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Abstract. Ultrasound provides a non-invasive means for visualizing various 
tissues within the human body. However, these visualizations tend to be filled 
with speckle noise and other artifacts, due to the sporadic nature of high 
frequency sound waves. Many techniques for segmenting ultrasound images 
have been introduced in order to deal with these problems. One such technique 
is the active contouring. 

In this paper, two proposed alterations to the dynamic programming 
parametric active contour model (or snake) are introduced. The first alteration 
allows the snake to converge to the one-response result of a modified Canny 
edge detector. The second provides a function that allows a user to preset a-
priori knowledge about a given object being detected, by means of curve fitting 
and energy modification. The results yield accurate segmentations of cross-
sectional transverse carotid artery ultrasound images that are validated by an 
independent clinical radiologist. Utilizing the proposed alterations leads to a 
reduction of clinician interaction time while maintaining an acceptable level of 
accuracy for varying measures such as percent stenosis. 

Keywords: Ultrasound Imaging, Carotid Stenosis, Image Segmentation, Active 
Contour Models. 

1   Introduction 

Carotid ultrasound (US) is considered an inexpensive non-invasive clinical procedure 
for evaluating many carotid artery diseases [10]. It provides flexibility for offline 
review of patient records efficiently, i.e., the US images can be acquired by a clinician 
and stored for later testing and analysis, with minimal user input. A brightness-mode 
(or B-mode) US image is one of the two major types of US used on the carotid. This 
study will primarily focus on B-mode images since it provides an adequate means for 
an efficient clinical measurement of patients that are susceptible to plaque 
accumulation (whether from diet, genetics, obesity, etc). A B-mode US image is made 
up of a two-dimensional ultrasound display composed of bright pixels representing 
the ultrasound echoes and reverberations [16]. The echo amplitude determines the 
brightness of each pixel.  
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A high degree of carotid artery stenosis, which can be used as a pre-clinical disease 
marker, is an early indicator of a possible stroke. Stenosis is the abnormal narrowing 
of a blood vessel. It is generally caused by plaque build up [10]. Atheromatous plaque 
is an accumulation of fatty deposits that form inflamed patches within the inner lining 
of the arteries. In ultrasound images, hard (calcified) and soft plaque are represented 
as a range of high and low contrast pixels. However, these plaque areas have virtually 
the same levels of contrast to the surrounding soft tissue due to the lack of texture 
resolution and the high levels of noise inherent to US images. This poses many 
difficult problems for plaque and lumen detection algorithms since experienced 
clinicians subjectively dictate the amount of plaque build up based on knowledge of 
image structures and prior training. 

Boundary detection is one of the most important elements of computer vision. 
Many techniques have been introduced to accomplish this task. One such example is 
an active contour model. Kass el al. [11] first proposed the original active contour 
model, also commonly known as a snake or a deformable model. In their formulation, 
image segmentation was posed as an energy minimization problem.  

Active contours treat the surface of an object as an elastic sheet that stretches and 
deforms when external and internal forces are applied to it. These models are 
physically-based, since their behaviour is designed to mimic the physical laws that 
govern real-world objects [8]. This model helps solve the problems of edge based 
segmentation techniques, such as bleeding of the contour and unstable borders as 
exhibited in [1]. 

Active contour models have two inherent problems: 

• the proximity limitations of attaining a true boundary, especially when coupled 
with poor initialization plots 

• the inability of traversing boundary concavities due to strong surface tension 
in the curve. 

The former is rarely an issue in the medical arena since clinicians are generally 
accepted as experts. Conversely, several studies have been conducted to overcome the 
latter, while also improving the accuracy and the speed of the original design. Of 
these are Dynamic Programming (DP) [5], level sets [18] and Gradient Vector Flow 
(GVF) models [19] just to name a few. 

The DP parametric active contour provides an efficient algorithm to quickly attain 
a desired curve. In this study, we have chosen this model for this attractive feature. 
Within this model, we propose a new external energy to be made up of two distinct 
elements. The first is to be composed of an edge map resulting from a modified 
Canny edge detector. Canny edge detection will maintain the one-edge response and 
the local connectedness property of an image, whereas the active contour will ensure 
that our entire energy is minimized over the detected border [5]. The second will be 
the curve-fitted data built upon the user’s initial plots and incorporated into the 
energy. This will amplify the amount of knowledge received from the clinician in 
acquiring a desired boundary. 

The proposed segmentation algorithm is used to extract a cross-sectional area of 
the carotid artery at two specified positions (see Section 2.3), which is then used to 
calculate a percent stenosis that is less prone to user bias between clinicians. It is 
important to note that measuring the percent stenosis is usually done by manually 
estimating the diameter of the carotid via catheter angiography. This introduces large 
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user bias into the calculations, while being quite costly from a clinician’s time 
standpoint. 

