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Abstract. In generic models of cosmological inflation, quantum fluctuations
strongly influence the spacetime metric and produce infinitely many regions where
the end of inflation (reheating) is delayed until arbitrarily late times. The geometry
of the resulting spacetime is highly inhomogeneous on scales of many Hubble sizes.
The recently developed string-theoretic picture of the ”landscape” presents a similar
structure, where an infinite number of de Sitter, flat, and anti-de Sitter universes are
nucleated via quantum tunneling. Since observers on the Earth have no information
about their location within the eternally inflating universe, the main question in
this context is to obtain statistical predictions for quantities observed at a random
location. I describe the problems arising within this statistical framework, such as
the need for a volume cutoff and the dependence of cutoff schemes on time slicing
and on the initial conditions. After reviewing different approaches and mathematical
techniques developed in the past two decades for studying these issues, I discuss the
existing proposals for extracting predictions and give examples of their applications

5.1 Eternal Inflation

The general idea of eternally inflating spacetime was first introduced and
developed in the 1980s [1, 2, 3, 4] in the context of slow-roll inflation. Let us
begin by reviewing the main features of eternal inflation, following these early
works.

A prototypical model contains a minimally coupled scalar field φ (the “in-
flaton”) with an effective potential V (φ) that is sufficiently flat in some range
of φ. When the field φ has values in this range, the spacetime is approximately
de Sitter with the Hubble rate

ȧ

a
=

√
8π
3
V (φ) ≡ H(φ) . (5.1)

(We work in units where G = c = � = 1.) The value of H remains approx-
imately constant on timescales of several Hubble times (Δt � H−1), while
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the field φ follows the slow-roll trajectory φsr(t). Quantum fluctuations of the
scalar field φ in de Sitter background grow linearly with time [5, 6, 7],

〈φ̂2(t+ Δt)〉 − 〈φ̂2(t)〉 =
H3

4π2
Δt , (5.2)

at least for time intervals Δt of order several H−1. Due to the quasi-
exponential expansion of spacetime during inflation, Fourier modes of the
field φ are quickly stretched to super-Hubble length scales. However, quan-
tum fluctuations with super-Hubble wavelengths cannot maintain quantum
coherence and become essentially classical [6, 7, 8, 9, 10]; this issue is dis-
cussed in more detail in Sect. 5.1.2. The resulting field evolution φ(t) can be
visualized [1, 8, 11] as a Brownian motion with a “random jump” of typical
step size Δφ ∼ H/(2π) during a time interval Δt ∼ H−1, superimposed onto
the deterministic slow-roll trajectory φsr(t). A statistical description of this
“random walk”-type evolution φ(t) is reviewed in Sect. 5.2.1.

The “jumps” at points separated in space by many Hubble distances are
essentially uncorrelated; this is another manifestation of the well-known “no-
hair” property of de Sitter space [12, 13, 14]. Thus the field φ becomes ex-
tremely inhomogeneous on large (super-horizon) scales after many Hubble
times. Moreover, in the semi-classical picture it is assumed [2] that the local
expansion rate ȧ/a ≡ H(φ) tracks the local value of the field φ(t,x) accord-
ing to the Einstein equation (5.1). Here a(t,x) is the scale factor function
which varies with x only on super-Hubble scales, a(t,x)Δx � H−1. Hence,
the spacetime metric can be visualized as having a slowly varying, “locally
de Sitter” form (with spatially flat coordinates x),

gμνdxμdxν = dt2 − a2(t,x)dx2 . (5.3)

The deterministic trajectory φsr(t) eventually reaches a (model-dependent)
value φ∗ signifying the end of the slow-roll inflationary regime and the begin-
ning of the reheating epoch (thermalization). Since the random walk process
will lead the value of φ away from φ = φ∗ in some regions, reheating will not
begin everywhere at the same time. Moreover, regions where φ remains in the
inflationary range will typically expand faster than regions near the end of
inflation where V (φ) becomes small. Therefore, a delay of the onset of reheat-
ing will be rewarded by additional expansion of the proper 3-volume, thus
generating more regions that are still inflating. This feature is called “self-
reproduction” of the inflationary spacetime [3]. Since each Hubble-size region
evolves independently of other such regions, one may visualize the spacetime
as an ensemble of inflating Hubble-size domains (Fig. 5.1).

The process of self-reproduction will never result in a global reheating
if the probability of jumping away from φ = φ∗ and the corresponding
additional volume expansion factors are sufficiently large. The corresponding
quantitative conditions and their realization in typical models of inflation
are reviewed in Sect. 5.3.1. Under these conditions, the process of self-
reproduction of inflating regions continues forever. At the same time, every
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Fig. 5.1. A qualitative diagram of self-reproduction during inflation. Shaded space-
like domains represent Hubble-size regions with different values of the inflation
field φ. The time step is of order H−1. Dark-colored shades are regions undergo-
ing reheating (φ = φ∗); lighter-colored shades are regions where inflation continues.
On average, the number of inflating regions grows with time

given comoving worldline (except for a set of measure zero; see Sect. 5.3.1)
will sooner or later reach the value φ = φ∗ and enter the reheating epoch.
The resulting situation is known as “eternal inflation” [3]. More precisely, the
term “eternal inflation” means future-eternal self-reproduction of inflating
regions [15].1 To emphasize the fact that self-reproduction is due to random
fluctuations of a field, one refers to this scenario as “eternal inflation of random
walk type.” Below we use the terms “eternal self-reproduction” and “eternal
inflation” interchangeably.

Observers like us may appear only in regions where reheating already took
place. Hence, it is useful to consider the locus of all reheating events in the
entire spacetime; in the present example, it is the set of spacetime points
x there φ(x) = φ∗. This locus is called the reheating surface and is a non-
compact, spacelike three-dimensional hypersurface [16, 18]. It is important
to realize that a finite, initially inflating 3-volume of space may give rise to
a reheating surface having an infinite 3-volume, and even to infinitely many
causally disconnected pieces of the reheating surface, each having an infinite
3-volume (see Fig. 5.2). This feature of eternal inflation is at the root of several
technical and conceptual difficulties, as will be discussed below.

Everywhere along the reheating surface, the reheating process is expected
to provide appropriate initial conditions for the standard “hot big bang”
cosmological evolution, including nucleosynthesis and structure formation. In
other words, the reheating surface may be visualized as the locus of the “hot
big bang” events in the spacetime. It is thus natural to view the reheating

1 It is worth emphasizing that the term “eternal inflation” refers to future-eternity
of inflation in the sense described above, but does not imply past-eternity. In fact,
inflationary spacetimes are generically not past-eternal [16, 17].
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Fig. 5.2. A 1+1-dimensional slice of the spacetime structure in an eternally inflating
universe (numerical simulation in [19]). Shades of different colors represent different,
causally disconnected regions where reheating took place. The reheating surface is
the line separating the white (inflating) domain and the shaded domains

surface as the initial equal-time surface for astrophysical observations in the
post-inflationary epoch. Note that the observationally relevant range of the
primordial spectrum of density fluctuations is generated only during the last
60 e-foldings of inflation. Hence, the duration of the inflationary epoch that
preceded reheating is not directly measurable beyond the last 60 e-foldings;
the total number of e-foldings can vary along the reheating surface and can
be in principle arbitrarily large.2

The phenomenon of eternal inflation is also found in multi-field models
of inflation [22, 23], as well as in scenarios based on Brans–Dicke theory
[24, 25, 26], topological inflation [27, 28], braneworld inflation [29], “recycling
universe” [30] and the string theory landscape [31]. In some of these models,
quantum tunneling processes may generate “bubbles” of a different phase of
the vacuum (see Sect. 5.2.5 for more details). Bubbles will be created randomly
at various places and times, with a fixed rate per unit 4-volume. In the interior
of some bubbles, additional inflation may take place, followed by a new re-
heating surface. The interior structure of such bubbles is sketched in Fig. 5.3.

2 For instance, it was shown that holographic considerations do not place any
bounds on the total number of e-foldings during inflation [20]. For recent at-
tempts to limit the number of e-foldings using a different approach, see, e.g., [21].
Note also that the effects of “random jumps” are negligible during the last 60
e-foldings of inflation, since the produced perturbations must be of order 10−5

according to observations.
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Fig. 5.3. A spacetime diagram of a bubble interior. The infinite, spacelike reheating
surface is shown in darker shade. Galaxy formation is possible within the spacetime
region indicated.

