
Proceedings of the American Control Conference in Philadephia, Pennsylvania, June 1998. 

18. Z. Sun, W. C. Cai, X. H. Liao, T. Dong and Y. D. Song, “ Adaptive Path Control of 
Unmanned Ground Vehicle,” System Theory, 2006 Proceeding of the Thrity-Eighth 
Southeastern Symposium on March 5, 2006 Page(s):335-339. 



Cooperative Control of Multiple Agents and

Search Strategy

Vitaliy A. Yatsenko1,�, Michael J. Hirsch2, and Panos M. Pardalos3

1 Space Research Institute of NASU and NSAU, Kiev, 03022, Ukraine
yatsenko@ufl.edu

2 Raytheon, Inc., Net-Centric Systems, P.O. Box 12248, St. Petersburg, FL, 33733
U.S.A.

michael j hirsch@raytheon.com
3 Center for Applied Optimization, Department of Industrial and Systems

Engineering, University of Florida, Gainesville, FL 32611 U.S.A.
pardalos@ufl.edu

Abstract. This chapter discusses problems dealing with cooperative
control of multiple agents moving in a region. An appropriate search
strategy for the whole system can be embodied: hierarchical, coordi-
nated, or cooperative. Geometrical and computational aspects of many-
target search problems are considered. Nonlinear and bilinear processes
of search for moving objects are proposed. Search problems of ecologi-
cal danger objects and detection of biological and chemical agents using
multi-spectral information are also considered.

Multiagent coordination problems are studied in detail. This problem
is addressed for a class of targets for which control Lyapunov functions
can be derived. We describe such a multiagent system by a hierarchi-
cal structure, which can be simplified using a fiber bundle. Then, using
geometrical techniques, we study controllability, observability, and op-
timality problems. In addition, we also consider a cooperative problem
when the agents motions must satisfy a separation constraint through-
out the encounter to be conflict-free. A classification of maneuvers based
on different commutative diagrams is introduced using their fiber bun-
dle representation. In the case of two agents, these optimality conditions
allow us to construct optimal maneuvers geometrically.

1 Introduction

Modern game theory basically deals with dynamical systems on smooth man-
ifolds. However, many practical systems like multiple agents do not have such
structures. Axiomatic control theories should adequately be reflected, in terms of
their internal language of notions and control problems [1]. In terms of these the-
ories, the control structures can make up various hierarchies. According to [2], the
most general structure is represented by a controllability-reachability structure
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over which the optimal control structure is built. This approach regarding the
structure of optimal control and Yang–Mills Fields was discussed in [3] and [4].

In this chapter, the multiagent coordination problem is studied. This problem
is addressed for a class of targets in which control Lyapunov functions can be
found. The main result is a suite of prepositions about formation maintenance,
task completion time, and formation velocity. It is also shown how to moderate
the requirement that, for each individual target, there exists a control Lyapunov
function.

We discuss mathematical aspects of Unified Game Theory (UGT) and the
Theory of Control Structures (TCS). We consider a game as a hierarchical struc-
ture. It is assumed that each agent can be described by a fiber bundle. A joint
maneuver has to be chosen to guide each agent from its starting position to
its target position while avoiding conflicts. Among all the conflict-free joint ma-
neuvers, we aim to determine the one with the least overall cost. The cost of
an agents maneuver is its energy, and the overall cost is a weighted sum of the
maneuver energies of all individual agents, where the weights represent priorities
of the agents.

As an example, we consider the hierarchical structure of such multi-agent
system on Figure 1. Each agent of the system can be described by a stochastic
or deterministic differential equation with a control. In this chapter, we first
reduce the model to a hierarchical geometric representation using fiber bundles.
Then we consider an integrated geometrical model where the separated model of
agents are integrated into a single model. For example, the interaction between
six robots, as seen in Figure 2, can be described by a hierarchical structure.
This integrated model allows for solving of controllability, observability, and
cooperative control problems.

In Section 2, we demonstrate the power of the satisficing solution method-
ology for cooperative control problems regarding many-target search. An ap-
propriate search strategy for the whole system can be embodied: hierarchical,
coordinated, or cooperative. Geometrical and computational aspects of many-
target search problems are considered. In Section 3, we analyze in detail the
relationship between gauge fields, identification problems, and control systems.
We consider a Lie group related to Yang–Mills gauge groups. We show that the
estimation algebra of the identification problem is a subalgebra of the current
algebra. Section 4 focuses on nonlinear control systems and Yang–Mills fields.
This section is devoted to geometric models of multiagent systems as controlled
dynamical-information objects. It is shown that these systems can be described
by commutative diagrams which allow analysis of symmetries. Conclusions are
drawn in Section 5.

2 Coordination for Different-Type Objects and Search
Strategies

This section is dedicated to the development of methods for solving the problems
of interception of multiple mobile targets by a group of unmanned vehicles.
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Fig. 2. Hierarchical structure of multiple robot

Emphasis will be paid on the following aspects: Interaction of controlled object
groups; Active coordination for different-type objects; Implementation of new
pursuit strategies; Investigation of group pursuit problems; and Search strategies.

2.1 Interaction of Controlled Object Groups

Methods and strategies will be devised for interception of multiple mobile targets
(evaders), on the basis of the by-interval decomposition principle. This princi-
ple assumes that at the initial instant of time the interceptors (pursuers) and
the targets are divided into subgroups, each consisting of either multiple pur-
suers and single target or single pursuer and multiple targets. Such targets’
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distribution can be performed either on the basis of certain experience or by
using discrete optimization methods. As a result, the complicated process of a
groups interaction is decomposed into a number of independent subproblems of
group or successive pursuit, whereby the term ‘group pursuit’ is meant the pur-
suit of a single evader by multiple pursuers, and by the term ‘successive pursuit’
we mean the pursuit of multiple evaders by a single pursuer.

Fig. 3. Pursuit along the ‘pursuit curve’

Let us fix the first instant of time when one of the mobile targets is intercepted
and therefore can be excluded from further analysis. As a result, the newly
freed pursuers can be included into other subgroups. At the instant tk, let us
perform a new decomposition of the pursuers and the remaining targets into
subgroups, analogous to the first step. Analyzing the obtained problems of group
and successive pursuit, we find the next instant tk+1 of interception of next
target(s). At the instant tk+1, a new target distribution is performed, and the
process repeats.

It this manner, the process of optimization of controlled object interaction is
reduced to the iterative procedure, which assumes solving the following typical
problems:

1. Target distribution problem.
2. Group pursuit problem.
3. Successive pursuit problem.

The suggested procedure is particularly advantageous for sufficiently large
numbers of mobile targets and pursuers, because in this case it reduces a com-
plex original problem into a number of considerably less complicated processes,
evolving in parallel, and makes it feasible for computer simulation on parallel
computers. The problems of group and successive pursuit can be solved by using
the Method of Resolving Functions (MRF) [5,6].

This method proved to be efficient in solving the group pursuit problem. It
makes it feasible to study all known (classical) methods of pursuit from the
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unified standpoint. In particular, the MRF fully substantiates Parallel Pursuit
Guidance Law, well known to designers of rocket and aerospace techniques [6].

Fig. 4. Proportional navigation guidance law

Line of Sight (LOS) Guidance Law. This strategy has been long known
from Euler’s time [7]. It implies that at each instant of time the pursuer’s velocity
is directed along the Line of Sight (LOS) (Figure 3). The problem of finding
the form of a trajectory of the pursuer, moving in the plane under the LOS
Guidance Law was first formulated by Leonardo da Vinci [7]. It was solved by
Pierre Bouguer in 1732 [8]. Despite simplicity in realization, this strategy fails to
account for possible mistakes of the evader and frequently yields capture times
significantly longer then optimal. The LOS strategy appears as a specific case of
the Extremal Targeting Rule (ETR) in [9].

It is possible to formulate ETR in terms of support functions that essentially
facilitate constructing the pursuer control and make it feasible to present the
latter in explicit form. A modified ETR version for solving the problems of
group and successive pursuit is discussed in [5].

Proportional Navigation (PN) Guidance Law. This method is well known
to engineers involved in design of aerospace techniques [6]. The basic idea is that
the angular velocity of the bearing, ϕ

′
, varies proportionally with the angular

velocity of the LOS, θ
′
, ϕ

′
= kθ

′
, where k is a navigation constant. The geometry

behind this method is shown on Figure 4.
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Fig. 5. Parallel pursuit

Note that when k = 1, the PN and LOS guidance laws coincide. Furthermore,
as k approaches infinity the PN guidance law turns into the strategy of Parallel
Pursuit (PP) [10]. The PP strategy implies that the lines of sight are parallel in
the course of pursuit.

It is known that, in the case of simple motions, the strategy of parallel pursuit
yields the optimal capture time (Figure 5) [5,6]. The MRF approach allows one
to extend the ideology of parallel pursuit to wide classes of pursuit problems,
where parallel pursuit is meant in a generalized sense. On the MRF basis, the
authors have obtained important results concerning both the group and the suc-
cessive pursuit [6]. In addition, necessary and sufficient conditions for solvability
of the group pursuit problem were derived, together with explicit formulas for
controlling functions [6].

2.2 Actions Coordination for Different-Type Objects

In the case of unmanned aerial vehicles (UAV) and unmanned ground vehicles
(UGV), this problem becomes more complicated in view of state constraints,
as one group of objects is moving in the air, while the other in the plane. This
difficulty was successfully overcome in solving the problem of soft landing (e.g.,
airplanes landing on an aircraft carrier) [11].

2.3 Implementation of New Pursuit Strategies

In practice, when pursuing a moving target it is sometimes important for the
pursuer not only to rapidly intercept the target, but also to conceal its approach.
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This requirement is ensured by the pursuit strategy called Motion Camouflage
(Figure 6). Motion camouflage is observed in insects, especially dragonflies [12].

In this strategy the pursuer camouflages itself against a fixed background
object (reference point) so that the evader observes no relative motion between
the pursuer and the fixed object (e.g., the sun). The pursuer simply remains on
the line between the evader and the reference point, so it seems to be stationary
from the evaders perspective [13,14]. If the reference point is at infinity, we obtain
the parallel pursuit strategy described above. The motion camouflage strategy
can be immediately applied to autonomous system control. For example, low
observability behaviors have obvious applications in UAVs and guided missiles.

Fig. 6. Motion camouflage

2.4 Investigation of Group Pursuit Problems

The problems of search and observation for mobile targets constitute an impor-
tant branch of the theory of conflict-controlled processes. Fundamental studies
are provided in and [15,16,17,18]. The main feature of such problems is that
only information on probability density of the current target state is available
to the pursuing object(s), rather than the exact position. Using the probability
density evolving according to the Fokker-Planck-Kolmogorov equation [17,18],
we developed an approach (cell model of search), which is based on discretiza-
tion of the search process both temporally and spatially. This process is bilinear
and may appear as a Markovian or semi-Markovian chain. The detection prob-
ability or the average detection time are utilized as the performance criteria.
The Pontryagin’s discrete maximum principle and the Bellman dynamic pro-
gramming method, respectively, were used to optimize the performance criteria.
Game problems for the processes, described by the Ito equation, are studied
in [18].

The problem of determining sea clutter dynamics and the application of recon-
struction methodology in detection and classification of small targets has been
considered in [19]. We explore the use of dynamical system techniques, optimiza-
tion methods and statistical methods to estimate the dynamical characteristics
of sea clutters. We assume that radar information is in a form of nonlinear time
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series. Hence we employ a dynamical approach for characterizing a radar signal,
based on nonlinear estimation of dynamical characteristics, by forming a vector
of these characteristics, and modeling the evolution of dynamical processes over
time.

For the Navy domain, [6] created a decision support system tailored for the
search for submarines in various tactical episodes. It is based on the above men-
tioned scheme of searching for mobile targets. Cases of discrete, continuous, and
cyclic search, in their number conducted by a tactical group, were treated, as well
as search performed in a hidden way, with the use of contemporary tools (e.g.,
UAV, UGV). For searches, performed by a tactical group, cases of information
exchange within a group and individual search were analyzed. The problem of
search for multiple targets was also studied. In this framework, we are planning
to apply the achieved theoretical results and gained experience for the creation of
methods and algorithms of search for multiple mobile targets by multiple-agent
unmanned vehicles (both aerial and ground).

2.5 Cellular Search Model

Let us consider a search region which can be divided into a finite number of
cells (states) i = 1, . . . , n. A pursuer in state i at time t is able to move with
probability pi(t), thus

pi(t) ≥ 0 ∀ i = 1, . . . , n (1)
n∑

i=1

pi(t) = 1, t = 0, 1, . . . . (2)

Denote p(t) =
(

p1(t), . . . , pn(t)
)

. The dynamics of the pursuer can be described

by the discrete differential equation

p(t + 1) = U∗(t)p(t), t = 0, 1, . . . , (3)

where U(t) is a stochastic square matrix of order n, and U∗(t) is the conjugate
matrix, which play the role of control parameters and satisfy the constraints

ui,i1(t) ≥ 0 ∀ i, i1 = 1, . . . , n (4)
n∑

i1=1

ui,i1(t) = 1 ∀ i = 1, . . . , n. (5)

Suppose that an evasion object can be found in any state j = 1, ... , m at time t
with probability qj(t), i.e.,

qj(t) ≥ 0 ∀ j = 1, . . . , m (6)
m∑

j=1

qj(t) = 1, t = 0, 1, . . . . (7)
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Denote q(t) =
(

q1(t), ... , qm(t)
)

. The dynamics of the evasion object can be

described by the discrete differential equation

q(t + 1) = V ∗(t)q(t), t = 0, 1, . . . , (8)

where V (t) is a stochastic square matrix of order m, and V ∗(t) is the conju-
gate matrix elements, which play the role of control parameters and satisfy the
constraints

vjj1 (t) ≥ 0, ∀ j, j1 = 1, . . . , m (9)
m∑

j1=1

vj,j1(t) = 1, j = 1, . . . , m. (10)

The problem of optimal probability detection can be reduced to a conflict
control problem of finite state

W0(T ) = (c, x(T )), c = (0, . . . , 0, 1) (11)

of the bilinear discrete process

x(t + 1) = A(U(t), V (t))x(t), t = 0, 1, . . . , (12)

where W0(T ) is the probability of detection for time T .
Let rij be the probability of detection of the evasion object for the ith pursuer

state and jth evasion state. Then the joint probability of evasion transition from
j to j1 at the moment t under undetected condition of the evasion object until
time t is determined by the equation

f(i, i1, j, j1) = uii1(t)vjj1 (t)(1 − rij). (13)

Denote by F (u(t), v(t)) the matrix function of dimension m · n with elements
f(i, i1, j, j1, t), where u(t) is vector function with n2 components {uii1(t)}, v(t)
is vector function with m2 components {vjj1(t)}.

This problem can be described by the optimization model

ω+ = min
V

max
U

W0(T )

= min
V (0)

max
U(0)

. . . min
V (T−1)

max
U(T−1)

W0(T ) (14)

ω− = max
U

min
V

W0(T )

= max
U(0)

min
V (0)

. . . max
U(T−1)

min
V (T−1)

W0(T ) (15)

where U = U(0), . . . , U(T − 1), V = V (0), . . . , V (T − 1), and W0(T ) is the de-
tection probability in time T .

The mean value of the target detection time is determined by the equation

τ(u, v) = (W (0), Nξ), (16)
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where N =
∑∞

t=0 F t(u, v), and ξ is the column vector with all components equal
to one. It is evident that matrix N = (1−F (u, v))−1 exists and can be considered
the problem of optimization of the mean target detection time.

The deviation of target detection for fixed control is given by the equation

D(u, v) = (W (0), (2N − E)Nξ − (Nξ)sq), (17)

where E is the single matrix and (Nξ)sq is the vector with components which
equal the square of components of vector Nξ.

3 Geometrical Aspects of Multiagent Coordination

Investigations of controlled multiagent objects have been under active develop-
ment for last few years. Despite the achievements that have been made in this
area, effective mathematical methods for investigating such systems have not
yet been developed. One possible approach is the differential geometry methods
of system theory [20,21]. This section is devoted to one of the problems of this
area of research, that of developing a method for analyzing a class of mathe-
matical models of symmetric controlled processes. Assuming that the process is
described by a commutative diagram [20,21] which is based on the lamination
concept, we propose a geometric method for ‘‘identifying’’ its hidden structure.

Investigation of geometrical aspects of multiagent coordination is one of the
most essential stages in the creation of new strategies. The goal of the experimen-
tal and theoretical research is the implementation of optimal strategy using com-
plex structure non-equilibrium processes in such systems. To investigate these
processes it is required to develop the corresponding mathematical methods. In
this context we propose an approach, which is based on the assumption that
one can use models from mathematical system theory to adequately describe
informational processes. The essence of this approach is in the following.

Some dynamic system, S, which implements a transformation, F , or an input
informational action, U , into an output one, X , is considered. It is assumed that
one can affect the information-transforming process by a reconfiguring action
that changes the dynamic behavior, structure, symmetry, etc. of the process.
We refer to the objects described in the preceding S as dynamic information-
transforming agents (DITA).

The connection between the input and output actions is necessary for obtain-
ing answers to questions about the method of programming the entire system,
optimizing the flow of informational signals, and the interconnections among the
global system properties (stability, controllability, etc.) and the corresponding lo-
cal properties of the various subsystems. One has to answer those questions also
when solving pattern–recognition problems, constructing an associative memory.
A generalized description of an DITA that contains a large number of subsys-
tems (e.g., a neural network) is postulated in this section: the controlled process
in the DITA is described adequately by a commutative diagram which general-
izes the concept of a nonlinear controlled dynamic system on a manifold. Taking
into account the symmetry concept which is characteristic of classical mechanics
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[22], one has to transfer it to the DITA, ‘‘identify’’ the hidden structure of the
informational process, and demonstrate that the proposed model admits local
and/or global decompositions into smaller dimensionality feedback subsystems.

We note that the decomposition idea was first applied to discretely symmetric
automatic control systems [23]. Continuous symmetry group dynamic systems
were considered by [20]. While substantive results on the decomposability of
systems with symmetries have been obtained [24], this question remains open
for DITAs.

In this section, we investigate the problem of how to coordinate a collection
of targets in such a way that they maintain a given formation relative to each
other. The main assumption about the dynamics of the individual robots that
we initially make in this paper is that they have control Lyapunov functions
(CLFs). Based on this assumption, an abstract and theoretically sound coordi-
nation strategy can be developed.

3.1 Necessary Concepts and Definitions

Some definitions and concepts that are necessary for describing the DITA struc-
ture and the conditions for its decomposability are presented in this section. The
necessary notions about manifolds, connectedness, and distributions are given
in [25]. We introduce the definition of a nonlinear DITA.

Definition 1. We refer a triple, F (B, M, ψ), where B is a smooth fiber over
M with the projection π : B → M ; πM is the natural projection of TM on
M ; and ψ is a smooth mapping such that the diagram presented in Figure 7 is
commutative, by a ‘‘geometrical model of the agent’’.

We interpret the M manifold as the state space and the π−1(x) ∈ B layer as the
space of input action values which depends in the general case on the current
system state. If one chooses the coordinates (x, u), which correspond to the Bx

layer, then this definition of the agent, F , corresponds locally to the nonlinear
transformation ψ : (x, u) → (x, ψ(x, u)) and the dynamic system

ẋ(t) = ψ(x(t), u(t)), u(t) ∈ U, (18)

where x is the state vector, u = (u1, u2) are the control actions, u1(·, ·) is the
vector of the coded input informational action which depends in general on time
and on the current state, and u2(·, ·) is the action used to reconfigure the dynamic
properties of the agents and to train it.

The control algorithm, u2, inputs to the system the capability of transforming
the set of input actions into a set of output signals that allows one to identify
the input images uniquely. In essence, it realizes the decoding process, which
identifies the input images. In the simplest case, it can be realized on the basis
of the successive input action segmentation method. Such a method facilitates a
unique separation of the input images by the use of the simplest binary decoding
rule.
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B
�Ψ

TM
�

�
�

���

π πM

�
�

�
���

M

Fig. 7. Diagram of a nonlinear controlled DITA

Our primary object of study is a collection of targets, whose dynamics can be
described by the following set of controlled differential equations:

ẋi(t) = ψ(x(t), u(t)) = fi(xi) + gi(xi)ui, i = 1, . . . , n, (19)

where fi, gi ∈ C∞, xi ∈ R
n, and ui = R

pi . Now, a desired formation in R
nm is

simply a set (x10, . . . , xm0) ∈ R
nm, and we define this set implicitly through the

null set of a so-called formation function.

3.2 Coordinated Control

By using the Lyapunov formation functions derived from the individual target,
we can now shift our attention to actually controlling the evolution of the forma-
tion. The one parameter that we can control is the time evolution of the desired
positions. We do this by specifying the trajectory that we want the so-called
virtual leader, x0(s(t)), to follow.

This nonphysical leader is a reference point in the state space with respect to
which we can define the rest of the formation. We denote the trajectory executed
by the virtual leader as x0(s(t)) = p(s(t)). Intuitively, one might want to set
s(t) = t. But, due to robustness considerations, we incorporate error feedback
into the time evolution of s and let ṡ be given by

ṡ = min
[ v0

δ + ‖∂p(s)
∂s ‖

,
−(∂F

∂x )T

δ + |∂F
∂s |

[ σ(FU )
σ(F (s, x))

]]
. (20)

Here, δ > 0 is a small positive constant that prevents ṡ from becoming sin-
gular, and FU is the bound or something smaller chosen by the user. It can be
shown to be an upper bound on the Lyapunov formation function F (s, x). The
idea is that the formation is being respected as long as F (s, x) ≤ FU . Further-
more, v0 is the nominal velocity that we want the formation to move with, and
it holds that ‖ẋ0(s(t))‖ ≈ m0 when small.

3.3 Symmetry of Multiagent Coordination

Definition 2. Let M be a smooth manifold. We say that the smooth mapping
Q : G×M → M such that: i) Q(e, x) = x for all x ∈ M , and ii) Q(g, Q(h, x)) =
Q(gh, x) for any g, h ∈ G, and all x ∈ M , is the left action (or G-action) of the
G Lie group on M .
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We fix one of the variables for various time instants and examine the Q action
as a function of the remaining variables. Let Qg : M → M denote the function
x 	→ Q(g, x) and Qx : G → M denote the function g 	→ Q(g, x). We note that
since (Qg)−1 = Q−1

g , Qg is a diffeomorphism. We introduce the definition of
group action on a manifold.

Definition 3. Let Q be the action of G on M . We say that the set G · x =
{Qg(x)|g ∈ G} is the orbit (Q-orbit) of the point x ∈ M . The action is free at x
if g 	→ Qg(x) is one-to-one. It is free on M if and only if it is free at all x ∈ M .

We now introduce the concept of global symmetry of a controlled DITA.

Definition 4. Let F̂ (B, M, ψ) be a nonlinear controlled DITA, and θ and Q be
actions of G on B and M , respectively. Then, F has symmetry (G, θ, Q) if the
diagram presented in Figure 8 is commutative for all g ∈ G.

B
�Bg

B

�

π

M
�

�
����	





�





�

����	
TM TM

ψ

πM

ψ

πM

TQg

Qg

M
�

π

Fig. 8. A commutative diagram of an DITA with symmetries

We consider, within the framework of the presented definition, the special case
in which the symmetry lies ‘‘entirely within the state space’’.

Definition 5. Let B = M × U , where U is some manifold. Then, (G, Q) is a
symmetry of the state space of system F̂ (B, M, ψ) if (G, θ, Q) is a symmetry of
F̂ for θg = (Qg, IdU ) : (x, u) → (Qg(x), u).

Global state space symmetry can be defined only for a DITA Bx, which is a trivial
lamination, since otherwise the input spaces would depend on the state and the
problem is made substantially more complicated. We introduce the definition of
local symmetry.

Definition 6. We assume that Q : G×M → M is an action and that ε ∈ TeG.
Then, Qξ(R × M → M) : (t, x) 	→ Q(exp tξ, x), where exp : TeG → G is the
usual exponential mapping, is the R-action on M , and Qξ is the complete flow
on M . We say that the corresponding vector field on M , which is defined by the
expression

ξm(x) =
d

dt
Q(exp tξ, x)

∣∣∣
t=0

, (21)

is the infinitesimal action generator, which corresponds to ξ.
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Let Xt denote the flow of the vector field X , i.e., Xt = Ft(X0). It is obvious from
the definition of the infinitesimal generator that if (G, θ, Q) is a symmetry of the
F̂ (B, M, ψ) system, then the diagram presented in Figure 9 is commutative for
all t ∈ R and ξ ∈ TeG.

B
�ξBt

B

�

π

M
�

�
����	





�





�

����	
TM TM

ψ

πM

ψ

πM

T (ξM)t

(ξM )t
M
�

π

Fig. 9. Diagram of a symmetric DITA

On the basis of the local commutativity property we present the following
definition of infinitesimal DITA symmetry.

Definition 7. Let F̂ (B, M, ψ) be a nonlinear DITA. Then, (G, θ, Q) is an in-
finitesimal symmetry of F if, for each x0 ∈ M , there exist an open neighborhood
Ô of the point xO and ξ > 0 such that

(ξM )t ∗ ψ(ξ) = ψ((ξb)t(b)), (22)

for all b ∈ π−1(Ô), |t| < ξ, and ‖ ξ ‖< 1, ξ ∈ TeG, where ‖ · ‖ is an arbitrary
fixed norm on TeG.

One can define an infinitely small state space symmetry for nontrivial lamina-
tions of the input actions manifold when one can introduce integrable connec-
tivity. For this we introduce Definition 8.

Definition 8. Let H(·) be an integrable connectivity on B and (G, θ, Q) be
a symmetry of F . Then, (G, θ, Q) is an infinitesimal state space symmetry
if ξB(b) ∈ H(b) for all ξ ∈ TeG, that is, the infinitesimal generators θ are
horizontal.

We introduce a definition of feedback equivalence of two DITAs in analogy with
[20].

Definition 9. A system, F (B, M, ψ), is feedback equivalent to a system,
F ′(B, M, ψ̃), if there exists an isomorphism, γ : B → B, such that the diagram
presented in Figure 10 is commutative.

Isomorphism means that, for x ∈ M , γx is a mapping from the layer over x′ into
the layer over x′, and it is a diffeomorphism. Consequently, this corresponds to
a ‘‘control feedback’’.
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Fig. 10. Diagram of feedback-equivalent DITAs

3.4 The Local Structure of DITAs with Symmetries

Since we are interested in the local structure of an DITA, we have to assume that
the system has an infinitesimal symmetry, which satisfies some nonsingularity
condition. For this, we set the dimensionality of M to n and that of G to k,
where k < n. We note that the action Q : G × M → M is free at the point
m ∈ M if Qm : G → M is one-to-one. This is equivalent to saying that the
tangent mapping Q is of full rank, that is, rank Q = dimG. Hence, Q is free on
M if and only if it is free in some neighborhood of m. We say that an action
which satisfies this condition is nonsingular at the point m.

The basic result of this section is that the existence of an infinitesimal sym-
metry in a neighborhood of a singular point in an DITA makes it possible to
decompose the system into a cascade union of simpler subsystems. The structure
of these subsystems depends, in general, on the symmetry group G. If, for exam-
ple, G has a nontrivial center, then one of the subsystems is in fact a quadrature
subsystem.

In addition, let C = {h ∈ G | hg = gh ∀ g ∈ G} be the center of the G
group to which the kernel, C+, of the Lie semialgebra TeG, which has the same
dimensionality as C, corresponds. Hence, if G has an l-dimensional center, there
exist linearly independent vectors ξ1, . . . , ξk ∈ TeG such that [ξi, ξj ] = 0 for all
1 ≤ i ≤ l and 1 ≤ j ≤ k.

Using the results in [20,26] that deal with the properties of systems with
symmetries as applied to DITAs, one can formulate the following theorems.

Theorem 1. Let us assume that F̂ (B, M, ξ) is a controlled DITA with an in-
finitesimal state space symmetry, (G, θ, Q), that G has an l-dimensional cen-
ter, and that Q is nonsingular at the point m ∈ M . Then, the B coordinates
(x1, . . . , xn, u) in a neighborhood of m exist such that F̂ is given in these coor-
dinates by the expression.

Using the obtained results for systems with infinitesimal state space symme-
tries, one can propose the structure of the decomposed system. It suffices to
demonstrate that the decomposed system with infinitesimal symmetry is lo-
cally feedback-equivalent to the original system with infinitesimal state space
symmetry.



246 V.A. Yatsenko, M.J. Hirsch, and P.M. Pardalos

Fig. 11. Local structure of DITA with infinitesimal symmetries

Definition 10. Let F̂ (B, M, ψ) be a controlled DITA and Ô be an open subset
of M . Then, we say that a system of the form F̂ (π−1(Ô), Ô, ψ)|π−1(O) is F̂ |Ô
(F̂ bounded on Ô).

Theorem 2. Let F̂ (B, M, ψ) have an infinitesimal symmetry (G, θ, Q) and Q
be nonsingular at the point m. There exists a neighborhood of m and a system
F with infinitesimal symmetry (G, θ, Q) such that F̂ |Ô is feedback equivalent to
the system F̂ .

Let F̂ (B, M, ψ) be a controlled DITA with symmetry (G, θ, Q) and Q be nonsin-
gular at the point m. Then, in a neighborhood of m, F̂ is feedback-equivalent to
F̂ with infinitesimal symmetry and has the structure shown in Figure 11, where
γ is the feedback function, the Li are nonlinear subsystems of dimensions n − k
and k − l, respectively, and Q is an l -dimensional ‘‘quadrature’’ system

ẋi = fi(x1, . . . , xn−k, u), i = 1, . . . , n − k (23)
ẋj = fj(x1, . . . , xn−1, u), i = n − k + 1, . . . , k. (24)

3.5 The Global Structure of DITA

The decomposability of a DITA with global symmetries is the result of factoring
the DITA state space, which follows from the properties of a symmetry. We
introduce the definition of proper action.
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Definition 11. Let Q be a G-action on M . We say that Q acts properly if
(g, m) → m is a proper mapping, that is, if the pre-images of compact sets are
compact.

This definition is equivalent to the following assertion: whenever xn converges on
M and Qgn(xn) converges on M , gn includes a subsequence, which converges in
G. Hence, if G is compact, this condition is satisfied automatically. Membership
in the same Q-orbit is an equivalence relation on M . Let M/G be the set of
equivalence classes and p : M → M/G be specified by the relation p(m) = Gm.
We introduce on M/G a relations topology, that is, V ⊂ M/G is open if and
only if p−1(V ) is open on M . In general, M/G can be a rather poor space.

If G acts freely and properly on M , then M/G is a smooth manifold and
p : M → M/G is the principal lamination with Lie group G. We introduce the
following constraints on the principal lamination:

1. p is a smooth full-rank function;
2. p : M → M/G has a cross section (that is, a smooth mapping σ : M/G → M

such that p ·σ is the identity mapping on M/G if and only if M is equivalent
to M/G × G;

3. the topological conditions which guarantee the existence of a section, that
is, if M/G or G is a contraction mapping, a cross section must exist, are
specified.

We formulate a theorem, which is necessary for obtaining a global factorization
of the DITA state space. Let Qm : G → G ·m be specified by g → Q(G, m). The
following result about the global structure of a DITA with symmetries holds.

Theorem 3. We assume that F̂ (M ×U, M, ψ) is a controlled DITA with a state
space symmetry (C, Q). Then, if Q is free and proper, and p : M → M/G has a
cross section σ, then F̂ is isomorphic to the system

ẏ = Ψ(y, u) (25)

ġ = (TeLg)(TeQσ(y))−1 [Ψ(σ(y), u) − (Tyσ)Ψ(y, u)] , (26)

defined on M/G × G.

Assertion 1. Let the DITA F (M × U, M, ψ) have a symmetry (G, θ, Q) such
that Q is free and proper. Then, there exists a system F with symmetry (G, Q)
to which F is feedback equivalent under the condition that p : M → M/G has a
cross section σ.

Combining Theorem 3 and Assertion 1, we obtain the following corollary:

Corollary 1. Let DITA F̂ (M × U, M, ψ) have a symmetry (G, θ, Q), Q be free
and proper, and p : M → M/G have a cross section. Then, there exists a model
of DITA F with state space symmetry (G, Q) to which F̂ is feedback-equivalent.
Consequently, F has a global structure.
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3.6 The Feasibility of Applying the Results to the Investigation of
Agents

It is of interest to investigate the decomposability of DITAs composed of neural-
like agents that are described by the system

ẋ(t) = ψ(x(t), u(t)). (27)

One can define for Equation (27) a decomposed system L as a nontrivial cas-
cade of subsystem L1 and L2. If the Lie algebra L̂(L) is the semidirect sum of
finite-dimensional subalgebra L1 and the ideal of L2, it has a nontrivial cas-
cade decomposition into subsystems L1 and L2 such that L̂(L1) = L1, and
L̂(L2) = L2. Using this fact and Levy’s theorem one can demonstrate that if
L̂(L) is finite-dimensional, the DITA admits a nontrivial decomposition into a
parallel cascade of Li systems with simple Lie algebras followed by a cascade
of one-dimensional systems, Lj. As a result, the basic informational transforma-
tion is done in subsystems with simple Lie algebras. The state space, M , of the
original system, L, is adopted here as the state space of these systems. There-
fore, despite the fact that the system has been partitioned into simpler parts,
the overall dimensionality of these parts is, in general, larger than that of the
original system. (One can reduce at the local level this dimensionality by replac-
ing the Li system by matrix equivalents defined on the exponential functions of
the Lie algebras that correspond to them.) These results can be compared with
the conditions for decomposability obtained by analyzing the DITA symmetries
described in this section for which the subsystem dimensionality equals that of
the original system. No assumptions about the finite dimensionality of the Lie
algebra are required here. We consider a class of neural nets described by the
linear-analytic equations

ẋ(t) = f(x) +
k∑

i=1

uigi(x). (28)

One can formulate the necessary and sufficient conditions for parallel-cascade
decomposability by Lie algebras. In doing so, one can pose the condition that
each component of the input action be applied to only one of the subsystems,
that is, the decomposition procedure partition the inputs into disjoint subsets.
However, such an approach cannot be applied to the decomposition of an DITA
with scalar input.

If DITA F̂ (B, M, ψ) has an infinitesimal symmetry (G, θ, Q), local commu-
tativity of the diagram means that ψ ∗ εB = εm and π ∗ εB = εn. Let ΔB =
span{ε | εB ∈ TeG} and the same hold for Δm. Then, ψ∗ΔB ⊂ Δm, π∗ΔB = Δ,
and Δm is a controlled invariant distribution. Models of neural networks, includ-
ing affine ones, have invariant distributions that induce decompositions of the
system into simpler subsystems. However, since the symmetry conditions are
constraints, the decompositions are obtained as more detailed and structured.

A class of dynamic information-transforming systems that are described by a
commutative diagram is examined in this section. Constraints on systems with
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symmetry under which one can expose, explicitly the hidden structure of the
controlled process are formulated. We show that the effect of the DITA on the
information-transforming process depends substantially on the type of system
symmetry. The informational process is subject here to the action of cascade
groups, transformations, or the action of a dynamic-transformation operator
with feedback. The obtained results can be expanded to adaptive learning sys-
tems by introducing the corresponding optimization models. When doing so, one
can expect that a DITA, of which the quality functional is invariant in symmetry-
conserving transformations, will be described adequately by a nonlinear system
with optimal feedback and will have a differential-geometric structure, which is
of interest from the point of view of applications.

4 Fiber Bundles and Observability

In the last decade, important work has been done on a differential geometric
approach to nonlinear input state-output systems, which in local coordinates
have the form

ẋ = g(x, u), y = h(x), (29)

where x is the state of the system, u is the input, and y is the output. Most of
the attention has been directed to the formulation in this context of fundamen-
tal system theoretic concepts like controllability, observability, minimality, and
realization theory.

In spite of some very natural formulations and elegant results that have been
achieved, there are certain disadvantages in the whole approach, from which we
summarize the following points:

1. Normally, the equations
ẋ = g(x, u) (30)

are interpreted as a family of vector fields on a manifold parameterized by
u; i.e., for every fixed u, g(·, u) is a globally defined vector field. We propose
another framework by looking at (30) as a coordinization of the following
diagram.

B
�g

TX
�

�
�

���

�
�

�
���

X
where B is a fiber bundle above the state space manifold X and the fibers
of B are the state dependent input spaces, while TX is as usual the tangent
bundle of X (the possible velocities at every point of X).

2. The ‘‘usual’’ definition of observability has some drawbacks. In fact, observ-
ability is defined as distinguishable; i.e., for every x1, x2 ∈ X , there exists a
certain input function (in principle, dependent on x1 and x2) such that the
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output function of the system starting from x1 under the influence of this
input function is different from the output function of the system starting
from x2 under the influence of the same input function. Of course, from a
practical point of view this notion of observability is not very useful, and also
is not in accord with the usual definition of observability or reconstructibility
for general systems.

3. In the class of nonlinear systems (29), memoryless systems

y = h(u) (31)

are not included. Of course, one could extend the system (29) to the form

ẋ = g(x, u), y = h(x, u), (32)

but this gives, if one wants to regard observability as distinguishability, the
following rather complicated notion of observability. As can be seen, dis-
tinguishability of (32) with y ∈ R

p, u ∈ R
m and x ∈ R

n is equivalent to
distinguishability of

ẋ = g(x, u), y = h(x), (33)

where h : R
n → (Rp)R

m

is defined by h(x)(u) = h(x, u). Also, checking the
Lie algebra conditions for distinguishability for the system (33) is not very
easy.

�

V

↑

I →

Fig. 12. Ideal diode for the I − V characteristic

4. It is often not clear how to distinguish a priori between inputs and outputs.
Especially in the case of a nonlinear system, it could be possible that a
separation of what we call external variables in input variables and output
variables should be interpreted only locally. An example is the (nearly) ideal
diode given by the I − V characteristic in Figure 12. For I < 0 it is natural
to regard I as the input and V as the output, while for V > 0 it is natural to
see V as the input and I as the output. An input-output description should
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be given in the scattering variables (I − V, I + V ). Moreover, in the case
of nonlinear systems it can happen that a global separation of the external
variables in inputs and outputs is simply not possible. This results in a
definition of a system, which is a generalization of the usual input-output
framework. It appears that various notions like the definitions of autonomous
(i.e., without inputs), memoryless, time-reversible, Hamiltonian and gradient
systems are very natural in this framework.

4.1 Nonlinear Model of Agents

The (say C∞) agents can be represented in the commutative diagram

B
�f

TX × W
�

�
�

���

π πx

�
�

�
���

X
(34)

where (all spaces are smooth manifolds) B is a fiber bundle above X with pro-
jection π, TX is the tangent bundle of X , πx the natural projection of TX on
X and f is a smooth map. W is the space of external variables (think of the
inputs and the outputs). X is the state space and the fiber π−1(x) in B above X
represents the space of inputs (to be seen initially as dummy variables), which
is state dependent e.g., forces acting at different points of a curved surface.

This definition formalizes the idea that at every point x ∈ X we have a set of
possible velocities, elements of TX , and possible values of the external variables,
elements of W , namely the space

f(π−1(x)) ⊂ TxX × W. (35)

We denote the system (34) by Σ(X, W, B, f). It is easily seen that in local
coordinates x for X , v for the fibers of B, w for W , and with f factored as
f = (g, h), the system is given by

ẋ = g(x, v), w = h(x, v). (36)

Of course one should ask how this kind of system formulation is connected with
the usual input-output setting. In fact, by adding more and more assumptions
successively to the very general formulation (34) we shall distinguish among three
important situations, of which the last is equivalent to the ‘‘usual’’ interpretation
of system (29).

1. Suppose the map h restricted to the fibers of B is an immersive map into W
(this is equivalent to assuming that the matrix ∂h/∂v is injective). Then:

Lemma 1. Let h, restricted to the fibers of B, be an immersion into W . Let
(x, v) and w be points in B and W respectively such that h(x, v) = w. Then
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locally around (x, v) and w there are coordinates (x, v) ∈ B, coordinates
(w1, w2) ∈ W and a map h such that h has the form

(x, v) � h > (w1, w2) = (h(x, v), v). (37)

Proof. The lemma follows from the implicit function theorem. Hence, locally
we can interpret a part of the external variables, i.e., w1, as the outputs, and
a complementary part, i.e., w2, as the inputs. If we denote w1 by y and w2
by u, then system (36) has the form, only locally,

ẋ = y(x, u), y = h(x, u). (38)

2. Now we not only assume that ∂h/∂v is injective, which results in a local
input-output parametrization (38), but we also assume that the output set
denoted by Y is globally defined. Moreover, we assume that W is a fiber
bundle above Y , so that p : W → Y , and that h is a bundle morphism (i.e.,
maps fibers of B into fibers of W ). Then:

Lemma 2. Let h : B → W be a bundle morphism, which is a diffeo-
morphism restricted to the fibers. Let x ∈ X and y ∈ Y be such that
h(π−1(x)) = p−1(y). Take coordinates x ∈ X around x and coordinates
y ∈ Y around y. Let (x, v) be a point in the fiber above x and let (y, u) be
a point in the fiber above y such that h(x, v) = (y, u). Then there are local
coordinates v around v for the fibers of B, coordinates u around u for the
fibers of W and a map h : X → Y such that h has the form

(x, v) � h > (y, u) = (h(x), v). (39)

Proof. Choose a locally trivializing chart (0, φ) of W around y. Then φ :
p−1(0) → 0 × U , with U the standard fiber of W . Take local coordinates u
around u ∈ U . Then (y, u) forms a coordinate system for W around (y, u).
Because h is a bundle morphism, it has the form

(x, v) � h > (y, u) = (h(x), h′(x, v)), (40)

where (x, v) is a coordinate system for B around (x, v). Now adapt this last
coordinate system by defining

v = (h′)−1(x, u) with x fixed. (41)

Because h restricted to the fibers is a diffeomorphism, v is well defined and
(x, v) forms a coordinate system for B in which h has the form

(x, v) � h > (y, u) = (h(x), u). (42)

Hence under the conditions of Lemma 2 our system is locally (around x ∈ X
and y ∈ Y ) described by

ẋ = g(x, u), y = h(x). (43)
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This input-output formulation is essentially the same as the one proposed
by Brockett and Takens, who take the input spaces as the fibers of a bundle
above a globally defined output space Y . In fact, this situation should be
regarded as the normal setting for nonlinear control systems.

3. Take the same assumptions as in 2 and assume moreover that W is a trivial
bundle, i.e., W = Y × U , and that B is a trivial bundle, i.e., B = X × V .
Because h is a diffeomorphism on the fibers, we can identify U and V . In
this case the output set Y and the input set U are globally defined, and the
system is described by

ẋ = g(x, u), y = h(x), (44)

where for each fixed u, g(·, u) is a globally defined vector field on X . This is
the ‘‘usual’’ interpretation of (29).

Some remarks are in order:

Remark 1. When h restricted to the fibers of B is not an immersion we have
a situation where we could speak of ‘‘hidden inputs’’. In fact, in this case there
are variables in the fibers of B which can affect the internal state behavior via
the equation ẋ = g(x, v) but which cannot be directly identified with some of the
external variables.

Remark 2. The splitting of the external variables into inputs and outputs as
described in Lemma 1 is of course by no means unique. This fact has interesting
implications, even in the linear case, which is beyond the scope of this chapter.

Remark 3. From Lemma 2 it is clear that the coordinization of the fibers of
the bundle W uniquely determines, via h, the coordinization of the fibers of B.
It should be remarked that a coordinization of the fibers of W is locally equiv-
alent to the existence of an (integrable) connection on the bundle W , and that
one coordinization is linked to another by what is essentially an output feedback
transformation, i.e., a bundle isomorphism from W into itself.

Remark 4. A beautiful example of this kind of system is the Lagrangian system.
Here the output space is equal to the configuration space Q of a mechanical
system. The state space X is the configuration space with the velocity space,
so X = TQ. The space W is equal to T ∗Q (the cotangent bundle of Q), with
the fibers of T ∗Q representing the external forces. When we denote the natural
projection of TQ on Q by ρ, then B is just ρ∗T ∗Q (the pullback bundle via ρ).
Now given a function L : TQ → R (called the Lagrangian) we can construct a
symplectic form d(∂L/∂q̇) ∧ dq (with (q, q̇) coordinates for TQ) on TQ, which
uniquely determines a map g : B → TTQ. Finally, in coordinates the system is
given by

q̈ = F (q, q̇) +
∑

j

ujZj(q, q̇), y = q, (45)

with the vector fields F (q, q̇) and Zj(q, q̇) satisfying certain conditions. Moreover
the vector fields Zj commute, i.e., [Zi, Zj ] = 0 for all i, j, a fact which has a
very interesting interpretation.
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Remark 5. Most cases where B can be taken as trivial are generated by a space
X such that TX is a trivial bundle. For instance, when X is a Lie group TX is
automatically trivial.