Abolmaesumi et al. [4] designed an efficient Kalman-star algorithm to estimate the 
location of the arterial wall. However, their algorithm still crosses the external 
boundaries of the wall due to the use of first degree gradient estimation.  

Mao et al. [13] used a contour probability distribution (CPD) function in order to 
evaluate the accuracy of their segmentation algorithm. Their algorithm employed 
entropy mapping and morphological operations based on gray-level values within an 
image. These mappings create an accurate identification of the arterial wall. However 
they are strenuous on computer systems resulting in long execution times.  

A class of schemes [1][2][3][9] for carotid artery contour extraction that are based 
on the use of local edge detection techniques are proposed. However, these schemes 
are used globally throughout an image, and hence lack localization. All of these 
techniques are susceptible to leaking (or contour bleeding), especially if the image 
quality is not suitable. Hence other means are needed to properly segment the carotid 
and calculate its percent stenosis.  

The rest of this paper is organized as follows. In Section 2, the proposed scheme is 
presented. The results of the scheme are shown in Section 3, and Section 4 contains 
conclusions. 

2   System and Methods 

2.1   External Energy Formulation 

A snake is an energy minimization problem. Its energy is represented by two forces 
(internal energy, Ein, and external energy, Eex) which work against each other. The 
total energy should converge to a local minimum – in the perfect case – at the desired 
boundary. The snake is defined as X(s), where s belongs to the interval [0,1]. Hence, 
the total energy to be minimized to give the best fit between a snake and a desired 
object shape is: 

Total Energy = dssXEsXE exin
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The internal energy would force the curve to be smooth (by incorporating both 
elasticity and stiffness); whereas the external energy would force the curve towards 
image structures (image edges). The internal energy of the active contour formulation 
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where α and β are the weights of elasticity and stiffness, respectively. The first order 
term makes the snake’s surface act like a membrane. The weight α controls the 
tension along the spine (stretching a balloon or elastic band). The second order term 
makes the snake act like a thin plate. The weight β controls the rigidity of the spine 
(bending a thin plate or wire) [8]. We define our external energy as: 

 



964 A.K. Hamou, S. Osman, and M.R. El-Sakka 

Eex =  γ ×  Canny(f(x,y) ,σ, l, u) + τ ×  Shape(X(s))  (3) 

where γ and τ are the weights for the two proposed external energy elements, Canny 
and prior shape knowledge, respectively, and f(x,y), σ, l, and u, represent the original 
image and the parameters for the Canny operator, being the degree of Gaussian blur, a 
lower threshold and an upper threshold. The weights γ and τ are important factors in 
governing whether the clinician’s knowledge or the modified Canny edge map takes 
precedence in the converging snake model.  

In general, active contour internal and external energies need to be balanced 
properly in order to converge to the desired edge in question. In order to properly tune 
the given curve with the proper weights, values were adjusted until the snake 
converged to the edges chosen by the radiologist. Samples were taken on both normal 
and diseased images in order to properly validate the curve with the chosen weights. 
Initially, equal weights were assigned to each energy. Gradually weights were shifted 
until acceptable edge convergence was achieved. The weights α, β, γ and τ were set to 
0.09, 0.01, 0.5, and 0.4, respectively. This is justified for the US images, since the 
modified Canny edge detector and the a-priori knowledge resides in the external 
energy formulation. Hence more weight should be shifted towards the external 
energy. 

2.2   Canny Edge Detection 

The Canny algorithm will first smooth the data (by means of a Gaussian filter) in 
order to remove speckle noise. Then edge detection is performed. Canny optimizes 
edge-response with respect to three criteria: 

•  Detection: real edges should not be missed, and false edges should be avoided. 
•  Location: the edge response should lie as close as possible to its true location. 
•  One-response: a true edge should not give rise to more than one response. 

Canny is particularly susceptible to input parameters [6]. These parameters allow 
for fine-tuning of the edge-detection mechanism, permitting the user to acquire the 
desired results on an image data set. Canny uses a technique called “non-maximum 
suppression” that relies on two thresholding values (lower and upper). The lower 
defines a threshold for all points that should not be considered lying on an edge. The 
upper defines a threshold for all the points guaranteed to be lying on an edge [6]. 

