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Abstract. An improper design of feature selection methods can often
lead to incorrect conclusions. Moreover, it is not generally realised that
functional values of the criterion guiding the search for the best feature
set are random variables with some probability distribution. This con-
tribution examines the influence of several estimation techniques on the
consistency of the final result. We propose an entropy based measure
which can assess the stability of feature selection methods with respect
to perturbations in the data. Results show that filters achieve a better
stability and performance if more samples are employed for the estima-
tion, i.e., using leave-one-out cross-validation, for instance. However, the
best results for wrappers are acquired with the 50/50 holdout validation.
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1 Introduction

Many tasks in statistical pattern recognition are characterised by high dimen-
sional data which have to be processed and analysed using statistical tools.
A data sample is a vector formed generally by several hundreds of measure-
ments, called features. Examples of such data are measurements arising in text
recognition, genetic engineering, astronomy, etc. The problem of analysing and
processing such multivariate sensory information can be aggravated by a rela-
tively small sample size available for learning. A small sample statistics results
in inaccurate parameter estimates of the data models. Thus, a poor generali-
sation is achieved on unknown data. This phenomenon is known as the curse
of dimensionality [1]. A common solution is to reduce the dimensionality and
employ, for example, only those features that are relevant to a given problem.
This task is known as the feature selection [1].

There are many approaches to feature selection, however, all in principle in-
volve two main ingredients: i) an objective function (criterion) which reflects
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informativeness of feature subsets, and ii) a search strategy. The search strategy
is fixed and employs usually feature ranking [7] or subset search [1,11] meth-
ods. Both approaches are premised on certain principles which guide the search
through the feature space and determine what results can be ideally achieved.
The objective function guiding the search can be either classifier specific [9,5]
(so called wrappers) or classifier independent [7,5] (so called filters). In gen-
eral, learning algorithms designed using features selected by wrappers have been
shown to achieve a better predictive accuracy. Nevertheless, wrappers are com-
putationally very intensive and tend to over-fit [9]. Filters can be seen more as
a preprocessing step for a subsequent learning, because the objective function is
not directly linked to minimising the error rate of a particular classifier. Filters
usually execute quite fast and provide a general approach to feature selection.

One issue that has been relatively neglected in the literature is the stability of
feature selection algorithms, i.e., the sensitivity of the solution (selected features)
to perturbations in the input data. The motivation behind exploring the stability
is to provide an evidence that the selected features are relatively robust to slight
changes in the data. Feature selection methods producing consistent solution
on the given data are preferable to those with highly volatile outputs. Possibly,
the only related publications discussing the feature selection stability topic are
[2,6,10]. However, the proposed stability measures have many limitations, unclear
motivation, and empirically estimated bounds. Furthermore, these papers do not
clearly motivate remedies for improving the stability and performance. We show
that for any given feature selection algorithm, the stability and performance can
be significantly improved by a careful use of the data available.

The paper is organised as follows. Section 2 formulates the stability problem.
In the same section, we propose and theoretically justify a measure which can
assess the stability of feature selection algorithms with respect to perturbations
in the data. We also suggest a concept how the stability and performance can be
improved. The experimental set-up is described in Section 3. Section 4 presents
and discusses the numerical results. Conclusions are drawn in Section 5.

2 Stability of Feature Selection Methods

2.1 The Stability Problem

It is not often realised in the literature on feature selection that values of the
objective function guiding the search for the best feature set are random variables
with some probability distribution, no matter what type of the search strategy
or criterion is adopted. This originates from the randomly sampled data at the
feature selection input. The exact criterion value is unknown and the search
strategy has to work just with an estimate acquired on the available data. Note
that the accuracy of the criterion estimate can considerably influence the result
of the feature selection.

Suppose that we carry out T ∈ N runs of a feature selection algorithm on
randomly sampled data. We would like to find some kind of measure which
would allow us to assess the feature selection method stability with respect to
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perturbations in the data, i.e., to assess the sensitivity of the selected features to
variations in the input data. We will consider a concept which reflects the most
frequently selected feature subsets.