4.2 Minimality

We want to give a definition of minimality for a general nonlinear agent.

Definition 12. Let Σ(X, W, B, f) and Σ′(X ′, W, B′, f ′) be two smooth systems.
Then we say Σ′ � Σ if there exist surjective submersions φ : X → X ′, Φ : B →
B′ such that the following diagram commutes.

B
�f

TX × W
�

�
�

���

�
�

�
���

X
(46)

Σ is called equivalent to Σ′ (denoted Σ ∼ Σ′) if φ and Φ are diffeomorphisms.
We call Σ minimal if Σ′ � Σ ⇒ Σ′

∼ Σ.

B






�

f

W
�

×

id

�Φ
B′

�
�

�
�

���

f ′

W

�

π

X

TX

�
�

�
�

���

πX

�
φ∗

×

�
φ

X ′

TX ′







�

πX′

�

π′

Remark 6. This definition formalizes the idea that we call Σ′ less complicated
than Σ (Σ′ � Σ) if Σ′ consists of a set of trajectories in the state space, smaller
than the set of trajectories of Σ, but which generates the same external behavior.
(The external behavior Σe of Σ(X, W, B, f) consists of the possible functions w :
R → W generated by Σ(X, W, B, f). Hence, when we define Σ := {(x, w) : R →
X × W |x that are absolutely continuous and (ẋ(t), w(t)) inf(π−1(x(t))) a.e.},
then Σe is just the projection of Σ on W R).
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Remark 7. Notice that we only formalize the regular case by asking that Φ and
φ be surjective as well as submersive. In fact we could, for instance, allow that
at isolated points φ or Φ are not submersive. However, we do not discuss this
problem here, and treat only the regular case as described in Definition 12.

Remark 8. Notice that Σ1 � Σ2 and Σ2 � Σ1 need not imply Σ1 ∼ Σ2. This
fact leads to very interesting problems, which again are out of scope for this
chapter.

Of course, Definition 12 is an elegant but rather abstract definition of minimality.
From a differential geometric point of view it is very natural to see what these
conditions of commutativity mean locally. In fact, we will see in Theorem 5 that
locally these conditions of commutativity do have a very direct interpretation.
But first we have to state some preparatory lemmas and theorems.

Let us look at Diagram (46). Because Φ is a submersion it induces an involutive
distribution D on B given by

D := {Z ∈ TB|Φ∗Ż = 0} (47)

(the foliation generated by D is of the form Φ−1(c) with c constant). In the
same way φ induces an involutive distribution E on X . Now the information in
the diagram (46) is contained in three subdiagrams (we assume f = (g, h) and
f ′ = (g′, h′)):

B
�Φ

B′

�

h

W
��

id
W
�

h′ I

B
�Φ B′

�

π

X
�

φ
X ′
�

π′ II

B �Φ B′

�

g

TX
�

φ∗
TX ′

�

g′ III
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Lemma 3. Locally the diagrams I, II, III are equivalent, respectively, to

I ′ : D ⊂ ker dh (48)
II ′ : π∗D = E (49)

III ′ : g∗D ⊂ TE = Tπ∗(D). (50)

Proof. I ′ and II ′ are trivial. For III ′ observe that, when φ induces a distribution
E on X , then φ∗ induces the distribution TE on TX .

Now we want to relate conditions I ′, II ′, III ′ with the theory of nonlinear
disturbance decoupling. Consider in local coordinates the system

ẋ = f(x) +
m∑

i=1

uigi(x) on a manifold X. (51)

We can interpret this as an affine distribution on manifold.

Theorem 4. Let D ∈ A(Δ0). Then the condition

[Δ, D] ⊆ D + Δ0 (52)

(we call such a D ∈ A(Δ0)Δ(mod Δ0) invariant) is equivalent to the two con-
ditions: a) there exists a vector field F ∈ Δ such that [F, D] ⊆ D and b) there
exist vector fields Bi ∈ Δ0 such that span {Bi} = Δ0 and [Bi, D] ⊂ D.

With the aid of this theorem the disturbance decoupling problem is readily
solved. The key to connecting our situation with this theory is given by the
concept of the extended system, which is of interest in itself.

Definition 13. (Extended system). Let

B
�f

TX × W
�

�
�

���

π πX

�
�

�
���

X
Then we define the extended system of Σ(X, W, B, f) as follows: We define

Δ0 as the vertical tangent space of B, i.e.,

Δ0 := {Z ∈ TB|π∗Z = 0}. (53)

Note that Δ0 is automatically involutive. Now take a point (x, v) ∈ B. Then
g(x, v) is an element of TxX . Now define

Δ(x, v) := {Z ∈ T(x,v)|π∗Z = g(x, v)}. (54)

So Δ(x, v) consists of the possible lifts of g(x, v) in (x, v). Then it is easy to see
that Δ is an affine distribution on B, and that Δ − Δ = Δ0. We call the affine
system (Δ, Δ0) on B constructed in this way, together with the output function
h : B → W , the extended system Σe(X, W, B, f). We have the following:
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Lemma 4. i) Let D be an involutive distribution on B such that D ∩ Δ0 has
constant dimension. Then π∗D is a well-defined and involutive distribution on
X if and only if D + Δ0 is an involutive distribution. ii) Let D be an involutive
distribution on B and let D ∩ Δ0 have constant dimension. Then the following
two conditions are equivalent: a)π∗D is a well-defined and involutive distribution
on X, and g∗D ⊂ Tπ∗D and b) [Δ, D] ⊂ D + Δ0.

Proof. i) Let D + Δ0 be involutive. Because D and Δ0 are involutive this is
equivalent to [D, Δ0] ⊂ D + Δ0. Applying Theorem 4 to this case gives a basis
{Z1, . . . , Zk} of D such that [Zi, Δ0] ⊆ Δ0. In coordinates (x, u) for B, the last
expression is equivalent to Zi(x, u) = (Zix, Ziu(x, u)), where Zix and Ziu are
the components of Zi in the x- and u-directions, respectively. Hence π∗D =
span {Z1x, . . . , Zkx} and is easily seen to be involutive. The converse statement
is trivial.

ii) Assume i); then there exist coordinates (x, u) for B such that D =
{∂/∂x1, . . . , ∂/∂xx} (the integral manifolds of D are contained in the sections
u = const ). Then g∗D ⊂ Tπ∗D is equivalent to

(
∂g

∂xi

)

jecomp
= 0 (55)

with i = 1, . . . , k and j = k + l, . . . , n (n is the dimension of X). From these
expressions [Δ, D] ⊂ D + Δ0 readily follows. The converse statement is based
on the same argument.

Now we are prepared to state the main theorem of this section. First we have to
give another definition.

Definition 14. (Local minimality). Let Σ(X, W, B, f) be a smooth system. Let
x ∈ X. Then Σ(X, W, B, f) is called locally minimal (around x) if when D and
E are distributions (around x) which satisfy conditions I ′, II ′, III ′ of Lemma 3,
then D and E must be the zero distributions.

It is readily seen from Definition 12 that minimality of Σ(X, W, B, f) locally
implies local minimality (locally every involutive distribution can be factored
out). Combining Lemma 3, Definition 13 and Lemma 4 we can state:

Theorem 5. Σ(X, W, B, f = (g, h)) is locally minimal if and only if the ex-
tended system Σe(X, W, B, f = (g, h)) satisfies the condition that there exist no
nonzero involutive distribution D on B such that

i) [Δ,D] ⊂ D + Δ0, (56)
ii) D ⊂ ker dh. (57)

Remark 9. It is very surprising that the condition of minimality locally comes
down to a condition on the extended system, which is in some sense an infinites-
imal version of the original system.
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Remark 10. Actually there is a conceptual algorithm to check local minimality.
Define

Δ−1(Δ0 + D) := {vector fields Z on B |[Δ, Z] ⊆ Δ0 + D}. (58)

Then we can define the sequence {Dμ}, μ = 0, 1, 2, . . . as follows:

D0 = ker dh, (59)

Dμ = Dμ−1 ∩ Δ−1(Δ0 + Dμ−1), μ = 1, 2, . . . . (60)

Then {Dμ}, μ = 0, 1, 2, . . ., is a decreasing sequence of involutive distributions,
and for some k � dim(ker dh)Dk = Dμ for all μ � k. Then Dk is the maximal
involutive distribution which satisfies

i) [Δ, Dk] ⊂ Dk + Δ0, (61)

ii) Dk ⊂ ker dh. (62)

From Theorem 5 it follows that Σ(X, W, B, f) is locally minimal if and only if
Dk = O.

4.3 Observability

It is natural to suppose that our definition of minimality has something to do
with controllability and observability. However, because the definition of a non-
linear system (34) also includes autonomous systems, (i.e., no inputs), minimality
cannot be expected to imply, in general, some kind of controllability. In fact an
autonomous linear system

ẋ = Ax, y = Cx (63)

is easily seen to be minimal if and only if (A, C) is observable. Moreover, it
seems natural to define a notion of observability only in the case that the system
(34) has at least a local input-output representation; i.e., we make the standing
assumption that (∂h/∂v) is injective (see Lemma 1). Therefore, locally we have
as our system

ẋ = g(x, u), y = h(x, u) (64)

for every possible input-output coordinization (y, u) of W . For such an input-
output system local minimality implies the following notion of observability,
which we call local distinguishability.

Proposition 1. Choose a local input-output parametrization as in (64). Then
local minimality implies that the only involutive distribution E on X which
satisfies i) [g(·, u), E] ⊂ E for all u (E is invariant under g(·, u)) and ii)
E ⊂ ker dxh(·, u) for all u (dxh means differentiation with respect to x) is
the zero distribution.
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Proof. Let E be a distribution on X which satisfies i) and ii). Then we can lift E
in a trivial way to a distribution D on B by requiring that the integral manifolds
of D be contained in the sections u = const . Then one can see that D satisfies
[Δ, D] ⊂ D + Δ0 and D ⊂ ker dh. Hence D = 0 and E = 0.

Corollary 2. Suppose there exists an input-output coordinization

ẋ = g(x, u), y = h(x). (65)

Then local minimality implies local weak observability.

Proof. As can be seen from Proposition 1, local minimality in this more re-
stricted case implies that the only involutive distribution E on X which satisfies
i) [g(·, u), E] ⊂ E for all u and ii)E ⊂ ker dh, is the zero distribution. It can be
seen that the biggest distribution which satisfies i) and ii) is given by the null
space of the codistribution P generated by elements of the form

Lg(·,u1)Lg(·,u2) · · · Lg(·,uk)dh, with uj arbitrary. (66)

Because this distribution has to be zero, the codistribution P equals T ∗
xX , in

every ∈ X . This is, apart from singularities (which we don’t want to consider),
equivalent to local weak observability.

Moreover, let (65) be locally weakly observable. Then all feedback transforma-
tions u 	→ v = α(x, u) which leave the form (65) invariant (i.e., y is only the
function x) are exactly the output feedback transformations u 	→ v = α(y, u). It
can be easily seen in local coordinates that after such output feedback is applied,
the modified system is still locally weakly observable.

In Proposition 1 and its corollary we have shown that local minimality implies
a notion of observability, which generalizes the usual notion of local weak observ-
ability. Now we will define a much stronger notion. Let us denote the (defined
only locally) vector field ẋ = g(x, u) for fixed u by gu and the function h(x, u)
by hu (with g and h as in (64)).

Definition 15. Let Σ(X, W, B, f) = (g, h) be a smooth nonlinear system. It is
called strongly observable if for every possible input-output coordinization (64)
the autonomous system

ẋ = gu(x), y = hu(x) (67)

with u constant is locally weakly observable, for all u.

Remark 11. Let Σ(X, W, B, f = (g, h)) be strongly observable. Take one input-
output coordinization (y, u). The system has the form (in these coordinates)

ẋ = g(x, u), y = h(x, u). (68)

Because the system is strongly observable, every constant input-function (con-
stant in this coordinization) distinguishes between two nearby states. However, in
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every other input-output coordinization every constant (i.e., in this coordiniza-
tion) input function also distinguishes. This implies that in the first coordiniza-
tion every C∞ input function distinguishes. Because the C∞ input functions
are dense in a reasonable set of input functions, every input function in this
coordinization distinguishes.

Proposition 2. Consider the Pfaffian system constructed as follows:

P = dhu + Lgudhu + Lgu(Lgudhu) + · · · + Ln−1
gu dhu, (69)

with n the dimension of X and Lgu the Lie derivative with respect to gu. As is
well known, the condition that the Pfaffian system P as defined above satisfies
the condition Px = T ∗

x X for all x ∈ X (the so called observability rank condition)
implies that the system

ẋ = gu(x), y = hu(x) (70)

is locally weakly observable. Hence, when the observability rank condition is sat-
isfied for all u, the system is strongly observable.

We will call the Pfaffian system P the observability codistribution.

Remark 12. As is known, local weak observability of the system

ẋ = gu(x), y = hu(x) (71)

implies that the observability rank condition (i.e., dimPx = T ∗
xX) is satisfied

almost everywhere (in fact, in the analytic case everywhere). Because we don’t
want to go into singularity problems, for us local weak observability and the
observability rank condition are the same.

Remark 13. It is easily seen that when for one input-output coordinization the
observability rank condition for all u is satisfied, then for every input-output
coordinization the observability rank condition for all u is satisfied. This follows
from the fact that the observability rank condition is an open condition.

4.4 Controllability

The aim of this section is to define a kind of controllability which is ‘‘dual’’ to the
definition of local distinguishability (Proposition 1). The notion of controllability
we shall use is the so-called ‘‘strong accessibility’’.

Definition 16. Let ẋ = g(x, u) be a nonlinear system in local coordinates. De-
fine R(T, x0) as the set of points reachable from x0 in exactly time T ; in other
words,

R(T, x0) := {x1 ∈ X | ∃ state trajectory x(t) generated by g

� x(0) = x0 ∧ x(T ) = x1}. (72)
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We call the system strongly accessible if for all x0 ∈ X , and for all T > 0 the set
R(T, x0) has a nonempty interior.

For systems of the form (in local coordinates)

ẋ = f(x) +
m∑

i=1

uigi(x) (73)

(i.e., affine systems) we can define A as the smallest Lie algebra which contains
{g1, . . . , gm} and which is invariant under f (i.e., [f, A] ⊂ A). It is known that
Ax = TxX for every x ∈ X implies that the system (73) is strongly accessible.
In fact, when the system is analytic, strong accessibility and the rank condition
Ax = TxX for every x ∈ X , are equivalent. We call A the controllability distri-
bution and the rank condition the controllability rank condition. Now it is clear
that for affine systems (73) this kind of controllability is an elegant ‘‘dual’’ of
local weak observability.

It is well known that the extended system (see Definition 13) is an affine
system. Hence for this system we can apply the rank condition described above.
This makes sense because the strong accessibility of Σ(X, W, B, f) is very much
related to the strong accessibility of Σe(X, W , B, f), which can be seen from
the following two propositions.

Proposition 3. If Σe(X, W, B, f = (g, h)) is strongly accessible, then
Σ(X, W, B, f = (g, h)) is strongly accessible as well.

Proof. In local coordinates the dynamics of Σe and Σ are given by

I ẋ = g(x, u) (Σ), (74)
II ẋ = g(x, v) (Σe), (75)

v̇ = u. (76)

It is easy to show that if for Σe one can steer to a point x1 then the same is
possible for Σ (even with an input that is smoother).

The converse is more difficult to prove:

Proposition 4. Let Σ(X, W, B, f = (g, h)) be strongly accessible. In addition,
let the fibers of B be connected. Then Σe(X, W, B, f = (g, h)) is strongly
accessible.

Proof. Consider the same representation of Σ and Σe as in the proof of Propo-
sition 3. Let x0 ∈ X and x1 be in the (nonempty) interior of RΣ(x0, T ) (the
reachable set of system Σ). Then it is possible to reach x1 from x0 by an input
function v(t) which cannot be generated by the differential equation v̇ = u .
However, we know that the set of the v generated in this way is dense in L2.
(For this we certainly need that the fibers of B are connected.) Because we only
have to prove that the interior of a set is nonempty, this makes no difference.
Now it is obvious from the equations

ẋ = g(x, v), v̇ = u (77)
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that if we can reach an open set in the x-part of the (extended) state, then it is
surely possible in the whole (x, v)-state.

5 Conclusions

In this chapter, cooperative control of multiple agents was studied. Methods and
algorithms were explored for solving the problem of vehicle group interaction,
when one group of vehicles is moving in a plane (UGV) and another in a halfspace
(UAV-s). We have already analyzed an analogous situation, when one object (a
pursuer) is moving in a halfspace while the other (an evader) - in a plane, in
solving the problem of ‘‘soft meeting’’. Nonlinear and bilinear Markovian models
are proposed for solution of the game theoretic problem of searching for a moving
object in discrete time over a finite set of states.

The multiagent coordination problem has been studied. This problem is ad-
dressed for a class of targets for which control Lyapunov functions can be found.
The main result is a suite of propositions about formation maintenance, task
completion time, and formation velocity. It is also shown how to moderate the
requirement that, for each individual target, there exists a control Lyapunov
function.

The connection between cooperative control and Yang–Mills fields has been
established. A geometric model of a controlled agent as dynamic information-
transforming system was examined. A description of the information-transforming
system within the framework of the geometric formalism was also proposed. After
a classification of the fiber bundle types of conflict and conflict-free maneuvers, a
weighted energy can be proposed as the cost function to select the optimal one.
Various local and global controllability and observability conditions are derived.
For the general multi-agent case, a convex optimization algorithm is proposed to
find the optimal multi-legged maneuvers. To completely characterize the optimal
conflict-free maneuvers, many issues remain to be addressed.

Possible directions of future research include the analysis of the proposed
mathematical models in terms of its performance and its robustness with respect
to uncertainty of the agents positions and velocities, and a more realistic study
for the agent dynamics. Summing up, we can say that the combined problems
of ‘‘search and tracking’’ and ‘‘pursuit and evasion’’ for multiple different-type
pursuing objects and multiple evaders will be solved in the next step.
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Abstract. In the literature, e.g. [10], one can find the so-called basic
UAV mission target assignment in which m UAVs each with a capac-
ity limit q visit n targets in a cooperative manner (and return to their
departure points) such that the cost incurred by each UAV’s travel is
minimized. In [10], we proposed a mixed integer linear program (MILP)
formulation which exactly solves the problem, as well as four alternative
MILP formulations which are computationally less intensive (and there-
fore suited for real-time purposes) yet yield a theoretically guaranteed
sub-optimal solution. In this chapter, we further consider timing con-
straints imposed on some p of the targets, so-called prime targets. This
consideration is often required for scenarios in which prime targets must
be visited in a pre-defined time interval, and mathematically results in
the addition of several integer linear constraints to the previous MILP
formulation making the problem computationally intractable. We pro-
pose a novel procedure of adding these cumbersome timing constraints
to the previous MILP formulation, in order to avoid increasing too much
computational cost under practically valid assumptions. We first show
that the proposed procedure still guarantees the previously claimed the-
oretical solution quality associated with the basic mission. We then show
through extensive numerical simulations that under certain conditions,
our algorithms return solutions which are still computationally manage-
able.

Keywords: Unmanned aerial vehicles (UAV); target assignment; mixed
integer linear program; timing constraints.

1 Introduction and Problem Statement

In [10], for a given number m of UAVs Ui (i = 1, 2, . . . , m, m ≥ 2) at corre-
sponding positions T i

0, and a number n of targets Tj (j = 1, 2, . . . , n, n ≥ m)
within a terrain X, we consider a mission in which the UAVs visit all the targets
in a cooperative manner (and return to where they departed from) such that the
cost (reflecting UAV operating time and risk) incurred by each UAV’s travel is
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minimized whilst keeping the number of targets visited by a single UAV below
a certain limit q. More precisely, we would like to calculate T∗

T∗ ≡ min
j

max
A(j)i

T(j)∗i , (1)

where T∗ is the least maximum cost among all UAVs in visiting their assigned
targets (and returning to their departure points), A is the set of feasible tar-
get assignments to UAVs, A(j) (∈ A) is one of the feasible assignments, A(j)i

is the sub-assignment given to the ith UAV within A(j) and finally T(j)∗i is
the optimal cost of completing the sub-assignment A(j)i by the ith UAV. We
note that the objective functional to be minimized is appropriate for balancing
workloads across UAVs. In this chapter, we further consider the same problem
with practical timing constraints. This is basically due to the frequent presence
of so-called prime targets that must be visited in a fixed time interval in many
UAV applications. As a result, we require that the solution assignment to (1)
be chosen such that a UAV visits a prime target Tk within a given time window
[tαk , tβk ].1 In addition, the total number of prime targets is limited by p, and the
maximum number of prime targets which a UAV is capable of handling is limited
by q′ (≤ q), in order to increase the probability of mission success.

There is a large number of papers dealing with various target assignment
problems. These include Weapon-target assignment [1,14], timetabling [20,22],
the celebrated Travelling Salesman Problem [19] and more generally capacity-
limited vehicle routing problems [9,17]. We note that these problems are slightly
different from the problem in the present context, in that (i) we may not require
UAVs to return to their starting positions; (ii) we minimize the individual tour
cost for balanced workload, not the total cost incurred by the whole mission; (iii)
UAVs do not necessarily depart from the same depot. There is also much litera-
ture available on coordinated target assignment of UAVs, for example [2,3,4,5],
and some of which add the timing and precedence constraints to the original
problem [3,11,15,16]. As the underlying problem is known to be NP-hard, it is
often fruitless to approach the problem in a direct or exact manner. Neverthe-
less, as many papers have shown, direct MILP formulations offer a promising
way forward in terms of providing an optimal solution to the problem in spite
of the computational demands [3,22]. As an example of the MILP approaches,
we note the petal algorithm introduced in [2,5]. It considers all feasible task
assignments (so-called petals), i.e. identifies all possible sequences of waypoints,
for every UAV subject to its capabilities, and subsequently constructs the short-
est paths connecting the waypoints as well as avoiding threats. Then, a MILP
formulation is employed to find the best assignment in terms of the underlying
cost. As implied by the numerical tests shown in [5], the petal algorithm becomes
computationally problematic for a large number of targets, e.g. n > 12, due to
the exhaustive consideration of all feasible petals. As an alternative method,

1 In the literature, one may find precedence constraints, i.e. some target must be visited
before other targets. However, we here assume that this can be viewed as a special
case of the aforementioned timing constraints.
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tabu search based methods are also useful for this purpose [17,18]. When time
is critical, heuristic or non-exact methods have been considered, even if global
optimality may not be achieved [4,9]. Among many heuristics, we note the It-
erated Optimal Tour Partitioning (IOTP) algorithm proposed in [9,13], mainly
for multi-vehicle-single-depot routing with capacity constraints. With the IOTP
algorithm, it is claimed that one can obtain a tour whose cost is at most 2− 1/q
times of the optimal tour cost, where q is the capacity of vehicles.

In conclusion, what would be desirable is a direct MILP formulation combined
with a non-exact method in such a way that the advantages of each are enjoyed.
As inspired by the solution strategy introduced in [10] for the target assignment
problem without timing constraints, we reduce the possibly large MILP associ-
ated with the original time-critical target assignment problem down to smaller
MILPs while minimizing the loss of optimality, followed by solving the smaller
MILPs exactly. Since this approach involves only small MILPs, it is therefore
computationally tractable. We note that a similar approach has been recently
proposed in [21] in which the problem in question is interpreted as a mixed ver-
sion of the minimum cost network flow problem and the travelling salesman prob-
lem. The two problems are then approached by a promising heuristic employing
linear programming, MILP and tabu search in order to reduce the computational
complexity. However, no formal analysis on the algorithm performance, for exam-
ple something like (16), is given, and therefore the algorithm may not be suitable
for particular problem parameters. Our main challenges (contributions) are to
ensure the previously claimed performance bounds in [10] and to allow only a
slight increase of computational cost even after adding timing constraints. To
this end, we first briefly describe two algorithms, which were introduced in [10],
and their performance bounds in Section 2.1. We then show in Section 2.2 and
2.3 how the timing constraints in question can be incorporated into the existing
MILPs with the performance bounds unchanged. In Section 3, we examine the
computational aspect of our modified algorithms through extensive simulations.
Concluding remarks are presented in Section 4.

2 Algorithms

2.1 Two Algorithms

The two algorithms (denoted by H2 and H3) introduced in [10] need a feasible
network of UAVs’ flying routes as their input. One can create such a feasible
network of UAVs’ flying routes by defining significant waypoints and links con-
necting the waypoints, and assigning cost (again, reflecting UAV operating time
and risk) to the links. For illustration, Fig. 1 shows two UAV starting posi-
tions (T 1

0 and T 2
0 ), two targets (T1 and T2) and two obstacles (dashed objects).

In order to identify significant waypoints, the two obstacles are approximated
by two rectangles. The corner points of the rectangles then become part of the
set of waypoints along with T 1

0 , T 2
0 , T1 and T2. The feasible network of the two

UAVs’ flying routes is the set of links connecting the waypoints. Each link carries
the cost of travel based on its length and possible risks on it.
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1

T 2

0T1

0T2
T

Fig. 1. A rectangular cover of two objects (the dashed area) and the corresponding
construction of links

Given the network of UAVs’ flying routes, the algorithm H2 (respectively,
H3) is devised for the problem without (respectively, with) the UAV’s return
constraint. The basic principle behind the algorithms is that the original prob-
lem of possibly large size is handled by two solution steps each of which involves
a problem of relatively small size. The first step in the present context solves
a MILP for finding m groups of targets such that each group is disjoint and
contains exactly one UAV and less than or equal to q targets. The second step
finds an optimal order of visiting the assigned targets for each UAV by solving
another MILP. These two MILPs are computationally manageable as long as
q is small (≤ 4). The first grouping step is crucial in terms of both solution
quality and computational complexity. The algorithms H2 and H3 employ the
objective functionals which minimize the Tj-to-Tk cost and the T i

0-to-Tj-to-Tk

cost for each j, k, respectively, where Tj or Tk is the starting position of the ith
UAV or a target position to be covered by the ith UAV. The following are the
formal descriptions of H2 and H3. For detailed explanation on the constraints
in the MILPs below, see [10].

Step 1. Sub-optimal partitioning: Consider an optimization problem F2 (re-
spectively, F3), as shown below, that solves for xij (xij = 1 if the jth target is
assigned to the ith UAV) to partition the underlying set of targets into m subsets
Ti (i = 1, 2, . . . , m) such that (i) each Ti contains at most q elements; (ii) the
travelling cost Tj-to-Tk (respectively, T i

0-to-Tj-to-Tk) for each j, k is minimized,
where Tj or Tk is the starting position of the ith UAV or belongs to Ti; (iii) each
target is covered by exactly one UAV.

Step 2. Optimal path-planning: For each Ti, consider FE (respectively, FEret),
as shown below, that solves for ak

ij (ak
ij = 1 if the ith UAV visits the kth tar-

get after j − 1 targets, so that the ith UAV visits Txi1 , Txi2, . . . in turn, where



Real-Time Optimal Time-Critical Target Assignment for UAVs 269

xij =
∑n

k=1 ak
ij) to obtain the optimal path of visiting all the targets contained

in Ti by the ith UAV.

FE : minimize r

subject to

n∑

k=1

ak
ij ≤ 1 ∀i, j (2)

m∑

i=1

q∑

j=1

ak
ij = 1 ∀k (3)

ak
ij ∈ {0, 1} ∀i, j, k (4)
n∑

k=1

ak
i(j+1) ≤

n∑

k=1

ak
ij ∀i, j (5)

av
ij + aw

i(j+1) + aw
ij + av

i(j+1) = 2 yj
iη(v,w) + ỹj

iη(v,w) ∀i, j, v, w (6)

yiη(v,w) =
∑

j

yj
iη(v,w) ∀i, v, w (7)

yj
iη(v,w) ∈ {0, 1}, ỹj

iη(v,w) ∈ [0, 1] ∀i, j, v, w (8)
n∑

k=1

C0(i, k) ak
i1 +

n−1∑

v=1

n∑

w=v+1

c(η(v, w)) yiη(v,w) ≤ r ∀i (9)

where i ∈ {1, 2, . . . , m}, j ∈ {1, 2, . . . , q} for (2)-(4) or j ∈ {1, 2, . . . , q − 1}
for (5)-(8), k ∈ {1, 2, . . . , n}, v, w ∈ {1, 2, . . . , n} (v < w), η(v, w) = (v − 1)n −
v(v −1)/2+w− v. In (9), C0(i, k) (respectively, c(η(v, w))) is the travelling cost
from T i

0 to Tk (respectively, from Tv to Tw).

FEret: minimize r

subject to (2)–(8) and

ak
i1 = bk

i1 ∀i, k

bk
i(j−1) −

n∑

k=1

ak
ij ≤ bk

ij ≤ bk
i(j−1) +

n∑

k=1

ak
ij ∀i, j, k

ak
ij ≤ bk

ij ≤ ak
ij + (1 −

n∑

k=1

ak
ij) ∀i, j, k

n∑

k=1

C0(i, k) (ak
i1 + bk

iq) +
n−1∑

v=1

n∑

w=v+1

c(η(v, w)) yiη(v,w) ≤ r ∀i

where i ∈ {1, 2, . . . , m}, j ∈ {2, 3, . . . , q}, k ∈ {1, 2, . . . , n}.



270 Y. Kim, D.-W. Gu, and I. Postlethwaite

F2: minimize r

subject to

n∑

j=1

xij ≤ q ∀i (10)

m∑

i=1

xij = 1 ∀j (11)

yiη(j,k) ≤ xij + xik

2
≤ yiη(j,k) +

1
2

∀i, j, k (j < k) (12)

C0(i, j)xij ≤ r ∀i (13)
c(η(j, k)) yiη(j,k) ≤ r ∀i, j, k (j < k) (14)
xij , yiη(j,k) ∈ {0, 1} ∀i, j, k (j < k) (15)

where i ∈ {1, 2, . . . , m}, j, k ∈ {1, 2, . . . , n} and η(j, k) = (j − 1)n − j(j − 1)/2 +
k − j.

F3: minimize r

subject to

n∑

j=1

xij ≤ q ∀i

m∑

i=1

xij = 1 ∀j

yiη ≤ xij + xik

2
≤ yiη +

1
2

∀i, j, k (j < k)

2 C0(i, j)xij ≤ r ∀i, j

C0(i, j)xij + c(η(j, k)) yiη(j,k) ≤ r ∀i, j, k (j < k)
xij , yiη(j,k) ∈ {0, 1} ∀i, j, k (j < k)

where i ∈ {1, 2, . . . , m}, j, k, l ∈ {1, 2, . . . , n} and η(j, k) = (j−1)n−j(j−1)/2+
k − j.

The performance bound for H2 is obtained by the two facts that (i) T∗ is
less than the Tj-to-Tk cost for any i, j; (ii) one can create a UAV’s feasible path
which sequentially visits all the (at most q) targets within the assigned group
from the first grouping step. Similarly, the performance bound for H3 is due to
the facts that (i) T∗ is less than the T i

0-to-Tj-to-Tk cost for any i, j, k when the
UAV’s return constraint is imposed; (ii) one can create a feasible path such that
a UAV goes back to its departure point every time after it sequentially visits
two targets within the associated group. As a result, H2 and H3 guarantee
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1 ≤ T
T∗ ≤ q (16)

and

1 ≤ T
T∗ ≤ 2

⌈q

3

⌉
− κ, (17)

respectively, where T is the maximum of actual costs incurred by each UAVs’
travel using H2 or H3, and κ = 1 if q = 3k + 1 (k = 0, 1, . . .); otherwise κ = 0.
Note that the performance bound (17) is guaranteed only if every UAV can go
back to its departure point every time after visiting two targets, because of the
second fact used for deriving the bound. This assumption may fail when timing
constraints are imposed in the next section. See the proof of Proposition 1.

2.2 Incorporation of Timing Constraints into the Existing
Framework

For incorporation of timing constraints into the existing framework, we need
two kinds of T i

0-to-Tj and Tv-to-Tw costs over the same network of UAVs’ flying
routes. One kind, denoted by C0(i, j) and C(v, w), is used for being minimized
and reflects both flight time and risk information due to threats. The other
kind, denoted by C0(i, j) and C(v, w), is used in concert with timing constraints
and solely contains flight time information. The latter is computationally not as
cumbersome as the former because algorithms to be introduced do not require
T i

0-to-Tj and Tv-to-Tw costs for all j, v, w. In fact, for the ith UAV the first
grouping step of the new algorithms needs C0(i, j) and C(v, w) for all j, v and
w, but C0(i, j′) and C(v′, w′) only for j′, v′ and w′ such that Tj′ , Tv′ and Tw′

are prime targets.
Clearly, the first grouping step of H2 or H3 must be modified such that

prime targets are assigned to a UAV such that the UAV can actually reach the
assigned prime targets within the required time intervals. For this purpose, as
the targets are grouped by the same technique used for H2 or H3, we impose
the additional constraint such that each UAV visits its assigned prime targets
prior to non-prime targets. As a result, the new grouping step provides each
UAV with a feasible assignment accounting for timing constraints, along with
an explicit order of visiting prime targets. Note that the additional constraint,
which forces each UAV to visit prime targets prior to non-prime targets in the
first step, is however neglected in the second step in which the optimal path
for each UAV to visit all the assigned targets is computed. The second step
is basically the same as before, in the sense that one exactly solves the time-
critical target assignment problem but now of small size. For an illustration of
the new algorithm, as shown in Fig. 2, suppose the new grouping step returns
the assignment such that a UAV at T0 covers two non-prime targets, T1 and T2,
and two prime targets, T3 and T4, with their associated time windows, [0, 10]
and [0, 50], respectively. Then, although the new grouping step directs the UAV
to visit T3 and T4 (dotted line) prior to T1 and T2, the second step disregards the
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Fig. 2. An illustration of the new algorithm

direction and yields the path (solid line), T1 → T3 → T2 → T4. This is because
T0 is closer to T1 than T3, and also T3 is closer to T2 than T4. Note that this
change is allowed because the timing constraints are still not violated. Based
on the brief description of the new algorithms H̃2 and H̃3, the following result
immediately follows. The formal description of H̃2 will be given later.

Proposition 1. If tαk = 0 for every k, the algorithm H̃2 guarantees the bound
(16) for every positive integer q′, where q′ is the maximum number of prime
targets visited by a UAV. However, H̃3 guarantees the bound (17) only for q′ < 3.

Proof. First note that under the condition that tαk = 0, no feasible assignments
are lost by the new grouping step. In fact, for any feasible target Tk assignment to
a UAV, one can always construct a feasible path such that the UAV visits prime
targets prior to non-prime targets as long as tαk = 0 for all k. This immediately
implies that the new algorithm H̃2 guarantees the same bound as (16). However,
when q′ ≥ 3, this violates the underlying assumption used to derive (17) that
one can create a feasible path such that a UAV goes back to its departure point
every time after the UAV sequentially visits two targets within the associated
group. This proves the claim.

As noted before, it is often desirable to have small q′ in order to increase the
probability of mission success, in which case the new algorithms are still appli-
cable in practice.

2.3 MILPs Including Timing Constraints

One can find the necessary (integer linear) constraints for the grouping with
no timing constraints in [10]. We thus focus here on developing methods of
converting timing constraints into integer linear constraints.
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To begin, let us first define integer grouping variables xij (i ∈ {1, 2, . . . , m}
and j ∈ {1, 2, . . . , n}) which represent the relationship between the ith UAV
and the jth target, i.e. xij = 1 if the jth target is assigned to the ith UAV;
xij = 0 otherwise. For the consideration of timing constraints, we then consider
q′ rooms (numbered from 1 to q′) for each UAV. Each room may hold at most
one identifier (ID) of prime target and has to be filled in ascending order, so
that the resultant path of the ith UAV becomes T i

0 → Tz1 → Tz2 . . . → Tzq̃′ ,
where zj (j ∈ {1, 2, . . . , p}) is the ID of the jth prime target and q̃′ ≤ q′. For
this purpose, we define other integer variables ak

ij (similar to the one previously
defined in FE), where i, j and k run from 1 to m, 1 to q′ and 1 to p, respectively,
in order to capture the relationship between the ith UAV, its jth room and the
kth prime target. Similarly, we also define integer variables zk

ij , where i, j and k
run from 1 to m, 1 to q′ and 1 to n, respectively. The difference between a and
z is that a pertains to the ID (numbered from 1 to p) assigned to a prime target
amongst only p prime targets, whereas z pertains to the ID (numbered from 1 to
n) assigned to a prime target amongst all n targets. This seemingly unnecessary
definition of z becomes useful when the connection between a and x need to be
made later. The following are the integer linear constraints for implementing the
aforementioned verbal expressions:

p∑

k=1

ak
ij ≤ 1 ∀i, j and

m∑

i=1

q′∑

j=1

ak
ij = 1 ∀k (18)

for i ∈ {1, 2, . . . , m}, j ∈ {1, 2, . . . , q′} and k = {1, 2, . . . , p}, and
p∑

k=1

ak
i(j+1) ≤

p∑

k=1

ak
ij ∀i, j (19)

for i = {1, 2, . . . , m} and j = {1, 2, . . . , q′ − 1}.
Next, we consider the flight time from T i

0 to the first room for the ith UAV, and
from the jth room to the (j+1)th room. The former is simply

∑p
k=1 C0(i, k)ak

i1,
and thus we need

p∑

k=1

tαk ak
i1 ≤

p∑

k=1

C0(i, k)ak
i1 ≤

p∑

k=1

tβkak
i1

where i ∈ {1, 2, . . . , m}, for satisfying the associated timing constraints. However,
the latter is not trivial.2 The MILP expression of the flight time between targets
requires the introduction of the additional auxiliary variables dj

iη(v,w) and d̃j
iη(v,w)

which are defined through the following equality:

av
ij + aw

i(j+1) + aw
ij + av

i(j+1) = 2 dj
iη(v,w) + d̃j

iη(v,w) (20)

dj
iη(v,w) ∈ {0, 1}, d̃j

iη(v,w) ∈ [0, 1] (21)

2 The present approach to the latter is similar to the one in [10], but the derivation of
the linear inequality constraints corresponding to timing constraints is novel in the
chapter.
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for all i, j, v, w, where i ∈ {1, . . . , m}, j ∈ {1, . . . , q′−1}, v, w ∈ {1, 2, . . . , p} (v <
w) and η(v, w) = (v−1)p−v(v−1)/2+w−v. The flight time from T i

0 to Tzj (via
Tz1 ,. . . ,Tz(j−1)) then becomes

p∑

k=1

C0(i, k)ak
i1 +

j−1∑

u=1

p−1∑

v=1

p∑

w=v+1

c(η(v, w)) du
iη(v,w)

where c is a one-dimensional form of two-dimensional C. Equality (20) enables
dj

iη(v,w) to be 1 only if av
ij = aw

i(j+1) = 1 or aw
ij = av

i(j+1) = 1. In other words,

dj
iη(v,w) is set to 1 only if the vth and wth targets are assigned to the consecutive

jth and (j + 1)th (or (j + 1)th and jth) rooms of the ith UAV.
As a result, the timing constraints imposed on the targets occupying the

second to last rooms for the ith UAV may be now represented as the following:
p∑

k=1

tαk ak
ij ≤

p∑

k=1

C0(i, k)ak
i1 +

j−1∑

u=1

p−1∑

v=1

p∑

w=v+1

c(η(v, w)) du
iη(v,w) ≤

p∑

k=1

tβkak
ij (22)

for each j ∈ {1, 2, . . . , q′}. The left inequality is fine, but the right inequality
causes a problem when some of the rooms for a UAV are empty, i.e. less than
q′ prime targets are assigned to a UAV, thereby forcing the a variables corre-
sponding to unoccupied rooms to be zero. For this reason, we use the following
method:

p∑

k=1

C0(i, k)ak
i1 +

j−1∑

u=1

p−1∑

v=1

p∑

w=v+1

c(η(v, w)) du
iη(v,w) ≤

p∑

k=1

tβkak
ij + M(1 −

p∑

k=1

ak
ij)(23)

where M > 0 is a large constant number. This makes the right inequality vacuous
whenever a room is unoccupied, i.e.

∑p
k=1 ak

ij = 0 for some i, j.
The final task for grouping targets is to make the relationship between vari-

ables a and x. The main difficulty in doing this is that x is defined for all n
targets, but a for only p prime targets. In order to resolve this problem, we
recall the integer variable z, as defined at the beginning of this section, and
consider the following linear constraints:

p∑

k=1

(ID)kak
ij =

n∑

k=1

kzk
ij ∀ i, j (24)

n∑

k=1

zk
ij ≤ 1 ∀ i, j (25)

q′∑

j=1

zu
ij ≤ xiu ∀ i, u (26)

where i, j and u run from 1 to m, 1 to q′ and 1 to n, respectively, and the
constant one-dimensional array (ID)k (k ∈ {1, 2, . . . , p}) contains a unique iden-
tifier (number from 1 to n) for each prime target. The equality (24) and inequal-
ity (25) basically perform the function: if the ith UAV’s jth room is occupied
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by the target with ID (ID)k, then zk
ij is enabled and subsequently xik is set to

1 by (26).
By putting all the aforementioned constraints together, H̃2 can be described

as follows:

Step 1. Sub-optimal partitioning: Consider an optimization problem F̃2, as
shown below, that solves for xij (xij = 1 if the jth target is assigned to the ith
UAV) to partition the underlying set of targets into m subsets Ti (i = 1, 2, . . . , m)
such that (i) each Ti contains at most q elements; (ii) the travelling cost Tj-to-Tk

for each j, k is minimized, where Tj or Tk is the starting position of the ith UAV
or belongs to Ti; (iii) each target is covered by exactly one UAV.

Step 2. Optimal path-planning: For each Ti, consider F̃E (see the remark below)
in order to obtain the optimal path of visiting all the targets contained in Ti by
the ith UAV.

F̃2: minimize r

subject to (10)–(15), (18)–(21), the left inequality of (22) and (23)–(26).

We do not further elaborate on the MILPs associated with the first step of H̃3,
in which the UAV’s return constraints are considered, and the second steps of
both H̃2 and H̃3 and their associated programs F̃E and F̃Eret, because all these
MILPs can be easily constructed using the aforementioned techniques. Instead,
we remark that the numbers of binary variables newly introduced to accommo-
date timing constraints for the first step and the second step of both algorithms
are mq′(p(p + 1)/2 + n) − mp(p − 1)/2 and 0, respectively, and the numbers of
newly added constraints are approximately mq′(p(p−1)+6)+mn+p and 2mp,
respectively. In the next section, we investigate via extensive numerical simula-
tions how much these added variables and constraints affect the performance of
the algorithms.

3 Numerical Simulations

We first present an introductory example showing how timing constraints change
the solution to a basic target assignment problem. Figure 3 shows an example
scenario and solution paths chosen when no timing constraints are considered.
The scenario consists of 3 UAVs, 4 non-prime targets, 5 prime targets, and both
the maximum number of targets and the maximum number of prime targets
visited by a single UAV are 3, i.e. m = 3, n = 9, p = 5, q = 3 and q′ = 3. The
scenario also contains five threats which are each marked as “x”. The threats
create a joint probabilistic risk distribution (contour lines in the figure) and the
risk is determined using the deterministic formulae found in [10]. In the figure,
ten contour lines representing the risks ranged from 0.1 to 1 are plotted for each
threat. The closer a line is to a threat source the higher the risk. The targets
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Fig. 3. Example solution paths (solid line for UAV 1, dashed line for UAV 2 and dotted
line for UAV 3) when no timing constraints are considered

labeled with #1, #2, #3, #4 and #9 are supposed to be prime targets which
are required to be visited by a UAV before 100 (min) after the mission starts,
but their associated timing constraints are neglected at this time.

