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Abstract. This chapter presents a general review of the history of inflationary
cosmology and of its present status.1

1.1 Brief History of Inflation

Since the inflationary theory is more than 25 years old, perhaps it is not
inappropriate to start this chapter with a brief history of its development,
and some personal recollections.

Several ingredients of inflationary cosmology were discovered in the begin-
ning of the 1970s. The first realization was that the energy density of a scalar
field plays the role of the vacuum energy/cosmological constant [1], which
was changing during the cosmological phase transitions [2]. In certain cases
these changes occur discontinuously, due to first-order phase transitions from
a supercooled vacuum state (false vacuum) [3].

In 1978, we with Gennady Chibisov tried to use these facts to construct
a cosmological model involving exponential expansion of the universe in the
supercooled vacuum as a source of the entropy of the universe, but we im-
mediately realized that the universe becomes very inhomogeneous after the
bubble wall collisions. I mentioned our work in my review article [4], but did
not pursue this idea any further.

The first semi-realistic model of inflationary type was proposed by Alexei
Starobinsky in 1979–1980 [5]. It was based on the investigation of a confor-
mal anomaly in quantum gravity. His model was rather complicated, and its
goal was somewhat different from the goals of inflationary cosmology. Instead
of attempting to solve the homogeneity and isotropy problems, Starobinsky
considered the model of the universe which was homogeneous and isotropic
from the very beginning, and emphasized that his scenario was “the extreme
opposite of Misner’s initial ‘chaos’.”
1 Based on a talk given at the 22nd IAP Colloquium, “Inflation+25”, Paris, June
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On the other hand, the Starobinsky model did not suffer from the graceful
exit problem, and it was the first model to predict gravitational waves with
a flat spectrum [5]. The first mechanism of production of adiabatic per-
turbations of the metric with a flat spectrum, which are responsible for
galaxy production, and which were found by the observations of the CMB
anisotropy, was proposed by Mukhanov and Chibisov [6] in the context of this
model.

A much simpler inflationary model with a very clear physical motivation
was proposed by Alan Guth in 1981 [7]. His model, which is now called “old
inflation,” was based on the theory of supercooling during the cosmological
phase transitions [3]. Even though this scenario did not work, it played a
profound role in the development of inflationary cosmology since it contained
a very clear explanation of how inflation may solve the major cosmological
problems.

According to this scenario, inflation is described by the exponential ex-
pansion of the universe in a supercooled false vacuum state. False vacuum is
a metastable state without any fields or particles but with a large energy den-
sity. Imagine a universe filled with such “heavy nothing.” When the universe
expands, empty space remains empty, so its energy density does not change.
The universe with a constant energy density expands exponentially, thus we
have inflation in the false vacuum. This expansion makes the universe very
big and very flat. Then the false vacuum decays, the bubbles of the new phase
collide, and our universe becomes hot.

Unfortunately, this simple and intuitive picture of inflation in the false vac-
uum state is somewhat misleading. If the probability of the bubble formation
is large, bubbles of the new phase are formed near each other, inflation is too
short to solve any problems, and the bubble wall collisions make the universe
extremely inhomogeneous. If they are formed far away from each other, which
is the case if the probability of their formation is small and inflation is long,
each of these bubbles represents a separate open universe with a vanishingly
small Ω. Both options are unacceptable, which has lead to the conclusion that
this scenario does not work and cannot be improved (graceful exit problem)
[7, 8, 9].

The solution was found in 1981–1982 with the invention of the new infla-
tionary theory [10], see also [11]. In this theory, inflation may begin either in
the false vacuum, or in an unstable state at the top of the effective potential.
Then the inflaton field φ slowly rolls down to the minimum of its effective
potential. The motion of the field away from the false vacuum is of crucial
importance: density perturbations produced during the slow-roll inflation are
inversely proportional to φ̇ [6, 12, 13]. Thus the key difference between the
new inflationary scenario and the old one is that the useful part of inflation
in the new scenario, which is responsible for the homogeneity of our universe,
does not occur in the false vacuum state, where φ̇ = 0.

Soon after the invention of the new inflationary scenario it became so
popular that even now most of the textbooks on astrophysics incorrectly
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describe inflation as an exponential expansion in a supercooled false vacuum
state during the cosmological phase transitions in grand unified theories.
Unfortunately, this scenario was plagued by its own problems. It works only if
the effective potential of the field φ has a very flat plateau near φ = 0, which
is somewhat artificial. In most versions of this scenario the inflaton field has
an extremely small coupling constant, so it could not be in thermal equilib-
rium with other matter fields. The theory of cosmological phase transitions,
which was the basis for old and new inflation, did not work in such a situation.
Moreover, thermal equilibrium requires many particles interacting with each
other. This means that new inflation could explain why our universe was so
large only if it was very large and contained many particles from the very
beginning [14].

Old and new inflation represented a substantial but incomplete modifica-
tion of the big bang theory. It was still assumed that the universe was in a
state of thermal equilibrium from the very beginning, that it was relatively
homogeneous and large enough to survive until the beginning of inflation, and
that the stage of inflation was just an intermediate stage of the evolution of
the universe. In the beginning of the 1980s these assumptions seemed most
natural and practically unavoidable. On the basis of all available observations
(CMB, abundance of light elements) everybody believed that the universe was
created in a hot big bang. That is why it was so difficult to overcome a certain
psychological barrier and abandon all of these assumptions. This was done in
1983 with the invention of the chaotic inflation scenario [15]. This scenario
resolved all problems of old and new inflation. According to this scenario,
inflation may begin even if there was no thermal equilibrium in the early uni-
verse, and it may occur even in the theories with simplest potentials such as
V (φ) ∼ φ2. But it is not limited to the theories with polynomial potentials:
chaotic inflation occurs in any theory where the potential has a sufficiently
flat region, which allows the existence of the slow-roll regime [15].

1.2 Chaotic Inflation

1.2.1 Basic Model

Consider the simplest model of a scalar field φ with a mass m and with the
potential energy density V (φ) = m2

2 φ
2. Since this function has a minimum

at φ = 0, one may expect that the scalar field φ should oscillate near this
minimum. This is indeed the case if the universe does not expand, in which
case the equation of motion for the scalar field coincides with the equation for
the harmonic oscillator, φ̈ = −m2φ.

However, because of the expansion of the universe with Hubble constant
H = ȧ/a, an additional term 3Hφ̇ appears in the harmonic oscillator equation:

φ̈+ 3Hφ̇ = −m2φ . (1.1)
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The term 3Hφ̇ can be interpreted as a friction term. The Einstein equation
for a homogeneous universe containing a scalar field φ looks as follows:

H2 +
k

a2
=

1
6

(φ̇2 +m2φ2) . (1.2)

Here k = −1, 0, 1 for an open, flat or closed universe respectively. We work in
units M−2

pl = 8πG = 1.
If the scalar field φ initially was large, the Hubble parameter H was large

too, according to the second equation. This means that the friction term 3Hφ̇
was very large, and therefore the scalar field was moving very slowly, as a ball
in a viscous liquid. Therefore at this stage the energy density of the scalar
field, unlike the density of ordinary matter, remained almost constant, and
the expansion of the universe continued at a much greater speed than in the
old cosmological theory. Due to the rapid growth of the scale of the universe
and the slow motion of the field φ, soon after the beginning of this regime
one has φ̈ � 3Hφ̇, H2 � k

a2 , φ̇2 � m2φ2, so the system of equations can be
simplified:

H =
ȧ

a
=
mφ√

6
, φ̇ = −m

√
2
3
. (1.3)

The first equation shows that if the field φ changes slowly, the size of the
universe in this regime grows approximately as eHt, where H = mφ√

6
. This

is the stage of inflation, which ends when the field φ becomes much smaller
than MPl = 1. The solution to these equations shows that after a long stage
of inflation the universe initially filled with the field φ � 1 grows exponen-
tially [14],

a = a0 eφ
2/4 . (1.4)

Thus, inflation does not require an initial state of thermal equilibrium,
supercooling and tunneling from the false vacuum. It appears in the theories
that can be as simple as a theory of a harmonic oscillator [15]. Only when it
was realized, it became clear that inflation is not just a trick necessary to fix
problems of the old big bang theory, but a generic cosmological regime.

1.2.2 Initial Conditions

But what is about the initial conditions required for chaotic inflation? Let us
consider first a closed universe of initial size l ∼ 1 (in Planck units), which
emerges from the space–time foam, or from singularity, or from “nothing” in
a state with the Planck density ρ ∼ 1. Only starting from this moment, i.e. at
ρ � 1, can we describe this domain as a classical universe. Thus, at this initial
moment the sum of the kinetic energy density, gradient energy density, and
the potential energy density is of the order unity: 1

2 φ̇
2 + 1

2 (∂iφ)2 + V (φ) ∼ 1
(Fig. 1.1).

We wish to emphasize, that there are no a priori constraints on the
initial value of the scalar field in this domain, except for the constraint
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Fig. 1.1. Motion of the scalar field in the theory with V (φ) = m2

2
φ2. Several

different regimes are possible, depending on the value of the field φ. If the potential
energy density of the field is greater than the Planck density M4

Pl = 1, φ � m−1, the
quantum fluctuations of space–time are so strong that one cannot describe it in usual
terms. Such a state is called space–time foam. At a somewhat smaller energy density
(for m � V (φ) � 1, m−1/2 � φ � m−1) the quantum fluctuations of space–time are
small, but the quantum fluctuations of the scalar field φ may be large. Jumps of the
scalar field due to quantum fluctuations lead to a process of eternal self-reproduction
of inflationary universe which we are going to discuss later. At even smaller values
of V (φ) (for m2 � V (φ) � m, 1 � φ � m−1/2) fluctuations of the field φ are small;
it slowly moves down as a ball in a viscous liquid. Inflation occurs for 1 � φ � m−1.
Finally, near the minimum of V (φ) (for φ � 1) the scalar field rapidly oscillates,
creates pairs of elementary particles, and the universe becomes hot

1
2 φ̇

2 + 1
2 (∂iφ)2 + V (φ) ∼ 1. Let us consider for a moment a theory with

V (φ) = const. This theory is invariant under the shift symmetry φ → φ + c.
Therefore, in such a theory all initial values of the homogeneous component
of the scalar field φ are equally probable.

The only constraint on the amplitude of the field appears if the effective
potential is not constant, but grows and becomes greater than the Planck
density at φ > φp, where V (φp) = 1. This constraint implies that φ � φp, but
there is no reason to expect that initially φ must be much smaller than φp.
This suggests that the typical initial value of the field φ in such a theory is
φ ∼ φp.

Thus, we expect that typical initial conditions correspond to 1
2 φ̇

2 ∼
1
2 (∂iφ)2 ∼ V (φ) = O(1). If 1

2 φ̇
2 + 1

2 (∂iφ)2 � V (φ) in the domain under
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consideration, then inflation begins, and then within the Planck time the
terms 1

2 φ̇
2 and 1

2 (∂iφ)2 become much smaller than V (φ), which ensures con-
tinuation of inflation. It seems therefore that chaotic inflation occurs under
rather natural initial conditions, if it can begin at V (φ) ∼ 1 [14, 16].

One can get a different perspective on this issue by studying the probability
of quantum creation of the universe from “nothing.” The basic idea is that
quantum fluctuations can create a small universe from nothing if it can be
done quickly, in agreement with the quantum uncertainty relation ΔE·Δt � 1.
The total energy of scalar field in a closed inflationary universe is proportional
to its minimal volume H−3 ∼ V −3/2 multiplied by the energy density V (φ):
E ∼ V −1/2. Therefore such a universe can appear quantum mechanically
within the time Δt � 1 if V (φ) is not too much smaller than the Planck
density O(1).

This qualitative conclusion agrees with the result of the investigation in the
context of quantum cosmology. Indeed, according to [17, 18], the probability
of quantum creation of a closed universe is proportional to

P ∼ exp
(
−24π2

V

)
, (1.5)

which means that the universe can be created if V is not too much smaller
than the Planck density. The Euclidean approach to the quantum creation of
the universe is based on the analytical continuation of the Euclidean de Sitter
solution to the real time. This continuation is possible if φ̇ = 0 at the moment
of quantum creation of the universe. Thus in the simplest chaotic inflation
model with V (φ) = m2

2 φ
2 the universe is created in a state with V (φ) ∼ 1,

φ ∼ m−1 � 1 and φ̇ = 0, which is a perfect initial condition for inflation in
this model [14, 17].

One should note that there are many other attempts to evaluate the prob-
ability of initial conditions for inflation (see Chap. 5 in this volume). For
example, if one interprets the square of the Hartle–Hawking wave function
[19] as a probability of initial condition, one obtains a paradoxical answer
P ∼ exp(24π2

V ), which could seem to imply that it is easier to create the uni-
verse with V → 0 and with an infinitely large total energy E ∼ V −1/2 → ∞.
There were many attempts to improve this anti-intuitive answer, but from my
perspective these attempts were misplaced: the Hartle–Hawking wave function
was derived in [19] as a wave function for the ground state of the universe,
and therefore it describes the most probable final state of the universe, in-
stead of the probability of initial conditions; see a discussion of this issue in
[14, 20, 21].

