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Preface

Anticipatory behavior in adaptive learning systems is steadily gaining the in-
terest of scientists, although many researchers still do not explicitly consider
the actual anticipatory capabilities of their systems. Similarly to the previous
two workshops, the third workshop on anticipatory behavior in adaptive learn-
ing systems (ABiALS 2006) has shown yet again that the similarities between
different anticipatory mechanisms in diverse cognitive systems are striking. The
discussions and presentations on the workshop day of September 30th, 2006,
during the Simulation of Adaptive Behavior Conference (SAB 2006), confirmed
that the investigations into anticipatory cognitive mechanisms for behavior and
learning strongly overlap among researchers from various disciplines, including
the whole interdisciplinary cognitive science area.

Thus, further conceptualizations of anticipatory mechanisms seem manda-
tory. The introductory chapter of this volume therefore does not only provide
an overview of the contributions included in this volume but also proposes a
taxonomy of how anticipatory mechanisms can improve adaptive behavior and
learning in cognitive systems. During the workshop it became clear that antic-
ipations are involved in various cognitive processes that range from individual
anticipatory mechanisms to social anticipatory behavior. This book reflects this
structure by first providing neuroscientific as well as psychological evidence for
anticipatory mechanisms involved in behavior, learning, language, and cognition.
Next, individual predictive capabilities and anticipatory behavior capabilities are
investigated. Finally, anticipation relevant in social interaction is studied.

Anticipatory behavior research on cognitive, adaptive systems aims at ex-
ploiting the insights gained from neuroscience, linguistics, and psychology for
the improvement of behavior and learning in artificial cognitive systems. How-
ever, this knowledge exchange is expected to become increasingly bidirectional.
That is, the insights gained during the design and evaluation of different antic-
ipatory cognitive mechanisms and architectures may also provide insights into
how anticipatory mechanisms can actually shape, guide, and control natural
brain activity. This book reveals many interesting and thought-provoking con-
nections between distinct cognitive science areas. We strongly hope that these
connections do not only lead to a deeper understanding of the functioning of
anticipatory processes but also enable a more effective, bidirectional knowledge
exchange and consequently more effective scientific progress in the natural and
artificial cognitive systems research disciplines.

April 2007 Martin V. Butz
Olivier Sigaud

Giovanni Pezzulo
Gianluca Baldassarre
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butz@psychologie.uni-wuerzburg.de

2 Animat Lab, University Paris VI,
104 Av du Président Kennedy, 75016 Paris, France

olivier.sigaud@lip6.fr
3 ISTC-CNR, Via S. Martino della Battaglia, 44 - 00185 Rome, Italy

{gianluca.baldassarre,giovanni.pezzulo}@istc.cnr.it

Abstract. Research on anticipatory behavior in adaptive learning
systems continues to gain more recognition and appreciation in various
research disciplines. This book provides an overarching view on antici-
patory mechanisms in cognition, learning, and behavior. It connects the
knowledge from cognitive psychology, neuroscience, and linguistics with
that of artificial intelligence, machine learning, cognitive robotics, and
others. This introduction offers an overview over the contributions in
this volume highlighting their interconnections and interrelations from
an anticipatory behavior perspective. We first clarify the main foci of
anticipatory behavior research. Next, we present a taxonomy of how an-
ticipatory mechanisms may be beneficially applied in cognitive systems.
With relation to the taxonomy, we then give an overview over the book
contributions. The first chapters provide surveys on currently known an-
ticipatory brain mechanisms, anticipatory mechanisms in increasingly
complex natural languages, and an intriguing challenge for artificial cog-
nitive systems. Next, conceptualizations of anticipatory processes in-
spired by cognitive mechanisms are provided. The conceptualizations
lead to individual, predictive challenges in vision and processing of event
correlations over time. Next, anticipatory mechanisms in individual de-
cision making and behavioral execution are studied. Finally, the book
offers systems and conceptualizations of anticipatory processes related
to social interaction.

1 Introduction

The presence of anticipatory mechanisms and representations in animal and
human behavior is becoming more and more articulated in the general, inter-
disciplinary research realm of cognitive systems. Hereby, anticipatory processes
receive different names or are not mentioned explicitly at all. Commonalities be-
tween these processes are often overlooked. The workshop series “Anticipatory

M.V. Butz et al. (Eds.): ABiALS 2006, LNAI 4520, pp. 1–18, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



2 M.V. Butz et al.

Behavior in Adaptive Learning Systems” (ABiALS) is meant to uncover these
commonalities, offering useful conceptualizations and thought-provoking inter-
connections between the research disciplines involved in cognitive systems
research.

After the publication of the first enhanced post-workshop proceedings volume
in 2003 [13], research has progressed in all involved areas. Somewhat unsur-
prisingly, neuroscience and cognitive psychology are continuously revealing new
influences of anticipations in cognition and consequent behavior and learning.
Individual and, even more strongly, social behavior seem to be guided by antici-
patory mechanisms, in which predictions of the future serve as reference signals
for efficient perceptual processing, behavioral control, goal-directed behavior,
and social interaction.

In the previous volume we offered an encompassing definition of anticipatory
behavior: “A process, or behavior, that does not only depend on the past and
present but also on predictions, expectations, or beliefs about the future.” [14,
page 3]. While this definition might clarify anticipatory behavior, anticipatory
mechanisms can clearly come in a variety of forms, influencing a variety of be-
havioral and cognitive mechanisms.

This introduction first provides an overview over the possible beneficial in-
fluences of anticipatory mechanisms and how these influences might be real-
ized most efficiently. It then surveys the contributions included in this volume.
First, known cognitive mechanisms involved in anticipatory processes in the
brain and in language evolution are surveyed. Moreover, a fundamental challenge
for artificial cognitive systems is identified. Next, individual anticipatory behav-
ioral processing mechanisms are addressed, including several conceptualizations,
frameworks, the effective generation of predictions, and effective behavior execu-
tion. Finally, the book moves on to interactive, social systems and investigates
the utility of anticipatory processes within.

2 Potential Benefits of Anticipatory Behavior
Mechanisms

During the discussion sessions at the workshop day in Rome in September 2006,
it became clear that there are multiple facets and benefits of anticipatory mecha-
nisms. These can be conceptualized by their nature of representation and general
influence on cognitive processes, as proposed previously [15]. Additionally, rep-
resentations of time-dependent information and consequent knowledge gain can
be distinguished based on their respective benefits for behavior and learning.
These aspects are re-considered in the following sections.

2.1 The General Nature of Anticipatory Mechanisms

In many cases, it has become clear that anticipation itself is often slightly mis-
understood, particularly due to the non-rigorous usage in habitual language.
Therefore, we have offered an explicit distinction of different processing aspects of
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anticipations and have focused the workshop effort more on explicitly anticipa-
tory mechanisms in cognitive systems.

First of all, anticipations can very generally be divided into implicit and ex-
plicit anticipatory systems. In implicit anticipatory systems, very sophisticated
but reactive control programs are evolved or designed—potentially leading to in-
telligent, implicitly anticipatory system behavior. That is, albeit these systems
do not have any explicit knowledge about future consequences, their (reactive)
control mechanisms are well-designed so that the systems appears to behave
cleverly, that is, in implicit anticipation of behavioral consequences and the fu-
ture in general. This workshop, however, focuses more on explicitly anticipatory
systems, in which current system behavior depends on actual explicit represen-
tations of the future. Cognitive psychology and neuroscience have shown that
explicit anticipatory representations exist in various forms in animals and hu-
mans [44,26]. Thus, we are interested in anticipatory programs that generate
predictions and utilize knowledge about the future to control, guide, and trigger
maximally suitable and efficient behavior and learning.

Explicit anticipatory systems may be divided further into systems that use:

– Payoff Anticipations;
– Sensory Anticipations;
– State Anticipations.

Payoff anticipations characterize systems that have knowledge of behaviorally-
dependent payoff and can base action selection on that representation. That
is, different payoff may be predicted for alternative actions, which allows the
selection of the current best action, as done in model-free reinforcement learning
[78]. Sensory anticipations can be characterized as anticipatory mechanisms that
support perceptual processing. State anticipatory processes enhance behavior
decision making and execution exploiting anticipatory representations [15].

2.2 How Anticipations Can Help

To conceptualize and distinguish different sensory and state anticipatory mech-
anisms further, it is worthwhile to consider the question of how anticipations
may affect cognitive processes (cf. also [26]). Thus, we now discuss how antici-
patory mechanisms may influence adaptive behavior and, particularly, how such
mechanisms may be beneficial for adaptive behavior. From a computationally
oriented perspective the question arises how predictions, predictive representa-
tions, or knowledge about the future can influence sensory processing, learning,
decision making, and motor control. Several different “how aspects” may be
distinguished, which are first listed and then discussed:

– Useful information can be made available sooner, stabilizing and speeding-up
behavior.

– Predictions can be compared with actual consequences, improving sensory
processing, enabling predictive attention, and focusing model learning.
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– The possibility to execute internal simulations can improve learning and
decision making.

– Goal-oriented behavior can be triggered by currently desirable and achievable
future states, yielding more flexible decision making and control.

– Anticipatory representations of information over time can be behaviorally
useful.

– Models and predictions of the behavior of other agents may be exploited to
improve social interaction.

Information Availability. Cognitive systems often face a serious timing and
time delay issue. Sensory information is simply too slow to be processed and to
arrive in time at the relevant behavioral control centers of the brain to ensure
system stability. Behavioral experiments and simulations confirm that humans
must use forward model information to stabilize behavioral control [21,61]. In
psychology, the reafference principle [83] conceptualizes the existence of a for-
ward model, proposing that efferent motor activity also generates a reafference,
which specifies the expected action-dependent sensory consequences. Advanced
motor control uses predictive control approaches that can yield maximally effec-
tive control processes [16].

Thus, cognitive systems should use re-afferent predictions that depend on ac-
tivated efferences. These predictions can be used to avoid system instabilities due
to delayed or missing sensory feedback. Interestingly, such stabilization effects
come into play even with stabilizing recursive mathematical equations, making
them “incursive” [22]. In sum, since future information can be predicted and
thus be made available before actual sensory information arrives, system control
and stability can be optimized by incorporating predicted feedback information.

Predictions Compared with Actual Consequences. Once subsequent sen-
sory information is available, though, the predicted information can be compared
with the real information to determine information novelty and thus informa-
tion significance. Hoffmann [43,44] provides various pieces of evidence from psy-
chological research that suggest that many cognitive processes, and especially
learning, rely on comparisons between predictions and actual observations. One
fundamental premise of his anticipatory behavior control framework is the com-
parison of anticipated with actual sensory consequences. These comparisons may
be based on Bayesian models [53,20], which suggest that information integration
in the brain is dependent on certainty measures for each source of information,
and thus also most likely for forms of predicted information.

The first benefit of such a comparison is the consequent, continuous adaption
of behavior based on the difference between predicted and actual behavioral
consequences, as was also proposed in the reafference principle [83]. Hereby, the
difference measure gives immediate adaptive control information, in addition to
the current sensory state information. Also control theory relies on such com-
parisons to improve system measurements and system control, most explicitly
realized in the Kalman filtering principle [51,36].
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The filtering principle can also be applied to detect unexpected changes in the
environment and consequently trigger surprise mechanisms. For example, based
on a novelty measure that depends on the reliability of current predictions and
actual perceived sensory information [59], surprise may be triggered if the current
observation significantly differers from the predicted information. Surprise-based
behavioral mechanisms can then improve system behavior, enabling a faster and
more appropriate reaction to surprising events.

Surprise-dependent processes can also be used to improve predictive model
learning itself. For example, surprise-like mechanisms were shown to be useful
to detect important substructures in the environment [9], which furthermore is
useful to partition the environment into partially independent subspaces. This
capability was used, for example, to efficiently solve hierarchical reinforcement
learning problems [6,75]. Other mechanisms train hierarchical neural networks
based on failed predictions or based on activity mismatch between predicted and
perceived information [74,67].

Internal Simulations. Both aspects considered so far are mainly of the na-
ture of sensory anticipations, that is, sensory processing is improved, enhanced,
compared with, or substituted by anticipatory information. On the other hand,
anticipatory information can also be used beyond the immediate prediction of
sensory consequences to improve behavior and learning. Interactions with the
experienced environment are often re-played or projected into the future by
means of an internal predictive environmental model [18,32,40]. Two types of
internal simulations can be distinguished: online and offline simulations. Online
simulations depend on the current environmental circumstances and can improve
immediate decision making. Offline simulations resemble reflective processes that
re-play experienced environmental interactions to improve learning, memory, and
future behavior.

Current decision making can be influenced by simulating the consequences of
currently available alternatives. In its simplest but least computationally costly
form, preventive state anticipations [19] may be employed, which simulate the
usually occurring future events based on habitual behavior. The mechanism only
triggers preventive actions if the habitual behavior is expected to lead to an
undesirable event. In doing so, undesirable states can often be avoided with only
linear additional computational effort—linearly predicting the future of what
“normally” happens. Advanced stages of such anticipatory decision making leads
to planning approaches that consider many possible future alternatives before
making an actual decision [5,15,77].

In contrast to such online, situation-dependent simulation approaches for ac-
tion decision making, offline simulation, that is, the simulation of events that are
not necessarily related to the current situation, have been shown to be useful for
memory consolidation as well as for behavioral improvement. An example for
memory consolidation is the wake-sleep algorithm [41], which switches between
online learning phases, in which data inputs are stored in internal activation pat-
terns, and offline learning phases, in which internally generated memory traces
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lead to memory generalization and consolidation. A similar structure is exhibited
in bidirectional neural networks, originally applied to visual structuring tasks [67]
where the emergent activity patterns resembled neuronal receptive fields in the
visual cortex.

However, there are also behaviorally-relevant types of simulation, as exempli-
fied in the DYNA-Q system in model-based reinforcement learning [77,78] and re-
lated sub-symbolic generalizing implementations of the same principle [5,10,76].
Hereby, an internal environmental model is exploited to execute internal “as if”
actions and to update internal reinforcement estimates. Interestingly, from the
behavior observation alone, it is often hard to determine if behavior is anticipa-
tory due to previous offline simulations and resulting memory consolidation or
due to online, situation-dependent planning simulations [12].

In summary, internal environmental simulations can help to make better im-
mediate decisions, improve action decision making in general, and to learn and
generalize the predictive environmental model itself.

Goal-initiated Behavior. Internal simulations, however, do not appear to be
the whole story in the realization of efficient, flexible, adaptive behavior. Rather,
behavior appears to be generally goal-directed, or rather goal-initiated [43,44,82].
That is, the activation of a desired goal state precedes and triggers actual be-
havioral initiation and execution. Cognitive psychological research confirms that
an image of a goal, which is currently achievable, such as some immediate action
consequences, is present before actual action execution is initiated [56]. More-
over, concurrently executed actions interfere mainly due to goal representation
interferences, as shown in various bimanual behavioral tasks [60,55].

Thus, goal representations appear to trigger behavior, which is thus never
reactive but always anticipatory. This is essentially the tenet of the ideomotor
principle, proposed over 150 years ago [37,81,48]. This principle is now most
directly used in inverse modeling for control, in which a goal state and the current
state trigger suitable motor commands as output [50,57,62,80]. To further tune
the inverse model capabilities, coupled forward-inverse modules can enable the
choice of the currently most suitable inverse models amongst alternatives [84,34].

Additionally, it has been shown that goal-initiated behavior can efficiently
resolve and exploit redundancies in the activated goal representation(s). For ex-
ample, concrete goal states may be chosen based on redundant alternatives [72].
Also motor paths may be chosen based on current alternatives dependent on
anticipated movement effort [8]. In this architecture, additional task constraints
can be easily accounted for, for example, realizing efficient obstacle avoidance
or compensating for inhibited joints [8,38]. A recent combination with reinforce-
ment learning mechanisms enables the motivation-dependent goal activation,
effectively unifying payoff with state anticipations [39].

PredictiveRepresentations. Besides immediate influences on sensoryprocess-
ing and behavior, predictive representations need to be considered in more detail,
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which are often neglected in current adaptive behavior research. Representations
need to be generated that identify dependencies in time rather than in space or
between current input dimensions.

Recurrent neural networks have been applied in this respect, beginning with
the famous Elman networks [23]. Recently, successful motor control patterns
were published not only for hierarchical, self-organizing forward-inverse control
structures [35] but also for the generation of believable behavioral patterns in
real robot applications [46,45]. Additionally, the LSTM network approach [42,30]
proved to be able to efficiently relate regular recurring patterns over time. Echo-
state networks [47], on the other hand, are able to efficiently detect dynamic
patterns over time.

Applications of predictive representations in artificial cognitive systems ap-
pear imminent. Hierarchical clusters of captured dynamics to, for example, clus-
ter linguistic structures into recurring phonemes, syllables, words, and sentences
appear demanding. In this respect, a hierarchical sequence learning architecture
was shown to exhibit interesting, dynamically growing characteristics [11]. Cur-
rent performance of various recurrent neural network approaches and hierarchical
approaches can be found elsewhere [31,24].

Social Anticipations. The last aspect of beneficial influences of anticipatory
mechanisms lies in social interaction. Recently, there has been increasing evi-
dence that social beings show strong capabilities to represent the behavior of
other animals by means of mirror neurons [71]. Hereby, neural activity is shown
to represent not only one’s own behavioral patterns, such as a grasping action,
but also similar behavioral patterns executed by another animal.

Studies show that the animals hereby not only mirror the actual action but
also the purpose (that is, the goal) of the action [29]. Gallese strongly suggests
that mirror neurons are the key component to develop mutually beneficial in-
terpersonal relations and empathy mechanisms [28,27]. Arbib relates the mirror
system and consequent imitative capabilities to language evolution [1].

Regardless of the representation used, it seems obvious that, in order to ef-
fectively interact with conspecifics, avoid betrayal, but exploit mutual possible
benefit, it is necessary both to be able to individuate the conspecifics with which
interaction will take place and to be able to predict the behavior and current
goals of the other individual. Only then does trust and mutually beneficial be-
havior seems possible beyond evolutionary determined self-less behavior [69].

3 Overview of the Book

The taxonomy presented in the last section is reflected in the workshop con-
tributions. Additionally, as the title suggests, the book moves from brain and
cognitive evidence for anticipatory mechanisms to individual and social antic-
ipatory behavior systems. This general train of thought, however, is not only
reflected by the paper distribution in this volume, but it is also reflected in
various contributions themselves.
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3.1 Anticipations in Brains, Language, and Cognition

In the next chapter, Jason Fleischer [26] surveys neural correlates of anticipa-
tory processes in the brain, linking neural activity patterns identified in neu-
roscience research to anticipatory processes and research in adaptive behavior.
First, he gives an overview of neuroscientific research paradigms and points out
the difficulty in the different methodologies. He then focuses on three impor-
tant brain areas: (1) the cerebellum, which is mainly involved in motor learning
and control, (2) the basal ganglia, which is involved in reward-based learning,
sequential action selection, and timing issues, and (3) the hippocampus, which
is involved in sequential representations and memory formation. All three areas
are known to also represent anticipatory aspects of behavior and learning. Fleis-
cher concludes that the insights gained with respect to the distinct structures of
the three regions as well as their involvement in anticipatory processes should
provide helpful guidelines to design future anticipatory, brain-inspired artificial
cognitive systems.

Samarth Swarup and Les Gasser [79] survey anticipatory aspects in language.
They suggest that the more complex the language, the more anticipatory and so-
cial components appear to be involved in it. They take an evolutionary approach
and first identify the minimal conditions for the emergence of a proto-language.
Then, they analyze various languages in animals and identify the complexity of
the structure of a language and the symbolic character of a language as the two
main criteria for overall language complexity. Finally, they propose that over-
all language complexity increases along an anticipation axis from implicit over
payoff and sensory, to state, and to social anticipations. Theories of natural and
artificial language evolution are surveyed from this perspective. In conclusion,
the paper proposes that the study of the minimal conditions for the emergence
of language and the anticipatory component within may lead towards the de-
sign of artificial social agents that are able to learn to interact by a form of
communication that emerges within the agent society itself.

Alexander Riegler [70] then provides a slightly controversial but thought pro-
voking essay on the potential problem of superstitious machines. He points out
that an artificial system that attempts to process all information available is
destined to start believing in non-existing correlations. Such false beliefs about
interdependencies in the world may then lead to superstition and potentially
mental illness in the machine. The solution is not to follow an information
processing paradigm for the design of artificial cognitive agents, but rather an an-
ticipatory constructivist approach, which focuses on the validation of internally
generated, relevant anticipatory representations. Thus, instead of constructing
artificial cognitive systems as datamining machines, we should focus on machines
that construct an internal reality that represents only relevant interactions and
dependencies of the environment.

3.2 Individual Anticipatory Frameworks

The subsequent contributions focus on anticipatory mechanisms and artificial
cognitive system frameworks that include anticipatory components.
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Giovanni Pezzulo et al. [65] compare the ideomotor principle from the field
of psychology with the test operate test exit (TOTE) system from cybernet-
ics. Both principles have a goal-directed nature with an emphasis on behavior
and learning. Studies of a visual search system, a developmental arm control
system, and a motivational model-based reinforcement learning system show
that the ideomotor principle and the TOTE specify very similar behavioral
principles. Moreover, the comparisons point out that both principles are rather
underspecified and highlight additional mechanisms necessary to realize actual
implementations.

Vladimir Red’ko et al. [68] then propose the “animat brain” framework for the
design of artificial cognitive control systems. The framework is based on func-
tional systems that contain a coupled system of a forward model predictor and
an inverse model actor. Comparisons with other approaches highlight the poten-
tially high flexibility of the “animat brain” approach due to the combination of
reinforcement learning with hierarchically linked functional systems.

Aregahegn Negatu et al. [64] introduce an autonomous agent architecture
termed the “learning intelligent distribution agent (LIDA) system”, which is
also inspired by cognitive processes. Their system incorporates payoff, sensory,
and state anticipatory mechanisms. It it able to build associative and procedural
memory structures based on schema mechanisms, it realizes selective attention
based on global workshop theory [3,4], and it is able to select actions based on
its current internal drives and reinforcement learning principles. Simulations of
the system show competent behavioral and adaptive capabilities illustrating au-
tomation and deautomation due to an anticipatory measure of prediction failure
and consequent allocation of attentional resources.

Giovanni Pezzulo and Gianguglielmo Calvi [66] introduce a framework that
can be used to simulate and evaluate schema-based anticipatory behavior mecha-
nisms. Schema-based design, which is inspired by cognitive psychology research,
is theoretically analyzed emphasizing goal-orientedness, flexibility of application,
selectivity of information, and excitability, which depends on current drives and
contextual input. Moreover, cooperative competition between schemas as well as
pragmatic and epistemic (that is, information seeking) aspects of schema activity
are investigated. Pezzulo and Calvi then introduce the computational platform
“AKIRA Schema Language (AKSL)”, which allows the implementation of con-
current resource-competitive schema systems. Exemplars show that the system
masters action selection, attentional mechanisms, category formation, the simu-
lation of future behavior, grounding schema activity in behavioral patterns, and
hierarchical action control. The paper concludes with a proposal to use AKSL
to shed further light on the question when anticipatory mechanisms are really
beneficial for the improvement of cognitive process and behavior.

3.3 Learning Predictions and Anticipations

The next section of the book introduces several approaches to learning predic-
tions and correlations in time. Often, it is proposed that sensorimotor contin-
gencies are learned, that is, action-dependent sensory changes.
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Wolfram Schenck and Ralf Möller [73] teach a moving camera head to predict
sensory changes dependent on self-induced camera movements. They distinguish
between two learning tasks: learning to predict future visual input and learning
to predict the predictable visual areas in the input. To do so, their algorithms
learn an action-dependent mapping of visual input rather than to predict the
visual input directly. The task is successfully accomplished with a real cam-
era head plus simulated fovea image (a retinal mapping), showing impressive
learning and consequent action-dependent image mapping capabilities. The an-
ticipatory component comes in handy here both for learning the mapping as well
as for identifying predictable sensory input, working on the direct comparison of
anticipated and consequently perceived actual input.

Jérémy Fix et al. [25] move higher up in the visual processing realm and tackle
the task of memorizing the location of stimuli, which were previously focused
upon. The task to maintain a coherent internal memory of stimulus locations de-
spite the drastic perceptual changes due to saccadic eye movements is certainly
non-trivial. To solve the problem, the authors introduce an interactive model
of working memory, which maintains currently perceived inputs dependent on
focus and predictions, and long-term memory, which predicts perceived inputs
and is updated by working memory activity. Hereby, simulations show that an-
ticipations are mandatory to be able to maintain a coherent memory of stimuli
locations in the environment, independent of current eye focus. A complete and
coherent memory can only be maintained when anticipatory mechanisms are
applied.

Stefano Zappacosta et al. [85] propose a testbed for recurrent neural networks
and related systems to integrate information in time. The task is to scan an
object or a wall while moving around it or along it, respectively. The recurrent
network is trained to classify the object scanned, investigating prediction ro-
bustness, noise-robustness, and different aspects of generalization capabilities of
the network in question. Elman networks, leaky integrator neural networks, and
echo state networks are exemplary introduced as suitable network candidates.
An Elman network is then evaluated on two testbed instances: a wall task in
which two different wall patterns need to be distinguished, and an object task
in which three different objects are perceived. The testbed, possibly with addi-
tional action-information of movement type and speed in the future, seems to
be a valuable tool to test and compare the capabilities of different time-series
classification algorithms on somewhat real-world robotic classification tasks.

Philippe Capdepuy et al. [17] investigate the more symbolic challenge of event
anticipation. The information-theoretic measures based on constant and consis-
tent time delays as well as on contingency, that is, proximity in time, are used
to automatically detect interesting event dependencies. Although only the pre-
dictive capabilities are investigated, the authors discuss the importance of such
capabilities for anticipatory action decision making and propose also the involve-
ment of epistemic verification actions that could be triggered for the verification
of hypothesized event dependencies. Despite currently unresolved scalability as
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well as subsymbolic issues, the paper shows that the employed information-
theoretic measures are highly capable of detecting consistent event contingencies
and time-delay relationships.

3.4 Anticipatory Processes in Behavioral Control

Predictive capabilities alone are not sufficient for anticipatory behavior, though.
The following papers address different aspects of goal representations and pre-
dictions that directly influence actual behavior.

Kiril Kiryazov et al. [52] present an integrated behavioral architecture that
uses symbolic analogical reasoning to make action decisions. The system is
mounted onto the Aibo real-robot platform and solves the task of finding interest-
ing objects in a house-like environment. Besides the anticipatory decision making
capabilities based on analogy, the system applies selective attention mechanisms
as well as top-down anticipatory perception mechanisms to filter out relevant
information in the environment. Although it is hard to compare the current ca-
pabilities of the platform with other architectures due to the many hardware and
setup dependent factors, the resulting anticipatory behavior aspects realized on
an integrated real-robot platform are highly promising.

Toshiyuki Kondo and Koji Ito [54] present a recurrent neural network ar-
chitecture with neuromodulatory biases that shows to be able to reach targets
under various force fields. The network weights and connectivity evolve by means
of a genetic algorithm. It is shown that the anticipatory biases are beneficial to
achieve more robust reaching behavior under differing force fields. The results
suggest that recurrent self-stabilization mechanisms can be highly beneficial for
adaptation in gradually changing environmental circumstances. Future evalua-
tions appear necessary to further shed light on the emergent representations and
control components in such evolved recurrent neural network structures.

Arnaud Blanchard and Lola Cañamero [7] study how positive and negative
goal states can be efficiently remembered in order to enable optimal behavioral
control. They use a developmental approach that learns to classify goals based on
a reinforcement learning derived scheme. Their aim is to use a minimal amount
of memory by remembering only maximally suitable and unsuitable states in the
environment—leaving the task to reach these states to a goal-directed control ar-
chitecture. Their real robot implementation of the system is able to identify suit-
able goals as well as undesirable goals efficiently with a very low memory require-
ment. Future work intends to enhance the goal identification mechanism to be
able to identify multiple and more distinct goals. Moreover, the goal generation
mechanism will be interfaced with a motivational component, which will gener-
ate drives and correspondingly desired goal states as well as goal-directed motor
control mechanism, which will be able to reach currently desirable goal states.

Arshia Cont et al. [2] use predictive system capabilities for the generation
and improvisation of music. The paper provides a thorough overview of antici-
patory cognition identified in music theory, suggesting that musical processing is
highly anticipatory based on veridical expectations, schematic expectations, dy-
namic adaptive expectations, and conscious expectations. All four types interact
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concurrently and competitively. The remainder of the paper then focuses on the
integration of payoff and state anticipations into a music generating and im-
provisation architecture, working either in self listening mode or in interaction
mode, respectively. The provided results of the imitation of a Bach piece are
impressive and promise fruitful future integrations of anticipatory mechanisms
for automatized music generation and improvisation.

3.5 Anticipatory Social Behavior

After the study of different aspects of individual anticipatory behavior, the last
chapters of this book address the importance of anticipatory mechanisms for
efficient social interaction.

Mario Gómez et al. [33] introduce an anticipatory trust model in open dis-
tributed systems. A theoretical taxonomy of trust distinguishes between direct
trust, which is about previously experienced service quality of another agent,
and advertisement- and recommendation-based forms of trust, which are about
the suggested service quality of another agent by yet other agents. The different
measures are combined into a global trust measure—essentially the weighted
average of the individual measures. Experiments are carried out in a simulated
market environment with trading agents. The results stress the importance of
stability and the capability to identify properties of other individuals, in order
to be able to develop effective notions of trust. Moreover, they show that if the
system is able to predict the behavior of other agents, the agent is able to adapt
to changes in the environment more effectively.

Gerben Meyer and Nick Szirbik [63] study anticipatory alignment mechanisms
in multi agent systems with petri nets. Conceptualizations are carried out within
belief propagating networks, studying three types of alignment policies: on-the-
fly alignment, pre-interaction alignment, and alignment induced by a third party.
The mechanisms are illustrated within a business information system, sketching
out constraint transactions of goods and money between multiple agents. It is
shown that the state anticipatory mechanism is able to yield more efficient agent
interaction executions. The integration of trust mechanisms for more efficient
agent communication appears imminent. Moreover, the proposition of actual
simulations in real-world game-like scenarios with other artificial agents, but
also with expert players, promises to be highly revealing for future applications.

Emilian Lalev and Maurice Grinberg [58] study two recurrent neural network
architectures playing the iterated prisoner’s dilemma. While the first model used
backward-oriented reinforcement learning methods, the second network basis its
move decisions on generated predictions about future games. Thus, the latter
network anticipates the behavior of the opponent player. The results suggest
that human players use anticipatory capabilities to guide their decision process
within the game. As with actual human participants, the cooperation rate of
the latter network depended on a so-called cooperation index, which quantifies
the likelihood that the opponent player cooperates. Thus, the results suggest
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that anticipatory connections are mandatory for efficient human-like network
interaction within the iterated prisoner’s dilemma game.

The final paper in this series studies the benefits of anticipating the behavior
of another robot agent. Birger Johansson and Christian Balkenius [49] placed
two real robots in differently complex arenas with the task of switching places
with each other. The results show that in very simple environments without
obstacles, a goal-directed behavioral strategy without any consideration of the
opponent player, except for a reactive hard-coded obstacle avoidance mechanism,
yielded the most efficient behavior. However, in more complex environments, in
which robot interference is inevitable and harder to resolve, anticipatory mech-
anisms yielded the fastest behavior. In this case, the anticipatory mechanism
predicted the behavior of the opponent robot and resolved possible trajectory
conflicts online. Thus, it is shown that higher complex environments can make
more complex, cooperative, anticipatory mechanisms beneficial. In very simple
interactive environments, on the other hand, ignorance of the opponent or coop-
erative player can also be more effective, since no expensive contemplations and
communicative interactions are necessary.

4 Conclusions

Research on anticipatory behavior mechanisms can be found in a variety of
research areas. Indications for anticipatory mechanisms in the brain, and their
influences on cognition and resulting individual and social behavior, continue to
accumulate. It is hoped that anticipatory research in general, and this enhanced
and re-reviewed post-workshop proceedings volume in particular, will contribute
to a general understanding of anticipatory mechanisms in cognitive systems.

This introduction conceptualized different anticipatory mechanisms providing
a taxonomy of how anticipatory mechanisms may improve adaptive behavior
and learning. The overview of the contributions of this volume exposes impor-
tant correlations of anticipatory behavior mechanisms between different research
disciplines. These include neuroscience, cognitive psychology, linguistics, individ-
ual and social adaptive behavior research, music theory, business research with
trading agents, and research in cognitive modeling.

The book can certainly only provide a glimpse at the different aspects of antic-
ipations in these various disciplines. However, we believe that the contributions
reveal and develop many highly correlated recurring anticipatory mechanisms
and they identify many anticipatory principles that are highly beneficial to im-
prove individual and social adaptive behavior. Thus, we hope that the articles
in this volume will be inspiring for researchers in the cognitive systems area and
lead to the offspring of many fruitful future research projects and interdiscipli-
nary collaborations amongst scientists interested both in a deeper understanding
of natural cognitive systems and in the further development, design, and appli-
cation of adaptive, flexible, and efficient artificial cognitive systems.
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Abstract. Animals anticipate the future in a variety of ways. For in-
stance: (a) they make motor actions that are timed to a reference stim-
ulus and motor actions that anticipate future movement dynamics; (b)
they learn to make choices that will maximize reward they receive in
the future; and (c) they form memories of behavioral episodes such that
the animal’s future actions can be predicted by current neural activity
associated with those memories. Although these effects are clearly ob-
servable at the behavioral level, research into the mechanisms of such
anticipatory learning are still largely in the early stages. This review,
intended for those who have a computational background and are less
familiar with neuroscience, addresses neural mechanisms found in the
mammalian cerebellum, basal ganglia, and the hippocampus that give
rise to such adaptive anticipatory behavior.

1 Introduction

Anticipatory behavior occurs when actions depend not only on past and present
but also on predictions, expectations, or beliefs about the future [4]. While the
volume in your hands is largely concerned with the computational or theoretical
aspects of anticipatory behavior, the researchers who participate in the Antic-
ipatory Behavior in Adaptive Learning Systems meeting are also interested in
the processes that allow animals to generate such behavior. This paper will pro-
vide an overview of some types of neural activity in the mammalian brain that
are highly correlated with particular forms of anticipatory behavior. Behaviorally
correlated neural activity is generally interpreted as evidence that the brain area
where the activity appears is involved in producing the behavior. Therefore, the
study of activity correlated with anticipatory behavior can potentially reveal the
neural mechanisms underlying behavioral production.

1.1 The Neural Correlates of Behavior

Behavioral neuroscience1 is the study of how the mechanisms of the nervous
system give rise to the behaviors observed at the level of the whole organism.
1 Some people prefer terms such as biological psychology, systems neuroscience, or

cognitive neuroscience to describe roughly the same idea.
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Questions of mechanism are always difficult to address, but the nature of the
nervous system, with its nearly-innumerable interacting components (humans
have on the order of 1015 synapses) and its largely unknown molecular machinery,
is particularly difficult. Creating a theory about the mechanism of a behavior,
or the contribution a brain region makes to a behavior, is often only achieved
by piecing together several indirect lines of evidence. The most common forms
of evidence to look at are:

1. Anatomy: It is fairly clear where sensory and motor information arrives at
or departs from the central nervous system. Neurons that are only a few
synapses away from a sensory or a motor neuron are most likely to process
that kind of information. Likewise, once a theory of function has been well-
established for a particular brain region, it naturally may suggest functions
of other areas that produce input for that region or receive output from it.

2. Lesion studies: Brain-damaged human patients or targeted lesions created in
experimental animals can define which brain areas are at least necessary for a
behavior. However, the problem arises that there are often multiple, parallel
systems performing similar functions that can be difficult to disassociate
from each other. In addition, knowing that a lesion to a particular region
disrupts a behavior does not mean the region is responsible for the behavior.
For example, the signals responsible for producing the behavior could merely
transit through that region rather than originating or being processed there.
Also the lack of disruption when a lesion occurs does not indicate the region is
not involved in the behavior under some circumstances — parallel pathways
could be compensating for the damaged region.

3. Imaging studies: Using magnetic resonance imaging, positron emission to-
mography, or similar techniques the neural activity of an entire region may
be studied at once. This allows one to look for behaviors that correspond
to activity in the region being studied; such correlated activity would at
least suggest that the region is involved in that behavior. However, these
methods suffer from the problem that it is not always clear what is going
on at a mechanistic level. For instance measuring blood flow in an MRI only
tells how metabolically active that brain region is, not whether it is affecting
other regions and, if so, whether its effect is inhibitory or excitatory.

4. Single-unit recording: Electrodes are inserted into the brain and the action
potentials fired by a single neuron are recorded, thus allowing one to study
behavioral correlates of single neurons. However, the problem here is the
inverse of the one above — it is difficult to record enough neurons simul-
taneously to understand much about how activity progresses through the
nervous system.

Finally, it is important to note that while behavioral neuroscience is striving
to understand the functioning of the nervous system in producing behavior,
this does not imply that the goal is to assign one function to each and every
neuron or brain region. Clear behavioral correlates are usually obtained only
once the experiment has been highly simplified and the subject over-trained.
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Neural activity is much messier when performing natural tasks, because most
parts of the brain are likely to be involved in many behavioral functions. Yet
clear progress can be, and has been made in understanding several aspects of
behavioral production in the mammalian nervous system. It just requires the
steady accumulation of multiple lines of evidence.

1.2 Scope

There is strong evidence that several brain regions are important in anticipating
the future over different time-scales. This review focuses only on anticipation
over time-scales of seconds or less. Long time-scale (minutes and longer) cog-
nitive planning and circadian timing of behaviors is beyond the scope of this
review, although the former are typically seen as involving frontal cortical areas
of the brain [39,17], and the latter are believed to be primarily related to genetic
transcription/translation auto-regulatory loops and involve a brain area known
as the suprachiasmatic nuclei [17].

The brain areas and behavioral functions that will be reviewed in this paper
are listed below:

Cerebellum: involved in many aspects of motor learning. This review looks at
its involvement in both timing motor movements in relationship to stimuli,
and in computing forward kinematic models that predict the results of motor
commands.

Basal ganglia: involved in learning, timing, and sequential action selection.
Most strikingly, parts of the basal ganglia contain neurons whose activity
correlates with predictions of the reward structure of the environment.

Hippocampus: (and surrounding areas) involved in learning and memory. Par-
ticularly, the hippocampus is necessary for creating memories that are se-
quential in nature, such as memories of route navigation. There are strong
activity correlates of these kinds of memories in the hippocampus, and these
correlates encode information about future events in the behavioral sequence.

2 Cerebellum - Motor Actions and Timing

The cerebellum is located to the rear of the brain underneath the cerebral cortex.
Although it contains only about 10% of the brain’s volume it has roughly half of
all neurons. It has a regular, layered organization that basically consists of repe-
titions of the same circuit. Yet it contains several distinct regions, each receiving
input from different parts of the brain, thus suggesting that the cerebellum is
performing the same kind of calculations, but on a variety of data.

A cerebellar circuit (see figure 1) receives its input through two pathways:
climbing fibers that excite single Purkinje cells directly, and mossy fibers that
excite the parallel fibers joining cerebellar circuits together. The Purkinje cells
excite deep cerebellar nuclei which in turn produce the cerebellum’s output.
The parallel fibers also stimulate inhibitory cells (not shown in the figure for
clarity) that prevent Purkinje cells from firing; this produces a center excitation
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and surrounding inhibition effect. Only Purkinje cells that receive high levels of
input from their climbing fibers as well as the parallel fibers will fire. Nearby
circuits will be prevented from firing due to the inhibitory cells that take their
input from the parallel fibers.

Fig. 1. A schematic depiction of a single cerebellar circuit. Input goes through the
inferior olive (IO) via the climbing fibers to the Purkinje cells, which excite the deep
cerebellar nuclei (DCN) that produce the cerebellum’s output. Another input pathway
goes via the mossy fibers to the granule cells and their parallel fibers that lead to other
cerebellar circuits. The parallel fibers also excite cells (not shown for clarity) which
inhibit Purkinje cells.

The cerebellum has long been implicated in the feedback control of motor
activity [22], but it may also be involved in anticipatory forms of motor control.
This section contains a review of the cerebellum’s possible role in timing motor
actions and in predicting the kinematic results of those actions. These are prob-
lems of anticipation in the millisecond to second range, resulting from the need
of the animal to produce smooth, controlled behavior while interacting with the
physical world.

The cerebellum is involved in the timing of motor actions that are repetitive,
such as rhythmic tapping. An ability to accurately reproduce a rhythm is a basic
form of motor timing which can be used for producing anticipatory motor be-
havior. One way to measure this ability is to start a test subject tapping in time
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to a metronome and ask them to continue the beat after the metronome stops.
Patients with cerebellar damage are impaired at this task [14,15]. Patients with
damage to medial parts of the cerebellum have deficits that could be described
as execution (motor) error, and patients with damage to lateral parts of the
cerebellum had deficits in timing their tapping but not in executing the motor
action. This demonstrates that the cerebellum is involved not only in produc-
ing the motor performance, as would be predicted by the standard theory of
cerebellar function, but is also involved in timing the rhythm.

The cerebellum is also involved in learning the timing of motor actions that are
not repetitive, but must be executed in precise temporal relation to an external
stimulus. The classic example of this is eyeblink conditioning [24,48], where a
tone cue (conditioned stimulus, CS) begins at a fixed interval (100 ms - 3 s)
before a puff of air (noxious unconditioned stimulus, US) is delivered to the eye.
Rabbits learn that the CS predicts the appearance of the US, and shut their
eyelids in response to the CS after 100-200 trials. After conditioning they shut
their eyes with a delay such that the response peaks on average at the time the
US is presented. Cerebellar lesions abolish the proper timing of a conditioned
eyeblink response.

Another form of prediction that seems to be performed in the cerebellum is
the computation of where a limb will be in the near future — this is known as a
forward model. Optimal motor control theory requires the presence of a forward
computation of what the effect of a motor command will be given the current
state and motor commands [51]. A forward model provides the nervous system
with a prediction of what the body state will be like in the near future. This
prediction can be used to more accurately estimate actual body position.

Alternatively, a forward model can allow the production of movements that
are faster than using only feedback control [17]. Animals have muscles arranged
in antagonistic pairs so producing a desired motion without overshoot requires
applying an early breaking force. While this calculation can in theory be per-
formed using only feedback control, the long delays in the nervous system and
the dynamic properties of muscles and proprioception favor the use of forward
motion models for choosing when to apply the breaking force.

The cerebellum may coordinate eye and hand movements through the use
of forward models [27]. Maximum eye-hand coordination is achieved by having
the eyes slightly lead the hand, and the motor system is therefore hypothesized
to use forward-model information from the ocular motor system to increase
accuracy in producing hand movements. Imaging studies have demonstrated
cerebellar involvement in these types of tasks [28]. Several studies reviewed in [2]
demonstrate that patients with cerebellar damage have difficulty adapting to
predictive (forward) motor control problems, but are equivalent to controls when
adapting to reactive (feedback) motor control problems.

Mauk and Buonomano [23] hypothesize that both interval timing and feed-
forward control deficits in cerebellar patients may be due to the same mecha-
nism. They argue that tasks that involve stopping and starting, such as tapping
and blinking, would have particularly noticeable effects if the feed-forward
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models controlling antagonist muscle timing were disturbed. Thus they offer us
the controversial possibility that both types of deficits result from a disturbance
of the forward model.

It should be noted that the cerebellum is not the only brain region thought to
be involved in creating forward motion models in the brain. The parietal cortex
and various motor regions have neural activity that appears to encode limb
positions in a variety of coordinate systems. They also have neural activity that
encodes limb kinematics and dynamics in the near future; i.e., forward models. A
good review of this material can be found in [45]. This does not, however, conflict
with the view that the cerebellum is involved with computing forward models. It
appears that the cerebellum is particularly involved with adapting these models
during behavior — all of the citations offered above regarding cerebellar forward
models have that flavor to their results.

3 Basal Ganglia — Dopamine and Reward

The basal ganglia are a collection of midbrain structures, including the regions
that are the primary topics of this section: the striatum, the substantia nigra,
and the ventral tegmental area. The basal ganglia is involved in learning and
action selection, and disorders of this region lead to devastating diseases such as
Parkinson’s, Huntington’s, and Attention Deficit Hyperactivity Disorder.

The basal ganglia are also interesting because of their unique anatomy and
physiology, which is illustrated in figure 2. Input converges on the striatum from
many different cortical locations. The striatum in turn projects to several other
structures inside the basal ganglia. Information flows in several anatomically
segregated, parallel loops through the basal ganglia before projecting back out
to the cortex by way of the thalamus [26].

This region is the primary source of the neurotransmitter dopamine in the
brain. The dopaminergic neurons, named after the neurotransmitter they release
when firing, are located in the substantia nigra pars compacta of the basal ganglia
and in the nearby ventral tegmental area (VTA). From these small structures
the dopaminergic neurons project their axons widely throughout the brain, but
primarily to striatum, where most of their input originates, and frontal cortical
regions. The disorders mentioned above in relation to the basal ganglia are all
disorders of dopamine function.

The basal ganglia’s involvement in learning may come from neurons in this
region whose activity seems related to the computational theory of reinforcement
learning. Reinforcement learning is in turn based on observations of animal be-
havior at the cognitive level, thus completing a nice circle from observation of
behavior, through computational theory, to observations of neural mechanisms
that seem to be responsible for the behavior.

Reinforcement learning is of interest from the anticipatory learning viewpoint
because the animal is learning to predict rewards that it will receive in the future
in order to make decisions about actions in the present to obtain the best possible
reward. Thorndike [49] originally formulated the principle of reward learning in
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Fig. 2. Left : Dopaminergic neurons located in the substantia nigra of the basal gan-
glia and the adjacent ventral tegmental area project widely (arrows) across the brain.
Dopamine release is associated with rewarding or pleasurable stimuli. Right: Informa-
tion flows through the basal ganglia in segregated loops that pass through the thala-
mus and onward through sensory and motor cortical regions and also directly to motor
neurons in the spinal cord. Connections within basal ganglia (not shown) maintain the
segregation of the loops.

the following way, “Any act which in a given situation produces satisfaction
becomes associated with that situation so that when the situation recurs the act
is more likely than before to recur also.” This principle was further elaborated on
in the Rescorla-Wagner model of Pavlovian conditioning [38]. This is an error-
correction model where the associative strength between conditioned stimuli and
the unconditioned stimulus is increased only to the extent to which the US is
unpredicted by the CS. Learning slows progressively as the US becomes more
predicted by the appearance of the CS. The temporal difference (TD) learning
rule [47] is an extension of this principle to the operant conditioning domain2.
TD learning is also an error-correction model based on the animal’s experiences.
The TD rule is particularly powerful because learning can still take place even
when the reward does not arrive every time the correction action is taken, and
even when the reward arrives at an arbitrary delay after the correct action.

Temporal difference learning is algorithmically simple: ΔV (t) ∝ V (t − 1) −
R(t), where t is time, V is the predicted reward, and R is the actual reward
received. The ΔV term is the reward prediction error, and is used in a rein-
forcement learning algorithm to drive the system to change its action selection
mechanism in a way that allows the learner to obtain more reward over time.

Dopaminergic neurons have activity which can be related to the reward predic-
tion error of TD learning [41,50]. Dopamine is released phasically with rewarding
stimuli; that is, midbrain neurons release dopamine with short latency after the
rewarding stimulus, and this increase in dopamine release persists for only a

2 In Pavlovian conditioning reward always occurs after the CS is presented, whereas
in operant conditioning the animal must make a correct action or it will receive no
reward.
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short time. The release of dopamine does not appear, however, to be just related
to reward or pleasure [29]. The phasic dopamine signal has several properties
that make it a candidate for carrying a TD-style reward prediction error, as is
shown in figure 3. Dopamine is released when the animal receives an unexpected
reward, which would correspond to a positive reward prediction error. Dopamine
is no longer released for a rewarding stimulus once the animal has learned to
expect reward in a particular situation — the reward would be fully predicted
in this case and the prediction error should be zero. Finally, if the animal does
not receive the reward when it expects to receive it, then there is a depression
of dopamine release, which is consistent with the negative prediction error that
would occur in that situation.

Fig. 3. Rastergrams showing how the activity of dopaminergic neurons in VTA is
similar to the reward prediction error of TD learning. VTA neurons respond strongly
if the animal receives an unpredicted reward (left). When the animal has learned that
CS predicts reward then VTA neurons respond strongly at the CS and not at the US
(middle). When the animal does not receive the reward as expected, the firing rates
of VTA neurons depresses at the time of the expected reward (right). Each dot is an
action potential fired by the neuron being recorded, and each row represents one task
trial. Time is on the x-axis. The top of each graph is a histogram showing the number of
action potentials that occurred over all trials at each time point. This figure is modified
from http://scholarpedia.org/article/Reward Signals

The dopaminergic system is also an interesting candidate for carrying a re-
ward prediction error because it projects widely across many brain areas in a
uniform fashion. Dopamine producing neurons fire synchronously and do not
have any systematic differences in the locations to which they project. Therefore
the dopamine signal reaches many brain regions with no systematic difference in
the signal from brain region to brain region. This is consistent with usefulness
of a reward prediction error in any situation in which the animal is trying to
maximize the amount of reward it receives.

However, not everyone believes that the short-latency dopamine signal is
a reward prediction error. An alternative hypothesis is that the short-latency
dopamine response is involved in novelty-detection and attentional mechanisms.
It has been suggested that the initial burst of dopaminergic firing could represent
an essential component in the process of switching attentional and behavioral



Neural Correlates of Anticipation in Cerebellum 27

selections to unexpected, behaviorally important stimuli [36]. This fits in with
the role of dopamine dysfunction in Attention Deficit Hyperactivity Disorder.
Note that this theory of function is also of interest from an anticipatory learning
standpoint; one possible mechanism that can be used in deciding which stimuli
are novel and worth giving attentional resources is to pick ones which cannot be
predicted [8,40,18].

If we accept the hypothesis that the short-latency dopamine response is a
reward prediction error, it still raises the question of how this signal is being
used to produce behavior. One mechanism that is suggested by the analogy of
dopamine and TD error is the use of an actor-critic architecture [47]. In this form
of model the critic learns to predict the reward structure of the environment and
produces a learning signal used by a separate actor to learn what actions will
produce the most reward over time. The exact form and location of the actor
and critic components has been the subject of several theories [13,16,35,31,12].
But most of these models point at the probable involvement of the striatum
because it is both the largest input to and largest output from the dopaminergic
neurons.

There are also neural activity correlates of reward terms in several areas out-
side the basal ganglia [42,43] including orbitofrontal cortex, prefrontal cortex,
cingulate cortex, perirhinal cortex, parietal cortex, premotor cortex, frontal and
supplementary eye fields, and the superior colliculus. This list includes regions
involved in executive function, sensory processing, and even motor control. Many
of these regions receive substantial dopaminergic projections. There is a broad
range of reward-related activity in these regions, including stronger activity when
rewarded, stronger activity when the reward is more certain, and a ramp-up of ac-
tivity during the waiting period culminating in highest activity when rewarded.
It is likely that all of these signals are useful in different ways in producing
adaptive behavior that maximizes reward. It is also likely that there are mul-
tiple, parallel systems that use these signals just as there are multiple, parallel
locations that carry this reward information.

The basal ganglia are also hypothesized to be involved in the problem of action
sequencing. Neurons in basal ganglia show activity that encodes serial movement
order, for instance when a rat is engaged in grooming actions that have a natural
sequence [1]. Actor-critic models of the basal ganglia, such as those discussed
above, possess the useful computational ability to learn action sequences that
lead to reward at a time much later than the action. Interestingly, the interval
timing task discussed in the cerebellum section can also be seen as an action
sequencing problem. There is evidence that the basal ganglia are involved in
interval timing performance as well [3]: patients with dopamine disorders have
problems with interval timing tasks, and the basal ganglia are hypothesized
to produce interval timing through coincidence detection of the relative phases
of many oscillators located in different brain regions. This close relationship
between the functions of basal ganglia and cerebellum in learning, timing, and
motor control has been noted by others [6,15].
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4 Hippocampus - Episodic Memory

Episodic memory can be defined as the integration of sensory events (“what”),
over time (“when”), and space (“where”) [11]. In humans, episodic memory is au-
tobiographical in nature, a memory of personal experience instead of just the dry
knowledge of a fact. The medial temporal lobe, which includes the hippocampus
and adjacent cortical structures (see figure 4), is necessary for the acquisition of
episodic memories, as demonstrated by the deficits of patients that have damage
to this brain area [44], and by imaging studies [46,30].

Fig. 4. Left : A cutaway of the medial temporal lobe including the hippocampus. Inputs
from all over the brain converge onto the entorhinal region and from there enter the
hippocampus. Right: A schematic of the hippocampal circuit. Input from the entorhinal
cortex projects via the perforant path to dentate, CA3 and CA1 hippocampal subfields.
Another pathway, the trisynaptic loop, projects from the entorhinal cortex to dentate
to CA3 to CA1 and then back to the entorhinal cortex. Self-excitatory loops exists in
both CA3 and dentate. The overall effect is that a great variety of signals pass through
nested loops of various lengths — thus integrating different information streams over
several time scales.

Navigation can be seen, in this sense, as a special case of a more general
episodic memory process, where sequences (when) of egocentric perception
(what) are converted into an allocentric map (where) of the environment [37].
The hippocampus is known to be important for navigation ability in both hu-
mans [21] and rodents [33], which suggests both that navigation and episodic
memory rely on the same processes, and that animals may constitute a valid
model for episodic memory research (on this topic, see also [5]).

One of the most interesting and well-studied neural correlates of episodic mem-
ory is the place cell. In the rodent hippocampus there are excitatory pyramidal
neurons whose firing is highly correlated with the animal being at a particular
location in the environment [32]. Such cells fire action potentials at rates up
to 40Hz when near the location they respond to, tapering off their firing rates
gradually while moving away from that location, often in a Gaussian-like manner.
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This Gaussian-like relationship between place and firing rate of a cell is known
as a place field (see figure 5). When the animal is far from the center of the place
field the cell may be completely silent or at most fire a few handfuls of action
potentials over very long periods of time.

Fig. 5. A schematic example place field of a hippocampal neuron. When the animal is
in a particular location in the maze the cell has high firing rate (dark). This firing rate
drops away in a gradual fashion as the animal is further from the center of the place
field (lighter color in the field map). Elsewhere the cell is totally silent.

Place cells also have several interesting characteristics from the standpoint
of anticipatory learning. Such cells have a phase relationship with the theta
rhythm that contains information about whether the animal is just approaching,
at the center of, or departing from the place field [34]. The theta rhythm is an
oscillation of 7-12 Hz observed in electro-encephalograms of the hippocampus.
When a place cell in the hippocampus begins to fire action potentials as the rat
enters the place field, it begins consistently at a particular phase relationship
to the theta rhythm. Then as the rat traverses from the leading to the trailing
edge of the place field, the phase shifts progressively forward on each theta
cycle. It does so in a way that suggests it is actually location and not time
that determines the phase relationship. Thus place cell firing contains not just
information about how close the animal is to the center of a particular place cell,
but also information about whether the animal is approaching the center of the
field (a predictive encoding) or has already crossed the center and is departing
the place field. There is evidence that phase relationships are indeed a fairly
general mechanism used by several brain regions to encode the serial order of
relationships [20]. Serial order encoding of stimuli is a necessary pre-condition
before it is possible to produce behavior that anticipates a sequence.

Another interesting neural correlate of episodic memory that has a strong
anticipatory flavor are hippocampal cells that have place fields only if the animal
will take a particular path in the future, but have no firing field if the animal



30 J.G. Fleischer

Fig. 6. A schematic example of a retrospective (left) and prospective (right) hippocam-
pal place field. When the animal is in a particular location in the maze the cell has a
place field only if the animal has taken (retrospective, left) or will take (prospective,
right) a particular path. Otherwise the cell is silent.

will take a different path [7,52,10]. A place field whose activity is dependent
on the future path in this fashion is said to have prospective coding. There
are also cells whose place fields exist only if the animal has arrived at the field
location via a particular path, but not when another path is used [7,10]. A place
field whose activity is dependent on the past in this fashion is said to have
retrospective coding. A schematic example of such a firing field can be seen in
figure 6. Somewhere between half [7] and two-thirds [52] of hippocampal place
cells have prospective or retrospective coding.

The existence of prospective and retrospective place fields implies that the
hippocampus contains information not just about what, where and when, but
also information that associates different wheres and whens together, which is an
important ability for an anticipatory learning system. One of the most convincing
elements establishing prospective activity as an observable correlate of an entire
behavioral episode, is the discovery [7] of cells that fire in a prospective coding
for one future path even if the animal makes a momentary error and begins
traveling down the incorrect (non-coded) pathway before correcting itself and
taking the correct path. This demonstrates that the prospective firing field is
related to the whole path through the maze (the intended behavioral episode)
and not the immediate decision that is about to be made at the next junction.

Why is it the hippocampus, and not some other brain region, that seems to be
responsible for forming episodic memory? The unique anatomy and connectivity
of the hippocampus is the likely mechanism by which episodic memories are
formed [19,9]. The region receives many different inputs from both unimodal
and polymodal sensory areas as well as higher association areas of the cortex.
All this information is merged and flows through several nested loops of different
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time-scales in the hippocampus. The hippocampus then projects broadly back
out to many regions of the cortex. This convergence, looping, and divergence of
information, seen in figure 4, is a mechanism that can form associations across
space and time.

Perhaps because of its central role in memory, the hippocampus is also in-
volved in a variant of the eyeblink conditioning task known as trace condition-
ing [48]. Trace eyeblink conditioning is different from regular eyeblink condition-
ing in that there is a delay period between CS and US, such that the tone is
off (between 500ms and tens of seconds) before the air puff is delivered. The
lack of stimuli predicting the noxious US in the delay period makes this a more
memory-intense version of eyeblink conditioning. Rabbits with hippocampal le-
sions are unable to acquire trace conditioning and rabbits that have been trained
and then lesioned lose the conditioning. Additionally, there are strong neural
correlates of trace conditioning in the hippocampus; around one quarter of hip-
pocampal excitatory neurons fire maximally when the US should appear even if
it is omitted [25].

5 Conclusion

This review has presented results demonstrating the involvement of three brain
regions with anticipatory behavior. There are, however, other regions of the brain
that are beyond the scope of this review that are probably involved with these
same anticipatory behaviors. In addition, the regions covered in this review have
neural correlates of other anticipatory behaviors that were not discussed here.
The references discussed in the previous sections can provide the reader with an
entry point into this literature.

Although each brain region was presented at the beginning of the review as
being associated with a particular form of anticipatory behavior, there were in
fact considerable overlaps that were pointed out at various points in the text.
The hippocampus is involved in some forms of eyeblink conditioning, as well as
being required for episodic memory. Basal ganglia are involved in timing, as well
as producing a primary learning signal. The cerebellum is involved in learning, as
well as being important for timing of motor actions. This should give the reader
a feeling for behavioral neuroscience research and an understanding of why a
point was made earlier about the need to accumulate evidence from multiple
sources to formulate theories of function.

Although it is still not possible to fully understand the mechanisms that pro-
duce even some fairly simple behaviors in mammals, this review did illuminate
a principle that could be of use in designing anticipatory learning systems. All
three of these brain regions have unique anatomy that is very likely the mecha-
nism by which they compute the functions proposed in this paper.

– The cerebellar circuit has a two-input, center excitation, surround inhibition,
multi-layer structure that undoubtedly plays a large role in its ability to
process information about millisecond level timings.
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– The basal ganglia contains multiple segregated loops that may allow it to
use the reward predictions it generates to select an appropriate action from
many possibilities.

– The hippocampal circuit contains multiple nested loops of varying time-
scales that help to integrate information over time to produce memories.

Hopefully computational theorists in the anticipatory learning community will
be able to draw on these principles to create useful adaptive systems, and will in
doing so develop an abiding interest in producing biologically-grounded models
of how these brain structures produce adaptive behavior.
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Abstract. We review some of the main theories about how language
emerged. We suggest that including the study of the emergence of arti-
ficial languages, in simulation settings, allows us to ask a more general
question, namely, what are the minimal initial conditions for the emer-
gence of language? This is a very important question from a technological
viewpoint, because it is very closely tied to questions of intelligence and
autonomy. We identify anticipation as being a key underlying computa-
tional principle in the emergence of language. We suggest that this is in
fact present implicitly in many of the theories in contention today. Fo-
cused simulations that address precise questions are necessary to isolate
the roles of the minimal initial conditions for the emergence of language.

1 What is the Problem of Language Emergence?

It is very hard to imagine what life would be like without language. Before
some point in our evolutionary history, however, our ancestors did not have
language. How did language (and the capacity for it) evolve? This is the problem
of language emergence.

The emergence of language is considered to be the last major transition in
evolution [44]. It is one of the clearest distinctions between humans and other
animals, and speculations about the origins of language go back to Plato’s Craty-
lus dialogue, which discusses the connection between names and things. What
makes the subject particularly difficult is the lack of data about the earliest lan-
guages. Despite this lack, the publication of Darwin’s works on evolution lead to
a great deal of speculation on possible scenarios for the evolution of language.
This led the Société de Linguistique de Paris, when it was formed in 1865, to
declare in its bylaws that it would not accept any communications dealing with
the origin of language. A similar statement was made by the Philological Society
of London in 1873 [31].

In the last fifty years or so, however, the question has again gained scientific
validity due to relevant discoveries in archeology, anthropology, and neuroscience.
A lot more is now known about the biology, environment, and lifestyles of the
early homo species. This has lead to a renewed spate of theories about the origins
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of language. It is the aim of this article to review some of the main contenders,
and to address in particular the role of anticipation in the emergence of various
aspects of language.

We start by describing the problem of the emergence of human language.
Then we suggest that by expanding this question to ask what the minimal ini-
tial conditions for the emergence of language are, we can build a more general
theory which will provide us with a better understanding of how to design sys-
tems that can create their own language. We lay out a space of communication
systems, and analyze how the notion of anticipation can be used to build a
framework to study the movement from simple to progressively more complex
communication systems. After that we examine some of the main theories of
the emergence of human language, and some of the work in artificial language
evolution (through simulation). We find that these have been addressing differ-
ent regions of the communication systems space. However, we can use these to
infer some basic conditions for the emergence of various kinds of communication
systems already, and by building an anticipatory framework we can provide the
scaffolding for further simulations that will deal with more complex forms of
language.

1.1 What Form Does an Answer to This Problem Take?

Theories of the origins of language address two questions: how language evolved,
and why. Broadly, the answers to how language evolved consist of speculations on
the mechanisms, or preadaptations, that made language possible, and the stages
that lie between animal-like signaling and modern human language. The answers
to why language evolved consist of speculations on the functional properties of
language, environmental conditions, and selection pressures that gave language
an adaptive advantage.

There are a couple of important points to remember here. First, the various
proposals for why language evolved are not mutually exclusive. Indeed it is likely
most of these contributed to the selection pressure for the evolution of language.
Box 1 summarizes the main ideas about why language evolved.

Second, any postulated preadaptations for language must be selected for in
their own right. This means that we cannot suppose that some preadaptation
emerged in order to make language possible. Evolution does not proceed accord-
ing to some pre-specified program, and therefore such a suggestion would violate
causality.

An example of a preadaptation is the change in the shape and robustness of the
jaw which made possible, as a side effect, the production of the range of speech
sounds we enjoy today. This happened when homo ergaster moved from the
arboreal habitats occupied by the australopithecines to a more open savannah
habitat. This led to a change in diet from being predominantly vegetarian to
incorporating more animal-based products. This in turn led to the change in the
shape and robustness of the jaw [1].
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Box 1: Functional Scenarios for the Evolution of Language
Johansson provides a nice overview of the various scenarios that have been
proposed to have provided the selection pressure for the emergence of language
[29]. We list them here.

1. Hunting, which leads to a pressure for a language to be able to cooperate.
2. Tool-making which, arguably, lead to an increase in intelligence, and pro-

vided the mental capabilities required for language (such as combinatori-
ality).

3. Sexual selection, such as a preference for more articulate mates, or sexual
conflict as a driving force, or because better communicative ability can
lead to social/political power.

4. Child-care and teaching, which leads to a pressure for a language for
teaching.

5. Social relations in groups and tribes:
– Predation, perhaps for coordination for group defense.
– Inter-group competition.
– Intra-group competition for resources.
– Mating opportunities.
– Intra-group aggression and politics, such as alliance-formation, nego-

tiation, etc.
6. Children at play, where language may have appeared through mimicry,

for example.
7. Music.
8. Story-telling.
9. Art.

A complete theory of the emergence of human language would need to answer
at least the following questions:

– Why have only humans developed language?
– Is it due to a difference in degree, or a difference in kind?
– How much of language is innate, and how did it become so?
– Did language emerge gradually, and if so what did earlier forms of language

look like?

Why have only humans developed language? Szathmáry has suggested
that there can be two possible reasons for the uniqueness of an adaptation: it
might be variation-limited or selection-limited. Being variation-limited means
that the necessary mutations occur extremely rarely. Being selection-limited
means that they only confer a selective advantage in extremely rare conditions
[29, quoted]. Hurford has pointed out, however, that just because other species
have not developed language does not mean they will not [27]. Language has
only emerged in the last 100,000 to 500,000 years [1], which is a short while for
evolution. Every major evolutionary transition must have had a vanguard - a
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species that was the first to achieve it, and solely enjoyed its benefits until the
other species caught up.

Is it due to a difference in degree, or a difference in kind? A counter-
argument to many of the scenarios listed in box 1 is that other species also
exhibit behavior of that kind. Why have they not developed language? Hunting,
for example, is a very common activity in the animal kingdom. Even cooperative
hunting, which is proposed to have provided the selective pressure for commu-
nication, is quite common. The question, then, is, are these viable propositions?
Is a difference in the degree to which we engage in some activity, for example
our increased period of childhood, or our increased social group size, sufficient to
explain why language evolved? Or is there a different kind of activity we engage
in, that other species do not, that led to the evolution of language? The same
question holds for our cognitive capabilities. Does the emergence of language
require some special cognitive capability that other animals lack, or is it that we
are just better at (some aspects of) cognition?

How much of language is innate, and how did it become so? It is hard
to argue that there are not at least some aspects of language which are innate.
The capacity for symbolization is probably innate. Furthermore, children can
acquire a grammatical language even if the linguistic input they receive is not
grammatical, as in the emergence of creole languages from pidgins, and in the
famous example of the Nicaraguan Sign Language, where a community of deaf
children in a school in Nicaragua invented a grammatical sign language based
on the pidgin-like Lenguaje de Signos Nicaragüense that they were exposed to
at home [14]. This does not necessarily mean that grammar is innate, however.
For one thing, the development of a creole seems to depend on the size of the
community. If the community is not large enough, a grammatical language does
not emerge.

The idea that we might have an innate language acquisition device (or a
universal grammar), which appeared by means other than natural selection, was
first proposed by Chomsky [12]. It has been extremely controversial [35], and in
one of his most recent articles, he (with Hauser and Fitch) proposes that the
only aspect of grammar that is innate is the ability to do recursion [25]. This
proposal, also, has generated debate [36].

Did language emerge gradually, and if so, what did earlier forms of
language look like? An idea that seems to find general agreement is Bicker-
ton’s proposal of a protolanguage [6]. A protolanguage is basically modern lan-
guage without the rich syntax. It is compositional, that is, it consists of words
that are strung together into sentences, but it does not have properties such as
tense and aspect. It is also supposed to have a closed (that is, fixed) vocabulary.
Bickerton has proposed that modern language was preceded by protolanguage,
which may have existed for as many as a million years before modern language
appeared, and further, that protolanguage still makes its appearance in pidgins,
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and in some aspects of language acquisition (a twist on “ontogeny recapitulates
phylogeny”). Jackendoff has expanded on the idea of a protolanguage, suggest-
ing several different stages. These are summarized in box 2. Johansson provides
a nice summary of all the “protos” that make up protolanguage: proto-speech,
proto-gestures, proto-semantics, and proto-syntax [30].

Box 2: Proto-language
Jackendoff has postulated the following stages in the evolution of the lan-
guage capacity [28]. Bickerton’s proposed protolanguage [6] is subsumed in
this sequence.

1. The use of symbols in a non-situation-specific fashion.
2. An open, unlimited class of symbols.
3. A generative system for single symbols: proto-phonology.
4. Concatenation of symbols to build larger utterances.
5. Using linear position to signal semantic relationships.
6. Phrase structure.
7. Vocabulary for relational concepts.
8. Beyond phrase structure: inflection and further syntax.

Computer scientists have only recently become interested in the question of
language emergence, partly because we believe that some of these issues can be
addressed through agent-based simulation. However, we believe that in this case
the appropriate question is slightly different, and more general.

2 A Modified Question: What Are the Minimal Initial
Conditions for the Emergence of Language?

Part of the problem with trying to explain the emergence of language is that lan-
guage is unique. No other species has evolved language, and so any explanation is
going to be a “just so” story. However, when we include artificial language evo-
lution1 in the mix, we can ask the more general question, what are the minimal
initial conditions for the emergence of language? One important thing to keep in
mind is that the minimal conditions are not just cognitive, but also environmen-
tal. Another way of asking the same question is, what mechanisms/conditions do
we need to design/provide to enable the emergence of language in a population
of machines?

This is an important question because, besides being an important scien-
tific problem, the study of the emergence of language is also very important
from a technological perspective. Multi-agent systems are becoming increasingly
widespread, being used in widely differing contexts such as spacecraft control,
military mission scheduling, auctions, agent-based models of social networks and
1 Note that by artificial languages, we do not mean those constructed by humans, such

as Esperanto and Klingon. Rather, we are referring to attempts to evolve a language
in a population of (simulated or real) agents.
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organizations, etc. The general approach to communication and coordination in
multi-agent systems is to pre-impose a designed language. However, such pre-
defined languages are often found to be inadequate, especially as multi-agent
systems increase in size and complexity, as they reflect the designer’s viewpoint
rather than the agents’, and are unable to adapt to changing environmental con-
ditions and task definitions. It is much more desirable for the agents to be able
to create and maintain their own language.

The last decade has seen increasing application of computational and mathe-
matical methods to the study of language evolution ( see [55] for a recent review).
This has led to important advances on questions such as how a shared language
is established in a population [15], [32], [47], the emergence of syntax [34], and
symbol grounding [41], [51]. However, we are still far from a general theory.

2.1 What Form Does an Answer to the Modified Question Take?

In order to construct such a general theory, we need to map out the space of
possible communication systems, and analyze the factors that lead to the emer-
gence of these. Figure 1 shows one possible way to lay out this space, and where
some commonly considered communication systems in the language evolution
literature would lie in this space.

Representation

Modern Human Language

Bacteria quorum
sensing

Honeybee
dance

"Protolanguage", Pidgin, 
 Chimps, Apes, Bonobos

Vervet Monkey
alarm calls

Discrete
ContinuousDetachedDisplacedCued

Syntactic

Compositional

Holistic

Fig. 1. The space of communication systems

Continuous and discrete communication systems are distinguished along the
x-axis. A continuous communication system is one that uses the magnitude of
some quantity to communicate information. For example, scout honeybees com-
municate the quality of a food-site they have discovered by the vigor of their
waggle dance [20]. Bacteria do quorum sensing by producing molecules called au-
toinducers [5], [37]. Quorum sensing is the control of gene expression in response
to cell density. This means, for example, that bacteria will often not express
virulence factor until their colony is big enough to have a high probability of
successfully infecting the host.
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The y-axis in our graph distinguishes the kind of representation used by the
communication system. The notion of cued and detached representations is due
to Gärdenfors [22]. In his own words, “A cued representation stands for some-
thing that is present in the current external situation of the representing organ-
ism. When, for example, a particular object is categorized as food, the animal
will then act differently than if the same object had been categorized as a poten-
tial mate... In contrast, detached representations may stand for objects or events
that are neither present in the current situation nor triggered by some recent
situation.” Since the honeybee representation of food sources or nest sites seems
to fall in-between cued and detached, we include displaced representations in our
space of communication systems. By displaced representation, we mean repre-
sentations which stand for objects or events that are not in the current situation,
but have been triggered by some recent situation. The notion of displacement is
one of Hockett’s design features of language [26], but he uses the term to mean
anything other than cued representations2. We think it is important to make
these distinctions because they imply different computational properties of the
underlying cognitive system. Deacon talks about a similar taxonomy of kinds
of symbols: iconic, indexical, and true symbols [17]. Icons physically resemble
that which they represent, for example onomatopoeic words like “pitter-patter”.
Indices involve correlations between the symbol and the referent, for example a
symptom and a disease. True symbols, in contrast to the other types, are en-
tirely arbitrary. For example, the word “chair” does not tell us anything about
the (kind of) object to which it refers.

The z-axis in our graph distinguishes various levels of structure that might
be present in the communication system. The simplest kind of communication
in this sense is holistic, where every “meaning” or concept has an independent
symbol associated with it. There is no relation between the symbols, and no
internal structure to them. The classic example is the alarm call system of vervet
monkeys [43]. Vervet monkeys have different calls for flying predators like eagles,
and ground predators like snakes and leopards. These calls have no relation to
each other. They do not, for example, have a common component that means
“predator”.

A significantly more complex form of structural organization is compositional
language. This means that utterances are composed of meaningful parts, which
then combine meaningfully. For example, “green ball” means not just that there
is something green and something that is a ball, but that it is the ball that is
green. The language capacity of chimps, bonobos, and apes seems to be at this
level [42].

Finally, the most complex form of structural organization we know is modern
human language with its rich syntax.

The communication space gets increasingly complex along each axis. Thus
the simplest communication system is continuous, cued, and holistic, such as
the quorum sensing of bacteria, and the most complex is discrete, detached, and

2 Note that what we call displaced, Gärdenfors would probably include under cued,
and what Gärdenfors calls detached, Hockett would include under displaced.
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syntactic, of which the only known example is modern human language. We will
see next that this space correlates well with different kinds of anticipation. This
brings up the central question of this article.

3 What is the Role of Anticipation in the Emergence of
Language?

Anticipation is widely considered to be a very important component of cognition.
The notion of anticipation is closely related to prediction or expectation. To put
it in a sentence, expectation is knowledge about the future, and anticipation is
what you do with it. Robert Rosen has defined an anticipatory system to be
one that has an internal model of itself and/or its environment, which it uses
in planning (or action selection) [40]. The “model”, of course, can be of varying
degrees of complexity, from simple stimulus-response to systems with complex
internal states. The most famous experimental demonstration of anticipatory
behavior is Pavlov’s dog, which learned to anticipate food at the sound of a bell,
and showed this by starting to salivate.

We argue below that anticipation provides a very nice framework for studying
cognitive requirements for language, because it is correlated with language: the
more sophisticated the anticipatory behavior exhibited by a population, the more
complex their communication system is.

Butz et al. have described four kinds of anticipation in relation to adaptive
behavior [7]:

– Implicit anticipatory behavior
– Payoff anticipatory behavior
– Sensory anticipatory behavior
– State anticipatory behavior

Implicit anticipation corresponds to the situation where the agent is not ex-
plicitly computing expectations, but still exhibits some anticipatory behavior.
The anticipation, in this case, has been carried out by evolution (or the designer,
for artificial agents), by equipping the agent with a genome that will “work
well” in its environment. There is no learning beyond that done through evo-
lution, since learning is essentially equivalent to prediction. Bacteria are among
the simplest kinds of implicitly anticipatory agents, though admittedly they
blur the distinction between learning and evolution through horizontal gene
transfer [16].

Payoff anticipation consists of forming expectations of rewards for states of
the environment, and utilizing these expected rewards during planning. The
simplest kind of reinforcement learning, called model-free reinforcement learning
[49], is an example of payoff anticipation because it computes a value function
which is simply the expected cumulative discounted future reward for each state,
and then the agent chooses actions which take it to states with high values.
Honeybees could be considered to be payoff anticipatory agents, because it is
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unlikely that they have a predictive model of the environment in their heads that
they use for planning. They also exhibit associative learning (that is, classical
conditioning), which again requires payoff anticipation. They are also capable
of learning some other things, however, such as landmarks and other cues that
they use for navigation on their foraging trips [24]. Vervet monkeys are probably
capable of more sophisticated anticipatory behavior, but the kind of anticipation
required for their alarm call system is only payoff anticipation.
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Fig. 2. The space of communication systems, partitioned by kinds of anticipation
required

Sensory anticipation involves predictions that do not influence behavior di-
rectly, but only the sensory processing of the agent. It is strongly related to
phenomena like priming, where a particular sensory input causes enhanced at-
tention to a subsequent sensory input to the point where it can be hallucinated.
This kind of anticipation is probably mediated by top-down connections in the
sensory pathways, that carry predictions of expected sensory input. This kind
of neural architecture is quite widespread, and probably honeybees as well as
vervet monkeys are capable of sensory anticipation. It is thought that auditory
anticipation is an important part of speech comprehension in humans, and so our
linguistic capacity would probably be degraded if we were not capable of sensory
anticipation. However, it probably is not one of the minimal initial conditions
for language.

State anticipation involves having a detailed predictive model of the environ-
ment, which directly influences decision-making. Agents which have representa-
tions of goals, and perform mental simulations of actions to come up with a plan
for reaching the goal from their current state are performing state anticipatory
behavior. For example, a chimp that comes across a termite nest and then goes
to find a stick from which it strips off the leaves, and then returns to the termite
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nest and uses the stick to fish out termites to eat is clearly performing state
anticipatory behavior.

A fifth kind of anticipation, social anticipation, is now considered to be distinct
from the other four. We believe that social anticipation is qualitatively differ-
ent from other kinds of anticipation. In other kinds of anticipatory behavior,
the environment is considered to be stationary. This means that, theoretically,
environmental inputs are assumed to be generated by stationary distributions.
Social anticipation, however, takes place in an “environment” consisting of other
agents that are also performing social anticipation. This makes the environment
non-stationary, which presents a much harder learning problem. We are not
suggesting, however, that social anticipation could not have evolved from the
previous kinds of anticipation. Unpacking how it might have done so however,
is beyond the scope of this paper. It would involve, perhaps, anticipation in en-
vironments which are mostly stationary, for example where animals learn only
occasionally or very slowly. It would also involve unpacking degrees of social
anticipation. For instance, animals such as chimps and bonobos are capable of
social anticipation to a degree perhaps, because they have to vie for dominance
in their groups in order to achieve better feeding and mating opportunities. How-
ever, it is not clear to what degree they have a definite theory of mind, that is,
a general understanding of how other members of their own species behave. It
has been argued by several researchers that it is this theory of mind, or social
intelligence, that sets us apart from other animals, and which brought about the
emergence of language [2], [57].

Figure 2 shows how different kinds of anticipation partition the space of com-
munication systems. In the figure, it should be understood that agents that
are capable of a particular kind of anticipation are also capable of all the pre-
vious kinds of anticipation, but not subsequent ones. For example, honeybees
are capable of implicit, payoff, and sensory anticipation, but not state or social
anticipation.

Now, keeping this analysis in mind, we take a look at some of the theories
and simulations of language emergence.

4 What Are Some of the Theories of the Emergence of
Language?

There are three basic questions:

– Why/How did the capacity for symbolization evolve?
– Why/How did structured language (that is, compositionality and syntax)

evolve?
– Why/How does a population converge upon a common language?

Various hypotheses have been put forward to answer one or more of these
questions. We review some of the main ones below.
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4.1 Natural Language Evolution

Anticipatory Planning. To our knowledge, Gärdenfors and his colleagues are
the only ones who have explicitly invoked anticipation in theorizing about the
emergence of language [22], [23], [4].

Gärdenfors and Osvath [23] have argued that Olduwan culture led to the evo-
lution of anticipatory cognition, which in turn led to the emergence of symbolic
communication. Olduwan culture is a term used to refer to the use of stone tools
by pre-historic hominins3, roughly in the period 2.6 to 1.5 million years ago.
Furthermore, they claim that this sort of cognition is unique to humans. Once
anticipatory cognition appeared, it made communication about future goals ben-
eficial by enabling long-term planning.

Various animal species, particularly primates, are known to be capable of
planning. However, they argue, the plans of other animals always address present
needs, while humans are the only animals capable of planning for future needs,
that is, anticipatory planning. For example, a chimp may go look for a stick on
finding a termite nest, as mentioned earlier, however a chimp will not spend its
time putting together a collection of sticks to carry around in anticipation of
finding a termite nest.

The reason that Olduwan culture is presumed to have given rise to anticipa-
tory planning is because it appeared at a time in our past when our hominin an-
cestors had to make the transition from a forest environment to the savannah.
Food sources are much more scarce in the savannah, and this led to a number of
changes. The dietary change and its effect on the jaw has already been mentioned.
The scarcity of food also meant, however, that the hominins had to range farther
in search of food. This made it beneficial to carry along tools (for dressing meat
etc.) rather than trying to bring a carcass all the way back home. It might also
have been a good idea to make caches of tools at various hunting locations, so
that tools would not have to be carried everywhere. These kinds of behavior re-
quire anticipatory planning, though, because the hominin would have to fashion
tools and carry them to caches without being cued by the need to hunt or scavenge.
In other words, they would have to plan for anticipated goals.

This is a very sophisticated kind of planning. Butz et al. lay out their frame-
work in the context of a partially-observable Markov decision process (POMDP).
A POMDP contains a reward function, which essentially corresponds to a goal.
An agent that is solving a POMDP is trying to maximize reward. The anticipa-
tion of goals can be interpreted in two ways.

The first approach is to think of the agent as having to solve several POMDPs,
with different reward functions and possibly different state spaces. For example,
one problem to solve would be finding food, another would be making tools,
and so on. Over its lifetime, the agent encounters a series of POMDPs, which
are related to each other. Anticipation of goals now corresponds to predicting
what future reward functions will look like, based on the reward functions seen
to date. This involves some kind of meta-learning or meta-cognition. In the
3 Hominin refers to all the species of humans that ever evolved. The term hominid

includes chimps and gorillas.
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machine learning literature, this is most commonly referred to as transfer learn-
ing, and has been gaining increased attention [53], [50], though the focus is on
using experience from past problems to solve new problems better (that is, more
quickly, accurately, and robustly), rather than on predicting future goals and
doing anticipatory learning.

The second approach is to think of the agent as having one large POMDP to
deal with, where the goal is simply survival. The agent then has to decompose
this POMDP into smaller POMDPs by discovering sub-goals. This is also a very
hard problem and has been getting a lot of attention in the machine learning
community [33], [48], [18].

It is not clear to what extent animals other than humans are capable of such
sophisticated cognitive processes. It may be the case that other animals, such
as the great apes, are capable of this kind of cognition, but to a lesser degree.
They are, for example, capable of decomposing a relatively simple problem into a
hierarchy of subgoals, such as pushing over a chair to a spot underneath a banana
hanging from the ceiling so that they can climb up and reach the banana. But
they certainly do not have the capabilities of humans, who can plan their entire
careers and lives.

Gärdenfors et al. argue that once anticipatory planning appeared, it led to a
selective pressure for evolving a means for cooperation about future goals, and
that this led to the emergence of symbols. This is a very interesting hypothesis,
which can be examined closely through simulations of agents with varying levels
of anticipatory planning capabilities, perhaps by using some of the techniques
cited above.

Social Intelligence. The key question for the emergence of structured language
is, what cognitive preadaptation could provide the computational machinery for
generating and processing highly structured language?

Several people have talked about social intelligence or “Machiavellian” intel-
ligence as being the key factor in the emergence of structured language [57], [8],
[11], [19].

Cheney and Seyfarth [11] point out that nonhuman primates do not seem to
have a theory of mind. Their vocalizations may be intended to modify audience
behavior, but are not intended to modify audience beliefs. They seem to be in-
capable of distinguishing their own knowledge from that of another individual’s.
As an example, they present an analysis of baboon contact barks. Baboons gen-
erally move through wooded areas in a group. Individuals that are separated
from one another produce loud barks. These barks however do not seem to be
produced with the intent of informing others of their location, rather they seem
to be emotional responses to the stress of being potentially lost. If they had an
informative intent, we would expect individuals that are securely in the center
of the group to respond to contact barks in order to inform the others of the
location of the group. However, playback experiments have shown this not to
be the case. The baboons produce answering barks only if they themselves are
separated from the group.
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Despite this, nonhuman primates have a very structured understanding of
social interactions, which they glean from both direct observation and through
listening to vocalizations. Cheney and Seyfarth provide the following character-
ization of nonhuman primates’ social knowledge.

– It is representational.
– It has discrete values.
– It is hierarchically structured.
– It is rule-governed and open-ended.
– It is propositional.
– It is independent of sensory modality.

They point out that these are very similar to the structural properties of
human language, though they do not claim that all of the syntactic properties
of human language are represented here. Recursion, for example, is not present
in this list.

We hypothesize that, since nonhuman primates do not have a theory of mind,
they are incapable of social anticipation. Instead, they are using state anticipa-
tion to keep track of social structure. This is computationally expensive, since
it requires keeping track of each individual’s responses to various kinds of cues,
and therefore it sets an upper limit on the number of individuals and the number
of different cues they can keep track of. When homo ergaster moved from the
forest to the savannah, it would have faced a selection pressure for increasing
group size, because in a more open landscape larger groups are more effective at
repelling predators and protecting food. This probably led to adaptations such
as a larger neo-cortex, and language, that can help maintain the cohesiveness
of a larger group. This is also known as the social grooming theory of language
[19]. Developing a theory of mind (that is, social anticipation) helps by allowing
generalization, which reduces the computational burden of maintaining separate
models of different individuals, and thus allows a larger group size. Further it
requires the ability to do recursion, at least to a limited depth, because an in-
dividual must model another, who is in turn modeling him, and so on. These
abilities, and the existing social knowledge system, probably got exapted (or
recruited [46]) for the linguistic system.