The nucleation event and the formation of bubble walls is followed by a period
of additional inflation, which terminates by reheating. Standard cosmological
evolution and structure formation eventually give way to a Λ-dominated uni-
verse. Infinitely many galaxies and possible civilizations may appear within a
thin spacelike slab running along the interior reheating surface. This reheating
surface appears to interior observers as an infinite, spacelike hypersurface [32].
For this reason, such bubbles are called “pocket universes,” while the space-
time is called a “multiverse.” (Generally, the term “pocket universe” refers to
a non-compact, connected component of the reheating surface [33].)

In scenarios of this type, each bubble is causally disconnected from
most other bubbles.3 Hence, bubble nucleation events may generate infinitely
many statistically inequivalent, causally disconnected patches of the reheating
surface, every patch giving rise to a possibly infinite number of galaxies and
observers. This feature significantly complicates the task of extracting physical
predictions from these models. This class of models is referred to as “eternal
inflation of tunneling type.”

In the following subsections, I discuss the motivation for studying eternal
inflation as well as physical justifications for adopting the effective stochastic
picture. Different techniques developed for describing eternal inflation are re-
viewed in Sect. 5.2. Section 5.3 contains an overview of methods for extracting
predictions and a discussion of the accompanying “measure problem.”

3 Collisions between bubbles are rare [34]; however, effects of bubble collisions are
observable in principle [35].
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5.1.1 Some Motivation

The hypothesis of cosmological inflation was invoked to explain several out-
standing puzzles in observational data [36]. However, some observed quanti-
ties (such as the cosmological constant Λ or elementary particle masses) may
be expectation values of slowly varying effective fields χa. Within the phe-
nomenological approach, we are compelled to consider also the fluctuations
of the fields χa during inflation, on the same footing as the fluctuations of
the inflaton φ. Hence, in a generic scenario of eternal inflation, all the fields
χa arrive at the reheating surface φ = φ∗ with values that can be deter-
mined only statistically. Observers appearing at different points in space may
thus measure different values of the cosmological constant, elementary parti-
cle masses, spectra of primordial density fluctuations and other cosmological
parameters.

It is important to note that inhomogeneities in observable quantities
are created on scales far exceeding the Hubble horizon scale. Such inho-
mogeneities are not directly accessible to astrophysical experiments. Nev-
ertheless, the study of the global structure of eternally inflating spacetime
is not merely of academic interest. Fundamental questions regarding the
cosmological singularities, the beginning of the universe and of its ultimate
fate, as well as the issue of the cosmological initial conditions, all depend on the
knowledge of the global structure of the spacetime as predicted by the theory,
whether or not this global structure is directly observable (see, e.g., [37, 38]).
In other words, the fact that some theories predict eternal inflation influences
our assessment of the viability of these theories. In particular, the problem
of initial conditions for inflation [39] is significantly alleviated when eternal
inflation is present. For instance, it was noted early on that the presence of
eternal self-reproduction in the “chaotic” inflationary scenario [40] essentially
removes the need for the fine-tuning of the initial conditions [3, 41]. More
recently, constraints on initial conditions were studied in the context of self-
reproduction in models of quintessence [42] and k-inflation [43].

Since the values of the observable parameters χa are random, it is natural
to ask for the probability distribution of χa that would be measured by a
randomly chosen observer. Understandably, this question has been the main
theme of much of the work on eternal inflation. Obtaining an answer to this
question promises to establish a more direct contact between scenarios of eter-
nal inflation and experiment. For instance, if the probability distribution for
the cosmological constant Λ were peaked near the experimentally observed,
puzzlingly small value (see, e.g., [44] for a review of the cosmological constant
problem), the smallness of Λ would be explained as due to observer selec-
tion effects rather than to fundamental physics. Considerations of this sort
necessarily involve some anthropic reasoning; however, the relevant assump-
tions are minimal. The basic goal of theoretical cosmology is to select physical
theories of the early universe that are most compatible with astrophysical ob-
servations, including the observation of our existence. It appears reasonable to
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assume that the civilization of Planet Earth evolved near a randomly chosen
star compatible with the development of life, within a randomly chosen galaxy
where such stars exist. Many models of inflation generically include eternal
inflation and hence predict the formation of infinitely many galaxies where
civilizations like ours may develop. It is then also reasonable to assume that
our civilization is typical among all the civilizations that evolved in galaxies
formed at any time in the universe. This assumption is called the “principle
of mediocrity” [18].

To use the “principle of mediocrity” for extracting statistical predictions
from a model of eternal inflation, one proceeds as follows [18, 45]. In the ex-
ample with the fields χa described above, the question is to determine the
probability distribution for the values of χa that a random observer will mea-
sure. Presumably, the values of the fields χa do not directly influence the
emergence of intelligent life on planets, although they may affect the effi-
ciency of structure formation or nucleosynthesis. Therefore, we may assume
a fixed, χa-dependent mean number of civilizations νciv(χa) per galaxy and
proceed to ask for the probability distribution PG(χa) of χa near a randomly
chosen galaxy. The observed probability distribution of χa will then be

P (χa) = PG(χa)νciv(χa) . (5.4)

One may use the standard “hot big bang” cosmology to determine the av-
erage number νG(χa) of suitable galaxies per unit volume in a region where
reheating occurred with given values of χa; in any case, this task does not
appear to pose difficulties of principle. Then the computation of PG(χa) is re-
duced to determining the volume-weighted probability distribution V(χa) for
the fields χa within a randomly chosen 3-volume along the reheating surface.
The probability distribution of χa will be expressed as

P (χa) = V(χa)νG(χa)νciv(χa) . (5.5)

However, defining V(χa) turns out to be far from straightforward since the
reheating surface in eternal inflation is an infinite 3-surface with a compli-
cated geometry and topology. The lack of a natural, unambiguous, unbiased
measure on the infinite reheating surface is known as the “measure problem”
in eternal inflation. Existing approaches and measure prescriptions are dis-
cussed in Sect. 5.3, where two main alternatives (the “volume-based” and
“worldline-based” measures) are presented. In Sect. 5.3.2 I give arguments
in favor of using the volume-based measure for computing the probability
distribution of values χa measured by a random observer. The volume-based
measure has been applied to obtain statistical predictions for the gravita-
tional constant in Brans–Dicke theories [24, 25], cosmological constant (dark
energy) [46, 47, 48, 49, 50, 51], particle physics parameters [52, 53, 54] and
the amplitude of primordial density perturbations [48, 51, 55, 56].

The issue of statistical predictions has recently come to the fore in conjunc-
tion with the discovery of the string theory landscape. According to various
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estimates, one expects to have between 10500 and 101500 possible vacuum
states of string theory [31, 57, 58, 59, 60]. The string vacua differ in the
geometry of spacetime compactification and have different values of the ef-
fective cosmological constant (or “dark energy” density). Transitions between
vacua may happen via the well-known Coleman–deLuccia tunneling mecha-
nism [32]. Once the dark energy dominates in a given region, the spacetime
becomes locally de Sitter. Then the tunneling process will create infinitely
many disconnected “daughter” bubbles of other vacua. Observers like us may
appear within any of the habitable bubbles. Since the fundamental theory
does not specify a single “preferred” vacuum, the probability distribution of
vacua remains to be determined as found by a randomly chosen observer. The
“volume-based” and “worldline-based” measures can be extended to scenarios
with multiple bubbles, as discussed in more detail in Sect. 5.3.4. Some recent
results obtained using these measures are reported in [61, 62].

5.1.2 Physical Justifications of the Semi-classical Picture

The standard framework of inflationary cosmology asserts that vacuum
quantum fluctuations with super-horizon wavelengths become classical
inhomogeneities of the field φ. The calculations of cosmological density
perturbations generated during inflation [7, 11, 63, 64, 65, 66, 67] also as-
sume that a “classicalization” of quantum fluctuations takes place via the
same mechanism. In the calculations, the statistical average

〈
δφ2

〉
of classi-

cal fluctuations on super-Hubble scales is simply set equal to the quantum
expectation value 〈0| φ̂2 |0〉 in a suitable vacuum state. While this approach
is widely accepted in the cosmology literature, a growing body of research is
devoted to the analysis of the quantum-to-classical transition during inflation
(see, e.g., [68] for an early review). Since a detailed analysis would be beyond
the scope of the present text, I merely outline the main ideas and arguments
relevant to this issue.

