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Abstract. The delay management problem deals with reactions in case
of delays in public transportation. More specifically, the aim is to decide
if connecting vehicles should wait for delayed feeder vehicles or if it is
better to depart on time. As objective we consider the convenience over
all customers, expressed as the average delay of a customer when arriving
at his or her destination.

We present path-based and activity-based integer programming mod-
els for the delay management problem and show the equivalence of these
formulations. Based on these, we present a simplification of the (cubic)
activity-based model which results in an integer linear program. We iden-
tify cases in which this linearization is correct, namely if the so-called
never-meet property holds. We analyze this property using real-world
railway data. Finally, we show how to find an optimal solution in linear
time if the never-meet property holds.

1 Introduction

A major reason for complaints about public transportation is the missing punc-
tuality, which—unfortunately—is a fact in many transportation systems. Since
it seems to be impossible to avoid delays completely, it is a necessary issue in the
operative work of a public transportation company to deal with delayed vehicles.
In this paper we focus on the convenience of the customers and present a model
for minimizing the average delay over all passengers.

Let us consider some vehicle (e.g., a train g) that arrives at a station with
a delay. At the station, there are other vehicles (e.g., buses h and h′) ready to
depart, see Figure 1. What should each of these connecting vehicles do? There
are two alternatives:

• A connecting vehicle h can wait to allow passengers to change from the delayed
vehicle g to h.

• The connecting vehicle h can depart on time.

Unfortunately, both decisions have negative effects: In the first case, vehicle h
causes a delay for passengers already within h, but also for customers who wish
to board vehicle h later on, and possibly for subsequent other vehicles which
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Fig. 1. The wait-depart decision at one single station

will have to wait for its delay. In the second case, however, all customers who
planned to change from the delayed vehicle g into h will miss their connection.

In the first case the connecting vehicle h does not depart at its scheduled time,
but with a delay. The new departure time of h is called its perturbed timetable. In
the second case, the perturbed departure time of h at v equals the scheduled one.

In case of some known delays, the delay management problem is to find wait-
depart decisions and a perturbed timetable for all vehicles in the network, such
that the sum of all delays over all customers is minimized. The delay of a cus-
tomer is defined as the delay he has when he reaches his destination. Recently
the NP-completeness of this problem has been shown (see [9]).

Since in the delay management problem new departure times for each vehicle
at each station have to be determined, it is related to finding timetables in public
transportation. In this field, a lot of research has been done for periodic and
non-periodic timetables. An excellent overview on periodic timetabling is given
by [17]. We also refer to [15,4,13,26] and references therein. However, note the
main difference between timetabling and delay management: In the timetabling
problem the connections are given in advance, while in the delay management
problem we have not only to find a (perturbed) timetable, but also to decide
which connections should be maintained and which can be dropped.

How to react in case of delays has due to the size and complexity of the
problem been mainly tackled by simulation and expert systems. We refer to
[23,25] for providing a knowledge-based expert system including a simulation
of wait-depart decisions with a what-if analysis. Simulation has also been used
in [1,24].

In [11] the delay management problem has been formulated as a bicriteria
problem, minimizing the number of missed connections and the delay of the ve-
hicles simultaneously, and solved by methods of project planning. The weighted
sum of these functions has been minimized in [18] by an enumeration proce-
dure and a by greedy heuristic within a max-plus algebraic model, see also [22].
Dynamic programming has been used in [8] to identify polynomially solvable
cases.

Integer programming formulations so far only exist as first attempts for the
simple case without slack times, assuming that the customers on each edge are
fixed (see the diploma theses of [14] and [21]). In Section 4 we are able to identify
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cases in which such models are correct. A first exact linear integer model for the
delay management problem is presented in [19], and will be reviewed in this
paper in a more convenient notation at the beginning of Section 3. A detailed
description of the delay management problem will be published in [20]. Based
on the formulation (TDM-B) presented in this text, [12] developed two new
formulations reducing the number of variables in the models.

Related also work includes how to reduce delays by investing into new tracks
([7,6]), how to minimize the sum of waiting times of customers at their starting
stations in a stochastic context ([2]), and a first on-line model of the problem
along a line ([10]).

The aim of this paper is to present a new and more general integer program-
ming formulation of the delay management problem, for which we are still able
to develop solution approaches. Although our model can be applied to many
different objective functions we specialize here on minimizing the sum of all
delays over all customers. After introducing definitions and basic properties in
Section 2 we develop a new integer programming formulation for the delay man-
agement problem in Section 3. In Section 4 we show that this formulation can
be linearized if a special condition, called the never-meet property holds. We
analyze this property in Section 5 using real-world data of the largest German
railway company, Deutsche Bahn. In Section 6 we show how to solve the delay
management problem in linear time in this case. The paper is concluded by some
remarks on future research.

2 Notation, Concepts, and Basic Properties

We first introduce a new notation for the delay management problem, based on
its representation as an activity-on-arc project network (see e.g. [15] for using
this concept in timetabling).

We denote an arrival of a vehicle g at a station v as arrival event (g, v, arr),
while a departure event (g, v, dep) describes the departure of some vehicle g at
some station v. The event activity network is a graph N = (E , A) where

• E = Earr ∪ Edep is the set of all arrival and all departure events
• A = Await ∪ Adrive ∪ Achange is a set of directed arcs, called activities,

defined by

Await = {((g, v, arr), (g, v, dep)) ∈ Earr × Edep}
Adrive = {((g, v, dep), (g, u, arr)) ∈ Edep × Earr : vehicle g goes

directly from station v to u},

Achange = {((g, v, arr), (h, v, dep)) ∈ Earr × Edep : a changing
possibility from vehicle g into h at station v is required}.

The driving and waiting activities are performed by vehicles, while the chang-
ing activities are used by the customers. As an example, a small event-activity
network is depicted in Figure 2.
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Fig. 2. An event-activity network

Note that N is a special case of a time-expanded network and hence contains
no directed cycles. This means that a precedence relation ≺ between events (or
activities) is canonically given, where i ≺ j hence indicates that there exists a
path from i to j. We remark that for a given set of events (or of activities) a
minimal element w.r.t. ≺ always exists, but it needs not be unique.

Using the notation of event-activity networks, a timetable Π ∈ ZZ|E| is given
by assigning a time Πi to each event i ∈ E (see [15]). Timetables are usually
given in minutes and hence consist of integer values. The planned duration of
activity a = (i, j) is given by Πj − Πi. Furthermore, let La ∈ IN be the minimal
duration needed for performing activity a. We assume that the timetable is
feasible, i.e.,

Πj − Πi ≥ La for all a = (i, j) ∈ A.

