
SpyShield: Preserving Privacy from Spy Add-Ons

Zhuowei Li, XiaoFeng Wang, and Jong Youl Choi

School of Informatics, Indiana University at Bloomington, USA
{zholi,xw7,jychoi}@indiana.edu

Abstract. Spyware infections are becoming extremely pervasive, posing a grave
threat to Internet users’ privacy. Control of such an epidemic is increasingly diffi-
cult for the existing defense mechanisms, which in many cases rely on detection
alone. In this paper, we propose SpyShield, a new containment technique, to add
another layer of defense against spyware. Our technique can automatically block
the visions of untrusted programs in the presence of sensitive information, which
preserves users’ privacy even after spyware has managed to evade detection. It
also enables users to avoid the risks of using free software which could be bun-
dled with surveillance code. As a first step, our design of SpyShield offers general
protection against spy add-ons, an important type of spyware. This is achieved
through enforcing a set of security policies to the channels an add-on can use to
monitor its host application, such as COM interfaces and shared memory, so as
to block unauthorized leakage of sensitive information. We prototyped SpyShield
under Windows XP to protect Internet Explorer and also evaluated it using real
plug-ins. Our experimental study shows that the technique can effectively disrupt
spyware surveillance in accordance with security policies and introduce only a
small overhead.

1 Introduction

Spyware is rapidly becoming one of the most dangerous threats to the nation’s criti-
cal information infrastructure. Webroot estimated that about 89 percent of consumer
computers are riddled with spyware in this country with an average of 30 pieces per
machine [4]. A recent study [19] further shows that a large portion of spyware infec-
tions are in the form of add-ons to common software such as Internet Explorer (IE).
These add-ons seriously threaten the safety of personal identity information, as they
can be used to stealthily collect from users sensitive data such as passwords, credit card
numbers and social security numbers.

Add-ons are optional software modules which complement or enhance a software
application they are attached to (called a host application or simply a host). Examples of
these modules include Microsoft’s plug-ins [1] and Mozilla’s extensions [3]. Software
manufacturers usually offer standard interfaces for third parties to develop their own
add-ons, which we call add-on interfaces. Through such interfaces, a spy add-on may
acquire sensitive information from the host application or even control it.

The threat posed by spy add-ons is recognized as an important security concern and
has recently received great research attentions [19,15]. Existing defense against such
spyware heavily relies on detection techniques. Specifically, spyware scanners are used
to search binary executables for the presence of binary-pattern signatures which appear

C. Kruegel, R. Lippmann, and A. Clark (Eds.): RAID 2007, LNCS 4637, pp. 296–316, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

SpyShield: Preserving Privacy from Spy Add-Ons 297

in a spyware database. Signature-based detection can be evaded by metamorphic and
polymorphic spyware which transforms its code for every new infection. An alternative
is behavior-based detection [19] which employs dynamic analysis or static analysis to
capture spyware’s surveillance activities. Although this technique is more resilient to
metamorphism, it could still be got around by the spyware which exhibits unconven-
tional behaviors, for example, direct reading of sensitive data from process memory.

Since no detection techniques are absolutely reliable, we have to consider an in-depth
defense strategy: in case a piece of spyware penetrates other layers of defense, protec-
tion must still be there to save important information from being stolen. In addition,
since surveillance code could be bundled with useful and often free software, it becomes
highly desired to enable users to use such software while avoiding the potential risk it
brings about. Serving these purposes is the technique of spyware containment, which
strives to preserve clients’ privacy in the presence of malicious surveillance. Existing
research on this subject is limited to the techniques which provide a trusted input path
for passwords [21,17]. These techniques are inadequate to contain spy add-ons which
can also snoop on other important data, for example, the account balance displayed in
a browser.

In this paper, we present the first spyware-containment technique which offers gen-
eral protection against the surveillance from spy add-ons. Our approach, called
SpyShield, can automatically block the view of an untrusted add-on whenever sensi-
tive data are being accessed by its host application. This is achieved through a proxy
which enforces security policies to add-on interfaces. For example, our approach en-
sures that whenever an IE browser is visiting citi.com, no data can flow through a
COM interface into an untrusted plug-in. While it is impossible to get the privacy via
COM interfaces, spy add-ons could bypass the proxy through direct memory access.
SpyShield addresses the concerns by separating untrusted add-ons from their host’s
process.

We prototyped SpyShield on Windows XP and evaluated it using known spyware.
Our implementation effectively blocked their surveillance attempts in accordance with a
set of security policies. We also demonstrate that our technique introduces small perfor-
mance overheads. We believe that SpyShield advances the state-of-the-art of spyware
defense in following perspectives:

– General protection against spy add-ons. SpyShield offers the first general avenue
to protect sensitive information from untrusted add-ons. Our design works for dif-
ferent add-on interfaces, such as COM and XPCOM [7], and therefore can be used
in the applications adopting these interfaces, such as Internet Explorer, Microsoft
Outlook, Mozilla Firefox.

– Fine-grained access control. We propose a new policy model, called sensitive
zone. An application enters a sensitive zone whenever it starts processing sensi-
tive data. Inside that zone, our approach allows defining and enforcing fine-grained
access policies. For example, we may grant untrusted plug-ins free access to unim-
portant data on a web page such as advertisements, but forbid them to read and
write sensitive data such as passwords.

– Resilience to attacks. SpyShield can protect itself from being attacked. It utilizes a
lightweight kernel driver to prevent unauthorized modification of the proxy’s code

citi.com

298 Z. Li, X. Wang, and J.Y. Choi

and data, and any attempts to load untrusted code into the kernel of an operating
system (OS).

– Small overheads. Our research further shows that the overhead of SpyShield,
which is mainly caused by cross-process communications, may not be significant
enough to be perceived by the user, as it could be overshadowed by the delay for
accomplishing an add-on’s normal mission.

– Ease of use. SpyShield does not require modifying host applications and OS set-
tings. Users do not need to change their behaviors when using it, though they can
choose to modify default security polices through a secure and user-friendly inter-
face. SpyShield can also be easily turned off and on.

The rest of the paper is organized as follows. Section 2 presents the design of SpyShield.
Section 3 describes our implementation of a prototype system. Section 4 reports the
evaluations of our technique. Section 5 discusses its limitations. Section 6 reviews the
related approaches and compares them with SpyShield. Section 7 concludes the paper
and envisions the future research.

2 Design

SpyShield inserts an access-control proxy between untrusted add-ons and their host ap-
plication to control their communications according to a set of security policies. Based
on the method how to interpose communications, SpyShield can be implemented in
two ways: either one-process or two-process solution. While in one-process solution
add-ons and the host application coexist inside a same process, SpyShield can separate
them into two different processes so that we can put a process barrier to inhibit untrusted
add-ons from accessing the memory space of the host application to obtain any sensi-
tive information. Figure 1 illustrates an example using Internet Explorer (IE) as the host
application. The proxy in the Figure consists of two components, a reference controller
in the form of an IE plug-in, and an add-on manager serving as an independent process
which handles a set of untrusted plug-ins. To these plug-ins, the add-on manager plays
the role of an IE browser, which automatically loads them into memory and offers stan-
dard COM interfaces to enable them to subscribe to events and ask for information of
their interest. Actual invocation of COM interface [31], however, is delegated to the

IE
:

In
te

rn
et

 E
xp

lo
re

r

Reference

 Controller

Add-on

 Manager

untrusted
plug-in

untrusted
plug-in

untrusted
plug-in

cross-process COM
communications

Process 1 Process 2

in
-p

ro
ce

ss
 C

O
M

 c
om

m
un

ic
at

io
ns

in
-p

ro
ce

ss
 C

O
M

 c
om

m
un

ic
at

io
ns

trusted
plug-in

Fig. 1. A containment mechanism for untrusted plug-ins (e.g., BHO, toolbar) in Internet Explorer

SpyShield: Preserving Privacy from Spy Add-Ons 299

reference controller by transporting add-ons’ requests through a cross-process commu-
nication channel. Upon receiving each request from plug-ins, the reference controller
will make a decision regarding whether to forward the request to the browser. The de-
cisions will be based on a set of security policies pre-defined by a user. IE’s event or
responses should go through the security policy enforced by the reference controller.
With this approach, we can prevent a spy plug-in from stealing information through ei-
ther the COM interfaces or direct access to the browser’s memory. An end user, on the
other hand, will have more controls of her information by adjusting security policies.