Another recent attempt to study this problem was made by Gibbons and
Turok [22]. They studied classical solutions describing a combined evolution
of a scalar field and the scale factor of the universe, and imposed “initial
conditions” not at the beginning of inflation but at its end. Since one can
always reverse the direction of time in the solutions, one can always relate
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the conditions at the end of inflation to the conditions at its beginning. If one
assumes that certain conditions at the end of inflation are equally probable,
then one may conclude that the probability of initial conditions suitable for
inflation must be very small [22].

From our perspective [23, 24], we have here the same paradox which is
encountered in the discussion of the growth of entropy. If one starts with
a well ordered system, its entropy will always grow. However, if we make a
movie of this process, and play it back starting from the end of the process,
then the final conditions for the original system become the initial conditions
for the time-reversed system, and we will see the entropy decreasing. That
is why replacing initial conditions by final conditions can be very misleading.
An advantage of the inflationary regime is that it is an attractor (i.e. the most
probable regime) for the family of solutions describing an expanding universe.
But if one replaces initial conditions by the final conditions at the end of the
process and then studies the same process back in time, the same trajectory
will look like a repulsor. This is the main reason of the negative conclusion
of [22].

The main problem in [22] is that the methods developed there are valid
for the classical evolution of the universe, but the initial conditions for the
classical evolution are determined by the processes at the quantum epoch near
the singularity, where the methods of [22] are inapplicable. It is not surprising,
therefore, that the results of [22] imply that initially φ̇2 � V (φ). This result
contradicts the results of the Euclidean approach to quantum creation of the
universe [17, 18, 19] which require that initially φ̇ = 0, see a discussion above.

As we will show in a separate publication [24], if one further develops
the methods of [22], but imposes the initial conditions at the beginning of
inflation, rather than at its end, one finds that inflation is most probable, in
agreement with the arguments given in the first part of this section.

The discussion of initial conditions in this section was limited to the sim-
plest versions of chaotic inflation which allow inflation at the very high energy
densities, such as the models with V ∼ φn. We will return to the discussion of
the problem of initial conditions in inflationary cosmology in Sects. 1.13 and
1.14, where we will analyze it in the context of more complicated inflationary
models.

1.2.3 Solving the Cosmological Problems

As we will see shortly, the realistic value of the mass m is about 3 × 10−6,
in Planck units. Therefore, according to (1.4), the total amount of inflation
achieved starting from V (φ) ∼ 1 is of the order 101010

. The total duration of
inflation in this model is about 10−30 s. When inflation ends, the scalar field φ
begins to oscillate near the minimum of V (φ). As any rapidly oscillating clas-
sical field, it looses its energy by creating pairs of elementary particles. These
particles interact with each other and come to a state of thermal equilibrium
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with some temperature Trh [25, 26, 27, 28, 29, 30, 31]. From this time on, the
universe can be described by the usual big bang theory.

The main difference between inflationary theory and the old cosmology
becomes clear when one calculates the size of a typical inflationary domain at
the end of inflation. The investigation of this question shows that even if the
initial size of inflationary universe was as small as the Planck size lP ∼ 10−33

cm, after 10−30 s of inflation the universe acquires a huge size of l ∼ 101010

cm! This number is model-dependent, but in all realistic models the size of
the universe after inflation appears to be many orders of magnitude greater
than the size of the part of the universe which we can see now, l ∼ 1028 cm.
This immediately solves most of the problems of the old cosmological theory
[14, 15].

Our universe is almost exactly homogeneous on large scales because all
inhomogeneities were exponentially stretched during inflation. The density of
primordial monopoles and other undesirable “defects” becomes exponentially
diluted by inflation. The universe becomes enormously large. Even if it was a
closed universe of a size ∼ 10−33 cm, after inflation the distance between its
“South” and “North” poles becomes many orders of magnitude greater than
1028 cm. We see only a tiny part of the huge cosmic balloon. That is why
nobody has ever seen how parallel lines cross. That is why the universe looks
so flat.

If our universe initially consisted of many domains with chaotically dis-
tributed scalar field φ (or if one considers different universes with different
values of the field), then domains in which the scalar field was too small never
inflated. The main contribution to the total volume of the universe will be
given by those domains which originally contained a large scalar field φ. In-
flation of such domains creates huge homogeneous islands out of initial chaos.
(That is why I called this scenario “chaotic inflation.”) Each homogeneous
domain in this scenario is much greater than the size of the observable part
of the universe.

1.2.4 Chaotic Inflation Versus New Inflation

The first models of chaotic inflation were based on the theories with polyno-
mial potentials, such as V (φ) = ±m2

2 φ
2 + λ

4φ
4. But, as was emphasized in

[15], the main idea of this scenario is quite generic. One should consider any
particular potential V (φ), polynomial or not, with or without spontaneous
symmetry breaking, and study all possible initial conditions without assum-
ing that the universe was in a state of thermal equilibrium, and that the field
φ was in the minimum of its effective potential from the very beginning.

This scenario strongly deviated from the standard lore of the hot big bang
theory and was psychologically difficult to accept. Therefore during the first
few years after the invention of chaotic inflation many authors claimed that
the idea of chaotic initial conditions is unnatural, and made attempts to real-
ize the new inflation scenario based on the theory of high-temperature phase
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transitions, despite numerous problems associated with it. Some authors be-
lieved that the theory must satisfy the so-called “thermal constraints” which
were necessary to ensure that the minimum of the effective potential at large
T should be at φ = 0 [32], even though the scalar field in the models they
considered was not in a state of thermal equilibrium with other particles.

The issue of thermal initial conditions played the central role in the long
debate about new inflation versus chaotic inflation in the 1980s. This debate
continued for many years, and a significant part of my book [14] was dedicated
to it. By now the debate is over: no realistic versions of new inflation based on
the theory of thermal phase transitions and supercooling have been proposed
so far. Gradually it became clear that the idea of chaotic initial conditions
is most general, and it is much easier to construct a consistent cosmological
theory without making unnecessary assumptions about thermal equilibrium
and high-temperature phase transitions in the early universe.

As a result, the corresponding terminology changed. Chaotic inflation, as
defined in [15], occurs in all models with sufficiently flat potentials, including
the potentials with a flat maximum, originally used in new inflation [33]. Now
the versions of inflationary scenario with such potentials for simplicity are
often called “new inflation,” even though inflation begins there not as in the
original new inflation scenario, but as in the chaotic inflation scenario. To
avoid this terminological misunderstanding, some authors call the version of
chaotic inflation scenario, where inflation occurs near the top of the scalar
potential, a “hilltop inflation” [34].

1.3 Hybrid Inflation

The simplest models of inflation involve just one scalar field. However, in
supergravity and string theory there are many different scalar fields, so it
does make sense to study models with several different scalar fields, especially
if they have some qualitatively new properties. Here we will consider one of
these models, hybrid inflation [35].

The simplest version of hybrid inflation describes the theory of two scalar
fields with the effective potential

V (σ, φ) =
1
4λ

(M2 − λσ2)2 +
m2

2
φ2 +

g2

2
φ2σ2 . (1.6)

The effective mass squared of the field σ is equal to −M2 + g2φ2. Therefore
for φ > φc = M/g the only minimum of the effective potential V (σ, φ) is
at σ = 0. The curvature of the effective potential in the σ-direction is much
greater than in the φ-direction. Thus at the first stages of expansion of the
universe the field σ rolled down to σ = 0, whereas the field φ could remain
large for a much longer time.

At the moment when the inflaton field φ becomes smaller than φc =M/g,
the phase transition with the symmetry breaking occurs. The fields rapidly
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fall to the absolute minimum of the potential at φ = 0, σ2 =M2/λ. If m2φ2
c =

m2M2/g2 � M4/λ, the Hubble constant at the time of the phase transition
is given by H2 = M4

12λ (in units MPl = 1). If M2 � λm2

g2 and m2 � H2, then
the universe at φ > φc undergoes a stage of inflation, which abruptly ends at
φ = φc.

Note that hybrid inflation is also a version of the chaotic inflation sce-
nario: i am unaware of any way to realize this model in the context of the
theory of high-temperature phase transitions. The main difference between
this scenario and the simplest versions of the one-field chaotic inflation is in
the way inflation ends. In the theory with a single field, inflation ends when
the potential of this field becomes steep. In hybrid inflation, the structure of
the universe depends on the way one of the fields moves, but inflation ends
when the potential of the second field becomes steep. This fact allows much
greater flexibility of construction of inflationary models. Several extensions of
this scenario became quite popular in the context of supergravity and string
cosmology, which we will discuss later.

1.4 Quantum Fluctuations and Density Perturbations

The average amplitude of inflationary perturbations generated during a typi-
cal time interval H−1 is given by [36, 37]

|δφ(x)| ≈ H

2π
. (1.7)

These fluctuations lead to density perturbations that later produce galax-
ies (see Chap. 6 in this volume). The theory of this effect is very complicated
[6, 12], and it was fully understood only in the second part of the 1980s [13].
The main idea can be described as follows.

Fluctuations of the field φ lead to a local delay of the time of the end
of inflation, δt = δφ

φ̇
∼ H

2πφ̇
. Once the usual post-inflationary stage begins,

the density of the universe starts to decrease as ρ = 3H2, where H ∼ t−1.
Therefore a local delay of expansion leads to a local density increase δH such
that δH ∼ δρ/ρ ∼ δt/t. Combining these estimates together yields the famous
result [6, 12, 13]

δH ∼ δρ
ρ

∼ H2

2πφ̇
. (1.8)

The field φ during inflation changes very slowly, so the quantity H2

2πφ̇
remains

almost constant over an exponentially large range of wavelengths. This means
that the spectrum of perturbations of the metric is flat.

A detailed calculation in our simplest chaotic inflation model of the am-
plitude of perturbations gives

δH ∼ mφ2

5π
√

6
. (1.9)
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The perturbations on the scale of the horizon were produced at φH ∼ 15 [14].
This, together with the COBE normalization δH ∼ 2×10−5 givesm ∼ 3×10−6,
in Planck units, which is approximately equivalent to 7× 1012 GeV. An exact
value ofm depends on φH, which in its turn depends slightly on the subsequent
thermal history of the universe.

When the fluctuations of the scalar field φ are first produced (frozen), their
wavelength is given by H(φ)−1. At the end of inflation, the wavelength grows
by the factor of eφ

2/4, see (1.4). In other words, the logarithm of the wave-
length l of the perturbations of metric is proportional to the value of φ2 at
the moment when these perturbations were produced. As a result, according
to (1.9), the amplitude of the perturbations of the metric depends logarith-
mically on the wavelength: δH ∼ m ln l. A similar logarithmic dependence
(with different powers of the logarithm) appears in other versions of chaotic
inflation with V ∼ φn and in the simplest versions of new inflation.

At first glance, this logarithmic deviation from scale invariance could seem
inconsequential, but in a certain sense it is similar to the famous logarithmic
dependence of the coupling constants in QCD, where it leads to asymptotic
freedom at high energies, instead of simple scaling invariance [38, 39]. In QCD,
the slow growth of the coupling constants at small momenta/large distances is
responsible for nonperturbative effects resulting in quark confinement. In in-
flationary theory, the slow growth of the amplitude of perturbations of metric
at large distances is equally important. It leads to the existence of the regime
of eternal inflation and to the fractal structure of the universe on super-large
scales, see Sect. 1.6.

Since the observations provide us with information about a rather limited
range of l, it is often possible to parametrize the scale dependence of density
perturbations by a simple power law, δH ∼ l(1−ns)/2. An exactly flat spectrum,
called Harrison–Zeldovich spectrum, would correspond to ns = 1.

The amplitude of the scalar perturbations of the metric can be charac-
terized either by δH, or by a closely related quantity ΔR [40]. Similarly, the
amplitude of tensor perturbations is given by Δh. Following [40, 41], one can
represent these quantities as

Δ2
R(k) = Δ2

R(k0)
(
k

k0

)ns−1

, (1.10)

Δ2
h(k) = Δ2

h(k0)
(
k

k0

)nt

, (1.11)

where Δ2(k0) is a normalization constant, and k0 is a normalization point.
Here we ignored running of the indexes ns and nt since there is no observa-
tional evidence that it is significant.

One can also introduce the tensor/scalar ratio r, the relative amplitude of
the tensor to scalar modes,

r ≡ Δ2
h(k0)

Δ2
R(k0)

. (1.12)
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There are three slow-roll parameters [40]

ε =
1
2

(
V ′

V

)2

, η =
V ′′

V
, ξ =

V ′V ′′′

V 2
, (1.13)

where prime denotes derivatives with respect to the field φ. All parameters
must be smaller than one for the slow-roll approximation to be valid.