Following the aforementioned procedure of creating a network of UAVs’ flying
routes, we identify nodes including the UAV starting positions, the target posi-
tion and the corner points of the smallest rectangles which cover the risky area
due to the threats. We then associate each segment (joining two distinct nodes)
with a cost weighting of 90% to the total risk (scaled to 1) along the segment
and 10% to the length (scaled to 1) of the segment, and subsequently compute
necessary travelling costs C0, C, C0 and C. Under the assumption that UAVs fly
at a constant speed of 2 (km/min) and an altitude of 2 (km) in the operational
range of [0, 200] × [0, 200] (km), algorithm H2 returns the solution paths shown
in Fig. 3. The first UAV first visits #1, then #8 and finally #9, the second UAV
visits #5, #6 and #7, and the third UAV #4, #3 and #2 in turn. As easily
noticed, two prime targets (#2 and #9) are visited after, not before, 100 (min).
However, the modified algorithm H̃2 accounting for the timing requirements re-
turns completely different solution paths, as shown in Fig. 4. This time, the first
UAV first visits #8, then #9 and finally #5, the second UAV visits #3, #1 and
#7, and the third UAV visits #4, #2 and #6 in turn. Note that every prime
target is visited within the required time window.

Next we proceed with investigating the effect of timing constraints on the total
computational time needed for executing H̃2 and H̃3. We first recall from the
results in [10] that H2 and H3 show the performance of yielding solutions within
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Fig. 5. The total computation times needed for executing �H2 (solid line) and �H3 (dot-
ted line) when m = 3 and n = 10

6 seconds on average as well as guaranteeing T/T∗ < 1.5 for up to m = 5, q = 4
and n = 20. As timing constraints may greatly decelerate the speed of finding
T∗, i.e. solving the problem exactly, we here especially focus on investigating the
computational performance of H̃2 and H̃3 versus various m, n and p. To this end,
for fixed m, n, p, q and q′ we create one hundred random scenarios with various
UAV starting positions (∈ X2 (km)), where Xh = [0, 200] × [0, 200] × h (km),
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(b) m = 5, n = 20 and p = 5
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(c) m = 5, n = 20 and p = 6

Fig. 6. The total computation times needed for executing �H2 (solid line) and �H3 (dot-
ted line) when m = 5 and n = 20; 100+ denotes the number greater or equal to
100

the target positions (∈ X2), the number of threats (∈ {5, 6, . . . , 10}), the threat
locations (∈ X0) and the threat ranges (7 or 25 (km)). We again assume that
UAVs fly at a constant speed of 2 (km/min), and every prime target must be
visited within 100 (min) from the mission starting. All numerical tests are done
with a personal computer equipped with an Intel(R) Pentium 4 CPU 3.40GHz.

Figure 5(a) shows the results when the scenarios consist of 3 UAVs, 10 non-
prime targets, no prime target and the maximum number of targets visited
by a single UAV set to 4. The dotted (respectively, solid) line shows the total
computational times when the UAV’s return constraint is (respectively, not)
considered. Note that all the computations are done in 0.6 (sec). However, when
the number of prime targets gets increased to 6 and the maximum number of
prime targets visited by a single UAV is set to 2, one can see several peaks,
as shown in Fig. 5(b). Although many cases (93%) are handled within less than
10 (sec), the figure shows that timing constraints can greatly complicate the basic
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assignment problem. Similar observations follow from Fig. 6. As expected, for the
cases in which 5 UAVs cover 20 targets with no timing constraints and each UAV
is restricted to visit at most 4 targets, the proposed algorithms manage to deal
with all the cases within 6 (sec) on average, as depicted in Fig. 6(a). However,
when 5 of the 20 targets become prime targets and each UAV is further restricted
to visit at most two prime targets, Fig. 6(b) suggests that the computational
burden dramatically increases for several cases. The situation becomes worse
when the number of prime targets gets increased to 6, as seen in Fig. 6(c).
However, in spite of the presence of such unpleasant scenarios, we note that for
more than 90% of the tested cases, H̃2 and H̃3 return solutions within 20 (sec)
when the sum of the numbers of UAVs and targets (including prime targets)
is less than or equal to 25, the maximum number of targets visited by a single
UAV is less than or equal to 4 and the number of prime targets is less than or
equal to 5 or 6 depending on the numbers of UAVs and targets.

4 Concluding Remarks

We have considered the UAV-to-target assignment problem especially focused
on the presence of time-critical (prime) targets. Our main challenges (contribu-
tions) in doing this are to keep the previously guaranteed theoretical bounds (16)
and (17) and to allow only a slight increase of computational cost after including
time-critical targets. We analytically show that by means of adding several in-
teger linear constraints to the previous MILP formulation, the bounds still hold
under a mild condition (q′ < 3). In the numerical experiments, for more than
90% of the tested cases the newly proposed algorithms returned solutions within
20 (sec) when the sum of the numbers of UAVs and targets (including prime
targets) is less than or equal to 25, the maximum number of targets visited by
a single UAV is less than or equal to 4 and the number of prime targets is less
than or equal to 5 or 6 depending on the numbers of UAVs and targets.
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Abstract. A set of objects of interest is to be sequentially inspected by
a Micro Aerial Vehicle (MAV) equipped with a camera. Upon arriving
at an object of interest, an image of the object is sent to a human op-
erator, who, upon inspecting the image, sends his feedback to the MAV.
The feedback from the operator may consist of the pose angle of the
object and whether he has seen any distinguishing features of the object.
Upon receiving the feedback, the MAV uses this information to decide
whether it should perform a secondary inspection of the object of interest
or continue to the next object. A secondary inspection has a reward (or
value or information gain) that is dependent on the operator’s feedback.
There is an associated cost of reinspection and it depends on the delay
of the operator’s feedback. It seems reasonable to let the MAV loiter for
a while near the most recently inspected object of interest so that it ex-
pends a small amount of endurance from the reserve after receiving the
feedback from the operator. The objective is to increase the information
and hence, the total expected reward about the set of objects of interest.
Since the endurance of the MAVs is limited, the loiter time near each
object of interest must be carefully determined. This paper addresses
the determination of the optimal loiter time through the use of Stochas-
tic dynamic programming. Numerical results are presented that show the
optimal loiter time is a function of the maximum expected operator delay.

1 Introduction

The following inspection scenario is considered. A set of n objects of interest Oi,
i = 1, ..., n, is sequentially visited by an MAV equipped with a camera. Upon ar-
riving at an object of interest, an image of the object is sent to a human operator
for classification. The operator, upon inspecting the image, sends his feedback,
e.g., the object’s pose angle and whether he has seen a distinguishing feature in
the object’s image, to the MAV. When the operator’s feedback is received, the
MAV must make a decision whether it should revisit the object for a secondary
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inspection. The information gain (reward) associated with a secondary inspection
is dependent on the feedback from the operator. Each MAV has a finite endurance
reserve and a revisit of an object requires expenditure from the reserve. This ex-
penditure is a function of the operator’s delay and the action that the MAV decides
to take. The operator functions as a sensor/classifier in the inspection loop and
the MAV decides on the course of action. The objective of the decision making is
to maximize the total expected reward given the constraints on the endurance.

The MAV makes decisions sequentially based on the information available to
it - operator’s delay and feedback about the object, the number of objects left to
be visited by the MAV, and the current reserve. While the operator’s delay, τi,
associated with the ith object is a random variable (whose probability density
function (p. d. f) f(τi) is known), we emphasize that the realized value of this
random variable may only be known at the time of decision making. We do
not allow for the possibility of the MAV revisiting an object more than once or
revisiting an object after it has decided to go to the next object in the sequence.
At the time of making a decision, the actions that we allow the MAVs to take are
the following: loiter around the object; move onto the next object; or revisit the
object. Associated with the ith object, there is a continuous decision variable,
ui, which indicates the maximum allowable loitering time and a binary decision
variable, vi, which indicates whether the object should be revisited.

The motivation for the introduction of loitering is as follows: If the MAV were
to move away from the object after the first visit, then the time (and hence,
expenditure of the reserve) for a revisit is at least twice the operator’s delay; by
allowing the MAV to loiter near the object, the time to get back is shortened. If
the operator’s feedback is received by the MAV before the maximum allowable
loiter time, only then does the MAV take a decision about revisiting the object;
otherwise, it will go to the next object in the sequence. Since the objective is to
increase the information about the set of objects of interest and since the MAV’s
endurance reserve c1 is limited, the maximum allowable loiter time associated
with the objects must be carefully determined.

The paper is organized as follows. In Section 2, a stochastic optimal control
problem which models the class of decision scenarios at hand is formulated. In
Section 3, the method of Dynamic Programming is brought to bear on the se-
quential decision problem and numerical results corroborating the methodology
presented for the decision problems considered in this paper are provided. In
Section 4, a generalization of the present formulation is explored. Conclusions
are drawn in Section 5.

We use the following notation throughout the paper:

i Index of stage in a Stochastic Dynamic Program (SDP)
p a priori probability
ri Running reward for the ith stage
ui Decision variable at the ith stage
τi Delay in communicating the first observation
f(τi) Probability density function (p.d.f) of the operator delay τi

τ0 Fixed communication delay
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2 Stochastic Optimal Control

The Dynamic Program (DP) has n stages and one state variable, ci - the en-
durance reserve on arrival to Oi. The operator’s delay at Oi, 0 ≤ τi ≤ τmax is
a random variable whose realization may not be known at the time of making
a decision. The p.d.f. of τi is f(τi) and is assumed known. The decision/control
variable is ui, the maximal loiter or waiting time at Oi.
The nonlinear dynamics are driven by the control variable u and by the random
variable τ :

ci+1 = ci − min (ui, τi) i = 1, ..., n (1)

The initial reserve, c1, is known. The control variable is constrained according
to

0 ≤ ui ≤ min(ci, τmax) (2)

and the random variable τi is characterized by its p.d.f. f(τ).

The running payoff is

ri(ui, τi) =

{
1 if τi < ui

0 otherwise
(3)

The payoff function

J(u1, ..., un; c1) = Eτ1,...,τn (
n∑

i=1

ri(ui, τi) ) (4)

The optimal strategy is a state feedback control law u∗
i (ci), i = 1, ..., n.

3 Dynamic Programming Recursion

The stochastic optimal control problem (1)-(4) is solved using the method of
Dynamic Programming (DP). We emphasize that the realization of the random
variable may not be known at the time of making a decision.
We shall require the following definition:

p(u) ≡
∫ τmax

u

f(τ)dτ

The term p(ui) is the probability that the MAV comes out empty handed, that
is, the MAV leaves the vicinity of Oi after waiting for a time ui without receiving
the operator’s feedback.

The value function Vi(ci) is the maximal expected reward at the time of
making a decision concerning Oi, given the endurance reserve of the MAV at Oi

is ci.
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The DP recursion is established as follows: For each ui ∈ [0, min{ci, τmax}],

Vi(ci|ui, τi) = ri(ui, τi) + Vi+1(ci − min(ui, τi))
⇒ Vi(ci|ui) = Eτi[ri(ui, τi) + Vi+1(ci − min(ui, τi))]

= [0 + Vi+1(ci − ui)]p(ui) +
∫ ui

0
[1 + Vi+1(ci − τ)]f(τ)dτ

Vi(ci) = max
0≤ui≤min (ci,τmax)

Eτi ( ri(ui, τi) + Vi+1(ci+1(ci, ui, τi)) )

= max
0≤ui≤min (ci,τmax)

{[0 + Vi+1(ci − ui)]p(ui) +
∫ ui

0
[1 + Vi+1(ci − τi)]f(τi)dτi}

= max
0≤ui≤min (ci,τmax)

[p(ui)Vi+1(ci − ui) + 1 − p(ui) +
∫ ui

0
Vi+1(ci − τi)f(τi)dτi]

Hence, the DP recursion is

Vi(ci)=1+ max
0≤ui≤min (ci,τmax)

[p(ui)Vi+1(ci−ui)−p(ui)+
� ui

0
Vi+1(ci−τi)f(τ )dτ ] (5)

Assuming that the value function, Vi+1, is known, the above recursion allows
one to compute the value function Vi. The optimal control,

u∗
i (ci)=arg max

0≤min ci,τmax
[p(ui)Vi+1(ci−ui)−p(ui)+

∫ ui

0
Vi+1(ci − τi)f(τ)dτ ].(6)

For one to begin the recursion, the value function Vn must be specified. This is
presented in the next subsection.

3.1 The Boundary Condition

Obviously, at time n

u∗
n(cn) = cn

Hence, if cn > τmax, rn = 1 and therefore Vn(cn) = 1. If, however, cn ≤ τmax,
then

Vn(cn) = Eτn ( rn(cn, τn) )
= 0 · p(cn) + 1 · (1 − p(cn))
= 1 − p(cn)

Thus, the boundary condition is

Vn(cn) =

{
1 if cn > τmax

1 − p(cn) if 0 ≤ cn ≤ τmax

(7)
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3.2 Computing Suboptimal Value Functions

In the examination of sensitivity of the value function to a perturbation in the
probability distribution of the operator’s feedback delay, one is interested in the
computation of suboptimal value functions. Let Ui(c) be the sub-optimal value
function for a given strategy. Let fp(τ) denote the perturbed distribution and
τ̃max denote the maximum value of the corresponding delay. Let p̃(c) denote the
integral ∫ τ̃max

c

fp(τ)dτ.

The function Ui(c) may be computed recursively as follows:

Un(c) =

{
1 − p̃(c) c ∈ [0, τ̃max],
1 c ≥ τ̃max

and

Ui(c|u∗
i (c)) = 1 + [p̃(u∗

i )Ui+1(ci − u∗
i ) − p̃(u∗

i ) +
∫ u∗

i

0
Ui+1(ci − τi)fp(τ)dτ ].

3.3 Numerical Implementation

For the purposes of implementation, we discretize the cumulative density func-
tion, fc(τ)(:=

∫ τ

0 f(η)dη) and deal with the corresponding discrete probability
density function. We specifically assume the following: the maximum reserve
cmax and the maximum number of objects of interest (Nmax) are known a priori.
Further, we assume the reserve to be an integer multiple of a fixed increment
of reserve, Δ, i.e., c = kΔ for some k ≥ 0, and that the fixed delay, τ0 and the
delay, τ are also integral multiples of a fixed increment of reserve, i.e., τ = lΔ for
some integral l, l0 ≥ 0. Since the delay can only take discrete values (which are
integral multiples of Δ), one may approximate the continuous p.d.f by a discrete
p.d.f. for f(τ) as: P (τ = lΔ) = pl and hence,

f(τ) =
∞∑

j=1

pjδ(τ − jΔ),

where δ(k) = 1 if k = 0 and is 0 otherwise.
The value function Vn(kΔ) may be readily computed from the discretization

of the cumulative distribution function as follows:

Vn(kΔ) =
∑

l≤k

pl.

Clearly, if lΔ > τmax = DmaxΔ, then Vn(lΔ) = 1. The optimal decision, u∗
n is

specified by the following equation:

u∗
n(kΔ) = kΔ.
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The recursive equations for the value functions, Vi(kΔ), i < n, can be expressed
as follows:

Vi(kΔ) = 1 + min
0≤j≤min{k,Dmax}

(
∑

l>j

Vi+1((k − j)Δ) −
∑

l>j

pl +
∑

l≤j

Vi+1(k − l)pl).

The corresponding optimal decisions are:

u∗
i (kΔ)=Δ arg min

0≤j≤min{k,Dmax}
(
∑

l>j

Vi+1((k − j)Δ)−
∑

l>j

pl +
∑

l≤j

Vi+1(k − l)pl).

Real-time Implementation: Once the Vi(c) and u∗
i (c) is computed for each

c ∈ [0, Cmax] and i = 1, . . . , Nmax, it is stored as two matrices in the MAV’s
on-board processor. From the knowledge of c and the number of objects to visit,
one can compute the relevant optimal decision (waiting time) from the table.
If the operator does not provide any feedback before the optimal waiting time,
then the MAV moves onto the next object; if he does provide feedback, it will
revisit the object.

3.4 Numerical Results

We have considered the following case: The maximum number, Nmax of objects
to visit is 20, the maximum reserve, cmax = 1000 units, the maximum delay is
200 units and Δ = 1 unit. The operator delay is initially assumed to be uniform.
The corresponding value functions and optimal decisions are shown in Figures 1
and 2.

From Figure 1, we can see that the expected number of revisits increases
monotonically with the reserve and the number of objects to visit. From Fig-
ure 2, for any fixed reserve (smaller than the maximum operator’s feedback
delay), the optimal wait time decreases with the number of the objects to visit.
This is consistent with our intuition. In particular if the number of objects is
arbitrarily large, then the optimal waiting time is the minimum delay of 1 unit
and the maximum number of revisits that are possible is c if the initial reserve
is c units.

In order to examine the sensitivity of the optimal strategy to the distribu-
tion of the operator’s feedback delay, we perturbed the distribution. When we
refer to a sub-optimal value function, we decide on a revisit based on the op-
timal waiting time obtained when the operator’s delay is uniformly distributed
between 1 and 200 seconds. An optimal value function will correspond to the
optimal waiting time associated with the perturbed distribution. We considered
four perturbed distributions and associated with each perturbed distribution
there is a sub-optimal revisit function and a sub-optimal value function. The
case when the operator’s feedback delay is randomly (as opposed to uniformly)
distributed between 1 and 200 units of reserve shows little difference with the
optimal (uniform) revisit and value functions.
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Fig. 1. Value function for uniform operator delay

Three other cases with varying degrees of randomness in operator delay were
tested and similar results were found. The trends remained the same with mi-
nor variations in the expected number of revisits and the optimal waiting time.
While the overall performance (expected number of revisits) is sensitive to the
maximum operator delay assumed in the derivation of the optimal decisions, it
is not sensitive to the exact distribution of the delay. In particular, if the maxi-
mum delay was underestimated, the performance deteriorated (i.e., the expected
number of revisits was significantly smaller than the case corresponding to the
knowledge of the exact value of the maximum delay) and if the maximum delay
was overestimated, the degradation in the performance was insignificant. Essen-
tially, it is better to overestimate the maximum value of the operator’s feedback
delay as opposed to underestimating it.

4 Generalization: Including an Endurance Cost When
Revisiting an Object

Suppose there are L different ways to revisit an object. Suppose there is an
overhead cost of τij units of reserve when the ith object is revisited in the jth way.
Let vij be a binary variable that takes a value 1 if the ith object is revisited in the
jth way and is 0 otherwise. Then, the governing constraints may be expressed as:
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Fig. 2. Optimal wait for uniform operator delay

ci+1 = ci − min(ui, τi) −
L∑

j=1

τijvij (8)

0 ≤ ci − min(ui, τi) −
L∑

j=1

τijvij , (9)

L∑

j=1

vij =

{
1 if ui ≥ τi and τi ≤ ci − minj τij

0 otherwise.
(10)

The last constraint indicates that a MAV will always revisit an object in ex-
actly one way if the operator’s feedback delay is smaller than the waiting time
associated with the object provided it has sufficient reserve and will not revisit
otherwise.

In plain words, the problem may be stated as follows: The MAV can revisit
objects after it receives a feedback from the operator in one of L ways. The MAV
does not revisit if the operator does not provide his feedback within the optimal
waiting time associated with each object in the specified sequence. A revisit of
the ith object in the jth way fetches a reward or payoff of βij . At the time of
receiving the feedback, if it happens to be smaller than the optimal waiting time,
the MAV must decide which of the L following ways it should revisit so as to
maximize the total expected payoff.
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One can think of a different waiting time for each way of revisiting the object;
however, for simplicity, we do not consider such a scheme in this paper.

Mathematically, the payoff for visiting the ith object in the kth way is feasible
only if the operator’s feedback delay is smaller than the waiting time set for that
object and there is sufficient reserve to revisit the object of interest. Hence,

ri(ui, τi|vik = 1) =

{
βik if τi ≤ min{ci − τikvik, ui, τmax}
0 otherwise.

We shall assume, henceforth, the following: βi1 > βi2 > . . . > βiL and corre-
spondingly, τi1 > τi2 > . . . > τiL. This assumption implies that to get a higher
payoff, one must pay a higher overhead cost (reserve).

Let

J = Eτ1,...,τn [
n∑

i=1

L∑

j=1

ri(ui, τi|vij = 1)vij︸ ︷︷ ︸
ri(ui,τi,vij)

].

The term J indicates the total expected payoff for any given set of decisions,
ui, vij , j = 1, . . . , L, i = 1, . . . , n. The objective of the optimization is to maxi-
mize the expected payoff, J , over the possible set of decisions, ui, i = 1, . . . , n
and vij , j = 1, . . . , L, i = 1, . . . , n.

Let

Vi(ci) := max
uk,vkj , i≤k≤n, 1≤j≤L

Eτi,...,τn [
n∑

k=i

L∑

j=1

rk(uk, τk, vik)]. (11)

One can then use DP to get the following recursion:
Vi(ci|ui, τi) =

{
Vi+1(ci − ui) if τi > min{ui, ci − τiL},

max1≤j≤L{βij+Vi+1(ci−τij − τi) : ci−τi−τij ≥ 0} otherwise.

Let Dij := {τ : j = argmax1≤k≤L{βij + Vi+1(ci − τik − τi) : ci − τi − τik ≥ 0}}.
Therefore,

Vi(ci|ui) = Eτ (Vi(ci|ui, τi))

=
∫ τmax

min(ui,ci−τiL)
Vi+1(ci − ui)f(τ)dτ +

L∑

j=1

∫

τ∈Dij

(βij + Vi+1(ci − τij − τi))f(τ)dτ.

Hence,

Vi(ci) = max
ui∈(0,min(ci,τmax))

Vi(ci|ui).
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The boundary condition that completes the recursion and enables the deter-
mination of all the value functions. Clearly, the waiting time if there is only one
object to visit is equal to the reserve—u∗

n(cn) = cn and correspondingly:

Vn(cn|τn) =

{
βnj τn ∈ (cn − τn,j−1, cn − τnj ]
0 τn > cn − τnL.

Let τn,0 = cn and

Vn(cn) =
L∑

j=1

∫ cn−τn,j

cn−τn,j−1

βnjf(τ)dτ.

Once the value functions are computed, the computation of optimal waiting
time is straight forward:

u∗
i (ci) = argmaxui∈(0,min(ci,τmax))Vi(ci|ui), i = 1, . . . , n − 1,

u∗
n(cn) = cn.

The optimal decisions to revisit are as follows:

v∗ij(ci, τi) =

{
1 if τi ∈ Dij(ci, u

∗
i (ci)),

0 otherwise.

5 Conclusion

We have observed in numerical simulations that the performance (i.e., the ex-
pected number of revisits) of the sequential inspection decision system is sensitive
to the assumed value of the maximum operator delay, but not sensitive to the ac-
tual distribution of the delay. The structure of the strategy is reasonably simple
for its actual real-time implementation on the MAVs: We store the optimal wait
time as a function of the reserve and the number of objects to visit and based on
the operator’s delay, decide on the future course of action. If the operator’s delay
is smaller than the optimal wait time associated with the MAV’s reserve and the
number of objects to revisit, an appropriate action for revisiting the object is
taken; otherwise, it is optimal for the MAV to continue to the next object in the
sequence. The optimal loiter time comes from solving the stochastic dynamic
programming problem.
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Abstract. We study the evolution of distributed multi-agent search sys-
tems where the autonomous agents may cooperate among each other,
and/or with a human operator, in order to achieve the system’s objective.
The cooperation is facilitated by means of information sharing among
the autonomous agents and/or human operator, which has the purpose
of improving the effectiveness of the autonomous agents. The evolution
of cooperative systems is modeled using discrete-state, continuous-time
Markov chains, and a technique for measuring and quantification of co-
operation within such systems is proposed.
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1 Introduction

In this chapter we study the evolution of distributed systems whose constituents,
or autonomous agents, may cooperate among each other, and/or with human
operator, in order to achieve the system’s objective. The cooperation is facilitated
by means of information sharing among the autonomous agents and/or human
operator, which has the purpose of improving the effectiveness of the autonomous
agents. Although the presented approach and the analysis are quite general, we
focus on a particular type of cooperative distributed system, namely, a search
system.

The present endeavor is a continuation of the ongoing research efforts of the
authors [1,2], where the Markov chain framework was applied to modeling of
two types of cooperative search systems, with the main emphasis being placed
on their asymptotical properties. The objective of the present work is twofold:
firstly, we extend and apply the techniques introduced in [1,2] to modeling and
analysis of cooperative search systems where the autonomous agents are as-
sisted/controlled by human operators. Secondly, we develop an approach to anal-
ysis and quantification of the degree of cooperation within distributed systems,
i.e., to answering the question “just how cooperative is the given system?”
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The chapter is organized as follows. In the next section we introduce several
types of cooperative systems, where the autonomous searchers may cooperate
with each other and/or human operator by sharing information. The systems are
modeled as discrete-state continuous-time Markov chains, and the correspond-
ing sets of Chapman-Kolmogorov differential equations are derived. Section 3
presents numerical results on the models considered in Section 2. Finally, Sec-
tion 4 discusses an approach to measuring the degree of cooperation within a
distributed system, and illustrates it on the examples of the search systems dis-
cussed in this chapter.

2 Modeling of Cooperative Systems: A Search Mission
Example

The particular type of distributed cooperative system that we focus on in this
work is the search system, where N autonomous agents, or searchers, are given
the objective of discovering (detecting) a certain kind of objects of interest, or
targets.

In the simplest case, each of N searchers may assume only two states: search
or detect (see Figure 1). Once a searcher reaches the detect state (i.e., detects a
target), it never returns to state search (i.e., never resumes the search again).
Such a setup is common to search-and-rescue missions, where, upon detecting a
target searchers would try to perform a rescue operation instead of continuing the
search. The effectiveness of individual searchers is characterized by the detection
rate θ, i.e. the probability of detecting a target within time interval Δt:

P
{
searcher i detects a target during time Δt

}
= θΔt + o(Δt), i = 1, . . . , N.

(1)

Then, the conditional probability of target detection at time t, given that the
searcher is in the search state, has an exponential distribution with mean 1/θ:

f(t; θ) = 1 − e−θt, t ≥ 0. (2)

Cooperation within the search system is facilitated via cueing, or information
sharing among the searchers, and has the purpose of increasing their detection
capabilities. The informational content of the cueing signals is not important in
the presented framework; instead, we are interested in the degree by which cueing
impacts the search capabilities of individual agents in a cooperative system.

Below we discuss several cooperative search systems with various forms of
cueing, which serves as a mechanism to achieve a better system performance.

2.1 Measures of Effectiveness

One of the important measures of effectiveness (MOE) of a cooperative search
system is the probability of detection PD(t)

PD(t) = P
{
search mission is completed by time t

}

= P
{
all N searchers have detected targets by time t

}
(3)
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Search Detect

Fig. 1. States of an autonomous searcher

Oftentimes it is preferable to operate with a “single-number” characteristic that
describes the performance of a search system. Such a MOE, employed in this
work, is the time to engage Tα, or the time needed for all N searchers to detect
and engage targets with probability α ∈ (0, 1):

Tα = P−1
D (α).

In our studies, the parameter α is taken to be α = 0.95, which defines T0.95 as
the time by which the search mission is completed with 95% probability.

2.2 A Basic Cooperative Search Model

We start with the simplest search system, where the autonomous agents perform
search without assistance and/or control of a human operator. It is assumed
that upon detecting a target and transitioning to state detect, the searcher in-
stantaneously cues all other searchers that are still in the search state, thereby
potentially increasing their detection capabilities. Namely, it is assumed that the
detection rates may change values in time as

θ ≡ θ0 → θ1 → · · · → θN−1, (4)

where θk is the detection rate common to N − k searchers that are in state
search, and θ0 is the initial “uncued” detection rate. It is natural to presume
that cooperation in the form of cueing generally leads to improvement of search
capabilities: θk ≥ θ, 1 ≤ k ≤ N − 1.

By introducing the traditional assumptions of independence of target detec-
tions on non-overlapping time intervals etc., one can model the outlined coopera-
tive system as a continuous-time discrete-state Markov chain, or, more precisely,
as a death process (see, among others, [3,5]). The states of the system can be
designated by the number k of searchers that are in the state detect at time t,
so that Sik is a state in which there are k searchers that made detection, and
i = N − k agents that are still searching. Noting that there are

(
N
k

)
different

states Sik, and defining probabilities Pik(t) as

Pik(t) = P
{
system is in one of the states Sik at time t

}
,

one can write the system of backward Chapman-Kolmogorov ODEs governing
these probabilities:

d
dt

Pik(t) = −iθkPik(t) + kθk−1Pi+1,k−1(t), i + k = N. (5)
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Noting that index i can be dropped due to the one-to-one mapping i = N − k,
system (5) can be rewritten as

d
dt

Pk(t) = −(N − k) θkPk(t) + kθk−1Pk−1(t), k = 0, . . . , N. (6)

Equations (6) have a simple interpretation: the probability of the system being in
a state Sk decreases at the rate (N −k)θkPk(t) as each of N −k active searchers
may detect a target and turn the system into a state Sk+1. On the other hand,
probability Pk(t) increases at the rate kθk−1Pk−1(t) as there are exactly

(
k
1

)
= k

states Sk−1 that may lead to a (given) state Sk.1 Initial conditions for equations
(6) reflect the fact that at t = 0 the system is in the state S0 with probability 1:

Pk(0) = δk0, k = 0, . . . , N, (7)

where δij is the Kroneker delta. Using (6) and (7) it is straightforward to verify
that the probabilities Pk(t) satisfy the identity

N∑

k=0

(
N

k

)
Pk(t) = 1, t ≥ 0. (8)

Equations of type (6) are well known in the area of queueing systems, where
they are usually solved via introduction of the generating function

G(z, t) =
∑

n

Pn(t)zn,

whereby the probabilities Pn(t) can be reconstructed by differentiating G(z, t)
with respect to z. In the context of cooperative systems, we are primarily in-
terested in the probability PN (t) of mission completion by time t, and therefore
resort to direct application of the Laplace transform [6] to equations (6). As-
suming without loss of generality that the eigenvalues of the matrix of system
(6) are all different:

(N − i)θi �= (N − j)θj , 0 ≤ i < j ≤ N − 1, (9)

a closed-form solution of (6) is obtained in the form

Pk(t) =
k∑

i=0

k! θ0 · · · θk−1
k∏

j=0
j �=i

[
(N − j)θj − (N − i)θi

] e−(N−i)θit, k = 0, . . . , N. (10)

1 Indeed, let Ak = {i1, . . . , ik} be any set containing k inactive searchers. Trivially, Ak

can be represented in k different ways as Ak = Aj
k−1 ∪ {ij}, where Aj

k−1 is a subset
of k − 1 inactive searchers: Aj

k−1 = Ak\{ij} ⊂ Ak, j = 1, . . . , k. Thus, a state Sk

with k inactive searchers can only be obtained from exactly k states Sk−1 with k −1
inactive searchers.
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2.3 A Coordinated Search Model

In this subsection we consider a search system where N autonomous search
agents are assisted by a human operator. It is assumed that a human operator
conducts a search for targets independently of the autonomous searchers, and,
upon discovery of appropriate objects of interest, immediately cues one of the
searchers. In effect, the operator has two states: search and detect & cue (see
Figure 2), where the transition search → detect & cue occurs at rate λ, which
is the operator’s search rate. After sending a cue to one of the autonomous
searchers, the operator immediately resumes search, which is denoted by the
infinite transition rate from the state detect & cue to the state search.

The states and transition rates for the autonomous searchers are shown in
the right portion of Figure 2. Each searcher has three possible states, search
uncued, search cued, and detect, where the first two states refer to searching
before and after receiving a cue from the human operator, respectively. The
transition rate from search uncued to search cued depends on the detection rate
λ of the operator. It is assumed that the operator will cue only one searcher at
a time, and that the cues are equally distributed to the uncued searches. This
amounts to the transition rate from search uncued to search cued being equal to
λ/i, where i is the number of “uncued” autonomous searchers, i.e., the searchers
in the state search uncued. After a searcher receives a cue, its detection rate
changes from the initial “uncued” rate θ to the “cued” rate θc. The autonomous
searchers also have the ability to search independently, thus they can make a
direct transition from the search uncued to the detect state at rate θ. It is natural
to assume that θc ≥ θ.

Similarly to the exposition of Section 2.2, let Sijk be a state in which there are
i searchers in the state search uncued, j searchers in the state search cued, and k
searchers in the state detect, i+j+k = N . It is easy to see that for a given triple
(i, j, k) there are

(
N

i j k

)
= N !

i! j! k! different states Sijk . Further, it is important

to note that there are
(
N+3−1

N

)
= (N+2)(N+1)

2 different triplets (i, j, k) such that
i+ j+k = N . By defining the probability of the search system occupying a state
Sijk at time t as Pijk(t), one can describe the corresponding Markov model
with a finite number of states via the following system of Chapman-Kolmogorov
equations:

d
dt

Pijk(t) = − δ̄kN

[
iθ + jθc + δ̄i0λ

]
Pijk(t)

+ δ̄iN δ̄j0

[
jλ

i + 1

]
Pi+1, j−1, k(t) + δ̄iN δ̄k0

[
kθ

]
Pi+1, j, k−1(t) (11)

+ δ̄jN δ̄k0
[
kθc

]
Pi, j+1, k−1(t), i + j + k = N,

where factors δ̄ij represent the negation of the Kroneker delta, δ̄ij = 1 − δij ,
and have the obvious function of handling the extreme cases of i, j, or k being
equal to 0 or N . Let us present the interpretation of equations (11). In the
most general case, a state Sijk with i uncued searchers, j cued searchers, and k
inactive searchers can be obtained
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Fig. 2. State diagrams for the human operator (left) and autonomous searcher (right)
in the coordinated search system

– from a state Si+1,j−1,k due to a transition search uncued → search cued, i.e.
when one of the i + 1 uncued searchers receives a cueing signal from the
operator. Since each of the i + 1 uncued searchers is being cued at rate λ

i+1 ,
and there are j =

(
j
1

)
states Si+1,j−1,k that can result in a given state Sijk ,

transitions search uncued → search cued increase the probability Pijk(t) at
the rate jλ

i+1Pi+1,j−1,k(t). This amounts to the second term in equation (11).
– from a state Si+1,j,k−1 due to a transition search uncued → detect, i.e.,

when one of the i + 1 uncued searchers detects a target without cue from
the operator. The search rate of an uncued agent is θ, and there are k =

(
k
1

)

different states Si+1,j,k−1 that can lead to a given state Sijk . Thus, due to
transitions search uncued → Detect the probability Pijk(t) increases at the
rate kθPi+1,j,k−1(t), which amounts to the third term in (11).

– from a state Si,j+1,k−1 due to a transition search cued → detect, when one
of the j + 1 cued searchers detects a target. The search rate of a cued agent
is θc, and there are k =

(
k
1

)
different actual states Si,j+1,k−1 that can lead

to a given state Sijk . Thus, due to transitions search cued → Detect the
probability Pijk(t) increases at the rate kθcPi,j+1,k−1(t), which amounts to
the fourth term in (11).

– finally, the first term in the right-hand side of (11) accounts for the possibility
of transition from the given state Sijk to states Si−1,j,k+1, Si,j−1,k+1, and
Si−1,j+1,k correspondingly.

At t = 0 the system is in the state SN00, thus the initial conditions for equations
(11) are

Pijk = δiN , i + j + K = N, (12)

and, similarly to (8), solutions of (11) satisfy the identity

∑

j+j+k=N
i, j, k ≥ 0

(
N

i j k

)
Pijk(t) = 1, t ≥ 0. (13)

Application of the Laplace transform method to equations (11) leads to unwieldy
expressions for the state probabilities Pijk(t). Thus, we employ an alternative
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procedure to derive the solution of equations (11) by representing them in matrix
form, with a lower-triangular matrix. A lower-triangular form of equations (11)
is obtained by introducing the notation Pijk(t) = P̃�(t), where the index � runs
from 0 to L = (N+2)(N+1)

2 − 1 = N(N+3)
2 and is determined by the indices i, j,

and k as

� =
j+k−1∑

r=0

(r + 1) + k =
(j + k)(j + k + 1)

2
+ k for all 0 ≤ j + k ≤ N, (14)

with the inverse relations given by
⎛

⎝
i
j
k

⎞

⎠ =

⎛

⎝
N − �

1
2�(� + 3) − �
� − 1

2�(� + 1)

⎞

⎠ , where � =
⌊

−1 +
√

1 + 8�

2

⌋
. (15)

The above relation between Pijk(t) and P̃�(t) can be explicitly enumerated as

P̃0(t) = PN00(t), P̃5(t) = PN−2,0,2(t),

P̃1(t) = PN−1,1,0(t), · · ·
P̃2(t) = PN−1,0,1(t), · · ·
P̃3(t) = PN−2,2,0(t), P̃L−1(t) = P0,1,N−1(t),

P̃4(t) = PN−2,1,1(t), P̃L(t) = P0,0,N (t).

It is easy to see that such a correspondence between Pijk(t) and P̃�(t) allows one
to represent equations (11) in the matrix form

d
dt

P̃ = MP̃, (16)

where the matrix M ∈ R
(L+1)×(L+1) is lower-triangular. Similarly to (7), the

initial conditions for the above system are formulated as

P̃�(0) = δ�0, 0 ≤ � ≤ L. (17)

Then, the solution to the Cauchy problem (16)–(17) has the form

P̃�(t) =
�∑

i=0

ai�e
miit, � = 0, . . . , L, (18)

where the coefficients ai� are determined in a recursive manner

ai� =
�−1∑

j=i

m�j aij

mii − m��
, i < �, (19a)

aii = −
i−1∑

j=0

aji, a00 = P̃0(0) = 1. (19b)
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Throughout this section it is assumed that the eigenvalues of the matrix M are
all different:

iθu + jθc + δ̄i0λ �= i′θu + j′θc + δ̄i′0λ for all 0 ≤ i+ j ≤ N and 0 ≤ i′+ j′ ≤ N.

The exact solution (18)–(19) of the governing equations (11) allows for a de-
tailed analysis of the cooperative search system. For example, one can easily
deduce the expected time TN needed for all N searchers to engage targets,
TN =

∑L−1
i=0 aiN/mii, and so on.

2.4 Coordinated Cooperative Search Model

Here we consider a generalization of the search systems presented in Sections 2.2
and 2.3, with the autonomous searchers being capable of receiving cues from an
operator as well as sending cues to each other upon target detection. Similarly
to the coordinated search model of Section 2.3, the autonomous searchers have
three states, search uncued, search cued, and detect (see Figure 3). The states
search uncued and search cued refer to the autonomous searcher conducting
search before and after receiving a cue from the human operator. Let i, j, and
k denote the number of autonomous searchers in states search uncued, search
cued, and detect, respectively. Then, the detection rate of each of i searchers in
state search uncued is equal to θk, and detection rate of the j searchers in state
search cued equals θc (Figure 3). In other words, the autonomous searchers in
state search uncued cooperate via cueing, as described in Section 2.2; in addition,
a searcher in state search uncued may receive a cue from the operator, which
causes the searcher’s transition into state search cued and changes its detection
rate from θk to θc. It is assumed that the informational content of operator’s cue
is such that θc is significantly greater than θk for any k = 0, . . . , N −1. However,
this improvement in the search rate is local in that it does not affect the rates
of other searchers: the detection rate of searchers in state search uncued changes
from θk to θk+1 only when one of the searchers detects a target and transitions
to state detect. The detection rate θc of searchers in state search cued, however,
does not change. As in the coordinated search model (Section 2.3), the operator
distributes cues at rate λ, thus transition rate from state search uncued to state
search cued is λ/i.

Such a dynamics of detection rates implies that the information provided
by the operator to autonomous searchers is indeed valuable, but may be not
completely accurate: the searcher is able to detect a target much faster, but the
system is able to benefit from this (through an improvement of the detection
rates of the remaining searchers) only after an actual detection occurs.

Defining the states Sijk with the corresponding probabilities Pijk in the same
way as above, the Chapman-Kolmogorov equations for the described coordinated
cooperative search system can be written in the form
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Fig. 3. State diagram for autonomous searchers in the coordinated cooperative search
system

d
dt

Pijk(t) = − iθkPijk(t) + kθk−1Pi+1,j,k−1(t)

− δ̄kN

[
jθc + δ̄i0λ

]
Pijk(t) + δ̄iN δ̄j0

[
jλ

i + 1

]
Pi+1, j−1, k(t) (20)

+ δ̄jN δ̄k0
[
kθc

]
Pi, j+1, k−1(t), i + j + k = N.

Observe that the first two terms in the right-hand side of (20) represent the
cooperative part of the system (compare to (5)). The initial conditions are given
by (12), and the solutions Pijk(t) do also satisfy the identity (13). An analytical
solution of equations (20) can be obtained by (14)–(19).

2.5 Monitored Cooperative Search

Finally, we consider a search system where after detecting a target, the au-
tonomous searchers engage (e.g., attack) it, and the decision on engagement of
the detected target is made by a human operator. Namely, consider a search
system of N autonomous searchers each having three possible states: search, de-
tect, and engage. Upon detecting a target, an autonomous searcher remains in
the state detect for as long as it takes for the human operator to decide whether
to engage the target or not. If the operator authorizes engagement of the target,
the searcher transitions to the state engage; otherwise, it resumes search and
returns to the state search. The corresponding transition rates from state detect
to states engage and search, σijk and σ̄ijk , respectively, can be intuitively defined
as decision rates of the human operator. In general, these decision rates, as well
as the search rate θijk , can depend on the number i, j, k of searchers currently
occupying the states search, detect, and engage, correspondingly.

As before, we define Sijk to be a state of the system with i searchers in
state search, j searchers in state detect, and k searchers in state engage; the
corresponding probability that system is in a state Sijk at time t is Pijk(t). The
differential equations governing the probabilities Pijk(t) read as

d
dt

Pijk(t) = − δ̄kN

[
iθijk + j(σijk + σ̄ijk)

]
Pijk(t)

+ δ̄iN δ̄j0
[
jθi+1,j−1,k

]
Pi+1,j−1,k(t)

+ δ̄i0δ̄jN

[
iσ̄i−1,j+1,k

]
Pi−1,j+1,k(t)

+ δ̄jN δ̄k0
[
kσi,j+1,k−1

]
Pi,j+1,k−1(t), (21)
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Fig. 4. State diagram for autonomous searchers in the monitored cooperative search
system

where i + j + k = N . By analogy to the previously considered systems,
equations (21) are equipped with initial conditions (12), and their solutions
satisfy (13).

3 Numerical Results

In this section we compare the performance of the models developed in Section 2
based on the measures of effectiveness such as probability of detection PD(t), and
time to engage T0.95. We assume that the initial, “uncued” detection rate of each
searcher is θ = 1, and present numerical results for search systems with N = 10
autonomous searchers. The solutions of the Chapman-Kolmogorov equations for
the models presented in Sections 2.2–2.5 are state probabilities, and will be used
in computing the detection probabilities P̂n(t)

P̂n(t) = P
{
exactly n targets are detected by time t

}
. (22)

For example, the introduced MOE probability of detection PD(t) = P̂N (t).

3.1 Basic Cooperative Search System

In [1] it was shown that in the case when cueing (cooperation) has no effect on
detection capabilities of the searchers, θ0 = . . . = θN = θ, the probability of
detection PD(t) is equal to the probability that all N searchers detect targets
independently (see also (2))

PD(t) = P̂N (t) =
(
1 − e−θt

)N
.

In general, it is easy to see that the detection probabilities P̂n(t) of for indepen-
dent search system are given by

P̂n(t) =
(

N

n

)(
1 − e−θt

)n(
e−θt

)N−n
, n = 0, . . . , N.

The graphs of detection probabilities P̂n(t), n = 0, . . . , N for a search system of
N = 10 independent autonomous searchers are shown in Figure 5(a).2

2 The horizontal axis in all graphs of Figure 5 corresponds time t, and the vertical
axis measures the probability.
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To compare the basic cooperative model (6) with the independent search case,
we assumed the detection rates improve due to cueing in the following fashion
(see Figure 6(a)):3

θk = 1 + (κ − 1) 2
π arctan k

2 , k = 0, . . . , N − 1, where κ = 1.5. (23)

Given the solutions Pk(t) of the Chapman-Kolmogorov system (6), the detection
probabilities P̂n(t) can be obtained as

P̂n(t) =
(

N

n

)
Pn(t), n = 0, . . . , N, (24)

(note that P̂N (t) = PN (t)). The detection probabilities P̂n(t) of the basic coop-
erative system with N = 10 searchers are shown in Figure 5(b). In particular,
the time to engage T0.95 = P−1

N (0.95) for the basic cooperative search system
equals to

T0.95 = 3.797,

a 28% improvement over the corresponding value for a system of 10 independent
searchers (5.275).