The Mirror System Hypothesis. Arbib has suggested an alternate preadap-
tation for structured language: the mirror neuron system [3]. Mirror neurons
were first discovered in the premotor area F5 of macaque monkeys [39]. Mirror
neurons are observed to be active when the monkey executes a goal-directed
arm movement, like picking up some food. They are also active when the mon-
key observes someone else (the experimenter, for example) perform the same
movement. This observation has generated a lot of interest as to their functional
role, and it has been suggested that they might form the precursor of a “mental
simulation” system used to model internal states of conspecifics [21].

Interestingly, the homolog in the human brain of area F5 is Broca’s area,
which is critically involved in language production and comprehension. These
findings led to the mirror system hypothesis of Arbib and Rizzolatti:
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“The parity requirement for language in humans - that what counts for the
speaker must count approximately the same for the hearer - is met because
Broca’s area evolved atop the mirror system for grasping, with its capacity to
generate and recognize a set of actions.” [38]

Box 3: The Mirror System Hypothesis for Language Evolution:
Arbib suggests the following stages in the evolution of the language capacity
[3].

– S1: Grasping.
– S2: A mirror system for grasping shared with the common ancestor of

human and monkey.
– S3: A simple imitation system for object-directed grasping through much-

repeated exposure. This is shared with the common ancestor of human and
chimpanzee.

– S4: A complex imitation system for grasping - the ability to recognize
another’s performance as a set of familiar actions and then repeat them,
or to recognize that such a performance combines novel actions which can
be approximated by variants of actions already in the repertoire.

– S5: Protosign, a manual-based communication system, breaking through
the fixed repertoire of primate vocalizations to yield an open repertoire.

– S6: Protospeech, resulting from the ability of control mechanisms evolved
for protosign coming to control the vocal apparatus with increasing flexi-
bility.

– S7: Language, the change from action-object frames to verb-argument
structures to syntax and semantics; the co-evolution of cognitive and lin-
guistic capacity.

His criteria for language readiness are,

– LR1: Complex imitation.
– LR2: Symbolization.
– LR3: Parity (mirror property). What counts for the speaker must count for

the listener.
– LR4: Intended communication.
– LR5: From hierarchical structuring to temporal ordering.
– LR6: Beyond the here-and-now.
– LR7: Paedomorphy and sociality. Paedomorphy is the prolonged period of

infant dependency, which is especially pronounced in humans.

Arbib has developed a fairly detailed account of the evolutionary stages, start-
ing with motor control (grasping), and proceeding through the development of
the mirror system, that might have led to the emergence of language. His hy-
pothesized stages are listed in box 3. He suggests that proto-language consisted
of two stages, proto-sign and proto-speech. Proto-sign emerged first, by exapta-
tion from a system for imitation of movements. This means that language was
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initially gestural. The compositional nature of movements provided the right
computational machinery for developing structured language.

Note that there is quite a gap between having a mirror system, and having
a (compositional) language. A mirror system does not provide the ability to do
imitation learning. Gallese and Goldman point out that imitation behavior has
never been observed with mirror neuron activity [21]. Arbib also points out that
“further evolution of the brain was required for the mirror system for grasping
to become an imitation system for grasping.” He says, therefore, that stages S1
through S3 (see box 2) are pre-hominid. We believe that these stages do not
require more than payoff and sensory anticipation.

Moving from simple imitation to complex imitation probably requires state
anticipation, because it involves building a model of the behavior of conspecifics.
It is not known, however, to what extent the mirror system is built (that is,
learned) or inbuilt (that is, innate).

The crucial step for the development of language is the next one: from complex
imitation to proto-sign. It is not clear how exactly this might have happened. Ar-
bib points out that it must involve some neurological change. In fact he believes
that proto-sign was preceded by pantomime, which is also qualitatively different
from imitation. The key difference is intentionality. Imitation is performed for the
purpose of reproducing a movement, whereas pantomime is performed with the
intention of getting the other to think about what is being represented. Zlatev et
al., similarly, posit “bodily mimesis” as the key transitionary phase from imitation
to communication [58]. We believe that going from imitation to signing involves
at least a rudimentary form of social anticipation, because it requires knowing
that others have mental states that are distinct from one’s own, and that they can
be manipulated through one’s actions. Going from mimesis to symbolicity might
have resulted from a combination of goal-anticipation, as discussed in Section 4.1,
and social anticipation. In other words, it may be more a difference of degree than
kind, as evidenced by the fact that bonobos and chimpanzees are capable of un-
derstanding simple symbolic language, though only after a lot of training.

We look next at the attempts to explore the space of communication systems
through computer simulation.

4.2 Artificial Language Evolution

Emergence of Signaling. Werner and Dyer did one of the earliest simulations
of the emergence of language in a population of artificial organisms [56]. They
simulated a population of “male” and “female” agents on a gridworld. Females
stayed fixed in position (they were scattered over the grid), and males could
move about. Furthermore, females could “see” males (up to a certain distance)
and produce a “sound”, whereas males could “hear” but not “see” females. The
controllers for the agents were small recurrent neural networks that were updated
by means of a genetic algorithm. Whenever a male succeeded in finding a female,
their genomes were combined using crossover and mutation to produce two new
individuals which were placed in random locations on the grid. The parents were
removed to conserve the size of the population.
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They showed that this simple setup was sufficient for the emergence of a
communication protocol, which led to an increase in successful mating over time.
The exceedingly simple cognitive architecture of the agents (and the evolutionary
procedure) does not allow explicit model building, since the recurrent neural
networks did not have their weights updated other than by the genetic algorithm.
So this is an example of implicit anticipation. It should also be noted that females
would have to give directions more or less continuously to the males. They did
not develop any sense of compositionality. A female could not say, for example,
“go straight and then turn left”.

Tuci et al. have done some recent experiments on the emergence of signaling
in very simple robots [52]. They had two kinds of robots, with different sensors,
in a C-shaped maze. One type of robot could see the location of a goal (a light),
using an ambient light sensor, and the other type could sense walls using infrared
sensors. Furthermore, both kinds could produce and detect sounds. The goal
was to navigate to the light without any collisions. Neither kind of robot could
achieve this goal by itself, so they had to evolve a system of communication
to help them to cooperate. The controllers for the robots were, again, small
recurrent neural networks which were updated using a genetic algorithm, and
weights were not updated other than through evolution. They showed that the
robots were able to evolve a communication protocol for achieving the goal. The
communication system was continuous (in time), because the robots were not
capable of temporal abstraction and thus had to be constantly informing each
other of their state. This, just like the Werner and Dyer simulation, is an example
of implicit anticipation.

These two experiments show how easy it is to develop a signaling system, even
in extremely simple cognitive agents, without any explicit anticipatory mecha-
nism or any clear notion of symbols or language. In the space of communication
systems, these systems would lie in the same location as bacteria. There have
been several other simulations along these lines, some of which result in discrete
communication systems, but none seem to go beyond cued representation. See
[55] for a good overview of these as well as simulations of structured communi-
cation systems.

Emergence of Lexicons. Work on the emergence of shared symbol systems
has focused more on how these systems come to be shared in a population (our
third basic question), than the emergence of the capacity for symbolization.

The most famous of these experiments has been the series of Talking Heads
experiments carried out by Steels et al. See [54] for a review of these and other
experiments based on language games. A typical game consisted of a speaker and
a hearer agent (robotic heads) that were presented with a collection of colored
geometric shapes on a screen. This collection comprised the context for communi-
cation. The speaker agent would select one shape, and use its internal vocabulary
to produce a symbol to communicate to the hearer which shape it had selected.
A game was deemed a success if the hearer agent correctly picked out the shape
based on the symbol it had heard. If it failed, it would be told what the correct
shape was. There were two aspects to this game scenario. One was to show that
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a shared symbol system could emerge in the population of agents through these
simple interactions. The other was to show that a shared conceptual space would
emerge as well. The agents start without the ability to discriminate shapes, and
learn to do it by building discrimination trees as needed. For example if the speaker
picked the blue triangle, and the hearer had not yet learned to discriminate blue
from other colors, it would extend its discrimination tree in order to do so.

It is difficult to put these experiments into our space of communication sys-
tems because they are not ecological. By this we mean that the agents are en-
gaged in communication as their primary task. This makes it impossible to use
these to conclude anything about the emergence of the communication capacity.
However, for our purposes, they do make the important point that once the ca-
pacity for symbolization appears, the emergence of a shared symbolic system can
happen through population dynamics alone, without the need for more complex
cognitive mechanisms.

An example of an ecological simulation is the “mushroom-world” of Cangelosi
and Parisi [10]. This world consists of two types of mushrooms: edible and poiso-
nous. An agent, which is a feed-forward neural network, can learn to discriminate
between these two types on the basis of the sensory impression they generate
(differences in color, shape, size, etc.) Agents and mushrooms are distributed in
a grid-world, and the agents move around and eat mushrooms. For each edible
mushroom that they consume, they get 10 “energy points”, and for each poi-
sonous mushroom they consume, they get -11 energy points. At the end of a
fixed lifetime, the 20 most energetic agents would be selected to form the next
generation by replication and mutation. The weights of the neural networks only
changed by mutation. They showed that when the agents were allowed to label
mushrooms for each other (that is, communicate), eventually a shared stable
communication system, consisting of just two symbols corresponding to “edi-
ble” and “poisonous”, emerged. This is very similar to an alarm call system.
Here again, once capacity to communicate was provided, a stable conventional
symbol system eventually evolved.

Emergence of Structure. There have been very few ecological simulations
of the emergence of structured language. Cangelosi extended the mushroom-
world model to allow the production of two-word utterances [9]. In this version,
there were six kinds of mushrooms, of which three were edible and three were
poisonous. The edible ones needed to be “approached” in the right way in order
to be eaten successfully. The right way to approach was determined by the color
of the mushroom. The neural networks representing the agents had two clusters
of linguistics units, which correspond to a two-word utterance. The agents were
not forced to use two words, and in some cases, did not. However, in ten of
eighteen simulations, the populations evolved compositional utterances, and in
seven of those, the evolved language could be interpreted as having a verb-object
structure. This is because one word in one cluster was consistently used to refer
to the poisonous mushrooms (“avoid”), and another to the edible mushrooms
(“approach”), and the words in the other cluster were used to distinguish types
of edible mushrooms.
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Interestingly, the simulation was carried out in two stages. In the first stage,
the population was evolved to learn foraging, that is, how to distinguish the
mushrooms and how to approach the edible ones. In the second stage, the pop-
ulation would consist of 20 parents from the previous generation along with 80
children from the new generation, and the children would learn from the parents
by using the back-propagation algorithm. In other words, the children are form-
ing a payoff and sensory anticipatory model. The communication was still cued,
however. It is also not clear if compositional language emerged from anything
other than the vagaries of the learning process.

Smith et al. have suggested that the emergence of grammar might, in fact, have
more to do with the learning process than with ecological conditions [45]. Their
Iterated Learning Model consisted of parents teaching language to children in a
succession of generations. In such a situation, if the environment has structure,
they showed that compositional language is more easily learnable, and therefore
can be correctly passed through the transmission bottleneck. The transmission
bottleneck refers to the fact that children have to learn the language from a finite
sample, and therefore may not see all valid sentences. A rule-based language
allows them to generalize correctly to unseen instances. Their model is quite
abstract, however, and the agents do not have a cognitive architecture, so we
cannot put it into our communication space.

5 What Are Some of the Sufficient Conditions for the
Emergence of Language?

Based on the above examination of theories and examples of language emergence,
we can start to infer some of the minimal conditions for the emergence of various
kinds of language.

– Adaptive value: This is the most basic condition for the emergence of
communication. If communication does not have an adaptive value, it will
not evolve.

– Memory: Memory is a very large and complex part of cognition. Hu-
mans, e.g., have working memory, long-term memory, propositional memory,
episodic memory, muscle memory, etc. We do not mean that all of these are
necessary for language. What we mean is that the cognitive system must
not be purely Markovian. This can be achieved by using a hierarchical plan-
ning system like a semi-Markov decision process, for example. This is nec-
essary because our language is discrete. If the agents have no memory, then
they would have to communicate continuously in order to cooperate in the
achievement of some goal. See the experiments of Tuci et al. [52] about the
evolution of signaling. Furthermore, if the agents have no memory, commu-
nication is forced to be cued.

– Symbol generation: This refers to the ability to generate new symbols
when required. This is also known as having an open symbol system. In the
absence of this ability, we cannot have detached representations.
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– Planning in non-stationary environments: If social intelligence is one
of the keys to developing rich syntactic language, then the agents must be
capable of planning while taking into account that other agents are also
planning. This makes the learning environment non-stationary, as we have
observed earlier. It may have led to the recursion that is observed in modern
language, such as center-embedding of clauses, e.g. “The cat the dog chased
ran up a tree.” In a recent article, Hauser et al. hypothesize that this may
be the only innate aspect of grammar [25].

Anticipation provides a framework for analyzing the computational proper-
ties of cognitive systems. As we have seen, there has been very little simulation
work examining how communication systems that have displaced or detached
representations might have emerged. This means that most of the space of com-
munication systems has not really been investigated through simulation. The-
ories of language emergence, however, deal mostly with this area of the space
of communication systems. These theories are now acquiring sufficient detail so
that the door to simulation studies has been opened. What we need are focused
simulations that ask precise questions, for example, can a population that is ca-
pable of complex imitation develop the ability to communicate through mimesis?
What exactly is required to make this transition? How complex does the cogni-
tive system have to be to make the transition from compositional to syntactic
language? And so on.

We are heading into an exciting period in the study of language evolution as
we are beginning to see the emergence of a detailed understanding of the minimal
conditions required for the emergence of language. When we succeed in answering
these questions, not only will we have solved a very difficult scientific problem
[13], but the technological possibilities will be tremendous. We will be able to
design truly autonomous populations of agents which will be able to collectively
accomplish feats that are currently beyond human or machine capabilities.
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Abstract. It seems characteristic for humans to detect structural patterns in the 
world to anticipate future states. Therefore, scientific and common sense cogni-
tion could be described as information processing which infers rule-like laws 
from patterns in data-sets. Since information processing is the domain of com-
puters, artificial cognitive systems are generally designed as pattern discoverers.  

This paper questions the validity of the information processing paradigm as 
an explanation for human cognition and a design principle for artificial cogni-
tive systems. Firstly, it is known from the literature that people suffer from  
conditions such as information overload, superstition, and mental disorders. 
Secondly, cognitive limitations such as a small short-term memory, the set-
effect, the illusion of explanatory depth, etc. raise doubts as to whether human 
information processing is able to cope with the enormous complexity of an infi-
nitely rich (amorphous) world.  

It is suggested that, under normal conditions, humans construct information 
rather than process it. The constructed information contains anticipations which 
need to be met. This can be hardly called information processing, since patterns 
from the “outside” are not used to produce action but rather to either justify an-
ticipations or restructure the cognitive apparatus. 

When it fails, cognition switches to pattern processing, which, given the 
amorphous nature of the experiential world, is a lost cause if these patterns and 
inferred rules do not lead to a (partial) reorganisation of internal structures such 
that constructed anticipations can be met again.  

In this scenario, superstition and mental disorders are the result of a profound 
and/or random restructuring of already existing cognitive components (e.g.,  
action sequences). This means that whenever a genuinely cognitive system is ex-
posed to pattern processing it may start to behave superstitiously. The closer we 
get to autonomous self-motivated artificial cognitive systems, the bigger the 
danger becomes of superstitious information processing machines that “blow up” 
rather than behave usefully and effectively. Therefore, to avoid superstition in 
cognitive systems they should be designed as information constructing entities.  

Keywords: Action-selection, anticipation, constructivism, decision-making, in-
formation-processing, pattern search, philosophy of science, schizophrenia, su-
perstition. 

Preliminary Remark 

In his report, one of the reviewers wrote that the submitted version of this paper lead 
him “initially […] into the wrong direction of thinking” [my emphasis]. Voilà. This is 
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what this paper is about: picking up cues and running off in a direction that is  
determined by one’s own experiential past. On a philosophical level the paper ex-
plores the relationship between rational thinking, anticipation, and superstition by 
building on the philosopher Kant’s idea that “objects must conform to our knowl-
edge” [32] rather than the other way around, which considers knowledge a mirror of 
the state of affairs. This paper is intended as a criticism of representationalist “third-
person” modeling, of the attempt by humans to create intelligent artifacts in their own 
image.  

1   Introduction 

While early AI was mainly concerned with symbolic computation that assumed a 
readily structured propositional environment, more recent streams emphasize the 
embodied dynamical nature of cognition, e.g., [56]. In this paper I address one of the 
main consequences of the embodiment paradigm, i.e., the question of the relationship 
between the cognitive agent and its environment and the potential danger of the view 
that the agent is informed by the environment, i.e., that the agent processes input 
information in order to generate output, or as Ulric Neisser [48] puts it, that cognitive 
subjects are “dynamic information processing machines.” Since in the context of 
human beings it can be shown that this leads to superstition and mental disorders, it 
seems reasonable to prevent machines from this destiny by carefully crafting alterna-
tive design principles. 

This paper starts with the extreme case of a structureless (amorphous) world. This 
shifts the focus of attention from structures “out there” (entities, events, etc.) to what 
goes on inside a cognitive being. Research in adaptive behavior and cognitive systems 
is, after all, interested in creating cognitive artifacts rather than artificial worlds. I 
proceed with arguing that, based on experimental findings, there is a close relation-
ship between pattern discovery and superstition since humans and animals alike excel 
at finding structures where there are none. How can this be explained?  

At first sight it seems that the ability to find structures and compress them into 
rules is rather useful for anticipating future states. This ability is usually called “in-
ductive reasoning.” However, in many cases, instead of anticipating states that  
become actualized in the future, the cognitive systems merely exhibits wishful think-
ing, also referred to as “superstition.” The point is that both induction and superstition 
are carried out by the same cognitive apparatus: from its point of view (“first-person 
perspective”) there is no difference. But why is our information processing not always 
successful? We can identify two classes of reasons: (L1) our cognitive equipment is 
very limited by a small short-term memory, conservative bias in problem solving 
(“set-effect”), and the illusion of explanatory depth. (L2) The combinatorial explosion 
of different ways to account for the links between entities and events is such that the 
computational effort required to compute them becomes intractable or NP-complete 
in the sense that the time required to solve them grows exponentially with the number 
of components.1 So how can complex situations be processed by limited cognition? 

                                                           
1 This was one of the main reasons why attempts of AI failed to scale blockworld scenarios up 

to real world situations. 
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This suggests that the cognitive being does not map structures from the “outside 
world” onto its cognitive equipment but rather creates structures in the first place. The 
construction process may be triggered by sensorial, proprioceptive or other, “internal” 
cues. A reader, for example, would not be able to read a novel without the faculty of 
creating lively, rich mental pictures out of a few letters on a page. However these 
pictures are composed of parts that already exist and which were constructed previ-
ously. The parts are put together in a particular way, creating anticipatory “check-
points” between them. The function of the checkpoints is to verify the viability of the 
constructed chain. By constructing this chain, cognition is canalized into a particular 
direction making it possible to effectively control the combinatorial explosion in  
the sense of L2 (i.e., to prune the vast search space – a very well-known problem in 
artificial intelligence and cognitive science). In this sense, cognitive structures are 
projected onto the “external” world. 

Superstition occurs when the cognitive system is exposed to L2, i.e., when it leaves 
the construction mode and tries to find sense in the flood of incoming data (in humans 
this search for new rules may be accompanied by a feeling of anxiety). However the 
chances are that the newly constructed rule is nothing but a bad guess.  

The remaining part of the paper is concerned with providing empirical and argu-
mentative support for the thesis that cognition is about information construction rather 
than information processing. I start by presenting arguments that make it clear that the 
structure of the “world” must be almost infinitely rich so that we can speak of an 
amorphous world. Then I cite empirical results from the psychological literature that 
suggest a close link between pattern detection, anticipation and superstition. Further-
more, I discuss decision making from the perspective of both information processing 
and information constructing. I conclude that by following self-constructed informa-
tion we do not fall prey to arbitrariness or insanity. Consequently, I suggest applying 
these insights to the design of genuinely autonomous artificial cognitive systems in 
order to prevent them from “blowing up.” 

2   The Search for Patterns 

A generally accepted working hypothesis in artificial intelligence and cognitive sci-
ence is that common-sense thinking and science both attempt to infer rule-like laws 
from the patterns in data sets, i.e., to perform some sort of data-mining.2 In philoso-
phy of science we find this claim expressed, for example, in Ernst Mach’s economy of 
thought [41] which states that the goal of science is “the simplest and most economi-
cal abstract expression of facts” [42]. Similarly, Herbert Simon defined (scientific) 
discovery as “detecting the pattern information contained in the data, and using this 
information to recode the data in more parsimonious form” [60]. He argued that  
computer programs can discover the recursive rules generating sequences of letters. 
However, as the following examples demonstrate (from [28]), even in the case of 
seemingly simple sequences it can be hard to find the respective rule that specifies the 
criterion for separating the sets of letters in the following three sequences. 

                                                           
2 Science may do so with a higher degree of systematicity, with the goal of uncovering underly-

ing causes.  
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(A, E, F, H, I, K, L, M, N, T, V, W, X, Y, Z) versus (B, C, D, G, J, O, P, Q, R, S, U) 
(A, B, D, O, P, Q, R) versus (C, E, F, G, H, I, J, K, L, M, N, S, T, U, V, W, X, Y, Z) 
(A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, W, X, Y, Z) versus (V) 

In order to establish rules in the first example you need to focus on whether all the 
segments of the respective letter are straight. In the second example the distinction is 
based on whether the respective letter has at least one enclosed area. That the criteria 
don’t need to be based on topological characteristics is demonstrated in the third ex-
ample in which the letters are separated based on whether they are part of the Polish 
alphabet, which does not include the letter V. With a little bit of imagination even 
more unusual letter sequences can be formulated. How could a heuristically working 
AI program possibly consider all possibilities to find the appropriate rule? 

In his influential book The logical structure of the world, Rudolf Carnap presents 
the thought experiment of two geographers – a realist and an idealist – who travel to 
Africa to discover a certain mountain. After they have collected empirical data about 
its location, height and other physical characteristics upon which they agree, they find 
themselves in disagreement with regard to how to interpret the data. For the realist, 
the mountain “not only has the ascertained geographical properties, but is, in addition, 
also real” while the idealist claims that “the mountain itself is not real, only our per-
ceptions and conscious processes are real” [10]. Carnap’s original intention was to 
show that epistemological theses do not have any value if they go beyond experience 
in the sense that neither proponent can give an “indication of the design of an experi-
ment through which his thesis could be supported” [10]. Historically, Carnap’s argu-
ments were meant to support logical positivism. However, the thought experiment 
also demonstrates the apparent arbitrariness of how to read sense into experiential 
data, which, in contrast to general belief, makes the scientist rather than “nature” 
responsible for decisions. The conclusions are twofold. For philosophy of science, 
theories are plausible at best; and for artificial intelligence, the structure of the envi-
ronment seems to play only a marginal role. 

3   The Amorphousness of the World 

Let us investigate the role of the environment a little further. As early as 1906, Pierre 
Duhem [18] claimed that observational evidence can never conclusively disprove a 
theory (or thesis) as any seemingly disconfirming observational evidence can always 
be accommodated to it (the so-called “underdeterminism” of theories, in modified 
form later known as “Quine-Duhem thesis”). As a result, there will be many compet-
ing theories trying to explain a given set of experimental data. 

Philosophy of science is full of examples that support the underdeterminism theo-
rem, e.g., [35]. However, one can easily form an idea of how vast the range of possi-
bilities is by considering the abstract concept of a black box, i.e., an entity whose inner 
mechanisms are unknown to the outside observer. It is already extremely difficult to 
make inferences for a black box with four input, four internal, and four output states, 
all of which can be wired in any way [21]. The total number of possible configurations 
is 4^(44) = 232, i.e., about 4 x 109. In other words, starting from an observational proto-
col one needs to test 4 billion different models to find the one that reproduces a  
recorded behavior. Usually, empirical data contains much more extensive protocols. 
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Going one step further, James McAllister points out that there is an arbitrarily large 
number of ways to explain data points: “Any given data set can be interpreted as the 
sum of any conceivable pattern and a certain noise level. In other words, there are 
infinitely many descriptions of any data set as ‘Pattern A + noise at m percent’, ‘Pat-
tern B + noise at n percent’, and so on”3 [45]. 

Asked in what the phenomenon of planetary orbits consists, Kepler would 
have replied “In the fact that, with such-and-such a noise level, they are ellip-
ses,” while Newton would have replied “In the fact that, with such-and-such a 
(lower) noise level, they are particular curves that differ from ellipses, because 
of the gravitational pull of other bodies.” Thus, phenomena – understood as 
the patterns in data sets that investigators choose to model – vary from one in-
vestigator to another [45]. 

McAllister [46] continues to argue that since any given data set can be interpreted 
as the sum of any conceivable pattern and a certain noise level, all the rules and pat-
terns that a data set displays have equal status and can, therefore, be said to equally 
correspond to structures in the “world.” But if that world contains any structure, then 
it contains all possible structures, which is equivalent to exhibiting no structure at all, 
i.e., to being amorphous. 

So in order to arrive at a decision, we let our choice be guided by pragmatic con-
cerns such as simplicity, economy and elegance [55], or as Heinz von Foerster [22] 
put it, 

Only the questions which are principally undecidable, we can decide. Why? 
Simply because the decidable questions are already decided by the choice of 
the framework in which we are asked, and by the choice of rules of how to 
connect what we call ‘the question’ with what we may take for an ‘answer’. ... 
[We] are under no compulsion, not even under that of logic, when we decide 
upon in principle undecidable questions. 

This insight seems to be in sharp contrast to the self-understanding of the natural 
sciences, which aim at quantitative exactness through systematicity [29]. For exam-
ple, in classical physics quantitative empirical data enters into a model in such a way 
that the mutual influence among single data items can be determined computationally. 
This principle assumes a homomorphism between the structure of the phenomenon 
and the structure of the model, i.e., that the phenomenon can be reduced to an isomor-
phic copy of the model through applying a many-to-one transformation [5]. However, 
for a given phenomenon an innumerable amount of homomorphic models can be 
found through many-to-one transformations. All these models will exhibit the same 
behavior. The reverse inference from a given model (i.e., the scientific image) to the 
“true” structures of the phenomenon (i.e., reality) is therefore impossible. Rather, it is 
the human (scientist or other) who decides which structural pattern to read in the data 
in order to explain the phenomena of interest in terms of a scientific law. In this way, 
quantitative completeness is replaced by qualitative schemata [3]. He understands the 

                                                           
3 The term “noise” refers to the mathematical discrepancy between a particular pattern and a 

given data set. 
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behavior of the homomorphic model of the “real” phenomenon rather than the  
phenomenon itself. That is, he is able to cope with a “suitable” simplification of the 
system’s states (which is his invention) in order to make predictions “in the head.” As 
a result, people often overestimate their knowledge of facts and procedure, a phe-
nomenon that Frank Keil [33] calls the “illusion of explanatory depth,” so that despite 
the vast incompleteness of their knowledge, most people think that they know far 
more than they actually do. 

4   Superstitious Anticipations 

Given the amorphousness of the world one is tempted to caricature human attempts to 
systematically generate knowledge as nothing more than having one’s fortune told 
from the coffee cup; any arbitrary and unconstrained interpretation seems possible. 
Still, as we will see in the following examples from the psychological literature, it 
would be wrong to say that superstitions are “just” erroneous modes of information 
construction. Rather, superstition is the active attempt by the subject to coerce order 
into structurelessness. 

As is known from the psychological literature, the search for patterns in one’s 
stream of experience leads to various conditions. Klaus Conrad [13] coined the  
term apophenia [Apophänie] to refer to the experience of “unmotivated seeing con-
nections” in random or meaningless data. Similarly, pareidolia is the erroneous or 
fanciful perception of a pattern or meaning in something that is actually ambiguous or 
random. Examples are the Rohrschach test and the alleged face on Mars based on a 
photo made from the surface of the planet. In general, humans are prone to the so-
called clustering illusion, i.e., the tendency to associate some meaning to certain types 
of patterns that must inevitably appear in any large enough data set. According to 
Scott Huettel, Peter Mack and Gregory McCarthy, even if patterns are generated  
randomly their recognition is “obligatory, in that it occurs without any conscious 
attentional effort” [30]. In their experiments they confronted test subjects with a ran-
dom sequence of squares and circles. The subjects were asked to press a button in 
their right hand when they perceived a square, and a button in their left hand for a 
circle. Occasionally, brief periods of seemingly non-random patterns appeared, such 
as a series of alternating circles or squares. Even though the subjects were instructed 
that they were seeing random sequences, their unconsciousness reacted when such a 
series was violated. This was demonstrated by functional magnetic resonance imaging 
(fMRI) scans of their prefrontal cortex, which revealed the changing activity in a 
distributed set of regions that are highly sensitive to the presence of and deviations 
from patterns. It seems that the subjects’ motor behavior was primed, based on the 
belief of having discovered a pattern that would continue. In other words, humans 
construct a belief in a genuine regularity where there is none: “the recognition of 
patterns is an obligatory, dynamic process that includes the extraction of local struc-
ture from even random sequences” [30]. 

Such compulsive pattern-perception is not limited to event patterns as was shown in 
the experiments of Frédéric Gosselin and Philippe Schyns [26]. The authors stimulated 
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the visual system of test subjects with unstructured white noise4 that superimposes on 
the contours of a face. In 20,000 trials the subjects were asked to determine whether 
the face was smiling, which according to the instruction was the case in 50% of the 
presentations, even though in none of the presentations whatsoever did the face have a 
mouth. Still, in many cases the subjects were certain that the face was indeed smiling. 
Clearly, the anticipated pattern was projected onto (partially correlated with) the  
perception of the white noise.5  

A possible explanation for the built-in tendency to perceive patterns is that it en-
ables the subject to better react to a sequence of cues that signal a potential threat or a 
source of food. Therefore, the obsessive search for patterns not only serves as a basis 
for human superstitious behavior, it can also be found in the animal kingdom. B. F. 
Skinner’s article on Superstition in the pigeon [61] is a classical description of how 
birds react in situations beyond their cognitive capabilities and therefore beyond their 
control. Skinner presented food at regular intervals to hungry pigeons with no refer-
ence whatsoever to their current behavior. Soon the birds started to display certain 
rituals between the reinforcements, such as turning two or three times about the cage, 
bobbing their head, and incomplete pecking movements. As Skinner noticed, the birds 
happened to be executing some response when the food first appeared and they tended 
to repeat this response if the feeding interval was short enough. In some sense, pi-
geons associated their action with receiving food and started to believe that it caused 
the food to appear.  

In the early 20th century Bronislaw Malinowski noticed that islanders in the Pacific 
who fished offshore beyond the coral reef displayed many superstitious rituals and 
ceremonies to invoke magical powers for safety and protection, while inshore fisher-
men carried out their job with a high degree of rational expertise and craftsmanship 
[43]. It reflects the desire of humans to find causal explanations and to organize their 
experience in a meaningful manner [25] in order to make predictions based upon 
them. Ellen Langer [36] accounted for the tendency to apply superstition as a re-
sponse to uncertainty by introducing the notion of “illusion of control,” i.e., the belief 
that one can control or at least influence outcomes in situations under which one has 
no control: “If there is a universal truth about superstition, it is that superstitious be-
havior emerges as a response to uncertainty – to circumstances that are inherently 
random and uncontrollable” [65].  

Engaging in superstitious behaviors such as displaying patterns of stereotyped be-
havior is closely linked to an illusion of control since the people engaging in these 
patterns may actually believe that they are controlling an outcome [57]. A prominent 
example of this perspective is feng shui, the ancient Chinese superstitious practice of 
placement and arrangement of space, which is claimed to achieve harmony with the 
environment. Even today, Chinese managers resort to this superstitious practice when 
they have to make important decisions as many of them find it difficult to cope with 
the unknown [63]. It helps them to reduce uncertainty-induced anxiety. In this sense, 
                                                           
4 White noise is a static bit pattern that has equal energy at all spatial frequencies and does not 

correlate across trials. 
5 The Italian painter Leonardo da Vinci had already recommended looking at blotches on walls 

as a means of initiating artistic ideas: “If you look at walls covered with many stains … with 
the idea of imagining some scene, you will see in it a similarity to landscapes adorned with 
mountains, rivers, rocks, tree, plains, broad valleys, and hills of all kinds.” 
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superstition provides an additional source of information which fills the void of the 
unknown or helps to deal with “information overload” by disentangling conflicting 
information to tip the scale: “superstition breaks the deadlock by indicating a superior 
alternative” [63]. One-third of Chinese managers rely so much on superstitious prac-
tices that they even neglect rational solutions. For others it is a stress-management 
tool, while for still others it has become an obsessive habit without which they will 
not feel at ease. 

In the psychological literature, further links between superstitious thoughts and be-
haviors and obsessive-compulsive disorder (OCD) can be found, such as obsessive 
checking [23] and anxiety disorders in female test subjects [66]. Furthermore, as Peter 
Brugger [8] points out, the “ability to associate, and especially the tendency to prefer 
‘remote’ over ‘close’ associations, is at the heart of creative, paranormal and delu-
sional thinking.” Again, a correlation between OCD and magical thinking, i.e., main-
taining beliefs that defy culturally accepted laws of causality in general and the belief 
that certain thoughts or behaviors exert a causal influence over outcomes in particular, 
can be found [20]. 

The close connection between schizophrenia and creativity, i.e., the ability to think 
in terms of connections and links between entities belonging to different categories 
gives rise to the assumption that creativity has also close ties to superstition, which 
can be defined as the confusion of categories and core knowledge [37], i.e., building 
blocks that emerge early in human ontogeny and phylogeny [62]. This includes, 
among others, confusion of symbolic representations and the material objects they 
represent, the attribution of physical or animate entities to mental content, the ascrip-
tion of independent existence to good and bad minds, which behave as animate enti-
ties by moving and initiating actions without external force, and thinking that badly 
placed furniture leads to crime and divorce. 

The conclusion from these insights is that cognition, being the faculty to make de-
cisions, depends on our ability to anticipate future events and states. This thesis, 
largely upheld and developed in cognitive science and AI, is not disputed. However, 
the origin of the anticipations is called into question: are they a result of information 
processing or alternatively do they emerge from information constructing? This ques-
tion is legitimated by the fact that due to the amorphousness of the world any arbitrar-
ily large number of underlying rules or laws for predicting events can be established. 
This leaves a cognitive system with uncertainty and even anxiety. In order to regain 
the feeling of control, cognition uses superstitious behaviors, which relieve the cogni-
tive agent from the need to process the information overload from its environment. 
Therefore, for want of structure, superstition emerges as a response to uncertainty and 
may even transform into psychological disorders.  

In the following section the consequences for decision-making and cognition are 
addressed. 

5   Decision-Making and the Construction of Information 

It has been argued that complex human thought and behavior are possible because 
cognition is able to simulate long sequences of responses and sensory consequences 
[27]. In a sense, cognition then consists of walking through a chain of decisions.  
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According to the traditional literature on decision-making, it is taken for granted that 
human cognition makes decisions based on careful considerations of the situational 
context. In economics, this idea has been condensed into “rational choice theory,” 
which regards rationality as the only criterion a decision maker has to strive for. As 
pointed out above, there are reasons to assume that this is a misleading characteriza-
tion, which is based on the assumption that human cognition basically functions as an 
information-processing device that extracts rules from incoming experience. This 
theory not only fails to take the limitations of (human and any other finite) cognition 
into account, it is also unable to deal with the amorphousness of the world. In artifi-
cial life research, this has been called the “what to do next” or action-selection prob-
lem [64, 31], i.e., formulating a mechanism that allows choosing an action in pursuit 
of a single coherent goal or several conflicting and heterogeneous goals. 

Gerd Gigerenzer [24] argued that decisions must necessarily be adaptive, fast, and 
frugal if they are to ensure survival. In artificial intelligence, a similar paradigm has 
emerged focusing on behavior-based robotics. It does not rely upon a priori mathe-
matical analysis of a given situation but rather on a hic-et-nunc strategy that takes 
system-internal drives into account rather than a sophisticated representation defined 
in terms of the programmer’s semantic world, i.e., from the third-person perspective.  

In order to understand how human and, consequently, artificial cognitive systems 
with limited processing capabilities can cognitively cope with an amorphous world, 
let us explore two examples from the animal kingdom which both question the notion 
of information-processing. 

(1) Consider the behavior of an incubating goose that decides to use its bill to roll 
back the egg that has fallen out of its nest. Interestingly, it will continue its rolling 
behavior even if an ethologist takes away the egg [38]. It seems that the animal does 
not constantly screen its environment and filter out environmental changes. Rather, 
the environmental state becomes only important at certain, apparently evolutionarily 
important, checkpoints (which do not include the existence of ethologists). These 
checkpoints act as anticipations that determine whether an action that has been al-
ready started is on track with regard to a certain goal. As the psychological literature 
documents, human problem-solving, too, is dominated by a similar sort of conserva-
tive inflexibility that makes subjects repeatedly choose a once successful strategy 
irrespective of whether another, simpler, strategy might be better suited for new prob-
lems [19, 40]. Furthermore, human perception is determined by internal cognitive 
dynamics that only occasionally seek to verify certain anticipations about future input 
states, as shown in the sequential order of tactile object recognition [58]. Finally, it 
has been argued that the inability to ignore stimuli (i.e., low latent inhibition) can lead 
to mental illnesses such as schizophrenia [39]. 

(2) Consider a fly crawling over a painting of Rembrandt [44, 56]. It in no way 
processes the visual information presented in the painting, as from its perspective 
there is no painting whatsoever. Only the human observer may wonder which infor-
mation filters the fly applies in order to ignore the rich informational input. The fun-
damental difference arises from the fact that human scientists and engineers from 
their third-person perspective (and lacking the first-order perspective of the observed 
systems, e.g., the fly) necessarily concentrate on the perceivable output of systems 
(such as the crawling of the fly). Cognitive systems, however, take actions in order to 
control and change their perceptive and proprioceptive input, e.g., they avoid the 
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perception of an obstacle or they drink to quench their thirst: “From the organism’s 
point of view only actions which feed back to the organism’s sensors can be observed 
[…] Any other action which simply disappears in the environment cannot be observed 
by the organism” [53]. 

In the latter sense a cognitive system needs to be defined as an information creator 
rather than as an information processor. The latter is defined in terms of an  
input–output relationship: a given input or perception yields (directly or after some 
“calculation”) an action, i.e., the output is a function of the information in the input. 
Information-creating systems, however, control their input (perception) rather than 
their output (behavior), or as Powers [54] put it, “behavior is the process by which 
organisms control their input sensory data.” This can only be achieved by first creat-
ing information (e.g., chains of cognitive elements connected via anticipatory check-
points) internally and then allowing those checkpoints to be (occasionally) matched 
against the input. 

Historically this idea can be traced back to the cybernetic concept of homeostasis 
[9]. It says that a living organism has to keep its intrinsic variables within certain 
limits in order to survive. These “essential variables” (which include body tempera-
ture, levels of water, minerals and glucose, and similar physiological parameters, as 
well as other proprioceptively or consciously accessible aspects in higher animals and 
human beings [4]) represent the purpose of a system. In order to account for a wider 
range of systems, we have to make the following (rough) distinctions here:  

(a) Man-made vs. genuinely autonomous systems. In man-made systems goals are 
defined by the human designer, whereas in genuinely autonomous systems the goals 
are constructed by the system itself. They are defined before the system reads its  
inputs and tries to accommodate for any deviations, or as William Clancey [11] ex-
pressed it, “what constitutes information for an organism cannot be given by a 
teacher, but must arise from the organism’s own organizing processes in interaction 
with its environment.” Since the agent controls its inputs the output can become quite 
unpredictable for an external observer [53]. It is therefore useful to retain the distinc-
tion between a first-person perspective (the one of the input-controlling system) and 
the third-person perspective of the external observer who can only make guesses 
about the self-defined goals of the system. Susan Oyama [51] maintains that there is 
no preformed or a priori information, but rather that every system constitutes its own 
information: information is bound “inextricably to a point of view,” i.e., the first-
person perspective. 

(b) Simple vs. cognitive systems. In simple systems (such as thermostats) the state 
of homeostasis is reached by the simple process of negative feedback. For example, in 
a thermostat, a given parameter, such as the temperature, is kept under control by 
appropriate counteractions, i.e., by turning the heating on or off depending on a  
certain reference value. Cognitive systems need to execute a certain sequence of ac-
tions in order to control and change their input state. This is a result of the fact that 
“perception and action arise together, dialectically forming each other” [12]. This 
renders the whole concept of representation doubtful as “we can walk through a room 
without referring to an internal map of where things are located, by directly coordinat-
ing our behaviors through space and time in ways we have composed and sequenced 
them before” [12]. Consequently sensory, cognitive, and motor functions can no 
longer be considered independent and sequentially working parts of the cognitive 
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apparatus. And the latter can no longer be described as a computational device, the 
“task” of which is to acquire propositional knowledge about the mind-independent 
reality by processing information that is picked up from that reality.  

Putting (a) and (b) together, genuinely autonomous cognitive systems can be char-
acterized as systems that try to achieve self-determined goals. These goals are defined 
in terms of anticipatory checkpoints that glue together action sequences. In order to 
act as goals these action sequences must be constructed in the first place: the informa-
tion they contain is constructed rather than representing processed input. The cogni-
tive system then executes an action sequence as long as the checkpoints can be  
successfully met by the input. Any failure to do so causes the system either to find 
alternative chains of actions that more appropriately answer to the requirements of the 
checkpoints (“re-orientation”) or to construct new chains that make more or less use 
of already existing elements. The lower the degree of reusability, the higher the de-
gree of “perplexity” of the system. The vast number of different ways to form chains 
from components excludes random arrangements from being an option.  

It is already clear in the case of simpler systems that action sequences have to be 
assembled in a hierarchical manner. While such a simple feedback loop may suffice 
for primitive intrinsic variables, higher order goals are accomplished in a hierarchical 
assemble of feedback loops in which each level provides the reference value for the 
next lower level: “The entire hierarchy is organized around a single concept: control 
by means of adjusting reference-signals for lower-order systems,” as Powers [54] 
pointed out. So at higher levels the system controls the output of lower levels, at the 
bottom, however, it controls its perceptual input. 

In cognitive systems action sequences must be arranged in a similar manner. For-
mally, the cognitive apparatus P may consist of schemata R that work over mental 
states S, P = <R, S>.6 Each schema r ∈ R is a chain of checkpoints c and actions a, 
r = {c | a}+. We can extend this definition by allowing clusters of checkpoints and 
actions, respectively, C = {c}+ and A = {a}+, in order to account for multimodal per-
ceptual entities and action sequences (e.g., the egg-rolling sequence in the example 
above), respectively. If, in addition, we allow recursions of the form C = {c | C}+ and 
A = {a | A}+ it follows that checkpoints and actions form nested hierarchies in which 
encapsulations are reused as building blocks on a higher level [1]. Elements can be 
functionally coupled as they make use of encapsulations and/or are part of encapsula-
tions themselves. The encapsulation guarantees that, when  new chains are being 
formed, partial solutions do not get lost, preventing the apparatus from making ran-
dom guesses. By using a hierarchical arrangement the cognitive agent gains two ad-
vantageous aspects: speed and goals. According to Simon [59] “hierarchic systems 
will evolve far more quickly than non-hierarchic systems of comparable size” since 
the “time required for the evolution of a complex form from simple elements depends 
critically on the number and distribution of potential intermediate stable forms.” In 
addition, the hierarchical composition of chains introduces a direction, a goal, “by the 
stability of the complex forms, once these come into existence.” [59]  

                                                           
6 Schemata are a popular explanatory vehicle for cognitive systems and have been widely dis-

cussed in the literature, e.g., Neisser [49], Drescher [17], Arbib [2], Bickhard [6]. 
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In other words, goal-directed behavior can be explained as the execution of hierar-
chically nested chains composed of action sequences and checkpoints that glue them 
together. The checkpoint character of cognition defines decision-making and other 
cognitive acts as being based upon internal states rather than external states of affairs. 
For an observer, from her (third-person) perspective cognitive systems seem to make 
the proper decisions in response to the challenges of the environment. But from the 
(first-person) perspective of the organism, decisions are only the consequence of the 
internal cognitive dynamics. Since the observer is a cognitive system with her own 
internally defined goals, the respective goals of observer and observed do not neces-
sarily coincide. This renders representational modeling difficult: how can the goal of 
the modeled cognitive system be defined in terms of modeler’s goals? A design proc-
ess like this requires a “God’s Eye” perspective and is therefore, unless they trust in 
random guesses, out of reach for human scientists. 

Reusing stable clusters of components, however, also has the disadvantage that the 
“right thing” may be done at the apparently “wrong moment.” If we consider the 
superstitious behavior of pigeons or the rituals of the offshore fishermen, it is clear 
that exactly this characterizes superstitious behavior. None of the involved behaviors 
are new. Only the perceptual condition that triggers the execution of a certain  
sequence is different from the one that was originally associated with that behavior. In 
order words, superstition emerges when processed information is combined with 
already-constructed information (cf. the above discussion about the close link  
between superstition and creativity). 

6   Conclusion 

The arguments presented in this paper give rise to the assumption that artificial cogni-
tive systems that are designed as information-processing devices are exposed to the 
danger of turning to superstitious behavior as their autonomy and cognitive compe-
tence increases. The arguments are based on the fact that in environments whose 
complexity transcends that of block- and microworlds7 the number of possible rule-
based explanations are NP-complete; any attempt to calculate them with the (very) 
finite means of the cognitive apparatus would render decision-making impossible. 
Making random guesses, however, leads to superstition and mental disorders.  

Since Daniel Dennett’s description of the frame problem [14], we know that robots 
that try to calculate every possible cause in their environment are doomed to remain 
inactive. In a sense, scientists are in no better of a situation. Johannes Kepler spent 
many years trying to find the regularity behind planetary movement by compressing 
the huge amount of position data collected by him and his teacher, Tycho Brahe [34]. 
Therefore it should not amaze us that “a scientific law or theory provides an algo-
rithmic compression not of a data set in its entirety … but only of a regularity that 
constitutes a component of the data set and that the scientist picks out in the data.” 
[47] In other words, some of these patterns “are taken by investigators as correspond-
ing to phenomena, not because they have intrinsic properties that other patterns lack, 
but because they play a particular role in the investigators’ thinking or theorizing.” 

                                                           
7 The environments targeted by many action-selection solutions, e.g., [64,31]. 



 Superstition in the Machine 69 

[45] These are the checkpoints in cognitive chains. Instead of processing the struc-
tures of the world we generate this structure by applying our cognitive operators [16], 
an insight which was originally proposed by Immanuel Kant’s Copernican Turn [32]. 

When checkpoints are not met and the cognitive agent is forced to switch to infor-
mation processing in order to construct new cognitive chains, superstition and mental 
disorders may emerge. The bigger the information overload the longer it takes to get 
back to the normal mode of cognition (cf. the amount of time necessary to find one’s 
way through new information) and the higher the chance of constructing superstitious 
information.  

To sum up, by taking an input-oriented perspective, we no longer need to assume 
that information is being processed but, rather, that it is constructed. That is, cognition 
is safeguarded from cognitive overload, which could otherwise lead to the illusion of 
control and, consequently, the creation of superstitious routines. Such an information-
constructing paradigm emphasizes the primacy of the internal cognitive dynamics 
over influences from the outside. Only if the cognitive artifact is in control of execut-
ing its structures rather than needing to cope with the computational costs of process-
ing the flood of perceptual stimuli can it, like natural cognitive systems, effectively 
control its input. 

Therefore, it would be useless to let autonomous cognitive machines data-mine the 
infinitely rich structures of the world. What we consider a regularity, a law, a rule or 
simply a heuristics for decision-making is an arbitrary component of the data set that 
only makes sense in the light of our thinking or theorizing, and is therefore an anticipa-
tory construction based on aspects of the cognitive system’s past experiences: “Things 
are a construction of ours, the function of which is to emphasize the resemblance be-
tween aspects of our immediate experience and aspects of our past experience.” [7] 

References 

1. Angeline, P.J., Pollack, J.B.: Coevolving high-level representations. In: Langton, C., (ed.) : 
Artificial life III. Addison-Wesley, Reading, pp. 55–71 (1994) 

2. Arbib, M.: Schema theory. In: Shapiro, S. (ed.) Encyclopedia of artificial intelligence, 2nd 
edn. vol. 2, pp. 1427–1443. Wiley, New York (1992) 

3. Arthur, W.B.: Inductive reasoning and bounded rationality. American Economic Re-
view 84, 406–411 (1994) 

4. Ashby, W.R.: Design for a brain. Chapman & Hall, London (1952) 
5. Ashby, W.R.: An introduction to cybernetics, 2nd edn. Chapman & Hall, London (1956) 
6. Bickhard, M.H.: Function, anticipation and representation. In: Dubois, D.M. (ed.): Com-

puting anticipatory systems (CASYS 2000). American Institute of Physics, Melville, pp. 
459–469 (2001)  

7. Bridgman, P.W.: The nature of physical theory. John Wiley & Sons, New York (1936) 
8. Brugger, P.: From haunted brain to haunted science: A cognitive neuroscience view of 

paranormal and pseudoscientific thought. In: Houran, J., Lange, R. (eds.): Hauntings and 
poltergeists: Multidisciplinary perspective. McFarland, Jefferson, pp. 195–213 ( 2001) 

9. Cannon, W.B.: The wisdom of the body. Norton, New Yorks (1932) 
10. Carnap, R.: Der logische Aufbau der Welt. Felix Meiner Verlag, Leipzig (1928). English 

translation: Carnap, R.: The logical structure of the world. Pseudoproblems in philosophy. 
University of California: Berkeley (1967) 



70 A. Riegler 

11. Clancey, W.J.: “Review of Rosenfield’s ‘The Invention of Memory’.”. Artificial Intelli-
gence 50, 241–284 (1991) 

12. Clancey, W.J.: “Situated ” means coordinating without deliberation. McDonnel Founda-
tion Conference, Santa Fe (1992) 

13. Conrad, K.: Die beginnende Schizophrenie. Versuch einer Gestaltanalyse des Wahns. 
Thieme, Stuttgart (1958) 

14. Dennett, D.C.: Cognitive wheels: The frame problem of AI. In: Hookway, C. (ed.) Minds, 
machines, and evolution: Philosophical studies, pp. 129–151. Cambridge University Press, 
London (1984) 

15. Dennett, D.C.: Consciousness explained. Little, Brown & Co, London (1991) 
16. Diettrich, D.: A physical approach to the construction of cognition and to cognitive evolu-

tion. Foundations of Science 6, 273–341 (2001) 
17. Drescher, G.L.: Made-up minds: A constructivist approach to artificial intelligence. MIT 

Press, Cambridge (1991) 
18. Duhem, P.: The aim and structure of physical theory (French original published in 1906). 

Princeton University Press, Princeton (1954) 
19. Duncker, K.: Zur Psychologie des produktiven Denkens. Springer, Berlin (1935). English 

translation: Duncker, K.: On problem solving. Psychological Monographs 58, 1–112 
(1945) 

20. Einstein, D., Menzies, R.: The presence of magical thinking in obsessive compulsive dis-
order. Behaviour Research and Therapy 42, 539–549 (2004) 

21. Foerster von, H.: Molecular ethology. An immodest proposal for semantic clarification. In: 
Ungar, G. (ed.): Molecular mechanisms in memory and learning, pp. 213–248. Plenum 
Press, New York (1970) Reprinted in Foerster von, H.: Observing systems. Intersystems 
Publications, Seaside, pp. 149–188 (1982) 

22. Foerster von, H.: Ethics and second-order cybernetics. Cybernetics & Human Knowing 1, 
9–19 (1992) 

23. Frost, R., Krause, M., McMahon, M., Peppe, J., Evans, M., McPhee, A., Holden, M.: 
Compulsivity and superstitiousness. Behaviour Research and Therapy 31, 423–426 (1993) 

24. Gigerenzer, G.: Adaptive thinking. Oxford University Press, Oxford (2000) 
25. Glasersfeld von, E.: Radical constructivism. Falmer Press, London (1995) 
26. Gosselin, F., Schyns, P.G.: Superstitious perceptions reveal properties of internal represen-

tations. Psychological Science 14, 505–509 (2003) 
27. Hesslow, G.: Conscious thought as simulation of behaviour and perception. Trends in 

Cognitive Sciences 6, 242–247 (2002) 
28. Hong, F.T.: Deciphering the enigma of human creativity: Can a digital computer think? 

IPSP-2003 VIP Forum, October 4-11, 2003, Sveti Stefan, Montenegro (2003) 
29. Hoyningen-Huene, P.: The nature of science. Nature & Resources 35, 4–8 (1999) 
30. Huettel, S.A., Mack, P.B., McCarthy, G.: Perceiving patterns in random series: Dynamic 

processing of sequence in prefrontal cortex. Nature Neuroscience 5, 485–490 (2002) 
31. Humphrys, M.: Action selection methods using reinforcement learning. PhD Thesis Trinity 

Hall, Cambridge (1997) 
32. Kant, I.: Kritik der reinen Vernunft. Zweite Ausgabe. Reclam jun, Leipzig, English transla-

tion: Critique of pure reason, Second edition.(1781) 
33. Keil, F.C.: Folkscience: Coarse interpretations of a complex reality. Trends in Cognitive 

Sciences 7, 368–373 (2003) 
34. Kozhamthadam, J.: The discovery of Kepler’s Laws. University of Notre Dame Press, 

Notre Dame (1994) 



 Superstition in the Machine 71 

35. Lakatos, I.: Falsification and the methodology of scientific research programmes. In: Laka-
tos, I., Musgrave, A. (eds.) Criticism and the growth of knowledge, pp. 91–195. Cam-
bridge University Press, London (1970) 

36. Langer, E.J.: The illusion of control. Journal of Personality and Social Psychology 32, 
311–328 (1975) 

37. Lindeman, M., Aarnio, K.: Superstitious, magical, and paranormal beliefs: An integrative 
model. Journal of Research in Personality (in press) 

38. Lorenz, K.Z., Tinbergen, K.: Taxis und Instinkthandlung in der Eirollbewegung der 
Graugans. Zeitschrift für Tierpsychologie 2, 1–29 (1939) 

39. Lubow, R.E., Gewirtz, J.C.: Latent inhibition in humans: Data, theory, and implications for 
schizophrenia. Psychological Bulletin 117, 87–103 (1995) 

40. Luchins, A.S.: Mechanization in problem solving. The effect of einstellung. Psychological 
Monographs 54/248 (1942) 

41. Mach, E.: Knowledge and error. Sketches on the psychology of enquiry. (German original 
was published in 1905). Reidel, Dordrecht (1976). 

42. Mach, E.: Popular scientific lectures. The Open Court, La Salle (Originally published in 
1893) (1986) 

43. Malinowski, B.: Magic, science and religion and other essays. Free Press, Glencoe (Origi-
nally published in 1925) (1948)  

44. Maturana, H.R.: Autopoiesis: reproduction, heredity and evolution. In: Zeleny, M. (ed.) 
Autopoiesis, dissipative structures and spontaneous social orders, pp. 48–80. Westview 
Press, Boulder (1980) 

45. McAllister, J.W.: Phenomena and patterns in data sets. Erkenntnis 47, 217–228 (1997) 
46. McAllister, J.W.: The amorphousness of the world. In: Cachro, J., Kijania-Placek, K. 

(eds.): IUHPS 11th International Congress of Logic, Methodology and Philosophy of Sci-
ence. Jagiellonian University: Cracow, 189 (1999) 

47. McAllister, J.W.: Algorithmic randomness in empirical data. Studies in the History and 
Philosophy of Science 34, 633–646 (2003) 

48. Neisser, U.: Cognitive psychology. Meredith, New York (1967) 
49. Neisser, U.: Cognition and reality. W. H. Freeman, San Francisco (1976) 
50. O’Regan, J.K.: Solving the “ real ” mysteries of visual perception: The world as an outside 

memory. Canadian Journal of Psychology 46, 461–488 (1992) 
51. Oyama, S.: The ontogeny of information: Developmental systems and evolution (Repub-

lished in 2000). Cambridge University Press, Cambridge (1985) 
52. Pörksen, B.: The certainty of uncertainty (German original appeared in 2001). Imprint, 

Exeter (2004).  
53. Porr, B., Wörgötter, F.: Inside embodiment. What means embodiment to radical construc-

tivists? Kybernetes 34, 105–117 (2005) 
54. Powers, W.T.: Behavior. The control of perception. Aldine de Gruyter, New York (1973) 
55. Quine, W.V.: Word and object. MIT Press, Cambridge (1960) 
56. Riegler, A.: When is a cognitive system embodied? Cognitive Systems Research 3, 339–

348 (2002) 
57. Rudski, J.M.: The illusion of control, superstitious belief, and optimism. Current Psychol-

ogy 22, 306–315 (2004) 
58. Sacks, O.: An anthropologist on Mars. Alfred A. Knopf, New York (1995) 
59. Simon, H.A.: The architecture of complexity. In: Simon, H.A.: The sciences of the artifi-

cial, pp. 192–229. MIT Press, Cambridge (1969) 
60. Simon, H.A.: Does scientific discovery have a logic? Philosophy of Science 40, 471–480 

(1973) 



72 A. Riegler 

61. Skinner, B.F.: ‘Superstition’ in the pigeon. Journal of Experimental Psychology 38, 168–
172 (1948) 

62. Spelke, E.S.: Core knowledge. American Psychologist 55, 1233–1243 (2000) 
63. Tsang, E.W.K.: Superstition and decision-making. Contradiction or complement? Acad-

emy of Management Executive 18, 92–104 (2004) 
64. Tyrrell, T.: Computational mechanisms for action selection. PhD thesis, University of Ed-

inburgh, Centre for Cognitive Science (1993) 
65. Vyse, S.A.: In: The psychology of superstition. Oxford University Press, New York (1997) 
66. Zebb, B.J., Moore, M.C.: Superstitiousness and perceived anxiety control as predictors of 

psychological distress. Anxiety Disorders 17, 115–130 (2003) 



From Actions to Goals and Vice-Versa:

Theoretical Analysis and Models of the
Ideomotor Principle and TOTE

Giovanni Pezzulo1, Gianluca Baldassarre1, Martin V. Butz2,
Cristiano Castelfranchi1, and Joachim Hoffmann2

1 Istituto di Scienze e Tecnologie della Cognizione,
Consiglio Nazionale delle Ricerche,

Via San Martino della Battaglia 44, I-00185 Roma, Italy
{giovanni.pezzulo,gianluca.baldassarre,
cristiano.castelfranchi}@istc.cnr.it
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Abstract. How can goals be represented in natural and artificial sys-
tems? How can they be learned? How can they trigger actions? This
paper describes, analyses and compares two of the most influential mod-
els of goal-oriented behavior: the ideomotor principle (IMP), which was
introduced in the psychological literature, and the “test, operate, test,
exit” model (TOTE), proposed in the field of cybernetics. This analysis
indicates that the IMP and the TOTE highlight complementary aspects
of goal-orientedness. In order to illustrate this point, the paper reviews
three computational architectures that implement various aspects of the
IMP and the TOTE, discusses their main peculiarities and limitations,
and suggests how some of their features can be translated into specific
mechanisms in order to implement them in artificial intelligent systems.

Keywords: Teleonomy, goal, goal selection, action triggering, feedback,
anticipation, search, robotic arms, reaching.

1 Introduction

Intelligence of complex organisms, such as humans and other apes, resides in
the capacity to solve problems by working on internal representations of them,
that is by acting upon “images” or “mental models” of the world on the ba-
sis of simulated actions (“reasoning”). These capabilities require that internal
representations of world states, goals and actions are intimately related. With
this respect, accumulating evidence in psychology and neuroscience is indicating
that anticipatory representations related to actions’ outcomes and goals play a
crucial role in visual and motor control [16]. As suggested by the discovery of mir-
ror neurons [38], representations are often action-related and are thus grounded
on the representations sub-serving the motor system. Barsalou [2] and Grush
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[14] try to provide unitary accounts of these phenomena respectively propos-
ing perceptual symbol systems and emulation theories of cognition. In a similar
vein, Hesslow [16] proposes a simulation hypothesis according to which cognitive
agents are able to engage in simulated interactions with the environment in order
to prepare to interact with it. According to Gallese [11]: “To observe objects is
therefore equivalent to automatically evoking the most suitable motor program
required to interact with them. Looking at objects means to unconsciously ‘sim-
ulate’ a potential action. In other words, the object-representation is transiently
integrated with the action-simulation (the ongoing simulation of the potential
action)”.

Recently anticipatory functionalities have been started to be explored from
a conceptual point of view [6,7,40] as well as from a computational point of
view [8,5,32,47]. This paper contributes to this effort by analyzing two impor-
tant now “classic” frameworks of goal-oriented behavior, namely the ideomotor
principle (IMP), and the test operate test exit model (TOTE). The IMP and
the TOTE can be dated back in their origin for decades if not centuries. The
IMP, which was proposed multiple times during the 19th century within the
psychological literature [15,22], hypothesizes a bidirectional action-effect linkage
in which the desired (perceptual) effect triggers the execution of the action that
previously caused it. The TOTE, introduced within the field of cybernetics [27],
proposes that goal-oriented action control is based on an internal representation
of the desired world’s state(s) with which the current world’s state is repeatedly
compared in order to direct action.

The first goal of the paper is to provide a comprehensive introduction to
both the IMP and the TOTE and to highlight their similarities, differences, and
drawbacks in explaining anticipatory goal-oriented behavior (sections 2-4).

The second goal of the paper is to analyze, at an abstract level, three com-
putational architectures, which implement various different features of the IMP
and the TOTE in distinct ways (Section 5). The architectures are only reviewed
here, while the reader is referred to specific papers for details). This analysis
aims at exemplifying and clarifying the principles underlying the IMP and the
TOTE. it is intended to serve as a starting point for future research on the
investigation of anticipatory goal-oriented behavioral mechanisms.

A final discussion concludes the paper with an outlook of the most important
challenges that the two principles pose to cognitive science (Sec. 6).

2 The Ideomotor Principle

According to the IMP [17,20,22], action planning takes place in terms of antici-
pated features of the intended goal. Greenwald [13] underlines the role of antici-
pation in action selection: a current response is selected on the basis of its own
anticipated sensory feedback. The Theory of Event Coding [21] proposes a com-
mon coding in perception and action, suggesting that the motor system plays
an important role in perception, cognition and the representation of goals. The
theory focuses on learning action-effect relations which are used to reverse the
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“linear stage theory” of human performance (from stimulus to response) sup-
ported by the sensorimotor view of behavior. Neuroscientific evidence suggesting
common mechanisms in organisms’ perception and action is reported in [23,37].
With this respect, Gallese [12] suggests that “the goal is represented as a goal-
state, namely, as a successfully terminated action pattern”. Recently Fogassi et
al. [10] discovered that inferior parietal lobule neurons coding an observed spe-
cific act (e.g., grasping) show markedly different activations when the act is part
of different courses of actions leading to different distal goals (e.g., for eating or
for placing). Since the activation begins before the course of action starts, they
postulate that those neurons do not only code the observed motor act but also
the anticipation (in an ideomotor coding, we would say) of the distal goal, that
is the understanding of the agent’s intentions.

In the ideomotor view, in a sense, causality, as present in the real world, is
reversed in the inner world. A mental representation of the intended effect of an
action is the cause of the action: here it is not the action that produces the effect,
but the (internal representation of the) effect that produces the action. Minsky
[28, par. 21.5] describes an “automatic mechanism” that can be considered as
an example of how to realize this principle (cf. Figure 1): when the features of,
say, an apple are endogenously activated, an automatic mechanism is oriented
toward seeing or grasping apples teleonomically.

Fig. 1. The “automatic mechanism” proposed by Minsky [28, par. 21.5]

The main constituents of the IMP. The comparison of the presentations of the
IMP by these various authors allows identifying three main constituents of the
principle. These form the core of the principle and abstract over minor details
and different aspects stressed by the various authors. The three constituents are
now analyzed in detail (cf. Figure 2):

1. Perceptual-like coding of goals. An important characteristic of the IMP is that
it has been developed within a vision of intelligence seen as closely related to
the sensorimotor cycle (for an example drawn from the psychology literature
see [25], whereas for an example drawn from embodied artificial intelligence
see [14]). As a consequence, the authors proposing the IMP usually stress
the fact that the system’s internal representations of goals are similar, or the
same, as the internal representations activated by perception. This feature of
the principle has also an important “corollary”: the source of goals is usually
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assumed to be experience, that is, goals tend to correspond to previously
perceived (eventually represented in an abstract way) states.

2. Learning of action-effect relations. Another important constituent of the
principle is that experience allows the system to create associations between
the execution of actions (e.g., due to exploration, “motor babbling”, etc.) and
the perceived consequences resulting from it. This requires a learning process
that is based on the co-occurrence of actions and their effects observed in
the environment [20]).

3. Goals are used to select actions. Another core constituent of the principle
is the fact that the system exploits the learned association between actions
and the resulting perceived states of the world to select actions. According
to Greenwald [13]: For the ideomotor mechanism, a fundamentally different
state of affairs is proposed in which a current response is selected on the
basis of its own anticipated sensory feedback. The idea is that the activation
of the representation of a previously experienced state allows the system to
select the action that led to it. When this process occurs, the representation
of the state assumes the function of goal both because it has an anticipatory
nature with respect to the states that the environment will assume in the
future, and because it guides behavior so that the environment has higher
chances to assume such states.

Fig. 2. A scheme that represents the main features of the IMP. Thin arrows repre-
sent information flow, whereas the bold arrow represents the direction of the internal
association between goal and action corresponding to physical causality. See text for
further explanations.

It is important to note that the selection of actions with this process requires
an “inversion” of the direction of the previously learned action-effect association,
from “actions → resulting states” to “resulting states → actions”. This inversion
is particularly important because it implies that the system passes from the
causal association that links the two elements, as resulting from experience, to
the teleonomic association between them, as needed to guide behavior. It is only
thanks to this inversion that the system can use the effects as goal states.
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3 TOTE and Cybernetic Principles

TOTE was introduced by Miller, Galanter and Pribram [27] as the basic unit of
behavior, opposed to the stimulus-response (SR) principle. The TOTE was in-
spired by cybernetics [39], that however focused on homeostatic control and not
on goals. In a TOTE unit, firstly a goal is tested to see if it has been achieved: if
not, an operation is executed until the test on the goal’s achievement is successful.
One of the examples of a TOTE unit is a plan for hammering a nail: in this case,
the test consists in verifying if the nail’s head touches the surface and the opera-
tion consists in hitting the nail. In this case, the representation used for the test is
in sensory format, and the operation is always the same, even if the TOTE cycle
can involve many steps. TOTE units can be composed and used hierarchically for
achieving more complex goals, and can include any kind of representation for the
test and any kind of action. The TOTE inspired many subsequent theories and
architectures such as the General Problem Solver (GPS) [29].

Fig. 3. A scheme that represents the main features of the TOTE. Words in Italics
represent the main processes composing the principle. Thin arrows represent informa-
tion flows. The double-headed arrow represents a process of comparison between the
desired and the actual state value. The dashed arrow represents the fact that an action
is selected and executed in the case the Test fails, but not how it is selected. The bold
arrow represents a switch in the sequence of processes implemented by the system. See
text for further explanations.

The main constituents of the TOTE. The three main constituents of the TOTE
(cf. Figure 3) are now analyzed in detail on the basis of the comparison of the
various formulations proposed in the literature.

1. Test. A first fundamental constituent of the principle is the internal repre-
sentation of the desired value(s) of the state of the environment. The repre-
sentation of this value is a key element of the Test sub-process composing
the principle. This sub-process implies that the system repeatedly checks if
the current state of the environment matches the goal.
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2. Abstract goal. Another important feature of TOTE is that the desired state
value of the system, that is the goal, can be abstract. Indeed, the TOTE is
underspecified with this respect, and the literature has used several differ-
ent types of encodings for goals, from perceptive-like encodings to more ab-
stract symbolic ones. The principle can manage this type of goals as the Test
sub-process can be as complex as needed, from simple pattern-matching to
more sophisticated processes of logical comparison of several features. This
(possibly) abstract nature of the definition of goals has also an important im-
plication for the origin of goals themselves, which can derive from previous
experience but also from other sources such as other systems (communication
or external setting) or “imagination” processes (internally generated goals).

3. Multiple steps. An important aspect of the TOTE is the fact that it is nat-
urally suited to implement a course of action formed by multiple steps, as
suggested by the repetition of the “Test” sub-process in its acronym. In these
steps sensory feedback might be used for chaining actions.

4 Comparison of IMP and TOTE

From the descriptions of the IMP and the TOTE reported in the previous sec-
tions, it should be apparent that the two frameworks specify rather general
behavioral and learning principles and abstract over details. Thus, designing an
artificial adaptive learning system according to them requires to integrate the in-
dications that they give with many implementation details. The guidelines that
the two frameworks give for the implementation of systems will now be presented
and compared in detail highlighting the respective strengths and weaknesses. In
particular, the two frameworks will be analyzed with respect to goal selection
and representation, action selection, action execution, context dependencies, and
learning.

4.1 Origin of Goals and Their Selection

If goals/effects have to trigger actions, they need to be generated and selected
in the first place. However, none of the two approaches gives suggestions on
how such goal selection process might be implemented. Certainly, strong links
with motivational and emotional mechanisms might be called into play to tackle
this problem. For example undesired low values of variables controlled home-
ostatically may trigger a goal that previously caused the variable to increase
in value (e.g., empty stomach leads to the search and consumption of food).
However, literature on IMP simply assumes that some events internal to the
system eventually trigger the (re-)activation of an internal representation of
action-consequences, that hence assume the function of a pursued goal, without
specifying the mechanisms that might lead to this. On the other side, the litera-
ture on TOTE tends to generically assume that goals derive from experience or
that they originate form outside the system (e.g., other intelligent systems, other
modules, con-specifics, etc.). Thus, how goal generation and selection could be
implemented lies outside the scope of IMP and TOTE.
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4.2 Goal Representation

Regardless of how goals are generated and selected, goals may be represented
in multiple ways. In the IMP, goal representations are encoded perceptually.
As a consequence anything that can be perceived might give origin to a goal
representation. These goal representations can then trigger linked action codes
or action programs that previously led to the activated goal representation.

The IMP does not specify which perceptual goal representations may be used
and how concrete or abstract they might be. However, two aspects are usually
emphasized in the literature: the role of experience in the formation of potential
goals and the perceptual basis of goal representations. With these restrictions
in mind it seems hard to generate some kinds of abstract goals within the IMP,
in particular, goals that are defined in terms of qualitative or quantitative com-
parisons, such as: “find the biggest object in the scene”, or “find the farthest
object”. In fact, in these cases the goal cannot be a template or a sensory pro-
totype to be matched with percepts, but corresponds to complex processes such
as “find an object, store it in memory, find a second object, compare it with the
previous one”.

An interesting additional problem arises in the implementation of the IMP in
that it does not specify how the system may distinguish between the current per-
ceptual input and the pursued goal. In fact the IMP postulates that the goal is
represented in the same format as the percepts generated from the sensation of
the state the world. With this respect, authors usually claim that the physical
machinery used to represent the goals and the one used at the higher levels of
perceptual processing are the same (e.g. [38]). This raises a problem of how the
system can distinguish between the activation of the representation correspond-
ing to the pursued goal and the activation of such representation caused by the
perception of the world. Indeed this information is needed by the system to con-
trol actions, but the IMP framework does not indicate how this can be done.

The TOTE, on the other hand, explicitly assumes “abstract” goal representa-
tions, and the level of such abstraction can be decided by the designer. This gives
to the TOTE much freedom with respect to the IMP: goals could be encoded
in abstract forms, but they could even be perceptually specified. However, even
when abstract encodings are used, the TOTE needs to be perceptually grounded
since the “Test” sub-process of the mechanism needs to compare goals with en-
vironmental states, and these can only be derived from the perceptual input.
Thus, differently than the IMP, the TOTE stresses the importance of abstract
goal representations but its goals’ representations need ultimately to be grounded
in perceptual input to test if they have been achieved.

4.3 Action Selection and Initialization

Once a goal representation is invoked, the next question arises: how the cor-
responding motor program or action is selected and triggered. Both principles
remain silent on when the invocation of a goal actually triggers an action, as-
suming that this is always the case. However, in an actual cognitive system it can
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be expected that the invocation of a goal representation may not always lead to
an actual action trigger, for example when the goal is currently not achievable
or too hard to achieve.

The IMP stresses that the perceptual goal representations directly trigger
actions or motor programs that previously led to that goal. In contrast to TOTE,
though, the IMP does not specify how long this goal is pursued. In particular,
it does not specify what happens if the selected goal is already achieved, nor it
specifies how the system checks if the currently pursued goal has been achieved.
This information is important for the successive selection of actions depending
on the fact that the pursued goal has been achieved or not. On the contrary,
TOTE contemplates an explicit test, applied repeatedly, that allows the system
to check when the selected goal has been achieved.

On the other side, whereas IMP suggests the existence of bidirectional links
between goal representations and motor programs or actions that achieve them,
TOTE is silent on how specific actions are triggered on the basis of the activated
goal. For example, the origin of the knowledge needed to select the suitable ac-
tions in correspondence to goals is not specified. This is in line with the fact that
the literature on TOTE tends to overlook the role that learning and experience
might have in goal directed behavior. Given this underspecification, the models
working on the basis of TOTE have adopted various solutions. For example a
common solution (e.g. sometimes used in the General Problem Solver) assumes
that the controlled state is quantitative and continuous, and uses a mechanism
that selects and executes actions so as to diminish the difference between the cur-
rent and the desired values of the state. Another example of solution is presented
in [34] where an explicit representation of a causal/instrumental link between
the actions and the resulting consequences is used to trigger actions.

4.4 Action Execution

The TOTE is thus an explicit closed loop framework, which by definition takes
the initial state and feedback into account. However, it does not specify if the
system should only check for the final goal or for intermediate perceptual feed-
back, as suggested for example in the emulation framework of Grush [14] or also
in the closed-loop theory by Adams [1]. Moreover, the authors of the TOTE do
not furnish any specific indication about the specific mechanisms used for con-
trol, such as the overall architecture of the system (e.g., hierarchical, modular,
etc.). Also the IMP is silent with regard to the question on how the execution
of the “selected” action is carried out, in particular whether or not feedback is
used. Finally, none of the two frameworks distinguishes between different types
of perceptual feedback such as proprioceptive versus exteroceptive feedback.

4.5 Context Dependence

Both approaches do not make any suggestion on how goal selection and action
selection may be dependent on the current context. The IMP approach consid-
ers merely the relation between the desired goal and the “action” to reach it,
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without taking into account that the required action almost always depends on
the given initial state of the system. Although modulations of action-effect links
are certainly imaginable dependent on currently available contextual informa-
tion, these are not specified in any form. Also the TOTE is silent on this issue
as the link between activated goal and corresponding operation is not specified.
However, the TOTE is context dependent at least in a sense: it explicitly takes
the current state into account in order to determine the action.

4.6 Learning

The IMP assumes the learning of action-effect associations with a bidirectional
nature, contrasting the view that the learning of “forward models” and “in-
verse models” should take place as distinct learning mechanisms. However, how
such bidirectional learning is actually accomplished is not specified. If one as-
sumes that the connections between actions and effects are mutually formed by
Hebb-like mechanisms (“what fires together wires together”), one has to face
the problem that sensory and motor parameters have to be represented in a way
that allows the system to “wire” together different types of representations. This
assumption leads to the “common code” hypothesis [35].

The TOTE stays completely silent on how “operator modules” for pursuing
goals might be learned or acquired. Indeed, probably because of its historical
origin within the cognitive psychology literature, the TOTE does not consider
learning at all but rather expects that the system designer creates appropriate
operator modules for the goals that may be pursued.

In general, both frameworks remain underspecified with respect to other im-
portant issues related to learning. For example, they do not address impor-
tant challenges such as learning generalization over different control programs
or the problem for which goals may be achieved in multiple ways. This under-
specifications with respect to learning represent some of the most crucial chal-
lenges for the application of both frameworks.

4.7 Goal Orientedness, the IMP and the TOTE

After having compared in detail the strengths and weaknesses of the IMP and the
TOTE, it is now important to consider their relations with goal-orientedness. To
this purpose, one can distinguish between three kinds of teleonomic mechanisms:

1. Stimulus determined, in which some relevant final states are reached thanks
to learned regularities (e.g. stimulus-response associations), without any ex-
plicit representation of the final states to be achieved.

2. Goal determined, in which there is an explicit representation of the expected
effect which also triggers an action, via previously learned action-effect links.
Notice that, as discussed in Sec. 2, an effect can be used as a goal state
because there is an “inversion” of the direction of the previously learned
action-effect association.
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3. Goal driven, in which there is an explicit representation of the states to be
achieved (goals): the system compares these states with the current state
and activates a suitable action if there is a mismatch between them. Note
that this third type of mechanism is a sub-case of the second one.

The IMP can be considered an instance of the second kind of mechanisms and
the TOTE an instance of the third kind. The main difference is that in the IMP
the goal is causally reached but not pursued as such. In other terms, the IMP
is functionally able to reach a state which is represented in an anticipatory way,
but the state is not treated as a goal that as is something motivating and to be
pursued.

On the contrary, the TOTE is goal driven: it is based on an explicit goal
representation which serves to evaluate the world (in particular, to be matched
against the current state). With this respect, the Test sub-process has both the
functions of action trigger and stopping condition. More precisely, the mismatch
serves to select and trigger the rule whose expectation minimizes the discrepancy.
Moreover, differently from the IMP, the TOTE “knows” if and when a goal is
achieved. Another related point is that in the IMP desired results (motivating
the action) are not distinguished from expected results of actions, the latter
including the former.

The comparison has shown that both frameworks are rather underspecified
under many aspects. Whereas the TOTE stresses the test-operate cycle, the
IMP stresses the linkage between action and contingently experienced effects
and the reversal thereof to realize goal-oriented action triggering. With this re-
gards, it seems possible that both principles might be combined into a unique
system whose goals are perceptually (but possibly very abstractly) represented,
and in which these perceptual goal representations trigger the associated action
commands. The triggered goal may then be continuously compared to the cur-
rent perceptual input enabling the recognition of current goal achievement. To
realize this, goal-related perceptual codes need to be distinguished from actual

Fig. 4. An example of model integrating some functionalities of both IMP and TOTE.
Actions, as in the TOTE, are selected and triggered by the mismatch produced by the
test. The action-effect rules are the same used in the IMP.
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perceptual codes, by, for example, a tag-based mechanism, a difference-based
representation, or a simple duplication of perceptual codes. As an example of
such a combination, Figure 4 indicates how the TOTE can exploit action-effect
rules as in the IMP, still retaining the test component and using the mismatch
for selection and triggering. Of course, the functioning of many processes such as
matching, selection and triggering are left unspecified here, because they can be
implemented in different ways. Next Section presents some implemented archi-
tectures that provide concrete examples of possible models that can be obtained
by merging different aspects drawn from the two principles, and that show some
of the elements composing them “in action”.

5 Implementations of IMP and TOTE in Artificial
Systems

After having analyzed the IMP and TOTE at a theoretical level, this section
reviews and discusses some computational models, presented in detail elsewhere,
that on one side represent concrete implementations of some important features
of such frameworks, and on the other side offer concrete answers to the issues
left open by both frameworks.

5.1 Case Study I: An Architecture for Visual Search

A hierarchical architecture [33] inspired by the IMP and by the “automatic
mechanism” proposed by Minsky [28] was tested in a Visual Search task [46].
The goal the system was to find the a red T in a picture containing also many
distractors, namely green Ts and red Ls. The system could not see all the picture
at once, but had a movable spotlight with three concentric spaces characterized
by a good, mild and bad resolution.

Fig. 5. Left : the components of the simulation: the goal, the spotlight and the modules,
whose layers are numbered. Light and dark nodes represent more or less active modules.
Modules learn to predict the activity level of some modules in the lower layer, which
they receive in input (dotted lines). Right : a sample trajectory in the visual field,
starting from the center (red letters are dark Grey, green letters are light Grey).
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The architecture performs the visual search task on the basis of many feature-
specific modules, such as color-detectors and line-detectors. Like in pandemo-
nium models [41], modules are organized hierarchically and include increasingly
complex representations (cf. the left part of Figure 5). According to [9, p. 444]
“search” consists in matching input descriptions against an internal template
of the information needed in current behavior : each module is composed by an
input template and a behavior. Modules have a variable level of activation: more
active modules can act more often and, as we will see, influence more strongly
the overall computation. Modules in layers 1 and 2 obtain an input from a simu-
lated fovea. The other modules have no access to the fovea, but use as input the
activation level of some modules in the immediately lower layer (dotted lines in
Figure 5). The architecture has five layers:

1. Full Points Detectors receive input from portions of the spotlight, for
example the left corner, and match full or empty points. Modules are more
numerous in the inner spotlight than in the central and outer spotlight.

2. Color Detectors monitor the activity of Full Points Detectors and recog-
nize if full points have the color they are specialized to find (red or green).

3. Line Detectors categorize sequences of points having the same color as
lines: they do not store positions and can only find sequences on-the-fly.

4. Letter Detectors categorize patterns of lines as Ls or Ts: they are special-
ized for letters having different orientations.

5. The Spotlight Mover is a single module: as explained later, it receives
asynchronous motor commands from all the other ones (e.g. go to the left)
and consequently moves the center of the spotlight.

In the learning phase, by interacting with a simulated environment, each
module learns action-expectation pairs. Modules learn the relations between their
actions and their successive perceptions (the activation level of some modules
in the lower layers), as in predictive coding [36]. In this way they also learn
which actions produce successful matching. For example, a line-detector learns
that by moving left, right, up or down the fovea its successive pattern matching
operation will be successful (i.e. it will find colored points, at least for some
steps), while by moving in diagonal its matching will fail. In this way the line-
detector implicitly learns the form of a line by learning how to “navigate” images
of lines. In a similar way, a T-detector learns how to find Ts by using as inputs
the line-detectors . There is also a second kind of learning: modules evolve links
toward the modules in the lower layer, whose activity they use as input and
can successfully predict. For example, T-detectors will link some line-detectors1.
These top-down, generative links are used for spreading activation across the
layers.

The simulation phase starts by setting a Goal module (e.g. find the red
T ) that spreads activation to the red-detector(s) and the T-detector(s). This
introduces a strong goal directed pressure: at the beginning of the task some
1 By learning different sets of action-prediction rules, modules can also specialize: for

example, there can be vertical lines detectors and horizontal lines detectors.
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modules are more active than others and, thanks to the top-down links, activa-
tion propagates across the layers. During the search, each module in the layers
2, 3, and 4 tries to move the spotlight where it anticipates that there is some-
thing relevant for its (successive) matching operation, by exploiting their learned
action-perception associations. For example, if a red-detector anticipates some-
thing red on the left, it tries to move the spotlight there; a green-detector does
the opposite (but with much less energy, since it does not receive any activation
from the Goal module). Line- and letter- detectors try to move the spotlight for
completing their “navigation patterns”. Modules which successfully match their
expectations (1) gain activation, and thus the possibility to act more often and
to spread more energy; and (2) send commands to the Spotlight Mover (such as
move left); the controller dynamically blends them and the spotlight moves, as
illustrated in the right part of Figure 5. In this way the fovea movements are
sensitive to both the goal pressures and the more contextually relevant modules,
i.e. those producing good expectations, reflecting attunement to actual inputs.
The simulation ends when the Goal module receives simultaneous success infor-
mation by the two modules it controls; this means that the Goal module has only
two functions: (1) to start the process by activating the features corresponding to
the goal state and (2) to stop the process when the goal is achieved. As reported
in [33], this model accounts for many evidences in the Visual Search literature,
such as sensitivity to the number of distractors and “pop-out” effects [46].

The IMP and the TOTE in Play. According to the IMP, activity is preceded
and driven by an endogenous activation of the anticipated (and desired) goal
state. In this case, the goal “find the red T” can be reformulated as “center
the fovea in a position in which there is a red T”; and the process starts by
pre-activating the features of the desired state, i.e. the modules for searching the
color red (red-detector) and the letter T (T-detector); the “finding machine”,
once activated, can only search for an object having these features. The key
element of the model is the fact that modules embed action-expectation rules and
are self-fulfilling; when a module is endogenously activated, its effect becomes
the goal of the system. It is worth noting that this system does not use any
map of the environment, but only sensorimotor contingencies [31] and a close
coupling between perception and action.

This system can achieve only two kinds of goals: (1) goal states that were ex-
perimented during learning, such as “find the red T”; and (2) goal states that are
a combination of features ; for example, by combining a green-detector and an L-
detector, the system can find a green L even if it has never experimented green Ls
during learning, but only green Ts and red Ls. On the contrary, this system cannot
achieve other kinds of goals such as: (1) The red T on the left, since locations are
not encoded; (2) The biggest red T, since there is no memory of past searches and
different Ts can not be compared; (3) The farthest red T, since temporal features
are not encoded. These goals require a more sophisticated procedure for testing
and a more abstract encoding: two of the features of the TOTE. The system uses
a feature of TOTE: a stopping condition, consisting in a matching between the
goal and the activation level of the corresponding features.
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5.2 Case Study II: An Architecture for Reaching

The second system used to illustrate the IMP and the TOTE in play has been
used to control a simple 2D two-segment arm involved in solving sequential
reaching tasks by reinforcement learning. Here we present only the features of
the system useful for the purposes of the paper and refer the reader to [30] for
details.

Fig. 6. The architecture of the model of reaching. Rectangular boxes indicate neural-
network layers. Text in boxes indicates the type of neural-network model used. Text
near boxes indicates the type of information encoded in the layers. Enclosed areas
indicate the two major components of the system. The graph also shows the controlled
arm and two targets activating the retina (black dots). See text for further explanations.

