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Preface

A seminal paper, dated 1981, marked the birth of what was to become the
most successful paradigm in modern cosmology following that of the big bang
itself: inflation. Its 25th birthday offered a welcome opportunity to celebrate
the phenomenological success of inflation and to gather the world leading sci-
entists engaged in forefront research in this field. Such was the objective of
the XXII TAP colloquium, which took place at “Institut d’Astrophysique de
Paris” (IAP) in June 2006. During this meeting and the immediately follow-
ing two-week workshop, scientists from the world over and from both obser-
vational and theoretical communities gathered to discuss the present status,
the achievements and the shortcomings as well as the future of the theory
of inflation. The numerous discussions that took place offered solid ground
for the publication of regular proceedings. However, inflationary cosmology
encompasses different disciplines of physics, from high energy physics to ob-
servational astrophysics, and it has also become a field of research in its own
right. Therefore it was felt that a more pedagogical text, containing exhaus-
tive discussions of the ins and outs of inflation, would be more useful. This is
precisely what this present volume of the Lecture Notes in Physics series is
aiming at.

As is by now well known, cosmic inflation corresponds to an episode of
accelerated expansion in the very early Universe which solves the handful of
puzzles that plague the standard hot big bang cosmology, namely the flat-
ness, horizon, monopole excess problems, and, in some models, the problem
of the primordial singularity. These achievements even come with a bonus: the
production of density perturbations to the level needed to explain the origin
of large scale structure of the Universe. The first chapter of this volume, by
A. Linde, introduces this framework, offers a historical overview of this subject
and develops the present status of the theory. This is followed L. Kofmann’s
discussion on preheating which describes how matter and radiation can have
been produced during this period which smoothly connects inflation with the
standard big bang phase.
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Any cosmological model needs to be implemented in a particle physics
context. The contribution of D. Lyth shows how this can be done in the
most reasonable extensions of the standard particle physics model, namely
those based on supersymmetry. This chapter is followed by the discussion of
R. Kallosh on the embedding of inflation in string theories.

As of today, there are various ways of implementing inflation. One such
framework is “eternal inflation”, in which different parts of the Universe un-
dergo an episode of inflation at different times, the Universe being eternally
inflating and self-reproducing. This particular scenario is discussed in length
by S. Winitzki

As shown by J. Martin in a subsequent chapter, the production of density
perturbations during inflation is akin to the production of charged particles
out of the vacuum in a strong electric field. This analogy is developed in full
detail in order to explain the inflationary origin of primordial density fluctua-
tions. The numerical implementation of the calculation of these perturbations,
which is required in order to compare these results to the high accuracy data of
cosmic microwave background fluctuations, is then discussed by C. Ringeval.

The next chapter, by D. Wands, discusses the models containing more than
one scalar field, in particular their dynamics and the observational predictions;
the curvaton model is here reviewed as an alternative to the pure inflationary
production of perturbations. Then, A. Riotto shows that the measurement of
non-Gaussianities in the spectrum of inflationary perturbations could offer a
way of discrimating the different models.

Finally the possibility of finding alternative scenarios to inflation is a ma-
jor but unanswered issue. The old contender, in which topological defects
seed the primordial density fluctuations has been shown to disagree with cos-
mic microwave background data. However, as M. Sakellariadou argues, such
topological defects might still be present in our Universe as they should be
produced in convincing models of inflation. Their contribution to the observed
fluctuations might open a window on physics of an otherwise inaccessible en-
ergy scale. R. Brandenberger concludes this volume by presenting a radically
different perspective in which string gas cosmology plays the main role and
by pointing out some shortcomings of inflation which may argue for the need
of a broader conceptual framework.

Paris, Martin Lemoine, Jérome Martin € Patrick Peter.
April 2007
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Inflationary Cosmology

Andrei Linde

Department of Physics, Stanford University, Stanford, CA 94305, USA
alinde@stanford.edu

Abstract. This chapter presents a general review of the history of inflationary
cosmology and of its present status[]

1.1 Brief History of Inflation

Since the inflationary theory is more than 25 years old, perhaps it is not
inappropriate to start this chapter with a brief history of its development,
and some personal recollections.

Several ingredients of inflationary cosmology were discovered in the begin-
ning of the 1970s. The first realization was that the energy density of a scalar
field plays the role of the vacuum energy/cosmological constant [I], which
was changing during the cosmological phase transitions [2]. In certain cases
these changes occur discontinuously, due to first-order phase transitions from
a supercooled vacuum state (false vacuum) [3].

In 1978, we with Gennady Chibisov tried to use these facts to construct
a cosmological model involving exponential expansion of the universe in the
supercooled vacuum as a source of the entropy of the universe, but we im-
mediately realized that the universe becomes very inhomogeneous after the
bubble wall collisions. I mentioned our work in my review article [4], but did
not pursue this idea any further.

The first semi-realistic model of inflationary type was proposed by Alexei
Starobinsky in 1979-1980 [5]. It was based on the investigation of a confor-
mal anomaly in quantum gravity. His model was rather complicated, and its
goal was somewhat different from the goals of inflationary cosmology. Instead
of attempting to solve the homogeneity and isotropy problems, Starobinsky
considered the model of the universe which was homogeneous and isotropic
from the very beginning, and emphasized that his scenario was “the extreme

Y

opposite of Misner’s initial ‘chaos’.

! Based on a talk given at the 22nd IAP Colloquium, “Inflation425”, Paris, June
2006.

A. Linde: Inflationary Cosmology, Lect. Notes Phys. 738, 1-[54] (2008)
DOI 10.1007/978-3-540-74353-8 1 © Springer-Verlag Berlin Heidelberg 2008



2 A. Linde

On the other hand, the Starobinsky model did not suffer from the graceful
exit problem, and it was the first model to predict gravitational waves with
a flat spectrum [5]. The first mechanism of production of adiabatic per-
turbations of the metric with a flat spectrum, which are responsible for
galaxy production, and which were found by the observations of the CMB
anisotropy, was proposed by Mukhanov and Chibisov [6] in the context of this
model.

A much simpler inflationary model with a very clear physical motivation
was proposed by Alan Guth in 1981 [7]. His model, which is now called “old
inflation,” was based on the theory of supercooling during the cosmological
phase transitions [3]. Even though this scenario did not work, it played a
profound role in the development of inflationary cosmology since it contained
a very clear explanation of how inflation may solve the major cosmological
problems.

According to this scenario, inflation is described by the exponential ex-
pansion of the universe in a supercooled false vacuum state. False vacuum is
a metastable state without any fields or particles but with a large energy den-
sity. Imagine a universe filled with such “heavy nothing.” When the universe
expands, empty space remains empty, so its energy density does not change.
The universe with a constant energy density expands exponentially, thus we
have inflation in the false vacuum. This expansion makes the universe very
big and very flat. Then the false vacuum decays, the bubbles of the new phase
collide, and our universe becomes hot.

Unfortunately, this simple and intuitive picture of inflation in the false vac-
uum state is somewhat misleading. If the probability of the bubble formation
is large, bubbles of the new phase are formed near each other, inflation is too
short to solve any problems, and the bubble wall collisions make the universe
extremely inhomogeneous. If they are formed far away from each other, which
is the case if the probability of their formation is small and inflation is long,
each of these bubbles represents a separate open universe with a vanishingly
small 2. Both options are unacceptable, which has lead to the conclusion that
this scenario does not work and cannot be improved (graceful exit problem)
7. 5, ]

The solution was found in 1981-1982 with the invention of the new infla-
tionary theory [10], see also [IT]. In this theory, inflation may begin either in
the false vacuum, or in an unstable state at the top of the effective potential.
Then the inflaton field ¢ slowly rolls down to the minimum of its effective
potential. The motion of the field away from the false vacuum is of crucial
importance: density perturbations produced during the slow-roll inflation are
inversely proportional to (b [6) M2, 13]. Thus the key difference between the
new inflationary scenario and the old one is that the useful part of inflation
in the new scenario, which is responsible for the homogeneity of our universe,
does not occur in the false vacuum state, where ¢ = 0.

Soon after the invention of the new inflationary scenario it became so
popular that even now most of the textbooks on astrophysics incorrectly
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describe inflation as an exponential expansion in a supercooled false vacuum
state during the cosmological phase transitions in grand unified theories.
Unfortunately, this scenario was plagued by its own problems. It works only if
the effective potential of the field ¢ has a very flat plateau near ¢ = 0, which
is somewhat artificial. In most versions of this scenario the inflaton field has
an extremely small coupling constant, so it could not be in thermal equilib-
rium with other matter fields. The theory of cosmological phase transitions,
which was the basis for old and new inflation, did not work in such a situation.
Moreover, thermal equilibrium requires many particles interacting with each
other. This means that new inflation could explain why our universe was so
large only if it was very large and contained many particles from the very
beginning [T14].

Old and new inflation represented a substantial but incomplete modifica-
tion of the big bang theory. It was still assumed that the universe was in a
state of thermal equilibrium from the very beginning, that it was relatively
homogeneous and large enough to survive until the beginning of inflation, and
that the stage of inflation was just an intermediate stage of the evolution of
the universe. In the beginning of the 1980s these assumptions seemed most
natural and practically unavoidable. On the basis of all available observations
(CMB, abundance of light elements) everybody believed that the universe was
created in a hot big bang. That is why it was so difficult to overcome a certain
psychological barrier and abandon all of these assumptions. This was done in
1983 with the invention of the chaotic inflation scenario [I5]. This scenario
resolved all problems of old and new inflation. According to this scenario,
inflation may begin even if there was no thermal equilibrium in the early uni-
verse, and it may occur even in the theories with simplest potentials such as
V(¢) ~ ¢%. But it is not limited to the theories with polynomial potentials:
chaotic inflation occurs in any theory where the potential has a sufficiently
flat region, which allows the existence of the slow-roll regime [I5].

1.2 Chaotic Inflation

1.2.1 Basic Model

Consider the simplest model of a scalar field ¢ with a mass m and with the
potential energy density V(¢) = ”;2 ¢?. Since this function has a minimum
at ¢ = 0, one may expect that the scalar field ¢ should oscillate near this
minimum. This is indeed the case if the universe does not expand, in which
case the equation of motion for the scalar field coincides with the equation for
the harmonic oscillator, ¢ = —m?2¢.

However, because of the expansion of the universe with Hubble constant
H = a/a, an additional term 3H (b appears in the harmonic oscillator equation:

b+ 3Hd=—m2p . (1.1)
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The term 3H ¢ can be interpreted as a friction term. The Einstein equation
for a homogeneous universe containing a scalar field ¢ looks as follows:

k 1.
2 _ 2 2,2
H+a2—6(¢ +m=¢°) . (1.2)
Here k = —1,0, 1 for an open, flat or closed universe respectively. We work in

units M&z =81G =1.

If the scalar field ¢ initially was large, the Hubble parameter H was large
too, according to the second equation. This means that the friction term 3H ¢
was very large, and therefore the scalar field was moving very slowly, as a ball
in a viscous liquid. Therefore at this stage the energy density of the scalar
field, unlike the density of ordinary matter, remained almost constant, and
the expansion of the universe continued at a much greater speed than in the
old cosmological theory. Due to the rapid growth of the scale of the universe
and the slow motion of the field ¢, soon after the beginning of this regime
one has ¢ < 3H¢, H? > akg, $? < m2¢?, so the system of equations can be

simplified:
a  mo . 2
H= = , =— . 1.3

a /6 ¢ " \/3 (13)
The first equation shows that if the field ¢ changes slowly, the size of the
universe in this regime grows approximately as e, where H = mg’. This
is the stage of inflation, which ends when the field ¢ becomes much smaller
than Mp; = 1. The solution to these equations shows that after a long stage
of inflation the universe initially filled with the field ¢ > 1 grows exponen-
tially [14],

a=ag e/t (1.4)

Thus, inflation does not require an initial state of thermal equilibrium,
supercooling and tunneling from the false vacuum. It appears in the theories
that can be as simple as a theory of a harmonic oscillator [I5]. Only when it
was realized, it became clear that inflation is not just a trick necessary to fix
problems of the old big bang theory, but a generic cosmological regime.

1.2.2 Initial Conditions

But what is about the initial conditions required for chaotic inflation? Let us
consider first a closed universe of initial size I ~ 1 (in Planck units), which
emerges from the space—time foam, or from singularity, or from “nothing” in
a state with the Planck density p ~ 1. Only starting from this moment, i.e. at
p < 1, can we describe this domain as a classical universe. Thus, at this initial
moment the sum of the kinetic energy density, gradient energy density, and
the potential energy density is of the order unity: éqbz + %(8@)2 +V(g)~1
(Fig. [T)).

We wish to emphasize, that there are no a priori constraints on the
initial value of the scalar field in this domain, except for the constraint
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V(g) = Be?

SPACE-TIME FOAM

HEATING
OF UNIVERSE

¢

SCALAR FIELD

1

1
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5i-

Fig. 1.1. Motion of the scalar field in the theory with V(¢) = ";2 ¢°. Several
different regimes are possible, depending on the value of the field ¢. If the potential
energy density of the field is greater than the Planck density M7, = 1, ¢ > m ™', the
quantum fluctuations of space—time are so strong that one cannot describe it in usual
terms. Such a state is called space—time foam. At a somewhat smaller energy density
(for m <V (¢) <1, m™ 2 < ¢ <m™') the quantum fluctuations of space-time are
small, but the quantum fluctuations of the scalar field ¢ may be large. Jumps of the
scalar field due to quantum fluctuations lead to a process of eternal self-reproduction
of inflationary universe which we are going to discuss later. At even smaller values
of V(¢) (for m®> < V(¢) <m, 1< ¢ < m~Y?2) fluctuations of the field ¢ are small;
it slowly moves down as a ball in a viscous liquid. Inflation occurs for 1 < ¢ < m™1.
Finally, near the minimum of V(¢) (for ¢ < 1) the scalar field rapidly oscillates,
creates pairs of elementary particles, and the universe becomes hot

1% + 1(8:0) + V(¢) ~ 1. Let us consider for a moment a theory with
V(¢) = const. This theory is invariant under the shift symmetry ¢ — ¢ + c.
Therefore, in such a theory all initial values of the homogeneous component
of the scalar field ¢ are equally probable.

The only constraint on the amplitude of the field appears if the effective
potential is not constant, but grows and becomes greater than the Planck
density at ¢ > ¢p,, where V(¢,) = 1. This constraint implies that ¢ < ¢, but
there is no reason to expect that initially ¢ must be much smaller than ¢,.
This suggests that the typical initial value of the field ¢ in such a theory is
¢~ ¢p- .

Thus, we expect that typical initial conditions correspond to ;¢2 ~
10;0)2 ~ V(¢) = OQQ). If 1é? + 1(9;6)> < V(¢) in the domain under
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consideration, then inflation begins, and then within the Planck time the
terms ;¢2 and }(9;¢)? become much smaller than V(¢), which ensures con-
tinuation of inflation. It seems therefore that chaotic inflation occurs under
rather natural initial conditions, if it can begin at V(¢) ~ 1 [I4] [16].

One can get a different perspective on this issue by studying the probability
of quantum creation of the universe from “nothing.” The basic idea is that
quantum fluctuations can create a small universe from nothing if it can be
done quickly, in agreement with the quantum uncertainty relation AE-At < 1.
The total energy of scalar field in a closed inflationary universe is proportional
to its minimal volume H % ~ V~3/2 multiplied by the energy density V (¢):
E ~ V~12_ Therefore such a universe can appear quantum mechanically
within the time At 2> 1 if V(¢) is not too much smaller than the Planck
density O(1).

This qualitative conclusion agrees with the result of the investigation in the
context of quantum cosmology. Indeed, according to [I7], [I8], the probability
of quantum creation of a closed universe is proportional to

2
P ~ exp (—243 > , (1.5)

which means that the universe can be created if V' is not too much smaller
than the Planck density. The Euclidean approach to the quantum creation of
the universe is based on the analytical continuation of the Euclidean de Sitter
solution to the real time. This continuation is possible if ¢ = 0 at the moment
of quantum creation of the universe. Thus in the simplest chaotic inflation
model with V(¢) = "52 ¢? the universe is created in a state with V(¢) ~ 1,

¢ ~m~1>1and ¢ = 0, which is a perfect initial condition for inflation in
this model [14] 17].

One should note that there are many other attempts to evaluate the prob-
ability of initial conditions for inflation (see Chap. [ in this volume). For
example, if one interprets the square of the Hartle-Hawking wave function

[19] as a probability of initial condition, one obtains a paradoxical answer

P~ exp(2‘§jr2 ), which could seem to imply that it is easier to create the uni-

verse with V' — 0 and with an infinitely large total energy E ~ V12 — oo,
There were many attempts to improve this anti-intuitive answer, but from my
perspective these attempts were misplaced: the Hartle-Hawking wave function
was derived in [I9] as a wave function for the ground state of the universe,
and therefore it describes the most probable final state of the universe, in-
stead of the probability of initial conditions; see a discussion of this issue in
(12 20, 21].

Another recent attempt to study this problem was made by Gibbons and
Turok [22]. They studied classical solutions describing a combined evolution
of a scalar field and the scale factor of the universe, and imposed “initial
conditions” not at the beginning of inflation but at its end. Since one can
always reverse the direction of time in the solutions, one can always relate
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the conditions at the end of inflation to the conditions at its beginning. If one
assumes that certain conditions at the end of inflation are equally probable,
then one may conclude that the probability of initial conditions suitable for
inflation must be very small [22].

From our perspective [23] 24], we have here the same paradox which is
encountered in the discussion of the growth of entropy. If one starts with
a well ordered system, its entropy will always grow. However, if we make a
movie of this process, and play it back starting from the end of the process,
then the final conditions for the original system become the initial conditions
for the time-reversed system, and we will see the entropy decreasing. That
is why replacing initial conditions by final conditions can be very misleading.
An advantage of the inflationary regime is that it is an attractor (i.e. the most
probable regime) for the family of solutions describing an expanding universe.
But if one replaces initial conditions by the final conditions at the end of the
process and then studies the same process back in time, the same trajectory
will look like a repulsor. This is the main reason of the negative conclusion
of [22].

The main problem in [22] is that the methods developed there are valid
for the classical evolution of the universe, but the initial conditions for the
classical evolution are determined by the processes at the quantum epoch near
the singularity, where the methods of [22] are inapplicable. It is not surprising,
therefore, that the results of [22] imply that initially P> V(¢). This result
contradicts the results of the Euclidean approach to quantum creation of the
universe [I7, [I8] [T9] which require that initially (b = 0, see a discussion above.

As we will show in a separate publication [24], if one further develops
the methods of [22], but imposes the initial conditions at the beginning of
inflation, rather than at its end, one finds that inflation is most probable, in
agreement with the arguments given in the first part of this section.

The discussion of initial conditions in this section was limited to the sim-
plest versions of chaotic inflation which allow inflation at the very high energy
densities, such as the models with V' ~ ¢™. We will return to the discussion of
the problem of initial conditions in inflationary cosmology in Sects. and
[LT4] where we will analyze it in the context of more complicated inflationary
models.

1.2.3 Solving the Cosmological Problems

As we will see shortly, the realistic value of the mass m is about 3 x 1075,
in Planck units. Therefore, according to (L4]), the total amount of inflation
achieved starting from V(¢) ~ 1 is of the order 1019, The total duration of
inflation in this model is about 107" s. When inflation ends, the scalar field ¢
begins to oscillate near the minimum of V' (¢). As any rapidly oscillating clas-
sical field, it looses its energy by creating pairs of elementary particles. These
particles interact with each other and come to a state of thermal equilibrium
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with some temperature Ty, [25] 26] 27] 28] 29 30} [3T]. From this time on, the
universe can be described by the usual big bang theory.

The main difference between inflationary theory and the old cosmology
becomes clear when one calculates the size of a typical inflationary domain at
the end of inflation. The investigation of this question shows that even if the
initial size of inflationary universe was as small as the Planck size [p ~ 10733
cm, after 10730 s of inflation the universe acquires a huge size of [ ~ 100"
cm! This number is model-dependent, but in all realistic models the size of
the universe after inflation appears to be many orders of magnitude greater
than the size of the part of the universe which we can see now, [ ~ 10%% cm.
This immediately solves most of the problems of the old cosmological theory
[14} 15].

Our universe is almost exactly homogeneous on large scales because all
inhomogeneities were exponentially stretched during inflation. The density of
primordial monopoles and other undesirable “defects” becomes exponentially
diluted by inflation. The universe becomes enormously large. Even if it was a
closed universe of a size ~ 10732 cm, after inflation the distance between its
“South” and “North” poles becomes many orders of magnitude greater than
10%® cm. We see only a tiny part of the huge cosmic balloon. That is why
nobody has ever seen how parallel lines cross. That is why the universe looks
so flat.

If our universe initially consisted of many domains with chaotically dis-
tributed scalar field ¢ (or if one considers different universes with different
values of the field), then domains in which the scalar field was too small never
inflated. The main contribution to the total volume of the universe will be
given by those domains which originally contained a large scalar field ¢. In-
flation of such domains creates huge homogeneous islands out of initial chaos.
(That is why I called this scenario “chaotic inflation.”) Each homogeneous
domain in this scenario is much greater than the size of the observable part
of the universe.

1.2.4 Chaotic Inflation Versus New Inflation

The first models of chaotic inflation were based on the theories with polyno-
mial potentials, such as V(¢) = :I:";2 o+ i‘¢4. But, as was emphasized in
[15], the main idea of this scenario is quite generic. One should consider any
particular potential V(¢), polynomial or not, with or without spontaneous
symmetry breaking, and study all possible initial conditions without assum-
ing that the universe was in a state of thermal equilibrium, and that the field
¢ was in the minimum of its effective potential from the very beginning.
This scenario strongly deviated from the standard lore of the hot big bang
theory and was psychologically difficult to accept. Therefore during the first
few years after the invention of chaotic inflation many authors claimed that
the idea of chaotic initial conditions is unnatural, and made attempts to real-
ize the new inflation scenario based on the theory of high-temperature phase
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transitions, despite numerous problems associated with it. Some authors be-
lieved that the theory must satisfy the so-called “thermal constraints” which
were necessary to ensure that the minimum of the effective potential at large
T should be at ¢ = 0 [32], even though the scalar field in the models they
considered was not in a state of thermal equilibrium with other particles.

The issue of thermal initial conditions played the central role in the long
debate about new inflation versus chaotic inflation in the 1980s. This debate
continued for many years, and a significant part of my book [14] was dedicated
to it. By now the debate is over: no realistic versions of new inflation based on
the theory of thermal phase transitions and supercooling have been proposed
so far. Gradually it became clear that the idea of chaotic initial conditions
is most general, and it is much easier to construct a consistent cosmological
theory without making unnecessary assumptions about thermal equilibrium
and high-temperature phase transitions in the early universe.

As a result, the corresponding terminology changed. Chaotic inflation, as
defined in [I5], occurs in all models with sufficiently flat potentials, including
the potentials with a flat maximum, originally used in new inflation [33]. Now
the versions of inflationary scenario with such potentials for simplicity are
often called “new inflation,” even though inflation begins there not as in the
original new inflation scenario, but as in the chaotic inflation scenario. To
avoid this terminological misunderstanding, some authors call the version of
chaotic inflation scenario, where inflation occurs near the top of the scalar
potential, a “hilltop inflation” [34].

1.3 Hybrid Inflation

The simplest models of inflation involve just one scalar field. However, in
supergravity and string theory there are many different scalar fields, so it
does make sense to study models with several different scalar fields, especially
if they have some qualitatively new properties. Here we will consider one of
these models, hybrid inflation [35].

The simplest version of hybrid inflation describes the theory of two scalar
fields with the effective potential

2 2
V(o,6) = 4& (O 20?2+ 6+ 9 o (1.6)

The effective mass squared of the field o is equal to —M? + g2¢2. Therefore
for ¢ > ¢. = M/g the only minimum of the effective potential V (o, ¢) is
at 0 = 0. The curvature of the effective potential in the o-direction is much
greater than in the ¢-direction. Thus at the first stages of expansion of the
universe the field o rolled down to ¢ = 0, whereas the field ¢ could remain
large for a much longer time.

At the moment when the inflaton field ¢ becomes smaller than ¢. = M /g,
the phase transition with the symmetry breaking occurs. The fields rapidly
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fall to the absolute minimum of the potential at ¢ = 0,02 = M2 /). If m?¢? =
m2M?/g* < M*/), the Hubble constant at the time of the phase transition

is given by H2 = M (in units Mp) = 1). If M? > " and m? < H?, then

the universe at ¢ > ¢. undergoes a stage of inflation, which abruptly ends at
¢ = e

Note that hybrid inflation is also a version of the chaotic inflation sce-
nario: i am unaware of any way to realize this model in the context of the
theory of high-temperature phase transitions. The main difference between
this scenario and the simplest versions of the one-field chaotic inflation is in
the way inflation ends. In the theory with a single field, inflation ends when
the potential of this field becomes steep. In hybrid inflation, the structure of
the universe depends on the way one of the fields moves, but inflation ends
when the potential of the second field becomes steep. This fact allows much
greater flexibility of construction of inflationary models. Several extensions of
this scenario became quite popular in the context of supergravity and string
cosmology, which we will discuss later.

1.4 Quantum Fluctuations and Density Perturbations

The average amplitude of inflationary perturbations generated during a typi-
cal time interval H ! is given by [36, 37]

H
86| ~

These fluctuations lead to density perturbations that later produce galax-
ies (see Chap. [fin this volume). The theory of this effect is very complicated
[6, 12], and it was fully understood only in the second part of the 1980s [I3].
The main idea can be described as follows.

Fluctuations of the field ¢ lead to a local delay of the time of the end

of inflation, &t = 55 ~ Qf b Once the usual post-inflationary stage begins,

the density of the universe starts to decrease as p = 3H?, where H ~ t~1.
Therefore a local delay of expansion leads to a local density increase dz such
that dg ~ 8p/p ~ &t/t. Combining these estimates together yields the famous

result [6] 12} 13]

(1.7)

d&p  H?
p 27T<;5 .

The field ¢ during inflation changes very slowly, so the quantity 2’:: 1 remains

St ~ (1.8)

almost constant over an exponentially large range of wavelengths. This means
that the spectrum of perturbations of the metric is flat.

A detailed calculation in our simplest chaotic inflation model of the am-
plitude of perturbations gives

me?

Sy ~ .
U 56

(1.9)
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The perturbations on the scale of the horizon were produced at ¢y ~ 15 [14].
This, together with the COBE normalization §i ~ 2x107° gives m ~ 3x1079,
in Planck units, which is approximately equivalent to 7 x 1012 GeV. An exact
value of m depends on ¢y, which in its turn depends slightly on the subsequent
thermal history of the universe.

When the fluctuations of the scalar field ¢ are first produced (frozen), their
wavelength is given by H(¢)~!. At the end of inflation, the wavelength grows
by the factor of e?*/4, see (IA). In other words, the logarithm of the wave-
length | of the perturbations of metric is proportional to the value of ¢? at
the moment when these perturbations were produced. As a result, according
to (3), the amplitude of the perturbations of the metric depends logarith-
mically on the wavelength: dgy ~ m Inl. A similar logarithmic dependence
(with different powers of the logarithm) appears in other versions of chaotic
inflation with V' ~ ¢™ and in the simplest versions of new inflation.

At first glance, this logarithmic deviation from scale invariance could seem
inconsequential, but in a certain sense it is similar to the famous logarithmic
dependence of the coupling constants in QCD, where it leads to asymptotic
freedom at high energies, instead of simple scaling invariance [38,39]. In QCD,
the slow growth of the coupling constants at small momenta/large distances is
responsible for nonperturbative effects resulting in quark confinement. In in-
flationary theory, the slow growth of the amplitude of perturbations of metric
at large distances is equally important. It leads to the existence of the regime
of eternal inflation and to the fractal structure of the universe on super-large
scales, see Sect.

Since the observations provide us with information about a rather limited
range of [, it is often possible to parametrize the scale dependence of density
perturbations by a simple power law, 6 ~ [(1=7)/2_ An exactly flat spectrum,
called Harrison—Zeldovich spectrum, would correspond to ns = 1.

