
Timetable Information: Models and Algorithms�

Matthias Müller-Hannemann1, Frank Schulz2, Dorothea Wagner2,
and Christos Zaroliagis3

1 Darmstadt University of Technology, Department of Computer Science,
Algorithmics Group, Hochschulstr. 10, 64289 Darmstadt, Germany

muellerh@algo.informatik.tu-darmstadt.de
2 University of Karlsruhe, Department of Computer Science, P.O. Box 6980, 76128

Karlsruhe, Germany
{fschulz,dwagner}@ira.uka.de

3 Computer Technology Institute, P.O. Box 1122, 26110 Patras, Greece, and
Department of Computer Engineering and Informatics, University of Patras,

26500 Patras, Greece
zaro@ceid.upatras.gr

Abstract. We give an overview of models and efficient algorithms for
optimally solving timetable information problems like “given a depar-
ture and an arrival station as well as a departure time, which is the
connection that arrives as early as possible at the arrival station?” Two
main approaches that transform the problems into shortest path prob-
lems are reviewed, including issues like the modeling of realistic details
(e.g., train transfers) and further optimization criteria (e.g., the num-
ber of transfers). An important topic is also multi-criteria optimization,
where in general all attractive connections with respect to several criteria
shall be determined. Finally, we discuss the performance of the described
algorithms, which is crucial for their application in a real system.

1 Introduction

The first electronic timetable information systems were established in the late
eighties of the last century. Current systems are for example HAFAS [13], which
is used by many European railway companies, or EFA [8], which is mainly used
for local traffic limited to smaller regions in Europe. Empirically, the resulting
connections are satisfying in the majority of cases. There are cases, however, for
which the suggested itineraries are clearly not optimal (given some optimiza-
tion criterion). The main reason for such non-optimal connections is that the
algorithms behind the systems employ heuristic methods to reduce the search
space (in order to achieve an acceptable response time) that do not always guar-
antee optimal solutions. Such heuristic approaches often work in two phases as
described below.

In the last few years the question arose whether models and algorithms for
optimally solving timetable information problems are feasible. In this work we
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want to give an overview of such approaches, which solve timetable information
queries by finding a shortest path in an appropriately defined graph. Hence, the
problems are directly transformed into shortest path problems.

In the remainder of the introduction we give a brief overview of heuristic two-
phase approaches and direct shortest-path approaches. In Section 2 the timetable
information problems are formally specified. Two main approaches for model-
ing timetable information directly as shortest paths are described in detail in
Section 3, where first a simplified problem specification is considered. Later on,
in Section 4, extensions of the approaches that cover realistic details are outlined.
Multi-criteria optimization is discussed in Section 5, and studies investigating
the performance of the algorithms described in this paper are summarized in
Section 6. We conclude the survey with some final remarks in Section 7.

1.1 Two-Phase Approaches

We want to mention two predecessors of “real” timetable information systems.
Around the year 1988, the Dutch and German train companies started to use
electronic timetable information systems. Heuristics that usually yield good so-
lutions, but cannot always guarantee an optimal solution, are used to keep the
search spaces small enough. The two systems we describe work both in two
phases, where the first phase heuristically restricts the search space.

TRAINS

Tulp and Siklòssy [37] describe the TRAINS system, which was used by the
Dutch railways (NS) at that time as a prototype: It is based on a graph where
nodes represent cities. They distinguish two levels of the network, a “static” level
which consists of arcs between nodes representing distances, and a “dynamic”
level where the arcs include information about the departure and arrival times
of trains. The algorithm uses the static level to cut out the “interesting” part
of the network, without considering any information about time. Note that this
cutting is heuristic in the sense that optimal connections may be lost by that
step, which is not permitted in the models investigated later in this paper. Then,
a train connection is calculated by a modification of Dijkstra’s algorithm [7]
trying to incorporate time for train changes at stations. Once a connection to
the destination station is found, a backward search tries to improve the result
(e.g., to find a connection that departs later and has the same arrival time).