To defeat any attempts from thwarting the access-control proxy, the proxy can be
overseen by a kernel driver, called proxy guardian, which prevents unauthorized at-
tempts to temper with the proxy’s data and code. Although we use IE as an example
here, the architecture is general enough to work on other add-on interfaces such as XP-
COM [7] and other applications such as Mozilla Firefox.

2.1 Access-Control Proxy

The objective of the access-control proxy is to permit or deny add-ons’ access to their
host application’s data based on security policies. This is achieved through collabora-
tions between the reference controller in the form of an application’s add-on, and the
add-on manager which hosts untrusted add-ons. After an untrusted add-on is loaded,
its request to subscribe to an event is intercepted and recorded by the add-on manager
which informs the reference controller to register that event using an event-handling
function (called a callback function). The occurrence of the event first triggers that
function which then decides whether to invoke the add-on and pass to it the parameters
received from the application.

Though most spyware add-ons are event-driven, there are exceptions: for example,
UCMore [9] toolbar can poll the COM interfaces of an IE browser for the URLs and
the web pages visited recently. To contain such spyware, an access-control proxy needs
to interpose on all add-on interfaces. In the above example, the add-on manager can
implement IWebBrowser2, a COM interface which offers add-ons methods such as
get LocationURL and get Document for accessing URLs and web pages. This
allows the reference controller to block all undesired invocations of these methods.

An add-on may attempt to directly interact with its host application, without going
through an add-on interface. For example, a Windows toolbar may requests from a
COM interface a handle of a browser’s window for directly retrieving its content. In
this case, the add-on manager needs to create that window’s substitute for the toolbar
and selectively copy data to it according to security policies.

An important design issue is the choice between the solution which keeps a host
application, the proxy and add-ons inside the same process, and the alternative which
separates the add-on manager and untrusted add-ons from the host and the reference
controller. The one-process solution gives good performance, which avoids expensive
cross-process communications. However, it leaves the door open for the attacks using
direct memory access. The two-process solution separates the untrusted add-ons from
their host application’s process, and therefore eliminates the threat originated from di-
rect memory access. This approach also protects a host application from the add-ons
containing security flaws which may crash the application or be exploited by attackers.

300 Z. Li, X. Wang, and J.Y. Choi

Its weakness is performance, which suffers from cross-process communications (CPC).
SpyShield allows trusted add-ons to communicate with a host application directly, which
serves to limit performance degradation to untrusted add-ons. Selection of right CPC
techniques can also reduce such overheads. For example, communication through shared
memory is much faster than through pipes.

An important question is how to identify untrusted add-ons. SpyShield offers an au-
tomatic mechanism which classifies add-ons according to their hash values. The mech-
anism includes a database of hash values for trusted add-ons which are computed using
a secure hash function such as SHA-256. An add-on is deemed untrusted if its hash
cannot be found from the database. The content of the database can be maintained
automatically using some heuristic rules: for example, the add-ons directly installed
from a CD or signed by a trusted vendor such as Adobe Acrobat are considered to
be trusted, while those downloaded from untrusted websites are untrusted. In order to
prevent spyware from adding itself into the database, the database is also protected by
a kernel driver called proxy guardian (Section 2.3). An authorized user is allowed to
add in other trusted add-ons after being authenticated by her password and passing a
CAPTCHA test [27] which tells humans and programs apart.

2.2 Security Policies

We developed a simple access control model for SpyShield, called sensitive zone. An
application is said to enter a sensitive zone if it starts to process sensitive data. Within
that zone, security policies are used to specify the resources to which an untrusted add-
on’s access is allowed or denied. If denied, the privacy information within the resources
is preserved in the sensitive zone.

Sensitive data can be automatically identified with the metadata generated from
users’ inputs. For example, the URLs or IP addresses of sensitive websites such as
banks are used to indicate the presence of confidential data like passwords and ac-
count balances. Other examples include names and directory paths of sensitive doc-
uments, email addresses and subjects of sensitive messages and keywords such as
“password” within a data record. SpyShield can offer default settings of such meta-
data, which includes, for example, all banks’ URLs. Authorized users are allowed to
modify them.

Data imported by a host application are first checked by the reference controller
against the metadata to determine whether a sensitive zone has been entered. An affir-
mative answer triggers the enforcement of a set of policies to restrict untrusted add-ons’
access to such data. A security policy can be defined over add-on interfaces, their meth-
ods and input parameters to these methods. Table 1 gives example rules, which have
controlled malicious IE plug-ins successfully in our expriements.

The security policies of a sensitive zone are applied to all the members in that zone.
For example, if we include all banks’ URLs in the same zone, the access control proxy
will enforce the same set of rules whenever a browser visits any one of them. Flexi-
bility and fine-grained controls can be achieved through multiple zones, which users
are allowed to define. SpyShield offers a friendly and application-specific interface for
authorized users to define sensitive zones and describe security policies. We present an
example in Figure 2.

SpyShield: Preserving Privacy from Spy Add-Ons 301

Fig. 2. The SpyShield toolbar

Table 1. Examples of Security Policies

Name Policy Comments
Browser
rule

IDispatch→Invoke(Event)
�−→decline

Block an IE browser’s attempt to trigger untrusted plug-ins through
calling the invoke functions of their IDispatch interfaces.

Plug-in
rule

IWebBrowser2→get LocationURL|
IWebBrowser2→get Document|
IWebBrowser2→navigate|
IWebBrowser2→navigate2
�−→decline

Block untrusted plug-ins’ attempts to access current URLs
and documents through calling the member functions
get LocationURL, get Document, navigate and
navigate2 of IWebBrowser2 interface.

2.3 Proxy Guardian

Without proper protection, the access-control proxy is subject to a variety of attacks. For
example, a spy add-on may tamper with the proxy’s code and data, in particular sensitive
zones and the hash database for trusted add-ons. Under some operating systems (OS)
such as Windows, an add-on may also be able to read and write the virtual memory of
its host application’s process through API calls even when it is running inside another
process [20]. To defeat these attacks, we developed proxy guardian, a kernel monitor to
provide kernel-level protection to SpyShield components.

Proxy guardian interposes on the system calls related to file systems (e.g., NtWrite
File), auto-start extensibility points (ASEP) [29] such as registry keys (e.g., NtSet
ValueKey) and processes (e.g., NtWriteVirtualMemory), which enables it to
block the attempts to access the proxy. Specifically, it ensures that only a dedicated
uninstaller can remove the proxy’s executables and data, and the ASEP for loading
it to the memory. The uninstaller itself is also under the protection and can only be
activated through both password authentication and a CAPTCHA test. Only the proxy
is allowed to change its data. User-mode processes are prevented from accessing a host

302 Z. Li, X. Wang, and J.Y. Choi

application’s process image which also includes the reference controller. In addition,
proxy guardian can keep other system resources related to SpyShield, such as DNS
resolver, from being hijacked by spy add-ons, though the same protection can also be
achieved by proper setting of untrusted executables’ privileges through the OS.