The amplitude of the scalar perturbations of the metric can be charac-
terized either by oy, or by a closely related quantity Ax [40]. Similarly, the
amplitude of tensor perturbations is given by Aj,. Following [40, 41], one can
represent these quantities as

ns—1
A2, (k) = A2 (ko) ( v ) , (1.10)
A3 (k) = A2 (ko) (,f) - (.11)

where AZ%(kg) is a normalization constant, and kg is a normalization point.
Here we ignored running of the indexes ns and n; since there is no observa-
tional evidence that it is significant.

One can also introduce the tensor/scalar ratio r, the relative amplitude of
the tensor to scalar modes,

r= . (1.12)
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There are three slow-roll parameters [40]

1 /v 2 Vv \aAv
6:2(1/) e (1.13)

where prime denotes derivatives with respect to the field ¢. All parameters
must be smaller than one for the slow-roll approximation to be valid.

A standard slow roll analysis gives observable quantities in terms of the
slow-roll parameters to first order as

%4 V3

A% = = 1.14

R o4r2e T 1272(V)2 (1.14)

ng—1=—6e+2n, (1.15)

r = 16€, (1.16)

ng = —2€ = - (1.17)

8
The equation ny = —r/8 is known as the consistency relation for single-field

inflation models; it becomes an inequality for multi-field inflation models. If
V' during inflation is sufficiently large, as in the simplest models of chaotic
inflation, one may have a chance to find the tensor contribution to the CMB
anisotropy. The possibility to determine n; is less certain. The most important
information which can be obtained now from the cosmological observations
at present is related to (LI4) and (TI5).

Following notational conventions in [41], we use A (ko) for the scalar power
spectrum amplitude, where A(kg) and A% (ko) are related through

A% (ko) ~ 3 x 1072 A(ko) . (1.18)

The parameter A is often normalized at ky ~ 0.05/Mpc; its observational value
is about 0.8 [41] [42] 43] (see also Chap. [lin this volume). This leads to the
observational constraint on V(¢) and on r following from the normalization
of the spectrum of the large-scale density perturbations:

V3/2
\Vd

Here V(¢) should be evaluated for the value of the field ¢ which is determined
by the condition that the perturbations produced at the moment when the
field was equal ¢ evolve into the present time perturbations with momentum
ko ~ 0.05/Mpec. In the first approximation, one can find the corresponding
moment by assuming that it happened 60 e-foldings before the end of inflation.
The number of e-foldings can be calculated in the slow roll approximation
using the relation

~5x107%. (1.19)

¢V
N ~ do . (1.20)
¢end VI
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Equation (LI9) leads to the relation between r, V' and H, in Planck units:
ra~3x107 V10 H? . (1.21)

Finally, recent observational data suggest [42] that

V! 2 v
s=1-— 2 =0.95+0.016 , 1.22
n 3<V) +2°, =0.95+0.016 (1.22)

for r < 0.1. These relations are very useful for comparing inflationary models
with observations. In particular, the simplest versions of chaotic and new
inflation predict ny < 1, whereas in hybrid inflation one may have either
ng < 1 or ng > 1, depending on the model. A more accurate representation of
observational constraints can be found in Sect. [

Until now we have discussed the standard mechanism of generation of
perturbations of metric. However, if the model is sufficiently complicated,
other mechanisms become possible. For example, one may consider a theory
of two scalar fields, ¢ and o, and assume that inflation was driven by the field
¢, and the field o was very light during inflation and did not contribute much
to the total energy density. Therefore its quantum fluctuations also did not
contribute much to the amplitude of perturbations of metric during inflation
(isocurvature perturbations).

After inflation the field ¢ decays. If the products of its decay rapidly loose
energy, the field ¢ may dominate the energy density of the universe and its
perturbations suddenly become important. If, in its turn, the field o decays,
its perturbations under certain conditions can be converted into the usual
adiabatic perturbations of metric. If this conversion is incomplete, one obtains
a theory at odds with recent observational data [44] [45]. On the other hand,
if the conversion is complete, one obtains a novel mechanism of generation
of adiabatic density perturbations, which is called the curvaton mechanism
[46] 47, 48], [49]. A closely related but different mechanism was also proposed
in [50]. See Chap.Blin this volume for a detailed discussion.

These mechanisms are much more complicated than the original one, but
one should keep them in mind since they sometimes work in the situations
where the standard one does not. Therefore they can give us an additional
freedom in finding realistic models of inflationary cosmology.

1.5 Creation of Matter After Inflation: Reheating
and Preheating

The theory of reheating of the universe after inflation is the most important
application of the quantum theory of particle creation, since almost all matter
constituting the universe was created during this process.
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At the stage of inflation all energy is concentrated in a classical slowly
moving inflaton field ¢. Soon after the end of inflation this field begins to
oscillate near the minimum of its effective potential. Eventually it produces
many elementary particles, they interact with each other and come to a state
of thermal equilibrium with some temperature T,,.

Early discussions of reheating of the universe after inflation [25] were
based on the idea that the homogeneous inflaton field can be represented
as a collection of the particles of the field ¢. Each of these particles de-
cayed independently. This process can be studied by the usual perturba-
tive approach to particle decay. Typically, it takes thousands of oscillations
of the inflaton field until it decays into usual elementary particles by this
mechanism. More recently, however, it was discovered that coherent field
effects such as parametric resonance can lead to the decay of the homo-
geneous field much faster than would have been predicted by perturbative
methods, within a few dozen oscillations [26]. These coherent effects pro-
duce high energy, nonthermal fluctuations that could have significance for
understanding developments in the early universe, such as baryogenesis. This
early stage of rapid nonperturbative decay was called “preheating.” In [27]
it was found that another effect known as tachyonic preheating can lead to
even faster decay than parametric resonance. This effect occurs whenever
the homogeneous field rolls down a tachyonic (V" < 0) region of its poten-
tial. When that occurs, a tachyonic, or spinodal instability leads to exponen-
tially rapid growth of all long wavelength modes with k? < |V"”|. This growth
can often drain all of the energy from the homogeneous field within a single
oscillation.

We are now in a position to classify the dominant mechanisms by which
the homogeneous inflaton field decays in different classes of inflationary mod-
els. Even though all of these models, strictly speaking, belong to the general
class of chaotic inflation (none of them is based on the theory of thermal
initial conditions), one can break them into three classes: small field, or new
inflation models [10], large field, or chaotic inflation models of the type of the
model m?¢?/2 [15], and multi-field, or hybrid models [35]. This classification
is incomplete, but still rather helpful.

In the simplest versions of chaotic inflation, the stage of preheating is
generally dominated by parametric resonance, although there are parameter
ranges where this cannot occur [20]. In [27], it was shown that tachyonic pre-
heating dominates the preheating phase in hybrid models of inflation. New
inflation in this respect occupies an intermediate position between chaotic in-
flation and hybrid inflation: If spontaneous symmetry breaking in this scenario
is very large, reheating occurs due to parametric resonance and perturbative
decay. However, for the models with spontaneous symmetry breaking at or
below the GUT scale, ¢ < 10~2Mp, preheating occurs due to a combination
of tachyonic preheating and parametric resonance. The resulting effect is very
strong, so that the homogeneous mode of the inflaton field typically decays
within few oscillations [28].
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A detailed investigation of preheating usually requires lattice simulations,
which can be achieved following [29] [30]. Note that preheating is not the last
stage of reheating; it is followed by a period of turbulence [31], by a much
slower perturbative decay described by the methods developed in [25], and by
eventual thermalization.

1.6 Eternal Inflation

A significant step in the development of inflationary theory was the discovery
of the process of self-reproduction of inflationary universe. This process was
known to exist in old inflationary theory [7] and in the new one [51] 52| [53],
but its significance was fully realized only after the discovery of the regime
of eternal inflation in the simplest versions of the chaotic inflation scenario
[54, B5]. Tt appears that in many inflationary models large quantum fluctu-
ations produced during inflation may significantly increase the value of the
energy density in some parts of the universe. These regions expand at a greater
rate than their parent domains, and quantum fluctuations inside them lead to
production of new inflationary domains which expand even faster. This leads
to an eternal process of self-reproduction of the universe.

To understand the mechanism of self-reproduction one should remember
that processes separated by distances [ greater than H ! proceed indepen-
dently of one another. This is so because during exponential expansion the
distance between any two objects separated by more than H ! is growing
with a speed exceeding the speed of light. As a result, an observer in the in-
flationary universe can see only the processes occurring inside the horizon of
the radius H~'. An important consequence of this general result is that the
process of inflation in any spatial domain of radius H ! occurs independently
of any events outside it. In this sense any inflationary domain of initial radius
exceeding H~! can be considered as a separate mini-universe.

To investigate the behavior of such a mini-universe, with an account taken
of quantum fluctuations, let us consider an inflationary domain of initial radius
H~! containing sufficiently homogeneous field with initial value ¢ > Mp,.
Equation (I3 implies that during a typical time interval At = H ! the field
inside this domain will be reduced by A¢ = i By comparison this expression

with [8¢(z)| ~ 2 = 2:1\‘1/56 one can easily see that if ¢ is much less than
¢* ~ 5 then the decrease of the field ¢ due to its classical motion is much

greater than the average amplitude of the quantum fluctuations 8¢ generated
during the same time. But for ¢ > ¢* one has d¢(x) > A¢. Because the
typical wavelength of the fluctuations d¢(x) generated during the time is
H~', the whole domain after At = H~! effectively becomes divided into
e3 ~ 20 separate domains (mini-universes) of radius H !, each containing
almost homogeneous field ¢ — A¢ + d¢. In almost a half of these domains
the field ¢ grows by [0¢(z)| — A¢ =~ |d¢p(x)| = H/2m, rather than decreases.
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This means that the total volume of the universe containing the growing field
¢ increases 10 times. During the next time interval At = H~! this process
repeats itself. Thus, after the two time intervals H~! the total volume of
the universe containing the growing scalar field increases 100 times, etc. The
universe enters the eternal process of self-reproduction.

The existence of this process implies that the universe will never disappear
as a whole. Some of its parts may collapse, the life in our part of the universe
may perish, but there always will be some other parts of the universe where
life will appear again and again, in all of its possible forms.

One should be careful, however, with the interpretation of these results.
There is still an ongoing debate of whether eternal inflation is eternal only
in the future or also in the past. In order to understand what is going on,
let us consider any particular time-like geodesic line at the stage of inflation.
One can show that for any given observer following this geodesic, the dura-
tion t; of the stage of inflation on this geodesic will be finite. One the other
hand, eternal inflation implies that if one takes all such geodesics and cal-
culate the time t; for each of them, then there will be no upper bound for
ti, i.e. for each time T there will exist geodesics which experience inflation
for a time ¢; > T'. Even though the relative number of long geodesics can be
very small, exponential expansion of space surrounding them will lead to an
eternal exponential growth of the total volume of the inflationary parts of the
universe.

Similarly, if one concentrates on any particular geodesic in the past time
direction, one can prove that it has finite length [56], i.e. inflation in any
particular point of the universe should have a beginning at some time 7;.
However, there is no reason to expect that there is an upper bound for all 7;
on all geodesics. If this upper bound does not exist, then eternal inflation is
eternal not only in the future but also in the past.

In other words, there was a beginning for each part of the universe, and
there will be an end for inflation at any particular point. But there will be
no end for the evolution of the universe as a whole in the eternal inflation
scenario, and at present we do not have any reason to believe that there was a
single beginning of the evolution of the whole universe at some moment ¢ = 0,
which was traditionally associated with the big bang.

To illustrate the process of eternal inflation, we present here the results
of computer simulations of evolution of a system of two scalar fields during
inflation. The field ¢ is the inflaton field driving inflation; it is shown by the
height of the distribution of the field ¢(x,y) in a two-dimensional slice of the
universe. The second field, ®, determines the type of spontaneous symmetry
breaking which may occur in the theory. We paint the surface in red, green or
blue corresponding to three different minima of the potential of the field ®.
Different colors correspond to different types of spontaneous symmetry break-
ing, and therefore to different sets of laws of low-energy physics in different
exponentially large parts of the universe.
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Fig. 1.2. Evolution of scalar fields ¢ and ® during the process of self-reproduction
of the universe. The height of the distribution shows the value of the field ¢ which
drives inflation. The surface is painted in red (medium), green (dark) or blue (light)
corresponding to three different minima of the potential of the field ®. The laws of
low-energy physics are different in the regions of different color. The peaks of the
“mountains” correspond to places where quantum fluctuations bring the scalar fields
back to the Planck density. Each of such places in a certain sense can be considered
as a beginning of a new big bang

In the beginning of the process the whole inflationary domain is red, and
the distribution of both fields is very homogeneous. Then the domain became
exponentially large (but it has the same size in comoving coordinates, as shown
in Fig. [[2)). Each peak of the mountains corresponds to nearly Planckian
density and can be interpreted as a beginning of a new “big bang.” The laws
of physics are rapidly changing there, as indicated by changing colors, but
they become fixed in the parts of the universe where the field ¢ becomes small.
These parts correspond to valleys in Fig. Thus quantum fluctuations of the
scalar fields divide the universe into exponentially large domains with different
laws of low-energy physics, and with different values of energy density.

Eternal inflation scenario was extensively studied during the last 20 years. I
should mention, in particular, the discovery of the topological eternal inflation
[57] and the calculation of the fractal dimension of the universe [58| [55]. The
most interesting consequences of the theory of eternal inflation are related
to the theory of inflationary multiverse and string theory landscape. We will
discuss these subjects in Sect. [[.14]
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1.7 Inflation and Observations

Inflation is not just an interesting theory that can resolve many difficult prob-
lems of the standard big bang cosmology. This theory made several predictions
which can be tested by cosmological observations. Here are the most impor-
tant predictions:

(1) The universe must be flat. In most models Qa1 = 1 £ 1074,

(2) Perturbations of the metric produced during inflation are adiabatic.

(3) Inflationary perturbations have a nearly flat spectrum. In most inflation-
ary models the spectral index ny = 1 £ 0.2 (ny = 1 means totally flat).

(4) The spectrum of inflationary perturbations should be slightly non-flat. (It
is very difficult to construct a model with ny = 1.)

(5) These perturbations are gaussian.

(6) Perturbations of the metric could be scalar, vector or tensor. Inflation
mostly produces scalar perturbations, but it also produces tensor pertur-
bations with a nearly flat spectrum, and it does not produce vector per-
turbations. There are certain relations between the properties of scalar
and tensor perturbations produced by inflation.

(7) Inflationary perturbations produce specific peaks in the spectrum of CMB
radiation. (For a simple pedagogical interpretation of this effect see e.g.
[59]; a detailed theoretical description can be found in [60].)

It is possible to violate each of these predictions if one makes the infla-
tionary theory sufficiently complicated. For example, it is possible to produce
vector perturbations of the metric in the models where cosmic strings are
produced at the end of inflation, which is the case in some versions of hy-
brid inflation. It is possible to have an open or closed inflationary universe, or
even a small periodic inflationary universe, it is possible to have models with
non-gaussian isocurvature fluctuations with a non-flat spectrum. However, it
is difficult to do so, and most of the inflationary models obey the simple rules
given above.

It is not easy to test all of these predictions. The major breakthrough
in this direction was achieved due to the recent measurements of the CMB
anisotropy. The latest results based on the WMAP experiment, in combi-
nation with the Sloan Digital Sky Survey, are consistent with predictions of
the simplest inflationary models with adiabatic gaussian perturbations, with
) =1.003+0.01, and ns = 0.95+ 0.016 [42].

There are still some question marks to be examined, such as an unex-
pectedly small anisotropy of the CMB at large angles [41] [61] and possible
correlations between low multipoles; for a recent discussion see e.g. [62]
and references therein (Fig. [[3)).

The observational status and interpretation of these effects is still uncer-
tain, but if one takes these effects seriously, one may try to look for some
theoretical explanations. For example, there are several ways to suppress the
large angle anisotropy, see e.g. [64]. The situation with correlations between
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Fig. 1.3. CMB data (WMAP3, BOOMERANGO03, ACBAR) versus the predictions
of one of the simplest inflationary models with Q = 1 (solid red line), according to

3]

low multipoles requires more work. In particular, it would be interesting to
study effects related to relatively light domain walls [65] [66] [67]. Another pos-
sibility is to analyze the possible effects on the CMB anisotropy which can be
produced by the cosmic web structure of the perturbations in the curvaton
scenario [46]. Some other possibilities are mentioned in [63]. One way or an-
other, it is quite significant that all proposed explanations of these anomalies
are based on inflationary cosmology.

One of the interesting issues to be probed by future observations is the pos-
sible existence of gravitational waves produced during inflation. The present
upper bound on the tensor to scalar ratio r is not very strict, » < 0.3. How-
ever, new observations may either find the tensor modes or push the bound
on r much further, towards » < 1072 or even r < 1073,

In the simplest monomial versions of chaotic inflation with V' ~ ¢™ one
find the following (approximate) result: » = 4n/N. Here N is the number
of e-folds of inflation corresponding to the wavelength equal to the present
size of the observable part of our universe; typically N can be in the range
of 50-60; its value depends on the mechanism of reheating. For the simplest
model with n = 2 and N ~ 60 one has r ~ 0.13 — 0.14. On the other hand,
for most of the other models, including the original version of new inflation,
hybrid inflation, and many versions of string theory inflation, r is extremely
small, which makes the observation of gravitational waves in such models very
difficult.

One may wonder whether there are any sufficiently simple and natural
models with intermediate values of 7?7 This is an important question for those
who are planning a new generation of CMB experiments. The answer to this
question is positive: In the versions of chaotic inflation with potentials like
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+m2¢? + \¢*, as well as in the natural inflation scenario, one can easily
obtain any value of r from 0.3 to 1072, I will illustrate it with two figures.
The first one shows the graph of possible values of ngs and r in the standard
symmetry breaking model with the potential

V = -—m?¢?/2 4+ \¢* /4 + m? /4N = i(¢>2 —v?)? | (1.23)

where v = m/ V') is the amplitude of spontaneous symmetry breaking.

If v is very large, v = 102, inflation occurs near the minimum of the
potential, and all properties of inflation are the same as in the simplest chaotic
inflation model with quadratic potential m2¢2. If v < 10, inflation occurs as
in the theory A¢*/4, which leads to r ~ 0.28. If v takes some intermediate
values, such as v = O(10), then two different inflationary regimes are possible
in this model: at large ¢ and at small ¢. In the first case r interpolates between
its value in the theory A¢*/4 and the theory m?¢$? (i.e. between 0.28 and 0.14).
In the second case, r can take any value from 0.14 to 1072, see Fig. [ [68] [69].

If one considers chaotic inflation with the potential including terms ¢2, ¢3
and ¢*, one can considerably alter the properties of inflationary perturbations
[70). Depending on the values of parameters, initial conditions and the required
number of e-foldings IV, this relatively simple class of models covers almost
all parts of the area in the (r,ns) plane allowed by the latest observational
data [71], see Fig.

¢4
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Fig. 1.4. Possible values of 7 and ns in the theory }(¢* — v)? for different initial
conditions and different v, for N = 60. In the small v limit, the model has the same
predictions as the theory )\q54/4. In the large v limit it has the same predictions as
the theory m?¢?. The upper branch, above the first star from below (marked as ¢?),
corresponds to inflation which occurs while the field rolls down from large ¢; the
lower branch corresponds to the motion from ¢ = 0
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Fig. 1.5. Possible values of r and ns for chaotic inflation with a potential including
terms ¢2, ¢ and ¢* for N = 50, according to [71]. The color-filled areas correspond
to 12%, 27%, 45%, 68% and 95% confidence levels according to the WMAP3 and
SDSS data

Note that for all versions of the model shown in Figs. [ 4l and [[Hl the range
of the cosmological evolution of the fields is A¢ > 1, so formally these models
can be called the large field models. And yet they have dramatically different
properties, which do not fit into the often-used scheme dividing all models
into small field models, large field models and hybrid inflation models.

1.8 Alternatives to Inflation?

The inflationary scenario is very versatile, and now, after 25 years of persistent
attempts of many physicists to propose an alternative to inflation, we still do
not know any other way to construct a consistent cosmological theory. Indeed,
in order to compete with inflation a new theory should make similar predic-
tions and should offer an alternative solution to many difficult cosmological
problems. Let us look at these problems before starting a discussion.

(1) The homogeneity problem. Before even starting an investigation of den-
sity perturbations and structure formation, one should explain why the
universe is nearly homogeneous on the horizon scale.

(2) The isotropy problem. We need to understand why all directions in the
universe are similar to each other, why there is no overall rotation of the
universe, etc...
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(3) The horizon problem. This one is closely related to the homogeneity prob-
lem. If different parts of the universe have not been in a causal contact
when the universe was born, why do they look so similar?

(4) The flatness problem. Why Q a~ 17 Why parallel lines do not intersect?

(5) The total entropy problem. The total entropy of the observable part of
the universe is greater than 10%7. Where did this huge number come from?
Note that the lifetime of a closed universe filled with hot gas with total
entropy S is S2/3 x 10~%3s [14]. Thus S must be huge. Why?

(6) The total mass problem. The total mass of the observable part of the uni-
verse has mass ~ 10500 p;. Note also that the lifetime of a closed universe
filled with nonrelativistic particles of total mass M is }}/ x 10~*%s. Thus
M must be huge. But why?

(7) The structure formation problem. If we manage to explain the homo-
geneity of the universe, how can we explain the origin of inhomogeneities
required for the large scale structure formation?

(8) The monopole problem, gravitino problem, etc.

This list is very long. That is why it was not easy to propose any al-
ternative to inflation even before we learned that 2 ~ 1, ny ~ 1, and that
the perturbations responsible for galaxy formation are mostly adiabatic, in
agreement with the predictions of the simplest inflationary models.

There were many attempts to propose an alternative to inflation in re-
cent years. In general, this could be a very healthy tendency. If one of these
attempts will succeed, it will be of great importance. If none of them are suc-
cessful, it will be an additional demonstration of the advantages of inflationary
cosmology. However, since the stakes are high, we are witnessing a growing
number of premature announcements of success in developing an alternative
cosmological theory (see Chap.[IT]in this volume for an alternative discussion).

1.8.1 Cosmic Strings and Textures

Fifteen years ago the models of structure formation due to topological de-
fects or textures were advertised in popular press as the models that “match
the explanatory triumphs of inflation while rectifying its major failings” [72].
However, it was clear from the very beginning that these theories at best
could solve only one problem (structure formation) out of the eight problems
mentioned above. The true question was not whether one can replace inflation
by the theory of cosmic strings/textures, but whether inflation with cosmic
strings/textures is better than inflation without cosmic strings/textures. Re-
cent observational data favor the simplest version of inflationary theory, with-
out topological defects, or with an extremely small (few percent) admixture
of the effects due to cosmic strings.

1.8.2 Pre-big Bang

An attempt to avoid the use of the standard inflationary mechanism (though
still use a stage of inflation prior to the big bang) was made in the pre-big bang
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scenario [73]. This scenario is based on the assumption that eventually one
will find a solution of the cosmological singularity problem and learn how one
could transfer small perturbations of the metric through the singularity. This
problem still remains unsolved, see e.g. [74]. Moreover, a detailed investigation
of the homogeneity, isotropy and flatness problems in the pre-big bang scenario
demonstrated that the stage of the pre-big bang inflation introduced in [73]
is insufficient to solve the major cosmological problems [75].

1.8.3 Ekpyrotic/Cyclic Scenario

A similar situation emerged with the introduction of the ekpyrotic scenario
[76]. The original version of this theory claimed that this scenario can solve
all cosmological problems without using the stage of inflation, i.e. without a
prolonged stage of an accelerated expansion of the universe, which was called
in [f6] “superluminal expansion.” However, the original ekpyrotic scenario
contained many significant errors and did not work. It is sufficient to say that
instead of the big bang expected in [76], there was a big crunch [77, [7§].

The ekpyrotic scenario was replaced by the cyclic scenario, which used
an infinite number of periods of expansion and contraction of the universe
[79). The origin of the required scalar field potential in this model remains
unclear, and the very existence of the cycles postulated in [79] have not been
demonstrated. When we analyzed this scenario using the particular potential
given in [79], and took into account the effect of particle production in the
early universe, we found a very different cosmological regime [80, [81].

The original version of the cyclic scenario relied on the existence of an
infinite number of very long stages of “superluminal expansion,” i.e. inflation,
in order to solve the major cosmological problems. In this sense, the original
version of the cyclic scenario was not a true alternative to inflationary scenario,
but its rather peculiar version. The main difference between the usual inflation
and the cyclic inflation, just as in the case of topological defects and textures,
was the mechanism of generation of density perturbations. However, since the
theory of density perturbations in cyclic inflation requires a solution of the
cosmological singularity problem [82] [83], it is difficult to say anything definite
about it.

Most of the authors believe that even if the singularity problem were
solved, the spectrum of perturbations in the standard version of this sce-
nario involving only one scalar field after the singularity would be very non-
flat. One may introduce more complicated versions of this scenario, involving
many scalar fields. In this case, under certain assumptions about the way the
universe passes through the singularity, one may find a special regime where
isocurvature perturbations in one of these fields are converted into adiabatic
perturbations with a nearly flat spectrum. A recent discussion of this scenario
shows that this regime requires an extreme fine-tuning of initial conditions
[84]. Moreover, the instability of the solutions in this regime, which was found
in [84], implies that it may be very easy to switch from one regime to another
under the influence of small perturbations. This may lead to a domain-like
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structure of the universe and large perturbations of the metric [85]. If this is
the case, no fine-tuning of initial conditions could help.

One of the latest versions of the cyclic scenario attempted to avoid the long
stage of accelerated expansion (low-scale inflation) and to make the universe
homogeneous using some specific features of the ekpyrotic collapse [86]. The
authors assumed that the universe was homogeneous prior to its collapse on
the scale that becomes greater than the scale of the observable part of the
universe during the next cycle. Under this assumption, they argued that the
perturbations of metric produced during each subsequent cycle do not interfere
with the perturbations of metric produced in the next cycle. As a result,
if the universe has been homogeneous from the very beginning, it remains
homogeneous on the cosmologically interesting scales in all subsequent cycles.

Is this a real solution of the homogeneity problem? The initial size of the
part of the universe, which is required to be homogeneous in this scenario
prior to the collapse, was many orders of magnitude greater than the Planck
scale. How homogeneous should it be? If we want the inhomogeneities to be
produced due to amplification of quantum perturbations, then the initial clas-
sical perturbations of the field responsible for the isocurvature perturbations
must be incredibly small, smaller than its quantum fluctuations. Otherwise
the initial classical inhomogeneities of this field will be amplified by the same
processes that amplified its quantum fluctuations and will dominate the spec-
trum of perturbations after the bounce [77]. This problem is closely related
to the problem mentioned above [84] [85].

Recently there was an attempt to revive the original (non-cyclic) version of
the ekpyrotic scenario by involving a nonsingular bounce. This regime requires
violating the null energy condition [78], which usually leads to a catastrophic
vacuum instability and/or causality violation. One may hope to avoid these
problems in the ghost condensate theory [87]; see a series of recent papers on
this subject [88, [89] [00]. However, even the authors of the ghost condensate
theory emphasize that a fully consistent version of this theory is yet to be
constructed [91], and that it may be incompatible with basic gravitational
principles [92].

In addition, just as the ekpyrotic scenario with the singularity [84], the
new version of the ekpyrotic theory requires two fields, and a conversion of
the isocurvature perturbations to adiabatic perturbations [93]. Once again, the
initial state of the universe in this scenario must be extremely homogeneous:
the initial classical perturbations of the field responsible for the isocurvature
perturbations must be smaller than its quantum fluctuations. It does not seem
possible to solve this problem without further extending this exotic model and
making it a part of an even more complicated scenario.

1.8.4 String Gas Scenario

Another attempt to solve some of the cosmological problems without using
inflation has been proposed by Brandenberger et al. in the context of string
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gas cosmology [94] [95]. The authors admitted that their model did not solve
the flatness problem, so it was not a real alternative to inflation. However, they
claimed that their model provided a non-inflationary mechanism of production
of metric perturbations with a flat spectrum.