ARIADNE

Baumann and Schmidt [2] outline an algorithm called ARIADNE, which can be
regarded as ancestor of HAFAS [13], the timetable information system that is
nowadays used by the German railway company Deutsche Bahn AG and many
other railway companies worldwide. As in TRAINS, the algorithm considers two
different networks: a static graph representing the topographic railway network,
and a dynamic network including time, traffic days, train classes etc. The ARI-
ADNE algorithm works in two phases: The first phase (“Wegesuche”) searches
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feasible paths in the static network by a bidirectional version of Dijkstra’s al-
gorithm and outputs a subgraph of the network to be considered in the second
phase. Note that again—as in the TRAINS algorithm—optimal solutions may
be lost by this step. The second phase (“Zeitsuche”) computes on the dynamic,
time-dependent version of the network, limited by the subgraph computed in
the first phase, several feasible train connections. These are rated according to
measures like travel time, quality of trains, direct connection, etc.

1.2 Direct Shortest Path Approaches

Two main approaches have been proposed for modeling timetable information
as shortest path problem: the time-expanded [19,20,21,22,26,30,28,32,33,34], and
the time-dependent approach [4,5,16,23,24,25,30,28,29,32]. The common charac-
teristic of both approaches is that a query is answered by applying some shortest
path algorithm to a suitably constructed graph.

The Time-Expanded Approach

A time-expanded graph is constructed in which every node corresponds to a
specific time event (departure or arrival) at a station and edges between nodes
represent either elementary connections between the two events (i.e., served by
a train that does not stop in-between), or waiting within a station. Depending
on the optimization criterion, the construction assigns specific fixed lengths to
the edges. This naturally results in the construction of a very large (but usu-
ally sparse) graph. The simplified version of the earliest arrival problem—where
details like transfer rules and traffic days are neglected—has been extensively
studied:

In [33], Schulz, Wagner and Weihe explicitly use the time-expanded approach
to model a simplified version of the earliest arrival problem as a shortest path
problem in a static graph, and solve the problem optimally. An extensive exper-
imental study has been conducted and—at least in the simplified scenario—it
could be demonstrated that the running time of the time-expanded approach on
state-of-the-art computers is acceptable. To achieve this result, several speed-up
techniques, which guarantee optimal solutions, were applied to Dijkstra’s algo-
rithm for computing the shortest path. More details on the speed-up techniques
are provided in Section 6.

An extension of the time-expanded approach incorporating train transfers
and an extensive experimental study focused on multi-criteria problems is pre-
sented by Müller-Hannemann and Weihe in [22]. The results of this study are
quite promising: in practice (among other data also the time-expanded graph
was considered) the number of Pareto-optimal paths is often very small, and
labeling approaches are feasible. In [21], Müller-Hannemann, Schnee and Weihe
focus on more realistic and complex real-world scenarios for timetable infor-
mation, in particular with respect to space limitations. Further extensions to-
wards realistic models and also further optimization criteria as well as bicriteria
problems are presented by Pyrga, Schulz, Wagner and Zaroliagis in [30,28] (see



70 M. Müller-Hannemann et al.

also [32]), where the authors also conducted an experimental comparison with the
time-dependent approach (see below). Multi-criteria optimization in the time-
expanded graph by a labeling approach is extensively investigated by Müller-
Hannemann and Schnee [20]; the notion of Pareto-optimal connections is relaxed
(cf. 5.2). Möhring suggests the time-expanded model as a graph-theoretic con-
cept for timetable information in [19]. He further discusses algorithms for solv-
ing multi-criteria problems, and focuses on a distributed approach for timetable
information, which is also the topic of the recent projects DELFI [6] and EU-
Spirit [11]: the railway network is considered as consisting of several (overlap-
ping) subnetworks (e.g., each subnetwork is operated by a different company
or institution), and a global solution is constructed from several subqueries to
the conventional timetable information systems operated on the respective sub-
networks. In a sense such new systems operate like meta search engines for
the web.

The Time-Dependent Approach

The idea is to avoid the maintenance of a node per event. Instead, the time-
dependent graph is used in which every node represents a station, and two nodes
are connected by an edge if the corresponding stations are connected by an el-
ementary connection. The lengths on the edges are assigned “on-the-fly”: the
length of an edge depends on the time in which the particular edge will be used
by the shortest path algorithm to answer the query. Dynamic programming ap-
proaches for a time-dependent shortest-path problem have first been studied
by Cooke and Halsey [5]. Later, Kostreva and Wiecek [16] generalized this ap-
proach towards multiple criteria. However, no performance guarantees are given
for these dynamic programming approaches. Orda and Rom [24,25] thoroughly
investigated the complexity of time-dependent shortest path problems and give
efficient algorithms for special cases. Brodal and Jacob [3,4] argued that in the
simplified case of the earliest arrival problem, Dijkstra’s algorithm considers
many redundant edges in the time-expanded approach. They suggest to use a
time-dependent network instead and proved by a detailed theoretical analysis of
operation counts in both approaches that a variant of a time-dependent shortest-
path algorithm introduced by Orda and Rom is more efficient than the time-
expanded approach. Pyrga, Schulz, Wagner and Zaroliagis extended the time-
dependent model to cope with realistic problem specifications [29]. A subsequent
study [30,28,32] compares these models experimentally with the time-expanded
models, where also bicriteria problems are considered.