3.2 Coordinated Search System

For the coordinated search system described in Section 2.3, we assume that
the search rate of the human operator is equal to the uncued search rate of
autonomous searchers, and receipt of operator’s cue boosts the search rate of
the autonomous searcher fivefold:

λ = 1, θc = 5. (25)

The detection probabilities P̂k(t) are computable via the state probabilities
Pijk(t), which solve the Chapman-Kolmogorov equations (11), as

P̂n(t) =
∑

k=n
i+j+k=N

i,j≥0

(
N

i j k

)
Pijk(t), n = 0, . . . , N. (26)

The detection probabilities P̂n(t) for the coordinated search system with pa-
rameters (25) are shown in Figure 5(c). The time to engage for the the coordi-
nated search system equals to

T0.95 = 3.539,

which is a 7% improvement over the cooperative model.

3 The vertical axis in Figure 6 corresponds to the search or decision rate that is
common to a specific number of agents (horizontal axis).
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Fig. 5. Detection probabilities in search systems with N = 10 autonomous searchers

3.3 Coordinated Cooperative Search

In the coordinated cooperative search model, we assumed that the detection
rates improve due to cooperation in accordance to (23); the values for operator’s
search rate λ and operator-cued rate θc are given by (25). The detection proba-
bilities P̂n(t) are calculated using the solutions Pijk(t) of Chapman-Kolmogorov
equations (20) in the same ways as in (26), and are shown in Fig. 5(d). The time
to engage in coordinated cooperative system has the value of

T0.95 = 2.857,

a 19% improvement over the coordinated search model.



Distributed Cooperative Systems with Human Operator-in-the-Loop 305

2 4 6 8 10

0.9

1

1.1

1.2

1.3

1.4

1.5

2 4 6 8 10

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) detection rates (b) decision rates

Fig. 6. Dynamics of detection rates and decision rates in search systems with
cooperation

3.4 Monitored Cooperative Search

The equations for the monitored cooperative search model (21) were written in
the most general form, with the detection rate θijk and the decision rates σijk ,
σ̄ijk being dependent on the numbers i, j, and k of autonomous searchers in the
states search, detect, and engage, respectively.

To maintain consistency with the previous models, we assume that detection
rates are governed by (23). With respect to the decision rates σ and σ̄, we assume
that they depend on j and k as

σik = σ̄jk = 
(j)
(k), where 
(k) =
2
3

(
1 − 1

π
arctan

k − 2.5N

N

)
. (27)

The graph of function 
(k) is presented in Figure 6(b). Dependence (27) of σjk

and σ̄jk on the number j of autonomous searchers reflects possible deterioration
of decision-making performance of human operators due to stress or anxiety
when a large number of searchers made detections and are waiting for permis-
sion to engage. Similarly, dependence of the decision rates on the number k
of searchers that have engaged targets emulates the effects of fatigue, since k
generally increases with the elapsed time.

Similarly to the last two considered systems, the detection probabilities P̂n(t)
of the monitored cooperative search system are computed in the form (26), where
Pijk(t) must be taken as the solutions of (21) with parameters θijk = θk given
by (23) and σijk = σjk, σ̄ijk = σ̄jk given by (27). The graphs of detection prob-
abilities P̂n(t) are shown in Figure 5(e), and the corresponding time to engage is

T0.95 = 12.586.

Clearly, such an increase in T0.95 in comparison to the previously considered
models can be explained due to additional delays associated with human deci-
sion making in state detect, as well as due to the possibility of cycling between
states search and detect.
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4 Analysis of Cooperation

The introduced measures of effectiveness PD(t) and T0.95 = P−1
D (0.95) allow for

quantifying how fast all N searchers accomplish the mission. However, they do
not shed light on how the cooperative system evolves, or progresses, during the
mission. In this section, we attempt to answer the following question: given a
cooperative4 system, how can one estimate its “degree of cooperativeness,” or,
in other words, how can one distinguish between “more cooperative” and “less
cooperative” systems?

4.1 Corresponding Independent Systems

Our approach to measuring the degree of cooperativeness in a given system is
based on comparing it with a corresponding independent system. A correspond-
ing independent system may be defined as one in which the individual agents
accomplish their objectives independently, and their state space and transition
rates correspond to those of the agents in the cooperative system. It is important
to note that the state space of the agents in the independent system may or may
not be identical to that of the cooperative agents.

For example, the agents of the independent search system that corresponds to
the basic cooperative system of Section 2.2 are described by the state transition
diagram in Figure 1. In this case, the state spaces of cooperative and independent
searchers are identical and consist of the states search and detect; the difference is
that the transition rate from search to detect for cooperative searchers is equal to
θk, where k is the number of searchers that have completed the mission, and for
the independent searchers this transition rate equals to the initial search rate θ.

In the case of the models discussed in Sections 2.3–2.4, the state space of
the cooperative searchers includes three states: search uncued, search cued, and
detect. Nevertheless, it is easy to see that the state space of the searchers of the
corresponding independent system is again described by the diagram in Figure 1.
Indeed, the search cued state of cooperative searchers embodies cooperation in
the system (namely, cooperation between the operator and the searchers), and
therefore does not need to be present in the state space of independent searchers.

With respect to the monitored cooperative search model presented in Sec-
tion 2.5, the choice of the corresponding equivalent system is not as straight-
forward and depends on the objective of one’s analysis. For instance, the state
space of independent searchers may consist of the three states search, detect,
and engage, with the transition rate between the first two being equal to θ, if
the goal is to study the effects of search rate improvement due to cooperation
when the searchers have to obtain permission from an operator before engaging
a detected target.

In the present work, we are primarily interested in the effect of how an
operator-in-the-loop influences the performance of the cooperative system.

4 The term cooperative is understood here in a broad sense, not restricted to the
context of Section 2.2.
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Therefore, we consider independent searchers with the state transition diagram
as presented in Figure 1.

4.2 Coefficient of Cooperation and Fitness Function

To quantify the degree of cooperativeness in a multi-agent search system, we
introduce the coefficient of cooperation, α, as follows. Given a system of N coop-
erative searchers whose initial detection rate is θ, the coefficient of cooperation
α determines the search rate αθ of independent searchers in a corresponding
equivalent system, whose performance would match (as close as possible) the
performance of the cooperative system. In other words, αθ is the rate that in-
dependent searchers would need to match the performance of a cooperative (in
a broad sense) system. Now, the coefficient of cooperation can be determined
by optimizing the fitness function that defines how close one search system is to
another.

The problem of quantifying the similarity between two search systems in the
present context effectively reduces to measuring the distance between two non-
stationary distributions. In general, there is no universally accepted method
of quantifying the dissimilarities between probability distributions. Among the
most popular ones, we may mention the Kullback-Leibler divergence, or relative
entropy [4], Chi-square distance, Kolmogorov-Smirnov distance, etc.

Here we employ a different way of measuring the closeness of two distribu-
tions, which is essentially tailored to the proposed approach of comparing the
probability distribution Pk(t) of a cooperative system to that of an appropriately
chosen independent system. It will be seen below that the probability distribu-
tion of the independent search system described above is a mixture of binomial
and exponential distributions.

Let fΘ(t), where Θ may stand for a vector of parameters, be the probability
that a searcher in an independent system detects a target by time t; in our case,
fΘ(t) = 1 − e−θt (see the above discussion). Then, the probability P ∗

k (t) that k
out of N independent searchers have detected targets by time t is given by the
binomial distribution formula

P ∗
k (t) =

(
N

k

)[
fΘ(t)

]k[
1 − fΘ(t)

]N−k
. (28)

Observe that due to the independence assumption, the form of probabilities
P ∗

k (t) depends solely on fΘ(t). Given the form of the detection function fΘ(t),
the set of time-dependent binomial probabilities P ∗

k (t) can be identified by the
pairs

(
t∗k, P ∗

k (t∗k)
)
, k = 1, . . . , N − 1, where

t∗k = arg max
t≥0

P ∗
k (t) = f−1

Θ

(
k
N

)
, 1 ≤ k ≤ N − 1, (29)

and

P ∗
k (t∗k) = max

t≥0
P ∗

k (t) =
(

N

k

) (
k

N

)k (
1 − k

N

)N−k

, 1 ≤ k ≤ N − 1. (30)
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It is important to note that P ∗
k (t∗k) are invariant with respect to the form of

fΘ(t). Similar pairs
(
t̂k, P̂k(t̂k)

)
, k = 1, . . . , N − 1, can be computed for the

detection probabilities P̂k(t) (22) of a cooperative system, where

t̂k = arg max
t≥0

P̂k(t). (31)

The coefficient of cooperation α is then determined by matching the pairs(
t̂k, Pk(t̂k)

)
and

(
t∗k, P ∗

k (t∗k)
)

for fΘ(t)=1−e−αθt using the least-squares method:

Φα = min
α

N−1∑

k=1

(
P̂k(t̂k) −

(
N

k

) (
1 − e−αθt̂k

)k (
e−αθt̂k

)N−k
)2

. (32)

Note that the above expression does not take into account the probabilities of
no detections, and the detection probability PD(t) = P̂N (t).

In the next subsection we report computational results on determining
the coefficient of cooperation for the cooperative search models presented in
sections 2.2–2.5.

4.3 Numerical Results and Discussion

In the numerical experiments we have used the Markov chain models developed
in Section 2 for cooperative search systems with N = 10 searchers and detection
and decision rates given by (23)–(27). As explained above, the benchmark search
system of independent searchers was chosen as the one where each searcher has
the probability of detection f(t) = 1− e−θt, so that the probabilities P ∗

k (t) have
the form

P ∗
k (t) =

(
N

k

)(
1 − e−θt

)k(
e−θt

)N−k
, (33)

where θ = 1.
The obtained values of the coefficient of cooperation α and the fitness value Φα

(see (32)) between the detection probabilities P̂n(t) of the cooperative systems
and the benchmark probabilities (33) are shown in Table 1.

Table 1. Coefficient of cooperation α and the corresponding fitness value Φα

Type of system Coefficient of cooperation α Fitness value Φα

Basic cooperative 1.493 4.4 × 10−5

Coordinated 0.998 5.9 × 10−6

Coordinated cooperative 1.622 3.4 × 10−3

Monitored cooperative 0.316 8.8 × 10−3

The results for the basic cooperative system indicate that the searchers in the
corresponding equivalent independent search system must possess search rates
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1.493 times higher than the initial search rate θ of the cooperative searchers
in order to match their performance throughout the mission. As expected, the
coordinated cooperative system is more efficient, which is reflected by the higher
coefficient of cooperation α = 1.622.

A more interesting result is that for the coordinated search system: the cor-
responding value of α is 0.998, which means that the independent searchers do
not need an increased detection rate in order to match the performance of the
coordinated search system with parameters (25). In other words, the coordinated
search system evolves during the mission essentially the same as an independent
search system, except for the last stage of the mission (recall that the time to
engage T0.95 for the coordinated system is 33% less than that of the independent
system)!

To explain this result, recall that unlike the other considered systems, the
coordinated search system does not allow for a “global” rate improvement among
the searchers; the rate improvements θ → θc of the searchers that received a cue
from the operator are localized in time and bear no effect on the detection rates
of other searchers. To put it differently, the searchers in the coordinated system
perform their search independently, and occasionally may receive “gift” cues
from a human operator. These cues do have an accumulated effect, evidenced
by the much shorter time to engage T0.95, but during the mission (locally) the
coordinated system behaves as an independent one.

Also, it is of interest to note that fitness value Φα for the coordinated system
is the lowest among all four considered systems, i.e., the coordinated system can
be fitted by an independent systems most closely, which reinforces the above
conclusions.

The fact that the coefficient of cooperation for the coordinated mission is
lower that 1 can be attributed to properties of the employed fitness function
that does not take into account probabilities P̂0(t) and P̂N (t).

As regards the monitored cooperative system, the value of the coefficient
of cooperation α = 0.316 can be explained by the additional delays due to
decision-making of human operator, and by the possibilities of returning to the
search state after making a detection. However, due to a high fitness value of
0.0088, it may be concluded the additional delays and cycling caused by the
decisions of human operator do not eliminate the cooperative nature of the
system - its evolution cannot be fitted closely to that of an independent system
(in comparison, for example, with the coordinated system).

5 Conclusions

We presented an approach to modeling and analysis of distributed multi-agent
search systems where the autonomous agents may cooperate among each other,
and/or with human operator, in order to achieve the system’s objective. It was
assumed that the cooperation is facilitated by means of information sharing
among the autonomous agents and/or human operator, with the purpose of
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improving the effectiveness of the autonomous agents. The evolution of cooper-
ative systems was modeled using discrete-state, continuous-time Markov chains.
We also presented a technique for measuring and quantification of cooperation
within such systems.
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Abstract. Electronic chaining is the formation of a linked communica-
tion chain that maximizes the end-to-end throughput using a cooperative
team of mobile vehicles in an unknown, dynamic environment. A decen-
tralized extremum seeking (ES) controller, which is an adaptive model
free controller, is presented to control the locations of the mobile commu-
nication relays based on received signal strength, as opposed to relative
position. A communication chain that seeks to maximize a link perfor-
mance metric such as bandwidth or end-to-end delay does not necessarily
form a linear, evenly spaced formation of the nodes when jamming and
environmental terrain factors are considered. This chapter presents an
ES controller that has been specifically designed for use with teams of un-
manned aircraft using a Lyapunov guidance vector field controller and in
particular focuses on the performance and stability of the ES algorithm
due to the operational limits and constraints of an unmanned aircraft.

1 Introduction

Cooperative electronic chaining is the formation of a linked communication chain
using a team of mobile vehicles, acting as communication relays in an ad hoc
network, to maximize the end-to-end throughput of the chain while allowing
the end nodes of the chain to move independently in an unknown, dynamic
environment. Electronic chaining utilizes the fact that with networked mobile
vehicles, the quality of a wireless communication link is directly influenced by the
motion and location of the vehicles within the radio propagation environment.
Thus, controlling the motion of the vehicles using a measure of communication
performance can directly influence the performance of the network chain. This
chapter presents a decentralized extremum seeking (ES) controller that has been
designed for use on nonholonomic vehicles within a cooperating team to maintain
an electronic communication chain using the signal-to-noise ratio (SNR) of the
communication links.

While there are numerous examples of systems that control the relative posi-
tion of networked vehicles to maintain communication links (e.g. see [1,2]), po-
sition based solutions cannot account for localized noise sources or an unknown
radio frequency (RF) environment where there is an unknown noise floor. Thus

M.J. Hirsch et al. (Eds.): Adv. in Cooper. Ctrl. & Optimization, LNCIS 369, pp. 311–322, 2007.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2007
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an adaptive, model free controller using the SNR of the individual links is re-
quired to find a true optimal (in the sense of end-to-end throughput) location
for the relay nodes. In previous works by the authors [3,4] extremum-seeking
methods using a Lyapunov guidance vector field controller (LGVF) have been
adapted for the electronic chaining problem. The contributions of these works
were in showing that the natural orbital motion of a vehicle about a virtual cen-
ter point, such as unmanned aircraft (UA) using a LGVF orbital controller, in a
sampled environment provides the required dither and demodulation signals to
generate a gradient estimate of performance field in an ES framework.

The specific application of the ES controller presented in this chapter is the
maintenance of a solid high-quality connection from a ground station to a single
remote unmanned aircraft (UA), which would otherwise be out of communica-
tion range, by using the cooperation of other possibly heterogeneous UAs. Of
importance are the individual aircraft speed ranges and turning rate performance
constraints as these directly influence the responsiveness and convergence of the
communication chain to an optimal formation.

The work presented here differs from other work [5,6] in the control of nonholo-
nomic vehicles using ES methods in three primary ways. The first, and foremost,
difference is that in the ES algorithm presented, the cyclic (orbital) motion of the
vehicle in the sampled environment drives the perturbation signal. Thus unlike
other methods, the perturbation signal does not drive the motion of the vehicle.
Secondly, the dither signal is taken to be the positional measurement of the ve-
hicle within the environment, and thus requires positional information. This is
reasonable as there are numerous GPS and other position measuring solutions
for a variety of applications.

The final difference is due to the application of ES with unmanned aircraft
(UA) where, because of the dynamic constraints of an aircraft, a bicycle-like
kinematic model [7] is used as opposed to a unicycle model. The difference be-
tween the two models is that a unicycle model can turn on the spot and in
addition is capable of backward and forward translation. A bicycle-like model
on the other hand exhibits Dubins’ vehicle constraints [8], requiring forward
speed to make a turn and has bounded path curvature. In addition, the dynam-
ics and performance limitations of UA introduce additional constraints on the
model in terms of bounds on the speed range and turn rate capabilities. These
constraints and their impact on the ES algorithm will be discussed in further
detail in the following sections.

2 Electronic Chaining Problem Statement

For a linked network chain, independent of the communication protocols used,
the achievable chain throughput over time can be directly related to the indi-
vidual link capacities along the chain. Specifically, the throughput of the chain
is limited by the link with smallest capacity along the chain. Figure 1 provides a
graphical example of the problem where the link between nodes 3 and 4 is limited
to 1 megabit per second (Mbps), either due to distance or environmental noise,
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1 62 3 4 5

2 Mbps 1 Mbps

Fig. 1. The overall chain throughput over time is directly limited to the link with the
smallest capacity

and the rest of the chain has a 2 Mbps link capacity. It is clear from the figure
that even if node 1 tries to transmits at 2 Mbps to node 6, that the link between
nodes 3 and 4 will limit the resulting throughput to node 6 to only be 1Mbps.
Stated precisely, the bi-directional end-to-end throughput of the communication
chain between node 1 and the nth node is given as

T = min
i∈R,j∈N
|j+i|=1

{Cij(pi, pj), Cji(pj , pi)} . (1)

where T is the effective chain throughput between nodes 1 and n, Cij(pi, pj)
is the link capacity for node j ∈ N at position pj transmitting to node i ∈ R
at position pi, where R ⊂ N is the set of relay nodes in the network N , i.e.
the set of relay nodes does not contain the two end nodes of the chain which
move independent of the chain. The two end nodes represent the users of the
communication chain and it is the goal of the mobile relay nodes to position
themselves so as to obtain and maintain an optimal communication chain in
response to the movements of the two end nodes. Thus nodes 1 and n are allowed
to move freely and independently while nodes 2 through n-1 are mobile relays
that are controlled by the decentralized ES chaining algorithm.

Maximum bi-directional chain throughput is found by maximizing the mini-
mum individual link capacity by moving the relay nodes, i.e.

T ∗ = max
pi∈IR2

min
i∈R,j∈N
|j+i|=1

{Cij(pi, pj), Cji(pj , pi)} . (2)

The Shannon-Hartley Theorem states that the channel capacity C, meaning the
theoretical maximum rate of clean (or arbitrarily low bit error rate) data, that
can be sent with a given average signal-to-noise ratio (SNR) is [9]

Cij(pi, pj) = B log2 (1 + Sij(pi, pj)), (3)

where B is the bandwidth of the channel, and Sij(pi, pj) is the SNR received at
vehicle i from j’s transmission. Since link capacity is a monotonically increasing
function of SNR, Equation 2 can be restated as

S∗ = max
pi∈IR2

min
i∈R,j∈N
|j+i|=1

{Sij(pi, pj), Sji(pj , pi)} . (4)

Finally, the problem of electronic chaining is to find

p∗
i = arg max

pi∈IR2
min

i∈R,j∈N
|j+i|=1

{Sij , Sji} (5)
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in real time without specific knowledge of the structure or values of the SNR
field. Due to the assumption of an unknown structure of the noise field, and that
localized noise sources may be present (either due to jamming or faulty nodes),
it cannot be assumed that Sij = Sji.

While there are numerous examples of systems that control the relative posi-
tion of networked vehicles to maintain communication links (e.g. see [1,2]), po-
sition based solutions cannot account for localized noise sources or an unknown
radio frequency (RF) environment where there is an unknown noise environ-
ment. Thus an adaptive, model free controller is required to find an optimal (in
the sense of end-to-end throughput) location for the relay nodes.

3 Background and Related Work

In this section an overview of the three sub-components of the ES algorithm
are presented, including the kinematic bicycle model, extremum seeking, and
finally the Lyapunov guidance vector field controller. In addition, constraints
that arrive from the use of unmanned aircraft are discussed.

3.1 Vehicle Mobility Model

The algorithms presented here assume the unmanned aircraft are equipped with
a low-level flight control system that presents a 2-D kinematic model to the
guidance layer of an autopilot system. Let pj ∈ IR2, denoted as pj = [xj , yj]T , be
the position of vehicle j with inertial speed [ẋj , ẏj]T ∈ IR2 that evolves according
to the standard (cartesian) kinematic bicycle model [7]

ẋj = vj cosψj

ẏj = vj sin ψj

ψ̇j = vjcj

(6)

where [xj , yj]T ∈ IR2 is the two-dimensional inertial position of aircraft j,
ψj ∈ [0, 2π) is the aircraft yaw angle (compass heading), vj is the commanded
airspeed (held constant in this work), and cj is the bounded path curvature.
The bicycle kinematic model is chosen over a unicycle model because this model
covers a wider class of 2D nonholonomic vehicles, moving in only one forward di-
rection and that cannot turn on the spot, such as bicycles, cars, and autonomous
underwater and aerial vehicles [7] .

It should be noted that the major difference of the bicycle model is that the
heading rate is a function of the vehicle speed and the curvature constraints of
the vehicle. For bicycles, the curvature is related directly to the steering angle
of the front wheel. For an aircraft in a steady-state coordinated turn, the path
curvature is

c(v) =
g tan φ

v2 , (7)
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where φ is the UA bank angle and g is the gravitational constant. For simplicity,
the velocity of the vehicle is kept at a set (constant) speed and the only input
used in the ES chaining algorithm is

uj = vjcj(v) =
g tan φ

vj
. (8)

Due to vehicle performance constraints, the control input for a vehicle is
bounded by upper and lower limits. For an aircraft at a set speed,

ωmax(v) =
g tan φmax

v
(9)

where ωmax is the maximum turn rate of the vehicle at speed vj , for the maximum
bank angle φmax. Thus the input into vehicle j is bounded such that |uj | ≤ ωmax
and gives a minimum orbital radius of

rmin(v) =
v

ωmax(v)
. (10)

It should be noted that aircraft further complicate the design of an ES algorithm
due to the limited flight envelope where 0 < vmin ≤ vj ≤ vmax. Thus, rmin cannot
be made arbitrarily small.

3.2 Extremum Seeking

Extremum seeking (ES) [10] controllers are adaptive, model free controllers
designed to drive the set point of a dynamic system to an optimal, but un-
predictable location defined by a performance function that is only known to
have an extremum point. That is, given a sufficiently smooth cost function
J : IR × IRm → IR, ES controllers seek to solve in real time the optimization
problem

θ∗(t) = arg max
θ∈IRm

J(t, θ) (11)

where J is an unknown, possibly time varying, cost function of the input param-
eter θ such that DθJ(t, θ∗) = 0 and D2

θJ(t, θ∗) < 0 1.
A typical ES algorithm as presented in [10] has a form as shown in Figure 2

where HPF and LPF stand for the high-pass filter and low-pass filters, respec-
tively. The assumption that D2

θJ < 0 is made without loss of generality; the
loop feedback gain η in Figure 2 can be replaced by −η if D2

θJ > 0. The ES
algorithm works by generating a measure of the local gradient of the mapping
J(θ) by injecting a perturbation signal, α cos(ωt), directly into the plant. The
output of the plant will also be sinusoidal, with a DC (or constant) offset that
the HPF removes. This signal is then demodulated by β sin(ωt−γ) and low-pass
filtered to obtain the gradient estimate. The gradient estimate is then used to
update the estimate of the optimal location, θ̂. See [10,11] for formal discussions,
including stability proofs and design guidelines, on single and multivariable ES.
1 Di

θ(·) denotes the ith directional derivative of J .
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Fig. 2. Typical ES algorithm as presented in [10]

From inspection of Figure 2 it can be seen that the input into the plant is a
sinusoidal (cyclic) motion about the current estimate of θ∗. In two dimensions,
the input has the appearance of a circular perturbation about a moving (i.e.
time varying) orbit center point, θ̂. It is this specific structure that the ES
chaining algorithm takes advantage of; some vehicles, like UA, also exhibit a
cyclic (circular) motion about a center point when they are station keeping
since they must always maintain a forward speed.

3.3 Lyapunov Guidance Vector Field Controller

Because of the constraints that a bicycle-like kinematic vehicle present, it is
not practical to drive the vehicle by the ES dither signal directly as done in
[6]. Instead a Lyapunov guidance vector field (LGVF) controller [12] is used
to provide a circular (cyclic) motion of the vehicle about a virtual center point.
The LGVF controller is split into two components, a guidance vector field (GVF)
generator and a heading tracker (HT) controller. The heading tracker drives the
UA to the desired loiter circle at a radial distance of rd from the orbit center
point pcp = [xcp, ycp]T as given by the generated vector field

f (pr) =
[
ẋd

ẏd

]
= β

[
−(r2 − r2

d) −2rrd

−2rrd −(r2 − r2
d)

] [
x − xcp

y − ycp

]
+

[
ẋcp

ẏcp

]
(12)

where r2 = pT
r pr = (x − xcp)

2 + (y − ycp)
2 is the squared radial distance of the

UA from the loiter center point, pcp, β is a non-negative scalar that guarantees
convergence to the desired loiter circle when the center point is moving [12], and
vcp = [ẋcp, ẏcp]T is the center point velocity.

The guidance vector field gives the desired velocity, which is used to generate
a turn rate command to the low-level autopilot through the HT. Let eψ = ψ−ψd

where ψd is the desired compass heading given as

ψd = arctan
(

ẏd

ẋd

)
. (13)
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The heading angle error is driven to zero by the bounded turn rate command

u =

⎧
⎨

⎩

ωmax ψ̇d − λ · (ψ − ψd) ≥ ωmax

ψ̇d − λ · (ψ − ψd) else

−ωmax ψ̇d − λ · (ψ − ψd) ≤ −ωmax

(14)

where
ψ̇d =

v

rd
. (15)

Because the turn rate command is bounded by the performance of the vehicle
at a given speed, there is a minimum radius for which the vehicle can track
and is

rmin =
vj

ωmax
. (16)

This minimum radius, as will be seen later, is effectively the lower bound on the
final error (or distance) of the UA from the optimal communication location,
which will be the location of orbit center point for the loiter circle. While the
orbit center point can be driven to the location of optimal communication, the
UA will always be at best no closer than rd, with rd ≥ rmin.

4 Electronic Chaining ES Algorithm

The decentralized ES controller for communication chaining using nonholonomic
vehicles is presented in Figure 3. The controller runs locally onboard each vehi-
cle and the only information that needs to be shared is the SNR between the
pair-wise links. For simplicity in the figure, the thicker signals represent vector
quantities while the thin lines represent scalar values. The feedback loop consists
of the 2D kinematic vehicle (with the velocity held at a non-zero constant), the
ad hoc network, the ES framework, center point dynamics, and finally the LGVF
controller.

From Figure 3 it can be seen by the reader that no external dither signals are
introduced into the feedback loop of the system, as is standard in [11,6]. Instead,
the amplitude and frequency of the excitation signal is derived from the motion
of the vehicle due to the LGVF controller. This type of system has been referred
to as a self-exciting ES controller in [13]

The excitation amplitude is related to the desired radial stand off, rd, of the
UA from the center point of the loiter circle and the steady state excitation
frequency is given as

ωj =
vj

rd
. (17)

Due to the nature of bicycle like vehicles, excitation amplitude and frequency
are not independent choices and are constrained to certain ranges from the in-
dividual vehicle performance constraints that are not considered in [10]. For the
ES algorithm to be stable the system will need to exhibit three different time
scales [13]:



318 C. Dixon and E.W. Frew

Center Point

Dynamics

X
L

N

UA

Ad Hoc Network

Δ

J

s+H
 s

s+H
s 

X SNR
i

k
s s+L

i

1
s

 GVF HT

LGVF

Controller

XCP

VCP

   2D

Vehicle

u

Vo

ES Framework

J

r
d

N

J(SNR )

Fig. 3. Decentralized ES chaining algorithm for a 2D kinematic vehicle using a LGVF
controller to provide the orbital motion of the UA, including center point dynamics

1. Fast – tracking of the center point
2. Medium – the periodic perturbation
3. Slow – the LPF filter in the ES

Since the dynamics of the periodic perturbation are set by v and rd, the fast
and slow dynamics are also functions of the vehicle performance. For the error
dynamics of the LGVF controller to be fast, the motion of the orbit center point
must be slow as compared to the UA, i.e. vcp << vj . In particular, in the ES
chaining algorithm the center point velocity is bounded by Vcp so that vcp ≤ Vcp

and Vcp << vj .
It should be pointed out that center point velocity saturation is required in

the loop because even though we can choose k small enough that the speed of
the orbit center point remains slow, as compared to the UA for a given environ-
ment and performance function, the output of the ES framework depends upon
the magnitude and shape of the performance function, which is not necessarily
known a priori. Thus, there could be unexpected environments in which if the
center point speed was not bounded, it could reach the maximum flight speed
of the aircraft. At this point, the motion of the UA about the center point is
no longer cyclic and is not generating the periodic signal of the performance
function required for the ES framework.

4.1 Performance Function

From Section 2 it was shown that the optimal bi-directional throughput can be
found by moving the relay nodes in a manner so as to maximize the minimum
SNR of all communication links along the chain. However, it is not desirable to
have to share the SNR of every link to every node in the chain, and nor is it
required. It is more effecient to share only the SNR of the links that an individual
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node is responsible for chaining and optimizing. Accordingly, a decentralized
performance function for the ES chaining algorithm is given as

Jj = min{Sj,j−1, Sj−1,j , Sj,j+1, Sj+1,j} (18)

and provides a localized measure of the global performance objective of Equa-
tion 4 at vehicle j.

Since vehicle j requires a measurement of the SNR as received by its neighbors
from its own transmission, e.g. Sj±1,j , there must be information sharing of the
SNR among neighbor nodes. Another performance function can be formed that
only includes the SNRs that can be measured directly by vehicle j,

Jno−sharing = min{Sj,j−1, Sj,j+1}. (19)

However, this performance function does not necessarily drive the system to a
global extremum when localized noise sources are present.

It should be noted that without any localized noise sources in the environ-
ment, Sji = Sij , and the performance function (18) reduces to (19). So, for
environments where it can be assumed that there are no localized noise sources
(such as jamming) the optimal communication chain can be found without any
information sharing among the relay nodes.

4.2 Convergence Rate Bounds of the Positional Error

ES controllers are essentially gradient-based ascent (descent) methods [10] and
ES algorithms that are not constrained by the dynamics of the plant can exhibit
quadratic convergence. However, due to the velocity constraints of the center
point, the ES algorithm presented shows linear convergence when the positional
error is large, and thus the center point is driven at the saturation value. As the
vehicle gets closer to the optimal location then the center point velocity is no
longer saturated and the convergence becomes quadratic.

To see how the convergence becomes linear when the center point velocity is
saturated, assume

‖xcp(0) − x∗‖ >> vmaxt (20)

for some reasonably large amount of time t. Now let ek = xcp(k) − x∗ be the
error at time k of the center point to the optimal location. Then at best

ek ≤ ek−1 − Vcp (21)

and with application of the norm

‖ek‖ ≤ ‖ek−1 − vmax‖ ≤ β ‖ek−1‖ (22)

it can be seen that the error convergence of the system, given bounded velocity
constraints on the orbit center point with large initial error, is linear. Results
from simulation highlighting these two phases will be presented below.
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5 Simulation

In this section, simulations of the ES algorithm for the control of a team of
unmanned vehicles are presented. For the simulations, the aircraft are limited to
a maximum 30 degree bank angle, flying at 25 m/s, and their ordering is preset
and maintained depending upon the starting location of the UA. The maximum
center point velocity is set to 5 m/s.

Though not known by the controller, the radios follow the standard exponen-
tial decay model

Pr = Krd
−α (23)

where Kr is the link gain, d is the seperation distance from the transmitter, α
is the exponential decay rate, and Pr is the received power. For the simulations
the radio values are set to Kr=3822 and α =2. For the simulation with a noise
source, the noise source is taken to be a faulty radio transmitting at Kr=382.

Figure 4 shows a simulation run with three UAs and two static end nodes, with
Figure 4.a being a top down view of the simulation environment and Figure 4.b
the minimum link SNR along the chain at the loiter center point. At the begining
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Fig. 4. Simulation of three (3) UA relay nodes reacting to a localized noise source. (a)
Motion of UAs within the environment also showing noise source location and the SNR
contours of the two end nodes. (b) The minimum SNR value along the chain during
the simulation.

of the simulation, the UA relays are aligned along the chain. Then at time t = 0s
a noise source located at [2500,1000] m is introduced. The figure shows that the
UAs react appropriately to the jamming signal due to the noise source and form
a bowed communication chain. Figure 4.b shows that the minimum SNR (and
total throughput) along the chain is continually improved to a peak value.

Figure 5 shows results from a simulation with a single UA, two end nodes
and no localized noise source. In Figure 5.a, the position of the UA and the
center point are shown. From this figure one can see that when the UA was far
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away, it headed directly in the direction of improving minimum SNR (which is
the SNR from the far right node) at the maximum speed of the center point.
Figure 5.b shows just the X-Y position of the orbit center point to highlight
the two different convergence rates of the ES algorithm. For t ∈ (50, 500)s the
positional errors (especially on the y-axis) show linear convergence and for t >
500s the convergence rate becomes quadratic.
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Fig. 5. Location of the orbit center point for a single UA and no localized noise showing
the linear (from t = (50, 500)s) and quadratic convergences (for t > 500s) of the UA
location to the optimal X-Y location

6 Conclusion

An ES chaining algorithm was presented for optimizing the throughput of a
linked communication chain of mobile relay nodes where the key difference in
the ES framework is using the physical motion of the vehicle to drive the mod-
ulation and demodulation signals. The mobility of the vehicle was modeled as a
bicycle-like kinematic model and is chosen over the unicycle model because the
model covers a wider class of 2D nonholonomic vehicles, including unmanned
aircraft. An orbital motion of the vehicle due to a LGVF controller was applied
to extremum seeking in a unique way in that the orbital motion of the vehi-
cle about an orbit center point generated the dither and demodulation signals
required by the ES algorithm. A specific application using UAs was presented
and simulated to highlight the fact that the performance of the ES algorithm
is limited due to the performance constraints and capabilities of the individual
vehicles within the chain.

Future work will include varying the aircraft flight speed so as to change the
orbiting radius to improve the performance of the ES framework. By slowing
the aircraft down when it approaches the optimal location, a smaller orbital
radius can be tracked and the aircraft will generate a smaller dither signal and
will improve the estimation of the optimal communication location. In addition,
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since the convergence rate is bounded by the flight speed of the aircraft, it is
desirable to have the UA fly close to its maximum flight speed when the center
point is far away from the optimal location.
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Abstract. Coordinated mission planning is one of the core steps to ef-
fectively exploit the capabilities of cooperative control of multiple UAVs.
In this chapter, we extend and implement an effective team composi-
tion and tasking mechanism and an optimal team dynamics and tactics
algorithm for mission planning under a hierarchical adaptive sequen-
tial game theoretic framework. Our knowledge/experience based static
non-cooperative and non-zero games are used for team composition and
tasking to schedule tasks at the mission level and allocate resources as-
sociated with these tasks. The dynamic adaptive sequential game model
is used for team dynamics and tactics to assign targets and decide the
optimal salvo size for each aerial platform to achieve the minimum re-
maining platforms of red and the maximum remaining platforms of blue
at the end of a battle. A simulation software package has been developed
to demonstrate the performance of our proposed algorithms.

Keywords: Adaptive Sequential Game; Action-Reaction-Counteraction;
Optimal Salvo Size; Nash Equilibrium; Reaction Curve; Coordinated Mis-
sion Planning; Hierarchical Framework.

1 Introduction

As in natural systems, cooperation in a team of Unmanned Aerial Vehicles
(UAVs) may assume a hierarchical form and the control processes may be dis-
tributed or decentralized. Due to the dynamic nature of individuals and inter-
action between them, the problems associated with cooperative systems usually
include many uncertainties. Moreover, in many cases cooperative systems are
required to operate in an adversary environment.

M.J. Hirsch et al. (Eds.): Adv. in Cooper. Ctrl. & Optimization, LNCIS 369, pp. 323–338, 2007.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2007
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Cooperative mission planning for autonomous vehicle teams is of great in-
terest. A significant amount of current research activities focus on cooperative
control of UAVs and some possible research directions in this field are unified
in [3,7]. Cooperative real-time search and task allocation algorithms are pre-
sented in [8]. A genetic algorithm for task allocation is proposed in [10]. Another
mission planning approach is described in [9]. Solutions to general UAV coop-
erative control problems in adversarial environments can be obtained by solv-
ing game problems introduced in [4] and implemented in [1]. Additional game-
based works focusing on target assignment of a group of UAVs are discussed
in [5,6].

Currently, those game approaches are based on simultaneous game models
in which all players move simultaneously, effectively simultaneously. However,
sequential games, where players apply their strategies following a certain prede-
fined order and at least some players can observe the moves of other players who
make decisions preceding them, are more natural frame-works to address some
real problems, such as the ”Action-Reaction-Counteraction” paradigm used in
military intelligence and advertising campaigns strategies of several competing
firms in economics.

The contribution of this chapter is as follows; first, we extended and improved
a game theoretic framework [16] of mission planning. Second, we incorporate the
idea of expert/knowledge systems. Third, we implement our approach in software
with connectivity to the OEP (Open Experimental Platform) [2] from Boeing.
The overall architecture is described in section 2. In section 3 the upper level
non-cooperative and non-zero game based team composition and tasking (TCT)
is reported with details. Then we present our lower level team dynamics and
tactics (TDT) with adaptive design for dynamic games in section 4. Simulation
results are reported in section 5. Finally, conclusions are in section 6.

2 Framework for Mission Planning

The main goal of coordinated mission planning is to develop and provide an
effective team composition and tasking (TCT) mechanism and an optimal team
dynamics and tactics (TDT) algorithm to destroy the opposing force combat
capabilities. In order to accomplish this, a hierarchical game theoretic frame-
work, as shown in Fig 1, is developed here. Our Coordinated Mission Planning
approach is developed and implemented as a software package, which connects
to the MICA (Mixed Initiative Control of Automa-Teams) OEP (Open Exper-
imental Platform). The main purpose of our knowledge/experience, based on a
static non-cooperative and non-zero sum Nash game, is to develop and provide
an algorithm to schedule tasks at the mission level and allocate resources asso-
ciated with these tasks. First, the Rules of Engagements are included here as
constraints. Second, several criteria are considered in order to develop our ob-
ject (cost) function. Third, the game approach addresses the uncertainty of the
presence of an adversarial battle environment. The upper level game provides an
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algorithm for non-homogenous resource allocation based on the following infor-
mation: the number of red areas in a scenario, the number of targets in each red
area, the air defensibility of each target, the target status, classified as potential,
known or unknown, and information ability of each target, such as sensor signa-
tures and communication capability, and the Blue force information as well. Our
game framework at this level will estimate the loss of both sides by a probability
inner battle field model, which is based the information of both sides. The team
composition and tasking information architecture is developed and used at the
lower level game. The event based lower level non-cooperative (Nash) game is
used to assign targets and decide the salvo size for each aerial platform. Fur-
thermore, the lower game will find an optimal deployment of decoys and avoid
collateral damage. Here we assume that the red units are also optimizing and
coordinating their targeting strategy against the Blue units and as a result de-
termine the target selection strategy based on a game theoretic approach. At
the same time, the lower level game determines an ”estimate” of the red team’s
salvo size strategy. The major accomplishments at this level are as follows: A
non-zero-sum non-cooperative game theoretical algorithm has been developed to
determine the optimal salvo size to achieve the minimum remaining platforms
of red and the maximum remaining platforms of blue at the end of a battle; a
de-centralized target assignment algorithm is developed to find optimal aerial
platform - red target pairs; a cooperative decoy deployment method has been
developed to maximize the total probability of survival of Blue aerial platforms.
Fig. 1 shows the relationship between TCT and TDT. They will be described in
the following section.

Fig. 1. A game theatric framework for mission planning
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3 Team Composition and Tasking

Suppose there are NBP Blue Aerial Platforms, NBA blue force concentration
areas and NRA red areas with red forces in a typical scenario. The strategic
objectives of blue forces during the fixed time period [0, T ] include: to protect
the blue concentrations from attack by red surface-to-surface missiles (SSMs),
armour and troops; to neutralize the Integrated Air Defense System (IADS)
and eliminate red surface-to-air missile (SAM) sites in order to provide safe
operations for blue army fixed and rotary aircraft; to eliminate the early warn-
ing (EW) Radars, SAMs and command and control (C2) Facilities authorized;
to avoid destroying civilians/non-combatants and cities/cultural landmarks (for
example, the location of red command and control facilities may be in or near
schools, churches and hospitals).

Let NBSS , NBSW , NBLS, NBLW , NBCO denote the number of small sensors,
small weapons, large sensors, large weapons and combination blue aerial plat-
forms involved in the battle respectively and PB be the type number of the blue
platforms (in this scenario, PB = 5. There are 5 five types of the blue force). All
the blue aerial platforms are equipped with warning sensors which detect SAM
tracking radars. However, the weapon aerial platforms only have electronic sup-
port measures (ESM) radars, no ground moving target indication (GMTI) and
imaging radars. Let NRLSAM , NRMSAM , NRT , NESM , NEW , NRTR, NRSR

denote the total number of the red long SAM sites, red medium SAM sites, re
troops, ESMs, EW radars, red tracking radars, red search radars and PR be the
type number of the red platforms.

At this level, the objective of each side is to allocate their forces into NBA +
NRA areas to obtain the highest performance score. The score is based on the
unit values of the destroyed units. Table 1 and 2 give an example of the target
values for the blue force and the red force, respectively.

Table 1. Target Values for Blue Force

Unit Type Unit Value
ESM sensor, or EW radar 10

Medium SAM 20
Long SAM 30

Red Troop (Mobile HQ, Personnel Carrier) 15
Red Search Radar, Red Tracking Radar 12

The control commands for the Blue Force and the red force are denoted by
UB and UR respectively.

UB =
(

nB
i,j

)

(NBA+NRA)×P B

(1)
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Table 2. Target Values for Red Force

Unit Type Unit Value
Small Sensor Blue Aerial Platform (SS) 10
Large Sensor Blue Aerial Platform (LS) 20

Small Weapon Blue Aerial Platform (SW) 15
Large Weapon Blue Aerial Platform (LW) 30
Combination Blue Aerial Platform (CO) 20

where nB
i,j ∈

(
I+ ⋃

{0}
)
,

NBA+NRA∑
i=1

nB
i,1 = NBSS ,

NBA+NRA∑
i=1

nB
i,2 = NBSW ,

NBA+NRA∑
i=1

nB
i,3 = NBLS ,

NBA+NRA∑
i=1

nB
i,4 = NBLW , and

NBA+NRA∑
i=1

nB
i,5 = NBCO.

UR =
(

nR
i,j

)

(NBA+NRA)×P R

(2)

where nR
i,j ∈

(
I+ ⋃

{0}
)
,

NBA+NRA∑
i=1

nR
i,1 = NRLSAM ,

NBA+NRA∑
i=1

nR
i,2 = NRMSAM ,

NBA+NRA∑
i=1

nB
i,3 = NRT ,

NBA+NRA∑
i=1

nB
i,4 = NESM ,

NBA+NRA∑
i=1

nB
i,5 = NEW ,

NBA+NRA∑
i=1

nB
i,6 = NRTR, and

NBA+NRA∑
i=1

nB
i,7 = NRSR.

Then the objective functions are defined as

JB(uB, uR) =
NBA+NRA∑

i=1

P R∑

j=1

nR
i,jfBR(uB, uR, i, j; T )V R

j (3)

JR(uB, uR) =
NBA+NRA∑

i=1

P B∑

j=1

nB
i,jfRB(uB, uR, i, j; T )V B

j (4)

where,

fBR(uB, uR, i, j; T ) is the experience/knowledge based probability of the
event that a type j red force will be killed by the blue force at area i;

fRB(uB, uR, i, j; T ) is the experience/knowledge based probability of the
event that a type j blue force will be killed by the red force at area i;

V R
j and V B

j are the platform values of type j of the red force and the blue
force respectively.

After each stage of the battle, the real results will be used as feedback in-
formation to adjust the two experience/knowledge based probability functions
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fBR(uB, uR, i, j; T ) and fRB(uB, uR, i, j; T ). At this stage, our upper level
knowledge/experience based static non-cooperative and non-zero Nash game is
closed loop and self adaptive.

4 Team Dynamics and Tactics

At this level, there are two main issues: how to assign the red targets to each
blue platform, and how to optimally terminate the assigned red targets.