It has to be emphasised that the stability does not say anything about the
performance of the selected features. It just indicates the sensitivity of a fea-
ture selection method output to random perturbations in the input data. Large
variations in the selected feature subsets signify that something is wrong. For
instance, the feature selection algorithm is not appropriate for a given data, or
there are not enough samples, or too many correlated variables or feature sub-
sets with very similar information content, etc. Thus, less confidence should be
assigned to feature sets that change radically with slight variations of the input
data or perhaps it is advisable to refrain completely from the feature selection.

2.2 Stability of Feature Sets

Notice that various feature selection techniques select different feature subsets
with a certain probability if the input data for training are randomly sampled
from the original data set. One extreme case is a random feature selection which
selects every feature subset with the same probability and thus produces a uni-
form probability distribution. The other extreme is a perfectly stable feature
selection method which all the time selects the same feature subset and thus
creates a single peak probability distribution. It appears that the stability of
feature selection algorithms can be assessed through the properties of the gen-
erated probability distributions of the selected feature subsets. Our interest is,
of course, in feature selection algorithms that produce probability distributions
far from the uniform and close to the peak one.

A convenient measure quantifying randomness of a system is entropy [12].
Entropy is a real function defined on a set of probability distributions. In in-
formation theory, the concept of entropy indicates the amount of uncertainty
about an event associated with a given probability distribution. The entropy
is maximal for a uniform probability distribution (i.e., outcome of random fea-
ture selection). If the event is certain (i.e., outcome of perfectly stable feature
selection) then the entropy is zero.

There are several entropy measures in information theory. We derive the sta-
bility measure from the Shannon entropy, see [12],

H(X) = −
m∑

i=1

p(xi) log p(xi) . (1)

Here X is a discrete random variable with possible states X = {x1, x2, . . . , xm}
(i.e., particular feature subsets), m ∈ N is the number of all possible states (i.e.,
the number of all different feature subsets), and p(xi) is the probability of the
i-th state occurrence (i.e., probability of selecting a particular feature subset).

Let n ∈ N be the problem dimensionality, k ∈ {1, 2, . . . , n} indicates the size
of the feature subset, and T ∈ N is the number of evaluation trials with ran-
domly sampled data. The frequencies of selected feature subsets are recorded
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over T trials in a histogram given by a structure with entries Gjk ∈ Z
+, where

Z
+ are non-negative integers, j = 1, 2, . . . , C(n, k), and C(n, k) =

(
n
k

)
is the

number of all possible feature combinations. The histogram structure can be im-
plemented by recording different feature subsets and their frequencies Gjk. The
probability estimates of particular feature subsets occurrence can be determined
by normalising the histogram entries by the number of trials, i.e., Gjk = Gjk/T .
Thus, all bin values Gjk are scaled into the interval [0, 1] and

∑C(n,k)
j=1 Gjk = 1.

Based on the Shannon entropy (1), the following stability measure can be
constructed for a feature subset of a fixed size k,

γk = −
C(n,k)∑

j=1

Gjk log Gjk . (2)

In reality, the histogram structure is sparse, because the number of evaluation
trials T is small compared to the theoretical combinatorial amount of all possible
feature combinations which yields the maximal number of the histogram entries
Gjk > 0 to be jmax = min [T, C(n, k)]. Thus, the stability measure (2) ranges in
the interval 0 ≤ γk ≤ log min [T, C(n, k)]. Deriving both bounds is a straightfor-
ward task. The lower bound expresses that there is only one uniquely selected
feature subset of size k over all T trials which corresponds to a perfectly stable
feature selection algorithm, hence zero entropy. The theoretical upper bound is
based on the assumption that an arbitrary feature subset of size k is selected
over T trials with the same probability Gjk = (min [T, C(n, k)])−1. It can be
seen that the stability measure (2) creates an ordering and thus, the stability of
examined feature selection algorithms can be compared.