A standard slow roll analysis gives observable quantities in terms of the
slow-roll parameters to first order as

Δ2
R =

V

24π2ε
=

V 3

12π2(V ′)2
, (1.14)

ns − 1 = −6ε+ 2η , (1.15)
r = 16ε , (1.16)

nt = −2ε = − r
8
. (1.17)

The equation nt = −r/8 is known as the consistency relation for single-field
inflation models; it becomes an inequality for multi-field inflation models. If
V during inflation is sufficiently large, as in the simplest models of chaotic
inflation, one may have a chance to find the tensor contribution to the CMB
anisotropy. The possibility to determine nt is less certain. The most important
information which can be obtained now from the cosmological observations
at present is related to (1.14) and (1.15).

Following notational conventions in [41], we use A(k0) for the scalar power
spectrum amplitude, where A(k0) and Δ2

R(k0) are related through

Δ2
R(k0) 
 3 × 10−9A(k0) . (1.18)

The parameterA is often normalized at k0 ∼ 0.05/Mpc; its observational value
is about 0.8 [41, 42, 43] (see also Chap. 6 in this volume). This leads to the
observational constraint on V (φ) and on r following from the normalization
of the spectrum of the large-scale density perturbations:

V 3/2

V ′ 
 5 × 10−4 . (1.19)

Here V (φ) should be evaluated for the value of the field φ which is determined
by the condition that the perturbations produced at the moment when the
field was equal φ evolve into the present time perturbations with momentum
k0 ∼ 0.05/Mpc. In the first approximation, one can find the corresponding
moment by assuming that it happened 60 e-foldings before the end of inflation.
The number of e-foldings can be calculated in the slow roll approximation
using the relation

N 

∫ φ

φend

V

V ′ dφ . (1.20)
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Equation (1.19) leads to the relation between r, V and H , in Planck units:

r ≈ 3 × 107 V ≈ 108 H2 . (1.21)

Finally, recent observational data suggest [42] that

ns = 1 − 3
(
V ′

V

)2

+ 2
V ′′

V
= 0.95 ± 0.016 , (1.22)

for r � 0.1. These relations are very useful for comparing inflationary models
with observations. In particular, the simplest versions of chaotic and new
inflation predict ns < 1, whereas in hybrid inflation one may have either
ns < 1 or ns > 1, depending on the model. A more accurate representation of
observational constraints can be found in Sect. 1.7.

Until now we have discussed the standard mechanism of generation of
perturbations of metric. However, if the model is sufficiently complicated,
other mechanisms become possible. For example, one may consider a theory
of two scalar fields, φ and σ, and assume that inflation was driven by the field
φ, and the field σ was very light during inflation and did not contribute much
to the total energy density. Therefore its quantum fluctuations also did not
contribute much to the amplitude of perturbations of metric during inflation
(isocurvature perturbations).

After inflation the field φ decays. If the products of its decay rapidly loose
energy, the field σ may dominate the energy density of the universe and its
perturbations suddenly become important. If, in its turn, the field σ decays,
its perturbations under certain conditions can be converted into the usual
adiabatic perturbations of metric. If this conversion is incomplete, one obtains
a theory at odds with recent observational data [44, 45]. On the other hand,
if the conversion is complete, one obtains a novel mechanism of generation
of adiabatic density perturbations, which is called the curvaton mechanism
[46, 47, 48, 49]. A closely related but different mechanism was also proposed
in [50]. See Chap. 8 in this volume for a detailed discussion.

These mechanisms are much more complicated than the original one, but
one should keep them in mind since they sometimes work in the situations
where the standard one does not. Therefore they can give us an additional
freedom in finding realistic models of inflationary cosmology.

1.5 Creation of Matter After Inflation: Reheating
and Preheating

The theory of reheating of the universe after inflation is the most important
application of the quantum theory of particle creation, since almost all matter
constituting the universe was created during this process.
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At the stage of inflation all energy is concentrated in a classical slowly
moving inflaton field φ. Soon after the end of inflation this field begins to
oscillate near the minimum of its effective potential. Eventually it produces
many elementary particles, they interact with each other and come to a state
of thermal equilibrium with some temperature Tr.

Early discussions of reheating of the universe after inflation [25] were
based on the idea that the homogeneous inflaton field can be represented
as a collection of the particles of the field φ. Each of these particles de-
cayed independently. This process can be studied by the usual perturba-
tive approach to particle decay. Typically, it takes thousands of oscillations
of the inflaton field until it decays into usual elementary particles by this
mechanism. More recently, however, it was discovered that coherent field
effects such as parametric resonance can lead to the decay of the homo-
geneous field much faster than would have been predicted by perturbative
methods, within a few dozen oscillations [26]. These coherent effects pro-
duce high energy, nonthermal fluctuations that could have significance for
understanding developments in the early universe, such as baryogenesis. This
early stage of rapid nonperturbative decay was called “preheating.” In [27]
it was found that another effect known as tachyonic preheating can lead to
even faster decay than parametric resonance. This effect occurs whenever
the homogeneous field rolls down a tachyonic (V ′′ < 0) region of its poten-
tial. When that occurs, a tachyonic, or spinodal instability leads to exponen-
tially rapid growth of all long wavelength modes with k2 < |V ′′|. This growth
can often drain all of the energy from the homogeneous field within a single
oscillation.

We are now in a position to classify the dominant mechanisms by which
the homogeneous inflaton field decays in different classes of inflationary mod-
els. Even though all of these models, strictly speaking, belong to the general
class of chaotic inflation (none of them is based on the theory of thermal
initial conditions), one can break them into three classes: small field, or new
inflation models [10], large field, or chaotic inflation models of the type of the
model m2φ2/2 [15], and multi-field, or hybrid models [35]. This classification
is incomplete, but still rather helpful.

In the simplest versions of chaotic inflation, the stage of preheating is
generally dominated by parametric resonance, although there are parameter
ranges where this cannot occur [26]. In [27], it was shown that tachyonic pre-
heating dominates the preheating phase in hybrid models of inflation. New
inflation in this respect occupies an intermediate position between chaotic in-
flation and hybrid inflation: If spontaneous symmetry breaking in this scenario
is very large, reheating occurs due to parametric resonance and perturbative
decay. However, for the models with spontaneous symmetry breaking at or
below the GUT scale, φ� 10−2MPl, preheating occurs due to a combination
of tachyonic preheating and parametric resonance. The resulting effect is very
strong, so that the homogeneous mode of the inflaton field typically decays
within few oscillations [28].
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A detailed investigation of preheating usually requires lattice simulations,
which can be achieved following [29, 30]. Note that preheating is not the last
stage of reheating; it is followed by a period of turbulence [31], by a much
slower perturbative decay described by the methods developed in [25], and by
eventual thermalization.

1.6 Eternal Inflation

A significant step in the development of inflationary theory was the discovery
of the process of self-reproduction of inflationary universe. This process was
known to exist in old inflationary theory [7] and in the new one [51, 52, 53],
but its significance was fully realized only after the discovery of the regime
of eternal inflation in the simplest versions of the chaotic inflation scenario
[54, 55]. It appears that in many inflationary models large quantum fluctu-
ations produced during inflation may significantly increase the value of the
energy density in some parts of the universe. These regions expand at a greater
rate than their parent domains, and quantum fluctuations inside them lead to
production of new inflationary domains which expand even faster. This leads
to an eternal process of self-reproduction of the universe.

To understand the mechanism of self-reproduction one should remember
that processes separated by distances l greater than H−1 proceed indepen-
dently of one another. This is so because during exponential expansion the
distance between any two objects separated by more than H−1 is growing
with a speed exceeding the speed of light. As a result, an observer in the in-
flationary universe can see only the processes occurring inside the horizon of
the radius H−1. An important consequence of this general result is that the
process of inflation in any spatial domain of radius H−1 occurs independently
of any events outside it. In this sense any inflationary domain of initial radius
exceeding H−1 can be considered as a separate mini-universe.

To investigate the behavior of such a mini-universe, with an account taken
of quantum fluctuations, let us consider an inflationary domain of initial radius
H−1 containing sufficiently homogeneous field with initial value φ � MPl.
Equation (1.3) implies that during a typical time interval Δt = H−1 the field
inside this domain will be reduced by Δφ = 2

φ . By comparison this expression
with |δφ(x)| ≈ H

2π = mφ

2π
√

6
one can easily see that if φ is much less than

φ∗ ∼ 5√
m

, then the decrease of the field φ due to its classical motion is much
greater than the average amplitude of the quantum fluctuations δφ generated
during the same time. But for φ � φ∗ one has δφ(x) � Δφ. Because the
typical wavelength of the fluctuations δφ(x) generated during the time is
H−1, the whole domain after Δt = H−1 effectively becomes divided into
e3 ∼ 20 separate domains (mini-universes) of radius H−1, each containing
almost homogeneous field φ − Δφ + δφ. In almost a half of these domains
the field φ grows by |δφ(x)| − Δφ ≈ |δφ(x)| = H/2π, rather than decreases.
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This means that the total volume of the universe containing the growing field
φ increases 10 times. During the next time interval Δt = H−1 this process
repeats itself. Thus, after the two time intervals H−1 the total volume of
the universe containing the growing scalar field increases 100 times, etc. The
universe enters the eternal process of self-reproduction.

The existence of this process implies that the universe will never disappear
as a whole. Some of its parts may collapse, the life in our part of the universe
may perish, but there always will be some other parts of the universe where
life will appear again and again, in all of its possible forms.

One should be careful, however, with the interpretation of these results.
There is still an ongoing debate of whether eternal inflation is eternal only
in the future or also in the past. In order to understand what is going on,
let us consider any particular time-like geodesic line at the stage of inflation.
One can show that for any given observer following this geodesic, the dura-
tion ti of the stage of inflation on this geodesic will be finite. One the other
hand, eternal inflation implies that if one takes all such geodesics and cal-
culate the time ti for each of them, then there will be no upper bound for
ti, i.e. for each time T there will exist geodesics which experience inflation
for a time ti > T . Even though the relative number of long geodesics can be
very small, exponential expansion of space surrounding them will lead to an
eternal exponential growth of the total volume of the inflationary parts of the
universe.

Similarly, if one concentrates on any particular geodesic in the past time
direction, one can prove that it has finite length [56], i.e. inflation in any
particular point of the universe should have a beginning at some time τi.
However, there is no reason to expect that there is an upper bound for all τi
on all geodesics. If this upper bound does not exist, then eternal inflation is
eternal not only in the future but also in the past.

In other words, there was a beginning for each part of the universe, and
there will be an end for inflation at any particular point. But there will be
no end for the evolution of the universe as a whole in the eternal inflation
scenario, and at present we do not have any reason to believe that there was a
single beginning of the evolution of the whole universe at some moment t = 0,
which was traditionally associated with the big bang.

To illustrate the process of eternal inflation, we present here the results
of computer simulations of evolution of a system of two scalar fields during
inflation. The field φ is the inflaton field driving inflation; it is shown by the
height of the distribution of the field φ(x, y) in a two-dimensional slice of the
universe. The second field, Φ, determines the type of spontaneous symmetry
breaking which may occur in the theory. We paint the surface in red, green or
blue corresponding to three different minima of the potential of the field Φ.
Different colors correspond to different types of spontaneous symmetry break-
ing, and therefore to different sets of laws of low-energy physics in different
exponentially large parts of the universe.
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Fig. 1.2. Evolution of scalar fields φ and Φ during the process of self-reproduction
of the universe. The height of the distribution shows the value of the field φ which
drives inflation. The surface is painted in red (medium), green (dark) or blue (light)
corresponding to three different minima of the potential of the field Φ. The laws of
low-energy physics are different in the regions of different color. The peaks of the
“mountains” correspond to places where quantum fluctuations bring the scalar fields
back to the Planck density. Each of such places in a certain sense can be considered
as a beginning of a new big bang

In the beginning of the process the whole inflationary domain is red, and
the distribution of both fields is very homogeneous. Then the domain became
exponentially large (but it has the same size in comoving coordinates, as shown
in Fig. 1.2). Each peak of the mountains corresponds to nearly Planckian
density and can be interpreted as a beginning of a new “big bang.” The laws
of physics are rapidly changing there, as indicated by changing colors, but
they become fixed in the parts of the universe where the field φ becomes small.
These parts correspond to valleys in Fig. 1.2. Thus quantum fluctuations of the
scalar fields divide the universe into exponentially large domains with different
laws of low-energy physics, and with different values of energy density.