It would be quite interesting and important to have a new mechanism of
generation of metric perturbations based on string theory. Unfortunately, a
detailed analysis of the scenario proposed in [94] [95] revealed that some of its
essential ingredients were either unproven or incorrect [96]. For example, the
theory of generation of metric perturbations used in [94] was formulated in
the Einstein frame, where the usual Einstein equations are valid. On the other
hand, the bounce and the string gas cosmology were described in string frame.
Then both of these results were combined without distinguishing between
different frames and a proper translation from one frame to another.

If one makes all calculations carefully (ignoring other unsolved problems
of this scenario), one finds that the perturbations generated in their scenario
have a blue spectrum with n = 5, which is ruled out by cosmological observa-
tions [96]. After the conference “Inflation + 25” where this issue was actively
debated, the authors of [94] [95] issued two new papers reiterating their claims
[97, 98], but eventually they agreed with our conclusion expressed at this con-
ference: the spectrum of perturbations of metric in this scenario is blue, with
n =5, see (43) of [99]. This rules out the models proposed in [94] 95] 97| 9g].
Nevertheless, as often happens with various alternatives to inflation, some of
the authors of [94] [95] [97) 98] still claim that their basic scenario remains
intact and propose its further modifications [99] [T00] [TOT].

1.8.5 Mirage Bounce

Paradoxes with the choice of frames appear in other works on bounces in
cosmology as well. For example, in [102] it was claimed that one can solve
all cosmological problems in the context of mirage cosmology. However, as
explained in [I03], in the Einstein frame in this scenario the universe does not
evolve at all.

To clarify the situation without going to technical details, one may con-
sider the following analogy. We know that all particles in our body get their
masses due to spontaneous symmetry breaking in the standard model. Sup-
pose that the Higgs field initially was out of the minimum of its potential, and
experienced oscillations. During these oscillations the masses of electrons and
protons also oscillated. If one measures the size of the universe in units of the
(time-dependent) Compton wavelengths of the electron (which could seem to
be a good idea), one would think that the scale factor of the universe oscillates
(bounces) with the frequency equal to the Higgs boson mass. And yet, this
“cosmological evolution” with bounces of the scale factor is an illusion, which
disappears if one measures the distances in units of the Planck length M I
(the Einstein frame).
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In addition, the mechanism of generation of density perturbations used
in [102] was borrowed from the paper by Hollands and Wald [104], who sug-
gested yet another alternative mechanism of generation of metric perturba-
tions. However, this mechanism requires investigating thermal processes at
the density 90 orders of magnitude greater than the Planck density, which
makes all calculations unreliable [23].

1.8.6 Bounce in Quantum Cosmology

Finally, I should mention [105], where it was argued that under certain condi-
tions one can have a bouncing universe and produce metric perturbations with
a flat spectrum in the context of quantum cosmology. However, the model of
[105] does not solve the flatness and homogeneity problems. A more detailed
analysis revealed that the wave function of the universe proposed in [105]
makes the probability of a bounce of a large universe exponentially small
[106]. The authors are working on a modification of their model, which, as
they hope, will not suffer from this problem.

To conclude, at the moment it is hard to see any real alternative to infla-
tionary cosmology, despite an active search for such alternatives. All of the
proposed alternatives are based on various attempts to solve the singular-
ity problem: one should either construct a bouncing nonsingular cosmological
solution, or learn what happens to the universe when it goes through the sin-
gularity. This problem bothered cosmologists for nearly a century, so it would
be great to find its solution, quite independently of the possibility to find an
alternative to inflation. None of the proposed alternatives can be consistently
formulated until this problem is solved.

In this respect, inflationary theory has a very important advantage: it
works practically independently of the solution of the singularity problem. It
can work equally well after the singularity, or after the bounce, or after the
quantum creation of the universe. This fact is especially clear in the eternal
inflation scenario: eternal inflation makes the processes which occurred near
the big bang practically irrelevant for the subsequent evolution of the universe.

1.9 Naturalness of Chaotic Inflation

Now we will return to the discussion of various versions of inflationary theory.
Most of them are based on the idea of chaotic initial conditions, which is the
trademark of the chaotic inflation scenario. In the simplest versions of chaotic
inflation scenario with the potentials V' ~ ¢™, the process of inflation occurs
at ¢ > 1, in Planck units. Meanwhile, there are many other models where
inflation may occur at ¢ < 1.

There are several reasons why this difference may be important. First of
all, some authors argue that the generic expression for the effective potential
can be cast in the form
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V(g) =Vo+ad+ ¢2+6¢3+ ¢4+§:A
and then they assume that generically A, = O(1), see e.g. (128) in [107]. If
this assumption were correct, one would have little control over the behavior
of V(d)) at ¢ > Mpy.

Here we have written Mp; explicitly, to expose the implicit assumption
made in [107]. Why do we write Mp) in the denominator, instead of 1000Mp;?
An intuitive reason is that quantum gravity is non-renormalizable, so one
should introduce a cut-off at momenta k ~ Mp;. This is a reasonable assump-
tion, but it does not imply the validity of (L24]). Indeed, the constant part
of the scalar field appears in the gravitational diagrams not directly, but only
via its effective potential V' (¢) and the masses of particles interacting with
the scalar field ¢. As a result, the terms induced by quantum gravity effects
are suppressed not by factors M ., but by factors MV ,and (¢) [14]. Con-
sequently, quantum gravity correctlons to V(¢) become large not at ¢ > Mpy,
as one could infer from (C24)), but only at super-Planckian energy density,
or for super-Planckian masses. This justifies our use of the simplest chaotic
inflation models.

The simplest way to understand this argument is to consider the case
where the potential of the field ¢ is a constant, V' = V{. Then the theory has
a shift symmetry, ¢ — ¢ + c. This symmetry is not broken by perturbative
quantum gravity corrections, so no such terms as Zn An j’\b;;: are generated.
This symmetry may be broken by nonperturbative quantum gravity effects
(wormholes? virtual black holes?), but such effects, even if they exist, can be
made exponentially small [I0§].

On the other hand one may still wonder whether there is any reason not to
add terms like A, ¢ Mpn With A= O(1) to the theory. Here I will make a simple
argument which may help to explain it. I am not sure whether this argument
should be taken too seriously, but I find it quite amusing and unexpected.

Let us consider a theory with the potential

V(g) =V i SR
o +ad+ ¢ + A + R¢ (1.25)

The last term is added to increase the generahty of our discussion by consid-
ering fields non-minimally coupled to gravity, including the conformal fields
with £ = 1/6.

Suppose first that m? = \,, = 0. Then the theory can describe our ground
state with a slowly changing vacuum energy only if Vo + a¢ < 107120, a <
107120 [109]. This theory cannot describe inflation because « is too small to
produce the required density perturbations.

Let us now add the quadratic term. Without loss of generality one can
make a redefinition of the field ¢ and V{ to remove the linear term:

mQ

V(g)=Vo+ ', ¢ (1.26)
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This is the simplest version of chaotic inflation. The maximal value of the field
2

¢ in this scenario is given by the condition " ¢* ~ 1 (Planckian density), so

the maximal amount of inflation in this model is ~ e®*/4 ~ e1/m”.

If, instead, we considered a more general case with the three terms ";2 O+
¢4+n

N Nfp

A + gRqS?, the maximal amount of inflation would be

N < exp [min{m ™2 X\ /" ¢71}| . (1.27)

The last constraint appears because the effective gravitational constant be-
comes singular at ¢? ~ &1,

Thus, if any of the constants )\,2/ " or £ is greater than m?, the total amount
of inflation will be exponentially smaller than in the simplest theory "52 2.
Therefore one could argue that if one has a possibility to choose between dif-
ferent inflationary theories, as in the string theory landscape, then the largest
fraction of the volume of the universe will be in the parts of the multiverse
with A" ¢ < m2. One can easily check that for A%/",¢ < m? the higher
order terms can be ignored at the last stages of inflation, where ¢ = O(1). In
other words, the theory behaves as purely quadratic during the last stages of
inflation when the observable part of the universe was formed.

One can come to the same conclusion if one takes into account only the
part of inflation at smaller values of the field ¢, when the stage of eternal
inflation is over. This suggests that the simplest version of chaotic inflation
scenario is the best.

Of course, this is just an argument. Our main goal here was not to promote
the model "52 ¢2, but to demonstrate that the considerations of naturalness
(e.g. an assumption that all \,, should be large) depend quite crucially on the
underlying assumptions. In the example given above, a very simple change of
these assumptions (the emphasis on the total volume of the post-inflationary
universe) was sufficient to explain the naturalness of the simplest model ”;2 2.
However, the situation may become quite different if instead of the simplest
theory of a scalar field combined with general relativity one starts to investi-
gate more complicated models, such as supergravity and string theory.

1.10 Chaotic Inflation in Supergravity

In the simplest models of inflation, the field ¢ itself does not have any direct
physical meaning; everything depends only on its functions such as the masses
of particles and the scalar potential. However, in more complicated theories
the scalar field ¢ itself may have a physical (geometrical) meaning, which may
constrain the possible values of the fields during inflation. The most important
example is given by N = 1 supergravity.

The F-term potential of the complex scalar field ® in supergravity is given
by the well-known expression (in units Mp; = 1):
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V =eX[K 1 [DeW | = 3|W[?] . (1.28)

Here W (®) is the superpotential, ® denotes the scalar component of the su-
perfield ®; DeW = %‘g + %{{f W. The kinetic term of the scalar field is given
by Kgg 0,90,®. The standard textbook choice of the Kéhler potential cor-
responding to the canonically normalized fields ® and ® is K = ®®, so that
Kg3 = 1.

This immediately reveals a problem: At ® > 1 the potential is extremely
steep. It blows up as e‘q’|2, which makes it very difficult to realize chaotic
inflation in supergravity at ¢ = v/ 2|®| > 1. Moreover, the problem persists
even at small ¢. If, for example, one considers the simplest case when there
are many other scalar fields in the theory and the superpotential does not
depend on the inflaton field ¢, then (28] implies that at ¢ < 1 the effective
mass of the inflaton field is m? = 3H?. This violates the condition m? < H?
required for successful slow-roll inflation (the so-called n-problem).

The major progress in SUGRA inflation during the last decade was
achieved in the context of the models of the hybrid inflation type, where
inflation may occur at ¢ < 1. Among the best models are the F-term infla-
tion, where different contributions to the effective mass term m3 cancel [110],
and D-term inflation [IT1], where the dangerous term e does not affect the
potential in the inflaton direction. A detailed discussion of various versions of
hybrid inflation in supersymmetric theories can be found in the Chaps.[Bland @
in this volume, see also [107, 112} [113].

However, hybrid inflation occurs only on a relatively small energy scale,
and many of its versions do not lead to eternal inflation. Therefore it would
be nice to obtain inflation in a context of a more general class of supergravity
models.

This goal seemed very difficult to achieve; it took almost 20 years to find
a natural realization of the chaotic inflation model in supergravity. Kawasaki,
Yamaguchi and Yanagida suggested to take the Kahler potential

1 _ _
K:2@+©F+XX (1.29)

of the fields ® and X, with the superpotential m®X [114].

At first glance, this Kéhler potential may seem somewhat unusual. How-
ever, it can be obtained from the standard Kéhler potential K = ®®+ X X by
adding terms ®2/2 + ®2/2, which do not give any contribution to the kinetic
term of the scalar fields Kgg 0,99,®. In other words, the new Kéhler poten-
tial, just as the old one, leads to canonical kinetic terms for the fields ® and
X, so it is as simple and legitimate as the standard textbook Kahler potential.
However, instead of the U(1) symmetry with respect to rotation of the field
® in the complex plane, the new Ké&hler potential has a shift symmetry; it
does not depend on the imaginary part of the field ®. The shift symmetry is
broken only by the superpotential.

This leads to a profound change of the potential (L28]): the dangerous
term eX continues growing exponentially in the direction (® + ®), but it
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remains constant in the direction (® — ®). Decomposing the complex field ®
into two real scalar fields, ® = \/12 (n+1i¢), one can find the resulting potential

V(¢,n, X) for n,|X| < 1:

2

V:”; (1 +12) +m? X2 (1.30)
This potential has a deep valley, with a minimum at n = X = 0. At n, | X| > 1
the potential grows up exponentially. Therefore the fields 7 and X rapidly fall
down towards n = X = 0, after which the potential for the field ¢ becomes
V= "52 ¢?. This provides a very simple realization of eternal chaotic inflation
scenario in supergravity [IT4]. This model can be extended to include theories
with different power-law potentials, or models where inflation begins as in the
simplest versions of chaotic inflation scenario, but ends as in new or hybrid
inflation, see e.g. [115] [116].

The existence of the shift symmetry was also the basis of the natural infla-
tion scenario [T17]. The basic assumption of this scenario was that the axion
field in the first approximation is massless because the flatness of the axion
direction is protected by U(1) symmetry. Nonperturbative corrections lead
to the axion potential V(¢) = V(1 + cos(¢/ fa)). If the ‘radius’ of the axion
potential f, is sufficiently large, f, 2= 3, inflation near the top of the potential
becomes possible. For much greater values of f, one can have inflation near
the minimum of the axion potential, where the potential is quadratic [TT§].

The natural inflation scenario was proposed back in 1990, but until now
all attempts to realize this scenario in supergravity have failed. First of all,
it has been difficult to find theories with large f,. More importantly, it has
been difficult to stabilize the radial part of the axion field. A possible model
of natural inflation in supergravity was constructed only very recently, see
Chap. @ in this volume.

Unfortunately, we still do not know how one could incorporate the models
discussed in this section in string theory. We will briefly describe some fea-
tures of inflation in string theory, and refer the readers to a more detailed
presentation in Chap. d in this volume.

1.11 Towards Inflation in String Theory

1.11.1 de Sitter Vacua in String Theory

For a long time, it had seemed rather difficult to obtain inflation in M/string
theory. The main problem here was the stability of compactification of internal
dimensions. For example, ignoring non-perturbative effects to be discussed
below, a typical effective potential of the effective four-dimensional theory
obtained by compactification in string theory of type IIB can be represented
in the following form:
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Vg, p,¢) ~ e¥2¢=V0r V() (1.31)

Here ¢ and p are canonically normalized fields representing the dilaton field
and the volume of the compactified space; ¢ stays for all other fields, including
the inflaton field.

If ¢ and p were constant, then the potential f/(¢) could drive inflation.

However, this does not happen because of the steep exponent e¥2#~V67 which
rapidly pushes the dilaton field ¢ to —oo, and the volume modulus p to +oc.
As a result, the radius of compactification becomes infinite; instead of inflat-
ing, four-dimensional space decompactifies and becomes 10-dimensional.

Thus in order to describe inflation one should first learn how to stabilize
the dilaton and the volume modulus. The dilaton stabilization was achieved
in [I19]. The most difficult problem was to stabilize the volume. The solution
of this problem was found in [120] (KKLT construction). It consists of two
steps.

First, due to a combination of effects related to the warped geometry of
the compactified space and nonperturbative effects calculated directly in four-
dimensional (instead of being obtained by compactification), it was possible
to obtain a supersymmetric AdS minimum of the effective potential for p. In
the original version of the KKLT scenario, it was done in the theory with the
Kahler potential

K = —3log(p+p) , (1.32)
and with the nonperturbative superpotential of the form
W =Wy + Ae™ " | (1.33)

with @ = 2w/N. The corresponding effective potential for the complex field
p = 0 + i had a minimum at finite, moderately large values of the volume
modulus field o, which fixed the volume modulus in a state with a negative
vacuum energy. Then an anti-D3 brane with the positive energy ~ o~2 was
added. This addition uplifted the minimum of the potential to the state with
a positive vacuum energy, see Fig.

Instead of adding an anti-D3 brane, which explicitly breaks supersymme-
try, one can add a D7 brane with fluxes. This results in the appearance of a
D-term which has a similar dependence on p, but leads to spontaneous super-
symmetry breaking [I2I]. In either case, one ends up with a metastable dS
state which can decay by tunneling and formation of bubbles of 10d space with
vanishing vacuum energy density. The decay rate is extremely small [120], so
for all practical purposes, one obtains an exponentially expanding de Sitter
space with the stabilized volume of the internal spaceﬁr

1.11.2 Inflation in String Theory

There are two different versions of string inflation. In the first version, which
we will call modular inflation, the inflaton field is associated with one of the

2 Tt is also possible to find de Sitter solutions in noncritical string theory [122).
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Fig. 1.6. KKLT potential as a function of ¢ = Re p. The thin green (lower) line
corresponds to the AdS stabilized potential for Wy = —107%, A =1, a = 0.1. The
dashed line shows the additional term, which appears either due to the contribution
of a D3 brane or of a D7 brane. The thick black line shows the resulting potential
with a very small but positive value of V' in the minimum. The potential is shown
multiplied by 10'°

moduli, the scalar fields which are already present in the KKLT construction.
In the second version, the inflaton is related to the distance between branes
moving in the compactified space. (This scenario should not be confused with
inflation in the brane world scenario [123] [124]. This is a separate interesting
subject, which we are not going to discuss in this chapter.)

Modular Inflation

An example of the KKLT-based modular inflation is provided by the racetrack
inflation model of [125]. It uses a slightly more complicated superpotential

W =Wy + Ae™* + Be™ . (1.34)

The potential of this theory has a saddle point as a function of the real and
the complex part of the volume modulus: it has a local minimum in the di-
rection Re p, which is simultaneously a very flat maximum with respect to
Im p. Inflation occurs during a slow rolling of the field Im p away from this
maximum (i.e. from the saddle point). The existence of this regime requires
a significant fine-tuning of parameters of the superpotential. However, in the
context of the string landscape scenario describing from 10190 to 101090 dif-
ferent vacua (see below), this may not be such a big issue. A nice feature of
this model is that it does not require adding any new branes to the original
KKLT scenario, i.e. it is rather economical (Fig. [[7])
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Fig. 1.7. Plot for the potential in the racetrack model (rescaled by 10'). Here X
stays for 0 = Rep and Y stays for @« = Im p. Inflation begins in a vicinity of the
saddle point at Xgaadale = 123.22, Ysaddie = 0. Units are Mp; =1

Other interesting models of moduli inflation were developed in [126] [127]
[128] M29]. An interesting property of all of these models is the existence of
the regime of eternal slow-roll inflation. This property distinguishes modular
inflation from the brane inflation scenario to be discussed below.

Brane Inflation

During the last few years, there were many suggestions on how to obtain
hybrid inflation in string theory by considering motion of branes in the com-
pactified space, see [130] [I31] and references therein. The main problem of
all of these models was the absence of stabilization of the compactified space.
Once this problem was solved for dS space [120], one could try to revisit these
models and develop models of brane inflation compatible with the volume
stabilization.

The first idea [132] was to consider a pair of D3 and anti-D3 branes in
the warped geometry studied in [T20]. The role of the inflaton field ¢ in this
model, which is known as the KKLMMT model, could be played by the in-
terbrane separation. A description of this situation in terms of the effective
four-dimensional supergravity involved Kahler potential

K = —3log(p+p — k(¢,9)) , (1.35)

where the function k(¢, ¢) for the inflaton field ¢, at small ¢, was taken in the
simplest form k(¢,d) = ¢¢. If one makes the simplest assumption that the
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superpotential does not depend on ¢, then the ¢ dependence of the potential
(C28) comes from the term e = (p + p — ¢¢) 3. Expanding this term near
the stabilization point p = pg, one finds that the inflaton field has a mass
m7 = 2H?. Just like the similar relation m3 = 3H? in the simplest models of
supergravity, this is not what we want for inflation.

One way to solve this problem is to consider ¢-dependent superpotentials.
By doing so, one may fine-tune mi to be O(1072)H? in a vicinity of the point
where inflation occurs [132]. Whereas fine-tuning is certainly undesirable, in
the context of string cosmology it may not be a serious drawback. Indeed,
if there exist many realizations of string theory (see Sect. [[14]), then one
might argue that all realizations not leading to inflation can be discarded,
because they do not describe a universe in which we could live. This makes
the issue of fine-tuning less problematic. Inflation in the KKLMMT model and
its generalizations were studied by many authors; see Chap. [ in this volume
and references therein.

Can we avoid fine-tuning altogether? One of the possible ideas is to find
theories with some kind of shift symmetry. Another possibility is to con-
struct something like D-term inflation, where the flatness of the potential is
not spoiled by the term e®. Both of these ideas were combined together in
Ref. [I33] based on the model of D3/D7 inflation in string theory [134]. In
this model the Kahler potential is given by

K = ~3log(p+7) ~ L (6~ 6, (1.36)

and the superpotential depends only on p. The role of the inflaton field is
played by the field s = Re ¢, which represents the distance between the D3
and D7 branes. The shift symmetry s — s+ ¢ in this model is related to the
requirement of unbroken supersymmetry of branes in a BPS state.

The effective potential with respect to the field p in this model coincides
with the KKLT potential [120, 121]. The potential is exactly flat in the direc-
tion of the inflaton field s, until one adds a hypermultiplet of other fields ¢,
which break this flatness due to quantum corrections and produce a logarith-
mic potential for the field s. The resulting potential with respect to the fields
s and ¢4 is very similar to the potential of D-term hybrid inflation [I11].

During inflation, ¢+ = 0, and the field s slowly rolls down to its smaller
values. When it becomes sufficiently small, the theory becomes unstable with
respect to the generation of the field ¢, , see Fig. [[.8l The fields s and ¢, roll
down to the KKLT minimum, and inflation ends. For the latest developments
in D3/D7 inflation see [135] [136].

All inflationary models discussed above were formulated in the context
of Type IIB string theory with the KKLT stabilization. A discussion of the
possibility to obtain inflation in the heterotic string theory with stable com-
pactification can be found in [I37, [13§].

Finally, we should mention that making the effective potential flat is not
the only way to achieve inflation. There are some models with nontrivial
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Fig. 1.8. The inflationary potential as a function of the inflaton field s and Re ¢.
In the beginning, the field s rolls along the valley ¢4 = 0, and then it falls down to
the KKLT minimum

kinetic terms where inflation may occur even without any potential [139].
One may also consider models with steep potentials but with anomalously
large kinetic terms for the scalar fields see e.g. [I40]. In application to string
theory, such models, called “DBI inflation,” were developed in [141].

In contrast to the moduli inflation, none of the existing versions of the
brane inflation allow the slow-roll eternal inflation [142].

1.12 Scale of Inflation, the Gravitino Mass,
and the Amplitude of the Gravitational Waves

So far, we did not discuss the relation of the new class of models with particle
phenomenology. This relation is rather unexpected and may impose strong
constraints on particle phenomenology and on inflationary models: In the
simplest models based on the KKLT mechanism the Hubble constant H and
the inflaton mass my are smaller than the gravitino mass [143],

The reason for the constraint H < mg/ is that the height of the barrier
stabilizing the KKLT minimum is O(m§ /2). Adding a large vacuum energy
density to the KKLT potential, which is required for inflation, may destabilize
it, see Fig. The constraint mg < H is a consequence of the slow-roll
conditions.
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100 150 200 250
Fig. 1.9. The lowest curve with dS minimum is the one from the KKLT model. The
height of the barrier in this potential is of the order m3 /2- The second line shows the
o-dependence of the inflaton potential. When one adds it to the theory, it always
appears divided by ¢", where in the simplest cases n = 2 or 3. Therefore an addition
of the inflationary potential lifts up the potential at small o. The top curve shows
that when the inflation potential becomes too large, the barrier disappears, and the
internal space decompactifies. This explains the origin of the constraint H < mg,o

Therefore if one believes in the standard SUSY phenomenology with
mgp S O(1) TeV, one should find a realistic particle physics model where
inflation occurs at a density at least 30 orders of magnitude below the Planck
energy density. Such models are possible, but their parameters should be sub-
stantially different from the parameters used in all presently existing models
of string theory inflation.

An interesting observational consequence of this result is that the ampli-
tude of the gravitational waves in all string inflation models of this type should
be extremely small. Indeed, according to (LZI)), one has r ~ 3 x 107 V ~
108 H?, which implies that

r S 10% m3 (1.38)

in Planck units. In particular, for mg,s <1 TeV ~ 4 x 10716 M,,, which is in
the range most often discussed by SUSY phenomenology, one has [144]
r <1072 (1.39)

If CMB experiments find that » > 1072, then this will imply, in the class of
theories described above, that

maye 21077 M, ~ 2.4 x 10" GeV (1.40)

which is 10 orders of magnitude greater than the standard gravitino mass
range discussed by particle phenomenologists.
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There are several different ways to address this problem. First of all, one
may try to construct realistic particle physics models with superheavy grav-
itinos [145] [146].

Another possibility is to consider models with the racetrack superpotential
containing at least two exponents (L34]) and find parameters such that the
supersymmetric minimum of the potential even before the uplifting occurs at
zero energy density [143], which would mean mg/, = 0, see Fig. Then,
by a slight change of parameters one can get the gravitino mass squared much
smaller than the height of the barrier, which removes the constraint H S mg 5.

Note, however, that in order to have H?> ~ V ~ 1070 with mg,, < 1
TeV ~ 4 x 10716 M, in the model of [143] one would need to fine-tune the
parameters of the theory with an incredible precision. This observation further
strengthens the results of [T47] [T48], which imply that the tensor perturbations
produced in all known versions of string theory inflation are undetectably
small.

One could argue that since the existing versions of string theory inflation
predict tensor modes with an extremely small amplitude, there is no sense to
even try to detect them. From our perspective, however, the attitude should
be opposite. There is a class of inflationary models that predict r in the range
from 0.3 to 1072, see Sect. [T so it makes a lot of sense to test this range of
r even though the corresponding models have not been constructed as yet in
the context of string theory.

40 50 60 70 80 0

-2 L

Fig. 1.10. The potential in the theory (IL34) for A =1, B = -5, a = 27/100, b =
27w /50, Wo = —0.05. A Minkowski minimum at V = 0 stabilizes the volume at
oo ~ 37. The height of the barrier in this model is not correlated with the gravitino
mass, which vanishes if the system is trapped in Minkowski vacuum. Therefore, in
this model one can avoid the constraint H < mg,o [143]
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If the tensor modes is found, the resulting situation will be similar to the
situation with the discovery of the acceleration of the universe. This discovery
initially puzzled string theorists, since none of the versions of string theory
which existed 5 years ago could describe an accelerating universe in a stable
vacuum state with a positive energy density. Eventually this problem was
resolved with the development of the KKLT construction.

A possible discovery of tensor modes could lead to another constructive
crisis since it may rule out many existing versions of string inflation and string
phenomenology, and it may imply that the gravitino must be superheavy.
Thus, investigation of gravitational waves produced during inflation may serve
as a unique source of information about string theory and fundamental physics

in general [144].

1.13 Initial Conditions for the Low-Scale Inflation
and Topology of the Universe

One of the advantages of the simplest versions of the chaotic inflation scenario
is that inflation may begin in the universe immediately after its creation at
the largest possible energy density Mp,, of a smallest possible size (Planck
length), with the smallest possible mass M ~ Mp; and with the smallest
possible entropy S = O(1). This provides a true solution to the flatness,
horizon, homogeneity, mass and entropy problems [14].

Meanwhile, in the new inflation scenario (more accurately, in the hilltop
version of the chaotic inflation scenario), inflation occurs on the mass scale 3
orders of magnitude below Mp), when the total size of the universe was very
large. If, for example, the universe is closed, its total mass at the beginning
of new inflation must be greater than 10°Mp;, and its total entropy must
be greater than 10°. In other words, in order to explain why the entropy
of the universe at present is greater than 10%7 one should assume that it
was extremely large from the very beginning. Then it becomes difficult to
understand why such a large universe was homogeneous. This does not look
like a real solution of the problem of initial conditions.