The system is mainly formed by two components, a postural controller and a
reinforcement-learning component (“RL component” for short). In a first learn-
ing phase, the postural controller learns how to execute sensorimotor primitives
that lead the arm to assume certain postures in space. In order to do so, while
the system performs random actions (similarly to “motor babbling” in infants,
cf. [26]), the postural controller learns to categorize the perceived arm’s angles in
a 2D self-organizing map [24]. At the same time a two-layer network is trained,
by a supervised learning algorithm [44], to associate the arm’s angles (desired
output pattern) with the map’s representation of them (input pattern). This
process allows the system: (a) to develop a population-code representation of
sensorimotor primitives within the self-organizing map, encoded in terms of the
corresponding “goals” (i.e. postures); (b) to develop weights between the map
and the desired arm’s angles that allow selecting sensorimotor primitives by
suitably activating the corresponding goals within the map.

In a second learning phase, the RL component learns to select primitives to
accomplish reward-based reaching-sequence tasks, for example in order to reach
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two visible dot targets in a precise order (cf. Figure 6 for an example; the RL
component is an “actor-critic model”, cf. [42]). Each time the RL component
selects an action (i.e. the achievement of a “desired posture”), the desired arm’s
angles produced by it are used to perform detailed movements (variations of the
arm’s angles) through a hardwired servo-component that makes the arm’s an-
gles to progressively approach the desired angles (postures): when this happens,
control is again passed to the RL component that selects another action.

The IMP and the TOTE in Play. The system has strong relations with both
the IMP and the TOTE, and in so doing it emphasizes their complementarity.
In line with the IMP, in the first phase of learning (motor babbling) the sys-
tem performs exploratory random actions, and learns to associate the resulting
consequences, in terms of the proprioception of the arm’s angles, to them. In
the second phase of learning, the system uses the expected consequences of the
actions as goals ( “expected” in terms of final postures), to trigger the execu-
tions of the actions themselves so as to pursue rewarding states. This feature
of the system is in line with two core features of the IMP, namely learning
action-effect relations and using them in a reversed fashion to select actions.
However, notice how it encodes the action-effects relations (that is the relations
“current posture angles seen as action - internal posture representations ” ) and
the effects/goals-action relations (that is the “internal posture representations
- desired posture angles seen as action” relations) in two separated sets of con-
nection weights. With respect to this feature of the model, recall that the IMP
does not furnish any specific mechanisms on how the action-effects/effects-action
associations should be learned.

A first important departure of the model from the IMP is that the “goals” of
the actions (i.e. the corresponding postures perceived in the first learning phase),
through which the system selects and triggers the actions themselves, are not
encoded in a “pure” perceptual-like format, but in terms of more abstract rep-
resentations generated by the self-organizing map. This might represent a first
step toward a more abstract representation of goals in the spirit of the TOTE.
A second important departure from the IMP is that the system incorporates a
“stop” mechanism on the basis of which control passes again to the RL compo-
nent when the execution of an action achieves the goal for which it was selected.
As we have seen, this is a typical feature of the TOTE. Note how this “stop-
ping” condition had to be introduced to allow the system to accomplish a task
that required the execution of more than one action in sequence (two actions in
this case).

From an opposite perspective, it is interesting to notice how, by using some
of the core ideas behind the IMP, the system overcomes some limitations of the
TOTE. In particular, first it uses experience both to create goals’ representations
and to associate them to actions, two issues that, as we have seen, are not specified
by the TOTE. Second, it uses motor babbling to create an association between
goals and actions, overcoming the TOTE’s underspecification about how specific
actions are selected and triggered in correspondence to a given activated goal.
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5.3 Case Study III: Anticipatory Classifier Systems

The anticipatory learning classifier system ACS2 [3] learns anticipatory repre-
sentations in the form of condition-action-effect schemata, similar to Drescher’s
schema system [8]. However, ACS2 learns and generalizes these schemata online
using an interactive mechanism that is based on Hoffmann’s theory of anticipa-
tory behavioral control [17,18,19] and on genetic generalization [3]. Similar to the
described arm-control approach, ACS2 executes some form of motor babbling. It
consequently learns a generalized model of the experienced sensorimotor contin-
gencies of the explored environment. In difference to the above system, though,
ACS2 learns purely symbolic schema representations, in difference to the dy-
namically abstracted real-valued sensory information. Generally, though, such
an abstraction mechanism might be linked with the ACS2 approach. More im-
portantly, though, ACS2 makes sensorimotor contingencies explicit: The systems
learns a complete but generalized predictive model of the environment.

ACS2 was combined with an online generalizing reinforcement learning mech-
anism, based on the XCS classifier system [45]. The resulting system, XACS [4],
learns a generalized state value function using XCS-based techniques in combina-
tion with the model learning techniques of ACS2. Figure 7 sketches the resulting
architecture. The reinforcement component is intertwined with the model learn-
ing component using the model information for both predictive reinforcement
learning and action decision making. For learning, XACS iteratively updates
its reinforcement component using a Q-learning-based [43] update mechanism—
testing all possible reachable situations and using the maximum reward value to
update the currently corresponding reward value. For action decision making,
XACS uses the model to activate all immediately reachable future situations
and then uses the reinforcement learning component to decide on which situ-
ation to reach and consequently which action to execute. It was also proposed
that XACS may be used in conjunction with a motivational module representing
different drives. The reinforcement module would then consist of multiple mod-
ules that work in parallel, each module influencing decision making according to
its current importance [4] (cf. Figure 7).

The IMP and the TOTE in Play. XACS plays a hybrid role being situation-
grounded but goal-oriented. In this way, goals that cannot be achieved currently
will not have any influence on behavior. Vice-versa, goals that are easily achiev-
able currently will be pursued first. Due to the generalization in the predictive
model and in the reinforcement component, abstract generalized goal represen-
tations can be reached within differing contexts.

XACS realizes ideomotor principles in that actions are directly linked to their
action effects. Initially, XACS learns such schemata during random exploration.
Goals are coded using the given perceptual input, which is symbolic. XACS,
however, does not start from the goal itself but interactively activates potential
goals (that is, future situations), then chooses the currently most desirable one,
which finally triggers action execution. In this way, the system is goal-driven—
but it is grounded in the current situation.
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Fig. 7. XACS realizes the IMP in that it selects actions according to their associated
perceptual effects. A desired effect is selected using the developed motivational module
that is designed to maintain the system in homeostasis. The TOTE is realized in that
each iteration currently possible effects are compared with currently desired effects.

Goal selection is integrated in XACS by the separate reinforcement component
that links to the behavioral component. Thus, XACS proposes a goal selection
mechanism realized with reinforcement learning techniques. In difference to the
TOTE, there is never an explicit test that controls if a goal was reached. This
mechanism is implicitly handled by the reinforcement learning component in
conjunction with the proposed motivational module. Once a goal is reached, a
motivation will become satisfied and thus another drive will control behavior.

6 Conclusions

This paper has investigated the implications of the Ideomotor Principle (IMP)
and the Test Operate Test Exit framework (TOTE) for adaptive behavior and ac-
tion selection. The paper showed that the frameworks are actually rather closely
related as both stress the importance of anticipation as goal-oriented action selec-
tion. Whereas goals are represented perceptually and are bidirectionally linked
to associated actions in the IMP, the TOTE emphasizes the interactive cycle
of triggering actions by desired goals while iteratively testing if such goals are
achieved. Overall the two frameworks enlighten important aspects of the antic-
ipatory nature of goal-driven systems. However, neither of them get concrete
enough to pinpoint specific actual implementations.

The paper also reviewed three implementations that not only exemplify the
power and interest of the guidelines proposed by the IMP and TOTE, but also
represent important attempts to give possible answers to the problems left un-
resolved by them. The lessons learned by trying to implement the theoretical
principles suggested by the IMP and the TOTE in the three architectures can
be summarized as follows:

1. The first architecture accomplished a visual search task. It has a “goal node”,
which contains a test condition (similarly to the TOTE) having a sensori-
motor encoding of two conditions: color and shape. Like the IMP, actions
are preceded and triggered by a pre-activation of the desired goal state, but
like the TOTE this happens as a consequence of a mismatch between the
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pursued goal and the percepts. The search proceeds thanks to the learned
action-expectation links, which are encoded in both the modules, which are
procedures that attempted to “self-realize”, and the links between them.
Interestingly, to allow the architecture to function we had to design a mech-
anism for which the goal to pursue was selected through an activation with
a level above zero (in order to trigger the search), but below the activa-
tion achieved when the state corresponding to it was actually achieved. In
fact, had the pre-activation and the activation the same level, the test would
have a positive outcome and the search would have immediately stopped.
In several experiments it was also found that different initial amounts of
pre-activation lead to different response times in finding a solution and
can also lead to different search strategies. The interpretation of this was
that such pre-activation encoded a measure of urgency. The IMP and the
TOTE do not specify any mechanism to encode quantitative aspects of teleo-
nomic behavior such as urgency: this is surely an important limitation of the
two frameworks pointed out by the attempt to translate them into efficient
computational systems.

2. The second architecture was a neural-network system directed to tackle
reaching tasks with a simulated robotic arm. This architecture is based on
the central idea of IMP related to the creation of the association between
actions and their effects through exploratory experience and learning, and to
the use of such effects as goals to suitably trigger actions. With this aspect
the model implemented the “inversion” required by the IMP, from “actions to
effects” to “effects/goals to actions” by actually creating two distinct neural
mappings (even if on the basis of a common learning process). The imple-
mentation of the architecture also highlights the importance of testing the
achievement of goals, similarly to what is suggested by the TOTE, to assign
the responsibility of control either to the (reinforcement-learning) selector
of goals/actions or to the components executing the actions themselves. In
this respect, the implementation of the architecture again highlighted the
necessity to have distinct representations of goals to pursue and of current
states in order to perform such tests.

3. The last architecture, the XACS architecture, was a symbol-based architec-
ture that can pursue different goals. It implements the IMP by directly form-
ing a forward model of the environment, and by using this forward model to
trigger action execution. In the TOTE it remains underspecified how goals
may emerge and how they may trigger actions. Also the IMP does not specify
how desired perceptual states are triggered, nor how the bidirectional senso-
rimotor knowledge can activate appropriate actions. XACS proposes an in-
terlinked process that (1) activates all reachable (currently immediate) future
states and (2) selects the action that leads to the currently most desirable one.
Multiple goals may thus be active concurrently, leading to the pursuance of
the currently most relevant and most reachable goal.

With this conceptualization and characterization of the IMP and the TOTE
in hand, the next step along this line of research is to further investigate the
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many questions left open by the two principles, as well as to further identify the
specific advantages and disadvantages stemming from actual implementations
of them. Hereby, it will be important to use real-world simulations, or actual
robotic platforms, to both identify the issues left unresolved, and to crystallize
the true potential of the two anticipatory principles.
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Abstract. The paper proposes the framework for an animat control system (the 
Animat Brain) that is based on the Petr K. Anokhin's theory of functional sys-
tems. We propose the animat control system that consists of a set of functional 
systems (FSs) and enables predictive and purposeful behavior. Each FS consists 
of two neural networks: the actor and the predictor. The actors are intended to 
form chains of actions and the predictors are intended to make prognoses of fu-
ture events. There are primary and secondary repertoires of behavior: the pri-
mary repertoire is formed by evolution; the secondary repertoire is formed by 
means of learning. This paper describes both principles of the Animat Brain op-
eration and the particular model of predictive behavior in a cellular landmark 
environment. 

Keywords: Animat control system, predictive behavior, learning, evolution. 

1   Introduction 

This paper proposes the framework for an animat control system (the Animat Brain) 
that is based on the biological theory of functional systems. This theory was proposed 
and developed in the period 1930-1970s by Russian neurophysiologist Petr K. 
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Anokhin [1] and pays special attention to prediction and anticipation of a final needful 
result of a goal-directed action.  

There are a number of researches that analyze prediction and anticipation in animat 
control systems [2,3]. Tani investigated recurrent neural network (RNN) approach 
implementing predictive models for mobile robots [4,5]. Witkowski proposed the 
expectancy model that is based on a set of heuristic rules [6]. Butz et al [7] developed 
anticipatory learning classifier systems (ALCSs) that incorporate methods of rein-
forcement learning, genetic algorithm and earlier versions of classifier systems [8,9].  

The main goal of our work is to propose the neural network (NN) animat control 
system that enables explicit models of predicted states. The architecture of the NN 
control system is formed by biologically plausible self-organizing processes. We also 
propose simple cellular environments that can be used in both biological and com-
puter simulation experiments.  

The ideas for our work are similar to that developed in Tani’s research [4,5], how-
ever, we propose more distributed NN architecture as compared with RNN. The  
explicit NN models of predicted states in our approach are similar to sign-action-sign 
(SAS) relations in Witkowski’s dynamic expectancy model [6]. A more detailed 
comparison of our approach with other works will be given at the end of the paper.   

The paper is organized as follows. Section 2 outlines Anokhin’s theory of func-
tional systems. Section 3 describes principles of animat control system operation. A 
particular example of the proposed model is described in Section 4. Section 5 contains 
the discussion and conclusion. 

2   Anokhin’s Theory of Functional Systems  

Functional systems were put forward by Petr K. Anokhin in the 1930s as an alterna-
tive to the predominant concept of reflexes [1]. Contrary to reflexes, the endpoints of 
functional systems are not actions themselves but adaptive results of these actions. 
According to the functional systems theory, initiation of each behavior is preceded by 
the stage of afferent synthesis (Figure 1). It involves integration of neural information 
from a) dominant motivation (e.g., hunger), b) environment (including contextual and 
conditioned stimuli), and c) memory (including innate knowledge and individual 
experience). The afferent synthesis ends with decision making, which results in selec-
tion of a particular program of an action.  

A specific neural module, acceptor of the action result, is formed before the action 
itself. The acceptor stores an anticipatory model of the needful result of a goal-
directed action. Such a model is based on a distributed neural assembly that includes 
various parameters (i.e., proprioreceptive, visual, auditory, olfactory) of the expected 
result. Execution of every action is accompanied by a backward afferentation. If pa-
rameters of the actual result are different from the predicted parameters stored in the 
acceptor of action result, a new afferent synthesis is initiated. In this case, a new func-
tional system is formed and all operations of the functional system are repeated. Such 
processes take place until the final needful result is achieved. 
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Fig. 1. General architecture of a functional system. SA is starting afferentation, CA is contex-
tual afferentation. Operation of the functional system includes: 1) preparation for decision 
making (afferent synthesis), 2) decision making (formation of a program of an action), 3) prog-
nosis of the action result (generation of acceptor of action result), 4) backward afferentation 
(comparison between the result of action and the prognosis). 

A separate branch of the general functional system theory is the theory of syste-
mogenesis that studies mechanisms of functional systems formation during 1) evolu-
tion, 2) individual or ontogenetic development, and 3) learning. In the current paper 
we consider two of these mechanisms: evolution and learning. 

3   Architecture and Principles of Operation of the Animat Brain 

It is supposed that the animat control system consists of neural network (NN) blocks 
and is analogous to an animal control system. Each block is a formal functional sys-
tem (FS). At any moment in time (t = 1,2,…), only one FS is active, in which the 
current action is formed. There are connections between FSs; the active FS can 
transmit activation to every FS through these connections. 

Each FS consists of two NNs: the actor and the predictor. Operation of the active 
FS can be described as follows. The state vector S(t) characterizing the current exter-
nal and internal environment is fed to the FS input. The actor forms the action A(t) in 
accordance with given state S(t), i.e. the actor forms the mapping S(t) -> A(t). The 
predictor makes prognosis of the next state for given vectors S(t) and A(t), i.e. the 
predictor forms the mapping {S(t), A(t)} -> Spr(t+1). So, the predictor stores a model 
of casual relation between the current state S(t), action A(t) and the next state S(t+1).  
The prediction Spr(t+1) of the next state corresponds to the acceptor of action result in 
the functional system theory. The mappings S(t) -> A(t) and {S(t), A(t)} -> Spr(t+1) 
are stored in NN synaptic weights.  
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Activation is transmitted from one FS to others in accordance with connectivity 
matrix Cij. The value Cij characterizes the probability that the j-th FS is activated by 
the i-th FS. 

The animat receives reinforcements (rewards and punishments) which are related 
to animat needs.  

It is supposed that there are primary and secondary repertoires of behaviors. The 
primary repertoire is formed by evolution: there is a population of animats and a set of 
FSs. The corresponding synaptic weights of the involved NNs and the connectivity 
matrix Cij are adjusted during the evolutionary processes. 

The secondary repertoire of behavior is formed by learning. There are two regimes 
of learning: 1) the extraordinary mode and 2) the fine tuning mode.  

The extraordinary mode is a rough search of behavior that is adequate to the cur-
rent situation. This mode comes, if the predicted state Spr(t+1) in the active FS 
strongly differs from the real state S(t+1). In terms of the functional system theory, a 
large difference between Spr(t+1) and S(t+1) means that parameters of the result differ 
essentially from parameters stored in the acceptor of action result.   

In the extraordinary mode, a random search for new behaviors takes place; namely, 
the connectivity matrix Cij is substantially changed and new FSs can be randomly 
generated and selected. This mode is similar to neural group selection in Edelman’s 
theory of Neural Darwinism [10]. 

In the fine tuning mode, learning is adjustment of NN weights in the FS that is ac-
tive at the current moment of time and in the FSs that were active in several previous 
steps of time. As synaptic weights are updated in those NNs, which were active in 
previous time steps, this learning mode allows forming chains of consecutive actions. 
Synaptic weights in predictors are modified to minimize prediction errors (e.g. by 
means of error back-propagation [11]). Synaptic weights in actors are adjusted by a 
Hebbian-like rule: the synaptic weights in actors are modified to make the mappings 
S(t) -> A(t) stronger/weaker for positive/negative reinforcements. 

We introduce two modes of learning, that is, the extraordinary and the fine tuning 
mode, for the following reasons:  

1) We believe that learning by means of these two modes (rough search in a new 
situation and fine tuning in a partially known situation) is more effective as compared 
with one mode.  

2) Analogies to the fine tuning and extraordinary modes can be seen in animal  
behavior. For example, bees, butterflies and other insects are able to crop pollen or 
nectar from various flower species, but individual insects tend to choose flowers of a 
particular species, while ignoring others. The reason for this so called “flower con-
stancy” is that different flower species differ by their structure, so insects should learn 
a structure of particular flowers to extract food efficiently. Learning requires numbers 
of visits to the same flower species, resulting in a gradual decline in handling time on 
successive visits [12,13]. This learning is analogous to our fine tuning mode. If a 
production of food by preferred flower species falls low, then an insect starts to  
sample various other species [12] (an extraordinary mode).  
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An extraordinary mode also can be seen under artificial conditions unfamiliar to an 
animal. For example, certain species of jumping spiders live on trees and have no 
experience with water spaces. When faced with a water-filled tray in the laboratory 
for the first time, they may choose one of only two solutions available for them: jump 
over the tray or “swim” (in fact, walk) across it. Individuals, which attempt to swim 
first and fail to reach the opposite side of the tray, switch to jumping, if allowed a next 
trial. Those animals, which jump first and fail, switch to swimming (the extraordinary 
mode). If a spider reaches the opposite side, it repeats a successful behavior (swim-
ming or jumping) in the course of next trials. Once an appropriate behavior is chosen, 
only minute quantitative details of this behavior are varied [14]. One may speculate 
that these minute variations help to improve spider’s performance (the fine tuning 
mode of learning). 

Existence of extraordinary and fine tuning modes in various animal species sug-
gests that a learning based on two very different modes could be of adaptive value. 

A particular version of the Animat Brain model is described in the next section. It 
should be underlined that we propose only a possible version of the model. In order to 
ensure that all components of the model are consistent with each others, we describe 
concrete possible mechanisms of NNs operation, leaning, and evolution. In the cur-
rent work we consider simplest variants of these mechanisms; in further research 
these mechanisms could be replaced by similar ones. We propose also a certain land-
mark environment that can be used to compare behavior of simulated and real animals 
in the same model “world”. 

4 Particular Model of Animat Brain Operation 

4.1 Animat Environment and Features 

Environment. We assume simple 2D cellular landmark environment (figures 2 and 
3). Any marked cell A, B, C, D, G has its own landmark. The modeled “world” is 
restricted by impenetrable barriers. The animat sensory system is able to perceive the 
state of a marked cell (5 different signals), an unmarked cell and a cell of the barrier. 
So, there are 7 different possible signals from cells. The goal cell is G.  
 
Animat Features. An animat senses its local environment and executes some actions. 
Actions are executed in accordance with the commands of the active FS of the animat 
control system. At any moment in time, the animat executes one of the following five 
actions:  

1- 4) to move one cell up/down/right/left,  
5) to wait.  

The animat has internal energy resource R. Performing actions, an animat spends 
its resource. We suppose that at every movement (actions 1-4), the animat resource is 
decreased by r1, and when waiting (action 5), the decrease of the resource is negligi-
ble. Reaching the goal cell G, the animat increases its resource by r2.  
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А B

C D

G

 

Fig. 2. Simple cellular environment. The landmarks A, B, C, D, G are in adjacent cells. The 
goal cell is G. The “world” consists of 4x4 cells; it is surrounded by impenetrable barriers (grey 
cells)  

А B

C D

G

 

Fig. 3. The cellular environment that is similar to the “world” in Figure 2, but the landmarks A, 
B, C, D, G are separated by one cell distance 

Animat Sensory System. The animat perceives the states of five cells: its own cell 
and the four surrounding cells (up/down/right/left). In each of the four cells, the ani-
mat estimates one of 7 signals (5 kinds of landmarks, unmarked cell or barrier cell); in 
its own cell, the animat estimates one of 6 signals (5 kinds of landmarks or unmarked 
cell). For definiteness we suppose that every such signal is a binary component (1 or 
0) of the state vector S(t).  Also the animat perceives its resource R(t) and the resource 
change for the last time step R(t) - R(t-1). As other signals take values 0 or 1, it is 
convenient to characterize resource and resource change by binary values too. So, we  
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assume that the animat estimates the binary values SR and SDR , where SR = 1 if  
R(t) > RT and SR = 0 if R(t) < RT (RT is a predetermined threshold resource value), and 
SDR =1 if R(t) > R(t-1) and SDR = 0 if R(t) < R(t-1). Thus, the animat perceives 36 
binary parameters, characterizing its external and internal environment. These 36 
values form the current state vector S(t) . 

4.2   Animat Control System 

The animat control system is a set of FSs; each FS consists of two neural networks: 
the actor and the predictor. At any moment in time, only one FS is active, in which 
the current action is formed; after performing its operation, this FS transmits activa-
tion to other FSs. The new active FS is chosen probabilistically. The probability that 
the j-th FS is activated by the i-th FS is equal to  Cij /(∑ k Cik), with Cij as the element 
of the connectivity matrix (Cij > 0). 
 
Neural Network of the Actor. The actor is a two layer NN. The operation of the 
actor is described by the following equations: 

 

xA = S(t) ,      yA
j = th (∑ i w

A
ij x

A
i) ,     z

A
k(t) = F(∑ j v

A
jk y

A
j ) ,  (1) 

F(a) = 1/[1+exp(-a/b)] ,   (1a) 

 

where xA is the NN input vector, which is equal to the current state vector S(t), yA is 
the vector of hidden layer outputs, zA

k(t) are signals of output layer neurons, wA
ij  and 

vA
jk are NN synaptic weights, F(.) is the sigmoid activation function, and parameter b 

regulates the slope of this function. The probability that m-th action is selected is 
equal to zA

m(t) / ∑k  z
A

k(t).  The action vector A(t) is determined as follows: Am(t) = 1, 
if m-th action is selected, all other components of A(t) are set to be equal to 0.  
 
Neural Network of the Predictor. The predictor is also a two layer NN. The opera-
tion of the predictor is described by the following equations: 

 

xP = {S(t), A(t)},    yP
j = th(∑i w

P
ij x

P
i) ,    z

P
k(t+1) = F1(∑j v

P
jk y

P
j) , (2) 

Spr
k(t+1) = 1  if   zP

k(t+1) > 0.5 ,   Spr
k(t+1) = 0  if   zP

k(t+1) < 0.5 ,  (2a) 

F1(a) = 1/[1+exp(-a)] ,   (2b)  
 

where xP is the NN input vector, which is the compound vector xP = {S(t), A(t)}, yP is 
the vector of hidden layer outputs, wP

ij  and vP
jk are NN synaptic weights, zP

k(t+1) are 
signals of output layer neurons, Spr

k(t+1) are components of the predicted state vector 
Spr(t+1).  

Equations (1,2) describe the simple version of NNs operation that ensures both 
natural schemes of learning (see below) and binary components of vectors A(t) and 
Spr(t+1). 
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4.3   Learning Mechanism 

There are two regimes of learning: 1) the extraordinary mode and 2) the fine tuning 
mode. 

The extraordinary mode occurs, if there is a strong mismatch between the expected 
and real results: the predicted state Spr(t+1) in the active FS essentially differs from 
the real state S(t+1). A strong mismatch means the difference in essential components 
of vectors Spr(t+1) and S(t+1): for example, the increase of the animat resource was 
expected, but really the resource was reduced. 

In order to define essential components, we introduce a mask for every block. The 
mask is the vector M of dimension 36; this vector has components that are equal to 0 
or 1. The unit components of the vector M define essential components of the state 
vector S(t+1). Namely, the component Sk(t+1) is determined as essential, if Mk =1. If 
Mk = 0, the component Sk(t+1) is considered as inessential. The essential components 
determine, which causal relation between the current state S(t), current action A(t) 
and next state S(t+1) is checked by the given predictor. 

In the current version of our model it is supposed that the extraordinary mode of 
learning occurs as follows: a) activation is returned back to the i-th FS, that activated 
the current j-th FS, b) the element of the connectivity matrix Cij corresponding to the 
link between these two FSs is changed.  

The change of connection value Cij occurs as follows. First, this value Cij strongly 
decreases in the next time moment t+1, at which the i-th FS repeats activation of other 
FSs. At this moment, the temporary value of connection Cij

Temp is used, and then there 
is a return to the usual connection value Cij : 

 

Cij
Temp(t+1)  = K1 Cij (t) . (3a) 

 

Secondly, the connection value Cij slightly decreases in long-term manner: 
  

Cij (t+2) = K Cij (t) ,  (3b) 
 

where 0 < K1 < K < 1. For example, we can set K1 = 0.1, K = 0.9.   
The described scheme of adjusting the connection value Cij suggests that activation 

is transferred with high probability from the j-th FS that performed “unsatisfactory” 
action at the moment t to some other FS and then the probability to activate the j-th 
FS in future is slightly reduced.  

Learning in extraordinary mode means that there is certain reorganization of ani-
mat control system operation. It is also possible to implement random generation and 
selection of new FSs in the extraordinary mode of learning; we intend to consider this 
option in further versions of the Animat Brain.  

During the fine tuning mode, learning occurs by adjusting NN synaptic weights. 
This learning takes place when there is no strong mismatch between the expected and 
obtained result. Learning in actors and predictors occurs in different ways. 

Learning in actors occurs according to reinforcements. Synaptic weights are  
adjusted in the FS that is active at the current moment of time t, and in FSs, that were 
active in several previous steps of time. These synaptic weights are modified as  
follows: 

 



102 V.G. Red’ko et al. 

ΔWij = αA γk Xi(t-k) Yj(t-k) [R(t) - R(t-1)] ,  (4) 
 

where Wij is the weight of the considered synapse, Xi(t-k) is the signal on the synapse 
input, Yj(t-k) is the output of the neuron corresponding to the given synapse,  αA is 
learning rate of actors, γ is the discount factor (0 < γ < 1), k is the difference between 
the current moment of time and the time of operation of the considered FS,           
[R(t) - R(t-1)] is the value of the current reinforcement. 

As learning occurs in those actors, which were active in several previous steps of 
time, this type of training allows the formation of chains of actions.   

Learning in the predictor occurs, if there is a mismatch between the prediction 
Spr(t+1) and the result S(t+1) in any components of these vectors.  

Learning in the predictor is carried out by the usual method of error back-
propagation [11]. At this learning the target vector is S(t+1), and the NN output vector 
(that is compared with the target vector) is the vector zP(t+1), that is formed at the 
output layer of the predictor NN, see formulas (2).     

In addition to fine tuning mode, we consider learning upon achievement of the  
final needful result (see description of the functional system theory in Section 2). We 
suppose that, upon achievement of the final needful result, there is strengthening 
connections between several FSs, which were active immediately before achievement 
of this result. In the current model the final needful result corresponds to reaching the 
goal cell G. For this type of learning connections between FSs are modified as  
follows: 

 

ΔСij = αL (γL)k r2  , (5) 
 

where Сij is the connection between considered FSs, αL and γL are learning rate and 
the discount factor for this type of learning, k is the difference between the reward 
time and the time of considered activation transfer, r2 is the value of the reinforcement 
in the cell G. 

4.4   Evolution Mechanism 

We consider a simple genetic algorithm (GA) [15,16] that can be described as fol-
lows. An evolving population consists of n animats. Evolution passes through a num-
ber of generations, ng = 1,2,… At any generation, each animat is tested during T time 
steps independently of other animats of the population. At the beginning of the test, 
the animat resource R(t) is set to certain predetermined value R0 and the animat itself 
is set into the cell A. Then the animat acts in accordance with its control system and 
its resource is changed according to reinforcements. When the animat reaches the goal 
cell G and receive the reward r2, it is returned to the start cell A. Such process is re-
peated, until the time T is over. After testing all n animats, the transition to the new 
generation occurs. At this moment, the animat having the maximum resource Rmax(ng) 
is determined. This best animat gives birth to n children that constitute a new (ng+1)-
th generation.  

The initial architecture of the animat control system (the set of FSs and the connec-
tivity matrix Cij) as well as initial synaptic weights of NNs form the animat genome 
G. The genome G is received at animat birth and is not changed during animat life. It 
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is transferred (with small mutations) from the parent (the best animat of ng-th  
generation) to descendants (all animats of (ng+1)-th generation). Temporary architec-
ture and synaptic weights of the NNs are changed during animat life via learning 
described in section 4.3.  

At the beginning of (ng+1)-th generation, the genome G of each newborn animat is 
determined: the offspring genomes are obtained from the genome of the parent 
through mutations that include: 

1) duplication (with certain probability PD) of every existing FS; 
2) forming of elements of the connectivity matrix Cij , corresponding to new FSs; 
3) removing (with certain probability PR) of every existing FS; 
4) small random variations of elements of the connectivity matrix Cij and synap-

tic weights of all NNs; 
5) small random variations of the mask vector M for every predictor. 

The described evolution mechanism is the simple version of the GA that takes into 
account all compounds of the current Animat Brain model. Similar and more sophisti-
cated versions of the GA [15,16] could be used in future research.  

4.5   Interaction Between Selection of Actions and Predictions 

In the current model, we pay special attention to predictions of future states. We  
suppose that essential learning takes place in the extraordinary mode, when there is a 
large difference between predictions and results of action. This implies that chains of 
actions (formed by actors) should correspond to predictions (formed by predictors).  

For example, consider the “world” shown in Figure 3. When the animat placed in 
the cell A moves two times right, it should be able to predict the movement into an 
unmarked cell after the first step and into the landmark cell B after the second step. 
Moving further two times upwards, it should predict the displacement into an un-
marked cell and into the landmark cell C after the first and second steps, respectively. 
Then it should be able to predict movements to the landmark cells D and G. In princi-
ple, the animat can find an alternative path to the goal cell G, however, using land-
marks, it is able to find the reliable path. Chains of actions and predictions should be 
in agreement with each other for reliable behavior.  

Thus, we plan to analyze, how the agreement between chains of actions and predic-
tions can be formed through learning and evolution in the current model. 

5   Discussion and Conclusion 

Comparison with Other Approaches. As was stated in the introduction, our ap-
proach is similar to models by Tani [4,5], who models predictive behavior of mobile 
robots using RNNs. As compared with Tani’s works, our model provides more  
explicit representation of states S(t), actions A(t) and predictions Spr(t+1).    

Referring to Witkowski work [6] and research by Butz et al [7], we can note that 
our NN approach is based on the biological theory of functional systems [1] and we 
believe that it will be more flexible as compared with rule-based methods used in 
[6,7].  
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We can also compare our approach with works by Edelman et al, who investigate 
adaptive behavior that is controlled by huge NN control systems [17,18]. Our ap-
proach is at intermediate positions between small NN control system investigated in 
[4,5] and very large NN “brains” simulated in [17,18]. 

Our model includes two types of learning: 1) the extraordinary mode and 2) the 
fine tuning mode; and this can provide additional advantages as compared with simi-
lar models [4-7,17,18].  

In our previous work, we designed Animat Brain architecture that is based on the 
reinforcement learning (RL) and consists of a set of hierarchically linked FSs [19]. 
Every FS is a simple adaptive critic design (ACD) that consists of two NNs: the 
model (predictor) and the critic. The model is intended to predict the next state S(t+1) 
for given current state S(t) and all possible actions ai (the number of actions ai is sup-
posed to be small). The critic is intended to estimate state value function V(S(t)). 
Actions are chosen in accordance with ε-greedy rule [8] ensuring selection of those 
actions that maximize state values V.  However, analyzing evolution and learning in 
populations of such adaptive critics [20], we observed that ACD operation can be 
evolutionary unstable. This is due to the necessity to estimate state value function 
V(S); these estimations impose too strong a restriction on adaptive agent functioning. 
In the current work we introduce Hebbian-like learning modulated by rewards and 
punishments instead of the usual RL scheme. A similar viewpoint on RL and evolu-
tion was expressed by Stanley, Bryant and Miikkulainen [21], who emphasized that 
discovering complex NN control systems of adaptive agents by means of evolution is 
more effective than RL. In contrast to neuroevolution method [21], our schemes of 
search for adaptive behavior by both evolution and learning correspond to the  
biologically inspired concept of primary (formed by evolution) and secondary 
(formed by learning) repertoire of behaviors. 

Our approach is similar to works by Wolpert, Kawato et al [22,23] on multi-
modular NN systems for motor control. The architectures investigated in [22,23] 
include multiple pairs of inverse (controller) and forward (predictor) models. The 
inverse model is similar to the actor in our architecture; the forward model plays the 
same role as the predictor in our schemes. It should be noted that we consider the 
control system of an autonomous animat, whereas Wolpert, Kawato et al analyze 
learning at human motor control that corresponds to psychological experiments on 
movement of different objects at different conditions by an arm. 

It should be underlined that the simulation of adaptive behavior in landmark 
“worlds” proposed in this work (figures 2 and 3) can be used to compare different 
approaches, such as RNN [4,5], adaptive critic designs [19], brain-inspired NN con-
trol system [17,18], ALCSs [7], and distributed NN-based FSs.  

 
Possible Variations on the Proposed Model. One of the difficulties of the current 
model is the too large dimension of state vectors S(t) that include 36 components. To 
overcome this difficulty we can consider more specialized FSs. A particular FS can 
perceive only a small subset of parameters from the local environment. For example, 
the FS that is responsible for movement from cell A to cell B (Figure 2) can perceive 
only landmarks A and B, only in left and right cells. Such specialization can be im-
plemented by means of mask vectors M* that have components 0 or 1. Parameters  
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corresponding to zeros (M*
k =0) are not included into state vectors for the considered 

FS. This option can provide a distributed animat control system, in which many small 
specialized FSs constitute the whole Animat Brain. The specialized FSs can be 
formed through evolution and extraordinary mode of learning. It should be noted that 
this scheme of small specialized FSs is similar to the multi-modular architecture that 
was proposed and investigated in [22,23]. We can also consider the concept of mod-
ule responsibility from [22,23] in order to organize a flow of FS activity throughout 
the Animat Brain architecture. 

Figures 2 and 3 show simple landmark “worlds”. Obvious generalizations and 
variations are possible: several different goals can be introduced; the landmark distri-
bution can be unstable, noisy, etc.  
 
Biological Aspects. We propose to investigate animat behavior in landmark environ-
ments (simple examples of which are shown in figures 2 and 3). This is interesting 
from a biological viewpoint for the following reasons: 

- It is possible to design the cellular “world” with exactly the same structure for 
real biological experiments. Namely, we can construct the 2D array of cells 
with nontransparent walls between cells, color floor in certain cells by differ-
ent landmarks and make a door between every neighboring pair of cells. Any 
door is automatically closing but it can be opened by an investigating animal. 

- Landmarks are really used by animals in adaptive behavior. For example, 
honey bees use landmarks for efficient goal navigation [24]. 

- In some biological experiments, such as investigations of rat orientation in a 
Morris water maze [25], animals seem to be able to select and use landmarks 
to find a goal.  

So, we can state that it is possible to compare the goal-directed behavior of simu-
lated and real animals in proposed landmark environments. 

Conclusion. We proposed the biologically inspired Animat Brain architecture that 
consists of a set of functional systems (FSs). Every FS includes two NNs: the actor 
and the predictor, and provides action selection and predictions of action results. In 
the case of unexpected events, considerable learning takes place and animat behavior 
is reorganized. We intend to study conditions for which predictions of future events 
(formed by predictors) and generations of action chains (formed by actors) are 
consistent with each other. We also propose to investigate the predictive animat 
behavior in landmark environments that ensure comparison of behavior of simulated 
and real animals in the same model “world”. 
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Abstract. This paper describes the integration of several cognitively inspired 
anticipation and anticipatory learning mechanisms in an autonomous agent ar-
chitecture, the Learning Intelligent Distribution Agent (LIDA) system. We pro-
vide computational mechanisms and experimental simulations for variants of 
payoff, state, and sensorial anticipatory mechanisms. The payoff anticipatory 
mechanism in LIDA is implicitly realized by the action selection dynamics of 
LIDA’s decision making component, and is enhanced by importance and dis-
crimination factors. A description of a non-routine problem solving algorithm is 
presented as a form of state anticipatory mechanism. A technique for action 
driven sensational and attentional biasing similar to a preafferent signal and 
preparatory attention is offered as a viable sensorial anticipatory mechanism. 
We also present an automatization mechanism coupled with an associated 
deautomatization procedure, and an instructionalist based procedural learning 
algorithm as forms of implicit and explicit anticipatory learning mechanisms. 

1   Introduction 

It is widely acknowledged that adaptive behavior, an essential component of intelli-
gence, is enhanced by anticipatory activities, where predictions of the future modulate 
and influence current decision making. Simply put, organisms survive by anticipating 
the future. While the role of anticipations on deliberation, memory, attention, behavior, 
and other facets of cognition has been well studied in cognitive psychology, neuropsy-
chology, and ethology, the literature on explicit mechanisms to realize anticipations in 
artificial agents is considerably more sparse and scattered (Blank, Lewis, & Marshall, 
2005; Butz, Sigaud, & Gerard, 2002; Kunde, 2001; Rosen, 1985; Schubotz & von 
Cramon, 2001). Since anticipations have been acknowledged to be an influential com-
ponent of the cognitive facilities of humans (and other animals), the need to model and 
integrate theories of anticipations in our artificial systems becomes essential.  

Over the last decade a variety of mechanisms that realize anticipations in artificial 
systems have been proposed. These include reinforcement learning systems that are 
model-free (Watkins, 1989) as well as (predictive) model based such as Drescher’s 



 Cognitively Inspired Anticipatory Adaptation 109 

Schema mechanism (1991), Sutton’s dynamical architecture (1991), and the expec-
tancy model proposed by Witkowski (2002). Learning classifier systems, that make 
explicit predictions of future states, have also been widely used as anticipatory mecha-
nisms (e.g., Stolzmann’s, 1998 - ACS system, the YACS system - Gerard, Stolzmann, 
and Sigaud, 2002).  Artificial neural network based anticipatory systems include an 
attention mechanism proposed by Baluja and Pomerleau (1995) and Tani’s recurrent 
neutral network based model learning and planning mechanism (1996). More recently, 
anticipatory mechanisms are being implemented in developmental and evolutionary 
robots (Blank, Lewis, & Marshall, 2005; Hartland & Bredeche, 2006). Butz, Sigaud, 
and Gerard (2002) have provided a useful nomenclature for a variety of functional 
anticipatory processes found in humans and animals and computationally realized by 
artificial systems. They recognize four fundamental types of anticipatory systems that 
include payoff, sensorial, state, and implicitly anticipatory systems. The fundamental 
difference between implicit and the other three anticipatory systems is that in implicitly 
anticipatorial systems no explicit predictions about the future are made, even though 
the structure of the action selection component must contain certain anticipatory ele-
ments. Sensorial anticipation differs from payoff and state anticipatory mechanisms in 
that the predictions influence both early and later stages of sensory processing without 
having a direct impact on action selection. Finally, the main difference between payoff 
and state anticipatory mechanisms is that in payoff anticipatory systems anticipations 
play a role as payoff predictions only and explicit predictions of future states are not 
made. On the other hand state anticipatorial mechanisms make explicit predictions of 
future states during decision making processes. 

Our interest in anticipation and anticipatory learning mechanisms emerges from a 
desire to model several facets of human (and animal) cognition in an autonomous 
agent the Learning Intelligent Distribution Agent (LIDA). LIDA is the partially con-
ceptual, learning extension, of the original IDA system implemented computationally 
as a software agent (D’Mello et al., 2006). The original IDA system was designed as 
an autonomous agent, and performed personnel work for the US Navy in a human-
like fashion (Franklin, 2001). Although the design of IDA was inspired by several 
theories of human and animal cognition, it did not learn. The LIDA system adds three 
fundamental forms of learning to IDA: perceptual, procedural, and episodic learning.  

As mentioned above, over the last few years there has been a sustained effort to 
devise computational mechanisms for anticipations and to incorporate these algo-
rithms into existing or new animats. Although our approach shares several similarities 
to well established research along this avenue, we can point out two substantial dif-
ferences. First, we describe the manner in which computational mechanisms for sev-
eral anticipatory facilities may be integrated into a large working model of cognition. 
While several of the existing cognitive models do incorporate some sort of anticipa-
tory element, a degree of uniqueness in our approach ensues due to the fundamental 
difference between LIDA and other cognitive models. Most of the cognitive models 
developed by AI researchers and cognitive scientists are designed around some uni-
fied theory of cognition (Newell, 1990). Some of these well known models include 
SOAR (Laird, Newell, & Rosenbloom, 1987), ACT-R (Lebiere & Anderson, 1993), 
and Clarion (Sun, 1997). Most of these are based on some extension of Post produc-
tion systems (Post, 1965). In contrast, the LIDA model is based on a number of 
mostly psychological theories of cognition. These include: situated or embodied  
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cognition (Varela, Thompson, & Roach 1991, Glenberg, 1997), Barsalou’s theory of 
perceptual symbol systems (1999), working memory (Baddeley & Hitch, 1974), 
Glenberg’s theory (1997) of the importance of affordances to understanding, Baars’ 
global workspace theory (GWT) (1988), and Sloman’s architecture for a human-like 
agent (1999). We argue that basing our anticipatory mechanisms on functional aspects 
of human cognition may serve dual purposes by yielding both engineering and  
scientific gains. We expect engineering improvements because we are basing our 
computational mechanism on the best known example of intelligence, i.e. humans. 
Scientific gains can be achieved by using computer systems to test and perhaps  
augment psychological theories of anticipatory adaptation. 

One potential pitfall of relying on psychological theories is that they typically model 
only small pieces of cognition. In contrast, by its very nature the control system of any 
autonomous agent or cognitive robot must be fully integrated. That is, it must chose its 
actions based on real world sensation and perception along with incoming endogenous 
stimuli utilizing all needed internal processes. Once again the use of the LIDA system 
helps to divert this problem, while at the same time highlighting our second major 
contribution to anticipatory research in artificial systems. Due to its very breadth we 
are able to develop and experiment with a variety of anticipatory mechanisms. In this 
paper we describe computational algorithms for several anticipatory mechanisms, as 
used in the LIDA model. Sensory anticipation is accomplished in LIDA via a preaffer-
ent signal (Kay et al., 1996), and a preparatory attentive process (LaBerge, 1995), sent 
upon the decision to take an action, that biases LIDA’s perceptual and attentive 
mechanisms in favor of the anticipated sensory information (see 3.3 below). Payoff 
anticipation is implemented implicitly by LIDA’s action selection mechanism, as the 
next action to be taken is chosen (see 3.1). The non-routine problem solving algorithm 
(see 3.2 below) produces state anticipation in LIDA. An automatization and associated 
deautomatization mechanism, along with a procedural learning mechanism, are also 
presented as anticipatory learning mechanisms (see 4 below). 

2   Architectural Support for Anticipation 

The LIDA architecture is partly symbolic and partly connectionist with all symbols 
being grounded in the physical world in the sense of Brooks (1986).  The fundamental 
computational mechanism of the LIDA system is the codelet (Hofstadter & Mitchell, 
1994), a small piece of code executing as an independent thread that is specialized for 
some relatively simple task. The components of the LIDA system that are related to 
anticipations and anticipatory learning include perceptual associative memory, selec-
tive attention, procedural memory, and action selection. Other components, being 
only peripheral to this paper, are not described here. 

2.1   Perceptual Associative Memory 

The perceptual knowledge-base takes the form of a semantic net with activation 
(called the slipnet) motivated by Hofstadter and Mitchell’s Copycat architecture 
(1994). Nodes of the slipnet constitute the agent’s perceptual symbols (Barsalou, 
1999), representing individuals, categories and simple relations. The perceptual  
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symbols are grounded in the real world by their ultimate connections to various primi-
tive feature detectors having their receptive fields among the sensory receptors. An 
incoming stimulus, say a visual image, is descended upon by a hoard of perceptual 
codelets. Perceptual codelets respond to specific features from the various sensory 
streams and perform perceptual tasks such as recognition and identification. Each of 
these codelets is looking for some particular feature (a certain color, an edge at a 
particular angle, etc) or more complex features (a T junction, a red line). Upon finding 
a feature of interest to it, the codelet will activate an appropriate node or nodes in the 
slipnet. Activation is passed. The network will eventually stabilize. Nodes with acti-
vations over threshold, along with their links, are taken to provide the constructed 
meaning of the stimulus, the percept (see Figure 1). 

2.2   Selective Attention 

Selective attention in LIDA is an implementation of Global Workspace Theory 
(Baars, 1988) with hosts of attention codelets, each playing the role of a daemon, 
watching for an appropriate condition under which to act.  Each attention codelet 
watches for some particular situation that might call for selective attention (i.e.  
novelty, changes, etc). Upon encountering such a situation, the attention codelet is 
associated with a few nodes (from the slipnet) carrying a description of the situation. 
A coalition of codelets (collection of related codelets) is thus formed. During any 
given cycle one of these coalitions with the highest average activation is considered 
relevant and broadcasts its information to every other codelet (Baars, 1988). This 
broadcast is used to recruit schemes (see below) and perform various types of learning 
(D’Mello, et al., 2006). 

2.3   Procedural Memory 

Procedural memory in LIDA is a modified and simplified form of Drescher’s schema 
mechanism (1991), the scheme net. The scheme net is a directed graph whose nodes 
are (action) schemes and whose links represent the ‘derived from’ relation. Built-in 
primitive (empty) schemes directly controlling effectors are analogous to motor cell 
assemblies controlling muscle groups in humans. A scheme consists of an action, 
together with its context and its result (see Figure 1).  The context and results of the 
schemes are represented by perceptual symbols (Barsalou, 1999) for objects, catego-
ries, and relations in perceptual associative memory. The action of a scheme consists 
of one or more behavior codelets (discussed next) that execute the actions in parallel. 

2.4   Action Selection 

The LIDA architecture employs an enhancement of Maes’ behavior net (1989) for 
high-level action selection in the service of drives (primary and internal motivators) 
(Cañamero, 1997). The behavior net is a digraph (directed graph) composed of behav-
ior codelets (a single action), behaviors (multiple behavior codelets operating in paral-
lel), and behavior streams (multiple behaviors operating in some partial order) and 
their various links. These three entities all share the same representation in procedural 
memory (i.e., a scheme). As in connectionist models, this digraph spreads activation. 
The activation comes from three sources: from pre-existing activation stored in the 
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behaviors, from the environment, and from drives. To be acted upon, a behavior must 
be executable (preconditions satisfied), must have activation over threshold, and must 
have the highest such activation. 

LIDA’s action selection mechanism incorporates five major enhancements over 
Maes’ behavior net: (i) Variables – While Maes’ behavior net operates on the basis of 
boolean propositions only, LIDA’s mechanism supports variables that get bound 
during the instantiation of procedural schemes; (ii) Restricted search space – During 
the action selection phase Maes’ mechanism performs a global search over all the 
available competency modules while the enhanced behavior net restricts its search to 
relevant (instantiated) goal hierarchies, which are a subset of the available competen-
cies; (iii) Failure handling - Maes’ mechanism assumes that the result of a selected 
action is deterministic in that every action produces its expected outcome. Therefore, 
this mechanism is unable to handle execution failures which frequently occur in any 
real system.  On the other hand  LIDA’s enhanced behavior net is endowed with a 
degree of fault tolerance via its expectation mechanism; (iv) Priority control – Maes’ 
mechanism modulates the priorities of competing goals by building static causal links 
among competence modules while LIDA’s mechanism provides parametric control to 
dynamically change goal priorities at run time;  (v) Planning and subgoaling – Maes’ 
mechanism does not support classic AI planning and subgoaling but LIDA’s mecha-
nism, as a collection of goal structures, supports both (see Negatu, 2006).  

2.5   LIDA’s Cognitive Cycle  

Since the LIDA architecture is composed of several specialized mechanisms a contin-
ual process that causes the functional interaction among the various components is 
essential. We offer the cognitive cycle as such an iterative, cyclical, continually active 
process that brings about the interplay among the various components of the architec-
ture. A complete description of the cognitive cycle can be found in Franklin et al. 
(2005). We restrict our discussion to the four major components described above as 
follows.  

The meaning of an incoming stimulus is constructed in perceptual associative 
memory and is taken to be nodes that are above a certain threshold. The attention 
codelets build coalitions among these nodes and compete for attention. The contents 
of a winning coalition are broadcast to procedural memory to instantiate action 
schemes. Instantiated schemes compete for execution in the behavior net as behaviors. 
The dynamics of the behavior net select an action and the agent then directs its focus 
to perception. 

3   Anticipatory Mechanisms 

The LIDA architecture includes payoff, state, and sensorial anticipatory mechanisms 
as outlined by Butz, Sigaud, and Gerard (2002). At this stage, the payoff and sensorial 
anticipatory mechanisms have been computationally implemented. A graphical  
depiction of these anticipatory mechanisms embedded with LIDA’s cognitive cycle is 
presented as Figure 1. 
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Fig. 1. LIDA’s Cognitive Cycle and Payoff and Sensorial Anticipatory Mechanisms 

3.1   Payoff Anticipatory Mechanisms 

In a payoff anticipatory mechanism no explicit predictions of future states are made, 
with the role of anticipations being restricted to some form of payoff, or utility, or 
reinforcement signal. In the LIDA model the payoff for a behavior is calculated on the 
basis of predictive assessments by its current activation (i.e., relevance to the current 
goals or drives and environmental conditions) and its base-level activation (i.e.,  
reliability in past situations). 

LIDA’s motivational system to influence goal-directed decision making is imple-
mented on the basis of drives. Drives are built-in or evolved (in humans or animals) 
primary and internal motivators. All actions are chosen in order to satisfy one or more 
drives, and a drive may be satisfied by different goal structures. A drive has an impor-
tance parameter (real value in [0,1]) that denotes its relative significance or priority 
compared to the other drives. Each drive has a preconditional proposition that repre-
sents a global goal. A drive spreads goal-directing motivational energy, which is 
weighted by the importance value, to behaviors that directly satisfy its global or deep 
goal. Such behaviors in turn spread activation backward to predecessor behaviors. 
Although external activation spreading includes situational motivation, in this discus-
sion of anticipation, we will attend only to the action selection dynamics that are 
tuned to goal-end motivation. From this point of view, the current activation of a 
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behavior at a given time represents the motivation level for its execution to satisfy 
sub-goals, which in turn contributes towards satisfying one or more global goals at 
some future time. In other words, anticipating the predictive payoff in satisfying a 
goal influences the selection of the current action.  

This payoff anticipatory mechanism was tested as a controller of a Khepera robot 
in a simulated environment (a warehouse) with tasks of differing priorities (drive 
levels). Our results indicate that the enhanced behavior net was found to correlate 
highly with a simulated human operator (Negatu, 2006) using GOMS task analysis 
(Card, Moran, & Newell, 1983). However, in order to maximize the effect of the 
payoff two enhancements had to be made to establish sufficient priority control in 
executing tasks. These included the use of importance and discrimination factors. 

 

 

Fig. 2. Variation of motivation levels of competing behaviors: (a) without priority control 
(Maes’ mechanism); (b) with the effect of the importance parameter to control priorities 
(LIDA’s mechanism) 

As described above, in order to maintain priorities for the competing tasks (goals), 
behavior streams (goal structures or partial plans of action) that satisfy the various 
goals have executable behaviors with motivation levels that reflect the priorities of the 
goals. In general, maintenance of priorities is possible if and only if, when consider-
ing all behavior streams with specified priorities (obtained from the importance  
parameter of the motivating drive), the selected behavior should belong to the one 
with the highest priority. All other things being equal between two behavior streams, 
the one motivated by a drive with a high importance parameter is expected to have a 
higher average activation level than the other motivated by a drive with a lower im-
portance parameter. Figure 2 shows how goal-driven motivation levels serving as 
payoff anticipations vary with time. The test data was obtained by taking a snapshot 
of the activation/motivation levels of two behaviors that were parts of two competing 
instantiated behavior streams (a behavior stream is instantiated by the selective atten-
tion mechanism as described above). Figure 2a shows that in the absence of the im-
portance parameter for the drives (as in the case of Maes’ original mechanism), the 
payoff anticipatory mechanism could not be effectively tuned to control the priorities 
of the competing tasks as evidenced by the interleaving of the activation levels of the 
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two behaviors. However, as illustrated in Figure 2b, LIDA’s use of the importance 
parameter (for the drives) consistently increases the activation or payoff of the behav-
ior with the higher priority. 

While the use of the importance parameter improves the payoff anticipatory 
mechanism of Maes’ behavior net, in some situations the inclusion of this parameter 
is not sufficient to guarantee priority control. This occurs when behaviors in two 
competing behavior streams interact, i.e., they mutually spread activation between 
themselves. In such cases, a behavior in one behavior stream of given importance 
could have a lower motivation level than a behavior under the second behavior stream 
with less importance. That is, the net effect of the intra behavior stream activation 
passing over time could be to increase the motivation of a low-importance behavior 
stream at the expense of the high-importance behavior stream. As a result, and as 
shown in Figure 3a, priority of tasks could be violated since a behavior under a low-
importance behavior stream could eventually obtain a higher activation level than a 
behavior under a high-importance behavior stream. In order to address this issue we 
include an additional tunable global parameter in LIDA’s enhanced behavior net. This 
parameter, called discrimination-factor, determines the level of spreading activation 
among interacting behavior streams. By weighing the intra behavior streams activa-
tion passing, the discrimination factor modulates the independence of a goal from the 
effects of other competing/cooperating goals. Considering a goal with high impor-
tance, we conjecture that a high discrimination-factor parameter value determines the 
concentration level or persistence in performing the associated task and vice versa. 
Figure 3b shows the effect of both the importance and discrimination-factor parame-
ters in LIDA’s behavior net in controlling priorities of interacting behavior streams 
that underlie the execution of two tasks performed by a simulated warehouse robot. 
These run-time tunable parameters together provide an unattended mechanism to 
control the motivation dynamics of the action selection system that enable an animat 
to execute tasks with strict prioritization. 

The third factor that influences the payoff in selecting an action involves the use of 
the base-level activation of a scheme, an uninstantiated behavior template in procedural 
 

 

Fig. 3. Variation of motivation level of competing behaviors in setting priorities of competing 
tasks. (a) Importance parameter is not enough in setting priority. (b) Importance and discrimi-
nation-factor parameters together guarantee priority setting. 
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memory. The base-level activation is a measure of the scheme’s overall reliability  
in the past, and is computed on the basis of the procedural learning mechanism  
described in the next section. It estimates the likelihood of the result of the scheme 
occurring upon taking the action in its given context. When a scheme is deemed 
somewhat relevant to the current situation as a result of the attention mechanism, it is 
instantiated from the scheme template as a behavior into the action selection mecha-
nism (see Figure 1), and allowed to compete for execution. This behavior shares the 
base-level activation of the scheme which, when aggregated with its current activa-
tion, produces a two-factor assessment of the anticipated payoff in selecting this  
behavior for execution. That is, goal-end motivation and past reliability produce an-
ticipation value such that the satisfaction of deep goal(s) in the future and likelihood 
of success biases what action is to be executed during the current cycle. 

3.2   State Anticipatory Mechanism 

In the design of a state anticipatory mechanism we are concerned with explicit predic-
tions of future states influencing current decision making. In LIDA, state anticipations 
come to play when the agent is confronted by a novel situation in which it fails to 
converge upon an existing plan of action (behavior stream). In these situations, LIDA 
utilizes its non-routine problem solving (NRPS) process to generate solutions, usually 
the adaptation of existing ones, to handle an encountered novelty (Negatu, 2006). This 
is on par with the solution finding strategy called meshing (Glenberg, 1997), which in 
humans, is typically accomplished by putting together bits and pieces of knowledge 
and techniques that have been stored and, perhaps, used in the past to help solve other 
problems.  

Based on the premise that non-routine problem solving is a deliberative state an-
ticipatory behavior system, the NRPS module in LIDA is a special behavior stream 
 

 
Fig. 4. Non-routine problem solving for state anticipation 
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that guides the solution search and generation process with a global resource filtering 
capability provided by selective attention (Figure 4). The NRPS behavior stream is 
motivated by a drive to solve encountered novel problems, and has main goals of 
searching for solutions and reporting search outcomes in the given problem context. 
When a situation is detected as a novelty, the NRPS stream is instantiated for a given 
problem context and then the initialization behaviors setup the problem solving proc-
ess. Once initialized, the solution searching behaviors operate over multiple cycles 
with the help of selective attention in recruiting relevant resources (behavior codelets) 
in the deliberative regressive planning process – particularly certain attention codelets 
attempt to recruit relevant resources (building blocks to solutions) in the form of 
schemes from procedural memory. If the solution evaluation behavior reports an in-
termediate search outcome, the search continues. But, if the evaluation is final 
(whether a solution is found or not) one of the report outcome behaviors may be  
selected. Once an outcome is reported, the instantiated NRPS stream for the given 
problem context terminates.  

The above description indicates that the NRPS process guides a controlled partial-
order planner (Sacerdoti, 1977). While it shares similarities to dynamic planning sys-
tems, it differs from earlier approaches such as the general problem solver (Newell, 
Shaw, & Simon, 1958) in that selective attention is used to target relevant solutions 
from procedural memory, thus pruning the search space on the basis of the current 
world model. We conclude that the NRPS mechanism is a type of animat learning 
system that makes state anticipations, i.e., planning action decisions are biased to-
wards selecting a plan operator that satisfies a required goal/sub-goal state. Please see 
Negatu (2006) for more details on the algorithm. 

3.3   Sensorial Anticipatory Mechanism 

Rather than directly influence the selection of behaviors, sensorial anticipatory 
mechanisms influence sensorial processing (Butz, Sigaud, & Gerard, 2002). The 
LIDA system recognizes two forms of sensorial anticipation, the biasing of the senses 
similar to a preafferent signal (Kay, Freeman, & Lancaster, 1996) and preparatory 
attention (LaBerge, 1995; Pashler, 1998). 

3.3.1   Preafferent Signal for Sensorial Anticipation 
Sensorial anticipation via a preafferent signal was observed by Kay et al. (1996) while 
monitoring electroencephalogram (EEG) signals over the olfactory bulb and associ-
ated processing centers (entorhinal cortex, hippocampus) in rats. They discovered that 
intentional action realized by motor commands was accompanied by a signal to the 
sensory processing areas (i.e. olfactory bulb). They called this a preafferent signal and 
hypothesized that it was used to bias the sensory processing areas to selectively re-
spond to anticipated outcomes of actions. 

The preafferent signal described above can be easily integrated into the LIDA 
model as a form of sensorial anticipation. As described above, nodes of the agent’s 
perceptual associative memory, the slipnet, constitute the agent’s perceptual symbols, 
representing individuals, categories and simple relations. Additionally, schemes in the 
agent’s procedural memory represent uninstantiated actions and action sequences. 
The context and results of the schemes are represented by the same nodes for objects, 
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categories, and relations in perceptual associative memory. A behavior in the behavior 
net can be considered an instantiated scheme, thereby sharing its context (as precondi-
tions) and results (as postconditions). Once a behavior is selected in the behavior net, 
the nodes of the slipnet that compose the postconditions of the behavior have their 
activations increased, thus biasing them towards selection in the next cycle.  

We conducted a simple experiment to highlight the performance benefits that can 
be obtained by the use of this type of sensory biasing. Consider a set of behaviors (N 
= 10) that operate in some predetermined sequence, i.e., B1 executes before B2, etc. 
In such a sequence each behavior has one precondition and one postcondition. The 
postcondition of behavior BN-1 is the precondition of behavior BN.   Therefore, in order 
for behavior BN to execute behaviors B1..N-1 must have previously been executed. 
Since we are primarily concerned with sensorial anticipation, let us assume that goal 
oriented motivation is set to 0, i.e. the network is purely opportunistic. Therefore, at 
any given time, only a single behavior (BC) may qualify for execution if and only if its 
one precondition (PC) is satisfied.  

Now suppose the environment is highly uncertain, such that precondition PC has a 
probability pe of being present. For example, if pe = .5 then a flip of a fair coin can 
determine whether this precondition is present in the environment. Furthermore, a 
precondition being present in the environment does not guarantee that it is perceived 
by the agent. The agent only perceives preconditions with probability ps.  Let us also 
set an execution threshold t which is the threshold required for a behavior whose 
precondition is currently satisfied to be executed. Therefore, for a control condition, 
with no sensorial bias, a behavior may be selected if and only if it exists in the envi-
ronment (with probability pe), is perceived (with probability ps), and its activation is 
greater than threshold t. 

Results of experimental simulations averaged over 100 runs are presented in Figure 
5. For all runs we set pe = 0.5, ps = 0.5, and t = 0.5. We note that in the absence of any 
sensorial bias (control condition) it is expected to take 40 cycles to complete execu-
tion. For the sensorial bias conditions, the probability of a precondition being  
perceived (ps) increases with respect to the amount of bias applied.  Figure 5(a) re-
veals that performance linearly improves when a sensorial bias ranging from 0.1 - 0.5 
is applied. A critical performance improvement occurs when the bias = pe = ps = 0.5. 
It is important to note that once the amount of sensorial bias applied exceeds the  

 

 

Fig. 5. Experimental simulations for sensorial anticipatory mechanism 
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probability of perceiving a precondition (>0.5) we witness a sharp improvement in  
performance. However, this should be interpreted with caution. An increase in bias 
beyond the probability of an object existing in the environment implies that the agent 
is experiencing a perceptual illusion in which it imagines sensing an object that does 
not exist. Therefore, even though a behavior is selected for execution, it will unduly 
fail as illustrated in Figure 5(b). The fact that failures do not cause a drop in perform-
ance is an artifact of our test environment. 

3.3.2   Preparatory Attention for Sensorial Anticipation 
Another form of sensorial biasing that would be applied at a later stage in processing 
is similar to preparatory attention. Preparatory attention can be differentiated from 
brief attention and maintenance attention in that an organism attends to a target before 
it is displayed (LaBerge, 1995). In LIDA, preparatory attention can be considered to 
be another form of sensorial biasing that occurs at a later stage, i.e. after perception. 
The mechanism to implement preparatory attention based sensorial anticipation is 
also based of the currently selected behavior. Each behavior is equipped with one or 
more expectation codelets, a special type of attention codelet that attempts to bring 
the results of the selected action to attention. Once a behavior is selected for execu-
tion, its expectation codelets attempt to bring the results of the behavior to attention, 
thereby biasing selective attention. In this manner the LIDA system incorporates a 
second form of action driven sensorial anticipation. 

4   Anticipatory Learning 

In this section we explore an automatization mechanism to learn low-level implicit 
anticipations coupled with a deautomatization system to temporarily suspend automa-
tized tasks when a failure is detected. We also describe a procedural learning mecha-
nism to learn the context and results of existing actions, which in turn, are used to 
construct a variety of anticipatory links. 

4.1   Automatization 

Automatization is defined as the ability to learn a procedural task to such an extent 
that the amount of attention devoted to the routine steps in accomplishing the task is 
reduced. Automatization develops as procedural tasks are rehearsed with attentional 
intervention. However, once tasks have been sufficiently automatized, the cognitive 
processing shifts from serial, attentional, and controlled to parallel, non-attentional, 
and automatic (Logan, 1980). In LIDA, a procedure produces a stream of actions with 
the execution of each action furthering the progression from the current state towards 
some goal state. For an unrehearsed procedure the transitions between consecutive 
actions are usually controlled by selective attention. The automatization process forms 
associations between unattended, coactive, low-level processes (behavior and atten-
tion codelets). As the associations between these processes strengthen over time (re-
hearsal) the need for selective attention gradually fades. 

A complete description of the automatization mechanism is beyond the scope of 
this paper (see Negatu, 2006; Negatu, McCauley and Franklin, in review). However, 
Figure 6(a) illustrates the basic automatization process by depicting an execution 
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Fig. 6. Automatization mechanism with experimental results 

  sequence of a task at a high level (the behavioral level, B1 and B2) before automati-
zation, and at a low level (the codelet level, BC1, BC2, AC1, AC2). In the absence of 
automatization selective attention is needed to activate the successor link between the 
high level behaviors B1 and B2. However, over time a number of associations be-
tween the low-level codelets are formed. When the associative link between BC1 and 
BC2 is sufficiently strong the link between behavior B1 and B2 can be implicitly 
activated without any attentional control, which is, without B2 being selected by the 
action selection mechanism. 

Details of the implementation and experiments of the automatization mechanism 
can be found in Negatu (2006).  In order to describe the effects of the automatization 
process we setup a simple experiment to perform a walking task that required a se-
quence of actions to execute. Figure 6(b) correspondingly shows that attention fades 
(upper right) and performance improves (lower right) as the degree of automatization 
increases with each iteration until it saturates. 

The automatization mechanism implicitly causes a controlled task execution proc-
ess to transition into a highly coordinated skill, thus improving performance and  
reserving attention, a limited resource, for more novel tasks. It is a type of implicit 
anticipatory learning mechanism since the encoding of the experiences of performing 
tasks is integrated in, and arises from, the payoff anticipatory process of LIDA’s ac-
tion selection dynamics.  

4.2   Deautomatization 

Automatization provides a performance improvement by sparing selective attention, 
an expensive resource in executing consistent and predictable tasks. However, of 
equal importance to an animat is a mechanism to gracefully handle failures or unex-
pected outcomes that occur during the execution of automatized tasks. LIDA’s 
deautomatization mechanism is another anticipatory related adaptation that enables 
the detection of such failures, and causes the subsequent reengagement of selective 
attention to handle the novelty that arises from the failures (Negatu, 2006).  
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A failure of an automated task occurs when one of the behaviors in the sequence 
does not produce the anticipated outcome. The deautomatization process occurs in 3 
steps as indicated in Figure 7(a). First, failure detection is achieved by a special type 
of attention codelet, called an expectation codelet, that calibrates the deviance be-
tween the actual and expected outcome of an action. When no failure is detected, the 
normal outcome is reported to the behavior that was just executed and normal auto-
matization continues (Step 1). If a failure is detected, the associated expectation 
codelets then compete for attention and, if successful, provide feedback to the behav-
ior codelet(s) that underlie the behavior (Step 2). The feedback process may require 
multiple cognitive cycles – the expectation codelet tries to bring the failure as a  
novelty to selective attention. At this point, the associations between the behavior 
codelets that contributed to the automatized behavior are temporarily discontinued, 
thus resulting in deautomatization (Step 3). Once deautomatized, selective attention is 
utilized in the execution of all actions in the sequence that precedes the point of  
failure. At a later time, the suppressed automatization may be reengaged. 

 

 

Fig. 7. Deautomatization mechanism with experimental results 

The deautomatization process was tested within the context of the walking task that 
required a sequence of actions to execute. The task was automatized as indicated in 
Figure 6(b). Figure 7(b) correspondingly shows the detection of failure in cycle 22, 
followed the prompt suspension of automatization. Selective attention is then utilized 
until the automatization mechanism reengages (cycles 25 and above). 

In conclusion, automatization has been shown to have some level of dependency 
on attention (Kahneman & Chajczyk, 1983) and expectation (Logan 1980). In our 
mechanism, attention and expectation codelets correspond to these roles and perform 
the necessary functions dictated. Also, our mechanism agrees with the view that auto-
matization is a multistep algorithmic process as described by Schneider and Shiffrin 
(1977), rather than a single step memory instance retrieval of past experience as sug-
gested by Logan (1998). Our mechanism postulates that this multistep algorithmic 
process underlies associative weights among low-level processes, and the implicit 
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adaptation takes place as a result of changes in the associative weights. The deauto-
matization process breaks the automatic skills into individual components by  
disabling the effects of automatization, which mostly occurs at the behavioral level. 
The presented deautomatization algorithm suggests that automatization cannot happen 
as single step instance retrieval from memory. 

4.3   Procedural Learning 

The discussion so far has assumed that procedural memory in LIDA is built in and 
does not learn. In such situations, the use of anticipations is restricted to what was 
engineered into the system, thus greatly restricting its scope. In order to alleviate this 
problem we briefly describe a procedural learning mechanism in which the context 
and results of action schemes are learnt. 

The procedural learning mechanism is a variant of Drescher’s (1991) schema 
mechanism, and is based on selective attention and reinforcement learning. Rein-
forcement is provided via an asymmetric sigmoid function such that reinforcement 
initially increases very rapidly but tends to saturate. By negating and translating the 
same asymmetric sigmoid curve by +1 we obtain the decay curve. Therefore, schemes 
with low base-level activation (measure of reliability, used to determine payoff) decay 
rapidly, while schemes with high (saturated) base level activation values tend to decay 
at a much lower rate. 

For learning to proceed initially, the behavior network must first select the instantia-
tion of an empty scheme for execution. Before executing its action, the instantiated 
scheme spawns a new expectation codelet. After the action is executed, this newly 
created expectation codelet focuses on changes in the environment that result from the 
action being executed, and attempts to bring this information to attention. If successful, 
a new scheme is created, if needed. If one already exists, it is appropriately reinforced. 
Perceptual information selected by attention just before and after the action was exe-
cuted form the context and result of the new scheme respectively. The scheme is pro-
vided with some base-level activation, and it is connected to its parent empty scheme 
with a link.  More details on this mechanism can be found in D’Mello et al. (2006).  

Of importance to this paper are the effects that the learning of a new scheme have 
on the anticipatory processes. The creation of a new scheme leads to a number of new 
anticipatory links being formed. The result of the scheme can be used to learn new 
expectation codelets to monitor future execution. These expectation codelets can be 
used to assess the reliability of this scheme, thus influencing payoff anticipations. 
They also serve as sensorial anticipations by biasing perceptual associative memory 
and selective attention. 

5   Related Work 

In an introductory paper, Butz et al., (2002) provide examples of a number of artificial 
systems that incorporate anticipations at some level. The major difference between 
LIDA’s anticipatory mechanisms and those of other systems is that LIDA adapts the 
view of developmental robotics (Blank et al., 2005; Weng, 2004), which postulates 
that an animat is a self-organizing and adaptive agent that bootstraps from innate 



 Cognitively Inspired Anticipatory Adaptation 123 

facilities for sensing, primitive actions, motivations and learning, with the innate 
architecture enabling the self-organization of knowledge on the basis of sensorimotor 
experiences in the world. Blank et al (2005) emphasize the merits of developmental 
robotics and connectionist anticipatory systems with low-level representations and the 
limitations of discrete and symbolic anticipatory systems such as Witkowski’s system 
(2002). Incorporation of connectionist flavored mechanisms (perceptual associative 
memory and action selection) and low-level representation to encode anticipatory 
learning (e.g. automatization mechanism) give added merit to LIDA as an animat 
system.   

Several control mechanisms have been proposed for payoff anticipatory animats 
(Butz et. al., 2002). These essentially involve variations of Learning Classifier  
Systems (LCS, YACS-Gerard, Stolzmann, & Sigaud, 2002; ACS-Stolzmann, 1998). 
These are rule-based systems that use evolutionary computing and heuristics to search 
the space of possible rules as well as reinforcement learning techniques to assign 
utility value to existing rules (i.e. the learned reinforcement values predict the action-
payoff). In general, the major differences between LIDA’s payoff mechanism and that 
of other LCS are: (a) the payoff is obtained from built in motivators (evolution) and 
experience (environment) rather than explicit reinforcement; (b) selective attention 
plays a role in both the gathering of experience and in directing awareness to what is 
important; and (c) LIDA uses the concepts of drive importance and discrimination 
among action plans to control priority among competing tasks.  

LIDA’s state anticipatory mechanism uses its non-routine problem solving (NRPS) 
behavior stream as a regressive partial-order plan generator (see section 3.2). LIDA’s 
integrated modules, encompassing selective attention, procedural learning, and the 
behavior net are involved in this plan generation. There are other examples of state 
anticipatory animats – extended Dyna-PI model (Baldassarre, 2002), Dynamic Expec-
tancy Model (Witkowski, 2002), and XACS (Butz & Goldberg, 2002) and all use ex-
plicit predictive model represented by a pool of schemes or rules. In our view, the 
major difference of LIDA’s mechanism from the above three is that LIDA, as state 
anticipatory animat, uses explicit selective attention in the explicit deliberative process 
of action-plan formulation.   

6   Discussion 

This paper was motivated by the desire to develop and incorporate computational 
mechanisms for anticipatory processes in the LIDA cognitive agent, with the hope 
that any insights gained may generalize to other cognitive agents and animat systems. 
In order to develop cognitively plausible mechanisms, two constraints were enforced 
throughout. First, all mechanisms should be psychologically plausible and be consis-
tent with (i.e. not contradict) known empirical evidence. Second, rather than offer 
microtheories of selected aspects of anticipatory adaptation, the mechanisms should 
be broad and diverse in scope, so as to encompass the wide gamut of anticipatory 
behavior documented in humans and higher animals. A crucial decision made at the 
time of writing involved the choice to provide a broad view of a large set of mecha-
nisms as opposed to a more detailed exploration of a couple of mechanisms. This 
decision was motivated by the fact that the vast majority of the research in this area 
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has focused on selective aspects related to anticipatory adaptation. This is in no means 
a criticism of previous research. However, we see the need to cover more ground by 
describing a larger set of mechanisms. Consequently the algorithms are presented at a 
conceptual level at the expense of eliminating details. However, Negatu (2006)  
provides elaborations on the algorithms associated with most of these mechanisms. 

In this paper we have demonstrated that a wide variety of anticipatory mechanisms 
can be quite naturally integrated into a broad, comprehensive, autonomous agent 
architecture modeled after human cognition. The anticipatory mechanisms described 
for the LIDA model may well be suitable for incorporation into other cognitive based 
computational architectures designed to control autonomous software agents and/or 
mobile robots. In the experimental simulations described above, we have included 
control conditions in order to compare the behavior of the system with and without 
the anticipatory elements in place. In particular, we note that the enhanced behavior 
net with the payoff anticipatory processes provides more efficient priority (figure 3b) 
and discrimination control (figure 4b) than is afforded by the original behavior net 
without these anticipatory elements in place (figures 3a and 4a). Similarly, figure 5 
demonstrates that sensorial biasing as a form off sensorial anticipation yields quicker 
execution. Finally, the automatization mechanism reduces the need for selective atten-
tion, a scarce resource, and speeds up execution (figure 6b), at least when compared 
to control conditions without this mechanism. Additionally, the deautomatization 
mechanism provides a degree of seamless tolerance to partial failure by detecting 
execution errors and invoking selective attention to scaffold the execution of an 
automatized task. Some may object to the characterization of deautomatization as a 
“learning” mechanism. In our view, deautomatization is more in line with temporary 
forgetting of automatized tasks and by correcting learning errors effectively scaffolds 
the automatization process. 

Some of the mechanisms described in this paper are conceptual, i.e. algorithms ex-
ists but are not implemented. However, we can speculate on some of the unique com-
putational benefits that these may afford. The preparatory attention system (sensorial 
anticipation) serves as a high-level perceptual filter that focuses on relevant content at 
a more abstract level. The state anticipatory mechanism involved the use of selective 
attention to construct a regressive action plan to organize behaviors to solve non-
routine problems. Finally, the procedural learning mechanism helps construct a low-
level predictive model from sensorimotor experience caused by an animat interacting 
with its environment. The learned predictive model can be used to modulate sensorial 
and payoff anticipations. 

As we explore the links between anticipation and cognition in humans and artificial 
systems we anticipate the need to revise, refine, and perhaps reconceptualize our 
theoretical perspective and our computational mechanisms. We are currently devising 
computational algorithms for anticipatory behavior and learning based on functional 
psychological frameworks. More complex models based on recent advances in  
biology and neuroscience may also be tested and integrated into the LIDA model. 
However, we suspect that the ultimate test of our theories and models of anticipatory 
adaptation will occur in more realistic, ecologically valid, environments. Cognitive 
robotics offers the ultimate challenge for all such functional and computational theo-
ries, because in essence the robot must adapt in order to survive in complex, dynamic, 
and sometimes unpredictable environments. 



 Cognitively Inspired Anticipatory Adaptation 125 

References 

1. Baars, B.: A Cognitive Theory of Consciousness. Cambridge University Press, New York 
(1988) 

2. Barsalou, L.W.: Perceptual symbol systems. Behavioral and Brain Sciences 22, 577–609 
(1999) 

3. Baddeley, A.D., Hitch, G.J.: Working memory. In: Bower, G.A. (ed.) The Psychology of 
Learning and Motivation, Academic Press, New York (1974) 

4. Baldassarre, G.: A biologically plausible model of human planning based on neural net-
works and Dyna-PI models. In: Butz M., Sigaud O., Gérard P., Workshop on Adaptive 
Behaviour in Anticipatory Learning Systems, pp. 40–60 (2002) 

5. Baluja, S., Pomerleau, D.A.: Using the Representation in a Neural Network’s Hidden 
Layer for Task-Specific Focus of Attention. In: Mellish, C. (ed.) (IJCAI-95) IJCAI. Inter-
national Joint Conference on Artificial Intelligence 1995, pp. 133–139. Morgan Kauf-
mann, San Mateo, CA (1995) 

6. Blank, D.S., Lewis, J.M., Marshall, J.B.: The Multiple Roles of Anticipation in Develop-
mental Robotics. In: AAAI Fall Symposium Workshop Notes, From Reactive to Anticipa-
tory Cognitive Embodied Systems, AAAI Press, Stanford, California, USA (2005) 

7. Brooks, R.A.: A robust layered control system for a mobile robot. IEEE Journal of Robot-
ics and Automation RA-2, 14–23 (1986) 

8. Butz, M.V., Sigaud, O., Gerard, P.: Internal models and anticipations in adaptive learning 
systems. In: Proceedings of the Workshop on Adaptive Behavior in Anticipatory Learning 
Systems, pp. 1–23 (2002) 

9. Butz, M.V., Goldberg, D.E.: Generalized state values in an anticipatory learning classifier 
system. In: Proceedings of the Workshop on Adaptive Behavior in Anticipatory Learning 
Systems, pp. 78–96 (2002) 

10. Cañamero, D.: Modeling Motivations and Emotions as a Basis for Intelligent Behavior. In: 
AA’97. Proceedings of the First International Symposium on Autonomous Agents, Marina 
del Rey, CA, February 5-8, The ACM Press, New York (1997) 

11. Card, S., Moran, T., Newell, A.: The psychology of human-computer interaction. Hills-
dale, NJ: Lawrence Erlbaum Associates (1983) 

12. D’Mello, S.K., Franklin, S., Ramamurthy, U., Baars, B.J.: A Cognitive Science Based Ma-
chine Learning Architecture (Technical Report SS-06-02). In: AAAI Spring Symposia 
Technical Series, Stanford CA, USA, pp. 40–45. AAAI Press, Stanford, California, USA 
(2006) 

13. Drescher, G.: Made Up Minds: A Constructivist Approach to Artificial Intelligence. MIT 
Press, Cambridge, MA (1991) 

14. Franklin, S.: Automating Human Information Agents. In: Chen, Z., Jain, L.C. (eds.) Prac-
tical Applications of Intelligent Agents, Springer-Verlag, Berlin (2001) 

15. Franklin, S., Baars, B.J., Ramamurthy, U., Ventura, M.: The Role of Consciousness in 
Memory. Brains, Minds and Media, vol.1, bmm150 (urn:nbn:de:0009-3-1505) ( 2005) 

16. Gerard, P., Stolzmann, W., Sigaud, O.: YACS: a new Learning Classifier System using 
Anticipation.Soft. Computing 6(3-4), 216–228 (2002) 

17. Glenberg, A.: What memory is for Behavioral and Brain Sciences, vol. 20, pp. 1–55 
(1997) 

18. Hartland, C., Bredeche, N.: Evolutionary Robotics: From Simulation to the Real World us-
ing Anticipation. In: Third Workshop on Anticipatory Behavior in Adaptive Learning Sys-
tems (2006) 



126 A. Negatu, S. D’Mello, and S. Franklin 

19. Hofstadter, D.R., Mitchell, M.: he Copycat Project: A model of mental fluidity and anal-
ogy-making. In: Holyoak, K.J., Barnden, J.A. (eds.) Advances in connectionist and neural 
computation theory, logical connections, vol. 2, Ablex, Norwood N.J (1994) 

20. Kahneman, D., Chajczyk, D.: Test of automaticity of reading: Dilution of the stroop effect 
by color-irrelevant stimuli. Journal of Experimental Psychology: Human Perception and 
Performance, 9, 947–509 (1983) 

21. Kay, L.M, Freeman, W.J, Lancaster, L.R.: Simultaneous EEG recordings from olfactory 
and limbic brain structures: Limbic markers during olfactory perception. In: Gath, I.,  
Inbar, G. (eds.) Advances in Processing and Pattern Analysis of Biological Signals, pp. 
71–84. Plenum, New York (1996) 

22. Kunde, W.: Response–effect compatibility in manual choice reaction tasks. Journal of Ex-
perimental Psychology: Human Perception & Performance 27, 387–394 (2001) 

23. LaBerge, D.: Attentional processing: the brain’s art of mindfulness. Harvard University 
Press, Cambridge (1995) 

24. Laird, J.E., Newell, A., Rosenbloom, P.S.: SOAR: An architecture for general intelligence. 
Artificial Intelligence 33, 1–64 (1987) 

25. Lebiere, C., Anderson, J.R.: A connectionist implementation of the ACT-R production 
system. In: Proceedings of the Fifteenth Annual Conference of the Cognitive Science So-
ciety. Hillsdalle NJ: Erlbaum (1993) 

26. Logan, G.D.: Attention and automaticity in Stroop and priming tasks: Theory and data. 
Cognitive Psychology 12, 523–553 (1980) 

27. Logan, G.D.: Toward an instance theory of automatization. Psychological Review 95, 
583–598 (1998) 

28. Maes, P.: How to do the right thing. Connection Science 1, 291–323 (1989) 
29. Negatu, Aregahegn.:Cognitively Inspired Decision Making for Software Agents: Inte-

grated Mechanisms for Action Selection, Expectation, Automatization and Non-Routine 
Problem Solving, Ph.D. Dissertation, The University of Memphis, USA ( 2006) 

30. Negatu, A., McCauley, T. L., Franklin, S.: in review. Automatization for Software Agents.  
31. Newell, A.: Unified theories of cognition. Harvard University Press, Cambridge MA 

(1990) 
32. Newell, A., Shaw, J.C., Simon, H.A.: Elements of a theory of human problem solving. 

Psychological Review 65, 151–166 (1958) 
33. Pashler, H.E.: The psychology of attention. MIT Press, Cambridge, MA (1998) 
34. Piaget, J.: The Origins of Intelligence in Children. International Universities Press, New 

York (1952) 
35. Post, E.L.: Absolutely unsolvable problems and relatively undecidable propositions ac-

count of an anticipation. In: Davis, M. (ed.) The undecidable: Basic papers on undecidable 
propositions, un-solvable problems and computable functions, Raven Press, New York 
(1965) 

36. Rosen, R.: Anticipatory Systems. Pergamon Press, London (1985) 
37. Sacerdoti, E.: A structure for plans and behavior. American Elsevier, New York (1977) 
38. Schubotz, R.I., von Cramon, D.Y.: Functional organization of the lateral premotor cortex. 

fMRI reveals different regions activated by anticipation of object properties, location and 
speed. Cognitive Brain Research 11, 97–112 (2001) 

39. Schneider, W., Shiffrin, R.M.: Controlled and automatic human information processing: I. 
Detection, search, and attention. Psychological Review 84, 1–66 (1977) 

40. Sloman, A.: What Sort of Architecture is Required for a Human-like Agent? In: 
Wooldridge, M., Rao, A.S. (eds.) Foundations of Rational Agency, Kluwer Academic 
Publishers, Dordrecht, Netherlands (1999) 



 Cognitively Inspired Anticipatory Adaptation 127 

41. Sutton, R.: Planning by incremental dynamic programming. In: Eight International Work-
shop on Machine Learning, pp. 353–357. Morgan Kaufmann, San Francisco (1991) 

42. Stolzmann, W.: Anticipatory Classifier Systems. In: Genetic Programming, University of 
Wisconsin, Madison, Wisconsin, Morgan Kaufmann, Seattle, Washington, USA (1998) 

43. Sun, R.: An agent architecture for on-line learning of procedural and declarative knowl-
edge. In: (ICONIP’97). Proceedings of the International Conference on Neural Informa-
tion Processing, Singapore, Springer Verlag, Heidelberg (1997) 

44. Tani, J.: Model-based learning for mobile robot navigation from the dynamical systems 
perspective. IEEE Transaction on Systems, Man. and Cybernetics 26B, 421–436 (1996) 

45. Varela, F.J., Thompson, E., Rosch, E.: The Embodied Mind. MIT Press, Cambridge, MA 
(1991) 

46. Watkins, C.: Learning with delayed rewards. Doctoral dissertation, Psychology Depart-
ment, University of Cambridge, England (1989) 

47. Witkowski, C.M.: Anticipatory learning: The animat as discovery engine In: Butz, M. V., 
Gerard, P., Siguad, O. (eds.) Adaptive Behavior in Anticipatory Learning Systems (ABi-
ALS’02) (2002) 

48. Weng, J.: Developmental Robotics: Theory and Experiments. International Journal of 
Humanoid Robotics 1(2), 199–235 (2004) 



Schema-Based Design and the AKIRA Schema

Language: An Overview

Giovanni Pezzulo1 and Gianguglielmo Calvi2

1 ISTC-CNR, Via S. Martino della Battaglia, 44 - 00185 Rome, Italy
giovanni.pezzulo@istc.cnr.it

2 Noze s.r.l., Via Giuntini, 25 int.29 56023 Navacchio, Cascina (PI), Italy
gianguglielmo.calvi@noze.it

Abstract. We present a theoretical analysis of schema-based design
(SBD), a methodology for designing autonomous agent architectures.
We also provide an overview of the AKIRA Schema Language (AKSL),
which permits to design schema-based architectures for anticipatory be-
havior experiments and simulations. Several simulations using AKSL are
reviewed, highlighting the relations between pragmatic and epistemic
aspects of behavior. Anticipation is crucial in realizing several function-
alities with AKSL, such as selecting actions, orienting attention, catego-
rizing and grounding declarative knowledge.