We further assume that source delays are known at some of the events, where
they might have occurred at the preceding activity or at the event itself. Let
SD ⊆ Earr denote the set of source-delayed events, and di > 0 indicate the delay
they have. (For i �∈ SD the source delay di = 0.)

If source delays occur, some of the subsequent arrival and departure times Πi

can also not take place punctually, since the minimal durations La for subsequent
activities have to be taken into account. The outcome Π +y is called a perturbed
timetable, and yi is called the delay of event i. Such a perturbed timetable is
feasible, if

• the source delays are taken into account, i.e., Πi + yi ≥ Πi + di, and
• the delay is carried over correctly from one event to the next, i.e.,

Πj + yj − (Πi + yi) ≥ La holds for all driving and waiting activities a = (i, j).
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Defining the slack time sa of an activity a ∈ A as the time which can be saved
when performing activity a as fast as possible, i.e.,

sa = Πi − Πj − La

we can equivalently restate the two above conditions in terms of the delay vector
y as follows.

Definition 1. A set of delays yi for all i ∈ E is feasible, if

yi ≥ di for all i ∈ E and (1)
yi − yj ≤ sa for all a = (i, j) ∈ Await ∪ Adrive. (2)

Condition (2) makes sure that the delay at the start of activity a is transferred
to its end, where it can be reduced by the slack time of a.

In the following we only use the slack times s and the delays y instead of the
minimal durations L and the timetable Π .

Definition 1 only takes the driving and waiting activities into account. How-
ever, in the delay management problem the goal is to identify which changing
activities should be maintained and which ones can be dropped. For a changing
activity we analogously require that

yi − yj ≤ sa if a = (i, j) is maintained (3)

We are now in the position to specify feasible solutions of the delay management
problem.

Definition 2. A set of connections Afix ⊆ Achange together with a feasible set
of delays yi for all i ∈ E is a feasible solution of the delay management
problem, if

yi − yj ≤ sa for all a = (i, j) ∈ Afix,

i.e., for all connections a ∈ Afix which are maintained.

Note that a timetable would also be feasible if some vehicles depart or arrive late
without any reason. Such solutions are clearly not optimal. The “most punctual”
solutions are defined below.

Definition 3. Let (Afix, y) be a feasible solution of the delay management prob-
lem. The delay y is called time-minimal with respect to Afix if all feasible so-
lutions (Afix, y′) satisfy y ≤ y′ (where as usual ≤ is meant component-wise).
We write y(Afix).

A time minimal solution with respect to each set Afix ⊆ Achange can be found
efficiently by using the critical path method (CPM) of project planning.

To this end, we transform the event-activity network into a project network
(as defined, e.g., in [5]) by introducing one super-source s and taking

A(Afix) = Await ∪ Adrive ∪ Afix
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and additional timetable activities {(s, i) : i ∈ E} as set of activities in the
corresponding project network. The duration of an activity is set to La for a ∈
A and to the scheduled timetable Πi if a = (s, i). Then the earliest possible
starting time of each activity is a time-minimal solution of the delay management
problem. The following procedure uses the critical path method to determine the
earliest starting times but is applied directly in the notation of slack times s and
delays y according to Definition 1.

Algorithm 1: Calculating a time-minimal solution for a set Afix

Input: N, di, sa, Afix.
Output: Optimal (time-minimal) solution w.r.t. Afix.
Step 1. Sort E = {i1, . . . , i|E|} according to ≺.
Step 2. For k = 1, . . . , |E|: yik = max{dik , maxa=(i,ik)∈A(Afix) yi − sa}
Step 3. Output: yi, i ∈ E

By induction it is easy to show that the time-minimal solution y(Afix) with
respect to each set Afix ⊆ Achange is unique, and that it has the following two
properties:

1. A1 ⊆ A2 ⊆ Achange =⇒ y(A1) ≤ y(A2). i.e. the delays get smaller if
connections are dropped, and

2. y = y(Afix) satisfies yi ≤ D = max{di : i ∈ E} for all i ∈ E , i.e. the maximal
delay of a single event in a time-minimal solution is bounded by the largest
given source delay.

Other approaches for calculating time minimal solution sand the details of
the proofs can be found in [20].

As mentioned before, our objective is to minimize the sum of all delays over
all customers. To this end, we first specify the customers’ data.

A customer’s paths is given as a sequence of events, i.e.,

p = (i1, i2, . . . , ipL)

where ik ∈ E are events, and (ik, ik+1) ∈ A are activities. We will write a =
(ik, ik+1) ∈ p in this case. Note that i1 is a departure event, i2 an arrival event,
i3 ∈ Edep and so on. Furthermore, i(p) denotes the last event on path p and wp

the number of passengers who want to use path p. We denote P as the set of all
customers’ paths.

To calculate the delay of a passenger on path p we need the following two
basic assumptions:

1. There is one (common) time period T for all vehicles.
2. In the next time period all vehicles are on time.

In praxis, both assumptions are usually not satisfied. The first of them can
be relaxed a bit, allowing different periods for each of the activities. Taking the
largest of the periods of all lines overestimates the delay, but seems to be a
reasonable approach. The second assumption is accepted by practitioners since
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the planning period in on-line disposition is usually less than the time period
T (often one hour). It is an open problem to deal with future delays by using
stochastic optimization.

To calculate the delay of a customer using some path p ∈ P , we have to
distinguish the following two cases.

Case 1: If all connections of path p are maintained (i.e., the path is maintained),
the delay of a passenger on path p is the arrival delay yi(p) of his last event
i(p).

Case 2: If at least one connection of path p is missed, the delay of a passenger
on path p is given by T .

We are finally in the position to define the (total) delay management
problem.

(TDM): Given N = (E , A), slack times sa for all a ∈ A, source delays
di, i ∈ E and a set of weighted paths P, find a feasible pair Afix ⊆ Achange with
delays yi, i ∈ E such that the sum of all delays over all customers is minimal.

3 Models for Delay Management

As first model we present a path-oriented description of (TDM) (based on the
formulation in [19]) which uses the following variables

zp =
{

0 if all connections on path p are maintained
1 otherwise

(TDM-A)

min fTDM−A =
∑
p∈P

wp(yi(p)(1 − zp) + Tzp)

such that

yi ≥ di for all i ∈ SD (4)
yi − yj ≤ sa for all a = (i, j) ∈ Await ∪ Adrive (5)

−Mzp + yi − yj ≤ sa for all p ∈ P , a = (i, j) ∈ p ∩ Achange (6)
yi ∈ IN for all i ∈ E (7)
zp ∈ {0, 1} for all p ∈ P , (8)

where M ≥ D = max{di : i ∈ E}.
The first two constraints (4) and (5) are the same as (1) and (2). Constraint

(6) makes sure that all connections on a maintained path (i.e. a path with za = 0)
satisfy (3). Finally, the objective function sums up the delay according to the
two cases mentioned on page 151.