4.1 Target Assignment

After getting the updated battle field information from our search approach, all
blue platforms in a specific area or team will be assigned or reassigned to red
targets. Here we present the de-centralized target assignment algorithm.

Suppose there is a scenario: NAR red targets in an area with two most-likely-
type probabilities p1st of P 1st and p2nd of P 2nd for each red unit. The platform
type of the ith blue unit is denoted by PAB

i . For the nth blue platform, define
the performance function as

Φn =
1

V B
P AB

n

{
wv

n

NAR∑

i=1

[
P̄i,n + P̃i,n

]
− ws

nδnSn

}
(5)

where,

P̄i.n = p1st
i

[
V R

P 1st
i

PBR(P 1st
i , PAB

n ) − V B
P AB

i
PRB(P 1st

i , PAB
n ) − wi,n

di,n

sn

]
;

P̃i,n = p2nd
i

[
V R

P 2nd
i

PBR(P 2nd
i , PAB

n ) − V B
P AB

i
PRB(P 2nd

i , PAB
n ) − wi,n

di,n

sn

]
;

wv
n, wi,n and ws

n ∈ [0, 1] are relative weights;

V R
Y and V B

Y are the unit values of the Y type red unit and blue unit, respec-
tively;

PBR(X, Y ) is the probability of the event that an X type red unit will be
destroyed by a Y type blue platform;

PRB(X, Y ) is the probability of the event that a Y type blue platform will
be destroyed by an X type blue unit;

di,n is the distance between the ith red unit and the nth blue platform;

sn is the speed of the nth blue platform;

δn = 1, if the nth blue platform has already been assigned a target. Otherwise
δn = 0;

Sn is the switching cost of the nth blue platform.
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In equation (5), V R
P 1st

i
PBR(P 1st

i , PAB
n ) is the expected score the blue side will ob-

tain if the ith red target is assigned to the nth blue platform. V B
P AB

n
PRB(P 1st

i , PAB
n )

is the expected score the blue side will lose if the ith red target is assigned to
the nth blue platform. wi,n

di,n

sn
is the weighted time cost. With a consideration

of the target-switching cost, we denoted wv
n

∑NAR

i=1

[
P̄i,n + P̃i,n

]
−ws

nδnSn as the
total ”virtual” score the blue side will gain if the nth blue platform is used. Here
we use the word ”virtual” due to the fact that only one target can be assigned to
the nth blue platform. Given that the same scores are gained by two blue units,
the less the blue platform value, the better. That is why we put 1/V B

P AB
n

in front
of the final score in the performance function.

Our target assignment approach has two steps. The first one is to give a
priority sequence of the NAB blue platforms by the value of the performance
function from largest to smallest. This step de-centralizes the whole processing.
The second one is to let the Blue platform ”greedily” choose their target in the
order of the rank created in the first step. In this step, the current kth blue
unit will choose the red target (ith red unit) which has the biggest value of the
following utility function

Υk(i) =
1

V B
P AB

k

{
wv

k

[
P̄i,k + P̃i,k

]
− ws

kδkSk − wr
i δr

i

}
(6)

where the new variable wr
i is a relative big number as a weight, and δr

i = 0 if
the red unit has less than m(= 2) blue preys; otherwise, δr

i = 1.
In equation (6), wv

k

[
P̄i,k + P̃i,k

]
− ws

kδkSk, having the same meaning as in
equation (5), is the total expected score the blue side will gain if the ith red
target is assigned to the kth blue platform. To prevent the kth blue unit from
choosing a target which already has m(= 2) blue preys, we subtract a relatively
large weight wr

i if δr
i = 1.

4.2 Adaptive Sequential Game Approach for Salvo Size Control

The goal of the salvo size control is to determine optimal salvo-size such that
blue force can destroy as many red targets as possible and at the same time
save the blue platforms. For the blue weapon platforms, the good salvo size
control strategy is important to destroy as many red targets as possible and at
the same time to save themselves. We will use sequential games to model the
process.

A sequential game is one in which players apply their strategies following
a certain predefined order, and in which at least some players can observe the
moves of other players who make decisions preceding them. The sequential game
is a natural framework to address some real problems, such as the “Action-
Reaction-Counteraction” paradigm used in military intelligence and advertising
campaigns strategies of several competing firms in economics. Linear quadratic
games are researched in [11] from a system dynamic control perspective.



330 D. Shen et al.

State equation:
{

XB
k+1 = XB

k − ξB
k

(
XB

k , XR
k , CB

k , CR
k , IB

k

)

XR
k+1 = XR

k − ξR
k

(
XB

k , XR
k , CB

k , CR
k , IR

k

) (7)

where XB
k and XR

k are the states of blue side and red side, respectively. The
platform type, number, and current damage statues are capsulated in the state
vectors. IB

k and IR
k are the available information sets [12] for blue and red side

at time k. ξB
k and ξR

k are the state transition function of blue and red side,
respectively. Both functions are based on the attrition model specified in [4]. CB

k

and CR
k are the sequential salvo size control of blue and red force.

CB
k =

{
γB

k (XB
k , XR

k , IB
k ) , k is even

0 , k is odd (8)

CR
k =

{
γR

k (XB
k , XR

k , IR
k ) , k is odd

0 , k is even (9)

γB
k and γR

k are the action strategies of blue side and red side at time k when it
is the player’s turn to take the actions.

In general, the system model described by (7)-(9) is nonlinear. By the lin-
earization transformation method introduced in [13], the above nonlinear model
can be transformed into a linear system.

Xk+1 = AxXk + DB
k CB

k + DR
k CR

k (10)

Xk =
[
XB

k

XR
k

]
(11)

The objective of each side is to minimize its cost function

JB = (XR
N )�QBR

N XR
N︸ ︷︷ ︸

remaining red units

− (XB
N )�QBB

N XB
N︸ ︷︷ ︸

remaining blue units

−
N−1∑

k=1

([
CB

k

]�
WBCB

k

)

︸ ︷︷ ︸
cost of blue actions

(12)

JR = (XB
N )�QRB

N XB
N︸ ︷︷ ︸

remaining red units

− (XR
N )�QRR

N XR
N︸ ︷︷ ︸

remaining blue units

−
N−1∑

k=1

([
CR

k

]�
WRCR

k

)

︸ ︷︷ ︸
cost of red actions

(13)

Therefore a linear quadratic sequential game is formed.
With the consideration that the parameters in each side’s cost function is not

accessible to the other side, we propose to use an adaptation design [11] based
on the concept of Fictitious Play (FP) to learn the unknown properties.

As a learning concept, FP was first introduced by G. W. Brown [14] in 1951.
Within the learning scheme, each player presumes that the opponents are playing
stable (possibly mixed) strategies. Each player starts with some initial belief and
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Fig. 2. An adaptation design for dynamic linear quadratic games

chooses a best response to those beliefs as a strategy in this round. Then, after
observing their opponents’ actions, the players update their beliefs according to
some learning rule (e.g. Q-learning or Bayes’ rule). The process is then repeated.
It is known [15] that if the process converges, then the point of convergence is a
Nash equilibrium of the game.

In [11], an adaption scheme, as shown in Fig. 2, is constructed via combining
Fictitious Play (FP) [14,15] (in which each player presumes that its opponents
are playing Nash strategies, then a best response to those beliefs is chosen as
a strategy), and conventional adaptive control techniques such as normalized
gradient algorithm and Recursive Least Square (RLS).

5 Simulation and Experiments

To illustrate how our algorithm works, we developed a software package, which
can connect to the MICA (Mixed Initiative Control of Automa-Teams) OEP
(Open Experimental Platform) [2].

A typical scenario shown in Fig. 3 with several experiments is simulated on
our software to evaluate the performance of our proposed Mission Planning
algorithm for Multiple Aerial Platforms. The meaning of icons are shown in
Fig. 4.

In the scenario, Molian rebels (red force) supported by terrorist organizations
and a neighboring country (NNC) are overrunning the country of Molia. Molia
has asked the US for support. Friendly Molian forces face numerically superior
Molian red force plus volunteers from a neighboring country. Molian Rebels have
integrated their air defense into the neighboring country’s EW Radars, SAMs
and C2 structure. These EW Radars, SAMs and C2 structures are deemed ac-
ceptable targets but collateral damage must be avoided. Red forces have overrun
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Fig. 3. A typical Scenario

portions of the country. Blue ground forces consists of the Molian Army plus a
limited number of US ground forces. The combined blue Force is relying on UAV
air power in support of these limited ground forces to contain the situation until
additional US ground forces arrive.

For this scenario, after running our upper level knowledge/experience based
static non-cooperative and non-zero Nash game, we obtain the following blue
force resource allocation results (Note that since the system is stochastic, all
the figures below are based on the averages of 30 simulations). In this stage,
four missions are assigned: one Close Air Support mission is assigned to team 1
(4 COMB UAVs, 1 Small Sensor UAV, 1 Small weapon UAV) to protect blue
Base; one Close Air Support mission is allocated to team 2 (2 COMB UAVs,
1 Small Sensor UAV, 1 Small weapon UAV) to guard blue concentration area
#1; one Close Air Support mission is sent to team 3 (2 COMB UAVs, 1 Small
Sensor UAV, 1 Small weapon UAV) to guard blue concentration area #2; and
one SEAD mission is assigned to team 4 (5 small sensor UAVs, 5 small weapon
UAVs, 6 large sensor UAVs, 6 large weapon UAVs) to attack red area #2. No
blue force is sent to red area #1, #3 and NNC.

The whole task is divided into three stages. During each stage, we first run
the TCT module to optimally and automatically assign resources to the point
of interest so that the goal of the stage can be met with the minimum cost. With
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Fig. 4. Icons used in scenarios

the given resource, the lower level TDT module will be called for each unit to
dynamically select targets and salvo-size. The salvo-size is optimally determined
by our adaptive sequential game algorithm under a Fictitious Play framework
so that the linear quadratic cost functions (12)-(13) are minimized for linearized
system dynamics (10)-(11).

The result of the stage 1 is shown in Fig. 5. All the red forces (2 long SAM
sites, 7 medium SAM sites, 1 red ground troop composed of 4 Tanks, 2 EW
radars, 2 Tracking radars and 2 search radar) in red area #2 are terminated
with the cost of losing three Large Weapon UAVs and 2 Large Sensor UAVs
partially damaged in Team 4 . We also compare the result with one of other
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Fig. 5. The result of Stage 1

options, such as no jamming strategy, no decoy approach, and only weapon
method.

From the damage comparison results, we can see our proposed jamming-decoy-
weapon approach is better than other methods. It also shows that decoy strategy
is more efficient in saving the blue forces than the Jamming strategy. We also
notice that all blue forces are totally destroyed by the red force in the weapon
only approach during the stage 2.

The adaptive scheme for TDT is implemented during each stage. The result
of the first stage is shown in Fig. 6. In this plot, {L̂ij

k }s is the sth element of
L̂ij

k , which is the estimate of state feedback control gain of player j by player
i, i, j = 1, 2. We can see the convergence of to Lj. which is the actual value of
control gain for player j.

After Stage 1, we should call the upper level game again with the updated
battle field information. In this step, the experience/knowledge functions will be
adjusted too. The blue force allocation chart of stage 2 is shown in Fig. 7. The
simulation result of stage 2 is illustrated in Fig. 8.

In Stage 2, there are two SEAD missions. Mission 1 is to attack the red area
#1 and mission 2 is to dominate the red area #3. During mission 1, two small
weapon UAVs are shot down by the red force.
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Fig. 6. Results of Adaptive Design for Dynamic Games in TDT

Fig. 7. Blue Force Allocation Chart of Stage 2 (Note: Red Area # 1 and Red Area #3
will be attacked during stage 2)

In the SEAD mission 2, one small sensor UAV and one large sensor UAV are
totally destroyed by red Integrated Air Defense System (IADS). In Fig. 8, notice
that all the blue force in team 2, which is assigned the Close Air Support (CAS)
to protect blue area #1, are destroyed. There is one destroyed small weapon
UAV in team 3, which has the task to protect blue Concentration #2. The TCT
result of stage 3 is shown in Fig. 9.
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Fig. 8. The result of Stage 2

Fig. 9. Blue Force Allocation Chart of Stage 3 (Note: NNC will be attacked during
stage 3)

The simulation result of stage 3 is shown in Fig. 10. All the red forces in
NNC are destroyed. It is surprisingly good. We think there are two reasons to
account for it. One is that we assigned two teams to attack NNC. The other is
that most units in NNC are red force support devices such as Radars and ESM
sensors.
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Fig. 10. The result of Stage 3

6 Conclusion

In UAV cooperative control, mission planning is of great importance for the
efficient destruction of the opposing force combat capabilities. In this chapter,
an effective TCT mechanism and an adaptive TDT algorithm are developed
under a hierarchical adaptive and sequential game theoretic framework. The
simulations show that the game theoretic algorithm is capable of solving the
coordinated mission planning problem.

References

1. Cruz, Jr., J.B., Chen, G., Garagic, D., Tan, X., Li, D., Shen, D., Wei, M., Wang,
X.: Team Dynamics and Tactics for Mission Planning. Proceedings of the 42nd
IEEE Conf. on Decision and Control, Hawaii, December 2003

2. User Guide for the Open Experimental Platform (OEP), version 1.3, Boeing, Mar,
2003

3. Chandler, P., Pachter, M.: Research issues in autonomous control of tactical UAVs.
Proceedings of the American Control Conference, Philadelphia, Pennsylvania, June
24-26, 1998



338 D. Shen et al.

4. Cruz, Jr., J.B., Simaan, M.A., Gacic, A., Jiang, H., Letellier, B., Li, M., Liu, Y.:
Game-Theoretic Modeling and Control of a Military Air Operation. IEEE Transac-
tions on Aerospace and Electronic Systems, Vol. 37, No. 4, October 2001, pp.1393-
1405

5. Liu, Y., Simaan, M.A., Cruz, Jr., J.B.: An Application of Dynamic Nash Task Reas-
signment Strategies to Multi-Teams Military Air Operations. Automatica, Vol. 39,
Issue 8, August 2003, pp. 1469-1478

6. Liu, Y., Simaan, M.A., Cruz, Jr., J.B.: Game-Theoretic Approach to Cooperative
Teaming and Tasking in the Presence of an Adversary. Proceedings, 2003 American
Control Conference, Denver, Colorado, June 4-6, 2003

7. Chandler, P., Pachter, M., Swaroop, D., Fowler, J.M., Howlett, J.K., Rasmussen, S.,
Schumacher, C., Nygard, K.: Complexity in UAV cooperative control. Proceedings
of the American Control Conference, Anchorage, Alaska, May 2002, pp. 1831-1836

8. Jin, Y., Minai, A.A., Polycarpou, M.M.: Cooperative real-time search and task
allocation in UAV teams. Proceedings of the IEEE Conference on Decision and
Control, Maui, Hawaii, December 2003, pp. 7-12

9. Gil, A.E., Passino, K.M., Ganapathy, S., Sparks, A.: Cooperative scheduling of
tasks for networked uninhabited autonomous vehicles. Proceedings of the IEEE
Conference on Decision and Control, Maui, Hawaii, December 2003, pp. 522-527

10. Chen, G., Cruz, Jr., J.B.: Genetic Algorithm for Task Allocation in UAV Cooper-
ative Control. Proceedings, AIAA Guidance, Navigation, and Control Conference,
Austin, Texas, August 2003

11. Shen, D.: Nash Strategies for Dynamic Noncooperative Linear Quadratic Sequen-
tial Games. Ph.D. Dissertation, Advisor: Cruz, Jr., J.B., the Ohio State University,
2006

12. Basar T., Olsder, G.J.: Dynamic Noncooperative Game Theory. SIAM Series in
Classics in Applied Mathematics, second ed., January, 1999

13. Sastry, S.S.: Nonlinear Systems: Analysis, Stability and Control, Springer-Verlag,
New York, NY, 1999

14. Brown, G.W.: Iterative solutions of games by fictitious play. Activity Analysis of
Production and Allocation (T. C. Koopmans, ed.), New York: Wiley, 1951

15. Fudenberg, D., Levine, D.K.: The Theory of Learning in Games. Cambridge, MIT
Press, 1998

16. Shen, D., Cruz, Jr., J.B., Chen, G., Kwan, C., Vannevel, A.: A Game The-
oretic Approach to Mission Planning for Multiple Aerial Platforms. AIAA In-
fotech@Aerospace Conference, Arlington, VA, September 26-29, 2005



Characteristics of the Distribution of Hamming

Distance Values Between Multidimensional
Assignment Problem Solutions

Alla R. Kammerdiner1, Pavlo A. Krokhmal2, and Panos M. Pardalos1

1 University of Florida, Gainesville, FL
2 University of Iowa, Iowa City, IA

Abstract. The Multidimensional Assignment Problem (MAP) is a com-
binatorial optimization problem that arises in many important practical
areas including capital investment, dynamic facility location, elemen-
tary particle path reconstruction, multiple target tracking and sensor
fusion. Since the solution space of the MAP increases exponentially with
the problem parameters, and the problem has exponentially many local
minima, only moderate-sized instances can be solved to optimality. We
investigate the combinatorial structure of the solution space by extend-
ing a concept of Hamming distance. The results of numerical experiments
indicate a linear trend for average Hamming distance to optimal solution
for the cases where one of the parameters is fixed.

1 Introduction

The Multidimensional Assignment Problem (MAP) is an NP-hard combinatorial
optimization problem that can be viewed as a special case of the multi-index
transportation problem, as well as a higher dimensional extension of the linear
assignment problem (LAP). The MAP has many applications in such important
practical areas as data association problems arising in multiple target tracking
and sensor fusion, air traffic control, satellite launching, surveillance, dynamic
facility location, capital investment, etc [1,2,3].

Most of the MAP solution methods are developed for the three-dimensional
MAPs, although a number of important practical problems are modeled by
MAP with a higher dimensionality parameter. For example, the problem of re-
constructing the path of charged elementary particles produced by the Large
Electron-Positron Collider is studied using the five-dimensional MAP as a math-
ematical model [4]. Due to inherent complexity of the MAP, not only the problem
size increases extremely fast with increase in the MAP parameters, but also the
mean number of local optima is exponential in the number of dimensions of
the MAP [5]. However, all currently known exact methods for solving this im-
mense problem are enumerative in nature, and therefore, such methods are too
slow for many practical applications of the MAP. In addition, many exact and
suboptimal algorithms developed for the multidimensional assignment problem
utilize to a certain degree some kind of a local search procedure. Taking into
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consideration a large number of possible local optima of the MAP, it becomes
clear that the application of local search procedures for solving MAP instances
is negatively affected by the structure of the solution space.

In this paper, we investigate some properties of the solution space structure
using a natural extension of Hamming distance to evaluate the distance between
a feasible solution of the MAP and its optimum. The outcomes of the numerical
experiments clearly indicate that the structure of solution space is influenced by
the problem parameters. This result is intuitively explained by the combinatorial
representation of a feasible solution of the MAP as a collection of permutations.
An application of Hamming distance to the solution space allows us to estimate
by how much a feasible solution differs from the (unique) optimal solution.

This paper is organized as follows. Section 2 presents a formulation of the
MAP as a combinatorial optimization problem, and discusses some important
previous results. Section 3 introduces Hamming distance extension to the MAP,
and describes the connection between the distance to the optimum and the cor-
responding LAP. Results of computational experiments calculating Hamming
distances are reported in Section 4. Finally, the Section 5 summarizes our inves-
tigation into solution space structure of the MAP.

2 MAP Formulations and Related Previous Results

The MAP is often introduced as a higher dimensional extension of the linear as-
signment problem (LAP). The LAP is usually described as a problem of uniquely
assigning each worker in a group a specific task, so that there is only one task
for each worker, and each task is completed by only one worker. Notice that the
LAP has two groups, a group of workers and a collection of tasks, and that is
why its dimensionality parameter is two. The MAP has a similar interpretation,
but the dimensionality parameter is increased. For example, we can uniquely as-
sign each worker a task scheduled to be performed at a certain time slot and in
a specified location, so every parameter (worker, task, time, location) is assigned
to a unique quadruple, such that none of the parameters in the quadruple is
in any other assignment. Clearly, the dimensionality of the MAP given by the
above example is four.

W.P. Pierskalla initially considered the three-dimensional version of the MAP
by extending the LAP in 1966 [6]. The first general formulation of the MAP
was also given by W.P. Pierskalla as a zero-one integer programming problem in
1968 [7].

The MAP can be compactly formulated in the following fashion:

min
x∈{0,1}

∑

1≤ik≤n,
k∈{1,...,d}\{j}

ci1...id
· xi1...id

, (1)

s. t.
∑

1≤ik≤n,
k∈{1,...,d}\{j}

xi1...id
= 1, 1 ≤ ij ≤ n, 1 ≤ j ≤ d,

where ci1...id
denote the cost coefficients.
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More precisely, formulation (1) represents a d-dimensional ‘‘axial” MAP char-
acterized by the same cardinality parameter n for element sets in each dimension.

The MAP has an interesting interpretation in terms of graph theory. It is well
known that the LAP can be formulated using a bipartite graph. Analogously, the
MAP can be described as a problem of finding a partition of the vertex set of a d-
partite graph into n pairwise disjoint cliques of a minimum cost. More formally,
the graph-theoretic definition of the MAP can be constructed as follows:
Given d mutually disjoint vertex sets V1, . . . , Vd each with cardinality n, and the
edge set E, let G = (V1, . . . , Vd; E) denote a complete d-partite graph. A subset
of the vertex set V = ∪d

i=1Vi is called a clique if it contains exactly one vertex
from each Vi, 1 ≤ i ≤ d. Suppose there is real-valued cost function defined on
the set of cliques of G. Then the d-dimensional MAP constitutes a problem of
determining such a partition of the vertex set V into a collection of n pairwise
disjoint cliques, which minimizes the cost function.

The MAP (1) also has an alternative formulation as a combinatorial opti-
mization problem:

minimize
∑

1≤i≤n

ciπ1(i)...πd−1(i), subject to π1, . . . πd−1 ∈ Πn, (2)

where cj1j2...jd
, 1 ≤ jk ≤ n, 1 ≤ k ≤ d denote the assignment cost coefficients,

and Πn is the set of all possible permutations of elements in the set {1, 2, . . . , n}.
In other words, in order to solve the MAP given by a d-dimensional cubic

matrix of cost coefficients of the size nd, one must find a permutation of the rows
and columns of the costs matrix minimizing the sum of the diagonal elements.

The combinatorial formulation (2) allows for a clear and efficient representa-
tion of a feasible solution of the MAP as an n × d matrix with columns given by
permutations of {1, 2, . . . , n}, i.e.

⎛

⎜⎜⎜⎝

π1(1) π2(1) . . . πd(1)
π1(2) π2(2) . . . πd(2)

...
...

. . .
...

π1(n) π2(n) . . . πd(n)

⎞

⎟⎟⎟⎠ = (π1 π2 . . . πd) ,

where πi = (πi(1) πi(2) . . . πi(n))�, for every 1 ≤ i ≤ d, are permutations from
Πn.
To ensure that such representation is unique for every feasible solution, we must
set the first column to be an identity permutation ı. Actually, it is enough to
specify a permutation πj ∈ Πn of arbitrary single column j of the matrix repre-
sentation of feasible solutions to obtain a one-to-one correspondence between all
feasible solutions of the MAP and their respective representations via permuta-
tions.

Also notice that given the matrix representation of a feasible solution above,
the associated solution cost is

z = cπ1(1)π2(1)...πd(1) + cπ1(2)π2(2)...πd(2) + . . . + cπ1(n)π2(n)...πd(n)
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Using the commutativity of the summation, we can switch the terms in the
solution cost without altering its value, and therefore, the solution remains the
same under any permutation of rows in the solution matrix.

It follows directly from matrix representation of a feasible solution of the MAP
as (ı π2 . . . πd) with the first column fixed as identity permutation ı that the
cardinality N of the solution space can be calculated by the formula:

N = (n!)d−1 (3)

In other words, the number of feasible solutions grows at least exponentially
with increase in the problem parameters d and n. Nevertheless, all currently
known exact methods developed for solving the MAP are enumerative in their
nature. In particular, many of them use some variation of branch-and-bound
techniques [7,8,9,10]. In addition, the MAP is known to be generally NP-hard,
which follows by reduction to three-dimensional matching problem [11]. As a
result of the inherent complexity of the problem, most exact methods for solving
the MAP are designed specifically for its three-dimensional version.

A number of heuristic approaches have been used to solve the MAP, in-
cluding simulated annealing [13], greedy randomized adaptive search procedure
(GRASP) [12,14,15], and tabu search [16]. Most of these algorithms utilize some
type of local neighborhood search. On the other hand, it was shown for the MAP
with randomly distributed assignment cost coefficients that the expected num-
ber of local minima is exponential with respect to the number of dimensions [5].
Moreover, numerical experiments indicate that large numbers of local minima of
the MAP have a statistically significant negative effect on performance of several
heuristics that involve local neighborhood search, such as GRASP and simulated
annealing [5].

For the remainder of this paper, we examine some characteristics of the struc-
ture of the space of all feasible solutions of the MAP with respect to its pa-
rameters d and n. For simplicity, we assume that the unique global minimum of
the MAP exists. This is true, for example, (at least almost surely) in the case
when assignment cost coefficients are randomly generated from a continuous
distribution.

3 Hamming Distance

The Hamming distance was first introduced by R.W. Hamming in 1950 as a mea-
sure of errors (or substitutions) that transform one string of a binary code into
another [17]. The Hamming distance has found applications in various areas, such
as coding theory, information theory, cryptography, combinatorial optimization,
etc [18]. Given two strings of an equal length with characters from any alphabet
(not necessarily binary), the Hamming distance between them is usually defined
as the number of positions in which these strings disagree.

The landscape structure of many combinatorial optimization problems can be
investigated using the Hamming distance. In particular, the Hamming distance
defined on the set of permutations of a given length was applied to study the



Characteristics of the Distribution of Hamming Distance Values 343

fitness landscape of the quadratic assignment problem (QAP) [19]. Since any
permutation π ∈ Πn can be represented as a string (π(1) π(2) . . . π(n)) of
characters π(j) ∈ {1, 2, . . . , n} that does not allow the same character at any two
distinct positions, the Hamming distance between two permutations π, σ ∈ Πn

is defined as
dH(π, σ) = |{j : π(j) �= σ(j)}|

Although any feasible solution of the QAP can be represented by means of a
single permutation, the MAP does not allow such a representation. In fact, as
shown in the previous section, any feasible solution of the MAP with parameters
d and n can be uniquely represented by a n × d matrix

⎛

⎜⎜⎜⎝

1 π1(1) . . . πd−1(1)
2 π1(2) . . . πd−1(2)
...

...
. . .

...
n π1(n) . . . πd−1(n)

⎞

⎟⎟⎟⎠ = (ı π1 . . . πd−1) , (4)

with the first column given by identity permutation ı, and the other d−1 columns
given by the permutations π1, . . . , πd−1 ∈ Πn. Furthermore, row permutations
of the solution matrix do not change the solution. Because of this property, the
extension of the Hamming distance to the MAP is not as straightforward as in
the case of the QAP. To demonstrate this, let us consider a simple example of
the MAP with parameters d = 3 and n = 2:

π =
(

1 1 1
2 2 2

)
, σ =

(
1 2 2
2 1 1

)

Clearly, π and σ are two solutions of the above MAP represented in the matrix
form (4). If we defined the Hamming distance extension to MAP, simply as the
number of positions in which these two matrices disagree, then the distance
between π and σ would be 4. However, this approach is incorrect, since it does
not take into account that the solution remains the same under the permutation
of rows in the solution matrix. Permuting the rows of the matrix σ, we get:

σ =
(

2 1 1
1 2 2

)
,

which differs from π in only two positions, and hence, the Hamming distance
between π and σ is 2, not 4.

Thus, the Hamming distance between any two feasible solutions
π = (π1 π2 . . . πd) and σ = (σ1 σ2 . . . σd) of the MAP is defined as the mini-
mum number of positions in which two matrices disagree, i.e.

dH(π, σ) = min
τ∈Πn

d∑

k=1

|{j : πk(j) �= σk (τ(j))}|

= min
τ∈Πn

d∑

k=1

n∑

j=1

I{πk(j) �=σk(τ(j))} (5)
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This definition of the Hamming distance for the MAP can be given an alternative
formulation in terms of the LAP with the cost coefficients given by the Hamming
distances between two rows. Indeed, let us consider the corespondent matrix
representations of two feasible solutions π and σ of the MAP:

π =

⎛

⎜⎜⎜⎝

π1(1) π2(1) . . . πd(1)
π1(2) π2(2) . . . πd(2)

...
...

. . .
...

π1(n) π2(n) . . . πd(n)

⎞

⎟⎟⎟⎠ , σ =

⎛

⎜⎜⎜⎝

σ1(1) σ2(1) . . . σd(1)
σ1(2) σ2(2) . . . σd(2)

...
...

. . .
...

σ1(n) σ2(n) . . . σd(n)

⎞

⎟⎟⎟⎠ ,

Since the solutions remains the same under any row permutation τ ∈ Πn, then
σ can also be written as:

σ =

⎛

⎜⎜⎜⎝

σ1 (τ(1)) σ2 (τ(1)) . . . σd (τ(1))
σ1 (τ(1)) σ2 (τ(2)) . . . σd (τ(2))

...
...

. . .
...

σ1 (τ(n)) σ2 (τ(n)) . . . σd (τ(n))

⎞

⎟⎟⎟⎠ .

For any fixed row j of the solution matrix π, and any given permutation τ ∈ Πn,
let the LAP cost coefficient C πτ (j, τ(j)) be the Hamming distance between row
j of the matrix π and row τ(j) of σ, i.e.

C πτ (j, τ(j)) = |{k : πk(j) �= σk (τ(j))}| =
d∑

k=1

I{πk(j) �=σk(τ(j))} , (6)

where 1 ≤ j ≤ n and τ ∈ Πn.
The LAP is a problem of finding the minimum cost assignment for elements

from two disjoint sets of equal size. The LAP stated above, which calculates the
Hamming distance of the MAP, assigns every row j from the solution matrix
π a corresponding row i = τ(j) of σ matrix so that the total assignment cost
given as a sum of cost coefficients (6) is minimized. Obviously, the permutation τ
represents a feasible solution of the LAP. More formally, the LAP for computing
the Hamming distance between matrices π and σ is formulated as follows:

dH(π, σ) = min
τ∈Πn

n∑

j=1

C πτ (j, τ(j)), (7)

where

C πτ (j, τ(j)) =
d∑

k=1

I{πk(j) �=σk(τ(j))}

By interchanging the order of summation, we obtain that the Hamming dis-
tance between solutions π and σ of the MAP given by (5) is equivalent to the
Hamming distance definition via the corresponding LAP (7).
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4 Numerical Results

In this section we report the results of computational experiments conducted
to examine the solution space structure with respect to the Hamming distance
extension for the MAP. We considered the MAP instances with different values
for the parameters d and n. First, for every given pair of parameters (d, n), all
feasible solutions were constructed using the matrix representation (4). Then,
for each solution matrix, we computed the Hamming distance from the global
minimum solution by solving the corresponding LAP. The average of the Ham-
ming distances from the global minimum was obtained for each MAP with fixed
parameters (d, n). The results of the conducted numerical experiments clearly
show that the averages for the Hamming distances to the global minimum ex-
hibit a linear trend when one of the problem parameters, either n or d is fixed,
and the other parameter varies.

Let us discuss these experiments in more detail. Since the cardinality of the
space of all feasible solutions of the MAP depends explicitly on the problem pa-
rameters d and n as shown by formula (3), it is logical to investigate whether the
structure of the solution space of the MAP is also influenced by the parameters
d and n. Therefore, we consider various values for the dimensionality parame-
ter d and the cardinality of permutation set n. For each pair (d, n) of specified
parameters of the MAP, we studied the solution space structure of the problem
by constructing every feasible solution in the form of a n × d matrix represen-
tation of the solution given by (4). Since such a representation is comprised by
the columns of permutations of the elements in {1, 2, . . . , n}, then, in order to
build the solution matrices, we first had to produce all possible permutations of
n elements.

The following inductive procedure A was implemented to produce the set Πn

of all permutations:

Procedure A.

– Start with a 2×2 matrix M0 =
(

1 2
2 1

)
that stores all possible permutations

of 2 elements.
– Set k = 3.
– Construct a row rk of the size (k − 1)! with all elements equal k.
– Produce a k × ((k − 1)!) matrix M by adding the row rk at the bottom of

the matrix M0
– For j starting with j = 1 until j = k − 1 repeat the following:

• Construct a k × ((k − 1)!) matrix M1 by inserting the row rk between
the (j − 1)-th and j-th rows of matrix M0 (i.e. the first j − 1 rows of M1
consists of the first j −1 rows of M0 respectively, next the row j of M1 is
given by rk, and finally the rest k−1−j rows of M1 is the corresponding
rows j to k − 1 of matrix M0).

• Change M by appending M by the constructed matrix M1 so that the
modified matrix M = (M M1)

• Increment j = j + 1.
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– Update the initial matrix M0 = M (M stores all possible permutations of k
elements.

– Increment k = k + 1, and repeat the procedure until k = n + 1.

This procedure produces the n × (n!) matrix M0, which stores all possible per-
mutations πα ∈ Πn, 1 ≤ α ≤ n!, as columns of the matrix. Having built all the
permutations, we can construct the feasible solutions of the MAP with parame-
ters d and n.

To construct each solution matrix σ, the following simple procedure B was
utilized:

Procedure B.

– Set the first column of σ to equal the identity permutation ı.
– For k starting with k = 2 until k = d, repeat the following:

• Randomly select a column ck from n! columns of the matrix M0 produced
by the previous procedure

• Set the j-th column of the solution matrix σ equal to the chosen permu-
tation c.

• Increment k = k + 1.

The procedure B is based on formula (4), and so it produces a n × d matrix
σ = (ı c2 . . . cd) with ck ∈ Πn, 2 ≤ k ≤ d, which gives a feasible solution of the
MAP with parameters d and n.

As mentioned earlier, for the sake of simplicity, we suppose that the global
minimum of the MAP is unique. Moreover, without loss of generality, we can
assume that the global minimum is attained at a feasible solution π = (ı ı . . . ı)
with every column given by the identity permutation ı. In fact, given a ma-
trix representation of the global minimum solution, the above condition can be
achieved by properly reordering the elements in each of d mutually disjoint sets.
Suppose some column j, 1 ≤ j ≤ d, of the global minimum solution π is a non-
identity permutation πj , then we just apply the inverse permutation π−1

j on the
elements from the j-th disjoint set.

Notice also that π = (ı ı . . . ı) is one of the feasible solutions generated by
the procedure B.

Next, we estimate by how much every feasible solution σ constructed by B
differs from the unique global minimum π by applying the Hamming distance.
More precisely, for every σ from the solution space, we compute the Hamming
distance between σ and the global optimum solution π using definition (7) of
the Hamming distance via the corresponding LAP.

Finally, for every considered MAP with specified problem parameters d and
n, we calculate the average of the Hamming distances.

All procedures were implemented in C++, and the LAP was solved using
shortest augmenting path algorithm for dense LAP proposed by R. Jonker and
A. Volgenant [20].

Figures 1 and 2 display the average values of the Hamming distances to the
global minimum solution of the MAP for various parameters.
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Fig. 1. The average Hamming distances from the global minimum of the MAP as
functions of the dimensionality parameter d of the MAP

Fig. 2. The average Hamming distances from the global minimum of the MAP as
functions of the cardinality parameter n of the MAP

To produce Figure 1, we temporarily fixed the parameter n to some value n0,
and varied the dimensionality of the problem. For each n = n0, n0 = 2, 3, 4, we
treated the average Hamming distance to the global minimum as a function of
d. By plotting all three functions, we discovered that their graphs clearly dis-
play linear trends. Furthermore, fitting a linear trendline to every given average
Hamming distance function produced square errors that are very close to 1. In
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other words, the average Hamming distances from the global minimum solution
for the MAP with a specified n = n0 is an approximately linear function with
respect to the dimensionality parameter d. The equations for the linear trend-
lines, which approximate these average Hamming distance functions depending
on d, and the respective square errors R2 are displayed in Table 1.

Table 1. Linear trends for graphs of the average Hamming distances in Figure 1

Parameter n Equation of trendline R-squared value

n = 2 y = 0.8623x + 0.6199 0.9994

n = 3 y = 1.7235x + 1.5846 0.9999

n = 4 y = 2.5061x + 2.7731 0.9999

Similar to plotting the average Hamming distances against the dimensionality
parameter d for the MAP with a fixed n, we created graphs of the average dis-
tance functions with respect to the permutation size parameter n while fixing the
dimensionality. We obtained plots of three functions of n, each of the functions
corresponding to a specified parameter d = d0, where d0 = 3, 4, 5. Interestingly,
for each value do, the average distance functions as functions of the disjoint sets
size n also exhibit a strong linear trend. In fact, the square error values produced
by fitting a linear trendline are extremely close to 1 as indicated in Table 2. The
equations of the trendlines are also displayed in Table 2. In order to further in-
vestigate the structure of the solution space of the MAP with different problem
parameters d and n, we charted the histograms of the Hamming distances be-
tween a feasible solution and the global solution. Next, we selected pairs of the
MAPs of comparable problem size, and then compared these histograms. The
results of such comparisons are presented in Figures 3 and 4.

Table 2. Linear trends for graphs of the average Hamming distances in Figure 2

Parameter n Equation of trendline R-squared value

d = 3 y = 1.9303x − 0.4789 0.9998

d = 4 y = 2.68x − 0.2381 0.9997

d = 5 y = 3.5894x − 0.4572 1
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Fig. 3. The histograms of the Hamming distances from the global minimum of the
MAP with n = 4, d = 4, and the MAP with n = 5, d = 3

For example, in Figure 3 we chose two problems, the MAP with n = 4, d = 4,
and the MAP with n = 5, d = 3. The respective problem sizes are N = 13, 824
and N = 14, 400. Although the range of the first MAP is a little wider, and the
two histograms appears slightly shifted, there is some similarity. In fact, both
histograms are skewed towards the higher values of the Hamming distance. In
other words, among all feasible solutions, there is a larger percentage of those
solutions that are further away from the global minimum than those that are
closer to the global solution. Hence, if we selected any solution at random, the
probability of selecting a solution that is very different from the global minimum
solution would be larger.

The patterns displayed in Figure 3 can also be seen in Figure 4, which com-
pares the histograms of another pair of the MAPs. The first MAP has parameters
n = 3 and d = 8, and the problem size N = 279, 936, and the second MAP has
parameters n = 4 and d = 5, and the problem size N = 331, 776. In a sim-
ilar way as before, there are some differences between the histograms of two
problems. Specifically, the first MAP has a slightly wider range compared to
the second MAP, and the histograms appear shifted with respect to each other.
But, more importantly, Figure 4 also shows the previously observed similarity
in histograms. Both histograms are characterized by the skewness toward the
larger Hamming distance values, i.e. the percentage of feasible solutions, which
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Fig. 4. The histograms of the Hamming distances from the global minimum of the
MAP with n = 4, d = 4, and the MAP with n = 5, d = 3

differs from the global minimum solution in many positions, is greater than the
percentage of the solution that are similar to the global minimum solution.

The examples represented in Figures 3 and 4 are not an exception. For every
considered pair of parameters (d, n), we have found that the distribution of the
Hamming distances between the feasible solutions and the global solution is
rather heavily skewed towards the higher values of Hamming distances. This
indicates that the percentage of feasible solutions, which have more differences
than similarities with the unique global minimum solution, is definitely greater
than the portion of the solution space relatively similar to the global.

5 Conclusions

In this paper, we investigated the solution space structure for the MAPs with
various values of problem parameters d and n by means of the Hamming distance
extension for the MAP. Since the matrix representation of a feasible solution is
invariant to row permutation, we showed that the Hamming distance between
two feasible solutions of the MAP can be computed by solving the LAP with the
costs given by the Hamming distances between individual rows of two solutions.
This result was applied to calculate the Hamming distances between the feasible
solutions and the global optimum solution of the MAP, for different problem
parameters. Furthermore, we examined the behavior of the average values of the
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Hamming distances depending on a different choice of a specified parameter. The
histograms of the Hamming distances to the global minimum were analyzed.

The results of the conducted computational experiments clearly indicate a
strong linear trend for the Hamming distance as a function of one of the prob-
lem parameters, while having the other parameter set to some specified value. In
particular, for each given value of the permutation size parameter n, the average
Hamming distance to the global minimum can be very closely approximated by
a linear function of the dimensionality parameter d. Similarly, for a specified
value of the dimensionality parameter d of the MAP, the average of the Ham-
ming distances between the global and a feasible solution is characterized by
approximately linear growth with respect to the other problem parameter n.
This finding can be used to estimate the Hamming distance for some problem
parameters, by extrapolating the known linear trend.

In addition, we discovered that the histograms display certain patterns in the
distribution of the Hamming distances that allow us to make some general con-
clusions about the structure of the solution space of the MAP. More precisely,
the skewness of the Hamming distance distribution towards the higher values
implies that the solution space consists largely of the solutions that are rather
different from the unique global optimum solution, while the solutions that are
similar to the global solution comprise a smaller portion of the solution space.
A possible direction for further research could include a more detailed statisti-
cal analysis of the proportion of the solutions, which are similar to the global
minimum, versus those different from the global solution.
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Abstract. In this chapter we consider the problem of robust visual tracking of
multiple targets using several, not necessarily registered, cameras. The key idea
is to exploit the high spatial and temporal correlations between frames and across
views by (i) associating to each viewpoint a set of intrinsic coordinates on a
low dimensional manifold, and (ii) finding an operator that maps the dynamic
evolution of points over manifolds corresponding to different viewpoints. Once
this operator has been identified, correspondences are found by simply running a
sequence of frames observed from one view through the operator to predict the
corresponding current frame in the other view. As we show in the chapter, this
approach substantially increases robustness not only against occlusion and clutter,
but also against appearance changes. In addition, it provides a scalable mechanism
for sensors to share information under bandwidth constraints. These results are
illustrated with several examples.

1 Introduction

In this chapter we consider the problem of robustly tracking multiple targets using sev-
eral, not necessarily registered, cameras. In principle, tracking targets using multiple
cameras should increase robustness against occlusion and clutter since, even if the tar-
gets appear largely occluded to some sensors, the system can recover by using the others.
Furthermore, examining data from spatially distributed cameras can reveal activity pat-
terns not apparent to single or closely clustered sensors. However, although intuitively
appealing, multicamera tracking does not necessarily improve robustness. This is illus-
trated in Figure 1, showing the results of an experiment where a Kalman filter based
tracker is implemented using data from two (registered) cameras. Even though the target
is always visible in at least one of the cameras, the tracker still loses it, due to occlusion
resulting in incorrect data from the other camera.
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(a)

(b)
(c)

Fig. 1. Multicamera tracking: (a) West view, (b) North view, (c) The trajectory of the target is
estimated incorrectly (red crosses) after the target leaves and re-enters the field of view of one of
the cameras

Avoiding situations like the one illustrated above requires an efficient coordination
mechanism to (i) reject incorrect measurements, and (ii) maintain consistent identity
labels of the targets across views. Previous approaches to the “correspondence across
views” problem include matching features such as color and apparent height [1; 2; 3; 4],
using 3D information from camera calibration [2; 5; 6; 7; 8] or computing homographies
between views [9; 10; 11]. More recently, Khan and Shah [12] presented an approach
based on finding the limits of the field of view of each camera as visible by the other
cameras under the assumption that the world is planar. However, it can be difficult to find
matching features across significantly different views, camera calibration information is
not always available and planar world hypothesis can be too restrictive.

To avoid these difficulties, in this chapter, we propose a new approach to the problem
of cooperative multicamera tracking that does not require feature matching, camera cal-
ibration or planar assumptions. The key idea is to exploit the high spatial and temporal
correlations between frames and across views by (i) associating to each viewpoint a set
of intrinsic coordinates on a low dimensional manifold and (ii) finding an operator that
maps the dynamic evolution of points over manifolds corresponding to different view-
points. Once this operator has been identified, correspondences are found by simply
running a sequence of frames observed from one view through the operator to predict
the corresponding current frame in the other view. It is worth emphasizing that this ap-
proach substantially increases robustness not only against occlusion and clutter, but also
against appearance changes. In addition, it provides a scalable mechanism for sensors to
share information under bandwidth constraints. These results are illustrated with several
examples.