A standard phenomenological explanation of the “classicalization” of the
perturbations is as follows. For simplicity, let us restrict our attention to a
slow-roll inflationary scenario with one scalar field φ. In the slow-roll regime,
one can approximately regard φ as a massless scalar field in de Sitter back-
ground spacetime [4]. Due to the exponentially fast expansion of de Sitter
spacetime, super-horizon Fourier modes of the field φ are in squeezed quantum
states with exponentially large (∼ eHt) squeezing parameters [69, 70, 71, 72,
73, 74]. Such highly squeezed states have a macroscopically large uncertainty
in the field value φ and thus quickly decohere due to interactions with gravity
and with other fields. The resulting mixed state is effectively equivalent to
a statistical ensemble with a Gaussian-distributed value of φ. Therefore one
may compute the statistical average

〈
δφ2

〉
as the quantum expectation value

〈0| φ̂2 |0〉 and interpret the fluctuation δφ as a classical “noise.” A heuristic
description of the “classicalization” [4] is that the quantum commutators of
the creation and annihilation operators of the field modes, [â, â†] = 1, are
much smaller than the expectation values

〈
a†a

〉 � 1 and are thus negligible.
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A related issue is the backreaction of fluctuations of the scalar field φ on the
metric.4 According to the standard theory (see, e.g., [67, 83] for reviews), the
perturbations of the metric arising due to fluctuations of φ are described by an
auxiliary scalar field (sometimes called the “Sasaki–Mukhanov variable”) in
a fixed de Sitter background. Thus, the “classicalization” effect should apply
equally to the fluctuations of φ and to the induced metric perturbations. At
the same time, these metric perturbations can be viewed, in an appropriate
coordinate system, as fluctuations of the local expansion rate H(φ) due to
local fluctuations of φ [4, 7, 84]. Thus one arrives at the picture of a “locally
de Sitter” spacetime with the metric (5.3), where the Hubble rate ȧ/a = H(φ)
fluctuates on super-horizon length scales and locally follows the value of φ via
the classical Einstein equation (5.1).

The picture as outlined is phenomenological and does not provide a de-
scription of the quantum-to-classical transition in the metric perturbations
at the level of field theory. For instance, a fluctuation of φ leading to a local
increase ofH(φ) necessarily violates the null energy condition [85, 86, 87]. The
cosmological implications of such “semi-classical” fluctuations (see, e.g., the
scenario of “island cosmology” [88, 89, 90]) cannot be understood in detail
within the framework of the phenomenological picture.

A more fundamental approach to describing the quantum-to-classical tran-
sition of perturbations was developed using non-equilibrium quantum field
theory and the influence functional formalism [91, 92, 93, 94]. In this approach,
decoherence of a pure quantum state of φ into a mixed state is entirely due
to the self-interaction of the field φ. In particular, it is predicted that no de-
coherence would occur for a free field with V (φ) = m2φ2/2. This result is at
variance with the accepted paradigm of “classicalization” as outlined above. If
the source of the “noise” is the coupling between different perturbation modes
of φ, the typical amplitude of the “noise” will be second order in the perturba-
tion. This is several orders of magnitude smaller than the amplitude of “noise”
found in the standard approach. Accordingly, it is claimed [95, 96] that the
magnitude of cosmological perturbations generated by inflation is several or-
ders of magnitude smaller than the results currently accepted as standard,
and that the shape of the perturbation spectrum depends on the details of
the process of “classicalization” [97]. Thus, the results obtained via the influ-
ence functional techniques do not appear to reproduce the phenomenological
picture of “classicalization” as outlined above. This mismatch emphasizes the
need for a deeper understanding of the nature of the quantum-to-classical
transition for cosmological perturbations.

Finally, let us mention a different line of work which supports the “classi-
calization” picture. In [8, 98, 99, 100, 101, 102], calculations of (renormalized)
expectation values such as 〈φ̂2〉, 〈φ̂4〉, etc., were performed for field operators φ̂

4 The backreaction effects of the long-wavelength fluctuations of a scalar field dur-
ing inflation have been investigated extensively (see, e.g., [75, 76, 77, 78, 79, 80,
81, 82]).



166 S. Winitzki

in a fixed de Sitter background. The results were compared with the statistical
averages ∫

P (φ, t)φ2dφ,
∫
P (φ, t)φ4dφ, etc. , (5.6)

where the distribution P (φ, t) describes the “random walk” of the field φ in
the Fokker–Planck approach (see Sect. 5.2.1). It was shown that the lead-
ing late-time asymptotics of the quantum expectation values coincide with
the corresponding statistical averages (5.6). These results appear to validate
the “random walk” approach, albeit in a limited context (in the absence of
backreaction).

5.2 Stochastic Approach to Inflation

The stochastic approach to inflation is a semi-classical, statistical description
of the spacetime resulting from quantum fluctuations of the inflation field(s)
and their backreaction on the metric [1, 2, 103, 104, 105, 106, 107, 108, 109,
110, 111]. In this description, the spacetime remains everywhere classical but
its geometry is determined by a stochastic process. In the next subsections I
review the main tools used in the stochastic approach for calculations in the
context of random walk type, slow-roll inflation. Models involving tunneling-
type eternal inflation are considered in Sect. 5.2.5.

5.2.1 Random Walk-Type Eternal Inflation

The important features of random walk-type eternal inflation can be under-
stood by considering a simple slow-roll inflationary model with a single scalar
field φ and a potential V (φ). The slow-roll evolution equation is

φ̇ = − 1
3H

dV
dφ

= − 1
4π

dH
dφ

≡ v(φ) , (5.7)

whereH(φ) is defined by (5.1) and v(φ) is a model-dependent function describ-
ing the “velocity” φ̇ of the deterministic evolution of the field φ. The slow-roll
trajectory φsr(t), which is a solution of (5.7), is an attractor [112, 113] for
trajectories starting with a wide range of initial conditions.5

As discussed in Sect. 5.1.2, the super-horizon modes of the field φ are
assumed to undergo a rapid quantum-to-classical transition. Therefore one
regards the spatial average of φ on scales of several H−1 as a classical field
variable. The spatial averaging can be described with help of a suitable window
function,

〈φ(x)〉 ≡
∫
W (x − y)φ(y)d3y . (5.8)

5 See [43] for a precise definition of an attractor trajectory in the context of inflation.
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It is implied that the window function W (x) decays quickly on physical dis-
tances a |x| of order several H−1. From now on, let us denote the volume-
averaged field simply by φ (no other field φ will be used).

As discussed above, the influence of quantum fluctuations leads to random
“jumps” superimposed on top of the deterministic evolution of the volume-
averaged field φ(t,x). This may be described by a Langevin equation of the
form [2]

φ̇(t,x) = v(φ) +N(t,x) , (5.9)

where N(t,x) stands for “noise” and is assumed to be a Gaussian random
function with known correlator [2, 114, 115, 116]

〈
N(t,x)N(t̃, x̃)

〉
= C(t, t̃, |x − x̃| ;φ) . (5.10)

An explicit form of the correlator C depends on the specific window function
W used for averaging the field φ on Hubble scales [116]. However, the window
function W is merely a phenomenological device used in lieu of a complete
ab initio derivation of the stochastic inflation picture. One expects, therefore,
that results of calculations should be robust with respect to the choice of W .
In other words, any uncertainty due to the choice of the window function must
be regarded as an imprecision inherent in the method. For instance, a robust
result in this sense is an exponentially fast decay of correlations on timescales
Δt � H−1,

C(t, t̃, |x − x̃| ;φ) ∝ exp
(−2H(φ)

∣∣t− t̃∣∣) , (5.11)

which holds for a wide class of window functions [116].
For the purposes of the present consideration, we only need to track the

evolution of φ(t,x) along a single comoving worldline x = const. Thus, we
will not need an explicit form of C(t, t̃, |x − x̃| ;φ) but merely the value at
coincident points t = t̃, x = x̃, which is computed in the slow-roll inflationary
scenario as [2]

C(t, t, 0;φ) =
H2(φ)
4π2

. (5.12)

[This represents the fluctuation (5.2) accumulated during one Hubble time,
Δt = H−1.] Due to the property (5.11), one may neglect correlations on
time scales Δt � H−1 in the “noise” field.6 Thus, the evolution of φ on time
scales Δt � H−1 can be described by a finite-difference form of the Langevin
equation (5.9),

φ(t + Δt) − φ(t) = v(φ)Δt +
√

2D(φ)Δt ξ(t) , (5.13)

where

D(φ) ≡ H3(φ)
8π2

(5.14)

6 Taking these correlations into account leads to a picture of “color noise” [117, 118].
In what follows, we only consider the simpler picture of “white noise” as an
approximation adequate for the issues at hand.
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and ξ is a normalized random variable representing “white noise,”

〈ξ〉 = 0,
〈
ξ2
〉

= 1, (5.15)

〈ξ(t)ξ(t+ Δt)〉 = 0 for Δt � H−1. (5.16)

Equation (5.13) is interpreted as describing a Brownian motion φ(t) with
the systematic “drift” v(φ) and the “diffusion coefficient” D(φ). In a typical
slow-roll inflationary scenario, there will be a range of φ where the noise
dominates over the deterministic drift,

v(φ)Δt�
√

2D(φ)Δt, Δt ≡ H−1 . (5.17)

Such a range of φ is called the “diffusion-dominated regime.” For φ near the
end of inflation, the amplitude of the noise is very small, and so the opposite
inequality holds. This is the “deterministic regime” where the random jumps
can be neglected and the field φ follows the slow-roll trajectory.

