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Abstract. The use of automatic crew planning tools within the railway
industry is now becoming wide-spread, thanks to new algorithm devel-
opment and faster computers. An example is the large European railway
Deutsche Bahn, which is using a commercial crew planning system de-
veloped by Jeppesen (formerly Carmen Systems). This paper focuses on
the crew pairing problem that arises at major railways. Even though it
is similar to the well-studied airline crew pairing problem, the size and
complexity of the railway operation necessitates tailored optimization
techniques. We show that a column generation approach to the pairing
problem, which combines resource constraints, k-shortest path enumer-
ation and label merging techniques, is able to heuristically solve a 7,000
leg pairing problem in less than a day.

1 Introduction

The process of crew planning at large transportation companies, such as railway
and airline companies, is often very complex. Feasible work schedules have to
comply with a large set of company rules and union agreements, and might also
take into account preferences of individual crew members. The schedules should
also take into consideration the available number of crew in each crew depot.

In order to manage the complexity and reduce the crew costs, some railways
and most airlines have started to use automated crew planning tools. The Car-
men crew scheduling system is successfully implemented and used by many of the
world’s largest transportation companies. Railway customers include the Ger-
man state railways Deutsche Bahn, the Swedish State Railways and the freight
operator Green Cargo. In the airline sector, the system is used by all major
European airlines, as well as several operators in North America and Asia.

Compared to manual planning, automated planning tools have a number of
advantages. As already mentioned, sophisticated optimization techniques can be
used to reduce the crew costs. It is also possible for the planning department to
produce crew schedules for several scenarios in parallel, and then pick the most
suitable one for production. The ability to evaluate “what-if” scenarios can be
used for strategic planning and timetable changes etc.

A challenge when going from manual planning to automatic, is to model the
many rules which are soft in the sense that “they should not be broken unless it’s
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necessary”. Especially for railways, in manual planning there are frequently cases
where the planner violates rules based on experience and “common sense”. In
an automated system, this means that we have to model and express the many
“common sense” trade-offs with penalties, and end up with a highly complex
cost-function for the optimizer.

A trend in the industry is a drive for incorporating timetable changes very late
in the planning process. In addition, one would like to be able to better adjust
the number of conductors on a train to the daily or weekly passenger demand.
Altogether, this means that the turn-around time and flexibility of the automatic
tool is very important and the performance of the optimizer is essential.

In the following we will focus on the railway crew pairing problem. The tech-
niques described have been successfully applied to planning problems from sev-
eral rail operators. We exemplify our approach with data from Deutsche Bahn
(DB), which in our experience has been the most challenging with respect to
both size and modeling complexity. DB, which is one of the world’s largest
transportation companies, consists of a number of partly independent compa-
nies which operate regional and commuter traffic, together with the long-distance
operator DB Fernverkehr. The total number of crew (train drivers and conduc-
tors) is around 30,000, distributed across more than 100 crew bases. A train is
operated by one train driver and from zero to seven conductors depending on
the type of train, the expected number of passengers, and a number of other
factors.

1.1 The Railway Planning Process

The operation of a passenger railway is defined by the timetable, the allocation of
infrastructure such as tracks and platforms to the timetable and the allocation
of rolling stock to the timetable. Timetable, infrastructure and rolling stock
are typically planned well in advance before the actual operation and often a
plan is valid for an entire timetable period of six months or more. However,
modifications, often due to maintenance work or special events, must occasionally
be introduced in to the plan.

The timetable and the rolling stock schedule together define the basic crew
need to operate the trains. Basic crew need includes the locomotive driver and,
for passenger trains, the minimum number of conductors required. In addition
to the basic crew need, extra crew might be required, depending on factors such
as the type and quantity of rolling stock, the type of service offered on the
train and the expected number of passengers. These factors also determine the
qualifications required by the crew members assigned to the train.

Because a train might depart early in the morning and arrive at its destination
late in the evening, it is necessary to divide the trains into legs (pieces of work
the cannot be divided). Legs start and end at stations where it is possible to
change crew. The goal of railway scheduling is to assign the legs to qualified
named individuals such that rules and regulations with respect to working time,
rest time etc. are satisfied, and such that costs and other quality aspects of the
solution are optimized. The problem naturally decomposes into the crew pairing
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problem, in which pairings, i.e. sequences of legs, starting and ending at a crew
base are constructed, and the crew rostering problem, where the anonymous
pairings are assigned to named individuals. Furthermore, the pairing problem
can be decomposed into a daily problem, in which pairings that cover all legs
that are operated more or less on a daily basis are constructed, and a roll-out
process, in which the daily solution is “rolled out” over a larger planning period,
followed by a second planning phase that takes care of any irregularities in the
timetable.