Once an attacker manages to get into the kernel, it can directly attack proxy guardian.
Such a threat can be mitigated by intercepting the system calls for loading a kernel
driver to check the legitimacy of the code being loaded. A trusted driver can be identified
by comparing its hash values with those of known reliable code, or verifying a trusted
third party’s signature it carries. This is a reasonable solution because kernel drivers
are not as diverse as user-mode applications. Actually, many of them are standard and
well-known, and their hash values are easy to obtain. This approach, however, cannot
prevent spyware from getting into the kernel through exploiting a legitimate driver’s
vulnerabilities, for example, overrun of a buffer. Countermeasures to this attack must
sit outside the OS, which we plan to study in the future research. Here, we just assume
that kernel drivers are reliable.

Another functionality of proxy guardian is to make the existence of the access-
control proxy transparent to the user and other applications. As an example, SpyShield
can be installed on Windows as a normal plug-in, without changes of other plug-ins’
registry keys; when an IE browser is trying to load untrusted plug-ins, proxy guardian
blocks its system calls and lets the plug-in manager load them instead. This also al-
lows an authorized user to easily turn off the proxy by leaving the loading procedure
unchanged. We can further apply the techniques used by kernel-mode rootkits to ma-
nipulate the interactions between untrusted add-ons and the OS so as to hide the proxy’s
process, which protects it from being detected by spyware.

3 Implementation

To study the effectiveness of SpyShield, we implemented a prototype for Internet Ex-
plorer under Windows XP using C++. The choice of IE as the host application is due
to the fact that the vast majority of known spy add-ons are in the form of IE plug-
ins. However, our design is general, which also works for other applications such as
Mozilla Firefox. In this section, we first present the technical backgrounds of COM and
IE plug-ins, and then describe the details of our implementation.

3.1 IE Plug-in Architecture

COM Interfaces. The Component Object Model (COM) [31] is an extensible object
software architecture for building applications and systems from the modular objects
supplied by different software vendors. An object is a piece of compiled binary code
that exposes some predefined services to COM clients, the service recipients. These
services are offered through a set of COM interfaces, each of which is a strongly-typed
contract between software objects to provide a collection of functions (aka., methods).

COM supports transparent cross-process interoperability which allows a client to
communicate with an object regardless of where it is running. This is achieved through
a system object encapsulating all the “legwork” associated with finding and launching
objects, and managing the communication between them. When a client is accessing

SpyShield: Preserving Privacy from Spy Add-Ons 303

an object outside its process, COM creates a “proxy” which implements the object’s
interfaces. The “proxy” acts as the object’s deputy by forwarding all the function calls
from the client, marshalling all parameters if necessary and delivering the outcomes of
the calls to the client. The remote process also accommodates a “stub” to mediate the
communications between the “proxy” and the object.

Browser Helper Object and Toolbar. A browser helper object (BHO) is a COM ob-
ject designed to expand the functionality of IE as a plug-in. A BHO object is required
to implement the IUnknown interface, IObjectWithSite and IDispatch if it
needs to subscribe to IE events during runtime. A toolbar is also a COM object serv-
ing as an IE plug-in. Compared with a BHO, it implements more interfaces to provide
more functionalities which include graphics, usually in the form of a tool band, for a
richer display and control for user interactions. A toolbar must carry four interfaces,
IUnknown, IObjectWithSite, IPersistStream and IDeskBand, and may
also involve several other interfaces such as IInputObject for focus changes of a
user input object and IDispatch for event subscription and processing.

3.2 The Access-Control Proxy

We implemented SpyShield as an access control proxy for IE plug-ins. The proxy in-
cludes a reference controller (RC) and an add-on manager (AM), two proxy components
for managing BHOs and toolbars. The reference controller is a special plug-in which
serves as both BHO and toolbar. It also contains an access control module to identify
the sensitive zone being entered and thus to permit or block function calls originated
from the browser and the add-on manager in accordance with security policies. The
add-on manager acts on the behalf of the IE browser to provide COM interfaces to the
untrusted plug-ins and mediate their communications. During the initialization stage,
the browser loads trusted plug-ins and the reference controller only, leaving the task to
import untrusted plug-ins to the add-on manager. This is achieved transparently through
a kernel driver, which we describe in the next subsection. We implemented both one-
process and two-process solutions, though here we only elaborate the second approach
in which the add-on manager is running as a separate process.

Each proxy component contains three COM objects, proxy BHO, proxy toolbar and
proxy browser. Proxy BHO/toolbar exports the COM interfaces on the plug-in’s side to
IE browsers and the reference controller. Proxy browser exports the COM interfaces on
the browser’s side to the add-on manager and untrusted plug-ins. These COM objects
work in a collaborative way: for example, if one of them acquires the access to the
IUnknown interface of an external object such as an IE browser, it passes the pointer
of the interface on to the other objects, which enables them to directly interact with that
external object. The reference controller uses its proxy BHO/toolbar as the delegate
of untrusted plug-ins to interact with browsers, and the add-on manager employs its
proxy browser as a substitute for the browsers to communicate with untrusted plug-
ins. The other COM objects only serve to exchange parameters and requests with their
counterparts in the other proxy object, and therefore are not used in our implementation
of the one-process solution.

In the follow-up subsections, we elaborate our implementation of proxy interfaces,
cross-process communication and access control mechanism.

304 Z. Li, X. Wang, and J.Y. Choi

Proxy Interfaces. Proxy browser implements a set of COM interfaces that an IE
browser uses to accommodate BHOs and toolbars, and proxy BHO/toolbar adopts the
interfaces on the plug-in’s side. These interfaces ‘wrap’ their counterparts so as to put
access control in place. For example, IE first triggers Invoke() within our proxy’s
IDispatch interface in response to the occurrence of an event, which allows it to
decide whether to contact the same interface of untrusted plug-ins to activate their call-
back functions. Another example is an attempt from a plug-in to read the HTML files
downloaded by IE, which must go through the proxy’s IWebBrowser2 interface and
is therefore subject to its control. The COM objects within our proxy can also simulate
the behaviors of the objects they substitute. As an example, our proxy follows IE’s han-
dling of the QueryInterface() call which does not return to the caller the interface
reference of IInputObjectSite.

A technical challenge to enforcing access control comes from COM functions’ ca-
pability to pass interface pointers. Without a proper design, an untrusted plug-in may
acquire through our proxy a pointer to an IE browser’s interface for directly interacting
with that interface, which bypasses access control. Our solution is to detect such an
attempt within the proxy’s interface functions and returns to the plug-ins the pointers
to the substitutes of the requested IE interfaces. This was implemented in the follow-
ing functions: QueryInterface() in Interface IUnknown, QueryService()
in IServiceProvider, get Document() in IWebBrowser2, and Invoke()
in IDispatch. QueryInterface() is the first function queried by plug-ins about
other interfaces. QueryService() can be used to get the interface pointers of IWeb
Browser2, IOleWindow and ITravelLogStg. Of particular interest is get
Document(), which returns a pointer to a COM object inside IE containing the
documents being downloaded. Our prototype creates a substitute of that object and
selectively copies to it the content of documents in conformation with access rules.
Invoke() adds to the complication by taking an interface pointer of IE’sIDispatch
as part of the input parameters for a plug-in’s callback function. Our proxy parses such
parameters and modifies the pointer to a local substitute.