5.2.2 Fokker–Planck Equations

A useful description of the statistical properties of φ(t) is furnished by the
probability density P (φ, t)dφ of having a value φ at time t. As in the case
of the Langevin equation, the values φ(t) are measured along a single, ran-
domly chosen comoving worldline x = const. The probability distribution
P (φ, t) satisfies the Fokker–Planck (FP) equation whose standard derivation
we omit [119, 120],

∂tP = ∂φ [−v(φ)P + ∂φ (D(φ)P )] . (5.18)

The coefficients v(φ) and D(φ) are in general model-dependent and need to
be calculated in each particular scenario. These calculations require only the
knowledge of the slow-roll trajectory and the mode functions of the quan-
tized scalar perturbations. For ordinary slow-roll inflation with an effective
potential V (φ), the results are well-known expressions (5.7) and (5.14). The
corresponding expressions for models of k-inflation were derived in [43] using
the relevant quantum theory of perturbations [121].

It is well known that there exists a “factor ordering” ambiguity in trans-
lating the Langevin equation into the FP equation if the amplitude of the
“noise” depends on the position. Specifically, the factor D(φ) in (5.13) may
be replaced by D(φ + θΔt), where 0 < θ < 1 is an arbitrary constant. With
θ �= 0, the term ∂φφ (DP ) in (5.18) will be replaced by a different ordering of
the factors,

∂φφ (DP ) → ∂φ
[
Dθ∂φ

(
D1−θP

)]
. (5.19)

Popular choices θ = 0 and θ = 1/2 are called the Ito and the Stratonovich fac-
tor ordering, respectively. Motivated by the considerations of [122], we choose
θ = 0 as shown in (5.13) and (5.18). Given the phenomenological nature
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of the Langevin equation (5.13), one expects that any ambiguity due to the
choice of θ represents an imprecision inherent in the stochastic approach. This
imprecision is typically of order H2 � 1 [123].

The quantity P (φ, t) may be also interpreted as the fraction of the
comoving volume (i.e., coordinate volume d3x) occupied by the field value
φ at time t. Another important characteristic is the volume-weighted distri-
bution PV (φ, t)dφ, which is defined as the proper 3-volume (as opposed to
the comoving volume) of regions having the value φ at time t. (To avoid
considering infinite volumes, one may restrict one’s attention to a finite co-
moving domain in the universe and normalize PV (φ, t) to unit volume at
some initial time t = t0.) The volume distribution satisfies a modified FP
equation [4, 106, 108],

∂tPV = ∂φ [−v(φ)PV + ∂φ (D(φ)PV )] + 3H(φ)PV , (5.20)

which differs from (5.18) by the term 3HPV that describes the exponential
growth of 3-volume in inflating regions.7

Presently we consider scenarios with a single scalar field; however, the
formalism of FP equations can be straightforwardly extended to multi-field
models (see, e.g., [122]). For instance, the FP equation for a two-field model
is

∂tP = ∂φφ (DP ) + ∂χχ (DP ) − ∂φ (vφP ) − ∂χ (vχP ) , (5.21)

where D(φ, χ), vφ(φ, χ) and vχ(φ, χ) are appropriate coefficients.

5.2.3 Methods of Solution

In principle, one can solve the FP equations forward in time by a numerical
method, starting from a given initial distribution at t = t0. To specify the
solution uniquely, the FP equations must be supplemented by boundary con-
ditions at both ends of the inflating range of φ [110, 111]. At the reheating
boundary (φ = φ∗), one imposes the “exit” boundary conditions,

∂φ [D(φ)P ]φ=φ∗ = 0, ∂φ [D(φ)PV ]φ=φ∗ = 0 . (5.22)

These boundary conditions express the fact that random jumps are very small
at the end of inflation and cannot move the value of φ away from φ = φ∗. If the
potential V (φ) reaches Planck energy scales at some φ = φmax (this happens
generally in “chaotic”-type inflationary scenarios with unbounded potentials),
the semi-classical picture of spacetime breaks down for regions with φ ∼ φmax.
Hence, a boundary condition must be imposed also at φ = φmax. For instance,
one can use the absorbing boundary condition,

P (φmax) = 0 , (5.23)
7 A more formal derivation of (5.20) as well as details of the interpretation of the

distributions P and PV in terms of ensembles of worldlines can be found in [124].
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which means that Planck-energy regions with φ = φmax disappear from con-
sideration [110, 111].

Once the boundary conditions are specified, one may write the general
solution of the FP equation (5.18) as

P (φ, t) =
∑
λ
CλP

(λ)(φ) eλt , (5.24)

where the sum is performed over all the eigenvalues λ of the differential op-
erator

L̂P ≡ ∂φ {−v(φ)P + ∂φ [D(φ)P ]} , (5.25)

and the corresponding eigenfunctions P (λ) are defined by

L̂P (λ)(φ) = λP (λ)(φ) . (5.26)

The constants Cλ can be expressed through the initial distribution P (φ, t0).
By an appropriate change of variables φ→ z, P (φ) → F (z), the operator

L̂ may be brought into a manifestly self-adjoint form [104, 106, 107, 108, 123,
125],

L̂ → d2

dz2
+ U(z) . (5.27)

Then one can show that all the eigenvalues λ of L̂ are non-positive; in
particular, the (algebraically) largest eigenvalue λmax ≡ −γ < 0 is non-
degenerate and the corresponding eigenfunction P (λmax)(φ) is positive every-
where [43, 123]. Hence, this eigenfunction describes the late-time asymptotic
of the distribution P (φ, t),

P (φ, t) ∝ P (λmax)(φ) e−γt . (5.28)

The distribution P (λmax)(φ) is the “stationary” distribution of φ per comoving
volume at late times. The exponential decay of the distribution P (φ, t) means
that at late times most of the comoving volume (except for an exponentially
small fraction) has finished inflation and entered reheating.

Similarly, one can represent the general solution of (5.20) by

PV (φ, t) =
∑
˜λ
C˜λP

(
˜λ)

V (φ)e
˜λt , (5.29)

where
[L̂+ 3H(φ)]P (λ̃)(φ) = λ̃P (λ̃)(φ) . (5.30)

By the same method as for the operator L̂, it is possible to show that the
spectrum of eigenvalues λ̃ of the operator L̂ + 3H(φ) is bounded from above
and that the largest eigenvalue λ̃max ≡ γ̃ admits a non-degenerate, every-
where positive eigenfunction P (γ̃)(φ). However, the largest eigenvalue γ̃ may
be either positive or negative. If γ̃ > 0, the late-time behavior of PV (φ, t) is
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PV (φ, t) ∝ P (γ̃)(φ)eγ̃t , (5.31)

which means that the total proper volume of all the inflating regions grows
with time. This is the behavior expected in eternal inflation: the number of
independently inflating domains increases without limit. Thus, the condition
γ̃ > 0 is the criterion for the presence of eternal self-reproduction of inflating
domains. The corresponding distribution P (γ̃)(φ) is called the “stationary”
distribution [26, 110, 111, 126].

If γ̃ ≤ 0, eternal inflation does not occur and the entire space almost surely
(i.e., with probability 1) enters the reheating epoch at a finite time.

If the potential V (φ) is of “new” inflationary type [6, 127, 128, 129, 130]
and has a global maximum at say φ = φ0, the eigenvalues γ and γ̃ can be
estimated (under the usual slow-roll assumptions on V ) as [123]

γ ≈ V ′′(φ0)
8πV (φ0)

H(φ0) < 0, γ̃ ≈ 3H(φ0) > 0 . (5.32)

Therefore, eternal inflation is generic in the “new” inflationary scenario.
Let us comment on the possibility of obtaining solutions P (φ, t) in practice.

With the potential V (φ) = λφ4, the full time-dependent FP equation (5.18)
can be solved analytically via a non-linear change of variable φ → φ−2

[125, 131, 132]. This exact solution, as well as an approximate solution P (φ, t)
for a general potential, can also be obtained using the saddle-point eval-
uation of a path-integral expression for P (φ, t) [133]. In some cases the
eigenvalue equation L̂P (λ) = λP (λ) may be reduced to an exactly solvable
Schrödinger equation. These cases include potentials of the form V (φ) = λeμφ,
V (φ) = λφ−2, V (φ) = λ cosh−2(μφ); see, e.g., [123] for other examples.