Thus one may wonder whether it possible to solve the problem of initial
conditions for the low-scale inflation? The answer to this question is positive
though perhaps somewhat unexpected: the simplest way to solve the problem
of initial conditions for the low-scale inflation is to consider a compact flat
or open universe with nontrivial topology (usual flat or open universes are
infinite). The universe may initially look like a nearly homogeneous torus of
a Planckian size containing just one or two photons or gravitons. It can be
shown that such a universe continues expanding and remains homogeneous
until the onset of inflation, even if inflation occurs only on a very low energy

scale [149] (150, [I51} 152, 153

Consider, e.g. a flat compact universe having the topology of a torus, S,

ds? = dt* — a?(t) da? (1.41)
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with identification x; + 1 = x; for each of the three dimensions. Suppose for
simplicity that a1 = a2 = ag = a(t). In this case the curvature of the universe
and the Einstein equations written in terms of a(t) will be the same as in
the infinite flat Friedmann universe with metric ds? = dt? — a?(t) dx2. In our
notation, the scale factor a(t) is equal to the size of the universe in Planck
units M L=1.

Let us assume, that at the Planck time t, ~ Mg,' = 1 the universe was
radiation dominated, V < T* = O(1). Let us also assume that at the Planck
time the total size of the box was Planckian, a(t,) = O(1). In such case,
the whole universe initially contained only O(1) relativistic particles such as
photons or gravitons, so that the total entropy of the whole universe was O(1).

The size of the universe dominated by relativistic particles was growing
as a(t) ~ +/t, whereas the mean free path of the gravitons was growing as
H~! ~ t. If the initial size of the universe was O(1), then at the time ¢t > 1
each particle (or a gravitational perturbation of the metric) within one cos-
mological time would run all over the torus many times, appearing in all of
its parts with nearly equal probability. This effect, called “chaotic mixing,”
should lead to a rapid homogenization of the universe [I50} [I51]. Note, that to
achieve a modest degree of homogeneity required for inflation to start when
the density of ordinary matter drops down, we do not even need chaotic mix-
ing. Indeed, density perturbations do not grow in a universe dominated by
ultrarelativistic particles if the size of the universe is smaller than H~'. This
is exactly what happens in our model. Therefore the universe should remain
relatively homogeneous until the thermal energy density drops below V' and
inflation begins. And once it happens, the universe rapidly becomes very ho-
mogeneous.

Thus we see that in this scenario, just as in the simplest chaotic inflation
scenario, inflation begins if we had a sufficiently homogeneous domain of the
smallest possible size (Planck scale), with the smallest possible mass (Planck
mass), and with the total entropy O(1). The only additional requirement is
that this domain should have identified sides, in order to make a flat or open
universe compact. We see no reason to expect that the probability of formation
of such domains is strongly suppressed.

One can come to a similar conclusion from a completely different point
of view. The investigation of the quantum creation of a closed or an infinite
open inflationary universe with V' <« 1 shows that this process is forbidden
at the classical level, and therefore it occurs only due to tunneling. As a
result, the probability of this process is exponentially suppressed [17] 18] 20].
Meanwhile, creation of the flat or open universe is possible without any need
for the tunneling, and therefore there is no exponential suppression for the
probability of quantum creation of a topologically nontrivial compact flat or
open inflationary universe [149] [152] [153].

These results suggest that if inflation can occur only much below the
Planck density, then the compact topologically nontrivial flat or open uni-
verses should be much more probable than the standard Friedmann universes
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described in every textbook on cosmology. This possibility is quite natural in
the context of string theory, where all internal dimensions are supposed to
be compact. Note, however, that if the stage of inflation is sufficiently long,
it should make the observable part of the universe so large that its topology
does not affect observational data.

The problem of initial conditions in string cosmology has several other
interesting features. The most important one is the existence of an enormously
large number of metastable de Sitter vacuum states, which makes the stage of
exponential expansion of the universe almost inevitable. We will discuss this
issue in the next section.

1.14 Inflationary Multiverse, String Theory Landscape
and the Anthropic Principle

For many decades, people have tried to explain strange correlations between
the properties of our universe, the masses of elementary particles, their cou-
pling constants, and the fact of our existence. We know that we could not
live in a five-dimensional universe, or in a universe where the electromagnetic
coupling constant, or the masses of electrons and protons would be just a few
times greater or smaller than their present values. These and other similar
observations have formed the basis for the anthropic principle. However, for
a long time many scientists believed that the universe was given to us as a
single copy, and therefore speculations about these magic coincidences could
not have any scientific meaning. Moreover, it would require a wild stretch of
imagination and a certain degree of arrogance to assume that somebody was
creating one universe after another, changing their parameters and fine-tuning
their design, doing all of that for the sole purpose of making the universe suit-
able for our existence.

The situation changed dramatically with the invention of inflationary cos-
mology. It was realized that inflation may divide our universe into many expo-
nentially large domains corresponding to different metastable vacuum states,
forming a huge inflationary multiverse [52] [54] [154]. The total number of such
vacuum states in string theory can be enormously large, in the range of 101
or 101090 [120] [155] 156} [157]. A combination of these two facts gave rise to
what the experts in inflation call “the inflationary multiverse,” [14] 55] [158]
and string theorists call “the string theory landscape” [159].

This leads to an interesting twist in the theory of initial conditions. Let us
assume first that we live in one of the many metastable de Sitter minima, say,
dS;. Eventually this dS state decays, and each of the points belonging to this
initial state jumps to another vacuum state, which may have either a smaller
vacuum energy, or a greater vacuum energy (transitions of the second type
are possible because of the gravitational effects). But if the decay probability
is not too large, then the total volume of the universe remaining in the state
dS; continues growing exponentially [9]. This is eternal inflation of the old
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inflation type. If the bubbles of the new phase correspond to another de Sitter
space, d.S;, then some parts of the space dS; may jump back to the state d.S;.
On the other hand, if the tunneling goes to a Minkowski vacuum, such as
the uncompactified 10-dimensional vacuum corresponding to the state with
o — oo in Fig. [[.6] the subsequent jumps to dS states no longer occur.
Similarly, if the tunneling goes to the state with a negative vacuum energy,
such as the AdS vacuum in Fig. [LI0] the interior of the bubble of the new
vacuum rapidly collapses. Minkowski and AdS vacua of such type are called
terminal vacua, or sinks.

If initial conditions in a certain part of the universe are such that it goes
directly to the sink, without an intermediate stage of inflation, then it will
never return back, we will be unable to live there; so for all practical pur-
poses such initial conditions (or such parts of the universe) can be discarded
(ignoring for the moment the possibility of the resurrection of the universe
after the collapse). On the other hand, if some other part of the universe goes
to one of the dS states, the process of eternal inflation begins, which even-
tually produces an inflationary multiverse consisting of all possible dS states.
This suggests that all initial conditions that allow life as we know it to exist,
inevitably lead to formation of an eternal inflationary multiverse.

This scenario assumes that the vacuum transitions may bring us from
any part of the string theory landscape to any other part. Here we should
note that the theory of such transitions accompanied by the change of fluxes
was developed for the case where dS states are not stabilized [I56] [160]. A
generalization of this theory for the string landscape scenario based on the
KKLT mechanism of vacuum stabilization is rather nontrivial. As of now, the
theory of such transitions was fully developed only for the transitions where
the scalar fields change but the fluxes remain unchanged [I61]. It might happen
that the landscape is divided into separate totally disconnected islands, but
this does not seem likely [162]. Even if the landscape is not fully transversable,
one may probe all parts of the inflationary multiverse by considering the
wave function of the universe corresponding to the possibility of its quantum
creation in the states with different values of fluxes [163] [164].

The string theory landscape describes an incredibly large set of discrete
parameters. However, the theory of inflationary multiverse goes even further.
Some of the features of our world are determined not by the final values of the
fields in the minima of their potential in the landscape, but by the dynamical,
time-dependent values, which these fields were taking at different stages of
the evolution of the inflationary universe. This introduces a large set of con-
tinuous parameters, which may take different values in different parts of the
universe. For example, in the theory of dark energy, inflationary fluctuations
may divide the universe into exponentially large parts with the effective value
of the cosmological constant taking a continuous range of values [109]. In such
models, the effective cosmological constant A becomes a continuous parame-
ter. Similarly, inflationary fluctuations of the axion field make the density of
dark matter a continuous parameter, which takes different values in different
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parts of the universe [165] [166]. Another example of a continuous parameter
is the baryon asymmetry ny,/n., which can take different values in different
parts of the universe in the Affleck—Dine scenario of baryogenesis [167) [168].

This means that the same physical theory may yield exponentially large
parts of the universe that have diverse properties. This provided the first
scientific justification of the anthropic principle: We find ourselves inside a
part of the universe with our kind of physical laws not because the parts
with different properties are impossible or improbable, but simply because we
cannot live there [52], [154].

This fact can help us understand many otherwise mysterious features of
our world. The simplest example concerns the dimensionality of our universe.
String theorists usually assume that the universe is 10- or 11-dimensional, so
why do we live in the universe where only 4 dimensions of space—time are large?
There have been many attempts to address this question, but no convincing
answer has been found. This question became even more urgent after the
development of the KKLT construction. Now we know that all de Sitter states,
including the state in which we live now, are either unstable or metastable.
They tend to decay by producing bubbles of a collapsing space, or of a 10-
dimensional Minkowski space. So what is wrong about the 10-dimensional
universe if it is so naturally appears in string theory?

The answer to this question was given in 1917 by Paul Ehrenfest [169]:
in space-time with dimensionality d > 4, gravitational forces between distant
bodies fall off faster than »~2, and in space-time with d < 4, the general theory
of relativity tells us that such forces are absent altogether. This rules out the
existence of stable planetary systems for d # 4. A similar conclusion is valid
for atoms: stable atomic systems could not exist for d > 4. This means that
we do not need to prove that the four-dimensional space—time is a necessary
outcome of string cosmology (in fact, it does not seem to be the case). Instead
of that, we only need to make sure that the four-dimensional space—time is
possible.

Anthropic considerations may help us to understand why the amount of
dark matter is approximately five times greater than the amount of normal
matter [I65] [166] and why the baryon asymmetry is so small, ny, /n, ~ 10710
[168]. But perhaps the most famous example of this type is related to the
cosmological constant problem.

Naively, one could expect the vacuum energy to be equal to the Planck
density, pa ~ 1, whereas the recent observational data show that py ~ 107120,
in Planck units, which is approximately three times greater than the density
of other matter in the universe. Why is it so small but nonzero? Why px
constitutes is about three times greater than the density of other types of
matter in the universe now? Note that long ago the density of matter was
much greater than py, and in the future it will be much smaller.

The first anthropic solution to the cosmological constant problem in the
context of inflationary cosmology was proposed in 1984 [163]. The basic as-
sumption was that the vacuum energy density is a sum of the scalar field
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potential V(¢) and the energy of fluxes V(F). According to [I7], quantum
creation of the universe is not suppressed if the universe is created at the
Planck energy density, V(¢) + V(F) = O(1), in Planck units. Eventually the
field ¢ rolls to its minimum at some value ¢g, and the vacuum energy becomes
A =V(¢o)+ V(F). Since initially V' (¢) and V(F) could take any values with
nearly equal probability, under the condition V(¢) + V(F) = O(1), we get
a flat probability distribution to find a universe with a given value of the
cosmological constant after inflation, A = V' (¢o) + V (F), for A < 1. The flat-
ness of this probability distribution is crucial, because it allows us to study
the probability of emergence of life for different A. Finally, it was argued in
[163] that life as we know it is possible only for |A| < pg, where py ~ 107129
is the present energy density of the universe. This fact, in combination with
inflation, which makes such universes exponentially large, provided a possible
solution of the cosmological constant problem.

Shortly after that, several other anthropic solutions to the cosmological
constant problem were proposed [I70]. All of them were based on the as-
sumption that life as we know it is possible only for —pg < pa < pg. This
bound seemed almost self-evident to many of us at that time, and therefore in
[163] T70] we concentrated on the development of the theoretical framework
where the anthropic arguments could be applied to the cosmological constant.

The fact that pp could not be much smaller than —py was indeed quite
obvious, since such a universe would rapidly collapse. However, the origin of
the constraint py < po was much less trivial. The first attempt to justify
it was made in 1987 in the famous paper by Weinberg [I71], but the con-
straint obtained there allowed the cosmological constant to be three orders of
magnitude greater than its present value.

Since that time, the anthropic approach to the cosmological constant prob-
lem developed in two different directions. First of all, it became possible, under
certain assumptions, to significantly strengthen the constraint on the positive
cosmological constant, see e.g. [172, [I73] [I74] I75]. The final result of these
investigations, |[A] < O(10) po ~ 10711 is very similar to the bound used
in [163].

Simultaneously, new models have been developed which may allow us to
put an anthropic approach to the cosmological constant problem on a firm
ground. In particular, the existence of a huge number of vacuum states in
string theory implies that in different parts of our universe, or in its different
quantum states, the cosmological constant may take all of its possible values,
from —1 to +1, with an increment which may be as small as 107190, If the
prior probability to be in each of these vacua does not depend strongly on A,
one can justify the anthropic bound on A using the methods of [172, [173] 174]
(75, (176,

However, the issue of probabilities in eternal inflation is very delicate, so
one should approach anthropic arguments with some care. For example, one
may try to calculate the probability to be born in a part of the universe with
given properties at a given point. One can do this using comoving coordinates,
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which are not expanding during inflation [162] 177, 178, 179, [180, [181].

However, it is not obvious whether the calculation of the probabilities of phys-
ical processes at a given point, ignoring the expansion of the universe, should
be used in anthropic considerations. Most of the physical entities which could
be associated with “points” did not even exist before the beginning of infla-
tion: protons did not exist, photons did not exist, galaxies did not exist. They
appeared only after inflation, and their total number, and the total number
of observers, is proportional to the growth of volume during inflation.

This leads to the volume-weighted [55], [182] [I83] [I84], or pocket-weighted
[184] [185] [I86] probability measures [I87]. The main problem with this ap-
proach is the embarrassment of riches: the total volume of the universe oc-
cupied by any particular vacuum state, integrated over the indefinitely long
history of the eternally inflating universe, is infinitely large. Thus we need to
compare infinities, which is a very ambiguous task, with the answer depending
on the choice of the cut-off procedure.

The volume-weighted probability measure proposed in [55] is based on the
calculation of the ratio of the volumes of the parts of the universe with different
properties. This is possible because if we wait long enough, eternal inflation
approaches a stationary regime. Different parts of the universe expand and
transform to each other. As a result, the total volumes of all parts of the
universe of each particular type grow at the same rate, and the ratio of their
volumes becomes time-independent [55].

This method is very good for describing the map of the inflationary mul-
tiverse, but in order to use it in anthropic considerations one should make
some additional steps. According to [I82], instead of calculating the ratio of
volumes in different vacuum states at different densities and temperatures,
we should calculate the total volume of new parts of the universe where life
becomes possible. This ratio is related to the incoming probability current
through the hypersurface of the end of inflation, or the hypersurface of a fixed
density or temperature. If one uses the probability measure of [55] for an-
thropic considerations (which was not proposed in [55]), one may encounter
the so-called youngness paradox [I88] [I89]. If one uses the prescription of
[182], this paradox does not appear [21].

The results of the calculations by this method are very sensitive to the
choice of the time parametrization [I82] 21]. However, a recent investigation
of this issue indicates that it may be possible to resolve this problem [I90]. The
main idea is that the parts of the universe with different properties approach
the stationary regime of eternal inflation at different times. This fact was
not taken into account in our earlier papers [55] [182]; the calculations of the
probabilities started everywhere at the same time, even if the corresponding
parts of the universe did not yet approach the stationary regime. If we start
comparing the volumes of different part of the universe not at the same time
after the beginning of inflation, but at the same time since the beginning of the
stationarity regime, the dependence on the time parametrization disappears,
at least in the simple cases where we could verify this property [190].
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As we already mentioned, there are many other proposals for the
calculations of probabilities in an inflationary multiverse, see e.g. [184] [T86].
The results of some of these methods are not sensitive to the choice of time
parametrization, but they do depend on the choice of the cut-off. A detailed
discussion of this series of proposals can be found in [I85] [I91] and in Chap.
in this volume.

While discussing all of these approaches one should keep in mind yet
another possibility: it is quite possible that it does not make much sense
to compare infinities and talk about the probability of events that already
happened. Instead of doing it, one should simply study our part of the uni-
verse, take these data as an initial input for all subsequent calculations, and
study conditional probabilities for the quantities which we did not mea-
sure yet [2I]. This is a standard approach used by experimentalists who
continuously re-evaluate the probability of various outcomes of their fu-
ture experiments on the basis of other experimental data. The non-standard
part is that we should be allowed to use all of our observations, includ-
ing our knowledge of our own properties, for the calculation of conditional
probabilities.

Let us apply this limited approach to the cosmological constant problem.
Twenty years ago, we already knew that our life is carbon-based, and that
the amplitude of density perturbations required for the formation of galaxies
was about 107°. We did not know yet what was the vacuum energy, and the
prevailing idea was that we did not have much choice anyway. But with the
discovery of inflation, we learned that the universe could be created differently,
with different values of the cosmological constant in each of its parts created
by eternal inflation. This allowed us to propose several different anthropic so-
lutions to the cosmological constant problem based on the assumption that,
for the given value of the amplitude of density perturbations and other already
measured parameters, we cannot live in a universe with |A| > 10720, If ob-
servations would show that the cosmological constant were a million times
smaller than the anthropic bound, then we would be surprised, and a theoret-
ical explanation of this anomaly would be in order. As of now, the small value
of the cosmological constant does not look too surprising, so for a while we
can concentrate on solving many other problems which cannot be addressed
by anthropic considerations.

Within this approach, one should not vary the constants of nature that
were already known at the time when the predictions were made. In doing
so, one faces the risk of repeating the old argument that the bomb does not
hit the same spot twice: it is correct only until the first hit, after which the
probabilities should be re-evaluated. Similarly, one should not omit the word
“anthropic” from the “anthropic principle” and should not replace the inves-
tigation of the probability of our life with the study of life in general: we are
trying to explain our observations rather than the possible observations made
by some abstract information-processing devices. This can help us to avoid
some paradoxes recently discussed in the literature [192] 193] [194].
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From this discussion it should be clear that we do not really know yet
which of the recently developed approaches to the theory of the inflationary
multiverse is going to be more fruitful, and how far we will be able to go in
this direction. One way or another, it would be very difficult to forget about
what we have just learned and return to our search for the theory which
unambiguously explains all parameters of our world. Now we know that some
features of our part of the universe may have an unambiguous explanation,
whereas some others can be purely environmental and closely correlated with
our own existence.

When the inflationary theory was first proposed, its main goal was to
address many problems which at that time could seem rather metaphysical:
why is our universe so big? Why is it so uniform? Why parallel lines do not
intersect? It took some time before we got used to the idea that the large
size, flatness and uniformity of the universe should not be dismissed as trivial
facts of life. Instead of that, they should be considered as observational data
requiring an explanation.

Similarly, the existence of an amazingly strong correlation between our own
properties and the values of many parameters of our world, such as the masses
and charges of the electron and the proton, the value of the gravitational
constant, the amplitude of spontaneous symmetry breaking in the electroweak
theory, the value of the vacuum energy, and the dimensionality of our world,
is an experimental fact requiring an explanation. A combination of the theory
of inflationary multiverse and the string theory landscape provide us with a
unique framework where this explanation can possibly be found.

1.15 Conclusions

Twenty five years ago, the inflationary theory looked like an exotic product of
vivid scientific imagination. Some of us believed that it possessed such a great
explanatory potential that it had to be correct; some others thought that it
was too good to be true. Not many expected that it would be possible to
verify any of its predictions in our lifetime. Thanks to the enthusiastic work
of many scientists, the inflationary theory is gradually becoming a widely
accepted cosmological paradigm, with many of its predictions being confirmed
by observational data.

However, while the basic principles of inflationary cosmology are rather
well established, many of its details keep changing with each new change of
the theory of all fundamental interactions. The investigation of the inflation-
ary multiverse and the string theory landscape force us to think about prob-
lems which sometimes go beyond the well established boundaries of physics.
This makes our life difficult, sometimes quite frustrating, but also very in-
teresting, which is perhaps the best thing that one could expect from the
branch of science we have been trying to develop during the last quarter of a
century.
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Abstract. I will discuss what happens at the end point of inflation. The list of
topics includes:

Preheating after inflation treated with the quantum field theory (QFT)

Recent developments in the theory of preheating

Reheating after string theory inflation, treated with the string theory

Potential observables which may be associated with (p)reheating, which are mod-
ulated cosmological fluctuations generated from preheating

Generation of gravitational waves after preheating

2.1 Generalities: Reheating the Universe

According to the inflationary scenario, the universe at early times expands
quasi-exponentially in a vacuum-like state without entropy or particles.

A simple and natural realization of the vacuum-like equation of state is
naturally achievable with the homogeneous scalar field ¢(¢) minimally coupled
to gravity. Indeed, the energy-momentum tensor T/ = ¢ ¢, —5% (3¢ ¢, — V)
of a classical moving homogeneous scalar field in the potential V' (¢) is simply
T# = diag(e, —p, —p, —p), where the pressure and energy are given by

1. 1.
p=,0" =V, e= " +V. (2.1)

When the potential energy dominates the kinetic energy, we have inflation
with p ~ —e. Beginning with this simple idea, the complicated +25 years
history of inflation has been about the microscopic nature of ¢ and the origin
of its potential V(¢). In Fig. 2] T draw a chronologically ordered broad brush
sketch of inflationary models for V(o).

The theory of inflation is accompanied by the theory of the origin of par-
ticles after inflation. The details of this theory can depend on the particular
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Inflation in the context of ever changing fundamental theory

1980 R2-inflation Old inflation
Chaotic inflation
SUGRA inflation

Double inflation Power-law inflation
Extented inflation

Hybrid inflation

1990

Assisted inflation

Y F-t
SUiﬁﬂaﬁor? m SUSY D-term : .
inflation Brane inflation

2000 SUSY P-term Super-natural
inflation inflation
DBI inflation
D3- D7 inflation
Warped brane

Racetrack inflation Tachyon inflation inflation

Fig. 2.1. Models of inflation

0
)

model of inflation. We will review the “particlegenesis” after inflation, in par-
allel with the structure of Fig. 211

In the old big bang picture where the universe starts from a singularity,
it was assumed that the very hot matter from the very beginning was in a
state of thermal equilibrium, with the temperature gradually decreasing as
the universe expands. The very early versions of inflation were embedded
in the big bang picture and invoked supercooling of matter which reheats
once again after inflation ends. Therefore the theory of particle creation and
thermalization after inflation was dubbed as “reheating” after inflation — an
anachronism of +25 years of history. In the modern version of inflation it
is not necessary to postulate the hot pre-inflationary stage (although what
comes “before” inflation is still not well understood).

Let us return to (21)). During inflation, all the energy is contained in a
classical, slowly moving inflaton field ¢. Eventually the inflaton field decays
and transfers all its energy to relativistic particles, to start the thermal history
of the hot Friedmann universe.

The QFT of (p)reheating, i.e., the theory of particle creation from the
inflaton field in an expanding universe, is a process in which quantum effects
are not small, but rather generate a spectacular process where all the parti-
cles of the universe are created from the rolling classical inflaton. The theory
of particle creation and the subsequent thermalization after inflation has a
record of theoretical developments within QFT. The four-dimensional QFT
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Lagrangian L£(¢, x, ¥, 4;, hi,...) contains the inflaton part and other fields
which give subdominant contributions to gravity. Due to the interactions of
other fields with the inflaton in £, the inflaton field decays and transfers all
of its energy to relativistic particles. If the creation of particles is sufficiently
slow (for instance, if the inflaton is coupled only gravitationally to the mat-
ter fields), the decay products simultaneously interact with each other and
come to a state of thermal equilibrium at the reheating temperature 7;. This
temperature will be the largest one in the formula for the temperature in an

expanding universe

1.55 Mev

g/t t(s)
where g, is the number of effective degrees of freedom. This gradual reheating
can be treated within the framework of perturbative theory of particle cre-
ation and thermalization [Il (2 [3]. However, generically, particle production
from the inflaton occurs in the non-perturbative regime. In chaotic inflation-
ary models, soon after the end of inflation the almost homogeneous inflaton
field ¢(t) coherently oscillates with a very large amplitude of the order of the
Planck mass M, around the minimum of its potential. The particle produc-
tion from a coherently oscillating inflaton occurs in the regime of parametric
excitation [4, Bl [6]. This picture, with variation in its details, is extended to
other inflationary models. For instance, in hybrid inflation (including D-term
inflation), inflaton decay proceeds via a tachyonic instability of the inhomo-
geneous modes which accompany the symmetry breaking [7, [8]. A similar
effect combined with parametric resonance is observed in the new inflationary
scenario [9]. One consistent feature of preheating — non-perturbative copious
particle production immediately after inflation — is that the process occurs far
away from thermal equilibrium.

The transition from this stage to thermal equilibrium occurs in a few dis-
tinct stages, each one lasting much longer than the previous one. First there
is the rapid preheating phase, followed by the onset of turbulent interactions
between the different modes. Our understanding of this stage comes from lat-
tice numerical simulations [10] [11] as well as from different theoretical tech-
niques [12]. For a wide range of models, the dynamics of scalar field turbulence
is largely independent of the details of inflation and preheating [13]. Finally
comes thermalization, ending with equilibrium. In general, the equation of
state of the universe is that of matter when it is dominated by the coherent
oscillations of the inflaton field, but changes when the inflaton decays into
radiation-dominated plasma [14].

Recent developments took place in string theory inflation, although the
theory is still in its early stages, and it has to address the issue of the end
point of inflation, i.e., (p)reheating immediately after inflation. As for QFT
reheating, string theory reheating must be compatible with our thermal his-
tory. Yet, we are especially interested in the specific string theory effects during
reheating.

(2.2)
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Sooner or later in an expanding universe the stage of (p)reheating dynam-
ically evolves into the stage of thermal equilibrium of particles, where a lot
of information about the initial state will be lost. What is then an output
of (p)reheating for cosmology? It is important to figure out the character of
particlegenesis and thermalization in a specific model of inflation (say from
Fig. Z) and reheat temperature 7. Short out-of-equilibrium stages in the
thermal history of the universe are responsible for the variety of observable
forms of matter in the universe. The strong out-of-equilibrium character of
preheating opens the possibility for crucial phenomena associated with non-
equilibrium physics, including cosmological baryo/leptogenesis phase transi-
tions, non-thermal production of heavy particles, etc. We need to know the
evolution of the EOS w(t) to find the connection N-log k between the number
of e-folds NV of inflation and the wavelength of cosmological fluctuations. The
most interesting output of preheating will be its potential observables, like
gravitational waves, and modulated cosmological fluctuations.

In the rest of this chapter I briefly review the basics and new developments
in the theory of different types of preheating and reheating, and in the light of
our current understanding, discuss the outputs of (p)reheating for cosmology.

2.2 Pair Creation by an Electric Field

Before we turn to the theory of particle creation by an oscillating inflaton, it is
instructive to consider a simple prototype problem: particle creation in scalar
electrodynamics (see also J. Martin’s contribution in the present volume).
Suppose E is the strength of the constant electric field aligned with the z-
direction. Let A,, be the four-potential of the external classical EM field, and
X be a quantum field describing massless scalar particles (of the charge e)
described by the equation of motion

D, Dty =0, (2.3)

where D, = 0, —ieA,.

Next we have to choose a gauge for A,. It is convenient to deal with a
time-dependent problem of particle creation. We can put A4, = (0,0,0, —Et)
Then the time-dependent part of the eigenmodes X}, ()e'*® obey the equation

d2X;

b2 T (K2 +7) X, =0, (2.4)

where we introduced the dimensionless time 7 = eFt and momentum x =
k/eE. The initial condition for (Z4]) shall correspond to the positive frequency
vacuum fluctuation X (t) = \/1% e'*7. Then, ([Z4) can be interpreted as the
scattering of an incoming wave on an inverse parabolic potential. Far away
from the apex of the potential at 7 = 0 where A, crosses zero, the solution
can be written in the WKB form
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Xi(t) = Oi]/“;;) e~ ikt fﬁ;ﬂ) etikt

Initially G = 0, o, = 1. After scattering, 5y is no longer vanishing, and this

(2.5)

corresponds to ny = |Bk|? created particles. The analytic solution of (Z4)
with the asymptotic form (ZI)) is well known and gives
nk?
= - . 2.6
me=ex (-7 ) (2:6)

This formula is a variance of the celebrated Schwinger formula for the
rate of electron—positron pair creation by a constant electric field. This scalar
ED example teaches us several lessons which we shall keep in mind. Despite
the constancy of the external electric field, the problem of pair creation can
be written as a time-dependent problem. The instant of particles creation is
associated with the time when A, crosses zero. Of course, the final answer
@8) does not depend on this moment. Pair creation is a non-perturbative
effect. The answer (Z0]) is a non-analytic function of the coupling eE. As we
will see very similar physics will take place in the process of pair creation by
an oscillating inflaton field.