2.3 Improving Stability and Performance

The primary key for the improved stability is an appropriate estimate of the
objective function values. With a better criterion estimate, the search algorithm
is also more likely to converge to its optimal solution with respect to the unknown
data underlying probability distribution. Selected features thus achieve a better
generalisation and performance. Surprisingly, it is very hard to find a research
paper which would follow this basic rule. However, the price we may have to pay
for a better estimate is an exponentially increasing execution time.

The commonly adopted estimation methods in statistical pattern recogni-
tion are data re-sampling techniques like cross-validation, holdout validation, or
bootstrap, see [1,3,8]. Only wrapper design sometimes applies five or ten-fold
cross-validation to avoid over-fitting of a classifier employed in the objective
function definition, see [9,10]. No estimation is ever done in filter approaches.

3 Experiment Design and Description

The motivation behind the following experiments is to investigate how the choice
of a data re-sampling technique for the objective function estimation influences
the stability and performance of filter and wrapper feature selection approaches.
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3.1 Data Used in Experiment

A simple artificial two-class problem is synthesised for the purpose of this study,
since we would like to have a control all over the experiment. The data are
designed so that ordinary ranking or greedy feature selection methods fail to
find an optimal feature subset of a minimal size. Samples are derived from
a 20-dimensional normal probability distribution with a common covariance ma-
trix Σ and mean values μ = μ1 = −μ2. First class consists of a component
N(μ, Σ), and second class of a component N(−μ, Σ). The common covariance
matrix and the mean values comprise several blocks which simulate different
qualities of features.

The first block contains statistically independent features with identical dis-
criminatory ability of the particular features. The parameters are the following

Σ1,...,3 = I3 and μ1,...,3 = [0.635, 0.635, 0.635]� ,

where Id is the d × d identity matrix for d ∈ N. Upper indices in Σi,j,k,... and
μi,j,k,... indicate the corresponding coordinates of the block.

A nested pair of features with indices {4, 6} is hidden in the second block.
The parameters are given by

Σ4,...,6 =

⎡

⎣
1.05 0.48 0.95
0.48 1.0 0.20
0.95 0.20 1.05

⎤

⎦ and μ4,...,6 =

⎡

⎣
0.5
0.4
0

⎤

⎦ .

The third block contains statistically independent features with decreasing
discriminatory ability of the particular features. The parameters are

Σ7,...,13 = I7 and μ7,...,13 = [0.636, 0.546, 0.455, 0.364, 0.273, 0.182, 0.091]� .

The last block contains only noise with parameters

Σ14,...,20 = I7 and μ14,...,20 = [0, 0, 0, 0, 0, 0, 0]� .

Finally, all the dimensions of the problem are randomly permuted to make
sure that an examined feature selection algorithm will not follow feature ordering
created in the design above. Data in our experiment contain 500 samples per
class. It is interesting to note that the theoretical classification error of such
data is about 2.3%.

3.2 Experiment Set-Up

In experiments, we examine a filter and wrapper variant of the state-of-the-art
feature selection technique known as the Sequential Forward Floating Search
(SFFS) algorithm [11]. The filter version applies the Mahalanobis distance [1] in
the objective function definition. The wrapper form uses prediction accuracy of
a linear decision rule created by the Gaussian classifier [1]. Both feature selection
algorithms fit the data so they should find the exact solution.
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For the objective function estimation, we consider five-fold, ten-fold, and
leave-one-out cross-validation, repeated holdout validation scheme with 50/50,
60/40, 70/30, 80/20, and 90/10 splits of data to the training/validation part,
respectively, and estimation methods based on sampling with replacement such
as bootstrap, .632 bootstrap, and out-of-bootstrap, see [1,3,8] for more details.
Holdout and bootstrap techniques employ 1, 5, 10, 50, 100, and 200 trials, re-
spectively, for the objective function estimation. All methods are stratified [8] so
the class a priori probabilities are preserved within the data re-sampling.

The feature selection is applied in all experimental set-up conditions described
above. To acquire a good statistics on the probability estimates of the selected
feature subsets, one hundred evaluation trials are performed with 90% of the
data randomly sampled from the original data set for training. The stability
measure in Equation (2) is determined from the acquired probability estimates.