A general approximate method for determining P (φ, t) for arbitrary po-
tentials [134, 135, 136] consists of a perturbative expansion,

φ(t) = φ0(t) + δφ1(t) + δφ2(t) + · · · , (5.33)

applied directly to the Langevin equation. The result is (at the lowest order)
a Gaussian approximation with a time-dependent mean and variance [134],

P (φ, t) ≈ 1√
2πσ2(t)

exp

{
− [φ− φ0(t)]

2

2σ2(t)

}
, (5.34)

σ2(t) ≡ H ′2(φsr)
π

∫ φin

φsr

H3

H ′3 dφ, (5.35)

φ0(t) ≡ φsr(t) +
H ′′

2H ′σ
2(t) +

H ′

4π

(
H3

in

H ′2
in

− H3

H ′2

)
, (5.36)

where φsr(t) is the slow-roll trajectory and φin is the initial value of φ. While
methods based on the Langevin equation do not take into account boundary
conditions or volume weighting effects, the formula (5.34) provides an ade-
quate approximation to the distribution P (φ, t) in a useful range of φ and
t [136].
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5.2.4 Gauge Dependence Issues

An important feature of the FP equations is their dependence on the choice
of the time variable. One can consider a replacement of the form

t→ τ, dτ ≡ T (φ)dt , (5.37)

understood in the sense of integrating along comoving worldlines x = const,
where T (φ) > 0 is an arbitrary function of the field. For instance, a possible
choice is T (φ) ≡ H(φ), which makes the new time variable dimensionless,

τ =
∫
Hdt = ln a . (5.38)

This time variable is called “scale factor time” or “e-folding time” since it
measures the number of e-foldings along a comoving worldline.

The distributions P (φ, τ) and PV (φ, τ) are defined as before, except for
considering the 3-volumes along hypersurfaces of equal τ . These distributions
satisfy FP equations similar to (5.18)–(5.20). With the replacement (5.37),
the coefficients of the new FP equations are modified as follows [123],

D(φ) → D(φ)
T (φ)

, v(φ) → v(φ)
T (φ)

, (5.39)

while the “growth” term 3HPV in (5.20) is replaced by 3HT−1PV . The change
in the coefficients may significantly alter the qualitative behavior of the so-
lutions of the FP equations. For instance, stationary distributions defined
through the proper time t and the e-folding time τ = ln a were found to have
radically different behaviors [18, 111, 126]. This sensitivity to the choice of the
“time gauge” τ is unavoidable since hypersurfaces of equal τ may preferen-
tially select regions with certain properties. For instance, most of the proper
volume in equal-t hypersurfaces is filled with regions that have gained expan-
sion by remaining near the top of the potential V (φ), while hypersurfaces of
equal scale factor will under-represent those regions. Thus, a statement such
as “most of the volume in the universe has values of φ with high V (φ)” is
largely gauge dependent.

In the early works on eternal inflation [25, 110, 111, 126], the late-
time asymptotic distribution of volume P (γ̃)

V (φ) along hypersurfaces of equal
proper time [see (5.31)] was interpreted as the stationary distribution of
field values in the universe. However, the high sensitivity of this distribu-
tion to the choice of the time variable makes this interpretation unsatis-
factory. Also, it was noted [137] that equal proper-time volume distribu-
tions predict an unacceptably small probability for the currently observed
CMB temperature. The reason for this result is the extreme bias of the
proper-time gauge toward over-representing regions where reheating occurred
very recently [18, 138]. One might ask whether hypersurfaces of equal scale
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factor or some other choice of time gauge would provide less biased an-
swers. However, it turns out [124] that there exists no a priori choice of
the time gauge τ that provides unbiased equal-τ probability distributions
for all potentials V (φ) in models of slow-roll inflation (see Sect. 5.3.3 for
details).

Although the FP equations necessarily involve a dependence on gauge,
they do provide a useful statistical picture of the distribution of fields in
the universe. The FP techniques can also be used for deriving several gauge-
independent results. For instance, the presence of eternal inflation is a gauge-
independent statement (see also Sect. 5.3.1): if the largest eigenvalue γ̃ is
positive in one gauge of the form (5.37), then γ̃ > 0 in every other gauge [139].
Using the FP approach, one can also compute the fractal dimension of the
inflating domain [139, 140] and the probability of exiting inflation through a
particular point φ∗ of the reheating boundary in the configuration space (in
case there exists more than one such point).

The exit probability can be determined as follows [43, 122]. Let us assume
for simplicity that there are two possible exit points φ∗ and φE, and that the
initial distribution is concentrated at φ = φ0, i.e.,

P (φ, t = 0) = δ(φ− φ0) , (5.40)

where φE < φ0 < φ∗. The probability of exiting inflation through φ = φE

during a time interval [t, t+ dt] is

dpexit(φE) = −v(φE)P (φE, t)dt (5.41)

[note that v(φE) < 0]. Hence, the total probability of exiting through φ = φE

at any time is

pexit(φE) =
∫ ∞

0

dpexit(φE) = −v(φE)
∫ ∞

0

P (φE, t)dt . (5.42)

Introducing an auxiliary function F (φ) as

F (φ) ≡ −v(φ)
∫ ∞

0

P (φ, t)dt , (5.43)

one can show that F (φ) satisfies the gauge-invariant equation,

∂φ

[
∂φ

(
D

v
F

)
− F

]
= δ(φ− φ0) . (5.44)

This is in accord with the fact that pexit(φE) = F (φE) is a gauge-invariant
quantity. Equation (5.44) with the boundary conditions

F (φ∗) = 0, ∂φ

(
D

v
F

)∣∣∣∣
φ=φE

= 0 , (5.45)

can be straightforwardly integrated and yields explicit expressions for the
exit probability pexit(φE) as a function of the initial value φ0 [43]. The exit
probability pexit(φ∗) can be determined similarly.
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5.2.5 Self-Reproduction of Tunneling Type

Until now, we considered eternal self-reproduction due to random walk of
a scalar field. Another important class of models includes self-reproduction
due to bubble nucleation.8 Such scenarios of eternal inflation were studied in
[34, 141, 142, 143, 144, 145].

In a locally de Sitter universe dominated by dark energy, nucleation of
bubbles of false vacuum may occur due to tunneling [14, 32, 146, 147]. Since
the bubble nucleation rate κ per unit 4-volume is very small [32, 148],

κ = O(1)H−4 exp
(
−SI − π

H2

)
, (5.46)

where SI is the instanton action and H is the Hubble constant of the de Sitter
background, bubbles will generically not merge into a single false-vacuum
domain [34]. Hence, infinitely many bubbles will be nucleated at different
places and times. The resulting “daughter” bubbles may again contain an
asymptotically de Sitter, infinite universe, which again gives rise to infinitely
many “grand-daughter” bubbles. This picture of eternal self-reproduction was
called the “recycling universe” [30]. Some (or all) of the created bubbles may
support a period of additional inflation followed by reheating, as shown in
Fig. 5.3.

In the model of [30], there were only two vacua which could tunnel into each
other. A more recently developed paradigm of “string theory landscape” [31]
involves a very large number of metastable vacua, corresponding to local min-
ima of an effective potential in field space. The value of the potential at each
minimum is the effective value of the cosmological constant Λ in the corre-
sponding vacuum. Figure 5.4 shows a phenomenologist’s view of the “land-
scape.” Vacua with Λ ≤ 0 do not allow any further tunneling9 and are called
“terminal” vacua [153], while vacua with Λ > 0 are called “recyclable” since
they can tunnel to other vacua with Λ > 0 or Λ ≤ 0. Bubbles of recyclable
vacua will give rise to infinitely many nested “daughter” bubbles. A conformal
diagram of the resulting spacetime is outlined in Fig. 5.5. Of course, only a
finite number of bubbles can be drawn; the bubbles actually form a fractal
structure in a conformal diagram [154].