2.3 Linear Resonant Preheating

Consider simple chaotic inflation with the potential V' (¢) = "52 ¢?. Soon after
the end of inflation, the almost homogeneous inflaton field ¢(t) coherently
oscillates as ¢(t) ~ ®(t) sin (mgt), with a very large initial amplitude of the
order of the Planck mass ~ 0.1Mp, ®(t) = f‘f; . m1¢t' One can take as a toy
model to describe the interaction between inflatons and radiation, i.e., other
massless Bose particles y, the Lagrangian £ = —]g%¢*y?%. QFT of particle
creation can then be constructed in the following way. Consider the Heisen-
berg representation of the quantum scalar field x, with the eigenfunctions
xk(t) e *® where k is a comoving momentum. The temporal part of the
eigenfunction obeys the equation

. a . k? 2 .9
Xe+3 X+ a2+9¢ Xk =0, (2.7)

e—ikt
V2k
solutions for ([Z7) in the adiabatic WKB approximation form

with the vacuum-like initial condition xj ~ in the far past. Let us seek

3/2 _ _ar(t) iprear , Be() giprwar

a t) = Xi(t) = e + e , 2.8
wlt) = Xufe) = o 3)
where the time-dependent frequency is w?(t) = ’;3 + g%¢? (neglecting small
corrections ~ H?, H); initially 8x(t) = 0. The goal is to calculate particle
occupation number ny = |G |%.
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Equation (27) describes a parametric oscillator in an expanding uni-
verse. Introduce the new time xgar2iab1e z = mt and the essential dimension-
less coupling parameter ¢ = ifz. Since ATP e 1076, it is expected that
q ~ 10'%g% > 1, so the parametric resonance is broad. For large values of
¢, the eigenfunction x(t) is changing adiabatically between the moments t;,
j=1,2,3,---, where the inflaton field is equal to zero ¢(t;) = 0. The non-
adiabatic changes of x1(t) occur only in the vicinity of ¢;. Therefore, the semi-
classical solution (28] is valid everywhere but around ¢;. Thus the zeroes of the
inflaton oscillations play a crucial role, very similar to the zeroes of A, in the
scalar ED example of the previous section. Let the wave x(t) have the form
of the WKB solution with the pair of coefficients (s, 57) before scattering at
the point t;; and the pair (afl,ﬁiﬂ) after scattering at ¢;. The interaction
term around all the points ¢; is parabolic g?¢?(t) ~ ¢g*®*m?(t — t;)?, and
the eigenmode equation around the zero point is reduced to (2.4) of the previ-
ous section. Therefore, the outgoing amplitudes (a?jl, ,JCH) can be expressed
through the incoming amplitudes (o7, 47) with the help of the well-known re-
flection and transmission amplitudes for scattering from a parabolic potential
at t;. The net result in terms of number of y-particles nj " = | ﬁ,ij ) created
after ¢; is

nf = e g (14 207 ) 0 — 20721 et ud (14 ] sin
(2.9)

Here k = \/’;jn o and 67 is the phase accumulated between zeroes of ¢(t).

The first term of the formula (229 is nothing but the variance of the
Schwinger formula for the spontaneous pair creation from an external field,
similar to the formula (236]) of the previous section. The last term in (2]
corresponds to the induced pair creation in the presence of particles created
from the previous zero crossing of the inflaton. There is no analogy for this
in scalar ED with a constant electric field. Finally, the second term in (Z9)) is
an interference between induced and spontaneous particles creation.

Formula (29) describes parametric resonant particle creation by an os-
cillating inflaton. Very quickly nj, becomes large and formula (23] can be
approximated by much simpler formula

Tli—i_l _ eQ’T“"‘nfC , le(t) ~ e#kt . (210)

Here py is a complex exponent, which is real for the resonant modes (positive
interference) and imaginary for stable modes (negative interference). The ex-
pansion of the universe makes the phase 8, random, and makes the resonant
process stochastic, but a broad band of modes is exponentially amplified.
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2.4 Non-linear Dynamics of Resonant Preheating

Due to the rapid growth of its occupation numbers the field x(t,x) can be
treated as a classical scalar field. Its appearance is described by the realiza-
tion of the random gaussian field, i.e., as a superposition of standing waves
with random phases and Rayleigh-distributed amplitudes. One can use many
different quantities to characterize a random field, such as the spatial density
of its peaks of a given height, etc. The scale of the peaks and their density
depend on the characteristic scale R of the spectrum, which in our case is
related to the leading resonant momentum k, ~ /gmeoa'/* [5]. At the linear
stage the phases are constant, so that the structure of the random field y
stays almost the same.

Once one field is amplified in this way, other fields that are coupled to it are
themselves amplified [I0] [13], so within a short time of linear preheating (of
order dozens of inflaton oscillations) fluctuations of y generate inhomogeneous
fluctuations of the field ¢. It is easy to see that fluctuations of ¢ will have a
non-linear, non-gaussian character. From the equation of motion for ¢

V. Vi +m*¢* + g*x*¢ =0, (2.11)

we have in Fourier space

2

br + 3Hy, + (52 + mz) ok = g7 ¢o(t) /dgqquZ_q : (2.12)

where we neglect the term that is third order in the fluctuations; ¢g(t) is the
background oscillation. The solution of this equation with Green’s functions [5]
shows that ¢ fluctuations grow with twice the exponent of x fluctuations. It
also shows that the fluctuations of ¢ are non-gaussian. Sometimes this solu-
tion is interpreted as a rescattering of the particle x, against the condensate
particle ¢g at rest producing xx—q and ¢r, x¢o — x0¢. However, this inter-
pretation has significant limitations.

When the amplitudes of x and ¢ become sufficiently large we have to deal
with the fully non-linear problem. The field evolution can be well approxi-
mated using the classical equation of motion ([2I1]) supplemented by another
equation for y, namely

V. Vi + g*d*x =0. (2.13)

Equations (2.I1]) and (2I3]) of the non-linear preheating can be solved numer-
ically using the LATTICEEASY program. For chaotic inflation, these results
were presented in terms of the time evolution of occupation numbers ny(t) or
total number density of particles N(t). Figures 221 and 23] show the results of
our simulations in these familiar terms of n(t) (in combination k3wyny) and
N(t), as well as the evolution of the field statistics (departures from gaussian-
ity). Here all simulation results are for model with m = 107¢Mp, (fixed by
CMB normalization) and g2 = 2.5 x 10~7. The size of the box was chosen as
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Kuwn/m*/10*2 : ¢

Kwen/m*/10%2 @ x

10 20 30 40 50 60 70 80

Fig. 2.2. Evolution of spectra of created particles

L =10m~"! and the grid contained 2563 points. We also tried other values of
g2 and found qualitatively similar results.

Figure shows the evolution of the spectra. The spectra show rapid
growth of the occupation numbers of both fields, with a resonant peak that
develops first in the infrared (k ~ k,) and then moves toward the ultraviolet
as a result of rescattering. On the left panel of Fig. 23] one can clearly see
that the occupation number of x initially grows exponentially fast due to
parametric resonance, followed by even faster growth of the ¢ field due to the
interaction, in accordance with the solution of (212]).
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Fig. 2.3. Left: evolution of total number of particles. Right: evolution of non-
gaussianity

The gaussianity of classical fields can be measured in different ways. The
right panel of Fig. 2.3 shows the evolution of the ratio (f2)2/(f*) (kurtosis),
which is equal to unity for a gaussian field. During the linear stage of preheat-
ing, the field fluctuations form a random gaussian field, reflecting the initial
quantum fluctuations that seeded them. The inhomogeneous field ¢ is gener-
ated as a non-gaussian field, in agreement with the solution of (Z12). When
the fluctuation amplitude begins to get large, both fields are non-gaussian.
During the later turbulent stage both fields begin to return to gaussianity.
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Another known feature of preheating is the onset of chaos, when small
differences in the initial conditions for the fields lead to exponentially divergent
solutions: D(t) ~ e, where D is the distance in phase space between the
solutions and A is the Lyapunov exponent (see [I3] for details). The distance
D begins to diverge exponentially exactly after the violent transition to the
turbulent stage.

Let us summarize the picture which emerges when we study preheating,
turbulence and thermalization in momentum space with the occupation num-
bers ng. There is initial exponential amplification of the field x, peaked around
the mode k.. At this stage the y fluctuations form a squeezed state, which
is a superposition of standing waves that make up a realization of a random
gaussian field. Interactions of the two fields lead to very rapid excitation of
fluctuations of ¢, with its energy spectrum also sharply peaked around k..
To describe generation of ¢ inhomogeneities, people use the terminology of
“rescattering” of waves. However, there is a short violent stage when occupa-
tion numbers have a sharply peaked and rapidly changing spectrum. The field
at this stage is non-gaussian, which signals that the wave phases are corre-
lated. In some sense, the concept of “particles” is not very useful around that
time. In the later turbulent stage when ny(t) gradually evolves and gaussian-
ity is restored (due to the loss of phase coherency) the picture of rescattering
particles becomes proper. As we will see in the next section, gaussianity is not
restored for some time after the end of preheating. To understand this violent,
intermediate stage, however, it is useful to turn to the reciprocal picture of
field dynamics in position space [15].

2.5 Inflaton Fragmentation

The features in the occupation number spectra ng(t), namely, sharp time
variations, peak at k ~ k., and strong non-gaussianity of the fields around
the time of transition between preheating and turbulence suggest that we are
dealing with distinct spatial features of the fields in the position space. This
prompted to study the dynamics of the fields in position space.

The evolution of the fields in position space is shown in Fig. 2.4l Each
frame shows the spatial profile of the fields ¢ and x along a two-dimensional
slice of the three-dimensional lattice.

The initial evolution of the fields (¢t < 100) is characterized by linear
growth of fluctuations of x. During this stage the fluctuations have the form
of a superposition of standing waves with random phases, which make up
a random gaussian field. The eye captures positive and negative peaks that
correspond to the peaks of the initial gaussian random field y. The peaks in
this early stage correspond to the peaks of the initial gaussian random field
x. Following that phase, the oscillations of x excite oscillations of ¢. The
first panel of Fig. (2.4]) shows a typical profile near the end of this period,
just as the oscillations are becoming non-linear and ¢ is becoming excited.
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t=102

t=106

Fig. 2.4. Inflaton fragmentation via parametric resonance preheating. Values of the
¢ and x fields in a two-dimensional slice through the lattice
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The amplitude of these ¢ oscillations grows much faster than the initial x
oscillations [see our discussion of ([ZI2)] and the oscillations have different
(and changing) frequencies. The peaks of the ¢ oscillations occur in the same
places as the peaks of the y oscillations, however, as can be seen in the bottom
three panels on the left side of Fig. 241

The profile of ¢(t, x) is a superposition of the still oscillating homogeneous
part plus inhomogeneities induced by the Yukawa-type interaction (g%@o)@x>
in the Lagrangian. Since the Yukawa interaction is a short-range interaction
(defined by the length scale 1/m for a space-like interval G(r) ~ e~™"), in-
duced inhomogeneities of ¢ appear in the vicinity of those in x.

In the next stage (¢ ~ 110) the peaks reach their maximum amplitude,
comparable to the initial value of the homogeneous field ¢, and begin to
spread. The two lower left panels of Fig. 4] show the peaks expanding and
colliding. In the panels on the right, one can see the standing wave pattern
loses coherence as the peaks send out ripples that collide and interfere. By
t = 124 the fluctuations have spread throughout the lattice, but one can still
see waves spreading from the original locations of the peaks. Shortly after
that time all coherence is lost and the field positions appear to be like random
turbulence.

The bubble-like structure of the fields is reflected in their statistics. Per-
haps more surprisingly, the statistics of both fields remain non-gaussian for a
long time after preheating. At the end of our simulation, at ¢ = 300, the fields
were still noticeably non-gaussian. During all this time the random phase
approximation of interacting scalars is not well justified.

2.5.1 Tachyonic Preheating

Hybrid inflation is another very important class of inflationary models. At
first glance preheating in hybrid inflation, which contains a symmetry break-
ing mechanism in the Higgs field sector, has a very different character than in
chaotic inflation. Preheating in hybrid inflation occurs via tachyonic preheat-
ing [7], in which a tachyonic instability of the homogeneous modes drives the
production of field fluctuations. In hybrid inflation, the decay of the homo-
geneous fields leads to fast non-linear growth of scalar field lumps associated
with the peaks of the initial (quantum) fluctuations. The lumps then build
up, expand and superpose in a random manner to form turbulent, interacting
scalar waves.

Like parametric resonance, tachyonic preheating can be interpreted via
the reciprocal picture of copious particle production far away from thermal
equilibrium, and consequent cascades of energy through interacting, excited
modes.

Figure illustrates tachyonic instability with the results of numerical
simulations in the model with the Higgs part of the potential V(¢) = m2¢?+
:1,)0¢3 + iA¢4.
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T

Fig. 2.5. Inflaton fragmentation via tachyonic preheating. The evolution of the field
is shown at slices through the lattice

Because of the non-linear dependence of the tachyonic mass on ¢, initial
linear gaussian fluctuations quickly turn into non-linear non-gaussian field,
with pronounced bubble structures.
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2.6 Equation of State During Preheating

In [16] we study the out-of-equilibrium non-linear dynamics of fields after
post-inflationary preheating. During preheating, the energy in the homoge-
neous inflaton is exponentially rapidly transferred into highly occupied out-
of-equilibrium inhomogeneous modes, which subsequently evolve toward equi-
librium. We compute the equation of state (EOS) during and immediately
after preheating. It sharply evolves toward radiation domination long before
thermal equilibrium is established. The jump of the EOS from inflaton dom-
ination occurs very quickly and its timing is an oscillating function of the
couplings.

The time evolution of the EOS w(t) for different couplings is shown in
Fig. Each point plotted on this figure represents the value of w averaged
over a complete inflaton oscillation. This represents one of the main results
of our study. Immediately after inflation, the EOS averaged over inflaton os-
cillations is w = 0. It sharply changes at the end of preheating. There are at
least three important points worth emphasizing about the evolution of w.

1. First, the transition of the EOS from w = 0 to the value w ~ 0.2—0.3
occurs very sharply, within a time interval ~ 10736 s,

Indeed, recall that the unit of time on the plots is 1/m, where m is
the inflaton mass, i.e., 103" s. The first stage of preheating is completed
within about a hundred of these units, i.e., 1073% s. The rise of w and
gradual saturation takes roughly the same time.

0.25 — : :
02
0.15
W
3
s g°=2.0x107 ——
orr g?=2.1x107 1
g#=22x107 =
0.05 - g2=2.4x107 |
g?=25x107 "
0

140 160 180 200 220
t

120

Fig. 2.6. Evolution of the equation of state w = w(t) as a function of time (given
in units of m 1) for various couplings g2 around ¢ =2 x 1077



2 Preheating After Inflation 69

2. Second, the dependence of w(t) on the coupling g? for resonant preheating
is a non-monotonic function of g2.

This is to say that the time during which preheating comes to an end
is very weakly (logarithmically) dependent on the coupling. As seen from
Fig. 2.6 the curves w(t) begin to shift to the left toward an earlier end of
preheating, as we vary g2 by 5%. However, at some point the curves stop
moving to the left and instead begin to return toward the right. As we
change g2 by about 25%, the cycle repeats. As we vary g2, the function
w not only shifts, but it also varies its detailed shape.

We see that the transition time varies between 100/m and 150/m.
This non-monotonic behavior of the duration of preheating is explained
in the theory of broad parametric resonance [5l see Sects. 6 and 9 there].

The g2 dependence of the EOS is the critical issue for the theory of
modulated cosmological perturbations, which we will discuss in Sect.

3. The third point is that w does not necessarily immediately go to the
radiation-dominated value 1/3.

This is partly because immediately after preheating the light field still
has a significant induced effective mass due to the interaction, and partly
due to the significant residual contribution from the homogeneous inflaton
[17]. Unfortunately, limitations on running longer simulations preclude us
from seeing further details of the time evolution of w. However, we have a
strong theoretical argument to advance the discussion further. In a model
with a massive inflaton and light scalar y even the radiation-dominated
stage is transient. Indeed, sooner or later the massive inflaton particles,
even if significantly under-abundant at the end of preheating, will be-
come the dominant component, and the universe will again be matter-
dominated.

2.7 Effects of Trilinear Interactions

Most studies of preheating have focused on the models with ¢?y? four-legs
interactions of the inflaton ¢ with another scalar field x. A common feature
of preheating is the production of a large number of inflaton quanta with
non-zero momentum from re-scattering, alongside with inflatons at rest. The
momenta of these relic massive inflaton particles eventually would redshift out.
However, the decay of inflaton particles through four-legs ¢¢ — xx processes
in an expanding universe is never complete. Thus inflaton particles later on
will have a matter equation of state and come to dominate the energy density,
which is not an acceptable scenario. Therefore, to avoid this, we must include
in the theory of reheating interactions of the type ¢x™ , that allow the inflaton
to decay completely, thus resulting in a radiation-dominated stage. Trilinear
interactions are the most immediate and natural interactions of this sort.

In [I6] we investigate the effects of bosonic trilinear interactions in preheat-
ing after chaotic inflation. A trilinear interaction term allows for the complete
decay of the massive inflaton particles, which is necessary for the transition to
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radiation domination. We found that typically the trilinear term is subdom-
inant during early stages of preheating, but it actually amplifies parametric
resonance driven by the four-legs interaction. In cases where the trilinear term
does dominate during preheating, the process occurs through periodic tachy-
onic amplifications with resonance effects, which is so effective that preheating
completes within a few inflaton oscillations. We develop an analytic theory
of this process, which we call tachyonic resonance. We also study numeri-
cally the influence of trilinear interactions on the dynamics after preheating.
The trilinear term eventually comes to dominate after preheating, leading to
faster re-scattering and thermalization than could occur without it. Finally,
we investigate the role of non-renormalizable interaction terms during pre-
heating. We find that if they are present they generally dominate (while still
in a controllable regime) in chaotic inflation models. Preheating due to these
terms proceeds through a modified form of tachyonic resonance. Impact of the
trilinear interaction of the inflaton can be seen in the Fig. 2X7

200 400 600 800 1000

200 400 600 800 1000

Fig. 2.7. Equation of state without (left) and with (right) three-legs interaction of
inflaton
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It is possible to extend analytic theory of preheating to the case of trilinear
interaction o¢yx?, which describes decay of the inflaton [16]. Instead of (27),
the temporal part of the eigenfunction xj obeys the equation

. a. K2
Xe+3 Xet+ | ,+0d | xk=0. (2.14)
a a

Analytic treatment of this equation is quite different from the method of
successive parabolic scatterings, because in interesting cases the wave function
Xk (t) spends significant fraction of time in the under-barrier regime. The final
results for the number of created particles after j oscillations is

ni = exp(2jX1) (2 cos O)20~ (2.15)

where Oy is the phase and

Xp =22 f (g{’;) . (2.16)

This formula describes the effect of tachyonic parametric resonance and is
complimentary to the formula (2.9]).

2.8 Modulated Fluctuations from Preheating

I was searching for manifestations of extra dimensions. Superstring theory,
phenomenological models with extra dimensions and other SUSY models
generically predict that the coupling constants are in fact vacuum expecta-
tion values of fields like the dilaton, moduli, etc. Assuming some of these fields
are light during inflation, we get generation of small classical inhomogeneities
in these fields from inflation. Consequently, coupling constants inherit small
inhomogeneities at scales much larger than the causal horizon in the early
universe. After the moduli get pinned down to their minima, the spatial vari-
ations of coupling constants in the late time universe will be erased. However,
inhomogeneities in coupling constants in the very early universe would gen-
erate modulated large-scale fluctuations in all relic species that are produced
due to interactions and freezing out. Moreover (p)reheating of the inflaton
field results in modulated curvature fluctuations. Even if the standard infla-
ton fluctuations are suppressed, in this picture we may have pure curvature
cosmological fluctuations entirely generated by the modulated spatial varia-
tions of the coupling constants during preheating.

This is a completely different idea which is an alternative to the stan-
dard mechanism of generation of fluctuations. This idea was suggested in
my paper “Probing string theory with modulated cosmological fluctuations”
(arXiv:astro-ph/0303614) and in an independent paper by Dvali et al. in
March 2003. The idea draws interest among cosmologists (about 50 citations),
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this June there will be a workshops in Athens, devoted to the alternative
mechanisms of generation of cosmological perturbations.

I developed it further in collaboration with F. Bernardeau and J-P. Uzan.
We extend this idea to the class of hybrid inflation, where the bifurcation value
of the inflaton is modulated by the spatial inhomogeneities of the couplings.
As a result, the symmetry breaking after inflation occurs not simultaneously
in space but with the time laps in different Hubble patches inherited from
the long-wavelength moduli inhomogeneities. To calculate modulated fluctu-
ations we introduce techniques of general relativistic matching conditions for
metric perturbations at the time hypersurface where the equation of state
after inflation undergoes a jump, without evoking the detailed microscopic
physics, as far as it justifies the jump. We apply this theory to the modulated
fluctuations from the hybrid and chaotic inflations. We discuss what distin-
guish the modulated from the inflation-driven fluctuations, in particular, their
spectral index, modification of the consistency relation and the issue of weak
non-gaussianity.

Cascading energy from inflaton to radiation

D D3

D3
/ Annihilation into Closed string loops

— O
O-o =
T O

End of inflation Decay into
KK + gravitons

D3 or D3

e

Decay into

SM
brane
modes

@ Radiation
¢ decay v VY F gravitons
_— " long-living KK

Fig. 2.8. Identifying the channels of energy cascading after brane inflation
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2.9 Reheating After String Theory Inflation

In string theory realizations of inflation, the end point of inflation is often
brane—anti-brane annihilation. We consider the processes of reheating of the
standard model universe after brane inflation. We identify the channels of
inflaton energy decay, cascading from tachyon annihilation through massive
closed string loops, KK modes and brane displacement moduli to the lighter
standard model particles (Fig. 2.8]). Cosmological data constrain scenarios
by putting stringent limits on the fraction of reheating energy deposited in
gravitons and non-standard sector massive relics. We estimate the energy
deposited into various light degrees of freedom in the open and closed string
sectors, the timing of reheating and the reheating temperature. Production of
gravitons is significantly suppressed in warped inflation. However, we predict
a residual gravitational radiation background at the level Qaw ~ 1072 of the
present cosmological energy density. We also extend our analysis to multiple
throat scenarios. A viable reheating would be possible in a single throat or in a
certain subclass of multiple throat scenarios of the KKLMMT-type inflation
model, but overproduction of massive KK modes poses a serious problem.
The problem is quite severe if some inner manifold comes with approximate
isometries (angular KK modes) or if there exists a throat of modest length
other than the standard model throat, possibly associated with some hidden
sector (low-lying KK modes).

2.10 Gravitational Waves from Preheating

Eventually after preheating the fields reach thermal equilibrium characterized
only by the temperature. Does that mean that all traces of inflaton fragmen-
tation history are erased? For instance, people have discussed realizations of
baryogenesis at the electroweak scale via tachyonic preheating after hybrid in-
flation, and this process is ultimately related to the bubble-like lumps of the
Higgs field that form during tachyonic preheating. Since we now see that frag-
mentation through bubbles can also occur in chaotic inflation, baryogenesis
via out-of-equilibrium bubbles can also be extended to these models.

There is another, potentially observable consequence of the non-linear
“bubble” stage of inflaton fragmentation. Lumps of the scalar fields corre-
spond to large (order of unity) energy density inhomogeneities at the scale of
those bubbles, R. Collisions of bubbles generate gravitational waves. The frac-
tion of the total energy at the time of preheating converted into gravitational
waves is significant. We estimate it is of the order of

Pev ~ 0.05(RH)?, (2.17)
Prad

where 1/H is the Hubble radius. This corresponds to a present-day fraction of
energy density Qgw ~ 1075(RH)?. The way to understand formula ZI7) is
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the following: the energy converted into gravitational waves from the collision
of two black holes is of the order of the black hole masses. If the mass of
lumps of size R is a fraction f of a black hole of the same size, then the
fraction of energy converted to gravitational waves from two lumps colliding
is f. Scalar field lumps at the Hubble scale would form black holes, so in our
case f = (RH)2.

The present-day frequency of this gravitational radiation is

M

~ H 2.1
I 0rgev i (2.18)

where M = V'/4 is the energy scale of inflation with the potential V.

For the chaotic inflation model considered in this chapter the size of the
bubbles is R ~ few/m and at the time they begin colliding H ~ m/100, so
that the fraction of energy converted into gravitational waves is of the order
1073 —10~*% This figure is in agreement with the numerical calculations of
gravitational wave radiation from preheating after chaotic inflation.

For chaotic inflation with M at the GUT scale the frequency (2.18) is too
short and not observable. Gravitational waves continue to be generated during
the turbulent stage and even during equilibrium due to thermal fluctuations,
but with a smaller amplitude. It is a subject of further investigation if they
can be observed. The most promising possibility for observations is, however,
generation of gravity waves from low-energy hybrid inflation, where f can be
much much smaller.

2.11 Looking Toward the Future

In conclusion section we will discuss the future directions and perspectives of
our topics. They include scenarios of the end point of inflation, (p)reheating
and beginning of the thermal equilibrium of the primordial universe. There are
at least four interesting methodologies from different branches of physics to be
applied. One is related to the models of inflation, since (p)reheating scenario
follows from the inflationary scenario. Second is related to our understanding
of the particle physics phenomenology, since it defines the interactions between
particles which is vital for (p)reheating. Third is related to our deeper under-
standing of subtle outstanding problems of the non-equilibrium dynamics in
the QFT, even at the level of simple toy models (like A¢* or +g%¢?x?). And
the final aspect is about potential cosmological observables from (p)reheating
which can survive “democratization” of the high-temperature thermal equi-
librium of the early universe plasma, which tends to erase information about
previous stages.

Potentially interesting possibilities for new (p)reheating scenarios are in
the string theory inflationary models. Let me mention inflationary model
based on the large-volume stabilization scheme [I8]. This model involves
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Kahler moduli and their partners, axions. One can think about Kéhler mod-
uli as a hole (four-cycle) in the compact Calabi-Yau manifold. Effective four-
dimensional potential for K&hler moduli/axion scalar fields is suitable for infla-
tion [I9] 20]. Geometrically rolling inflaton field corresponds to the shrinking
of the four-cycle (hole). The end point of inflation, depending on the parame-
ters of the effective potential, can well be in the field theory regime as Conlon
and Quevedo [19] and Bond et al. [20] assumed. However, one can have string-
scale size hole at the end of inflation, where string theory effects take place
[20). Curiously enough, inflation occurs in the supergravity (i.e., field theory)
regime, while it ends in the stringy regime. (P)reheating scenario in this case
can be quite different from other cases.

Particle physics phenomenology provides us with the couplings between
inflaton and SM and hidden sectors. The community is anticipating poten-
tial impact of the LHC results on the particle physics phenomenology, and
consequently on the physics of inflation. In the mean time I will mention re-
cent interesting model ¥YMSM of Shaposhnikov and Tkachev [21] based on the
minimal extension of the SM by three right-handed neutrinos. This model
predicts parametric resonant preheating after inflation.

Thermalization in non-equilibrium QFT will be the subject of the KITP
Program “Non-equilibrium Dynamics in Particle Physics and Cosmology” to
be held in January-March 2008.

