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Abstract. Intestinal contractions are one of the main features for ana-
lyzing intestinal motility and detecting different gastrointestinal patholo-
gies. In this paper we propose Eigenmotion-based Contraction Detection
(ECD), a novel approach for automatic annotation of intestinal con-
tractions of video capsule endoscopy. Our approach extracts the main
motion information of a set of contraction sequences in form of eigen-
motions using Principal Component Analysis. Then, it uses a selection
of them to represent the high dimension motion data. Finally, this con-
traction characterization is used to classify the contraction sequences by
means of machine learning techniques. The experimental results show
that motion information is useful in the contraction detection. More-
over, the proposed automatic method is essential to speed up the costly
examination of the video capsule endoscopy.

1 Introduction

The analysis of the small bowel contractions has been proved to be a mean-
ingful method for diagnosing several intestinal dysfunctions [1], [2]. Currently,
the most extended diagnosis test for motility disorders is intestinal manometry
[3], which measures variations of pressure. This technique is highly invasive and
disagreeable and requires hospitalization of the patient.

A recent and very promising alternative acquisition method is the Wireless
Capsule Video Endoscopy (WCVE) [4] which consists of a capsule with a camera,
a battery, and a set of led lamps for illumination. The capsule is swallowed by the
patient and emits a radio frequency signal stored in an external device. The result
is a video which records the ”trip” of the capsule along the intestinal tract with a
rate of two frames per second. This novel technique is non-invasive compared with
the manometry and there is no need of hospitalization of the patient. The result-
ing images provide a view of the inner gut in which the gut wall and lumen are
visualized (Fig. 1 (right)). The visual paradigm of intestine muscle contractions in
WCVE is defined as a close-open movement of the lumen. Fig. 1 (left) shows three
examples of intestinal contraction sequences. They are defined by 9 frames, since
phasic contraction takes on average 4.5 seconds. The non-occlusive contractions
(lumen is not completely closed) are hard to detect by classical manometry, since
the intestinal walls are not accomplishing enough amount of pressure. However,
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Fig. 1. Left: three different examples of contraction sequences. Right: example of a
frame from capsule video endoscopy with a description of the parts in it.

they are clearly identified in WVCE (Fig. 1 (third row)). Unfortunately, the ex-
amination and interpretation of the capsule recordings by the specialists is time
consuming - it takes approximately two hours for each study - and very tedious,
since the prevalence of contractions in video is very low (1:50 frames). Thus, this
procedure becomes not feasible as a clinical routine. Several works have been de-
veloped for the automatic detection in WCVE of intestinal affections, such as can-
cer, bowel Crohn’s disease and small bowel ulcers [5], [6], [7]. Nevertheless, to the
author’s knowledge WCVE has not been used to analyze the intestinal motility
disorders, except for the work presented in [8].

We propose Eigenmotion-based Contraction Detection (ECD), a new method
for the automatic detection of intestinal contractions in WCVE based on the
dynamic patterns present in the video. Unlike this method, the approach in [8]
only uses static information of 9 frames and does not exploit the motion structure
of the capsule recordings. For now on, we will refer to the method developed in
[8] as Static-based Contraction Detection (SCD). In further sections we will show
that including motion analysis improves drastically the results.

In order to study the motion present in the WCVE, we use a robust method for
optical flow estimation [9]. Afterwards, we learn the main motion structures from
a particular training set of optical flow fields using Principal Component Analysis
(PCA) [10]. Then, we use a selection of the learned eigenmotions to character-
ize the contraction sequences. This new data representation is applied in the
posterior classification of the video sequences as contraction or non-contraction
sequences. In previous works, as [11] and [12], the authors propose frameworks
for learning generic, expressive optical flow priors which later are used to im-
prove the optical flow computation. We extract main optical flow patterns, but
our goal is to use them for classifying.

The paper is organized as follows: in Section 2, we introduce the methodol-
ogy employed to the automatic detection of intestinal contractions, in Section 3
we present the experimental results, and finally, in Section 4, we expose the
conclusions and future work.