Eternal inflation scenario was extensively studied during the last 20 years. I
should mention, in particular, the discovery of the topological eternal inflation
[57] and the calculation of the fractal dimension of the universe [58, 55]. The
most interesting consequences of the theory of eternal inflation are related
to the theory of inflationary multiverse and string theory landscape. We will
discuss these subjects in Sect. 1.14.
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1.7 Inflation and Observations

Inflation is not just an interesting theory that can resolve many difficult prob-
lems of the standard big bang cosmology. This theory made several predictions
which can be tested by cosmological observations. Here are the most impor-
tant predictions:

(1) The universe must be flat. In most models Ωtotal = 1 ± 10−4.
(2) Perturbations of the metric produced during inflation are adiabatic.
(3) Inflationary perturbations have a nearly flat spectrum. In most inflation-

ary models the spectral index ns = 1 ± 0.2 (ns = 1 means totally flat).
(4) The spectrum of inflationary perturbations should be slightly non-flat. (It

is very difficult to construct a model with ns = 1.)
(5) These perturbations are gaussian.
(6) Perturbations of the metric could be scalar, vector or tensor. Inflation

mostly produces scalar perturbations, but it also produces tensor pertur-
bations with a nearly flat spectrum, and it does not produce vector per-
turbations. There are certain relations between the properties of scalar
and tensor perturbations produced by inflation.

(7) Inflationary perturbations produce specific peaks in the spectrum of CMB
radiation. (For a simple pedagogical interpretation of this effect see e.g.
[59]; a detailed theoretical description can be found in [60].)

It is possible to violate each of these predictions if one makes the infla-
tionary theory sufficiently complicated. For example, it is possible to produce
vector perturbations of the metric in the models where cosmic strings are
produced at the end of inflation, which is the case in some versions of hy-
brid inflation. It is possible to have an open or closed inflationary universe, or
even a small periodic inflationary universe, it is possible to have models with
non-gaussian isocurvature fluctuations with a non-flat spectrum. However, it
is difficult to do so, and most of the inflationary models obey the simple rules
given above.

It is not easy to test all of these predictions. The major breakthrough
in this direction was achieved due to the recent measurements of the CMB
anisotropy. The latest results based on the WMAP experiment, in combi-
nation with the Sloan Digital Sky Survey, are consistent with predictions of
the simplest inflationary models with adiabatic gaussian perturbations, with
Ω = 1.003 ± 0.01, and ns = 0.95 ± 0.016 [42].

There are still some question marks to be examined, such as an unex-
pectedly small anisotropy of the CMB at large angles [41, 61] and possible
correlations between low multipoles; for a recent discussion see e.g. [62, 63]
and references therein (Fig. 1.3).

The observational status and interpretation of these effects is still uncer-
tain, but if one takes these effects seriously, one may try to look for some
theoretical explanations. For example, there are several ways to suppress the
large angle anisotropy, see e.g. [64]. The situation with correlations between



1 Inflationary Cosmology 19

Fig. 1.3. CMB data (WMAP3, BOOMERANG03, ACBAR) versus the predictions
of one of the simplest inflationary models with Ω = 1 (solid red line), according to
[43]

low multipoles requires more work. In particular, it would be interesting to
study effects related to relatively light domain walls [65, 66, 67]. Another pos-
sibility is to analyze the possible effects on the CMB anisotropy which can be
produced by the cosmic web structure of the perturbations in the curvaton
scenario [46]. Some other possibilities are mentioned in [63]. One way or an-
other, it is quite significant that all proposed explanations of these anomalies
are based on inflationary cosmology.

One of the interesting issues to be probed by future observations is the pos-
sible existence of gravitational waves produced during inflation. The present
upper bound on the tensor to scalar ratio r is not very strict, r � 0.3. How-
ever, new observations may either find the tensor modes or push the bound
on r much further, towards r � 10−2 or even r � 10−3.

In the simplest monomial versions of chaotic inflation with V ∼ φn one
find the following (approximate) result: r = 4n/N . Here N is the number
of e-folds of inflation corresponding to the wavelength equal to the present
size of the observable part of our universe; typically N can be in the range
of 50–60; its value depends on the mechanism of reheating. For the simplest
model with n = 2 and N ∼ 60 one has r ∼ 0.13 − 0.14. On the other hand,
for most of the other models, including the original version of new inflation,
hybrid inflation, and many versions of string theory inflation, r is extremely
small, which makes the observation of gravitational waves in such models very
difficult.

One may wonder whether there are any sufficiently simple and natural
models with intermediate values of r? This is an important question for those
who are planning a new generation of CMB experiments. The answer to this
question is positive: In the versions of chaotic inflation with potentials like
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±m2φ2 + λφ4, as well as in the natural inflation scenario, one can easily
obtain any value of r from 0.3 to 10−2. I will illustrate it with two figures.
The first one shows the graph of possible values of ns and r in the standard
symmetry breaking model with the potential

V = −m2φ2/2 + λφ4/4 +m4/4λ =
λ

4
(φ2 − v2)2 , (1.23)

where v = m/
√
λ is the amplitude of spontaneous symmetry breaking.

If v is very large, v � 102, inflation occurs near the minimum of the
potential, and all properties of inflation are the same as in the simplest chaotic
inflation model with quadratic potential m2φ2. If v � 10, inflation occurs as
in the theory λφ4/4, which leads to r ∼ 0.28. If v takes some intermediate
values, such as v = O(10), then two different inflationary regimes are possible
in this model: at large φ and at small φ. In the first case r interpolates between
its value in the theory λφ4/4 and the theorym2φ2 (i.e. between 0.28 and 0.14).
In the second case, r can take any value from 0.14 to 10−2, see Fig. 1.4 [68, 69].

If one considers chaotic inflation with the potential including terms φ2, φ3

and φ4, one can considerably alter the properties of inflationary perturbations
[70]. Depending on the values of parameters, initial conditions and the required
number of e-foldings N , this relatively simple class of models covers almost
all parts of the area in the (r, ns) plane allowed by the latest observational
data [71], see Fig. 1.5.

Fig. 1.4. Possible values of r and ns in the theory λ
4
(φ2 − v2)2 for different initial

conditions and different v, for N = 60. In the small v limit, the model has the same
predictions as the theory λφ4/4. In the large v limit it has the same predictions as
the theory m2φ2. The upper branch, above the first star from below (marked as φ2),
corresponds to inflation which occurs while the field rolls down from large φ; the
lower branch corresponds to the motion from φ = 0
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Fig. 1.5. Possible values of r and ns for chaotic inflation with a potential including
terms φ2, φ3 and φ4 for N = 50, according to [71]. The color-filled areas correspond
to 12%, 27%, 45%, 68% and 95% confidence levels according to the WMAP3 and
SDSS data

Note that for all versions of the model shown in Figs. 1.4 and 1.5 the range
of the cosmological evolution of the fields is Δφ > 1, so formally these models
can be called the large field models. And yet they have dramatically different
properties, which do not fit into the often-used scheme dividing all models
into small field models, large field models and hybrid inflation models.

1.8 Alternatives to Inflation?

The inflationary scenario is very versatile, and now, after 25 years of persistent
attempts of many physicists to propose an alternative to inflation, we still do
not know any other way to construct a consistent cosmological theory. Indeed,
in order to compete with inflation a new theory should make similar predic-
tions and should offer an alternative solution to many difficult cosmological
problems. Let us look at these problems before starting a discussion.

(1) The homogeneity problem. Before even starting an investigation of den-
sity perturbations and structure formation, one should explain why the
universe is nearly homogeneous on the horizon scale.

(2) The isotropy problem. We need to understand why all directions in the
universe are similar to each other, why there is no overall rotation of the
universe, etc...
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(3) The horizon problem. This one is closely related to the homogeneity prob-
lem. If different parts of the universe have not been in a causal contact
when the universe was born, why do they look so similar?

(4) The flatness problem. Why Ω ≈ 1? Why parallel lines do not intersect?
(5) The total entropy problem. The total entropy of the observable part of

the universe is greater than 1087. Where did this huge number come from?
Note that the lifetime of a closed universe filled with hot gas with total
entropy S is S2/3 × 10−43 s [14]. Thus S must be huge. Why?

(6) The total mass problem. The total mass of the observable part of the uni-
verse has mass ∼ 1060MPl. Note also that the lifetime of a closed universe
filled with nonrelativistic particles of total mass M is M

MP
× 10−43 s. Thus

M must be huge. But why?
(7) The structure formation problem. If we manage to explain the homo-

geneity of the universe, how can we explain the origin of inhomogeneities
required for the large scale structure formation?

(8) The monopole problem, gravitino problem, etc.

This list is very long. That is why it was not easy to propose any al-
ternative to inflation even before we learned that Ω ≈ 1, ns ≈ 1, and that
the perturbations responsible for galaxy formation are mostly adiabatic, in
agreement with the predictions of the simplest inflationary models.

There were many attempts to propose an alternative to inflation in re-
cent years. In general, this could be a very healthy tendency. If one of these
attempts will succeed, it will be of great importance. If none of them are suc-
cessful, it will be an additional demonstration of the advantages of inflationary
cosmology. However, since the stakes are high, we are witnessing a growing
number of premature announcements of success in developing an alternative
cosmological theory (see Chap. 11 in this volume for an alternative discussion).

1.8.1 Cosmic Strings and Textures

Fifteen years ago the models of structure formation due to topological de-
fects or textures were advertised in popular press as the models that “match
the explanatory triumphs of inflation while rectifying its major failings” [72].
However, it was clear from the very beginning that these theories at best
could solve only one problem (structure formation) out of the eight problems
mentioned above. The true question was not whether one can replace inflation
by the theory of cosmic strings/textures, but whether inflation with cosmic
strings/textures is better than inflation without cosmic strings/textures. Re-
cent observational data favor the simplest version of inflationary theory, with-
out topological defects, or with an extremely small (few percent) admixture
of the effects due to cosmic strings.

1.8.2 Pre-big Bang

An attempt to avoid the use of the standard inflationary mechanism (though
still use a stage of inflation prior to the big bang) was made in the pre-big bang
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scenario [73]. This scenario is based on the assumption that eventually one
will find a solution of the cosmological singularity problem and learn how one
could transfer small perturbations of the metric through the singularity. This
problem still remains unsolved, see e.g. [74]. Moreover, a detailed investigation
of the homogeneity, isotropy and flatness problems in the pre-big bang scenario
demonstrated that the stage of the pre-big bang inflation introduced in [73]
is insufficient to solve the major cosmological problems [75].

1.8.3 Ekpyrotic/Cyclic Scenario

A similar situation emerged with the introduction of the ekpyrotic scenario
[76]. The original version of this theory claimed that this scenario can solve
all cosmological problems without using the stage of inflation, i.e. without a
prolonged stage of an accelerated expansion of the universe, which was called
in [76] “superluminal expansion.” However, the original ekpyrotic scenario
contained many significant errors and did not work. It is sufficient to say that
instead of the big bang expected in [76], there was a big crunch [77, 78].

The ekpyrotic scenario was replaced by the cyclic scenario, which used
an infinite number of periods of expansion and contraction of the universe
[79]. The origin of the required scalar field potential in this model remains
unclear, and the very existence of the cycles postulated in [79] have not been
demonstrated. When we analyzed this scenario using the particular potential
given in [79], and took into account the effect of particle production in the
early universe, we found a very different cosmological regime [80, 81].

The original version of the cyclic scenario relied on the existence of an
infinite number of very long stages of “superluminal expansion,” i.e. inflation,
in order to solve the major cosmological problems. In this sense, the original
version of the cyclic scenario was not a true alternative to inflationary scenario,
but its rather peculiar version. The main difference between the usual inflation
and the cyclic inflation, just as in the case of topological defects and textures,
was the mechanism of generation of density perturbations. However, since the
theory of density perturbations in cyclic inflation requires a solution of the
cosmological singularity problem [82, 83], it is difficult to say anything definite
about it.

Most of the authors believe that even if the singularity problem were
solved, the spectrum of perturbations in the standard version of this sce-
nario involving only one scalar field after the singularity would be very non-
flat. One may introduce more complicated versions of this scenario, involving
many scalar fields. In this case, under certain assumptions about the way the
universe passes through the singularity, one may find a special regime where
isocurvature perturbations in one of these fields are converted into adiabatic
perturbations with a nearly flat spectrum. A recent discussion of this scenario
shows that this regime requires an extreme fine-tuning of initial conditions
[84]. Moreover, the instability of the solutions in this regime, which was found
in [84], implies that it may be very easy to switch from one regime to another
under the influence of small perturbations. This may lead to a domain-like
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structure of the universe and large perturbations of the metric [85]. If this is
the case, no fine-tuning of initial conditions could help.

One of the latest versions of the cyclic scenario attempted to avoid the long
stage of accelerated expansion (low-scale inflation) and to make the universe
homogeneous using some specific features of the ekpyrotic collapse [86]. The
authors assumed that the universe was homogeneous prior to its collapse on
the scale that becomes greater than the scale of the observable part of the
universe during the next cycle. Under this assumption, they argued that the
perturbations of metric produced during each subsequent cycle do not interfere
with the perturbations of metric produced in the next cycle. As a result,
if the universe has been homogeneous from the very beginning, it remains
homogeneous on the cosmologically interesting scales in all subsequent cycles.