As already shown in [19], this formulation of model (TDM-A) can be linearized
by substituting the quadratic terms yi(p)(1 − zp) by additional variables qp,
leading to the following model.
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(TDM-B)

min fTDM−B =
∑
p∈P

wp(qp + Tzp)

such that (4) – (8) hold, and such that

− Mzp + yi(p) − qp ≤ 0 for all p ∈ P (9)
qp ≥ 0 for all p ∈ P (10)

The linear formulation is significantly weaker than the quadratic formulation
(TDM-A), due to the fact that the feasible set of the linear programming relax-
ation increased. More intuitively, one would like to use variables z̄a determining
if a connection a ∈ Achange should be maintained or not. This yields a stronger
activity-based formulation for (TDM) which is derived next.

In the activity-based model we use variables for each changing activity z̄a

describing if connection a ∈ Achange is missed (z̄a = 1) or maintained (z̄a = 0).
The idea of the activity-based formulation is to calculate the total delay by
summing up the additional delays over all activities a ∈ A. To this end, let us
first consider some activity a ∈ A\Achange. We want to calculate the additional
delay customers will get while using this activity. The delay customers already
have at the start of a = (i, j) is yi, and at the end of a their delay is yj . Hence,
yj −yi is the additional delay gained by the customers while performing activity
a. Note that this additional delay can be negative, meaning that slack times are
used to compensate an already existing delay. For changing activities we have to
be more careful. Let a = (i, j) ∈ Achange and suppose first that a is maintained.
Then the additional delay on a is again the tension yj −yi. On the other hand, if
a is missed, the additional delay for the customers who planned to use activity a
is given by T − yi = yj − yi + T − yj , since they now have to wait the remaining
time period until the next (non-delayed) vehicle arrives for carrying on their
journey.

We further need to extend the event-activity network by defining

Es = E ∪ {s}
As = A ∪ {(s, i) : i ∈ Edep} and
Ps = {(s, ip1, . . . , i

p
L) : p ∈ P}.

The additional event s represents the arrival of the customers at their first sta-
tion (by foot or by a means of transport which is not considered in the delay
management problem). The extension makes sure that the delay of a customer
waiting at some station for his first (delayed) vehicle to come, is taken into ac-
count. We always assume that customers reach their first station without any
delay, i.e., ys = 0.
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Now we can present the new model. As before, we assume that T, M ≥ D.
The following additional variables are necessary for (TDM-C).

z̃p
a =

⎧⎨
⎩

1 if activity a is reached on path p without any missed
connection before

0 otherwise
wa = number of customers who really use activity a

We stress that the number of customers wa (really) using activity a ∈ A is a
variable, since it depends on the wait-depart decisions whether customers using
a path p ∈ Ps will reach all activities a ∈ p or not.

(TDM-C)

min fTDM−C =
∑

a=(i,j)∈As

wa(yj − yi) +
∑

a=(i,j)∈Achange

waz̄a(T − yj)

such that

yi ≥ di for all i ∈ SD (11)
yi − yj ≤ sa for all a = (i, j) ∈ Await ∪ Adrive (12)

−Mz̄a + yi − yj ≤ sa for all a = (i, j) ∈ Achange (13)

z̃p
a +

∑
ã∈p∩Achange:

ã≺a

z̄ã ≥ 1 for all p ∈ Ps and a ∈ p (14)

z̃p
a + z̄ã ≤ 1 for all p ∈ Ps and for all a, ã ∈ p

with ã ∈ Achange and ã ≺ a (15)

wa =
∑

p∈Ps:a∈p

wpz̃
p
a for all a ∈ As (16)

yi ∈ IN for all i ∈ E (17)
z̄a ∈ {0, 1} for all a ∈ As (18)
z̃p

a ∈ {0, 1} for all p ∈ Ps, a ∈ As (19)
wa ∈ IN for all a ∈ As (20)

In the objective function the additional amount of delay on each activity is
multiplied by the number of customers really using it. Restrictions (11) and (12)
again correspond to (1) and (2), while (13) models that (3) has to be satisfied
exactly for maintained connections, i.e. connections a with z̄a = 0. Restriction
(14) defines the values of z̃p

a such that they are forced to be 1, if no connection
on path p before a has been missed, and (15) makes sure that z̃p

a = 0 for all
activities a after a missed connection ã on path p. Finally, (16) determines the
number of customers really using activity a.

Note that for technical reasons we need to be able to extend any feasi-
ble solution yi, i ∈ E to a feasible solution (y, C(y)) := (y, z̄(y), z̃(z̄), w(z̃)) of
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(TDM-C), where (y, C(y)) yields the same or a better objective function value
for (TDM-C). This is done as follows.

z̄a(y) =
{

0 if yi − yj ≤ sa

1 otherwise for all a = (i, j) ∈ Achange, (21)

z̃p
a(z̄) = max

⎧⎪⎪⎨
⎪⎪⎩

1 −
∑

a∈p∩Achange:
ã≺a

z̄ã, 0

⎫⎪⎪⎬
⎪⎪⎭

for all p ∈ Ps, a ∈ p, (22)

wa(z̃) =
∑

p∈Ps:a∈p

wpz̃
p
a for all a ∈ As. (23)

The main result of this section is the following.

Theorem 1. (TDM-A) and (TDM-C) are equivalent. In particular, both models
lead to the same set of optimal solutions y ∈ IR|E|.

The proof can be found in the Appendix.
Using (TDM-C) we are able to derive the following reduction result. Assume

that the slack times are so large that the delay disappears after a few activities.
Then we need not consider events which can not gain any delay in the worst-case
time-minimal solution.

Lemma 1. Let y = y(Achange) be a time-minimal solution w.r.t. Achange. Then
there exists an optimal solution (y∗, z̄∗, z̃∗, w∗) of (TDM-C) such that

• For all i ∈ E: If yi = 0 then y∗
i = 0.

• For all a = (i, j) ∈ Achange: If yi = 0 then z̄∗a = 0.