1 Introduction

In the last two decades several theoretical and computational models have been
inspired, directly or indirectly, by theories of sensorimotor and cognitive devel-
opment [9,11,53] that describe schematic structures, or ‘schemas’, as crucial in
behavior and cognition. The term ‘schema’ was first introduced by Bartlett [8] to
mean a map or structure of knowledge stored in long-term memory. Successively
Piaget [53] described schemas in a more operational sense—roughly as mental
representations of some physical or mental actions that can be performed on
an object or event. He considered schemas as the building blocks of thinking,
and the basic structure underlying behavior and cognition (in a process that he
described as ‘assimilation and accommodation’).

One tenet of schema theory is that schemas are specialized subsystems real-
izing a tight coupling between perception and action. A schema can be used for
recognizing a specific entity (say a dog) or a class of entities (say journalists or
swimmers), or for controlling a specific action (say opening a door or skiing).
Some of these schemas may require parameters to be filled in. There can also
be more complex schemas for planning sequences of actions, as well as for more
complex cognitive operations such as doing inferences. Central to schema theory
is not only what schemas can individually do, but also how they are organized
and what they can collectively do.

This view has inspired several other researchers in cognitive science, artificial
intelligence and cognitive robotics. In these fields several schema-like structures
have been proposed, including frames [43], scripts [57], schemas [3,4,21,44,46,60],

M.V. Butz et al. (Eds.): ABiALS 2006, LNAI 4520, pp. 128–152, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Schema-Based Design and the AKIRA Schema Language: An Overview 129

neural schemas [39], semiotic schemas [55], and behaviors [12,38]. Architectures
including distributed and competitive functional units are often referred to as
‘behavior-based’ or ‘schema-based’. Several integrated frameworks have been
proposed for designing them; among the most popular ones, we can mention the
behavior-based approach proposed in [6], the NSL/ASL in [65] and the Robot
Schema (RS), a formal language for designing robot controllers proposed in [37]
which includes perceptual and motor schemas.

Since the term ‘schema’ has been used in several contexts, it has assumed sev-
eral senses, too. For example, Piaget referred mainly to sensorimotor schemas,
highlighting their action-oriented nature in contrast with other data structures
that only include conceptual knowledge. Schemas for processing stimuli or con-
trolling the perceptual apparatus are often referred to as perceptual schemas,
while those for controlling locomotion, reaching or grasping are often referred
to as motor schemas. Another important distinction is between anticipatory
schemas, that include predictive components, and reactive schemas, that do not;
and consequently between anticipatory and reactive schema-based architectures.

Reactive vs. Anticipatory Schema-Based Architectures. One important distinc-
tion among schema-based architectures is their reactive or anticipatory nature.
Originally, the label ‘behavior-based’ has been used as a synonym of ‘reactive’
[5,12]. Reactive schema-based architectures, that respond quickly to dynamic
environments, have challenged traditional AI models which rely on slow and
costly deliberation. They are now de facto a standard in autonomous robotic
systems [56]. However, recently several schema-based architectures have been
proposed which include anticipatory mechanisms, such as inverse and forward
internal models, which generate and exploit expectations about the next sensory
stimuli [13,18,21,47,67]. These anticipatory aspects are inspired by psychological
theories of action control [30,34], indicating that anticipated effects of (possi-
ble) actions play a fundamental role in regulating the agent’s behavior. Several
neurobiological evidences also suggest internal models and in particular forward
models as plausible candidate mechanisms [40,66]. See also [22] for a compre-
hensive review of neural correlates of anticipation in the brain.

Aims and structure of the paper. The main contribution of the paper is twofold:
illustrating the schema-based design methodology and its peculiarities, and pre-
senting a comprehensive framework and an implementation environment for an-
ticipatory schema-based architectures. Accordingly, in the rest of the paper we
firstly introduce schema-based design (SBD) as a methodology for building au-
tonomous agents architectures. We then present the AKIRA Schema Language
(AKSL), a framework for designing and implementing anticipatory schema-based
architectures, and we review simulations realized with it.

2 Schema-Based Design (SBD)

Schema-Based Design is a methodology for designing artificial systems. It is
inspired by ethological and neuroscientific empiric evidence [3,4]; and many
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schema-based architectures are directly inspired by ethological models, such as
the praying mantis in [5], the computational frog in [2], and the computational
cockroach in [10]. In SBD the functional aspects are more stressed than the
actual realization and localization of schemas in the brain: several researchers
find schema useful exactly because they provide an intermediate level of repre-
sentation between the neural and the personal level [3]. In SBD cognition and
behavior are explained in terms of schemas and their dynamics: behavior is not
controlled by an unique process, but emerges from the dynamic competition
and cooperation of several active schemas. More complex cognitive functionali-
ties can emerge both by sophisticating the schemas and by permitting them to
interact in more complex ways.

2.1 What’s in a Schema?

Schemas are coarse-grained functional units, being approximately at the same
level of description of ethological and neurobiological units of automatic action
control such as detect prey or escape [5,47]. They do not only contain conceptual
knowledge, but are strongly action-oriented and include perceptual and motor
elements. Schemas consist of actions and sensory information organized around,
and serving to realize, a goal or a set of related goals. In their simplest form,
schemas can be described as sets of rules having the form condition → action
or condition → action → expectation (respectively in the case of reactive and
anticipatory schemas), that can act in parallel or in series, and whose success
corresponds to the achievement of a goal.

Fig. 1. A sample schema: chase prey

As an example, Fig. 1 illustrates the main functional components of a sample
motor schema, which is named after its goal: chase prey. It includes two sample
triggering conditions: hungry, that indicates the value of a drive, and prey in
sight, that indicates the presence of specific stimuli in the visual field. It also
includes three actions1: approach prey, grab prey, eat prey. They can be imple-
mented as rules, or set of rules, which receive perceptual input and send motor
commands such as ‘go left’ or ‘go right’ to the motor apparatus of the agent.

Schemas have four main properties: goal-orientedness, flexibility, selectivity,
and excitability.
1 In this example each action is represented as a localist sub-unity of the schema. How-

ever by using a distributed representation scheme, multiple actions can be embedded
implicitly, say in a single neural network; see for example [62,63].
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Goal-orientedness. The goal-centered behavioral organization of a schema
is its first property. This aspect also distinguishes schema-based systems from
production systems and classifier systems [13,21,31,45], which also use rules and
rulesets. Related views are the ideomotor principle [34] in psychology, the TOTE
[42] model in cybernetics, and the definition of goal-orientedness provided by
Gallese and Metzinger [24]: “Action control actually equates to the definition of
the action goal: the goal is represented as a goal-state, namely, as a successfully
terminated action pattern”.

Flexibility. Goal-orientedness does not imply, however, that schemas have only
one way to realize their goals: they can flexibly realize their goals under variable
contingent conditions and by exploiting a (limited) repertoire of actions. This
property can be called flexibility.

Fig. 2. A sample sequence of actions realized by the chase prey schema

When chase prey is active, its actions can be triggered in a different timing
and order, or be skipped, depending on the context. In the example illustrated
in Figure 2, the three actions are simply concatenated. Approach prey is imme-
diately triggered, since the two preconditions, hunger and prey in sight, still hold
if the schema is active. If approach prey succeeds, it produces as a consequence
prey close, which in turn triggers grab prey, and so on. The success of the last
action, eat prey, also entails the success of the whole schema. The failure of one
of the actions can instead trigger another action, or produce a context in which
no actions are suitable, and thus lead to the failure of the whole schema.

Selectivity. An important consequence of schemas’ goal-orientedness is their
selectivity: in order to realize their goal, schemas do not need (and can not
process) all the possible information from the environment. On the contrary,
they select, attend to, and use only stimuli that are relevant for their specific
goal. This implies that when a schema is operating the action-perception loop of
the agent has both pragmatic effects (realizing the goal via triggering actions)
and epistemic ones (gathering relevant stimuli).

In several schema-based frameworks epistemic and pragmatic aspects are im-
plemented in different schemas: perceptual and motor. However, these schemas
are either embedded one in another, [3,4], or they can pass sensory information
[47]. The dotted lines in Figure 3 indicate the functional relations between one
perceptual and one motor schema (detect prey and chase prey) which can pass
sensory information. Detect prey includes as triggering conditions specific stim-
uli such as red and moving. It includes as actions three specialized strategies for
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Fig. 3. Possible sequences of actions realized by a perceptual and a motor schema

finding prey the first time (find prey), maintain it in the visual field (maintain
prey), and find it again if it is temporarily lost (re-find prey). The edge from
detect prey to chase prey indicates that the former schema can trigger the latter
(this is the meaning of the triggering condition prey in sight).

In this example the actions of the chase prey motor schema can be triggered
by (the success of) other actions both in the same schema or in the related
perceptual one, detect prey. Moreover, the perceptual schemas can convey to
the motor schemas sensory information, for example the position of the prey to
approach (not shown in the picture). Several courses of actions can emerge by
the interactions of the two schemas in different contexts, depending on which
functional relations are actually exploited. For example, a prey can be lost dur-
ing tracking: the failure to maintain prey triggers re-find prey. Or, the prey can
be captured without being lost, and in that case re-find prey is never activated.
Notice that not all the functional relations are shown; in particular, those result-
ing from failure are not (for example, if a prey is lost both maintain prey and
approach prey fail).

Excitability. The last important property of schemas is their excitability: they
have a variable activity level. As we will discuss in detail, the activity level rep-
resents its relevance and desirability in the current situation. It can depend on
motivational factors, such as active drives, and on contextual factors, such as
the presence of appropriate stimuli or of other active schemas. Each schema
gains resources, such as access to sensors and effectors, and as a consequence the
possibility to influence the overall behavior of the agent, in a measure depen-
dent on its relative activity level. This leads us to the next topic, which is the
organization and functioning of a whole schema-based architecture.

2.2 Schema-Based Architectures and Cooperative Competition

A schema-based architecture is distributed; it includes several schemas special-
ized for different goals, such as detect prey and detect predator, or for realizing
the same goal under different contexts, such as several instances of detect prey
specialized for different kinds of prey. All schemas cooperate. They trigger one
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another, exchange sensory information, and compete for gaining priority over
sensors and effectors: only some of them can be (partially) active at once. Such
cooperative competition from which behavior emerges is considered a fundamen-
tal brain principle [3,4,43]. Competitive cooperation can be implemented in mul-
tiple ways, but it exploits three principles of self-organizing systems: (1) local
excitation (e.g. active drives and schemas can excite other schemas); (2) global
inhibition (e.g. schemas and drives inhibit concurrent ones); (3) emergence: be-
havior emerges from the influences of several schemas that can be active at once.

Since commands from several schemas can be fused, a schema-based archi-
tecture can realize complex patterns of actions, most beyond the possibilities
of single schemas. An important aspect of schema-based design is the possibil-
ity to realize systems which can fulfill more than one functionality, selecting
the most appropriate one on the basis of contextual factors such as current
drives/goals, stimuli and expectations. We can say that the most challenging
aspect of SBD is not implementing one specific functionality, but understanding
how all them coordinate and realize a complex system having habits and fulfill-
ing its drives/goals while remaining responsive to opportunities and affordances
in the environment. In several architectures schemas can also be arranged hi-
erarchically [18,27,51,54]; in this case, top-down influences channel behavior in
accordance with expectations generated at the higher level, while the system
remains responsive to stimuli-driven bottom-up dynamics.

2.3 Pragmatic and Epistemic Aspects of SBD

Organisms evolve schemas to successfully interact with entities in their environ-
ment, realizing their own goals. In producing behavior, schemas are thus selected
for their expected success in action; if there are several schemas for realizing the
same goal in different contexts, the most fit is selected. Since schemas are selected
for action according to their activation level, a high activation level of a schema
encodes a high confidence that it is succeeding or it will succeed in realizing its
goal state (e.g. in detect prey: the prey can be detected). In summary:

The activity level of a schema encodes a degree of confidence that it
will succeed.

Although schemas are evolved for pragmatic reasons, their functioning also
entails several factors which can be considered epistemic, in the sense that they
are directed to acquire or process information. In traditional AI architectures
these operations are traditionally dealt with by manipulating explicit represen-
tations, for example comparing an observation with an expectation, assigning a
confidence level to an assumption, or matching an expectation. These operations
can instead be dealt with implicitly and procedurally in SBD.

In the literature of dynamical systems it is often assumed that embodiment
and structural coupling permits using information that is not explicitly rep-
resented in the system. The environment can be used as an external memory,
provided that the agent’s sensors can access it often enough. For example, a prey
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may continue to serve as a trigger of some schemas as long as it remains visible.
In a similar way, certain pragmatic states of the schemas, such as their successes
or failures, implicitly encode epistemic content. For example, it is possible to
interpret the success of a follow prey schema as an indication that there is a
prey, without any need to explicitly represent such state of affairs.

Therefore we discuss two functional equivalences: the degree of activation of a
schema corresponds to (1) the truth of its assumptions and (2) to the desirability
of its consequences, without any need to explicitly represent them (but, as we
will see, we can derive explicit knowledge from them).

The First Functional Equivalence. There is a functional equivalence be-
tween the success of a schema and the assumption that the state of affairs that
it is permitted to deal with is true. This is due to two reasons. First, action suc-
cess or failure depends on epistemic assumptions and conditions that are verified
or falsified by acting. Second, since the activity level of the schema depends on
its success rate, it also indicates a confidence level that the behavior is appro-
priate and thus the entity to deal with is indeed there. As an example consider
again the detect prey schema; in order to successfully track a kind of entity,
the prey, the schema must be specialized to deal with prey-relevant features.
Since in order to gain activation the schema has to succeed in actually matching
these features, success of action is also a confirmation of such assumptions and
expectations: a prey is here, or will be here in the near future. The functional
equivalence between the success of the action and the truth of its assumptions
and predictions is the first functional equivalence:

The success of a schema indicates that specific (actual or expected)
states of affairs, encoded in its assumptions and expectations, are true.

We can now come back to the example in Figure 3. When the preconditions of
detect prey are verified (e.g. red is verified by the compliance of a visual routine),
the schema triggers its actions. In turn, the compliance of its actions continuously
verifies its preconditions (the success of find prey verifies red and moving) and
produces new conditions in the same or in other schemas (the success of find prey
produces prey found, which is a precondition of approach prey). This means that
actions in two schemas are triggered by epistemic assumptions, which in turn
are verified by the compliance of other actions.

As discussed above, several pieces of information can be implicitly dealt with.
All the conditions shown in the picture, such as prey found or prey close, do not
need to be explicitly represented, nor is it needed that symbolic information is
passed among the schemas or the actions (all the labels are only for the designer’s
sake). Their functional meaning is implicitly encoded in the functioning of the
schema mechanism, and in particular in the schema’s activity level. The activity
level of a schema, in fact, implicitly encodes the degree of confidence in its
implications. If a schema can access the activity level of other ones, it can use this
information ‘as if’ it was an explicitly reported condition. For example, a high
activity level of detect prey implicitly encodes conditions (e.g. prey found), that
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are informative for chase prey. Further contextual elements, such as the state of
the schema or the presence of specific stimuli, help chase prey disambiguating the
information and triggering different actions such as approach prey or grab prey.

Very often epistemic information is graded and not crisp. For example I can
be more or less sure that a prey is in front of me. As a corollary of the first
functional equivalence, the degree of certainty, or confidence, in an assumption
can be formulated according to the degree of success of the schema or action:

The activity level of a schema is a measure of confidence in its as-
sumptions.

Categories and Beliefs. Thanks to the first functional equivalence, schemas can
not only be used for acting: their success also entails an implicit categorization
of the entities to deal with, and implicitly represents beliefs such as ‘there is
a prey now’. Bickhard’s interactivism [11] suggests a similar perspective: if an
active interaction fails, then the ‘indication for action’ (and the content of the
representation) is false. This fact has two main implications. Firstly, contrary to
the typical pipeline information-processing scheme perception → categorization
→ action, a prey is categorized as a prey because of the compliance of the detect
prey schema, and not vice versa (actually, there is a loop between all these
factors). Secondly, categories and beliefs do not need to be explicitly represented
anywhere, since the current activity level of schemas already indicates them. As
an example, in Section 4 we present a simulation in which such dynamical,
action-related categorization is realized.

As proposed by Piaget [53], in humans there is a progressive conceptualiza-
tion of information which is initially only procedural2. However, only part of
information implicitly used by the schemas becomes explicitly available, for ex-
ample for categorization, and internally manipulable when coupling is broken;
some information remains instead procedural. For a discussion of accessibility
and awareness of procedural information used in the control of action, see [23].

Epistemic Actions. We have discussed how actions can also have, as a side effect,
an epistemic value for the system. For example, knowing that the ball is there,
is round, is soft, etc., is a form of implicit knowledge that in some cases can
be internalized. But there is another, more sophisticated way for a system to
obtain information by exploiting the first functional equivalence: performing an
action with the aim to know something about the world (e.g. ‘control if’ or
‘look whether’). That is, I can turn on the light in order to know whether or
not the circuit works well, and not because I need light. In this case, we can
distinguish between the pragmatic action (action in the most common sense)
2 Some assumptions which are much more ‘profound’ and invariant are conceptualized

very late, when they are. Consider the assumption ‘under normal circumstances, the
world is quite stable’. In order to remain successful for a while, several (if not all)
schemas implicitly rely on this assumption, which is not however conceptualized.
We could say that also the functioning of the whole schema-based system encodes
several important assumptions about the world.
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and the epistemic action, that is aimed at gathering information: the pragmatic
action (turning on the light) is only a vehicle of the epistemic one (knowing if
the circuit works well). This example illustrates that an action can have both
pragmatic and epistemic value, and it can be executed for the former or the
latter necessity. It is also worth noting that in order to know something about
the world we need to act on it (either actually or ‘in simulation’, see [26,28]).

In Section 4 we will present a simulation showing the two main consequences
of the first pragmatic principle: (1) on the basis of pragmatic actions, either
real or simulated, epistemic states such as beliefs can be formulated; (2) epis-
temic actions are possible, too: some pragmatic actions, actually performed or
simulated, can be triggered for knowing something, and not for their pragmatic
effects. In both cases we interpret a belief as the result of an epistemic action,
which can be either implemented through a pragmatic action, or explicitly exe-
cuted by means of a pragmatic action. This view has an important implication:
all cognitive operations involving beliefs, such as reasoning, refer to (and have
their meaning thanks to) actual or possible pragmatic actions.

The Second Functional Equivalence. Organisms have motivations, and
their actions are determined by their needs. In schema-based design this is mod-
eled through motivational units, such as drives, causing schema activations: in
this way there is no need to manipulate and reason explicitly on utility and
values of entities in the world. As a consequence, typically a high activity level
of a schema also encodes the fact that it has been learned to, and is expected
to be effective for satisfying the organism’s needs: a primitive, implicit form of
means-ends reasoning. Again, success of action strengthens and tends to confirm
the relationship between a schema and the satisfaction of an organism’s need.
Since the organism can have competing motivations, typically the schemas for
realizing the most important or urgent ones are assigned the highest activity
level and are thus selected (but of course, as far as they do not penalize one
another, more than one schema can be selected). This implies that:

The activity level of a schema is a measure of desirability of (the
consequences of) its success.

In some cases the organism faces challenges that have to be dealt with very
quickly. As an example, consider an organism successfully following a prey. If an
unanticipated danger occurs, such as a predator, or the organism is near a cliff,
it has to quickly change its behavior and activate another schema, whichever the
activity level of the follow prey schema is. This means that a sudden change in
allocation of resources among schemas has to occur, depending on how promptly
the new situation has to be dealt with:

The rapidity of increase in activation of a schema is a measure of its
urgency.

The two factors, one epistemic and one motivational, which correspond to a
high activity level in a schema seem to be at odds. For example, a high activity
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level of the schema detect prey, which depends on the organism being hungry,
also corresponds to the belief or expectation that there is a prey somewhere,
which may not be the case. However, in organisms there is a relation between
the epistemic criterion, that is maintaining true assumptions, and the motiva-
tional criterion, that is pursuing its needs. In order to succeed (and consequently
to satisfy its goals) an organism needs to maintain its epistemic states, and this
is why schemas are designed for implicitly checking their conditions. For this
reason an organism motivated by hunger can ‘bet’ on the success of the schema
for catching prey, maintaining artificially (against evidence) a high activity level
even if it is unsuccessful at the moment. Since activating a schema also means
inhibiting other ones, this strategy is only good if the schema will indeed suc-
ceed in the near future, otherwise the organism will die. This means that the
organism is selected by evolution to have ‘good guesses’ and to fuel schemas
that will succeed and, in that way, verify their assumptions: the first functional
equivalence is not broken, only postponed. The correspondence between the de-
sirability of a behavior and the truth of its assumptions is the second functional
equivalence:

The activity level of a schema is a measure of confidence that it will
be successful, and consequently that its assumptions and expectations
will become true.

Notice that this principle works due to the fact that, at the end, each schema
predicts its own success too. The teleonomic structure of a schema can be thus
represented as condition → action → expectation → . . .→ expectation → . . .→
action → . . .→ success. A schema is selected by evolution because of the adaptive
advantage of (the implications of) its success. Its structure guarantees the desir-
ability of its intermediate actions as well as the meaningfulness of the assump-
tions and expectations it produces during its execution. Schemas are learned in
order to deal with the environment successfully: maintaining correct representa-
tions and betting that they will be useful are two sides of the same coin.

3 The AKIRA Schema Language (AKSL)

The AKIRA Schema Language (AKSL) has four main components: schemas,
drives, routines, and actuators. It is build on the top of the AKIRA simulation
framework [1] and integrated with the Irrlicht 3D engine [33] and the Ikaros
simulation framework [32]3.

3.1 Schemas

Schemas can be described as tuples (det,inv,for,urg,rel,app,con,act,thr). The
first three parameters represent their components:

3 The sourcecode of AKSL is available in the AKIRA website [1].
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– det is a detector4, i.e. the selector of a certain kind of stimuli (each schema
only processes some information which has been learned to be significant)

– inv is an inverse model, deciding on a motor command to send to an effector
– for is a forward model, calculating the expected next stimuli

Basically each schema has a cycle in which: (1) the detector collects sensory
information (received by perceptual routines) and the sensory expectation (re-
ceived by the forward model), compares them (dotted circle in Fig. 4: the degree
of mismatch is used for calculating rel, see later), and sends a sensory input to
the inverse model; (2) the inverse model, on the basis of the input received, cal-
culates a motor command and sends it to the effector (camera or wheel motors);
(3) the forward model receives an efference copy of the final motor command
(sent to the camera or wheel motors), generates a sensory expectation and sends
it to the detector.

The cycle of each schema is run asynchronously and in parallel with each
other, with an amount of computational resources (speed and memory) that
depends on its activity level. Five other parameters are used for calculating the
activity level at the beginning of each schema’s cycle:

– urg is the urgency value, representing how promptly the schema has to be
executed when its contextual conditions are met. This parameter is very high
in schemas which have to deal with risky situations, in which an immediate
action is needed.

– rel is the reliability value, representing how much that schema is (expected to
be) successful in the current situation. The reliability value is set according
to the degree of match of the expectations generated by the forward model
for with respect to the actual stimuli.

– app represents the appropriateness with respect to currently active drives
and goals. It is a learned parameter.

– con is a learned contextual parameter that depends on the activity level
of other schemas. Schemas can in fact evolve links with an Hebbian-like
mechanism explained in [49], which permit the transfer of activation. This
associative mechanism permits mutual priming of schemas that are often
active in the same situations.

– act represents the total activity level of the schema, which sums up the
epistemic and motivational factors. It is calculated as urg + rel + app+ con.
Thus, the final activity level of a schema represents how much the schema is

4 Optionally more sophisticated operations can be realized inside the detector. For
example, as in Kalman filtering [36], a reliability value can be assigned to stimuli
and expectations, and the final input be calculated as their weighed sum. In this case,
if the stimulus is lacking or inaccurate, the expectation can be used for (partially)
replacing it. Another possibility is to erase from the stimulus the self-generated
part, predicted by the forward model. This functionality is useful e.g. for avoiding
tracking our own hand when it is in the visual field. Moreover, as in Smith predictors
[61], the prediction of the forward model can be fed at different time intervals for
compensating long loop delays.
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Fig. 4. Example of the coupled perceptual and motor schemas

expected to be both effective (successful) and desirable in the given context
(according to current drives/goals and other contingent factors).

– thr is a threshold for sending motor commands. Under the threshold the
schema functions normally but its motor commands to the actuators are
inhibited.

Coupled Perceptual and Motor Schemas. Perceptual and motor schemas
can be coupled. The functioning of two sample coupled schemas, detct prey and
chase prey, is illustrated in Figure 4. The perceptual schema receives as input
perceptual information from the camera (data are preprocessed by perceptual
routines). As indicated by the dotted circle, sensed stimuli are compared with
sensory information that is predicted by the forward model, and the error is used
for setting the reliability value rel of the schema. The detector thus sends sen-
sory stimuli to the controller (inverse model), which in turn generates a motor
command and sends it to the camera motor (via motor routines), and (option-
ally) sensory information (e.g. the position of the detected prey) to the coupled
motor schema. The motor schema receives as input the activity level of the
coupled perceptual schema, proprioceptive information about the current state
of the wheels’ motor, and optionally additional sensory information from the
perceptual schema. Like in the perceptual schema, sensed and predicted stimuli
are compared and reliability values are assigned. Sensory information is con-
veyed to the controller, which sends motor commands to the wheels’ motor (via
motor routines). Notice that in both schemas, in order to generate predictions,
the forward models receive an efference copy of the (final) motor commands
received by the camera or wheel motors, and learn to predict their sensory
effects.

Three Modes of Operation. Schemas can operate in three distinct modes:
(1) generation; (2) simulation; (3) imitation.
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The generation mode is the default one and serves for generating behavior
appropriate to the context. The functioning is the one previously explained.

The simulation mode is used for predicting the long-term effects of schemas.
When a schema runs in simulation, the motor commands generated by its in-
verse model are inhibited and not sent to the actuators; however, efference copies
are sent as usual to the forward model, which generates expectations and sends
them to the detector. Inside the detector, expectations are not matched against
stimuli (and their accuracy can not be calculated), but directly fed to the in-
verse model. The simulation mode thus produces a loop between the forward and
inverse model, generating a simulation of the possible courses of events, which
extends over several steps. Schemas in simulation mode can also be run faster
than real time, thus actually simulating several steps ahead5. The simulation
mode can be used for producing, testing and selecting in advance multiple al-
ternative courses of events ‘proposed’ by different schemas. For example, if an
agent has alternative schemas for navigating, by running them in simulation it
can explore ‘virtually’ (and not by trial and error) its environment. This per-
mits to foresee possible dangers that can arise during navigation, to anticipate
if by following a path it is actually possible to reach a target location, or to
calculate which is the shortest path to a target location by comparing the time
spent for simulating the alternative ones. In principle all schemas can be run
in simulation, regardless of their actual reliability and activity level (but notice
that simulating is a costly operation). However, only schemas whose reliability
value is significantly high are able to generate predictions which are adapt to
the current context.

The imitation mode serves for understanding (and possibly reproducing) be-
havior observed in a demonstrator (see [17]). When schemas run in imitation
mode the perceptual state (observed in the demonstrator) is fed to the inverse
models which generate the motor command that would have been produced in
that situation. The motor commands to the actuators are inhibited, but the
efference copies are fed to the forward models which generate the next pre-
dicted perceptual state, which is thus compared with the next perceptual state
(observed in the demonstrator). This process roughly corresponds to the ques-
tion: “which of the schemas could have generated the perceptual states I ob-
serve?”, the answer being the schema(s) which are accurate in predicting. By
knowing that, the agent is now able both to understand the demonstrator’s ac-
tions, and to imitate them. Of course depending on the differences between the
agent’s and demonstrator’s behavior repertoires, imitation can be more or less
accurate.

5 A more complex possibility is running in simulation the whole schema-based system.
In this case, predictions generated by one schema are also fed to other schemas. The
effects of the motor commands on actuators and sensors are simulated too, and
then predictions replace sensory information in the whole system. This mechanism
permits to test in advance not only the long-term effects of single schemas, but also
their combinations. Notice that it is impossible to use the schema-based system in
generation and simulation at the same time.
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3.2 Determining the Activity Level of Schemas

Schemas in AKSL couple perception and action via anticipation: they learn
to associate stimuli with behavior that produces appropriate expected results6.
As already discussed, thanks to their dual nature, schemas are well suited for
both pragmatic activity such as guiding behavior, and for epistemic activity
such as categorization. This is due to the fact that their activity level depends
both on their reliability, and on their appropriateness with respect to current
drives/goals.

Schemas are assigned a reliability level depending on how well they predict
the sensorimotor flow. The reliability of a perceptual schema is a confidence
level that a certain entity, encoded in the schema, is expected to be present. For
example, if the schema detect prey has a high activity level, not only it can be
assumed that it is successfully tracking the prey (with the camera), but also that
there is, or there will be, a prey in the visual field. For this reason, the most
important aspect of perceptual schemas is their epistemic side: if an architecture
has several perceptual schemas, they can be seen as competing hypotheses for
representing/categorizing the current perceptual situation, such as detect prey
vs. detect predator. The reliability of a motor schema is instead a confidence level
that the behavior encoded in the schema is applicable in the context.

As an example, consider the catch prey schema. The most important aspect
of motor schemas is pragmatic: they can be seen as competing behaviors, or as
different means to realize the same behavior. However, even perceptual schemas
have relevant pragmatic aspects (they orient attention by moving the camera)
and motor schemas have epistemic aspects (they contribute to categorization).
Each schema has thus both aspects, since its success implies both achievement
(of action) and categorization (of object/event).

The current motivational state of a schema-based agent also influences the
activity level of schemas. This means that when a schema-based agent has hunger
or is fearful, its schemas for detecting and catching prey in the former case, or
for detecting and escaping from predators in the latter case, will gain activation.
In this way the agent’s pragmatic activity is oriented toward desired goal states,
such as prey or hiding places. Attention is channelized toward relevant stimuli
too: the agent spends many resources in deciding whether or not there is a
prey than, say, deciding whether or not there is a hiding place. This is obtained
by drives (such as hunger) providing activation to relevant perceptual schemas
(such as detect prey). This happens even when there are not prey in the visual
field; and since a high activity level of detect prey can in turn be interpreted as
an evidence that there is a prey, this process causes visual imagery: the agent
‘imagines’ what it is searching for. However, this is only temporary: although
hunger can artificially maintain a high activity level for some time, if there are
6 Several machine learning methodologies have been used in literature for learning

the inverse and forward models, and for evaluating the degree of mismatch between
stimuli and expectations; for example, in [67] responsibility signals are used. AKSL
currently permits the usage of both fuzzy logic and feed-forward or recurrent neural
networks libraries; see [49].
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no prey the schemas for detecting and catching them will still not be relevant
and thus will lose activation.

There is also a general constrain on how much activation can be assigned to
schemas. Activation, to be divided among schemas, is in fact limited. Schemas
compete for acquiring resources: they can not access them while they are used
by other schemas, but have to wait until they are released (the mechanism is
based on the AKIRA Energetic Model, explained in [49]). This means that ac-
tive schemas inhibit one another via the allocated resources but without lateral
inhibitions. By modifying the total amount of activation available it is also pos-
sible to channelize behavior in different ways, since few or many schemas can be
active at once.

3.3 Motivations and Routines

AKSL also permits the design of simple motivational systems: as in several
ethological studies, drives such as hunger and fear can be implemented. We
have also included in AKSL several routines such as detect red or move left for
pre-processing information (e.g. sensory data).

Although they have very different roles, drives and routines are implemented
in a similar way. Each drive and routine embeds a simple operation. In the case
of drives, this may consist of a ‘biological clock’ (e.g. raising the activity level of
hunger). In the case of routines, this may consist of reading the value of a sensor,
or sending a motor command to an actuator. Schemas do not receive input
from sensors and they do not send output to actuators: three kinds of routines
(perceptual, motor and proprioceptive) have the role to mediate between them.

Drives and routines have an activity level act and can exchange activation
with other components. For example, drives typically fuel appropriate schemas,
and schemas fuel routines (and vice versa). The more a drive is active, the more
it can fuel the schemas which satisfy it; thus drives introduce a motivational
influence on the agent’s behavior. The more a routine (e.g. detect red) is active,
the more it reliably finds a pattern in the sensor (e.g. red is detected). Energetic
links between schemas, drives and routines can be learned via a Hebbian-like
system. The rationale is that schemas whose success reliably satisfy drives be-
come associated with them, while schemas become associated with routines that
provide useful input or output facilities. See [47] for the details.

3.4 Sensors and Actuators

Perceptual and motor routines receive input from sensors such as a camera.
The actuators (camera or wheel motors) receive asynchronous commands from
the motor routines and perform command fusion (libraries based on fuzzy logic
and a mixture of Gaussians are available; see [49]). In many systems in the
literature (see [14] for a review) several schemas can be partially active at once
but only one is selected for commanding the actuators. In our model each active
schema sends concurrently its motor commands to the actuators via the motor
routines. Since more active schemas receive more resources and can perform
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their operations faster, they also have a higher firing rate when sending motor
commands. The actuators fuse all the motor commands, which were received
asynchronously. This means that a schema with an higher activity level (and as
a consequence sending commands with higher firing rate) also has more influence
on the actuators. Notice that this has not necessarily only impact on the agent’s
movements. Since one of the actuators is the camera motor, that actuator also
determines which sensory information the agent pays attention to.

3.5 Comparison with Related Literature

AKSL shares resemblances with other schema-based architectures such as [3,37].
With respect to them, the two main differences are the presence of internal mod-
els and the fact that perceptual and motor schemas are separate units, which
can, however, be coupled. AKSL shares resemblances with MOSAIC [67] and
HAMMER [18] too. Differently from them, AKSL uses a parallel architecture in
which the activity level influences directly the amount of computational resources
(speed and memory) assigned to each schema, without explicitly calculating re-
sponsibility values. The second difference is that schemas compete for limited
resources and active schemas inhibit other ones. The third relevant difference is
that commands are received and fused asynchronously by the effectors; a high
activity level permits schemas to have a higher firing rate and thus to send more
commands. Lastly, AKSL also permits Hebbian-like learning and spreading ac-
tivation between the schemas, which can thus provide activation to one another,
being in the same or in different hierarchical layers. See [49] for the details of
the architecture.

4 Exemplar Capabilities of AKSL

We have used AKSL for addressing several research fields. Here we review our
simulations in the fields of (1) action selection and attention, (2) category for-
mation, (3) simulation of future behavior, (4) grounding, and (5) hierarchical
control of action.

4.1 Action Selection and Attention

Recently several anticipatory schema-based systems have been proposed for ac-
tion control in robotics which base action selection on predictive success, both in
distributed approaches [62,63] and in localist ones, such as MOSAIC and HAM-
MER (but others exist, [64]). They use a combination of forward and inverse
models for generating competing motor plans for the same or for different tar-
gets, and the models with better predictions are selected for the control of action.
This responds to two related questions: which action is preferable given the sen-
sory and goal context? Which schema can successfully actuate the action? These
questions become related if success of prediction is used for action selection: a
successful schema performs an action (and satisfies a drive/goal), thus a schema
predicting well also predicts its own success. On the contrary, not only schemas
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which fail, but also schemas which are expected to fail, can be assigned less
activity. Differently from several schema-based models, in MOSAIC and HAM-
MER there is not a one-to-one correspondence between a schema and a behavior,
but each behavior (e.g. ‘grasp teapot’) is realized by the cooperation and compe-
tition of several schemas, specialized for different contexts (e.g. ‘light’ or ‘heavy’
cup). Thus, competing models generate alternative motor plans, such as grasp
full teapot vs. grasp empty teapot, which are selected according to the basis of
how accurately the models predict the right sensorimotor flow. When a motor
command is generated for grasping a teapot, an efference copy is used by the for-
ward models in the two modules for generating the sensory consequences under
two different contexts. These predictions are thus compared with actual sensory
feedback, and the most appropriate one is selected for action control. Commands
of the two modules can be combined linearly, providing generalization.

In [47] we have described a schema-based architecture (see Fig. 5), inspired
by an ethological model of the praying mantis, which shares resemblances with
MOSAIC and HAMMER but uses AKSL. In that architecture predictions gen-
erated by the forward models are not only used for determining schemas’ reli-
ability, but also used for orienting the motor apparatus (camera and wheels).
Perceptual schemas gather information relevant for the current task, and orient
the camera toward relevant inputs (e.g., relevant colors and trajectories), also
determining part of the next stimuli, as in active sensing. Motor schemas select
the most appropriate motor action (e.g., specialized for following or escaping
from quick or slow, big or small entities). The first novelty of this architecture is
the possibility to deal with multiple concurrent drives, whose urgency changes
over time (depending on internal regulatory mechanisms or by external stimuli).
The challenge is generating the appropriate behavior for satisfying the currently
active motivation. Depending on the current motivational state, affordances of-
fered by the environment are selected: for example, a hungry agent tries to catch
prey, while a fearful agent that is escaping from a predator avoids prey. The sec-
ond novelty is that perceptual and motor processes are integrated in the same
framework and coupled, and the agent is able to orient attention for gathering
information necessary for satisfying its current needs. The two aspects, deter-
mining behavior and orienting attention, are closely related in AKSL thanks to
the coupling of perceptual and motor schemas.

4.2 Category Formation

Schema activity has (real or anticipated) epistemic implications; it can be ex-
ploited for categorizing and distinguishing objects from background. In an an-
ticipatory framework, since the activity level of schemas depends on their pre-
dictions, objects and categories are defined by the typical, coherent patterns of
(expected) transformations under a given set of the agent’s actions. For exam-
ple, in [21] it is investigated how to build action → effect sensorimotor schemas
through interaction with a simple environment. Moreover, the agent interactively
enlarges its ontology by learning new objects (called synthetic items), which in
turn permits the learning of incrementally new abilities and competences.
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Fig. 5. The schemas-based architecture of the praying mantis in [47]

AKSL has been used for categorization, too. In [48] we have demonstrated how
to develop perceptual categories (such as different types of insects) and abstract
categories (such as two roles played by those insects, predators and prey), on the
basis of the theory of perceptual symbol systems [7]. Shortly, the agent learns to
activate the most relevant schemas, specialized for dealing with features of the
entities (such as color and size) and is able to track, follow or escape the entities
by means of the dynamics of collaboration and competition among the schemas.
The specific novelty of AKSL comes from the possibility to evolve energetic links
among schemas in an Hebbian-like way. In such a way ‘clusters’ of active schemas
emerge during interaction with a given entity (say insect one or predator) behave
as simulators in the sense of [7]. They can then generate a simulation of categories
of objects or events by rehearsing and priming the associated schemas, even in
absence of environmental cues. Thanks to simulative capabilities, specific runs
of a simulator reenact the multimodal experience of a category, while adapting
to the current situation.

4.3 Simulation of Future Behavior

Simulative theories of cognition [7,26,28] suggest that by rehearsing the motor
programs for interacting with an object an agent can anticipate the sensorial
stimuli it will receive and simulate the consequences of its motor commands one
or many steps beyond current time. Recently several neuroscientists [20,41] pro-
posed that the cerebellum and the basal ganglia could create a loop permitting
the simulation and selection of multiple alternative courses of actions, providing
neural support for these theories.
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Fig. 6. Simulation and Long Term Effects. The long term effects of schemas are pre-
dicted, and the expected states evaluated. This mechanism can be used for excit-
ing/inhibiting the schemas depending on their long-term effects. If the long-term effects
of several schemas are generated and compared, this mechanism can also be used for
selecting among alternative courses of actions (simulative planning).

Simulation permits the realization of multiple functionalities. Some of them
are related to the immediate control of action: for example, actual stimuli can be
replaced when the sensors are unavailable or unreliable [19]. More complex and
future-oriented capabilities are possible, too. The alternative courses of events
can be evaluated before acting, for example with a somatic marker mechanism
[15]: if the sensory predictions have already been experienced and had been cate-
gorized as negative, the schemas generating them can be stopped by a ‘command
from the future’ (see Fig. 6). A simulated exploration of the environment can
also be exploited for selecting a plan: the effects of several competing plans can
be produced off-line, and their expected sensory consequences evaluated against
actual or expected drives/goals. Neuroscientific evidence indicates that reward
prediction is used for selecting, for example, a path in a maze [58].

Simulative capabilities have been used in cognitive robotics too. For example,
in [25,68] internal simulation of the sensory consequences of multiple possible mo-
tor actions is used to perform robust planning in the presence of noise. Similarly,
in [16] a simulative process is used for checking in advance if the selected behav-
ior will cause problems in the future. This method permits to avoid the costs
of performing complete planning, since only the usual behavior path is checked
in anticipation. Simulative capabilities have also been used in social tasks, such
as imitation, joint attention, plan recognition, perspective taking, prediction of
intent, etc.; for example, the HAMMER architecture has been used for modeling
all these aspects [18,17].

Schemas in AKSL, if used in the generation mode, already simulate few steps
in the future for the sake of predicting the next sensory stimuli. If a prediction of
the long-term effects of the agent’s actions is instead needed, they can be used in
simulation mode. Running schemas in simulation permits the realization of several
novel functionalities, such as realizing a ‘somatic marker’ mechanism or simula-
tive planning. At the moment we have only conducted preliminary experiments
on these topics; in our future work we plan to continue investigating them.

4.4 Grounding

Since schemas can be run in simulation, the agent is able to self-generate sen-
sory information that would be provided by the environment as a consequence
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of its actions. This means that not only actually performed actions provide an
epistemic access to the environment, but also simulated ones; as a consequence,
not only experienced objects and events can be grounded, but also these ‘virtu-
ally’ experienced via simulated interaction. In [29] internal simulation of possible
trajectories is used for grounding concepts related to navigation; for example,
distance from obstacles is grounded and estimated by running simulations until
they encounter the obstacle. Dead-ends are recognized through simulated obsta-
cle avoidance, while passages are grounded in successfully terminated simulations
of navigation.

In the schema-based framework proposed by [55] expectations about the sen-
sorimotor flow are used instead for grounding the meaning of words and sentences
in natural language. Words for perceptual features are grounded into sensory in-
formation; for example, ‘red’ is grounded in some (expected) values of the robot’s
sensors. More complex attributes are grounded thanks to (actual and potential)
actions. Concepts for objects which are for example reachable or graspable are
grounded by schemas which regulate actual behavior and at the same time encode
predictions of the consequences of expected interaction. For example, the mean-
ing of ‘sponge’ is the set of expected consequences of own actions with a sponge
(e.g. the anticipated softness), which constitutes the grounding of the word.

In [50] AKSL has been used for designing a 2-layered architecture, corre-
sponding to the two systems for automatic and willed control of action in [46].
The lower layer, which is called sensorimotor, is very similar to the already pre-
sented architecture of the praying mantis, but includes schemas for navigating in
a simulated house. The higher layer, which is called deliberative, includes instead
declarative knowledge (beliefs and goals states) and pre-compiled sequences of
schemas (plans) for navigating the house scenario; this layer is used for rea-
soning. One novelty of this system is that beliefs are dynamically added to the
deliberative layer on the basis of how schemas perform in the sensorimotor layer.
For example, the belief the door is open is added when the schema(s) for tra-
versing the door is being successful, or is expected to be successful. Not only
actual actions, but also simulated ones have been used for forming beliefs: in
this case schemas have been used in the simulation mode. The rationale is that
‘I can believe that the door is open since I expect that, if I try to traverse it,
my attempt will succeed’ (I also have to assume that the context for acting will
be appropriate; for example, I have to start the action in front of the door).
The system can also perform explicit epistemic actions (for example in order
to check if a belief is true). By exploiting the same machinery that serves for
building up the belief x, I can know under which conditions I will come to be-
lieve x by using counterfactual reasoning (e.g., what do I have to do in order
to know whether or not the door is open?). We have argued that beliefs which
are built in this way are grounded, and their verofunctional value can be veri-
fied or falsified on the basis of success or failure of schemas in the sensorimotor
layer7.

7 Some beliefs are about other beliefs and not about stimuli. In all cases, however, a
relation (direct or indirect) can be identified with the sensorimotor layer.
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4.5 Hierarchical Control of Action

Several hierarchical architectures exist in the literature for action control and
the orientation of attention [18,27] in which schemas that include representations
at different level of abstraction are used. We have used AKSL for hierarchical
control is the above mentioned 2-layered architecture. Plans in the deliberative
layer are simply pre-compiled sequences of schemas. If a plan is selected by
reasoning, it influences the dynamics of the sensorimotor layer by triggering
schemas in sequence, much in the way drives do. Depending on the amount of
resources assigned to the deliberative layer (and to plans), this influence can
constrain more or less the behavior of the agent.

Another example of the use of AKSL for hierarchical control is the architec-
ture for visual search in [51]. Similarly to ‘pandemonium’ models [59], schemas
at the higher layers encode increasingly abstract representations and expecta-
tions. They learn to predict the activity level of those at the lower layers, and
expectations produced at the high level canalize in a top-down way search at the
lower level, while bottom-up error signals serve mainly to confirm or disconfirm
concurrent running hypotheses. Empirical evidence exist for a hierarchical or-
ganization of the visual apparatus; a comprehensive theoretical framework and
implementation is predictive coding [54]. This approach is also consistent with
simulative theories of cognition. According to Grush [26], simulations can nest
to produce increasingly abstract levels of description, in which the criteria for
‘matching’ are increasingly distant from perceptual matching, although they re-
main grounded on (actual or simulated) sensorimotor interaction.

5 Conclusions

AKSL permits the design and implementation of anticipatory schema-based ar-
chitectures, and anticipation plays a crucial role in realizing several functionali-
ties. For example, action selection is influenced by the anticipatory capabilities
of the schemas, and in particular of their forward models. One of the elements
for assigning activity level to a schema is its accuracy in predicting the next
sensory input in case one pattern of actions is selected. Attention has an an-
ticipatory component too: predictions generated by the forward models permit
the orientation of attention toward the expected position of entities such as a
prey to detect, or toward parts of the environment in which the agent expects
to find information relevant for its current task. Category formation depends on
anticipation, too, and in particular by expectations generated by several schemas
at once. Schemas specialized for features of the same entity are likely to have
coordinated patterns of prediction and for this reason can evolve energetic links
in an Hebbian-like way. Categories thus emerge as clusters of schemas which
are expected to be more active during interaction with the same entities. Sim-
ulative capabilities, that are based on the substitution of actual stimuli with
self-generated expectations, permit a number of other functionalities, such as
generating and comparing alternative courses of events on the basis of their
long-term effects, or grounding concepts on the basis of self-generating sensory
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stimuli. Lastly, in designing hierarchical architectures, an interplay of top-down
and bottom-up signals are used which convey sensory expectations and predic-
tion errors.

Anticipation is thus crucially involved in several functions, from the simplest
to more complex ones. But is it really advantageous to anticipate in all circum-
stances? Running the forward models, and especially using schemas in simula-
tion mode, is very costly in terms of time and computational resources, and the
adaptive advantage of predicting the future could be lost if this means less re-
sponsiveness to the contingencies of the environment. We have conducted several
preliminary experiments (reported in [47,48]) and compared schema-based mod-
els having anticipatory and reactive strategies (i.e. without the forward models).
We have found a significant adaptive advantage of anticipatory strategies when
the agent has to deal with complex and dynamical environments offering multi-
ple possibilities for action, while this may be not the case if only simpler tasks
are required; see also the experiments reported in [35].

These experiments seem to indicate that a selective pressure for developing an-
ticipatory capabilities, and consequently using anticipation as a ‘lever’ to develop
increasingly complex functionalities, could be the increased level of complexity
and dynamicity of the environment. More anticipation also permits an agent to
deal successfully with more drives and motivations, since it can allocate attentive
resources and orient its behavior by taking into account present, but also future
needs. In turn, more motivations and more anticipation make the environment
of the agent increasingly complex, and thus demand for even more anticipatory
capabilities; for a discussion, see [52]. Of course, it is an open challenge to un-
derstand which is the level of complexity and dynamicity of the environment
which makes anticipation advantageous, and for this reason we plan to continue
using AKSL in the future in a number of simulations comparing reactive and
anticipatory strategies.
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Abstract. Visual forward models predict future visual data from the
previous visual sensory state and a motor command. The adaptive ac-
quisition of visual forward models in robotic applications is plagued by
the high dimensionality of visual data which is not handled well by most
machine learning and neural network algorithms. Moreover, the forward
model has to learn which parts of the visual output are really predictable
and which are not because they lack any corresponding part in the vi-
sual input. In the present study, a learning algorithm is proposed which
solves both problems. It relies on predicting the mapping between pixel
positions in the visual input and output instead of directly forecasting
visual data. The mapping is learned by matching corresponding regions
in the visual input and output while exploring different visual surround-
ings. Unpredictable regions are detected by the lack of any clear cor-
respondence. The proposed algorithm is applied successfully to a robot
camera head under additional distortion of the camera images by a reti-
nal mapping. Two future applications of the final visual forward model
are proposed, saccade learning and a task from the domain of eye-hand
coordination.

1 Visuomotor Prediction

Sensorimotor control is an important research topic in many disciplines, among
them cognitive science and robotics. These fields tackle the questions of how
complex motor skills can be acquired by biological organisms or robots, and how
sensory and motor processing are interrelated to each other. So-called “internal
models” help to clarify ideas of sensorimotor processing on a functional level
[14,22]. “Inverse models” or controllers generate motor commands based on the
current sensory state and the desired one; “forward models” (FWM) predict
future sensory states as outcome of motor commands applied in the current
sensory state. The present study focuses on the anticipation of visual data by
FWMs.

The anticipation of sensory consequences in the nervous system of biological
organisms is supposed to be involved in several sensorimotor processes: First,
many motor actions rely on feedback control, but sensory feedback is generally
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too slow. Here, the output of FWMs can replace sensory feedback [15]. Second,
FWMs may be used in the planning process for complex motor actions [21].
Third, FWMs are part of a controller learning scheme called “distal supervised
learning” [13]. Fourth, FWMs can help to distinguish self-induced sensory effects
(which are predicted) from externally induced sensory effects (which stand out
from the predicted background) [1]. Fifth, it has been suggested that perception
might rely on the anticipation of the consequences of motor actions that could
be applied in the current situation. The anticipation would be accomplished by
FWMs [16].

Regarding the fourth function mentioned above, a classical example is the
reafference principle suggested by Holst and Mittelstaedt [12]. It explains why
(self-induced) eye movements do not evoke the impression that the world around
us is moving. As long as the predicted movement of the retinal image (caused
by the eye movement) coincides with the actual movement, the effect of this
movement is canceled out in the visual perception. Additional evidence for the
fourth function of FWMs stems from a study of Blakemore et al. [1]: In their
experiments, subjects had to tickle themselves via a robotics interface. The closer
the actual movement of the robot corresponded to the tickling movements of the
subjects, the less the subjects rated their tactile sensation as tickly, pleasant,
and intense. This effect has been ascribed to FWMs whose output cancels out
the sensory effect of self-executed tickling.

In fields like robotics or artificial life, studies using FWMs for motor control
focus mainly on navigation or obstacle avoidance tasks with mobile robots. The
sensory input to the FWMs are rather low-dimensional data from distance sen-
sors or laser range finders (e.g.: [21,23]), optical flow fields [7], or preprocessed
visual data with only a few remaining dimensions [9]. Only in a recent study
by Hoffmann, a visual FWM is implemented which predicts images with a size
of 40 × 40 pixels. It is used for distance estimation and dead-end recognition to
demonstrate that perception by anticipation actually works (the fifth function
of FWMs mentioned above) [11].

We are especially interested in the learning of FWMs in the visual domain,
and its application to robot models. In our understanding, visual FWMs predict
representations of entire visual scenes. In the nervous system, this could be the
relatively unprocessed representation in the primary visual cortex or more com-
plex representations generated in higher visual areas. Regarding robot models,
the high-dimensional sensory input and output space of visual FWMs poses a
tough challenge to any machine learning or neural network algorithm. Moreover,
there might be unpredictable regions in the FWM output (because parts of the
visual surrounding only become visible after execution of the motor command).
In the present study, we suggest a learning algorithm which solves both prob-
lems in the context of robot “eye” movements. In doing so, our main goal is
to demonstrate a new efficient learning algorithm for image prediction. Further-
more, we suggest two different future applications for the resulting visual FWM
in the domain of motor learning and behavioral control.
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Fig. 1. Left: Visual forward model (FWM). Right: Single component of a visual forward
model predicting the intensity of a single pixel (xOut, yOut) of the output image.

2 Visual Forward Model for Camera Movements

In our robot model, we attempt to predict the visual consequences of eye move-
ments. In the model, the eye is replaced by a camera which is mounted on a
pan-tilt unit. Prediction of visual data is carried out on the level of camera
images. In analogy to the sensor distribution on the human retina, a retinal
mapping is applied which decreases the resolution of the camera images from
center to border. Although this mapping copies an important aspect of visual
processing in humans, we do not intend to develop, implement, or test a model of
the human visual pathway. Instead, we explore a learning mechanism for visual
FWMs and suggest a possible architecture for this purpose. The retinal map-
ping is part of this architecture, but it is not required for the proposed learning
mechanism. Instead, its only purpose is to make the prediction task more dif-
ficult and to prove the robustness of the learning mechanism. The input of the
visual FWM is a “retinal image” at time step t (called “input image” in the
following) and a motor command mt. The output is a prediction of the retinal
image at the next time step t + 1 (called “output image” in the following; see
left part of Figure 1).

The question is how such an adaptive visual FWM can be implemented and
trained by exploration of the environment. A straight-forward approach is the use
of function approximators which predict the intensity of single pixels. For every
pixel (xOut, yOut) of the output image, a specific forward model FWM(xOut,yOut)

is acquired which forecasts the intensity of this pixel (see right part of Figure
1). Together, the predictions of these single FWMs form the output image as
in Figure 1 (left). Unfortunately, this simple approach suffers from the high
dimensionality of the input space (the retinal image at time step t is part of
the input), and does not produce satisfactory learning results [8]. In the work
of Hoffmann, where images with a size of 40 × 40 pixels are directly predicted,
an additional denoising model is required. This model has to be trained for the
specific environment of the mobile robot [11].

Hence, in this study we pursue a different approach. Instead of forecasting
pixel intensities directly, our solution is based on a “back” prediction where a
pixel of the output image was in the input image before the camera’s move-
ment. The necessary mapping model (MM) is depicted in Figure 2: as input, it
receives the motor command mt and the location of a single pixel (xOut, yOut) of
the output image; as output it estimates the previous location (x̂In, ŷIn) of the
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Fig. 2. Left: Mapping model (MM). Right: Validator model (VM) (for details see text).

corresponding pixel (or region) in the input image. The overall output image is
constructed by iterating through all of its pixels and computing each pixel inten-
sity as ̂IOut

(xOut,yOut)
= IIn(�xIn,�yIn) (using bilinear interpolation).1 Moreover, an addi-

tional validator model (VM) generates a signal v(xOut,yOut) indicating whether it
is possible at all for the MM to generate a valid output for the current input. It
predicts which pixels of the output image are in a position that does not corre-
spond to any pixel of the input image. This is necessary because even for small
camera movements parts of the output image are not present in the input image.
In this way, the overall FWM (Figure 1, left) is implemented by the combined
application of a mapping and a validator model.

The basic idea of the learning algorithm for the MM can be outlined as
follows for a specific mt and (xOut, yOut): during learning, the motor command
is carried out in different environmental settings. Each time, both the actual
input and output image are known afterwards, thus the intensity IOut

(xOut,yOut)

is known as well. It is possible to determine which of the pixels of the input
image show a similar intensity. These pixels are candidates for the original po-
sition (xIn, yIn) of the pixel (xOut, yOut) before the movement. Over many trials,
the pixel in the input image which matches most often is the most likely candi-
date for (xIn, yIn) and therefore chosen as MM output (x̂In, ŷIn). When none of
the pixels match often enough, the MM output is marked as non-valid (output
of VM).

3 Method

To acquire such a MM and VM as in Figure 2, the following steps are executed.
First, a grid of points is defined in the input space of the MM and VM (com-
posed of mt, xOut, and yOut), ranging from the minimum to the maximum value
in each input dimension. For each grid point, the most likely estimate (x̂In, ŷIn) is
determined by collecting candidate pixels in many different visual surroundings.
Along the way, the VM output v(xOut,yOut) is determined as well. Thereafter, one
radial basis function network (RBFN) [17] is trained to interpolate the MM out-
put between the grid points, and another RBFN to interpolate the VM output.
The resulting networks can be applied to image prediction afterwards. In the
following, the methods are outlined in more detail.

1 In this study, pixel intensities of the retinal input and output images are three-
dimensional vectors in RGB color space.
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3.1 Setup

The robot setup is shown in Figure 3 (left). Only the right camera is used. A
central quadratic region of the original camera image (captured in RGB color)
with a resolution of 240 × 240 pixels is used for further processing (and called
“camera image” in the following for simplicity). The horizontal and the vertical
angle of view of this region amount to 48.5 degrees. The camera is mounted
on a pan-tilt unit with two degrees of freedom. In this study, the valid range
for the pan angle is between −60.4 and 23.8 degrees, for the tilt angle be-
tween −42.9 and 21.4 degrees. In this range, the camera image always captures
at least a small part of the white table shown in Figure 3 (left) below the
cameras.

Fig. 3. Left: Setup used as basis for the visual prediction task. Right: Retinal mapping.
Upper right image: Original image. Lower right image: Retinal image (enlarged by
factor two).

The pan and tilt axes cross in close vicinity to the nodal point of the camera-
lens system. For this reason, the effect of changing the pan and tilt position
by a certain amount (Δpan, Δtilt) is almost independent of the current camera
position. Accordingly, the motor input mt of the FWM just consists of Δpan
and Δtilt. Both values can vary between −29 and +29 degrees. For the same
reason, object displacements in the camera images during camera movements
are virtually independent from the object distance to the camera. Thus, depth
information is irrelevant for our learning task.
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3.2 Retinal Mapping

As mentioned before, the input and output images of the FWM are “retinal”
images with decreasing resolution from image center to border. Camera images
are converted to such retinal images by a “retinal mapping”. The effect of this
conversion is depicted in Figure 3 (right). The basic idea of this mapping is
best outlined in polar coordinates. The origins of the coordinate systems are
located at the image centers. They are scaled in a way so that in both images
the maximum radius (along the horizontal/vertical direction) amounts to 1.0. rR

is the radius of a point in the retinal image, rC is the radius of the corresponding
point in the camera image, the angle of the polar representation is kept constant.
rC is computed by rC = λrγ

R + (1 − λ)rR , γ > 1 , 0 ≤ λ ≤ 1. Here we use
γ = 2.5 and λ = 0.7. The resolution of the final retinal image is 69 × 69 pixels.
To avoid aliasing artifacts in the heavily subsampled outer regions of the original
image, adaptive smoothing is applied (with a binomial filter whose mask size is
proportional to the local subsampling factor).

While the input image of the FWM is an unmodified retinal image, the output
image is a center crop with a size of 53 × 53 pixels. It is necessary to clip the
white corners of the retinal image, which do not contain any valid information
(see Figure 3, right). This is just a technical artifact but could spoil the learning
algorithm.

3.3 Grid of Cumulator Units

The input space of the MM and VM consists of four dimensions: Δpan,
Δtilt, xOut, and yOut. A four-dimensional grid P of points pijkl =
(

Δpan(i), Δtilt(j), x(k)
Out, y

(l)
Out

)

is inscribed in this space, with i, j = 1, .., 7 and
k, l = 1, .., 11. Δpan(i) and Δtilt(j) vary from −29 to +29 degrees with constant
step size (covering the whole valid Δpan and Δtilt range), while x

(k)
Out and y

(l)
Out

form an equally spaced rectangular grid covering the whole output image.
To each point pijkl, a so-called “cumulator unit” Cijkl is attached. Such a

unit is basically a single-band image with the same size as the input image.
Thus, the input image and the cumulator units have the same number of pixels
in the horizontal and vertical direction. Each “pixel” of a cumulator unit can
hold any positive integer value including zero. They are used to accumulate and
store the number of matches between input and output image at their specific
position (the position within the cumulator unit addresses the position in the
input image, the position within the grid P addresses the position in the output
image and in the motor space). This is explained in further detail in the next
section.

3.4 Learning Process

The goal of the learning process is to accumulate activations in the cumulator
units. At the beginning, all pixels of these units are set to zero. In each learning
trial, the pan-tilt unit is first moved into a random (pan, tilt) position. The input
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Fig. 4. Cumulator units for the center pixel for four different (Δpan, Δtilt) positions.
All depicted cumulator units were normalized by the same scaling factor so that a pixel
value of zero corresponds to white and the overall maximum pixel value to black.

image for the FWM is recorded and processed. Afterwards, the algorithm iterates
through all points of the grid P, the corresponding motor command is executed
(relative to the initial random position), and the output image is generated from
the camera image after the movement. For each point pijkl, the intensity of the
output image at the coordinates

(

x
(k)
Out, y

(l)
Out

)

is compared to the intensities of all
pixels (xIn, yIn) in the current input image. Whenever the intensity difference is
below a certain threshold α, the value of pixel (xIn, yIn) in cumulator unit Cijkl

is increased by one. The intensity difference is computed as Euclidean distance
in RGB color space. The threshold α is set to 3.5% of the overall intensity range
in a single color channel.

In the present study, 100 trials were carried out, each with 7×7×11×11 = 5929
iteration steps (size of the grid P). Each trial took place in a slightly different
visual environment because the initial camera position varied. 42 colored wooden
blocks were placed on the table to enhance the visual richness of the environment
(see Figure 3, right).

Figure 4 illustrates four final cumulator units Cijkl in the grid P. Their posi-
tions along the Δpan and Δtilt dimensions are marked on the two-dimensional
grid on the left (camera movements to the lower right of increasing length,
starting at position 1 with zero movement). Their position

(

x
(k)
Out, y

(l)
Out

)

in output
image coordinates is the center pixel. The pixel color in the cumulator units
reflects the size of the accumulated sum from white (zero) to black (maximum
sum). Unit 1 with zero camera movement shows a clear maximum exactly in the
center. Thus, the most likely origin of the center pixel in the output image is the
center pixel in the input image. This is exactly what is expected when no camera
movement takes place. Unit 2 is associated with a small camera movement to
the lower right. The intensity maximum is no longer in the center of the unit,
but in the lower right corner: when the camera moves in a certain direction,
the new image center has its origin in the direction of the movement. Because
of the retinal mapping, the intensity maximum moves a large distance towards
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Fig. 5. Mapping from pixel coordinates
�
x

(k)
Out, y

(l)
Out

�
(grid points) in the output image to

pixel coordinates (�xIn, �yIn) in the input image for 5×5 different (Δpan, Δtilt) positions

the border of the cumulator unit although the corresponding camera movement
is rather small. Unit 3 with a larger camera movement shows a similar effect.
Moreover, its maximum intensity is obviously weaker than in unit 1. This is
mainly caused by the retinal mapping with its heavy subsampling in the outer
image regions (causing fewer matches with the correct candidate pixel). Finally,
unit 4 shows no visible maximum in print at all. Actually, the corresponding
camera movement is so large that the center pixel of the output image has no
valid counterpart in the input image, therefore it is unpredictable.

3.5 Generating a Raw Version of the MM and VM

After the cumulator units have been acquired in the learning process, raw ver-
sions of the MM and VM can be created whose output is defined at the grid
positions pijkl in input space. The output (x̂In, ŷIn) of the MM at grid point
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pijkl is the coordinate of the pixel with maximum intensity in the cumulator
unit Cijkl . The output v(xOut,yOut) of the VM at point pijkl is set to 1 (signaling
valid output of the MM at this point) whenever the maximum pixel intensity in
unit Cijkl is above a certain threshold. Otherwise, v(xOut,yOut) is set to 0. The
threshold is computed as the product of the maximum pixel intensity of all cu-
mulator units and a factor β = 0.45. This proved to be the value resulting in the
most correct separation.

Figure 5 shows the output of the MM and VM for 25 different motor com-
mands

(

Δpan(i), Δtilt(j)
)

. For each motor command, the pixel coordinate space
of the input image is shown in a single panel. The two-dimensional grid in each
panel connects points along the x

(k)
Out and y

(l)
Out directions of P. The position of

each grid point corresponds to the output (x̂In, ŷIn) of the MM at this point.
Only points with valid output are shown (determined by the VM). The cen-
tral panel with no movement shows an identity mapping between

(

x
(k)
Out, y

(l)
Out

)

and (x̂In, ŷIn) (as expected). The other panels reflect the relationship between
the camera movement and the pixel shift between input and output image. The
strong curvature of the grid is mainly caused by the retinal mapping.

3.6 Network Training

The output of the raw versions of the MM and the VM is only defined at the
grid points pijkl . To get the output between grid points, function interpolation
is necessary. For this purpose, the raw versions of the MM and the VM were
replaced by radial basis function networks (RBFN) in the final step of the learn-
ing algorithm. These networks have the same input/output structure as the MM
and the VM, respectively (see Figure 2). The training data for both networks
was generated from the output of the raw versions of the MM and the VM at
the grid points pijkl (overall, there are 7 × 7 × 11 × 11 = 5929 grid points). For
the MM network, training data was restricted to the 2935 grid points with valid
output (signaled by the raw version of the VM).

For both networks, the hyperbolic tangent was used as activation function for
the output units. Both the MM and the VM network were initialized with the
k-means algorithm, afterwards they were trained for 1000 epochs with gradient
descent. Input and output values were scaled to the range [−0.6; 0.6].

The MM network is a RBFN with 200 Gaussians for each output unit (xOut

and yOut). The training set consisted of the 2935 valid input-output pairs of the
raw MM. The mean squared error per pattern per output unit amounted to
2.3 · 10−4 after the last epoch.

The VM network has 250 Gaussians in the hidden layer for its single output
unit. It basically had to learn a classification task with a training set covering
all 5929 grid points. While the mean squared error per pattern per output unit
still amounted to 5.3 · 10−2 after the last epoch, only 1.3% of the grid points
were misclassified.

It is possible to use alternative methods for function interpolation, e.g., to
construct the RBFNs directly from the grid points without learning (even during
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Fig. 6. Comparison of actual and predicted output images at four different
(Δpan, Δtilt) positions (the same as in Figure 4)

the acquisition of the cumulator units as a kind of “online” method), or to use
other non-linear regression methods.

4 Results

The MM and VM network are used to implement the overall visual FWM for
predicting the output image as explained in Sect. 2. Especially, non-predictable
regions of the output image are marked by the VM network. The prediction works
rather precisely, as shown exemplary in Figure 6. The actual and the predicted
output images are compared for four different motor commands (Δpan, Δtilt)
(camera movements to the lower right of increasing length as in Figure 4). More-
over, the region of each output image that is marked as non-predictable by the
VM is shown in black in the third row of images. The input image (the same
for all four movements) is displayed as well. Movement 1 is a zero movement.
The actual and the predicted output images are very similar and show the cen-
ter crop from the input image. Movements 2 and 3 are of increasing size. The
non-predictable regions mask parts of the output images which have no corre-
spondence in the input image. The center of the predicted images is slightly
blurred and distorted because the mapping generated by the MM network has
to enlarge a region of a few pixels in the input image to a much larger area (es-
pecially for movement 3). Movement 4 is so large that the center of the output
image is non-predictable. Nevertheless, the small upper left part of the output
image which is predicted corresponds closely to the actual output.

This visual inspection of a few exemplary camera movements demonstrates
the learning success. At the current stage of development, the additional appli-
cation of quantitative evaluations is not useful because of the lack of competing
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learning algorithms for visual FWMs. Furthermore, quantitative measures like
the Euclidean distance in pixel space are difficult to interpret because the FWM
has to enlarge parts of the input image while the actual output maintains the
optimum resolution in the image center.

We pointed out in Sect. 3.1 that depth information is irrelevant for our learn-
ing task because of the camera geometry. Therefore, it is possible to rearrange
objects in the field of view of the camera without any harm to the prediction
performance of the visual FWM.

5 Future Applications

As outlined in the introduction, there is strong evidence that FWMs play an
important role for the sensorimotor coordination in biological organisms. Here,
we outline two modeling approaches in which the acquired visual FWM is used
for motor learning and behavioral control. It is planned to implement both ap-
proaches on a robot setup. Beyond the robotics application, they put forward
specific hypotheses for which purposes visual FWMs might be used in biological
organisms.

5.1 Saccade Learning

In a previous study, we presented an adaptive saccade controller for the robot
camera head shown in Figure 3 (left) [19]. The task of the controller is to fixate
target objects with both cameras so that the target object is projected onto
the center of both camera images. Overall, the camera head has four degrees of
freedom: a conjoint pan-tilt direction (pan, tilt), and a horizontal and vertical
vergence value (verghor, vergvert).

As input, the saccade controller receives the current sensory state st, composed
of a kinesthetic and a visual part (see Figure 7). The kinesthetic input consists
of the current position of the cameras. The visual part represents the position of
the target object in the left and right camera image: xleft, yleft, xright, yright. The
motor output mt of the saccade controller is defined as a change of the motor
position. It consists of four values: Δpan, Δtilt, Δverghor, and Δvergvert.

After the movement, the position of the target object in the camera images
has changed. Its deviation from the image center is the sensory error. In the
beginning of the learning process for adaptive saccade control, this error is large.
Several motor learning schemes exist which make use of the sensory error to
generate a motor error signal which is necessary to adjust the motor output of
the saccade controller. In [19], their performance is compared.

This comparison study used a simulated geometrical model of the robot cam-
era head and its environment instead of the real-world setup [19]. In this simu-
lated setting, the position of the target object is always clearly defined, whereas
for the real-world setup, this is not the case. First, a suitable target object for
fixation has to be determined in either the left or right camera image. After-
wards, the object has to be identified in the other camera image as well. Most
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Fig. 7. Input and output of the saccade controller (for details see text)

importantly, the target object has to be re-identified by both camera images
after the saccade for the computation of the sensory error. This re-identification
is computationally very expensive since it involves extensive matching of image
regions. Moreover, when working with retinal images like the ones used for the
visual FWM, simple matching algorithms do not work.

A straightforward solution for the re-identification of target objects is the appli-
cation of the visual FWM developed in this study. For each camera, it can predict
from the executed motor command to which image location the target object has
moved, or if it has been lost. Afterwards, the exact position of the target object
can be determined by a search process which is restricted to the very close neigh-
borhood of the predicted position. No extensive matching or search process is nec-
essary. Used in the way, the visual FWM offers improved sensory processing and
faster behavioral learning. We have not implemented this kind of re-identification
yet. However, we don’t expect any considerable difficulties.

Several studies on human saccades show that small displacements of target
objects during saccades go unnoticed (e.g., [2] and [4]). This finding implies that
the mechanisms which implement the reafference principle are not precise enough
to detect such small target shifts. Deubel [5] proposes that visual stability be-
tween saccades is maintained by matching visual landmarks before and after the
saccade. Based on our robot model, we suggest that landmark re-identification is
based on a visual FWM which predicts approximately the position of the land-
marks after the saccade. Such a FWM is not precise enough for the detection of
small displacements, but it suffices to point to a search region. If the target is not
found within this region, the mismatch is detected (in the study of Bridgeman
[2], target shifts of 4 degrees are detected by the subjects in at least 40% of the
trials). Furthermore, we state the hypothesis that this target re-identification
mechanism based on visual FWMs is also used during saccade adaptation (as in
our saccade learning model).

5.2 Grasping of Extrafoveal Targets

The second potential application of the visual FWM belongs to the domain of
eye-hand coordination. It is based on the premotor theory of attention [18] which
states that spatial attention is a consequence of the preparation of goal-directed,
spatially coded movements. Because of the strong development of the neural
mechanisms for foveal vision in primates and humans, oculomotor maps coding
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Fig. 8. Flow of information and processing steps in the combined model for the grasping
of extrafoveal targets (for details see text). The visual FWM (shaded) is described in-
depth in this paper.

space for eye movements play a central role in selective attention. Experimental
evidence for the close coupling of saccade preparation and visual attention has
been found in several studies, for example in [3]. The link between manual re-
sponse preparation and shifts of spatial attention has been less convincing, but
recent studies provide support for the claim that covert preparation of manual
responses is linked to shifts of spatial attention as well [6].

We suggest a computational model of grasping to extrafoveal targets, which
is implemented on the robot setup shown in Figure 3 (left), consisting of two
cameras with four degrees of freedom (a conjoint pan-tilt direction (pan, tilt),
and a horizontal and vertical vergence value (verghor, vergvert)), and a robot arm
with six rotatory degrees of freedom and a two-finger gripper. This model is
based on the premotor theory of attention and adds one specific hypothesis:
Attention shifts caused by saccade programming imply a prediction of the retinal
foveal images after the saccade. For this purpose, the visual FWM is used. The
predicted foveal images are required to determine movement parameters for the
manual interaction with objects at the target location of the attention shift.

Our model consists of three parts (see Figure 8). First, a saccade controller
as described in Sect. 5.1; second, the visual FWM of this study; and third, an
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arm controller for grasping movements, which receives the output of the sac-
cade controller and the orientation of the target object as inputs (similar to the
controller presented in [10]). The orientation of the target object is determined
from the foveal region of the retinal images. A single grasping trial starts with
the presentation of the grasping target, a colored wooden block, at a random
location within the working space on a table surface. The cameras are in a ran-
dom posture. The saccade controller generates the necessary motor command
for proper fixation with the cameras, but this movement is not carried out,
only the suggested motor command is recorded as input for the visual forward
model and the arm controller. Afterwards, the visual forward model predicts
the retinal images after the (hypothetical) saccade which would move the object
into the foveae of both cameras. From these predicted images, the orientation
of the block is determined. Finally, the arm controller uses both the saccadic
motor command and the block orientation in the predicted images as inputs to
generate the grasping movement.

Without visual prediction, grasping towards extrafoveal target objects is diffi-
cult because of the heavy distortions found in retinal images. Whenever an object
is depicted at an extrafoveal position, its picture is significantly different from its
foveal representation. To overcome this problem, the object can be fixated first
so that it is projected onto the fovea. Actually, grasping movements in primates
and humans are often targeted towards already fixated objects [20]. For grasping
towards extrafoveal target objects, visual prediction offers an elegant solution.
Having predicted the foveal representation of the object after the (purely men-
tal) saccade, the same sensorimotor model linking the foveal representation and
the grasping movement can be used.

In this application, the visual FWM is linked to attentional mechanisms.
Furthermore, by substituting the real visual feedback after a saccade with the
predicted visual feedback (without the need to actually carry out the saccade),
it allows for more efficient behavioral control.

6 Discussion and Conclusions

The proposed learning algorithm for visual FWMs overcomes the problem of
these models having a high-dimensional input and output space due to the size
of visual data. Forecasting pixel intensities is replaced by forecasting a mapping
between output and input pixel locations. The only restriction regarding image
size is imposed by the size of the computer memory because it has to hold the
cumulator units during the learning process.

The learning process relies on matching pixels between the output and input
images. By imposing a retinal mapping, it is demonstrated that this learning
principle even works when strong image distortions are involved (including color
changes caused by smoothing and subsampling in the outer areas of the camera
images). Future research will reveal to which extent the performance of the
learning algorithm deteriorates in response to even more ambiguous visual data
(e.g., by using monochrome images).
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The distinction between cumulator units with a large and a small maximum
pixel intensity offers a natural solution for the detection of unpredictable image
regions. A small maximum indicates that no correct pixel match exists, while
an existing correct match accumulates to a large maximum during the learning
process.

At the current stage of development, the application of a grid of cumula-
tor units spanned in the input space of the MM and VM only allows for low-
dimensional motor commands mt because of the storage requirements of these
units. To overcome this problem, the next step of development is an online
learning scheme to adapt to the maximum (the modal value) of the intensity
distribution in each cumulator unit without the need to store the units. This
would allow us to extend the scheme towards more dimensions in motor space.
Even further, the goal is to replace the fixed grid structure in motor space by
random movements (while maintaining the grid in (xOut, yOut) space with the
appropriate spacing for the distortions caused by the imaging system).

The visual FWM of this study belongs to the class of anticipatory mechanisms
which generate sensory anticipations reflecting the state of the outer space (and
of the own body, but only from an outside perspective). The time horizon of the
prediction is of the order of magnitude of tenths of seconds. The FWM works
at the lowest level of abstraction by predicting direct sensor input (that is,
continuous pixel intensities in RGB color space of a retinal image in this model).
It remains an open question at which level visual FWMs work in biological
organisms. At the lowest plausible level, it could be the activation of the optic
nerve, or it could be a more abstract representation of the visual surroundings
generated in one of the visual cortical areas.

However, the basic ideas of the proposed learning algorithm might even offer
an explanation for the acquisition of visual FWMs in biological organisms: first,
learning the input-output relationship by matching low-level visual features, and
second, identifying predictable regions by detecting that a good match emerges
during the learning process.

In robot models of sensorimotor processing, visual FWMs can be used to
explore the various functions of FWMs stated in the introduction. We sug-
gested two different models, one for saccade learning, the other for grasping
to extrafoveal targets, where visual FWMs are used for behavioral learning and
for the replacement of sensory feedback. These models demonstrate that visual
FWMs are actually very useful from a biological modeling perspective. More-
over, for robotics applications, visual FWMs may become an important building
block of truly autonomous systems, both for motor control and for perceptual
competences.

References

1. Blakemore, S.J., Wolpert, D., Frith, C.: Why can’t you tickle yourself? NeuroRe-
port 11(11), R11–R16 (2000)

2. Bridgeman, B.: Failure to detect displacement of the visual world during saccadic
eye movements. Vision Research 15(1), 719–722 (1975)



168 W. Schenck and R. Möller
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Abstract. Some visual search tasks require the memorization of the
location of stimuli that have been previously focused. Considerations
about the eye movements raise the question of how we are able to main-
tain a coherent memory, despite the frequent drastic changes in the per-
ception. In this article, we present a computational model that is able
to anticipate the consequences of eye movements on visual perception in
order to update a spatial working memory.

1 Introduction

In the most general framework of behavior, the notion of anticipation is inti-
mately linked with the possibility to predict the consequences and the outcomes
of a given action. If we consider that any action is goal-motivated, then an action
is carried out in the first place because it is anticipated that this action will lead
to a situation in which the goal can be reached more directly. In this framework,
anticipation can be viewed as a prediction of the future and is tightly linked to
the notion of goal-directed behavior. However, there also exists more structural
reasons why anticipation is necessary.

For example, when dealing with both accurate and very fast movements like
catching a ball or scanning a visual scene, brain representations should be up-
dated very quickly (even in advance in some cases) in accordance with the task
that is carried out. The problem in this context is that the time scale required
for carrying out such tasks may be dramatically smaller than the time scale of a
single neuron. Moreover, those neurons are also in interaction with other neurons
in the network and the resulting dynamic may be even slower. One solution to
cope with this problem is to use a forward predictive model that is able to antic-
ipate the consequences and outcomes of a motor action. The resulting dynamic
at the level of the model is then faster than the dynamic of its components.

Let us consider the ability to anticipate changes in the visual information
resulting from an eye saccade. This anticipation is known to be largely based
on unconscious mechanisms that provide us with a feeling of stability while the
whole retina is submerged by different information at each saccade; producing a
saccade results in a complete change in the visual perception of the outer world. If
a system is unable to anticipate its own saccadic movements, it cannot pretend

M.V. Butz et al. (Eds.): ABiALS 2006, LNAI 4520, pp. 170–188, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



A Distributed Computational Model of Spatial Memory Anticipation 171

to obtain a coherent view of the world, because each image would be totally
uncorrelated from the others. One stimulus being at one retinal location before
a saccade could not be easily identified as being the same stimulus at another
retinal location after the saccade. Consequently, the saccadic eye movements
should be anticipated in order to keep the coherence of the scene and to be able
to track down interesting targets. A number of works have already addressed
the specific problem of visual search of a target among a set of distractors.
However, most of the resulting models do not deal with the problem of saccadic
eye movements that produce drastic changes in the available visual information.

Using neural fields introduced by Amari [1] for the one dimensional case and
later extended to higher dimensions by Taylor [34], we would like to address in
this paper the specific problem of anticipation during visual search using a purely
distributed and numerical neural substrate. After briefly reviewing literature
related to visual search in the first section, we introduce a very simple visual
experiment that helps to illustrate the underlying mechanisms of the model that
is detailed in that same section.

2 Visual Search

Visual search is a cognitive task that most generally involves an active scan
of a visual scene to find one or several given targets among distractors. It is
deeply anchored in most animal behaviors, from a predator looking for a prey in
the environment, to the prey looking for a safe place to avoid being seen by the
predator. Psychological experiments may be less ecological and may propose, for
example, to find a given letter among an array of other letters, measuring the
efficiency of the visual search in terms of reaction time (the average time to find
the target given the experimental paradigm). In the early eighties, [35] suggested
that the brain actually extracts some basic features from the visual field in or-
der to perform the search. Among these basic features, which have been recently
reviewed by [40], one can find features such as color, shape, motion, or curva-
ture. Finding a target is then equivalent to finding the conjunction of features,
which may be unique, that best describes the target. In this sense, [35] distin-
guished two main paradigms (a more tempered point of view can be found in [6]).

Feature search refers to a search where the target differs from all distractors
by exactly one feature.
Conjunction search refers to a search where the target differs from distractors
by at least one of two or more features.

What characterizes feature search best is a constant search time that does not
depend on the number of distractors. The target is sufficiently different from the
distractors to pop out. However, in the case of conjunction search, the mean time
needed to find the target is roughly proportional to the number of distractors
that share at least one feature with the target (cf. Figure 1). These observa-
tions lead to the question of how a visual stimulus could be represented in the
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Fig. 1. Feature search can be performed very quickly as illustrated on the left part
of the figure; the disc shape pops out from the scene. However, as illustrated in the
right figure, if the stimuli share at least two features, the pop out effect is suppressed.
Hence, finding the disc shape with the stripes going from up-left to down-right requires
an active scan of the visual scene.

brain. The explanation given by Treisman and Gelade [35], the so-called Feature-
Integration Theory, proposes that elementary features are processed in separated
feature maps. Competition inside one map would lead to feature search, based
on the idea that the item differing the most from its background would win the
competition and be represented. For targets differing from distractors by more
than two features, there cannot be any global competition. This would mean
that finding the target requires successively scanning every potential candidate
until the correct target is found. This explains the dependence of the search time
on the number of similar distractors in conjunction search tasks.

The main prediction of this theory is that processing visual inputs is not a
global feed-forward processing, but more an iterative and sequential process on
sensory representations. We describe below the strategies used by the brain to
achieve this sequential search, by putting emphasis on saccadic eye movements
and visual attention. The scope of this article is therefore to model the cognitive
structures involved in the sequential processing of visual objects, and not the
visual processing of the features alone.

2.1 Saccadic Eye Movements

The eye movements may have different behavioral goals, leading to five different
categories of movements: saccades, vestibulo-ocular reflex, optokinetic reflex,
smooth-pursuit and vergence. However, in this article we will only focus on
saccades (for a detailed study of eye movements, see [17], [3]).

Saccades are fast and frequent eye movements that move the eye from the
current point of gaze to a new location in order to center a visual stimulus on
the fovea, a small area on the retina where the resolution is at its highest. The
velocity of the eyes depends on the amplitude of the movement and can reach
up to 700 degrees per second at a frequency of 3 Hz. The question we would like
to address is how the brain may give the illusion of a stable visual space while
the visual perception is drastically modified every 300 ms.
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While the debate to decide whether or not the brain is blind during a saccade
has not been settled (see [18,2,14,29] for the notion of saccadic suppression and
[24] for a discussion about the necessity of a saccadic suppression mechanism),
the coherence between the perception before and after a saccade cannot be es-
tablished accurately solely based on perception. One solution to consider is that
the brain may use an efferent copy of the voluntary eye movement to remap the
representation it has built of the visual world. Several studies shed light on pre-
saccadic activities in areas such as V4 and LIP where the locations of relevant
stimuli are supposed to be represented. In [22], the authors suggest that “the
pre-saccadic enhancement exhibited by V4 neurons [...] provides a mechanism
by which a clear perception of the saccade goal can be maintained during the ex-
ecution of the saccade, perhaps for the purpose of establishing continuity across
eye movements.” In [20], the authors review evidence that LIP neurons, whose
receptive field will land on a previously stimulated screen location after a sac-
cade, are excited even if the stimulus disappears during the saccade. In a recent
study, Sommer and Wurtz [33] showed neurons in FEF that receive projections
from the superior colliculus that could explain the origin of a corollary discharge
signal responsible for the pre-saccadic activity exhibited by these neurons.