Is this a real solution of the homogeneity problem? The initial size of the
part of the universe, which is required to be homogeneous in this scenario
prior to the collapse, was many orders of magnitude greater than the Planck
scale. How homogeneous should it be? If we want the inhomogeneities to be
produced due to amplification of quantum perturbations, then the initial clas-
sical perturbations of the field responsible for the isocurvature perturbations
must be incredibly small, smaller than its quantum fluctuations. Otherwise
the initial classical inhomogeneities of this field will be amplified by the same
processes that amplified its quantum fluctuations and will dominate the spec-
trum of perturbations after the bounce [77]. This problem is closely related
to the problem mentioned above [84, 85].

Recently there was an attempt to revive the original (non-cyclic) version of
the ekpyrotic scenario by involving a nonsingular bounce. This regime requires
violating the null energy condition [78], which usually leads to a catastrophic
vacuum instability and/or causality violation. One may hope to avoid these
problems in the ghost condensate theory [87]; see a series of recent papers on
this subject [88, 89, 90]. However, even the authors of the ghost condensate
theory emphasize that a fully consistent version of this theory is yet to be
constructed [91], and that it may be incompatible with basic gravitational
principles [92].

In addition, just as the ekpyrotic scenario with the singularity [84], the
new version of the ekpyrotic theory requires two fields, and a conversion of
the isocurvature perturbations to adiabatic perturbations [93]. Once again, the
initial state of the universe in this scenario must be extremely homogeneous:
the initial classical perturbations of the field responsible for the isocurvature
perturbations must be smaller than its quantum fluctuations. It does not seem
possible to solve this problem without further extending this exotic model and
making it a part of an even more complicated scenario.

1.8.4 String Gas Scenario

Another attempt to solve some of the cosmological problems without using
inflation has been proposed by Brandenberger et al. in the context of string
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gas cosmology [94, 95]. The authors admitted that their model did not solve
the flatness problem, so it was not a real alternative to inflation. However, they
claimed that their model provided a non-inflationary mechanism of production
of metric perturbations with a flat spectrum.

It would be quite interesting and important to have a new mechanism of
generation of metric perturbations based on string theory. Unfortunately, a
detailed analysis of the scenario proposed in [94, 95] revealed that some of its
essential ingredients were either unproven or incorrect [96]. For example, the
theory of generation of metric perturbations used in [94] was formulated in
the Einstein frame, where the usual Einstein equations are valid. On the other
hand, the bounce and the string gas cosmology were described in string frame.
Then both of these results were combined without distinguishing between
different frames and a proper translation from one frame to another.

If one makes all calculations carefully (ignoring other unsolved problems
of this scenario), one finds that the perturbations generated in their scenario
have a blue spectrum with n = 5, which is ruled out by cosmological observa-
tions [96]. After the conference “Inflation + 25” where this issue was actively
debated, the authors of [94, 95] issued two new papers reiterating their claims
[97, 98], but eventually they agreed with our conclusion expressed at this con-
ference: the spectrum of perturbations of metric in this scenario is blue, with
n = 5, see (43) of [99]. This rules out the models proposed in [94, 95, 97, 98].
Nevertheless, as often happens with various alternatives to inflation, some of
the authors of [94, 95, 97, 98] still claim that their basic scenario remains
intact and propose its further modifications [99, 100, 101].

1.8.5 Mirage Bounce

Paradoxes with the choice of frames appear in other works on bounces in
cosmology as well. For example, in [102] it was claimed that one can solve
all cosmological problems in the context of mirage cosmology. However, as
explained in [103], in the Einstein frame in this scenario the universe does not
evolve at all.

To clarify the situation without going to technical details, one may con-
sider the following analogy. We know that all particles in our body get their
masses due to spontaneous symmetry breaking in the standard model. Sup-
pose that the Higgs field initially was out of the minimum of its potential, and
experienced oscillations. During these oscillations the masses of electrons and
protons also oscillated. If one measures the size of the universe in units of the
(time-dependent) Compton wavelengths of the electron (which could seem to
be a good idea), one would think that the scale factor of the universe oscillates
(bounces) with the frequency equal to the Higgs boson mass. And yet, this
“cosmological evolution” with bounces of the scale factor is an illusion, which
disappears if one measures the distances in units of the Planck length M−1

p

(the Einstein frame).
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In addition, the mechanism of generation of density perturbations used
in [102] was borrowed from the paper by Hollands and Wald [104], who sug-
gested yet another alternative mechanism of generation of metric perturba-
tions. However, this mechanism requires investigating thermal processes at
the density 90 orders of magnitude greater than the Planck density, which
makes all calculations unreliable [23].

1.8.6 Bounce in Quantum Cosmology

Finally, I should mention [105], where it was argued that under certain condi-
tions one can have a bouncing universe and produce metric perturbations with
a flat spectrum in the context of quantum cosmology. However, the model of
[105] does not solve the flatness and homogeneity problems. A more detailed
analysis revealed that the wave function of the universe proposed in [105]
makes the probability of a bounce of a large universe exponentially small
[106]. The authors are working on a modification of their model, which, as
they hope, will not suffer from this problem.

To conclude, at the moment it is hard to see any real alternative to infla-
tionary cosmology, despite an active search for such alternatives. All of the
proposed alternatives are based on various attempts to solve the singular-
ity problem: one should either construct a bouncing nonsingular cosmological
solution, or learn what happens to the universe when it goes through the sin-
gularity. This problem bothered cosmologists for nearly a century, so it would
be great to find its solution, quite independently of the possibility to find an
alternative to inflation. None of the proposed alternatives can be consistently
formulated until this problem is solved.

In this respect, inflationary theory has a very important advantage: it
works practically independently of the solution of the singularity problem. It
can work equally well after the singularity, or after the bounce, or after the
quantum creation of the universe. This fact is especially clear in the eternal
inflation scenario: eternal inflation makes the processes which occurred near
the big bang practically irrelevant for the subsequent evolution of the universe.

1.9 Naturalness of Chaotic Inflation

Now we will return to the discussion of various versions of inflationary theory.
Most of them are based on the idea of chaotic initial conditions, which is the
trademark of the chaotic inflation scenario. In the simplest versions of chaotic
inflation scenario with the potentials V ∼ φn, the process of inflation occurs
at φ > 1, in Planck units. Meanwhile, there are many other models where
inflation may occur at φ� 1.

There are several reasons why this difference may be important. First of
all, some authors argue that the generic expression for the effective potential
can be cast in the form
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V (φ) = V0 + αφ+
m2

2
φ2 +

β

3
φ3 +

λ

4
φ4 +

∑
n

λn
φ4+n

MPl
n , (1.24)

and then they assume that generically λn = O(1), see e.g. (128) in [107]. If
this assumption were correct, one would have little control over the behavior
of V (φ) at φ > MPl.

Here we have written MPl explicitly, to expose the implicit assumption
made in [107]. Why do we writeMPl in the denominator, instead of 1000MPl?
An intuitive reason is that quantum gravity is non-renormalizable, so one
should introduce a cut-off at momenta k ∼MPl. This is a reasonable assump-
tion, but it does not imply the validity of (1.24). Indeed, the constant part
of the scalar field appears in the gravitational diagrams not directly, but only
via its effective potential V (φ) and the masses of particles interacting with
the scalar field φ. As a result, the terms induced by quantum gravity effects
are suppressed not by factors φn

MPl
n , but by factors V

MPl
4 and m2(φ)

MPl
2 [14]. Con-

sequently, quantum gravity corrections to V (φ) become large not at φ > MPl,
as one could infer from (1.24), but only at super-Planckian energy density,
or for super-Planckian masses. This justifies our use of the simplest chaotic
inflation models.

The simplest way to understand this argument is to consider the case
where the potential of the field φ is a constant, V = V0. Then the theory has
a shift symmetry, φ → φ + c. This symmetry is not broken by perturbative
quantum gravity corrections, so no such terms as

∑
n λn

φ4+n

MPl
n are generated.

This symmetry may be broken by nonperturbative quantum gravity effects
(wormholes? virtual black holes?), but such effects, even if they exist, can be
made exponentially small [108].

On the other hand, one may still wonder whether there is any reason not to
add terms like λn φ

4+n

MPl
n with λ = O(1) to the theory. Here I will make a simple

argument which may help to explain it. I am not sure whether this argument
should be taken too seriously, but I find it quite amusing and unexpected.

Let us consider a theory with the potential

V (φ) = V0 + αφ+
m2

2
φ2 + λn

φ4+n

MPl
n +

ξ

2
Rφ2 . (1.25)

The last term is added to increase the generality of our discussion by consid-
ering fields non-minimally coupled to gravity, including the conformal fields
with ξ = 1/6.

Suppose first that m2 = λn = 0. Then the theory can describe our ground
state with a slowly changing vacuum energy only if V0 + αφ < 10−120, α <
10−120 [109]. This theory cannot describe inflation because α is too small to
produce the required density perturbations.

Let us now add the quadratic term. Without loss of generality one can
make a redefinition of the field φ and V0 to remove the linear term:

V (φ) = V0 +
m2

2
φ2 . (1.26)
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This is the simplest version of chaotic inflation. The maximal value of the field
φ in this scenario is given by the condition m2

2 φ
2 ∼ 1 (Planckian density), so

the maximal amount of inflation in this model is ∼ eφ2/4 ∼ e1/m2
.

If, instead, we considered a more general case with the three terms m2

2 φ
2 +

λn
φ4+n

MPl
n + ξ

2Rφ
2, the maximal amount of inflation would be

N < exp
[
min{m−2, λ−2/n

n , ξ−1}
]
. (1.27)

The last constraint appears because the effective gravitational constant be-
comes singular at φ2 ∼ ξ−1.

Thus, if any of the constants λ2/n
n or ξ is greater thanm2, the total amount

of inflation will be exponentially smaller than in the simplest theory m2

2 φ
2.

Therefore one could argue that if one has a possibility to choose between dif-
ferent inflationary theories, as in the string theory landscape, then the largest
fraction of the volume of the universe will be in the parts of the multiverse
with λ2/n

n , ξ � m2. One can easily check that for λ2/n
n , ξ � m2 the higher

order terms can be ignored at the last stages of inflation, where φ = O(1). In
other words, the theory behaves as purely quadratic during the last stages of
inflation when the observable part of the universe was formed.

One can come to the same conclusion if one takes into account only the
part of inflation at smaller values of the field φ, when the stage of eternal
inflation is over. This suggests that the simplest version of chaotic inflation
scenario is the best.

Of course, this is just an argument. Our main goal here was not to promote
the model m2

2 φ
2, but to demonstrate that the considerations of naturalness

(e.g. an assumption that all λn should be large) depend quite crucially on the
underlying assumptions. In the example given above, a very simple change of
these assumptions (the emphasis on the total volume of the post-inflationary
universe) was sufficient to explain the naturalness of the simplest model m

2

2 φ
2.

However, the situation may become quite different if instead of the simplest
theory of a scalar field combined with general relativity one starts to investi-
gate more complicated models, such as supergravity and string theory.

1.10 Chaotic Inflation in Supergravity

In the simplest models of inflation, the field φ itself does not have any direct
physical meaning; everything depends only on its functions such as the masses
of particles and the scalar potential. However, in more complicated theories
the scalar field φ itself may have a physical (geometrical) meaning, which may
constrain the possible values of the fields during inflation. The most important
example is given by N = 1 supergravity.

The F-term potential of the complex scalar field Φ in supergravity is given
by the well-known expression (in units MPl = 1):
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V = eK
[
K−1

ΦΦ̄
|DΦW |2 − 3|W |2] . (1.28)

Here W (Φ) is the superpotential, Φ denotes the scalar component of the su-
perfield Φ; DΦW = ∂W

∂Φ + ∂K
∂ΦW . The kinetic term of the scalar field is given

by KΦΦ̄ ∂μΦ∂μΦ̄. The standard textbook choice of the Kähler potential cor-
responding to the canonically normalized fields Φ and Φ̄ is K = ΦΦ̄, so that
KΦΦ̄ = 1.

This immediately reveals a problem: At Φ > 1 the potential is extremely
steep. It blows up as e|Φ|2 , which makes it very difficult to realize chaotic
inflation in supergravity at φ ≡ √

2|Φ| > 1. Moreover, the problem persists
even at small φ. If, for example, one considers the simplest case when there
are many other scalar fields in the theory and the superpotential does not
depend on the inflaton field φ, then (1.28) implies that at φ� 1 the effective
mass of the inflaton field is m2

φ = 3H2. This violates the condition m2
φ � H2

required for successful slow-roll inflation (the so-called η-problem).
The major progress in SUGRA inflation during the last decade was

achieved in the context of the models of the hybrid inflation type, where
inflation may occur at φ � 1. Among the best models are the F-term infla-
tion, where different contributions to the effective mass term m2

φ cancel [110],
and D-term inflation [111], where the dangerous term eK does not affect the
potential in the inflaton direction. A detailed discussion of various versions of
hybrid inflation in supersymmetric theories can be found in the Chaps. 3 and 4
in this volume, see also [107, 112, 113].