A statistical description of the “recycling” spacetime can be obtained
[30, 153] by considering a single comoving worldline x = const that passes
through different bubbles at different times. (It is implied that the world-
line is randomly chosen from an ensemble of infinitely many such worldlines
passing through different points x.) Let the index α = 1, ..., N label all the
available types of bubbles. For calculations, it is convenient to use the e-folding
time τ ≡ ln a. We are interested in the probability fα(τ) of passing through
8 Both processes may be combined in a single scenario [30], but we shall consider

them separately for clarity.
9 Asymptotically flat Λ = 0 vacua cannot support tunneling [149, 150, 151]; vacua

with Λ < 0 will quickly collapse to a “big crunch” singularity [32, 152].
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L

X

0

Fig. 5.4. A schematic representation of the “landscape of string theory,” consisting
of a large number of local minima of an effective potential. The variable X collec-
tively denotes various fields and Λ is the effective cosmological constant. Arrows
show possible tunneling transitions between vacua

a bubble of type α at time τ . This probability distribution is normalized by∑
α fα = 1; the quantity fα(τ) can be also visualized as the fraction of the

comoving volume occupied by bubbles of type α at time τ . Denoting by καβ
the nucleation rate for bubbles of type α within bubbles of type β [computed
according to (5.46)], we write the “master equation” describing the evolution
of fα(τ),

dfβ
dτ

=
∑
α

(−καβfβ + κβαfα) ≡
∑
α

Mβαfα, (5.47)

where we introduced the auxiliary matrixMαβ. Given a set of initial conditions
fα(0), one can evolve fα(τ) according to (5.47).

To proceed further, one may now distinguish the following two cases: either
terminal vacua exist (some β such that καβ = 0 for all α) or all the vacua

1

2

3
1

4

4 4

3
5 5

Fig. 5.5. A conformal diagram of the spacetime where self-reproduction occurs via
bubble nucleation. Regions labeled “5” are asymptotically flat (Λ = 0)
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are recyclable. (Theory suggests that the former case is more probable [59].)
If terminal vacua exist, then the late-time asymptotic solution can be written
as [153]

fα(τ) ≈ f (0)
α + sαe−qτ , (5.48)

where f (0)
α is a constant vector that depends on the initial conditions and

has non-zero components only in terminal vacua, and sα does not depend on
initial conditions and is an eigenvector of Mαβ such that

∑
αMβαsα = −qsβ,

q > 0. This solution shows that all comoving volume reaches terminal vacua
exponentially quickly. (As in the case of random walk inflation, there are
infinitely many “eternally recycling” points x that never enter any terminal
vacua, but these points form a set of measure zero.)

If there are no terminal vacua, the solution fα(τ) approaches a constant
distribution [155],

lim
τ→∞ fα(τ) ≈ f (0)

α ,
∑
β

Mβαf
(0)
α = 0 , (5.49)

f (0)
α = H4

α exp
(
π

H2
α

)
. (5.50)

In this case, the quantities f (0)
α are independent of initial conditions and are

interpreted as the fractions of time spent by the comoving worldline in bubbles
of type α.

One may adopt another approach and ignore the duration of time spent
by the worldline within each bubble. Thus, one describes only the sequence
of the bubbles encountered along a randomly chosen worldline [62, 155, 156].
If the worldline is initially in a bubble of type α, then the probability μβα of
entering the bubble of type β as the next bubble in the sequence after α is

μβα =
κβα∑
γ κγα

. (5.51)

(For terminal vacua α, we have κγα = 0 and so we may define μβα = 0
for convenience.) Once again we consider landscapes without terminal vacua
separately from terminal landscapes. If there are no terminal vacua, then
the matrix μαβ is normalized,

∑
β μβα = 1, and is thus a stochastic ma-

trix [157] describing a Markov process of choosing the next visited vacuum.
The sequence of visited vacua is infinite, so one can define the mean frequency
f

(mean)
α of visiting bubbles of type α. If the probability distribution for the

first element in the sequence is f(0)α, then the distribution of vacua after k
steps is given (in the matrix notation) by the vector

f(k) = µkf(0), (5.52)

where µk means the kth power of the matrix µ ≡ μαβ . Therefore, the mean
frequency of visiting a vacuum α is computed as an average of f(k)α over n
consecutive steps in the limit of large n:
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f (mean) = lim
n→∞

1
n

n∑
k=1

f(k) = lim
n→∞

1
n

n∑
k=1

µkf(0). (5.53)

[It is proved in the theory of Markov processes that the limit f (mean)
α given

by (5.53) almost surely coincides with the mean frequency of visiting the
state α; see, e.g., [158, Chap. 5, Theorem 2.1], and [159, Theorem 3.5.9.].]
It turns out that the distribution f (mean) is independent of the initial state
f(0) and coincides with the distribution (5.49) found in the continuous-time
description [155].

If there exist terminal vacua, then almost all sequences will have a finite
length. The distribution of vacua in a randomly chosen sequence is still well-
defined and can be computed using (5.53) without the normalizing factor 1/n,

f (mean) = (1 − µ)−1 µf(0), (5.54)

but now the resulting distribution depends on the initial state f(0) [62, 156].

5.3 Predictions and Measure Issues

As discussed in Sect. 5.1.1, a compelling question in the context of eternal
inflation is how to make statistical predictions of observed parameters. One
begins by determining whether eternal inflation is present in a given model.

5.3.1 Presence of Eternal Inflation

Since the presence of eternal self-reproduction in models of tunneling type
is generically certain (unless the nucleation rate for terminal vacua is unusu-
ally high), in this section we restrict our attention to eternal inflation of the
random walk type.

The hallmark of eternal inflation is the unbounded growth the total num-
ber of independent inflating regions. The total proper 3-volume of the inflating
domain also grows without bound at late times, at least when computed along
hypersurfaces of equal proper time or equal scale factor. However, the proper
3-volume is a gauge-dependent quantity, and one may construct time gauges
where the 3-volume decreases with time even in an everywhere expanding uni-
verse [124]. The 3-volume of an arbitrary family of equal-time hypersurfaces
cannot be used as a criterion for the presence of eternal inflation. However, a
weaker criterion is sufficient: eternal inflation is present if (and only if) there
exists a choice of time slicing with an unbounded growth of the 3-volume of
inflating domains [124]. Equivalently, eternal inflation is present if a finite co-
moving volume gives rise to infinite physical volume [137]. Thus, the presence
or absence of eternal inflation is a gauge-independent statement. One may, of
course, use a particular gauge (such as the proper time or e-folding time) for
calculations, as long as the result is known to be gauge-independent. It can
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be shown that eternal inflation is present if and only if the 3-volume grows in
the e-folding time slicing [124].

The presence of eternal inflation has been analyzed in many specific sce-
narios. For instance, eternal inflation is generic in “chaotic” [3, 41, 160] and
“new” [8] inflationary models. It is normally sufficient to establish the exis-
tence of a “diffusion-dominated” regime, that is, a range of φ where the typical
amplitude δφ ∼ H of “jumps” is larger than the typical change of the field,
φ̇Δt, during one Hubble time Δt = H−1. For models of scalar field inflation,
the condition is

H2 � H ′ . (5.55)

Such a range of φ is present in most slow-roll models of inflation. (For an
example of an inflationary scenario where eternal inflation is generically not
present, see [161].) A strict formal criterion for the presence of eternal inflation
is the positivity of the largest eigenvalue γ̃ of the operator L̂+3H(φ), as defined
in Sect. 5.2.3.

The causal structure of the eternally inflating spacetime and the topology
of the reheating surface can be visualized using the construction of “eternal
comoving points” [139]. These are comoving worldlines x = const that forever
remain within the inflating domain and never enter the reheating epoch. These
worldlines correspond to places where the reheating surface reaches t = ∞ in
a spacetime diagram (see Fig. 5.2). It was shown in [139] using topological
arguments that the presence of inflating domains at arbitrarily late times
entails the existence of infinitely many such “eternal points.” The set of all
eternal points within a given three-dimensional spacelike slice is a measure of
zero fractal set. The fractal dimension of this set can be understood as the
fractal dimension of the inflating domain [124, 139, 140] and is invariant under
any smooth coordinate transformations in the spacetime.

The existence of eternal points can be used as another invariant criterion
for the presence of eternal inflation. The probabilityX(φ) of having an eternal
point in an initial Hubble-size region with field value φ can be found as the
solution of a gauge-invariant, non-linear diffusion equation [139]

D∂φφX + v∂φX − 3H (1 −X) ln (1 −X) = 0 , (5.56)

with zero boundary conditions. Eternal inflation is present if there exists a
non-trivial solution X(φ) �≡ 0 of this equation.