To emphasize the main edges in an image, the two thresholds should be large. To 
find the details of an image, their value should be small. The Canny edge detector was 
applied with increasing lower and upper thresholds and the resulting images were 
probed where expected edges should exist within the US images. Canny recommends 
that the lower threshold should be one third the amount of the upper threshold. Our 
trials are consistent with the recommended values yielding a 0.2 lower threshold and a 
0.6 upper threshold. We also found these thresholds reduce the creation of false edges 
due to speckle noise in the image without degradation.  
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Modification to the Canny edge detection algorithm was necessary in order to more 
accurately integrate this measure into the external energy. The standard Canny edge 
detector outputs all edges as a binary result. Each point that is lying on a Canny 
detected edge will not have the same weight following detection; rather it will be 
replaced with its relative gradient. Fig. 1(a) shows an example of a carotid artery US 
image. Fig. 1(b) shows the US image following the application of a normal Canny 
edge detector. The result is a binary image with all points having the same weight. 
Fig. 1(c) shows the modified Canny edge detector where each point has a designated 
weight associated with its gradient – hence a gray scale image. Each gradient point is 
incorporated into the external energy by means of a Manhattan distance transform 
[17], as shown in Fig. 1(d). The Manhattan distance transform provides a set of gray 
level intensities that show the distance to the closest boundary from each point. This 
provides a path to a better local minimum by avoiding small hazards of unwanted 
noise. The Manhattan distance of the modified Canny edge map was sufficient for the 
purpose of this study due to its simplicity and elegance of implementation. The 
energy will also converge such that it will mimic the behaviour of GVF snakes, since 
the curve will be forced into boundary concavities. 

  
(a) (b) 

  
(c) (d) 

Fig. 1. Example of Edge detection. (a) Original carotid US image. (b) Canny edge detected 
binary image (c) Modified Canny edge detected grayscale image (d) Distance transformed 
modified Canny edge detected image. 
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2.3   A-Priori Knowledge 

It is desirable to incorporate some means of shape to the model without directly 
involving the user. Automatic shape detection takes place on the initial plots 
positioned by the user. This would force the active contour to converge closer to the 
user’s first delineated points. This is especially useful in the medical arena where a 
specialist or technician has a clear understanding of the underlying structure being 
detected, such as a liver, an artery, or a heart.  

Traditional shape priors in snake models tend to take place in the internal energy 
[12]. However, this knowledge has been incorporated into the external energy in order 
to influence the shape and the positional information as well – since it is readily 
available from the user. This shape and position information will also be represented 
by the Manhattan distance transform in order to properly integrate it within the 
external energy.  

For carotid images, the prior was set to ellipses. A least squares ellipse fitting 
technique is performed on the points of the initial contour. The initial ellipse is 
defined using the initial contour placement points of the snake. Continual refinement 
takes place by attempting to minimize the geometric error of a series of 
approximating curves to the initial points. This process continues until a curve with 
minimal deviation from all snake contour points is found. 

Fig. 2(a) and 2(b) shows the active contour being used without and with a-prior 
knowledge, respectively. Fig. 2(a) depicts an improper segment of the boundaries, 
most likely due to poor visualization in the lower region of the image. Fig. 2(b) takes 
the same initial plots and builds knowledge around the data by ellipse fitting in order 
to prevent the collapse of the curve and improve alignment with the true lumen. 

(a) (b)  

Fig. 2. Active contour on a carotid ultrasound image. (a) without α-priori knowledge. (b) with 
α-priori knowledge. 

2.4   Clinical Metrics 

The desire to use the proposed technique in the clinical arena is paramount. One such 
metric is the North American Symptomatic Carotid Endarterectomy Trial (NASCET). 
This is a confirmed clinical test that may benefit patients with high-grade carotid 
stenosis [14]. The NASCET percent stenosis criterion is measured as: the 
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Fig. 3. (a) Drawing of nascet criteria for evaluation of carotid stenosis: A is the diameter of the 
residual lumen at the point of maximal stenosis (vertical lines representing plaque); B is the 
diameter of the normal artery distal to the stenosis. (CCA, ECA and ICA stand for Common, 
External and Internal Carotid Artery, respectively) (b) Ultrasound image of a cross-sectional 
slice, at line L in (a), showing the area of the carotid. Image is histogram equalized for better 
visualization. 

diameter of lumen at the point of maximal stenosis, subtracted from the diameter of 
the lumen of the normal internal carotid artery, divided by the normal internal carotid 
artery multiplied by 100% [14]. The diameter of maximal stenosis is most often found 
just above the carotid bulb, near the bifurcation of the internal and external carotid 
arteries. A visual representation of this is shown in 4(a). This test is generally 
performed by catheter angiography – an invasive technique requiring surgery. In this 
paper, we propose an alternative method of measurement from a transverse 
segmented US image.  