2 Methodology

The proposed methodology has five steps: 1) Filtering, 2) Motion Estimation, 3)
Eigenmotion Extraction, 4) Eigenmotion Selection and 5) Classification.
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1) Filtering: The movement of intestinal contractions in WCVE can be hidden by
technical and physiological effects. On one hand, the free movement of the camera
into the gut leads to an unsteady orientation. On the other hand, intestinal juices
mixed up with the remains of food can also prevent the correct visualization of
contraction events. These visual artifacts present in the video make useless a
subset of frames in it. The aim of this step is to reject this kind of frames, which
are labelled as: turbid, wall and tunnel frames, and represent generally the 30%
of the video frames.

Turbid frames are those where intestinal turbid liquid appears. As proposed
in [8], we characterize them in terms of color and we classify them. Wall frames
are due to the stable orientation of the camera towards the intestinal wall, keep-
ing the intestinal lumen completely out of the field of view. Tunnel frames are
the result of a continuous orientation of the camera focusing the intestinal lu-
men during an undefined period of time in which the gut does not move. Both
wall and tunnel frames are described by means of the sum of the lumen area
throughout the sequence of 9 frames which is compared with two certain thresh-
olds empirically set with the help of the experts. In order to estimate the area
of the lumen in each frame, a Laplacian of Gaussian (LoG) filter is applied [8].

2) Motion Estimation: Motion estimation is a key problem in computer vision
which consists in computing the apparent motion of the elements present in an
image sequence, called optical flow field. Many approaches exist to carry out
this estimation, but we have chosen the method proposed in [9] for its proved
robustness [9], [12]. It consists on a framework based on robust estimation that
addresses the problem of improving accuracy of flow estimates in regions con-
taining multiple motions by relaxing the single motion assumption. It estimates
the dominant motion accurately, ignoring other existing motions by minimizing
a functional with robust data and smoothness terms. In addition, the approach
detects where the single motion assumption is violated (i.e., where the error
measure is large), and these positions are examined to see if they correspond to
a consistent motion.

Before computing the optical flow field of endoscopy video sequences, we try
to correct any deviation of the lumen position due to the capsule movement. For
that, we simply translate the image in such a way that the centroid of the lumen
coincide with the center of the image. Fig. 2 shows the estimated optical flow
fields of consecutive frames of a contraction sequence.

3) Eigenmotion Extraction: The purpose of this step is to find motion models
from the class of motions of intestinal contraction sequences, denoted C. This
problem has many applications including dimensionality reduction, visualization,
exploratory data analysis and pattern recognition. In some cases the models can
be derived analytically imposing some hypothesis over data, e. g. the assumption
that the addressed motions follow a parametric affine model. However, in many
cases, as in the current problem, more complex motions are considered, and
PCA can be used to find a basis of optical flow fields with an available training
ensemble [10], [12], [13].
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Fig. 2. Optical flow pairwise computed between the 1th to 5th frames of a contraction
sequence. The optical flow fields are superimposed to the 2th to 5th frames.

Let us define the training set of representative samples of the class C as a
matrix X = {vi}i∈{1,...,N}, where vi denotes a particular optical flow field, and N
is the number of optical flow fields in the set. Note that, since there are 8 motions
in each contraction sequence, N = 8c, where c is the number of contraction
sequences in the set. Moreover, we only consider the optical flow within a defined
region of interest, which contains the lumen of the video endoscopy images. Thus,
each vector vi has dimension 2D, where D is the area of the region of interest
(15373 pixels). Limiting the optical flow to this region avoids data to be disturbed
by possible boundary effects.

We apply PCA to the 2D×N matrix X to obtain a decomposition X = WH ,
where W = {wi}i∈{1,...,R}, is a 2D × R matrix containing an orthonormal basis
of optical flow fields in its columns, and H = {hi}i∈{1,...,R}, is a R × R matrix.
The elements of this basis are the eigenvectors of the covariance matrix of the
set of optical flow fields, and we call them eigenmotions.