On the level of detail introduced so far, the airline and the railway crew
scheduling problems are very similar. This is especially true for the rostering
problems, which mainly have to deal with rostering rules and crew qualifica-
tions, and are less exposed to the underlying transportation network. A more
detailed comparison of the pairing problems reveals a lot of similarities, but also
important differences.

1.2 Outline of This Paper

After briefly reviewing existing literature on crew scheduling problems in Sect. 2,
we present a mathematical model of the general crew pairing problem in Sect. 3.
This model applies to both airline and railway problems. In Sect. 4 we describe
how the general pairing problem can be solved with a column generation ap-
proach. A more detailed description of a typical railway crew pairing problem
can be found in Sect. 5. In order to successfully solve railway pairing problems,
Jeppesen has introduced some modifications in the general column generation
scheme; these are presented in Sect. 6 along with some illustrative results. Then
we round off the paper with large-scale railway planning results in Sect. 7 and
some conclusions in Sect. 8.

2 Previous Work — Literature Review

Among the crew scheduling problems within the transportation industry, the
airline crew pairing problem has got a lot of attention in the operations research
literature. Finding an optimal set of pairings can be formulated as an integer
programming problem, in which each column represents a feasible pairing. Unfor-
tunately, the number of columns is immense. Snowdon et al. ([12]) report that a
daily problem for a large American carrier has roughly 1014 columns. Therefore,
delayed column generation is frequently used. An early application of this is due
to Minoux ([11]), in which it is shown that columns can be priced by solving a
shortest path problem on a network with arcs representing flights and overnight
connections. A limitation of the flight network approach is that the network only
captures flight connection rules, so rules that affect working days as a whole, or
the entire pairing, are ignored. Therefore only a small fraction of the paths in the
flight network form legal pairings. In the airline business, the sequence of flights
flown in a typical working day is known as a duty period, and for many rules the
legality of a single duty period is independent of preceding or succeeding duties.
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Lavoie et al. ([9]) take advantage of the structure and form a duty period network
where nodes are duty periods with state information, and arcs represent legal
overnights. A similar approach was later used by Desaulniers et al. ([5]) to solve
crew pairing problems at Air France. Vance et al. ([13]) present results for both
flight and duty based implementations. Resources are added to each node in the
networks to track additional legality conditions, and resource constrained short-
est path problems are solved. Comparisons between the two versions are difficult
to make since they implement different variants of the rules, but in general the
flight based version spends a larger portion of time in the pricing routine than
does the duty based version. However, the duty version cannot solve as large
problems as the flight version due to memory limitations. Storage of the duty
periods and the duty period connections is prohibitive for large problems (there
is one arc for each legal duty period connection).

The excessive memory usage of the duty network is addressed in Hjorring
and Hansen ([7]) by creating an initially relaxed network where duty-duty con-
nections are replaced by flight-flight connections. Portions of the network are
dynamically refined when required, in order to capture additional cost and le-
gality information. The method also uses a k-shortest path approach, instead of
resource constraints. This allows rules and costs to be implemented in a separate
module that presents a black box interface to the pricing subproblem. The rules
module can then be implemented using a modeling language that allows the user
to easily write their own rules and cost function.

Until recently, the existing literature on railway optimization problems was
mainly focused on vehicle scheduling problems, see for example the review by
Cordeau et al. ([4]). The large size and the complexity of the crew scheduling
problems that arise in the railway business made it difficult to apply optimiza-
tion methods for crew planning. This has now changed, thanks to new algorithm
development and faster computers. An example is the project “Destination: Cus-
tomer” at the Dutch railway operator NS Reizigers, which aims at increasing the
quality and punctuality of passenger trains, see Kroon and Fischetti ([8]). The
authors present two approaches for solving the crew pairing problem: a greedy
approach based on constraint programming, and a column generation approach
based on reduced cost generation of duties combined with a subgradient opti-
mizer and a variable fixing scheme. Another example is the development of a
combined crew pairing and rostering system for the Italian state railways, see
Caprara et al. ([2,3]). The scheduling process is divided into three phases: enu-
meration of all feasible pairings, solution of a large set covering problem using
Lagrangian heuristics and variable fixing, and the production of cyclic rosters (se-
quences of pairings and weekly rest periods) which are subsequently distributed
among the crew members.