The performance is assessed by the Hamming distance [4,2] between the exact
solution and the selected features in order to check the real quality of the result.
The exact solution is found by the SFFS algorithm which employs the true data
probability distribution and the Mahalanobis distance in the objective function
definition. The final performance is averaged over all one hundred trials.

4 Numerical Results and Discussion

The stability results for the filter and wrapper are depicted in Figures 1a and
1b. The performance of the selected features measured by the average Hamming
distance is shown in Figures 1c and 1d. Graphs are depicted only for a feature
subset of size k = 8 as similar behaviour was observed for all subset sizes.
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Fig. 1. The stability factor γk for a) filter, b) wrapper, and the averaged Hamming
distance hk for c) filter, d) wrapper, displayed with respect to the re-sampling technique
involved in the objective function estimation for a feature subset of size k = 8
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The filter variant of the SFFS algorithm achieves better stability if more sam-
ples are employed in the objective function estimation, i.e., using techniques
like ten-fold or leave-one-out cross-validation, for instance. Such result can be
interpreted by the general fact that more samples available for learning lead to
better parameter estimates and thus to a more consistent solution. This effect
is clearly visible for the holdout validation, where the stability gets worse with
less samples available for the estimation. However, the estimate gets better with
the increasing number of trials. It appears that at some point the absolute sta-
bility factor saturates and becomes more or less independent of the examined
re-sampling techniques if the number of estimation trials is sufficiently large.

The situation is quite different for the wrapper approach. The best stability
and the performance result is obtained for the repeated 50/50 holdout valida-
tion employed in the objective estimation. The popular ten-fold or leave-one-out
cross-validation does not achieve such a good solution. Our interpretation is as
follows. Although a classifier designed with more samples has better parame-
ter estimates, the objective function is based on the prediction accuracy using
the validation data. Having fewer samples available for validation implies higher
variance of the prediction accuracy. Thus, the feature selection algorithm be-
comes more sensitive to random perturbations in the data and fails to find a
consistent solution. The number of the training and validation samples compete
against each other which explains why the 50/50 holdout validation achieves the
best results. It seems again, that the stability factor saturates at some point if
the number of estimation trials is sufficiently large.

Wrappers appear to be much more sensitive to the correct objective function
estimate than filters. Notice that the .632 bootstrap achieved the best stability
factor, however, its performance is by far the worst. Bootstrap techniques are
supposed to give estimates with low variance [3] which explains a good stabil-
ity. Nevertheless, the bias of the estimate is high and as a result the wrapper
converged to a wrong solution.

As for the performance, the non-zero Hamming distance indicates that none
of the solutions is identical with the theoretical best feature subset. The slight
bias (Hamming distance “2”) is probably caused by an in-accurate estimate of
the weakest features discriminatory power.

5 Conclusions

The feature selection results should always be strengthen by some confidence in
the solution. For this purpose, we designed and theoretically justified an entropy
based measure which can assess the stability of any kind of a feature selection
algorithm with respect to random perturbations in the input data. Furthermore,
we derived bounds on the stability measure analytically. For a given feature
selection method and data, the stability factor has to be determined empirically
over a number of evaluation trials with randomly sampled training data. A large
number of trials is required to guarantee a sufficient accuracy of the probability
estimates of the selected feature subsets occurrence.
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The stability and performance of feature selection methods can be improved
to a certain degree by a suitable algorithm design. This can be achieved by an
appropriate estimate of the objective function guiding the search for the best sub-
set of features. Our experiments showed that filters achieved better stability and
performance if more samples were employed in the objective function estimation,
i.e., using re-sampling techniques like ten-fold or leave-one-out cross-validation,
or 90/10 holdout validation. For wrappers, however, the best estimation tech-
nique appeared to be the 50/50 holdout validation. Wrappers also turned up to
be much more sensitive to incorrect objective function estimation than filters.

Nevertheless, a good stability of a feature selection algorithm on the given
data is just a necessary condition for a good performance of the selected features.
Both, the stability and performance should always be analysed together, because
the stability itself does not say anything about the selected features quality.
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