2.2 Visual Attention

Focusing on a given stimulus of the visual scene is a particular aspect of the
more general concept of attention that has been defined as the capacity to con-
centrate cognitive resources on a restricted subset of sensory information ([12]).
In this context of visual attention, only a small subset of the retinal information
is available at any given time to elaborate motor plans or cognitive reasoning
(cf. change blindness experiments presented in [24], [32]). A visual scene is not
processed as a whole but rather processed by successively focusing on interest-
ing parts of it, possibly involving eye movements, but this is not necessary. The
selection of a target for an eye movement is then closely related to the notion
of spatial attention ([21]) that is classically divided into two types: overt at-
tention, which involves a saccade to center a stimulus on the fovea, and covert
attention, in which no eye movement is triggered. These two types of spatial
attention were first supposed to be independent ([26]) but recent studies such
as the premotor theory of attention proposed in [28] (see also [4], [16], [5]) con-
sider that covert and overt attention rely on the same neural structures but the
movement is inhibited in covert attention. A more general discussion about the
covert and overt stages of action can be found in [13].

The deployment of attention on a specific part of the visual information can
be the consequence of two phenomena. Firstly it can rely on the saliency of a
stimulus, compared to its surrounding (for example a sudden strong flash light);
this is known as bottom-up attention. Secondly, it can also depend on the task
in which the subject is involved, which may need to enhance some parts of the
perception (for example, imagine that you have to find an orange among apples
and bananas, the color information could be a good criteria to find the target
rapidly).
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In [23], the authors shed light on the neural correlates of attention on the
response of neurons in the visual and temporal cortices. If we consider a specific
neuron tuned to a given orientation in its receptive field, one can distinguish
several cases:

– the response of the neuron is high when an oriented bar with the preferred
orientation (called good stimulus) is presented in its receptive field

– the response of the neuron is low when an oriented bar with an orientation
different from the preferred one (called bad stimulus) is presented in its
receptive field

– the response is between the two preceding ones when both a good and bad
stimulus are presented

When a monkey is involved in a task that requires to select one of the two stimuli,
for example the good one, the response of the neuron is enhanced. The study of
this suppressive interaction phenomena was extended by further authors ([19],
[27], [36]).

As we will see in section 3.2, we do not deal with how the salience of the visual
stimuli is computed, whether or not it is a bottom-up or top-down processing.
The main points are that for each location in the visual space, we are able to
compute its behavioral relevance, and that considering eye movements necessar-
ily implies dealing with overt attention.

2.3 Computational Models

Over the past few years, several attempts at modeling visual attention have been
engaged ([15], [37], [41], [11], [10]). The basic idea behind most of these models
is to find a way to select interesting locations in the visual space given their
behavioral relevance and whether or not they have already been focused. The
two central notions in this context have been proposed by [15] and [25]:

– saliency map
– inhibition of return (IOR).

The saliency map is a single spatial map, in retinotopic coordinates, where all the
available visual information converge in order to obtain a unified representation
of stimuli, according to their behavioral relevances. A winner-take-all algorithm
can be easily used to find which stimulus is the most salient within the visual
scene, and thus identify its location as the locus of attention. However, in order
to be able to go to the next stimuli, it is important to bias the winner-take-all
algorithm in such a way that it prevents going backward to an already focused
stimulus. The goal of the inhibition of return mechanism is precisely to feed the
saliency map with such a bias. The idea is to have another neural map that
records focused stimuli and inhibits the corresponding locations in the saliency
map. Since an already focused stimulus is actively inhibited by this map, it
cannot pretend to win the winner-take-all competition, even if it is the most
salient.
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The existence of a single saliency map is still not proved. In [10] the author
proposes a more distributed representation of these relevances, making a clear
anatomical distinction between the processing of the visual attributes of an ob-
ject and its spatial position (according to the What and Where pathways hypoth-
esized by [38], see also [9]). In this model, spatial competition occurs in a motor
map instead of a perceptive one. It exhibits good performances regarding visual
search task in natural scene, but is restricted to covert attention. In most of the
previously proposed models, the authors do not take into account eye movements
and the visual scene is supposed to remain stable: scanning is done without any
saccade. During the rest of this article, we will keep the saliency map hypothesis,
even if controversial, in order to illustrate the anticipatory mechanism.

3 A Model of Visual Search with Overt Attention

The goal of our model is to show the basic mechanisms necessary to achieve
sequential search in a visual scene using both overt and covert attention. Using
a saliency map, we need to compute the location of the most interesting stimulus
that will be processed to achieve recognition. This focus of attention on a stimu-
lus has to be displaced in two situations. First, in covert attention this focus has
to be dynamically inhibited to represent another stimulus. There is therefore a
need for an inhibition-of-return mechanism than can inhibit the current focus of
attention. Moreover, we have to memorize the locations of previously attended
stimuli, by the means of a dynamic spatial working memory.

The second situation to consider is when eye movements can center the stim-
ulus that is being attended to. The spatial working memory has to be updated
by the eye movement so that its state corresponds to the post-saccadic locations
of memorized stimuli. This is where an anticipatory mechanism is mandatory.

To describe these mechanisms, we first present an experimental setup for
which previous computational models would fail to achieve efficient sequential
search. We then present the architecture of our model and report simulated
results.

3.1 Experiment

In order to accurately evaluate the model, we setup a simple experimental frame-
work in which some identical stimuli are drawn on a blackboard and are observed
by a camera. The task is to successively focus (i.e. center) each one of the stim-
uli without focusing twice on any of them. We estimate the performance of the
model in terms of how many times a stimulus has been focused. Hence, the point
is not to analyze the strategy of deciding which stimulus has to be focused next
(see [7,8] for details on this matter). In the context of the proposed model, the
strategy is simply to go from the most salient stimulus to the least salient one,
and to randomly pick one stimulus if the remaining ones are equally salient.

Figure 2 illustrates an experiment composed of four identical stimuli where the
visual scan path has been materialized. The effect of making a saccade from one
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Fig. 2. When scanning a visual scene, going for example from stimulus 1 to stimulus
4, as illustrated in the left figure, the image received on the retina is radically changed
when each stimulus is centered on the retina, as illustrated in the right figures. The
difficulty in this situation is to be able to remember which stimuli have already been
centered in order to center another one. The figures on the stimuli are shown only for
explanation purpose and do not appear on the screen; all the stimuli are identical.

stimulus to another is shown and underlines the difficulty (for a computational
model) of identifying a stimulus before and after a saccade. Each one of the
stimuli being identical to the others, it is impossible to perform an identification
based solely on features. The only criteria that can be used is the spatial location
of the stimuli.

3.2 Model

The model is based on three distinct mechanisms (cf. Figure 3 for a schematic
view of the model). The first one is a competition mechanism that involves
potential targets represented in a saliency map that were previously computed
according to visual input. Second, to be able to focus only once on each stimulus,
the locations of the scanned targets are stored in a memory map using retino-
topic coordinates. Finally, since we are considering overt attention, the model is
required to produce a camera movement, centering the target on the fovea, used
to update the working memory. This third mechanism works in conjunction with
two inputs: current memory and parameters of the next saccade. This allows the
model to compute quite accurately a prediction of the future state of the visual
space, restricted to the targets that have already been memorized.

The model is based on the computational paradigm of two dimensional dis-
crete neural fields (the mathematical basis of this paradigm can be found in
[1] for the one dimensional case, extended to a two dimensional study in [34]).
The model consists of five n×n maps of units, characterized by their position,
denoted x ∈ [1..n]2 and their activity as a function of their position and time,
denoted u(x,t). The basic dynamical equation that follows the activity of a unit
at position x, depends on its input I(x, t). Equation (1) is the equation proposed
in [1], discretized in space.
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Fig. 3. Schematic view of the architecture of the model. The image captured by the
camera is filtered and represented in the saliency map. This information feeds two
pathways: one to the memory and one to the focus map. A competition in the focus
map leads to the most salient location that is the target for the next saccade. The
anticipation circuit predicts the future state of the memory with its current content
and the programmed saccade.

τ.
∂u(x, t)

∂t
= −u(x, t) + baseline +

1
α

I(x, t) (1)

We distinguish two kinds of units. The first are sigma units that compute
their input as a weighted sum of the activity of afferent neurons, where afferent
neurons are defined as neurons in other maps. We also consider lateral con-
nections that involve units in the same map. If we denote waff the weighting
function for the afferent connections and wlat the weighting function for the
lateral connections, the input I(x, t) of a unit x at time t can be written:

I(x, t) =
∑

aff

waffuaff(t) +
∑

lat

wlatulat(t), (2)

where equations 3 and 4 define the lateral and afferent weighting functions as a
Gaussian and difference of Gaussians, respectively.

waff (x,y) = A.e
‖x−y‖2

a2 with A, a ∈ IR∗+,x,y ∈ [1..n]2 (3)

wlat(x,y) = B.e
‖x−y‖2

b2 − C.e
‖x−y‖2

c2 with B, C, b, c ∈ IR∗+,x,y ∈ [1..n]2 (4)

The second kind of units we consider are sigma-pi units ([31]), which compute
their input as a sum of the product of the activity of afferent neurons. We also
consider the lateral connection term so that the input of a unit x at time t can
be written:

I(x, t) =
∑

i∈I

waffi

∏

j∈Ei

uaffj (t) +
∑

lat

wlatulat(t). (5)

All the parameters of the previous equations used in the simulation are sum-
marized in the appendix.
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We now describe how the different maps interact. Since the scope of this article
is the anticipation mechanism, the description of the saliency map, the focus map
and the working memory will not be accurate; a more detailed explanation, with
the appropriate dynamical equations, can be found in [39].

Saliency Map. The saliency map, also referred to as input in the following, is
computed by convolving the image captured with the camera of a robot used for
the simulation with Gaussian filters. The stimuli we use are easily discriminable
from the background on the basis of the color information. This computation
leads to a representation of the visual stimuli with Gaussian patterns of activity
in a single saliency map. We do not deal with how this saliency map is computed,
whether or not it is due to bottom-up or top-down attention. We only consider
that we are able to compute a spatial map, in retinotopic coordinates, that
represents the behavioral relevance of each location in the visual space. We point
out again that this is one of our working hypothesis, detailed in section 2.3.

Focus. The units in the focus map have direct excitatory feedforward inputs
from the saliency map. The lateral connections are locally excitatory and widely
inhibitory so that a competition between the units within the map leads to the
emergence of only one stimulus in the focus map. This mechanism is not just a
dynamical winner-take-all algorithm because the winning stimulus will still be
represented in this map, even if the other stimuli in the visual scene become
comparatively more salient through time, but it has to be explicitly inhibited.
This focused stimulus is considered the next target to focus on and the movement
to perform to center it on the fovea is decoded from this map. This map then
codes the parameters of the next saccade to make.

Working Memory. Once a stimulus has appeared within the focus map and
because it is also present in the saliency map at the same location, it emerges
within the working memory. Both the excitations from the focus map and the
saliency map (at a same location) are necessary for the emergence of a stimulus
in the working memory area. If the focused stimulus changes, it will not be
present anymore in the focus map such that an additional mechanism is needed
to maintain it in the memory. It is not shown on the schematic illustration (3)
but the memory consists of two maps, wm and thal wm, that share excitatory
connections in two ways: the first map excites the second and the second excites
the first, weighted so that the excitation is limited in space.

Memory Anticipation. The memory anticipation mechanism aims at pre-
dicting what should be the state of the working memory after an eye movement
centers another stimulus in the focus map before the movement is triggered.
This map, filled with sigma-pi units, has two inputs: units of the focus map and
units of the working memory. If we denote wm(x, t) the activity of unit x of the
working memory at time t, and f(x, t) the activity of unit x of the focus map
at time t, we define the input I(x, t) of unit x in the anticipation map as:
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I(x, t) = wsigma−pi

∑

y∈IR2

wm(y, t)f(y − x, t) +
∑

lat

wlatulat(t) (6)

The input of each unit in the anticipation map is computed as a convolution
product of the working memory and the focus map, centered on its coordinates.
To make (6) clearer, the condition of the sum is weaker than the one that should
be used: since the input maps are discrete sets of units, the two vectors y and
y-x mustn’t exceed the size of the maps. The equation (6) should also take into
account that the position eye centered is represented by a bell-shaped pattern
of activity centered in the focus map, so that an offset should be included in the
first sum when determining which unit of the focus map multiplies wm(y, t)
From (1) and (6), the activity of the units in the anticipation map, without
lateral connections, satisfies (7).

τ.
∂u(x, t)

∂t
= −u(x, t) + baseline + wsigma−pi

∑

y∈IR2

wm(y, t)f(y − x, t) (7)

Then, the shape of activity in the anticipation map converges to the convo-
lution product of the working memory and the focus map. Since the activity in
the focus map has a Gaussian shape and the working memory can be written as
a sum of Gaussian functions, the convolution product of the working memory
and the focus map leads to an activity profile that is the profile in the work-
ing memory translated by the vector represented in the focus map. This profile
is the prediction of the future state of the working memory and is then used
to slightly excite the working memory. After the eye movement, and when the
saliency map is updated, the previously scanned stimuli emerge in the working
memory as a result of the conjunction of the visual stimuli in the saliency map
and the prediction of the working memory, that is, the prediction is combined
with the new perception. This is exactly the same mechanism as the one used
when a stimulus emerges in the working memory owing to the conjunction of
the activity in the saliency map and the focus map.

3.3 Simulation and Results

The visual environment consists of three distributed but identical stimuli that
the robot is expected to scan successively exactly once. A stimulus is easily
discriminable from the background, namely a green lime on a white table. A
complete activation sequence of the different maps is illustrated on Figure 4.
The saliency map is filled by convolving the image captured from the camera by
a green filter in HSV coordinates such that it leads to three distinct stimuli1.

At the beginning of the simulation (Figure 4a), only one of the three stimuli
emerges in the focus map, thanks to the strong lateral competition that oc-
curs within this map. This stimulus, which present in both the focus map and
the saliency map, emerges in the working memory. The activation within the
1 A video of the model is available at http://www.loria.fr/∼fix/publications.php
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Fig. 4. A sequence of evolution of the model during an overt visual scan trial. a) One
of the three stimuli emerges in the focus map and the anticipation’s units predict the
future state of the visual memory (the maps wm and thal wm). b) During the execution
of the saccade, only the units in the anticipation map remain active. c) The focused
stimulus emerge in the memory since it is both in the saliency map and the anticipation
map at the same location. d) A new target to focus is elicited. e) The future state of
the memory is anticipated. f) The saccade is executed and only the prediction remains.
g) The two already focused stimuli emerge in the memory. h) The attentional focus
lands on the last target.

anticipation map reflects what should be the state of the saliency map, restricted
to the stimuli that are in the working memory after the movement that brings
the next targeted stimulus into the center of the visual field. During the eye
movement (Figure 4b), no visual information is available and the parameter τ
in (1) and (7) is adjusted so that only the units in the anticipation map remain
active, whereas the activity of the others approach zero. After the eye movement
and as soon as the saliency map is fed with the new visual input, the working
memory is updated thanks to the excitation from both saliency and anticipa-
tion map at a same location: the prediction of the state of the visual memory is
compared with the current visual information. A new target can now be elicited
in the focus map thanks to a switch mechanism similar to that described in
[39], but not detailed here. This mechanism acts like the inhibition of return
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x2 x3 x4x0 x1

Fig. 5. The scene consists in two identical stimuli, the black blobs, initially symmet-
rically positioned around the center of gaze. The task is to successively focus on each
target. During a trial, we measure the activity of neurons whose receptive field covers
the five positions represented by the dashed circles and denoted as x0, x1, x2, x3 and
x4, in several maps.

presented in section 2.3; the memorized locations in the working memory are
inhibited in the focus map, therefore biasing the competition in it, so that only
a stimulus that was not already focused can be the next target to focus.

In order to illustrate more explicitly the role of the anticipatory signal, we
now consider a second experiment. In this experiment, the visual scene consists
of only two identical stimuli (Figure 5).

The task is the same as the previous one, namely, the robot must scan each
stimulus only once, but the experimental conditions are slightly different: we
enforce the robot to scan these targets in a predefined order. To bias the spatial
attention toward one of the two targets, we first increase the intensity of the
leftmost target. Then, when the saccade to center that target is performed, we
refresh the display and increase the intensity of the rightmost target. In that
way, the scenario is as follows:

1. Select the leftmost target.
2. Focus on that target.
3. After the saccade, when the display is refreshed, select the rightmost target.
4. Perform the saccade to center the rightmost target.

The visual bias we add makes us able to get the same experimental conditions
over the trials. During a trial, we record the activity of the neurons whose recep-
tive field covers one of the five positions, denoted x0, x1, x2, x3, and x4 in the
figure, in the four maps: visual, focus, wm and anticipation. In a typical trial,
we will have a target at x1 and x3, then, after the first saccade, the targets will
be at x2 and x4, to finally occupy, after the last saccade, the positions x0 and
x2 (Figure 6, top).

Moreover, two conditions are considered; in the first one (Figure 6), the antic-
ipation is enabled, whereas in the second one (Figure 7), the anticipatory signal
is disabled. At the beginning of the trial, the targets are at positions x1 and
x3 so that the neurons in the visual map at these positions are excited (dashed
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Fig. 6. Case with the anticipatory signal enabled. We record the activity of neurons
whose receptive field covers one of the five positions x0, x1, x2, x3 and x4, in the four
maps: visual, focus, wm and anticipation. During the trial, we add a bias toward one of
the targets so that the attention directs to the biased target (that target is shown by
the arrow). Each subplot represents the activity of the neurons in each map at a given
position. The dashed line represents the activity of the neuron in the visual map, the
solid line the activity of the neuron in the focus map, the dash-dot line the activity of
the neuron in the working memory and the dotted line the activity of the neuron in
the anticipation map. Please read the text for explanations on these curves.
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Fig. 7. The experiment is the same as in Figure 6 except that the anticipatory signal
is disabled

line) whereas the neurons at the other positions remain silent. The two positions
x1 and x3 compete for the spatial attention. Since we added a bias toward the
target at position x1, the spatial attention is on target x1, rather than on target
x3, so that the activity of the neuron at position x1 in the focus map (solid
line) grows, whereas the activity of the neuron at position x3 in the same map
decreases to zero. The attention on target x1 enables it to emerge in the working
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memory (dash-dot line). The task is now to produce an eye movement that
will center that target. The anticipatory mechanism predicts that when that
target is centered, it will occupy the position x2; the activity of the neuron at
position x2 grows (dotted line). As soon as the saccade is performed, we refresh
the display. The two targets now occupy the positions x2 and x4. The bias
toward the rightmost target enforces that target to be attended. The activity
of the neurons at position x4 in the focus map and the working memory grows.
Whereas the target at position x4 emerges in the working by the conjunction
of an activity in the visual input and the focus map, the target at position x2
emerges thanks to the visual input and the anticipatory signal. As we can see
in Figure 7, in which the anticipatory signal was disabled, the position of the
first attended target cannot be updated at position x2. Finally, a saccade to
center the target at position x4 is performed. In the case that the anticipation
is present, the new positions of the two targets are in the working memory at
x0 and x2, whereas when there is no anticipation, only the last attended target
is in the working memory.

4 Discussion

In this paper, we have presented a continuous attractor network model that is able
to anticipate the consequences of its own movements by actually predicting the
visual scene as it is supposed to be after the execution of an action. Furthermore,
the model also illustrates how this information is used in the context of a serial
search of a target among a set of distractors. Each already focused target is kept
within a working memory area that is updated with regards to eye movements.

The model is of a completely distributed nature and does not require any cen-
tral supervisor. All the units in the model satisfy a dynamical equation. When
dealing with this kind of dynamic model, the integration time of the units is a
critical factor as shown in [30], which shares some ideas with the present model.
It means that in our case, even if we make the hypothesis that the perception
is available during the saccade (ignoring also that the perception is smeared),
the working memory could be updated dynamically with the perception only
if the movement’s speed doesn’t exceed a critical limit. In the case of saccadic
eye movements, it is then necessary to have an anticipatory mechanism. We
are definitely speaking about anticipation since a prediction about the future
perception is used to maintain a coherent memory which is mandatory to ac-
complish the task we designed. It is nonetheless not limited to that particular
case since scanning several potential targets is one of the basic primitives we use
when performing a visual search task.

The question of learning the underlying transformation of the anticipatory
mechanism, namely the convolution product of the focus map and the work-
ing memory, remains open and is still under study. We did implement a learn-
ing mechanism, under restrictions and strong hypotheses that rely heavily on
the difference between the pre-saccadic prediction and the post-saccadic actual
perception. This self generated signal is able to measure to what extent the
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prediction is correct or not. Hence, it is quite easy to modify the weights accord-
ingly. The main difficulty during learning remains the sampling distribution of
examples within the input space, which is a well known problem in information
and learning theory. Without any additional motivational system that could bias
the examples according to a given task, it is quite unrealistic to rely on a regular
distribution of examples.

Finally, the coherence of the visual world is solely based on an anticipatory
mechanism that ultimately allows the identification of identical targets before
and after a saccade, despite drastic changes in the visual perception. The pre-
diction of the future state of the visual memory enriches the perception of the
visual world in order, for example, to prevent focusing twice on the same stim-
ulus. Of course, this model does not pretend to be complete nor accurate and
does not tackle a number of problems that are directly related to visual per-
ception. However, we think that the possibility to unconsciously anticipate our
own actions using a dynamic working memory could be extended to other motor
tasks involving other types of perception as well.
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Appendix

Dynamics of the Neurons

Each sigma neuron loc in a map computes a numerical differential equation given
by equation (8), which is a numerized version of that proposed in [1] and [34]:

actloc(t + 1) = σ(actloc(t) +
1
τ

(−(actloc(t) − baseline) +
1
α

∑

aff

waffactaff (t)

+
1
α

∑

lat

wlatactlat(t))) (8)

Each sigma-pi neuron loc in a map computes a numerical differential equation
given by equation (9):

actloc(t + 1) = σ(actloc(t) +
1
τ

(−(actloc(t) − baseline) +
1
α

∑

lat

wlatactlat(t)

+
1
α

∑

(i,j)∈Eloc

wsigmapiactaffi(t)actaffj (t)) (9)

where σ(x) is a semi-linear function assuring that 0 ≤ σ(x) ≤ 1, τ is the time
constant of the equation, α is a weighting factor for external influences, aff is
a neuron from another map and lat is a neuron from the same map. To know
how the set of afferent neurons Eloc is determined in the case of a sigma-pi map,
please refer to the section 3.2 describing the model.

The size, τ , α and baseline parameters of the different maps are given in the
following table:

Map Size Type Baseline τ α
input 40*40 Sigma 0.0 0.75 6.0
focus 40*40 Sigma -0.05 0.75 13.0
wm 40*40 Sigma -0.2 0.6 13

thal wm 40*40 Sigma 0.0 0.6 13
anticipation 40*40 Sigma-Pi 0.0 2.0 5.0

Connections Intra-map and Inter-map

The lateral weight from neuron lat to neuron loc is:

wlat = Ae−
dist(loc,lat)2

a2 − Be−
dist(loc,lat)2

b2 with A, B, a, b ∈ �∗+, loc �= lat . (10)

where dist(loc, lat) is the distance between lat and loc in terms of neuronal
distance on the map (1 for the nearest neighbor). In the case of a “receptive
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field”-like connection between two maps, the afferent weight from neuron aff to
neuron loc is:

waff = Ae−
dist(loc,aff)2

a2 with A, a ∈ �∗+ (11)

In the case of the sigma-pi connections, all the weights are the same:

wsigma−pi = A with A ∈ �∗+ (12)

The connections in the model are described the following table:

Source Map Destination Map Type A a B b
input focus receptive-field 0.25 2.0 - -

focus focus lateral 1.7 4.0 0.65 17.0

input wm receptive-field 0.25 2.0 - -

focus wm receptive-field 0.2 2.0 - -

wm wm lateral 2.5 2.0 1.0 4.0

wm thal wm receptive-field 2.35 1.5 - -

thal wm wm receptive-field 2.4 1.5 - -

anticipation anticipation lateral 1.6 3.0 1.0 4.0

wm, focus anticipation sigma-pi 0.05 - - -

anticipation wm receptive-field 0.2 2 - -
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Abstract. This paper presents a set of techniques that allow generating
a class of testbeds that can be used to test recurrent neural networks’
capabilities of integrating information in time. In particular, the test-
beds allow evaluating the capability of such models, and possibly other
architectures and algorithms, of (a) categorizing different time series,
(b) anticipating future signal levels on the basis of past ones, and (c)
functioning robustly with respect to noise and other systematic random
variations of the temporal and spatial properties of the input time se-
ries. The paper also presents a number of analysis tools that can be
used to understand the functioning and organization of the dynamical
internal representations that recurrent neural networks develop to ac-
quire the aforementioned capabilities, including periodicity, repetitions,
spikes, and levels and rates of change of input signals. The utility of the
proposed testbeds is illustrated by testing and studying the capacity of
Elman neural networks to predict and categorize different signals in two
exemplary tasks.

Keywords: Testbed, Time Series, Waves, Time Information Integra-
tion, Signal Processing, Recurrent Neural Networks, Passive and Active
Perception, Dynamical Systems, Analysis of Internal Representations,
Attractors.

1 Introduction

The capability of integrating information in time is a critical functionality, which
lies at the core of the functioning of several anticipatory learning systems. For
example, consider a rat sampling the profile of an object with its whiskers [14],
an organism scanning the environment with its eyes [15], or a robot moving in
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an office and sampling the walls with proximity sensors [16]. Imagine they have
to categorize the object or the portion of the environment they are experiencing,
or to predict future sensations on the basis of past ones. In all these examples,
the systems need to integrate information in time. That is, they need to capture
signal regularities that manifest in time in the form of periodicity, repetitions,
spikes, numbers, rates of change, levels of signals, etc.

Given the importance of integrating information in time for anticipatory sys-
tems, artificial intelligence has proposed a number of models that possess such
capabilities. This paper focuses in particular on recurrent neural-network models,
but the testbeds, and some of the analysis tools it proposes, are also applicable
to other models. The neural networks relevant for the topic tackled here are
based on recurrent architectures [4], [5], [6], and [20], as these allow systems to
compare signals in time, for example, by counting signals’ duration, by accumu-
lating evidence in favor of different options, by synchronizing internal dynamics
with perception dynamics, etc. Section 3 briefly reviews few important examples
of these neural networks, namely Elman neural networks ([7]: these networks are
based on a hidden unit layer with a memory of the past), echo state networks
([11]: these networks are provided with a layer of fixed recurrent connections
that provides a “reservoir” of various dynamics), leaky integrator networks ([21]:
these networks are based on neurons with an internal memory), and long short-
term memory networks ([10]: these networks are based on special neurons with
a self-recurrent connection and gated input and output channels).

The ways recurrent neural networks integrate information in time is particu-
larly interesting for two reasons. First, these networks exploit internal dynamical
processes such as fixed-point attractors, limit cycles, chaotic attractors, etc., to
“get in resonance” and synchronize with the dynamics of stimuli and so perform
the integration. Second, if one assumes that neural networks of real brains ex-
ploit similar dynamics on the basis of their omnipresent recurrent connections,
one can hope to understand how real organism integrate information in time by
studying artificial recurrent neural networks.

Given the interest of the aforementioned models, the ABiALS community
(Adaptive Behavior in Adaptive Learning Systems) has a great need of iden-
tifying a number of specific testbeds to compare the models and, given their
different features, to understand how they self-organize to solve different tasks.
Indeed, such models should be compared both on the basis of their capabilities
of mimicking real systems and on the basis of more general criteria such as scal-
ability properties, computational power, and robustness against noise. The first
of these two “checks” should be accomplished on the basis of the evaluation of
the general biological plausibility of the models and by comparing the model’s
behavior and functioning with data of real systems, provided by behavior and
brain sciences. The second check should be based on standard testbeds developed
and circulated within the community, such as those proposed here.

The testbed presented in this paper, which is actually a set of techniques that
can be used to produce a class of testbeds with particular features, allows testing
two anticipatory capabilities of anticipatory systems:
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(1) The capacity of categorizing different signals perceived in time.
(2) The capacity of predicting future signal values on the basis of past ones.

In this respect, this paper proposes some techniques to generate different sig-
nals with various time regularities to systematically test the models’ capabilities
of integrating information in time. The paper also proposes some techniques to
test the robustness of such capabilities with respect to:

(1) Noise of the signal level and of the signal speed.
(2) Biased expansions and compressions of the signal in duration.
(3) Biased variations of the phase of periodic signals.
(4) Biased variations of the signal amplitude levels.
(5) Biased expansions and compressions of the signal levels.

The paper also presents a number of techniques that can be used to ana-
lyze the internal representations that the models develop to solve the various
tasks. The understanding of such representations is rather challenging given the
complex dynamical systems nature of the considered models. Notwithstanding
these difficulties, we believe that these studies are necessary to understand the
detailed mechanisms underlying the information integration in time that such
systems exhibit.

The functioning of the testbed and the analysis techniques are illustrated
through some experiments using Elman neural networks. These experiments rep-
resent the preliminary investigations of a research agenda directed to investigate
how recurrent neural networks internally self-organize and form abstract dy-
namical representations in order to integrate information in time (see also the
European Projects “ICEA” and “MindRACES”, which provided funding for this
research).

The rest of the paper is organized as follows. Section 2 presents the testbed, in
particular, the type of time series it generates, the anticipatory capabilities it al-
lows to test, the type of noise and signal variations it allows to create, the measures
of performance it uses, and some techniques that can be used to analyze the emer-
gent internal organization of the tested models. Section 3 presents a brief review
of dynamical neural networks that might be tested and compared with the test-
bed presented. Section 4 gives some examples, based on Elman neural networks,
that illustrate the functioning of the testbed and the analysis techniques. Finally,
Section 5 draws conclusions and indicates future work.

2 Testbed Description

As mentioned in the introduction, the testbed presented here is actually a set
of techniques that can be used to generate a class of different testbeds having
certain properties. These testbeds have the following features:

(a) They involve problems where the model to be tested receives a one-variable
input time series (henceforth called signal or input time series).
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Table 1. Summary of the testbed’s features

Possible different types of input signals
Type Properties of signal that can be manipulated

Wall profile Levels, linear changes, sudden changes of levels (steps)

Object Non-linear changes, derivatives, discontinuities, sudden changes of
levels (steps)

Tasks that can be used to test the systems’ capabilities
Task Metrics to measure the capability

Prediction Mean square errors between predicted and actual input pattern, ca-
pacity to reproduce the signal for several steps by using the prediction
as input

Categorization Percent of correct categorizations after the pattern is perceived for a
certain time

Table 2. Summary of the variations of the input time series that can be used to test
the robustness of the systems’ capabilities

Types of noise
Source of noise Description

Signal noise White noise added to signal

Step noise White noise added to size of automaton’s translation movement

Systematic random variations of signal
Element varied Description

Phase of signal The phase of the signal is set randomly in different wall/object
presentations

Period of signal The step size of the automaton (and hence its speed) is set ran-
domly in different wall/object presentations so as to have com-
pressions/expansions of the signal

Signal level The distance of the automaton from the wall/object is set ran-
domly in different wall/object presentations

Signal range The distance of the automaton from the wall/object and the size
of the object are multiplied by a random parameter in different
wall/object presentations

(b) They allow testing the models’ capacity of both categorizing different signals
and predicting future signal values based on past ones.

(c) They allow testing the robustness of these capacities with respect to noise
and various systematic random transformations of the signal.

The features of the testbed(s), the possible variations of the input signal that
can be used to test the robustness of the models, and the analysis techniques
are summarized respectively in Table 1, Table 2, and Table 3. Note that, as
the implementation of the testbed is quite straightforward, the software used
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Table 3. Summary of the techniques that can be used to analyze the internal dynamics
of systems

Technique Aspects investigated

Cross-correlograms Time correlations between different variables

Phase space analysis Identification of different types of attractors

Ad-hoc input time se-
ries

Systems’ reaction to different signal features

Hinton plot Roles of different connection weights

Targeted lesions Roles of different connection weights

to implement it can be easily re-generated by the reader. Moreover, the imple-
mentation of the analysis techniques suggested in the paper can be found in any
standard statistical analysis package, for example MatlabTM , which was used to
carry out the results’ analysis illustrated in the paper. Next, all the features and
techniques are analyzed in detail.

2.1 Input Time Series

The testbed proposes two alternative techniques for generating the input time
series. These two techniques allow manipulating different aspects of the input
time series with different implementation ease (see Table 1). Nevertheless, notice
that there is a precise correspondence between the input time series that can be
generated in two ways, as further illustrated below.

The first technique involves an automaton that travels along a “wall” that has
a certain profile, formed by a sequence of segments. An example of this is given
in the top-left graph of Figure 1 that shows a “punctiform automaton” that
moves at a distance R from a wall having a saw-like profile. The signal samples
(shown in the bottom-left graph of the figure) encode the distance between
the automaton’s central point and the intersection between the sensor ray and
the segments composing the wall. Notice that this technique allows generating
signals that correspond to rather complex “objects”, as shown by the right graph
of Figure 1.

The second technique of generating the input time series involves an automa-
ton that follows a circular path around an object, and perceives its profile with
a proximity sensor. An example of this is given in Figure 2 where the automaton
moves around a cross-shaped object following a circle with radius R while its
sensor detects the distance to the object at each step. Notice that this technique
allows generating signals that correspond to rather complex “walls”, as shown
in Figure 2.

From an implementation point of view, the general idea behind the way of
generating the input signal with the two techniques is that the walls or objects
are composed by a set of segments. In this way, the signals are easily obtained
on the basis of the computation of the distance between the automaton’s central
point and the (closest) intersection between the sensor’s ray and the segments
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automaton, marked by the light gray line). Right: equivalent setting showing an object,
and the automaton circulating around it, that generates the same sensor reading as
the wall setting. The curve of the object has been obtained with a very dense sampling
of the wall. Bottom left: automaton’s sensor reading, S(t) normalized in [0, 1], equal
for the two settings.
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Fig. 2. Left: time series of the distances d0, d1, d2, . . . (dotted lines) detected by the test-
bed’s automaton (represented by the dots on the circumference) while moving around
a cross-shaped object. Top right: the corresponding wall-setup; the curve of the wall
has been obtained with a very dense sampling of the object. Bottom right: intensity
of the normalized signal S(t) detected by the automaton at each time step, equal for
both setups.

composing the object. The two techniques give the researcher the possibility
of generating a great number of signals having different time regularities, as
shown in the examples reported in Section 4 and indicated in Table 1, with
computationally rather easy effort. Moreover, the analysis of results can be aided
by the fact that the first technique allows plotting the signal produced by walls
in terms of objects, performing a dense sampling of the latter (see Figure 1,
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right). Vice versa, the second technique allows plotting object signals in terms
of walls (see Figure 2, top right).

2.2 Metrics for Measuring Prediction and Categorization
Capabilities

The testbed allows testing models’ capabilities of prediction and/or categoriza-
tion. The prediction task consists of producing an output at time t that matches
the value of the signal that will be perceived at time t+1. This capability requires
the integration of past signal values to capture the regularities of the signal in
time.

Regarding the metrics that can be used to measure prediction performance,
an immediate way of measuring the model’s capacity to predict is to compute
the quadratic error E of prediction with respect to the next input, averaged over
the duration of the test:

E =
T−1
∑

t=1

(P (t) − S(t + 1))2 (1)

where T is the duration of the test, P (t) is the value of the prediction, and S(t)
is the value of the input unit activated by the automaton’s sensor.

Here “categorization” is referred to the models’ capacity of distinguishing
between several different signals. To this purpose, the models should have some
output units whose activation can be trained in a supervised fashion and can
be interpreted as the category assigned to the perceived signal. For example, in
the tasks considered in Section 4, the automaton experiences two/three different
objects/signals and has to categorize them with two/three units using a local
code: the unit with the highest activation corresponds to the chosen category.

Performance of categorization can be measured as the percentage of time
steps in which the categorization of the current perceived object produced by
the automaton is correct. As the signals last more than one step, it has to be
decided when to detect the categorization answer of the network. For example,
in the examples shown in Section 4, this detection is done at the end of the
pattern presentation. Nevertheless, dependent to the task, other points in time
may be preferred.

Another way to measure the accuracy of the systems’ prediction capabilities
is to use prediction at time t as a new self-generated input pattern for time
t + 1, to use the latter to produce a new prediction at t + 1 and again use it
as input pattern for t + 2, and so on in a cyclical way. By monitoring how the
patterns so generated diverge from those of the original input time series (i.e.
by measuring the mismatch of the self-generated and real time series at a given
time step in the future), it is possible to evaluate the goodness of the systems’
prediction capabilities (cf. [22], where the quality of the prediction capability
was measured not in terms of this mismatch, which can be used only when the
input time series does not depend on the system’s actions, but in terms of the
capacity of the self-generated time series to produce accurate behavior).
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2.3 Test of Robustness vs. Noise and Systematic Transformations
of the Input Signal

Another important feature of the testbed is the possibility of determining the
robustness of the model’s prediction and categorization capabilities mentioned
in Section 2.2. In particular, the testbed allows the evaluation of performance
changes when the input time series is modified on the basis of step by step noise
or on the basis of systematic random variations applied to the signal.

There are two types of step-by-step noise that can be applied to the simulated
automaton (see examples in Figure 3):

1. Translation noise. This noise affects the size of translation of the automaton
along the circular or linear trajectory it follows. This noise is set as a percent
p of the automaton step size s: the noise is obtained adding a random number
uniformly distributed over [−ps, ps] to each step of the automaton. Notice
that this noise can be cumulative, so that a certain long distance might be
covered by the automaton with a different number of steps: this effect is
particularly important as it can produce an overall random compression or
expansion of the signal duration.

2. Sensor noise. This noise affects the automaton’s sensor readings. The size of
this noise is set as a percent of the original signal, similar to the translation
noise.

The testbed allows setting four possible types of random systematic transfor-
mations to affect the signal in a biased way. We have seen in Section 2.1 that
the input time series can be represented as a wave signal represented in an x− y
plot where the x-axis corresponds to time whereas the y-axis corresponds to the
signal level. The four random systematic transformations correspond to linear
transformations of the wave signal with respect to the two axes. As we show
below, these transformations also have an interpretation in terms of specific ma-
nipulations of the relation existing between the automaton and the object (or

d

d

Step noise

d

Sensor noise

Fig. 3. Left: first type of noise affecting the step-size of the automaton, and hence
the time regularity of the input time series. Right: second type of noise affecting the
automaton’s sensor reading.
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wall) it perceives. Referring to the plot that represents the wave signal, we can
formally define the transformation as follows, which are now illustrated in detail.

x �−→ axx + bx (2)
y �−→ ayy + by (3)

where ax, bx, ay, and by are numerical coefficients. Each of these coefficients,
when different from zero, causes one of the following four transformations:

1. Compression/expansion of the signal time duration. The coefficient ax of
the mapping in (2) sets the duration of the signal that corresponds to the
speed of the automaton. In the testbed this parameter is set in terms of the
number of steps that the automaton takes to sense the whole input time series
(i.e. to complete a whole circle around the object or to complete one wall
profile). The left graph of Figure 4 shows the effects of this transformation
with respect to the original wave signal generated by the cross-shaped object
reported in Figure 3.

2. Phase of the signal. The coefficient bx of the mapping in (2) sets the start
(phase or shift) of the signal and corresponds to initial position of the au-
tomaton with respect to the object or the wall. The right graph of Figure 4
shows the effects of this transformation.

ttt

d(t)d(t)d(t)

0 ttt

d(t)d(t)d(t)

0

Fig. 4. Examples of random systematic transformations affecting the time variable of
the input signal: x �−→ 1

2x (left), and x �−→ x + 3 (right)

3. Compression/expansion of the signal level. The coefficient ay of the mapping
in (3) sets the expansion/compression on the y-axis of the signal level. The
left graph of Figure 5 shows the effects of this transformation with respect
to the original signal generated by the cross-shaped object of Figure 3.

4. Absolute signal level. The coefficient by of the mapping in (3) sets the ab-
solute position on the y-axis of the signal level. The right graph of Figure 5
shows the effects of this transformation, which corresponds to a variation of
the distance of the automaton from the center of the object.

Notice that the third transformation implies a compression/expansion of both
the object’s size and the distance of the automaton from it, which is a rather
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Fig. 5. Linear transformations in the space variable (distance): y �−→ 1
3y on the left,

and y �−→ y − 0.5 on the right

uncommon situation in real experiments (e.g. with real robots). Nevertheless,
notice that if it is combined with the fourth transformation it corresponds to a
variation of the size of the object.

2.4 Analysis Techniques

This section proposes a number of techniques that can be used to analyze the
functioning of the recurrent neural-network models tested on the testbed. The
analysis tools described here are particularly important as the functioning and
internal representations autonomously developed by dynamical neural networks
are particularly difficult to be understood. The analysis tools are now presented
and the reader is referred to Section 4 for some examples of them.

1. Cross-correlograms. One way to understand the functioning of the tested
models is to study the time correlations existing between some variables of
the models, such as the activation of hidden and output units, and between
such variables and the input time series. Cross-correlograms and other sta-
tistical techniques directed to detect and represent correlations between time
series can be used for this purpose (see Figure 11 and Figure 12 for some
examples).

2. Phase space analysis. Given the dynamical nature of the problems tackled,
and of the neural networks tested, the analysis of the system’s activity trajec-
tory within the state space of selected variables might shed light on the mech-
anisms that allow the learner to solve tasks. In particular, the identification
of limit cycles, fixed point attractors, and chaotic attractors might allow un-
derstanding the properties of the solution and the properties emerging from
the coupling between the dynamical process occurring within the neural con-
troller and the dynamical process relative to the automaton/environmental
interactions (see Figure 20 for an example).

3. Special input time series. Particular aspects of the behavior and functioning
of the models might be analyzed by studying how they react to special input
time series. These special input time series might be directly obtained by
simplifying the ones used during training so as to isolate few features of
interest (see Figure 14 and Figure 15 vs. Figure 10 for some examples).
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4. Hinton plot. The study of the models’ connection weights is of crucial impor-
tance because, after training, the models’ performances depend on them (and
the architecture). In this regard, a key tool to understand the role played by
different weights is the Hinton plot, which allows representing the weights’
intensities and signs in a visually comprehensive graph (see Figure 13 for an
example).

5. Targeted lesions. The role of the models’ components, either connection
weights or units, might be understood by lesioning them and by observ-
ing how the performance accuracy of the models is disrupted. This can be
done by setting connection weights to zero or by clumping the activation of
the neurons of interest to zero (see Section 4.2 for some examples).

This list of analysis tools is of course non exhaustive. The use of these analysis
tools, and how they can be used in a complementary fashion, is exemplified in
Section 4.

3 Neural Networks for Integrating Information in Time

As mentioned in the introduction, dynamical neural networks are one of the
most interesting classes of models that are capable of integrating information in
time. Their integration capabilities are also supported by a wide literature that
analyzes their relation with statistical algorithms for time series analysis (see [3],
[4], [5], [8], and [19]). This section illustrates few important examples of these
models. They have been selected for various reasons:

(1) they are widely used within the neural-network community;
(2) the testbed presented here has been originally developed as a tool to test and

compare them within the research thread mentioned in the introduction;
(3) they allow the reader to envisage the models’ properties that might be ana-

lyzed with the tools presented here;
(4) in the future the testbed will be used to systematically compare them.

3.1 Elman Neural Networks

The first neural architecture considered here is the Elman neural network (see
[2], [7] and [16]). This is a feed-forward network with three layers: an input layer,
a hidden layer, and an output layer (Figure 6). The core of this type of network
is the presence of recurrences in the hidden layer that implies that, at each time
step, the activations of hidden units depend on the activations of the same units
at the previous time step.

This architecture allows the network to store information from the past so
that the network is capable of detecting periodicity and regularities of the input
patterns in time. In particular, if we let NI , NH , and NO denote the number
of units in the input, hidden and output layer, respectively, then the input to
the NH hidden units will be formed not only by the NI units activated by the
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Fig. 6. Architecture of an Elman network with 1 input unit, 3 hidden units and 2
output units

current input, but also by further NH units encoding the activation of the hidden
units at the previous time step (these play the role of a memory buffer).

The activation function of the hidden and the output layer units is the logistic
function:

Φσ(x) =
1

1 + eσx
, (4)

where σ is a “temperature” parameter (set to 1 in the experiments herein). The
learning rule used is the error back-propagation algorithm (see [17] or [20]).

3.2 Echo State Neural Networks

The second neural architectures considered, called echo state neural networks
(Figure 7), are only briefly reviewed here (see [11] and [13] for a detailed de-
scription and literature review). The important aspect of these networks is the
presence of a hidden layer, called dynamical reservoir, formed by linear or sig-
moid units which have hard-wired recurrent connections (connections in solid
black in Figure 7). These connections, that form a W matrix, are initially set
randomly, and then are normalized with the highest eigenvalue of the matrix
so that W has a spectral radius slightly smaller than 1. This setting of the
weights implies that the hidden neurons do not produce a chaotic behavior,
do not explode or do not saturate on maximum or minimum values. More-
over, it implies that the variation in the activation state of the hidden neu-
rons produced by transient inputs tends to slowly decay after the end of the
stimulation.

If the set of hidden units is large enough, the dynamical reservoir is capable of
producing a large number of dynamics. The units of the reservoir are connected
to the output units in a simple linear fashion (the output units also feedback
to the reservoir units with random connections – hence the term “echo” in the
name: the signals vehiculated by these connections contribute to modulate the
reservoir’s dynamics). During training, the weights that connect the reservoir
units with the output units are updated with a supervised algorithm to reproduce
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Fig. 7. Architecture of an Echo State Network with 1 input unit, 3 hidden units, and
2 output units

a target output signal (e.g., a periodic signal). This training leads the hidden-
output weights to “select” few relevant dynamics from the internal reservoir
among the possible ones, and allows the output units to learn to reproduce,
in principle, any desired output signal having some correlation with the input
signal.

3.3 Leaky Integrator Neural Networks

The third type of neural network considered here is formed by leaky integrator
neurons. The core property of these neurons is that their activation potential
depends not only on the input from other internal and external neurons, but also
on own previous activation potential (see [1], [18] and [21]). Let ui(t) denote the
i-th unit’s potential at time t, Ii(t) its external input, hi(t) its resting level, Φσ is
the sigmoid activation function in (4), uj(t) the activation potential of another
j-th unit of the network, and wij the weight from the unit j to the unit i; the
dynamics of ui(t) is governed by the following dynamic equation:

τu̇i(t) = −ui(t) + Ii(t) + hi +
∑

j

wij Φσ (uj(t)) . (5)

Equation (5) implies that in absence of external inputs Ii, and with zero
connection weights wij , the neuron exponentially relaxes to the resting state hi

with a rate equal to − 1
τ (hence the name “leaky”). If Δt denotes the integration

time step, then (5) has a discrete version with the following form (that can also
be used to numerically integrate equation (5) in the simulations):
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ui(t + Δt) =
(

1 − Δt

τ

)

ui(t) +
Δt

τ

⎛

⎝Ii(t) + hi +
∑

j

wij Φσ (uj(t))

⎞

⎠ . (6)

This form highlights that the activation potential of leaky neurons approaches
the sum of the resting level, external input, and input from other neurons, on
the basis of a “partial adjustment mechanism”. This implies that leaky neurons
have a ready available “internal” memory of the past that can be exploited by
the whole neural network to integrate information in time.

3.4 Long Short-Term Memory Neural Networks

The last types of neural networks reviewed here are the Long Short-Term Mem-
ory Networks (see [9], [10] and [12]). They have been introduced to extend the
memory capacity of standard recurrent neural networks, in particular, they have
been shown to efficiently solve many tasks involving integration of information
in time that are unlearnable for other neural networks (e.g. the recognition of
temporally very long extended patterns in noisy input sequences, the recognition
of the temporal order of widely separated events in noisy input streams, or the
stable generation of precisely timed rhythms).

The key feature of these neural networks resides in the special type of neurons
that form them, which are characterized by a self-recurrent connection and gates
that exert multiplicative effects on the input and output channels (Figure 8). The
functioning of one neuron of this type can be described as follows:

yi(t) = Φσ

⎛

⎝

∑

j

wgo
ij uj(t)

⎞

⎠Φσ (ui(t)) , (7)

ui(t) = ui(t − 1) + Φσ

⎛

⎝

∑

j

wgi
ij uj(t)

⎞

⎠Φσ

⎛

⎝

∑

j

wijuj(t)

⎞

⎠ , (8)

where yi(t) and ui(t) are the i-th unit’s activation and action potential at time
t, respectively, wij is the weight from the unit j to the unit i, wgi

ij and wgo
ij are

the weights from the units j to the input and output gates, respectively, and Φσ

is the sigmoid activation function of Equation (4).
These features allow neural networks formed by several of these special neu-

rons to produce highly complex dynamics. The networks so formed can be trained
on the basis of supervised learning algorithms.

4 Examples of Applications

This section illustrates the potential of the testbed by testing an Elman neural
network with two specific tasks. In the first task, the automaton perceives two
walls with different profiles, while following a linear trajectory, while in the sec-
ond task the automaton senses three different objects while following a circular
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Fig. 8. Structure of a single neuron of a long short-term memory neural network

trajectory. In both cases the automaton’s goal is to categorize the perceived sig-
nal and to predict, at each step, the signal level at the next step on the basis
of the previously experienced signal levels. Note that the experiments reported
here also represent the initial work of a research agenda directed to understand
the internal dynamical mechanisms exploited by recurrent neural networks to
capture regularities in time.

4.1 Wall Task: Experimental Setup

In this task the automaton moves along a straight trajectory along a wall which
can have one of two different profiles, shown in Figure 9. The various settings of
the experimental setup can be summarized as follows:

1. Wall profiles. The two possible wall profiles (Figure 9) had “hollows” with
same depth (this caused the normalized automaton’s sensor reading return
1, so this portion of the two walls was ambiguous for the automaton), and
“humps” with different heights (these caused a normalized sensor reading
equal to 0.36 and 0.68 respectively for the first and second profile).

2. Model. The tested model was an Elman neural network with NI = 1 input
units, NH = 2 hidden units, and NO = 3 output units. The input unit was
activated by the sensor reading normalized in [0, 1]. The first output unit
was devoted to predict the next input pattern while the other two output
units were devoted to encode the categories of the two wall profiles. Such
categories were locally encoded as {1, 0} and {0, 1} respectively for the two
profiles.

3. Training. During training, the walls were repeatedly presented one by one
to the automaton. The wall used in each presentation was randomly chosen,
and at each presentation the automaton performed a whole circle around
it. Training lasted 1, 000, 000 presentations, and used a λ = 0.005 learning
rate. For each time step, the teaching input was formed by the next input
pattern (i.e. the value of the signal at time t + 1) and by the binary value
that encoded the category of the current wall.



204 S. Zappacosta, S. Nolfi, and G. Baldassarre

ttt

R − d(t)R − d(t)R − d(t)

0 R2π
�

�

�

�

�
���

�

�

�

�

�

�

�

�

�
� � �

�

�

�

�R xxx

yyy

0

d

α(n)

ttt

R − d(t)R − d(t)R − d(t)

0 R2π
�

�

�

�

�
���

�

�

�

�

�

�

�

�

�
� � �

�

�

�

�R xxx

yyy

0

d

α(n)

Fig. 9. The two wall profiles used in the wall task (left) and the two equivalent objects
in the corresponding object task (right)

4. Steps (Angular Speed). The automaton covered a single lap around the patter
in a number of steps denoted by #Steps. In the experiment this parameter
was randomly assigned one of the following values in every object presenta-
tions (and kept constant during each presentation):

#Steps ∈ {16, 24, 32, . . . , 128} , (9)

The angle of the trajectory covered by one step of the automaton, that is,
its angular speed, depended on the total number of steps of a lap, and was
equal to 2π/#Steps.

5. Starting Point. This was the angle of the circular trajectory where the au-
tomaton started to perceive the wall. Let α(n) denote the angle at the n-th
step. For any n = 0, . . . , #Steps:

α(n) ∈
{

0,
2π

#Steps
,

4π

#Steps
, . . . , (#Steps − 1)

2π

#Steps

}

. (10)

The starting point α(0) was set randomly at each presentation of the input
time series.

6. Compression/Expansion of the Signal Level (Height of Profiles). The size of
the maximum height of the two walls was kept constant: 1.6 and 0.8 for
profiles 1 and 2, respectively.

7. Absolute Signal Level (Radius/Distance from Walls). The parameter of the
distance from the walls hollows, denoted by R, was set to 2.5.

8. Noise. The two sources of noise illustrated in Section 2.3 were both set to 5%.

4.2 Wall Task: Results

The training of the system was rather successful. At the end of training, the
neural network shows a rather good categorization ability. More precisely, the
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Fig. 10. Activations of the output units (first and third graph from top) and hidden
units (second and fourth graph from top) when the automaton perceives the signal
from the wall profile 1 and 2 (respectively first/second and /third/foruth graphs from
top). Stars in the first and third graph indicate the actual sensor’s readings (noise has
been switched off to ease the analysis of results), whereas the continuous black lines
show the wall’s profiles obtained with a very dense sensor reading.

network produces the right categorization output after few steps, and after that,
keeps producing the same categorization output even during the phase in which
the signal is ambiguous, that is, when scanning a hollow with a value equal to 1
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(a) Cross-correlogram of H1 and P.
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(b) Cross-correlogram of H2 and P.
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(c) Cross-correlogram of H1 and OC1.
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(d) Cross-correlogram of H1 and OC2.
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(e) Cross-correlogram of H2 and OC1.
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(f) Cross-correlogram of H2 and OC2.

Fig. 11. Cross-correlograms between different variables of the models (see text) when
the model perceives a repeated sequence of 1000 P1/P2 wall profiles, in an alternate
fashion, with α(0) = 0

(as shown by the thin black curves in Figure 10). With respect to the prediction
capability, however, the network simply predicts that the signal at time t + 1
will be identical to the signal at time t. Although this simple strategy allows
the network to produce the right answer in most of the cases, it fails to predict
correctly in the cases in which the value of the signal suddenly varies from time
t to t + 1 (Figure 10). Indeed, exactly predicting this sudden change is not
possible due to the noise affecting the automaton’s step-size.
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(a) Cross-correlogram of H1 and I .
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(b) Cross-correlogram of H2 and I .
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(c) Cross-correlogram of H1 and OD2.
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(d) Cross-correlogram of H2 and OD2.

Fig. 12. Cross-correlograms between hidden units’ activation and the input signal or
desired output of the second categorization output unit, when the model perceives a
repeated sequence of 1000 P1/P2 wall profiles, in an alternate fashion, with α(0) = 0

The capabilities of the model are robust with respect to signal’s random sys-
tematic transformations of the first type indicated in (2) (recall that these trans-
formations are related to variations of the initial position of the automaton with
respect to the object and to the step size): none of them prevents the system’s
capabilities to emerge.

In order to understand in detail how the system performs prediction and
categorization, a test was run where the system was presented for 1000 times,
in an alternate way, the two wall profiles, each time with α(0) = 0 (that is, the
automaton is placed at the beginning of the input time series). The data collected
in this test were used to build cross-correlograms capturing correlations within
couples of time series related to various variables of the network, namely, the
input value, the hidden units’ activations, and the output units’ activations. Let
us denote with I the input unit’s activation (i.e. the perceived signal), with H1
and H2 the two hidden units’ activation, with OP the activation of the output
unit devoted to prediction, with OC1 and OC2 the activation of the two output
units devoted to categorization, with OD1 and OD2 the desired output for the
two categorization units, and with P1 and P2 the two wall profiles.
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Fig. 13. Hinton plot of model’s connection weights after training. The black and gray
squares respectively correspond to negative and positive values of the weights, whereas
their size is proportional to the weights’ absolute value.

The cross-correlograms between the hidden and the output units’ activation,
reported in Figure 11, give important indications on the role played by the hidden
units in the model’s responses:

1. The comparison of cross-correlograms of Figure 11(a) and 11(b), related to
the correlation between H1/H2 and OP , indicate that H1 has a strong
correlation with OP whereas H2 has an almost null correlation with it.

2. The cross-correlograms of Figure 11(c) and 11(d) indicate that H1 has a
very low anti-correlation with OC1 and a very low correlation with OC2.

3. The cross-correlograms of Figure 11(e) and 11(f) indicate that H2 has a
strong anti-correlation with OC1 and a strong correlation with OC2.

Altogether, these data corroborate the suggestion that H1 mainly underlies
the model’s prediction capability, whereas H2 mainly underlies its categorization
capability, and that a high and low activation of the latter tends to cause the
model to categorize the input pattern respectively as P2 and P1.

These interpretations are further corroborated by the cross-correlograms re-
lated to the hidden units, the input unit, and the second wall category (OD2; the
cross-correlograms with OD1 give similar information), reported in Figure 12,
which show that:

1. The comparison of cross-correlograms of Figure 12(a) and 12(b), related
to the correlation between H1/H2 and I, indicates that H1 has a strong
correlation with I whereas H2 has an almost null correlation with it.
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Fig. 14. Activations of the hidden and output units when the automaton first perceives
a signal of 1 and then of 0.68

2. The comparison of cross-correlograms of Figure 12(c) and 12(d), related to
the correlation between H1/H2 and OD2, indicate that H1 has no correla-
tion with OD2 whereas H2 has a strong correlation with it.

Figure 13 reports the values of the model’s weights that emerged with training.
The analysis of the weights between the hidden and output units confirms the
indications given by the cross-correlograms, and also allows formulating a more
detailed explanation of the functioning of the system:

1. The weights from H1 and H2 to OP show that P depends only on H1, as the
weight of the connection from H1 is positive (positive correlation) whereas
the weight from H2 is close to zero (no correlation). Indeed, lesioning this
weight, that is setting it to zero, has no effect on prediction performance
(data not reported).

2. The high weights from H2 to OC1 and OC2 confirm that this hidden unit
greatly contributes to determine the category of the wall profile, namely P1
when it is low and P2 when it is high. H1 also partially contributes to the
categorization as its weights to OC1 and OC2 are different from zero (its
high activation tends to cause a categorization of the input signal as P2).

3. The analysis of the weights between the input and the memory units on one
side, and the output units on the other side, give other important indications
on how the system solves the task.

4. Considering the connections to H1, the positive connection weight between I
and H1 implies that H1 implements the prediction capabilities by “relaying”
the input signal: the model tends to return a high or low prediction value
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Fig. 15. Activations of the hidden and output units when the automaton first perceives
a signal of 0.36 and then of 0.68

respectively for high or low input signal levels. Note that this implies that
the model is not capable of returning an accurate prediction when the signal
suddenly changes level one step in advance, as shown in Figure 10. The
weights from H1 to itself do not play an important role. Indeed, lesioning
them does not impair performance (data not shown).

5. Considering the connections to H2, the positive self-connection of H2 indi-
cates that it has a strong inertia. The positive connection from H1 (that, as
we have seen, positively correlates with the input pattern and generates P )
indicates that H2’s categorization capacity strongly depends on H1’s acti-
vation. Lesioning the connection between the input and H2 indicates that it
is also important for categorization (data not reported).

A further refinement of these interpretations is furnished by two other exper-
iments where the input signal to the system is handcrafted in order to highlight
particular aspects of its internal dynamics. In particular, Figure 14 shows the
dynamics of the model’s hidden and output units’ activation when it first per-
ceives a signal of 1 and then of 0.68 (recall that the level of the signal has been
normalized in the range [0, 1]), whereas Figure 15 shows the dynamics of the
same variables when the system first perceives a signal of 0.36 and then of 0.68.

With respect to the prediction capability, these figures confirm that predic-
tion capability (H1) relies in part on categorization (H2). In fact, if H2 gives
the category P1, then H1 gives P = 1 with both I = 1 (Figure 14) and I = 0.68
(Figure 15: note how after the signal abruptly changes, the prediction makes a
mistake for about six cycles because the activation of H2 is incorrectly categoriz-
ing the input as P1). On the other hand, if H2 gives the category P2, H1 gives
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P = 1 with I = 1 (Figure 14), but it gives P = 0.68 with I = 0.68 (Figure 14
and 15).

With respect to the categorization capability, it is interesting to see how the
system can solve the I = 1 ambiguity. H2 moves slowly toward 1 (that implies
P2) both when I = 1 (Figure 14) and when I = 0.68 (Figure 15), whereas it
stays at 0 when I = 0.36 (Figure 15). This implies that H2 has the value of
1, (corresponding to P2) as a fixed-point attractor value when I > 0.36 or so,
and 0 (corresponding to P1) when I = 0.36. For this reason, when the signal
level I = 1 has been preceded by a signal I = 0.36 (corresponding to P1), H2
approaches 1 (P2) only slowly and so continues to give P1 for some time until
the system perceives I = 0.36 again.

4.3 Three Objects Task: Experimental Setup

In this task, the automaton moves along a circular trajectory around three dif-
ferent “objects” and at each step detects the distance from them (see Fig. 16
and compare with [2]).

The various settings of the experimental setup can be summarized as follows:

1. Objects. The three objects are illustrated in Figure 17: a “square”, a “thick
cross” and a “thin cross”. The number of objects is denoted with NP . No-
tice that, given the shape of the objects, during one lap around an object
the automaton experienced a signal formed by four succeeding equal waves,
similarly to the wall task.

2. Model. The tested model was an Elman neural network with NI = 1 input
unit, NH = 3 hidden units, and NO = 4 output units. The input unit was
activated by the sensor reading normalized in [0, 1]. The first output unit was
devoted to predict the next input pattern while the remaining three output
units were devoted to encode the categories of the three signal patterns. Such
categories were locally encoded as {1, 0, 0}, {0, 1, 0}, and {0, 0, 1}) respec-
tively for the three objects.

3. Training. Training was performed as in the wall task.
4. Steps (Speed). The number of steps #Steps the automaton took to scan an

object’s profile during a presentation was randomly varied from presentation
to presentation as in the wall task.

5. Starting Point. The starting point α(0) was randomly varied from presenta-
tion to presentation as in the wall task.

6. Compression/Expansion of the Signal Level (Object Size). The size of the
object is denoted by S (this represents half of the longest arm of the cross
objects and half the size of the square’s side) and half of the length of the
shortest arm of the crosses is denoted with T . In the majority of experiments
reported below, the size of the objects was set at fixed values, whereas in
few other experiments it was randomly varied at each presentation (but kept
fixed within it) within the range [0.5, 1.8] (recall that S is related with the
parameter ay of equation 3).
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Fig. 17. Left graphs: the three crosses used in the object task, characterized by
(ρ1, S1) = (1, 0.95), (ρ2, S2) = (0.70, 1.13), and (ρ3, S3) = (0.41, 1.35): these values
were set to similar maximum and minimum values of the sensor’s reading (in few ex-
periments was randomly varied). The radius R was set to 2.5. Right graphs: the sensor
readings caused by the three objects.
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7. Absolute Signal Level (Radius). In the majority of experiments reported be-
low the radius R of the circular trajectory followed by the automaton around
the objects was set at fixed values, whereas in some variants of the experi-
ment it was randomly varied at each presentation (but kept fixed within it)
in the range [2, 3] (recall that R is linearly related to the parameter by of
equation 3).

8. Noise. The two sources of noise illustrated in Section 2.3 were both set to
5%.

Note that, since the setting implies that 0 ≤ T ≤ S ≤ R, the ratio ρ = T
S

has the following restriction: ρ ∈ [0, 1]. Also note that parameter ρ uniquely
identifies the three objects (see Figure 16).

4.4 Three Objects Task: Results

With the two sources of noise on and the four random systematic transformations
off, the Elman network achieves a satisfying performance both for the prediction
and for the categorization tasks. As far as the prediction capability is concerned,
as in the wall task, the system adopts a strategy of input repetition. Nevertheless,
the network had low quadratic errors when tested with various step sizes (see
Figure 18): the graph shows that the error decreases as the steps grow.
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Fig. 18. Mean square error of the prediction unit with respect to #Steps

A further analysis of the system’s prediction capabilities was obtained by
presenting the patterns to the model for some time, and then by forcing the
network to use its prediction as the next self-generated input. In this experiment,
the quality of the prediction signal rapidly deteriorates (constant output), hence
confirming that the system directly repeats the input as prediction.

The model also shows to be robust with respect to signal’s random system-
atic transformations of the first type indicated in (2). In particular, the model
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is robust with respect to variations of the initial position of the automaton with
respect to the object (corresponding to α(0)), which does not deteriorate per-
formance (data not shown). Moreover, and surprisingly, the model has an even
higher performance when trained with step sizes that vary randomly between
the objects’ presentations. This can be seen by comparing the model trained in
two different conditions:

1. In each presentation #Steps is randomly set within the values indicated
in (9), and the object approach angle α(0) is randomly set in the range
indicated in (10).

2. The #Steps is set at the same value used in the test of performance, whereas
the object approach angle α(0) is randomly set as in the previous condition.

The white and black bars of the histogram reported in Figure 19, which refer
to the two training conditions, respectively, indicate that the performance of
the model is generally higher when it is trained with varying step sizes. Further
experiments with one square and three different crosses corroborate this result
(data not reported).
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Fig. 19. Categorization performance of the model (y-axis) when it is tested with various
step sizes (x-axis). The black bars refer to a model trained, with varying step size, to
categorize the objects and to predict the next input. The gray bars refer to a model
trained, with varying step size, only to categorize. The white bars refer to different
models trained to categorize and to predict with a step size equal to the one used in
the performance tests, reported on the x-axis.

Other tests showed that the signal’s random systematic transformations of
the second type, indicated in (3), completely disrupt the performance of the
algorithm (data not reported). This result suggests that the capacity of the
model both to categorize the object and to predict the next input heavily relies
on the absolute and relative levels of the signals in time.

Another interesting result is that training the prediction capability of the
model improves the model’s capacity to categorize the objects. With this respect
the gray histogram bars reported in Figure 19 show that the performance of the
model deteriorates if the system is not trained to predict the next input. This
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Fig. 20. Dynamics and attractors of the model’s hidden units activations. Each of the
three graphs represents the “history” of the three hidden units’ activation when the
model categorizes and predicts one of the three objects (respectively the square, the
thick cross and the thin cross). Each graph reports the outcome of the experiment run
in three different conditions: (a) the model categorizes the object after it has perceived
the square (black line); (b) the model categorizes the object after it has perceived the
thick cross (gray line); (c) the model categorizes the object after it has perceived the
thin cross (light gray line).

result indicates that training the model prediction capability likely leads the
system to develop internal representations that aid the categorization capability.
Further analyses of the model’s internal representations should be carried out
to understand this outcome in further depth. These analyzes might be aided
by some of the investigation methods suggested in Section 2.4. For example,
Figure 20 shows the dynamics of the model’s three hidden units when the system
perceives the three objects. The graphs of the figure show that the model’s object
categorization and prediction capability is based on three different limit-cycle
attractors: the model’s internal state converges to a different limit-cycle attractor
in order to categorize the different objects. Notice that when the system starts
to perceive an object after it has perceived a different object, its internal state
takes some time to settle to the limit-cycle attractor of the current object as its
internal memory needs to synchronize with the dynamics of the new input time
series. After the state has settled to the attractor corresponding to the object,
then it follows a cyclic trajectory within it in order to predict the next input
pattern.

5 Conclusions and Future Work

This paper presented a testbed that can be used to evaluate the capabilities
of recurrent neural networks (and similar models) of integrating information in
time, in particular the capabilities of categorizing different signals, of predicting
future signals on the basis of past ones, and of doing so in the face of noise and
systematic variations of the input signal. The paper also illustrated the poten-
tialities of the testbed by exemplifying its functioning with two tests involving
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simple recurrent Elman networks engaged in solving two different prediction and
categorization tasks.

The added value of the paper is manyfold. First, it highlights the need of
building standard testbeds, metrics, and analysis tools to compare, and build
taxonomies of, the increasing number of models proposed within the literature
of the ABiALS community. Second, it presents a specific testbed that allows
testing models’ capabilities of categorization and anticipation. Third, it shows
the potential utility of developing and using testbeds by showing some results
obtained by applying the testbed proposed here to the study of the functioning
of Elman neural networks. These applications showed that, even if a detailed
understanding of the functioning of recurrent neural networks is very difficult,
the dynamical principles that might underlie their capacity of integrating in-
formation in time are particularly interesting and make it worth designing and
implementing testbeds and analysis tools, as those proposed here.

Future developments of this research will follow two main directions. On the
one hand, it will continue to carry out systematic studies, in line with the prelim-
inary experiments presented in Section 4, to understand the exact mechanisms
that are developed by recurrent networks to integrate information in time, such
as the formation of cyclic or fixed point attractors, units with progressive in-
creases or decreases of activation, hierarchical abstract representations, etc. On
the other hand, it will use the testbed to compare the capacities of the four
neural networks described in Section 3 to capture different time regularities.
This comparison could be important to highlight which particular features of
temporal signals can be best integrated in time by the different models, and
hence which types of tasks are more suitable for them.
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Abstract. We introduce information-theoretic tools that can be used
in an autonomous agent for constructing an internal predictive model
based on event anticipation. This model relies on two different kinds of
predictive relationships: time-delay relationships, where two events are
related by a nearly constant time-delay between their occurrences; and
contingency relationships, where proximity in time is the main property.
We propose an anticipation architecture based on these tools that allows
the construction of a relevant internal model of the environment through
experience. Its design takes into account the problem of handling differ-
ent time scales. We illustrate the effectiveness of the tools proposed with
preliminary results about their ability to identify relevant relationships
in different conditions. We describe how these principles can be embed-
ded in a more complex architecture that allows action-decision making
according to reward expectation, and handling of more complex relation-
ships. We conclude by discussing issues that were not addressed yet and
some axis for future investigations.

1 Introduction

Designing agents that can act intelligently in a previously unknown environ-
ment is one of the most challenging issues in behavioral robotics. Such an agent
must have the ability to construct an internal model describing the dynamics
of the environment and the effect of its own actions on this environment. This
can be mainly understood as extracting predictive relationships between events
occurring in the perceptive field of the agent, whether these events are under
its control (its actions) or if they are externally generated. This internal model
allows the agent to predict forthcoming events, as well as the effect of its own
actions on the environment. Such a predictive ability paves the way to anticipa-
tion and smart decision making by allowing the agent to decide which action to
perform to obtain or avoid a given outcome. According to the classification of
[1], these agents are said to perform state anticipation.

Our main focus in this paper is to define and evaluate tools that allow the con-
struction of such an internal model regardless of any reinforcement. In this sense
we are very close to latent learning and the concept of expectancies proposed
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by Tolman [7]. We describe an architecture that uses these tools to effectively
construct the internal model and we explain how this model can be used to
anticipate events. The robustness of this architecture to length and variability
of time-delays between relevant associations is evaluated in two experiments. A
last experiment shows the temporal dynamic of the model and more especially
the forgetting mechanism.

The paper is structured as follows: in Sec. 2 we formulate the problem of event
anticipation along with some examples and what we would expect from our an-
ticipation system. Section 3 introduces the main information-theoretic concepts
used in our model and the two kinds of relationships they allow us to identify.
Section 4 describes the anticipation architecture embedding these concepts. In
Sec. 5 we describe preliminary results concerning the predictive efficiency of the
proposed tools in a simple simulation experiment. Section 6 describe some pos-
sible extensions to the actual model, mainly considering the problem of action-
selection and how our predictive model can be used in a reward-based behavior.
We also introduce a possible mechanism for handling more complex situations
involving sequences of events and non-occurrence. Section 7 summarizes the is-
sues our model addresses and we discuss some of those that will be investigated
in future work.

2 Event-Based Anticipation

2.1 Stating the Problem

Here we refer to anticipation in a very general way as the ability to predict,
more or less accurately, the future occurrence of perceptive events. These events
can be seen as different stimuli that the agent can encounter in its environment.
We consider as a preliminary simplification that the agent is not allowed to
act onto its environment, he can only observe it (handling of actions will be
described in Sec. 6). Different from other approaches, the agent is not provided
here with a continuous flow of sensoric values for different modalities. Instead
we consider that the agent perceives discrete events in discrete time (0 to n
different events can be observed at a given time-step). We will denote the set of
possible events by E . The agent is then observing a stream of events such as the
one represented in Figure 1. The only relevant information that can be extracted
from this stream are the relationships in time between similar or different events.
The purpose of our work is to find an efficient way to identify these relationships
in an anticipatory perspective.

2.2 Expected Properties

We want to infer a predictive model from observing the stream of events. Accord-
ing to a given recent past, the predictive model could then be used to anticipate
what the next events should be, and when they will occur. One of the constraints
we put on our model is that it should be robust to noise and variations in the
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Time

a b a b a b

c c c c

Fig. 1. Example of a stream of events E = {a, b, c} over time. The height is not relevant
but just for clarity. In this particular example, we can observe that a is always directly
followed by b with a fixed time delay. The event c seems to have a more complex
pattern.

relationships. Also time-scale variations should have no effect on the efficiency of
the predictive model construction (if for example all events have their delay mul-
tiplied by 2). Figure 2 shows three different cases where there exists a predictive
relationship (a predicts b). One is rather obvious but different configurations of
the time-delay between a and b and other noise events can lead to more diffi-
cult situations. To allow the extraction of these relationships, we will split our
analysis in two different components. The first one is the relation from one event
to all the others; the idea is to identify the most probable event that will occur
shortly after another one (or shortly before if we look toward the past). The
second component considers only pairs of events and its role is to measure the
precision of the time-delay between these events.

 Time

a b

c d

Past

a b a b a b

d d d c

 Time

a b

c

Past

a b a b a b

d d d

 Time

a b

ccd

Past

a b a b

dcd ccc

(a)
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Fig. 2. Three different streams of events with E = {a, b, c, d}. For each of them our
aim is to identify the predictive relationship from a to b. Example (a) is quite obvious,
events a and b follow each other very closely in time, and with a constant delay. Example
(b) is more tricky as the delay between a and b varies, anyway it seems that b always
follows a. In example (c) the delay between a and b is very large, providing room for
many events to occur in between, nevertheless as this delay is constant we would like
to identify such a relationship.
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3 Information Theory and Anticipation

The goal of constructing an internal predictive model is to minimize the uncer-
tainty of the predictions that the model will make. This construction can only
be based on information acquired through experience, and therefore on a par-
tial view of the environment, leading to probabilistic representations. Tools for
dealing with such representations have been increasingly used in the context of
sensorimotor coordination (for example Bayesian modeling in [6]), to analyze
properties of the coupling between an agent and its environment (information-
theoretic approach in [5]) and also to describe conditioning processes with in-
formation theory (see [3] and [4]). In our particular context, information theory
is a very valuable tool because it is a natural framework to deal quantitatively
with uncertainty.

3.1 Basis of Information Theory

Shannon’s information theory is a mathematical framework that provides quanti-
tative characterizations of probability distributions of events. We refer the reader
to [2] for a complete introduction to the field. One of the main quantities we will
be using is the entropy of a probability distribution. Consider a random variable
X for which each event x can take a value in the set X . The entropy of this
random variable is defined as

H(X) = −
∑

x∈X
p(x) log2 p(x), (1)

where p(x) is the probability that event x occurs (
∑

x∈X p(x) = 1 and 0 ≤
p(x) ≤ 1, ∀x ∈ X ). This value reflects the uncertainty about the outcome of this
random variable. The minimum is 0 for an absolutely predictable outcome (for
example one outcome has a probability of 1) and the maximum is log2(|X |) if
all outcomes are equiprobable.

The information content or self-information of one particular event x accord-
ing to the given probability distribution is defined as

I(x) = − log2 p(x). (2)

The minimum information content is 0 if this outcome has a probability of 1 and
goes toward infinity as the probability approaches 0.

Our use of information theory in this model concerns the extraction of rela-
tionships between time-located events such as perceptions or actions. For un-
derstanding the tools described below, it is only necessary to keep in mind that
high entropy H means high uncertainty, and high information content I means
a low probability event (or surprising event).

3.2 Time-Delay Relationships

We will first focus on time-delay relationships between two events. For example,
if an event b always occurs 50 timesteps after another event a, then we would
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like to identify this relationship. Also we would like the method to have some
tolerance for variability, i.e. if b sometimes occurs 49 or 51 timesteps after a, we
still consider that there exists a time-delay relationship between them.

For identifying these relationships, we will use information quantities. The
principle used is based on the concept of causal entropy (see [8]) which in our
case should be referred to as predictive entropy. The idea of predictive entropy is
the following: let us consider that we want to identify a time-delay relationship
between an event a and an event b always occurring after a. We will then use a
random variable Da,b that represents the probability distribution of the observed
time-delay for the next occurrence of b after a (i.e. the observed delay between
an observation of a and the next subsequent observation of b). The entropy
of this random variable H(Da,b) reflects the strength of the relationship. The
lower the entropy, the stronger the relationship. For example if b always occurs 50
timesteps after a, the entropy of Da,b will be 0 (only one event with a probability
of 1, see Figure 3).

Fig. 3. Histograms of time-delay probability distribution, number of occurrences ob-
served (vertical axis) for each possible time-delay (horizontal axis). (a) Histogram of an
event b always occurring 50 timesteps after a, H(Da,b) = − log2(1) = 0. (b) Example
of a high entropy histogram. (c) Example of a low entropy histogram.

The original purpose of causal entropy is to determine whether there may
be a relationship between two events from a to b or from b to a. This can
be determined by comparing the entropies of Da,b and Db,a. In our context,
the goal is to identify relationships between many events. Therefore, we need a
criterion for saying that there exists a time-delay relationship. In [3], the author
states that the baseline from which the information provided by a conditional
stimulus can be estimated is the prior estimate of the unconditional stimulus
frequency. In our framework this can be translated as saying that the criterion
for identifying a relationship from a to b is based on the self-relationship Db,b,
i.e. the distribution of observed time delays between two successive b events. We
will therefore consider that there exists a relationship from a to b if a is a less
uncertain predictor for b than b itself, i.e. if

H(Da,b) < H(Db,b). (3)

Using causal entropy in our context leads to some problems that we need
to solve. The first problem is that it is not robust at all to variability in time.
If we consider for example two different conditions, in the first one, b occurred
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Fig. 4. Usefulness of adding Gaussian noise to time-delay events. (a) For one occur-
rence of a time-delay event, we add a discretized Gaussian distribution of realizations
centered around the occurring event. (b) Example: histogram of the first condition
without Gaussian noise, H(Da,b) = 2. (c) Example: histogram of the second condition
without Gaussian noise, H(Da,b) = 2. (d) Example: histogram of the first condition
with Gaussian noise, H(Da,b) is high. (e) Example: histogram of the second condition
with Gaussian noise, H(Da,b) is low.

2,10,50 and 100 timesteps after a. In the second case, b occurred 48, 49 ,50 and 51
timesteps after a. For both conditions, H(Da,b) = 2 (4 equiprobable outcomes, so
H(Da,b) = log2(4) = 2 ), therefore, we cannot identify which condition reflects a
relationship. Obviously the second one seems to be a relationship where b occurs
approximatively 50 timesteps after a, whereas the first condition doesn’t seem
to be a time-delay relationship.

To solve this problem, the idea is to introduce some variability in the prob-
ability distribution. Therefore rather than updating the statistics of Da,b by
adding one realization of a given time delay t, we add a Gaussian distribution of
time-delays centered around t, i.e. we add many realizations of t, then a bit less
realizations of t − 1 and t + 1, even less for t − 2 and t + 2, and so on... Now if
we get back to our example, adding Gaussian noise around the actual observed
values of 48, 49, 50 and 51 will lead to overlapping Gaussians, and therefore to
less variability than in the first condition, and consequently to a lower entropy
(see Figure 4). For a given time-delay t, the number of realizations to add is
computed for growing distances Δt as



(

β

σ
√

2π
exp

(

− (Δt − t)2

2σ2

))

(4)

until this number reaches 0. The parameters β and σ of this function will be
detailed in the Architecture section.

According to the quantity of information gained from using Da,b rather than
Db,b, we can compute a confidence value of the time-delay expectation as

τa,b =
H(Db,b) − H(Da,b)

H(Db,b)
(5)
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We can also compute the average expected time-delay between a and b as

δa,b =
∑

t∈Da,b

p(t)t, (6)

where p(t) is the observed probability of the time-delay t.
Another problem that has to be solved is the following. Let us suppose that

after some time we have identified the time-delay relationship between a and b
that has been described in the example above (Figure 4.e). Now if we consider
that a new event c happened 10 timesteps before b, then the histogram of the
random variable Dc,b would be a perfect Gaussian centered on 10. The entropy
of this random variable will be lower than the entropy of Da,b because of the
small time variation between a and b. But obviously, if we had 4 realizations
of b after a (48, 49, 50 and 51 timesteps), then we should be more confident in
this relationship than for b after c, which had only 1 realization. Put another
way, we should be more confident in a relationship that has occurred several
times, even with some variation, than into a relationship that occurred only a
few times, even with a perfectly constant time-delay. A way to solve this problem
is to initialize any random variable Da,b with a uniform probability distribution
of time-delays, e.g. an initial white noise. Then multiple realizations of a time-
delay, even with some variability, will increase the probability of this time-delay
and its neighborhood, and decrease the probability of the noise values, therefore
the entropy of such a random variable will be lower than the entropy of a noisy
random variable with only one realization of a time-delay.

3.3 Predictive Relationships Extracted from Contingency

Now we will focus on another type of relationship for which there is no precise
delay between events a and b. We consider here relationships of the type “when a
occurs, b is likely to occur soon”. These relationships can be extracted from the
contingency of events in the stream of perceptions. We will speak about them as
contingency relationships, and we will consider that the closer b occurs after a,
the stronger the relationship. Also we will consider that a predicts b if a mainly
predicts b (relatively to predicting other events) and if b is mainly predicted by
a (relatively to other events it is predicted by). The purpose of this criterion is
the following: let consider an event a that happens all the time, and sometimes
an event b, c or d happens. On one hand we can say that b, c and d are well
predicted by a, because among all the possible predicting events, a is the most
frequent. But on the other hand we cannot say that a usefully predicts b, c or d,
because it predicts nearly everything (even itself), and therefore it is a useless
predictor. That is why for establishing a predictive relationship from a to b, our
criterion takes into account the future of a and the past of b.

We can translate these by the following principle: for each event e, we have
two random variables, one is related to its past, i.e. it reflects the probability
distribution of events that happened before e, we will refer to it as CPe; and one
is related to its future, i.e. the probability distribution of events that happened
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after e, we will refer to it as CFe. In this context we will say that there is a
relationship between a and b, such that b is a consequence of a if

ICFa(b) < H(CFa) (7)

and
ICPb

(a) < H(CPb). (8)

This means that the information carried by b when occurring after a is less than
the average information carried by an event that has occurred after a, thus b is
more likely to occur after a than other events; and that a when occurring prior
to b carries less information than the average information carried by an event in
the past of b, i.e. a is more likely to have occurred before b than other events.

For each of these variables, event realizations are added according to their
distance in time, i.e. when close in time, many realizations of the same event are
added (for one actual occurrence), the number of realizations added decreasing
with the distance. The exact number of realizations follows the same Gaussian
equation 4, in which we replace t by 0, and Δt by the actual distance between
the two events (negative values are discarded). Again we can define a confidence
value of the contingency expectation, based on the loss of uncertainty, as

κa,b =
1
2

(

H(CFa) − ICFa(b)
H(CFa)

+
H(CPb) − ICPb

(a)
H(CPb)

)

. (9)

4 Architecture

The two information-theoretic tools described above are put together in an an-
ticipation architecture. The main components of the architecture are shown in
Figure 5. First saliency evaluation filters perceptive events, forwarding only the
unusual events (those that carry most of the information). These perceptive
events are used to update the internal model and their last observed occurrence
is updated. The internal model and the last event occurrences are then used
together to build expectations about forthcoming events.

4.1 Salience Filtering

We introduce a first mechanism that filters out some of the perceptions to avoid
overloading the system with useless information. The precise criterion we use is
that according to a distribution probability of perceptions E, which is constantly
updated with new perceptions, we consider salient perceptions those that carry
more information than the average information carried. Therefore the saliency
criterion can be expressed as

I(e) > H(E) (10)

where e ∈ E .
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Fig. 5. Main architecture. Circles represent stored information, boxes are processes
that generate information. See text for details.

4.2 Construction of the Internal Model

When an event is perceived, it is first stored into memory and replaces any
previously stored occurrence of this event. The construction of the internal model
is based on the two processes of finding time-delay and contingency relationships.
When an event b is processed, for all events a that are in short-term memory,
if it is the first occurrence of b since a occurred, we update the statistics of
the random variables Da,b, CFa and CPb. The parameters of the Gaussian used
for updating the statistics are fixed for Da,b to β0 and σ0. For the two other
random variables, these are adapted according to the event they concern, i.e.
the longer the expected self time-delay between the concerned events, the more
the Gaussian is flattened (hence the arrow from time-delay relationships to the
construction of the internal model). The idea is to adapt to events that occur
at very different timescales. Also the β parameter (the height of the Gaussian)
is adapted according to the frequency of the added event, here the idea is to
strengthen the association with rare events and to weaken associations with
very common events. Therefore when adding an event b to the statistics of a,
the parameters used are:

σ = σ0(1 + αδa,a) (11)

and
β = β0(1 + αδa,a + λδb,b), (12)

where α is the range adaptation coefficient and λ is the intensity adaptation
coefficient (both low positive values). The higher α, the more the Gaussian is
flattened for a given self time-delay. The higher λ, the more the added event is
important for a given self time-delay.
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4.3 Anticipation of Events

The constructed internal model, along with the memory of the last occurrences
of events, can easily be used to determine the expected events using the following
principles. For each past event a in memory, all the Da,b random variables are
evaluated, and for each of them which validate the condition 3, the event b is
added into the expectation list, along with its average time-delay δa,b and its
confidence value τa,b. Then for each possible event b, if we can find any event
a in memory that is valid according to contingency conditions 7 and 8, then b
is added to the expectations list, again with its average time-delay δa,b and its
confidence value κa,b.

4.4 Forgetting Mechanism

We introduce a forgetting mechanism to allow for a quick replacement of relation-
ships that are not relevant anymore. The principle of the forgetting mechanism
is to define an upper bound to the total number of realizations of the random
variables describing the internal model. When a new realization is added and
increases the total number above the defined bound, one other realization is
removed, by randomly choosing one of the events stored and removing one real-
ization of this event.