Wren et al. ([15]) focuses on the problem of scheduling drivers for short-distance
trains and buses. They stay away from the column generation approach, because
they believe that the cost function is not sufficiently decomposable. Instead they
enumerate feasible duty days explicitly, and apply filtering heuristics to limit the
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number of duties that need to be sent to the optimizer. The planning system, called
TRACS II, appears to be in use at a number of British bus and railway companies.

3 General Problem Definition and Terminology

In this section we will introduce some terminology and give a mathematical
formulation of the general crew pairing problem.

Let L denote the set of (leg, function)-combinations. A leg may require sev-
eral crew members, but each will be assigned in a unique function, so for each
function-leg l, l ∈ L, exactly one crew member should be assigned. In the lit-
erature function-legs are sometimes called “trips” or “increments of work”. P
denotes the set of legal pairings. A pairing p, p ∈ P , is an ordered set of function-
legs, which can legally be operated by a crew member. A pairing will also contain
other activities, such as preparation and closing activities, and may contain so
called deadheads. A deadhead is a passive transport, either on a leg on which
other crew work, or by some other means of transportation. A pairing must start
and end at the same crew base and must comply with all rules and regulations
regarding work time, rest, qualifications, etc. The coefficient alp is 1 if pairing p
contains function-leg l and 0 otherwise. The cost of a pairing is denoted by cp

and may be the sum of real costs associated with the operation of the pairing
and penalties capturing robustness and social aspects.

The main constraint of the crew pairing problem requires all function-legs to
be covered by exactly one pairing, but the solution space will also be limited by
other constraints. For this purpose we introduce the set H of hard constraints
and the set S of soft constraints. The contribution of pairing p towards a hard
constraint h, h ∈ H, and a soft constraint s, s ∈ S, is denoted bhp and bsp

respectively. The sum of constraint contributions over pairings in a solution is
bounded by dh and ds for hard and soft constraints respectively. A soft constraint
s can be violated at the cost of cs. These types of constraints are often used to
ensure a distribution of the pairings corresponding to the distribution of crew and
to ensure an acceptable portion of pairings with particular unpopular properties
such as night stops.

The decision variables of the model are xp, which is 1 if pairing p is used in the
solution and 0 otherwise, and ys which determine the violation of soft constraint
s. The problem can now be stated as

min
∑

p∈P
cpxp +

∑

s∈S
csys, s.t. (1)

∑

p∈P
alpxp = 1, ∀l ∈ L (2)

∑

p∈P
bhpxp ≤ dh, ∀h ∈ H (3)

∑

p∈P
bspxp − ys ≤ ds, ∀s ∈ S (4)

xp ∈ {0, 1}, ys ≥ 0 (5)
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The objective function (1) specifies that we want to minimize the sum of the
cost of selected pairings and the cost of violating soft constraints. Constraint
set (2) requires each function-leg to be covered by exactly one selected pairing.
Constraint set (3) requires all hard constraints to be satisfied and constraint
set (4) ensures that ys is at least equal to the violation, if any, of the soft con-
straint s. Constraint set (5) requires x variables to be binary and y variables to
be non-negative. The model is a generalization of the well known set partitioning
problem.

The model presented above is not exactly identical to the one solved by the
Carmen Crew Pairing system. The modifications can be summarized as follows:

• In constraint set (2) equality is replaced by greater than equal, i.e. with cov-
ering constraints. This is a relaxation, but typically a covering solution, i.e. a
solution where the left hand side is more than 1 for at least one l, can be
transformed to a partitioning solution, by substituting a function-leg with a
deadhead on the same leg. Generally, the less constrained covering formulation
is easier to solve. In cases when this relaxation is not valid, for instance when
a legal deadhead cannot be found, the penalty for overcovering the active leg
can be gradually increased.

• All constraints are soft. For constraint sets (2) and (3) a very large penalty for
violation is defined. This is because a solution that violates a hard constraint
is much more useful from a practical point of view than no solution at all.
Typically a solution with hard constraint violations will hint at problems with
the input data.

4 Algorithms for the General Pairing Problem

The problem discussed in Sect. 3 is generic and can be applied to both airline
and railway crew pairing problems. In this section we outline how Carmen Crew
Pairing solves the general problem.

The set covering problem in Sect. 3 is difficult to solve in practice, for two
reasons. To start with, the number of columns in the constraint matrix A tends
to be huge, so it is not feasible to enumerate all of them. One either has to
limit the enumeration to some cleverly chosen subset of the feasible pairings, or
generate columns “on demand” using optimizer feedback. In addition, large set
covering problems are difficult to solve with standard integer solvers, so one has
to resort to heuristic techniques.