The work of Nachtigal [23] can also be classified as a time-dependent approach
to timetable information. The problem specification he uses is different to most
other approaches: given a source station, for all other stations arrival functions
depending on the departure time shall be computed. Hence, the departure time
is not part of the query, and solutions are computed for all possible departure
times.
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2 Problem Specification

2.1 Data

A timetable consists of data concerning: stations (or bus stops, ports, etc), trains
(or busses, ferries, etc), connecting stations, departure and arrival times of trains
at stations, and traffic days. More formally, we are given a set of trains Z, a set
of stations B, and a set of elementary connections C whose elements c are 5-
tuples of the form c = (Z, S1, S2, td, ta). Such a tuple (elementary connection)
is interpreted as train Z leaves station S1 at time td, and the next stop of train
Z is station S2 at time ta. If x denotes a tuple’s field, then the notation x(c)
specifies the value of x in the elementary connection c.

The departure and arrival times td(c) and ta(c) of an elementary connection
c ∈ C within a day are integers in the interval [0, 1439] representing time in
minutes after midnight. The length of an elementary connection c, denoted by
length(c), is the time that passes between the departure and the arrival of c.

A timetable is valid for a number of N traffic days, and every train is assigned
a bit-field of N bits determining on which traffic day the train operates (for
overnight trains the departure of the first elementary connection counts).

At a station S ∈ B it is possible to transfer from one train to another only
if the time between the arrival and the departure at that station S is larger
than or equal to a given, station-specific, minimum transfer time, denoted by
transfer(S). There may also be more complicated transfer rules, for example the
transfer time can be smaller for trains that depart from the same platform. The
most general notion is to specify a station-specific minimum transfer time, and
exceptions in the form of a set of feasible and a set of forbidden transfer trains
for each arrival of a train at a station.

Between stations that are located close to each other it is possible to walk
by foot. Such data is available through so-called foot-edges between stations.
Each foot-edge is associated with a natural number representing the time in
minutes needed for the walk. Formally, we treat a foot-edge like an elementary
connection c, where the train Z and the departure and arrival times td and ta are
invalid, and length(c) is the associated walking time. Foot-edges are independent
of traffic days.

2.2 Connections

Let P = (c1, . . . , ck) be a sequence of elementary connections (and foot-edges)
together with departure times depi(P ) and arrival times arri(P ) for each el-
ementary connection ci, 1 ≤ i ≤ k. We assume that the times depi(P ) and
arri(P ) include data regarding also the departure/arrival day by counting time
in minutes from the first day of the timetable. A time value t is of the form
t = a · 1440 + b, where a ∈ [0, 364] and b ∈ [0, 1439]. Hence, the actual time
within a day is t (mod 1440) and the actual day is �t/1440�.

Such a sequence P is called a consistent connection from station A = S1(c1) to
station B = S2(ck) if it fulfills some consistency conditions: the departure station
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of ci+1 is the arrival station of ci, and the time values depi(P ) and arri(P )
correspond to the time values td and ta, resp., of the elementary connections
(modulo 1440) and respect the transfer times at stations. More formally, P is a
consistent connection if the following conditions are satisfied:

ci is valid on day �depi(P )/1440�,
S2(ci) = S1(ci+1),

depi(P ) ≡ td(ci) (mod 1440),
arri(P ) = depi(P ) + length(ci),

depi+1(P ) − arri(P ) ≥

⎧
⎨

⎩

0 if Z(ci+1) = Z(ci) or
ci is a foot-edge, and

transfer(S2(ci)) otherwise.

2.3 Criteria and Queries

For the timetable information problems we are additionally given a large, on-line
sequence of queries. A query generally defines a set of valid connections, and an
optimization criterion (or criteria) on that set of connections. The problem is to
find the optimal connection (or a set of optimal connections) w.r.t. the specific
criterion or criteria.