An approximation ṽj of optical flow fields in the class C can be obtained as a
linear combination of eigenmotions:

ṽj =
r∑

k=1

wkhk, j = 1, . . . , R, (1)

where r ∈ {1, . . . , R}. The question now arises is how ”better” the new basis of
eigenmotions are as data representation and how much we can reduce the data
dimensionality. The more extended way to select the best dimension r for the
approximations is evaluating the cumulative energy content of the eigenmotions.
Nevertheless, we propose a more intelligent way to select the basis elements which
helps us to better understand the data indicating which ones are the important
eigenmotions. This subject is argued in the following step.

4) Eigenmotion Selection: In this step we deal with the problem of selecting
the ”best” eigenmotions. Eigenmotions are actually features of the data, thus,
this procedure is called feature selection or eigenmotion selection. By remov-
ing the most irrelevant and redundant eigenmotions the effect of the curse of
dimensionality is alleviated, facilitating the subsequent classification step.
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In our case, we apply the method presented in [14] for feature selection. It
requires the optimization of a global loss function, which contains one term asso-
ciated with the empirical loss and a regularization constraint on the parameters
w, but adding another constraint to also promote sparsity on the distribution
of the features. Given v ∈ R

d a new parameter vector, the global loss is defined
as follows:

G(w,v) = L(X,w,v) + λ(‖w‖1 + ‖σd
k(v)‖1). (2)

L(X,w,v) is the negated log-likelihood estimator for the parameter set, λ is
a positive real value, and the two terms ‖w‖1 + ‖σd

k(v)‖1 form the imposed
L1 restriction on the parameters (w,v), where σd

k : R
d → R

d is defined as
σd

k(a) = (σk(a1), ..., σk(ad)), ∀a = (a1, ..., ad) ∈ R
d, k any positive real value,

and σk : R → R is the sigmoid function defined as σk(a) = 1
1+exp (−ka) , ∀a ∈ R.

The loss function (2) represents a preference for solutions that use a small
set of components from the parameters. The optimization of this functional is
carried out using the Boosted Lasso algorithm as explained in [14]. We need
for the optimization an appropriate and carefully selected training set where
samples are very representative of contractions. As a result of this task we obtain
a subset of p eigenmotions of the basis W , represented as a 2D × p matrix, W̄ .
The selected subset of eigenmotions of the basis is used to represent optical flow
data. A set of M contraction sequences provide us 8M optical flow fields stored
in a 2D × 8M matrix U . Then, we transform U into a p × 8M matrix Y as
follows: Y = W̄T U. The matrix Y contains M data of 8p dimensions. Note that
we reduce the dimension of the data from 16D to 8p.

5) Classification: Once the optical flow fields are transformed to the eigenmotion-
based representation, this new codification is the input of a classifier. This clas-
sifier decide whether new video sequences are intestinal contraction sequences or
not. In particular, we use the Relevance-Vector-Machine (RVM) classifier [16],
since it has desired properties, namely, soft decisions and less complexity (num-
ber of kernels). Unlike the previous step, the present training process requires
a rather large data set of video sequences, since our goal now is to achieve best
generalization error.

3 Experimental Results

Our tests were carried out with data provided by the Digestive Diseases Research
Group of Hospital ”Vall d’Hebron” in Barcelona, Spain, who are currently work-
ing with the endoscopy capsule developed by Given Imaging, Ltd., Israel [17].
Videos from healthy subjects and subjects with intestinal dysfunctions (here
called patients) were considered.