Carmen’s approach to the pairing problem is to generate pairings dynami-
cally using reduced cost feedback from the set covering optimizer, a technique
sometimes referred to as Dantzig-Wolfe decomposition in the literature. The
goal of the decomposition is to separate the “complicating” problem constraints
(the pairing rules) from the “simple” constraints (2)– (5) above. The “simple”
constraints form the master optimization problem, whereas the “complicating”
constraints are hidden inside a column generation subproblem, usually called
the pricing problem. In this context, the set covering problem in Sect. 3 and the
master problem is the same.
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leg1 leg2 leg3 leg4 leg5 leg6

duty3duty2duty1

chain

Fig. 1. Hierarchy of chain levels

4.1 The Pricing Problem

The goal of the pricing problem is to find legal pairings with negative reduced
cost, for addition to the master problem. The reduced cost includes feedback from
the optimizer (the pairing cost is reduced by the sum of the dual variables of the
constraints that the pairing covers.) Because the pricing problem is intimately
connected with the pairing rules and the cost function, we start with describing
the general structure of the pairing rules and the pairing cost function.

The Carmen Crew Pairing system (CCP) contains a rule modelling language
(Rave) that permits planners to easily add and modify the rules and the cost
function. Rave is implemented as a black-box system, which is able to decide
whether a pairing is legal with respect to the rules, and to evaluate the pairing
cost. However, it does not expose the internal details of the evaluation process
to the rest of the system.

For modelling purposes, a sequence of legs is usually grouped into a hierarchy
of levels, as shown in Fig. 1. In the pairing problem there is usually at least one
intermediate level of duties between the atomic level of the legs and the top–most
pairing level. The levels are used when defining rules and costs: certain rules are
leg dependent and need to be evaluated for each leg in the chain, whereas other
rules may be duty- or chain-dependent.

A related concept is the range of objects that evaluated expressions depend
on. For example, a rule that checks the min connection time between two legs
has very short range: only two legs. In the other extreme, an expression counting
the length of the pairing in days has chain range.

The column generator that solves the pricing problem relies on k-shortest-path
enumeration within a network, in which the arcs are of two types: block arcs, which
represent partial pairings, and connection arcs, which connect partial pairings to-
gether, see Fig. 2 for an example. The block is defined by an intermediate level in
the Rave language. Preferably, the majority of the paths in the network should
correspond to legal pairings; otherwise the efficiency of the column generator is
reduced. Therefore the block level needs to be selected carefully. The most con-
straining pairing rules should have a range of at most one or two blocks; they will
then be captured accurately by the network. Often, a suitable block level is equal
to one day of work (a duty), but there are other possibilities.
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duty-duty connections
duty arcs

source and sink node connections
sink nodes to super sink node connection

sink nodes

the master sink

source nodes

Fig. 2. Schematic view of the pricing network. There is a pair of source and sink nodes
for each calendar day and homebase combination. For a given start day, the master
sink node connects all sink nodes that represent legal ending days, assuming that there
is a max calendar length rule in the ruleset.

In a similar fashion, we assume that the majority of the cost terms in the cost
function can be decomposed into block and block-block contributions, which can
be stored on the arcs in the network.

In one iteration of the column generator, paths with negative reduced costs
are enumerated in increasing cost order, using a k-SP algorithm. For each path
found, the Rave system evaluates the true pairing cost, which might differ from
the network estimate, and verifies that the pairing is legal. If the pairing still
looks good, it is added to the master problem. The process continues until no
more attractive (negative cost) paths can be found, or if “sufficiently” many
pairings have already been added. Because there are multiple source nodes in
the network (c.f. Fig. 2), each base and starting day combination is treated
separately.

4.2 The Master Problem

After each call to the pricing routine, the newly generated columns need to
be incorporated into the master set covering problem defined in Sect. 3. The
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solution of the LP-relaxed master problem yields a set of dual variables that are
sent to the pricing problem in the next iteration. We iterate over pricing calls
and solutions of the master problem until no more attractive columns can be
found. At that point, we have arrived at the optimal LP solution of the pairing
problem. Typically, the LP solution is fractional, and only yields a lower bound
of the pairing solution cost. Branching schemes or integer heuristics can be used
to find good integer solutions, given the set of columns found so far.

Small set covering problems may be solved successfully by commercial IP
solvers, such as CPLEX or XPRESS, but they tend to become unreasonably
slow for problems of realistic size. The Carmen pairing optimizer relies entirely
on specialized solvers. They are described in more detail in Sections 6.6 and 6.7.