Potential observables from preheating are modulated cosmological fluctu-
ations, which can be distinguished by the different consistency relations and
amount of non-gaussianity; baryon asymmetry generated from preheating;
and gravitational waves generated from preheating after inflation.

I also would like to mention significance of our understanding of preheat-
ing for other aspects of the inflationary theory, which at first glance are not
directly related to (p)reheating.

First example. Inflationary theory is connected with the dynamics of the
universe driven by a scalar field. We can study scalar field /gravity dynamics in
great details using the very powerful phase portrait method (Fig. [Z9), which
shows the character of all solutions for a(t) and ¢(t) as trajectories in the
three-dimensional phase space M?® with the coordinates (H, ¢, ¢) [22 23].
How big is the fraction of inflationary solutions? For this question we need the
tools of Hamiltonian dynamics to construct an invariant measure on the phase
space [24]. There are complications which make the subject controversial. The
physics of prior probabilities is needed to see that inflationary trajectories are
typical [25].

Rigorous treatment of the scalar/gravity dynamics involves the four-
dimensional phase space of the canonical variables (a, pq, ¢, py) and Hamilto-
nian form of the Einstein equations. Since the Hamiltonian is zero, H = 0, the
phase trajectories actually reside in a three-dimensional space M3. One can
introduce a canonical measure in the space of trajectories, du, which is invari-
ant under the flow of trajectories [24]. This is a local measure. If we prescribe
uniform prior probability of trajectories, then we just have to compare the
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Expanding universe

R1

R2

¢

Fig. 2.9. Poincaré mapping of the phase portrait for the theory V(¢) = ;m2¢2.
The initial velocity of the scalar field rapidly decreases, which usually leads to the
onset of inflation. The inflationary separatrices (the thick red lines to which most of
the trajectories converge) are attractors when we move forward in time. At the end
all trajectories are spiraling around the focus F'

measure finf dp trajectories with inflation vs fnon—inf du trajectories without
inflation. It turns out that both integrals, finf dp and fnon—inf dp, diverge (be-
cause the scale factor a is unbounded) and no conclusion with this prescription
can be made [20]!

Consider for simplicity a flat universe with K = 0. In this case phase tra-
jectories (solutions) are located at the two-dimensional hypersurface defined
by the constraint equation with K = 0. This two-dimensional hypersurface
consists of two cones which touch each other by their apex in a single point
F. The upper cone corresponds to a pure expansion branch H > 0, while the
lower cone corresponds to pure contraction H < 0. Consider an expanding
universe (contraction is just the time reverse). All trajectories begin at the
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repulsion points R; or Rs; most of the trajectories approach the separatrices
S1— F or So — F and then spiral around the focus I’ where they end.

A recent paper [27] argued that since at the classical level scalar/gravity
dynamics is reversible, one can try to judge about the measure of trajectories
of interest not at the earliest stages of evolution but rather at the latest stages.
In particular, if one truncates the two-dimensional integral [ du at some late
time value of a to make it finite, the integral [du = [dé A d¢ is reduced
to a one-dimensional integral [d¢ps = J. At the stage of oscillation, J is
an adiabatic invariant, and together with the phase forms a pair of canonical
variables (J, ). The authors suggested measuring the priors of trajectories at
the stage of scalar field oscillations, in terms of a uniform distribution of the
phase 6 of the oscillations. The separatrices correspond to a specific choice
of the phase 6.(t), and inflationary trajectories which converge to the sep-
aratrices have their phases crowded toward 6.. In contrast, our prescription
is to assign priors to trajectories at the very beginning around the repulsors
R1, Ro. Recent investigation [25] shows that if we repeat the trick with trunca-
tion [ du there, we obtain [ d¢ps = Jo which is also conserved! (But it is not
conserved in the middle of the trajectories.) We can use a uniform distribution
of Jy around singularity, and it will not map into a uniform distribution of
J at the stage of the oscillations. In contrast, it gives a distribution highly
peaked toward the inflationary separatric J,(t). Moreover, the modern theory
of reheating after inflation does not have a long-oscillation post-inflationary
stage, as we explained above, so that the prescription based on a posteriori
distributions of the phase 6 of oscillations after inflaton is not relevant!

Second example. Recently Shinji Mukohyama and I suggested an unusual
model of inflation. This is inflation based on the fast-roll of the inflaton field.
It works for the inflaton field conformally coupled to gravity. Remember, ap-
pearance of the conformal coupling was a big problem for the warped brane
inflation based on the string theory model of the mobile D3 brane inter-
acting with anti-brane placed on the tip of the Khlebanov—Strassler throat
(KKLMMT model). In fact, it can be shown that by itself the conformal
coupling is not a problem to generate inflation. This model has new features
which make it very different from other models. One feature is that this in-
flaton with £ = 1/6 (including the warped brane-anti-brane inflation) can
realize the fast-roll inflation, contrary to the customary slow-roll inflation.
The only feature needed for conformal inflation is the form of its potential:
very shallow for the most part of the inflaton rolling and changing sharply at
the end point of inflation (exactly as in the warped brane—anti-brane inflation
or the hybrid models). Another feature is that fast-roll conformal inflation is
a low-energy inflation (close to the least energy inflation at TeV scale). As a
result it requires significantly less e-foldings N than the figure 62 typical for
the GUT scale chaotic inflation. In the context of the warp geometry, as we
have shown, N is directly related to the warp factor of the throat geometry
of the inner manifold. Coincidentally, the same number N = 37 satisfies two
different pieces of physics, one for homogeneous and isotropic universe from
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the low energy 17TeV inflation and another for the warped geometry mass
hierarchy Mpie™™ ~ TeV. How to generate scale-free metric fluctuations in
this fast-roll inflation model? Since the inflaton field is conformal, its fluctua-
tions are not generated. Next idea, associated with modulated fluctuations, is
to recall angular degrees of freedom describing relative positions of the branes
in five-dimensional space orthogonal to the radial direction. It can be shown
that for the fast-rolling inflaton fluctuations of the scalar fields associated
with the angular coordinates have the solution corresponding to conformal
scalars. Can one obtain scalar metric fluctuations in the model? The help
comes from the sector of modulated cosmological fluctuations related to the
scalars from MSSM or the Higgs sector. Light scalar fields from these sec-
tors are excited during inflation, and modulate the timing hypersurface of
reheating after brane—anti-brane annihilation.
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3
Particle Physics Models of Inflation

David H. Lyth!

Physics Department, Lancaster University, Lancaster LA1 4YB, UK

Abstract. Inflation models are compared with observation on the assumption that
the curvature perturbation is generated from the vacuum fluctuation of the inflaton
field. The focus is on single-field models with canonical kinetic terms, classified as
small- medium- and large-field according to the variation of the inflaton field while
cosmological scales leave the horizon. Small-field models are constructed according
to the usual paradigm for beyond Standard Model physics

3.1 Introduction

Several different types of inflation model have been proposed over the years.
In this survey they are compared with observations on the assumption that
the curvature perturbation is generated during inflation. The survey is based
on works with my collaborators, in particular [T} 21 3] [4].

I focus largely on the slow-roll paradigm, because it is the simplest and
most widely considered possibility. It assumes that the energy density and
pressure dominated by the scalar field potential V', whose value hardly varies
during one Hubble time. Unless otherwise stated, we consider single-field in-
flation, where just one canonically normalized “inflaton” field ¢ has significant
time-dependence.

In the vacuum, V' = 0. To generate the inflationary value of V', one or
more fields must be strongly displaced form the vacuum and there are two
simple possibilities. In non-hybrid inflation, V' is generated almost entirely
by the displacement of the inflaton field from its vacuum, while in hybrid
models it is generated almost entirely by the displacement of some other field
X, called the waterfall field because its eventual descent to the vacuum is
supposed to be very rapid. Hybrid models are not at all artificial, being based
on the concept of spontaneous symmetry breaking and restoration which is
ubiquitous in early-universe cosmology.

The first slow-roll model, termed New Inflation [5] (see also [6]), was non-
hybrid. It made contact with particle physics through the use of a GUT theory,
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but was quickly seen to generate too big a curvature perturbation [7]. Viable
models using a GUT and supersymmetry were developed, including [8] what
were later called hybrid inflation models. The models were rather complicated,
in part because of a demand that the initial condition for observable inflation
is to be set by an era of thermal equilibrium.

It was gradually recognized that prior thermal equilibrium is not neces-
sary. A second strand of model-building, characterized by little contact with
particle physics and focusing exclusively on non-hybrid models, began with
the proposal of chaotic inflation [9]. Considerable attention was paid to non-
Einstein gravity theories, notably the proposal of Extended Inflation [10]. In
its original form that proposal is not viable if the inflaton perturbation gener-
ates the curvature perturbation [I1], though it becomes viable if the curvature
perturbation is generated afterward [12].

Following the formulation of a simple hybrid inflation model [I3], attention
went back to the connection with particle physics and supersymmetry. Almost
all proposals for field theory beyond the Standard Model were considered as
arenas for inflation model-building, including especially GUTs and the origin
of low-energy supersymmetry breaking.

The most recent phase of model-building, beginning in about 2000, is based
directly on brane world scenarios. We will consider the prediction of these kind
of models without describing their string-theoretic derivation.

3.2 Beyond the Standard Model

We begin with some general ideas about the very early Universe, taking on
board current thinking about what may lie beyond the Standard Model of par-
ticle physics. Guided by the desire to generate primordial perturbations from
the vacuum fluctuation of scalar fields, one usually supposes that an effective
four-dimensional (4D) field theory applies after the observable Universe leaves
the horizon, though not necessarily with Einstein gravity.

To generate perturbations from the vacuum fluctuation we need |aH| to
increase with time, which is achieved by inflation defined as an era of expan-
sion with @ > 0 (repulsive gravity)El Perturbations would also be generated
from the vacuum during an era of contraction with @ < 0 The original sug-
gestion was called the pre-Big-Bang [T4]. A more recent version where the
bounce corresponds to the collision of branes was called the ekpyrotic Uni-
verse [15], which was further developed to produce a cyclic Universe [16]. In
these scenarios, the prediction for the perturbation depends crucially on what
happens at the bounce, which is presently unclear.

Returning to the inflationary scenario, the 4D field theory which is sup-
posed to be valid from observable inflation onwards cannot apply back to an

! As usual a(t) is the scale factor of the Universe and H = a/a is the Hubble
parameter.
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indefinitely early era. The point at which it breaks down is a matter of intense
debate at present. With Einstein gravity, 4D field theory cannot be valid if the
energy density exceeds the Planck scale mp; = (87G)~Y/? = 2.4 x 10™® GeV.
This is because quantum physics and general relativity come into conflict at
that scale, making it the era when classical spacetime first emerges. More gen-
erally, it is supposed that any field theory will be just an effective one, valid
when relevant energy scales are below some “ultra-violet cutoff” A. Above the
cutoff, the field theory will be replaced either by a more complete field theory,
or by a completely different theory which is generally assumed to be string
theory.

The measured values of the gauge couplings suggest the existence of a
GUT theory, implying that field theory holds at least up to 10'6 GeV. This
has not prevented the community from considering the possibility that field
theory fails at a much lower energy. The idea is that 4D spacetime would
emerge as an approximation to the 10D spacetime within which string the-
ory is supposed to hold. String theory is formulated in terms of fundamen-
tal strings (F strings), but nowadays an important role is supposed to be
played by what are called D-p branes (or just D branes) with various space
dimensions 0 < p < 9. The electromagnetic, weak and strong forces that
we experience might be confined to a particular D-3 brane, while gravity is
able to penetrate to the region outside known as the bulk. An important role
may be played by D strings, which are D branes with just one of our space
dimensions.

3.3 The Initial Condition for Observable Inflation

The models of inflation that we are going to consider apply to at least the
last 50 e-folds or so, starting with the exit from the horizon of the observ-
able Universe. One may call this the era of observable inflation, because it is
directly constrained by observation through the perturbations which it gen-
erates. Assuming Einstein gravity, observable inflation has to take place with
energy density p < (10~ 2mp;)* or primordial gravitational would have been
detected.

The era before observable inflation is not directly accessible to observa-
tion, but one may still ask about that era. In particular one may ask how the
inflaton field arrives at the starting point for observable inflation. Though not
compulsory, it normally is imagined that inflation begins promptly with the
emergence of 4D spacetime. This is indeed desirable for two reasons. One is
to prevent the observable Universe from collapsing if the density parameter
Q is initially bigger than 1 (without being fine-tuned to a value extremely
close to 1). The other, which applies also to the case 2 <1, is that inflation
protects an initially homogeneous region from invasion by its inhomogeneous
surroundings. This is because the event horizon which represents the farthest
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distance that an inhomogeneity can travel, is finite during inflation. If the
onset of inflation is significantly delayed, one would need either a huge ini-
tially homogeneous patch or [I7] a periodic universe. In contrast, if inflation
begins promptly with the emergence of 4D spacetime, the initially homo-
geneous region is safe provided only that it is bigger than the event hori-
zon. For almost-exponential inflation the event horizon is of order the Hubble
distance.

A simple hypothesis about the emergence of 4D spacetime was made in [9].
Working in the context of Einstein gravity, the energy density of the Universe
at the Planck scale is supposed to be dominated by scalar fields, with the
potential in some regions of order mp, and flat enough for inflation to occur
there. This setup was termed chaotic inflation, and as an example the poten-
tials V(¢) oc ¢ and ¢* were considered. These are generally called chaotic
inflation potentials, but the proposal of [9] regarding the initial condition does
not rely on a specific form for the potential. It is necessary though that there
are regions of field space where the potential is at the Planck scale and capa-
ble of inflating. No example of such a potential has been derived from string
theory.

An alternative to the chaotic inflation proposal is that inflation begins
at the top of a hill in the potential, whose height is much less than mp,. In
particular, the height could be < (10'¢ GeV)?, allowing observable inflation
to take place near the hilltop. This proposal is viable even if the process by
which the field arrives at the hilltop is very improbable (such as the pro-
cess of quantum tunnelling through a potential barrier), because inflation
starting sufficiently near the hilltop gives what is called eternal inflation
[18, [19].

During eternal inflation, the volume of the inflating region grows indef-
initely, and it can plausibly be argued that this indefinitely large volume
outweighs any finite initial improbability. Taking into account the quantum
fluctuation, it can be shown [20] that eternal inflation takes place near a hilltop
provided that || < 6 where n = V" /3H2.

Eternal inflation near a hilltop has been called topological eternal inflation
[21]. More generally, eternal inflation occurs whenever the potential over a
sufficient range satisfies

( e )2 LoV (3.1)

2W¢class B 1272 m16:’lv/2

Here (chlass = —V'/3H is the slow-roll approximation, excluding the stochastic
[22] quantum fluctuation H/27w per Hubble time. When the left hand side of
(BI) is bigger than 1, the fluctuation dominates so that it can overcome the
slow-roll behaviour for an indefinitely long time during which eternal inflation
occurs. In the opposite regime, the fluctuation is small and the left hand side
of (BI)) becomes the spectrum of the curvature perturbation. Eternal inflation
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occurs with the chaotic inflation potential V' o ¢P, for sufficiently large field
values [23].

Eternal inflation provides a realization of the multiverse idea, according to
which all possible universes consistent with fundamental theory (nowadays,
string theory) will actually exist [I9] 23]. This is because eternal inflation
can be of indefinitely long duration, allowing time for tunnelling to all local
minimal of the scalar field potential.

3.4 Slow-roll inflation

3.4.1 Basic Equations

We will find it useful to classify the models according to the variation A¢ of
the inflation field after the observable Universe leaves the horizon. We will
call a model small-field if A¢ < mp), medium-field if A¢ ~ mp; and and
large-field if A¢ > mp;. Hybrid inflation models are usually constructed to
be of the small-field type, the idea being to make close contact with particle
physics which is hardly possible for medium- and large-field models.

The inflaton field equation is

¢+3Hp+V'(¢)=0. (3.2)

Except near a maximum of the potential (or minimum in the case of hybrid in-
flation) a significant amount of inflation can hardly occur unless this equation
is well-approximated by .

3Ho = -V’ (3.3)

with the energy density 3m3,H? = V + §¢2 slowly varying on the Hubble
timescale: .
H< H?. (3.4)

Equations (B3]) and ([B4) together define the slow-roll approximation, and we
will use “=” to denote equalities which become exact in that approximation.
Consistency of (B3] with the exact equation requires

3mpH? =V . (3.5)
and the flatness conditions
ek 1 nl <1, (3.6)
where
_ 1 2 / 2 — 2 "
€ = 2mp1(V /V) n= mplv /V (37)

Requiring that successively higher derivatives of the two sides of (B3] are
equal to good accuracy gives more flatness conditions involving more slow-
roll parameters. The first two are
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_ . VI(@V/de?)

|§2| < 1, 52 = mpl V2 5 (38)
V/Q d4V d 4
lo3] < 1, o3 =mb, ( V3/ ?°) . (3.9)
The general expression is
V/n—l dn+1V d n+1
Bl <t gy =my! VT )

but only €2 and o are ever invoked in practice.

It is obvious that these additional parameters can have either sign. The
motivation for writing them as powers comes from some simple forms for V,
which make [¢|, || and [3(,)| at most of order 7. For more general potentials
one can check case-by-case how small are £? and 3. Usually there is at least
a hierarchy

n>s>ad, (3.11)

but slow-roll per se requires only that all of the slow-roll parameters are < 1
and does not require any hierarchy.
A convenient time variable is N(t), the number of e-folds of expansion

occurring after some initial time, given by dN = —Hdt. In the slow-roll
approximation

H' =~ —¢H (3.12)

€ 2 2¢(2e — 1) (3.13)

= 2en - €2, (3.14)

' (3.15)

=2 de€® —ne? —o®,

and so on, where a prime denotes d/dN. The first relation says that almost-
exponential occurs. The second relation says that e varies slowly. slow-roll
does not guarantee that the other parameters are slowly varying, though this
is guaranteed in the usual case that the hierarchy (811 holds.

The flatness conditions are obtained by successive differentiations of the
slow-roll approximation. Strictly speaking, a differentiation might incur large
errors so that 7 or higher slow-roll parameters fail to be small [compared with
@BI)]. In practice though one expects at least the first few slow-roll parameters
to be small.

3.4.2 Number of e-Folds

To obtain the predictions, one needs the scale k(¢) leaving the horizon when
¢ has a given value. The number of e-folds from then until the end of slow-roll
inflation at @enq is

L [ [V B do
N(k)%mplz/ <V/>d¢:mpll

Pend \/2€(¢)

} . (3.16)
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For definiteness we will evaluate the predictions for the biggest cosmological
scale k = agHyp, where the subscript 0 denotes the present epoch, and denote
N(apHyp) simply by N. The prediction for any other scale can be obtained
using

N(k) = N —In(k/Hy) = N — AN(k) . (3.17)

Taking the shortest cosmological scale to be the one enclosing mass M =
10* My, those scales span a range AN = 14.

The value of N depends on the evolution of the scale factor after inflation.
With the maximum inflation scale V/4 = 10'® GeV and radiation domina-
tion from inflation onwards, N = 61. Delaying reheating until T ~ MeV,
with matter domination before that, reduces this by 14. With the maximum
inflation scale it is therefore reasonable to adopt as an estimate

N=54+7, (3.18)

Reducing the inflation scale reduces N by In(V1/4/10'® GeV), and the lowest
scale usually considered is 10'° GeV or so, reducing the above central value
to 40.

Based on this discussion it seems fair to say that the fractional uncertainty
in N is likely to be at most of order 20%. As we shall see, the corresponding
uncertainties in the predictions are of the same order in a wide range of
models. On the other hand, a very low inflation scale and/or Thermal Inflation
[24] could reduce N by an indefinite amount. The only absolute constraint is
N > 14, required so that perturbations are generated on all cosmological
scales. Also, a long era of domination by the kinetic term of a scalar field
(kination), corresponding to P = p, could increase the estimate [25] by up to
14. Taking all of that on board the maximum range would be 14 < N < 75.

In non-hybrid models, € usually increases with time and inflation ends
when one of the flatness conditions fails, after which ¢ goes to its vacuum
expectation value (vev). From its definition, € increasing with time corresponds
to InV being concave-downward. In this case, the value of ¢, obtained from
BI8) will typically be insensitive to ¢enq, making the model more predictive.

In some hybrid models, € decreases with time (In V' concave-upward), and
inflation ends only when the waterfall field is destabilized. In other hybrid
inflation models though, € increases with time (In V' concave-downward), and
slow-roll inflation may end before the waterfall field is destabilized through
the failure of one of the flatness conditions. If that happens, a few more e-folds
of inflation can take place while the inflaton oscillates about its vev (locked
inflation [26]), until the amplitude of the oscillation becomes low enough to
destabilize the waterfall field.

3.4.3 Predictions

The vacuum fluctuation of the inflaton generates a practically gaussian per-
turbation, with spectrum Py (k) = (Hy/27)? where the subscript k indicates
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horizon exit k = aH. This perturbation generates a time-independent curva-
ture perturbation with spectrum [7]

- 1 Vi
a 24m2mi, e,

Pe(k) (3.19)
The error in this estimate will come from the error in Py and the slow-roll
approximation. Both are expected to give a small fractional error, of order
max{e,n}. Differentiating with respect to Ink to get the spectral index may
incur a fractional error > 1 if 7 is rapidly varying [27], but that is not the
case in the usual models. Differentiating [B.19) using B12) and BI3) give
the spectral tilt;
= dInP¢
~ dlnk

If in addition dn/dN (equivalently, £?) is slowly varying this may be differen-
tiated again to obtain the running,

di?k = —16en + 24> + 2¢ . (3.21)

Observable inflation can take place near a maximum or minimum of the
potential even with the flatness condition |n| < 1 mildly violated to become
In| ~ 1 (so-called fast-roll inflation [28], though note that ¢ is still small
making H almost constant)E This quite natural possibility would give tilt
|[n — 1] ~ 1, which is also quite compatible with the original arguments of
Harrison [29] and Zel’dovich [30] for n ~ 1 and all known environmental
arguments. The very small tilt now observed is not required by any general
consideration, and a large tilt n — 1 ~ —0.3 had previously been considered as
a serious possibility to make a critical-density CDM model more viable [I1].
During inflation, the vacuum fluctuation generates a primordial tensor per-
turbation, setting the initial amplitude for gravitational waves which oscillate
after horizon entry. The spectrum Pr of this perturbation is conveniently
specified by the tensor fraction r = Pr/P;. In the slow-roll approximation

isifE

= 277k — Gek . (3.20)

r=16e = —8nr , (3.22)

where np = dInPr/dIlnk. The second relation has become known as the
consistency condition, and its violation would show that the curvature per-
turbation is not generated by a single-field slow-roll inflation.

Using the observed value for the spectrum of the curvature perturbation,
the tensor fraction is given by

V1/4 4
"= <3.3 x 1016 GeV) ' (3:23)

2 Very close to a maximum is the regime of eternal inflation, which presumably
precedes fast- or slow-roll inflation.
3 The definition of 7 in this reference was slightly different.
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The tensor fraction can also be related to A¢. Suppose that slow-roll persists
to almost the end of inflation and that In V' is concave-downward throughout.
Then |V/V’| is continuously increasing, and (BI6) gives 2¢ < N ~2(A¢/mp1)>.
This can be written [3] [3T]

2 2
16e = r < 0.003 (i?) < A¢> . (3.24)

mpi

Now suppose instead that slow-roll persists to the end of inflation, without
any requirement on the shape of the potential. As a consequence of slow-roll, e
varies little during one Hubble time and there are only 50 or so Hubble times.
It follows that one may expect € to be at least roughly constant, in which case
the right hand side of (3:224]) provides at least a rough estimate of the actual
value of Ag.

Finally, let us adopt the most conservative possible position and consider
just the change A¢y during the four e-folds after the observable Universe
leaves the horizon, that being the era when an observable tensor perturbation
may actually be generated. Then it is certainly safe to assume that e has
negligible variation, leading to the quite firm estimate

1 (Ads :
re, (mm) . (3.25)

In Fig. Bl the r—n plane is divided into three regions, according to
whether V' and In V' are concave-upward or concave-downward while cosmo-
logical scales leave the horizon. Figure 3.2 repeats the plot in the In r7—n plane.
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Fig. 3.1. The r-n plane is divided into three regions, according to whether V' and
In V' are concave-upward or concave-downward while cosmological scales leave the
horizon.
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Fig. 3.2. The plot of Figure 1 is repeated in the Inr-n plane

If the concave-upward -downward behaviour persists till the end of slow-
roll inflation, the right-hand region is inhabited exclusively by hybrid inflation
models, since otherwise inflation would never end. With that assumption,
B24) and [B28) imply that the lightly shaded region of the figures is excluded
if A¢ > 0.1mp), and that the heavily shaded region region is excluded if
A¢ > mpi. [In the right-hand region, corresponding to concave-upward InV,
we used [B23) with A¢gs = A¢; the actual bound will be tighter since in
reality Agy < Ag.]

3.4.4 Observational Constraints

According to observation [32] value of the spectrum P¢ has the almost scale-
invariant value (5 x 107°)2, with negligible error. This gives the constraint

V44 = 0.027mp) = 6.6 x 101° GeV, (3.26)

which we will call the cmb constraint.

Setting r = 0 and taking n to be scale-independent, observation gives [32]
n =~ 0.9481501°. Allowing r and a scale-independent dn/dInk gives a higher
n and n’ ~ —0.10 £ 0.05, consistent with no running at 20 level. The allowed
region in the r—n plane is shown in Fig. (This is a corrected version of
the figure in [32], kindly supplied by the authors). The bound r = 0 is seen
to apply for r <« 0.1 Within a few years there will be either a detection of
r or a bound r < 1072, If r is below 1072 it will probably be undetectable by
any means. This value is marked in Fig.

4 The 1-0 limit with r set equal to zero is tighter than the limit read off from setting
r = 0 in the 7—n plot, because the joint probability distribution is non-gaussian.
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Fig. 3.3. The closed areas show the regions allowed by observation at 66 and 95%
confidence levels. The curved lines are the Natural Inflation predictions for N = 20
and N = 75, and the horizontal lines are the corresponding multi-field Chaotic
Inflation predictions. The junction of each pair of lines corresponds to single-field
Chaotic Inflation

From all this, we see that small- and medium-field generally give r < 1072,
This means that the predicted tensor fraction is unlikely to be observed. It
also means that the prediction for the spectral tilt can be taken as simply
n—1 = 2n; to reproduce the observed negative tilt the potential of a small- or
medium-field model should be concave-downwards while cosmological scales
leave the horizon.

3.4.5 Beyond the Standard Paradigm

Throughout we have adopted the standard paradigm, whereby the curva-
ture perturbation ( is generated by the inflaton perturbation in a single-field
slow-roll inflation model. In general there will exist other light fields, each
possessing a perturbation with the nearly flat spectrum (H/27)?, any one of
which might be responsible for the curvature perturbation.

The predictions in this more general scenario are best calculated through
the ON formalism [33] [34] B5] [36] B7]. As our main focus is on the standard
paradigm we just give some basic results without derivation. It is convenient
to use at horizon exit a field basis {¢,0;}, where ¢ points along the infla-
ton trajectory and the o; (i = 2...M) are orthogonal. The perturbation 8¢
then generates the same time-independent curvature perturbation as in the
single-field case, whose spectrum we denote by P¢,. The orthogonal pertur-
bations give no contribution to the curvature at horizon exit, but one or more
of them may generate an additional contribution later which may be dom-
inant by the time that the curvature perturbation settles down to the final
time-independent value (obtaining as cosmological scales start to approach
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the horizon) whose spectrum we denote simply by P¢. The additional contri-
bution may be generated during inflation in which case we are dealing with a
multi-field inflation model, or later through for example the curvaton mecha-
nism [38]. In the latter case, the model of inflation is irrelevant; all that mat-
ters is that the Hubble parameter is slowly varying. Liberated from the con-
straint to generate the curvature perturbation, model-building becomes much
easier [39)].