Table 2 describes the interfaces that we implemented for the access-control proxy.

Cross-process Communications. As we introduced in Section 3.1, COM provides a
mechanism which allows a client to request and receive services from an object running
in another process through the interactions between the object’s “proxy” in the client
process and “stub” in its own process. This was employed by our implementation of

Table 2. Interfaces implemented in our prototype

COMPONENTS INTERFACES

Proxy Browser
IUnknown, IWebBrowser2, IServiceProvider, IOleCommandTarget,
IInputObjectSite, IOleWindow, IConnectionPointContainer, IConnectionPoint,
IWebBrowser2, IOleWindow, ITravelLogStg,
IHTMLDocument2, IOleObject, IConnectionPointContainer, IOleContainer,
IMarkupServices, ICustomDoc, IOleWindow,

Proxy BHO
IUnknown, IObjectWithSite, IDispatch,
IWebBrowser2,

Proxy toolbar
IUnknown, IObjectWithSite, IDispatch, IDeskBand, IPersistStream,
IOleCommandTarget, IInputObject,
IWebBrowser2

SpyShield: Preserving Privacy from Spy Add-Ons 305

the two-process solution to achieve cross-process communications (CPC). IE 6 offers
the “proxy” and “stub” objects for all interfaces in Table 2 except IInputObject
and IInputObjectSite. The problem has been fixed by IE 7 which provides
iepro xy.dll to support CPC for both interfaces. Interestingly, we found this DLL
can also be used in IE 6. Therefore, our prototype works under both IE versions.

Our two-process solution makes the add-on manager an independent process to ac-
commodate untrusted plug-ins. This design, supported by COM’s multi-threaded CPC,
helps reduce the overheads of our approach in terms of memory usage: no matter how
many IE processes have been launched, the add-on manager always stays in a single
process. This is because COM automatically directs a new IE process’s request to the
existing add-on process which forks a new thread to serve it.

Access Control. The access control component was implemented in the reference con-
troller. Whenever an IE browser visits a new website, the component acquires its URL
from the parameters of invoke triggered by the eventDISPID BEFORENAVIGATE2
and compares it with those defining sensitive zones. If the browser is found to be in
one of the zones, corresponding security policies are applied. Otherwise, the proxy
still needs to check the validity of the URL through a DNS query, as an invalid URL
must also be protected to defeat error-page hijacking. Our prototype sets a default
zone with the security rules in Table 1. To enforce the browser rule, the access-control
proxy blocks IE’s calls to untrusted plug-ins’ invoke function. The plug-in rule was
achieved by blocking the calls to get LocationURL, get Document, Navigate
and Navigate2 from the add-on manager. In addition, our kernel driver also inter-
cepts and blocks the attempts to directly read or write the browser’s virtual memory
from another process.

Our prototype allows an authorized party to easily define a new sensitive zone and
set security policies. It includes an IE toolbar to indicate the sensitivity of the current
website and provide an entrance to policy settings. Through that toolbar, an authorized
user can access a friendly user interface (Figure 2) to view and modify existing sensitive
zones and their policies, as well as add new ones. The simplest way to define a new
zone is just to specify the URL of a sensitive website. The default security policies for
a new zone decline all the requests from an untrusted plug-in whenever the browser
is visiting that URL. To enable the user to set the policies with finer granularity, the
interface offers the options to regulate a variety of channels through which a plug-in
can access or even control the browser. For example, if ‘Browser Hijack Protection’
is enabled, the plug-in will not be allowed to invoke Navigate2 which can be used
to hijack the browser; if ‘Cookie Protection’ is set, the plug-in will be prevented from
calling the COM functions such as get cookie (in IHTMLDocument2) to acquire
the cookie(s) associated with the website being visited.

To prevent spyware from tampering with the security policies, our prototype en-
forces a strict authentication which involves both password and a CAPTCHA. Figure 2
presents a screen snapshot of this mechanism. Such an authentication mechanism will
only be invoked for customizing security policies, which is not supposed to happen
frequently and therefore should not significantly increase users’ burden. The chance
for the setting change could be further reduced through careful construction of default
zones, which can include the URLs of the sensitive websites, such as online banks.

306 Z. Li, X. Wang, and J.Y. Choi

3.3 Kernel Driver

We implemented proxy guardian as a kernel driver for Windows XP, which is used
to prevent the add-on process from directly accessing the IE process, protect access-
control data such as security policies and the database for trusted plug-ins from being
sabotaged by spyware, and initialize the proxy transparently to avoid changes to IE and
the Windows registry. This was achieved using an API hooking technique [26]. Table 3
lists the system calls hooked in our kernel driver.

Table 3. System calls hooked in our kernel driver

CATEGORY SYSTEM CALL

File system NtWriteFile, NtDeleteFile, NtSetInformationFile
Registry keys and
valuekeys

NtDeleteKey, NtRenameKey, NtReplaceKey, NtRestoreKey, SetInformationKey,
NtSetValueKey, NtDeleteValueKey, NtQueryValueKey

Process, thread NtTerminateProcess, NtTerminateThread
Virtual memory NtAllocateVirtualMemory, NtReadVirtualMemory, NtWriteVirtualMemory

The kernel driver can block the calls from the add-on process which operates on
IE and the reference controller’s virtual memory. System calls to modify the proxy’s
data are permitted only if they come from the proxy’s process. The executables and the
registry entry of the proxy can only be deleted and changed by an uninstaller, a program
which is also protected by the kernel driver and allowed to run by authorized users only.
Such users can revise the setting of the kernel driver, for example, specifying which
files and processes should be under protection. We did not implement the mechanism
to check the drivers to be loaded into the kernel, which can be done by interposing on
other system calls.

The kernel driver can also insert our proxy between IE and untrusted plug-ins without
altering any OS settings. It classifies the BHOs and toolbars recorded in registry entries1

according to their hash values to compile a list of CLSIDs for trusted plug-ins. When an
IE browser attempts to retrieve a plug-in’s registry key, the driver intercepts its system
call NtQueryValueKey and extracts the related CLSID. If it is not on the list, the
driver removes it from the output of the call and notifies the add-on manager to load the
plug-in instead.

4 Evaluations

We evaluated SpyShield using our prototype. Our purpose is to understand the effec-
tiveness of our technique in containing spy add-ons and its overheads. All experiments
were conducted on a desktop with Intel Pentium 3.2GHz CPU and 1GB memory. Its
software includes Windows XP professional, Internet Explorer 7.0 and a vmware work-
station. The effectiveness tests happened inside the virtual machine with a guest OS of

1 Specifically, the registry key for BHOs’ CLSIDs is \HKLM\SOFTWARE\Microsoft
\Windows\CurrentVersion\Explorer\BrowserHelperObjects, two
registry keys for toolbars’ CLSIDs are \HKLM\SOFTWARE\Microsoft\Internet
Explorer \Toolbar and \HKCU\Software\Microsoft\InternetExplorer
\Toolbar WebBrowser\

 HKLM SOFTWARE Microsoft Windows CurrentVersion Explorer Browser
 HKLM SOFTWARE Microsoft Internet
Explorer Toolbar
Explorer Toolbar WebBrowser
 HKLM SOFTWARE Microsoft Windows CurrentVersion Explorer Browser
Explorer Toolbar

SpyShield: Preserving Privacy from Spy Add-Ons 307

Windows XP professional, and Internet Explorer 6.0. The performance of our prototype
was evaluated in the host OS. We elaborate this study in the follow-up subsections.