5 The Railway Crew Pairing Problem

After the presentation of the general crew pairing problem in the previous sec-
tions, we now consider the railway pairing problem in more detail. This section
focuses on the Deutsche Bahn planning problem, which is an example of the
large and complex planning problems that arises at major railways.

5.1 Modelling of Rules, Regulations and Objectives

It is not possible to give a complete account of all rules, regulations and objectives
of the DB crew pairing planning within the context of this paper. The purpose
of this subsection is just to outline some of the more important rules, regulations
and objectives. It is also the case that the labour agreements change from year
to year, putting very high demands on the flexibility of the system.

In addition to function-legs and deadheads, a pairing will contain a num-
ber of derived preparation and closing activities. The derived activities can be
calculated from the function-legs and deadheads and the rolling stock rotations.

The construction of individual pairings is mainly limited by a number of
work, rest and connection time rules. There are three main different time con-
cepts. There are activities associated with starting and ending a duty, starting
and ending a train and walking times, for example between trains and the rest
facilities. In addition to these times there is a required connection (buffer) time
when crew change from one train to an other.

The duty time is the time from duty start to duty end. Work time is the time
when the crew member carry out activities that according to German legislation
are classified as work. Paid time is the time for which the crew member is paid.
All work time is paid, but some non-work activities, primarily deadheading and
paid rest, are paid without classifying as work time. Work time is generally
limited to 10 hours per duty-day. A duty with at least 6 hours of work time
requires at least 30 minutes of rest time, and a duty with at least 9 hours of
work time requires at least 45 minutes of rest time. Rest must generally be
allotted at a station with rest facilities, but can also be planned on-board a
train en-route. The possibility of using on-board rests is constrained by several
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factors, but especially complicating is the fact that only a limited number of
crew can rest at the same time. Required rest is usually unpaid, whereas any
additional rest while connecting between trains is paid.

A pairing may contain up to two duty days. Nightstops must last for at least
5 hours, and are only permitted at certain stations. If the nightstop is shorter
than 9 hours, the total work time of the pairing is limited to 10 hours.

Not all train products can be operated from all crew bases and certain trains
must be operated from a particular base. This is in particular the case for some
of the international traffic. There are also limitations on to which extent different
function-legs can be mixed in the same pairing. It could otherwise happen that
the rostering problem becomes infeasible, because no crew members at all are
qualified to work on certain pairings.

The objective function contains monetary terms including paid time, hotel
costs and deadheading costs as well as a large number of terms capturing oper-
ational stability and crew preferences. These include

• A train should not change crew too often, so a working period of less than
e.g. two hours on a train is penalized.

• For the same reason, changing crew near the start or end of a train is
penalized.

• Pairings with a long nightstop relative to the total paid time on the pairing
are penalized.

• Pairings where the duty after the nightstop is longer than the duty before the
nightstop are penalized.

• Changes between different functions and different train products are penalized,
in order to reduce the number of different qualifications that are needed to
work on individual pairings in the pairing solutions.

• Legs that only require a team of two conductors should preferably not be
mixed with legs that require three conductors, because then the benefits of
teaming will be reduced, c.f. Sect. 5.4.

• There is a fixed cost per duty day. This is to decrease the total number of
duty days and consequently increase the paid time per duty day. Pairings
with much paid time per duty day are easier to roster.

In total the DB ruleset contains about 100 separate rules. All rule and cost
definitions are expressed in the Jeppesen Rave modelling language. Currently,
the DB Rave code consists of ≈ 30,000 lines distributed over 50 modules. Thanks
to the black box system, there is a clear separation between the optimizer core
and the Rave code, a fact that greatly simplifies maintenance and allows the
Rave code to be developed independently of the optimizer. Integrating the rules
and costs directly into the optimizer would have been a formidable task, with
little hope of commercial success.

5.2 Base Constraints

Clearly, a solution must consist of legal pairings, but there are additional con-
straints on the total solution. These are modelled with constraints of type (3)
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or (4), c.f. the mathematical model discussed in Sect. 3. The most impor-
tant of these are base constraints and constraints on the number and distribution
of nightstops. The purpose of the base constraints is to ensure a distribution
of pairings, and consequently of the workload, between the bases, which cor-
responds to the actual distribution of crew. In the long and mid-term run the
distribution of crew can be influenced by operational efficiency, but in the short
run the crew distribution is fixed. For each crew base there is a maximum and
possibly a minimum amount of paid time, which can be assigned. There might
also be separate base constraints for crew with special qualifications. Pairings
with nightstops are permitted and economically quite attractive, but are unpop-
ular with crew. Therefore it is necessary to introduce limits on the total number
of pairings with nightstops as well as on the distribution of these between crew
bases and between crew groups with different qualifications.