The result shows that we need not consider events or activities which cannot
gain a delay in the worst case. The reduced set of events is hence given as

Erelevant = {i ∈ E : yi(Achange) > 0}

and the subgraph induced by these events Erelevant is denoted by Nrelevant =
(Erelevant, Arelevant). This kind of reduction leads to significantly smaller net-
works in real-world instances, see Table 1 in Section 5.

On a first glance, (TDM-C) does not seem to be useful for solving the de-
lay management problem better than (TDM-B), since (TDM-B) is linear while
(TDM-C) is cubic. Moreover, (TDM-C) is much larger in terms of variables,
constraints, and non-zero entries of the coefficient matrix. However, it has some
advantages. First, it is more general since it allows to replace the common time
period T by time periods Ta for each changing activity a ∈ Achange, which is
a step to more realistic models and to relaxing our first assumption on page
150. Secondly, as the proof in the appendix shows, (TDM-C) is a stronger for-
mulation than (TDM-A) and (TDM-B), since the decision variables z̄a allow
less freedom than the decision variables zp. Hence, e.g., a classical branch-and-
bound procedure using the variables z̄a for branching can be easily implemented
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for (TDM-C) while for (TDM-A) other methods, e.g., constraint branching have
to be investigated. Last, in the next section we utilize (TDM-C) to present a
linear-time algorithm which solves the delay management problem exactly for a
special class of problems.

4 Constant Weights and the Never-Meet Property

In order to solve (TDM-C) we fix the weights wa as parameters instead of
calculating them during the optimization. Doing so, we obtain the total delay
management problem with constant weights. Its formulation is given by deleting
constraints (14), (15), and (16) in (TDM-C), and fixing

wa =
∑

p∈Ps:a∈p

wp for all a ∈ As (24)

as parameters, i.e., setting wa as the planned “traffic load” on activity a. We
obtain:

min fTDM−const′ =
∑

a=(i,j)∈As

wa(yj − yi) +
∑

a=(i,j)∈Achange

waz̄a(T − yj)

such that (11),(12),(13),(17), and (18) hold.
We can further rewrite fTDM−const′ as follows. For i ∈ E let

wi =
∑

p∈P:i(p)=i

wp (25)

be the number of customers with final destination i. Since∑
a=(i,j)∈As

wa(yj − yi) =
∑

p∈Ps

wp

∑
a=(i,j)∈p

yj − yi

=
∑
p∈P

wp(yi(p) − ys)

=
∑
i∈E

∑
p∈P:
i(p)=i

wpyi =
∑
i∈E

wiyi (26)

we rewrite

fTDM−const′ =
∑
i∈E

wiyi +
∑

a=(i,j)∈Achange

waz̄a(T − yj).

First, we show that in general, we make a mistake by fixing the weights as
above, which has not been realized in several previous attempts or simulation
approaches for the delay management problem.

We assume there are three vehicles 1, 2, and 3, where vehicle 1 and vehicle 3
reach the stations v2 and v3 with a delay, see Figure 3. We consider a customers’
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vehicle 3

v1

v2 v3

v4

v0

vehicle 1

vehicle 2

vehicle 2

Fig. 3. An example in which fixing the weights is not correct

path p = (v1, v2, v3, v4) using vehicle 1 until station v2, changing to vehicle 2
and passing via v3 to its destination v4. Suppose that vehicle 2 is not waiting for
vehicle 1 at station v2, such that the path p is not maintained. Assume further
that vehicle 2 waits for the delayed vehicle 3 at station v3. If we have not adapted
the weights, the customers on path p are counted twice in the objective function:
First, since they missed their connection at station v2, and secondly, since they
reach their final destination v4 with a delay. This double counting can in general
lead to wrong decisions. Another example, depicted in Figure 5 will be further
analyzed in Section 5.

Fortunately, there are problem instances for which the model with constant
weights is correct, apart from the trivial case in which no customer changes at
all. For example, it can be shown that the model with constant weights is correct,
if we only allow paths of the form p = (i1, i2, . . . , iL−2, iL−1, iL) where p contains
at most one changing activity (iL−2, iL−1) followed by not more than one driving
activity, see [20]. A more interesting case, in which we make no mistake by using
the constant weights will be described next.

Since fTDM−const′ still is no linear function we further simplify the model. In
the following we simply forget about subtracting yj in the second part of the
objective, to obtain the linear program (TDM-const).

min fTDM−const =
∑
i∈E

wiyi +
∑

a∈Achange

waT z̄a

such that

yi ≥ di for all i ∈ SD (27)
yi − yj ≤ sa for all a = (i, j) ∈ Await ∪ Adrive (28)

−Mz̄a + yi − yj ≤ sa for all a = (i, j) ∈ Achange (29)
yi ∈ IN ∀i ∈ E
z̄a ∈ {0, 1} for all a ∈ Achange
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Each feasible solution of (TDM-const) yields an upper bound on (TDM). But
the main advantage of (TDM-const) is due to the surprising fact that (TDM-
const) is equivalent to (TDM) in a large class of practical instances. We denote

E(i) = {j ∈ E : there exists a (directed) path from i to j}
as the set of all events that can be reached from i, and N (i) as the subgraph
induced by the events in E(i). Note that for all j ∈ E(i) we have i � j. Fur-
thermore, let E(SD) =

⋃
i∈SD E(i) and N (SD) be the subgraph containing the

subgraphs N (i) for all i ∈ SD, i.e. the graph consisting of all events and activi-
ties that can be reached by a path starting at a source-delayed event. Obviously,
Erelevant ⊆ E(SD).

Definition 4. The delay management problem has the never-meet property
if the following two conditions hold.

1. N (i) ∩ Nrelevant is a forest for all i ∈ SD, and
2. E(i) ∩ E(j) ∩ Erelevant = ∅ for all i, j ∈ SD with i �= j.

Note that N (SD)∩Nrelevant is a forest, whenever the never-meet property holds,
i.e. it is not allowed to contain cycles (neither directed nor undirected cycles).

The interpretation of the never-meet property is the following: By calculating
the time-minimal solution (w.r.t. Afix = Achange), but without using slack-
times, we can find out how far the effects of the source delays can spread out in
the worst case. The never-meet property requires that in no feasible solution of
(TDM) the paths of two delayed customers will meet. Note that the formulation
includes that source delays can only occur after non-delayed events.

If the never-meet property holds, however, we will show the following: In
every time-minimal solution all events following a non-maintained connection
are punctual, and all changing activities following a non-maintained connection
are maintained. This property will be important for proving Theorem 2.

Lemma 2. Let (TDM) have the never-meet property and let (y, C(y)) be a fea-
sible (time-minimal) solution of (TDM-C). Let ã = (̃i, j̃) ∈ Achange. If z̄ã = 1
(i.e. ã is not maintained) we have the following.