5.3.2 Observer-Based Measure in Eternal Inflation

In theories where observable parameters χa are distributed randomly, one
would like to predict the values of χa most likely to be observed by a ran-
dom (or “typical”) observer. More generally, one looks for the probability
distribution P (χa) of observing the values χa. As discussed in Sect. 5.1.1,
considerations of this type necessarily involve some form of the “principle of
mediocrity” [18]. On a more formal level, one needs to construct an ensemble
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of the “possible observers” and to define a probability measure on this en-
semble. In inflationary cosmology, observers appear only along the reheating
surface. If eternal inflation is present, the reheating surface contains infinitely
many causally disconnected and (possibly) statistically inequivalent domains.
The principal difficulties in the probabilistic approach are due to a lack of a
natural definition of measure on such surfaces.10

Existing proposals for an observer-based measure fall in two major classes,
which may be designated as “volume-based” vs. “worldline-based.” The dif-
ference between these classes is in the approach taken to construct the en-
semble of observers. In the “volume” approach [18, 19, 45, 111, 153, 163], the
ensemble contains every observer appearing in the universe, at any time or
place. In the “worldline” approach [156, 164, 165, 166], the ensemble consists
of observers appearing near a single, randomly selected comoving worldline
x = const (a timelike geodesic could also be used). If the ensemble contains
infinitely many observers (this is typically the case for volume-based ensem-
bles), a regularization is needed to obtain specific probability distributions.
Finding and applying suitable regularization procedures is a separate techni-
cal issue explored in Sect. 5.3.3 and 5.3.4. I begin with a general discussion of
these measure prescriptions.

A number of previously considered “volume-based” measure proposals
were found to be lacking in one aspect or another [18, 111, 123, 164, 167, 168],
the most vexing problem being the dependence on the choice of the time
gauge [110, 111, 137]. The requirement of time gauge independence is suf-
ficiently important to reject any measure proposal that suffers from the
gauge ambiguity. A prescription manifestly free from gauge dependence is
the “spherical cutoff” measure [45]. This prescription provides unambiguous
predictions for models of random walk-type eternal inflation if the reheating
condition φ = φ∗ corresponds to a topologically compact and connected locus
in the field space {φ, χa} (see Sect. 5.3.3). For models where the reheating
condition is met at several disconnected loci in field space (tunneling-type
eternal inflation belongs to this class), one can use the recently proposed
prescription of “comoving cutoff” [153, 163]. Since no other volume-based pre-
scriptions are currently considered viable, we refer to the mentioned spherical
cutoff/comoving cutoff prescriptions simply as the “volume-based measure.”

Similarly, existing measure proposals of the “worldline” type appear to
converge essentially to a single prescription [62, 156] (however, see [169, 170]
for the most recent developments). We refer to this prescription as the
“worldline-based measure.”

The main difference between the worldline-based and volume-based mea-
sures is in their dependence on the initial state. When considering the volume-
based measure, one starts from a finite initial spacelike 3-volume. (Final results

10 To avoid confusion, let us note that the recent work [162] proposes a measure
in the phase space of trajectories rather than an observer-based measure in the
sense discussed here.
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are insensitive to the choice of this 3-surface in spacetime or to its geometry.)
The initial state consists of the initial values of the fields χa within the ini-
tial volume, and possibly a label α corresponding to the type of the initial
bubble. When considering the worldline-based measure, one assumes knowl-
edge of these data at the initial point of the worldline.11 It turns out that
the volume-based measure always yields results that are independent of the
initial conditions. This agrees with the concept of the “stationarity” of a self-
reproducing universe [110, 111, 126]; the universe forgets the initial state in
the course of eternal self-reproduction. In contrast, probabilities obtained us-
ing the worldline-based measure always depend on the initial state (except
for the case of a “non-terminal” landscape, i.e., a landscape scenario without
terminal vacua). A theory of initial conditions is necessary to obtain a specific
prediction from the worldline-based measure.

At this time, there is no consensus as to which of the two measures is
the physically relevant one. The present author is inclined to regard the two
measures as reasonable answers to two differently posed questions. The first
question is to determine the probability distribution for observed values of
χa, given that the observer is randomly chosen from all the observers present
in the entire spacetime. Since we have no knowledge as to the total duration
of inflation in our past or the total number of bubble nucleations preceding
the most recent one, it appears reasonable to include in the ensemble all the
observers that will ever appear anywhere in the spacetime. The answer to the
first question is thus provided by the volume-based measure.

The second question is posed in a rather different manner. In the context
of tunneling-type eternal inflation, upon discovering the type of our bubble
we may wish to leave a message to a future civilization that may arise in our
future after an unspecified number of nested bubble nucleations. The analo-
gous situation in the context of random walk-type inflation is a hypothetical
observer located within an inflating region of spacetime who wishes to com-
municate with future civilizations that will eventually appear when inflation
is over. The only available means of communication is leaving information on
paper in a sealed box. The message might contain the probability distribution
P (χa) for parameters χa that we expect the future civilization to observe. In
this case, the initial state is known at the time of writing the message. It is
clear that the box can be discovered only by future observers near its world-
line. It is then natural to choose the ensemble of observers appearing along
this worldline. Starting from the known initial state, one would then compute
P (χa) according to the worldline-based measure.

Calculations using the worldline-based measure usually do not require
regularization (except for the case of non-terminal landscape) because the

11 Naturally, it is assumed that the initial state is in the self-reproduction regime.
For random walk-type models, the initial 3-volume is undergoing inflation rather
than reheating and for tunneling models, the initial volume is not situated within
a terminal bubble.
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V
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Fig. 5.6. Illustrative inflationary potential with a flat self-reproduction regime φ1 <
φ < φ2 and deterministic regimes φ

(1)
∗ < φ < φ1 and φ2 < φ < φ

(2)
∗

worldline-based ensemble of observers is almost surely finite [156]. For in-
stance, in random walk-type models the worldline-based measure predicts the
exit probability distribution pexit, which can be computed by solving a suitable
differential equation [see (5.44)]. However, the ensemble used in the volume-
based measure is infinite and requires a regularization. Known regularization
methods are reviewed in Sect. 5.3.3 and 5.3.4.

A simple toy model [18] where the predictions of the volume-based mea-
sure can be obtained analytically is a slow-roll scenario with a potential shown
in Fig. 5.6. The potential is flat in the range φ1 < φ < φ2 where the evolu-
tion is diffusion-dominated, while the evolution of regions with φ > φ2 or
φ < φ1 is completely deterministic (fluctuation-free). It is assumed that the
diffusion-dominated range φ1 < φ < φ2 is sufficiently wide to cause eternal
self-reproduction of inflating regions. There are two thermalization points,
φ = φ

(1)
∗ and φ = φ(2)

∗ , which may be associated to different types of true vac-
uum and thus to different observed values of cosmological parameters. The
question is to compare the volumes V1 and V2 of regions thermalized into these
two vacua. Since there is an infinite volume thermalized into either vacuum,
one looks for the volume ratio V1/V2.

The potential is symmetric in the range φ1 < φ < φ2, so it is natural
to assume that Hubble-size regions exiting the self-reproduction regime at
φ = φ1 and at φ = φ2 are equally abundant. Since the evolution within the
ranges φ(1)

∗ < φ < φ1 and φ2 < φ < φ
(2)
∗ is deterministic, the regions exiting

the self-reproduction regime at φ = φ1 or φ = φ2 will be expanded by fixed
amounts of e-foldings, which we may denote N1 and N2, respectively,

Nj = −4π
∫ φ(j)

∗

φj

H(φ)
H ′(φ)

dφ . (5.57)

Therefore the volume of regions thermalized at φ = φ
(j)
∗ , where j = 1, 2, will

be increased by the factors exp(3Nj). Hence, the volume ratio is

V1

V2
= exp (3N1 − 3N2) . (5.58)
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5.3.3 Regularization for a Single Reheating Surface

The task at hand is to define a measure that ascribes equal weight to each
observer ever appearing anywhere in the universe. As discussed in Sect. 5.1.1,
it is sufficient to construct a measure V(χa) of the 3-volume along the reheating
surface. The volume-based measure P (χa) will then be given by (5.5). In the
presence of eternal inflation, the proper 3-volume of the reheating surface
diverges even when we limit the spacetime domain under consideration to the
comoving future of a finite initial spacelike 3-volume. Therefore, the reheating
surface needs to be regularized.

In this section we consider the case when the reheating condition is met
at a topologically compact and connected locus in the configuration space
{φ, χa}. In this case, every connected component of the reheating surface in
spacetime will contain all the possible values of the fields χa, and all such
connected pieces are statistically equivalent. Hence, it suffices to consider a
single connected piece of the reheating surface. A situation of this type is
illustrated in Fig. 5.7. A sketch of the random walk in configuration space is
shown in Fig. 5.8.