4.1 Effectiveness

The effectiveness study aims at understanding SpyShield’s ability to withstand spyware
surveillance, which was achieved from the following perspectives. We first compared
spy add-ons’ networking behaviors in an unprotected browser with those under our
prototype. Such behaviors usually constitute spyware’s calling-home activities and con-
tribute to the delivery of stolen data to the perpetrator. Therefore, this study reveals the
effectiveness of our technique in preventing leakage of sensitive information. Then, we
identified the COM events and calls being blocked by our access-control proxy. This
further demonstrates the role SpyShield played in disrupting spyware surveillance, as
these events and calls were used by spy add-ons to access sensitive data within an IE.

We evaluated our prototype using nine real BHOs and toolbars which are listed in
Table 4. Five of them are spy plug-ins and the rest are legitimate. Under SpyShield,
these plug-ins worked properly outside a sensitive zone. This demonstrates that our
design does not disrupt plug-ins’ legitimate operations. In the experiment, we first in-
stalled them to the unprotected IE inside the vmware station, and navigated the IE to
access six websites listed in Table 5. In the host OS, we ran Wireshark [5] (aka. Ethe-
real), a traffic analysis tool, to record all network traffic from the virtual machine. Then,
we activated SpyShield and repeated the above experiment.

To identify the network traffic caused by a plug-in, we recorded baseline, the net-
work traffic observed while surfing these six websites without any plug-in. We also
developed an analysis tool to capture the packets generated by a BHO or a toolbar. This
tool classifies packets according to their destination IP addresses: any address outside
baseline was deemed as coming from a plug-in. Effective suppression of such traffic
within a sensitive zone offers the evidence to the efficacy of our technique.

A problem is that multiple visits of the website with dynamic contents might yield
different network traffic. This could mislead our approach into including legitimate
packets. We tackled this problem through cleaning the output of the tool against a man-
ually compiled list of legitimate destination IP addresses. On the list were 25 addresses,
most of which were from msn and chase.

We also recorded to a log file all the function calls intercepted by proxy interfaces,
which told the story about plug-ins’ activities. For example,Browser Accelerator

Table 4. BHOs and Toolbars used in our experiments

INDEX PLUG-IN TOOLBAR BHO TYPE

1 AvenueMedia/Internet Optimizer No Yes Spyware
2 Browser Accelerator Yes Yes Adware
3 eXactSearch Toolbar Yes Yes Adware
4 Mirar Toolbar Yes Yes Adware
5 UCmore Yes No Adware

6 Google Toolbar Yes Yes Normal
7 LostGoggles No Yes Normal
8 Security Software Search Bar 1.01 Yes Yes Normal
9 Yahoo! Toolbar Yes Yes Normal

308 Z. Li, X. Wang, and J.Y. Choi

Table 5. Websites used in our experiments. †We visited “http://www.google.com” to re-
trieve “money + saving + account”, keywords interesting to spyware, so as to elicit their network-
ing behaviors. ‡We also included “http://an.invalid.url” in a sensitive zone because it
leads to the DNS error page which is intensively used by spy plug-ins to hijack an IE browser.

Alias URL Sensitive Zone?

bbc http://www.bbc.co.uk NO
msn http://www.msn.com NO
google http://www.google.com NO†

chase http://www.chase.com YES
citi http://www.citi.com YES
invalid http://an.invalid.url YES‡

calls get Document to retrieve an HTML document as soon as a browser downloads
it; this call was blocked by our proxy when the browser was inside a sensitive zone.

Traffic Differential Analysis. We present in Table 6 and Table 7 the results of our
differential analysis of plug-ins’ networking behaviors, which demonstrates the effec-
tiveness of SpyShield in suppressing leakage of sensitive information. Both tables report
plug-ins’ network traffic when an IE browser visiting the URLs in Table 5, with Table 6
for an unprotect IE browser and Table 7 for the browser protected by SpyShield. Among
these URLs, the first three were not in a sensitive zone and the rest were.

The tables show that most spy plug-ins produced network traffic while visiting some
URLs. In the experiment, we observed that the occurrence of such traffic was contingent
on the availability of the information flows from the browser to the plug-ins. Through
examining the content of the traffic, we further discovered that in many cases such
traffic carried the URLs of the websites being visited. Our prototype controlled the plug-
ins’ interactions with the browser, which contributed to curbing such traffic inside the
sensitive zone. Outside the sensitive zone, the traffic recorded in both tables is identical,
which suggests that our prototype did not disrupt the plug-ins’ operations. We elaborate
our analysis of individual plug-ins’ behaviors below.

Table 6. Network traffic from BHOs and toolbars in an unprotected IE browser

Sensitive Zone
Index Plug-in bbc msn google chase citi invalid

1 AvenueMedia/Internet Optimizer - - - - - Exist
2 Browser Accelerator Exist Exist Exist Exist Exist Exist
3 eXactSearch Toolbar - - - - - Exist
4 Mirar Toolbar Exist Exist Exist Exist Exist Exist
5 UCmore Exist Exist Exist Exist Exist Exist

Table 7. Network traffic from BHO/Toolbars under SpyShield. ∗Only part of the traffic in Table 6
was observed, which is irrelevant to the sensitive websites visited.

Sensitive Zone
Index Plug-in bbc msn google chase citi invalid

1 AvenueMedia/Internet Optimizer - - - - - -
2 Browser Accelerator Exist Exist Exist Exist∗ Exist∗ Exist∗

3 eXactSearch Toolbar - - - - - -
4 Mirar Toolbar Exist Exist Exist - - -
5 UCmore Exist Exist Exist - - -

http://www.bbc.co.uk
http://www.msn.com
http://www.google.com
http://www.chase.com
http://www.citi.com
http://an.invalid.url

SpyShield: Preserving Privacy from Spy Add-Ons 309

Legitimate Plug-ins. Legitimate BHOs and toolbars do not collect information without
users’ consent. Therefore, they should not produce network traffic without being ex-
plicitly invoked, unless there is an agreement between the company distributing these
plug-ins and the customers. In our experiment, we did not observe any networking be-
haviors from all four legitimate plug-ins (Plug-ins with indices 6,7,8,9 in Table 4).

Spyware Plug-ins. Our implementation blocked all events and function calls related to
untrusted plug-ins when the browser was visiting a sensitive website like
‘http://www.chase.com’. This could also affect spy plug-ins’ communication
which serves to deliver the information stolen to the perpetrator. In our experiment, we
did observe the change of their networking behaviors, which are discussed as follows.

– AvenueMedia/Internet Optimizer is a BHO which can hijack a browser
by redirecting it to an advertisement website whenever an invalid URL http://
invalid.url is encountered. The same technique could also be used to stealthily
place a malicious site between the user and a sensitive website for eavesdropping
on their communication. The BHO employs a special technique to detect an invalid
URL: it subscribes to an event DISPID BEFORENAVIGATE2 occurring when a
website is to be accessed, and can therefore use a DNS query to determine the va-
lidity of the URL even before the browser does. Such a trick does not work on
SpyShield, as our approach also hooked that event to identify sensitive zones. In
our experiment, we found that the BHO’s network traffic in response to an invalid
link disappeared under our prototype.

– Browser Accelerator extracts the information from the web page loaded in a
browser and sends it to data.browseraccelerator.com. Under SpyShield,
the packets responsible for such behaviors could not be observed once the browser
was inside the sensitive zone. However, we still detected some packets destined to
client.browseraccelerat or.com which our approach did not eliminate.
We studied the contents of these packets and found them having little bearing on
the sensitive website. Moreover, the same packets were also recorded when the
browser was outside the sensitive zone. This leads us to believe they did not contain
any sensitive information.