5 Experiments

In this section we will evaluate the ability of the architecture described above
to extract relevant predictive relationships from the stream of perceptions. The
agent is not allowed to act, it can only passively perceive events coming from
its environment. We first detail the experimental setup then we analyze the
confidence value of relationships of interest.

5.1 Experimental Setup

Here we simulate some kind of Skinner box where the agent is situated. The per-
ceptions of the agent are taken from the set N1, N2, N3, N4, N5, N6, L1, Food.
The events from N1 to N6 are noise events that have no predictive value, whereas
events L1 and Food are causally associated, L1 predicting the Food event (L1
stands for Light 1, we consider than when the light is flashed, food will be
given to the agent in a given delay). L1 − Food sequence has a probability of
0.02 of being initiated at each timestep. The noise events are generated at each
timestep with the respective probabilities (N1 : 0.2, N2 : 0.1, N3 : 0.05, N4 :
0.025, N5 : 0.0125, N6 : 0.00625). Other parameters of the simulation are the
following. Gaussian parameters σ0 = 3 and β0 = 100. Range adaptation coeffi-
cient α = 0.25. Intensity adaptation coefficient λ = 0.1. Random variables have
an upper bound of 1000 realizations.

The first experiment measures the confidence values of the contingency and
time-delay relationships after 10000 steps of simulation for different time-delay
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of the L1 − Food association. The time-delays evaluated range from 1 to 80
timesteps with a variability of +/ − 3 timesteps.

For the second experiment we use the same procedure but the parameter
investigated is the variability of the time-delay of the L1 − Food association.
The base time-delay used is 14 timesteps and with a variability ranging from
+/ − 0 to 20 timesteps.

The third experiment aims at evaluating the dynamics of the internal predic-
tive model over time. The L1−Food association has a time-delay of 14 timesteps
and a variability of +/ − 3 timesteps. The experiment is running over 100000
timesteps, and during the range 40000 to 60000 L1 and Food are not associated
anymore, they are both presented at each timestep with the same probability of
0.01.

5.2 Results

Results of the first and second experiment are shown in Figure 6. We can see from
these results that contingency relationships are successfully extracted for short
time delays, less efficiently when the time delay increases, but they are robust
to variability of this time delay. On the other hand, time-delay relationships
have the opposite behavior, i.e. they are robust for long time delays, but they
loose efficiency as the variability increases. These results confirm the expected
behavior of these two anticipation mechanisms, which used together should allow
the extraction of most relevant relationships.

Fig. 6. Plotting of κL1,F ood (black) and τL1,F ood (gray) after 10000 steps simulations.
(a) Plotting against time delay between L1 and Food. Time-delay relationship is robust
whereas contingency is not. (b) Plotting against variability of the time delay between
L1 and Food. Contingency relationship is robust whereas time-delay relationship is
not.

Results of the third experiment are shown in Figure 7. We can see that both
relationships are quickly learned, correctly forgotten when the two stimuli are
not associated anymore, and then their confidence value increases as soon as
the events are paired again. These results show that the architecture correctly
accounts for the forgetting mechanism. We can see that for a long enough time
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Fig. 7. Plotting of κL1,F ood (black) and τL1,F ood (gray) against time during 100000
steps of simulation. In the range 40000 to 60000 L1 and Food are not causally asso-
ciated (shown in gray on the horizontal axis). (a) A typical run. (b) Average of 20
experiments.

of exposure to the unpaired events during a typical run, the agent can com-
pletely forget the contingency relationship. On the other hand, the time-delay
relationship is maintained for a longer time and its original confidence value is
recovered very quickly when the events are paired again, whereas the contingency
relationship shows a slower recovery rate.

6 Possible Extensions

6.1 Actions and Rewards

Until that point we have only used the anticipation architecture in the context
of an agent that can only passively observe the stream of perceptive events. But
the point of such an architecture is to be used for action-selection. This aspect
can be considered from two different perspectives: goal-oriented behavior and
reinforcement learning. For both cases we will consider that actions are special
perceptive events (e.g. proprioceptive events) that are generated when the agent
performs the action. The particularity of these events is that they cannot be
predicted by anything (from the agent’s point of view) as they are dependent
upon the will of the agent. By propagating these proprioceptive events into the
architecture it becomes possible for the agent to extract predictive relationships
between his actions and their effect in the environment.

In the case of goal-oriented behavior, we consider that the agent wants to
reach a given goal whose definition is outside the scope of the architecture. For
simplicity reasons, we can consider that the goal is a particular event. By chaining
backward into the predictive model from this event toward possible actions, it
is possible to identify which actions should lead to the occurrence of the goal
event. It should also be in principle possible to plan more complex sequences
of actions to reach intermediate events that will ultimately lead to the goal. If
we now consider the case of action-selection based on reward expectation (as in
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reinforcement learning), the predictive model can be used in the opposite way.
The idea would be to attach reinforcement values to particular events (such
as the acquisition of food or an electric shock). When the agent must decide
what action to perform, it is possible for him to estimate the effect of each
possible action and moreover to compute an expected reinforcement value by
chaining forward until reaching events with reinforcement. During the chaining,
confidence values of the relationships can be used to estimate the probability
of obtaining the reinforcement. The computed values can be used to select the
action that will most probably lead to reinforcement. An advantage of this system
over classical reinforcement learning is that it is possible to introduce a complex
online modulation of reinforcement values (for example food events are rewarding
only if the agent is hungry).

6.2 Handling Complex Predictive Relationships

One of the most difficult issues of anticipatory systems is to be able to iden-
tify complex phenomena involving many different events. An example of such a
phenomena is that when an event a occurs, doing the action b will result in the
event c occurring. One possible way to tackle this issue is to introduce sequence
of events. The idea is to construct sequences of events that will be processed
as normal events and that can therefore be used as predictors for other events.
The problem here is to take care of the combinatorial explosion when grouping
events. Therefore we need a criterion for creating new sequences, and also an-
other one for discarding them when they have proved unsuccessful. The idea is
to introduce a sequence generation probability psg that will be used each time
an event b is processed to decide if a new sequence has to be created, another
event a is then chosen randomly in the recent history and a new sequence a, b
is registered. Subsequent occurrences of this sequence would then be recognized
and the corresponding event generated and processed by the anticipation sys-
tem. Using a sequence destruction probability psd evaluated at each time-step, a
randomly chosen sequence may be destroyed if it has no predicting power, with a
probability growing with the “age” of this sequence. Forwarding sequence events
in the normal events’ pathway allows for the construction of longer sequences by
associating already existing sequences with other events.

Another case of complex relationship is when an event c predicted by a can
be avoided if the action b is performed before c occurs. In this case we have
to take into account the NON-occurrence of an expected event. The idea is
that when an expected event did not happen after a sufficiently long time, a
special event, opposite of the expected one, is generated and forwarded into the
normal pathway. For example if an event a predicts an event c, and if after some
time this event c still has not occurred, then we will generate an event c and
forward it into the event processing pathway. This event can then be associated
with another event b that caused this non-occurrence, or to the sequence of
events a, b.
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7 Conclusion

We have introduced two information theory based tools for extracting time-
delay and contingency relationships in the stream of perceptions. These tools
have been put together into an architecture that uses them for constructing
an internal model of the environment. We have shown two distinct properties
of contingency and time-delay relationships, the former is robust to variations
of the delay between two stimuli, and the latter keeps its efficiency when the
time-delay gets larger. An obvious advantage of these tools is that they allow
simultaneous identification of relationships with completely different time scales
without suffering from complexity increase. We have also shown the efficiency of
this architecture for constructing a relevant internal model that is able to quickly
adapt to a changing environment. Nevertheless some more extensive tests have
to be carried out to evaluate the architecture in different conditions.

One of the advantages of this internal predictive model is that it can be used
in two different ways. On the one hand it can be used to predict which events will
occur and then perform appropriate actions to take advantage of this knowledge,
such as avoiding a negative reinforcement. On the other hand it can also be
used for goal-oriented behavior. In this case the goal would be a particular event
(usually a positive reinforcement) the agent wants to obtain. Using the predictive
model it can identify which events predict the goal and then chain back until it
can find which actions can initiate the sequence of events leading to the goal.
However this last part is a bit more complex as it involves not only predictive
relationships between events, but also true causal relationships which are more
difficult to identify. For example if we consider that an agent has learned that the
sound of a bell predicts food delivery (by the experimenter), ringing the bell will
not bring the food because the source of causality is upstream to both events
and not from one to the other. Identification of causality requires the agent
to actively inject information into the environment by acting upon it. In the
example of the bell described above, if the agent can ring the bell by itself, then
it would quickly realize that the bell and the food are not causally associated.
Such a principle could also be used as a drive toward exploratory behavior. The
idea would be that when a given predictive relationship has been identified, the
agent could then try to more precisely evaluate this relationship by provoking
the first event and then identify if the relation is causal or not.

One drawback of the architecture is that we use purely symbolic events, so
no relation between them can be found apart from the predictive ones; it is im-
possible to define a notion of similarity between events and therefore impossible
to generalize the predictive relationships. For this to be possible, events should
not be only symbolic but they should possess a set of properties from which a
notion of distance and subsets could be used.

Another problem is that the computational complexity of the model grows
quickly with the number of different events that the agent can perceive. This
was the reason for us to introduce a saliency filter so as to get rid of irrelevant
events. Another possible way to avoid this problem and the previous one would
be to map real events defined in a space of properties to a symbolic space by using
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categorization, i.e. grouping similar perceptions into one symbolic event, hence
allowing for some generalization of relationships and also limiting the number of
different events.
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Abstract. This chapter outlines an approach to building robots with anticipatory 
behavior based on analogies with past episodes. Anticipatory mechanisms are 
used to make predictions about the environment and to control selective atten-
tion and top-down perception. An integrated architecture is presented that per-
ceives the environment, reasons about it, makes predictions and acts physically 
in this environment. The architecture is implemented in an AIBO robot. It suc-
cessfully finds an object in a house-like environment. The AMBR model of 
analogy-making is used as a basis, but it is extended with new mechanisms for 
anticipation related to analogical transfer, for top down perception and selective 
attention. The bottom up visual processing is performed by the IKAROS system 
for brain modeling. The chapter describes the first experiments performed with 
the AIBO robot and demonstrates the usefulness of the analogy-based anticipa-
tion approach. 

Keywords: Cognitive modeling, Anticipation, Analogy-making, Top-down 
Perception, Robots. 

1   Introduction 

Anticipation is an important function of human cognition – it makes human behavior 
more flexible than the behavior of other animals, it allows us to act before the incident 
has happened and thus to survive and actively change our environment knowing what 
the consequences will be. Obviously, anticipation is generated at various levels by 
various mechanisms. This chapter describes an attempt to demonstrate that analogy-
making can be a useful mechanism for anticipation. 

Analogy-making is thought to be a central mechanism in human cognition that  
underlies various other cognitive processes [1,2]. Thus it is natural to expect that 
anticipation could also be based on analogy. We believe, however, that the process is 
bidirectional: not only analogy plays an important role in anticipation, but also anal-
ogy-making benefits from human abilities to anticipate. That is why we explore the 
possibility to use the same basic mechanisms for both processes. 
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A number of models of analogy-making have been proposed (see a review in [3]). 
One of the best known models is the Structure-Mapping Theory [4] and its implemen-
tation in SME [5] and MAC/FAC [6]. This model has introduced the structural focus 
of analogy-making, namely that analogy is about mapping of systems of relations. It 
is a kind of pipe-line model – it insists on the linearity of the processes and separates 
perception, mapping and retrieval in sequential steps. Although ACME, ARCS [7] 
and LISA [8] are connectionist types of models and thus are inherently parallel, they 
still rely on sequential processing and separate mapping from retrieval. None of these 
models is interested in how the representations are build – they fully ignore the per-
ceptual processes and work on manually coded situations. On the other hand, COPY-
CAT and TABLETOP [9, 10, 11] have focused on the process of perception and how 
it integrates with mapping. Moreover, the authors insist that perception cannot be 
separated from mapping [12]. These models are highly interactive and the processes 
of perception and mapping run in parallel and influence each other. Unfortunately, 
these models have no long-term memory and thus they do not explain how memory 
retrieval is performed and how it interacts with the rest of the processes. COPYCAT 
and TABLETOP have never been applied in a real world domain and their perceptual 
abilities are limited to “high-level perception”. Thus, they cannot be directly applied 
in a real robot. However, the ideas behind COPYCAT and TABLETOP have been 
very instrumental in our research and in extending AMBR with perceptual abilities. 

AMBR1 [13, 14, 15, 16] is a model for analogy-making, based on the cognitive  
architecture DUAL [17]. AMBR models analogy as emergent phenomena – it 
emerges from the local interactions of a huge number of micro-agents. This model 
fully integrates retrieval and mapping processes and demonstrates how they interact 
and influence each other. The distributed representation of the episodes and the dy-
namic parallel nature of AMBR’s mechanisms are a good starting point for modeling 
integration between perceptions and high-level cognitive processes. There are several 
main assumptions of AMBR. Firstly, context is not just a source of noise but is crucial 
for cognition. The context determines the relevant pieces of knowledge in long term 
memory (LTM) that can be used for solving the current problem.  This context-
sensitivity allows the system to be very flexible and at the same time very effective. 
Secondly, analogy, and particularly the ability for mapping is a central property for 
cognition. The cognitive system continuously maps the new information (coming 
from perceptions) with the old one (coming from memory) and adjusts both of them 
until they fit each other consistently. Thirdly, cognition is dynamic and all mecha-
nisms run in parallel and interact with each other.  

This chapter describes an extension of the AMBR model, building an integrated  
robot architecture that will try to cover all processes needed for real robot anticipation 
behavior: from visual perception through selective attention through high-level reason-
ing to actual physical movements in the environment. This is achieved by combining 
sparse bottom up visual perception performed by the IKAROS system with mapping 
this information to elements of LTM – concepts and old episodes – the retrieved por-
tions of the episodes are immediately mapped onto the sparse target description and 
anticipatory relations are build that will be analogous to the ones in the old episode. 
These anticipations, about possible properties and relations, guide in a top-down  

                                                           
1 AMBR is an acronym for Associative Memory-Based Reasoning. 
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fashion the further visual processing performed by the IKAROS system. Thus, the 
robot has an active vision system and builds only representations that are mapped to 
the known information (it does NOT build an extensive representation of ALL aspects 
of the environment). The extended representation further guides the retrieval and map-
ping process and finally all three together arrive at an analogy that projects back pre-
dictions which cannot be tested by the visual system but would require physical 
movement of the robot through the environment for actively exploring it. 

A simple scenario where the robot anticipation abilities could be tested in reality 
involves an object hidden somewhere in the house and the task of the robot would be 
to find it. A robot without anticipation abilities would have to search exhaustively all 
possible places in all rooms. This will require probably several days or even weeks of 
search. Clearly, though, when people are confronted with a similar problem, they do 
not search blindly. They anticipate where the hidden object might be. In most cases 
we rely on our previous experience – we are spontaneously reminded about previous 
situations when we have searched for an object and try to transfer this experience to 
the new target situation. This is what our small dog-like AIBO will do – it will search 
for its bone hidden somewhere in the room. It is important to mention that this search 
is not based on a general regularity, such as that the object is always in the drawer, but 
actually the object can be at different places and still be analogous to one previous 
episode.  

In this first step we have simplified the search by locating everything in one room, 
but this could be extended in the future. Unlike our previous attempts to build antici-
patory mechanisms, this attempt is based on real robots acting in a real environment. 
This requires implementing all parts of the integrated architecture including visual 
perception, attention, reasoning, memory, and motor action. Thus even if it is a very 
simplified version and environment, it has all required capacities put together and 
working together and influencing each other. 

2   Environment and Scenarios 

We define our tasks and test the model in a house-like environment and in a “find-an-
object” scenario. 

The house-like environment consists of several rooms with doors between some of 
them. There are various objects like cubes, balls, and cylinders in the rooms. We used 
Sony AIBO robots (ERS-7). The goal of the robot is to find a bone (or bones) hidden 
behind an object. In a more complicated task there could be many robots: some of the 
robots should find and collect some ‘treasures’, whereas other robots play the role of 
‘guards’ that try to keep the treasures and hide them dynamically or block the way of 
the treasure-hunters. Here, we start with the simplest case. We have one room, in 
which the robot itself and simple objects like cylinders and cubes with different colors 
(Figure 1) are located. The bone is hidden behind one of the objects. All objects (be-
sides the hidden bone) are visible for the robot.  

The AIBO robot has to predict where the bone is hidden based on analogies with 
past episodes and go for it. The episodes are manually built for the moment, but we 
plan to work on the learning process by which the newly perceived situations will 
remain in LTM. 
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Fig. 1. Simple scenario – ”Where is my bone?” 

In order to simplify the problems related to 3D vision we decided to have one camera 
attached on the ceiling having a global 2D view of the scene. There is a color marker on 
the top of the AIBO to facilitate its recognition. A web camera server sent the image 
data via TCP/IP to the network camera module of IKAROS. All software is installed on 
remote computers which communicate with the robot through wireless network.  

3   Integrated Architecture 

The integrated architecture of the system consists of several main modules (see  
Figure 2): 

 
Fig. 2. Main modules and data flow between them 
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• AMBR – the core of the system – is responsible for attention and top-down percep-
tual processing, for reasoning by analogy, for decision making, and for sending a 
motor command to the robot controller. 

• IKAROS module – a low-level perception module performing bottom up informa-
tion processing. 

• AMBR2Robot – a mediation module, the link between AMBR and IKAROS and 
the robot controller. 

• AIBO robot. 
• Camera attached to the ceiling. 

A global camera takes visual information of the environment. It is received by the 
IKAROS module. The visual information is processed and symbolic information 
about objects in the environment is produced. This symbolic information is used from 
AMBR2Robot to provide AMBR with bottom-up perception information and also to 
handle the top-down requests which are described below. ABMR2Robot also waits 
for a “do-action” message from AMBR, which when received makes the module to 
control the robot and guide it to the target position using AIBO Remote framework. 
AMBR does the substantial job of making predictions about where the bone is hidden 
based on the representation of the current situation and making analogy with past 
situations. AIBO Remote Framework is a Windows PC application development 
environment which enables the communication with and control of AIBO robots via 
wireless LAN. 

3.1   AMBR 

The AMBR model for analogy-making is a multi-agent system, which combines 
symbolic and connectionist mechanisms [13, 14, 15]. Knowledge is represented by a 
large number of interconnected DUAL-agents. Each agent stands for an object, a 
relation, a property, a concept, a simple proposition, or a procedural piece of knowl-
edge. The connectionist’s activation of the agents represents their relevance to the 
current context. There are two special nodes that are the sources of activation – the 
INPUT and GOAL nodes – which are representations of the environment and the 
goals, respectively. Activation spreads from these two nodes to other nodes (typically 
instances of objects and relations from the target scene) then to their respective con-
cepts and further up the concept hierarchy, then back to some of the concept instances 
and prototypes. There is no separation between the semantic and episodic memories – 
they are strongly interconnected. 

The active part of the long-term memory forms the Working Memory of the model. 
Only active agents can perform symbolic operations like for example sending short 
messages to their neighbors, adjusting their weights, or creating new agents. This is a 
very important interaction between the symbolic and the connectionist parts of the 
model. The speed of the symbolic operations depends on the activation level of the 
respective agent. Thus, the most relevant (active) agents work faster, the less relevant 
– more slowly, and the irrelevant ones do not work at all. 
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Table 1. AMBR basic mechanisms 

Spreading 
activation 

The activation of the agents represents their relevance to the current 
context. It spreads just like in a neural network. The sources of the 
activation are two special nodes – INPUT and GOAL. The AMBR 
agents that represent the environment are attached to the INPUT, 
whereas the representation of the target is attached to the GOAL. 

Marker 
emission 
and passing 

Each instance-agent (representing a concrete token) emits a marker 
that spreads to the respective concept-agent (representing type) and 
then upward to the class hierarchy. When a marker from the target 
situation comes across a marker from a memorized situation, a 
hypothesis-agent between the two marker-origins is created. The 
hypothesis-agents always connect two agents and represent the 
inference that these two agents are analogical. 

Structural 
correspon-
dences 

There are various mechanisms for structural correspondence that 
create new hypotheses on the basis of old ones. For example, if two 
relations are analogical, their respective arguments should also be 
analogical; if two instance-agents are analogical, their respective 
concepts should also be analogical, etc. 

Constraint 
satisfaction 
network 

The consistent hypotheses support each other, whereas the incon-
sistent ones compete with each other. Thus, dynamically, a con-
straint satisfaction network of interconnected hypotheses emerges. 
After its relaxation, a set of winner-hypotheses, which represent the 
performed analogy, is formed. 

Table 2. Main types of AMBR agents 

Instance-agent Represents tokens, i.e., particular 
exemplars. The instance-agents can 
represent objects, as well as aspects 
and relations. 

Examples: 
bone-1, red-21, behind-
3… 

Concept-agent Represents types, i.e., classes of 
similar exemplars. Again, can rep-
resent objects or relations. 

Examples:  
bone, color, behind… 

Hypothesis-
agent 

Always connects two elements – 
one from the target situation and one 
from a memorized one. Represents 
an inference that there is something 
in common between the two ele-
ments – they have common super-
class or they are the respective ar-
guments of corresponding relations. 

Examples: 
bone1<-->bone-3, 
left-of<-->right-of, 
red-12<->green-8… 

Winner-
hypothesis 

Represents an already established 
analogical correspondence between 
two elements. The hypothesis-
agents become winners or fizzle 
out. 

The same form as the 
hypothesis-agents 
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Tables 1 and 2 summarize the main mechanisms and agent-types used in AMBR 
and describe the role and the routine of each of them. It is important to note, however, 
that all these mechanisms run in parallel and influence each other. 

3.2   Extensions of AMBR for the AIBO Robot Application 

In order to make AMBR a model of the mind of a real robot several new mechanisms 
were developed and implemented. Most importantly, several analogical transfer 
mechanisms have been developed which will allow robust predictions based on anal-
ogy. The present development is related to the extension of the model with a dynamic 
top-down perceptual mechanism, a mechanism for control of attention, mechanisms  
 

Table 3. New ABMR mechanisms 

Perceptual An-
ticipation (top-
down influence 
on perception) 

By a series of messages, the instance-agents from memorized 
situations inform the relevant relations in which they participate 
for all their hypotheses. If a certain relation collects the hy-
potheses for all its arguments, it creates an anticipation-agent. 
The anticipation-agents are copies of their mentor-relations but 
all their arguments are replaced with the respective analogical 
elements from the target situation. 

Attention The attention mechanism monitors all anticipation-agents, 
sorts them by their activation (i.e., relevance), and at fixed 
time intervals asks the perceptual system to check the relation 
represented by the most active one. 

Goal-related 
Anticipation 
(Transfer of the 
solution) 

When a certain hypothesis transforms itself into a winner-
hypothesis, it informs its base element. The latter, in turn, 
informs the relations, in which it participates. The respective 
relations erase all anticipations and hypotheses that are incon-
sistent with the new winner. Thus, in reality, the anticipation 
mechanism creates many different possible solutions of the 
problem that compete with each other, whereas the transfer 
mechanism works by deleting most of them on the basis of the 
best analogy. As a final result of the transfer mechanism only 
the solution that is most consistent with the performed analogy 
remains. 

Action The cause-agents (representing causal relations) are equipped 
with a special routine. Via special messages, the agents, at-
tached to the GOAL node inform the cause-relations, in which 
they participate, that the latter are close to the goal. After a 
period of time, if such ‘close-to-goal’ cause-agent receives 
information that it participates in a winner-hypothesis, it 
checks its antecedents for action-agents (representing descrip-
tion of a certain action or movement). If all these conditions 
are met, the action mechanism sends an order for executing the 
respective action. 
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for transferring parts from a past episode in memory towards the  now perceived epi-
sode (analogical transfer), and mechanisms for planning and ordering actions based 
on that transfer. All new mechanisms are summarized in Table 3 while the new 
AMBR agent’s types are given in Table 4. Note that all these mechanisms overlap in 
time and influence each other. It should be stressed that there is no central executive 
in AMBR. Instead, the AMBR agents interact only with their neighbors and perform 
all operations locally, with a speed, proportional to their relevance to the current  
context. 

Table 4. Specialized AMBR agents 

Anticipation-
agent 

Represents expectation that a 
certain relation is present in the 
environment. 

Examples: 
?red-cube-12?, 
?behind-bone-cylinder-
12?… 

Cause-agent Represents a certain casual rela-
tion. It always has antecedents 
and consequences. One cause-
agent can be instance-agent or 
anticipation-agent. 

Example: 
Cause1 
-antecedents: move-12, 
behind-2 
-consequences: find-8 

Action-agent Represents the description of a 
certain action or movement. The 
presence of an action-agent in the 
target situation does not mean 
that it will be executed. In order 
for AIBO to execute the respec-
tive action, a special procedure 
for this should be triggered. 

Examples: 
Move (AIBO, cylinder-
12), 
 

 
More detailed description of the new AMBR mechanisms follows below. 

Top-Down Perception 
It is known that when executing a task in order to achieve a specific goal, top-down 
mechanisms are predominant [21, 22]. This finding is implemented by making 
AMBR the initiator of information acquisition actions. 

At first, the robot looks at a scene. In order for the model to ‘perceive’ the scene or 
parts of it, the scene must be represented as an episode, composed out of several 
agents standing for objects or relations, attached to the input or goal nodes of the 
architecture. It is assumed that the construction of such a representation starts by an 
initial very poor representation (Figure 3) built by the bottom up processes. This in-
cludes, usually, only symbolic representations of the objects from the scene without 
any description of their properties and relations. These are attached to the input of the 
model (in the example, object-1, object-2, and object-3). 
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Fig. 3. Initial representation of the scene (bottom-up perception) 

The representation of the goal is attached to the goal node (usually find-t, 
AIBO-t, and bone-t). During the run of the system some initial correspondence 
hypotheses between the input (target) elements and some elements of the memory 
episodes (bases) emerge via the mechanisms of analogical mapping (Figure 4). 

 

H2
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Object-1 Object-2 Object-3

Cube    Cylinder 

Furniture 

Cylinder-11 
(Base-1)

Cylinder-23 
(Base-2)

 

Fig. 4. Creation of hypotheses (H1, H2, H3) on the basis of marker intersections 

 

Fig. 5. Formation of anticipation agents in AMBR on the basis of missing in the scene argu-
ments of already mapped relations. (Note that ‘left-of’ relation is asymmetric and the order of 
arguments is coded in AMBR although it is not shown in the picture). 
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The connected elements from the bases activate the relations in which they are  
participating. The implemented dynamic perceptual mechanism creates predictions 
about the existence of such relations between the corresponding objects in the scene. 
As shown in the example of Figure 5, Object-1 from the scene representation has been 
mapped onto Cylinder-11 in a certain old and remembered situation. The activation 
mechanism adds to working memory some additional knowledge about Cylinder-11 – 
e.g. that it is yellow and is positioned to the left of Cylinder-23, etc. (Figure 5) The 
same relations become anticipated in the scene situation, i.e. the system anticipates 
that Object -1 is possibly also yellow and could be on the left of the element, which 
corresponds to Cylinder-23 (if any), etc. Thus, various anticipation-agents emerge 
during the run of the system. 

Attention 
The attention mechanism deals with the anticipations generated by the dynamic per-
ceptual mechanism, described above. With a pre-specified frequency, the attention 
mechanism chooses the most active anticipation-agents and asks the perceptual sys-
tem to check whether the anticipation is correct (e.g. corresponds to an actual relation 
between the objects in the real scene). AMBR2Robot, as described earlier, simulates 
the perceptions of AMBR based on input from a real environment (using IKAROS). It 
receives requests from AMBR and simply returns an answer based on the available 
symbolic information from the scene. 

 

 

Fig. 6. Processing of the different types of answers of relation questions 

The possible answers are three: ‘Yes’, ‘No’, or ‘Unknown’. In addition to colors 
(‘color-of’ relations), spatial relations, positions, etc., it also generates anticipations 
like “the bone is behind ‘object-1’ ”, or “if I move to ‘object-3’, I will find the bone”. 
Those relations play a very important role for the next mechanism – the transfer of the 
solution (i.e. making a firm prediction on which an action will be based) – as ex-
plained below. 

After receiving the answers, AMBR manipulates the respective agent (see Figure 6). 
If the answer is ‘Yes’ it transforms the anticipation-agent into an instance-agent. Thus 
the representation of the scene is successfully augmented with a new element, for 
which the system tries to establish correspondences with elements from old episodes in 
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memory. If the answer is ‘No’, AMBR removes the respective anticipation-agent to-
gether with some additional anticipation-agents connected to it. Finally, if the answer 
is ‘Unknown’, the respective agent remains an anticipation-agent but emits a marker 
and behaves just like a real instance, waiting to be rejected or accepted in the future. In 
other words, the system behaves in the same way as if the respective prediction is cor-
rect. However, the perceptual system or the transfer mechanism (see below) can dis-
card this prediction. 

Transfer of the Solution 
Thus, the representation of the scene emerges dynamically, based on top-down proc-
esses of analogical mapping and associative retrieval and of the representation in 
AMBR2Robot and its functioning. The system creates many hypotheses for corre-
spondence that self-organize in a constraint-satisfaction network (see Figure 7) 

 

 

Fig. 7. Constraint satisfaction network between hypotheses. Winner hypotheses remove many 
of the inconsistent anticipations until only few anticipation-agents remain. 

Some hypotheses become winners as a result of the relaxation of that network and 
at that moment the next mechanism, the transfer of the solution, does its job. In fact, 
the transfer mechanism does not create the agents, which represent the solution. The 
perceptual mechanism has already transferred many possible relations but now the 
task is to remove most of them and to choose the best solution. As in the previous 
examples, let’s take a target situation consisting of three cubes and let the task of 
AIBO be to find the bone. Because of various mappings with different past situations 
the anticipation mechanism would create many anticipation-agents with a form simi-
lar to: “The bone is behind the left cube”. This is because in a past 
situation (sit-1 for example) the bone was behind the left cylinder and now the left 
cylinder and the left cube are analogical. Because of the analogy with another situa-
tion, for example, the anticipation that “the bone is behind the middle 
cube” could be independently created. Another reason might be generated due to 
which the right cube will be considered as the potential location of the bone. Thus 

Cube 1

Cylinder-1 Cylinder-2 Cylinder-3 

Cube 2 Cube 3 

Behind Behind Behind 

Behind BONE 

BONE 

WINNER
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many concurrent possible anticipation-agents co-exist. When some hypotheses win, it 
is time to disentangle the situation. 

The winner-hypotheses care to propagate their winning status to the consistent hy-
potheses. In addition, the inconsistent ones are removed. In the example above, sup-
pose that sit-1 happens to be the best candidate for analogy. Thus, the hypothesis 
‘left-cylinder<-->left-cube’ would become a winner. The relation ‘be-
hind’ from the sit-1 would receive this information and would care to remove the 
anticipations that the bone can be behind the middle or behind the right cylinder.  

As a final result of the transfer mechanism, some very complex causal anticipation-
relations like “if I move to the cube-1 this will cause finding 
the bone” become connected with the respective cause-relations in the episodes 
(bases) from memory via winner-hypotheses. 

Action Execution 
The final mechanism is sending an action command (see Figure 8). The cause-
relations that are close to the GOAL node trigger it. The GOAL node sends a special 
message to the agents that are attached to it, which is in turn propagated to all cause-
relations. Thus, at a certain moment, the established cause-relation “if I move to 
cube-1, this will cause finding the bone” will receive such a mes-
sage and when one of its hypotheses wins, it will search in its antecedents for an ac-
tion-agents. The final step of the program is to request the respective action to be 
executed and this is done again via a message to AMBR2Robot. 

 

 

Fig. 8. Hypotheses of the cause-relations receive markers from the GOAL node. If the conse-
quents satisfy the goal, then the actions from the conditions are executed. 

3.3   Connecting ABMR with the Robot 

In order to connect AMBR with the real world several new modules were developed. 
A major step was to build a perceptive mechanism with active vision elements based 
on the platform IKAROS [18, 19]. Several modules of IKAROS related to perception 
were successfully integrated in order to carry out the difficult task of  bottom-up vis-
ual perception and object recognition. This results in a hybrid system where IKAROS 
performs the non-symbolic processes best suited for perceptual processing, while 

GOAL 

FIND 

MOVE 

Behind 

Cube1 

CAUSE 

CAUSE 
WINNER 
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AMBR  performs the high level  symbolic and connectionist operations best suited for 
analogy making  Another module – AMBR2Robot  – was developed as a general 
mediating layer between the perception modules of IKAROS and ABMR. 
AMBR2Robot supports the selective attention mechanisms, which were described 
above.  

3.4   IKAROS 

IKAROS is a platform-independent framework for building system-level cognitive 
and neural models [18, 19] (see also www.ikaros-project.org). The system allows 
systems of cognitive modules to be built. The individual modules may correspond to 
various cognitive processes including visual and auditory attention and perception, 
learning and memory, or motor control. The system also contains modules that sup-
port different types of hardware such as robots and video cameras. The modules to be 
used and their connectivity are specified in XML files that allow complex cognitive 
systems to be built by the individual modules in IKAROS. Currently, there are more 
than 100 different modules in IKAROS that can be used as building blocks for differ-
ent models. 

In the present work, IKAROS was used for visual perception and object recogni-
tion. An IKAROS module receives images from a camera while another module  
segments the image into different objects based on color. The result is sent to 
AMBR2Robot for further processing. 

The object recognition proceeds in several stages. In the first stage, the color image 
is mapped onto the RG-chromaticity plane to remove effects of illumination and 
shadows. In parallel, the edges are extracted in the image. These edges are used as 
preliminary contours of the objects. In the second processing stage, the colors are 
normalized in-between the edges in x and y-direction to produce homogenous color 
regions (Figure 9). In the third stage, the individual color pixels are clustered into 
regions with similar color. At this stage, a template for each color is used to form only 
clusters for colors that are known to belong to the target objects. Each color is defined 
as a circle sector around the white-point in the RG-chromaticity plane. In the fourth 
stage, a rectangular region is formed around each cluster, which is used to delimit 
each object (Figure 10). Finally, a histogram of the edge orientations within each 
object regions is calculated which is then used to categorize the shape of the object.  

 
Fig. 9. Left. An initial image with found vertical edges. Middle. Colors after normalization 
between edges. Right. A color region in the RG-chromaticity plane. 
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Fig. 10. The recognition of shapes. Left. A region is formed around the color cluster. Middle. 
A histogram of edge orientations is calculated. Right. The distribution of edge orientations is 
used to determine the shape. 

Note that we are not trying to find the complete contours of the objects. Instead, 
the method is based on the distribution of different edge orientations which is a much 
more robust measure. The different processing stages were inspired by early visual 
processing in the brain but adapted to efficient algorithms. The mapping to the RG-
chromaticity plane discards the illuminant and serves the same role as the interaction 
between the cones in the retina [23]. The detection of edges is a well known function 
of visual area V1 [24]. The color normalization within edge elements was inspired by 
theories about brightness perception [25] and filling-in [26]. 

3.5   AMBR2Robot 

AMBR2Robot mediates between AMBR, IKAROS and the robot. It provides AMBR 
with perceptual information from IKAROS and also serves for implementing the 
selective attention mechanism in the model. The other main purpose of this module is 
receiving the action tasks from AMBR and executing them using AIBO-RF. We 
could say that it simulates the link between the mind (AMBR) and the body (percep-
tion system, action system).  

The work of the module AMBR2Robot formally can be divided into three sub- 
processes: 

1. Bottom-up perception  
2. Top-down perception 
3. Performing actions 

Bottom-Up Perception  
At this stage just a small part of the scene-representation is sent to AMBR. As de-
scribed above information is further transformed into the form used for knowledge 
representation in AMBR by creating a set of AMBR agents with appropriate slots and 
links and connecting them to the so-called input of the architecture. 

Top-Down Perception 
As mentioned above AMBR sends top-down requests in the form of questions about 
the presence of properties and relations about the identified objects. These requests are 
received by AMBR2Robot and are answered based on visual symbolic information  
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provided by IKAROS. Relations represent the most important information for analogy-
making and are extracted by AMBR2Robot from the scene description which does not 
contain them explicitly but only implicitly (e.g. in the form of coordinates and not 
spatial relations).  

The main types of top-down perception requests are for: 

• spatial relations: right-of, in-front-of, in-front-right-of, etc… 
• sameness relations: same-color, unique-shape, etc… 
• color properties: orange, blue, red, etc… 

The spatial relations are checked based on the objects’ positions as described by 
their coordinates and size and with respect to the gaze direction of the robot. Figure 11 
shows how the above example relation request (left-of object-2 object-3) is processed. 
Positions of all objects are transformed in polar coordinates respective to a robot-
centric coordinate system. Then some comparison rules are applied to the coordinates.  

For processing the sameness relation the relevant properties (shape or color) of all 
the visible objects are compared.  

 

Fig. 11. Processing the spatial relation requests 

Action 
AMBR2Robot receives action commands from AMBR and, knowing the positions of 
the target object and the robot, navigates AIBO by sending movement commands via 
the AIBO Remote Framework (see Figure 2). During the executed motion, IKAROS 
is used to update the robot’s position in the scene (the other objects in the scene are 
assumed to have fixed positions) and only the robot is actually being tracked.  

The robot is guided directly to the target object without any object avoidance (to be 
implemented in the future in more sophisticated examples). After the robot has taken 
the requested position, it is turned in the appropriate direction to push and uncover the 
target object. At the end it takes the bone if it is there, otherwise it stops.  

 φ1< φ2 :  
|ρ1- ρ2| < C 
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4   Results 

In this chapter the results from a single run of the system are described. 
There are two past situations in the robot’s memory (Figure 12.a) The robot faces 

the situation showed in Fig 12.b 

               

           (a)      (b) 

Fig. 12. (a) Old episodes in memory (b)AIBO is in a room with three cubes with different 
colors 

The image (from the global camera) is sent to the IKAROS module. In Fig 14 the 
visual field after RG-chromaticity transformation and the edge histogram for the one 
of the recognized objects are shown. 

 

(a)     (b)        (c) 

Fig. 13. (a),(b) RG-chromaticity transformation (c)Edge histogram for the upper cube 

The IKAROS module recognizes the objects and produces the input: 

object-1, shape=cube, position= (50,85) 
object-2, shape=cube, position=(71,303) 
object-3, shape=cube, position=(75,429) 
aibo-I, position=(438,301), direction=3.387  



 The Interplay of Analogy-Making with Active Vision and Motor Control 249 

Processing that information AMBR2Robot sends part of it as bottom-up perceptual 
information to AMBR: 

object-1: cube, object-2: cube, object-3: cube 

In the top-down perception part, lots of relation requests are generated from 
AMBR.  Here we show some of them, including the answers from AMBR2Robot: 

? behind: bone-t -> UNKNOWN 
? left-of: object-1 object-2 -> YES 
? blue: object-3 -> YES 
? green: object-2 -> NO 
? in-front-right-of: object-3 aibo-I -> NO 
? move: aibo-I object-2 -> UNKNOWN 

Some of the already created anticipation agents are turned into instance agents ac-
cording to the  answer:   

anticip-blue-situation-1  
anticip-left-of-1-situation-2 

The name of the agents is formed as follows: ‘anticip’ stands for anticipatory. After 
that follows the name of the relation which it “anticipates”. This relation can belong 
to one of the situations in robots memory (situation-1 or situation-2 in this case) Note 
that after transforming an anticipation agent into instance one its name remains the 
same. 

After some time AMBR make an analogy with situation-1. Some of the winner-
hypotheses (in the order they emerge) are: 

object-3  right-cylinder-situation1   
anticip-blue-situation-1 blue-situation-1 
aibo-I  aibo-I-situation-1 
anticip-move-situation-2 move-situation-1 
object-2  midle-cylinder-situation1   
object-1  left-cylinder-situation1   

Many other agents are mapped. After the mapping of the cause agent, the action 
mechanism is triggered, which sends a motion command to AMBR2Robot. 

move-to object-3 

AMBR2Robot guides the robot to the target. Once arrived, the robot uncovers the 
object and tries to get the bone. Figure 15 shows some images of the robot moving. 

The model is tested in some other situations where other analogies are made. So 
far, we did not conduct any comparative experiments with other models because it is 
difficult to determine when an analogy “is right” in this scenario. But it is obvious 
that if the analogy is right, the performance will be much higher than a full-search 
method - checking all objects one by one. 
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Fig. 14. 1. AIBO is starting to move.  2. approaching the target. 3. uncover object. 4. get the 
bone  2. 

5   Summary 

In this paper, a new approach of robot anticipatory behavior is presented which  
is based on predictions generated from an analogy with past experiences stored as 
episodes in memory. Anticipation is also used in a top-down perception mechanism, 
which is using predictions about relations between perceived objects based on hy-
potheses of correspondence with relevant objects from the past experience of the 
robot.  

The AMBR model of analogy-making has been used as a system reasoning core 
and has been further extended. The visual information is handled by modules from the 
IKAROS system and transformed into a symbolic one. AMBR2Robots mediate be-
tween the high-level reasoning part of the system and the modules for perception and 
action. In this paper, we presented the experience of implementing a combination of 
low-level perceptual information and higher-level reasoning in a real robot. The re-
sults seem very promising and would allow us to take advantage of the strong side of 
both approaches, building a genuinely hybrid robot architecture able to deal with 
complex real life tasks 

The architecture was successfully tested in a house-like environment with the tasks 
of finding a hidden object. 

                                                           
2 This pictures are taken from demonstration at the second year  review meeting of the 

MindRACES project.  

1 2

3 4
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6   Future Work 

Our plans for the near future are to further develop the bottom-up perceptual mecha-
nisms, improve the attention mechanism, and extend the model with various types of 
different actions. 

We plan future integration with IKAROS system at the level of bottom-up percep-
tion system. IKAROS is able to create various salience maps on the basis of the  
perceptual input and the goals of the system. AMBR can use these salience maps in 
order to activate various concepts to a different degree. This contextual information 
will influence the retrieval processes to a higher degree.  

The attention mechanism should be connected with the robot camera and particu-
larly, with its gaze. Thus, both the salience maps and the top-down reasoning will 
influence the head-movement of the robot, and in turn, the order of checking the vari-
ous predictions. 

Finally, the repertoire of possible actions that AIBO can do should be expanded. In 
the current version of the model, AIBO is able only to move from its initial position to 
one predefined object. However, it is not yet implemented how it will do this if there 
are obstacles. We plan to implement A-star algorithms in the robot planning system to 
avoid obstacles and to move between rooms. 

Finally, our long-term plans are to develop also learning and emotional mecha-
nisms, as well as testing AIBO’s behavior in more complex situations that include 
social interaction. For instance emotions can control some global parameters of the 
model like the capacity of working memory. The latter could lead to more superficial 
and less consistent analogies but which are done much faster. 

We also plan to develop various mechanisms for ‘task understanding’, e.g. break-
ing up an abstract goal into several smaller sub-goals on the basis of analogy with past 
situations. 

In the current implementation all memorized situations are manually predefined 
and stay static. Learning at different levels must be implemented to account for the 
experiences of the robot and allow the change of old episodes and the addition of new 
episodes in LTM. 

Modeling social interactions including at least two robots is also very important to 
us. For instance one of them will hide the bone, whereas the other one will seek it. 
Both robots will have various anticipations (and possibly meta-anticipations) about 
the behavior of the other one which will give rise to interesting collective behavior. 

Acknowledgments. This work is supported by the Project Mind RACES: from 
Reactive to Anticipatory Cognitive Embodied Systems (Contract No 511931), financed 
by the FP6. We would like to thank Marina Hristova for proofreading the text. 

References 

1. Hofstadter, D.: Analogy as the Core of Cognition. In: Gentner, D., Holyoak, K., Kokinov, 
B. (eds.) The Analogical Mind: Perspectives from Cognitive Science, MIT Press, Cam-
bridge, MA (2001) 

2. Holyoak, K., Gentner, D., Kokinov, B.: The Place of Analogy in Cognition. In: Gentner, 
D., Holyoak, K., Kokinov, B. (eds.) The Analogical Mind: Perspectives from Cognitive 
Science, MIT Press, Cambridge, MA (2001) 



252 K. Kiryazov et al. 

3. Kokinov, B., French, R.: Computational Models of Analogy-Making. In: Lynn Nadel (ed.) 
Encyclopedia of Cognitive Science. London: Macmillan, Nature Publishing Group,  
pp. 113–118 (2002) 

4. Gentner, D.: Structure-mapping: A theoretical framework for analogy. Cognitive Sci-
ence 7, 155–170 (1983) 

5. Falkenhainer, B., Forbus, K., Gentner, D.: The structure mapping engine: Algorithm and 
examples. Artificial Intelligence 41(1), 1–63 (1989) 

6. Forbus, K., Gentner, D., Law, K.: MAC/FAC: A model of similarity-based retrieval. Cog-
nitive Science 19(2), 141–205 (1995) 

7. Holyoak, K., Thagard, P.: Analogical mapping by constraint satisfaction. Cognitive Sci-
ence 13, 295–355 (1989) 

8. Hummel, J., Holyoak, K.: Distributed representation of structure: A theory of analogical 
access and mapping. Psychological Review 104, 427–466 (1997) 

9. Hofstadter, D. and The Fluid Analogies Research Group: Fluid concepts and creative 
analogies. Basic Books, New York (1995) 

10. Mitchell, M.: Analogy-making as Perception: A computer model. MIT Press, Cambridge, 
MA (1993) 

11. French, R.: The Subtlety of Sameness: A theory and computer model of analogy making. 
MIT Press, Cambridge, MA (1995) 

12. Charlmers, D., French, R., Hofstadter, D.: High- Level Perception, Representation, and 
Analogy: A Critique of Artificial Intelligence Methodology. Journal of Experimental and 
Theoretical AI 4(3), 185–211 (1992) 

13. Kokinov, B.: A hybrid model of reasoning by analogy. In: Holyoak, K., Barnden, J. (eds.) 
Advances in connectionist and neural computation theory: Analogical connections, vol. 2, 
pp. 247–318. Ablex, Norwood, NJ (1994a) 

14. Kokinov, B., Petrov, A.: Dynamic Extension of Episode Representation in Analogy-
Making in AMBR. In: Proceedings of the 22nd Annual Conference of the Cognitive Sci-
ence Society. Erlbaum, Hillsdale, NJ (2000) 

15. Kokinov, B., Petrov, A.: Integration of Memory and Reasoning in Analogy-Making: The 
AMBR Model. In: Gentner, D., Holyoak, K., Kokinov, B. (eds.) The Analogical Mind: 
Perspectives from Cognitive Science, MIT Press, Cambridge, MA (2001) 

16. Petrov, A., Kokinov, B.: Processing symbols at variable speed in DUAL: Connectionist 
activation as power supply. In: Proceedings of the Sixteenth International Joint Conference 
on Artificial Intelligence, (IJCAI-99), pp. 846–851. Morgan Kaufman, San Francisco, CA 
(1999) 

17. Kokinov, B.: The DUAL cognitive architecture: A hybrid multi-agent approach. In: Pro-
ceedings of the Eleventh European Conference of Artificial Intelligence, (ECAI-94), John 
Wiley & Sons, London (1994b) 

18. Balkenius, C., Moren, J.: From Isolated Components to Cognitive Systems. ERCIM News, 
No. 53 (2003) 

19. Balkenius, C., Moren, J., Johansson, B.: System-Level Cognitive Modeling with Ikaros. 
Lund University Cognitive Studies, 133 (2007) 

20. Petkov, G., Naydenov, C., Grinberg, M., Kokinov, B.: Building Robots with Analogy-
Based Anticipation. In: Proceedings of the KI 2006, 29th German Conference on Artificial 
Intelligence, Bremen, (in press) (2006) 

21. Duncan, J.: Selective attention and the organization of visual information. Journal of Ex-
perimental Psychology: General 113, 501–517 (1984) 



 The Interplay of Analogy-Making with Active Vision and Motor Control 253 

22. Chalmers, D., French, R., Hofstadter, D.: High-level perception, representation, and anal-
ogy: A critique of artificial intelligence methodology. Journal for Experimental and Theo-
retical Artificial Intelligence 4, 185–211 (1992) 

23. Dacey, D.M.: Circuitry for Color Coding in the Primate Retina. In: Proceedings of the  
National Academy of Sciences, 93, 582–588 (1996) 

24. Hubel, D.H., Wiesel, T.N.: Receptive fields and functional architecture of monkey striate 
cortex. J Physiol 195(1), 215–243 (1968) 

25. Paradiso, M.A., Nakayama, K.: Brightness perception and filling-in. Vision Research 31, 
1221–1236 (1991) 

26. Grossberg, S.: The complementary brain: unifying brain dynamics and modularity. Trends 
in Cognitive Sciences 4, 233–246 (2000) 



An Intrinsic Neuromodulation Model for

Realizing Anticipatory Behavior in Reaching
Movement Under Unexperienced Force Fields

Toshiyuki Kondo1 and Koji Ito2

1 Department of Computer, Information and Communication Sciences,
Tokyo University of Agriculture and Technology,

2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
tkondo@ieee.org

http://www.livingsys.lab.tuat.ac.jp/
2 Department of Computational Intelligence and Systems Science,

Tokyo Institute of Technology,
4259 Nagatsuta, Midori, Yokohama, 226-8502, Japan

ito@dis.titech.ac.jp
http://www.ito.dis.titech.ac.jp/

Abstract. Regardless of complex, unknown, and dynamically-changing
environments, living creatures can recognize situated environments and
behave adaptively in real-time. However, it is impossible to prepare op-
timal motion trajectories with respect to every possible situations in ad-
vance. The key concept for realizing the environment cognition and motor
adaptation is a context-based elicitation of constraints which are canal-
izing well-suited sensorimotor coordination. For this aim, in this study,
we propose a polymorphic neural networks model called CTRNN+NM
(CTRNN with neuromodulatory bias). The proposed model is applied
to two dimensional arm-reaching movement control under various vis-
cous force fields. The parameters of the networks are optimized using
genetic algorithms. Simulation results indicate that the proposed model
inherits high robustness even though it is situated in unexperienced
environments.

1 Introduction

Living creatures are information structuring systems which have enormous sen-
sorimotor degrees of freedom. External environments can be recognized based on
spatiotemporal integration of their sensorimotor information (e.g. vision, tactile,
somatosensory stimulus). Given a task goal in addition to the environment cog-
nition, smooth limb movements are immediately planned and executed in spite of
huge DOF of our musculoskeletal systems [2]. However the detailed mechanisms
of cognition and motor adaptation are still open questions [6,16].

Thus, several computational models for cognition and motor adaptation have
been proposed. Most of them are based on internal model theory in which an
adequate inverse model (i.e. sensorimotor mapping or controller) would be se-
lected according to a prediction derived from forward models (e.g. [22]). In these

M.V. Butz et al. (Eds.): ABiALS 2006, LNAI 4520, pp. 254–266, 2007.
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localist models, a novel pattern can be incrementally learned by allocating an
additional module. But owing to this, they have less ability for dealing with
unknown environments without the additional learning process.

In contrast, recently much attention has been focused on dynamical sys-
tems (or distributed) approach to the cognition and motor adaptation prob-
lem [17,21,1,20,15]. In this approach, the state prediction and motor generation
are represented in accordance with the concept of attractors in dynamical sys-
tems theory.

On the other hand, recent neurophysiology has revealed that those environ-
ment cognitions and real-time adaptations can be observed in real nervous sys-
tems of insects and crustaceans. It is known that a variety of chemical substances
called neuromodulators (NMs) play crucial roles to regulate the dynamic char-
acteristics of the neural networks (e.g. activating/blocking/changing of synaptic
connections) [5,14,7,13].

Even in the case of higher level animals, the ability of environment cognition
and motor adaptation should be influenced by internal/external hormones. It is
widely known that these intrinsic chemical conditions highly affect the anticipa-
tory behaviors of animals. For example, if we have sufficient information about
the situated environment (i.e. forward model of the external world), we can be-
have optimally. Otherwise, we would constrain our redundant musculoskeletal
systems based on the anticipation given by the intrinsic chemical conditions.

Based on the physiological findings, various confectionist models of neuro-
modulation have been proposed [8,19,3,12,11,4,9]. In [11], a polymorphic neural
networks with self reconfigurable ability was proposed, and it was applied to
real robot control. In their work, it was argued that the neuromodulatory neural
networks evolved in a computer simulation can be seamlessly applicable to real
robot control. In [3], the homeostatic networks in which the ability of neural plas-
ticity is the target to be evolved was proposed. In [19], the GasNet model was
proposed, which was the first model that considered the spatiotemporal distrib-
ution of neuromodulators, and reported that it could show highly evolutionary
performance compared with NoGas model.

In this paper, we explore a possible neuronal mechanism of environment cog-
nition and motor adaptation in unknown (i.e. unexperienced) environments. For
this aim, we developed a polymorphic neural networks model called CTRNN+NM
(CTRNN with neuromodulatory bias). The proposed model was applied to two di-
mensional arm-reaching movement control in various viscous curled force fields.
The parameters of the proposed model were optimized using genetic algorithms.
The robustness of the optimized neural controller has been evaluated.

2 Proposed Method

2.1 CTRNN with NM Bias

In this study, a polymorphic neural networks model has been proposed. As
the proposed model is based on a continuous time recurrent neural network
(CTRNN)(e.g. [1]), it is named CTRNN+NM (CTRNN with NM bias).
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NM bias input neurons
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Fig. 1. CTRNN with NM bias

Figure 1 schematically shows the proposed model. The network basically con-
sists of fully-connected hidden neurons, each of which has the following dynamics
(leaky-integrator dynamics):

Ti
dsi(t)

dt
= −si(t) +

Nh
∑

j=1

wijhj(t) +
Ns
∑

k=1

wikIk(t) (1)

hj(t) =
1

1 + exp [− (sj(t) − θj)]
(2)

where si(t) and hi(t) are the internal state and output of the neuron i, re-
spectively. Ns and Nh are the number of sensors and hidden units. Ti is the
time constant of the neuron, wij and wik are the synaptic weights, and θj is
the threshold of the neuron. These parameters ([T , w, θ]) are the target to be
optimized.

As can be seen in the figure, the proposed model has additional bias in-
puts named NM bias, ζi. The characteristics of the CTRNN can be altered by
modulating the NM bias ζi just like RNNPB (recurrent neural networks with
parametric bias) proposed by Tani [20]. Generally, in those models, the crucial
point to be noted is how the bias inputs can be regulated.

2.2 Diffusion of NM

In neurophysiology, self-recursive network modulation is known as “intrinsic
neuromodulation” [13]. In the proposed model, we adopted the self-regulation
method proposed in [11], in which the NM bias is controlled by the network
itself.
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As schematically shown in Figure 2, each hidden neuron has the capability to
diffuse its specific (i.e. genetically-determined) type of NM (λj = {1, 2, · · · , M})
in accordance with its activity and the diffusing function given by Equation 3,
which can also be genetically modified.

ζi(t) = max
j∈{∀λj=i}

[

exp

(

− (hj(t) − μj)
2

2σ2
j

)]

(3)

In this example, the instance hidden neuron (shaded in the figure) can diffuse
NM2 with the concentration ζ2 depending on its activity.
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Fig. 2. Diffusion of NMs

The parameters for NM diffusion ([λ, μ, σ]) are also the target to be optimized.

2.3 Evolution of CTRNN with NM Bias

In this study, the parameters to be optimized (i.e. [T , w, θ, λ, μ, σ]) are
evolutionarily determined by using genetic algorithms.

In the evolutionary process, each parameter is encoded as a real number within
the range [0, 1]. On the contrary, in the decoding process each parameter is
linearly transformed into the correspondingly defined range (Table 1) except
for the diffusing type of NM, which is allocated discrete values with uniform
probability according to the real value of the corresponding gene, e.g. λ = 1 is
allocated if the gene is larger than 0.5, otherwise λ = 2.

In this study, we used tournament selection (# of candidates are two) with an
elitist strategy as the selection mechanism in order to create the candidates in
the next generation. After the selection process, genetic operators, i.e. crossover



258 T. Kondo and K. Ito

Table 1. Parameter range

Time constant: Tj ∈ [0.01, 2.0]
Synaptic weights (intra-neuron): wij ∈ [−5.0, 5.0]
Synaptic weights (sensor neuron): wik ∈ [−5.0, 5.0]
Threshold of neuron: θj ∈ [−1.0, 1.0]
NM type: λ ∈ {1, 2}
NM diffusing function (center): μ ∈ [0.0, 1.0]
NM diffusing function (width): σ ∈ [0.01, 0.1]

Table 2. Simulation conditions

Generations: 100000
Population (elitist strategy): 50
Crossover rate (uniform crossover): 0.5
Mutation rate: 0.04

and mutation are applied to the selected candidates. The crossover operator
selects a pair of parents from the candidates, and uniform crossover is executed
with a certain probability (crossover rate). On the other hand, in the mutation
operation each gene locus of the candidates are simply replaced by a random
real value with a certain probability (mutation rate). The parameters of the
genetic algorithms are listed in Table 2. The individuals are evaluated based on
the optimization criterion given in Section 3.3.

3 Experiments

3.1 Arm-Reaching Movement in Various Force Fields

To investigate the validity of the proposed model, it is applied to two dimensional
arm-reaching movement control in various viscous curled force fields. Figure 3
schematically illustrates the task. As shown, a human arm can be modeled as a
planar two-link manipulator.

The equations of motion of the two link arm are described by:

M (q)q̈ + h(q, q̇) = τ + J(q)T
fEnv (4)

where q, M(q), h(q, q̇), J(q)T are joint angle vector, inertia matrix, Coriolis’
force, Jacobian matrix in joint coordinate, and fEnv is external force in Cartesian
coordinate, respectively.

In this model, the joint torque τ can be derived from activities of antagonist
muscles, and each muscle is contracted based on motor command u which cor-
responds to the output of the CTRNN (cf. Equation 12):
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Fig. 3. Reaching task

τ = GT · diag [F1, F1, F2, F2] · u, (5)

G =
[

0.04 −0.04 0.0 0.0
0.0 0.0 0.025 −0.025

]T

, (6)

Fj = 1 − k(qj − q
(0)
j ) − bq̇j , (7)

where G and F are matrix of the moment arm and the maximum force of each
muscle, respectively. This equation implies that shoulder muscles have higher
gains than elbow.

In this experiments, we can simulate arbitrary external force in the hand coor-
dinate as changes of environments. For instance, fEnv described by Equation 8
is a viscous curled force field (hereafter VF), in which the hand suffers an orthog-
onal force in proportion to the hand velocity Ẋ (see Figure 4). In the study, the
two-link arm dynamics are numerically calculated using open dynamics engine
(ODE) provided by R.Smith [18].

In order to develop robust neural controller which has “how to adapt” instead
of “how to move”, we assumed two different force fields (i.e. fEnv1 and fEnv2)
as the training environments in the evolutionary optimization experiments [10].
Here, fEnv1 is a null field (hereafter NF), in other words n=0.0 in Equation 10).
On the other hand, fEnv2 corresponds to VF, and also n=5.0.

fEnv = BẊ (8)

Ẋ = [ẋ ẏ]T (9)

B =
(

b11 b12

b21 b22

)

= n

(

0.0 −1.0
1.0 0.0

)

(10)
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Fig. 4. Viscous curled force field

3.2 Neural Controller

The sensory inputs to the neural controller is I, and the outputs of the con-
troller is motor command u. In equations 11 and 12, SH , EL, f , and e repre-
sent Shoulder, Elbow, flexor, and extensor, respectively. The other parame-
ters for the CTRNN+NM model used in the following experiments are listed in
Table 3.

I = [qSH qEL τSH τEL ζ1 ζ2]T (11)

u = [uSH
f uSH

e uEL
f uEL

e ]T (12)

Table 3. Parameters for CTRNN+NM

# of sensor neuronsNs: 4
# of hidden neuronsNh: 10
# of NM type: 2

3.3 Evaluation Criteria

The evaluation criteria for the arm-reaching control task are given by the fol-
lowing equations:

E = αE1 + E2, (13)
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E1 =
1
T

∫

T

exp

[

− (Xg − X)T (Xg − X)
2σ2

g

]

dt (14)

E2 =
1
T

∫

T

1
1 + uT u

dt (15)

where X and Xg are hand and target positions, respectively. In the following
experiments, the start position and target position are fixed (Xg = [0.0 0.5]T ).
Therefore, the criterion E1 represents averaged position errors, and E2 indicates
the averaged energy consumptions of muscles. To determine the priority between
the criteria E1 and E2, a scaling coefficient α=10 is used.

4 Results

Because we are interested in the robustness of the proposed CTRNN+NM-based
controller, it will be compared with a normal CTRNN-based controller. As has
been noted, the neural controllers (i.e. CTRNN and CTRNN+NM) were opti-
mized under two environments (i.e. NF(n=0.0) and VF(n=5.0)) using genetic
algorithms with the above mentioned evaluation criteria (cf. Equation 13). To
verify the evolvability of both networks statistically, we executed five runs with
different random seed for each network structure. Figure 5 shows the average
and best performance (i.e. evaluation criterion E) in the final generation. As
can be seen, both neural controllers were optimized at the same level under the
two environments.

After the optimization, the evolved neural controllers were evaluated in the
following four environments: n=0.0, 2.5, 5.0, and 7.5 (cf. Equation 10). Here,
n=0.0 and n=5.0 are the training environments whereas n=2.5 and n=7.5 are
unexperienced (i.e. unknown) environments. Figure 6 (a) and (b) demonstrate
the resultant hand trajectories in the four kinds of viscous curled force fields.
Also Figure 6 (c) and (d) illustrate the resultant hand velocity curves in the four
environments.

Fig. 5. Average and best performance (E) in the final generation
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Fig. 6. Resultant hand trajectories and velocity curves in different size of viscous
curled force fields. Here n=0.0 and n=5.0 are the training environments, in contrast,
n=2.5 and n=7.5 are unexperienced (i.e. unknown) environments. (a,c) In the case of
CTRNN, the neural controller learned different trajectories and velocity curves with
respect to environments, since it has to store different sensorimotor mappings in the
monolithic neural networks. (b,d): On the other hand, CTRNN+NM can recognize the
environmental change via its sensorimotor feedback, and it can appropriately modulate
the sensorimotor mapping so as to keep the optimal trajectory in spite of the changes.

For further investigation of the robustness of the optimized neural controllers,
we measured the performance (i.e. E) of them (i.e. CTRNN and CTRNN+NM)
while the viscous parameters (b12 and b21 in Equation 10) are exhaustively
changed in a range (b12 ∈ [−10.0, 0.0], b21 ∈ [0.0, 10.0]). Figure 7 shows the
results of the exhaustive evaluation experiments.

5 Discussions

In this paper, a possible neuronal mechanism of environment cognition and motor
adaptation in unknown (i.e. unexperienced) environments has been investigated.

Based on the physiological findings, we proposed a polymorphic neural net-
works model with self-reconfigurable feature, called “CTRNN with NM bias.” The
proposed neural networks model was applied to a planar two-link arm-reaching
movement control in various (e.g. partly unexperienced) viscous curled force fields.
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(a) CTRNN

(b) CTRNN+NM

Fig. 7. Robustness of the evolved controllers ((a) CTRNN and (b) CTRNN+NM)
while viscous parameters (b12 and b21) are exhaustively changed. (a) In the case of
CTRNN, the controller shows high robustness against b21, but it is brittle under b12

changes. (b) In contrast, CTRNN+NM demonstrates high robustness against not only
b12, but also b21 (Note that the gradation specifies different range). Especially, the
diagonal line keeps high performance.

As can be seen in Figure 6 (a) and (c), the neural controller based on a normal
CTRNN learned different trajectories and hand velocity curves with respect to
environmental changes. This is because the normal CTRNN has to store them
as different dynamics in a monolithic neural networks.

On the contrary, Figure 6 (b) and (d) indicate that the proposed CTRNN+NM
model can recognize environmental change via its sensorimotor feedback, and it
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can appropriately modulate the sensorimotor mapping so as to keep an optimal
hand velocity curve (i.e. bell-shape) in spite of environmental changes. The cru-
cial point to be noted here is that the diffusing conditions of the NM bias are
dependent on neuron state vectors within the identical neural networks. Thus,
there are self-referential loops with a wide variety of time constants. These mul-
tiple feedback loops would contribute to a real-time adaptation ability through
continuing interactions with infinite environments.

According to verification experiments (Figure 7), the neural controller based
on the CTRNN is specialized to the training environments and it showed brittle-
ness against b12 changes. Because the y-directional component of hand velocity
is dominant in the reaching movements assumed here, less robustness against
b12 is considered fatal compared with b21 sensitivity.

In contrast, the CTRNN+NM demonstrates higher robustness against changes
not only in b12 but also in b21. Especially, the diagonal line keeps high perfor-
mance. This implies that the proposed CTRNN with NM bias model evolved
“adaptation strategy” (i.e. sensorimotor constraints and their elicitation proce-
dure) instead of “sensorimotor mapping” as it is (i.e. an optimal inverse dynam-
ics of the experienced environment). Because it seems that the CTRNN+NM
extracts the dynamic structure of the external environments (fEnv), which has
following form:

B =
(

0 −Γ
Γ 0

)

(16)

Due to these considerations, we confirmed that the proposed model has high
robustness even though it is situated in unexperienced environments. Therefore
the proposed model should be a simple solution to explain the self-referential
adaptation, which is essential to work out the environment cognition and motor
adaptation.

In addition, the condition of the NM bias neurons reflects the contextual in-
teraction between the environments, because the activities are dependent on the
dynamics of internal leaky-integrator neurons. Therefore, the behavior of the
controlled system with unconstrained redundancy should be canalized by the
bias. Even if the controlled system with the proposed network method is located
in unexperienced environments, it would adapt to the situation by modulat-
ing the NM bias itself. Thus, the system is implicitly anticipatory due to the
optimization of its internal network structure with evolutionary optimization
techniques. And, it is explicitly anticipatory due to the recurrent modulatory
neural biases that proved useful for the stabilization of arm reaching movements
in dynamic environments.
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Abstract. This paper presents the first basic principles, implementation
and experimental results of what could be regarded as a new approach to
reinforcement learning, where agents—physical robots interacting with
objects and other agents in the real world—can learn to anticipate re-
wards using their sensory inputs. Our approach does not need discretiza-
tion, notion of events, or classification, and instead of learning rewards for
the different possible actions of an agent in all the situations, we propose
to make agents learn only the main situations worth avoiding and reach-
ing. However, the main focus of our work is not reinforcement learning
as such, but modeling cognitive development on a small autonomous ro-
bot interacting with an “adult” caretaker, typically a human, in the real
world; the control architecture follows a Perception-Action approach in-
corporating a basic homeostatic principle. This interaction occurs in very
close proximity, uses very coarse and limited sensory-motor capabilities,
and affects the “well-being” and affective state of the robot. The type
of anticipatory behavior we are concerned with in this context relates to
both sensory and reward anticipation. We have applied and tested our
model on a real robot.

1 Introduction

A very important problem for autonomous robots is to be able to explore and
learn about their world on their own while interacting with objects and other
agents in it. The use of “rewards” that satisfy survival-related needs (see e.g.,
[9,10]) is a natural approach to this problem.

Related to this view, Reinforcement Learning (RL) aims to make an agent
learn which actions it should perform in order to maximize the acquisition of re-
wards. This learning paradigm is interesting as it permits to “program” agents
easily to make them carry out particular tasks in an efficient way by emit-
ting different signals (reinforcement) according to the relevance of their actions.
Moreover, animals and humans can be very efficient in this type of learning,
such as evidenced for example by the way dogs can be trained, or how rats can
learn to move in a maze in order to find a source of food. Biological agents
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can thus anticipate the reward associated with their actions, and biologically-
inspired learning models aim to contribute to the understanding of how this is
done. However, good models for this type of behavior are complex to design, and
the main difficulty is to identify the cues predicting rewards.

Although the main emphasis of our work is not reinforcement learning, it
presents some commonalities with this approach to learning and can be in-
terpreted in this light. Our work presents a different cognitive system that is
capable of setting its own goals (i.e. sensation it should try to reach) on the
basis of reinforcement, probability, and recency. Our focus is on modeling cog-
nitive development in a small autonomous robot interacting with an “adult”
caretaker—typically a human—in the real world. This interaction occurs in very
close proximity (we could say that, for the most part, it takes place within the
robot’s “personal space”), uses very coarse and limited sensory-motor capabili-
ties, and affects (increases or decreases) the “well-being” of the robot, not only
modifying its current “affective” state but also the memories and goals of the
robot on different time scales.

The architecture we are using follows a Perception-Action approach [13], in
which perception and action form a tightly coupled loop. The type of anticipatory
behavior we are concerned with in this context relates to both sensory and state
anticipation. It is linked to sensory anticipation, as predictions of the “reward”
guide the robot’s sensory processing and what it attends to. It also relates to state
anticipation, since decision making, regarding the action to execute, is led by the
goal of improving or maintaining the internal well-being. Anticipatory behavior
is triggered by taking into account simple “expectations” that are grounded in
the remembered affective effects that perception-action couplings had on the
“well-being” of the model. The main interest of our work is the development
of a system that is capable to autonomously form “desired sensations”, that is,
goals in continuous spaces (although not addressed herein, the mechanism may
also be extended to discrete spaces.

The remainder of the paper is structured as follows. In Section 2 we briefly
describe the scenario that sets the framework for our work—the type of problems
we are addressing and the robotic architecture we are using. Section 3 presents
the main ideas of classical approaches of reinforcement learning and discusses the
problems raised by them, particularly those having to do with their arbitrary
discretization of the environment and the use of computational resources. In
Section 4 we propose a new architecture able to handle these problems and
present the results of experiments we have carried out on a real robot. Finally,
Section 5 draws some conclusions and perspectives to continue this work.

2 The Context of Our Work: Scenario and Architecture

The scenario in which we are working focuses on modeling the development of
attachment bonds between a robot and an adult or expert agent—typically a
human, although it could also be another, more “knowledgeable” robot—which
acts as its caretaker and with the help of whom it can safely satisfy its needs,
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Fig. 1. Robot used in the experiments

perform tasks, and learn how to interact with the environment and what the
important things are.

Attachment bonds develop naturally in animals and humans, but how can they
originate and develop in robots? Why would a robot want to interact with other
robots and humans and what would make it like such interactions? To bootstrap
attachment bonds and the affective interactions that stem from them, we previ-
ously took inspiration from a naturally occurring imprinting phenomenon (see
[3], [4]). Imprinting is a phenomenon in which many animals (particularly birds
and mammals) form special attachment bonds with objects to which they are
exposed to very early in life. Imprinting is a very important mechanism favoring
adaptation and learning within the developmental process, in particular filial
imprinting, in which the imprinting object is treated as a parent, giving rise to
affiliated behaviors such as approaching and following. Such behaviors are highly
beneficial to very young animals and humans who still cannot act autonomously
in the world, and provide a basis to obtain needed resources and security, for
social facilitation and learning (e.g., young animals encounter new situations and
learn new things to which they would not be exposed if they were not following
their caretakers around), and for emotional development (e.g., by matching the
emotional state of the caretaker one can learn appropriate emotional and be-
havioral reactions to different types of situations). Imprinting could provide the
same advantages to an autonomous robot having to inhabit a dynamic, unknown,
and social environment.

To implement this scenario, we have used a Perception-Action (PerAc) archi-
tecture implemented and tested in a Koala robot (k-team.com/robots/koala, see
Figure 1). The PerAc approach is rooted in psychology [15] and in robotics [13],
and postulates that perception and action are tightly coupled and encoded at
the same level. Perception-action loops can be considered in terms of homeosta-
tic control, which leads to the hypothesis that behavior is executed to correct
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perceptual errors. Actions that allow the correction of different perceptual errors
are selected on the grounds of sensorimotor associations, which can be learned
or hard-coded in the architecture of the robot. According to this view, action is
thus executed as a “side-effect” of wanting to achieve, improve, or correct some
perception and, in the case of imprinting, the robot “approaches”, “follows”
or “avoids” the imprinted object as it moves around. Figure 2 summarizes the
PerAc architecture we have used to model imprinting—we refer the reader to [8]
for details of the architecture and the experiments we carried out to test it. We
used two types of imprinting objects that produced equally satisfactory results:
a human and a cardboard box. To detect and learn about the imprinting object,
the only feature that the robot used was distance, as measured by infrared sen-
sors located at its front. With our architecture, the robot can learn, memorize,
and retrieve at various time scales (see [8]) different “positive” and “negative”
sensations produced during environmental interactions. The sensations are re-
trieved based on the effects they had on the internal well-being or comfort of the
robot.

The problem addressed in this paper concerns solely the autonomous learning
of goals (desired sensations in our case). However, from a developmental per-
spective imprinting is only adaptive at an early time in life, and young animals,
humans, and robots, must sooner or later start trying other behaviors, such as
exploring the world on their own and learning new things and their relevance,
exploiting knowledge and skills already acquired, imitating what others do and,
most importantly, making decisions to switch among all those behaviors in an
adaptive way. We thus extended the previous PerAc architecture to give rise to
and switch among all these behaviors depending on the affective state of the ro-
bot. To do so, we use the notion of comfort in terms of satisfaction of parameters
to model the robot’s internal needs as the key mechanism that modulates the
underlying basic architecture—we refer the interested reader to [5] for details.

3 Relation to Reinforcement Learning

Although our model and work are not explicitly about Reinforcement Learning
(RL) proper, it can be regarded in the light of this learning paradigm, as has
been pointed out to us, notably through the relation that our notion of “comfort”
bears to the use of “rewards” in RL. Our work presents a different cognitive
system that is capable of setting its own goals (i.e. sensations it should try to
reach) on the basis of reinforcement, probability, and recency.

3.1 Classical Reinforcement Learning

The temporal-difference model [18] is a very common and efficient reinforcement
learning method. Its principle is to discretize the inputs (from the sensors and
the internal states of an agent) in order to obtain a finite number of possible
states (inputs).

The expected reinforcement for each state is evaluated using the actual re-
inforcement of the state in addition to the reinforcement expected in states
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Fig. 2. Architecture used to model imprinting. The gray area highlights the problem
addressed in this paper.

immediately accessible. The agent then acts in order to reach the states maxi-
mizing the expected reinforcement. Even if the convergence of the algorithm is
proved, learning is very slow because the agent needs to try each state several
times, and it strongly depends on the discretization used, which can lead to a
huge number of different states. It is therefore also very demanding in terms of
memory, since it needs to be able to store all the expected reinforcements for
each possible state.

Q-learning [19] uses similar principles but it works even if the agent does not
know which action to execute in order to reach a given state. The agent learns
the expected reinforcement for each possible state-action couple. This increases
again the time of learning because there are many more possibilities to explore,
and the quantity of memory needed is multiplied by the number of different
possible actions.

3.2 The Problem of Discretization

In artificial intelligence, numerous powerful algorithms have been designed to
learn, anticipate and decide. However, they are often inappropriate when applied
to robots in the real world, particularly if the robots are not pre-programmed
to detect specific stimuli. For example, many models of classical or instrumental
conditioning need to predefine the set of possible stimuli to consider. Information
theory [11] provides powerful tools to statistically measure the temporal correla-
tion between events and anticipate them. However, this approach also relies on
discretization, and the problem is again to define the set of events by discretizing
the world.

Discretization can be adaptive, for example by grouping together events that
carry the same predictive information. To do this, we can use classification
algorithms like the k-mean, Kohonen’s maps, Estimation-Maximization algo-
rithm, etc. (see [7]). Many of these algorithms need strong assumptions on the
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distribution of classes and the discretization needs to be arbitrarily or randomly
initialized, so that the quality of the learning process depends on random initial-
izations. When developing the Q-learning algorithm, Watkins was aware of the
difficulty to cope with continuity: “To avoid the complications of systems which
have continuous state-spaces, continuous action sets, or which operate in contin-
uous time, I will consider only finite, discrete-time Markov decision processes”
[19, page 38]. Even after the discretization is done, the algorithm converges quite
slowly because it needs to try the different possible states several times in order
to statistically estimate the reinforcement that can be expected for each one.
Once the reinforcement can be reliably anticipated for each state, the agent can
act in order to reach the state with the highest expected reinforcement.

These approaches are very powerful when they are used in simulation, since
the environment is often discrete (e.g. a grid where the agent is moving) and
it is easy to make an agent try different situations a large number of times.
They can be well adapted to robotics when the elements of the environment are
predefined, and there are obvious salient cues that the robot can consider as
classes of events (e.g. salient color or pattern).

However, in the case of robots in real environments without specific features,
the robots have to find by themselves the cues predicting rewards. These cues
are not necessarily salient, and can for example be a specific light intensity,
a range of sound frequencies or a specific position, rather than binary signals
associated with the presence or absence of light, sound, shape, etc, as is usually
the case in discretized environments. Humans and animals are very efficient at
discriminating similar stimuli if they have distinctive predictive values. In this
case, using the salience of sensations can be misleading, since for example a light
being turned on or off might not have any predictive value, whereas a small
change in the intensity of a light at a specific level can be significant.

Most algorithms involving discretization are not able to cope efficiently with
this kind of situation because they waste vast amounts of memory storing the
predictions of expected rewards for many different values of the sensory input,
even though most of them are not relevant or are redundant. Moreover, there is
usually no difference between the effect of a small reward obtained immediately
and the promise of an important reward to be obtained later. However, in some
cases it is very important to make such a distinction: for example, if a robot is
about to “die” it should go where it is sure and quickly find at least a small
reward (e.g. partially satisfy a need by consuming a small resource), whereas it
should try to maximize the long-term reward when it has more time (e.g. go
to a farther location with larger quantities of that resource and where it could
satisfy that need until satiated).

4 Our Approach to Learning

As there is no free lunch [20], there is no general algorithm that, on average, per-
forms better than any other one without further and more suitable assumptions
about the structure of the environment. We make and use assumptions about
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Fig. 3. Using the distance to a landmark detected by its distance sensor, the robot
must be able to anticipate the presence of the reward on its side

the world in order to improve our architecture. In our work, we assume that
the world is continuous since physical robots acting in the real world have to
deal with a continuous, rather than discrete, environment: there are continuous
variations of rewards with continuous variations of sensory inputs and the re-
lations between rewards and sensory inputs are consistent. Consequently, if the
agent—a robot in our case—receives a high reward for a specific sensory input
(sensation), it can anticipate a good reward for other close sensations. Therefore,
instead of estimating the expected reward for all the many possible states and
trying to reach the state anticipating the maximum reward, we propose to make
the robot memorize only the sensation associated with the best reward, and we
will call it desired sensation. As previously mentioned, our robot can memorize
and recall desired sensations at different time scales, depending on its affective
state (see [8]). However, for the sake of clarity, in this paper we focus only on
one time scale.

4.1 Desired Sensations

To illustrate the various possibilities, we consider a continuous environment—
our usual environment in which a robot interacts with a human and objects in
the real world—and we use sets of real variables: S = {s1, s2, . . .} for sensory
input (light intensity, pressure, distance to obstacles, etc.), A = {a1, a2, . . .} for
actions (velocity, rotation angle, etc.) and a real variable r to represent immedi-
ate reward. To simplify, we focus on one dimension of sensory input (S = {s})
and we consider the problem depicted in Figure 3, where a robot can move only
forwards and backwards. It receives the distance to a landmark (e.g. a caretaker)
as sensory input (S) and it receives and must be able to anticipate the presence
of a reward (e.g. a source of energy) located at its side (r).

In order to make the robot learn the sensation associated with the highest
reward, we could simply set the desired sensation (Ŝ) to be equal to the cur-
rent sensation (S), but only when the reward (r) is higher than the highest
remembered reward (r̂) (see also Figure 4).

if r > r̂ then
{

r̂ = r

Ŝ = S
(1)
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Fig. 4. Desired sensation depending on the reward associated with the sensation

Fig. 5. Impossibility of learning a local maximum

The problem with this equation is that if the reward is very high once and is
never high again, or if the sensation is very hard to obtain, the desired sensation
learned would be useless. Moreover, the robot would not be able to learn more
than one sensation associated with a reward. Actually, even if it memorizes
another desired sensation associated with a slightly smaller reward, the principle
of continuity makes this desired sensation infinitely close to the previous one
learned as we can see in Figure 5. Therefore, to be reliable and robust the robot
should not only memorize the sensations associated with the highest reward, but
also the sensations associated with a positive reward at a high probability.

We have shown in Equation 1 how to memorize the sensation associated with
the maximum reward. Equation 2 shows how the robot could compute the most
probable sensation (S) as the average of all sensations at each point in time (t).

St =
S0 + . . . + St

t + 1
(2)

However, to implement this the robot would need to store all the sensations
at all the times, which is not only biologically implausible but also virtually
impossible. A more plausible and realistic approach would involve memorizing
the current average sensation, which summarizes the “history” of the robot’s
sensations over its lifetime, and also avoids the above problem. This amounts to



Anticipating Rewards in Continuous Time and Space 275

the use of an incremental rule such as the one shown in Equation 3, which is
similar to the learning rule of Rescorla and Wagner [16], used for conditioning.

St =
S0 + . . . + St−1 + St

t + 1

=
S0+...+St−1

t × t + St

t + 1

=
St−1 × t + St

t + 1

=
St−1 × (t + 1) − St−1 + St

t + 1

= St−1 +
1

t + 1
(

St − St−1

)

= St−1 + ηt.
(

St − St−1

)

(3)

The learning rate is ηt = 1
�Tt

, and in this case we only need a variable that

increases with time (˜Tt = ˜Tt−1 + 1; ˜T0 = 1) and another variable to memorize
the current average sensation (S). The complexity of the calculus is very low
and biologically plausible.

Now the agent can learn two extreme cases: the sensation associated with the
best reward (Ŝ), and the average sensation (S), regardless what the reward is.

It is nevertheless not very useful to learn only those extreme cases. The first
one indicates the sensation associated with the best reward, but this memory
might not be reliable as it may have happened only once. The second case indi-
cates which are the sensations that happen more often, but this does not mean
that they are good things for the robot, only that they appear often in its en-
vironment. However, all the intermediate cases are very important because in
order to maximize the cumulative reward, the agent should balance the effect of
the reward and the effect of the probability. If a robot urgently needs a reward
(for example consuming a resource to avoid dying), it should focus on the sensa-
tions promising small rewards with high probabilities (easy to obtain), but if the
situation is not urgent, it should focus on sensations promising higher rewards
in order to maximize the cumulative reward and also to learn more about these
high rewards. The robot must thus be able to memorize a range of desired sen-
sations, from those obtained often but predicting small rewards, to those rarely
obtained but predicting high reward.

In [4] we have shown how a robot can learn the average “best” sensation
by weighting each sensation with the associated reward 1 simply by modifying
the function of the learning rate ηt with ηt = rt

�rt
with r̃t = r̃t−1 + rt; r̃0 = r0.

However, the probability of the robot obtaining the reward did not reflect the
importance of the reward. Moreover, past experiences with highly positive and
1 In [4] the desired sensations were called “desired perceptions”, and what we call here

“reward”, to follow the more usual terminology in machine learning, corresponds to
the notion of comfort used there and in other related papers.
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negative rewards would have the same consequences as past experiences with an
average constant reward.

We propose in Equation 4 a solution for learning different desired sensations
(Sk) where the relation between the importance of the reward and its probability
is controlled by the parameter k:

Sk
t =

ek.r0 .S0 + . . . + ek.rt .St

ek.r0 + . . . + ek.rt

= Sk
t−1 +

ek.rt

ek.r0 + . . . + ek.rt
.
(

St − Sk
t−1

)

(4)

For extreme values of k (namely 0 and +∞) we obtain, respectively, the same
results as in Equation 2 because e0 = 1, and Equation 1 because:

lim
k→+∞

ek.r0 .S0 + . . . + ek.rt .St

ek.r0 + . . . + ek.rt
= Sargmax(r0,...,rt)

Another advantage of this formula is that only the variation of the reward—
i.e. of the comfort in our model—and not its absolute value, influences learning;
therefore, we do not need to define a priori which level of reward value has to be
considered a good reward. We can actually add any constant (c) to the reward
without changing the learning rate:

ηk
t =

ek.(rt+c)

ek.r0+k.c + . . . + ek.rt+k.c

=
ek.rt .ek.c

ek.r0 .ek.c + . . . + ek.rt .ek.c

=
ek.rt

ek.r0 + . . . + ek.rt

=
ek.rt

˜rk
t

(5)

with ˜rk
t = ˜rk

t−1 + ek.rt .

4.2 Avoided Sensations

Our previous work had only taken into account desired sensations. We have
shown how a robot can learn sensations predicting rewards, but it can also be
useful to learn sensations predicting danger or negative reward (punishment) in
order to avoid them. With our model, such negative sensations are easy to com-
pute as they are equal to the sensations Sk

t for negative values of the parameter
k. We will call them avoided sensations.

The main problem when computing the desired sensations is that they can
be between two local maxima and therefore predict a reward where there is no
reward, i.e. a “false positive”, see Figure 6.
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Fig. 6. Wrong desired sensation, resulting from the average of multiple local maxima

Fig. 7. Oscillation of a desired sensation between local maxima (γ < 1)

The solution is to make the robot partly forget the past and consequently have
its desired sensations moving among local maxima but not staying in between.

In [4] we raised the learning rate ηtk to the power of γ, with γ taking values
between 0 and 1, in order to make the robot continuously learn and partly forget
the effect of the old experiences:

Sk,γ
t = Sk,γ

t−1 +

(

ek.rt

˜rk
t

)γ
(

St − Sk,γ
t−1

)

(6)

The smaller γ is, the higher the learning rate and the faster the desired sen-
sation changes; therefore, the desired sensation oscillates between local maxima
depending on the exploration of the robot, as depicted in Figure 7.