1. yi = 0 for all i ∈ E(j̃), i.e. all events following j̃ are on time, and
2. z̄a = 0 for all a = (i, j) with i ∈ E(j̃), i.e., all connections following j̃ are

maintained.

Proof. From z̄ã = 1 we know from (21) that yĩ > 0. Hence there exists a source-
delayed event i1 ∈ SD such that ĩ ∈ E(i1). Now suppose there exists i ∈ E(j̃) ⊆
E(i1) with yi > 0. Since z̄ã = 1 the delay of i is not transferred from i1 to i via
ã. Hence

• either there is another path from i1 to i, meaning that N (i1) ∩ Nrelevant is
not a tree, or

• the delay of yi is caused by another source-delayed event i2 ∈ E , meaning that
i ∈ E(i1) ∩ E(i2) ∩ Erelevant.
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In both cases we have a contradiction to the never-meet property. Finally, con-
sider a = (i, j) with i, j ∈ E(j̃). From part 1 we know that yi = yj = 0, hence
(21) yields z̄a = 0. ��

We can now present our main result.

Theorem 2. Model (TDM-const) is correct if the never-meet property holds.

Proof. We show that (TDM-C) and (TDM-const) are equivalent if the never-
meet property holds. Clearly, a feasible solution (y, z̄) of (TDM-const) can be
extended to a feasible solution (y, C(y)) of (TDM-C) with equal or better ob-
jective value, see (21), (22), and (23).

The other direction is the interesting one: We show that each feasible solution
of (TDM-C) corresponds to a feasible solution of (TDM-const) with the same
or better objective value. More precisely, given some feasible solution of (TDM-
C) with delay y, let (y, C(y)) = (y, z̄, z̃, wreal) denote a (maybe better) feasible
solution of (TDM-C). We show that (y, z̄) is a feasible solution of (TDM-const)
with the same objective value as (y, C(y)). Feasibility of y, z̄ for (TDM-const) is
trivially satisfied. It remains to show that

fTDM−C(y, z̄, z̃, w) = fTDM−const(y, z̄).

To this end, suppose that for some ā = (̄i, j̄) ∈ A we made a mistake by fixing
the weights, i.e., the number of customers wā who planned to use ā does not
equal the number of customers wreal

ā , really using ā. To compare the objective
functions of (TDM-const) and (TDM-C) we replace the first term of (TDM-
const) by equation (26) and see that in this case it suffices to show that

yj̄ − yī = 0,

and that, if ā ∈ Achange

zā = 0,

This means that the error we make by using the wrong weights does not influence
the value of the objective function. From wā �= wreal

ā we get (by comparing (23)
and (24)), that

∑
p∈Ps:ā∈p

wp = wā �= wreal
ā =

∑
p∈Ps:ā∈p

wpz̃
p
ā.

Hence there exists some path p ∈ P containing ā such that z̃p
ā = 0. Due to

(22) there exists ã ∈ p with ã ≺ ā and z̄ã = 1. Without loss of generality let
us take ã = (̃i, j̃) minimal with this property, i.e., we choose the first changing
activity on path p that is marked as missed. For an illustration, see Figure 4.

Since ī, j̄ ∈ E(j̃) we derive from Lemma 2 that

• yī = yj̄ = 0, and
• if ā ∈ Achange then z̄a = 0.

Hence, yj̄ − yī = 0, and if ā ∈ Achange we have that zā = 0, which completes the
proof. ��
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Fig. 4. The path p in the proof of Theorem 2. The grey events belong to E(j̃).

5 The Never-Meet Property in Practice

To investigate the never-meet property in practice, we used real-world data of
a part of the German railway network, namely around the region of Harz in
Germany. The data we used consists of 158 railway stations, and 1101 different
trains running at one particular day.

Since the never-meet property does not depend on the set of paths P , we used
two different sets U30, and U60 to generate potential connections. The set U30
contains reasonable connections within a scheduled waiting time between 3 and
30 minutes, while we allow a waiting time between 3 and 60 minutes in U60.
By “reasonable” we mean that we do not consider connections where a transfer
results in going directly back to the previous station. The size of U30 is 5567,
while U60 contains 11229 connections. The resulting event-activity network of
the public transportation network on our particular day has a size of 10492
events. The number of activities on this day depends on the allowed transfer
time and varies between 13359 and 17616. In our numerical study we generated
500 example sets of delays with up to 5 source delays.

As shown in Table 1 the event-activity network can be drastically reduced
if we delete all events that can never gain a delay. The table demonstrates the
results of the reduction for different numbers of source delays. Each row contains
the average number of events for 100 different delay scenarios. In column |E(SD)|
the number of events that can be reached by a path from one of the source delays
is given, while column |E(SD) ∩ Erelevant| shows how many of these events can
gain a delay and hence have to be considered in the optimization. The percentage
of reduction is given in the last column.

The never-meet property cannot be sharpened by further reducing the sets
E(i) ∩ Erelevant and only looking at the smaller sets E ′(i) ⊆ E(i) ∩ Erelevant

Table 1. Reduction of the original set of 10492 events for different delay scenarios in
the case of a transfer time up to 30 minutes

no. of source delays |E(SD)| |E(SD) ∩ Erelevant| reduction to
1 2668 228 8.5%
2 4172 460 11.0%
3 5029 599 11.9%
4 5344 801 15.0%
5 5495 948 17.3%
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containing only those events that can gain a delay originating at i ∈ SD. This
is demonstrated in the following example with two source delays at events v1
and v2. Source delay 1 spreads out to the dashed nodes E ′(v1), while the grey
nodes (denoted by E ′(v2)) show which events can gain a delay from source delay
2. Suppose that – due to sufficiently large slack times – no other events can
be affected. Although the dashed and the grey nodes form trees, and their in-
tersection is empty, the example does not have the never-meet property (since
v4 ∈ E(v1) ∩ E(v2) ∩ Erelevant)! But this is what we want, since Theorem 2 does
also not hold in this example: Consider path P from v3 to v4. Assume that a
is a changing activity and it is missed. Then customers traveling along P never
reach node v4 and would be (wrongly) counted there.
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Fig. 5. Although source delay 1 disappeared before reaching an event which has a delay
coming from source delay 2, this example does not have the never-meet property. In
particular, Theorem 2 is not true in this example.