The emb normalization ([B26) now becomes an upper bound, implying
a lower inflation scale for a given value of €. The spectral index in general
depends on the evolution after horizon exit [I] [34], but in the most natural
case that the contribution of single orthogonal field 0 = o; dominates it is
given by the potential at horizon exit as

n(k) — 1= 2n,, — 2¢, (3.27)

where 1,, = 0?2V /00?. (The case that two contributions are comparable may
arise by accident, or in special models where ¢ and an orthogonal field are
related such as the one involving axion physics which is described in [40].)
Since the tensor perturbation depends only on H the tensor fraction r is
reduced;
P,
¢

It is negligible if an orthogonal contribution dominates.

We did not mention non-gaussianity. According to the standard paradigm,
the non-gaussianity is [41] about 100 times smaller than the level that can be
detected from the CMB anisotropy (and/or galaxy surveys) though it has
recently been claimed [42] that a measurement from the 21-cm anisotropy
might be possible. In contrast, non-standard paradigms may easily generate
non-gaussianity at an observable level; in particular the curvaton and inho-
mogeneous reheating scenarios are expected to generate non-gaussianity at a
level that is at least marginally observable through the cmb. If non-gaussianity
is observed we will be dealing with functions (of rotationally invariant scalars
formed from the wave-vectors that define the bispectrum, trispectrum etc.)
as opposed to numbers, which will provide powerful information about the
origin of the curvature perturbation.

All of this assumes slow-roll inflation. That possibility is compatible with
the simultaneous detection of a tensor perturbation and non-gaussianity only
if some orthogonal field can generate the non-gaussianity without being domi-
nant (a highly constrained scenario [43]). The main alternative to slow-roll in-
flaton seems to be inflation with non-quadratic kinetic terms, called k-inflation
[44], of which special forms are the brane world DBI inflation scenario [45]
and ghost inflation [46].

r = 16¢ < 16¢ . (3.28)
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3.5 Modular Inflation

We begin our survey of inflation models with the most plausible medium-
field model, which goes by the name of modular inflation. This is a non-
hybrid model in which the inflaton is a modulus. It was suggested a long time
ago [47], and its possible realization in the context of brane worlds is under
investigation at present.

Moduli may play other roles too in the early Universe, and we describe
their properties before getting to the inflation model. For the present purpose
a modulus may be defined as a field with a potential of the form

V:V0f< ¢ ) , (3.20)

mpi

This is supposed to hold in the range 0 < ¢ < mpj, with the function f(x)
and its low derivatives of order 1 at a generic point. At the vev, where f
and f’ vanish, the mass-squared m? = V" is typically of order Vy/m3,. If the
potential has a maximum, it will typically be located at a distance of order
mp from the vev with the tachyonic mass-squared V" typically of order —m?.

Fields with this property are expected (though not inevitable) in a field
theory derived from string theory. Usually the field theory is taken to be
supersymmetric though moduli are expected anyway. Moduli are usually sup-
posed to have interactions of only gravitational strength, corresponding to
a lifetime I' ~ m3/m3,. Alternatively though, a modulus may have interac-
tions of ordinary strength, in particular gauge interactions. The fixed point
of the symmetry group is then called a point of enhanced symmetry. Such a
point might correspond to either the vev or to a maximum of the potential.
It may even be possible for both of these to be points of enhanced symmetry,
involving different symmetry groups.

Moduli may affect cosmology in several ways. Usually they are considered
in the context of supersymmetry, and the simplest expectation for the mass
is then m ~ TeV, corresponding to what we may call light moduli. A light
modulus is typically displaced strongly from its vev during inflation, by an
amount which puts its subsequent oscillation and gravitational-strength decay
into conflict with nucleosynthesis. To avoid this “moduli problem” one may
suppose that all moduli are heavy, or that there is Thermal Inflation [24].

Now we turn to modular inflation. It is usually supposed to take place
near a maximum or saddle-point of the potential, with just one modulus ¢
varying significantly. As many moduli typically exist, that may not be easy
to arrange. Supposing that it happens let us set ¢ = 0 at the maximum and
consider the power series for the potential. The generic expectation would be
for the quadratic term alone to provide at least a crude approximation to the
potential in the slow-roll regime, corresponding to

Vi(¢) =Vo (1 + 1770732 ) (3.30)

2 Pl
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But this requires [from (329)] roughly 79 ~ —1 which gives spectral tilt
n — 1~ —1 in contradiction with observation. To provide a modular inflation
model one suppresses the quadratic term, either by means of a symmetry [48]
or more usually by fine tuning (see for instance [49]).

If the suppressed quadratic term is still required to dominate while cosmo-
logical scales leave the horizon, one obtains the scale-independent prediction
n = 1+ 2ny which can agree with observation by choice of 7g. This prediction
is scale-independent which might in the future allow it to be distinguished
from other predictions for n. Of course, one has to invoke additional terms to
end inflation, presumably at a value ¢enq ~ mp). The tensor fraction is

2 2
r=2 ((be“d) (1—n)2e NO-m) L 1935 (¢e“d> . (3.31)

mpi mpi

Taking ¢enq ~ mp; gives the result shown in Fig. The tensor fraction is
unobservable, but corresponds to a high normalization scale V1/4 ~ 10 GeV,
meaning that we are not dealing with a light modulus.

It is more reasonable to suppose that the suppressed quadratic term is
negligible. Then, as a rough approximation it may be reasonable to write

vawli-(4)], (3:32)

with p > 3 (not necessarily an integer) and p ~ mp.
If this approximation holds for some reasonable length of time after cos-
mological scales leave the horizon it gives

¢P 2 = [p(p — 2)u PNm] ", (3.33)

(independently of ¢enq) and

n—1:—]2v(§:;>. (3.34)

For the range 3 < p < oo with N = 50 we get 0.92 < n < 0.96. The cmb
normalization corresponds to a tensor fraction

0.001 24 (50 r2
. /’L P— pP—
P~ . 3.35
(p—2)* (mm) <N) (3:35)

This is shown in Fig. BI0with ¢ = mp;. Again, the tensor fraction is too small
to detect but still corresponds to a high energy scale V1/4 ~ 10'® GeV. These
estimates agree to rough order of magnitude with results obtained numerically
using potentials derived from string theory (see for instance [49]).
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3.6 Small-Field Models

A range of small-field models has been proposed. Before describing them we
make some general remarks, followed by a very basic treatment of supersym-
metry which is invoked in most small-field models.

The motivation for small-field models comes from ideas about what is likely
to lie beyond the Standard Model of particle physics. Choosing the origin as
the fixed point of the relevant symmetries, the tree-level potential will have a
power series expansion,

_ 1 2.2 3 1 4 - 4 ¢ ¢
V(o) = Vo ym** + Mo + Ao +dz_5xdmm<mpl> (3.36)

The lower-order terms of ([3.36)), which do not involve mpj, are renormalizable
terms (corresponding to a renormalizable quantum field theory). The higher
order terms, which disappear in the limit mp; — oo, are non-renormalizable
terms. We are taking m? positive and as indicated the quadratic term might
have either sign. The other renormalizable terms will usually be positive, but
the non-renormalizable terms might have either sign.

According to a widely held view, non-renormalizable terms of arbitrarily
high order are expected, with magnitudes big enough to place this expansion
out of control at ¢ > mpy. The typical expectation is [Ag| ~ 1 if mp is the
ultra-violet cutoff and |[\g| ~ (mp1/A)? (the latter corresponding to the re-
placement mp; — A) if the cutoff A is smaller. This view is part of a more
general one, according to which the lagrangian of a field theory ought to con-
tain all terms that are allowed by the symmetries, with coefficients typically
of order 1 in units of the ultra-violet cutoff (see for instance [50]).

If the field theory is replaced by a more complete field theory above the
cutoff, the \; can be calculated and will be of the advertised order of magni-
tude if ¢ has unsuppressed interactions. But if instead it is replaced by string
theory above the cutoff, then estimates of A\ should come from string theory.
Such estimates are at present not available, except for modulifl Tn general
then, one is free to accept or not the usual view about non-renormalizable
termsﬁ

Following [1], let us see what sort of conditions the terms in (B:36) must
satisfy, to achieve inflation in the small-field regime ¢ < mp;. We discount
the possibility of extremely accurate cancellations between different terms.

5 In the case of moduli (329) implies a strong suppression of the couplings. How-
ever, the inflaton in a small-field model is not usually supposed to be a modulus
because the origin in small-field models is usually taken to be the fixed point of
the symmetries of some unsuppressed interactions, which would make the origin
a point of enhanced symmetry for the modulus.

5 This is less true if supergravity is invoked because the non-renormalizable terms
are then present and out of control for generic choices of the functions defining
the theory. But one can still make special choices to avoid the problem.
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This means that the constant term has to dominate, and that we require the
addition of any one other term to respect the flatness condition |n| < 1, the
other flatness conditions then being automatic

We shall not consider the cubic term, which usually is forbidden by a
symmetry. For the other terms || < 1 is equivalent to

1%
m? < ) ~3H? (3.37)
Mpy
v
A< 0 Th (3.38)
pL @
Vo <m1%1) 2
i < . 3.39
! mpy \ ¢ ( )

One might think that the second and third conditions can always be satisfied
by making ¢ small enough, but this is not correct because there is a lower
limit on the variation of ¢. Indeed, during just the ten or so e-folds while
cosmological scales leave the horizon (B.10]) and ([B26]) require ¢ to change by
at least 104V1/2 /mp1 and ¢ cannot be smaller than that on all such scales.
We conclude that

A< 1078 (3.40)
2(d—4)
1016 GeV
Ad g1o8< 07 Ge ) . (3.41)

The first condition requires A\ to be very small, and the second condition
requires at least the first few \; to be very small unless the inflation scale is
well below 10'6 GeV. Supersymmetry can ensure these conditions, either by
itself or combined with an internal symmetry. Alternatively one can invoke
just an internal symmetry corresponding to ¢ — ¢+ const, making ¢ a PNGB,
though as we remark later that is not so easy to arrange as one might think.

Finally, we recall that for a generic field in an effective field theory, mp
in (338) might be replaced by an ultra-violet cutoff Ayy < mpj, arising
either because heavy fields have been integrated out, or because large extra
dimensions come into play. One hopes that such a thing does not happen for
the inflaton field, because it would make it more difficult to satisfy the flatness
conditions [53]. Fortunately, the presence of large extra dimensions does not

" In a supersymmetric theory one instead consider A-term inflation [51}, [52]. Drop-
ping the constant term Vp, one can choose a flat direction (say in the space of
the MSSM scalars) in which the leading non-renormalizable term in the super-
potential generates an A-term. Then a fine-tuned match between three terms in
the potential can give V' = V" = 0 for a particular field value. Inflation can then
take place near that value and naturally reproduce the cmb normalization. By
a suitable choice of the fine-tuning it can also reproduce the observed spectral
index, though it can also give any value in the slow-roll range 0 < n < 2 [52].
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in itself prevent mp; from being the effective cutoff for at least some of the
fields.

3.7 Supersymmetry: General Features

Field theory beyond the Standard Model is usually required to possess su-
persymmetry. Supersymmetry [54] is an extension of Lorentz invariance. Its
outstanding prediction is that each fermion should have bosonic superpart-
ners, and vice versa, with identical mass and couplings in the limit of unbroken
supersymmetry. Supersymmetry has to be broken in our Universe.

Supersymmetry is usually taken to be a local symmetry, and is then called
supergravity because it automatically incorporates gravityll In that case the
breaking is spontaneous. In many situations, global supersymmetry is used
with the expectation that it will provide a good approximation to supergravity.
In that case the breaking can be spontaneous and/or explicit.

We shall deal with the simplest version of supersymmetry, known as N =1
supersymmetry, which alone seems able to provide a viable extension of the
Standard Model. Here, each spin-half field is paired with either a complex
spin-zero field (making a chiral supermultiplet), or else with a gauge boson
field (making a gauge supermultiplet). With supergravity, the graviton (spin
two) comes with a gravitino (spin 3/2). With spontaneously broken global
supersymmetry there is instead a spin 1/2 goldstino.

One motivation for supersymmetry concerns the mass of the Higgs parti-
cle, given by the vev of 92V/9¢* where ¢ is the Higgs field. The function V/
that we have up till now being calling simply the potential is only an effective
one, and not the “bare” potential entering into the lagrangian which defines
the field theory. Interactions of the scalar fields with themselves and each
other change the bare potential into an effective potential. We will be con-
cerned with perturbative quantum effects represented by Feynman diagrams.
If we including just tree-level (no-loop) diagrams, the effective potential is
still given by the power series (B30 with different (renormalized) values for
the coefficients in the series. Loop corrections give further renormalization of
the coefficients, which is our immediate concern. (They also give the potential
logarithmic terms that have to be added to the power series, which we come
to later.)

The point now is that the loop “correction” in a generic field theory will be
large, driving the physical mass up to a value of order the ultra-violet cutoff.
As the latter is usually supposed to be many orders of magnitude above the
physical Higgs mass, one must in the absence of supersymmetry fine-tune the
bare mass so that it almost exactly cancels the loop correction. To protect the
Higgs mass from this fine tuning, one needs to keep the loop correction under

8 Some brane world scenarios explicitly break local supersymmetry which means
there is actually explicitly broken global supersymmetry.
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control by means of a symmetry which would make it zero in the unbroken
limit. The best symmetry for doing that job in the case of the Higgs field is
supersymmetry.

In a supersymmetric extension of the Standard Model, each particle species
must come with a superpartner. It turns out that at least two Higgs fields are
then needed. Keeping just two, one arrives at the Minimal Supersymmetric
Standard Model (MSSM), which is a globally supersymmetric theory with
canonically normalized fields. The partners of the quarks and leptons are
called squarks and sleptons, those of the Higgs fields are called higgsinos, and
those of the gauge fields are called gauginos.

Unbroken supersymmetry would require that each Standard Model particle
has the same mass as its partner. This is not observed, which means that the
global supersymmetry possessed by the MSSM must be broken in the present
vacuum. To agree with observation it turns out that the breaking has to be
explicit as opposed to spontaneous. To ensure that supersymmetry continues
to do its job of stabilizing the potential against loop corrections, the breaking
must be of a special kind called soft breaking. Soft supersymmetry breaking
has to give slepton and squark masses very roughly of order 100 GeV. They
cannot be much smaller or they would have been observed, and they cannot
be much more bigger if supersymmetry is to do its job of stabilizing the Higgs
mass.

Softly broken supersymmetry explains with high accuracy the observed
ratio of the three gauge couplings (determining the strengths of the strong,
weak and electromagnetic interactions) on the hypothesis that there is a GUT.
This feature is actually preserved if one allows the squarks and sleptons to
be extremely heavy (hence not observable), a proposal known as Split Super-
symmetry.

The LHC will soon determine the nature of the fundamental interactions
immediately beyond the Standard Model, and may or may not find evidence
for supersymmetry. In the latter case we will know that supersymmetry is too
badly broken to be relevant for the Standard Model. It might still be relevant
in the early Universe and in particular during inflation, but there is no doubt
that increased emphasis will then be placed on non-supersymmetric inflation
models. A good candidate for non-supersymmetric inflation would be modular
inflation. Alternatively, one might make the inflaton a PNGB, or just accept
extreme fine tuning.

9 If a symmetry other than supersymmetry were to be used, the Higgs field ¢ would
become a PNGB corresponding to a shift symmetry ¢ — ¢+ const. It is difficult
for a shift symmetry to protect the Higgs mass, because the symmetry will be
broken by the strong couplings that the Higgs is known to possess. This problem
can be overcome by what is called the Little Higgs mechanism but the resulting
schemes are complicated especially if the ultra-violet cutoff is supposed to be
many orders of magnitude bigger than the observed mass.
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3.8 Supersymmetry: Form of the Potential

In a supergravity theory, the potential is a function of the complex scalar
fields, of the form

V(i) = Vi (¢:) — 3mpyms3 o(ei) - (3.42)

The first term is positive, and spontaneously breaks supersymmetry.

In the vacuum, mg/s(¢;) becomes the gravitino mass which we denote
simply be ms/,. Let us denote the vev of the first term by Mé‘. The near-
cancellation of the two terms in the vacuum is unexplained (the cosmological
constant problem). The explicitly broken global supersymmetry seen in the
MSSM sector is supposed to be obtained from the full potential as an ap-
proximation. To achieve this the spontaneous breaking must take place in
some “hidden sector” with some “messenger” sector communicating (me-
diating) between the hidden sector and the MSSM sector. The value of
Mg required to give squark and slepton masses of order 100 GeV depends
on the strength of the mediation. Let us characterize it by Mpyess, With
100 GeV = MS2 /Mpmess. Gravitational-strength mediation (“gravity media-
tion”) corresponds to Mpess ~ mp; and the biggest reasonable range is
10% GeV < Miess < 1012 The corresponding gravitino mass is between
1eV and 10° GeV.

Coming to inflation, supersymmetry stabilizes the potential against loop
corrections just as in the MSSM Higgs case. Also, the small A required in the
tree-level potential can be obtained quite naturally. One generally assumes
that the first term of ([B42]) dominates since there is no reason to expect
a fine cancellation. Assuming that supersymmetry in the early Universe is
broken at least as strongly as in the vacuum, this requires V' > Mé. Partly
for that reason, very low-scale inflation is difficult to achieve.

Now we come to what has been called the n problem. The supergravity
potential can be written as the sum of two terms, called the F' term and the
D term. In most inflation models V' comes from the F' term. Then, each scalar
field typically has mass-squared at least of order m? > V/m%, = 3H?. For
the inflaton this is in mild conflict with the slow-roll requirement |n| < 1
55} 56} 57, 58]

Even if we allow the curvature perturbation to be generated after inflation,
say in the curvaton model, we still need m? < V/m3, for the curvaton field.
In that case there may be a problem even after inflation, because a generic
supergravity theory still gives each scalar field an effective mass at least of
order H [59] except during radiation domination [60], which will tend to drive
each field to its unperturbed value and kill the curvature perturbation.

10 The upper limit corresponds to anomaly mediation, which is gravity mediation
suppressed by a loop factor. The lower limit is an interpretation of Mg > 100 GeV,
required so that the hidden sector is indeed hidden.
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Returning to the standard scenario for generating the curvature perturba-
tion, we typically need |n| ~ 0.01 to generate the observed spectral tilt. This
represents an order 1% fine-tuning which is not too severe. What is perhaps
more serious is that the n problem calls into question the validity of any model
which is formulated within the context of global supersymmetry. It is easy to
ensure |n| < 1 in such a theory, but having done that the supergravity correc-
tion may still be big and completely alter the model. In a typical global super-
symmetry model though, the same is true of other types of correction as well.

3.9 One-Loop Correction

Loop corrections add a logarithmic term to the effective potential. In the
direction of any field ¢, the one-loop correction is

Moo [M19)

AV(¢)= Z 642 " Q2

4

(3.43)

This is called the Coleman—Weinberg potential. The sum goes over all particle
species, with the plus/minus sign for bosons/fermions, and N; the number of
spin states. The quantity M?(¢) is the effective mass-squared of the species,
in the presence of the constant ¢ field. For a scalar, M? = 9?V/d¢?, which is
valid for ¢ itself as well as other scalars.

The quantity @ is called the renormalization scale. If the loop correction
were calculated to all orders, the potential would be independent of Q. In
a given situation, @) should be set equal to a typical energy scale so as to
minimize the size of the loop correction and its accompanying error. Focusing
on the inflaton potential, we should set @ equal to a typical value of ¢ (one
within the range which corresponds to horizon exit for cosmological scales).
That having being done, the magnitude of AV will typically be negligible, but
its derivatives may easily be significant.

If supersymmetry were unbroken, each spin-1/2 field would have a scalar-
or gauge field partner with the same mass and couplings, causing the loop
correction to vanish. In reality supersymmetry is broken. To see how things
work out, let us consider the loop correction from a chiral supermultiplet,
consisting of a spin-1/2 particle with a scalar partner. The partner is a complex
field ¢ = (1 + 1))/ V/2, whose real components t; have true masses m;. If
there is an interaction )X ¢?[¢?|, this gives M? = m? + JN¢? (i = 1,2).
(We use the prime to distinguish this coupling from the self-coupling A in
the tree-level potential ([B36]) of the inflaton.) The spin-1/2 field typically
has true mass m¢ =0, and its interaction with ¢ generates an effective mass-
squared MZ(¢) = ;/\’ ¢?. (This result is not affected by either spontaneous
or soft supersymmetry breaking.) When ¢ is much bigger than m;, the loop
correction is therefore
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AV ~ ! Z m2+1X¢2 2—2 1X¢2 : 1n¢ (3.44)
3272 v 2 Q' '

i=1,2

The coefficient of ¢* vanishes by virtue of the supersymmetry. For the other
terms, we will consider two cases. Suppose first that global supersymmetry
is spontaneously broken during inflation. Then it turns out that typically

m? = —m32, causing the coefficient of ¢? in [3.44) to vanish. This leaves
mf 0]
AV~ ' n . 4
g2 1 Q (3.45)

In this case the derivatives of AV are independent of (), making its choice
irrelevant as the magnitude of AV is negligible.

Now suppose instead that global supersymmetry is explicitly (softly) bro-
ken during inflation, the coefficient of ¢? in 3.44] does not vanish, but instead
typically dominates the constant term. Adding the loop correction to the mass
term of the tree-level potential gives

1 N ¢
AV =, m? + 492 (m? +m3)In 0 P* . (3.46)
This expression is valid over a limited range of ¢, if Q set equal to a value of
¢ within that range. If a large range of ¢ is under consideration, it should be
replaced by an expression of the form

AV = _m?(¢) ¢°. (3.47)

The “running mass” m?(¢) is calculated from what are called renormalization
group equations (RGEs).

The above discussion involved the loop correction due to a chiral super-
multiplet. Couplings involving chiral super multiplets, such as X', are called
Yukawa couplings and they can be very small. We could instead have discussed
the loop correction due to a gauge supermultiplet, consisting of a spin-1/2 field
whose partner is a gauge field. The couplings involving gauge super multiplets
are called gauge couplings and denoted usually by g. They are not expected to
be very small. The loop correction from a gauge supermultiplet is essentially
of the above form, with )’ replaced by g.

Finally, if there is no supersymmetry, the loop correction typically desta-
bilizes the tree-level potential, and in particular it gives to the mass of each
scalar field a contribution which is typically of order the ultra-violet cutoff.
To obtain an acceptable potential, and in particular acceptable masses, one
has to invoke a fine-tuned cancellation between the loop correction and the
tree-level potential. Considering just the contribution from the spin-1/2 part
of B:44] and adding it to the self-coupling of ¢, one has



102 D. H. Lyth

1 PN
AV = lA— (M) In Q] Pt (3.48)

As with the mass, the RGE’s give a more accurate result, corresponding to
AV = ;\(¢)¢* with a running coupling A(¢).

3.10 Small-Field Models: Moving Away from the Origin

In this section we consider small-field potentials with the shape shown in
Fig. B4 We begin with non-hybrid models, taking the origin as the fixed
point of the symmetries. Then the minimum of the potential corresponds to a
nonzero vev, and the potential vanishes there. Such models are usually called
New Inflation models, since that was the name given to the first viable slow-
roll model which happened to be of that kind.

The situation for New Inflation is similar to the one we discussed for
modular inflation. Keeping the quadratic term alone cannot be a good approxi-
mation throughout inflation. Assuming that the quadratic term is already neg-
ligible when cosmological scales leave the horizon, the approximation ([B.32])
seems reasonable, with p > 3 and now p < mp;. With this approximation
the spectral tilt is given by ([B.34]). The tensor fraction is given by ([333]) with
u < mp; making it absolutely negligible, and allowing an inflation scale far
below 10*° GeV.

The original New Inflation model corresponded to p = 4;

1
V:VO—4/\¢4+---. (3.49)

To be precise, the inflaton was supposed to be the GUT Higgs, taken to be
practically massless, whose Mexican—Hat potential was generated by a running
coupling coming from the non-supersymmetric Coleman—Weinberg potential.
The cmb normalization now requires A = 3 x 107*3(50/N)?. This ruled out
the model in its original form, because A\ was the GUT gauge coupling with
known magnitude of order 10~1. A viable version of the model was obtained

Fig. 3.4. Modular, new, inverted hybrid, mutated hybrid
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[61] by declaring that the inflaton is a gauge singlet, making A\ a Yukawa
coupling whose value can be chosen at will.

Instead of invoking the approximation (3.32]), we might suppose that the
quadratic term dominates while cosmological scales leave the horizon but a
higher term dominates soon afterward. The simplest potential of this kind is

1 1
V=V - 2m2¢2— 4/\¢4+--- . (3.50)

A supersymmetric realization of this case making close contact with particle
physics is given in [62] (see also [I]), which is very fine-tuned if the infla-
ton is required to generate the curvature perturbation. There is also a non-
supersymmetric realization invoking a Little Higgs mechanism [63][64], making
¢ a PNGB with a periodic potential. The prediction for this model is the same
as for (B30), with the difference that ¢enq will be far below mp; making the
inflation scale far below 106 GeV.

Turning to hybrid inflation, the simplest possibility is inverted hybrid in-
flation [65] where the origin remains the fixed point of symmetries, and one
simply reverses the sign of m?2, mfp and )\ in the usual hybrid inflation po-
tential [vord below]. The negative sign of )\ is difficult to arrange especially
in a supersymmetric model, and severe fine-tuning is also required [G6].

Instead one can make ¢ a PNGB so that it has a periodic potential [63]
[64] [67]. The shift symmetry is broken both by the potential V(¢) and by
the coupling of ¢ to the waterfall field. The inflationary trajectory does not
pass through the fixed point of the symmetries, and taking the origin to be a
maximum of the potential is just an arbitrary choice. Instead of making ¢ a
true PNGB, one can arrange that at least it is effectively one during inflation,
in the sense that the potential then becomes flat in some well-defined limit
[57, [58] 68]. For both types of model it seems possible for the magnitude
of the spectrum and the spectral tilt to be in agreement with observation
by suitable choice of parameters. The inflation scale can be many orders of
magnitude below 10'° GeV.

3.11 Moving Toward the Origin; Power-Law Potential

In this section we consider potentials of the form illustrated in Fig. B8 of
either the small-field or medium-field type. We begin with potentials that can
be approximated by (332) with p < 0. Such potentials give the prediction
B34)) for the spectral index and (B35]) for the tensor fraction.

With p = —4, (832)) has been derived in a brane world scenario, where
u ~ mpy is allowed corresponding to a medium-field model [69]. This is a
hybrid inflation model, with the usual potential schematically of the form

1 1 1 1
V($:X) = V(@) + ;m*¢” — omin® +  Nx*0" + A (3.51)
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At ¢ > g =m,/ VX the waterfall field is driven to zero, leaving V(¢) given
by B32). The unusually form of V(¢) here arises because the inflaton field
¢ corresponds to the distance between branes attracted towards each other.
Inflation in this model ends when the branes coalesce.

Colliding brane inflation has the usual 7 problem, in that the potential is
expected to have a term §m2¢2 with m? ~ H?. But the brane world scenario
can motivate a non-canonical normalization of a specific form, leading to what
is called DBI inflation which can take place even with m? ~ H?2. We shall not
present the results for that case.

At the end of this brane world inflation, F and D strings are typically
produced. At present it is not clear how that affects the viability of the
model, because the evolution of the string network has not been reliably
calculated.

The potential [332) with various values of p had been derived earlier in
the context of ordinary field theory, with p < mp) corresponding to a small-
field model. The mechanism, referred to as mutated [70] or smooth [71] hybrid
inflation, is the following. The waterfall field is not fixed during inflation, but
instead adjusts to continually minimize the potential. The effective potential
is then V(¢,&(#)), and for simplicity the ¢-dependence at fixed y is taken
to be negligible. In this way [65] one can obtain any p < 0 (not necessarily
integral) as well as p > 1. Taking negative p, the upper bound on r (evaluated
by setting A¢ < mp)) is shown in Fig.