– eXactSearchBar also intends to hijack the invalid link. It redirects the browser
to an advertisement site http://www.bestoftheweb.cc/errorpage/
?src=4040&url=an.invalid&url once an error page was loaded. Packets
related to such behaviors did not show up in the sensitive zone when the browser
was protected by SpyShield. Previous research [28] also reported other networking
activities of the spyware, which however were not observed in our experiments.
This might be due to the change of the spyware’s behaviors.

– Mirar collects data from the web page downloaded by a browser and displays ad-
vertisements related to its contents. It also encrypts its network traffic using SSL. In
our experiment, we found its networking behaviors disappeared within the sensitive
zone when SpyShield was running.

– UCmore is a toolbar which forwards the URLs of websites being visited and other
information such as time and cache data of the local host to users.ucmore.com.
This activity was stopped by SpyShield when sensitive websites were being surfed.

http://www.chase.com
http://an.invalid.url
http://an.invalid.url
http://www.bestoftheweb.cc/errorpage/?src=4040&url=an.invalid.url
http://www.bestoftheweb.cc/errorpage/?src=4040&url=an.invalid.url

310 Z. Li, X. Wang, and J.Y. Choi

Control of Sensitive Events and Malicious Calls. Within a sensitive zone, SpyShield
is designed to block event notifications and function calls in accordance with security
policies. This was evaluated in our experiment through analyzing the log exported by
our prototype which recorded the dangerous behaviors of spy plug-ins being prevented
by the access-control proxy. Here we elaborate this study.

All spy add-ons in our experiment took IE’s IWebBrowser2 interface as an en-
trance to other interfaces, and also made intensive use of it to retrieve a browser’s sen-
sitive data. In addition, most of them subscribed to certain events to trigger the calls for
accomplishing their missions. As an example, we list in Table 8 the COM function calls
of Browser Accelerator invoked by the event DISPID DOCUMENTCOMPLETE
which indicates the completion of downloading a web page to a browser. Another exam-
ple is AvenueMedia/Internet Optimizer which took advantage of the event
DISPID BEFORENAVIGATE2 to identify an invalid link, and then called stop()
and Navigate2to redirect a browser to another website.

Table 8. Function Calls of Browser Accelerator triggered by Event DISPID
DOCUMENTCOMPLETE

Interface Function Call Description

IWebBrowser2 get Document() Retrieve the interface pointer of IDispatch in an IE object for the active
HTML document.

IDispatch QueryInterface() Query the interface pointer of IHTMLDocument2.
IHTMLDocument2 get parentWindow() Retrieve the interface pointer of IHTMLWindow2 in an IE object which accom-

modates the active HTML document.
IHTMLDocument2 QueryInterface() Query the interface pointer of IOleObject.
IOleObject GetClientSite() Get the pointer of an interface which maintains the information regarding the

display location of an embedded object in an active HTML document.
IHTMLDocument2 QueryInterface() Query the interface pointer of ICustomDoc.
ICustomDoc SetUIHandler() Set the pointer of a customized interface.
IWebBrowser2 get LocationURL() Retrieve the URL of the web page that IE is currently displaying.

SpyShield prevented these plug-ins’ malicious activities within a sensitive zone
through blocking all event notifications issued by IE. Without such notifications, func-
tion calls driven by these events disappeared. For example, our prototype intercepted
and denied access to invoke() for 104 events subscribed by UCmore when visit-
ing the website http://www.chase.com, which stopped 6 calls used to collect
information from the site. Though most spy plug-ins were event-driven, we also found
two exceptions which were capable of collecting data from a browser without being
triggered by any event. Specifically, both Mirar and UCmore spawned threads once
initialized and used them to periodically poll the function get LocationURL() for
the URL to be visited. This malicious behavior was blocked by our prototype with the
plug-in rule in Table 1.

4.2 Overheads

We also studied the overheads introduced by SpyShield through experimentally evalu-
ating the performance of plug-ins under our implementation (including the prototypes
for both one-process and two-process solutions) against those running inside unpro-
tected IE. Our research intends to understand the performance impacts of SpyShield

http://www.chase.com

SpyShield: Preserving Privacy from Spy Add-Ons 311

from the following perspectives: (1) the overheads of cross-process communications,
(2) the delay of COM function calls through the access-control proxy, (3) the waiting
time of web navigation, a major feature of most IE plug-ins and (4) memory usage
of the proxy. To this end, we conducted multiple experiments and also implemented a
BHO which collaborated with our prototype proxy to record timing information.

Cross-process Communications. In this experiment, we measured the performance of
cross-process communications and compared it with that of in-process communica-
tions. Our experiment involved emitting a message from our proxy through the COM
interface to the BHO which bounced back a response. The round-trip delay during this
process was halved and recorded by the proxy. This experiment was repeated for 1000
times each for the one-process setting in which the BHO and the proxy were inside
the same process, and the two-process setting where the BHO ran in a separate process
and the communication went through CPC. The results are the averages of the delays
recorded in these experiments.

The average latency of CPC observed in the experiments is 177.3μs, almost 1327
times as much as that of in-process communication which is merely 0.1336μs. This
result was echoed by a previous study [6]. Apparently, such a huge overhead could
greatly affect the performance of the plug-ins running in a separate process, and there-
fore put the practicality of our approach in doubt. A close look at the time necessary for
a plug-in to accomplish its missions, however, reveals that communication only plays
a very small role. This suggests that the CPC overhead introduced by SpyShield could
be overshadowed by plug-ins’ other delays, which is confirmed by our studies on cross-
process function calls and web navigation.

Cross-process Function Calls. We evaluated the performance of COM function calls
both within a process and across the process boundary. Our experiments involved five
COM functions extensively used by BHOs and toolbars, which include Invoke and
SetSite on the plug-ins’ side, and get LocationURL, get LocationName,
get Document and Navigate2 on the browser’s side. We used our proxy as a sub-
stitute for IE to invoke a BHO’s function, so as to measure the time for completing that
call. The delays of the calls on the reverse direction, from a plug-in to IE, were tracked
by the BHO. Our experiments were conducted under both the one-process setting for in-
process function calls and the two-process setting for cross-process calls. Figure 3.(A)
describes the experimental results which were averaged over 10 experiments.

From the figure, we can see that the overheads of cross-process calls are not terrible:
the processing time of most of them was between 21.5% and 35.8% longer than that
of their in-process counterparts. The exceptions are SetSite and get Document.
SetSite sends the IUnknown pointer to a plug-in, which involves few other activ-
ities than communicating through the COM interface. Therefore, it is subject to the
strong influence of CPC. Fortunately, the function is only invoked once during a plug-
in’s initialization and does not affect its runtime performance. Instead of CPC, the over-
head for calling get Documentmainly comes from the delay for creating a substitute
for an IE object in the proxy (Section 3.2). It is also one-time cost in most cases, as our
proxy can re-use the substitute for subsequent calls to the function.