The Basic Query

The most fundamental query is also referred to as the earliest arrival problem.
A query (A, B, t0) consists of a departure station A, an arrival station B, and a
departure time t0. Connections are valid if they do not depart before the given
departure time t0, and the optimization criterion is to minimize the difference
between the arrival time and the given departure time. Additionally, one may
ask among all connections that are solutions to such a query for the connection
that departs as late as possible.

Extended Queries

Other important optimization criteria involve the number of transfers and the
price of a connection. In the minimum number of transfers problem, the query
is to ask, given two stations A and B, for a connection with as few transfers as
possible, which doesn’t involve a departure or arrival time at all. Similarly, one
can ask for a connection with the lowest price.

A query can also contain a sequence of via stations together with the duration
of the stays at the respective stations. Further, certain trains or train classes can
be excluded from the set of trains, e.g., if one intends to use a ticket that is
valid only for local trains the intercity trains should be excluded. Also, instead
of specifying the departure time, as in the earliest arrival problem, the aspired
arrival time may be given. Alternatively, such time specifications can be given
as time intervals.
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3 Basic Modeling: The Earliest Arrival Problem

In this section, we review models for solving the first and most fundamental
basic query, namely the earliest arrival problem, in both the time-expanded and
the time-dependent approach. We consider throughout this section a simplified
specification of train connections: We assume that (i) a transfer between trains
at a station takes negligible time, i.e., transfer(S) = 0 for each station S, (ii) ev-
ery train is operated daily, i.e., every day is the same in the timetable, and
(iii) there are no foot-edges. In the following section we show how the models
can be extended to comply with the realistic specification, and also consider the
extended types of queries.

3.1 Time-Expanded Model

The time-expanded model [33] is based on the directed time-expanded graph
which is constructed as follows. There is a node for every time event (departure
or arrival) at a station, and there are two types of edges. For every elementary
connection (Z, S1, S2, td, ta) in the timetable, there is a train-edge in the graph
connecting a departure node, belonging to station S1 and associated with time
td, with an arrival node, belonging to station S2 and associated with time ta.
In other words, the endpoints of the train-edges induce the set of nodes of the
graph. For each station S, all nodes belonging to S are ordered according to
their time values. Let v1, . . . , vk be the nodes of S in that order. Then, there
is a set of stay-edges (vi, vi+1), 1 ≤ i ≤ k − 1, and (vk, v1) connecting the time
events within a station and representing waiting within that station. The length
of an edge (u, v) is tv − tu (for edges over midnight the length is 1440 + tv − tu,
respectively), where tu and tv are the time values associated with u and v,
respectively. Figure 1 illustrates this definition.

A shortest path in the time-expanded graph from the first departure node s
at the departure station A with departure time later than or equal to the given
start time t0 to one of the arrival nodes of the destination station B constitutes a
solution to the earliest arrival problem in the time-expanded model. The actual
path can be found by Dijkstra’s algorithm [7].

3.2 Time-Dependent Model

The time-dependent model [4] is also based on a digraph, called time-dependent
graph. In this graph there is only one node per station, and there is an edge
e from station A to station B if there is an elementary connection from A to
B. The set of elementary connections from A to B is denoted by C(e). The
definition is illustrated in Figure 1. The length of an edge e = (v, w) depends
on the time at which this particular edge will be used during the algorithm. In
other words, if T is a set denoting time, then the length of an edge (v, w) is given
by f(v,w)(t) − t, where t is the departure time at v, f(v,w) : T → T is a function
such that f(v,w)(t) = t′, and t′ ≥ t is the earliest possible arrival time at w. The
time-dependent model is based on the assumption that overtaking of trains on
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Fig. 1. The time-expanded graph (left) and the time-dependent graph (right) of a
timetable with three stations A, B, C. There are three trains that connect A with B
(elementary connections u,v,w), one train from C via B to A (x,y) and one train from
C to B (z).

an edge is not allowed, i.e., for any two given stations A and B, there are no
two trains leaving A and arriving to B such that the train that leaves A second
arrives first at B.