The main problem with partly forgetting the past is that the robot will not be
able to remember a sensation associated with a good reward if it did not experi-
ence it recently. However, desired sensations oscillate between local maxima, and
avoided sensations oscillate between local minima; therefore, if the robot mem-
orizes the extreme values (̂S) of the successive desired and avoided sensations
(see Figure 8 desired sensation), it can remember two (minimum and maximum
valued) sensations anticipating a positive reward and two sensations anticipating
a negative reward (punishment). In the conclusions we discuss how to deal with
the memorization of an unlimited number of sensations.
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Fig. 8. The desired sensation strictly oscillates between two rewards

Fig. 9. Extreme values of a desired sensation (k > 0). Values for l are l < 0 at the
leftmost extreme, and l > 0 at the rightmost extreme.

Fig. 10. Extreme values of an avoided sensation (k < 0). Values for l are l < 0 at the
leftmost extreme, and l > 0 at the rightmost extreme.

In order to remember these extreme values, we use an equation similar to (4)
but this time the robot memorizes the desired sensations (Sk,γ) with extreme val-
ues of the sensations themselves, instead of memorizing the sensations associated
with extreme rewards! The weight in the exponential function is therefore the
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desired sensation itself multiplied by the parameter l, which determines whether
the agent memorizes the minimum (l < 0) or the maximum (l > 0) value of the
desired sensation (see Figure 9 and Figure 10).

We can see in Equation 7 how these extreme values are defined with ˜

Sk,γ,l
t =

el.Sk,γ
0 + . . . + el.Sk,γ

t :

̂

Sk,γ,l
t = ̂

Sk,γ,l
t−1 +

el.Sk,γ
t

˜

Sk,γ,l
t

.

(

Sk,γ
t − ̂

Sk,γ,l
t−1

)

(7)

5 Experiments and Results

We have tested this algorithm on a Koala robot that had to memorize sensa-
tions associated with reward or punishment. The robot could move forward and
backwards—towards or away from a “caretaker”2 that was also used as a land-
mark. The experimental setup is depicted in Figure 8. The sensory input (S)
used was the frontal distance sensor, which measures the distance of the care-
taker in front. The right distance sensor was used to detect rewards (r) in the
form of an object located in close proximity within the range of its right sensor
that provides comfort to the robot, that is, positive reward r. Figure 11 shows
the reward obtained by the robot as a function of the sensation of distance to
the landmark (e.g. the caretaker). As we are only interested here in the learning
system of the robot, we make (it is hard-coded) the robot alternatively move
forward and backward, and we observe how it creates its desired sensations (i.e.
its goals), shown in Figure 12.

In Figure 11, we can observe how the desired sensations of the robot evolve
over time and the experiences of the robot. We compute the desired sensation
as (Sk,γ with k = +400; γ = 0.9), and the avoided sensation as (Sk,γ with
k = −400; γ = 0.9). If k or γ differ, the curves are more or less smooth and
qualitatively similar.

We present the results in Figure 12. The desired sensation oscillates between
sensations 75 and 425, which correspond to the presence of the reward (object to
the right of the robot). The avoided sensation oscillates between the two rewards
at the beginning and then around them, which indicates that the robot should
avoid being between the objects providing reward or behind them.

Desired and avoided sensations are constantly changing; therefore, the robot
cannot remember anything for a long time. However, the next step for the robot
is to memorize the extremes of these desired and avoided sensations. We present
in Figure 13 the evolution of these extremes ( ̂Sk,γ,l) for the same values of k and
γ and −0.1 and 0.1 for l (l is small because the amplitude of the sensation is
high); however, this does not have a strong effect on the qualitative result. The
extremes of the avoided sensations quickly converge (almost at the first cycle)
to the sensations corresponding to the rewards on the side (the reward 75 and
2 We used different types of stimuli as caretaker, notably humans and cardboard boxes

that could be static or moved by humans.
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Fig. 11. Value of the reward (r) as a function of the sensation (S). We see that the
maximum reward is for sensations of about 75 and 425 (the unit is not important),
which correspond to the presence of an object on the right of the robot.

Fig. 12. Evolution of the sensation (St) of the robot in dotted line, the desired sensation
(Sk,γ with k = +400; γ = 0.9) in solid line and the avoided sensation in dashed line
(Sk,γ with k = −400; γ = 0.9). The desired sensation oscillates between sensations
75 and 425, which correspond to the presence of the reward. The avoided sensation
oscillates between the two rewards at the beginning and then around them, indicating
that the robot should avoid being between or around the objects providing the rewards.

425). The extremes of the avoided sensations correspond at the beginning to the
sensation obtained when the robot is located between the rewards, and at the
end to the sensation obtained when it is located behind the rewards. This means
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Fig. 13. Evolution of the extreme values (Sk,γ,l) of desired and avoided sensations
using the same parameter values as previously for k and γ, but with a value of 0.1 for
l in the curves at the top, and −0.1 in the curves at the bottom. The extremes of the
desired sensations are in solid line and the extremes of the avoided sensations are in
dashed line.

that the robot should avoid staying between or behind the objects providing
rewards, since in those two cases no reward is obtained.

6 Conclusion and Perspectives

We have presented the first basic principles and implementation of what could
be regarded as a new approach to reinforcement learning, where agents—robots
interacting with objects and other agents in the (continuous) real world—can
learn to anticipate rewards using their sensory inputs.

Doya, for example, proposed approximating the reward function in order to
process reinforcement learning in continuous time and space [12], but we argue
that it is enough to only memorize where the rewards are even if the robots
can not know what these rewards are. The advantages of our approach are that
the robot memorizes only the relevant information and does not require much
memory or computation time. It does not use notions of events or discretization,
and this strongly reduces the effects of a priori choices and decreases learning
time. Our model also requires virtually no a priori knowledge about the world,
consisting of a couple of parameters that need to be set: k to balance the relation
between the importance of the reward’s value and its probability, and γ and l
to vary the average speed (adaptability) of learning. However, these parameters
only have quantitative effects in our case, and we have already proposed in [4]
ways to modulate such parameters as a function of the affective state (see also
e.g. [1,2] for related work using affective modulation).

Moreover, our approach permits learning with only one presentation of the
reward, which is very useful in robotics where exploration is expensive—not
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Fig. 14. Using successive detections of desired and avoided rewards, the robot could
anticipate many rewards

only computationally but also in terms of the potential threats the robot can
encounter while exploring, use of its batteries, and disadvantages that neglecting
other activities the robot has to perform might bring to its performance and
survival. Autonomous robots thus need to decide whether they should explore
their environment or exploit their current knowledge about it in order to use
what they learn efficiently. A number of strategies to achieve this have been
proposed, e.g., [17,14,6].

In this paper we have shown how a robot can predict the presence of two
rewards only; however, we can extend our approach to have the robot learn
many more rewards looking for the two extreme desired sensations in between
two extreme avoided sensations and so on (see Figure 14).

We are also currently working to expand this algorithm to more dimensions,
so that the robot can learn about and recognize the landmark (caretaker) and
the objects providing reward using different dimensions and sensory modalities.
We will use these more elaborate learned desired and avoided sensations in a
complete architecture making our robot act in order to respectively reach and
avoid these sensations. For example, it will move forward when the closest desired
sensation is to be closer to the landmark (or caretaker), and move backward
when being closer to the landmark is the closest avoided sensation. External
anticipatory mechanisms can be useful in helping our learning system to focus
on unexpected or surprising situations, and therefore on what is likely to be
the most relevant information. Moreover, it may be useful to cluster desired
sensations with the context, or to treat them at a more abstract level in order
to elaborate plans.
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8. Cañamero, L., Blanchard, A., Nadel, J.: Attachment Bonds for Human-Like Ro-
bots. International Journal of Humanoid Robotics 3(3), 301–320 (2006)
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Abstract. The role of expectation in listening and composing music
has drawn much attention in music cognition since about half a century
ago. In this paper, we provide a first attempt to model some aspects
of musical expectation specifically pertained to short-time and working
memories, in an anticipatory framework. In our proposition anticipation
is the mental realization of possible predicted actions and their effect on
the perception of the world at an instant in time. We demonstrate the
model in applications to automatic improvisation and style imitation.
The proposed model, based on cognitive foundations of musical expec-
tation, is an active model using reinforcement learning techniques with
multiple agents that learn competitively and in collaboration. We show
that compared to similar models, this anticipatory framework needs lit-
tle training data and demonstrates complex musical behavior such as
long-term planning and formal shapes as a result of the anticipatory
architecture. We provide sample results and discuss further research.

1 Introduction

About half a century ago, the musicologist Leonard Meyer drew attention to
the importance of expectation in the listener’s experience of music. He argued
that the principal emotional content of music arises through the composer’s
choreographing of expectation [18]. Despite this significance, musical expecta-
tion has not enjoyed its cognitive importance in existing computational systems,
which mostly favor prediction-driven architectures without enough cognitive con-
straints. In this paper, we will introduce a first attempt towards modeling musical
systems with regards to the psychology of musical expectations. For modeling
these constraints, we use anticipatory systems where several accounts of musi-
cal expectation are modeled explicitly. We claim that such cognitive modeling
of music constitutes complex musical behavior such as long-term planning and
generation of learned formal shapes. Moreover, we will show that the anticipa-
tory approach greatly reduces the dimensions of learning and allows satisfactory
performance when little data is available.

M.V. Butz et al. (Eds.): ABiALS 2006, LNAI 4520, pp. 285–306, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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We start the paper by studying the cognitive foundations of music as the core
inspiration for the proposed architecture. In Section 2, we discuss important
aspects of the psychology of music expectation such as auditory learning, mental
representations of expectations and auditory memory. Our hope is that such
studies create motivations for modeling complex musical behavior as proposed.

We demonstrate our system in applications to automatic music improvisation
and style imitation as a direct way to showcase complex musical behavior. Mu-
sical style modeling consists of building a computational representation of the
musical data that captures important stylistic features. Considering symbolic
representations of musical data, such as musical notes, we are interested in con-
structing a mathematical model, such as a set of stochastic rules, that allows
for the creation of new musical improvisations by means of intuitive interaction
between human musicians or music scores and a machine. In Section 3, we study
some of the important approaches in the literature for the given problem. We
will be looking at these systems from two perspectives: that of representation
and memory underlying the challenge of dimensionality of music information,
and that of modeling addressing learning and grasping stylistic features.

Section 4 provides background on anticipatory modeling used in the pro-
posed system. It also contains the main idea behind our anticipatory modeling
of musical expectation. Our design explicitly addresses two types of anticipatory
models introduced in [4]: state anticipation and payoff anticipation. In this work,
we tend to model two aspects of musical expectations, namely dynamic adaptive
and conscious expectations as discussed in Section 2.

The proposed architecture features reinforcement learning as an interactive
module between the system and an outside environment and addresses adaptive
behavior in auditory learning. In general, our model is a modular system that
consists of three main modules: memory, guides and learning. The memory mod-
ule serves compact representations and future access to music data. Guides are
reinforcement signals from the environment to the system or from previous in-
stances of the system onto itself that guide the learning module to relevant places
in memory for updates and learning. The learning module captures stochastic
behavior and planning through interactive learning. In Section 5, we overview
the general architecture and each module will then be presented separately in
sections 6 to 8. After the design, we demonstrate some generation results in Sec-
tion 9. Results show evidence of long-term planning achieved through learning
as an outcome of anticipatory modeling of working memory in music cognition.
Furthermore, the system requires much less training data compared to similar
systems, again due to the proposed anticipatory framework. We end this chap-
ter by discussing the complexity of the proposed anticipatory architecture and
future works.

2 Cognitive Foundations

The core foundations of the proposed model in this chapter are based on the
psychology of musical expectation. In his recent book, David Huron vastly studies
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various aspects of music expectation [15]. Here, we highlight important aspects
of his work along other cognitive facts pertinent to our proposal.

2.1 Auditory Learning

There is extensive evidence for the learning aspect of musical expectation
through auditory learning and in opposition to innate aspects of these behaviors.
One of the most important discoveries in auditory learning, has been that listen-
ers are sensitive to the probabilities of different sound events and patterns, and
these probabilities are used to form expectations about the future. An important
research landmark in favor of this claim is the work in [24]. On the other hand,
the brain does not store sounds. Instead, it interprets, distills and represent
sounds. It is suggested that the brain uses a combination of several underlying
presentations for musical attributes [15]. A good mental representation would
be one that captures or approximates some useful organizational property of an
animal’s actual environment.

But how does the brain know which representation to use? Huron suggests
that expectation plays a major role [15]. There is good evidence for a system
of rewards and punishments, which evaluates the accuracy of our unconscious
predictions about the world. Our mental representations are being perpetually
tested by their ability to usefully predict ensuing events, suggesting that compet-
ing and concurrent representations may be the norm in mental functioning [15].
This view is strongly supported by the neural Darwinism theory of Edelman
[11]. According to this theory, representations compete with each other accord-
ing to Darwinian principles applied to neural selection. Such neural competition
is possible only if more than one representation exists in the brain. In treating
different representations and their expectation, each listener will have a distinc-
tive listening history in which some representations have proved more successful
than others.

2.2 Mental Representations of Expectation

According to Huron, memory does not serve for recall but for preparation. In
chapter 12 of his book, Huron tries to address the structure rather than content
of mental representations and introduces a taxonomy for auditory memory that
constitutes at least four sources of musical expectations as follows:

Veridical Expectation: Episodic Memory is an explicit memory and a sort
of autobiographical memory that holds specific historical events from our
past. Episodic memory is easily distorted and in fact, the distortion occurs
through repeated retelling or recollection. Most importantly, our memories
for familiar musical works are episodic memories that have lost most of
their autobiographical history while retaining their accuracy. This sense of
familiarity or expectation of familiar works is refereed to, by Huron and
Bharucha, as Veridical expectation.

Schematic Expectation: Schematic expectation is associated with Seman-
tic memory; another type of explicit memory which holds only declarative
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knowledge and is distinguished from episodic by the fact that it does not
associate the knowledge to any historical past but as stand-alone knowledge.
This kind of memory is most active in first-exposure listening (when we do
not know the piece) where our past observations and learned schemas are
generalized. These sort of auditory generalizations are reminiscent of the
learned categories characteristic of semantic memory.

Dynamic Adaptive Expectation: Expectation associated with Short-term
memory is Dynamic Adaptive Expectation. It occurs when events do not
conform with expectations that have been formed in the course of listening
to the work itself. These expectations are updated in realtime especially dur-
ing exposure to a novel auditory experience such as hearing a musical work
for the first time.

Conscious Expectation: All the three types of expectations discussed above
are unconscious in origin. Another important class of expectations arise from
conscious reflection and prediction. Such explicit knowledge might come from
external sources of information (such as program notes) or as part of a
listener’s musical expertise, or even arise dynamically while listening to a
novel musical work. An argument for this last type of expectation, and most
important for this work, is the perception of musical form during listening.
This form of expectation comes from the mental desktop, which psychologists
refer to as working memory.

All these expectation schemes operate concurrently and in parallel. Schematic
expectations are omnipresent in all of our listening experiences. When listening
to a familiar work, the dynamic-adaptive system remains at work – even though
the veridical expectation anticipates exactly what to expect. Similarly, when lis-
tening for the first time to an unfamiliar work, the veridical system is constantly
searching for a match with familiar works. The veridical system is essential for
catching the rare moments of musical quotation or allusion. In short, an antici-
patory effect such as surprise is a result of various types of interactions among
these lower-level components of music expectation in cognition. For a thorough
discussion see [15].

An ideal anticipatory model of music cognition should address all four types of
expectations addressed above. However, for this work as a first attempt, we focus
on dynamic adaptive expectation and conscious expectation and will address the
rest in future works. With respect to conscious expectations, we are interested
in expectations that arise dynamically while listening to a “new” musical work.

2.3 Memory and Reinforcement

The role of memory in the brain for music might hint to us how musical repre-
sentations are stored and how they interact within themselves in the brain and
with an outside environment. In the previous section we looked at the represen-
tational aspects of memory with regard to music expectation and here we briefly
introduce the interactive level. This interactive level should guide us on how we
can model memory access and learning for our purpose.
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Snyder in [26] proposes an auditory model of memory that consists of several
stages, from which we consider feature extraction, Long Term Memory (LTM)
and Short Term Memory (STM). Feature extraction is a sort of perceptual cat-
egorization and grouping of data. Events processed at this stage can activate
those parts of LTM evoked by similar events in the past. Activated LTM at
this point forms a context for current awareness. This context takes the form of
expectations that can influence the direction that current consciousness takes.
Memory also acts like a filter determining which aspects of our environment
we are aware of at a given time. LTM that reaches higher states of activation
can then persist as current STM. Information in STM might be repeated or
rehearsed. This rehearsal greatly reinforces the chances that the information be-
ing circulated in STM will cause modifications in permanent LTM. We consider
both activation and reinforcement processes in our design of guide and learning
modules.

Besides this unconscious level of reinforcement, like sensory representations,
conscious thinking also requires some guidance and feedback to ensure that
thinking remains biologically adaptive [15]. Useful thinking needs to be rewarded
and encouraged, while useless thinking needs to be suppressed or discouraged.

3 Background on Stochastic Music Modeling

In this section, we look at several prior attempts at modeling music signals either
for generation (automatic improvisation or style imitation) or modeling long-
term dependencies observed in music time series. In this work, we are interested
in automatic systems where there are no rules or a priori information abducted
into the system by experts and everything is learned through the life-span of
the system. Moreover, we are interested in systems which address directly the
complexity of music signals as will be clear shortly.

Earlier works on style modeling employed information theoretical methods
inspired by universal prediction. In many respects, these works build upon a
long musical tradition of statistical modeling that began in the 50s with Hiller
and Isaacson’s “Illiac Suite” [14] and Xenakis using Markov chains and stochastic
processes for musical composition [29]. In what follows, we will review some of
the state-of-the-art systems proposed in the literature from two standpoints:
musical representation and stochastic modeling.

3.1 Musical Representation

Music information has a natural componential and sequential structure. While
sequential models have been extensively studied in the literature, componential
or multiple-attribute models still remain a challenge due to complexity and ex-
plosion in the number of free parameters of the system. Therefore, a significant
challenge faced by music signals arises from the need to simultaneously represent
and process many attributes of music information. The ability (or inability) of a
system to handle this level of musical complexity can be revealed by studying its
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ways of musical representations or memory models both for storage and learn-
ing. Here, we will compare different memory models used and proposed in the
literature for systems considering this complex aspect of music signals. We will
undertake this comparison by analytically looking at each model’s complexity
and its modality of interaction across attributes, which in term determine its
power of (musical) expressivity. We will be looking at cross-alphabets [9,2,20],
multiple-viewpoints [6] and mixed memory Factorial Markov models [25].

In order to better understand each model in this comparison, we use a toy
example demonstrated in Figure 1 containing the first measure of J.S.Bach’s two-
part invention No. 5 (Book II). The music score in figure 1 is parsed between
note onsets to obtain distinct events through time as demonstrated. In this
article, we consider discrete MIDI signals as is clear from the figure. For the sake
of simplicity, we only represent three most important attributes, namely pitch,
harmonic interval and beat duration of each parsed event as shown in Table 1.
This table represents 15 time series vectors It corresponding to 15 parsed events
in Figure 1, where each event has three components (i�t). Let kt denote the
number of components for each vector It and n�

t denote the dictionary size for
each attribute i�t. Later in Section 6, we will use the same example to demonstrate
our alternative representation scheme.

Table 1. Music attributes for distinct events of parsed score in Figure 1

Event Number It I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12 I13 I14 I15

MIDI Pitch (i1t ) 0 51 63 62 63 0 65 0 67 67 63 68 68 58 60

Harmonic Interval (i2t ) 0 0 0 0 24 0 0 0 4 5 0 8 6 0 0

Duration (i3t ) 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1

Cross Alphabets. The simplest model used so far in music applications is
cross-alphabet where a symbol is a vector of multiple attributes. Therefore, cross-
alphabet models are very cheap but they do not model interaction among com-
ponents in any ways. To overcome this shortcoming, researchers have considered
various membership functions to allow for these context dependencies through
various heuristics [2,20]. Such heuristics might make the system dependent upon
the style of music being considered or reduce generalization capabilities. More-
over, as the number of components (or dimensions) increase this representation
becomes less informative of the underlying structure.

In our toy example each symbol of the alphabet is a unique 3-dimensional
vector. Note that in this specific example, there are 15 alphabets since none of
them is being reused despite considerable amount of modal interactions among
components and high autocorrelations of each independent component.

Multiple Viewpoints. The multiple viewpoints model [6] is obtained by deriv-
ing individual expert models for each musical attribute and then combining the
results obtained from each model. This means that in the multiple viewpoint
model of the above example, three other rows for two-dimensional representa-
tions of <pitch, harmonic interval>, <pitch, duration>, etc. and one row
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Fig. 1. Parsed PianoRoll presentation for the first measure of J.S.Bach’s two-part In-
vention No.5 (Book II) with quantization of 1

16 beats

of three-dimensional vectors are added to the representation. At this stage, the
model’s context is constructed.

Multiple viewpoint models are more expressive than cross-alphabet models
since by combining models we allow modal interactions among components.
Moreover, the system can reach parts of the hypothesis space that the individ-
ual models would not be able to reach. However, the context space is obviously
too large and hence, learning requires a huge repertoire of music for training
data to generate few musical phrases [6]. In our toy example, with 9 distinct
pitches, 6 distinct harmonic intervals and 2 durations, the state-space of this
model amounts to 9 + 6 + 2 + 54 + 18 + 12 + 108 = 209.

Factorial Markov Models. Mixed memory models are geared towards situa-
tions where the combinatorial structure of state space leads to an explosion of
the number of free parameters. But unlike the above methods, the alphabets of
the dictionary are assumed to be known instead of them being added online to
the system. Factorial Markov models, model the coupling between components
in a compact way.



292 A. Cont, S. Dubnov, and G. Assayag

To obtain a compact representation, we assume that components at each time
t are conditionally independent given the previous vector event at t − 1, or

P (It|It−1) =
k
∏

ν

P (iνt |It−1) (1)

and that the conditional probabilities P (iνt |It−1) can be expressed as a weighted
sum of “cross-transition” matrices:

P (iνt |It−1) =
k
∑

μ=1

φν(μ)aνμ(iνt |iμt−1) (2)

where φν(μ)s are positive numbers that satisfy
∑

μ φν(μ) = 1 and measure the
amount of correlation between the different components of the time series. A non-
zero φν(μ) means that all the components at one time step influence the νth
component at the next. The parameters aνμ(i′|i) are n × n transition matrices,
which provide a compact way to parameterize these influences [25].

The number of free parameters in Equation 2 is therefore upper-bounded by
O(k2n2) (where n denote maxni

1) and the state-space size is
∏

i ni. In our toy
example the state-space size of the system would be 9 × 6 × 2 = 108.

3.2 Stochastic Modeling

In this section, we review the systems mentioned above in terms of their ways of
learning stochastic rules or dependencies from given musical sequences in order
to generate new ones in the same style of music.

The most prevalent type of statistical model encountered for music are pre-
dictive models based on context implying general Markov models [5]. Universal
prediction methods improved upon the limited memory capabilities of Markov
models by creating context dictionaries from compression algorithms, specifically
using the Lempel-Ziv incremental parsing [30], and employing probability assign-
ment according to Feder et al. [12]. Music improvisation was accomplished by
performing a random walk on the phrase dictionary with appropriate probabilis-
tic drawing among possible continuations [10,9,20]. Later experiments explored
Probabilistic Suffix Tree (PST) [22], and more recently in [2] using Factor Oracle
(FO) [1]. Other methods include the use of Genetic Algorithms [3] and neural
networks [13] just to name a few.

The inference and learning structures for Multiple Viewpoint Models
(Section 3.1) can be categorized as Ensemble Learning algorithms and have had
multiple manifestations [21,6]. One advantage of this type of modeling is the ex-
plicit consideration of long-term dependencies during learning where they com-
bine the viewpoint predictions separately for long-term and short-term models
1 In the original paper on factorial Markov models, the authors assume that the dic-

tionary sizes are all the same and equal to n. For the sake of comparison we drop this
assumption but keep n as defined above to obtain the coarse definition in Equation 2.
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[21]. Due to the explosion of parameters, results of learning are hard to visualize
and assess. Their generation samples are usually only a few monophonic bars
out of learning on an entire database of music (e.g. all Bach chorals).

Despite the explicit componential representation of Factorial Markov Mod-
els, the correlation factors φν(μ) model only one step dependencies and lack
modeling long-term behavior, essential in computational models of music. Cor-
respondingly, authors use this method to analyze correlations between different
voices in componential music time series without considering generation [25].

Another main drawback of the above methods is lack of responsiveness to
changes in musical situations that occur during performance, such as dependence
of musical choices on musical form or changes in interaction between players
during improvisation. Interaction has been addressed previously in [20] for PST
based improvisation by means of a fitness function that influenced prediction
probabilities according to an ongoing musical context, with no consideration of
planning or adaptive behavior. Statistical approaches seem to capture only part
of the information needed for computer improvisation, i.e. successfully modeling
a relatively short term stylistics of the musical surface. Although variable Markov
length and universal methods improve upon the finite length Markov approach,
they are still insufficient for modeling the true complexity of music improvisation.

4 Background on Anticipatory Modeling

All of the systems reviewed in the previous section are based on predictions out
of a learned context. In this work, we extend this view by considering musical an-
ticipation, in accord with the psychology of musical expectation. Anticipation is
different from both prediction and expectation. An anticipatory system, in short,
is “a system containing a predictive model of itself and of its environment, which
allows it to change state at an instant in accord with the model’s predictions
pertaining to a later instant” [23]. More concretely, Anticipation is the mental
realization of possible predicted actions and their effect on the perception and
learning of the world at an instant in time. Hence, anticipation can be regarded
as a marriage of actions and expectations. In this framework, an anticipatory
system is in constant interaction with an outside environment, for which it pos-
sesses an internal predictive model. In an anticipatory system, action decisions
are based on future predictions as well as past inference. It simulates adaptive
frameworks in the light of different behaviors occurring in interaction between
the system with itself and/or its environment. In this view, the anticipatory
effect can be described as a reinforcing feedback as a result of the interaction
between the system and the environment onto the system.

Butz et al. [4] draw distinctions between four types of anticipation for model-
ing: Implicit, Payoff, Sensory, and State anticipations. We did not find a direct
correspondence between those mentioned in Section 2. The proposed system in
this chapter is both a payoff anticipatory system and state anticipation system.
Figure 2 shows the diagrams for both models separately and how they use future
predictions for decision making. The system proposed hereafter is state antic-
ipatory because of the explicit use of prediction and anticipation during both
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learning and decision making. It is also a payoff anticipatory system because of
the selective behavior caused by the collaborative and competitive learning and
generation discussed in Section 8. From a musical standpoint following our in-
troduction in Section 2, we attempt implicit modeling of short-term and working
memories responsible for dynamic adaptive expectation and long-term planning.

(a) Payoff Anticipation (b) State Anticipation

Fig. 2. Anticipatory Modeling diagrams used in the proposed system

Davidsson in [7] proposes a framework for preventive anticipation where he
incorporates collaborative and competitive multiple agents in the architecture.
While this has common goals with our proposal, ours is different since Davidsson
uses rule-based learning with ad-hoc schemes for collaboration and competition
between agents. Recently, in the computer music literature, Dubnov has intro-
duced an anticipatory information rate measure that, when run on non-stationary
and time varying data such as audio, can capture anticipatory profile and emo-
tional force data that has been collected using experiments with humans [8].

5 General Architecture

After the above introduction, it is natural to consider a reinforcement learning
(RL) architecture for our anticipatory framework. The reinforcement learning
problem is meant to be a straightforward framing of the problem of learning from
interaction to achieve a goal. The learner and decision-maker is called the agent.
The thing it interacts with, comprising everything outside the agent, is called
the environment. These interact continuously, the agent selecting actions and
the environment responding to those actions and presenting new situations to
the agent. The environment also gives rise to rewards, special numerical values
that the agent tries to maximize over time. This way, the model or agent is
interactive in the sense that the model can change through time according to
reinforcement signals sent by its environment. Any RL problem can be reduced
to three signals passing back and forth between an agent and its environment:
one signal to represent the choices made by the agent (the actions), one signal
to represent the basis on which the choices are made (the states), and one signal
to define the agent’s goal (the rewards)[27]. In a regular RL system, rewards
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are defined for goal-oriented interaction. In musical applications, defining a goal
would be either impossible or would limit the utility of the system to a certain
style. In this sense, the rewards used in our interaction are rather guides to evoke
or repress parts of the learned model in the memory, as discussed in Section 7.

In our system, agents are learners and improvisers based on the model-based
RL Dyna architecture [27]. Here, the environment is anything that lies outside
the agent, or in this case, a human performer or a music score fed sequentially
into the system. Each agent has an internal model of the environment and adapts
itself based on new musical phrases and rewards it receives at each interaction.
For our purpose, we propose two execution modes as demonstrated in Figure 3.
In the first, referred to as Interaction mode, the system is interacting either with a
human performer (live) for machine improvisation or with music score(s) for style
imitation and occurs when external information is being passed to the system
from the environment. During the second mode, called self listening mode, the
system is in the generation phase and is interacting with itself.

(a) Interaction Mode (b) Self Listening Mode

Fig. 3. Machine Improvisation modes diagram

The internal models in agents play the role of memory and mental repre-
sentations of input sequences from the environment and will be detailed in the
following section. At each instance of interaction, the agents update their models
and learn strategies as discussed in Section 7, using guides or rewards presented
in Section 8.

6 Musical Representation

Representation of musical sequences in our system serves as musical memory,
mental representation of music signals and internal models of the agents. A sin-
gle music signal has multiple attributes and as stated earlier, each attribute is
responsible for an individual mental representation which collaborates and com-
petes with others during actions and decision making. This collaboration and
competition is handled during learning and is discussed in Section 8. For now,
it suffices to say that the agent in both modes of interaction in Figure 3 consists
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of multiple agents, each responsible for one musical attribute. This feature is of
great importance since it reduces the dimensionality of the system during learn-
ing, allowing it to interact when small data is available and in a fast way. The
number of attributes and nature of them are independent of the agent architec-
ture. For this experiment, we hand-picked 3 different attributes (pitch, harmonic
interval and quantized duration in beats) along with their first order difference,
hence a total of 6. Upon the arrival of a MIDI sequence, it is quantized, cut into
polyphonic “slices” at note onset/offset positions, and then different viewpoints
are calculated for each slice. Slice durations are represented as multiples of the
smallest significant time interval that a musical event would occupy during a
piece (referred to as Tatum). For demonstration, Table 2 shows these features
as time series data calculated over the score of figure 1.

Table 2. Time series data on the score of figure 1 showing features used in this exper-
iment

Event Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Pitch (MIDI) 0 51 63 62 63 0 65 0 67 67 63 68 68 58 60

Harmonic Int. 0 0 0 0 24 0 0 0 4 5 0 8 6 0 0

Duration 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1

Pitch Diff.. 0 0 12 -1 1 0 0 0 0 0 1 -3 0 -4 2

Harm. Diff. 0 0 0 0 0 0 0 0 0 1 0 0 -2 0 0

Dur. Ratio 1 1 1 1 1 1 1 2 0.5 1 1 1 1 1 1

After the data for each viewpoint is gathered it has to be represented and
stored in the system in a way to reflect principles discussed in Section 2. Of most
importance for us are the expressivity of the model, least computational complex-
ity and easy access throughout the memory model. There are many possible so-
lutions for this choice. In our multiple-agent framework, we have chosen to store
each attribute as a Factor Oracle (FO) [1]. In this paper, we give a short descrip-
tion of the properties and construction of FO and leave out the formal definitions
and musical interests [1,2]. Basically, a factor oracle is a finite state automaton
learned incrementally in linear time and space. A learned sequence of symbols
A = a1a2 · · · an ends up in an automaton whose states are s0, s1, s2 · · · sn. There
is always a transition arrow labeled by symbol ai going from state si−1 to state
si. Depending on the structure of A, other arrows may appear: forward transi-
tions from a state si to a state sj , 0 ≤ i < j <= n, labeled by symbol aj ; suffix
links, directed backward and bearing no label. The forward transitions model a
factor automaton, that is every factor p = aiai+1 · · ·aj−1aj , 1 ≤ i ≤ j ≤ n in A
corresponds to an unique transition path labeled by p, starting in s0 and ending
in state sj . Suffix links connect repeated patterns of A, i.e. states sharing large
common suffixes. In general, given a sequence, the constructed FO returns two
deterministic functions: a transition function Ftrn : S × Σ → {S ∪ ∅} and suffix
links Fsfx : S → {S ∪ ∅}, where S is the set of states and Σ is the alphabet on
which A is constructed. Figure 4 shows four instances of FO construction over
data presented in Table 2.
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Fig. 4. Learned Factor Oracles over pitch and duration sequences of Table 2. Each
node represents a state, each solid line a transition and dashed line a suffix link.

An important property of FO for this work is their power of generation. Nav-
igating the oracle and starting in any place, following forward transitions gener-
ates a sequence of labeling symbols that are repetitions of portions of the learned
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sequence; following one suffix link followed by a forward transition generates an
alternative path in the sequence, creating a recombination based on a shared
suffix between the current state and the state pointed at by the suffix link. This
shared suffix link is called context in context-inference models. In addition to
completeness and incremental behavior of this model, the best suffix is known
at the minimal cost of just following one pointer. By following more than one
suffix link before a forward jump or by reducing the number of successive factor
link steps, we make the generated variant less resemblant to the original.

7 Environmental Interactions

Guide signals received from the environment are an essential part of the pro-
posed system since they define the sensitivity of the system to the outside world,
directions it can take and its musical capabilities. When at time t the new music
sequence At = a1a2 · · · aN is received from the environment, an ideal reward sig-
nal should reinforce those parts of memory that most likely evoke the sequence
received to be able to generate recombinations or musically meaningful sequences
thereafter. In the RL framework, this means that we want to assign numerical
rewards to transition states and suffix states of an existing Factor Oracle with
internal states si. Guide computation occurs using the previously learned FOs
(defined by FOt−1) and before incorporating the new sequence into the model.

After different attributes of At are extracted as separate sequences each in
form {x1 . . . xN}, we use a probability assignment function P from S∗ → [0, 1]
(where S∗ is the set of all n-tuples of states available to FO) to assign rewards
to states in the model as follows:

P (s1∗s2∗ . . . sN∗ |FOt−1) =

[

N
∑

i=1

p(xi|si∗)

]

/N (3)

where

p(xi|s∗i ) =
{

1 if Ftrn(s∗i−1, xi) = s∗i
0 if Ftrn(s∗i−1, xi) = ∅ (4)

Of course the exploration of the search space S∗ is optimized by not considering
all possible n-tuples. Instead a simple forward checking strategy is used to reduce
S∗ to significantly rewarded subsets.

Rewards out of Equation 3 reinforce the states in the memory that are factors
of the new sequence At. In other words, it will guide the learning described later
to the places in the memory that should be mostly regarded during learning and
generation. For example, the reward for {s1∗s2∗ . . . sN∗} would be equal to 1 if
the state/transition path s1∗ . . . sN∗ regenerate literally the sequence At.

To assign rewards to suffix links, we recall that they refer to previous states
with the largest common suffix. Using this knowledge, a natural reward for a
suffix link would be proportional to the length of the common suffix that the
link is referring to. Fortunately, using a factor oracle structure, this measure
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can be easily calculated online and has been introduced in [16]. Note that the
process defined above assigns numerical values to states pertaining to associate
paths (transitions or suffix links) in each FO. This value is an immediate reward,
noted by r(st, at) for emission of a symbol at while at state st.

Rewards or guides are calculated the same way for both modes of the sys-
tem described before with an important difference. We argue that the rewards
for the interaction mode (Figure 3(a)) correspond to a psychological attention
towards appropriate parts of the memory and guides for the self-listening mode
(Figure 3(b)) correspond to a preventive anticipation scheme. This means that
while interacting with a live musician or sequential score, the system needs to be
attentive to input sequences and during self-listening it needs to be preventive so
that it would not generate the same path over and over. Moreover, these schemes
provide the conscious reinforcement required to encourage or discourage useful
and useless thinking as mentioned in Section 2.3. This is achieved by treating
environmental rewards with positive and negative signs appropriately.

8 Interactive Learning

Reinforcement Learning techniques are mostly studied within Markov Decision
Process (MDP) framework. An MDP in general is defined by a set of states-
action pairs S × A, a reward function R : S × A → R and a state transition
function T : S × A → S. Given this MDP, RL techniques aim to find the
policy as a mapping probability Q(s, a). To conform the representational scheme
presented before to this framework, we define MDP state-action pairs as FO
states and emitted symbol from that state. The transition function would then
be the deterministic FO transition functions as defined before. This way the
policy can be represented as a matrix Q which stores values for each possible
state-action pair in a given FO.

In a regular reinforcement learning session, the system simulates itself up to a
fixed number of episodes with terminal states, in order to maximize the overall
reward during each episode by learning a Q matrix. At each interaction cycle
with their environments, depending on their mode of interaction (Figure 3), the
agents receive guides, update their existing models, learn new ones (as FOs and
only during the interaction mode), and learn policies through some Q-learning
algorithm by simulating episodes of system run. In this view, one can say that
during each learning episode the system is practicing or improvising fixed length
pieces using what it has learned so far in order to adapt itself to new musical
situations defined by the newly arrived sequence and to learn and update poli-
cies. The main cycle of the interactive learning is shown in algorithm 1. This
architecture is based on Dyna [27] with multiple agents and FOs as models. This
cycle happens at each interaction between the system and the environment. Dur-
ing the self-listening mode, the algorithm is the same except that FOs are not
updated.

Hereafter, we focus on the policy learning algorithm. At this stage, the algo-
rithm simulates episodes of improvisations using previously learned policies and
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Receive the new sequence At from the environment;1

Compute guides on FOt−1s;2

Update FOt−1s to FOts using At;3

Learn policies (Q matrices);4

Algorithm 1. Interactive Learning

updates the Q matrices in order to maximize the environmental rewards. This
RL module must conform to cognitive foundations presented in Section 2, i.e.
agents should be collaborative, competitive, and memory-based.

8.1 Competitive and Collaborative Learning

As discussed in Section 2.1, different mental representations of music work in a
collaborative and competitive manner based on their predictive power to make
decisions. This can be seen as kind of a model selection where learning uses all the
agents’ policies available and chooses the best one for each episode. This winning
policy would then become the behavior policy with its policy followed during that
episode and other agents being influenced by the actions and environmental
reactions from and to that agent.

At the beginning of each episode, the system selects one agent using the
probability in Equation 5, with positive parameter βsel, and M as the total
number of agents or attributes. Low βsel causes equiprobable selection of all
modules and vice versa. This way, a behavior policy πbeh is selected competitively
at the beginning of each episode based on the value of the initial state s0 among
all policies πi as demonstrated in Equation 5.

Pr(i|s0) =
eβsel

�
k Qi(s0,ak)

∑M
j=1 eβsel

�
r Qj(s0,ar)

, πbeh = argmax
i

Pr(i|s0) (5)

During each learning episode, the agents would be following the behavior pol-
icy. For update of πbeh itself, we can use a simple Q-learning algorithm but in
order to learn other policies πi, we should find a way to compensate the mis-
match between the target policy πi and the behavior policy πbeh. Uchibe and
Doya [28] use an importance sampling method for this compensation and demon-
strate the implementation over several RL algorithms. Adopting their approach,
during each update of πi when following πBeh we use a compensation factor
IS = Qi(sm,am)

QBeh(s,a)
during Q-learning as depicted in Equation 6, where (sm, am)

are mapped state-action pairs of (s, a) in behavior policy to attribute i, and α is
the learning rate.

Qi(sm, am) = Qi(sm, am) + α
[

R(sm) + γ · IS · max
a′

(Qi(sm, a′)) − Qi(sm, am)
]

(6)
R(.) in the above equation is different from the immediate reward r(., .) intro-

duced in Section 7. In an anticipatory system, we are interested in the impact of
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future predictions on the current state of the system. This means that the reward
for a state-action pair would correspond to future predicted states. With this
regard, Equation 7 calculates R(st) with γ as a discount factor. Future predicted
states and actions (sti , ati) are obtained by applying an ε-greedy algorithm on
the current policy matrix and starting from st.

R(st) =
∑

r(st, at) + γr(st+1, at+1) + · · · + γmr(st+m, at+m) + · · · (7)

This scheme defines the collaborative aspect of interactive learning. For exam-
ple, during a learning episode, pitch attribute can become the behavior policy
Qbeh and during that whole episode the system follows the pitch policy for sim-
ulations and other attributes’ policies Qi(., .) will be influenced by the behavior
of the pitch policy as shown in Equation 6.

8.2 Memory-Based Learning

In the Q-learning algorithm above, state-action pairs are updated during each
episode through an ε-greedy algorithm on previously learned policies and using
updated rewards. This procedure updates one state-action pair at a time. In
an ideal music learning system, each immediate change should evoke previous
related states already stored in the memory. In general, we want to go back in the
memory from any state whose value has changed. When performing updates, the
value of some states may have changed a lot while others rest intact, suggesting
that the predecessor pairs of those who have changed a lot are more likely to
change. So it is natural to prioritize the backups according to measures of their
urgency and perform them in order of priority. This is the idea behind prioritized
sweeping [19] embedded in our learning with the priority measure in Equation 8
for a current state s and next state s′, leading to a priority queue of state-action
pairs (chosen by a threshold θ) to be traced backwards for more updates.

p ← |R(s) + γ max
a′

(QBeh(s′, a′)) − QBeh(s, a)| (8)

9 Generation Results

There are many ways to generate or improvise once the policies for each attribute
are available. We represent one simple solution using the proposed architecture.
At this stage, the system would be in the self listening mode (Figure 3(b)).
The agent would generate phrases of fixed length following a behavior policy
(learned from the previous interaction). When following the behavior attribute,
the system needs to map the behavior state-action pairs to other agents in order
to produce a complete music event. For this, we first check and see whether
there are any common transitions between original attributes and, if not, we
would follow the policy for their derivative behavior. Once a phrase is generated,
its (negative) reinforcement signal is calculated and policies are updated as in
Section 8 but without updating the current models (FOs).
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Improvisation Session after learning on Invention No.3 by J.S.Bach
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Fig. 5. Style imitation sample result

Audio results of automatic improvisation sessions on different styles can be
heard at the following URL:

http://www.crca.ucsd.edu/arshia/ABiALS06/

As a sample result for this paper, we include analysis of results for style imitation
on a polyphonic piece, two-part Invention No.3 by J.S. Bach. For this example,
the learning phase was run in interaction mode with a sliding window of 50
events with no overlaps over the original MIDI score. After the learning phase,
the system entered self listening mode where it generates sequences of 20 events
and reinforces itself until termination. Parameters used for this session were
α = 0.1 (in Equation 6), γ = 0.8 (in Equation 7), θ = 2 for prioritized sweeping
threshold, and ε = 0.1 for the epsilon-greedy selection of state-action pairs.
Number of episodes simulated during each RL phase was 100. The generated
score is shown in Figure 5 for 240 sequential events where the original score has
348. For this generation, the pitch behavior has won all generation episodes and
direct mappings of duration and harmonic agents have been achieved 76% and
83% in total respectively leaving the rest for their derivative agents.

While both voices follow a polyphonic structure, there are some formal musi-
cological structures that can be observed in the generated score. Globally, there
are phrase boundaries in measures 4 and 11 which clearly segment the score into
three formal sections. Measures 1 to 4 demonstrate some sort of exposition of
musical material, which are expanded in measures 7 to the end with a transition
phase in measure 5 and 6 ending at a week cadence on G (a fourth in the given
key). There are several thematic elements which are reused and expanded. For
example, the repeated D notes appearing in measures 2 appear several times in

http://www.crca.ucsd.edu/arshia/ABiALS06/
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Fig. 6. Improvisation Space vs. Original Space

the score notably in measure 7 as low A with a shift in register and harmony
and measure 9 and 15. More importantly, these elements or their variants can
be found in the original score of Bach.

Figure 6 shows the pitch-harmony space of both the original MIDI and the
generated score. As is seen, due to the collaborative and competitive multi-agent
architecture of the system, there are new combinations of attributes which do
not exist in the trained score.

10 Discussions

In this chapter we presented an anticipatory model of music cognition with
application to automatic improvisation and style imitation. The proposed model
covers short-term and working memory processes introduced in music cognition
literature that result in dynamic adaptive expectations and long-term planning.
The anticipatory model, in ABiALS terms, is a payoff and state anticipatory
system which provides attentive and preventive frameworks during computation.
We show that generation results demonstrate long-term and complex behavior
thanks to this anticipatory and cognitive model.

Before any discussion, we would like to bring forth the difficulty of evaluation
in case of automatic music generation. As should be clear to any musical reader,
assessing a music generator in an objective manner, if not impossible, would
set along disputable measures of goodness. On the other hand, in most music
practices and styles, what is considered as wrong can be constituted as a feature
depending on the context. Therefore we do not discuss the outcome of our design
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in aesthetic terms. Such considerations might become possible by careful design
of perceptual experiments with human subjects, which we will address in our
future work. Here we discuss further issues such as complexity of the proposed
model and further research.

10.1 Model Complexity

In the architecture introduced above, because of the concurrent and competitive
multiple agent structure, each component or attribute is modeled separately and
the state-space size increases linearly with time as k × T coming down to 45 for
the toy example. Modal interaction is not modeled by directed graphs between
components but rather by influence of each attribute on others through the IS
term in Equation 6 as a result of collaboration and competition between agents.
Note that this choice comes from cognitive foundations of music and was not
made for mere simplicity. The complexity of the system depends linearly on T ,
nis and an adaptive environmental factor. This is because the arrows of the
state-space model are inferred on-line and are dependent on the context being
added to previous stored knowledge. We could say that it has an upper-bound
of O(nkT ) but is usually much sparser than that.

The fact that T is a factor of both state-space size and complexity has advan-
tages and shortcomings. The main advantage of this structure is that it easily
enables us to access long-term memory and to calculate long-term dependencies,
induce structures, and go back and forth in the memory at ease. However, one
might say that as T grows, models such as Factorial Markov would win over
the proposed model in terms of complexity since ni would not change too much
after some time T . This shortcoming is partially compensated by considering the
phenomena of finite memory process. A finite memory process in our application
is one that, given a factor oracle with N states and an external sequence At, can
generate the sequence through a finite window of its history without using all
its states [17]. More formally, this means that there exist a nonnegative number
m such that the set {sn ∈ FO : n ∈ N and n ∈ [N − m, N ]} would suffice for re-
generation of a new sequence At. This notion is also supported by the fact that
music data in general is highly repetitive [15] and not considering this would
cause high reinforcement of earlier states in the memory through time. The pa-
rameter m is usually dependent on the style of music but for this presentation
we keep it fixed.

Besides observing results, compared to similar systems, an anticipatory model
reduces the complexity of the representation and learning. The proposed model
and shown result need much less training data for learning (a single piece of music
as training data to generate a rather long polyphonic sample) and is currently
being developed for realtime improvisation.

10.2 Further Developments

As mentioned earlier, an ideal anticipatory model of music should consider all
expectation processes in music perception mentioned in Section 2. In our first



Anticipatory Model of Musical Style Imitation 305

experiment, we attempted two and left the more difficult semantic and episodic
processes for later works. To compliment the system, we would need more intel-
ligent modules for music semantic learning and better representational schemes.
Note that the sample result in figure 5 is a result of automatic interactive rein-
forcement learning without explicit consideration for semantic notions such as
harmonic progressions or counterpoints. Adding these two notions to the system
should further improve local consistencies in the results.

The interactive learning module can still be more efficient in each episode by
considering directly relevant states for updates. This will bring us to the notion
of Active Learning for future work. Also, note that the representation module
using Factor Oracles does not in any way represent the complexity of feature
extraction and perceptual bindings of the auditory system in the brain. It was
rather chosen as a very efficient way to gather repetitive factors and structures
in a sequence. Further alternatives should be studied for enhancement of this
model.
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Abstract. Competitive distributed systems pose a challenge to trust
modeling due to the dynamic nature of these systems (e.g. electronic
auctions) and the unreliability of self-interested agents. We propose a
trust model which does not assume a concrete cognitive model for other
agents that an agent may interact with, but uses the discrepancy between
the information provided by other agents and its own experience in order
to anticipate their actions. By anticipating the behavior of other agents,
an agent is able to adapt more effectively to changes in the environment
for its own benefit.

1 Introduction and Motivation

Although there are different definitions [10], we can state that trust is an abstract
property applied to others that helps to reduce the complexity of decisions. Trust
is a universal concept that plays a very important role in social organizations
as a mechanism of social control. Therefore, modeling trust in open distributed
systems such as agent systems becomes a critical issue since their offline and
large-scale nature weaken the social control of direct interactions. For this reason,
the agent research community is very interested in this issue.

Often, there are objective and universal criteria to evaluate the quality of
interactions (products/services provided by them). In this case, trust can be in-
ferred from certificates issued by third parties that verify such objective criteria.
Unfortunately, when a set of universal objective evaluation criteria is not avail-
able, this subjective and local trust will not be easily asserted. There are several
application domains where interpersonal communications are the main source of
trust due to the subjective nature of the evaluation criteria (books, films, web
pages, leisure activities, consulting services, technical assistance, etc.).

Although there are several ways to infer trust, numerous studies have shown
that in real life one of the most effective channels to avoid deceptions is through
reputation-based mechanisms [2]. Usually, the group of people with a good rep-
utation (collaborators, colleagues and friends) that cooperates with a particular
person to improve the quality of decisions forms an informal social network [23].
In this context, trust and reputation are strongly linked.
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All in all, many existing approaches to trust modeling have paid little atten-
tion to a crucial feature of autonomous agents: their capacity to be pro-active
rather than just reactive, i.e., their ability to deal with the future by mental
representations or specific forms of learning. For guiding and orienting a future
action, a representation of the future, and more precisely, a representation of fu-
ture effects and of intermediate results of the action, is needed [15]. Anticipatory
behavior is an interdisciplinary topic attracting attention from computer scien-
tists, psychologists, philosophers, neuroscientists, and biologists [4]. Anticipation
can be seen as mechanism for devising hypotheses that make predictions about
future events, conducting experiments to corroborate them and subsequently
using the knowledge gained to perform useful behaviors. Anticipatory principles
are interesting in the context of trust and reputation modeling because they de-
fine a continuing process of discovery and refinement that would allow an agent
to adapt more quickly to dynamic environments.

Moreover, in existing frameworks the discrepancy between information and
direct experience is used as a source of dishonesty: if agent i says that service
s has a quality of service q and agent j has experienced a quality of service r,
then q − r is assumed to represent a degree of dishonesty, a source of distrust.
Herein, we propose a trust model which does not assume a concrete cognitive
model for other agents an agent may interact with, but uses the discrepancy
between the information provided by other agents and its own experience in
order to anticipate their actions: q − r is not used as a source of dishonesty and
distrust, instead, it is used to estimate the quality of service to be obtained in
the future. The result is an anticipatory trust modeling framework that allows
agents to adapt swiftly to changes in the environment for its own benefit.

In this paper we present the components of an anticipatory model to han-
dle computational trust in dynamic distributed environments. The paper is or-
ganized as follows: First, an overview over current trust models is provided.
Section 3 describes the different components of trust and presents a synthetic
definition of trust as an aggregation of its components, Section 4 describes some
experiments to test our model using the ART Testbed, Section 5 discusses the
anticipatory mechanisms implied or supported by our approach, and finally, Sec-
tion 6 sums up the contributions of our work.

2 State of the Art

Several trust models have been proposed; two of the most cited reputation models
are SPORAS and HISTOS [25]. SPORAS is inspired in the foundations of the
chess players evaluation system called ELOS. The key idea of this model is that
trusted agents with very high reputation experience much smaller changes in
reputation than agents with low reputation. SPORAS computes the reliability
of agents’ reputation using the standard deviation of such measure.

HISTOS is designed to complement SPORAS by including a way to deal
with witness information (personal recommendations). HISTOS includes wit-
ness information as a source of reputation through a recursive computation of
weighted means of ratings. It computes reputation of agent i for agent j from the
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knowledge of all the chain of reputation beliefs corresponding to each possible
path connecting i and j. In addition, HISTOS plans to limit the length of paths
that are taken into account. To make a fair comparison with other proposals,
that limit should be valued as 1, since most of the other views consider that
agents communicate only their own beliefs, but not the beliefs of other sources
that contributed to their own beliefs of reputation. Based on these principles,
the reputation value of a given agent at iteration i, Ri, is obtained recursively
from the previous one Ri−1 and from the subjective evaluation of the direct
experience DEi:

Ri = Ri−1 +
1
θ

· Φ(Ri−1) · (DEi − Ri−1)

Let θ be the effective number of ratings taken into account in an evaluation
(θ > 1). The bigger the number of considered ratings, the smaller the change in
reputation. Furthermore, Φ stands for a damping function that slows down the
changes for very reputable users:

Φ(Ri−1) = 1 − 1

1 + e
−(Ri−1−Max)

σ

,

where dominion D is the maximum possible reputation value and σ is chosen
in a way that the resulting Φ would remain above 0.9 when reputations values
were below 3

4 of D.
Another well known reputation model is due to Singh and Yu. This trust

model [24] uses Dempster-Shafer theory of evidence to aggregate recommenda-
tions from different witnesses. The main characteristic of this model is the rela-
tive importance of fails over success. It assumes that deceptions cause stronger
impressions than satisfactions. It then applies different gradients to the curves
of gaining/losing reputation in order to lose reputation easily, while it is hard to
acquire it. The authors of this trust model define different equations to calcu-
late reputation according to the sign (positive/negative) of the received direct
experience (satisfaction/deception) and the sign of the previous reputation cor-
responding to the given agent.

Instead of Dempster-Shafer theory, Sen’s reputation model [22] uses learning
to cope with recommendations from different witnesses. Unfortunately learning
requires a high number of interactions and a relatively high number of witnesses
to avoid colluding agents benefiting from reciprocative agents.

Another remarkable reference in the field is REGRET [21]. The REGRET
model takes into account three ways of computing indirect reputation depending
on the information source: system, neighborhood and witness reputations. Note
that witness reputation is the one that corresponds to the concept of reputation
that we are considering. REGRET includes a measure of the social credibility of
the agent and a measure of the credibility of the information in the computation
of witness reputation. The former is computed from the social relations shared
between agents. It is computed in a similar way to neighborhood reputation, us-
ing third party references about the recommender directly in the computation of
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how its recommendations are taken into account. In addition, the latter measure
of credibility (information credibility) is computed from the difference between
the recommendation and what the agent experienced by itself. The similarity is
computed by matching this difference with a triangle fuzzy set centered on 0 (the
value 0 stands for no difference at all). The information credibility is considered
relevant and taken into account in the experiments of this present comparison.
Both decisions are also, to a certain degree, supported by the authors of RE-
GRET, who also assume that the accuracy of previous pieces of information
(witness) are much more reliable than the credibility based on social relations
(neighborhood), and they reduce the use of neighborhood reputation to those
situations were there is not enough information on witness reputation. The com-
plete mathematical expression of both measures can be found in [20]. But the key
idea of REGRET is that it also considers the role that social relationships may
play. It provides a degree of reliability for the reputation values, and it adapts
them through the inclusion of a temporal dependent function in computations.
The time dependent function ρ gives higher relevance to direct experiences pro-
duced at times closer to current time. The reputation held by any part at a
iteration i is computed from a weighted mean of the corresponding last θ direct
experiences. The general equation is of the form:

Ri =
j=i
∑

j=i−θ

ρ(i, j) · Wj ,

where ρ(i, j) is a normalized value calculated from the next weight function:

ρ(i, j) =
f(j, i)

∑k=i
k=i−θ f(k, i)

,

where i ≥ j. Both represent the time or number of iterations of a direct experi-
ence. For instance, a simple example of a time dependent function f is:

f(j, i) =
j

i

REGRET also computes reliability with the standard deviation of reputation
values, computed from:

STD − DV Ti = 1 −
j=i
∑

j=i−θ

ρ(i, j)· | Wj − Ri |

REGRET, however, defines reliability as a convex combination of this deviation
with a measure, 0 < NI < 1, whether the number of impressions, i, obtained
is enough or not. REGRET establishes an intimacy level of interactions, itm,
to represent a minimum threshold of experiences to obtain close relationships.
More interactions will not increase reliability. The next function models the level
of intimacy with a given agent:

if(i ∈ [0, itm]) → NI = sin(
π

2 · itm
· i), Otherwise → NI = 1
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FIRE [14] is a trust and reputation model that integrates four types of in-
formation sources: interaction trust, role-based trust, witness reputation and
certified reputation. Interaction trust is built from the direct experience of an
agent, in particular, the direct trust component of REGRET is exploited in this
model. Role-based trust is based on relationships between the agents, which is
mostly domain-specific. Witness information is built from reports of witnesses
about an agent’s behavior. Certified reputation is a novel type of reputation in-
troduced by the authors, which is built from third-party references provided by
the agent itself. Certified reputation plays a similar role to what we call adver-
tisements, since in both cases an agent i that has just joined the environment
can make some assessment of the trustworthiness of another agent j, based on
the certified reputation or advertisements provided by the agent j itself. The
main limitation of the FIRE model in [14] is that all agents are assumed to be
honest in exchanging information.

Another approach when agents are acting in uncertain environments, is to
apply adaptive filters such as Alpha Beta, Kalman and IMM [6,7]. They have
been recognized as a reasoning paradigm for time-variable facts within the Ar-
tificial Intelligence community [19]. Making time-dependent predictions in noisy
environments is not an easy task. They apply a temporal statistical model to
the noisy observations perceived through a linear recursive algorithm that esti-
mates a future state variable. Particularly, when they are applied to reputation
modeling, the state variable would be the reputation, while observations would
be the results from direct experiences.

From the artificial intelligence point of view, reputation models embedded
in agents should involve a cognitive approach[17]: enriching the internal model
for making cooperative and competitive decisions rather than enriching the ex-
changed reputation information.

In contrast to the socio-cognitive models, computational models involve a
numerical decision making, made up of utility functions, probabilities, and eval-
uations of past interactions. The combination of both computational models
intends to reproduce the reasoning mechanisms behind human decision-making.
In this paper we present a trust modeling framework that combines both views,
since it assumes the cognitive stance, but uses a numerical approach.

Other researchers have proposed a socio-cognitive view of trust [16] [9], [3].
Schillo’s model [16] distinguishes between two types of motivations for trust:
honesty and altruism. A more enriched model is from Castelfranchi and Falcone
[9] who claim that some other beliefs in addition to reputation are essential
to compute the amount of trust of a particular agent: its competence (ability
to act as we wish), willingness (intention to cooperate), persistence (consistency
along time) and motivation (our contribution to its goals). For the authors, these
beliefs should be taken into consideration in determining how much trust is set
on this agent. Brainov and Sandholm [3] highlight the relevance of modeling
opponent’s trust, because, if this outside trust was not taken into account, this
would lead to an inefficient trade between agents involved. Thus both agents
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would be interested in showing the trustworthiness of the counterpart to allocate
efficiently resources.

Another example of a socio-cognitive approach from Carbo et al. [8], called a
fuzzy reputation agent system (AFRAS), supports the fuzzy nature of the repu-
tation concept itself. It uses fuzzy logic to represent reputation since this concept
is built up with vague evaluations (they depend on personal and subjective crite-
ria), uncertain recommendations (malicious agents, different points of view), and
incomplete information (untraceability of every agent in open systems). Further-
more, reliability of fuzzy reputation is implicit in the shape of the corresponding
fuzzy set. Additionally it also includes other beliefs that intend to represent an
emotive characterization of agents including shyness, egoism, and susceptibility.
It also includes a global belief and a global adaptation value of agent interac-
tion, referred to as remembrance. This attribute determines the relevance given
to the last direct interaction when updating trustworthiness. It represents the
general confidence of the agent on its own beliefs. The more success is achieved
in predicting the behavior of a particular agent, the more relevance is applied
to the already asserted beliefs over future experiences with any agent (not only
that particular agent).

3 The Anticipatory Trust Model

Typically, a trust model considers two main sources of information to estimate
trust: direct experience, sometimes referred to as direct trust or interaction trust,
and recommendations, often called witness-information or “word of mouth”. In
our model we keep this distinction between direct experience and recommen-
dations, but in addition, we distinguish between the recommendations about
third party agents and the recommendations provided by an agent about it-
self, what we call advertisements. All in all, our model builds trust upon three
components, namely: Direct Trust (DT), Advertisements-based Trust (AT), and
Recommendations-based Trust (RT).

In order to adapt more quickly to the dynamic and uncertain nature of an
open environment, an agent can anticipate or have expectations (not necessarily
rational) about the possible consequences of its actions, therefore, we distinguish
between the historic components of trust, based on past information only, and
the anticipatory components.

In our model, only the Advertisements-based Trust and the Recommendations-
based trust are anticipatory, while trust by direct experience is purely an historic
belief. To simplify the dynamics of a multi-agent system, we use a discrete time
model made up of time steps. A time step represents the minimal time period an
agent requires to make decisions, act, and perceive the result of its actions. We
use t to denote a particular time step in the past, T for the current time step,
T + 1 for the next time step, and ΣT for an aggregation of historic beliefs until
time step T .

To handle uncertainty and ignorance, we use two dimensions to represent the
confidence on a belief, namely: intimacy, and predictability. Intimacy is a measure
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of confidence based on the number of data (or interactions) used to calculate a
belief, while predictability is a measure of confidence based on the dispersion
or variability of data. In our model, all the components of trust have attached
a measure of confidence made up of intimacy and predictability. In addition,
we propose the use of t-norms for combining intimacy and predictability into
a single confidence value, and t-conorms for calculating the confidence coming
from several sources of information.

Direct Trust(DT ΣT
ij ): assesses the Quality of Service i provided from agent j

until time step T inclusive.

DT ΣT
ij =

∑T
t=0 ϕ(t, T )pDT t

ij
∑T

t=0 ϕ(t, T )
(1)

where pDT t
ij : R → [0, 1] is the partial Direct Trust obtained for agent j and

service i in time step t, and ϕ(T, t) : N → [0, 1] is a forgetting function used
to weight each partial belief according to its age (number of time steps since a
belief was obtained, T-t).

Direct Trust Confidence(DTCΣT
ij ): assesses the reliance of Direct Trust as

an estimator of the Quality of Service i provided by agent j.

DTCΣT
ij = ITMDT

ij ⊗ (1 − υdt(pDT t
ij)) (2)

where ITMDT
ij ∈ [0, 1] is the intimacy level for DT ( [21]), a growing function

in [0,1] over the number of pDT s used to compute DT , υdt ∈ [0, 1] is a measure
of the variability of pDT t

ij, and ⊗ is a T-norm operator.

Advertisements-based Trust(AT T+1
ij ): assesses the Quality of Service i ex-

pected from agent j in the next time step (T + 1), based on advertisements.

AT T+1
ij =

⎧

⎨

⎩

1 pAT T+1
ij + ΔAT ΣT

ij ≥ 1
0 pAT T+1

ij + ΔAT ΣT
ij ≤ 0

pAT T+1
ij + ΔAT ΣT

ij 0 < pAT T+1
ij + ΔAT ΣT

ij < 1

⎫

⎬

⎭

(3)

where pAT T+1
ij : R → [0, 1] is the most recent advertisement from agent j about

service i, and ΔAT ΣT
ij (AT-Discrepancy) is the discrepancy between advertise-

ments and experiences obtained in the past (until time step T inclusive).

AT-Discrepancy ΔAT ΣT
ij : measures the discrepancy between the past adver-

tisements made by agent j about service i and the experiences obtained when
that service was requested.

ΔAT ΣT
ij =

∑T
t=0 ϕ(t, T )(pDT t

ij − pAT t
ij)

∑T
t=0 ϕ(t, T )

(4)

where pAT t
ij : R → [0, 1] is the Partial Advertisements-based Trust for agent j,

service i and time step t, and ϕ(t, T ) is a time forgetting function.
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Note that ΔAT ΣT
ij ∈ [−1, 1], since pDT t

ij, pAT t
ij , ϕ(t, T ) ∈ [0, 1] by definition.

Positive values of ΔAT ΣT
ij mean that the experiences obtained from agent j and

service i were better than advertised, negative values have the opposite mean-
ing, and a zero value means that the experiences matched perfectly with the
advertisements.

ATConfidence(ATCT+1
ij ): assesses the degree of reliance of the Advertisements-

based Trust as an estimation of the Quality of Service i to be obtained from agent
j in the next time step.

ATCT+1
ij = ITMAT

ij ⊗ (1 − υat(ΔAT t
ij)) (5)

where ITMAT
ij is the intimacy level for AT , ΔAT t

ij = pDT t
ij − pAT t

ij is the
partial discrepancy observed between AT and DT in time step t, υat ∈ [0, 1] is
a measure of the variability of ΔAT , and ⊗ is a T-norm operator.

As we have done for Direct Trust and Advertisements-based Trust, we de-
fine both partial and historic Recommendations-based Trust (RT). However, RT
must handle the fact that there are potentially many providers of information
(recommenders) about any other agent. As a result, we have to distinguish be-
tween the trust component due to the recommendations provided by a single
agent and the trust component due to the recommendations provided by several
agents; herein the latter is referred to as combined recommendation.

Recommendations-based Trust(RT T+1
ijk ): assesses the Quality of Service i

expected from agent j in the next time step (T + 1), based on the recommenda-
tions from agent k.

RT T+1
ijk =

⎧

⎪

⎨

⎪

⎩

1 pRT T+1
ijk + ΔRT ΣT

ijk ≥ 1
0 pRT T+1

ijk + ΔRT ΣT
ijk ≤ 0

pRT T+1
ijk + ΔRT ΣT

ijk 0 < pRT T+1
ijk + ΔRT T+1

ijk < 1

⎫

⎪

⎬

⎪

⎭

(6)

where pRT t
ijk : R → [0, 1] is the partial Recommendations-based Trust for agent

j and service i obtained from agent k, and ΔRT ΣT
ijk (RT-Discrepancy) is the

discrepancy between past recommendations and experiences about agent i and
service j.

RT-Discrepancy(ΔRT ΣT
ijk ): measures the discrepancy between the past recom-

mendations by agent k about agent j and service i, and the experiences obtained
using that service, until time step T inclusive.

ΔRT ΣT
ijk =

∑T
t=0 ϕ(t, T )(pDT t

ij − pRT t
ijk)

∑T
t=0 ϕ(t, T )

(7)

where pRT t
ij : R → [0, 1] is the partial Recommendations-based Trust for agent

j, service i and time step t, and ϕ(t, T ) is a time forgetting function.
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Note that ΔRT ΣT
ijk ∈ [−1, 1], since pDT t

ij , pRT t
ij, ϕ(t, T ) ∈ [0, 1] by definition.

Positive values of ΔRT ΣT
ij mean that the experiences obtained from agent j

and service i were better than recommended, negative values have the opposite
meaning, and a zero value means that the experiences matched perfectly the
recommendations.

Combined Recommendations-based Trust(cRT T+1
ij ): assesses the Quality

of Service i expected from agent j in the next time step, based on both historic
information and the most recent recommendations about that service.

cRT T+1
ij =

∑Nk

k=1 (RT T+1
ijk × RTCT+1

ij )
∑Nk

k=1 RTCT+1
ijk

(8)

where RT T+1
ijk is the Recommendations-based Trust about agent j and service

i obtained from agent k’s recommendations, and RTCT+1
ijk is the confidence in

that belief as an estimation of the Quality of Service i to be obtained from agent
j in T + 1.

The Combined Recommendations-based Trust aggregates the recommenda-
tions obtained from several agents. Similarly, the confidence in cRT is defined
as an aggregation of the confidences in every recommendation.

RT Confidence(RTCT+1
ij ): assesses the degree of reliance of the

Recommendations-based Trust (RT T+1
ijk ) obtained from agent k, as an estima-

tion of the Quality of Service i to be obtained from agent j in the next time
step.

RTCT+1
ijk = ITMRT

ij ⊗ (1 − υrt(ΔRT t
ijk)) (9)

where ITMRT
ij is the intimacy level for RT , ΔRT t

ijk = pDT t
ij − pRT t

ijk is the
partial discrepancy observed between DT and RT in time step t, υrt ∈ [0, 1] is
a measure of the variability of ΔRT t

ijk, and ⊗ is a T-norm operator.

Combined RT Confidence(cRTCT+1
ij ): assesses the degree of reliance of the

Combined Recommendations-based Trust as an estimation of the Quality of
Service i to be obtained from agent j in the next time step.

cRTCT+1
ijk =

k
⊕

(RTCT+1
ijk ) (10)

where
⊕k denotes the aggregation of the confidence associated with each rec-

ommender (RTCΣT
ijk ) using a T-conorm operator.

Up to now we have defined the components of trust according to the source of
information. Now we provide a global measure of trust that integrates the three
components into a single belief: the Global Trust.
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Global Trust(GT T+1
ij ): assesses the Quality of Service i expected from agent j

during the next time step, using all the sources of information.

GT T+1
ij =

DT ΣT
ij × DTCΣT

ij + AT T+1
ij × ATCT+1

ij + cRT T+1
ij × cRTCT+1

ij

DTCΣT
ij + ATCT+1

ij + cRTCT+1
ij

(11)

where DT ΣT
ij is the Direct Trust for service i and agent j; AT T+1

ij is the Anticipa-
tory Advertisements-based Trust; cRT T+1

ij is the Combined Recommendations-
based Trust, and DTCΣT

ij , ATCT+1
ij , RTCT+1

ij are the confidences associated to
DT , AT and cRT respectively.

Global Trust Confidence(GTCT+1
ij ): assesses the reliance of the Global Trust

GTij as an estimation of the Quality of Service i to be obtained in the next time
step.

GTCT+1
ij = DTCΣT

ij ⊕ ATCT+1
ij ⊕ cRTCT+1

ij (12)

where ⊕ is a T-conorm operator.
Remark that Global Trust and Global Trust Confidence can be used either

independently or combined into a single value (eg. GT × GTC), depending on
the specific application domain.

4 Experiments

We have chosen the ART Testbed [12] to test our test model. The ART Testbed
is a simulator of the art appraisals domain whose goal is twofold: to serve as a
competition forum in which researchers can compare their technologies against
objective metrics, and as an experimental tool, with flexible parameters, allowing
researchers to perform customizable, easily-repeatable experiments. In the art
appraisal domain, agents act as painting appraisers with varying levels of exper-
tise in different artistic eras (e.g. classical, impressionist, postmodern). Clients
request appraisals for paintings from different eras. Appraisers can use both their
own opinions and opinions purchased from other agents, so as to make more ac-
curate appraisals. Appraisers estimate the accuracy of the opinions they send by
the cost they choose to invest in generating an opinion, but they may lie about
the estimated accuracy of their opinions. Appraisers receive more clients, and
thus more profit, for producing more accurate appraisals. Appraisers may also
purchase reputation information from other agents. The decisions about which
opinion providers and reputation providers to trust strongly impact the accu-
racy of their final appraisals. In competition mode, the winning agent is selected
as the appraiser with the highest bank account balance, which depends on the
ability of an agent to (1) estimate the value of its paintings most accurately and
(2) purchase more valuable information.

It is easy to map our trust model to the ART Testbed domain because it uses
continuous variables and includes both advertisements (named certainties) and
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recommendations (named reputations). Purchased opinions about the value of a
painting are the source of experience and are used to calculate DT, reputations
are mapped to recommendations, and finally, advertisements are mapped to
certainties, which are values provided by an agent about the accuracy of its
opinions. Finally, the concept of a weight in the ART refers to a global measure
attached to an agent to represent their opinion’s accuracy. In our experiments,
we use Global Trust × Global Trust Confidence to obtain those weights.

In order to evaluate the gains and drawbacks of using an anticipatory trust
model in dynamic and uncertain environments, we have compared three models
to handle trust and reputation: anticipatory, non anticipatory without honesty,
and non anticipatory with honesty. The anticipatory model implements the trust
model described in this paper, while the non anticipatory models use only his-
toric information to calculate the global trust; the model with honesty uses the
discrepancy between information and experience to calculate the confidence on
trust, while the model without honesty simply ignores such discrepancy.

We compare the three trust models introduced above along four variables,
namely: number of appraisals, average error, bank balance, and stability. The
number of appraisals (NA) measures the total number of appraisals obtained
during an entire simulation, the average error (AE) is the mean of those ap-
praisal’s error, the bank balance (BB) is the difference between the revenues
and the expenses, and the stability (ST) is the number of time steps in which
the average error for the last 5 time steps changes less than a given criterion
(|average error increment| < 0.01).

Since in the ART Testbed agents can use their own opinions to appraise a
painting, and they know themselves very well, self-opinions tend to neutralize
the influence of the opinions purchased from other agents. In order to remark
the differences between the three trust models being compared, we have enforced
all agents to use solely the opinions purchased from other agents, and not their
own opinions.

We have conducted three groups of experiments: (a) experiments with dy-
namic prices following a market-like evolving process, (b) experiments varying
the degree of deception (dishonesty), and (c) experiments varying the prices
randomly (a parameter called noise establishes the maximum price variation per
time step). The same experimental situation is used as the baseline for the three
groups of experiments: a static scenario where agents always provide the best
opinions they are able to obtain and are completely sincere. Each experiment
varying a parameter is repeated twice. A single experiment involves 9 agents
competing during 60 time steps, with the same proportion of agents (3) using
each trust model. Each time step, there are 270 paintings belonging to 10 artistic
eras to be distributed among appraiser agents according to their relative average
error in the previous time step.

Figure 1 summarizes the results of the experiments when evolving the prices
dynamically, according to a market-like model consisting of alternating infla-
tion/deflation periods. There are three experimental situations, from left to
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Fig. 1. Experiments with dynamic prices

right: static prices, slow price dynamics, and fast price dynamics. The bars with
diagonal lines represent the average score for the agents using the anticipatory
model (ant), dotted bars for the non anticipatory model with honesty (na),
and horizontal lines for the non anticipatory model without honesty(nh). Re-
sults show that all agents perform similarly in the case of a completely static
environment with fixed prices and no deception. However, there are clear dif-
ferences when considering dynamic prices, and these changes are stronger the
more quickly prices change. In particular, the agents using the anticipatory trust
model obtain the most accurate estimations of other agents(lower AE), achieve
the most clients (higher NA), obtain the best economic results (higher BB),
and remain stabilized for the longest amount of time, among the three models
compared. The observed differences were significantly different1. Although the
differences between the two non anticipatory models seem very small as to be
generalized at first glance, in some cases the differences have been statically sig-
nificant; in particular, the difference in the bank balance for the third scenario
(fast price dynamics) has reached significance.

Figure 2 sums up the results of our experiments varying the prices randomly
according to a specific amount of noise: no noise (static prices), low noise, and
high noise. These results are completely consistent with the first group of exper-
iments: the agents with the anticipatory model perform better than the agents
using the non anticipatory models in all the variables analyzed. The differences
between the anticipatory and the non anticipatory models are statistically sig-
nificant, but they are not significant between the two non anticipatory models.

1 For this as well as the other results commented, we have tested the statistical sig-
nificance of the difference between the means by applying student’s bilateral t test
for two samples and a significance criterion α = 0.05. When the difference is not
statistically significant we apply also unilateral t tests.
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Fig. 2. Experiments with noise (random price changes)

Figure 3 shows the results of our experiments introducing a certain degree of
deception concerning both the advertisements (certainties) and the recommen-
dations about the accuracy of agent opinions. We consider three experimental
situations: no deception, low deception, and high deception. In this case, both
the anticipatory and the non anticipatory models perform very similarly con-
cerning the average error and the number of appraisals achieved (there are no
statistically significant differences), but the agents using anticipation achieve
better economic results and remain stabilized for longer periods of time (the
differences are statistically significant between the anticipatory and both non
anticipatory models). The differences between the two non anticipatory mod-
els are not relevant (not statistically significant). Anticipatory agents earn more

Fig. 3. Experiments with deception
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money even when obtaining fewer paintings to appraise, as has been the case for
the low deception scenario. This result may seem contradictory at first glance
because appraisals are the main source of revenues, but there is an explanation:
the anticipatory trust model induces a more efficient behavior, in other words,
anticipatory agents purchase less opinions to obtain appraisals of similar quality.

5 Discussion of the Anticipatory Mechanisms

The anticipatory principles are interesting in the context of trust and reputation
modeling because they define a continuing process of discovery and refinement
that would allow an agent to adapt more quickly to dynamic environments, and
we have conducted some experiments that support that claim.

In [5] a preliminary classification of anticipatory mechanisms is proposed with
four categories: implicit anticipatory mechanisms, in which no actual predictions
are made but the behavioral structure is constructed in an anticipatory fashion;
payoff anticipatory mechanisms, in which the influence of future predictions on
behavior is restricted to payoff predictions; sensory anticipatory mechanisms,
in which future predictions influence sensory (pre-)processing; and state antic-
ipatory mechanisms in which predictions about future states directly influence
current behavioral decision making. Nevertheless, we cannot easily classify our
model framework into one of the former categories; the point is that the kind
of anticipatory mechanisms involved in our trust modeling framework are not
apparent because anticipatory behavior is more concerned with the architectures
and algorithms involved in the decision making process, while our paper is more
focused on the cognitive, belief modeling aspects supporting decision making. A
more detailed discussion of the kind of anticipatory mechanisms supported by
our framework follows:

Since our framework approaches trust as an assessment of the Quality of
Service (QoS) expected from an agent in the future, our model is very well
suited to support payoff anticipatory mechanisms. For example, by comparing
the difference between the QoS expected from different providers and considering
the price of each one, an agent can make decisions about which providers to use
in order to maximize its benefits.

Any trust model is predictive in that the future behavior of other agents is
predicted to make the right decisions about which services to use and from whom
to request those services. However, existing trust models make predictions based
on the use of past observations, while our framework adds a more subjective
component that results in learning the difference between the information ob-
tained from other agents in the past and the actual observations, and uses that
information to update predictions. The difference between predictive approaches
and our approach is apparent when comparing our definition of Direct Trust and
Advertisements-based Trust. On the one hand, Direct Trust is a predictive belief
altogether, since it is based only on past observations. On the other hand, the
Advertisements-based Trust includes an anticipatory component that is based on
the comparison between advertisements and observations. To better understand
the difference, consider the following example:
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Suppose that there are two agents, named P1 and P2, that provide the same
service. The QoS provided by P1 is better than the QoS provided by P2. For
example, the average QoS for P1 is 0,7 and for P2 is 0,6. Now, suppose that client
C has been interacting with P1 and P2 until having a reliable measure (from its
subjective point of view) of their QoS, and consequently, has decided to request
the given service only from P1. Now, imagine that the QoS provided by P2 has
incremented from 0,6 to 0,8. Probably, P2 has changed its own advertisements to
reflect the change. If C uses only past observations to assess P2’s QoS, it would
not react immediately to the new adverts, because it has not interacted with
P2 for some time and thus, it has no evidence to update its beliefs about P2.
However, if C has learned the pattern of discrepancies between P2’s QoS and P2’s
adverts in the past, then C would be able to infer, from the last adverts by P2,
that P2’s QoS has improved and it is actually better than P1, so the next time
C will request the given service from P2 instead of P1, anticipating the change.
That means that C has predicted the change in P2’s behavior without having
experience it, and has used such a prediction to adopt radically new decisions.

The possibility of making radically new decisions as a consequence of antic-
ipating the future, rather than merely predicting it by observation, is a crucial
feature of anticipatory systems. For example, according to [18] an anticipatory
system is “...a system containing a predictive model of itself and/or of its envi-
ronment, which allows it to change state at an instant in accord with the model’s
predictions pertaining to a later instant.” Summing up, anticipation allows an
agent to detect changes in the environment before actually experiencing them,
thus it protects an agent from suffering bad experiences, as in preventive state
anticipation [11], that is a kind of state based anticipatory mechanism, and en-
ables a swifter adaptation to dynamic environment. All in all, the anticipatory
mechanisms proposed herein have some drawbacks. In particular, the use of ad-
vertisements and recommendations expose an agent to a higher risk when making
radically new decisions, because of the higher uncertainty associated with such
information, compared with the uncertainty associated with direct experience
and observation.

6 Conclusions

In this paper we have introduced a computational model to handle trust in dy-
namic and uncertain domains such as electronic market places and distributed
information systems. This model extends Rahman [1] notion of semantic close-
ness between experience and information to deal with continuous domains: first
of all, we use continuous variables instead of discrete variables; second, our model
combines the reputation information and the trust based on direct experiences
(Rahman model uses only reputation); and third, we distinguish between two
types of information: advertisements and recommendations.

Several frameworks to handle trust in agent societies rely upon the notion of
honesty when considering the discrepancy between information and experience.
Usually, the discrepancy observed between direct experience and information
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concerning that experience (witness information) is interpreted as a consequence
of the information provider’s intentional behavior and, consequently, it is used
to estimate the credibility (confidence) of that provider (more discrepancy im-
plying less credibility). In other words, the discrepancy between information and
experience is interpreted in terms of the honesty of the information provider.

Sabater [20] argues that although Rahmans approach is useful in some situa-
tions, it has some limitations because it is unable to differentiate between lying
agents and agents that have a different view of the world. However, there are
some reasons to adjust beliefs using the discrepancy between experience and in-
formation: on the one hand, in many domains, and specially in real applications,
it is actually impossible to know whether an agent is lying or just thinking dif-
ferently; on the other hand, it it is often more important to estimate the utility
expected from an agent than figuring out whether an agent is lying or not.

In our model, the observed discrepancy between information and experience
is used to adapt more quickly to changes in the environment by anticipating
changes in the world before experiencing them. This approach does not identify
discrepancy with bad behavior as such, instead our model uses that information
to anticipate the future. However, in order to fully benefit from this approach,
discrepancies between information and experience must be relatively consistent
over time. That is to say, discrepancies between information and experience must
follow a regular pattern so as to be useful.

Our proposal for trust modeling is strongly backed in the following epistemic
assumption: the real beliefs of other agents are not knowledgeable, because dif-
ferent agents may use a different framework to represent and reason about the
same things. That assumption, which may seem negative at a first glance, is
turned into a positive by using the discrepancy between information and expe-
rience as valuable knowledge to anticipate the future behavior of an agent. A
secondary assumption is that the discrepancy between information and behav-
ior is somewhat consistent over time. If this assumption is violated, our model
would perform very similarly to the models being compared in our experiments.
In any case, our model is protected against the absence of information-behavior
discrepancy patterns by the use of dispersion measures in the computation of
confidence values associated with every trust belief.

As a consequence of both assumptions, we think that our framework is appro-
priate for open systems in general, because heterogeneous agents from different
developers would probably use different cognitive models. However, it is espe-
cially well suited for competitive environments, such as agent-based e-Commerce
applications, since this domain fulfills both assumptions. On the one hand, an e-
Commerce application is typically open to heterogeneous agents built by different
developers, probably having different views of the same aspects of the world. As
a consequence, an agent has well founded reasons to not identify an information-
experience discrepancy with a source of distrust. On the other hand, economic
domains are expected to show consistent patterns; for instance, we know that
advertisements about oneself tend to be positive, while advertisements about
the competitors tend to be negative.
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We have used controlled experimental conditions to demonstrate the feasi-
bility and utility of the anticipatory mechanism in a market-like simulation en-
vironment, the art appraisals domain. On the one hand, we have showed the
utility of the anticipatory approach to adapt to changing environments, includ-
ing both inflationary and deflationary dynamics. On the other hand, we have
demonstrated the robustness of the model to deal with deception, both positive
(over-valuating), to make an agent believe one is better than he actually is, and
negative (under-valuating) deception, to make an agent believe a third agent is
worse than himself.

In conclusion, as an extension of our work we have developed a framework
based on motivational attitudes to drive the behavior of trust-modeling agents.
In particular, we use concepts such as necessity, satisfaction, and curiosity to im-
plement exploratory behavior, which is a key component to achieve adaptation in
open and dynamic environment. A discussion of these issues is, unfortunately, out
of the scope of this paper, and will be described in forthcoming publications [13].
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Abstract. In this paper we present a conceptualization and a formal-
ization to define agents’ behaviors (as exhibited in agent to agent in-
teractions), via an extension of Petri Nets, and show how behaviors of
different agents can be aligned. We explain why these agents can be con-
sidered anticipatory, and the link between Business Information Systems
and anticipatory systems is elaborated. We show that alignment is a state
anticipatory mechanism, where predictions about future states directly
influence current behavioral decision making. This results in faster and
more reliable interaction execution. Also, alignment provides a mecha-
nism for more direct behavioral learning. We investigated three manners
of alignment, individual on-the-fly alignment, pre-interaction alignment,
and alignment with the intervention of a third party. This paper explains
in some detail how alignment on-the-fly is realized using alignment poli-
cies. The features of the other two kinds of alignment are discussed, and
future directions for research are pointed out.

1 Introduction

In the anticipatory system research community, the agent based computing area
is considered a promising one. However, there is yet little interest in applying the
anticipatory agent concept in a real setting. Seminal work of Davidsson, Astor
and Ekdahl [5], pointed out that active entities can be characterized as agents
when their acting can be described by a social theory. We argue in this paper that
business organizations are in fact anticipatory systems themselves. Especially
when these use an information system (usually called BIS - Business Information
System). Our research group is investigating novel agent-based architectures and
development frameworks [13]. We recognize the importance of the anticipatory
system concept in this context and position our models of organizations in the
initial definition of Rosen ([14], page 339):

“We tentatively defined the concept of an anticipatory system: a sys-
tem containing a predictive model of itself and/or of its environment,
which allows it to change state at an instant in accord with the models
prediction to a latter instant.”

M.V. Butz et al. (Eds.): ABiALS 2006, LNAI 4520, pp. 325–344, 2007.
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In this paper, we investigate how the anticipatory ability of a single agent can be
expressed as an interaction belief and we point out how in some cases this belief
can be changed. We describe a policy for alignment that can be applied when
the interaction beliefs of two or more interacting agents are not matching. We
introduce an extension of Petri Nets to capture the interaction beliefs and also
a mechanism to choose the appropriate policy that adapts the beliefs from one
agent perspective. Furthermore, we discuss the case when the process of align-
ment before the actual interaction takes place. Also, alignment by a third-party
is investigated. From the anticipatory systems perspective, this research can en-
able predictive agent model execution (agent-based simulation of organizational
models) to be more reliable and necessitate less human intervention in terms of
alignment.