We first generated a set of intestinal contraction sequences extracted from a
healthy subject video endoscopy, with the supervision of the specialists for as-
suring the representativeness of the selected group. This set was used to extract
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Fig. 3. The six first eigenmotions. The selected one is pointed by a black box.

the eigenmotions, applying step (2) and (3). In Fig. 3 we show the first six ex-
tracted eigenmotions (ordered by decreasing eigenvalues). The first and second
ones correspond to translation motions, they are probably due to the global cam-
era motion. The next ones are dilatation, rotation and two shear deformations.
The eigenmotion selection performed in step (4), with the parameters set to
λ = 0.5 and k = 10, returned only one selected eigenmotion. This one is pointed
by a black box in Fig. 3. As can be seen, it represents contraction-dilatation
movements. This motion is the one we would expect to find in the paradigm of
intestinal contraction motion. Once the selected eigenmotion was available, new
motion data were transformed to the eigenmotion-based representation, resulting
in data of dimension 8, since p = 1.

We evaluated the performance results of step (5) using a ten fold cross val-
idation strategy [10] on a larger data set. We considered a pool of 10 different
videos from healthy subjects and patients. We first filtered these videos us-
ing step (1). The remaining frames were revised by a specialist who indicated
the center of the contraction sequences in it. This generated a set of 11030 se-
quences. These findings were used as gold standard for testing our system. The
test set were composed by these contraction sequences and an under-sampled set
of non-contraction sequences randomly chosen from the same pool. The results
were validated using several measures, described in terms of true positives (TP),
true negatives (TN), false positives (FP) and false negatives (FN), as follows:
Error= FP + FN , Sensitivity= TP/(TP + FN), Specificity= TN/(TN + FP ),
Precision= TP/(TP + FP ) and False Alarm Ratio, FAR= FP/(TP + FN).

Table 1 summarizes the results of the Eigenmotion-based Contraction Detec-
tion (ECD) using two different data representation. The first one used the 51
first eigenmotions, which returned the 99% of the data variance, and led to data
of dimension 408. The second one used the selected eigenmotion in step (4), and
the data had dimension 8. As can be seen, the more simple representation gave
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Table 1. Classification results of our ECD method for two different data representation

Error Sensitivity Specificity Precision FAR
ECD (dim= 408) 31.23% 69.29% 68.30% 68.96% 32.04%
ECD (dim= 8) 29.51% 70.30 % 70.68% 70.57% 29.32%

Table 2. Classification results of the methods SCD and CCD

Error Sensitivity Specificity Precision FAR
SCD (dim= 54) 22.90% 73.55% 80.62% 79.14.% 28.46%
CCD (dim= 62) 18.73% 77.58 % 84.95% 83.75% 24.20%

better results (second row), than the more complex one (first row). This means
that the selected eigenmotion represents an excellent discriminant feature.

Finally, in Table 2 (first row), we display the results obtained using the Static-
based Contraction Detection (SCD) [8]. This method characterized intestinal
contractions with 54 features, instead of 8 as in our case, and the evaluation
measures were, in general, better than the ones obtained with ECD. Anyway,
we concluded that motion information is important when we studied the results
of the Combined Contraction Detection (CCD) which used both, the static and
dynamic features. In this case, sequences were defined in a 62-dimensional space.
We can see that this method led to the best results (second row of Table 2).
Moreover, these results represent high specificity and sensitivity rates compared
to the rates obtained by the specialists.

4 Conclusions and Future Work

Our contribution represents a significant step towards the introduction of the
WCVE for intestinal motility diseases diagnosis. Our proposal combine classical
and new procedures to achieve a robust and efficient method for automatic
detection of intestinal contractions. Our method obtains high specificity and
sensitivity rates and can be used to drastically reduce the time of analyzing the
video capsule endoscopy.

The presented work can be extended in several ways. There are other meth-
ods for dimensionality reduction that could be used here instead of PCA, as for
instance Independent Component Analysis (ICA) or Non-negative Matrix Fac-
torization (NMF). These alternative approaches will be contemplated in future
works. Moreover, as well as in general contraction detection, the characteriza-
tion of the motility based on eigenmotions can be useful in other applications,
as for instance in the definition, classification and detection of different types of
contractions. In this direction, future work imply multiclassification tasks and
other sophisticated techniques.
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