5.3 Variable Crew Need

In practice, the number of crew members that should work on a leg is not always
given a priori. For service reasons, an additional crew member may be desirable,
but not required. If the number of expected passengers vary substantially be-
tween legs on the same train, the required crew may also go up and down, but
for practical reasons, the staffing is kept at a constant level, if this is not costly.
This could be modelled by partitioning the set L in Sect. 3 into a required set of
function legs, for which equality in constraint set (2) must be satisfied, and a set
of optional function-legs, where relatively cheap slack variables are introduced.

5.4 Teaming Aspects

From an operational point of view, it is desirable that crew members work in
teams, because then it becomes more likely that all required crew members arrive
at a particular train departure station in time. Teaming is also preferred for
social reasons. It is therefore necessary to take teaming aspects into consideration
when solving the pairing problem. A typical approach is the following. Firstly
team master pairings that cover all trains that require teams are created. For
each pairing in the master solution, the minimum supplementary crew need is
calculated, and then a number of copies of the master pairing, one for each extra
crew member in the team, are added to the pairing solution. Finally, pairings
for supplementary crew are created to cover any remaining crew need.

6 Algorithmic Contributions for the Railway Pairing
Problem

6.1 The Pricing Network of Trains

As we have seen in Sect. 4.1, the pricing problem is transformed into a shortest
path problem within a network of partial pairings (“blocks”). A question that
arises when designing a pricing network for railway pairings is what a “block”



Railway Crew Pairing Optimization 137

in the network should represent. In the airline case the duty day is the natural
candidate. However, it turns out that the number of legal duties in a typical
railway problem is enormous, so it is not feasible to create the full duty network.
Instead we choose to let the blocks in the network represent work periods on
the same train. Whereas this approach leads to a manageable network size, duty
dependent rules are not captured accurately in the network. Consequently, a
large fraction of the paths found by the k-SP routine will violate duty time or
work time constraints. This, in turn, could severely impact the performance of
the column generator and the solution quality. In the following paragraphs we
discuss how the performance degradation can be avoided.

6.2 Resource Dependent Cost Elements

The resource constrained shortest path problem has traditionally been used as
a subproblem in applications of column generation to scheduling problems. The
technique can be extended to model some classes of nonadditive costs as well.

Let us assume that the cost of a pairing can be written in the form c(p) =
ca(p) + cn(r(p)), where ca(p) captures the additive parts of the cost function,
and is additive with respect to block and block-block connections. Here cn is a,
possibly non-linear, function of the resource vector r(p).

Not every cost function can be modelled using resources. The main limitation
is that the resource vector r(p) must itself be additive, because it needs to be
modelled accurately by the network. Furthermore, the non-additive part of the
cost cn is required to be a non-decreasing function with respect the the individual
resource components. The last convexity requirement enables certain short-cuts
in the k-SP enumeration, as described below.

The current network topology also allows cn to depend on some other charac-
teristics of the pairings, such as the starting day of the pairing (determined by
the source node of the path) and the length in calendar days. Some examples of
costs modelled by resources:

• Penalize pairings for which the work time exceeds a limit by a constant value.
• If the number of short night stops in the path exceeds one, and the total work

time of the pairing is above 10:00, add a very high penalty to the cost of the
pairing.

The latter example illustrates how the rule concerning max work time in pairings
with short night stops (c.f. Sect. 5.1) can be modelled using a pair of resources.

6.3 Extension of the k–SP Algorithm

The pricing network, as described in Sect. 4.1, needs to be modified in order to
handle a resource-dependent non-additive cost function. Instead of storing the
total reduced cost on the arcs, we store the additive part c̄a of the reduced cost,
together with the resource vector r(p).
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The pricing routine enumerates paths in additive cost order. For each path
found, the resource vector r(p) is summed up along the path and the non-additive
part of the path cost is evaluated using a Rave definition. Only if the total path
cost is attractive, will the cost and legality be evaluated by Rave.