2 Notation

H∞ denotes the space of functions with bounded analytic continuation inside the unit
disk, equipped with the norm: ‖G‖∞

.= ess sup|z|<1 σ{G(z)}, where σ(.) is the
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maximum singular value. �∞denotes the space of vector valued sequences{xi} equipped
with the norm: ‖x‖∞ .= supi ‖xi‖∞. Similarly, �2 denotes the space of vector valued
sequences equipped with the norm: ‖x‖2

2 =
∑∞

i=0 ‖xi‖2, where ‖.‖ is the usual euclid-
ian norm in Rn. Given a sequence {xk}, x(z) .=

∑∞
i=0 xkzk denotes its z–transform.

Finally, given a finite sequence{xk}n−1
k=0 , Tn

x denotes its corresponding (lower triangular)
Toeplitz matrix:

Tn
x

.=

⎡

⎢⎢⎢⎢⎣

xo 0 . . . 0

x1 xo
. . .

...
...

...
...

. . .
...

xn−1 xn−2 . . . x1 xo

⎤

⎥⎥⎥⎥⎦

3 Dynamic Identification Based Robust Tracking

In this section we show that robust multicamera tracking can be reduced to a convex
optimization problem. For simplicity, in the sequel we first present the main ideas using
the simpler single camera case and then extend these ideas to multicamera scenarios. In
principle, the location of a target in a video sequence can be predicted using a combination
of its (assumed) dynamics, empirically learned noise distributions and past position
observations [13; 14; 15; 16]. While successful in many scenarios, these approaches

Frame 85 Frame 95 Frame 105 Frame 150

Fig. 2. Tracking in the presence of occlusion. Top: Unscented Particle Filter based tracker loses the
target due to occlusion. Bottom: Combination Identified Dynamics/Kalman Filter tracks through
the occlusion.

remain vulnerable to model uncertainty and occlusion, as illustrated in the top portion of
Figure 2. Following the approach introduced in Camps et al [17] for the single camera
case, in this chapter we will address these difficulties by modeling the motion of the
target as the output of an operator driven by a stochastic signal. Specifically, consider
first the simpler case where the dynamics of the target are approximately linear and start
by modelling the evolution of y, the position of a given target feature as:

y(z) = H(z)e(z) + η(z) (1)
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where ek and ηk represent a suitable input and measurement noise, respectively, y(z),
e(z) and η(z) denote the corresponding z-transforms, and where the operator H is not
necessarily �2 stable. For example, in the case of a feature moving with random acceler-
ation, H(z) = z2

(z−1)2 . Further, we will assume that the following a priori information
is available:
(a) Set membership descriptions ηk ∈ N and ek ∈ E . These can be used to provide

deterministic models of the stochastic signals e, η.

(b) H admits an expansion of the form H =

Hp︷ ︸︸ ︷
Np∑

j=1

pjHj +Hnp. Here Hj are known,

given, not necessarily �2 stable operators that contain all the information available
about possible modes of the target1.

In this context, the next location of the target feature yk can be predicted by first
identifying the relevant dynamics H and then using it to propagate the effect of the
input e. In turn, identifying the dynamics entails finding an operator H(z) ∈ S .=
{H(z) : H = Hp + Hnp} such that y − η = He, precisely the class of interpolation
problem addressed in [18]. As shown there, such an operator exists if and only if the
following set of equations in the variables p,h and K is feasible:

M(h) =
[

I TT
h

Th K2I

]
≥ 0 (2)

y − Pp − h ∈ N (3)

where Th denotes the Toeplitz matrix associated with the sequence h = [h1, . . . , hn],
the first n Markov parameters of Hnp(z), and P .= [f1 f2 · · · fNp ], where f i is a
column vector containing the first n Markov parameters of the i-th transfer function
Hi(z)2.

The effectiveness of this approach is illustrated in the bottom portion of Figure 2,
showing that a Kalman filter based tracker using the identified dynamics for prediction,
instead of a purely assumed simple model such as constant acceleration, is now able to
track the target past the occlusion.

Consider now the situation where several (roughly) registered cameras are available.
In this case the resulting geometric constraints translate into additional convex constraints
that can be added to the identification above. This allows for individual cameras to
accurately “guess" the location of a momentarily occluded target by simply translating
to the local coordinate system measurements provided by other (non–occluded) cameras
and then propagating these measurements through the local model. Figure 3 shows the
result of applying the approach outlined above to the same two–camera example used
in the introduction. As shown there, the resulting tracker is now capable of continuous

1 If this information is not available the problem reduces to purely non–parametric identification
by setting Hj ≡ 0. In this case the proposed approach still works, but obtaining comparable
error bounds requires using a larger number of samples.

2 Here, we have assumed without loss of generality (by absorbing the spectral properties of e
into H, if necessary), that ek = δ(0), a unit impulse applied at k = 0.
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(a)

(b)
(c)

Fig. 3. Dynamics based multicamera tracking: (a) West view, (b) North view, (c) The trajectory
of the target is correctly estimated (red crosses) even after the target leaves and re-enters the field
of view of one of the cameras

tracking, even when the target is momentarily occluded to one of the cameras. In this
example, the experimental information used for identifying the dynamics consisted of
centroid position measurements from the first 12 frames, where the target is not occluded.
The a priori information, estimated from the non–occluded portion of the trajectory is:

1. measurement noise level 5 pixels
2. Hp ∈ span[1, 1

z−1 , z
z−1 , z

(z−1)2 , z2

(z−1)2 ]

Using this information, the minimum value of K yielding feasibility of the LMI (2) was
found to be K = 5 · 10−4, indicating that indeed the relevant dynamics are captured
by the parametric portion Hp. During operation of the tracker, the target in each camera
was segmented by the backprojection method using the hue histogram and occlusion
was detected by changes in its size. In this event, the camera used information from the
second sensor, when available, together with the local dynamics, to predict the position
of the target.

4 Handling Nonlinear Dynamics and Computational Complexity

As illustrated with the simple example above, the approach outlined in the previous sec-
tion has the potential to exploit multicamera information to accomplish robust tracking
in the presence of severe occlusion. However, extending this approach to realistic, more
complex scenarios requires addressing the issues of (i) nonlinear target dynamics and
(ii) the computational complexity entailed in combining data from multiple sensors, due
to the poor scaling properties of LMI based identification algorithms3. As we show in
this section, both issues can be addressed by using nonlinear dimensionality reduction
methods to project features to points on low dimensional manifolds where the dynamics

3 Recall that the computational complexity of conventional LMI solvers scales as the number of
decision variables raised to the 10th power [19].
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Fig. 4. Wiener System Structure

are linear. Computationally efficient camera coordination can be achieved by having
the cameras share projections onto these manifolds (and associated dynamical models),
rather than high dimensional raw video streams. Since the projection onto the lower
dimensional manifold can be modelled as a static nonlinearity, this approach leads nat-
urally to a Wiener system structure of the form illustrated in Figure 4, consisting of the
interconnection of a LTI system H(z) and a memoryless nonlinearity f(.). Identification
of the linear dynamics on the manifold can be accomplished using essentially the same
methods described in Section 3; identification of the nonlinearity f(.) is addressed next.

4.1 Nonlinear Manifold Learning

Correlation of image sets has been extensively used in image compression, object recog-
nition and tracking [20; 21; 22; 23; 24]. In these applications, images are viewed as high
dimensional vectors that can be represented as points in lower dimensional subspaces
without much loss of information. Principal component analysis (PCA) is the tool most
often used to extract the linear subspaces in which the data has the highest variance.
More recently, low-dimensional linear subspace models have been proposed to predict
an image sequence from a related image sequence [25; 26] and to model dynamic texture
[27].

However, image data does not usually lie in a linear subspace, but instead on a low
dimensional nonlinear manifold within the higher dimensional space [28; 29; 30; 31;
32; 33; 34; 35; 36; 37; 38; 39]. As a result, images that are far apart can have similar
representations when they are projected onto a linear subspace using a PCA decompo-
sition.

Thus, in this chapter we propose to use a nonlinear dimensionality reduction technique
to obtain low dimensional mappings that preserve the spatial and temporal neighbor-
hoods of the data. There are various techniques that can be used for this purpose. Methods
such as [36; 38; 39; 40; 41; 42] seek to find an embedding of the data which preserves
some relationship between the datasets, without providing an explicit mapping function.

Ideally, we would like to use a nonlinear manifold learning technique such as [28;
30; 37; 43] that provides both the mapping and the embedding of our training set.
However, such luxury comes at extra computational cost and algorithm complexity.
Thus, in order to obtain algorithms compatible with real time operation, in this chapter
we use the locally linear embedding (LLE) algorithm to find the embedding of the
data [36]. Though LLE does not directly provide a mapping from the high dimensional
image space to the embedding space, methods similar to those described in [36] can
approximate the mapping.

Given a set of images X = [x1 . . . xn] ∈ IRD×n, where xi is the view of an object at
time i, we want to find an embedding Y = [y1 . . . yn] ∈ IRd×n such that d � D. The
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LLE algorithm finds an embedding where data point relationships in the high dimensional
space are preserved in the embedding.

To learn a locally linear embedding of X , we seek to represent each sample xi as a
linear combination of k neighbors. We define i ∼ j to be true if i is a neighbor of j.
Thus, we want to find the weights Wij so that for each sample xi

W = argmin
W

∑

i

|xi −
∑

j

Wijxj |2 (4)

so that
∑

j Wij = 1 and Wij = 0 if xi and xj are not neighbors. Using these weights
we then find the embedding Y so that

Y = argmin
Y

∑

i

|yi −
∑

j

Wijyj|2 . (5)

Letting
L = (I − W )T (I − W ), (6)

the solution is found by calculating the eigenvalues and eigenvectors of L. Because it
can be shown that the smallest eigenvalue is zero, the embedding coordinates are given
by Y = [v2 . . . vd+1]T , where vi is the eigenvector corresponding to the ith smallest
eigenvalue of L.

Fig. 5. Representative frames from a walking sequence

To map a new vector xnew into the embedding, we use the method described in [36].
We find the k nearest neighbors of xnew in the training set X , and compute the weights
corresponding to the neighbors which best approximate xnew. Using these weights we
combine the values in Y corresponding to the neighbors to get an approximation of the
new coordinates in the embedding, ynew. A similar approach can be used to map from
the embedding coordinates to the initial high dimensional space. The values needed for
k and d depend on the intrinsic dimensionality of the input dataset, so there is no preset
value. The problem of finding acceptable values for k and d is explored in more depth
by Saul and Roweis [36]. The constraints we place on the weights also have an effect
on the embeddings. For example, we can allow the weights to be negative values to give
us an affine reconstruction, or we can force the weights to be positive to give a convex
reconstruction. Affine weights can be found in closed form and they do not cause the
embedding corners to be rounded. Convex weights provide more robustness to noise, but
are found by solving a convex quadratic programming problem [36]. In our experiments,
we found that convex weights result in a lower normalized error. Affine reconstruction
weights resulted in very high normalized error in cases where the weights were of very
high magnitude (such as 17.26 and -16.26 for two neighbors).
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Fig. 6. Low dimensional representation of the walking sequence using Locally Linear Embed-
dings(LLE)

Figures 5 and 6 illustrate the projection of a walking sequence onto a low dimensional
manifold using the LLE technique. Figure 7 shows the embeddings of sequences of a
person walking on a treadmill obtained from the CMU MoBo database.

4.2 System Dynamics Identification in Manifold Space

Once the low dimensional manifold has been found, the dynamics governing the motion
there can be found using the identification approach outlined in Section 3, by simply
using as data the projection wk on the manifold, rather than the actual high dimensional
feature yk (see Figure 4).

Figure 8 illustrates the use of Caratheodory-Fejer (CF) interpolation to learn the
temporal evolution of the points on an embedding. In this example, CF interpolation
was applied to one of the embeddings shown in Fig. 7 corresponding to a sequence of
160 frames. The dynamics of the points on this embedding was learned from its first 80
points, assuming an impulse signal as the input. Figure 8 (top) shows the close agreement
between the temporal evolution of the coordinates of the points on the embedding and the
positions predicted by the CF identified dynamics. An alternative view of these results
is given in Fig. 8 (bottom) where the predicted and actual points on the embedding are
shown.

4.3 Learning View Correspondences

After obtaining low dimensional representations of a set of video sequences, we want
to learn correspondences between views across sequences. One way to learn this corre-
spondence is to align the embeddings so that corresponding views map to the same low
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Fig. 7. Top: Sample images. Bottom: Embeddings of two sequences found by LLE. Blue and red
points are training and test image embedding coordinates, respectively.

dimensional coordinates. Another option is to model correspondence as an input-output
LTI system, where the embedding coordinates of one view are the input to the system
and the corresponding image embedding coordinates are the output. These approaches
are described in more detail next.

Correspondences By Embedding Alignment. Finding correspondences between
views of two video sequences X1 and X2 becomes trivial if their corresponding mani-
folds are aligned – i.e. if corresponding views x1

i ∈ X1 and x2
j ∈ X2 have identical low

dimensional embedding representationsy1
i = y2

j . In general one-to-one correspondences
between all training views are not available, since the cameras may not be synchronized
or one camera may be occluded at times. However, it is not unreasonable to assume that
some correspondences might be available. In this case, the method proposed in [34; 35]
can be used to align the manifolds.

First we divide the data sets into subsets for which we know correspondences and for
which we do not. Let X1

c and X2
c contain the same number of samples each, where x1

i

corresponds to x2
i . Similarly X1

u and X2
u contain the samples from each sequence for
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Fig. 8. Learning temporal dynamics. Top: First two coefficients of sequence 2 as time progresses.
Solid and dotted lines show actual and interpolated coefficients, respectively. Bottom: The pre-
dicted(red) and actual(blue) points on the embedding.

which we do not know correspondences (X1
u and X2

u can be empty and do not necessarily
have the same number of samples).

To align two data sets where we know the correspondence of some or all of the
samples, we first compute L1 and L2 as shown in Equation 6, where X1 =

[
X1

c X1
u

]
and

X2 =
[
X2

c X2
u

]
. We can then split each Lk into corresponding and non-corresponding

parts:
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Lk =
[

Lk
cc Lk

cu

Lk
uc Lk

uu

]
.

To find the embedding where Y 1
c = Y 2

c is a hard constraint, we let

L =

⎡

⎣
L1

cc + L2
cc L1

cu L2
cu

L1
uc L1

uu 0
L2

uc 0 L2
uu

⎤

⎦

and we then find the eigenvalues and eigenvectors for the solution. Once the embedding
is computed, we can then map a new sample x1

new into the embedding using the method
described above to get y1

new, which we assume is equal to y2
new since the embeddings are

aligned for the two sequences. We can then generate the second image by mapping from
y2
new to x2

new. The results of this approach are illustrated in Fig. 9 where the embeddings
from Fig. 7 are now aligned using LLE.
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Fig. 9. Embeddings aligned using LLE. Blue dots: training embeddings. Red X: test sequence 2
embeddings. Green +: test sequence 5 embeddings.

Correspondences by System Identification. An alternative approach to finding view
correspondences is to capture the temporal correlations between sequences with a LTI
operator that generates as output the points on the manifold from one camera when it
is excited with a sequence of points from the manifold of the other camera as an input.
This operator can be easily identified with the CF interpolation technique described in
Section 3, by setting in Equation (1) f and e to the coordinates of sets of points in the first
and second manifold, respectively4. This approach is illustrated in Figure 10. Figure 11
shows plots of the temporal evolution of the coordinates of the points on two embeddings,

4 Note that the number of points in f and e do not have to be the same.
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Fig. 10. (a) Operator mapping manifolds (b)Actual (top) and Predicted (bottom) correspondences

and the predictions obtained by learning the dynamic relation between them. In this case,
f was set to the coordinates of the first 80 points of one embedding and e was set to the
coordinates of the corresponding points on the second embedding. The plot on the top
of the figure shows the accuracy of the predictions for the next 80 points, obtained using
the learned dynamics excited with the coordinates from the second embedding.

4.4 Generating Views

If the correspondences between views and their dynamics are learned using the methods
described above, they can be used to generate new views in two situations: (1) when at
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Fig. 11. View correspondences using system dynamics. Top: First two output coefficients as time
progresses. Solid and dotted lines show actual and interpolated coefficients, respectively. Bottom:
First two coefficients of sequence 2 are the inputs.
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Fig. 12. Generating one sequence from another. Row 1: input. Row 2: actual images. Rows 3 and
4: generated by aligned LLE and CF interpolation, respectively.

time t, we have the image of an object in one view but not in the other, and (2) when
we do not have the image of an object in any of the views at time t but we had it in the
previous views.

In the first case, we can generate a new image in one of two ways, depending on how
the correspondences were learned. If the embeddings were aligned during training by the
dimensionality reduction method, then we can simply map the input view xin onto the
embedding to get a corresponding yin. Since the embeddings of both views are aligned,
yin = yout, so we simply map yout into the output space using the neighbors of yout
from the output sequence. If the embeddings were aligned using system identification,
then yin and yout are not equal, but are related by a dynamic system that we learned.
Thus, we can obtain yout from a sequence of inputs from the other manifold using the
identified dynamics, and then map it into the high dimensional output space to get a new
view. We note that each mapping(to and from) will use different neighboring points in
the embedding since the training sequences can be of different sizes and not all images
in the sequences are in one-to-one correspondence. Figure 12 illustrates the results of
using both methods to generate missing views on the treadmill sequences. We conducted
our experiments on the first 160 frames of the slowWalk image sequence from the CMU
MoBo database [44]. The first 80 images were used to train our embeddings and the last
80 were used for testing the reconstruction of the views. One sequence (top row) is used
as input to generate the other (row 2). Both methods are very effective at reconstructing
the actual views.
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Fig. 13. Generated and actual images generated by predicting position on embedding

In the second case, we can predict new views in one of two ways, again depending on
how the correspondences were learned. If correspondences were learned as part of the
dimensionality reduction step, there is only one embedding for all images. The temporal
dynamics of the low dimensional coordinates along the embedding can then be learned
and used to predict where on the low dimensional embedding a view will be in the future,
yfuture. From that point, we can generate the high-dimensional views by mapping into
the spaces of each of the input sequences. Similarly, if system identification was used to
learn correspondences, the embeddings will be separate for each view, so the dynamics
will be learned for each embedding separately and used to generate a new position on
each embedding from which a new view can be constructed. Figure 13 illustrates the
result of predicting views using both methods. We used the first 80 frames to learn the
low dimensional embeddings and then learned the temporal dynamics of the coefficients
of the low dimensional embeddings to predict the next 80 views.
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5 Experimental Validation

5.1 Preprocessing

To model correspondences between person appearance in multiple views, the objects
first need to be extracted and normalized so that they can be compared in a meaningful
way. First, we use foreground segmentation methods such as background subtraction and
morphological operations to smooth the resulting binary images. After thresholding for
size, only the blobs corresponding to persons remain in the image. These are then resized
to a standard size for each frame. Figure 14 illustrates one example of preprocessing
multiple views of a scene containing two persons. The appearance templates are then
transformed into column vectors that are then used for manifold learning and system
identification steps.

Fig. 14. Example of tracking in two views. Row 1: The input images. Row 2: Normalized person
appearance.

For our experiments, we implemented a tracker that extracts persons from multi-
camera views and, given an initial manual labeling, tracks the persons and their ap-
pearance throughout the sequence, while maintaining their correct identities. For the
foreground segmentation, we used the Codebook Background Subtraction algorithm
[45]. During the training period, we tracked each person using the blob tracker de-
scribed by Argyros and Lourakis [46] and extracted the appearance template for each
person. During the occlusion periods, the appearance templates could no longer be ex-
tracted in one of the videos. However, we used one of our proposed methods, alignment
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Fig. 15. Learned correspondence is used to generate appearance of occluded person and to maintain
identity. Top: tracker views. Bottom: templates of occluded person.
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of embeddings through LLE, to create the views of each person despite the occlusion.
When the occlusion period ends, we compare the two extracted templates with our
generated templates to make sure that the identities are correct, and relabel if necessary.
We note that the persons had very similar appearance – both persons were wearing yellow
shirts and jeans and both persons were of approximately the same build. Thus, methods
that normally depend on such appearance characteristics as color would not be able to
maintain correct identities. Figure 15 shows selected frames before, during, and after the
occlusion period. In the corner of each view are the templates maintained by the tracker.
The templates for person 2, which are generated during the occlusion are provided at the
bottom of the figure. Additional results and the corresponding videoclips are available
at http://www.umiacs.umd.edu/ morariu and http://robustsystems.ee.psu.edu.

6 Conclusions

Dynamic vision – the confluence of control and computer vision – is uniquely positioned
to enhance the quality of life for large segments of the general public. Aware sensors
endowed with tracking and scene analysis capabilities can prevent crime, reduce time
response to emergency scenes and allow elderly people to continue living independently.
Moreover, the investment required to accomplish these goals is relatively modest, since
a large number of imaging sensors are already deployed and networked. For instance,
the number of outdoor surveillance cameras in public spaces is already large (10,000 in
Manhattan alone), and will increase exponentially with the introduction of camera cell
phones capable of broadcasting and sharing live video feeds in real time. The challenge
now is to develop a theoretical framework that allows for robustly processing this vast
amount of information, within the constraints imposed by the need for real time operation
in dynamic, partially stochastic scenarios. In this chapter we showed that efficient camera
coordination leading to robust tracking in the presence of occlusion and clutter can
be accomplished by exploiting a combination of identification and manifold discovery
tools. The main idea is to exploit the high degree of spatio–temporal correlation of the
data to project it, via nonlinear dimensionality tools, to a low order manifold where
the underlying dynamics are approximately linear. Once in this manifold, tracking is
accomplished by using robust identification tools to extract a compact model of the
dynamics that can be used to predict the next position of the target, thus assisting in
overcoming occlusion and disambiguating targets with similar appearance. Efficient
camera coordination is accomplished by having the sensors share the low order data and
associated models in these manifolds, rather than raw video streams. These results were
illustrated with several examples. Research is currently under way seeking to reduce
even further the amount of data to be shared among sensors by exploiting concepts from
Information Based Complexity to eliminate redundancies.
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Abstract. We consider a combinatorial motion planning problem (CMP) that
naturally arises in many applications involving unmanned aerial vehicles (UAVs)
with fuel and motion constraints. The motion constraint we consider is the inabil-
ity of a vehicle to turn at an arbitrary yaw rate. The CMP is a generalization of a
single Travelling Salesman Problem and is NP-Hard. In this paper, we exploit the
combinatorial structure of the problem and provide heuristics with computational
results to address the same.

1 Introduction

Motion planning of a collection of unmanned aerial vehicles (UAVs) has significant ap-
plications, see [SC1, DR1, CR1, AG1] and the references therein. The problem of mo-
tion planning considered for these applications involves the solution of a combinatorial
problem, wherein one must determine the set of targets to be visited by each vehicle
and the sequence in which they must be visited before returning to its initial location
(depot). Equally important is the consideration of motion constraints of the vehicles in
the planning. In this paper, we address a combinatorial motion planning problem in-
volving a homogenous collection of vehicles where the motion of each vehicle satisfies
a non-holonomic constraint. The non-holonomic constraint we consider is that the yaw
rate of the vehicle at any time is upper bounded by a constant. Hence, if the vehicle is
travelling at constant speed, this constraint is equivalent to a lower bound on the turning
radius of the vehicle. The combinatorial motion planning problem (CMP) we address
is the following:

Given a set of m vehicles and n targets on a plane, the heading angles of each target
and the initial heading angles of each vehicle, the CMP is to

– choose at most p(≤ m) vehicles,
– assign a set of targets for each chosen vehicle such that each target is visited exactly

once,
– find a feasible path (i.e. a path that satisfies the yaw rate constraints) for each chosen

vehicle such that the vehicle starts at its initial position, visits its assigned set of
targets at their respective heading angles in a specified sequence and returns to its
initial position.

M.J. Hirsch et al. (Eds.): Adv. in Cooper. Ctrl. & Optimization, LNCIS 369, pp. 373–387, 2007.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2007
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The goal is to minimize the sum of the distances travelled by all the chosen vehicles.
In many miltary applications, some targets must be visited prior to other targets due to
tactical reasons. Hence, in this paper, we also address CMP with precedence constraints
on the targets.

The problem of finding the minimum distance path the vehicle must take between
any two positions on a plane subject to the constraints on the yaw rate has been solved
by Dubins [Du1]. Hence, the CMP can be posed as a multiple depot Asymmetric Trav-
elling Salesman Problem (ATSP). This problem is a generalization of the single TSP
and is NP-Hard. The difficulty of this CMP is due to the following reasons:

1. The vehicle-target assignment is not given.
2. Given the vehicle-target assignment, finding the optimal sequence for each vehicle

is again a single depot ATSP which is NP-Hard. Several approximation algorithms
and heuristics that work well for the single symmetric TSP does not work well for
single depot ATSP [GP1].

The following are the main contributions of this paper:

1. We formulate the CMP as an integer program with (n+m)2 +m variables (one vari-
able for each edge joining any two vertices and one variable for each depot). This
formulation exploits the fact that the Dubins’ distances satisfy triangle inequality.

2. We solve the vehicle-target assignment problem by solving a Lagrangian dual [Fi1]
of the formulated integer program. This step involves finding a minimum cost di-
rected spanning tree with a degree constraint. We solve this problem by penalizing
this degree constraint if violated and using the approach given in [RG1].

3. Given a set of targets, the Lagrangian heuristic available in [Ti1] is used to find a
sequence of targets each vehicle must visit.

4. The Lagrangian dual of the integer program also gives a tight lower bound for the
integer program. This lower bound is used in the Branch and Bound solver to find
the optimal solution to the integer program.

5. We provide experimental results that compare the cost of the solution produced by
the algorithm given in this paper with the optimal cost of the integer program.

6. We show how to extend the results on the lower bound for CMP to the CMP with
precedence constraints on the targets.

2 Literature Review

One can refer to [Be2] for an extensive review of the solution procedures for the multi-
ple Travelling Salesman Problem. As previously mentioned in the introduction, CMP is
NP-Hard. Unlike the symmetric counterparts that have constant factor approximation1

algorithms [RS1], the best approximation algorithms available even for a single depot
ATSP have approximation ratios scale in the order of log(n) [Bl1, KL1]. One way to
address a CMP is to convert to the CMP into a single ATSP and use the algorithms
available for ATSP to solve CMP. But this is currently available only for m = 2 [Ra1].

1 A polynomial algorithm that returns an approximate solution whose cost is within a guaranteed
factor of the optimal solution.
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For a general m, Laporte gives a transformation of CMP to a constrained assignment
problem. As mentioned in [Be2, Gu1], it is an incomplete transformation due to the
presence of non assignment constraints.

Branch and Bound methods can be used to solve CMP [NW1]. In general the effec-
tiveness of a B&B procedure depends on the tightness of the lower and upper bounds
that one has at hand. In this paper, we generate tight lower bounds for CMP using La-
grangian Relaxation. This generalizes the results by Held-Karp [HK1] available for the
single TSP to the CMP.

The combinatorial motion planning problem addressed in this paper assumes that the
heading of each target is known. This allows one to view CMP purely as a combina-
torial problem using Dubins [Du1] result. The CMP without this assumption has also
received significant attention in the literature [RS1, SFB1, NF1, TO1]. Though motion
constraints are an integral part of all these variants of the CMP, it is hard to envision
good algorithms or heuristics for the same that do not exploit the combinatorial struc-
ture of the problem. This is the main focus of our paper.

3 CMP Formulation

Let D represent the set of depots (initial locations of vehicles), T represent the set of
targets and let V = D ∪ T . The cardinality of D is m and that of T is n. The set of all
the edges connecting any two vertices in V is represented by E . An arc e = (x,y) is
considered to be directed from x to y. y is called the head and x is called the tail of the
arc. Let ce be the cost of arc e. Basically, ce is the length of the Dubins path from vertex
x to vertex y. Note that the costs, ce, satisfy the triangle inequality. We will use δ (A)
to indicate the set of edges with their tails in A, Δ(A) to indicate the set of edges with
their heads in A and E(X),X ⊂ V to indicate the set of edges with both their heads and
tails in X . We will let xe, e ∈ E and yv, v ∈ D to be the binary variables that respectively
represent the choice of the edge and the depot in the solution. The integer program for
the CMP is formulated as follows:

CMP∗ = min ∑
e∈E

cexe, (1)

subject to

∑
e∈δ (v)

⋂
Δ (T)

xe = yv,v ∈ D (2)

∑
e∈Δ (v)

⋂
δ (T )

xe = yv,v ∈ D (3)

∑
e∈δ (v)

xe = 1,v ∈ T (4)

∑
e∈Δ (v)

xe = 1,v ∈ T (5)

∑
e∈E(S)

xe ≤ |S|− 1,∀S ⊂ T (6)
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∑
e∈E(T )

xe + ∑
v∈D

yv = n (7)

∑
v∈D

yv ≤ q (8)

xe ∈ {0,1}, yv ∈ {0,1}. (9)

Constraints (2) and (3) represent the out-degree and the in-degree constraints on the
depots respectively. In particular, if a depot is not chosen, then no edge incident on
the depot(incoming or outgoing) can be chosen from the solution as stated by (2) and
(3). Constraints (5) and (4) require the in-degree and out-degree of each target equal to
one. The constraint (6) eliminates the presence of any cycles among the target vertices.
Constraint (7) indicates that if p depots were chosen in the solution, then the graph
(T,E(T )) must have exactly p components. Constraint (8) requires that any feasible
solution must choose at most q depots.

Proposition 1. The integer program for the CMP is correct (i.e. the optimal solution of
the integer program is an optimal solution to the CMP) if the costs, ce, satisfy triangle
inequality.

Proof. Every feasible solution to the CMP satisfies the constraints (2) through (9). Now,
consider an optimal solution to the integer program. Since the indegree and the outde-
gree of every selected depot vertex and the target vertex is 1, the optimal solution must
represent a union of cycles and isolated depots. Clearly, the constraint (6) does not ad-
mit a cyclic solution amongst the target cities and hence, it must be the case that every
cycle of an optimal solution to CMP must contain at least one depot vertex. It cannot
have more than one depot vertex; otherwise, using triangle inequality, additional depot
vertices can be short cut to produce a solution to CMP with a smaller cost than the op-
timal solution. Since the optimal solution to the binary program is a feasible solution to
CMP, the integer program formulated for the CMP is correct.

4 A Lagrangian Relaxation of the CMP

In this section, we show how tight lower bounds can be obtained for the integer pro-
gram stated in the previous section. In later sections, we show how the results in this
section are used to develop a heuristic for the CMP. The method here (Lagrangian Re-
laxation) follows the approach by Held and Karp who used it for solving the symmetric
TSP [HK1]. The basic idea in Lagrangian Relaxation is to first identify the constraints
that make the integer program difficult to solve. Then, remove these complicating con-
straints and penalize them in the objective whenever they are violated. A Lagrangian
Relaxation of the integer program for CMP is:

L(Π ,Ψ ) := min ∑
e∈E

cexe + ∑
v∈T

πv( ∑
e∈δ (v)

xe − 1)+ ∑
v∈T

ψv( ∑
e∈Δ (v)

xe − 1) (10)
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subject to

∑
e∈δ (v)

⋂
Δ (T )

xe = yv,v ∈ D

∑
e∈Δ (v)

⋂
δ (T )

xe = yv,v ∈ D

∑
e∈E(S)

xe ≤ |S|− 1,∀S ⊂ T

∑
e∈E(T )

xe + ∑
v∈D

yv = n

∑
v∈D

yv ≤ q

xe ∈ {0,1}, yv ∈ {0,1}

where, πv (ψv) is the penalty variable when the out-degree (in-degree) constraint of
a target vertex v is violated and Π (Ψ ) indicates the vector of penalty variables πv

(ψv). Now we show in the following lemma that L(Π ,Ψ ) can be computed using a
polynomial time algorithm. Hence, for any given Π and Ψ , computing L(Π ,Ψ ) would
yield a lower bound for CMP∗.

Lemma 1. For any given Π ,Ψ , the Lagrangian Relaxation in (10) is solvable in poly-
nomial time.

Proof. It is sufficient to show that the following program is polynomially solvable for
every integer p lying between 1 and q:

Jp(Π ,Ψ ) := min ∑
e∈E

cexe + ∑
v∈T

πv( ∑
e∈δ (v)

xe − 1)+ ∑
v∈T

ψv( ∑
e∈Δ (v)

xe − 1), (11)

subject to

∑
e∈δ (v)

⋂
Δ (T)

xe = yv,v ∈ D (12)

∑
e∈Δ (v)

⋂
δ (T)

xe = yv,v ∈ D (13)

∑
v∈D

yv = p, (14)

∑
e∈E(S)

xe ≤ |S|− 1,∀S ⊂ T, (15)

∑
e∈E(T )

xe = n − p, (16)

xe ∈ {0,1}, yv ∈ {0,1}. (17)

Observe that the variables in constraints (12,13,14), {yv : v ∈ D},{xe : e ∈ δ (D)
⋃

Δ(D)}, and the variables in constraints (15,16), {xe : e ∈ E(T )}, are not coupled. Hence
the Lagrangian Relaxation can be decoupled into two problems and can be solved sep-
arately as follows:
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Problem I

J1
p(Π ,Ψ ) := min ∑

e∈E(T )
cexe + ∑

v∈T

πv ∑
e∈δ (v)

⋂
E(T )

xe + ∑
v∈T

ψv ∑
e∈Δ (v)

⋂
E(T)

xe, (18)

subject to

∑
e∈E(S)

xe ≤ |S|− 1,∀S ⊂ T, (19)

∑
e∈E(T )

xe = n − p, (20)

xe ∈ {0,1}, yv ∈ {0,1}. (21)

Problem II

J2
p(Π ,Ψ ) :=min ∑

e∈E\E(T )
cexe + ∑

v∈T
πv( ∑

e∈δ (v)
⋂

Δ (D)
xe − 1)+∑

v∈T
ψv( ∑

e∈Δ (v)
⋂

δ (D)
xe−1),(22)

subject to

∑
e∈δ (v)

⋂
Δ (T)

xe = yv,v ∈ D (23)

∑
e∈Δ (v)

⋂
δ (T)

xe = yv,v ∈ D (24)

∑
v∈D

yv = p, (25)

xe ∈ {0,1}, yv ∈ {0,1}. (26)

Problem I involves computing a minimum cost, p-component, directed spanning
forest (DMSF∗

p ) that can be solved using a polynomial time algorithm given in the
appendix. The solution to Problem II can be found using the following steps:

1. Let the modified cost of each edge e in δ (T ) (Δ(T )) be ce+πv:e∈δ (v) (ce+ψv:e∈Δ (v)).
Determine the cheapest incoming edge and outgoing edge incident on every v ∈ D.
Let their total cost be tv.

2. Sort tv, v ∈ D. The optimal solution, E∗
p, is the set of 2p edges corresponding to the

p cheapest costs.

The optimal cost of the Lagrangian Relaxation, L(Π ,Ψ ), can be computed as
L(Π ,Ψ ) = minp(J1

p(Π ,Ψ )+ J2
p(Π ,Ψ )).

Now, since for every Π ,Ψ , CMP∗ ≥ L(Π ,Ψ ), we can conclude that

CMP∗ ≥ max
Π ,Ψ

L(Π ,Ψ ). (27)

maxΠ ,Ψ L(Π ,Ψ ) is the Lagrangian Dual of the integer program for CMP. Note that
L(Π ,Ψ ) is a concave function of Π and Ψ . Details on how to solve this Lagrangian
Dual is given in section 7.
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5 Primal Feasible Algorithm

To generate a primal feasible solution, we use the p-directed spanning forest DMSF∗
p

generated through the Lagrangian relaxation given in the previous section. The primal
algorithm that assigns the depots to each component of the DMSF∗

p and forms the fea-
sible p-directed tours is given below:

Primal feasible Algorithm

1. For each v ∈ D and ith component of DMSF∗
p , i ∈ {1,2, . . . , p}, we compute the cost,

Avi to be the total cost of the the cheapest edge in δ (v)∩Δ(Si) and the cheapest edge
in Δ(v)∩δ (Si), where Si is the set of nodes in the ith component of DMSF∗

p .
2. Let vi be the depot assigned to the component corresponding to set of nodes, Si.

Define Vi = Si ∪ vi. Assign a depot to every component in DMSF∗
p such that the

total assignment cost minvi ∑i Avii is minimum.
3. We transform the problem of finding a directed, feasible tour with nodes in Vi to

a problem of finding a feasible tour with symmetric costs by doubling the nodes
in Vi as described in [GP1]. The transformation can be simply put as follows: We
replace each node n by a pair of nodes n+,n− and the define the costs as follows: Let
n1,n2 ∈ Si then c̃i(n1

+,n2
−) = c(n1,n2) and c̃i(n2

+,n1
−) = c(n2,n1). We also set

c̃i(n1
−,n1

+) = −M and all the other costs in c̃i to be +M, where M is a sufficiently
large positive number such that all the arcs whose costs are +M are excluded from
all the feasible tours and all the arcs with −M are included in any feasible tour.

4. Now for each modified cost matrix ci and the node set Si, we use the Lagrangian
heuristics in [Ti1] to get a primal feasible tour.

6 CMP with Precedence Constraints

This section shows how the approach presented in the previous sections can be used to
address CMP with a given set of precedence constraints. If target m has to be visited
before target n, then the precedence constraint related with targets m and n is written as
m ≺ n. The set of l precedence constraints is denoted by P = {i1 ≺ j1, i2 ≺ j2, · · · , il ≺
jl} where io, jo ∈ T for o ∈ {1,2, · · · , l}. We assume that the given set of precedence
constraints are consistent (i.e. there are no constraints of the form {a ≺ b,b ≺ c,c ≺
a}). To formulate the CMP with precedence constraints, we introduce a variable t j

that denotes the order in which the jth target is visited. t j takes values in {1,2...n}.
So if ti ≤ t j then the ith target is visited before the jth target. All other notations and
variables are the same as used in the problem formulation for CMP (section 3). The
integer programming formulation for CMP with precedence constraints is as follows:

CMPPC∗ = min ∑
e∈E

cexe, (28)

subject to

∑
e∈δ (v)

⋂
Δ (T)

xe = yv,v ∈ D (29)
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∑
e∈Δ (v)

⋂
δ (T )

xe = yv,v ∈ D (30)

∑
e∈δ (v)

xe = 1,v ∈ T (31)

∑
e∈Δ (v)

xe = 1,v ∈ T (32)

∑
e∈E(S)

xe ≤ |S|− 1,∀S ⊂ T (33)

∑
e∈E(T )

xe + ∑
v∈D

yv = n (34)

∑
v∈D

yv ≤ q (35)

(n − 1)+ t j − ti ≥ nxe,∀e ∈ E(T ) (36)

{e} = δ (i) and {e} = Δ( j) (37)

t j ≥ ti + 1,∀(i ≺ j) ∈ P (38)

ti ∈ {1,2, · · · ,n}∀i ∈ T (39)

xe ∈ {0,1}, yv ∈ {0,1}. (40)

The precedence constraints are formulated in 7. Constraints (37) relate the ordering
variables ti and xe. Now, one can obtain tight lower bounds using Lagrangian relaxation
in the same way as we previously discussed in section 4. The idea is to dualize the
constraints that make the above integer program difficult. A Lagrangian relaxation of
the above problem obtained by relaxing constraints (32,33, 37) is as follows:

L(Π ,Ψ ,α) = min ∑
e∈E

cexe + ∑
v∈T

πv( ∑
e∈δ (v)

xe − 1)+

∑
v∈T

ψv( ∑
e∈Δ (v)

xe − 1)+ ∑
e∈E(T)

αe(γe − nxe), (41)

subject to

∑
e∈δ (v)

⋂
Δ (T)

xe = yv,v ∈ D

∑
e∈Δ (v)

⋂
δ (T )

xe = yv,v ∈ D

∑
e∈E(S)

xe ≤ |S|− 1,∀S ⊂ T,

∑
e∈E(T )

xe + ∑
v∈D

yv = n,

∑
v∈D

yv ≤ q,



A Lagrangian-Based Algorithm for a Combinatorial Motion Planning Problem 381

n − 1 + t j − ti ≥ γe,∀e ∈ E(T ),
{e} = δ (i) and {e} = Δ( j)

ti + 1 ≤ t j,∀(i ≺ j) ∈ P

ti ∈ {1,2, · · · ,n}∀i ∈ T (42)

xe ∈ {0,1}, yv ∈ {0,1}. (43)

In the above relaxation, αe is the variable that penalizes the constraint γe = nxe when-
ever violated. Note that it is relatively easy to solve the Lagrangian relaxation as the
variables ti,γe,xe and yv are not coupled through any equation (as discussed in section
4) and hence can be optimized independently. The Lagrangian dual that provides the
best lower bound to the optimal cost of the CMP with precedence constraints is given
by max

Π ,Ψ ,α
L(Π ,Ψ ,α).

7 Numerical Results

In this section, we present the implementation details and the overall algorithm accom-
panied with the simulation results. To calculate the best lower bound discussed in sec-
tion 4, we need to compute max

Π ,Ψ
L(Π ,Ψ ). This can be computed using a gradient ascent

algorithm. Let [Π ]k and [Ψ ]k indicate the values of Π and Ψ at the kth iteration respec-
tively. At each iteration k, we compute a new set of penalty parameters ,[Π ]k+1, [Ψ ]k+1,
from [Π ]k, [Ψ ]k respectively through an update scheme where the direction of update is
defined through the subgradient. We define the subgradient as follows:

giv = ∑
e∈Δ (v)

xe − 1,∀v ∈ T (44)

gov = ∑
e∈δ (v)

xe − 1,∀v ∈ T (45)

giv = 0,∀v ∈ D (46)

gov = 0,∀v ∈ D (47)

Let g = [gi go] be the vector of all the subgradients stacked together. The new
update [πv]k+1 is computed as follows:

[Π ]k+1 = [Π ]k + β k[go]k ∀v (48)

where the size of the step, β at iteration k is computed as

β k = ζ k MDMT SP∗ − φ([Π ,Ψ ]k)
||[g]k|| (49)

[Ψ ]k+1 can be computed in a similar fashion as [Π ]k+1. The above expression (49) is
commonly referred to as Polyak rule II. Since the optimal solution CMP∗ is not known,
alternatively we use the cost of the best primal solution found so far. A common prac-
tice is to start ζ k with a fixed value and reduce ζ k by a constant factor after a specified
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Table 1. Duality gap for various instances

% of Duality Gap in k Iterations
n m CMP∗ φ([Π ]k, [Ψ ]k)k=25 [Cprimal∗]kk=25 [ε]kk=25 φ([Π ]k, [Ψ ]k)k=50 [Cprimal∗]kk=50 [ε]kk=50

14 3 1624.8 1566.6 1624.8 3.7163 1568.5 1624.8 3.5959
19 4 2142.9 2142.2 2142.9 0.030342 2142.9 2142.9 0.00046666
22 7 2076.9 2041.8 2204.5 7.968 2049.7 2204.5 7.5535
24 3 2638.1 2637.9 2638.1 0.0068235 2638.1 2638.1 0.00075812
24 7 2352.7 2294.8 2370.9 3.3161 2312.2 2370.9 2.5418
26 3 2833.2 2833.2 2916.8 2.9493 2833.2 2916.8 2.9493
26 6 2678.9 2598.9 2706.7 4.1476 2611.6 2706.7 3.6387
28 5 2824.5 2728.5 2824.6 3.5187 2740.2 2824.6 3.0794
30 4 2872.1 2759.2 2944.6 6.7193 2778.7 2944.6 5.9711
31 4 3333.9 3268 3459.6 5.8622 3268 3459.6 5.8622
32 3 2898.2 2786.1 2940.6 5.545 2786.1 2940.6 5.545
36 3 3271.1 3149.7 3386.6 7.5216 3167.3 3386.6 6.9235
38 4 3497.9 3479.1 3497.9 0.54181 3480 3497.9 0.51408
40 7 3061 2992.4 3061 2.2918 3001.4 3061 1.9854
45 2 3724.6 3685.5 3748.4 1.7061 3692.6 3748.4 1.5119
48 5 3722.1 3681.9 3723.7 1.1342 3688 3723.7 0.96692
50 5 3242.4 3216 3346.2 4.0475 3218.3 3346.2 3.9754

number of iterations or whenever φ([Π ]k, [Ψ ]k) does not increase within specified num-
ber of iterations. The iterative procedure can be briefly put as follows:

Dual and Primal algorithm for the CMP

1. Initial step: k = 0, Initialize ζ k = ζ0.
2. For the computed [Π ]k and [Ψ ]k, solve the Lagrangian relaxation L([Π ]k, [Ψ ]k).
3. Use the Primal feasible Algorithm to generate a primal feasible solution from the

dual solution. Let the cost of the best primal feasible solution found so far be [C∗]k.
4. Stopping criterion: If [ε]k ≤ ε∗ or k = Nmax, go to 6.
5. Compute [Π ]k+1,[Ψ ]k+1 and set k = k + 1 and go to 2.
6. Stop the iterative process.