1.1 Motivation

Business information systems have evolved from a data centric perspective to a
process centric perspective. The role of these systems is to support human activ-
ity in a business organization. At a basic level they support information storage
and retrieval, information flow and information processing. At a higher level they
support human decision making. Depending on the time horizon, the decision
can be related to operational management (day-to-day activities), tactical plan-
ning (week/month projections), strategic decisions (month/year projections),
and even policy implementation (very long term).

The move from data centric to process centric systems did not change the
centralistic nature of these systems. The way the system is designed and used
ascribes to the notion that there exists an external observer that is able to in-
vestigate and understand the processes within the organization. These processes
can be identified in a semantic sense and modeled in a syntactic sense, that is,
models of the processes can be described in a (semi) formal language. These
models can be used to implement systems that support the actors who execute
the process in the organization.

The actors who are executing the organizations’ processes have only local,
often conflicting views, especially in dynamic organizations. If the system is
to be designed and implemented by allowing local and different models of the
participating actors, a distributed, agent-oriented approach is more suitable.
Agent-based modeling and agent-software engineering have been very popular in
the last decade and have paved new avenues for the development of the business
systems of tomorrow. However, due to the lack of a strict definition of an agent
and a clear view about what exactly agent software engineering is, as pointed out
by Ekdahl [6], many developmental processes tend to be termed agent-oriented,
although they really can be just classified as purely reactive systems. Ekdahl
also states:

“More sophisticated anticipatory systems are those which also contain
its own model, are able to change model and to maintain several models,
which imply that such systems are able to make hypotheses and also
that they can comprehend what is good and bad.”
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One can infer from this statement that true agent systems are only those that
have a clear anticipatory ability, both at the level of the individual agents them-
selves, and also at the whole multi-agent system level. The ability to reason
about a plan in an organization is usually realized via humans. If one tries to
simulate a planning organization, a typical barrier is the evaluation of the plans.
Such simulations tend to become interactive games, where the “players” (i.e. the
expert planners) are becoming decision makers that select the “best” plan. Vari-
ous plan selection mechanisms can be enacted, but these are usually just models
of the behavior of the players. In a monolithic, centralistic system for example,
this will be implemented as a single utility function that characterizes the whole
organization, which makes explicit the criteria against which a prospective plan
is checked. In reality, many expert players are co-operating with the system to
adjust and decide for the best plan. The overall behavior of the organization (in
terms of planning) is just emerging as a combined behavior of the experts and
the system that supports them.

This observation leads to the natural conclusion that it is better to enact
decision support structures that mimic the distributed nature of this environ-
ment. Attempts to model and implement agent-oriented support for planning and
other business processes are still in their infancy, but even simple implementa-
tions of crude multi-agent architectures show a higher degree of adaptiveness and
flexibility.

We envisage the first wave of applying these kind of agents to repetitive and
routine business processes, like the ones in sales and purchasing, financial oper-
ations, and operational control of logistic and manufacturing systems [11]. Here,
the need for anticipatory based alignment is rather low, but it is easy to execute
in an automated way, based on typical policies that have been detected over
time. One can say that this application area can be seen as robotics, but in this
case the robots are not physical entities, but digital entities (sometimes these
are called “softbots”).

1.2 Our Approach Towards Anticipatory Agents

Our research team is developing agents via simulation-games, where the behavior
of the software agents is deduced from expert players. These human experts can
describe their intended behavior, in terms of activities and local goals, but also
can describe the behavior they expect from the other agents in the game. These
behaviors can be simplified and formally described. From a local perspective
the intended behavior of self and the expected behavior of others can be seen
as a specific interaction belief of that agent. The organizations’ processes can
be viewed as a set of running interactions. Each interaction is executed by the
agents that play the roles that define the interaction and the execution depends
on the (local) interaction beliefs. If the agents have beliefs that are consistent
with each other, a coherent execution of the interaction will take place. In an
environment where human agents are playing the roles, slight (or even severe)
misalignment of these behaviors can be solved by the capacity of the humans to
adapt to misunderstandings and information mismatch.
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Agents (as humans) develop over time a large base of interaction beliefs, which
allow them to cope with a wide range of interaction situations. This is why the
organizational processes can be carried out in most contexts and exceptional sit-
uations. When using an agent-oriented approach, in order to solve the exceptions
that occur but have no resolution beliefs implemented in the software agents, an
"escape/intervention" [13] mechanism can be used. Each time an agent cannot
find a local solution for a mismatch during an interaction, it can defer control
to a higher authority (higher level agent, typically a human). Therefore, such
a system will never block, supporting the humans up to the levels it has been
programmed to do, but leaving the humans to intervene when the situation is
too complex for them to solve.

Interaction beliefs are local anticipatory models. These describe future pos-
sible states in a specific interaction from a local perspective of an agent. In an
organization, an agent can play various roles by using its "experience" (interac-
tion beliefs that have proved successful in the past), but can also build new ones,
depending on the context. Continuous enactment of interaction leads to whole
process enactment. In a software multi-agent system, if the captured behaviors
are not matching in a given context, the agents will revert to humans. Of course,
this can decrease the performance of the system - in terms of support and/or
automation - to unacceptable levels. Software agents should also be able to over-
come their mismatching behaviors in an anticipatory way. There are multiple
ways to tackle behavior mismatches:

– Each agent is individually trying to align its behavior on-the-fly, having only
local information.

– The agents try to align their behavior before the interaction starts, by send-
ing and comparing each other’s intended behavior.

– There is a third-party agent interfering with the interaction:
• The third-party agent can be a superior agent that can align and impose

a common interaction behavior that is sound, by having full access to the
interaction beliefs of the agents. This can happen before the interaction
starts.

• The third-party agent acts as a mediator between the agents.

A typical interaction where such behavioral mismatches can occur, is the buyer-
seller interaction, which will be elaborated on in the later parts of the paper. The
most encountered behavioral mismatch in the buyer-seller interaction is due to
the fact that each party wants to have its output criteria fulfilled first. Basically,
that means that the buyer wants to be in possession of the product before he
pays, and the seller wants to receive the payment before delivery. In this example,
a typical third-party agent interfering with the interaction is a bank, who takes
the risk of paying the seller first, and invoicing the buyer after he received the
product. Later in the paper, we show how these behavioral mismatches can be
solved using various alignment mechanisms.
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1.3 Taxonomy and Benefits

In the on-the-fly mechanism, the anticipatory system is the individual agent
who tries to align its behavior, based on the limited information it has about
the interaction execution. According to the taxonomy of Butz et al. [4], this
mechanism is a state anticipatory mechanism, as predictions about future states
directly influence current behavioral decision making. In this case, a predictive
model must be available to the agent, or it must be learned by the agent. In our
approach, such a model is formalized using Behavior Nets, as will be explained
in the next section. The Behavior Net captures the planned behavior of an agent
for the interaction it intends. The on-the-fly alignment mechanism, as proposed
in this paper, will result in faster and more direct model and behavioral learning,
as the agent is able to learn new behaviors during the interaction. Furthermore,
it will result in improved social skills, as the agent is able to alter its behavior
during the interaction, in order to ensure a successful interaction, even when the
original behaviors of the interacting agents are not matching.

When aligning behavior before the actual interaction (or pre-interaction align-
ment), future states do not directly influence current behavioral decision making,
instead future states expected by the agents are used to discuss their course of
actions, in order to align their beliefs about the interaction. For this reason, it
can still be called state anticipation, as the explicit predictions about the fu-
ture (formalized as Behavior Nets) influence the discussion process, and thus
the future behavioral decision making, which is defined in the Behavior Nets
of the agents. This form of anticipatory behavior will be beneficial for social
behavior within the overall system, as predictive knowledge of other agents is
exploited.

We considered that the third choice with a superior agent is “less anticipatory”,
in the sense that only if viewed from a larger perspective (the system is formed
by the participating agents, plus a third-party agent), it becomes a system that
investigates a potential scenario for the future. The mediator on the other hand
exploits the predictive knowledge of the interacting agents, for aligning them
through its own behavior. For this reason, this approach will also be beneficial
for social behavior.

1.4 Paper Outline

In the next section, we introduce a representation of the behavior in terms of
Behavior Nets. In section 3, we describe a mechanism for individual alignment
based on "alignment policies". Section 4 describes the pre-interaction alignment,
and section 5 the alignment with a third-party agent interfering. We end with a
discussion and conclusions.

2 Behavior Nets

Petri Nets are a class of modeling tools, which originate from the work of Petri
[12]. Petri Nets have a well defined mathematical foundation, but also an easily
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understandable graphical notation [15]. Because of the graphical notation, Petri
Nets are powerful design tools, which can be used for communication between
the people who are engaged in the design process. On the other hand, because
of the mathematical foundation, mathematical models of the behavior of the
system can be set up. The mathematical formalism also allows validation of the
Petri Net by various analysis techniques.

The classical Petri Net is a bipartite graph, with two kind of nodes, places
and transitions, and directed connections between these nodes called arcs. A
connection between two nodes of the same type is not allowed. A transition is
enabled, if every input place contains at least one token. An enabled transition
may fire, which will change the current marking of the Petri Net into a new
marking. Firing a transition will consume one token from each of its input places,
and produce one token in each of its output places.

2.1 Definition of Behavior Nets

In the following, the formal definition of Behavior Nets is given, which is a
Petri Net extension, based on Workflow Nets [1], Self-Adaptive Recovery Nets
[8] and Colored Petri Nets [9]. An example of such a Behavior Net can be seen
in figure 2 (a).

Definition 1. Definition of Behavior Nets

A Behavior Net is a tuple BN = (Σ, P, Pm, T, F i, Fo, i, o, L, D, G, B) where:

– Σ is a set of data types, also called color sets
– P is a finite set of places
– Pm is a finite set of message places
– T is a finite set of transitions (such that P ∩ Pm = P ∩ T = Pm ∩ T = ∅)
– Fi ⊆ ((P ∪ Pm) × T ) is a finite set of directed incoming arcs, and
– Fo ⊆ (T × (P ∪ Pm)) is a finite set of directed outgoing arcs, such that:

∀p ∈ Pm : •p = ∅ ⊕ p• = ∅

– i is the input place of the behavior with •i = ∅ and i ∈ P
– o is the output place of the behavior with o• = ∅ and o ∈ P
– L : (P ∪ Pm ∪ T ) → A is the labeling function where A is a set of labels
– D : Pm → Σ denotes which data type the message place may contain
– G is a guard function which is defined from Fi into expressions which must

evaluate to a boolean value
– B is a binding function defined from T into a set of bindings b, which binds

values (or colors) to the variables of the tokens

The set of types Σ defines the data types tokens can be, and which can be used
in guard and binding functions. A data type can be arbitrarily complex, it can
for example be a string, an integer, a list of integers, or combinations of variable
types.



Anticipatory Alignment Mechanisms for Behavioral Learning 331

The places P and Pm and the transitions T are the nodes of the Behavior
Net. All three of these sets should be finite. The extension of classical Petri Nets
is the addition of the set Pm which are nodes for sending and receiving messages
during an interaction. Such a message place is either a place for receiving or for
sending messages, it cannot be both.

Fi and Fo are the sets of directed arcs, connecting the nodes with each
other. An arc can only be from a place to a transition, or from a transition
to a place. By requiring the sets of arcs to be finite, technical problems are
avoided, such as the possibility of having a infinite number of arcs between two
nodes.

Executing a behavior is part of an interaction process, the behavior is created
when the interaction starts, and deleted when the interaction is completed. For
this reason, the Behavior Net also has to have one input and one output node,
because the Behavior Net initially has one token in the input place when the
interaction starts, and can be deleted when there is a token in the output place.

With function L, a label can be assigned to every node. This has no mathemat-
ical of formal purpose, but makes the Behavior Net more easily understandable
in the graphical representation.

Function D denotes which message place may contain what data type. This is
useful for determining which message place an incoming message has to be placed
on. Because the two (or more) behaviors in an interaction are distributively
executed, message places of both behaviors cannot be connected directly with
each other, as the behaviors do not have to be aligned.

Function G is the guard function, which expresses what the content of a token
has to be, to let the transition consume the token from the place. Function G
is only defined for Fi, because it makes no sense to put constraints on outgoing
edges of transitions. In other words, this function defines the preconditions of
the transitions.

Transitions can change the content of a token. Binding function B defines per
transition, what the content of the tokens produced by the transition will be.
Bindings are often written as, for example, (T 1, < x = p, i = 2 >), which means
that transition T 1 will bind value p to x and value 2 to i. The values assigned
to the variables of the token (which data type must be in Σ) can be constants,
but can also be values of the incoming token, or values from the knowledge- or
belief-base of the agent.

2.2 Operations

In Behavior Nets, there is a set of primitive operations for modifying the net
structure, such as adding and deleting places, transitions, arcs and tokens. Be-
sides the primitive operations, there is a set of more advanced operations, which
also preserve local soundness. By preserving local soundness we mean that af-
ter applying the operation, an execution of the behavior will still terminate
properly, if the behavior is also terminated properly before the operation. The
message places Pm are not taken into account when determining local soundness.
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Local soundness refers to a sound behavior, to make the distinction with a sound
interaction, which will be referred to as global soundness. More information
about soundness can be found in [2]. The used set of advanced operations are:

– division and aggregation*, which divides one transition into two sequen-
tial transitions, and vice versa,

– parallelization and sequentialization*, which puts two sequential
transitions in parallel, and vice versa,

– specialization and generalization, which divides one transition into two
mutual exclusive specializations, and vice versa,

– iteration and noIteration, which replaces a transition with an iteration
over a transition, and vice versa,

– receiveMessage and notReceiveMessage, which adds or deletes an incom-
ing message place,

– sendMessage and notSendMessage, which adds or deletes an outgoing mes-
sage place.

For some of the operations, marked with *, is it not always clear how they can
be applied on-the-fly, because of the dynamic change problem [3]. For example,
sequentialization, as mentioned above, cannot be applied for every token
marking, as it is not always clear on which places the tokens from the old be-
havior should be placed, when migrating to the new behavior. For modeling the
migrations the approach of Ellis et al. [7] is used. By modeling a behavior change
as a Petri net, it can be exactly defined how to migrate the tokens from the old be-
havior to the new behavior. Note that advanced operations can also be described
using the primitive operations. For the receiveMessage, notReceiveMessage,
sendMessage and notSendMessage, nothing needs to be migrated, as there is
no change in the places, except for the message place, which initially do not
contain a token. In figure 1 can be seen how the migration for the operation
parallelization can be modeled.

Fig. 1. Migration of old to new behavior
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3 Individually Aligning Behaviors On-the-Fly

Before two agents start an interaction, they will both individually choose a be-
havior they are going to execute, based on what they are expecting out of the
interaction. Such behavior is an explicit representation (a Behavior Net) of the
course of actions (transitions) and future states (places) the agent is expect-
ing. An interaction however will not terminate, if the planned behaviors of the
agents interacting are not matching. When the behaviors are not matching, cer-
tain expected future states are unreachable. Therefore, the agent has to alter its
predictions about the future. To do so, agents must be able to change their be-
havior on-the-fly, i.e. during the interaction. For this purpose, alignment policies
are used by the agents.

3.1 Alignment Policies

An alignment policy is an ordered set of primitive or advanced operations. In
our approach, an agent has a set of policies in his knowledge-base from which
it can choose when an interaction for example has deadlocked, i.e. when there
is no progression anymore in the execution of the behavior. How an agent will
choose an alignment policy (or if it will choose one at all) depends on different
factors. The factors used are: problem information, beliefs about the agent being
interacted with, and the willingness to change its own behavior.

Problem information. Most of the time, a problem will occur, when the agent
is not receiving the message it is expecting. It can also be the case that the
agent did not receive a message at all. If it did receive a message, the type of
the received message and other information about the problem can be used as
attributes for selecting the proper alignment policy.

Beliefs about the agent being interacted with. Beliefs about the other agents can
be of great importance when choosing an alignment policy. For example, when
the agent completely trusts the other agents, it might be willing to make more
change in its behavior than when it distrusts the other agents.

Willingness to change behavior. When an agent has very advanced and fine-
tuned behaviors, it is not smart to radically change the behaviors because of one
exceptional interaction. On the other hand, when the behavior of the agent is
still very primitive, changing it a lot could be a good thing to do. Hence when an
agent gets “older”, and the behaviors are based on more experience, the willing-
ness to change its behavior will decrease. This approach can be compared with
the way humans learn, or with the decrease of the learning rate over time when
training a neural network.

Currently, we are experimenting with agents who use a Neural Network to
choose an alignment policy [10]. As this approach seems to be promising, other
approaches, like Genetic Algorithms, could also be used. When an agent does
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not know how to handle a certain problem, it can go into escape mode, to learn
new ways to overcome its lack of experience. With a neural network, you exactly
know the certainty of the agent choosing a specific alignment policy. In this way,
it is easy to know when to trigger escape mode. More information about the
concept of escape mode can be found in [13].

3.2 Example

This section gives an example of how these alignment policies could work. In
this example, as shown in figure 2, the buyer and the seller already agreed on
the product the buyer wants to purchase, but, as seen in the figure, they have
different ideas about the order of the delivery and the payment. For the sake of
the example, we assume that the behavior of the buyer is very advanced, and thus
has no willingness to change its behavior. On the other side, the seller’s behavior
is still primitive and unexperienced, hence we are looking at the problem of how
the seller can align its behavior with the buyer, assuming that the seller has
trust in the buyer.

(a) Buyer (b) Seller

Fig. 2. Behaviors of buyer and seller

When the interaction starts, it immediately deadlocks; the buyer is waiting
for the product, and the seller is waiting for the money. A way to overcome this
problem would be for the seller to send the product and wait for the money
in parallel. Therefore, by using an alignment policy based on the operation
parallelization the behavior of the seller changes to the behavior as seen
in figure 3 (a), and the interaction can continue. However, if the buyer rejects
the product, and sends it back, the seller still doesn’t have the appropriate be-
havior to handle this, because the seller is waiting for the money. In case the
seller receives the product back, but when it is expecting the money, the seller
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could use an alignment policy based on the operation specialization to over-
come this problem, which divides the receive money transition into two separate
transitions, receive money and receive product. The resulting behavior can be
seen in figure 3 (b). The behaviors of the buyer (figure 2 (a)) and the behavior
of the seller (figure 3 (b)) are now aligned, and thus matching.

(a) First adaptation (b) Second adaptation

Fig. 3. Adapted behavior of seller

4 Pre-interaction Alignment

As said before, the agents participating in an interaction will choose a priori a
behavior they intend to execute. These behaviors consist of their own intended
actions and future states. Conflicting behaviors within an interaction can be
solved on-the-fly, as seen in the previous section, but another approach would
be to align the behaviors before the actual interaction. In this way, the expected
future states of the agents can be aligned beforehand. Such a pre-interaction
alignment is a very difficult process. Although it is natural between humans, it
is very difficult to formalize and implement a solution that offers pre-interaction
alignment for software agents. In this section, we are discussing merely the com-
plexity and problems poised by pre-interaction alignment. An example based on
an operational business process illustrates the problem.

4.1 Pre-interaction Alignment with Intended Behaviors Only

There are two ways in which pre-interaction alignment can be achieved. In the
first case, we assume that the agents posses only the description of their own
intended behavior. Before an interaction starts, the agents that are committed
to execute the interaction can be forced by the designer of the interaction-based
system to reveal their intended interaction to each other, like in figure 4.
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Fig. 4. Behavior for pre-interaction alignment

Each agent can automatically infer whether the interaction will succeed or
fail. If both agents realize that their behaviors are not matching and they have
internal interaction simulation abilities, each can run simulations of the future
interaction and come out with behaviors that matches each other. These antici-
patory matching behaviors can be exchanged again, and if the agents agree via
negotiation about using one, they can start the actual interaction.

In an interaction with only two agents, there are four possible outcome sce-
narios of the agents’ simulations:

1. Both agents propose new behaviors for each other.
2. One agent proposes a new behavior, and the other accepts it.
3. One agent proposes a new behavior, and the other rejects it.
4. No agent is able to propose a new behavior.

After scenario 1, a following round of negotiation and, if necessary, exchanging
new behaviors is needed. In order to reduce the complexity of the pre-interaction
negotiation about how to align the behaviors, some rules for selecting a matching
behavior can be enacted. For example, only scenario 1 may be allowed, and the
selection is based on an “external” assessment, i.e. the simplicity of the result (in
terms of the number of places, activities and arcs). Or, alternatively, scenario 1
is applied in successive steps, and via an internal assessment, for example, the
results are graded 1 to 10 by each agent, leading to the selection of the one
with the highest cumulative grade. This implies of course that the agents should
be able to assess independently, without human intervention, the quality of a
behavior they have to exhibit.

4.2 Using Interaction Beliefs

Pre-interaction alignment can be improved if the agents also have beliefs about
the expected behavior of the other one(s). We are currently extending the
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language to model behavior and behavioral belief by adding notation for ex-
pected behavior. Because this represents the expected course of action and fu-
ture states of the agent being interacted with, exchange of intended and expected
behaviors could more easily reveal potential mismatches in the expected future
states of different agents. In this setting, one agent represents for itself the in-
tended behavior for a given interaction, by using a normal Behavior Net, and
also Behavior Nets that represent what this agent is expecting from the other
agents involved in the interaction.

For example, consider the situation in a small enterprise where the sales man-
ager has to expedite an order for a particular customer. He intends to send a
request for re-planning the order to the planner and also a request to the shop-
floor scheduler, who is in charge of the actual early re-scheduling of the tasks
necessary to execute the order faster. In figure 5, the sales manager intends to
send the requests, waits for an answer from the scheduler and depending on the
answer (re-scheduling possible or not) continues to handle the negotiation with
the customer. He expects that the scheduler will analyze the request, and if fea-
sible, will arrange the re-scheduling and give a positive answer. He also expects
that the planner will update the delivery date for the order in its own system.

Fig. 5. Interaction Belief of sales manager

The scheduler (as in figure 6), is not cooperative in this interaction. When he
receives the request, he is just making a justification for refusal and sends this
back to the manager. He is not eager to make himself a new schedule, due to
various reasons (e.g. lack of time). His beliefs about the sales manager reflect his
unhelpful behavior, because he beliefs that the sales manager made a mistake
that resulted in the order expedition and it is his role to solve the problem
with the customers. He is not aware for example that expedition of orders can
increase the price the customers pay. By behaving in this way, the sales manager
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Fig. 6. Interaction Belief of scheduler

will always have a negative response. We call the graphs depicted in figure 5 and
figure 6 Interaction Beliefs (IBs), comprising the intended behavior of an agent
and also the expected behavior of the others.

On the other hand, the scheduler is aware that the planner has an automatic
scheduler used to check the feasibility of the automatically generated plans (ca-
pacity check). In figure 7, we depict two matching IBs, in an interaction between
the scheduler and the planner. When the scheduler has a problem at the shop-
floor level, and needs a new schedule, he asks the planner to provide him with
one generated by the schedule-based capacity checker. The scheduler can use
this as a blue print for a new schedule and will send the updated schedule to
the planner, who will update the plans. However, the planner will not generate
a schedule at the expedition request of the sales manager, but will only change
the delivery date for the order.

If these three agents would exchange their IBs depicted above, the sales man-
ager will immediately realize that the scheduler will always give him a negative
response. Also, he will realize that there is a powerful scheduling capability with

(a) IB of planner (b) IB of scheduler

Fig. 7. Matching IBs between the scheduler and planner
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Fig. 8. Human solution

the planner, and the shop-floor scheduler tends to use this capability instead of
making its own schedules. The planner will realize also that expedited orders
are never realized in the shop-floor, and its own scheduling ability is used only
when the scheduler asks for it.

We envisage an alignment via negotiation and re-design process of the IBs,
leading to matching that can use all this existent information in the expected
behaviors. Currently, such a situation is solved by humans, who can design a
solution like in figure 8. Here, the request for expediting is sent directly to the
planner, who generates a new prospective schedule for the shop-floor, which is
adapted and if feasible is sent back to the planner, who has to update his plans,
together with a “green-light” for the sales manager.

It is also possible that the graph in figure 8 is the IB of a new planner who
arrived in an organization where the sales manager and the scheduler behave
and believe as shown in figures 5 and 6. We can consider that in this situation
we have a “knowledgeable” planner agent, and two other “stupid” agents, who
are just wasting each other’s time. The planner can show how the interaction
should be carried out, and the other two agents can “learn” from the IB, which
one has better experience. Thus, the expected behavior in IBs (at least from
ones of knowledgeable agents), can be used to spread experience to agents who
are beginners.

The process of alignment becomes more complex if there are more than two
agents involved in the interaction. Also, if the interaction is long, aligning be-
comes combinatorially complex. For this reason, it is advisable to attempt to
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align behaviors which are short and are applied in bipolar interactions. Business
processes are in fact complex interactions. In order to achieve business process
coherence, a method to decompose into simple interaction, as described in [16],
is necessary. Furthermore, the use of expected behaviors via IB interchange will
increase the complexity of the alignment process compared with the interchange
of intended behaviors only.

5 Alignment by a Third-Party Agent

In the previous two kinds of alignment, the interacting agents have to solve the
conflict of non-matching behaviors themselves. However, it could be the case
that the interacting agents did not manage making an agreement. A logical next
step would be to let a third ’neutral’ agent intervene in the interaction. This can
be done in two ways, the neutral agent being a mediator, or being a superior
agent.

5.1 Third Agent as a Mediator

When there is a problem in the execution of a behavior, the agent can choose
an alignment policy to solve this conflict, as described in section 3. Such an
approach only works if one of the agents is willing to make “sacrifices” to its
behavior (e.g. if the seller in the previous section is willing to send the product
first, instead of first receiving the money). In such a case, an agent can also ask
a mediator, by choosing a special policy. This can also be a policy learned from
a superior agent, by the use of escape mode. For this purpose, it has to know an
agent who is able to play the mediator-role for this particular interaction.

In the best case scenario, both agents can use their initial non-matching be-
haviors when interacting with the mediator. For this reason, when one agent calls
for a mediator, there is no reason for the other agent in the same interaction to
refuse this. But there is still no guarantee that the interaction will be performed
successfully. The use of a mediator could require both agents to change their
behavior, for example when the mediator wants to have a fee [17]. Individual
alignment can be used to alter the behaviors of the initial interacting agents, to
make them aligned with the mediator. This “sacrifice”, however, can be refused
by the agents.

An example of how an interaction between two agents with conflicting behav-
iors can be solved with a mediator is shown in figure 9. The same behaviors of
the buyer and the seller as in the example of section 3 are used. However, for
alignment in this case, these agents do not have to change their behavior, be-
cause they are only interacting with the mediator. The behavior of the buyer is
matching with the behavior of the mediator, and the same is true for the seller.
The mediator in this example (which can be a bank) first pays the product,
passes the product through to the buyer, and earns the money from the buyer.
This is the best-case scenario for this interaction, as the mediator does not want
a fee. This is not likely in real life, but this is only an illustrative example.
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(a) Buyer (b) The mediator (c) Seller

Fig. 9. Example of alignment with a mediator

5.2 Third Agent as a Superior Agent

When the interacting agents both have the same superior agent, this agent can
be asked to solve the conflict. Again, this can be done by the use of a special
policy, as with asking for a mediator. A superior agent can also be asked when
pre-interaction alignment has failed. However, in this case, the third agent will
not play a role in the interaction. The superior agent will compare the behaviors
of both agents, and will “enforce” aligned behaviors to both agents. The superior
agent can do this in the same way with simulation as described for the pre-
interaction alignment in section 4, but without the negotiation, as the superior
agent imposes the agents to use a specific behavior. This can be a way of escape
mode itself, as the superior agent does not necessarily need to be a software agent.
When the interacting software agents fail, a human can align the behaviors of
the agents manually.

6 Discussion and Future Work

As far as we know, this is the first attempt to apply this kind of discrete math-
ematics to anticipatory agents. Although there are some approaches that apply
Petri Nets to model agent interaction, these are mainly concerned with a cen-
tralistic view. However, we are taking a distributed approach. This approach has
the potential to appeal to two research communities: the one oriented towards
Business Information Systems development (who apply Petri Nets for modeling
workflows), and also to the growing anticipatory agent community. Some re-
searchers have pointed out that the models used for BIS analysis and design are
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in fact executable models of the organization they support. Apparently, the in-
clusion of a executable model of the organization in the organization itself (seen
as a system), makes the whole an anticipatory system. Obviously, organizations
that use a BIS increase their anticipatory ability. Unfortunately, there is no ev-
idence that the current development of BISs is done with explicit anticipatory
ability in mind.

Our strong belief is that agent-oriented BIS that support the business
processes of the organization (in terms of interaction support), due to the antici-
patory ability of the individual agents, lead to an emergent behavior of the whole
system that has an anticipatory nature. Of course, such a statement has to be
proven empirically and theoretically. An intuition is that simulation - currently
intended for development purposes - can have an important role in the anticipa-
tory architecture of an agent-enabled BIS in an organization. If the executable
agent-based model of the organization can perform simulations itself that start
from the present state as perceived in the organization, this model can predict
future states. The results of these predictive simulations can be used to influence
the current state of the organization via an effector sub-system.

Currently, the idea about development simulations is that these are in fact
games, where expert players interact with the simulated agents, via the es-
cape/intervention mechanism. An escape is triggered when an agent cannot per-
form a certain act, and an intervention is when the human supervisor decides
that the course of action is not as desired. After the agents are fully developed
and are deployed in the organization, the predictive simulations that they could
perform should be as automatic as possible (otherwise human intervention would
make this anticipatory mechanism inefficient). This observation proves the need
for better automatic alignment mechanisms very relevant.

Our future research will be directed towards a number of issues. Mechanisms
for triggering the escape mode should be investigated, but also what the human
will do after the escape is activated, i.e. how to train the agents. Pre-interaction
alignment also has to be further investigated. Mechanisms for simulation result-
ing in new behaviors, and negotiating what behavior to use, are in a preliminary
stage. Furthermore, alignment with the intervention of a third-party agent needs
further research as well.

7 Conclusion

As we have shown, it is possible to describe a policy for alignment that can be
applied when the interaction beliefs of two or more interacting agents are not
matching. We introduced an extension of Petri Nets to capture the interaction
beliefs and also a mechanism to choose the appropriate policy that adapts the
beliefs from one agent perspective. From the anticipatory systems perspective,
this research can enable predictive agent model execution (agent-based simula-
tion of organizational models) to be more reliable and necessitate less human
intervention in terms of alignment.

As proposed in this paper, the on-the-fly alignment mechanism results in
faster and more direct model and behavioral learning, as the agent is able to
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learn new behaviors during the interaction. Furthermore, it resulted in improved
social skills, as the agent is able to alter its behavior during the interaction, in
order to ensure a successful interaction, even when the original behaviors of the
interacting agents were not matching.

As we have shown, pre-interaction alignment and alignment with the help of a
mediator are beneficial for social behavior, as these approaches exploit predictive
knowledge of other agents.

We consider a superior agent aligning the interacting agents forcing them into
new “less anticipatory” behavior. For this reason, the other mentioned approaches
are favored above this one. This approach can however be used as a last resort,
especially because the superior agent can be a human.

Finally, we believe that interdisciplinary work between the BIS research and
anticipatory agent research can yield lots of “cross-fertilization” and raise the
awareness that BIS enabled organizations are in fact anticipatory systems and
also provide test beds for novel anticipatory agent ideas. Today, there are many
system architectures that support activities in business processes, like workflow
systems and enterprise integrated systems. Most of these architectures are mono-
lithic and centralistic, having a low degree of flexibility. An architecture based
on agents that allow change via different mechanisms for behavioral alignment
offers a more natural approach to process support.

We consider that business processes that are inherently interactional, like in
sale/purchasing, but also planning and scheduling can benefit from these align-
ment mechanisms. There is a clear uptake in implementing adaptive sale/pur-
chasing systems via web-services, but there is still low emphasis on higher-level
issues related to these systems, like conceptual architectures, interaction repre-
sentations and mechanisms. In contrast with technology-driven approaches, our
approach is doing exactly that, taking a top-down, formalism based, research-
oriented approach.
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Abstract. We compare the performance of two connectionist models developed 
to account for some specific aspects of the decision making process in the Iter-
ated Prisoner’s Dilemma Game. Both models are based on common recurrent 
network architecture. The first of them uses a backward-oriented reinforcement 
learning algorithm for learning to play the game while the second one makes its 
move decisions based on generated predictions about future games, moves and 
payoffs. Both models involve prediction of the opponent move and of the ex-
pected payoff and have an in-built autoassociator in their architecture aimed at 
more efficient payoff matrix representation. The results of the simulations show 
that the model with explicit anticipation about game outcomes could reproduce 
the experimentally observed dependency of the cooperation rate on the so-
called cooperation index thus showing the importance of anticipation in model-
ing the actual decision making process in human participants. The role of the 
models’ building blocks and mechanisms is investigated and discussed. Com-
parisons with experiments with human participants are presented. 

Keywords: anticipation, cooperation, decision-making, recurrent artificial neu-
ral network, reinforcement learning. 

1   Introduction 

In formal game theory players are described as perfectly rational and possessing per-
fect information about the game including not only their possible moves and payoffs 
but also those of their opponents. On the other hand, the bounded rationality view on 
cognition states that people are almost never perfectly rational (see e.g. [1]). Moreover, 
they try to minimize the cognitive effort while making decisions. Finally, the results of 
experiments involving games demonstrate that people rarely play as prescribed by the 
normative game theory. We have started a series investigations on the cognitive proc-
esses involved in decision making in Iterated Prisoner’s Dilemma Game (IPDG) from 
a cognitive science point of view [2-5] using different approaches involving psycho-
logical experiments, eye-tracking experiments, and modeling and simulations.  

In [3], a simple model based on expected subjective utility theory was put forward. 
The model used extensively backward reinforcement learning mechanisms and based 
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on that made predictions about the move probability of the opponent. Additionally in 
order to explain some specific characteristics of the decision making process, explicit 
accounting of the current game was added. The latter allowed for the description of 
the well known dependency of the cooperation rate and the structure of the payoff 
matrix expressed by the so called Cooperation Index (CI) (see [6]). This property is 
not available in typical reinforcement learning based models used to model playing of 
IPDG and in which the probability for cooperation is based only on past games  
(see [7] and [8]). 

Taking into account the results obtained by Hristova and Grinberg [3], here we pro-
pose a connectionist architecture based on a recurrent network which accounts for the 
payoff structure of the PD game, the past moves and payoffs, and predicts the next 
moves of the player and his/her opponent, and the expected payoff from the next game. 
A related attempt, using recurrent neural networks, to model the complexity of IPDG 
has been made by Taiji and Ikegami [10] but in their model only the moves of the 
players are used in the recurrent network and only a single payoff matrix is played, so 
the question of the influence of the different ratios among the payoffs in different game 
matrices (i.e. dependency on game CI) could not be considered. Two further variants 
based on the general architecture were explored. The first involved training of the next-
move output node using a backward looking reinforcement model (see [9] for details), 
further referred to as Model B. In the second, the training of the move node was based 
on evaluation of the future payoffs and thus essentially using anticipation (further re-
ferred to as Model A). The analysis and comparisons of the simulation results of the 
two models with recent experimental results and the discussion of the importance of 
the mechanisms involved are the main concerns of this paper. 

1.1   The Prisoner’s Dilemma Game 

The Prisoner’s dilemma is a two-person game. The payoff table for this game is pre-
sented in Table 1.The players simultaneously choose their move – C (cooperate) or D 
(defect), without knowing their opponent’s choice. 

Table 1. Payoff table for the PD game. In each cell the comma separated payoffs are the Player 
I’s and Player II’s payoffs, respectively. 

  Player  II 

  C D 

C R, R S, T 

P
la

ye
r 

I 

D T, S P, P 

 
In Table 1, R is the payoff if both players cooperate (play C), P is the payoff if both 

players ‘defect’ (play D), T is the payoff if one defects and the other cooperates, S is 
the payoff if one cooperates and the other defects. 
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The payoffs satisfy the inequalities T > R > P > S and 2R > T + S. This structure of 
the payoff matrix of that game offers a dilemma to the players: there is no obvious 
best move. The dominant D move (T > R and P > S) would lead to lower payoffs if 
adopted by all the players (payoff P) although this is the choice prescribed by stan-
dard game theory. Cooperation seems to be the best strategy in the long run (R > P) 
but at the risk of one of the opponents to start to defect and the other to receive the 
lowest payoff S. This quite complicated situation is at the heart of the dilemma in this 
game and is the reason for the on-going interest in this game over the past 50 years 
and continuing today. 

Rapoport and Chammah [6] proposed the quantity CI  = (R–P)/(T–S), called coop-
eration index, as a predictor of the probability of C choices, monotonously increasing 
with CI. In Table 2, two examples of PD games with different CI, 0.1 and 0.9, respec-
tively, are presented. 

Table 2. Examples of PD game matrices with different CI – 0.1 and 0.9, respectively. The first 
payoff in each cell is the payoff of the ‘row’ player and the second of the ‘column’ player. 

Player  II CI=0.1 
C D 

C 56, 56 0, 60 

P
la

ye
r 

I 

D 60, 0 50, 50 
 

Player  II CI=0.9 
C D 

C 56, 56 0, 60 

P
la

ye
r 

I 

D 60, 0 2, 2 
 

1.2   Social Interactions and Modeling of the IPDG 

A common assumption is that people build mental models of themselves and other 
people they interact with (and of the world as a whole) in the long run. Such models 
include grasping typical aspects of their behavior. This may result in establishing rela-
tions of trust or distrust with these people. If more or less pure instances of IPDG are 
observed in real-life social relations, we keep in mind that, as long as people try to 
take advantage of these relations, they create the most likely images of the other 
‘players’ and of the environment. These images (or models) are guided by past ex-
perience (the history of the relation). The actions assigned to interactions comply with 
predictions about the others’ actions. In other words, past experience and predictions 
for events based on these experiences are factors which cannot be neglected in under-
standing human social interactions (e.g., see [12]) and in particular, the IPDG. 

From a cognitive modeling point of view the challenge is to understand the deci-
sion making mechanisms that would lead to the results observed in the experiments 
with human participants taking account of all characteristics (like the dependency on 
CI for instance). We are convinced that the models needed must have a minimal level 
of complexity and account for playing based on the payoff matrix of the game (e.g. to 
be sensitive to CI) and on the opponent moves and game outcomes. In the same time 
human players rely on past experience and predictions of future events. The models 
presented here are aimed at complying with these requirements. 
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2   Models – Architectures and Functioning 

2.1   Basic Architecture 

The core architecture (underlying both presented models) is an Elman recurrent neural 
network [11] (see Figure 1). In [10], a recurrent network has also been used to model 
the behaviour of PD game players. However, the network we used has a much more 
complicated structure including the network input/output structure, the game payoff 
matrices, the players’ moves, and the received payoffs (related to the specific game 
outcome). The network consists of eight input, thirty hidden-layer, and six output 
nodes (see Figure 1). The activation functions of the hidden layer and of the output 
layer are tan-sigmoid and log-sigmoid functions, respectively. Because of the logistic 
output activation function, a part of the network’s outputs could be interpreted as 
probabilities. 

2.1.1   Inputs and Outputs 
All the inputs of the network were rescaled within the range [0, 1]. As can be seen in 
Figure 1, the values of the payoffs from the current game matrix (excluding the payoff 
S which was always 0), as well as the past game payoff received, the player’s and op-
ponent’s moves in the previous game were presented at the input nodes at each cycle.  

 

Fig. 1. Schematic view of the recurrent neural network and its inputs and outputs/targets; nota-
tion: Sm and Cm are respectively the simulated subject and computer opponent (probability for) 
moves; Poff(t) is the player’s received payoff at time t 

The past moves were recoded as [0,1] – for C and [1,0] – for D moves, so that acti-
vation would always come from any of the two couples of input nodes, no matter 
what the moves were – C or D.  

The values of the T, R, and P payoffs from the current game had to be reproduced 
as an output by the model thus implementing an in-built autoassociator. There were 
two reasons to decide to include this component in the network architecture. The first 
was that this would force the network to establish representations of the games in its 
hidden layer which is crucial to account for the game payoff structure in the decision 
making process. The second one was related to the anticipatory decision mechanism 
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of Model A where the output nodes concerning T, R, and P were used as predictions 
of the next games’ payoffs (see Section 2.2.2 for details). 

At the output, the player’s move (‘Sm’ node) and the computer-opponent’s move 
(‘Cm’ node) nodes were interpreted as the probability for cooperation for the player and 
the prediction about the probability of cooperation of his/her opponent in the game at 
hand. The payoff (‘Poff’) node represented the expected gain from the current game. 

2.1.2   Training 
PD games with varying CI – from 0.1 to 0.9 – were presented to the neural network 
(T was always equal to 1, and S was always 0, R and P were distributed in this inter-
val depending on the CI of a particular game). The games were randomized with  
respect to CI in the same way as in the experiments with human participants (see  
e.g. [2,3]) in order to allow comparison with the experimental results (see Section 3).  

The network was trained using back-propagation on an input consisting of se-
quences of overlapping five games – the current game and the four previous games. 
Such sequences are further called micro-epochs.  

In the very beginning of the IPDG, the length of micro-epochs was increasing with 
each next completed game until it reached five games. The very first inputs were as 
follows: the first game matrix, the player’s move and the prediction of the opponent’s 
move generated with probability 0.5. The first received payoff (‘Poff’) was obtained 
from the averaging of the payoffs of the games. 

The small number of games that the network dealt with at a time implies sensitivity 
to local changes in the game and to memory constraints we assumed to exist in real 
game playing. On the other hand, the micro-epochs were long enough so that specific 
events in the history of IPDG were able to encode in the memory of the recurrent hid-
den layer. 

The values at the six output nodes were used as predictions when the network was 
trained within the current micro-epoch. The ‘T’, ‘R’, and ‘P’ output nodes were ex-
pected to reproduce the corresponding input values in the input payoff matrices.  

The output of the ‘Sm’ node was the model-player’s probability for cooperation in 
the current game. The output at the node ‘Cm’ was the prediction for the cooperation 
probability of the opponent, and the output at the ‘Poff’ node meant the expected 
game payoff.  

When both player and opponent had made their moves, and the payoff for the 
model-player was known, the new target micro-epoch was updated and the network 
was trained with the inputs it was simulated with and the new targets. For all of the 
output nodes the training signal is supplied by the game (payoffs) and the opponent 
moves except for the model-player’s move probability. The latter has to be supplied 
either from experimental data with a human player (if the model is used to fit the be-
haviour of a real player) or by explicitly modeling the evaluation of the game out-
come. Here, we will present results along the latter line based on two different choices 
of such an evaluation. 

2.2   Decision Making of the Models 

In order to build a realistic model able to make decisions comparable to the ones 
made by human subjects, we had to make an assumption for an evaluation mechanism 
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for the outcomes of the player’s moves. Hereafter, we discuss two such mechanisms, 
both based on received payoff maximization, which differ in the emphasis on back-
ward or forward evaluation. 

2.2.1   Backward-Looking Model (Model B) 
Model B integrates the recurrent network presented in Section 2.1 with the Bush-
Mosteller (BM) backward-looking reinforcement learning model in the form proposed 
by Macy and Flache [9]. 

We integrated the Macy and Flache model with our recurrent neural network by 
using the predicted payoff – ‘Poff(t)’ (see Figure 1) as the player’s aspiration level 
and used it to estimate the target cooperation probability. The current move of the 
model was generated with a probability equal to the output at the ‘Sm’ node (see  
Figure 1). After the game moves were made by the player and its opponent, and the 
player’s payoff was already known, a target probability was calculated using the 
Macy’s and Flache’s model [9]. The ‘Cm’ target node was trained using the actual op-
ponent’s move and the ‘Poff’ output node using the received payoff. The latter was 
considered to be a kind of aspiration level based on payoff expectation and was used 
instead of the aspiration update rule from [9]. As explained before, the ‘T’, ‘R’, and 
‘P’ output nodes were trained using the values from the input game matrix as targets. 

This combination of a neural network model and a reinforcement model was ex-
pected to give a model player sensitive to specific game episodes in IPDG and to the 
payoffs in the game matrix at hand (which could give rise to a CI dependent strategy). 
Theoretically, when the model encountered an episode, in which all predictions (ex-
cept for the move prediction) resembled those from any past episode, it would play 
with the reinforced cooperation probability from that past episode.  
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Fig. 2. Dynamics of aspiration (output ‘Poff’ node) and cooperation probabilities in Model B 
(‘Sm’ node) 

The dynamics of the decision making process is illustrated in Figure 2, where the 
fluctuation of the aspiration level together with the player’s move probability are 
shown. It is seen from Figure 2 that as expected low aspiration level leads to high 
probability of cooperation because the payoffs R are above the aspiration level. 
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2.2.2   Forward-Looking Model (Model A)  
Model A is based on the same neural network architecture as Model B but is aimed at 
using essentially anticipation mechanisms for deciding about its moves. 

Model A uses the predictive properties of the recurrent network in order to “guess” 
how the game would proceed if its current move were either C or D. An anticipatory 
module was implemented in the model, so that two sequences of five games predicted 
by the neural network were produced before making a move. The first sequence be-
gan with a C move, and the second one with a D move. Only the first player move 
was fixed in any sequence. The recurrent network had as first inputs the current game 
input (together with the other four games from the micro-epoch) including the values 
of the T, R, and P payoffs, and the players’ moves and payoff from the previous 
game. This is a simpler mechanism than the one used in [10], where all the possible 
strings of C and D moves are taken into account. Here the first move is chosen and 
everything else is based on the network predictions. 

As the player’s move was known in the first fictitious game (C or D), the opponent 
move was generated with the probability predicted by the network. The payoff for the 
player from the game was calculated according to the rules of PD game – the autoas-
sociated T, R, P or S based on the moves of both players.  

In the second fictitious game the input micro-epoch was updated so that the new T, 
R, and P values were taken from the output layer of the neural network and consid-
ered as prediction about the fictitious game payoffs. The ‘Poff(t-1)’ node activation 
got the value of the fictitious payoff from the previous game and the previous moves 
nodes (the ‘Sm(t-1)’ and ‘Cm(t-1)’ nodes) activations were the fictitious previous game 
moves. In the next iterations everything was repeated except for that the player move 
was generated with its predicted probability and was no longer fixed. 

So the cycle was completed and the model could predict several future games and 
related moves and outcomes. The payoffs from both sequences (PoffC for initial move 
C and PoffD for initial move D) were then considered. The obtained payoffs from the 
five fictitious games for each initial move choice were evaluated using a discount fac-
tor as follows:  

1
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where Poff C,D(t) is the value of the payoff at moment t, for initial move C or D and β 
is the usual discount parameter that indicates to what extend the remote future game 
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PoffD became equal to 1 whereas their ratio remained the same.  
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where P(C) is the calculated cooperation probability and k is a parameter for the  
sensitivity of the function towards the difference between PoffC and PoffD. The 
smaller the value k had, the greater the sensitivity to the difference between the C and 
D alternative choices became. 

3   Game Simulations 

3.1   The Computer Opponent 

The models were run against a probabilistic Tit-for-two-Tats (Tf2T) computer strat-
egy. Its move depended on the player’s two previous moves, thus being adaptive to 
their temporal cooperativeness without being easily predictable. Depending on the 
two previous opponent’s moves the probability for cooperation was respectively: 0.5 
for [C, D] and [D, C], 0.8 for [C, C], and 0.2 for [D, D]. Furthermore, the same com-
puter opponent was used in a series of experiments and such a choice for the simula-
tions here allows for a comparison with the experimental results (see Section 3.2). 

They both had the underlying recurrent neural network that provided them with the 
ability to “recognize” and predict events in the IPDG and, therefore, be able to extract 
important information such as the strategy of the opponent from the history of the 
game. Both made their moves probabilistically so that they had the chance to evoke 
different aspects of their adaptive opponent’s strategy, which might have remained 
invisible otherwise.  

3.2   Comparison of Models’ and Experimental Results 

The results presented in this section are based on 30 IPDG sessions of two-hundred 
games against the Tf2T computer strategy for each model (B and A). For the com-
parisons with the experiment, the first 50 games are taken (to match the number of 
games played by human participants). From the experiment reported in [2], only data 
from the first part and for the control condition was used in the comparison of Model 
A, Model B, and participants (see [2] for details). 30 participants played 50 PD games 
against the computer. The computer used the probabilistic Tf2T strategy described 
above. This was done to allow the subject to choose his/her own strategy without eas-
ily becoming aware of the computer-opponent’s strategy. The payoffs were presented 
as points, which were transformed into real money and paid at the end of the experi-
ment. After each game the subjects got feedback about their and the computer’s 
choice and could always monitor the total number of points they had won and its 
money equivalent. The subjects received information about the computer’s payoff 
only for the current game and had no information about the computer’s total score. 
This was made to prevent a possible shift of subjects’ goal – from trying to maximize 
the number of points to trying to outperform the computer. In this way, the subjects 
were stimulated to pay more attention to the payoffs and their relative magnitude and 
thus indirectly to CI. Games of different CI, ranging from CI  = 0.1 to CI  = 0.9, were 
presented both to participants and in simulations with models A and B. Games were 
presented at random regarding their CI. 

In other simulations described in section 3.8., comparisons of participants’ and 
Model A’s performance are considered in two more experimental conditions, also 
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taken from [2]: in the first one only games with CI  = 0.1 and CI  = 0.3 were presented 
in the IPDG (Low-CI experimental condition). In the second one, games were only 
with CI  = 0.7 and CI  = 0.9 (High-CI experimental condition).  

The best fit of the experimental results was obtained with the following parameters 
used for Model A (see equations (1) and (2)): β = 0.7 and k  = 0.05. 

3.3   Mean Cooperation and Payoffs 

In Model B’s performance, the payoffs were significantly correlated with the mean 
level of cooperation in contrast to Model A whose payoffs were not correlated with its 
cooperation rates against the Tf2T computer player. These results reflect the different 
nature of the outcome evaluation mechanism in the two models– backward rein-
forcement learning for Model B and payoff anticipation for Model A. 
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Fig. 3. Comparison of mean cooperation and payoffs between Model A and B, and experimen-
tal data from human subjects (taken from [2]) 

The results for the mean cooperation and payoffs for Model A, Model B, and hu-
man participants’ experimental data taken from [2] are presented in Figure 3. Regard-
ing mean cooperation, only Model A simulation data and the experimental data were 
not statistically different (F = 0.121, p  = 0.73). The mean cooperation was different 
for Model B and experiment (F  = 5.858, p  = 0.019) and for Model B and Model A 
(F  = 6.267, p  = 0.015). 

For the mean payoff no significant difference was found between the simulations 
and the experimental data. 

3.4   Dependency of Cooperation Rate on CI 

First of all, a main effect of CI on cooperation rates was observed in Model A (F  = 
16.908, p < 0.01) whereas there was no such effect in Model B (F  = 0.367, p  = 0.83). 

In Figure 4, a detailed comparison, concerning the cooperation rate dependency on 
CI, between the predictions of the two models and the experimental results is shown. 
It is seen from Figure 4 that Model B gives a completely inadequate description  
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Mean Cooperation at Different Levels of CI for 
Human Subjects,  Model A and Model B 
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Fig. 4. Model B, Model A, and experimental [2] CI influence on cooperation rates 

(no CI dependency) of the experimental results while there were no statistical differ-
ences between the mean cooperation of subjects and Model A at all CI levels, and 
there was no main effect of the type of player (Model A or human) on cooperation  
(F  = 0.386, p  = 0.856). 
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b)

Model A -  Two Developed Strategies

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

CI 0.1 CI 0.3 CI 0.5 CI 0.7 CI 0.9
game CI

m
ea

n
 c

o
o

p
er

at
io

n

CI less-
influenced
CI influenced

 

Fig. 5. Comparison of experimental data from: a) human subjects (taken from [2]) and b) 
Model A simulations, concerning the groups of players with strategies influenced by CI and 
otherwise 
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In Figure 5, two groups of players are presented: with strongly and weakly CI in-
fluenced strategies for the experiment from [2] and for Model A (see Figure 5, a) and 
b), respectively). The separation in groups was obtained by cluster analysis based on 
the monotonous dependency on CI. As seen from Figure 5, there is a qualitative 
agreement between the model and the experimental data.  

As stated earlier our main interest is related to the CI dependency of the coopera-
tion rate in both models. The ability to reproduce such details in the experimental data 
seems very important to us in order to be able to assess a model’s validity. In order to 
understand the presence and lack of CI dependency in both models we analyzed the 
hidden layer activations looking for nodes whose activity is correlated or changes 
with the changes of CI. As discussed earlier in this paper, we included autoassociator 
nodes in the architecture of the Elman neural network to force the representation of 
the payoff structure at the hidden layer thus hoping to help the network to account for 
it (and hopefully for CI). That is why we performed simulations with Model A which 
essentially used the autoassociator part to make predictions about the payoffs of coun-
terfactual games and with Model B with and without autoassociator nodes. The latter 
allowed us to see what the responses of these nodes to CI are. The analysis shows that 
when the autoassociator nodes are present there are hidden nodes whose activity var-
ies with the CI and their number and correlation with CI increases with playing. Such 
a strong variation of the hidden nodes activations with CI is not observed when the 
autoassociator nodes are switched off. The conclusion can be made that the inclusion 
of the autoassociator part is crucial in order to obtain CI dependency in the model. 
What is the reason for Model B to fail to display CI dependency in its play? One pos-
sible explanation is the use of a backward-looking reinforcement mechanism which 
account mainly the past received payoff and the expected payoff (as aspiration level). 
Although the network could extract information about the game CI, this information 
was not useful in determining the playing strategy because it was not needed by the 
game outcome evaluation mechanism. In the case of Model A, however, the situation 
is different. The simulation by the model of possible games and moves and outcomes 
involves the prediction about the payoff structure of the game and thus indirectly of 
the CI. Thus in the case of Model A the increased sensitivity to CI of the hidden 
nodes influences the move choice of the model. At closer look however, it turned out 
that the developed sensitivity of some hidden nodes is only partly responsible for the 
final dependency of Model A. The largest part is due to the specific anticipatory form 
of evaluation of the best move involving the payoffs of the game at hand and of an-
ticipated payoffs reflecting the structure of the current game. 

3.5   The Role of Anticipation on Cooperation for Model A  

As seen from the previous sections, Model A seems much more adequate to account 
for the experimental findings. Its properties are explored in more detail in this section. 

In Figure 6, the CI dependency of cooperation is shown in the case of two different 
predictions of Model A – that the opponent will cooperate and defect, respectively. It 
is seen that a CI dependency is present in the case of a predicted D move.  

There are several factors working together for the model to behave in such a way: 
the first one is that the PD games’ normalization (T  = 1, S  = 0, and R and P distrib-
uted in this interval) entailed a strong negative correlation of P with CI (r  = -0.92, 
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p < 0.01). For example, in the case when the CI was 0.9, P was equal to 0.027, and 
when CI was 0.1, P was 0.83. Thus, the model, which develops sensitivity to P, de-
velops also sensitivity to CI. 
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Fig. 6. Cooperation of Model A at different levels of CI according to the rounded prediction for 
the opponent move (C or D) for the current game 

Another factor is related to the chosen value of the parameter β (β  = 0.7). It  
ensured that not only the first fictitious payoffs, but also more remote fictitious pay-
offs would matter for the decision making in the anticipation module of Model A. 
Thus, when the opponent was predicted to defect by the network, PoffC (a series with 
first game outcome CD and related payoff S) and PoffD (a series with first game out-
come DD and payoff P) would not differ much in their values. 

The third factor was found in the soft-max function which would evaluate PoffC and 
PoffD.. In the case when the opponent was expected to defect in the PD game, it would 
give rise to relatively high probabilities for cooperation P(C). Thus the cooperation 
probabilities were higher when P was low (respectively, CI was high) and, vice versa, 
the likeliness to cooperate decreased when P was high (i.e. CI was low; see Figure 6). 
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Fig. 7. Mean cooperation of Model A in the case when the predictions for the opponent’s move 
were either D or C, if 0.5 is taken as a threshold for a D or a C move 
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Fig. 8. Cooperation of Model A at five successive ranges of the opponent move predictions 

On the other hand, Model A cooperated more as a whole when it predicted that the 
computer opponent would play a C move (F = 23.12, p < 0.01) (see Figure 7).  

Moreover, the cooperation of the model monotonously increased with the expected 
opponent’ probability for cooperation, especially at β = 0.7. To analyze this trend, the 
predictions for the opponent move probabilities were divided into five ranges in the in-
terval [0, 1] (see Figure 8). As seen from Figure 8, a tendency of increasing coopera-
tion probability with increasing expected cooperation of the opponent can be found. 

3.6   Effects Related to Varying β 

We discovered that β was of importance for Model A to fit experimental data from 
human subjects. For example, the overall level of cooperation of the model decreased 
setting β = 0. The monotonous CI-influence on cooperation was also affected in that 
case (see Figure 9).  
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Fig. 9. CI-influence on cooperation of Model A at β = 0 and β = 0.7 
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Varying β, a qualitative change in the behavior of Model A was found for the rela-
tion between the opponent’s move predictions and cooperation (see Figure 9). The 
change was such that when β = 0, the increase of cooperation with the growth of pre-
dicted opponent cooperation probability disappeared. Instead, Model A would coop-
erate less both when it predicted the opponent would cooperate or defect, and it coop-
erated more when it was unsure about the other player’s moves (see Figure 10). 
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Fig. 10. Influence of predictions about the opponent’s moves on cooperation for Model A with 
β = 0 and β = 0.7 

As described in section 2.2.2., β is a parameter used to control the depth of the 
forward-looking of Model A. As seen from Figure 10, it can have a considerable ef-
fect on cooperation and its dependency on the game CI. 

3.7   Predictions of Model A in the IPDG 

3.7.1   Opponent’s Move Prediction  
The predictions of the network about the moves of a deterministic opponent such as 
the Tit-For-Tat player became more and more accurate during the IPDG. The begin-
ning of the game served for the model to understand the strategy of its opponent. The 
overall success in predicting the moves of a deterministic Tit-For-Tat player was 95% 
and the mean squared error of the respective predicted payoff was 0.04. 

This shows that in this easily predictable case Model A consistently predicted two 
related quantities – prediction about the opponent’s move and expected payoff. 

Against a stochastic opponent such as the probabilistic Tf2T computer player (see 
section 3.1. for details) the errors in the opponent’s move predictions were larger and 
the network could predict them in 60% of the cases (see Figure 11). In our opinion, 
this seems a reasonable estimation of the ‘actual’ predictability in human playing 
against the same computer opponent. 
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Errors for Tit-for-Two-Tats Opponent's Move Prediction 
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Fig. 11. Network errors in the IPDG related to predictions of the Tf2T stochastic computer op-
ponent, used in the simulations 

3.7.2   Predicted Opponent Move and Payoff 
In Figure 12 the opponent’s move prediction error together with the player’s payoff 
prediction error are given for a fragment of IPDG. Whenever the network didn’t man-
age to predict the move of its opponent, it reflected this in bad predictions of the pay-
offs it received, and vice versa. This indicates that the network has acquired the rules 
of PD correctly and associated a given expected game outcome with its corresponding 
payoff according to the game rules. 
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Fig. 12. Plot of squared errors for opponent’s move and payoff predictions for a fragment of an 
IPDG against the probabilistic Tf2T 

3.8   Detailed Comparison of Model A with Experimental Data 

In the following, we compare the results from simulations with Model A and the re-
sults for the three experimental conditions from [2]: the High-CI (CI = 0.7 and CI = 
0.9), Low-CI (C = 0.1 and CI = 0.3), and Full-CI conditions (CI covers the range 
0.1÷0.9) (see [2] for details). Model A was also tested with settings equivalent to the 
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High-CI and in the Low-CI conditions (in terms of number and type of games) and it 
managed to satisfactorily fit the experimental results without any additional parameter 
fixing as shown bellow.  
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Fig. 13. Comparisons of types of game outcomes for Model A and human subjects in three ex-
perimental conditions (see [2]): a) Low-CI condition; b) High-CI condition; c) Full-CI condition 
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3.8.1   Comparison of Game Outcomes 
The numbers of types of game outcomes were compared for Model A and subjects in 
all experimental conditions. For the Low-CI condition there was a significant differ-
ence only for the number of DD game outcomes (F = 5.76, p < 0.05) (see Figure 13a). 
In the High-CI condition (see Figure 13b) there was also only one difference between 
the model and subjects for the number of CC outcomes (F = 256.27, p < 0.05). Fi-
nally, in the Full-CI condition there were no differences (see Figure 13c). 

3.8.2   Comparison of Cooperation and Payoffs 
In the experimental study [2] subjects cooperated less in the Low-CI condition than in 
the High-CI condition (F = 17.128, p < 0.01), and they cooperated less in the Full-CI 
condition than in the High-CI condition (F = 8.299, p < 0.01) (see Figure 14a). These 
differences were replicated in the simulations with Model A: for the Low-CI and 
High-CI – F = 120.46, p < 0.01, and for the Full-CI and High-CI – F = 18.47, p < 0.01 
(see Figure 14b). In Model A the cooperation level was also different between the 
Low-CI and Full-CI conditions (F = 41.77, p < 0.01). 

As for the received payoffs, both Model A and human participants won more in the 
Low-CI condition than in the High-CI condition (F = 85.99, p < 0.01, for Model A 
and F = 23.91, p < 0.01, for human participants, respectively; see Figs. 14a, b).  
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Fig. 14. Comparisons of cooperation and received payoffs within three experimental conditions 
[2]: a) for human subjects, and b) for simulations with Model A 
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The mean cooperation between Model A and subjects was different only in the 
Low-CI condition (F = 4.13, p = 0.047). In the other two conditions there were no 
significant differences in cooperation as seen from Figure 15. 
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Fig. 15. Comparison of cooperation of Model A and human subjects in the three experimental 
conditions with respect to CI [2] 
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Fig. 16. Comparison of received payoffs for Model A and the subjects in the three experimental 
conditions 

As seen from Figure 16, the received payoffs in the simulations and in the experi-
ments show a similar trend and are not significantly different.  

4   Conclusion and Discussion 

In this paper, a recurrent neural network architecture was used to simulate IPDG play-
ing. An important addition to usual architectures of this type was the presence of 
autoassociator nodes related to the payoffs of the games. Based on this architecture 
two models were explored. They differed in the way the training was performed. The 
first (Model B) used the reinforcement model of Macy and Flache [9] to evaluate the 
model player’s moves. The second (Model A) used a simple forward-looking mecha-
nism. Although similar with respect to architecture they displayed very different  
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outcomes. The most important difference found between the two models was related 
to the CI dependency of their moves. The performance of Model A turned out to be 
very close to human performance (at least with regards to CI dependency of coopera-
tion rates) while no such dependency was observed in the moves of Model B. This 
property was traced down to the appropriate response of the hidden nodes due to ade-
quate representation of the game payoff matrix related to the added autoassociator 
part of the network. However, the availability of the autoassociator part alone was not 
sufficient to grant CI dependency. It seems that the anticipation mechanism of move 
evaluation of Model A, based on the generation of counterfactual games, moves, and 
received payoffs, played a decisive role. 

The two models that we developed were connected with our search for a more 
plausible explanation of the way people play iterated social dilemmas like the Pris-
oner’s Dilemma game. On the basis of comparison with human subjects’ data from 
the same games, and against the same computer opponent, we came up with the con-
clusion that Model A, essentially involving anticipation, accounts better for human 
performance and can reproduce specific dependencies like the CI dependency. Thus 
Model A seems to be a more realistic and successful alternative to the schematic 
model based on subjective utility theory combined with simple reinforcement learning 
mechanisms proposed in [3]. To our knowledge no other models are able to account 
for the CI dependency in IPDG exist to date. 

Of course, further exploration of the proposed architecture as well as extensive 
comparisons to experimental results are needed in order to understand and make use 
of its full potential and clarify completely the role of anticipation in its functioning. 
Research along these lines is currently in progress and the results will be reported 
elsewhere. 
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Abstract. This paper presents an experimental study using two robots.
In the experiment, the robots navigated through an area with or without
obstacles and had the goal to shift places with each other. Four different
approaches (random, reactive, planning, anticipation) were used during
the experiment and the times to accomplish the task were compared. The
results indicate that the ability to anticipate the behavior of the other
robot can be advantageous. However, the results also clearly show that
anticipatory and planned behavior are not always better than a purely
reactive strategy.

1 Introduction

The ability to anticipate the behaviors of others is something we take more or
less for granted and we often do not appreciate the complexity of this ability.
When attempting to build robots with anticipatory abilities, it becomes clear
that this is far from trivial. Not only does the robot need to control its own
movement, it also needs to predict what other robots or possibly humans will
do. Moreover, it needs to use the anticipated behaviors of others in a sensible
way to change its own behavior.

Consider the following real life situation of the near future. You have sent your
personal shopping robot to the “Autonomous supermarket” to get your favorite
chocolate cake. To get the cake, located at the other end of shop, your robot
cannot chose the straight path toward the cake because of the shelves and other
obstacles, including all the other personal shopping robots in the store. Instead
some alternative strategy must be used.

One possibility would be to move around randomly in the store until it finds
the chocolate cake, but this would probably result in a long period of aimless
wandering before it gets to its goal. This type of random behavior is very in-
efficient and is seldom used in robot navigation, although is rather common in
robot exploration.

It is obvious that better methods can be used. Instead of moving at random,
the robot may try to move in the direction of the goal. This is a reactive place
approach method where the robot reacts to the position of the chocolate cake

M.V. Butz et al. (Eds.): ABiALS 2006, LNAI 4520, pp. 365–378, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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and selects actions accordingly [2]. The problem with this approach is that the
robot cannot go straight to the goal because of the shelves and other robots
in the store. It needs to apply an obstacle avoidance strategy when there is
something in its way. For example, it may turn around and move in some other
direction for a short while before turning toward the goal again. This type of
reactive navigation has been widely used in robotics where the relation between
the stimulus and response is often preprogrammed [8][13]. A number of rules
are set up that must be fulfilled for an action to be executed. A problem with
such a reactive approach to navigation is that the robot can easily get itself into
situations where it becomes trapped.

Although the reactive strategy is more efficient than random movements it
would be better to plan a path around the shelves based on knowledge of the
layout of the store. This has traditionally been the most common way of dealing
with robot navigation. This plan can use grids [21], potential fields [21][1][7], or
some symbolic or geometric description of the environment. As long as the map
of the shop is correct, the plan will also be correct and can be used to efficiently
go to the cake.

Unfortunately, when the personal shopping robot reviews the map after a few
seconds of moving according to the planned path, it realizes that the map is
no longer accurate. The shelves are still where they are supposed to, but most
of the other robots have moved and are not where the map indicates. As with
the previous strategy, this makes it necessary to use some obstacle avoidance
strategy to avoid colliding with the other robots which may limit the usefulness
of the plan.

The solution to this problem is to include the movements of the other robots
when the personal shopping robot makes its plan. This is however not trivial as
it does not know where the other robots are heading. One reasonable assumption
is that they will continue in the direction they have now, although this will only
be true for a short while. Better predictions can be made if the robot knows
the goals of the other robots. By anticipating the behaviors of others, it will
be able to chose a better path and will not have to use the obstacle avoidance
strategy as often. The better its ability to anticipate, the less it will need to use
its alternative strategies.

Several different types of anticipatory behavior have been used in robotics
and AI. First, it is possible to use an anticipatory mechanism to reduce the
latency of a control system. For example, Behnke et al. [4] used neural network
to reduce the control latency for the FU-fighter team in the soccer RoboCup.
The control system had a delay of four frames (132 ms) and with a speed up to
2 m/s, this could result in an error between the actual position of the robot and
the tracking of the robots of approximately 20 cm. By feeding a neural network
with the position, orientation and motor commands from the last six frames to
anticipate the current position, the influence of delay in the system was almost
eliminated. A similar method has also been used to predict the location of a
moving target for visual tracking [3].
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A second type of anticipation concerns anticipation of the environment, for
example the movement of other robots. Sharifi et al. [19] describe a system for
the simulation league of RoboCup where the future state is used to anticipate
which robot will posses the ball next, while Veloso et al. [22] anticipate the state
of the whole team. This means that a seemingly passive agent is not passive at
all. Instead it actively anticipate opportunities for collaboration.

The anticipation of robot movement can also be based on observation. For
example, Stulp et al. [20] model the goal keeper in RoboCup to be able to
anticipate its behavior. Ledezma et al. [15] used a similar method to model the
behavior of the other players based on their observed input and outputs. Usually,
some type of communication between agents are used in anticipation, either a
complete knowledge of world or broadcasting of individual plans but there is
also work on cooperation without sharing information between agents [18].

Human-robot interaction can also merit from using anticipatory behavior.
Sabanovic et al. [17] used a stationary robotic receptionist that provided in-
formation to visitors and enhances interaction through story-telling to study
human-robot interaction. In this study, the robot receptionist turns toward peo-
ple passing by and tries to interact with them. To be able to interact in a efficient
way, the robot receptionist anticipates the position of people passing by.

The importance of anticipation has also been studied in the domain of com-
puter games [14]. In human activities, Saad [16] pointed out the close connection
between driving and anticipation, even stating that “driving is anticipating”.

Davidsson [9] used simulations to investigate the benefits of anticipation. Two
different types of experiments were conducted. The first investigated competition
between agents and in the second experiment, the agents were cooperative. In the
experiments, the task of the agents was to pick up targets in a two dimension
grid world in a particular order. By using a linearly quasi-anticipatory agent
architecture, one agent could realize that it would not reach the target before
the other agent and would instead start to move toward the following target.
Only one of the robots used anticipatory behavior while the other one used
reactive behavior. In the second experiment, the agents cooperate, which leads
to a decreased total time for fetching all target objects.

Although simulations can be very valuable in testing different strategies, a
simulation must necessarily include a perfect model of the simulated environ-
ment. It will thus always be possible to make perfect predictions in a simulation
if this is desired. It is well known that this can easily lead to solutions that are
not useful when applied to robots that have to operate in the real world [6].

To evaluate the benefit of anticipation in mobile robots in the real world, we
tested a number of strategies in three different environments with two robots.
We compared a random and a reactive strategy with control methods based on
planing with or without anticipation of the behavior of the other robot. The goal
of the experiments was to test under what conditions the ability to anticipate
would help the robots in a simple task. In addition, we tested three different
methods to use the anticipated behavior of the other robot.
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Fig. 1. The three environments with different complexity. A and B: goal locations for
the robots.

2 Description of the Experimental System

2.1 Environment

The size of the experimental area was 2×2 m. Bricks marked with white color
were placed in the area in two of the experiments as obstacles (Figure 1). Exper-
iment 1 used the empty environment, Experiment 2 used an environment with
walls and in Experiment 3, obstacles were placed at random in the environment.

2.2 Robots

The robots used were two modified BoeBots (Parallax Inc., Rocklin, California).
These robots are approximately 14 cm long and use a differential steering. No
sensors on the robots were used in these experiments. Instead, each robot was
marked with two colors that could be detected by a camera mounted 3.5 m above
the robot area. This camera transmitted images to a computer that calculated
the position and orientation for the two robots four times per second. This
computer also performed all the computations for the two robots and controlled
the robots via wireless bluetooth communication. In addition, it stored tracking
data and collected all statistics for the experiments.

2.3 Control Systems

The control systems of the robots were built using the Ikaros framework1. The
interface components used included processing of the the video stream from
the camera, color tracking to detect the position and orientation of the robots,
and wireless communication. In addition, modules where built for reactive robot
control, path planning, and anticipation.

Random Control. A random control system was the first tested in the exper-
iments. This system simply transmits random motor commands to the robot
until it has reached the goal. The robot is instructed to turn toward a random
1 www.ikaros-project.org
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Fig. 2. The computer is using the overhead camera to track the two robots and trans-
mits motor commands via bluetooth

orientation and then travel in this direction until an obstacle activates an ob-
stacle avoidance system, in which case a new random direction is set. This is
repeated until both robots have reached their goals.

Reactive Approach. The next control system performs reactive approach where
the robot always tries to go directly toward the goal. The desired path is calcu-
lated as the straight line between the current location of the robot and the goal
location. This strategy will obviously have problems when there are obstacles in
the way and to handle this situation a reactive avoidance system was added.

Planning System. The planning system is responsible for path finding within the
environment. To accomplish this an A* based navigation algorithm is used [12].
This is a grid-based navigation algorithm with full knowledge of the environment.
It finds the shortest path to the goal by testing it in the grid-map. If it is unable
to use the shortest path, the second shortest path is tested and so on, until a path
has been found. Each robot uses the algorithm to find the best path through
the robot area. The grid-map is divided into 32×32 elements with a status of
either occupied or free. The planning system takes no account of where the other
robots are located and only uses its own position, the desired position and the
grid-map to find the path.

Anticipation System. The anticipation system is similar to the planning system
but also includes the movements of the other robots. If the other robots were
stationary, the A* algorithm could register the other robots as obstacles. When
the other robots are moving it becomes necessary to anticipate their position at
each time-step in the future. To solve this, each robot has a model of the other
robot. This model is built using each robots own planning system, for example,
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robot A assumes that robot B would use the path that robot A would have used
if it were located at the position of robot B and heading for the goal of robot B.
Before robot A tries to find its own path, it updates its model of the other robot
and uses this to find the path for robot B by stepping forward in the planning
and checking if there is any collision. If there is a collision, the robot chooses an
alternative path and tests if this is a valid. This is repeated until a valid path is
found. It should be stressed that the individual paths are not shared between the
robots. Only the start and goal positions are known by the other robot. With
noise in the system this could lead to inaccurate models of the other robot and
this could in turn lead to more activation of the reactive avoidance system. A
similar approach was presented by Guo [11].

An obvious problem arises with this approach. If both robots use the same
method to find a valid path, it is possible for both robots to select the alternative
path which will result in a collision. A way to avoid this problem is to assign a
rank [10] to each robot where the robot with the highest rank always takes the
shortest path. For example, let the robot with the longest distance to the goal
have the higher rank and let the other robot replan its path around the more
highly ranked robot. If the present robot has the lowest rank, we let A* see the
other robots as a obstacle but only during that time step. This means that at
just that time step there is an object at that position at some time steps later
the obstacle has moved and the grid that was occupied in the first time step is
free again. In the experiments, we tested three different ways to select the rank
of each robot, (1) a fixed rank, (2) the robot closest to its goal would have the
highest rank, and (3) the robot with the larger distance to its goal would receive
the highest rank. Note that according to the last two strategies, the ranks of the
robots may change when the robots move.

Reactive Avoidance. A reactive avoidance system is placed on top of the other
navigation systems and is activated if there is an obstacle too close to the ro-
bot. We divided the reactive area around the robot into 8 regions (Figure 3).
Three in front of the robot, one on each side of the robot and three behind the
robot. The robot performs different types of avoidance behaviors depending on
in which regions the obstacle was found. If an object is straight ahead, the ro-
bot turns on the spot until the obstacle has disappeared from the region and if
an object is found to the left of the robot, it steers to the right to obtain a free
path. Although the reactive avoidance system mainly helps the robot to reach its
goal, it sometimes counteracts the control of the navigation system. For example,
when the navigation system instructs the robot to turn right, the reactive avoid-
ance system may detect an obstacle in that area and tell the robot to turn left
instead.

2.4 Experimental Procedure

The task for the robots was to switch places with each other. One robot started
at position A and the other started at position B (Figure 1). When the first
robot had arrived at its goal position, it waited for the other robot to reach
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Fig. 3. The robot with the reactive field around it. The reactive fields divide the sur-
rounding into eight regions and different avoidance behaviors are activated depending
on the location of the obstacle.

its goal. The goal locations were subsequently switched and same procedure
was repeated. With the switching procedure the robots were forced to interact
as their paths crossed each other. The presence of interaction is necessary to
investigate anticipation in this form.

During this experiment, the time for each position switch was recorded to-
gether with the number of times the reactive avoidance system was used. Note
that this was a cooperative task where it is the time for both robots to switch
places that is recorded.

The worlds were chosen to have multiple possible paths to the goal and the
robots had to choose one depending on the strategy they currently used although
the chosen path could change during the experiment depending on the position
of the robot. This is a form of coordination problem [5].

Six different strategies were tested: (RAND) random behavior, (APPR) re-
active approach behavior, (PLAN) planning, (A-fixed) anticipation with fixed
rank, (A-short) anticipation with higher rank for the robot closest to the goal,
and (A-long) anticipation with lowest rank for the robot closet to the goal.

Each strategy was tested twice before the robots shifted to the next strategy.
When all strategies had been tested two times, the procedure was repeated until
in total 40 trials with each strategy had been run. In total, there were 240 trials
in each experiment.

Ordinary indoor lighting together with daylight from the large laboratory
windows are used as light source for the experiment. The fact that no controlled
light source was used could influence the tracking performance even if the track-
ing algorithms are dynamic for change in light intensity. To overcome this, one
trial of each approach was run in sequence instead of all trials in one approach
one at the time. So if there was an external influence on the tracking system it
influenced all the approaches equally.

To ensure that the tracking system was accurate enough, each iteration that
had a position or an angle that was impossible for the robot to reach was counted
as a tracking error. This statistic was collected to make sure that the tracking
system was reliable and not correlated with the performance of the robots.
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In all the experiments the time for both robots to reach their goals was stored
but also the difference in time between the fastest and the slowest robot. Both
times were used to compare the different navigation approaches in each of the
different environments. For the statistics, we used the logarithm of the recorded
times to minimize the effect of outliers.

3 Results

3.1 Experiment 1

The behaviors of the robots in the different conditions are illustrated in Figure 4.
The environment in experiment 1 did not contain any obstacles. In this environ-
ment the tracking system had a mean position error of 1.4% and a mean angle
error of 4.3%. ANOVA (F (1, 5) = 297.4, α = 0.05) showed a significant difference
between the different strategies and a post hoc Tukey HSD (df = 234, α = 0.05)
was used to find the effects of the different strategies. As expected, the random
behavior was significantly slower than all the other strategies (p = 0.000020).
The reactive behavior was also significantly faster than the PLAN and the A-
short behavior (p = 0.0027 and p = 0.030 respectively). There was no significant
difference between the different anticipatory strategies.

When comparing the time difference between the fastest and slowest robot,
ANOVA (F (1, 5) = 73.20, α = 0.05) was used to find that there was a significant
difference between the strategies (p = 0.000020) and a post hoc Tukey HSD
(df = 234, α = 0.05) was used to find the effects of the different strategies
(Figure 6). The difference between the times when the two robots reacher their
goals was significantly larger for the reactive strategy (p = 0.000020).

3.2 Experiment 2

Experiment 2 used an environment with walls. In this environment the tracking
error increased due to more obstacles. Shape and shadows from the obstacles
make it harder to locate the robot features for exact position and angle tracking.
The mean tracking error was 1.7% for the position and 6.8% for the angle of the
robots.

ANOVA (F (1, 5) = 303.9, α = 0.05) showed a significant difference between
the strategies and a post hoc Tukey HSD (df = 234, α = 0.05) was used to find
the effects of the different strategies. Again, the random behavior was signifi-
cantly slower than all the other strategies (p = 0.000020). The reactive approach
strategy was significantly slower than the planning and anticipatory strategies
(p = 0.000020 in all cases, Figure 5 middle). There were no significant difference
between the planning and the anticipation approaches.

To analyze the difference in the times when the two robots reached their goals,
we used ANOVA (F (1, 5) = 70.50, α = 0.05) and a post hoc Tukey HSD (df =
234, α = 0.05) The time difference for the random approach was significantly
larger than for the other approaches (p = 0.000020). The reactive approach had
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Experiment 1

RAND

APPR

PLAN

A-fixed

A-short

A-long

Experiment 2 Experiment 3

Fig. 4. Illustration of all the movement of the robots. In the experiments with the
random behavior, all the available area is covered. It is easy to discern the obstacle
location in experiment 2 and 3. Using the reactive approach behavior, less of the area
is covered. With this behavior, the required movement has been reduced in comparison
to the random approach behavior. Using the planning behavior, the robots will often
take the same path which will result in a possible collision and extensive use of the
reactive avoidance system. This is most clearly seen in experiment 2 where the robots
often both select the top-right path. In the anticipation behaviors, the paths of the
robots have more variation because the anticipation causes the robots to use different
paths. Note that the robots balance the use of the two path between the two goal
locations. In experiment 1, one robot uses the diagonal path while the other moves to
the left or right. The same pattern can be seen in experiment 2 and 3, most clearly in
A-long in experiment 3.
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Fig. 5. Left. Time taken to reach the goals for the different strategies in the empty
environment in experiment 1. In the empty environment, the reactive approach be-
havior (APPR) performed best. The error bars show the standard deviation. Middle.
Switch time for the different strategies in the environment with walls in experiment 2.
The anticipatory strategy where the robot with longest distance to its goal had highest
rank (A-long) was most efficient. Right. Switch time for the different strategies in the
environment with random obstacles used in experiment 3. Strategy A-short was fastest
in this environment.
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Fig. 6. Mean time difference between the first robot reaching its goal and the second
robot reaching its goal

a larger time difference than the planning strategy (p = 0, 000020), the A-fixed
(p = 0.031), the A-short (p = 0.036), and the A-long strategy (p = 0.0063).
The planing strategy was significantly faster than the A-fixed (p = 0.0021), the
A-short (p = 0.0017), and the A-fixed strategy (p = 0.0012)

3.3 Experiment 3

The environment in the last experiment contained randomly placed obstacles.
This environment had a tracking error of 3.5% for the position and 8.4% for the
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angle. The increase of error, compared to the previous experiments, is due to
more shapes and shadows from the randomly placed obstacles.

ANOVA (F (1, 5) = 208.8, α = 0.05) indicated a significant difference between
the strategies and a post hoc Tukey HSD test (df = 234, α = 0.05) was used to
find the effects of the different strategies. Again, the random strategy was signifi-
cantly slower than all the other strategies (p = 0.000020). The reactive approach
strategy was significantly slower than the planing strategy (p = 0.000021), the
A-fixed (p = 0.000020), the A-short (p = 0.000020), and the A-long strategy
(p = 0, 000045). We found no significant difference between the different antici-
pation approaches.

In the time difference between the robots we used ANOVA (F (1, 5) = 30.43,
α = 0.05) to find a significant difference between a strategy and post hoc Tukey
HSD (df = 234, α = 0.05) There was a significant difference between the random
approach and the other approaches (p = 0.000020). The reactive approach had
a larger time difference than PLAN (p = 0.003870), A-fixed (p = 0.009715), and
A-short (p = 0.000020). We found no significant difference between the different
anticipation approaches.

4 Discussion

We have tested a number of behavioral strategies in robots in three simple en-
vironment with varying complexity to investigate the usefulness of anticipatory
abilities in a real robot situation. As expected, a reactive approach that always
tries to move in the direction of the goal performs well in an empty environment
but is much worse when there are obstacles in the way. Also, all strategies were
much better than random behavior.

In some cases, some of the anticipatory strategies were more efficient than
the planning strategy in the sense that the robots would avoid taking routes
where they may collide or interact, but the merit of anticipation clearly de-
pended on how anticipation was used and in what environment. There were no
significant differences between the time used for the planning and anticipatory
strategies.

With anticipation, the robot will often take a longer path than with only
planning and if something goes wrong during the avoidance of the anticipated
obstacles, the robot will loose much time. Had the robots been more accurate
when they attempted to follow their planned paths, we would expect that antic-
ipation would have been better in most cases as is the case in simulation [9]. It
can clearly be seen that under optimal conditions, anticipatory behavior is very
efficient, but it is very sensitive to different disturbances.

In experiment 2 and 3, the difference between the time when the first robot
reached its goal and the time when the second did was correlated with the
complexity of the navigation strategy. The reactive approach had a larger time
difference than the planning and anticipatory approaches, except in experiment
3 where there were no significant difference between REACT and A-long. A-
long is a strategy that helps the robot that is furthest away from the goal. This
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would seem to be a very noble approach, where the weakest robot is always
allowed to take the shortest path. However, after a while, the weaker robot has
advanced closer to the goal and thereby loses the benefit from the other robot.
This switching can lead to strange behavior where the robot suddenly stops and
turns in another direction because it has lost the rank and the other robot now
possesses the area in front of the first robot.

The second experiment indicated that the planning behavior had a larger
time difference than the anticipatory behaviors. In experiment 1 we could not
find this effect. It is possible that without the obstacles, the effect was not as
easy to distinguish even if it was still present.

In the experiments, the two robots had total knowledge of the environment
as well as the position and goal of the other robot. They only had to anticipate
the movement of the other robot. In such a situation, it may be more advan-
tageous to make a collective plan for both robots. What we are aiming at in
the future, however, is the situation where the robots do not have full access to
the environment. In this case, the robots must explore the environment to learn
about different paths and the position of the other robot. As they will not know
the goal of the other robot, it must be inferred from the observed movements.
In this case, we will be able to explore different learning methods and different
strategies for observing the behavior of the other robot.

In the future, we want to change the experimental set-up in three ways. First,
we want to increase the exactness of the control system to allow more precise
movement control of the robots. This will probably lead to a greater advantage
for the anticipatory strategies. Second, we want to make the environments more
complex. In this experiment, we used extremely simple environments to allow all
the different behaviors to complete the task. This simplicity reduces the benefit
of anticipatory behaviors. If we had instead used a more maze-like environment
with lots of long and narrow passages, the anticipatory behaviors would have
gained enormously with respect to the other strategies since a collision would
be more costly. In the current environments, the cost of interaction between the
robots was not high enough to punish behavior when the robots interfered with
each other. Third, we will also use a larger number of robots, which is expected
to also increase the benefits of anticipation.

In conclusion, we have presented experimental results with two robots in dif-
ferent environments that show that the ability to anticipate the behavior of the
other robot has the potential to make the behavior of the robots more efficient.
However, this is highly dependent on the complexity of the environment and the
accuracy of the control of the robots.
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