Because the k-SP routine only “knows” about the additive part of the cost,
a potentially large fraction of the enumerated paths might turn out to be non-
attractive when the non-additive part has been added. We use the concept of
non-dominated paths to significantly reduce the number of useless paths. Con-
sider the graph in Fig. 3. Two sub-paths can be found from the source node
ns to the intermediate node ni, with (cost, resource) sums (−2, 50) and (2, 60),
respectively. Because the second sub-path has both higher cost and higher re-
source consumption than the first sub-path, we can conclude that the total cost
of the second path, extended to the sink node nd, is going to be higher than the
total cost of the first path. Here we have to rely on the assumption that the non-
additive function is non-decreasing. We say that the second path is dominated
by the first path.

ns

p3

(−3, 30)

(2, 60)
p2

p1

(−2, 50)

ndni

Fig. 3. Impact of the resources on the k–SP algorithm

More generally:

Definition 1. The path p is said to be dominated by path p′, if c̄a(p) ≥ c̄a(p′)
and rj(p) ≥ rj(p′) for every resource rj.

Definition 2. Let P (ns, n) be the set of all paths from the source node to node
n. A path is called Pareto-optimal, if it is not dominated by any path in P (ns, n).

We modify the k-SP routine so that it skips the dominated paths in the network.
The dominance tests are done at all nodes in the network, and take advantage
of the fact that paths are generated in increasing cost order. A variant of the
algorithm has been described by Azevedo and Martins ([1]).

If the set P (ns, nd) of paths from the source node ns to the sink node nd

contains at least one attractive path, then it also contains at least one attractive
Pareto-optimal path. This means that the pricing subproblem is guaranteed to
find at least one attractive path, if any at all exist.

6.4 Label Merging

Because the number of arcs in the pricing network can exceed 1,000,000 for
a typical daily DB pairing problem, the number of non-dominated path labels
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created by the k-SP routine might exceed memory limitations. A simple adaptive
technique can be used to regulate the number of generated non-dominated paths
in the network. The underlying idea is that we want to “merge” resource vectors
in the Pareto-optimal set that are almost identical. To be more specific, path p is
said to be dominated by path p′ if c̄a(p)+κa(ns) ≥ c̄a(p′) and r(j)(p)+κ(j)(ns) ≥
r(j)(p′) for each resource r(j), where κa(ns), κ(j)(ns) are positive parameters
depending on the current source node ns. The parameters κa(ns) and κ(j)(ns)
are adaptively changed after every pricing iteration, depending on the time spent
in a pricing routine for source node ns.

6.5 Impact of Improvements

The extensions to the network model and pricing subproblem solver that were
mentioned in Sect. 6 have been tested on a number of problem instances, and we
observe significant performance improvements. Fig. 4 depicts the effect of using
resources to model rules that govern duty time and work time on a DB pairing
problem. The input is a subset of the daily long-haul conductor problem, and
contains 1,361 legs. We see that the k-shortest path approach without resources
is unable to produce acceptable solutions for this problem. The reason is that
the shortest path enumeration frequently times out after finding 10,000 paths,
all of which are illegal. We also note that the resource merging technique not
only reduces the runtime, but also improves the quality of the solution. This
can be explained by the fact that the number of labels created by the resource-
constrained shortest path solver may be limited by memory consumption when
merging is not used.

6.6 Dual Strategy

As discussed in Sect. 4.2, one of the tasks of the master optimizer is to provide
duals for the column generator. One approach to implementing the master opti-
mizer is to relax the integrality conditions from the integer program, and solve
the resulting LP, either using a simplex solver, or an interior point solver with-
out crossover. A simplex solver returns values corresponding to extreme points
of the optimal face, whereas interior point solutions are in the relative interior
of the optimal face, which is usually a better representative of the possible dual
solutions (Lübbecke and Desrosiers, [10]).

Another approach is to Lagrangian relax all the constraints and solve the
relaxation using a subgradient approach. The details of this, along with a dual
ascent approach to find integer solutions, are presented in Gustafsson ([6]). In
brief, the integer heuristic and subgradient solver is highly integrated, and is
run continuously with every call to the pricing module. A high focus is put on
keeping the computational effort very low, and for example during the early
stages of a complete column generation run, we accept sub-optimal subgradient
duals as long as the integrality gap is reasonable.

Fig. 5 shows a comparison of these three approaches on a 530 leg problem.
Fig. 5a tracks the progress of the lower bound with all integrality restrictions
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Fig. 4. Comparison of column generation runs. The reference run uses both resources
and a label merging technique. None of the runs showed any further significant im-
provements after 40 minutes of runtime on a 2.8 GHz Pentium-4 server with 2GB of
memory.

removed. As expected, the LP solvers converge to the same lower bound, whereas
the subgradient solver provides a significantly weaker lower bound (in this case
about 0.5% lower). However, the simplex approach has a very long tail, requiring
1,800 iterations to reach convergence, whilst the interior point approach requires
800 iterations, and the subgradient only 500.