We tested the never-meet property in practice, which can be done efficiently
by the forward phase of the critical path method (with zero slack times and
Afix = Achange). To analyze the results, let us call an event i in conflict with
the never-meet property, if it can be reached by more than one path originating
in a source-delayed event. The number of all events which are in conflict with the
never-meet property is called the number of node conflicts of the problem. The
events which are in conflict with the never-meet property can be determined by
looking at their in-degrees within the graph N (SD). More precisely,

• an event i ∈ Erelevant \ SD is in conflict with the never-meet property, if its
in-degree in the graph N (SD) is at least 2. The in-degree minus 1 is called its
degree of conflicts.

• Event i ∈ SD is in conflict with the never-meet property, if its in-degree in
the graph N (SD) is at least 1. In this case, its in-degree equals its degree of
conflicts.
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Fig. 6. The number of node conflicts (left) and edge conflicts (right) as a function of
the number of source delays

The sum of all degrees of conflict will be called the number of edge conflicts with
the never-meet property. It equals the number of edges which have to be deleted
to ensure that the never-meet property holds.

In Figure 6 the number of conflicts with the never-meet property (node and
edge conflicts) is depicted as a function of the number of delayed vehicles. Note
that we considered scenarios with 1,2,3,4, and 5 source delays and generated 100
examples for each of these scenarios, with different amounts of source delay. Each
example is given by a “+” in the figure. The average values for each amount of
source delay are given by circles. As expected, the average number of conflicts
with the never-meet property is relatively small for only one source delay, while
it increases when more than one source delay is considered. Furthermore, the
variance increases with the number of source delays: There are still many ex-
amples with 5 source delays which lead to very few conflicts, but there are also
examples with many conflicts.

Figure 7 shows the same data, but here we graph the number of edge and
node conflicts with the never-meet property as a function of the amount of the
source delays. We observe that the number of conflicts increases if the source
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Fig. 7. The number of node conflicts (left) and edge conflicts (right) as a function of
the amount of delay
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delays increase, and that small source delays are very likely to generate nearly
no conflicts with the never-meet property.

The reason for the relatively small number of conflicts in practice is in par-
ticular due to the fact that we only consider events in Erelevant, i.e. only events
that can gain a delay. As expected, most conflicts with the never-meet property
arise at the larger stations, while the never-meet property is more likely to hold
for smaller stations in a rural environment. But all this is only helpful if we
can draw advantage of the simplified model with constant weights in terms of
efficiently solving it. This will be investigated in the next section.

6 Solving (TDM-const)

The main goal of this section is to solve (TDM) in case of the never-meet prop-
erty. Using Theorem 2 it is enough in this case to develop an algorithm for
(TDM-const).

The first approach is to just use an integer programming solver. We solved
our example problems using GLPK (GNU linear programming kit). The results
for the examples with one source delay are illustrated in Figure 8. As before,
each “+” refers to one example. The first coordinate shows the the number of
conflicts with the never-meet property (node and edge conflicts, respectively),
while the second coordinate represents the number of pivot operations needed
for solving the corresponding program (TDM-const) to optimality. We observe
that the number of pivot operations for solving (TDM-const) increases with the
number of conflicts with the never-meet property, but not as badly as one could
have expected.

To understand the reason for this behavior we first look at the following special
case of (TDM) with the never-meet property, in which

• all source delays have the same amount, i.e., di ∈ {0, D} for all i ∈ E , and
• all slack times are equal to zero, i.e., sa = 0 for all a ∈ A.

Let y be a time-minimal solution of this problem. Then yi ∈ {0, D} for all i ∈ E .
This means that we can use binary variables yi instead of integer ones, with

yi =
{

1 if event i is delayed by D
0 if event i is not delayed.

Consequently, M = 1 is large enough and (TDM-const), even with the first
objective fTDM−const′ introduced on page 155, simplifies to the following linear
program.

(TDM-const-zero)

min
∑

a=(i,j)∈As

waD(yj − yi) +
∑

a=(i,j)∈Achange

waz̄a(T − D)
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Fig. 8. The number of pivot operations needed for solving (TDM-const) versus the
number of node conflicts (left) and edge conflicts (right)

such that

− yi ≤ −1 for all i ∈ SD (30)
yi − yj ≤ 0 for all a = (i, j) ∈ Await ∪ Adrive (31)

z̄a + yi − yj ≤ 0 for all a = (i, j) ∈ Achange (32)
yi ∈ {0, 1} ∀i ∈ E
z̄a ∈ {0, 1} ∀a ∈ Achange,

where wa =
∑

p∈Ps:a∈p wp for all a ∈ As are given parameters as before (see,
e.g., (24)). The following result explains the good behavior of mixed integer
programming for (TDM-const).

Theorem 3. The coefficient matrix of (TDM-const-zero) is totally unimodular.

Proof. Let C = |Achange|, C̄ = |Adrive ∪ Await| and D̄ = |SD|. Moreover, let IK

denote the unit matrix of size K × K and OK,L the zero matrix of size K × L.
Then the coefficient matrix of (TDM-const-zero) is

Φ =

⎛
⎝−ID̄ 0D̄,C

0C̄,CΘT

IC

⎞
⎠ ,

where the |A| × |E|-matrix ΘT is the transposed of the node-arc-incidence ma-
trix Θ of N , and hence totally unimodular. Consequently, Φ is also totally
unimodular. ��

We remark that (TDM-const-zero) is equivalent to the models developed inde-
pendently in diploma theses by Kliewer [14] and Scholl [21], where the latter
author also recognized the total unimodularity of the model.

The lemma gives the explanation for the graphics of Figure 8: In case of zero
slack times the LP-relaxation of (TDM-const-zero) yields an integer solution (see
e.g., [16]), which makes the problem efficiently solvable in this case. Since the
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structure of the problem does not change by introducing slack times, one can
hope for an efficient algorithm also in the general case. We therefore turn our
attention back to the case of non-zero slack times and will develop an efficient
algorithm (running in O(|A|) time) for solving (TDM-const). In contrast to the
case with zero slack times, this approach relies on the never-meet property. In
particular we will utilize the two facts listed below.

• First, if we fix z̄a = 1 for some a = (i, j), we can set yi′ = 0 for all i′ ∈ E(j)
and know that all subsequent connections are maintained (Lemma 2).

• Secondly, the problem can be decomposed into at most |Achange| independent
subproblems due to the following lemma, which also follows directly from the
never-meet property.

Lemma 3. Let i, j ∈ E, i �= j, and let (y, z̄) be a feasible solution of (TDM-
const) with yi > 0, yj > 0. If the never-meet property holds, exactly one of the
following three cases occurs.