Note that [ε]k is the duality gap at iteration k and is defined as [C∗]k−φ([Π ]k,[Ψ ]k+1)
φ([Π ]k,[Ψ ]k+1) . ε∗

is the desired duality gap. The maximum number of iterations allowed is chosen to be
50. ζ k was chosen to start with a value of 0.5 and is reduced by a factor of 2, if the dual
does not improve in 3 successive iterations. The value of ε for the stopping criterion is
chosen to be 10−4. In the simulations, we allow all the depots to participate in the tour,
i.e, q = |D|.

In Table 1, n refers to the number of targets, m is the number of depots available,
[Cprimal∗]k is the cost of the best primal found at iteration k. In Table I, we report
the dual gap at iterations k = 25 and k = 50. CMP∗ refers to the optimal cost for that
instance. We compute CMP∗ using the GNU Linear Programming Kit (GLPK). The
code is written in Matlab and YALMIP [Lö1] is used to formulate the problem and also
provides the interface to GLPK. In figure 1 the convergence of the dual gap with the
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Fig. 1. Convergence of dual gap for random instances

number of iterations is shown for few random instances. The sizes of the instances are
as indicated.

In Table 2 the optimal cost to CMPPC for various instances is shown. LCMPPC∗

refers to the optimal solution of the linear program obtained by relaxing the integral con-
straints ( 39, 40). Clearly, LCMPPC∗ ≤ CMPPC∗. � refers to the gap between CMPPC∗

and LCMPPC∗, i.e., � = CMPPC∗−LCMPPC∗
CMPPC∗ × 100.

Table 2. CMP with precedence constraints

n m CMPPC∗ LCMPPC∗ �

13 3 1461.8 1312.2 10.24
16 5 1175.2 938.28 20.16
19 3 1713.7 1577.3 7.9614
22 2 2472.9 2351.0 4.9269
25 2 2623 2541 3.1287
28 4 1849.2 1795.3 4.8542
31 6 1838.5 1616.6 12.0682
34 6 2980.5 2839.1 4.74
37 3 3046.4 2940.8 3.4635
40 6 2998.0 2901.8 3.2094

8 Conclusions

In this chapter, we have considered the problem of motion planning of m Dubins’ ve-
hicles through n points in a plane. The location of all the points and the heading at
which the vehicles are to arrive and depart is already specified. We provide algorithms
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to choose at most q(≤ m) Dubin’s vehicles and construct sub-optimal tours such that
the total cost of the tours of the chosen vehicles is a minimum amongst all the possible
choice of vehicles and their tours.
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9 Computing a Constrained, Directed Spanning Forest

Add a root vertex r and join r to each of the vertices in T with a zero cost edge. Now,
the problem of finding the minimum cost, p-component directed spanning forest can be
posed as a problem of finding the minimum cost, directed spanning tree with a degree
constraint on the root vertex as follows:

min ∑
e∈E(T

⋃{r})
cexe, (50)

subject to

∑
e∈δ ({r})

xe = p (51)

∑
e∈E(S)

xe ≤ |S|− 1, ∀ S ⊂ T
⋃

{r}, (52)

∑
e∈E(T )

xe = n − p, (53)

xe ∈ {0,1}. (54)

(55)

Removing the zero cost edges from the optimal solution to the above problem would
yield the desired minimum cost forest. We first consider the following Lagrangian re-
laxation of the above problem:

L(z) = min
x ∑

e∈E(T
⋃{r})

cexe + z( ∑
e∈δ ({r})

xe − p) (56)
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subject to

∑
e∈E(S)

xe ≤ |S|− 1, ∀ S ⊂ T
⋃

{r},

∑
e∈E(T )

xe = n − p,

xe ∈ {0,1}.

Let (z∗) solve the Lagrangian dual maxz L(z). If x∗ is the unique optimal solution
that solves the minimization problem in L(z∗), then using the results in [RG1],[MR1]
we can conclude that x∗ also satisfies the complicating constraint. We perturb the cost
of the edges so that, in practice, we have a unique optimal solution x∗. So, the algorithm
we use to find the degree constrained spanning tree is as follows:

Directed spanning forest algorithm

1. Perturb the cost of each edge ce to c̃e = ce +ue, where {ue : e ∈ E(T
⋃{r})} repre-

sent independent, uniform random variables chosen in the interval2 [0, 1
2(n) ].

2. Solve the Lagrangian dual problem (56) corresponding to cost c̃. The solution to
the Lagrangian dual problem is the desired optimal solution to problem (50) with
probability one.

The following part of the section gives a simple proof as to why the Lagrangian
dual problem must have a unique optimal solution with probability one. Specifically,
Proposition 2 states why there should be a unique feasible solution and proposition 3
shows why the unique feasible solution is also optimal.

Let x1 and x2 be any two feasible solutions that satisfy the constraints in 53 and 54.
Let cost(x,c) = ∑e∈E(T

⋃{r}) cexe.

Proposition 2. Let P(cost(x1,c+u) = cost(x2,c+u)) indicate the probability that the
solutions x1 and x2 have the same cost. Then, P(cost(x1,c + u) = cost(x2,c + u)) = 0.

Let S∗
c be the set of all the optimal solutions that solve the minimization problem in (50)

corresponding to the cost function ce.

Proposition 3. For all e ∈ E(T
⋃{r}), let ae be any constant in the interval [0, 1

2(n) ].
Then S∗

(c+a) ⊆ S∗
c .

Proof. Consider a solution x1 /∈ S∗
c and any x∗ ∈ S∗

c . Since all ce are integers, cost(x1,
c)− cost(x∗,c) ≥ 1. If all the edges corresponding to x∗ are perturbed from ce to ce +
ae, then cost(x∗,c + a) ≤ cost(x∗,c)+ n

2(n) < cost(x∗,c)+ 1. Hence cost(x1,c + a) >

cost(x∗,c + a). Therefore, S∗
(c+a) ⊆ S∗

c .

2 Assume ce for all e ∈ E(T
⋃{r}) are integers. If ce are rational numbers one can always mul-

tiply them by appropriate constants to make them integers.



A Lagrangian-Based Algorithm for a Combinatorial Motion Planning Problem 387

Table II presents the convergence results of this randomized algorithm for computing
the minimum cost, directed spanning forest. In Table II, n refers to the number of targets,
p∗ refers to the desired number of components and i∗ is the number of iterations required
to compute the optimal directed tree.

Table 3. # of iterations for computing DMSF∗

n p∗ i∗

16 3 9
21 6 15
27 3 21
30 7 20
32 6 12
33 5 20
34 6 13
35 5 2
38 4 8
40 8 13
41 2 15
42 6 14
44 7 16
45 3 13
47 7 8
48 5 8
49 8 8
50 3 8
57 7 14
66 4 2
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Abstract. The objective of the target visitation problem is to de-
termine a path for an unmanned aerial vehicle that begins at a point of
origin and needs to visit several targets before returning to its starting
point. An optimal visitation sequence is one which minimizes the total
distance traveled and maximizes the utility of the visitation order. This
utility measure is defined for each pair of targets and represents the rel-
ative value of visiting a particular target before another. In this chapter,
we present the results of a preliminary study investigating the effective-
ness of a genetic algorithm for the target visitation problem. The
encoding scheme is based on random keys. Numerical results are pre-
sented for a set of randomly generated test problems and compared with
the optimal solutions as computed by a commercial integer programming
package.

1 Introduction

Path planning problems represent an enormous amount of the literature on co-
operative control and optimization problems. This is particularly true for those
involving military applications [2,3,17]. In this paper, we consider the so-called
target visitation problem (tvp), whose objective is to determine a path for
an unmanned aerial vehicle (UAV), starting at an origin visiting a set of targets,
and then before returning to its starting point. The objective is to determine an
optimal path which minimizes the total distance traveled and maximizes the util-
ity of the visitation sequence. The tvp has many military applications including
combat search and rescue and disaster relief [12].

To date, the only work on the tvp is the original contribution by Grundel and
Jeffcoat [12] in which the problem was first proposed. Here the authors presented
the tvp and provided a basic analysis examining the similarities between the tvp

and other well-known combinatorial problems. In addition, they described the
implementation of a metaheuristic for the tvp based on the greedy randomized
adaptive search procedure (GRASP) [19].

In this chapter, we describe the implementation of a genetic algorithm (GA)
for the target visitation problem. Genetic algorithms represent a very active

M.J. Hirsch et al. (Eds.): Adv. in Cooper. Ctrl. & Optimization, LNCIS 369, pp. 389–397, 2007.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2007
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area of research in computational optimization and have been applied with great
success to a myriad of combinatorial problems [9]. The chapter is organized
as follows. In the next section, we present the problem statement and analyze
some basic properties of the tvp. In Section 3, we describe in detail the genetic
algorithm implementation. Section 4 presents the preliminary results of the GA
when tested on a set of randomly generated instances. As a basis of comparison,
we examine the performance of the GA to the optimal solutions as computed by
a commercial integer programming package. We provide concluding remarks in
Section 5 and discuss directions of future research.

2 Problem Description

Before formally defining the problem statement, we introduce the symbols and
notations we will employ throughout this paper. We use the symbol “b := a”
to mean “the expression a defines the (new) symbol b” in the sense of King
[15]. Of course, this could be conveniently extended so that a statement like
“(1 − ε)/2 := 7” means “define the symbol ε so that (1 − ε)/2 = 7” holds [5].
Also, let |N | denote the cardinality of the set N . Finally, we will use italics for
emphasis and small caps for problem names. Any other locally used terms and
symbols will be defined in the sections in which they appear.

An instance of the target visitation problem consists of a set N =
{1, 2, . . . , n} of targets located at distinct points in the plane. There is a matrix
D = {di,j}m×m, where m := n + 1. The extra node, say node 0 represents the
UAV’s origin. The values of di,j represent the distances between each pair of
targets. There is also a value d0,j which represents the distance from the UAV’s
point of origin to target j, for all j ∈ N . We note that the distances need not
be symmetric. That is, di,j �= dj,i in general. Lastly, the instance consists of a
matrix R = {ρi,j}n×n where ρi,j represents the preference or utility of visiting
target i before target j. The intuition is that targets for which ρi,j is relatively
large should be visited earlier in the sequence as they are assumed to have a
higher “threat level” or “cause of interest”.

As Grundel and Jeffcoat mention in [12], the values of di,j are usually easy
to obtain since literal distance measures or other metrics such as travel time are
available. However, the values of ρi,j , the value added by visiting target i before
target j, are not always so simple to obtain. This is because utility is largely
based on personal preference and opinion, both measures which are usually more
qualitative than quantitative. To overcome this, there are several methods used
by military strategists to arrive at the values of ρi,j . The most common method,
and the one we adopt in this paper, is known as “target value reconciliation”
[12]. In this method a group of experts offer a set of pair-wise rankings for the
targets from which the preference matrix is derived. More specifically, for all
targets i and j, each expert is to specify a preference of visiting target i before
j [4]. The value of ρi,j is simply the cumulative number of experts who prefer
to visit i before j. For a discussion on other techniques, the reader is referred
to [12].
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Let π be a permutation of the set of integers [1, . . . , n + 1) ∩ Z, such that
j =: π(i) implies that target j is the ith position of the visitation sequence. Then
a feasible solution to the tvp is one in which the UAV leaves its starting point,
visits each target exactly once, and returns to the origin. An optimal visitation
sequence is one which minimizes the total distance traveled and maximizes the
utility of the sequence. With this, we can formulate the tvp as the following
combinatorial optimization problem [12].

Maximize Z(π) =
[n−1∑

i=1

n∑

j=i+1

ρπ(i),π(j)

]
−

[
d0,π(1) +

n−1∑

k=1

dπ(k),π(k+1) + dπ(n),0

]
.

(1)
In [12], the authors provide a nice discussion of the similarities between the

tvp and traveling salesman problem (tsp) [16] and the linear ordering

problem (lop) [8]. It is easy to see that if there were no added benefits of
visiting one target before another, then the components of the utility matrix
would all be equal. Hence the contribution of this terms in the objective function
would be constant. In this case, the problem would reduce to a tsp since the
objective would only be a function of the distance traveled [8]. On the other hand,
if the distances were irrelevant, then the tvp reduces directly to a lop. Grundel
and Jeffcoat provide example graphs further illuminating these similarities and
the reader is referred to their paper for further discussion [12].

Before proceeding to the description of the heuristic for the tvp, we note a
crucial observation first made in [12]. Notice that for a given instance of the tvp

it might be the case that the entries in one of the matrices in (1) dominates
the other. However, for our consideration both distance and utility should play
an equal role in determining an optimal visitation sequence. To circumvent this
issue, we adopt a simple heuristic which balances the matrices. Let πr be a
random permutation of the targets to be visited. Define γ ∈ R such that R̃ :=
γR. In order to normalize the D and R matrices, we adjust the particular value
of γ so that ∑n−1

i=1
∑n

j=i+1 ρ̃πr(i),πr(j)

d0,πr(1) +
∑n−1

i=1 dπr(i),πr(i+1) + dπr(n),0
≈ 1. (2)

We see that the particular value of γ can be adjusted to serve as a weight if it is
deemed that the relative importance of the distances and utilities are not equal.
For larger values of γ, the solution will tend to favor the utility of the sequence
over the total distance traveled [12].

Using the permutation based formulation in (1), we now describe the imple-
mentation details for a genetic algorithm for finding near optimal solutions for
the target visitation problem.

3 Genetic Algorithm

Genetic algorithms (GAs) receive their name from an explanation of the way
they behave. It comes as no surprise that they are based on Darwin’s Theory
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of Natural Selection [7]. GAs store a set of solutions, or a population, and the
population evolves by replacing these solutions with better ones based on certain
fitness criteria represented by the objective function value.

In successive iterations, or generations, the population evolves by reproduc-
tion, crossover, and mutation. Reproduction is the probabilistic selection of the
next generations elements determined by their fitness level. Crossover is the com-
bination of two current solutions, called parents, which produces one or more
solutions, referred to as offspring. Finally, mutation is the random modifica-
tion of the offspring. Mutation is performed as an escape mechanism to avoid
getting trapped at a local optimal solution [9]. In successive generations, only
those solutions having the best fitness are carried to the next generation in a
process which mimics the fundamental principle of natural selection, survival of
the fittest [7]. Figure 1 provides pseudo-code for a standard genetic algorithm.
Genetic algorithms were introduced in 1977 by Holland [10], and were greatly
invigorated by the work of Goldberg in [9].

We note that though the GA does converge in probability to the optimal
solution, it is common to stop the procedure after some “terminating condition”
(see line 3) is satisfied. This condition could be one of several things including,
a maximum running time, a target objective value, or a limit on the number
of generations. For our implementation, we use the latter option and the best
solution after MaxGen generations is returned.

procedure GeneticAlgorithm
1 Generate population Pk

2 Evaluate population Pk

3 while terminating condition not met do
4 Select individuals from Pk and copy to Pk+1

5 Crossover individuals from Pk and put in Pk+1

6 Mutate individuals from Pk and put in Pk+1

7 Evaluate population Pk+1

8 Pk ← Pk+1

9 Pk+1 ← ∅
10 end while
11 return best individual in Pk

end procedure GeneticAlgorithm

Fig. 1. Pseudo-code for generic genetic algorithm

When designing a genetic algorithm for an optimization problem, one must
provide a means to encode the population, define the crossover operator, and
define the mutation operator which allows for random changes in offspring to
help prevent the algorithm from converging prematurely. The encoding scheme
we propose for our GA is based on random keys and follows exactly as described
by Bean [1]. As mentioned in [1], GAs often have a difficult time maintaining
feasibility of solutions in successive generations. This problem is overcome by
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the use of random keys as an encoding mechanism for the population. Random
keys work by encoding the solution vector using random numbers. The feasibility
issue is then moved into the objective function, and subsequently all offspring
produced are guaranteed to be feasible solutions.

For the GA implementation for the tvp, we have the following definitions. As
mentioned above, solutions are represented by a random vector. To determine
the visitation sequence, a random deviate from a distribution which is uniform
onto (0, 1) ∈ R is generated for each target. The tour is determined by sorting
the random numbers and sequencing the targets in descending order of the sort.
For example, suppose there are n = 3 targets to visit. Then a chromosome
such as

(.34, .71, .28)

would correspond to the visitation sequence

2 → 1 → 3.

The objective value of the sequence can be evaluated, thus determining the
fitness of the chromosome.

In order to evolve the population over successive generations, we use a repro-
duction method which copies the best individuals in the current generation to
the next. We aptly refer to this set the BEST set. This technique ensures that the
best solution is monotonically improving in every generation [1]. To breed new
solutions, we implement a strategy known as parameterized uniform crossover
[20]. This method works by selecting two solutions to serve as parents. In our
implementation, one parent is chosen at random from the BEST set, and the other
is chosen from the entire population (including BEST). Then, for each target to
be visited, a biased coin is tossed. If the result is heads, then the allele of the
BEST parent is chosen, otherwise the allele is taken from the other parent. The
probability that the coin lands on heads is known as CrossProb, and is deter-
mined empirically. Figure 2 provides an example of a potential crossover when
the number of targets is 5 and CrossProb = 0.65.

Coin Toss T H H T H
Parent 1 0.56 0.81 0.22 0.7 0.86
Parent 2 0.29 0.49 0.98 0.12 0.32

Offspring 0.29 0.81 0.22 0.12 0.86

Fig. 2. An example of the crossover operation. In this case, CrossProb = 0.65.

Finally, the mutation operator is defined as follows. Instead of introducing
random perturbations to selected offspring, we instead replace a set of individuals
having the worst fitness with new solutions generated at random from the same
distribution as the original population. This replacement set is referred to as
the WORST set. Using this method, we are able to ensure that the GA does
not converge prematurely. This is a common method, sometimes referred to as
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immigration and appears throughout the literature [1,11]. An overall pictorial
view of the generational evolution of the proposed GA is provided in Figure 3.

Fig. 3. Graphical representation of generational evolution

4 Computational Results

The proposed heuristic was implemented in the C++ programming language
and complied using GNU g++ version 3.4.4, using optimization flags -O2. It was
tested on a PC equipped with a 1700MHz Intel R© Pentium R© M processor and 1.0
gigabytes of RAM operating under the Microsoft R© Windows R© XP Professional
environment.

In order to have a means to compare the results of the GA, we have imple-
mented the integer programming model for the target visitation problem

using the CPLEXTM optimization suite from ILOG [6]. CPLEX contains an
implementation of the simplex method [13], and uses a branch and bound algo-
rithm [21] together with advanced cutting-plane techniques [14,18]. The CPLEX
solver was implemented in the Redhat Linux environment and compiled using
g++ version 3.2.3.

The algorithms were tested on a set of randomly generated instances varying in
size from 8-16 targets. For each instance, the number of “experts” used to derive
the utility matrix was 10. Each of the “expertly defined” pair-wise preferences
were generated uniformly. That is, for each target pair (i, j) a random integer in
the set {0, . . . , 10} was generated. This value represented the number of experts
preferring to visit target i before j. Also, the matrices were balanced using
the heuristic described in Equation (2) above. For each instance, the maximum
distance between the targets varied from 20 to 150 units.

For all of the instances tested, the parameters used for the genetic algorithm
(GA) are provided in Table 1.
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Table 1. Parameters used for the GA and HGA heuristics

CrossProb = 0.7 Population Size (PopSize) = 2 ∗ |N |
MaxGen = 10000 |BEST| = .1 ∗ PopSize

|WORST| = .2 ∗ PopSize

The comparative results of 250 independent runs of the proposed heuristic
on the 25 randomly generated instances are presented in Table 2. The table
is organized as follows. The first two columns provide the instance name and
number of targets to be visited. The following two columns provide the optimal
solutions as computed by CPLEX as well as the required computation time.
The heuristic data is listed next. Namely, for each instance we provide the best,
worst, and average solutions computed during the 250 runs. The average time
to compute the best solution is provided as well as the average deviation from
the optimal solution for each instance.

Table 2. The numerical results for a set of 25 randomly generated instances are pro-
vided. The optimal solutions are also shown.

Instance IP Model Genetic Algorithm
Name Targets Optimal Execution Max Min Avg. Avg. Avg.

Solution Time (s) Soln Soln Soln Time (s) Dev (%)
rand8-1 8 60.2766 0.01 60.2766 56.3404 59.8895 0.054 0.642
rand8-2 8 115.944 0.02 115.944 112.653 115.681 0.044 0.27
rand8-3 8 195.333 0.01 195.333 194.96 188.555 0.032 5.006
rand8-4 8 29.0074 0.02 29.0074 25.8592 28.888 0.052 0.412
rand8-5 8 314 0.03 314 314 314 0.008 -
rand10-1 10 157.404 3.01 157.404 140.133 154.084 0.123 2.109
rand10-2 10 208 2.87 208 200 207.36 0.044 0.308
rand10-3 10 520.679 0.01 520.679 437.12 518.698 0.049 0.380
rand10-4 10 532.5 2.45 532.5 489.667 529.891 0.107 0.49
rand10-5 10 365.125 4.87 365.125 303.615 349.457 0.068 4.291
rand12-1 12 124.179 45.37 124.179 106.645 121.022 0.148 2.54
rand12-2 12 318.38 61.17 318.38 266.641 308.668 0.128 3.050
rand12-3 12 420.959 51.89 420.959 341.866 403.31 0.095 4.193
rand12-4 12 594.546 16.44 594.546 487.099 580.956 0.137 2.286
rand12-5 12 472.354 14.68 472.354 409.102 456.735 0.131 3.307
rand14-1 14 137.609 303.55 137.609 110.948 128.208 0.225 6.832
rand14-2 14 405.774 370.01 405.774 334.807 383.21 0.29 5.561
rand14-3 14 631.711 184.82 631.711 508.412 594.765 0.267 5.849
rand14-4 14 176.631 301.71 176.631 146.979 164.377 0.250 6.938
rand14-5 14 679.625 2700.78 679.625 530.617 638.161 0.225 6.101
rand16-1 16 381.934 1353.77 381.934 298.207 351.275 0.351 8.027
rand16-2 16 431.531 2556.77 431.531 333 387.659 0.322 10.167
rand16-3 16 415.338 462.5 415.338 332.868 380.319 0.329 8.431
rand16-4 16 421.658 2810.45 417.109 314.109 386.355 0.397 8.372
rand16-5 16 249.939 3788.49 249.939 187.592 234.192 0.326 6.3
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We begin our analysis of the data by noting that for all 6250 runs, the GA
computed optimal solutions 95.95% of the time requiring 0.168 seconds on aver-
age. This compares favorably with respect to CPLEX which required on average
601.428 seconds to compute the optimal solutions. The CPLEX time was greatly
improved for the instances containing 16 targets which we supplied with a feasi-
ble solution as a starting point. Without the starting solution, the computation
time for these instances was on the order of 75000 seconds. The algorithm also
scaled well, averaging less than 0.5 seconds of computing time for each instance.
It is reasonable to assume that better performance could be achieved provided
the algorithm was able to run for more generations.

5 Conclusion

In this chapter, we described the implementation of a genetic algorithm for the
target visitation problem. We began by formally introducing the problem
statement. Then we described the details of the proposed heuristic. We presented
numerical results comparing the GA solutions with the optimal solutions as
computed by the commercial integer programming package CPLEX.

With the current literature on the tvp being slight, there exist many avenues
to pursue future research. A natural extension of the work presented here is
to augment the GA to include a local search intensification. The resulting, so-
called hybrid genetic algorithm is gaining popularity and often adds significant
improvement for a minimal amount of computation time. Alternatively, other
metaheuristics could be applied as well as advanced cutting plane techniques
to try to obtain optimal solutions for larger instances. Lastly, we suggest an
investigation of approximation algorithms to produce solutions which have a
guaranteed worst-case lower bound.
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Abstract. The rendezvous problem between autonomous vehicles is formulated
as an optimal cooperative control problem with terminal constraints. Optimal
control problems are often solved by seeking solutions which satisfy the first or-
der necessary conditions for an optimum. Such an approach is based on a Hamil-
tonian formulation, which leads to a difficult two-point boundary-value problem.
We propose a different approach in which the control history is found directly by
a genetic algorithm search method. The main advantage of the method is that it
does not require the development of a Hamiltonian formulation and consequently,
it eliminates the need to deal with an adjoint problem, which leads to a difficult
two-point boundary-value problem in nonlinear ordinary differential equations.
This method has been applied to the solution of interception and rendezvous prob-
lems in an underwater environment, where the direction of the velocity vector is
used as the control. We consider the effects of gravity, thrust and viscous drag and
treat the rendezvous location as a terminal constraint. We then study cooperative
rendezvous problems between spacecraft. We treat the case where the magnitude
of the continuous low thrust vector is fixed and the direction of the thrust is used
as the control. The spacecraft start from different points on an initial circular or-
bit and meet at a point on a circular orbit of larger radius, with the same final
orbital velocity. The present genetic algorithm was developed to treat complex
interception and rendezvous problems involving multiple vehicles.

1 Introduction

Rendezvous problems can be divided into two main classes. The first class includes
active-passive rendezvous problems, whereas the second includes cooperative rendez-
vous problems. In an active-passive rendezvous problem between two vehicles, the pas-
sive or target vehicle does not apply any control maneuvers and moves passively along
its trajectory. The active or chaser vehicle is controlled or guided such as to meet the
passive vehicle at a later time, matching both the location and the velocity of the target
vehicle. On the other hand, in a cooperative rendezvous problem, the two vehicles are
active and maneuver such as to meet at a later time, at the same location with the same
velocity. The two vehicles start the motion from different initial locations and might
have different initial velocities. The rendezvous problem consists of finding the con-
trol sequences or the guidance laws that are required in order to bring the two vehicles

M.J. Hirsch et al. (Eds.): Adv. in Cooper. Ctrl. & Optimization, LNCIS 369, pp. 399–422, 2007.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2007
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to a final state of rendezvous. In addition to matching final locations and velocities, a
rendezvous problem might include additional criteria to be achieved. For example, in
a rendezvous problem between two active spacecraft, one might also require the total
amount of propellant expended by the vehicles or the time duration to be minimized.

One possible approach to the solution of the rendezvous problem is to formulate
it as an optimal control problem in which one is seeking the controls that minimize
the differences between the final locations and final velocities of the vehicles in some
mathematical sense, for example in the least squares sense. An optimal control problem
consists of finding the control histories (control as a function of time) and the state
variables of the dynamical system that minimize a performance index. The differential
equations of motion of the vehicles are then treated as dynamical constraints.

The methods of approach for solving an optimal control problem include the classical
indirect methods and the more recent direct methods. The indirect methods are based
on the calculus of variations and its extension to the maximum principle of Pontryagin,
which is based on a Hamiltonian formulation. These methods use necessary first order
conditions for an optimum, they introduce adjoint variables and require the solution of
a two-point boundary value problem (TPBVP) for the state and adjoint variables. Usu-
ally, the state variables are subjected to initial conditions and the adjoint variables to
terminal or final conditions. TPBVPs are much more difficult to solve than initial value
problems (IVP). For this reason, direct methods of solution have been developed which
avoid completely the Hamiltonian formulation. For example, a possible approach is to
reformulate the optimal control problem as a nonlinear programming (NLP) problem
by direct transcription of the dynamical equations at prescribed discrete points or col-
location points.

Direct Collocation Nonlinear Programming (DCNLP) is a numerical method that has
been used to solve optimal control problems. This method uses a transcription of the
continuous equations of motion into a finite number of nonlinear equality constraints,
which are satisfied at fixed collocation points. This method was originally developed by
Dickmanns and Well (Dickmanns, 1975) and used by Hargraves and Paris (Hargraves,
1987) to solve several atmospheric trajectory optimization problems. Another class of
direct methods is based on biologically inspired methods of optimization. These include
evolutionary methods such as genetic algorithms (GAs), see for example (Goldberg,
1989) and (Michalewicz, 1994), particle swarm optimization methods (Venter, 2002)
and ant colony optimization algorithms (Dorigo, 2004). algorithm mimics the social
behavior of swarms of birds or insects, whereas the ant colony optimization algorithms
include also chemical communication between the members of the swarm.

Cooperative rendezvous problems between spacecraft have been treated using clas-
sical indirect methods. Coverstone-Carroll and Prussing (Coverstone-Carroll, 1992)
obtained analytical solutions for a minimum fuel rendezvous between two active power-
limited spacecraft. They first studied the rendezvous problem assuming a Hill-Clohessy-
Wiltshire linearized gravity field. Then, they obtained a solution for the case of an
inverse-square law gravity field, using the DCNLP method mentioned above. A sim-
ilar problem was studied in which two power-limited spacecraft perform a rendezvous
in the linearized Hill-Clohessy-Wiltshire gravity field, in the vicinity of neighboring cir-
cular orbits (Coverstone-Carroll, 1993). The same authors (Coverstone-Carroll, 1994)
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treated a rendezvous problem between two spacecraft in the inverse-square law gravity
field where the motion is confined to coplanar orbits. In the case of equal initial power-
to-mass ratios and circular initial orbits, cooperative rendezvous resulted in significant
savings of propellant when compared to the simpler non-cooperative chaser-target ren-
dezvous.

Pourtakdoust and Jalali (Pourtakdoust, 1995) studied orbital transfer problems for
thrust-limited spacecraft. Optimal three dimensional transfer trajectories were obtained
using a DCNLP method. In another study an optimal low-thrust chaser-target ren-
dezvous with constraints based on a variational approach, has been conducted (Mari-
nescu, 1976). Recently, Park, Scheeres and Guibout (Park, 2005) introduced a method
based on generating functions for the optimal feedback control and rendezvous trajec-
tories for continuous low thrust spacecraft. A Hamiltonian formulation for the state
and adjoint variables with split boundary conditions was derived. Generating functions
were used to find the optimal solution, treating the TPBVP as a canonical transfor-
mation. The main advantage of this method is that it does not require the guess of
the initial or terminal values of the adjoint variables to solve the problem. Jezewski
(Jezewski, 1992) studied an optimal rendezvous problem subject to arbitrary perturba-
tions and constraints, using primer vector theory as the basis for the optimal control
formulation. The solution of the constrained nonlinear parameter problem was found
using NLP. However, in this study, the thrust was impulsive and the rendezvous was of
the chaser-target type.

Rauwolf and Coverstone-Carroll (Rauwolf, 1996) studied low-thrust spacecraft or-
bital transfers using GAs. They treated both the case where the thrust is constant as
well as the case of variable thrust. The near optimal solutions obtained proved to be
accurate enough to be used for preliminary mission planning, or as initial guesses for
direct optimization techniques. Other papers treat chaser-target rendezvous problems
using GAs. Rendezvous trajectories of the chaser-target type in the presence of dis-
turbing forces were studied by Carpenter and Jackson (Carpenter, 2003). Although the
Clohessy-Wiltshire equations provide a linearized approximation for preliminary mis-
sion planning, they can lead to significant error in actual use, due to the presence of
disturbing forces. Here, a GA was used to minimize the range error after an impulsive
maneuver. The Clohessy-Wiltshire equations were used to generate an initial popu-
lation of solutions for the GA. A similar problem of the chaser-target type has been
treated by Kim and Spencer (Kim, 2002), where a minimum fuel solution of the impul-
sive rendezvous between two spacecraft was obtained. Olsen and Fowler (Olsen, 2004)
obtained results using a GA to generate near optimal rendezvous trajectories. Their
method provided solutions that closely matched the reference optimal trajectories. Like
Rauwolf and Coverstone-Carroll (Rauwolf, 1996), these authors emphasized the im-
portance of obtaining near optimal solutions generated by a GA, since they can be used
as an initial guess for a more accurate calculus of variations method.

GAs are a powerful alternative method for solving optimal control problems. They
have been used to solve control problems, orbital transfer and rendezvous problems.
GAs use a stochastic search method and are robust when compared to gradient meth-
ods. They are based on a directed random search which can explore a large region of the
design space without conducting an exhaustive search. This increases the probability
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of finding a global optimum solution to the problem. They can handle continuous or
discontinuous variables since they use binary coding. They require only values of the
objective function but no values of the derivatives. However, GAs do not guarantee con-
vergence to the global optimum. If the algorithm converges too fast, the probability of
exploring some regions of the design space will decrease. Methods have been devel-
oped for preventing the algorithm from converging to a local optimum (Fogel, 1995)
and (Schraudolph, 1992). These include dynamic parameter encoding, increased prob-
ability of mutation, redefinition of the fitness function and other methods that can help
maintain the diversity of the population during the genetic search.

2 Cooperative Rendezvous as an Optimal Control Problem

We study trajectory optimization for vehicles moving in an incompressible viscous fluid
in a two-dimensional domain. We treat the case where the medium in which the vehicles
are moving is incompressible and viscous. The vehicle weight W = mgj acts down-
ward. Here j is a unit vector in the positive y direction. The vehicle has a propulsion
system that delivers a thrust T of constant magnitude and is controlled by varying the
thrust direction γ. Since the fluid is viscous, a drag force D acts on the vehicle, in the
opposite direction of the velocity. The control variable of the problem is the thrust direc-
tion γ(t). The angle γ(t) is measured positive clockwise from the horizontal direction
as shown in Figure 1.

Fig. 1. System of forces acting on an underwater vehicle

We approach the rendezvous problem as an optimal control problem, in which it is
required to determine the control functions, or control histories γ(t) of the two vehicles,
such that they will meet at a prescribed location (xf , yf ) at the terminal time t = tf .
Since GAs deal with discrete variables, we discretize the values of γ(t). We assume
that the mass m of each vehicle is constant and that the thrust T is always tangent to
the trajectory. The motion of the vehicle is governed by Newton’s second law of motion
and the kinematic relations between velocity and distance:
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d (mV ) /dt = mg + T + D (2.1)

dx/dt = V cos γ (2.2)

dy/dt = V sinγ (2.3)

where V is the velocity vector and g = gj is the acceleration of gravity. Since we
assumed m is constant,

dV /dt = g + T /m + D/m (2.4)

Writing this equation for the components of the forces along the tangent to the vehi-
cle’s path, we get:

dV/dt = g sin γ + T/m − D/m (2.5)

Here V , T and D are the magnitudes of the velocity, thrust and drag vectors, respec-
tively. The drag D can be expressed in terms of the drag coefficient:

D =
1
2
ρV 2SCD (2.6)

where ρ is the fluid density, S a typical cross-section area of the vehicle and CD its
drag coefficient, which depends on the Reynolds number Re = ρV d/μ, where d is a
characteristic diameter of the vehicle and μ is the fluid viscosity.

Substituting the drag from Equation (2.6) and writing T = amg, where a is the thrust
to weight ratio T/mg, Equation (2.5) becomes:

dV/dt = g sin γ + ag − ρV 2SCD/2m (2.7)

Introducing a characteristic length Lc, time tc and speed vc as

Lc = 2m/ρSCD, tc =
√

Lc/g, vc =
√

gLc (2.8)

the following nondimensional variables, denoted by an overline (bar) can be defined:

x = Lcx, y = Lcy

t = (Lc/g)1/2 t, V = (gLc)1/2 V (2.9)

Substituting in Equation (2.7), we have:

dV /dt = a + sinγ(t) − V
2

(2.10)

Similarly, the other equations of motion can be written in nondimensional form as

dx/dt = V cos γ(t) (2.11)

dy/dt = V sin γ(t) (2.12)

For each vehicle the initial conditions are:

V (0) = V0, x(0) = x0, y(0) = y0 (2.13)
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For a single vehicle, an optimal control problem can be defined as follows. Starting
with the given initial conditions, determine the control function γ(t) such as to maxi-
mize the horizontal distance traveled in a given time tf , provided the vehicle arrives at
a prescribed depth yf , i.e.

maximize x(tf )

subject to the terminal constraint

y(tf ) = yf = yf/Lc (2.14)

where the nondimensional final time is given by tf = tf/
√

Lc/g.
We now define a rendezvous problem between two vehicles. We denote the variables

of the first vehicle by a subscript 1 and those of the second vehicle by a subscript 2. We
will now drop the bar notation indicating nondimensional variables. The two vehicles
might have different thrust to weight ratios, which we denote by a1 and a2, respectively.
The equations of motion for the system of two vehicles are:

dVi/dt = ai + sin γi(t) − V 2
i i = 1, 2 (2.15)

dxi/dt = Vi cos γi(t) i = 1, 2 (2.16)

dyi/dt = Vi sinγi(t) i = 1, 2 (2.17)

The vehicles can start the motion from different locations and at different speeds.
The initial conditions are given by:

Vi(0) = Vi0, xi(0) = xi0, yi(0) = yi0 i = 1, 2 (2.18)

The cooperative rendezvous problem consists of finding the control functions γ1(t)
and γ2(t) such that the two vehicles arrive at a given terminal location (xf , yf) and at
the same speed in the given time tf . The terminal constraints are then given by:

x1(tf ) = xf , x2(tf ) = xf , y1(tf ) = yf

y2(tf ) = yf , V1(tf ) = V2(tf ) (2.19)

We can also define an interception problem, of the target-chaser type, in which one
vehicle is passive and the chaser vehicle maneuvers such as to match the location of the
target vehicle, but not its velocity. Consistent with the above terminal constraints, we
define the following objective function for the optimal control problem:

minimize f(xj(tf )) =
Nv∑

j=1

∥∥∥xj(tf ) − xf

∥∥∥
2

(2.20)

where Nv is the number of vehicles and xf = (xf , yf ) is the prescribed interception or
rendezvous point.

We use standard numerical methods for integrating the differential equations. The
time interval tf is divided into N time steps of duration Δt = tf/N . The discrete
time is ti = iΔt. We used a second-order Runge-Kutta method with fixed time step.
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We also tried a fourth-order Runge-Kutta method and a variable time step and found
that the results were not sensitive to the method of integration. The control function
γ (t) is discretized to γ (i) = γ (ti) according to the number of time steps N used for
the numerical integration. Depending on the accuracy of the desired solution, we can
choose the number of bits ni for encoding the value of the control γ (i) at each time
step i. The size ni used for encoding γ (i) and the number of time steps N will have an
influence on the computational time. Therefore ni and N must be chosen carefully, in
order to obtain an accurate enough solution in a reasonable time. The total length of the
chromosome is given by:

Lch = niNNv (2.21)

For this problem, we were able to increase the rate of convergence of the algorithm
by introducing heuristic arguments. For instance, having noticed that γ(t) is a monoton-
ically decreasing function of time, we were able to speed up the algorithm by choosing
a function with such a property, a priori. Therefore, instead of waiting for the algorithm
to converge towards a monotonous γ(t), we can sort the values of γ of each individual
solution in decreasing order, before calculating its fitness. We also use smoothing of the
control function by fitting a third or fourth-order polynomial to the discrete values of γ.
The values of the polynomial at the N discrete time points are then used as the current
values of γ and are used in the integration of the differential equations.

Appropriate ranges for γ would be either γ ∈ [0, π/2] or γ ∈ [−π/2, π/2] accord-
ing to the specific interception or rendezvous case at hand. We choose N = 30 as a
reasonable number of time steps. We now need to choose the parameters associated
with the GA. First, we select the lengths of the “genes” for encoding the discrete values
of γ. A choice of ni = 8 bits for ∀i ∈ [0, N − 1] was made . The interval between two
consecutive possible values of γ is given by:

Δγ = (γmax − γmin)/(2n − 1) ≈ 0.0062 rad = 0.35 deg

For two vehicles Nv = 2 and N = 30 time steps, the length of a chromosome is
given by Lch = ni N Nv = 480 bits.

The problem of choosing a population size and other parameters for the GA has been
treated in the early work by De Jong (De Jong, 1975) who tested the GA on a suite of
test functions. Numerical experiments show that a reasonable size for the population of
solutions is typically in the range npop ∈ [50, 100], see also (Mitchell, 1996). For this
problem, there is no need for a particularly large population, so we select npop = 50.
The probability of mutation is set to a value of pmut = 0.05.

3 Simplified Test Cases

Before treating the cooperative rendezvous problem, we checked the method by solv-
ing two simplified problems for which we know beforehand what kind of solution to
expect. In these cases, the two vehicles start from the same initial conditions and end
the motion at the same terminal conditions. Basically, we are reducing the problem to
that of a single vehicle, since the trajectories of the two vehicles should be identical,
the vehicles moving side by side from the initial point to the terminal point. In both
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cases, the solution for the motion of a single vehicle was recovered as expected. Since
these are degenerate cases, they are mentioned here because they serve as test cases
for checking the method, but because of lack of space, we do not show all the details.
Detailed results are shown for the more interesting cases where the trajectories of the
two cooperating vehicles are significantly different.

In the first test case, the simplified problem consists of finding the control functions
γ1(t) and γ2(t) such as to maximize the horizontal distances x1(tf ) and x2(tf ) traveled
in a given time tf , provided both vehicles arrive at a prescribed depth yf , while also
matching their horizontal location xf . Upon testing the algorithm, we expect to obtain
the same control for the two vehicles γ1(t) = γ2(t) and the same trajectories. The two
vehicles have the same thrust to weight ratios a1 = a2 = a = 0.05. The initial and final
conditions are given in Table 3.1. The problem can be written as

maximize x1(tf ) + x2(tf )

subject to the initial and terminal conditions given in Table 1. The following objective,
or fitness function is minimized. We use a weight w = 0.5:

f [x1(tf ), x2(tf ), y1(tf ), y2(tf )] =

= −w[x1(tf ) + x2(tf )] + (1 − w)[(y1(tf ) − yf )2 + (y2(tf ) − yf )2] (3.1)

The parameters for this test case are summarized in Table 1. The algorithm converged
in 200 generations and equal control functions γ1(t) = γ2(t) and trajectories were
obtained.

Table 1. Parameters, initial and final conditions for the first test case

Nv npop ni N pmut Ngen γmin γmax

2 50 8 30 0.05 200 0 π/2
a1, a2 t0 tf (x01, y01) (x02, y02) (V01, V02) xf y1(tf ), y2(tf )
0.05 0 5 (0, 0) (0, 0) (0, 0) max 2

In the second test case, the degenerate cooperative rendezvous problem consists of
finding the control functions γ1(t) and γ2(t) such that the two vehicles, starting from
the same initial conditions, arrive at the same terminal point (xf , yf) in a given time
tf . The two vehicles have the same thrust to weight ratios a1 = a2 = a = 0.05. Upon
testing the algorithm, we expect to obtain the same control functions γ1(t) = γ2(t) for
the two vehicles as well as the same trajectories. The final velocities are also required
to be equal V1(tf ) = V2(tf ). The fitness function is given by:

f [x1(tf ), x2(tf ), y1(tf ), y2(tf ), V1(tf ), V2(tf )] =

= (x1(tf )−xf )2+(x2(tf )−xf )2+(y1(tf )−yf )2+(y2(tf )−yf)2+(V1(tf )−V2(tf ))2

(3.2)

The parameters, initial and final conditions for this test case are summarized in Ta-
ble 2. The algorithm converged in 200 generations and equal control functions γ1(t) =
γ2(t) and trajectories were obtained.
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Table 2. Parameters and conditions for the second test case

Nv npop ni N pmut Ngen γmin γmax

2 50 8 30 0.05 200 −π/2 π/2
a1, a2 t0 tf (x01, y01) (x02, y02) (V01, V02) x1(tf ), x2(tf ) y1(tf ), y2(tf )
0.05 0 5 (0, 0) (0, 0) (0, 0) 2.8 2

4 Interception and Rendezvous Between Two Underwater Vehicles

In this section we treat the more interesting cases where the trajectories of the two
vehicles are significantly different. In section 4.1 we present results for an intercep-
tion problem between a maneuvering active chaser vehicle and a passive target vehicle
whose trajectory is known a priori. The rendezvous problem between two active coop-
erative vehicles is treated in section 4.2.

4.1 Chaser-Target Interception

In this section, we study a chaser-target interception problem between two vehicles. In
this case the first vehicle is active and the second is passive and moves along a straight
line at a constant depth y2 = yf , constant speed V2 and constant trajectory angle γ2 = 0.
The two vehicles start from different points and the interception occurs at the known
depth of the target vehicle y2 = yf . The horizontal distance xf to the interception point
is free. We first check the case where the target moves at low speed and can easily be
captured by the active chaser vehicle. The thrust to weight ratios are a1 = a = 0.05 for
the chaser vehicle and a2 = 3a = 0.15 for the target.