This is a good place to mention another potential of the kind shown in

e cesfien(-0 )] -

mpi

with ¢ of order 1. It occurs if inflation takes place in field space where the
kinetic function has a pole, irrespective of the form of the potential [58], with
model-dependent values of ¢ such as ¢ = 1 or v/2. It can also be obtained by
transforming R? gravity or scalar-tensor gravity to the Einstein frame, giving
q= \/ 2/3. Notice that these modified-gravity theories should not be used in

¢

Fig. 3.5. F- and D-term inflation, colliding brane, mutated hybrid
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conjunction with the standard supergravity potential, because that potential
is evaluated in the Einstein frame.

The potential is supposed to apply in the regime where V; dominates,
which is ¢ > mp;. Inflation ends at ¢ena ~ mpi, and when cosmological scales
leave the horizon, we have ¢ ~ In(¢?> N)mp;/q and

2
~14+2p=1— _. 3.53
n~ 142 N (3.53)
The predicted cmb normalization (for ¢ = 1 and N = 50) is shown in Fig. [3.10

as a Cross.

3.12 F and D Term Inflation

Now we suppose that the potential is dominated by the loop correction, in
a model invoking spontaneously broken global supersymmetry. We focus ini-
tially on the case that the supergravity correction is negligible, asking later
whether that is reasonable in specific models. In the regime ¢ > ¢. the po-
tential is then given by ([43]), while in the limit ¢ — ¢, it vanishes [because
M;(¢) in (B43) vanishes]. The mass-squared in ([3.43]) is proportional to some
coupling ¢g which controls the strength of the spontaneous supersymmetry
breaking. The potential during inflation is therefore of the form

2
Ve v (1+ Lo rom ) .59

where f =1 for ¢ > ¢. and f — 0 as ¢ — ¢.. The potential has the form
shown in Fig.

For ¢ > ¢, .
g- mp; mpi
= — = — . 3~55
O (3.55)
Consider first the regime
g% > 8Pt /mb, . (3.56)

slow-roll inflation ends at ¢enq = 2gm%l /4w > ¢, because nn = 1 there. After
slow-roll inflation ends, ¢ oscillates about (¢p) = 0. A few e-folds [of order
In(pena/@c)] of “locked” inflation then occur, until the amplitude falls below
Pe.

The integral (BI6]) is dominated by the limit ¢ giving

N
¢~ \/47T2 gmpi. (3.57)

To be in the desired regime ¢ < mpj we need g < 1 which might be in conflict
with (B350). Proceeding anyway one finds n = 1 — 1/N ~ 0.98, and the cmb
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normalization 7 = 0.0011(50/N)g?. This prediction (with N = 50) is shown
as a star in Fig.

All this is with ¢ in the regime (3.50]). If we decrease g smoothly to reach the
opposite regime g? < 872¢2/m%,, $(N) approaches @, the cmb normalization
decreases and n approaches 1 [72].

Two versions of this model exist in the literature, referred to generally as
F-term [57, 58] 73] and D-term [74}[75] inflation[] In both cases, the starting
point is a simple global supersymmetry theory with canonical kinetic terms,
giving the hybrid inflation potential (351 with V(¢) perfectly flat.

In the F-term case, g is a Yukawa coupling, which can be chosen to be
small yielding a small-field model. The cmb normalization fixes the vev of
the waterfall field, as A ~ 6 x 101° GeV. Identifying the waterfall field(s) as
a subset of the GUT Higgs fields motivates this value. Turning that around,
the GUT model predicts roughly the observed magnitude for the spectrum of
the curvature perturbation.

As we are dealing with an F' term, the n problem exists; we expect V' ~
+m?2¢? with m? ~ H?. To have a viable model m? needs to be tuned down
by a factor of order 0.01 but there is no reason why it should be negligible.
The case of positive m? has been investigated in [76] and negative m? in [3].
The latter case gives an attractive model because it corresponds to hilltop
inflation as in Fig. After eternal inflation near the hilltop, the field can
roll in the negative ¢ direction. After redefining the origin and reversing the
sign of ¢ we recover the small-field model considered in Sect. Taking
the case ([B56]), the spectral index and the height of the potential have been
calculated, and are lower than in the original model.

In the D-term case, g is a gauge coupling which presumably cannot be
small. The vev of the waterfall field has the same cmb normalization as in the
F-term case. This vev is expected to be of order the string scale, relating D
term inflation directly to string theory.

There is no n problem for the D-term model, but the tree-level potential
V(@) is still not expected to be flat because we are dealing with a medium-
field model where non-renormalizable terms are out of control. There is no
particular reason to think that the tree-level V(¢) will be quadratic, but one
may adopt the quadratic form as a parameterization. The case of positive
mass-squared was considered in [77, [78], and negative mass-squared in [3] [79)].
As in the F' term case, it gives an attractive inflation model and with the
height of the potential and the spectral index both lower than with the original
model.

In both the F' and D-term models, the inflationary energy scale without
a tree-level potential is V' ~ ¢?A*. Cosmic strings are generically produced

1 The supergravity potential can be written as the sum of an F term and a D term.
With the D term one is driven more or less inevitably to this type of model, but
many other possibilities exist with the F' term.
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with tension g ~ V12 and the cmb constraint p'/? < 10'5 GeV imposes
restrictions on the parameter space.

3.13 Tree-Level Hybrid Inflation

All of the models considered so far can give a spectral index which is consistent
with observation at the time of writing, provided that N is not too far below
the expected value ~ 50). Now we turn to small- and medium-field models
which at least in their simplest form are ruled out by their prediction for the
spectral index (as always, on the assumption that the inflaton perturbation
generates the curvature perturbation).

Any small- or medium-field model with a concave-upward potential is ruled
out. Such models are of the hybrid type, unless the potential becomes concave-
downward after cosmological scales leave the horizon. Taking the fixed point
as the origin of symmetries, we distinguish between potentials with positive
slope as in Fig.[B.6] and with negative slope as in Fig.

A negative slope can arise from non-perturbative quantum effects [80].
More usually, one finds models with positive slope as in Fig. B.Gl coming
from a tree-level hybrid inflation model with (say) a quadratic potential. The

@
Fig. 3.6. Tree-level hybrid

Fig. 3.7. Dynamical supersymmetry breaking
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A

(@Ing)) "2 6/M,

Fig. 3.8. Natural/chaotic inflation

potential including the waterfall field x is [I3] of the form B35I) with V(¢) =
ym2e?.

A well-motivated tree-level hybrid inflation model, called Supernatural
Inflation by its authors [81], uses softly broken global supersymmetry. The
waterfall field is, in our nomenclature, a light modulus [82]. In contrast
with most models of inflation, the inflationary scale is low corresponding
to Vol/ Y~ Mg ~ 10'°GeV, the idea being that there is gravity-mediated
supersymmetry breaking both during inflation and in the vacuum, the only
difference in the former case being that the last term of (3:42]) has not yet
kicked in order to achieve a viable model the masses m, and m are taken
to be respectively somewhat bigger and smaller than their generic values of
order H,. The observed curvature perturbation is then obtained with " just
a few orders of magnitude below 1.

V(o)

Fig. 3.9. Sketch of the inflationary potential for the F'/D-term scenario in its sim-
plest form, without a tree-level potential (dashed line) and with a concave-downward
tree-level potential (continuous line)
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The origin x = 0 is taken by the authors to be, in our nomenclature,
a point of enhanced symmetry. The relevant symmetries cannot be those of
the Standard Model because (x) ~ mp. After inflation the waterfall field
oscillates about its vev, but it is supposed to decay into SM particles before
nucleosynthesis so that it presents no moduli problem. This makes the vev
another point of enhanced symmetry, the symmetries now being those of the
Standard Model [82].

As with practically all inflation models, the inflaton is invoked just to
give inflation and is not part of any extension of the Standard Model that
has been proposed for other purposes. Models similar in spirit have been
proposed (beginning with [83]) that are based on extensions of the Standard
Model that serve other purposes too. They have an even lower inflation scale,
corresponding to a mediation strength stronger than gravitational. They in-
voke fine tunings, which may however be reasonable within the context of
string theory and branes. They can give either ordinary or inverted hybrid
inflation, but in both cases the spectral tilt is practically zero in contradiction
with observation. To avoid this problem though, it seems possible to generate
the curvature perturbation during preheating [84].

In considering tree-level hybrid inflation, one has to remember that the
coupling of the inflaton to the waterfall field generates a calculable loop correc-
tion to the potential, which can be concave-downward and rescue the model.
This still leaves a large region of parameter space in which the one-loop correc-
tion from this source is negligible [85], though in some part of that space one
should still worry about the two-loop correction [81]. In any case the coupling
of the inflaton to fields other than the waterfall field can also generate a
concave-downward loop correction. We consider this possibility next, in the
context of the running-mass model.

A different possibility for generating a concave-downward potential would
be to include the leading non-renormalizable term with a negative sign, gen-
erating a maximum as we discussed already for F- and D-term inflation. The
possibility has not been investigated at the time of writing.

3.14 Running Mass Models

The loop correction with soft supersymmetry breaking generates a running
mass. If the mass belongs to the inflaton we have a running-mass inflation
model. The usual model [86] starts with the Supernatural inflation model
that we mentioned earlier. At ¢ = mp, the running mass m?(¢) is supposed
to be of order V;/ m%l, which is the minimum value in a generic supergravity
theory. The inflaton is supposed to have couplings (gauge, or maybe Yukawa)
that are not too small, and it is supposed that m?(¢) passes through zero
before it stops running. The running associated with a given loop will stop
when ¢ falls below the mass of the particle in the loop.
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The potential near m?(¢) = 0 is flat enough to support inflation. To see
this, we can use ([B34€) which is valid over any small range of ¢ and will
therefore be valid around the minimum. It can be written in the form

1 ¢ 1) 1
V=WI|1 1 — 3.58
0|: +2770m%1 <D¢* 2>:|7 ( )
which leads to v p s
= 1 . 3.59
mP]Vo o mp1 " op (3:59)

The potential has a maximum or minimum at ¢ = ¢., at which n = 7y, and
near which

=10 (1+1n€;‘>. (3.60)

A maximum is favoured theoretically, because a minimum requires a hybrid
inflation model with ¢, tuned to be near the minimum.

To estimate |1y, we can make the crude approximation that ([B.60) is valid
at ¢ ~ mpy, where || is supposed to be of order 1. Then

ol ~ 1/ In(mp1/dx) . (3.61)

This will give |ng| < 1 if ¢, is exponentially below mpj, and with the rea-
sonable requirement ¢, > 100 GeV it gives something like |ng| ~ 107! For
a generic value of ¢(N) this corresponds to |n — 1| ~ 0.1 which is outside
the observational bound. One can satisfy current observation by choosing the
parameters so that ¢(N) = ¢, around the middle of the cosmological range of
scales, corresponding to the spectrum having a maximum at that point [87].
The running of the spectral index at that point is dn/dInk ~ —2n2, and we
are requiring |no| ~ 1071, This is allowed by present observations, though it
will soon be ruled out or confirmed.

To see whether the condition ¢(IN) ~ ¢. is reasonable, as well as to cal-
culate the cmb normalization, we need

1 ¢end ¢*
N(9) ol In <1n b In 5 > . (3.62)
If slow-roll inflation ends at |n| ~ 1, and B.60) is still roughly valid there,
[n0| In(¢ps/ Pena) ~ 1 and B62) requires roughly || ~ exp(—N|ng|) which is
more or less compatible with |ng| ~ 0.1, and also more or less satisfies the
cmb normalization with V;/* ~ 10710 GeV.

A running mass has also been considered in the context of a two-field mod-
ular inflation model [20] [88]. The two real fields are components of a complex
field . The maximum of the tree-level potential, chosen as ® = 0, represents a
point of enhanced symmetry, and its height is Vol/ * ~ 10% GeV corresponding
to gravity-mediated supersymmetry breaking. Writing ® = |®|e?, the poten-
tial depends on both 6 and |®|. The tree-level negative mass-squared defined
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at the origin is supposed to have the generic value corresponding to |ng| ~ 1,
but interactions cause the mass to run. This turns the maximum into a crater,
and it makes the potential very flat at the rim so that inflation can take place
there.

There is a family of trajectories characterized by the initial value of 6.
The curvature perturbation in this two-field model was calculated from the
ON formalism. Near a special value of 6, chosen as zero, # can be chosen to
reproduce the cmb normalization is reproduced with V;/* ~ Mg ~ 1010 GeV.
It seems to be possible to reproduce the observed spectral index by choice of
parameters.

3.15 Large-Field Models

Now we turn to large-field models. They give a significant tensor perturbation
r ~ 1072, which will be observed or ruled out in the near future.

The field variation cannot actually be extremely large, because ([B.10]) re-
quires Ag/mp; < v/2emaxN < 50. Two kinds of potential have been consid-
ered. One [9] is the Chaotic Inflation potential V' o< ¢? with p an even integer.
The slow-roll parameters are

6:132 mp,
2 ¢

Inflation ends at ¢enq =~ pmp; When cosmological scales leave the horizon, we
find from [B.I6) that ¢ = /2Npmp, giving
2+p 2+p 4p
_ — , = =0.08p . 3.64
2N 100 TN P (3.64)
Current observational constraints practically rule out the case p > 4. Fu-
ture observation will rule out or support the remaining case p = 2. The cmb
normalization for V = Jm?¢* is m = 1.8 x 10'* GeV, and for V = }A¢* it is
A =7 x 107", If the curvature perturbation is not generated by the inflaton,
these become upper bounds, and there is no spectral index constraint.
Another simple possibility is to use a sinusoidal potential

1+ cos <\/2|770|¢>] . (3.65)

mpi

(3.63)

n—1=

1
V=_W
90

Here, the origin has been taken to be the maximum of the potential, and
1o < 0 is the value of 7 there. This was called Natural Inflation by its authors

[89). The vev is at (¢) = —mmp1/1/2|n0]-
With this potential ¢(N) is given by

: ol ¢ L —Niml
sin = e , 3.66
( 2 mp 1+ |no] (3.66)
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leading to
1 2Nl

€7 9N e2Nmo| — 1’

The maximum is at ¢ = 0, and eternal inflation can take place there provid-
ing the initial condition for observable inflation. But if N|ng| < 1, observable
inflation itself will not begin until the potential is near the minimum, cor-
responds to the “chaotic inflation” potential V' = }m?¢?. The prediction in
the r—n plane is shown in Figs. and We see that the current bound
on n requires r > 1072, This means that Natural Inflation will eventually be
confirmed or ruled out, though it may turn out to be indistinguishable from
chaotic inflation.

Large-field models are difficult to understand within the generally accepted
rules for constructing field theories beyond the Standard Model, whereby the
higher order terms in the expansion (3.30]) are under control only for ¢ < mp.
Some possibilities do exist though.

First, the inflationary trajectory may lie in the space of many fields, cor-
responding say ¢ = Zf\]:l aid;/ \/ > a?. Then, with say all a; equal, we can
have ¢ > mp) with each ¢; < mp;. This was called Assisted Inflation by its
authors [90]. At first sight one might think that the proposal lacks content,
since a rotation of the field basis can always make ¢ one of the fields. The
point though is that the field theory may select a particular basis, as the
one in which the power series ([B30]) is expected to be relevant. It has been
argued [91] that this will be the case if each ¢; has a sinusoidal potential,
leading to what they called N-flation. Then, if inflation takes place near the
minimum of the potential one can have ¢? chaotic inflation even though the
proportionality V o« ¢? does not persist up to the Planck scale.

A second possibility is for the inflationary trajectory may wind many times
around the fixed point of the symmetries, at a distance < mp; from that point.
Something like this has been suggested in the context of string theory [92],
giving a sinusoidal potential corresponding to Natural Inflation. Finally, it
may be possible to evade the general rule that (336l is out of control at
¢ > mp, if the field theory is derived from a special higher-dimensional
setup. This is the idea of Gauge Inflation [64] O3] [04], where the inflaton is
the fifth component of a gauge field living in a 5D theory, which becomes a
PNGB in the 4D theory. This again can give a sinusoidal potential. None of
these proposals allows V' to increase continually up to the Planck scale, in the
spirit of the Chaotic Inflation proposal.

n=¢e—|nol . (3.67)

3.16 Warm Inflation

In all of the inflation models mentioned so far, energy loss by the inflation
field ¢ is assumed to be negligible on the grounds that ¢ changes only slowly
with time. Including this energy loss will give an equation of the form
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b+ BH+T)G+V' =0, (3.68)

where T' is some time-dependent quantity. The warm inflation model [95]
assumes that I' is significant, or even dominant (I' > H).

The extent to which warm inflation is possible was investigated in the GUT
hybrid inflation model [96] using an earlier calculation of the energy loss [97].
It does not occur in the original GUT hybrid model but apparently can occur
if the inflaton has a suitable interaction with a spin-half particle. The curva-
ture perturbation in warm inflation receives a contribution from the thermal
fluctuation, which dominates the contribution of the vacuum fluctuation if I
is dominant.

3.17 Present Status and Outlook

Figure summarizes most of the predictions that we have been discussing,
always assuming that the inflaton perturbation generates the curvature per-
turbation. (Recall that the alternative was considered in Sect. B.Z.0l)
Consider first small- and medium-field models. For these models the tilt is
directly related to the curvature of the potential, n — 1 = 27. As a result, the
recently-observation negative tilt has had a dramatic effect, ruling out whole
classes of otherwise attractive models. These include the original tree-level hy-
brid inflation model, in particular those rather well-motivated versions which

3 | = = - [ PO VS TRV TRYSTRTRTSTETEr o - — - - - - - = B

-4 Original Hybrid Model |

5 Modular Inflation (p=2)

-6 : = 1
0.9 0.95 1 1.05

Fig. 3.10. The shaded regions are the allowed by observation as in Fig. [3.3] and
the predictions are described in the text. Planned observation will detect r or give
a limit 7 < 1072, and 7 < 10~% will probably never be observed
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invoke during inflation the vacuum supersymmetry-breaking mechanism. The
running-mass variant of tree-level hybrid inflation is not yet ruled out, but it
will be if the observational bound on the running of n gets much tighter.

Among simple single-field slow-roll models, the ones that agree with obser-
vation are modular inflation, and hybrid inflation with a concave-downward
potential. The latter can be achieved by what are usually termed simply
F- and D-term inflation, involving the loop correction generated by sponta-
neously broken global supersymmetry. They can also be achieved by mutated
hybrid inflation.

All of these simple models give (exactly or as what should be a reasonable
approximation) a distinctive prediction for the scale-dependence of the tilt, of

the form ) )
p—
n=1=-(322) wio 509
This gives the scale-dependence (running)
1 dn p—2 n—1\2
2d1nk__(p—1)( 2 ) ' (3:70)

Several years down the line it might be possible to measure this level of
running, for instance through a measurement of the 21-cm anisotropy. A
confirmation of the above prediction would select within observational un-
certainty values for both V and p. If the former were in the relatively nar-
row range compatible with post-inflationary cosmology, one would probably
be convinced that that a model with the relevant p is correct. That would
be a truly remarkable development, since it would imply a high inflation
scale V1/4 ~ 10" GeV and with a sufficiently accurate value of N the re-
heat temperature would also be determined (assuming continuous radiation
domination after inflation).

Now consider the large-field models. The prediction for r and n is compat-
ible with observation for V' o ¢2, and for Natural Inflation if the period of the
potential is not too small. From Fig. B.3]it is clear that a joint measurement
of 7 and n can rule out these models. Conversely, a measurement of r and n
in agreement with one of them would be very suggestive. Again, many years
down the line further confirmation could come from a measurement of the
running of n(k) and r(k), which goes along the lines indicated in Fig.
And, again, if such a measurement were compatible with a sensible value for
N one would be convinced about the validity of the model, implying again
the high inflation scale now V'/4 ~ 1016 GeV.
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Abstract. In this chapter we describe the recent progress achieved in the construc-
tion of inflationary models in the context of string theory with flux compactification
and moduli stabilization. We also discuss a possibility to test string theory through
cosmological observations.

4.1 Introduction

This chapter addresses some problems of string theory in explaining the cos-
mological observations and some recent progress made in the construction of
inflationary models in the context of flux compactification and moduli sta-
bilizationlll In view of the available precision observational data supporting
inflationary cosmology, as well as the new data expected to come in a few
years from now, we will also discuss some possibilities to test string theory
through cosmological observations.

It is important to find out how the observational cosmology can probe
string theory, since our universe is an ultimate laboratory of fundamental
physics. High-energy accelerators will probe the scale of energies way below
GUT scales. Cosmology and astrophysics are the major sources of data in
the gravitational sector of the fundamental physics (above GUT, near Planck
scale).

One can argue that M/string theory is fundamental: it has sectors with
perturbatively finite quantum gravity. It includes supersymmetry and super-
gravity and has a potential to describe the standard model of particle physics
and beyond. It selects d = 10 critical string theory and d = 11 M-theory.
These two dimensions are also maximal dimensions for supergravity, d = 10
for chiral supergravity and d = 11 for the non-chiral one. These theories are
almost unique. And in any case, it is the best and most advanced theory

! Recent reviews on flux compactification and moduli stabilization can be found in
[i 2, B] and on inflation in string theory in [4, [5].
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beyond standard model that we have now. But does it have any falsifiable
predictions for cosmology?

To confront observational cosmology, one usually assumes the existence of
some effective four-dimensional N' = 1 supergravity based on flux compact-
ification and moduli stabilization, derivable from superstring theory. In this
context, string theory has already provided a possible explanation for the dark
energy of the universe via an effective cosmological constant of the metastable
de Sitter vacua [6]. The most recent analysis of data on dark energy [7] con-
firms the consistency of the cosmological ACDM concordance model with the
simplest form of dark energy, the cosmological constant. These data on dark
energy in [7] are taken from supernovae, gamma ray bursts, acoustic oscil-
lations, nucleosynthesis, large-scale structure, and the Hubble constant. The
idea of the landscape of string vacua [6, 8, @] supports the possibility of an
anthropic explanation of the observable value of the cosmological constant.

Several models of inflation have been derived since 2003 in the compactified
string theory with the so-called KKLT scenario of moduli stabilization [6].
Prior to this recent progress, string theory had a major problem of runaway
moduli. Many interesting ideas were suggested, but the runaway moduli did
not allow to have any type of internally consistent cosmology, see for example
[10, 11 [12].

The first string inflation model based on the KKLT construction, with all
moduli stabilized at the exit from inflation, is the brane—anti-brane annihila-
tion scenario in the warped geometry, the KKLMMT model [I3]. This model
belongs to a general class of brane inflation models [10] [T4] where the inflaton
field, whose evolution drives inflation, is associated with the relative position
of branes in the compactified space. Another class of string inflation models,
which we will discuss later, modular inflation, does not consider brane dy-
namics. It assumes that the inflaton is one of the many moduli fields present
in the KKLT construction.

In the new models the inflaton field is the only field (or some combination
of fields) which is not stabilized before the exit from inflation. Each of these
models relies on particular assumptions. Some of these models make clear
predictions for observables and are therefore falsifiable by data. Some other
models are more speculative and need more work before they can give definite
predictions. There is an issue of fine-tuning and the problem of identifying
stringy quantum corrections, which requires much deeper understanding.

The future developments in string cosmology and our attitude towards
various models of inflation may depend strongly on several crucial pieces of
information, which may become available during the next few years. Here is
the list of the most important observables, which may shift the interest from
one class of models of inflation to anotherE

2 See also Chap. Bl which contains a review of the models of inflation constructed
during the last 25 years.
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(a) A precision measurement of the tilt of the spectrum of scalar perturba-
tions, ng, which provides the measure of the violation of the scale invari-
ance, ng — 1.

The current value of ng, which takes into account the WMAP3 results,
is close to 0.95, if one ignores a possible contribution of the gravitational
waves from inflation and from cosmic strings [I5] [I6]. This value is below the
WMAP1 value, which was about 0.98. As an example of potential importance
of future clarification of the value of spectral index we may refer to D-term
inflation in supergravity [I7, [I8] and their string theory version, D3/D7 brane
inflation [19] 20]. These models naturally have ng = 0.98 and no gravitational
waves. This was the perfect value for WMAP1, but it may be on a high side
for WMAP3. On the other hand some models of modular inflation in string
theory [21] 22 23] [24], 25] with ns ~ 0.95—0.96 did not originally look so good,
but became much more attractive with WMAP3. New data on ng will provide
a powerful selection tool of valid models of inflation.

(b) A possible discovery of primordial gravitational waves from inflation, i.e.,
the measurement of the tensor to scalar ratio r = T/S.

The current limit is given by r < 0.3. A new series of observations may
possibly test the models with r > 10~3. The simplest model of chaotic inflation
[26] with m2$? potential predicts r ~ 0.15, with an analogous prediction
for the chaotic inflation in supergravity [27]. This level is expected to be
reached during the next few years, particularly with Planck and dedicated
polarization experiments, such as BICEP (down to r = 5 x 1072), Spider
(down to 7 = 1072) and others, perhaps all the way down to r > 1073. It
has been clarified recently in [28] and in [29] that all known models of brane
inflation, including the DBI inflation model [30}[31], do not lead to a prediction
of an observable [ The hope remains that the new brane inflation models
with tensors may be constructed.

The model of assisted inflation [32] B3] and related to it the proposal of
N-flation model of string theory [34] [35] are basically reducible to a chaotic
inflation with the corresponding level of observable gravity waves. We will
discuss below to which extent such models can be actually derived from string
theory. Other models of string inflation typically predict » < 1072, which
would make tensor perturbations almost impossible to detect.

The discovery/non-discovery of tensor fluctuations would be crucial for the
selection of inflationary models. A discovery of gravitational waves with r ~
1071 — 1073 would make it very important to understand whether inflationary
models predicting large r can be derived from string theory. It would eliminate
a majority of other models of brane inflation and/or modular inflation, which
predict a non-detectable level of gravitational waves.

3 We are grateful to D. Baumann, R. Bean, D. Lyth, L. McAllister, and H. Tye for
the discussion of this issue.
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(¢) A possible discovery of cosmic strings produced by the end of inflation [

It has been recognized recently that the discovery of cosmic strings pro-
duced by the end of inflation may be one of the most compelling potential
observational windows into physics at the string scale [4 13} 37 [B8]. The
main point here is that the current CMB experimental boundd on the tension
of cosmic strings, Gu < 2 x 1077 [40, 41] is difficult to achieve generically
and simultaneously predict the existence of light cosmic strings satisfying the
bound. If however, the signal from such light cosmic strings are discovered via
the B-polarization signal due to vector modes, the preferred class of models
of inflation in string theory may be associated with warped throat geometry
as in various versions of the KKLMMT model [} Bl [13]. This is the basic
class of models with a natural suppression mechanism for the tension of cos-
mic strings due to the position along the warped throat in the fifth dimension,
which changes the energy scale of the four-dimensional physics. Another mech-
anism of production of cosmic strings, satisfying the observational bound on
the tension, has been suggested in strongly coupled heterotic M-theory [42].

Other observables, e.g., the non-gaussianity may also become important
in future (see Chap.[@and [43]).

In Sect. of this paper we discuss the relations between cosmology and
particle physics phenomenology and in Sect.[Z3]we discuss the impact of string
theory/supergravity on some issues in cosmology. In particular, we describe
some interesting cosmological models based on N' = 1 supergravity models,
which have not yet been implemented in string theory. In Sect. [£4] we discuss
some brane inflation models. In Sect. the set of modular inflation models,
which do not require the presence of branes, is presented. In Sect. 7] we
discuss the N-flation/assisted inflation models. Finally, in Sect. 4.8 we focus
on possible fundamental reasons for the flatness of the inflaton potentials from
the perspective of string theory.

4.2 Cosmology and Particle Physics Phenomenology

For a long time we did not have any string theory interpretation of the accel-
eration of the universe. This problem was resolved in 2003 with the invention
of the KKLT scenario [6] and its generalizations. By construction, the moduli
are first stabilized in some anti-de Sitter space with a negative cosmologi-
cal constant (CC). The relevant Kéhler potential and superpotential in the
simplest case are

K=-3Wn(T+T), W =Wy + Ae T . (4.1)

* A detailed discussion of this topic can be found in Chap. I [36].

5 A stronger bound G < 1.5 x 1078 has been re