Web Navigation. The overhead of SpyShield is usually perceived by the user from
the delay in receiving services from plug-ins. Most of such services require retrieving

312 Z. Li, X. Wang, and J.Y. Choi

6.78E-03

8.92E-03

5.37E-04

1.07E-03

5.34E-03

2.60E-03

5.02E-03

1.01E-04
3.95E-04

8.22E-04
4.16E-04

2.14E-03

0.00E+00

1.00E-03

2.00E-03

3.00E-03

4.00E-03

5.00E-03

6.00E-03

7.00E-03

8.00E-03

9.00E-03

1.00E-02

Invoke() SetSite() get_LocationURL() get_LocationName() get_Document() Navigate2()

P
ro

ce
ss

in
g

tim
e

(s
)

0.5997

0.4987 0.4906

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Cross-process

SpyShield

In-process

SpyShield

Without

SpyShield

La
te

nc
y

(s
)

(A) The processing time of function calls in SpyShield (B) The latency of webpage navigation

In-Process

Cross-Process

Fig. 3. The overheads of function calls and web navigation

documents from the Internet. As an example, our study shows that web navigation is
involved in at least 80% features of Google Toolbar and 8 out of 9 features of Yahoo!
Toolbar. Therefore, it is important to measure the latency of such a web activity in order
to understand the performance of SpyShield.

In our research, we studied the delay caused by web navigation. Our experiment
was carried out under the following three settings: (1) the BHO directly attached to an
IE browser, (2) the BHO connected to the proxy within the browser’s process and (3)
the BHO and the add-on manager running in a separate process. In all these settings,
the BHO directed the browser to the website http://www.bbc.co.uk by calling
the function Navigate2, and recorded the time between the invocation of that func-
tion and the occurrence of the event DISPID DOCUMENTCOMPLETE which indicates
the completion of the navigation (i.e., all documents in the webpage have been down-
loaded). We repeated the experiment for 6 times under each setting to get the average
latencies reported in Figure 3.(B): the navigation overhead was only 1.65% for the one-
process solution and 22.25% for the two process solution. We believe such overheads
are reasonable given the protection provided by our approach.

Memory Overheads. We also measured the memory overhead introduced by the two-
process solution. The reference controller increased an IE browser’s memory usage by
1MB. The size of the memory allocated to the add-on manager varied with different
plug-ins, which was around 18MB for the google toolbar and 14MB for the Yahoo!
toolbar. On the other hand, we found that a google toolbar directly attached to IE
added 4.8MB to a browser’s process memory. This became 3.3MB for the Yahoo!
toolbar. Therefore, the memory overhead of our prototype ranged from 11MB to 15MB.

Such an overhead is for a single browser window. As we discussed in Section 3.2, the
add-on manager running in a separate process can provide services to multiple browser
windows by spawning service threads. In our experiment, we observed that launching a
new IE window only cost the add-on manager 0.1 to 0.5MB, depending on the plug-
in being requested. This is much lower than the memory cost of creating a new plug-in
instance, which is necessary if the plug-in is directly attached to IE instead of the proxy.

5 Discussions

In this section, we discuss the limitations of the current design and implementation of
SpyShield, and the potential improvement.

http://www.bbc.co.uk

SpyShield: Preserving Privacy from Spy Add-Ons 313

Limitations of Design. The current design of SpyShield is specific to the containment
of spy add-ons. The user’s interactions with sensitive data are still subject to the surveil-
lance of keyloggers which intercept keystroke inputs, and screen grabbers which snoop
on screen outputs. To defeat these attacks, we need to extend SpyShield to include
system-wide security policies and an enforcement mechanism which prevents sensitive
information from flowing into untrusted objects. Development of such a technique is
part of our future research.

Although SpyShield can prevent spyware from being loaded into the kernel through
system calls, it is unable to fend off the attacks through a kernel driver’s vulnerabilities,
for example, buffer overrun. When this happens, we rely on other techniques [16] to
protect the kernel.

Limitations of Implementation. The current implementation of SpyShield applies the
same security policies to the whole window object. This becomes problematic when a
frame object is displaying multiple web pages in different zones within one window. A
quick solution is to enforce the strictest policies of these zones. A better approach, how-
ever, should work on individual web page and treat them differently. Such functionality
is expected in the future improvement of the prototype.

For simplicity, we only wrapped the COM interfaces requested by all the toolbars
and BHOs used in our experiments. A thorough implementation needs to create all
documented interfaces both in the reference controller and the add-on manager to ac-
commodate different kinds of plug-ins.

6 Related Work

Existing defense against spyware infections mainly relies on detection techniques. These
techniques are either based on signatures or behaviors, which we survey as follows.

Signature-based approaches analyze binary executables to identify spyware compo-
nents or scan network traffics to detect spyware’s communications with the perpetra-
tor [2,10,23]. These approaches are fast, but can only detect known spyware. They can
also be easily evaded [24]. Behavior-based approaches detect spyware according to its
behaviors. Siren [13] and NetSpy [28] analyze the difference between the network traf-
fic from an infected system and that of a clean system to identify spyware’s networking
activities. Web Tap [12] runs an network-based anomaly detector to capture spyware’s
network traffic. Gatekeeper [29] monitors the changes of Windows auto-start extensi-
bility points for detecting spyware. GhostBuster [30] exposes rootkits by comparing a
view of a clean system with that of an infected system. Recently, Kirda, et al proposed
a technique [19] which applies dynamic analysis to detect suspicious communications
between an IE browser and its plug-ins, and then analyzes the binaries of suspicious
plug-ins to identify the library calls which may lead to leakage of sensitive informa-
tion. SpyShield complements these techniques by adding an additional layer of defense
which protects the user’s privacy even after the detection mechanisms have been com-
promised.

Most of the existing proposals for spyware containment have been limited to protect-
ing confidential inputs such as passwords from keyloggers. Bump in the Ether [21] of-
fers a mechanism which bypasses common avenues of attack through a trusted

314 Z. Li, X. Wang, and J.Y. Choi

tunnel implemented using a mobile device. SpyBlock [17] evades the surveillance of
the keyloggers inside a virtual machine by directly injecting users’ passwords into the
network traffic intercepted by the host. These approaches are not very effective to spy-
ware add-ons which are already part of their host application and can not only directly
access its sensitive inputs but also snoop on its sensitive outputs such as the bank ac-
count displayed in a browser. In addition, they need either additional hardware (mobile
device) or heavyweight software (a virtual machine). Microsoft’s Next-Generation Se-
cure Computing Base proposes encrypting keyboard, mouse input, and video output [8].
Though a promising approach, it significantly modifies current operating systems and
its practicality is yet to see. By comparison, SpyShield is fully compatible with existing
systems and can be easily installed and removed.

Similar to the two-process solution of SpyShield, privilege separation [25] parti-
tions a program into a monitor to handle privileged operations, and a slave to perform
unprivileged operations. Program partition is traditionally done manually over source
code. Recent research, however, has made an impressive progress on automating this
step [14]. While apparently assuming the same architecture, SpyShield actually aims at
a different goal, inhibiting sensitive information from flowing into untrusted add-ons.
To this end, it needs not only to segregate the privileged part of the program from the
unprivileged part, but also to enforce security policies to their communication chan-
nel, the add-on interfaces, so as to regulate the information exchange between them. In
addition, SpyShield separates a binary executable from its binary add-ons along their
interfaces while privilege separation usually works on source code.

Another proposal which also employs the two-process architecture for privacy pro-
tection is data sandboxing [18]. The approach partitions a program into a private part
which is allowed to access local files but forbidden to make network connections, and
a public part which is permitted to perform networking activities but disallowed to read
local data. Such a policy is enforced through system-call interposition [18]. In con-
trast, SpyShield aims at control of the communications through add-on interfaces, a
task which system calls may not have sufficient granularity to handle.

Information flow analysis started with the famous Bell-LaPadula model which con-
trols the interactions between processes and files [11]. More recent work [22,32] fo-
cused on tracing data flows within a program. By comparison, SpyShield does not work
on such instruction-level tracing, which incurs large performance overheads in absence
of source code, and instead manages the information flows across the boundary between
add-ons and their host application.