In Fig. 5b we also show the upper bounds coming from the dual ascent heuris-
tic. To reduce the gap between the upper and lower bounds, we have implemented
a simple integrality strategy. When no more negative reduced cost columns ex-
ist, a number of leg-leg connections are fixed to one, and the column generation
process continues. The fix-and-regenerate steps continue until the lower bound
to the integer restricted problem is fathomed by the best known solution. The
upper bound converges fastest for the subgradient approach, and slowest for the
simplex case. In fact the graph truncates the simplex run; convergence is reached
after 5,000 major iterations, and then to a poorer quality solution.

Whilst Fig. 5 applies to one particular problem, the results are similar for
other problems. As the size of the pairing problem grows, the difference between
the approaches becomes even more significant. A further advantage of the sub-
gradient approach is that the computations are much quicker. For the 530 leg
problem, a subgradient major iteration is on average twice as fast as an interior
point iteration, and four times faster than a simplex major iteration.
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Fig. 5. The effect of different master optimizers

6.7 Integer Strategy

The dual-ascent heuristic that provides integer solutions to the master problem
was devised by Wedelin ([14]). This solver is fully integrated with the generation
step, and typically finds new solutions every two or three pricing calls. Due to
its probabilistic nature, not every new solution is the globally best so far; still,
it is a very dynamic solver that produces close to optimal solutions throughout
the run. This gives the end-user the ability to stop the run early (before full
convergence), if the solution is deemed “good enough”.

As mentioned in the previous section, a connection fixing strategy aids the
search for high quality integer solutions. Starting with a fractional solution to the
integrality relaxed master problem, we determine fractional leg-leg connections,
and fix the connections that are closest to one. Columns and network arcs that
violate fixed connections are removed, at least temporarily. When solving very
large pairing problems (> 2, 000 constraints), the time taken to calculate the
fractional solution can be very large if standard LP solvers are used. Instead
we have implemented an approximate solver, which is similar to the volume
algorithm of Snowdon et al. ([12]).

We have further improved the connection fixing strategy by implementing
early branching and by unlocking some or all connections when the lower and
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upper bounds meet, and then continuing. In early branching we no longer wait
for LP convergence, but instead fix connections after a certain number of pric-
ing iterations have passed. This has the effect of returning high quality integer
solutions early in the search history, and can even reduce overall run time. If
desired, a valid lower bound can be determined after the early branching by
unlocking all connections, and generating columns until convergence is reached.
Fig. 6 shows the effectiveness of this approach. In both cases an interior point
solver was used as the LP optimizer. Each line shows the primal objective aver-
aged over eight runs, each with a different starting solution produced by a very
simple construction heuristic.
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Fig. 6. Different integrality strategies

7 Large-Scale Results

We now integrate the new algorithmic contributions, and see how the resulting
pairing optimizer performs on a range of railway problems. As a challenging
test case, we have chosen the DB long distance planning problem, encompassing
close to 7,000 daily legs and many more deadhead possibilities. There are 24 crew
bases, 211 stations, and a number of different types of base constraints (Sect. 5.2),
strongly affecting the nature of the solutions. Fig. 7 shows the results. We are
able to solve the full problem in less than a day on standard PC hardware. The
smaller problems presented in the graph were created by taking the solution
from the full run, and selecting legs operated by a subset of the bases. The bases
in the smaller problems are close geographically, making it non-obvious how the
legs should be distributed across the bases.
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8 Conclusions and Future Work

Our results illustrate that it is possible to solve large and highly complex rail-
way pairing problems in reasonable time using modern OR techniques. We
believe that one of the key factors behind the success of our approach is the
black box rule system, which separates the generic core optimization algorithms
from the very user-specific problem definition, and makes it possible for plan-
ners to express rules and cost components in the tailor-made “Rave” language.
An alternative approach, in which certain standard rules are “hard-coded” in
the optimizer, would probably not have been flexible enough, given the com-
plexity of the DB rule and cost structure. Another key factor is the column
generation approach, which provides near-optimal solutions to the mathemat-
ical formulation of the pairing problem. Compared to manual planning, we
have seen cost savings of 10–15% on large railway problems from several
operators.

There are some aspects of the pairing optimizer that we are currently work-
ing on. Optimization speed is one of them, of course. Another is to improve the
transportation leg search in the pricing problem. It is not feasible to insert all
buses and trains in the whole region into the pricing network, especially not if
the planning period stretches over a month. Finding the “right” set of trans-
portation connections a priori is a non-trivial problem, however. Preferably the
optimizer should find the right deadheads without manual intervention. Various
preprocessing techniques can be used for this purpose.
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