However, hybrid inflation occurs only on a relatively small energy scale,
and many of its versions do not lead to eternal inflation. Therefore it would
be nice to obtain inflation in a context of a more general class of supergravity
models.

This goal seemed very difficult to achieve; it took almost 20 years to find
a natural realization of the chaotic inflation model in supergravity. Kawasaki,
Yamaguchi and Yanagida suggested to take the Kähler potential

K =
1
2
(Φ + Φ̄)2 +XX̄ (1.29)

of the fields Φ and X , with the superpotential mΦX [114].
At first glance, this Kähler potential may seem somewhat unusual. How-

ever, it can be obtained from the standard Kähler potential K = ΦΦ̄+XX̄ by
adding terms Φ2/2 + Φ̄2/2, which do not give any contribution to the kinetic
term of the scalar fields KΦΦ̄ ∂μΦ∂μΦ̄. In other words, the new Kähler poten-
tial, just as the old one, leads to canonical kinetic terms for the fields Φ and
X , so it is as simple and legitimate as the standard textbook Kähler potential.
However, instead of the U(1) symmetry with respect to rotation of the field
Φ in the complex plane, the new Kähler potential has a shift symmetry; it
does not depend on the imaginary part of the field Φ. The shift symmetry is
broken only by the superpotential.

This leads to a profound change of the potential (1.28): the dangerous
term eK continues growing exponentially in the direction (Φ + Φ̄), but it
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remains constant in the direction (Φ − Φ̄). Decomposing the complex field Φ
into two real scalar fields, Φ = 1√

2
(η+ iφ), one can find the resulting potential

V (φ, η,X) for η, |X | � 1:

V =
m2

2
φ2(1 + η2) +m2|X |2 . (1.30)

This potential has a deep valley, with a minimum at η = X = 0. At η, |X | > 1
the potential grows up exponentially. Therefore the fields η and X rapidly fall
down towards η = X = 0, after which the potential for the field φ becomes
V = m2

2 φ
2. This provides a very simple realization of eternal chaotic inflation

scenario in supergravity [114]. This model can be extended to include theories
with different power-law potentials, or models where inflation begins as in the
simplest versions of chaotic inflation scenario, but ends as in new or hybrid
inflation, see e.g. [115, 116].

The existence of the shift symmetry was also the basis of the natural infla-
tion scenario [117]. The basic assumption of this scenario was that the axion
field in the first approximation is massless because the flatness of the axion
direction is protected by U(1) symmetry. Nonperturbative corrections lead
to the axion potential V (φ) = V0(1 + cos(φ/fa)). If the ‘radius’ of the axion
potential fa is sufficiently large, fa � 3, inflation near the top of the potential
becomes possible. For much greater values of fa one can have inflation near
the minimum of the axion potential, where the potential is quadratic [118].

The natural inflation scenario was proposed back in 1990, but until now
all attempts to realize this scenario in supergravity have failed. First of all,
it has been difficult to find theories with large fa. More importantly, it has
been difficult to stabilize the radial part of the axion field. A possible model
of natural inflation in supergravity was constructed only very recently, see
Chap. 4 in this volume.

Unfortunately, we still do not know how one could incorporate the models
discussed in this section in string theory. We will briefly describe some fea-
tures of inflation in string theory, and refer the readers to a more detailed
presentation in Chap. 4 in this volume.

1.11 Towards Inflation in String Theory

1.11.1 de Sitter Vacua in String Theory

For a long time, it had seemed rather difficult to obtain inflation in M/string
theory. The main problem here was the stability of compactification of internal
dimensions. For example, ignoring non-perturbative effects to be discussed
below, a typical effective potential of the effective four-dimensional theory
obtained by compactification in string theory of type IIB can be represented
in the following form:
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V (ϕ, ρ, φ) ∼ e
√

2ϕ−√
6ρ Ṽ (φ) (1.31)

Here ϕ and ρ are canonically normalized fields representing the dilaton field
and the volume of the compactified space; φ stays for all other fields, including
the inflaton field.

If ϕ and ρ were constant, then the potential Ṽ (φ) could drive inflation.
However, this does not happen because of the steep exponent e

√
2ϕ−√

6ρ, which
rapidly pushes the dilaton field ϕ to −∞, and the volume modulus ρ to +∞.
As a result, the radius of compactification becomes infinite; instead of inflat-
ing, four-dimensional space decompactifies and becomes 10-dimensional.

Thus in order to describe inflation one should first learn how to stabilize
the dilaton and the volume modulus. The dilaton stabilization was achieved
in [119]. The most difficult problem was to stabilize the volume. The solution
of this problem was found in [120] (KKLT construction). It consists of two
steps.

First, due to a combination of effects related to the warped geometry of
the compactified space and nonperturbative effects calculated directly in four-
dimensional (instead of being obtained by compactification), it was possible
to obtain a supersymmetric AdS minimum of the effective potential for ρ. In
the original version of the KKLT scenario, it was done in the theory with the
Kähler potential

K = −3 log(ρ+ ρ̄) , (1.32)

and with the nonperturbative superpotential of the form

W =W0 +Ae−aρ , (1.33)

with a = 2π/N . The corresponding effective potential for the complex field
ρ = σ + iα had a minimum at finite, moderately large values of the volume
modulus field σ0, which fixed the volume modulus in a state with a negative
vacuum energy. Then an anti-D3 brane with the positive energy ∼ σ−2 was
added. This addition uplifted the minimum of the potential to the state with
a positive vacuum energy, see Fig. 1.6.

Instead of adding an anti-D3 brane, which explicitly breaks supersymme-
try, one can add a D7 brane with fluxes. This results in the appearance of a
D-term which has a similar dependence on ρ, but leads to spontaneous super-
symmetry breaking [121]. In either case, one ends up with a metastable dS
state which can decay by tunneling and formation of bubbles of 10d space with
vanishing vacuum energy density. The decay rate is extremely small [120], so
for all practical purposes, one obtains an exponentially expanding de Sitter
space with the stabilized volume of the internal space.2

1.11.2 Inflation in String Theory

There are two different versions of string inflation. In the first version, which
we will call modular inflation, the inflaton field is associated with one of the
2 It is also possible to find de Sitter solutions in noncritical string theory [122].
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Fig. 1.6. KKLT potential as a function of σ = Re ρ. The thin green (lower) line
corresponds to the AdS stabilized potential for W0 = −10−4, A = 1, a = 0.1. The
dashed line shows the additional term, which appears either due to the contribution
of a D3 brane or of a D7 brane. The thick black line shows the resulting potential
with a very small but positive value of V in the minimum. The potential is shown
multiplied by 1015

moduli, the scalar fields which are already present in the KKLT construction.
In the second version, the inflaton is related to the distance between branes
moving in the compactified space. (This scenario should not be confused with
inflation in the brane world scenario [123, 124]. This is a separate interesting
subject, which we are not going to discuss in this chapter.)

Modular Inflation

An example of the KKLT-based modular inflation is provided by the racetrack
inflation model of [125]. It uses a slightly more complicated superpotential

W = W0 +Ae−aρ +Be−bρ . (1.34)

The potential of this theory has a saddle point as a function of the real and
the complex part of the volume modulus: it has a local minimum in the di-
rection Re ρ, which is simultaneously a very flat maximum with respect to
Im ρ. Inflation occurs during a slow rolling of the field Im ρ away from this
maximum (i.e. from the saddle point). The existence of this regime requires
a significant fine-tuning of parameters of the superpotential. However, in the
context of the string landscape scenario describing from 10100 to 101000 dif-
ferent vacua (see below), this may not be such a big issue. A nice feature of
this model is that it does not require adding any new branes to the original
KKLT scenario, i.e. it is rather economical (Fig. 1.7.)
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Fig. 1.7. Plot for the potential in the racetrack model (rescaled by 1016). Here X
stays for σ = Re ρ and Y stays for α = Im ρ. Inflation begins in a vicinity of the
saddle point at Xsaddle = 123.22, Ysaddle = 0. Units are MPl = 1

Other interesting models of moduli inflation were developed in [126, 127,
128, 129]. An interesting property of all of these models is the existence of
the regime of eternal slow-roll inflation. This property distinguishes modular
inflation from the brane inflation scenario to be discussed below.

Brane Inflation

During the last few years, there were many suggestions on how to obtain
hybrid inflation in string theory by considering motion of branes in the com-
pactified space, see [130, 131] and references therein. The main problem of
all of these models was the absence of stabilization of the compactified space.
Once this problem was solved for dS space [120], one could try to revisit these
models and develop models of brane inflation compatible with the volume
stabilization.

The first idea [132] was to consider a pair of D3 and anti-D3 branes in
the warped geometry studied in [120]. The role of the inflaton field φ in this
model, which is known as the KKLMMT model, could be played by the in-
terbrane separation. A description of this situation in terms of the effective
four-dimensional supergravity involved Kähler potential

K = −3 log(ρ+ ρ̄− k(φ, φ̄)) , (1.35)

where the function k(φ, φ̄) for the inflaton field φ, at small φ, was taken in the
simplest form k(φ, φ̄) = φφ̄. If one makes the simplest assumption that the
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superpotential does not depend on φ, then the φ dependence of the potential
(1.28) comes from the term eK = (ρ + ρ̄ − φφ̄)−3. Expanding this term near
the stabilization point ρ = ρ0, one finds that the inflaton field has a mass
m2
φ = 2H2. Just like the similar relation m2

φ = 3H2 in the simplest models of
supergravity, this is not what we want for inflation.

One way to solve this problem is to consider φ-dependent superpotentials.
By doing so, one may fine-tune m2

φ to be O(10−2)H2 in a vicinity of the point
where inflation occurs [132]. Whereas fine-tuning is certainly undesirable, in
the context of string cosmology it may not be a serious drawback. Indeed,
if there exist many realizations of string theory (see Sect. 1.14), then one
might argue that all realizations not leading to inflation can be discarded,
because they do not describe a universe in which we could live. This makes
the issue of fine-tuning less problematic. Inflation in the KKLMMT model and
its generalizations were studied by many authors; see Chap. 4 in this volume
and references therein.

Can we avoid fine-tuning altogether? One of the possible ideas is to find
theories with some kind of shift symmetry. Another possibility is to con-
struct something like D-term inflation, where the flatness of the potential is
not spoiled by the term eK . Both of these ideas were combined together in
Ref. [133] based on the model of D3/D7 inflation in string theory [134]. In
this model the Kähler potential is given by

K = −3 log(ρ+ ρ̄) − 1
2
(φ− φ̄)2 , (1.36)

and the superpotential depends only on ρ. The role of the inflaton field is
played by the field s = Reφ, which represents the distance between the D3
and D7 branes. The shift symmetry s→ s+ c in this model is related to the
requirement of unbroken supersymmetry of branes in a BPS state.

The effective potential with respect to the field ρ in this model coincides
with the KKLT potential [120, 121]. The potential is exactly flat in the direc-
tion of the inflaton field s, until one adds a hypermultiplet of other fields φ±,
which break this flatness due to quantum corrections and produce a logarith-
mic potential for the field s. The resulting potential with respect to the fields
s and φ± is very similar to the potential of D-term hybrid inflation [111].

During inflation, φ± = 0, and the field s slowly rolls down to its smaller
values. When it becomes sufficiently small, the theory becomes unstable with
respect to the generation of the field φ+, see Fig. 1.8. The fields s and φ+ roll
down to the KKLT minimum, and inflation ends. For the latest developments
in D3/D7 inflation see [135, 136].

All inflationary models discussed above were formulated in the context
of Type IIB string theory with the KKLT stabilization. A discussion of the
possibility to obtain inflation in the heterotic string theory with stable com-
pactification can be found in [137, 138].

Finally, we should mention that making the effective potential flat is not
the only way to achieve inflation. There are some models with nontrivial
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Fig. 1.8. The inflationary potential as a function of the inflaton field s and Reφ+.
In the beginning, the field s rolls along the valley φ+ = 0, and then it falls down to
the KKLT minimum

kinetic terms where inflation may occur even without any potential [139].
One may also consider models with steep potentials but with anomalously
large kinetic terms for the scalar fields see e.g. [140]. In application to string
theory, such models, called “DBI inflation,” were developed in [141].

In contrast to the moduli inflation, none of the existing versions of the
brane inflation allow the slow-roll eternal inflation [142].