7 Conclusions and Future Work

In this paper, we propose SpyShield, a novel spyware containment technique, which can
automatically block the visions of untrusted programs in the presence of sensitive infor-
mation. Such a technique can also defeat the surveillance of new strains of spyware. As
a first step, our approach offers general protection against spy add-ons which constitute
a significant portion of existing spyware infections. SpyShield enforces security poli-
cies to add-on interfaces and other channels used by add-ons to interact with their host
applications, so as to prevent sensitive information from flowing into untrusted add-ons.

SpyShield: Preserving Privacy from Spy Add-Ons 315

It can also defend itself against a variety of attacks. We implemented a prototype for
protecting Internet Explorer and empirically evaluated its efficacy. Our experimental
studies show that this technique can effectively mitigate the threats of spyware surveil-
lance and also introduces a small overhead.

References

1. Browser extensions, http://msdn.microsoft.com/workshop/browser/ext/extensions. asp
2. The home of spybot search & destroy, http://www.safer-networking.org/
3. Mozillazine: Extension development,

http://kb.mozillazine.org/Dev_:_Extensions
4. State of Spyware Q2 2006: Consumer Report,

http://www.webroot.com/resources/stateofspyware/excerpt.html
5. Wireshark, http://www.wireshark.org/
6. DCOM technical overview (1996),

http://msdn2.microsoft.com/en-us/library/ms809340.aspx
7. XPCOM Part 1: An introduction to XPCOM (1996), http://www-128.ibm.com/

developerworks/webservices/library/co-xpcom.html
8. Microsoft Next-Generation Secure Computing Base - Technical FAQ (July 2003),

http://www.microsoft.com/technet/archive/security/news/ngscb.
mspx?mfr=true

9. Ucmore toolbar, the search accelerator (2007), http://www.ucmore.com/
10. Snort developed by sourcefire (January 2006), http://www.snort.org/
11. Bell, D.E., LaPadula, L.J.: Secure computer systems: Unified exposition and multics inter-

pretation. MTR-2997, available as NTIS AD-A023 588, MITRE Corporation (1976)
12. Borders, K., Prakash, A.: Web tap: detecting covert web traffic. In: Proceedings of the 11th

ACM conference on Computer and communications security, pp. 110–120. ACM Press, New
York (2004)

13. Borders, K., Zhao, X., Prakash, A.: Siren: Catching evasive malware (short paper). In: IEEE
S&P, pp. 78–85. IEEE Computer Society Press, Los Alamitos (2006)

14. Brumley, D., Song, D.X.: Privtrans: Automatically partitioning programs for privilege sepa-
ration. In: USENIX Security Symposium, pp. 57–72 (2004)

15. Egele, M., Kruegel, C., Kirda, E., Yin, H., Song, D.: Dynamic Spyware Analysis. In: Usenix
Annual Technical Conference, USA (June 2007)

16. Garfinkel, T., Rosenblum, M.: A virtual machine introspection based architecture for intru-
sion detection. In: NDSS (2003)

17. Jackson, C., Boneh, D., Mitchell, J.C.: Stronger password authentication using virtual ma-
chines. Stanford University (submission, 2006)

18. Khatiwala, T., Swaminathan, R., Venkatakrishnan, V.: Data sandboxing: A technique for
enforcing confidentiality policies. In: ACSAC (December 2006)

19. Kirda, E., Kruegel, C., Banks, G., Vigna, G., Kemmerer, R.: Behavior-based spyware detec-
tion. In: Proceedings of 15th USENIX Security Symposium (August 2006)

20. Mani, V.: Cross Process Subclassing (2003),
http://www.codeproject.com/dll/subhook.asp

21. McCune, J.M., Perrig, A., Reiter, M.K.: Bump in the ether: A framework for securing sen-
sitive user input. In: Proceedings of the USENIX Annual Technical Conference, June 2006,
pp. 185–198 (2006)

22. Newsome, J., Song, D.X.: Dynamic taint analysis for automatic detection, analysis, and sig-
nature generation of exploits on commodity software. In: NDSS (2005)

http://msdn.microsoft.com/workshop/browser/ext/extensions.asp
http://msdn.microsoft.com/workshop/browser/ext/extensions.asp
http://www.safer-networking.org/
http://kb.mozillazine.org/Dev_:_Extensions
http://www.webroot.com/resources/stateofspyware/excerpt.html
http://www.wireshark.org/
http://msdn2.microsoft.com/en-us/library/ms809340.aspx
http://www-128.ibm.com/developerworks/webservices/library/co-xpcom.html
http://www-128.ibm.com/developerworks/webservices/library/co-xpcom.html
http://www.microsoft.com/technet/archive/security/news/ngscb.mspx?mfr=true
http://www.microsoft.com/technet/archive/security/news/ngscb.mspx?mfr=true
http://www.ucmore.com/
http://www.snort.org/
http://www.codeproject.com/dll/subhook.asp

316 Z. Li, X. Wang, and J.Y. Choi

23. Paxson, V.: Bro: a system for detecting network intruders in real-time. Computer Net-
works 31(23-24), 2435–2463 (1999)

24. Rubin, S., Jha, S., Miller, B.P.: Automatic generation and analysis of nids attacks. In: AC-
SAC, pp. 28–38 (2004)

25. Saltzer, J.H.: Protection and the control of information sharing in miltics. Communications
of the ACM 17(7), 388–402 (1974)

26. Schreiber, S.B.: Undocumented Windows 2000 Secret: a programmers cookbook, May 2001.
Addison-Wesley, Reading (2001)

27. von Ahn, L., Blum, M., Hopper, N.J., Langford, J.: CAPTCHA: Using Hard AI Problems
for Security. In: Biham, E. (ed.) Advances in Cryptology – EUROCRPYT 2003. LNCS,
vol. 2656, pp. 294–311. Springer, Heidelberg (2003)

28. Wang, H., Jha, S., Ganapathy, V.: NetSpy: Automatic Generation of Spyware Signatures for
NIDS. In: Jesshope, C., Egan, C. (eds.) ACSAC 2006. LNCS, vol. 4186, Springer, Heidelberg
(2006)

29. Wang, Y.-M., Roussev, R., Verbowski, C., Johnson, A., Wu, M.-W., Huang, Y., Kuo, S.-Y.:
Gatekeeper: Monitoring Auto-Start Extensibility Points (ASEPs) for Spyware Management.
In: USENIX LISA 2004 (2004)

30. Wang, Y.-M., Vo, B., Roussev, R., Verbowski, C., Johnson, A.: Strider ghostbuster: Why it’s
a bad idea for stealth software to hide files. Technical Report MSR-TR-2004-71, Microsoft
Research (2004)

31. Willliams, S., Kindel, C.: The component object model: A technical overview (October
1994), http://msdn2.microsoft.com/en-us/library/ms809980.aspx

32. Xu, W., Bhatkar, S., Sekar, R.: Taint-enhanced policy enforcement: A practical approach to
defeat a wide range of attacks. In: Proceedings of the 15th USENIX Security Symposium,
Vancouver, BC, Canada (August 2006)

http://msdn2.microsoft.com/en-us/library/ms809980.aspx

	SpyShield: Preserving Privacy from Spy Add-Ons
	Introduction
	Design
	Access-Control Proxy
	Security Policies
	Proxy Guardian

	Implementation
	IE Plug-in Architecture
	The Access-Control Proxy
	Kernel Driver

	Evaluations
	Effectiveness
	Overheads

	Discussions
	Related Work
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