While, angiography will give a 2D representation on a longitudinal view of any 
given artery, yet it will not reveal any information on the depth of that artery. Depth 
can be measured by taking a cross-sectional area (transverse) slice of the carotid, as 
shown in Fig 3(b). This additional information should improve the traditional 
NASCET measurements. However, slight modification to our measurements is 
needed in order to conform to the NASCET standard. Since NASCET percent 
stenosis is based on artery diameters, where the proposed measure is based on areas, 
(in a generally elliptic fashion) each contour would be square rooted before the ratio 
is calculated. This will help to preserve the ratio of percent stenosis in a range that 
traditional clinicians are already familiar with, rather than introducing an entirely new 
range for stenosis.  

3   Results 

In this study, 91 carotid artery US images are used. These images include normal and 
diseased carotid arteries at different positions along the carotid artery, e.g., common  
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(a) (b) 

(c) (d)  

Fig. 4. Transverse carotid artery US images of the carotid bulb. (a) the original image. (b) the 
original image manually segmented by a clinical radiologist. (c) original image with four points 
– white circles – placed by the clinical radiologist as an initial value for the algorithm and the 
extracted prior ellipse as a dashed line. (d) the resulting segmentation by the proposed active 
contour algorithm. 

carotid, carotid bulb, and internal carotid. Manual carotid lumen segmentation was 
performed on all of the images by a clinical radiologist. The images were then 
segmented by the proposed snake algorithm. These images were acquired using a 
SONOS 5500 by Philips Medical System.  

Fig. 4(a) shows a transverse 2-dimensional US image of the carotid bulb. Fig. 4(b) 
represents the manually segmented region of the carotid bulb by a clinical radiologist 
at the given A position designated by the NASCET measure (as shown in Fig. 3(a)). 
Fig. 4(c) shows an example set of the four initial points plotted by the radiologist as 
an input to the active contour and the result of initial ellipse extraction. These points 
should be placed anywhere on the carotid lumen edge. They are required in order to 
achieve an elliptical approximation and the initial contour. Each point placed is 
automatically connected to its closest neighbour by means of a direct line of equally 
distanced points. Fig. 4(d) shows the result of the active contour following 
convergence. Similarly, Fig. 5(a), (b), (c) and (d) show the same for an internal  
 



 Carotid Ultrasound Segmentation Using DP Active Contours 969 

carotid artery image (at location B designated by the NASCET measure). These 
results were ascertained by using the proposed active contour with parameters σ, l, u, 
α, β , γ, and τ, as 2.0, 0.2, 0.6, 0.09, 0.01, 0.5 and 0.4, respectively (as defined in 
Section 2.1). 

All images processed by the proposed algorithm were examined and reviewed by a 
radiologist in a double blind study in order to insure the segmentations were accurate. 
Due to the subjectivity in estimating the borders, the radiologist reported that the 
proposed technique would accurately objectify the inconsistencies among clinical 
practitioners. This will serve to improve the computation of percent stenosis and other 
measures used in the clinical arena. 

(a) (b) 

(c) (d)  

Fig. 5. Transverse carotid artery US images of the internal carotid artery. (a) the original image. 
(b) the original image manually segmented by a clinical radiologist. (c) original image with 
four points – white circles – placed by the clinical radiologist as an initial value for the 
algorithm and the extracted prior ellipse as a dashed line. (d) the resulting segmentation by the 
proposed active contour algorithm. 

 
Overall, accuracy of the proposed system was measured by comparing the 91 cases 

to the expert manual segmentations by the radiologist. These measurements include 
both type I and type II errors as defined in [15]. Since the images at hand were mainly 
small segmented foregrounds against vast backgrounds, the system would best be 
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measured by means of its sensitivity and precision rate. Sensitivity is the number of 
true positives divided by the number of true positives plus false negatives. In other 
words, it classifies how well a binary classification test correctly identifies a 
condition. Precision rate is the number of true positives divided by the number of true 
positives plus false positives. In other words, it classifies how accurate the results of 
the test are versus its inaccuracies. Sensitivity of the system, given a 95% confidence 
interval, yields 0.871 – 0.916. Whereas, precision rate, given the same confidence 
interval, yields 0.866 – 0.903. It is worth mentioning that these reported performance 
measures are quite high. This can be attributed to the fact that the initial points to the 
proposed system were plotted by the specialist. 

4   Conclusions 

In this paper, a modified DP snake algorithm helped alleviate the inherent difficulties 
in segmenting ultrasound carotid artery images, such as avoiding speckle noise and 
contour bleeding. The proposed alterations utilized a modified Canny edge detector 
and a-priori knowledge. Experimental results show that these alterations tune the 
original DP snake model in order to be used in the medical arena so that clinical 
analysis results can be improved.  

A radiologist verified that this objective segmentation scheme would improve the 
calculation of different clinical measures, such as percent stenosis, by reducing the 
inconsistencies and variability between clinicians while reducing the time for 
clinician interaction. We have shown that the segmentation of the carotid artery is 
robust enough to be used in a clinical setting for specific domain applications. 
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