E(i) ⊆ E(j) or E(j) ⊆ E(i) or E(i) ∩ E(j) ∩ Erelevant = ∅.

The idea of the algorithm is to decompose the problem iteratively into subprob-
lems, and solve them bottom-up. A subproblem Pa is identified by a changing
activity a = (i, j) and represents the delay management problem on the sub-
graph N (i) (recall the notation on page 157) with a single source delay at event
i. Pa might be decomposable into subproblems itself. Formally, we define

SP(a) = {a′ ∈ Achange : there exists a directed path from a to a′ not containing
any other changing activity}

The subproblems of the problem itself are collected in SP(a0), and can be
derived by taking all changing activities reachable directly from one of the source-
delayed events.

We remark that all subproblems within the same set SP(a) are independent
of each other due to the never-meet property.

In Algorithm 2, subproblems that might further be decomposed are stored
in “Decompose”, and if a subproblem cannot be decomposed any more it is
collected in “Compose”. Moreover, at the end of Step 2 of the algorithm, for
each subproblem identified by some changing activity a,

• maintain(a) contains the value of the objective function of the subproblem if
a is maintained, and

• miss(a) contains the objective value if a is missed.
• f(a) contains the minimum of maintain(a) and miss(a).

To compute maintain(a) we need to calculate the minimum delay which occurs
if a is maintained. In contrast to E(i) which is the set of events that can be
reached from i, if all a ∈ Achange can be used we now define

G(i)={j∈ E : there exists a path from i to j with activities in Await ∪ Adrive}
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as the set of events that can be reached from i without passing any changing
activity. Furthermore, assume that i ∈ E has a delay di > 0, and let y be a time-
minimal solution. The minimum delay that will be caused by di independent of
any wait-depart decision is then given by

G(i, di) =
∑

j∈G(i)

wjyj .

The algorithm can now be stated.

Algorithm 2: Enumeration for (TDM-const)

Input: N , P , wp, di, sa, T.
Output: Optimal solution of (TDM), if the never-meet property holds.
Step 0.

1. Calculate the time-minimal solution y(Achange) if all connections
are maintained by Algorithm 1.

2. (Initializations) Let a0 denote (TDM-const), set SP(a0) = ∅, f(a0)=0,
Decompose = ∅, Compose = ∅, z̄a = 0 for all a ∈ Achange.

3. (Calculate SP(a0)) For all i ∈ SD:
(a) f(a0) = f(a0) + G(i, di)
(b) For all a = (j1, j2) ∈ Achange with j1 ∈ G(i): If yj1 > 0 then

SP(a0) = SP(a0) ∪ {a}, and Decompose = Decompose ∪ {a}
4. (Optimality test) If SP(a0) = ∅ stop: f is the optimal objective

value, z̄a = 0 for all a ∈ Achange

Step 1. While Decompose �= ∅
1. Choose a = (i1, i2) ∈ Decompose
2. SP(a) = ∅, miss(a) = waT, maintain(a) = G(i2, yi2)
3. (Calculate SP(a)) For all a′ = (j1, j2) ∈ Achange with j1 ∈ G(i2): If

yj1 > 0 then SP(a) = SP(a) ∪ {a′}, Decompose = Decompose ∪ {a′}
4. (Update Compose) If SP(a) = ∅ then Compose = Compose ∪ {a}.
5. (Update Decompose) Decompose = Decompose \ {a}.

Step 2. While Compose �= ∅.
1. Choose a ∈ Compose. Let ã be parent of a, i.e. a ∈ SP(ã)
2. (Solve subproblem Pa) f(a) = min{maintain(a),miss(a)},

z̄a =
{

0 if maintain(a) ≤ miss(a)
1 if maintain(a) > miss(a)

3. (Update values for parent problem ã)
SP(ã) = SP(ã) \ {a}, maintain(ã) = maintain(ã) + f(a)

4. (Update Compose)
Compose = Compose \ {a}
If SP(ã) = ∅ and ã �= a0 then Compose = Compose ∪ {ã}

Step 3.
1. (Correct values for z̄a) For all a ∈ Achange: If z̄a = 1 then set

z̄a′ = 0 for all a′ �= a with a ≺ a′.
2. Output: f(a0) := maintain(a0), z̄
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Theorem 4. Algorithm 2 is correct and runs in time O(|A|).

Proof. We show by induction over all a ∈ Achange ∪ {a0} that f(a) contains the
objective value for the subproblem Pa at the end of Algorithm 2.

Start: Let a = (i, j) be a maximal element of Achange (with respect to ≺).
The subproblem with respect to a is (TDM-const) in the small network
N (i), which does not contain any changing activity except a itself, hence
SP(a) = ∅ in step 2 of the algorithm. Furthermore,

maintain(a) =
∑

i′∈G(j)

yi′wi′ , and

miss(a) = Twa

give the objective values of this small network when maintaining or not
maintaining activity a. To see the correctness of miss(a) we note that due
to Lemma 2 yi′ = 0 for all i′ ∈ E(j) (which equals G(j) in this case).

Since a ∈ Compose we compare both values maintain(a) and miss(a) in
step 2, and choose the better as (correct) objective value, which is then
stored in f(a).

Conclusion: Now take any a = (i, j) and let the induction hypothesis be true for
all a′ with a ≺ a′.
• If a is not maintained, we know from Lemma 2 that all connections a′ ∈

N (j) are maintained and all i′ ∈ E(j) satisfy yi′ = 0, i.e., the objective
value is given by miss(a) as calculated in step 2.

• If a is maintained, the algorithm calculates in step 2 the delay which
will be gained in any case, i.e., the delay of all events i′ ∈ G(i) that
can be reached without passing any changing activity, and store it in
maintain(a). All changing activities a′ that can be reached from j without
passing any other changing activity are stored in SP(a). Due to Lemma 3
the corresponding subproblems Pa′ for a′ ∈ SP(a) are independent and
have objective value f(a′) due to the induction hypothesis, such that
maintain(a) +

∑
a′∈SP(a) f(a′) calculated in step 2.3 finally is the correct

value of maintain.
Comparing maintain(a) with miss(a) and choosing the smaller of both gives
the best possible choice for activity a assuming the delay yi as given.

Finally, in step 0, the problem with the given source delays is decomposed
into a set of subproblems SP(a0). All these subproblems are independent due to
Lemma 3, and they are all solved optimally due to the claim above. Adding up
these optimal values and adding the delay of all events which are reached before
entering one of the subproblems gives the optimal objective function value f(a0).