Since this is an interception problem, we do not require matching between the fi-
nal velocities. In order to match the final locations, the following objective or fitness
function is defined:

f [x1(tf ), x2(tf ), y1(tf )] = (x1(tf ) − x2(tf ))2 + (y1(tf ) − yf )2 (4.1)

The GA parameters, initial and final conditions are summarized in Table 3.

Table 3. Parameters and conditions for the interception problem at low target speed

Nv npop ni N pmut Ngen γ1min γ1max

2 50 8 30 0.05 50 0 π/2
a t0 tf (x01, y01) (x02, y02) (V01, V02) xf yf

0.05 0 5 (0, 0) (0, 2) (0,
√

3a) free 2

The results of the low target speed interception problem are presented in Figures 2-4.
Figure 2 shows the control function γ2 = 0 of the target vehicle (straight line with dots)
required for maintaining a straight line trajectory at constant speed and fixed depth,
see also Figure 3. The curve with the points denoted by circles is the control function
γ1(t) of the chaser vehicle required to achieve the interception of the target in the given
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Fig. 2. Control functions γ(t) for underwater chaser-target interception with prescribed target
depth and low target speed. The curve with circles is for the chaser vehicle. The target vehicle
moves at a fixed depth, so γ2 = 0.
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Fig. 3. Trajectories for underwater chaser-target interception with prescribed target depth and low
target speed

time. Note that at the interception point γ1(tf = 5) > γ2 because the velocities are not
required to be equal.

The trajectories are displayed in Figure 3. It can be seen that the chaser vehicle is first
diving vertically in order to build up speed and then starts maneuvering, eventually inter-
cepting the target at t = tf . This speed build up phase can also be seen in Figure 4, which
shows the normalized kinetic energy of the chaser vehicle as a function of time. Thechaser
vehicle then decelerates in order to complete the interception. The kinetic energy of the
target vehicle is fixed and is represented by a single dot near the final point at t = tf .
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Fig. 4. Kinetic energy as a function of depth for underwater chaser-target interception with pre-
scribed target depth and low target speed

Table 4. Parameters and conditions for the underwater interception problem at moderate speed

Nv npop ni N pmut Ngen γ1min γ1max

2 50 8 30 0.05 50 0 π/2
a t0 tf (x01, y01) (x02, y02) (V01, V02) xf yf

0.05 0 5 (0, 0) (0, 2) (0,
√

5a) free 2

Next, we study the same chaser-target interception problem between two vehicles
as before, but now the target moves at a moderate speed and can still be captured by
the chaser active vehicle. For this case, the thrust to weight ratios are chosen as a1 =
a = 0.05 for the chaser and a2 = 5a = 0.25 for the target. The fitness function is
given by Equation (4.1). The parameters and conditions for this interception case are
summarized in Table 4.

The results of the moderate target speed interception problem are presented in Fig-
ures 5-7. Figure 5 shows the control function γ2 = 0 of the target vehicle as a straight
line with dots. The curve with the points denoted by circles is the control function γ1(t)
of the chaser vehicle. It can be seen that at the interception point γ1(tf = 5) > γ2 since
the velocity vectors of the chaser and target are not required to be equal.

The trajectories for the case of moderate target speed are displayed in Figure 6. The
chaser vehicle starts maneuvering right away in order to compensate for the higher
speed of the target, eventually intercepting the target “at the last moment” t = tf . No
interception can be obtained at higher target speeds in the given limited time tf . The
normalized kinetic energy of the chaser vehicle is shown in Figure 7, which displays
a similar behaviour as in the previous case of low target speed. Here also, the kinetic
energy of the target vehicle is fixed and is represented by a single dot near the final point
at t = tf .
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Fig. 5. Control functions γ1(t) and γ2(t) for underwater chaser-target interception with pre-
scribed target depth at moderate target speed
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Fig. 6. Trajectories for underwater chaser-target interception with prescribed target depth at mod-
erate target speed

4.2 Rendezvous Between Two Active Underwater Vehicles

We next treat a rendezvous problem with two vehicles. The two vehicles start from dif-
ferent points and rendezvous at a given point (xf , yf) in a given time tf . The vehicles
have the same thrust to weight ratios a1 = a = 0.05 and a2 = a = 0.05. In this
case, the two vehicles are also required to have the same terminal speed. Therefore, the
objective or fitness function is given by:

f [x1(tf ), x2(tf ), y1(tf ), y2(tf ), V1(tf ), V2(tf )] = (x1(tf ) − xf )2+

+(y1(tf ) − yf )2 + (x2(tf ) − xf )2 + (y2(tf ) − yf )2 + (V1(tf ) − V2(tf ))2 (4.2)
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Fig. 7. Kinetic energy as a function of depth for underwater chaser-target interception with pre-
scribed target depth at moderate target speed

Table 5. Parameters and conditions for the underwater rendezvous problem

Nv npop ni N pmut Ngen γmin γmax

2 50 8 30 0.05 200 0 π/2
a t0 tf (x01, y01) (x02, y02) (V01, V02) xf yf

0.05 0 5 (0, 0) (0.5, 0) (0, 0) 2.8 2
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Fig. 8. Control functions γ1(t) and γ2(t) for the rendezvous between two underwater vehicles
with prescribed terminal point

The parameters and conditions for this test case are summarized in Table 5. The
control functions γ1(t) and γ2(t) are given in Figure 8 and the trajectories in Figure 9.
The first vehicle starts at the origin (0,0) and the second vehicle starts at (0.5,0), see
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Table 5 and Figure 9. The trajectory of the first vehicle is close to a trajectory required
to achieve maximum horizontal distance in the given time tf . This trajectory can be
divided into three segments: first, a dive to acquire speed, then a dive along a straight
line at an almost constant angle γ1, followed by a third segment during which the an-
gle γ1(t) varies more rapidly, see the curve with the circles in Figures 8 and 9. The
trajectory of the second vehicle has a much steeper dive segment at the beginning of
the maneuver, since the second vehicle is closer to the rendezvous point, see the curves
with dots in figures 8 and 9.
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Fig. 9. Trajectories for the rendezvous between two underwater vehicles with prescribed terminal
point

5 Cooperative Rendezvous Between Low-Thrust Spacecraft

In this section the rendezvous problem between spacecraft is formulated as an optimal
control problem, in which it is required to find the controls of all active spacecraft such
as to achieve the common goal of the rendezvous in a prescribed time. In section 5.1
a mathematical formulation of the rendezvous problem is developed. The results are
discussed in section 5.2.

5.1 Formulation of the Spacecraft Rendezvous Problem

Two spacecraft, starting from the same circular orbit around an attracting body have to
meet on a larger prescribed circular orbit in a given time. The location of a vehicle is
defined by the polar coordinates (r, ν) in an inertial frame of reference, as shown in
Figure 10.

The state variables of a vehicle are its distance r (t) from the center of attraction,
its true anomaly ν (t), measured counterclockwise with respect to the x-axis, its radial
component of velocity u (t) and its velocity component v (t) perpendicular to r(t). The
thrust T acts at an angle θ measured from the direction of the velocity component v,
positive clockwise from the direction of v, see Figure 10.
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Fig. 10. Notation for the spacecraft problem

We treat spacecraft that use continuous low-thrust rockets, for example spacecraft
equipped with electric propulsion devices. Problems involving impulsive maneuvers
have been studied extensively and are often easier to solve than their continuous thrust
counterpart problems. After an impulsive thrust maneuver, a spacecraft moves passively
on a Keplerian orbit, which might be easier to determine. In our case, all spacecraft are
continuously active over the time duration of the maneuver.We assume that there is no
perturbation of the gravity field such as oblateness of the attracting body or the influence
of a third body. We also assume that there is no mutual gravitational force between the
spacecraft as it is negligible with respect to the gravitational pull of the main attracting
body. Also, without loss of generality, we assume that the two spacecraft are identical,
meaning that the spacecraft initial masses are the same, as well as their propulsion
devices and thrust magnitudes, which are assumed constant. Furthermore, the constant
propellant mass flow rates

.
m are the same for all spacecraft.

The spacecraft dynamics are governed by the following equations of motion, see for
example Bryson (Bryson, 1999):

dr/dt = u (5.1)

mdu/dt = mv2/r − mμ/r2 + T sin θ (5.2)

mdv/dt = −muv/r + T cos θ (5.3)

dν/dt = v/r (5.4)

where μ = GMs is the gravitational constant of the sun, G is the universal gravita-
tional constant and Ms is the mass of the sun. The equations are then written in non-
dimensional form, using the following characteristic (or reference) parameters:

t∗ =
√

r3
0/μ, V0 =

√
μ/r0, T0 = μm0/r2

0 (5.5)

where t∗, V0 and T0 are the characteristic time, speed and thrust, respectively. The ra-
dius r0 is the radius of the initial orbit and m0 is the initial mass of each spacecraft. The
reference speed V0 is the initial orbital speed of each spacecraft, when they are mov-
ing passively without thrust on the initial circular orbit. Therefore, there are no radial
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components u of the spacecraft velocities before starting the cooperative maneuver. We
develop a non-dimensional form of the equations using the following non-dimensional
variables, denoted by an overline (bar):

r = r0r, m = m0m, t = tt∗ = t
√

r3
0/μ

u = uV0 = u
√

μ/r0, v = vV0 = v
√

μ/r0, T = T0τ = (μm0/r2
0)τ (5.6)

Here τ is the non-dimensional thrust. Introducing the new variables, the first two
equations of motion become:

dr/dt = u (5.7)

mdu/dt = mv2/r − m/r2 + τ sin θ (5.8)

The mass of the vehicles varies as a function of time:

m(t) = m0 +
.
mt

where
.
m < 0, i.e., the mass of the vehicle is decreasing as propellant is expended by

the rocket propulsion device. Rewriting this equation in non-dimensional form, we get

m
(
t
)

= 1 − (
∣∣ .
m

∣∣ /m0)
√

r3
0/μ t (5.9)

Introducing the nondimensional parameter:

B =
∣∣ .
m

∣∣ t∗/m0 = (
∣∣ .
m

∣∣ /m0)
√

r3
0/μ (5.10)

Equation (5.9) becomes:
m

(
t
)

= 1 − Bt (5.11)

Substituting Equation (5.11) into Equation (5.8) and rearranging, we get

du/dt = v2/r − 1/r2 + τ sin θ(t)/(1 − Bt) (5.12)

Similarly, Equations (5.3) and (5.4) are written as:

dv/dt = −uv/r + τ cos θ(t)/(1 − Bt) (5.13)

dν/dt = v/r (5.14)

The initial conditions for each spacecraft j are:

rj (0) = 1, uj (0) = 0, vj (0) = 1, νj (0) = νj0 (5.15)

To achieve a rendezvous within a prescribed time tf , the motion is subjected to the
following final conditions:

rj

(
tf

)
= rf , uj

(
tf

)
= uf = 0, vj

(
tf

)
= vf = 1/

√
rf (5.16)
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where uf and vf correspond to the radial and tangential components of the velocities,
respectively, that the spacecraft must have in order to maintain circular motion along
the final orbit of radius rf .

There are different ways of formulating a rendezvous problem. We can minimize
the transfer time tf knowing the final radius rf and true anomaly νf . Equivalently, we
can maximize the radius rf in a given time tf . Here rf and tf are prescribed, and we
minimize the difference rj (tf ) − rf , where j ∈ [1, Nv] and minimize the difference
νj1 (tf ) − νj2 (tf ) for all

(j1, j2) ∈ {j1 ∈ [1, Nv] , j2 ∈ [1, Nv] ; j1 < j2}

That is, we minimize the error between the actual final radii of the spacecraft and the
prescribed final radius rf , as well as the difference between the final true anomalies of
the vehicles. This ensures that all vehicles have to be on the prescribed final orbit and
that they are all close to each other. For rendezvous problems, the final tangential and
radial components of the spacecraft velocities are also prescribed, so that upon shutting
off the rocket engines, the vehicles will keep moving on the circular orbit defined by
the final radius. We minimize the differences uj (tf ) − uf and vj (tf ) − vf for all
j ∈ [1, Nv]. The objective function can then be written as:

f = w1

Nv∑

j=1

[rf − rj (tf )]2 + w2

Nv∑

j=1

[uf − uj (tf )]2 + w3

Nv∑

j=1

[vf − vj (tf )]2 +

+w4

Nv∑

j1=2

j1−1∑

j2=1

[νj1 (tf ) − νj2 (tf )]2 (5.17)

The wk , for k ∈ [1, 4], are weights corresponding to the variables r, u, v and ν
respectively. The rendezvous problem can now be formulated as follows:

Find the control functions θj(t) for t ∈ [0, tf ] and j ∈ [1, Nv], such as to minimize
the objective function f defined in Equation (5.17), subject to the state equations for
each vehicle j:

dr/dt = u (5.18)

du/dt = v2/r − 1/r2 + τ sin θ(t)/(1 − Bt) (5.19)

dv/dt = −uv/r + τ cos θ(t)/(1 − Bt) (5.20)

dν/dt = v/r (5.21)

subject to the initial conditions for each vehicle j:

rj (0) = 1, uj (0) = 0, vj (0) = 1, νj (0) = νj0 (5.22)

and subject to the final conditions:

rj

(
tf

)
= rf , uj

(
tf

)
= 0, vj

(
tf

)
= 1/

√
rf (5.23)

We integrate the equations of motion using a Runge-Kutta 4th order method, for the
time interval between t0 = 0 to a given tf for the given initial conditions. In order to
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use a GA to search for rendezvous trajectories, each control function θ(t) is represented
by N discrete values θi, in order to form the binary chromosomes needed for the algo-
rithm. As the solution evolves, the binary values of the chromosomes are converted to
real discrete values of θ(t) and the objective function is evaluated. Before integrating
the differential equations for each generation of solutions, the real discrete values of θi,
which might contain some noise from the genetic operators, are smoothed by a polyno-
mial approximation. During the integration, the values of θ at any given time t can be
calculated from the polynomial coefficients. We represent a continuous control function
θ(t) by N discrete values θi at N discrete times ti uniformly distributed in the interval
[0, tf ]. We also need to select the number of bits ni used to encode each value θi. As
an example, we present reference parameters corresponding to a transfer from Earth to
Mars:

r0 = 1 au = 1.4959787 × 108 km

where r0, the radius of the orbit of the earth about the sun, is defined as 1 au, one
astronomical unit or one canonical distance unit. The gravitational constant μ for the
sun is given by:

μ = μs = GMs = 1.3271244 × 1011 km3/s2

where G is the universal gravitational constant and Ms is the mass of the sun. For the
initial mass of the vehicles, we use an example given by (Bryson, 1999) where:

m0 = 4536 kg

For the given initial orbit, the circular orbit of the earth around the sun, we determine
the characteristic time t∗ and orbital speed V0 as:

t∗ =
√

r3
0/μ = 5.022643 × 106 s = 58.13 days

V0 =
√

μ/r0 = 29.7847 km/s

The time t∗ is also defined as one canonical time unit. The characteristic thrust is
given by:

T0 = μm0/r2
0 = 0.0269 kgkm/s2 = 26.9 N

A typical value for the actual constant low thrust of an 4536 kg spacecraft is on the
order of a few newtons, see (Bryson, 1999):

T = 3.778 N

It follows that the nondimensional thrust is:

τ = T/T0 = 0.1405

We now obtain an estimate the mass flow rate
.
m. The thrust is given by:

T =
.
mue
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where ue is the exhaust speed of the propellant at the exit of the rocket’s nozzle, which
can be estimated from the specific impulse:

Isp = ue/g

For a spacecraft with a specific impulse Isp ≈ 5700 s (Bryson, 1999), we have:

ue = Ispg = 55917 m/s

The mass flow rate can be estimated from the thrust and the exhaust speed

.
m = T/ue = 6.7564 × 10−5 kg/s

We then obtain the parameter B as:

B =
∣∣ .
m

∣∣ t∗/m0 = 0.0748

We can now estimate values for the final conditions. For a transfer maneuver from
Earth to Mars, the average distance from the sun of the Martian orbit rf is:

rf = 1.5237 au = 2.2794 × 108 km

rf = 1.5237

uf = 0

vf = 1/
√

rf = 0.8101

We need to use a reasonable rendezvous time tf . In (Bryson, 1999), the total time of
transfer of one vehicle from the Earth to Mars orbit is set to 3.3155 canonical units. In
our case, we choose a larger value of tf , since the rendezvous problem is more complex.
We use a longer time:

tf = 5.5

We have now all the information required to initialize the GA. We drop the non-
dimensional overline (bar) notation in the tables appearing in the following sections.

5.2 Rendezvous Between Two Spacecraft

We study a rendezvous maneuver between two spacecraft, starting from two locations
on the orbit of the Earth about the sun. The initial true anomalies for the two spacecraft
are ν10 and ν20. They rendezvous at a point on Mars orbit with no prescribed value for
their final true anomaly. The range for θ(t) ∈ [θmin, θmax] is the largest possible range:
θ ∈ [−π, π], since we do not know beforehand the shape of the control functions θ(t)
of the two spacecraft. We use N = 40 discrete values of θi to represent a solution θ(t)
for the GA. The set of parameters for this first case is given in Table 6.

The average CPU time was 18 minutes (average of 30 simulations on a Pentium
4, 2 GHz computer). Since the initial population is generated randomly, the rate of
convergence may vary dramatically when running the same case many times, because
the initial populations are generated randomly and the GA operations are also stochastic



418 Y.J. Crispin and M.E. Ricour

Table 6. Parameters and conditions for the rendezvous between two spacecraft

Nv npop ni N pmut fstop θmin θmax w1 w2 w3 w4

2 80 6 40 0.05 .0002 −π π 1 0.3 1.5 1.5
τ t0 tf r01, r02 ν10 ν20 u01, u02 v01, v02 rf uf vf

0.1405 0 5.5 1 0 π/2 0 1 1.5237 0 0.8101
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Fig. 11. Trajectories for a rendezvous between two spacecraft. Spacecraft 1 starts at (1,0) and
spacecraft 2 starts at (0,1). The sun is located at the origin. The inner circle is the orbit of Earth
and the outer circle is the orbit of Mars. Distances are in astronomical units (au). Similar results
were obtained with the Chebyshev polynomials approximation.

processes. The rendezvous trajectories of the two spacecraft are given in Figure 11. The
initial and final circular orbits and the starting locations of vehicle 1 and 2 are also
shown in the figure. The control functions θ1(t) and θ2(t) of the two spacecraft are
shown in Figure 12.

The results of the solution found by the GA are summarized in Table 7. The errors
in rf for both spacecraft are less than 0.5%. The difference between the two spacecraft
true anomalies ν1 (tf ) − ν2 (tf ) is 0.0076 radians, which is less than 0.5 degree. The
maximum error in the tangential velocities is less than 2.13%.

Table 7. Final conditions for the rendezvous between two spacecraft

Ngen CPU (s) rf r1 (tf ) r2 (tf ) ν1 (tf ) ν2 (tf )
60 1080 1.5237 1.5184 1.5311 5.9824 5.9748
uf u1 (tf ) u2 (tf ) vf v1 (tf ) v2 (tf )
0 -0.02150 -0.01155 0.8101 0.8163 0.8274
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Fig. 12. Thrust direction angles θ1(t) and θ2(t) for the rendezvous between two spacecraft using
the discrete approach. The curve with the circles is for spacecraft 1 and the curve with the dots
belongs to spacecraft 2. Similar results were obtained with the Chebyshev polynomials approxi-
mation.

5.3 Approximation of the Variables by Chebyshev Polynomials

The results presented in section 5.2 were obtained using discrete values of the con-
trol function θ(t) for the GA implementation. A relatively large number (N = 40) of
discrete values θi were required. The main disadvantage is that the corresponding chro-
mosomes are large. To reduce the size of the chromosomes as well as to use an exact
representation of the variations of θ, we also used the coefficients of an approximating
polynomial as the design variables. The Chebyshev polynomials Tc(t) can be used to
approximate the control functions θ(t):

θ (t) =
Nc∑

c=0

AcTc (t)

Chebyshev polynomials are orthogonal polynomials used in function approximation.
They have been described in the numerical analysis literature, see for example a discus-
sion of function approximation in (Press, 1992). For a given NC number of Chebyshev
polynomials, a continuous function p (x) of a real variable x can be approximated by:

p (x) =
NC∑

c=0

AcTc (x) for x ∈ [−1, 1] (5.24)

In order to represent the control function θ(t) in the time interval t ∈ [0, tf ] for
values of θ(t) in the range θmin ≤ θ ≤ θmax, the following transformation can be
used:

x = 2(t − t0)/(tf − t0) − 1 = 2t/tf − 1 (5.25)

The use of Chebyshev polynomials will allow a substantial decrease of the length of
the chromosome depending on the choice of Nc and ni (recall that ni is the number
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of bits used to encode each design variable). For given Nc and ni, the length of a
chromosome is Lch = ni Nc Nv. For the same number of bits ni, a chromosome
will be shorter because the number of polynomials Nc required will be much smaller
than the number of discrete values N required to represent a solution accurately in the
discrete formulation of the GA.

We now determine a range for the values of the coefficients Ac. Since we do not have
a priori knowledge about the behavior of θ(t), we must rely on experience obtained
from our numerical results using the discrete approach. We determined the polynomial
in Equation (5.24) together with the transformation given by Equation (5.25) that best
fits the control history θ(t) found in the previous section using the discrete approach.
We use the first five Chebyshev polynomials to represent the variations of θ(t), so the
variables are A0, A1, A2, A3 and A4 and the functions θ(t) are approximated by poly-
nomials of degree 4. Then, using the maximum and minimum values of the computed
variables Ac, we obtained an estimate of the minimum and maximum values of the
Chebyshev coefficients as:

(Ac)min = −1.4863 and (Ac)max = 0.4140

We then used a rounded largest absolute value of [(Ac)min , (Ac)max] as the value
of the upper and lower limit for the variables of the GA:

(Ac)min = −1.5 and (Ac)max = 1.5

A chromosome is made of Nv binary strings, each containing a sequence of Nc

binary strings of length ni, encoding values of Ac ∈ [Amin, Amax] . The parameters
used to initialize the GA are given in Table 8. The rendezvous final conditions are
summarized in Table 9.

Table 8. Parameters and conditions for the spacecraft rendezvous using Chebyshev polynomials

Nv npop ni Nc pmut fstop Amin Amax w1 w2 w3 w4

2 80 12 5 0.05 0.0002 −1.5 1.5 1 0.3 1.5 1.5
τ t0 tf r0 ν10 ν20 u0 v0 rf uf vf

0.1405 0 5.5 1 0 π/2 0 1 1.5237 0 0.8101

After Ngen = 192 generations, the fitness function decreased below fstop = 0.0002.
The error in the final radius is |r1 (tf ) − rf |/rf = 0.0035 for the first spacecraft and
|r2 (tf )−rf |/rf = 0.0049 for the second. The difference between thefinal true anoma-
lies is |ν1 (tf ) − ν2 (tf ) | = 0.0073 rad= 0.42 deg.

Table 9. Final conditions for the spacecraft rendezvous using Chebyshev polynomials

Ngen CPU (s) rf r1 (tf ) r2 (tf ) ν1 (tf ) ν2 (tf )
192 810 1.5237 1.5184 1.5311 6.0367 6.0294
uf u1 (tf ) u2 (tf ) vf v1 (tf ) v2 (tf )
0 -0.02319 -0.007 0.8101 0.8209 0.8108
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The solution found by the GA using the Chebyshev polynomial approximation is
very close to the one found using the discrete approach.

6 Conclusion

The rendezvous problem between two active autonomous vehicles moving in an under-
water environment has been treated using an optimal control formulation with terminal
constraints. The two vehicles have fixed thrust propulsion systems and use the direction
of the velocity vector for steering and control. We use a genetic algorithm to determine
directly the control histories of both vehicles by evolving populations of possible solu-
tions. In order to test the method on a simplified case, we treat an interception problem,
where one vehicle moves along a straight line with constant velocity and the second
vehicle acts as a chaser, maneuvering such as to capture the target in a given time. It
was found that the chaser can capture the target within the prescribed time as long as the
target speed is below a critical speed. We then treated the rendezvous problem between
two active vehicles where both the final positions and velocities are matched.

The rendezvous problem between active autonomous low-thrust spacecraft has been
treated using a similar formulation. The spacecraft have propulsion systems which pro-
vide a continuous thrust of constant magnitude and use the direction of the thrust vector
for steering and control. As the initial distance between the two vehicles is increased,
it becomes more difficult to solve the problem and the genetic algorithm requires more
generations to converge to a near optimal solution. The approximate solutions obtained
by the GA can be used as initial guesses in more accurate numerical methods such as
finite difference methods, collocation methods or variational methods.
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Özgüner, Ümit 191

Pachter, Meir 281
Pack, Daniel J. 21
Papageorgiou, Dimitri 129
Pardalos, Panos M. 231, 339, 389
Pham, Khanh D. 45, 323
Plett, Gregory L. 21
Pollak, Etyan 203
Postlethwaite, Ian 265
Prazenica, Richard J. 81

Qu, Zhihua 203

Rathinam, Siva 373
Raykin, Maxim 129
Ricour, Marie E. 399

Scerri, Paul 1
Shen, Dan 323
Sinclair, Andrew J. 81
Song, Y.D. 221
Spletzer, John R. 95
Sycara, Katia 1
Sznaier, Mario 353

Tiwari, Abhishek 145

Valenti, Mario 179

Wang, Junxian 145
Weng, Liguo 221

Yadegar, Jacob 145
Yadlapalli, Sai K. 373
Yatsenko, Vitaliy A. 231
Yavuz, Mesut 167
Yuan, Hongliang 203

Zarzhitsky, Dimitri 21
Zhang, M. 221
Zhang, R. 221
Zheng, Yongling 191
Zhu, Yongjie 191



Lecture Notes in Control and Information Sciences

Edited by M. Thoma, M. Morari

Further volumes of this series can be found on our homepage:
springer.com

Vol. 369: Hirsch M.J.; Pardalos P.M.;
Murphey R.; Grundel D.
Advances in Cooperative Control and
Optimization
423 p. 2007 [978-3-540-74354-5]

Vol. 368: Chee F.; Fernando T.
Closed-Loop Control of Blood Glucose
157 p. 2007 [978-3-540-74030-8]

Vol. 367: Turner M.C.; Bates D.G. (Eds.)
Mathematical Methods for Robust and Nonlinear
Control
444 p. 2007 [978-1-84800-024-7]

Vol. 366: Bullo F.; Fujimoto K. (Eds.)
Lagrangian and Hamiltonian Methods for
Nonlinear Control 2006
398 p. 2007 [978-3-540-73889-3]

Vol. 365: Bates D.; Hagström M. (Eds.)
Nonlinear Analysis and Synthesis Techniques for
Aircraft Control
360 p. 2007 [978-3-540-73718-6]

Vol. 364: Chiuso A.; Ferrante A.;
Pinzoni S. (Eds.)
Modeling, Estimation and Control
356 p. 2007 [978-3-540-73569-4]

Vol. 363: Besançon G. (Ed.)
Nonlinear Observers and Applications
224 p. 2007 [978-3-540-73502-1]

Vol. 362: Tarn T.-J.; Chen S.-B.;
Zhou C. (Eds.)
Robotic Welding, Intelligence and Automation
562 p. 2007 [978-3-540-73373-7]

Vol. 361: Méndez-Acosta H.O.; Femat R.;
González-Álvarez V. (Eds.):
Selected Topics in Dynamics and Control of
Chemical and Biological Processes
320 p. 2007 [978-3-540-73187-0]

Vol. 360: Kozlowski K. (Ed.)
Robot Motion and Control 2007
452 p. 2007 [978-1-84628-973-6]

Vol. 359: Christophersen F.J.
Optimal Control of Constrained
Piecewise Affine Systems
190 p. 2007 [978-3-540-72700-2]

Vol. 358: Findeisen R.; Allgöwer
F.; Biegler L.T. (Eds.): Assessment and Future Di-
rections of Nonlinear
Model Predictive Control
642 p. 2007 [978-3-540-72698-2]

Vol. 357: Queinnec I.; Tarbouriech
S.; Garcia G.; Niculescu S.-I. (Eds.):
Biology and Control Theory: Current Challenges
589 p. 2007 [978-3-540-71987-8]

Vol. 356: Karatkevich A.:
Dynamic Analysis of Petri Net-Based Discrete
Systems
166 p. 2007 [978-3-540-71464-4]

Vol. 355: Zhang H.; Xie L.:
Control and Estimation of Systems with
Input/Output Delays
213 p. 2007 [978-3-540-71118-6]

Vol. 354: Witczak M.:
Modelling and Estimation Strategies for Fault
Diagnosis of Non-Linear Systems
215 p. 2007 [978-3-540-71114-8]

Vol. 353: Bonivento C.; Isidori A.; Marconi L.;
Rossi C. (Eds.)
Advances in Control Theory and Applications
305 p. 2007 [978-3-540-70700-4]

Vol. 352: Chiasson, J.; Loiseau, J.J. (Eds.)
Applications of Time Delay Systems
358 p. 2007 [978-3-540-49555-0]

Vol. 351: Lin, C.; Wang, Q.-G.; Lee, T.H., He, Y.
LMI Approach to Analysis and Control of
Takagi-Sugeno Fuzzy Systems with Time Delay
204 p. 2007 [978-3-540-49552-9]

Vol. 350: Bandyopadhyay, B.; Manjunath, T.C.;
Umapathy, M.
Modeling, Control and Implementation of Smart
Structures 250 p. 2007 [978-3-540-48393-9]

Vol. 349: Rogers, E.T.A.; Galkowski, K.;
Owens, D.H.
Control Systems Theory
and Applications for Linear
Repetitive Processes 482
p. 2007 [978-3-540-42663-9]

Vol. 347: Assawinchaichote, W.; Nguang, K.S.;
Shi P.
Fuzzy Control and Filter Design
for Uncertain Fuzzy Systems
188 p. 2006 [978-3-540-37011-6]

Vol. 346: Tarbouriech, S.; Garcia, G.; Glattfelder,
A.H. (Eds.)
Advanced Strategies in Control Systems
with Input and Output Constraints
480 p. 2006 [978-3-540-37009-3]



Vol. 345: Huang, D.-S.; Li, K.; Irwin, G.W. (Eds.)
Intelligent Computing in Signal Processing
and Pattern Recognition
1179 p. 2006 [978-3-540-37257-8]

Vol. 344: Huang, D.-S.; Li, K.; Irwin, G.W. (Eds.)
Intelligent Control and Automation
1121 p. 2006 [978-3-540-37255-4]

Vol. 341: Commault, C.; Marchand, N. (Eds.)
Positive Systems
448 p. 2006 [978-3-540-34771-2]

Vol. 340: Diehl, M.; Mombaur, K. (Eds.)
Fast Motions in Biomechanics and Robotics
500 p. 2006 [978-3-540-36118-3]

Vol. 339: Alamir, M.
Stabilization of Nonlinear Systems Using
Receding-horizon Control Schemes
325 p. 2006 [978-1-84628-470-0]

Vol. 338: Tokarzewski, J.
Finite Zeros in Discrete Time Control Systems
325 p. 2006 [978-3-540-33464-4]

Vol. 337: Blom, H.; Lygeros, J. (Eds.)
Stochastic Hybrid Systems
395 p. 2006 [978-3-540-33466-8]

Vol. 336: Pettersen, K.Y.; Gravdahl, J.T.;
Nijmeijer, H. (Eds.)
Group Coordination and Cooperative Control
310 p. 2006 [978-3-540-33468-2]

Vol. 335: Kozłowski, K. (Ed.)
Robot Motion and Control
424 p. 2006 [978-1-84628-404-5]

Vol. 334: Edwards, C.; Fossas Colet, E.;
Fridman, L. (Eds.)
Advances in Variable Structure and Sliding Mode
Control
504 p. 2006 [978-3-540-32800-1]

Vol. 333: Banavar, R.N.; Sankaranarayanan, V.
Switched Finite Time Control of a Class of
Underactuated Systems
99 p. 2006 [978-3-540-32799-8]

Vol. 332: Xu, S.; Lam, J.
Robust Control and Filtering of Singular Systems
234 p. 2006 [978-3-540-32797-4]

Vol. 331: Antsaklis, P.J.; Tabuada, P. (Eds.)
Networked Embedded Sensing and Control
367 p. 2006 [978-3-540-32794-3]

Vol. 330: Koumoutsakos, P.; Mezic, I. (Eds.)
Control of Fluid Flow
200 p. 2006 [978-3-540-25140-8]

Vol. 329: Francis, B.A.; Smith, M.C.; Willems,
J.C. (Eds.)
Control of Uncertain Systems: Modelling,
Approximation, and Design
429 p. 2006 [978-3-540-31754-8]

Vol. 328: Loría, A.; Lamnabhi-Lagarrigue, F.;
Panteley, E. (Eds.)
Advanced Topics in Control Systems Theory
305 p. 2006 [978-1-84628-313-0]

Vol. 327: Fournier, J.-D.; Grimm, J.; Leblond, J.;
Partington, J.R. (Eds.)
Harmonic Analysis and Rational Approximation
301 p. 2006 [978-3-540-30922-2]

Vol. 326: Wang, H.-S.; Yung, C.-F.; Chang, F.-R.
H∞ Control for Nonlinear Descriptor Systems
164 p. 2006 [978-1-84628-289-8]

Vol. 325: Amato, F.
Robust Control of Linear Systems Subject to
Uncertain
Time-Varying Parameters
180 p. 2006 [978-3-540-23950-5]

Vol. 324: Christofides, P.; El-Farra, N.
Control of Nonlinear and Hybrid Process Systems
446 p. 2005 [978-3-540-28456-7]

Vol. 323: Bandyopadhyay, B.; Janardhanan, S.
Discrete-time Sliding Mode Control
147 p. 2005 [978-3-540-28140-5]

Vol. 322: Meurer, T.; Graichen, K.; Gilles, E.D.
(Eds.)
Control and Observer Design for Nonlinear Finite
and Infinite Dimensional Systems
422 p. 2005 [978-3-540-27938-9]

Vol. 321: Dayawansa, W.P.; Lindquist, A.;
Zhou, Y. (Eds.)
New Directions and Applications in Control
Theory
400 p. 2005 [978-3-540-23953-6]

Vol. 320: Steffen, T.
Control Reconfiguration of Dynamical Systems
290 p. 2005 [978-3-540-25730-1]

Vol. 319: Hofbaur, M.W.
Hybrid Estimation of Complex Systems
148 p. 2005 [978-3-540-25727-1]

Vol. 318: Gershon, E.; Shaked, U.; Yaesh, I.
H∞ Control and Estimation of State-multiplicative
Linear Systems
256 p. 2005 [978-1-85233-997-5]

Vol. 317: Ma, C.; Wonham, M.
Nonblocking Supervisory Control of State Tree
Structures
208 p. 2005 [978-3-540-25069-2]

Vol. 316: Patel, R.V.; Shadpey, F.
Control of Redundant Robot Manipulators
224 p. 2005 [978-3-540-25071-5]

Vol. 315: Herbordt, W.
Sound Capture for Human/Machine Interfaces:
Practical Aspects of Microphone Array
Signal Processing
286 p. 2005 [978-3-540-23954-3]


	Title Page
	Preface
	Table of Contents
	Locating RF Emitters with Large UAV Teams
	Introduction
	Problem
	Algorithm
	Implementation

	Distributed State Estimation
	Binary, Bayesian Grid Filter
	Information Sharing Approaches

	Cooperative Search
	Modified RRT Planner

	Experiments
	Related Work
	Conclusions

	Out-of-Order Sigma-Point Kalman Filtering for Target Localization Using Cooperating Unmanned Aerial Vehicles
	Introduction
	Approaches to Handling Out-of-Sequence Measurements
	Sigma-Point Kalman Filters (SPKF)
	Out-of-Order Sigma-Point Kalman Filters (O^3SPKF)
	An Example Model of Motion
	Performance Comparisons
	The USAFA Multiple UAV Simulation System Control Architecture
	The Simulation Process
	Results

	Conclusions

	Multi-cumulant Control for Zero-Sum Differential Games: Performance-Measure Statistics and State-Feedback Paradigm
	Introduction
	Problem Formulation
	Multi-cumulant Saddle-Point Solution
	Conclusions

	Decentralized Cooperative Optimization for Multi-criteria Decision Making
	Introduction
	Preliminaries
	Decentralized Optimization Via Decomposition Technique
	Penalty Method
	Penalty Algorithm
	Decentralized Algorithm
	Computational Results
	Conclusions

	Simultaneous Localization and Planning for Cooperative Air Munitions
	Introduction
	Model Development
	Problem Formulation
	Sample SLAP Trajectories
	Estimation Performance
	Conclusions

	Second-Order Cone Programming (SOCP) Techniques for Coordinating Large-Scale Robot Teams in Polygonal Environments
	Introduction
	Related Work
	Defining the Coordination Problem
	On Complexity
	Simulation Results

	Coordination in Non-convex Polygonal Environments
	Generalizing the Coordination Problem
	Simulation Results

	Discussion and Future Work

	UAV Splay State Configuration for Moving Targets in Wind
	Introduction
	Problem Description
	UAV Modeling
	Orbit Dynamics

	Heading Calculation for Non-moving Targets
	Stability Analysis
	Ultimately Bounded
	Local Stability
	Global Stability

	Extension to Moving Targets
	Simulation Results
	Conclusions and Future Work

	A Risk-Based Approach to Sensor Resource Management
	Introduction
	Discrimination Risk and the Cost Coefficients
	Risk Reduction
	Discrimination Risk in the Case of Two Classes
	Track Risk
	Modifications to Discrimination Risk Due to the Presence of Track Risk

	Sensor Resource Management Algorithms
	Myopic Sensor Resource Management
	Far-Sighted Sensor Resource Management
	A Hierarchical Multisensor Control Architecture

	Simulation Results
	Conclusions and Future Work

	Constructing Optimal Cyclic Tours for Planar Exploration and Obstacle Avoidance : A Graph Theory Approach
	Introduction
	Peano-Cesaro Tiling and the Associated Sierpinski Bucketing Tour
	Peano-Cesaro Fractal Sweep
	Sierpinski Bucketing Tour

	Exploring a Planar Region with Minimum Number of Repetitions in the Presence of Obstacles
	Results on Existence and Non-existence of Hamiltonian Cycles
	ESSENTIAL-CHAINS Algorithm
	Main Result

	Algorithm Development and Comparison
	Pre-cycle Computation
	Cycle Maximization

	Conclusion

	An Analysis and Solution of the Sensor Scheduling Problem
	Introduction
	A Mathematical Model
	Structural Properties of the Problem
	Lower and Upper Bounds on the Objective Function
	Heuristic Solution Approaches
	Computational Study
	Conclusions

	Cooperative Vision Based Estimation and Tracking Using Multiple UAVs
	Introduction
	Vision Based Tracking and Estimation: A Cooperative Approach
	Hardware and Software Setup
	Persistent Object Filter

	Results
	Conclusions

	Waypoint Selection in Constrained Domains (for Cooperative Systems)
	Introduction
	A Model During Transition Phase
	Leader Model
	Leader-Follower Interface

	Waypoint Selection for Parking Maneuver
	High Level Decomposition of Configuration Space
	Low Level Waypoint Selection
	Multi-vehicle Cooperative Parking

	 Simulation Results
	Conclusions

	Cooperative Formation Flying in Autonomous Unmanned Air Systems with Application to Training
	Introduction
	Trajectory Planning 
	Parameterized Feasible Trajectories 
	Trajectory Planning for Avoiding Dynamic Obstacles 

	Cooperative Control 
	Objectives of Cooperative Control
	Cooperative Control Algorithm 
	Trajectory Parameterization for Arbitrary Waypoints 

	Simulation
	Simulation Prototype
	Simulation Results

	UAS Test Bed
	UAS Cooperative Control Test Bed Framework
	References

	Virtual Leader Based Formation Control of Multiple Unmanned Ground Vehicles (UGVs): Control Design, Simulation and Real-Time Experiment
	Introduction
	Real-Time Testbed of UGV and Its Modeling
	Virtual Leader Based Formation
	Error Shaping Memory-Based Control
	Simulation and Real-Time Experiment
	Conclusions
	References

	Cooperative Control of Multiple Agents and Search Strategy
	Introduction
	Coordination for Different-Type Objects and Search Strategies
	Interaction of Controlled Object Groups
	Actions Coordination for Different-Type Objects
	Implementation of New Pursuit Strategies
	Investigation of Group Pursuit Problems
	Cellular Search Model

	Geometrical Aspects of Multiagent Coordination
	Necessary Concepts and Definitions
	Coordinated Control
	Symmetry of Multiagent Coordination
	The Local Structure of DITAs with Symmetries
	The Global Structure of DITA
	The Feasibility of Applying the Results to the Investigation of Agents

	Fiber Bundles and Observability
	Nonlinear Model of Agents
	Minimality
	Observability
	Controllability

	Conclusions
	References

	Real-Time Optimal Time-Critical Target Assignment for UAVs
	Introduction and Problem Statement
	Algorithms
	Two Algorithms
	Incorporation of Timing Constraints into the Existing Framework
	MILPs Including Timing Constraints

	Numerical Simulations
	Concluding Remarks
	References

	Sequential Inspection Using Loitering
	Introduction
	Stochastic Optimal Control
	Dynamic Programming Recursion
	The Boundary Condition
	Computing Suboptimal Value Functions
	Numerical Implementation
	Numerical Results

	Generalization: Including an Endurance Cost When Revisiting an Object
	Conclusion
	References

	Distributed Cooperative Systems with Human Operator-in-the-Loop
	Introduction
	Modeling of Cooperative Systems: A Search Mission Example
	Measures of Effectiveness
	A Basic Cooperative Search Model
	A Coordinated Search Model
	Coordinated Cooperative Search Model
	Monitored Cooperative Search

	Numerical Results
	Basic Cooperative Search System
	Coordinated Search System
	Coordinated Cooperative Search
	Monitored Cooperative Search

	Analysis of Cooperation
	Corresponding Independent Systems
	Coefficient of Cooperation and Fitness Function
	Numerical Results and Discussion

	Conclusions
	References

	Decentralized Extremum-Seeking Control of Nonholonomic Vehicles to Form a Communication Chain
	Introduction
	Electronic Chaining Problem Statement
	Background and Related Work
	Vehicle Mobility Model
	Extremum Seeking
	Lyapunov Guidance Vector Field Controller

	Electronic Chaining ES Algorithm
	Performance Function
	Convergence Rate Bounds of the Positional Error

	Simulation
	Conclusion
	References

	An Adaptive Sequential Game Theoretic Approach to Coordinated Mission Planning for Aerial Platforms
	Introduction
	Framework for Mission Planning
	Team Composition and Tasking
	Team Dynamics and Tactics
	Target Assignment
	Adaptive Sequential Game Approach for Salvo Size Control

	Simulation and Experiments
	Conclusion
	References

	Characteristics of the Distribution of Hamming Distance Values Between Multidimensional Assignment Problem Solutions
	Introduction
	MAP Formulations and Related Previous Results
	Hamming Distance
	Numerical Results
	Conclusions
	References

	Robust Cooperative Visual Tracking: A Combined NonLinear Dimensionality Reduction/Robust Identification Approach
	Introduction
	Notation
	Dynamic Identification Based Robust Tracking
	Handling Nonlinear Dynamics and Computational Complexity
	Nonlinear Manifold Learning
	System Dynamics Identification in Manifold Space
	Learning View Correspondences
	Generating Views

	Experimental Validation
	Preprocessing

	Conclusions
	References

	A Lagrangian-Based Algorithm for a Combinatorial Motion Planning Problem
	Introduction
	Literature Review
	CMP Formulation
	A Lagrangian Relaxation of the CMP
	Primal Feasible Algorithm
	CMP with Precedence Constraints
	Numerical Results
	Conclusions
	References
	Computing a Constrained, Directed Spanning Forest

	A Random Keys Based Genetic Algorithm for the Target Visitation Problem
	Introduction
	Problem Description
	Genetic Algorithm
	Computational Results
	Conclusion
	References

	Cooperative Rendezvous Between Active Autonomous Vehicles
	Introduction
	Cooperative Rendezvous as an Optimal Control Problem
	Simplified Test Cases
	Interception and Rendezvous Between Two Underwater Vehicles
	Chaser-Target Interception
	Rendezvous Between Two Active Underwater Vehicles

	Cooperative Rendezvous Between Low-Thrust Spacecraft
	Formulation of the Spacecraft Rendezvous Problem
	Rendezvous Between Two Spacecraft
	Approximation of the Variables by Chebyshev Polynomials

	Conclusion
	References

	Author Index