1.12 Scale of Inflation, the Gravitino Mass,
and the Amplitude of the Gravitational Waves

So far, we did not discuss the relation of the new class of models with particle
phenomenology. This relation is rather unexpected and may impose strong
constraints on particle phenomenology and on inflationary models: In the
simplest models based on the KKLT mechanism the Hubble constant H and
the inflaton mass mφ are smaller than the gravitino mass [143],

mφ � H � m3/2 . (1.37)

The reason for the constraint H � m3/2 is that the height of the barrier
stabilizing the KKLT minimum is O(m2

3/2). Adding a large vacuum energy
density to the KKLT potential, which is required for inflation, may destabilize
it, see Fig. 1.9. The constraint mφ � H is a consequence of the slow-roll
conditions.
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Fig. 1.9. The lowest curve with dS minimum is the one from the KKLT model. The
height of the barrier in this potential is of the order m2

3/2. The second line shows the
σ-dependence of the inflaton potential. When one adds it to the theory, it always
appears divided by σn, where in the simplest cases n = 2 or 3. Therefore an addition
of the inflationary potential lifts up the potential at small σ. The top curve shows
that when the inflation potential becomes too large, the barrier disappears, and the
internal space decompactifies. This explains the origin of the constraint H � m3/2

Therefore if one believes in the standard SUSY phenomenology with
m3/2 � O(1) TeV, one should find a realistic particle physics model where
inflation occurs at a density at least 30 orders of magnitude below the Planck
energy density. Such models are possible, but their parameters should be sub-
stantially different from the parameters used in all presently existing models
of string theory inflation.

An interesting observational consequence of this result is that the ampli-
tude of the gravitational waves in all string inflation models of this type should
be extremely small. Indeed, according to (1.21), one has r ≈ 3 × 107 V ≈
108 H2, which implies that

r � 108 m2
3/2 , (1.38)

in Planck units. In particular, for m3/2 � 1 TeV ∼ 4 × 10−16 Mp, which is in
the range most often discussed by SUSY phenomenology, one has [144]

r � 10−24 . (1.39)

If CMB experiments find that r � 10−2, then this will imply, in the class of
theories described above, that

m3/2 � 10−5 Mp ∼ 2.4 × 1013 GeV , (1.40)

which is 10 orders of magnitude greater than the standard gravitino mass
range discussed by particle phenomenologists.
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There are several different ways to address this problem. First of all, one
may try to construct realistic particle physics models with superheavy grav-
itinos [145, 146].

Another possibility is to consider models with the racetrack superpotential
containing at least two exponents (1.34) and find parameters such that the
supersymmetric minimum of the potential even before the uplifting occurs at
zero energy density [143], which would mean m3/2 = 0, see Fig. 1.10. Then,
by a slight change of parameters one can get the gravitino mass squared much
smaller than the height of the barrier, which removes the constraintH � m3/2.

Note, however, that in order to have H2 ∼ V ∼ 10−10 with m3/2 � 1
TeV ∼ 4 × 10−16 Mp in the model of [143] one would need to fine-tune the
parameters of the theory with an incredible precision. This observation further
strengthens the results of [147, 148], which imply that the tensor perturbations
produced in all known versions of string theory inflation are undetectably
small.

One could argue that since the existing versions of string theory inflation
predict tensor modes with an extremely small amplitude, there is no sense to
even try to detect them. From our perspective, however, the attitude should
be opposite. There is a class of inflationary models that predict r in the range
from 0.3 to 10−2, see Sect. 1.7, so it makes a lot of sense to test this range of
r even though the corresponding models have not been constructed as yet in
the context of string theory.
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Fig. 1.10. The potential in the theory (1.34) for A = 1, B = −5, a = 2π/100, b =
2π/50, W0 = −0.05. A Minkowski minimum at V = 0 stabilizes the volume at
σ0 ≈ 37. The height of the barrier in this model is not correlated with the gravitino
mass, which vanishes if the system is trapped in Minkowski vacuum. Therefore, in
this model one can avoid the constraint H � m3/2 [143]
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If the tensor modes is found, the resulting situation will be similar to the
situation with the discovery of the acceleration of the universe. This discovery
initially puzzled string theorists, since none of the versions of string theory
which existed 5 years ago could describe an accelerating universe in a stable
vacuum state with a positive energy density. Eventually this problem was
resolved with the development of the KKLT construction.

A possible discovery of tensor modes could lead to another constructive
crisis since it may rule out many existing versions of string inflation and string
phenomenology, and it may imply that the gravitino must be superheavy.
Thus, investigation of gravitational waves produced during inflation may serve
as a unique source of information about string theory and fundamental physics
in general [144].

1.13 Initial Conditions for the Low-Scale Inflation
and Topology of the Universe

One of the advantages of the simplest versions of the chaotic inflation scenario
is that inflation may begin in the universe immediately after its creation at
the largest possible energy density M4

Pl, of a smallest possible size (Planck
length), with the smallest possible mass M ∼ MPl and with the smallest
possible entropy S = O(1). This provides a true solution to the flatness,
horizon, homogeneity, mass and entropy problems [14].

Meanwhile, in the new inflation scenario (more accurately, in the hilltop
version of the chaotic inflation scenario), inflation occurs on the mass scale 3
orders of magnitude below MPl, when the total size of the universe was very
large. If, for example, the universe is closed, its total mass at the beginning
of new inflation must be greater than 106MPl, and its total entropy must
be greater than 109. In other words, in order to explain why the entropy
of the universe at present is greater than 1087 one should assume that it
was extremely large from the very beginning. Then it becomes difficult to
understand why such a large universe was homogeneous. This does not look
like a real solution of the problem of initial conditions.

Thus one may wonder whether it possible to solve the problem of initial
conditions for the low-scale inflation? The answer to this question is positive
though perhaps somewhat unexpected: the simplest way to solve the problem
of initial conditions for the low-scale inflation is to consider a compact flat
or open universe with nontrivial topology (usual flat or open universes are
infinite). The universe may initially look like a nearly homogeneous torus of
a Planckian size containing just one or two photons or gravitons. It can be
shown that such a universe continues expanding and remains homogeneous
until the onset of inflation, even if inflation occurs only on a very low energy
scale [149, 150, 151, 152, 153].

Consider, e.g. a flat compact universe having the topology of a torus, S3
1 ,

ds2 = dt2 − a2i (t) dx2
i (1.41)
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with identification xi + 1 = xi for each of the three dimensions. Suppose for
simplicity that a1 = a2 = a3 = a(t). In this case the curvature of the universe
and the Einstein equations written in terms of a(t) will be the same as in
the infinite flat Friedmann universe with metric ds2 = dt2 − a2(t) dx2. In our
notation, the scale factor a(t) is equal to the size of the universe in Planck
units M−1

p = 1.
Let us assume, that at the Planck time tp ∼ M−1

Pl = 1 the universe was
radiation dominated, V � T 4 = O(1). Let us also assume that at the Planck
time the total size of the box was Planckian, a(tp) = O(1). In such case,
the whole universe initially contained only O(1) relativistic particles such as
photons or gravitons, so that the total entropy of the whole universe was O(1).

The size of the universe dominated by relativistic particles was growing
as a(t) ∼ √

t, whereas the mean free path of the gravitons was growing as
H−1 ∼ t. If the initial size of the universe was O(1), then at the time t � 1
each particle (or a gravitational perturbation of the metric) within one cos-
mological time would run all over the torus many times, appearing in all of
its parts with nearly equal probability. This effect, called “chaotic mixing,”
should lead to a rapid homogenization of the universe [150, 151]. Note, that to
achieve a modest degree of homogeneity required for inflation to start when
the density of ordinary matter drops down, we do not even need chaotic mix-
ing. Indeed, density perturbations do not grow in a universe dominated by
ultrarelativistic particles if the size of the universe is smaller than H−1. This
is exactly what happens in our model. Therefore the universe should remain
relatively homogeneous until the thermal energy density drops below V and
inflation begins. And once it happens, the universe rapidly becomes very ho-
mogeneous.

Thus we see that in this scenario, just as in the simplest chaotic inflation
scenario, inflation begins if we had a sufficiently homogeneous domain of the
smallest possible size (Planck scale), with the smallest possible mass (Planck
mass), and with the total entropy O(1). The only additional requirement is
that this domain should have identified sides, in order to make a flat or open
universe compact. We see no reason to expect that the probability of formation
of such domains is strongly suppressed.

One can come to a similar conclusion from a completely different point
of view. The investigation of the quantum creation of a closed or an infinite
open inflationary universe with V � 1 shows that this process is forbidden
at the classical level, and therefore it occurs only due to tunneling. As a
result, the probability of this process is exponentially suppressed [17, 18, 20].
Meanwhile, creation of the flat or open universe is possible without any need
for the tunneling, and therefore there is no exponential suppression for the
probability of quantum creation of a topologically nontrivial compact flat or
open inflationary universe [149, 152, 153].

These results suggest that if inflation can occur only much below the
Planck density, then the compact topologically nontrivial flat or open uni-
verses should be much more probable than the standard Friedmann universes
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described in every textbook on cosmology. This possibility is quite natural in
the context of string theory, where all internal dimensions are supposed to
be compact. Note, however, that if the stage of inflation is sufficiently long,
it should make the observable part of the universe so large that its topology
does not affect observational data.

The problem of initial conditions in string cosmology has several other
interesting features. The most important one is the existence of an enormously
large number of metastable de Sitter vacuum states, which makes the stage of
exponential expansion of the universe almost inevitable. We will discuss this
issue in the next section.

1.14 Inflationary Multiverse, String Theory Landscape
and the Anthropic Principle

For many decades, people have tried to explain strange correlations between
the properties of our universe, the masses of elementary particles, their cou-
pling constants, and the fact of our existence. We know that we could not
live in a five-dimensional universe, or in a universe where the electromagnetic
coupling constant, or the masses of electrons and protons would be just a few
times greater or smaller than their present values. These and other similar
observations have formed the basis for the anthropic principle. However, for
a long time many scientists believed that the universe was given to us as a
single copy, and therefore speculations about these magic coincidences could
not have any scientific meaning. Moreover, it would require a wild stretch of
imagination and a certain degree of arrogance to assume that somebody was
creating one universe after another, changing their parameters and fine-tuning
their design, doing all of that for the sole purpose of making the universe suit-
able for our existence.

The situation changed dramatically with the invention of inflationary cos-
mology. It was realized that inflation may divide our universe into many expo-
nentially large domains corresponding to different metastable vacuum states,
forming a huge inflationary multiverse [52, 54, 154]. The total number of such
vacuum states in string theory can be enormously large, in the range of 10100

or 101000 [120, 155, 156, 157]. A combination of these two facts gave rise to
what the experts in inflation call “the inflationary multiverse,” [14, 55, 158]
and string theorists call “the string theory landscape” [159].

This leads to an interesting twist in the theory of initial conditions. Let us
assume first that we live in one of the many metastable de Sitter minima, say,
dSi. Eventually this dS state decays, and each of the points belonging to this
initial state jumps to another vacuum state, which may have either a smaller
vacuum energy, or a greater vacuum energy (transitions of the second type
are possible because of the gravitational effects). But if the decay probability
is not too large, then the total volume of the universe remaining in the state
dSi continues growing exponentially [9]. This is eternal inflation of the old
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inflation type. If the bubbles of the new phase correspond to another de Sitter
space, dSj , then some parts of the space dSj may jump back to the state dSi.
On the other hand, if the tunneling goes to a Minkowski vacuum, such as
the uncompactified 10-dimensional vacuum corresponding to the state with
σ → ∞ in Fig. 1.6, the subsequent jumps to dS states no longer occur.
Similarly, if the tunneling goes to the state with a negative vacuum energy,
such as the AdS vacuum in Fig. 1.10, the interior of the bubble of the new
vacuum rapidly collapses. Minkowski and AdS vacua of such type are called
terminal vacua, or sinks.

If initial conditions in a certain part of the universe are such that it goes
directly to the sink, without an intermediate stage of inflation, then it will
never return back, we will be unable to live there; so for all practical pur-
poses such initial conditions (or such parts of the universe) can be discarded
(ignoring for the moment the possibility of the resurrection of the universe
after the collapse). On the other hand, if some other part of the universe goes
to one of the dS states, the process of eternal inflation begins, which even-
tually produces an inflationary multiverse consisting of all possible dS states.
This suggests that all initial conditions that allow life as we know it to exist,
inevitably lead to formation of an eternal inflationary multiverse.

This scenario assumes that the vacuum transitions may bring us from
any part of the string theory landscape to any other part. Here we should
note that the theory of such transitions accompanied by the change of fluxes
was developed for the case where dS states are not stabilized [156, 160]. A
generalization of this theory for the string landscape scenario based on the
KKLT mechanism of vacuum stabilization is rather nontrivial. As of now, the
theory of such transitions was fully developed only for the transitions where
the scalar fields change but the fluxes remain unchanged [161]. It might happen
that the landscape is divided into separate totally disconnected islands, but
this does not seem likely [162]. Even if the landscape is not fully transversable,
one may probe all parts of the inflationary multiverse by considering the
wave function of the universe corresponding to the possibility of its quantum
creation in the states with different values of fluxes [163, 164].