A simple regularization scheme is known as the “equal-time cutoff.” One
considers the part of the reheating surface formed before a fixed time tmax;
that part is finite as long as tmax is finite. Then one can compute the
distribution of the quantities of interest within that part of the reheat-
ing surface. Subsequently, one takes the limit tmax → ∞. The resulting

Fig. 5.7. A 1+1-dimensional slice of spacetime in a two-field inflationary model
(numerical simulation in [19]). Shades denote different values of the field χ, which
takes values in the periodically identified interval [0, 2π/β]. The white region rep-
resents the thermalized domain. The boundary of the thermalized domain is the
reheating surface (cf. Fig. 5.2), which contains all the possible values of the field χ
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c

φ

f=f*

Fig. 5.8. A random walk in configuration space for a two-field inflationary model
considered in [19]. The center of the field space is a diffusion-dominated regime. The
reheating condition, φ = φ∗, selects a compact and connected region (a circle) in
configuration space. The problem is to determine the volume-weighted probability
distribution for the values of χ at reheating

distribution can be found from the solution P (γ̃)
V (φ) of the “stationary” FP

equation,
[L̂+ 3H(φ)]P (γ̃)

V = γ̃P
(γ̃)
V , (5.59)

with the largest eigenvalue γ̃ (see Sect. 5.2.3). However, both the eigenvalue
γ̃ and the distribution P (γ̃)

V (φ) depend rather sensitively on the choice of
the equal-time hypersurfaces. Since there appears to be no preferred choice
of the cutoff hypersurfaces in spacetime, the equal-time cutoff cannot serve
as an unbiased measure. Also, it was shown in [124] that the unbiased re-
sult (5.58) cannot be obtained via an equal-time cutoff with any choice of the
time gauge.

The “spherical cutoff” measure prescription [45] regularizes the reheating
surface in a different way. A finite region within the reheating surface is se-
lected as a spherical region of radiusR around a randomly chosen center point.
(Since the reheating 3-surface is spacelike, the distance between points can be
calculated as the length of the shortest path within the reheating 3-surface.)
Then the distribution of the quantities of interest is computed within the
spherical region. Subsequently, the limit R → ∞ is evaluated. Since every
portion of the reheating surface is statistically the same, the results are in-
dependent of the choice of the center point. The spherical cutoff is gauge-
invariant since it is formulated entirely in terms of the intrinsic properties of
the reheating surface.

While the spherical cutoff prescription successfully solves the problem of
regularization, there is no universally applicable analytic formula for the re-
sulting distribution. Application of the spherical cutoff to general models of
random walk inflation requires a direct numerical simulation of the stochastic
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field dynamics in the inflationary spacetime. Such simulations were reported
in [19, 111, 140, 171] and used the Langevin equation (5.9) with a specific
stochastic ansatz for the noise field N(t,x).

Apart from numerical simulations, the results of the spherical cutoff
method may be obtained analytically in a certain class of models [19]. One
such case is a multi-field model where the potential V (φ, χa) is independent
of χa within the range of φ where the “diffusion” in φ dominates. Then the
distribution in χa is flat when field φ exits the regime of self-reproduction and
resumes the deterministic slow-roll evolution. One can derive a gauge-invariant
Fokker–Planck equation for the volume distribution PV (φ, χa), using φ as the
time variable [19],

∂φPV = ∂χχ

(
D

vφ
PV

)
− ∂χ

(
vχ
vφ
PV

)
+

3H
vφ
PV , (5.60)

where D, vφ and vχ are the coefficients of the FP equation (5.21). This equa-
tion is valid for the range of φ where the evolution of φ is free of fluctuations.
By solving (5.60), one can calculate the volume-based distribution of χa pre-
dicted by the spherical cutoff method as PV (φ∗, χ). Note that the mentioned
restriction on the potential V (φ, χa) is important. In general, the field φ can-
not be used as the time variable since the surfaces of constant φ are not
everywhere spacelike due to large fluctuations of φ in the diffusion-dominated
regime.

5.3.4 Regularization for Multiple Types of Reheating Surfaces

Let us begin by considering a simpler example: an inflationary scenario with
an asymmetric slow-roll potential V (φ) having two minima φ(1)

∗ , φ(2)
∗ . This

scenario has two possibilities for thermalization, possibly differing in the ob-
servable parameters χa. More generally, one may consider a scenario with n
different minima of the potential, possibly representing n distinct reheating
scenarios. It is important that the minima φ(j)

∗ , j = 1, ..., n are topologically
disconnected in the configuration space. This precludes the possibility that
different minima are reached within one connected component of the reheat-
ing hypersurface in spacetime. Additionally, the fields χa may fluctuate across
each connected component in a way that depends on the minimum j. Thus,
the distribution P (χa; j) of the fields χa at each connected component of the
reheating surface may depend on j. In other words, the different components
of the reheating surface may be statistically inequivalent with respect to the
distribution of χa on them. To use the volume-based measure for making pre-
dictions in such models, one needs a regularization method that is applicable
to situations with a large number of disconnected and statistically inequivalent
components of the reheating hypersurface.

In such situations, the spherical cutoff prescription (see Sect. 5.3.3) yields
only the distribution of χa across one connected component, since the sphere
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of a finite radius R will never reach any other components of the reheating
surface. Therefore, the spherical cutoff needs to be supplemented by a “weight-
ing” prescription, which would assign weights pj to the minimum labeled j. In
scenarios of tunneling type, such as the string theory landscape, observers may
find themselves in bubbles of types α = 1, ..., N . Again, a weighting prescrip-
tion is needed to determine the probabilities pα of being in a bubble of type α.

Two different weighting prescriptions have been formulated, using the
volume-based [153, 163] and the worldline-based approach [156], respec-
tively. The first prescription is called the “comoving cutoff” while the second
the “worldline” or the “holographic” cutoff. For clarity, we illustrate these
weighting prescriptions on models of tunneling type where infinitely many
nested bubbles of types α = 1, ...N are created and where some bubbles
are “terminal,” i.e., contain no “daughter” bubbles. In the volume-based
approach, each bubble receives equal weight in the ensemble; in the worldline-
based approach, only bubbles intersected by a selected worldline are counted
and given equal weight. Let us now examine these two prescriptions in more
detail.

Since the set of all bubbles is infinite, one needs to perform a “regulariza-
tion,” that is, one needs to select a very large but finite subset of bubbles.
The weight pα will be calculated as the fraction of bubbles of type α within
the selected subset; then the number of bubbles in the subset will be taken
to infinity. Technically, the two prescriptions differ in the details of the reg-
ularization. The difference between the two prescriptions can be understood
pictorially (Fig. 5.9). In a spacetime diagram, one draws a finite number of
timelike comoving geodesic worldlines emitted from an initial 3-surface toward
the future. (It can be shown that the results are independent of the choice
of these lines, as long as that choice is uncorrelated with the bubble nucle-
ation process [163].) Each of these lines will intersect only a finite number of
bubbles, since the final state of any worldline is (almost surely) a terminal
bubble. The subset of bubbles needed for the regularization procedure is de-
fined as the set of all bubbles intersected by at least one line. At this point,
the volume-based approach assigns equal weight to each bubble in the subset,
while the worldline-based approach assigns equal weight to each bubble along
each worldline. As a result, the volume-based measure counts each bubble in
the subset only once, while the worldline-based measure counts each bubble
as many times as it is intersected by some worldlines. After determining the
weights pα by counting the bubbles as described, one increases the number of
worldlines to infinity and evaluates the limit values of pα.

It is clear that the volume-based measure represents the counting of bub-
bles in the entire universe, and it is appropriate that each bubble is being
counted only once. On the other hand, the worldline-based measure counts
bubbles occurring along a single worldline, ignoring the bubbles produced in
other parts of the universe and introducing an unavoidable bias due to the
initial conditions at the starting point of the worldline.
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t

x

Fig. 5.9. Weighting prescriptions for models of tunneling type. Shaded regions are
bubbles of different types. Dashed vertical lines represent randomly chosen comoving
geodesics used to define a finite subset of bubbles

Explicit formulas for pα were derived for a tunneling-type scenario (with
terminal vacua) in the volume-based approach [153],

pα =
∑
β

Hq
βκαβsβ , (5.61)

where καβ is the matrix of nucleation rates, q and sα are the quantities de-
fined by (5.48), and Hβ is the Hubble parameter in bubbles of type β. The
expressions for pα obtained from the worldline-based measure are given by
(5.54). As we have noted before, the volume-based measure assigns weights
pα that are independent of initial conditions, while the weights obtained from
the worldline-based measure depend sensitively on the type of bubble where
the counting begins.

In the case of a non-terminal landscape, both the volume-based and the
worldline-based measures give identical results for pα, which coincide with the
mean frequency (5.49) of visiting a bubble of type α [155, 156].

With the weighting prescriptions just described, the volume-based and
the worldline-based measure proposals can be considered complete. In other
words, we have two alternative prescriptions that can be applied (in principle)
to arbitrary models of random walk or tunneling-type eternal inflation. Fur-
ther research is needed to reach a definite conclusion concerning the viability
of these measure prescriptions.
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