For the time complexity we note that the number of subproblems equals the
number of changing activities, which in a tree is the same as the number of
events. For the decomposition steps we have to process each activity and each
event exactly once, and in the composition step we need one comparison and
one summation for each subproblem, and again a visit of all events. The overall
time complexity is hence linear in |A|. ��



Integer Programming Approaches 167

7 Future Research

Algorithm 2 relies on the fact that each activity a ∈ Achange appears in exactly
one list, i.e., for each a ∈ Achange there exists a unique ã such that a ∈ SP(ã),
or a ∈ SP(a0). If the never-meet property is not satisfied, this needs not be the
case, and hence Algorithm 2 cannot be applied to (TDM) for general problems.
To resolve this problem (and to obtain a heuristic by applying Algorithm 2) one
can either allow that the same element is added more than once to Compose in
step 2 (this would mean to duplicate activities until the never-meet property is
satisfied), or to update the values of maintain to the larger one, if an element
which is already contained is added.

(TDM-const) and (TDM) can both be solved by branch and bound, taking z̄a

as branching variables and reducing the number of conflicts with the never-meet
property in each node. Lower bounds are derived in [20]. Details and implemen-
tations are under research.

Two other directions of future research in delay management should be men-
tioned. First, it is a challenging task to apply delay management approaches in
railway transportation. The drawback here is that capacity constraints have to
be taken into account on the tracks. Different possibilities how such constraints
can be included in the models are under research, see [3]. Second, it is an open
field to deal with the stochastic nature of the delays instead of assuming that
the source delays are fixed.
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9. Gatto, M., Jacob, R., Peeters, L., Schöbel, A.: The computational complexity of
delay management. In: Kratsch, D. (ed.) WG 2005. LNCS, vol. 3787, Springer,
Heidelberg (2005)

10. Gatto, M., Jacob, R., Peeters, L., Widmayer, P.: On-line delay management on
a single train line. In: Algorithmic Methods for Railway Optimization. LNCS,
Springer, Heidelberg (2006) (presented at ATMOS 2004, to appear)
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Appendix

Proof of Theorem 1: (TDM-A) and (TDM-C) lead to the same set of optimal
solutions y ∈ IR|E|.

Proof. First, using (16) the objective function of (TDM-C) can be reformulated
to

fTDM−C =
∑

a=(i,j)∈As

wa(yj − yi) +
∑

a=(i,j)∈Achange

waz̄a(T − yj)

=
∑

a=(i,j)∈As

∑
p∈Ps:a∈p

wpz̃
p
a(yj − yi) +

∑
a=(i,j)∈Achange

∑
p∈Ps:a∈p

wpz̃
p
a z̄a(T − yj)

=
∑

p∈Ps

wp

⎛
⎜⎜⎝

∑
a=(i,j)∈As:a∈p

z̃p
a(yj − yi) +

∑
a=(i,j)∈Achange

a∈p

z̃p
az̄a(T − yj)

⎞
⎟⎟⎠

=:
∑

p∈Ps

wpCp.

For the objective of (TDM-A), we define

Ap = yi(p)(1 − zp) + Tzp.

(TDM-C) =⇒ (TDM-A): Let (y, z̄, z̃, w) be feasible for (TDM-C). Define
zp = zp(z̄) as follows:

zp(z̄) =
{

0 if z̄a = 0 for all a ∈ p ∩ Achange

1 otherwise (33)

Then (4) holds due to (11), (5) holds due to (12), and (6) is trivially satisfied,
if zp = 1, and for zp = 0 we know that z̄a = 0 for all a ∈ p and hence (6)
holds because of (13). This means (y, z) is feasible for (TDM-A). It remains
to show that Ap ≤ Cp. To this end, let p = (s, i1, . . . , iL) ∈ Ps be a path with
i(p) = iL.
Case 1: z̄a = 0 for all a ∈ p ∩ Achange. Then, we define zp = 0. From (14) we

get that z̃p
a = 1 for all a ∈ p. Since ys = 0 we conclude that

Cp =
∑

a=(i,j)∈As:a∈p

yj − yi = yiL − ys = Ap.

Case 2: There exists a ∈ p ∩ Achange with z̄a = 1. Choose a minimal with
respect to ≺ with this property, say ā = (ik̄−1, ik̄). Then, since z̄a, z̃p

a satisfy
(14) and (15) we obtain

z̃p
a = 0 for all a ∈ p with ā ≺ a

z̃p
a = 1 for all a ∈ p with a � ā.
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Hence, for all a ∈ Achange ∩ p we get

z̃p
a z̄a =

{
1 if a = ā
0 otherwise

This yields

Cp =
∑

a=(i,j)∈As:a∈p

and a�ā

yj − yi + (T − yik̄
)

= yik̄
− ys + T − yik̄

= T = Ap,

and consequently, fTDM−C(y, z̄, z̃, w) = fTDM−A(y, z(z̄)).
(TDM-A) =⇒ (TDM-C): Now let a feasible solution (ỹ, z) of (TDM-A) be

given. Using Algorithm 1 we may replace ỹ by a time-minimal solution y
which satisfies yi ≤ T for all i ∈ E , and has equal or better objective value.
Since y satisfies (4) and (5) we can construct a feasible solution for (TDM-C)
according to (21),(22), and (23).
For the objective value of this solution we again compare Cp and Ap for a
path p = (s, i1, . . . , iL) ∈ Ps and get:
Case 1: If zp = 0, we get from (6) that yi−yj ≤ sa for all a = (i, j) ∈ p. Hence,

due to the definition of z̄a we conclude that z̄a = 0 for all a ∈ p ∩ Achange,
yielding Cp = yi(p) = Ap analogously to Case 1 of the first part of the
proof.

Case 2: Now consider the case zp = 1.
Case 2a: yi − yj ≤ sa for all a = (i, j) ∈ p, yielding that z̄a = 0 for all

a ∈ p and hence Cp = yi(p) ≤ T = Ap.
Case 2b: There exists a = (i, j) ∈ p such that yi − yj > sa. This gives

us z̄a = 1. Choose ā = (ik̄−1, ik̄) minimal with respect to ≺ with this
property. Then, from the definition of z̃p

a we get

z̃p
a = 0 for all a ∈ p with ā ≺ a

z̃p
a = 1 for all a ∈ p with a � ā

and analogously to Case 2 of the first part of the proof Cp = T = Ap.
Together, fTDM−A(ỹ, z) ≥ fTDM−A(y, z) ≥ fTDM−C(y, C(y)).

Combining both directions yields that there exists an optimal solution for
(TDM-A) with delays y if and only if there exists an an optimal solution for
(TDM-C) with the same delays y. ��
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