The string theory landscape describes an incredibly large set of discrete
parameters. However, the theory of inflationary multiverse goes even further.
Some of the features of our world are determined not by the final values of the
fields in the minima of their potential in the landscape, but by the dynamical,
time-dependent values, which these fields were taking at different stages of
the evolution of the inflationary universe. This introduces a large set of con-
tinuous parameters, which may take different values in different parts of the
universe. For example, in the theory of dark energy, inflationary fluctuations
may divide the universe into exponentially large parts with the effective value
of the cosmological constant taking a continuous range of values [109]. In such
models, the effective cosmological constant Λ becomes a continuous parame-
ter. Similarly, inflationary fluctuations of the axion field make the density of
dark matter a continuous parameter, which takes different values in different
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parts of the universe [165, 166]. Another example of a continuous parameter
is the baryon asymmetry nb/nγ , which can take different values in different
parts of the universe in the Affleck–Dine scenario of baryogenesis [167, 168].

This means that the same physical theory may yield exponentially large
parts of the universe that have diverse properties. This provided the first
scientific justification of the anthropic principle: We find ourselves inside a
part of the universe with our kind of physical laws not because the parts
with different properties are impossible or improbable, but simply because we
cannot live there [52, 154].

This fact can help us understand many otherwise mysterious features of
our world. The simplest example concerns the dimensionality of our universe.
String theorists usually assume that the universe is 10- or 11-dimensional, so
why do we live in the universe where only 4 dimensions of space–time are large?
There have been many attempts to address this question, but no convincing
answer has been found. This question became even more urgent after the
development of the KKLT construction. Now we know that all de Sitter states,
including the state in which we live now, are either unstable or metastable.
They tend to decay by producing bubbles of a collapsing space, or of a 10-
dimensional Minkowski space. So what is wrong about the 10-dimensional
universe if it is so naturally appears in string theory?

The answer to this question was given in 1917 by Paul Ehrenfest [169]:
in space–time with dimensionality d > 4, gravitational forces between distant
bodies fall off faster than r−2, and in space–time with d < 4, the general theory
of relativity tells us that such forces are absent altogether. This rules out the
existence of stable planetary systems for d �= 4. A similar conclusion is valid
for atoms: stable atomic systems could not exist for d > 4. This means that
we do not need to prove that the four-dimensional space–time is a necessary
outcome of string cosmology (in fact, it does not seem to be the case). Instead
of that, we only need to make sure that the four-dimensional space–time is
possible.

Anthropic considerations may help us to understand why the amount of
dark matter is approximately five times greater than the amount of normal
matter [165, 166] and why the baryon asymmetry is so small, nb/nγ ∼ 10−10

[168]. But perhaps the most famous example of this type is related to the
cosmological constant problem.

Naively, one could expect the vacuum energy to be equal to the Planck
density, ρΛ ∼ 1, whereas the recent observational data show that ρΛ ∼ 10−120,
in Planck units, which is approximately three times greater than the density
of other matter in the universe. Why is it so small but nonzero? Why ρΛ
constitutes is about three times greater than the density of other types of
matter in the universe now? Note that long ago the density of matter was
much greater than ρΛ, and in the future it will be much smaller.

The first anthropic solution to the cosmological constant problem in the
context of inflationary cosmology was proposed in 1984 [163]. The basic as-
sumption was that the vacuum energy density is a sum of the scalar field
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potential V (φ) and the energy of fluxes V (F ). According to [17], quantum
creation of the universe is not suppressed if the universe is created at the
Planck energy density, V (φ) + V (F ) = O(1), in Planck units. Eventually the
field φ rolls to its minimum at some value φ0, and the vacuum energy becomes
Λ = V (φ0)+V (F ). Since initially V (φ) and V (F ) could take any values with
nearly equal probability, under the condition V (φ) + V (F ) = O(1), we get
a flat probability distribution to find a universe with a given value of the
cosmological constant after inflation, Λ = V (φ0)+V (F ), for Λ � 1. The flat-
ness of this probability distribution is crucial, because it allows us to study
the probability of emergence of life for different Λ. Finally, it was argued in
[163] that life as we know it is possible only for |Λ| � ρ0, where ρ0 ∼ 10−120

is the present energy density of the universe. This fact, in combination with
inflation, which makes such universes exponentially large, provided a possible
solution of the cosmological constant problem.

Shortly after that, several other anthropic solutions to the cosmological
constant problem were proposed [170]. All of them were based on the as-
sumption that life as we know it is possible only for −ρ0 � ρΛ � ρ0. This
bound seemed almost self-evident to many of us at that time, and therefore in
[163, 170] we concentrated on the development of the theoretical framework
where the anthropic arguments could be applied to the cosmological constant.

The fact that ρΛ could not be much smaller than −ρ0 was indeed quite
obvious, since such a universe would rapidly collapse. However, the origin of
the constraint ρΛ � ρ0 was much less trivial. The first attempt to justify
it was made in 1987 in the famous paper by Weinberg [171], but the con-
straint obtained there allowed the cosmological constant to be three orders of
magnitude greater than its present value.

Since that time, the anthropic approach to the cosmological constant prob-
lem developed in two different directions. First of all, it became possible, under
certain assumptions, to significantly strengthen the constraint on the positive
cosmological constant, see e.g. [172, 173, 174, 175]. The final result of these
investigations, |Λ| � O(10) ρ0 ∼ 10−119, is very similar to the bound used
in [163].

Simultaneously, new models have been developed which may allow us to
put an anthropic approach to the cosmological constant problem on a firm
ground. In particular, the existence of a huge number of vacuum states in
string theory implies that in different parts of our universe, or in its different
quantum states, the cosmological constant may take all of its possible values,
from −1 to +1, with an increment which may be as small as 10−1000. If the
prior probability to be in each of these vacua does not depend strongly on Λ,
one can justify the anthropic bound on Λ using the methods of [172, 173, 174,
175, 176].

However, the issue of probabilities in eternal inflation is very delicate, so
one should approach anthropic arguments with some care. For example, one
may try to calculate the probability to be born in a part of the universe with
given properties at a given point. One can do this using comoving coordinates,
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which are not expanding during inflation [162, 177, 178, 179, 180, 181].
However, it is not obvious whether the calculation of the probabilities of phys-
ical processes at a given point, ignoring the expansion of the universe, should
be used in anthropic considerations. Most of the physical entities which could
be associated with “points” did not even exist before the beginning of infla-
tion: protons did not exist, photons did not exist, galaxies did not exist. They
appeared only after inflation, and their total number, and the total number
of observers, is proportional to the growth of volume during inflation.

This leads to the volume-weighted [55, 182, 183, 184], or pocket-weighted
[184, 185, 186] probability measures [187]. The main problem with this ap-
proach is the embarrassment of riches: the total volume of the universe oc-
cupied by any particular vacuum state, integrated over the indefinitely long
history of the eternally inflating universe, is infinitely large. Thus we need to
compare infinities, which is a very ambiguous task, with the answer depending
on the choice of the cut-off procedure.

The volume-weighted probability measure proposed in [55] is based on the
calculation of the ratio of the volumes of the parts of the universe with different
properties. This is possible because if we wait long enough, eternal inflation
approaches a stationary regime. Different parts of the universe expand and
transform to each other. As a result, the total volumes of all parts of the
universe of each particular type grow at the same rate, and the ratio of their
volumes becomes time-independent [55].

This method is very good for describing the map of the inflationary mul-
tiverse, but in order to use it in anthropic considerations one should make
some additional steps. According to [182], instead of calculating the ratio of
volumes in different vacuum states at different densities and temperatures,
we should calculate the total volume of new parts of the universe where life
becomes possible. This ratio is related to the incoming probability current
through the hypersurface of the end of inflation, or the hypersurface of a fixed
density or temperature. If one uses the probability measure of [55] for an-
thropic considerations (which was not proposed in [55]), one may encounter
the so-called youngness paradox [188, 189]. If one uses the prescription of
[182], this paradox does not appear [21].

The results of the calculations by this method are very sensitive to the
choice of the time parametrization [182, 21]. However, a recent investigation
of this issue indicates that it may be possible to resolve this problem [190]. The
main idea is that the parts of the universe with different properties approach
the stationary regime of eternal inflation at different times. This fact was
not taken into account in our earlier papers [55, 182]; the calculations of the
probabilities started everywhere at the same time, even if the corresponding
parts of the universe did not yet approach the stationary regime. If we start
comparing the volumes of different part of the universe not at the same time
after the beginning of inflation, but at the same time since the beginning of the
stationarity regime, the dependence on the time parametrization disappears,
at least in the simple cases where we could verify this property [190].
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As we already mentioned, there are many other proposals for the
calculations of probabilities in an inflationary multiverse, see e.g. [184, 186].
The results of some of these methods are not sensitive to the choice of time
parametrization, but they do depend on the choice of the cut-off. A detailed
discussion of this series of proposals can be found in [185, 191] and in Chap. 5
in this volume.

While discussing all of these approaches one should keep in mind yet
another possibility: it is quite possible that it does not make much sense
to compare infinities and talk about the probability of events that already
happened. Instead of doing it, one should simply study our part of the uni-
verse, take these data as an initial input for all subsequent calculations, and
study conditional probabilities for the quantities which we did not mea-
sure yet [21]. This is a standard approach used by experimentalists who
continuously re-evaluate the probability of various outcomes of their fu-
ture experiments on the basis of other experimental data. The non-standard
part is that we should be allowed to use all of our observations, includ-
ing our knowledge of our own properties, for the calculation of conditional
probabilities.

Let us apply this limited approach to the cosmological constant problem.
Twenty years ago, we already knew that our life is carbon-based, and that
the amplitude of density perturbations required for the formation of galaxies
was about 10−5. We did not know yet what was the vacuum energy, and the
prevailing idea was that we did not have much choice anyway. But with the
discovery of inflation, we learned that the universe could be created differently,
with different values of the cosmological constant in each of its parts created
by eternal inflation. This allowed us to propose several different anthropic so-
lutions to the cosmological constant problem based on the assumption that,
for the given value of the amplitude of density perturbations and other already
measured parameters, we cannot live in a universe with |Λ| � 10−120. If ob-
servations would show that the cosmological constant were a million times
smaller than the anthropic bound, then we would be surprised, and a theoret-
ical explanation of this anomaly would be in order. As of now, the small value
of the cosmological constant does not look too surprising, so for a while we
can concentrate on solving many other problems which cannot be addressed
by anthropic considerations.

Within this approach, one should not vary the constants of nature that
were already known at the time when the predictions were made. In doing
so, one faces the risk of repeating the old argument that the bomb does not
hit the same spot twice: it is correct only until the first hit, after which the
probabilities should be re-evaluated. Similarly, one should not omit the word
“anthropic” from the “anthropic principle” and should not replace the inves-
tigation of the probability of our life with the study of life in general: we are
trying to explain our observations rather than the possible observations made
by some abstract information-processing devices. This can help us to avoid
some paradoxes recently discussed in the literature [192, 193, 194].
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From this discussion it should be clear that we do not really know yet
which of the recently developed approaches to the theory of the inflationary
multiverse is going to be more fruitful, and how far we will be able to go in
this direction. One way or another, it would be very difficult to forget about
what we have just learned and return to our search for the theory which
unambiguously explains all parameters of our world. Now we know that some
features of our part of the universe may have an unambiguous explanation,
whereas some others can be purely environmental and closely correlated with
our own existence.

When the inflationary theory was first proposed, its main goal was to
address many problems which at that time could seem rather metaphysical:
why is our universe so big? Why is it so uniform? Why parallel lines do not
intersect? It took some time before we got used to the idea that the large
size, flatness and uniformity of the universe should not be dismissed as trivial
facts of life. Instead of that, they should be considered as observational data
requiring an explanation.

Similarly, the existence of an amazingly strong correlation between our own
properties and the values of many parameters of our world, such as the masses
and charges of the electron and the proton, the value of the gravitational
constant, the amplitude of spontaneous symmetry breaking in the electroweak
theory, the value of the vacuum energy, and the dimensionality of our world,
is an experimental fact requiring an explanation. A combination of the theory
of inflationary multiverse and the string theory landscape provide us with a
unique framework where this explanation can possibly be found.

1.15 Conclusions

Twenty five years ago, the inflationary theory looked like an exotic product of
vivid scientific imagination. Some of us believed that it possessed such a great
explanatory potential that it had to be correct; some others thought that it
was too good to be true. Not many expected that it would be possible to
verify any of its predictions in our lifetime. Thanks to the enthusiastic work
of many scientists, the inflationary theory is gradually becoming a widely
accepted cosmological paradigm, with many of its predictions being confirmed
by observational data.

However, while the basic principles of inflationary cosmology are rather
well established, many of its details keep changing with each new change of
the theory of all fundamental interactions. The investigation of the inflation-
ary multiverse and the string theory landscape force us to think about prob-
lems which sometimes go beyond the well established boundaries of physics.
This makes our life difficult, sometimes quite frustrating, but also very in-
teresting, which is perhaps the best thing that one could expect from the
branch of science we have been trying to develop during the last quarter of a
century.
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