A modification of Dijkstra’s algorithm [7] can be used to solve the earliest
arrival problem in the time-dependent model [4]. Let D denote the departure
station and t0 the earliest departure time. The differences, w.r.t. Dijkstra’s al-
gorithm, are: set the distance label δ(D) of the starting node corresponding to
the departure station D to t0 (and not to 0), and calculate the edge lengths “on-
the-fly”. The edge lengths (and implicitly the time-dependent function f) are
calculated as follows. Since Dijkstra’s algorithm is a label-setting shortest-path
algorithm, whenever an edge e = (A, B) is considered the distance label δ(A)
of node A is optimal. In the time-dependent model, δ(A) denotes the earliest
arrival time at station A. In other words, we indeed know the earliest arrival
time at station A whenever the edge e = (A, B) is considered, and therefore we
know at that stage of the algorithm which train has to be taken to reach station
B via A as early as possible: the first train that departs later than or equal to
the earliest arrival time at A. The particular connection c ∈ C(e) can be easily
found by binary search if the elementary connections C(e) are maintained in a
sorted array (or with more sophisticated techniques in constant time). The edge
length of e, �e(t), is then defined to be the time to wait for the departure of c
plus length(c). Consequently, fe(t) = t + �e(t). The correctness of the algorithm
is based on the fact that f is non-decreasing (t ≤ t′ ⇒ f(t) ≤ f(t′)) and has
non-negative delay (∀t, f(t) ≥ t).

3.3 Comparison of Models

In the simplified scenario we are investigating in this section, the graphs that
are used in the two approaches are strongly related: Contracting all nodes that
belong to the same station in the time-expanded graph and deleting parallel
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edges afterwards yields the time-dependent graph. Further, the algorithm used
in the time-dependent approach can be viewed as an improved implementation
of the simple shortest-path search by Dijkstra’s algorithm in the time-expanded
approach: If the first edge from some station A to another station B has already
been processed by Dijkstra’s algorithm in the time-expanded graph, all other
edges e′AB from station A to station B do not have to be considered anymore.
The reason is that such an edge doesn’t provide an improvement since the path
through the first edge extended by some stay-edges to the head of the edge e′AB

has the same length. In a sense, the time-dependent algorithm implements this
observation.

Note, however, that on the one hand the edge lengths have still to be computed
in the time-dependent algorithm, which consumes running time as well, so that it
is not immediately clear which algorithm is faster. We will discuss this question
in Section 6. On the other hand, the similarity of the graphs and the algorithms
is disturbed when the realistic specifications are incorporated into the models in
the following section.

4 Realistic Modeling

In this section, we explain how the approaches introduced so far for the simplified
earliest arrival problem can be extended towards realistic problem specifications
and other optimization criteria.

4.1 Transfers Rules

We summarize first how transfer times at stations can be incorporated in the
time-expanded and the time-dependent models, and after that discuss the case
of extended transfer rules.

Time-Expanded Model

To incorporate transfer times in the time-expanded model the realistic time-
expanded graph is constructed as follows (cf. [22,30,28]). Based on the time-
expanded graph, for each station, a copy of all departure and arrival nodes in
the station is maintained which we call transfer-nodes; see Figure 2. The stay-
edges are now introduced between the transfer-nodes. For every arrival node
there are two additional outgoing edges: one edge to the departure of the same
train, and a second edge to the transfer-node with time value greater than or
equal to the sum of the time of the arrival node and the minimum time needed
to change trains at the given station. If the earliest arrival problem shall be
solved, the edge lengths are defined as in the definition of the original model (see
Section 3.1).

Time-Dependent Model

The original time-dependent model is extended in [29] (cf. also [4]) using informa-
tion on the routes that trains may follow. Hence, we assume that we are given a set
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Fig. 2. Modeling transfer times in the time-expanded approach using the realistic time-
expanded graph (left) and in the time-dependent approach using the train-route graph
(right)

of train routes and their respective time schedules. In the following, we describe
the construction of the train-route graph. We say that stations S0, S1, . . . , Sk−1,
k > 0, form a train route if there is some train starting its journey from S0 and
visiting consecutively S1, . . . , Sk−1 in turn. If there are more than one trains fol-
lowing the same schedule (with respect to the order in which they visit the above
nodes), then we say that they all belong to the same train route.

The node-set of the train-route graph consists of the station-nodes S rep-
resenting the stations, and for each station S of one additional route-node per
route that passes through the station S, denoted by pS

i , where i is an index of the
specific route passing through station S. There are three types of edges: (i) edges
from each station-node to the route-nodes belonging to the same station model
boarding a train belonging to the specific route; (ii) edges from each route-node
to the station-node model getting off a train at that station; (iii) for each train
route S0, . . . Sk−q edges that connect the corresponding route-nodes model the
actual train trips.

To solve the earliest arrival problem with transfer times, edge lengths are
defined as follows. The edges modeling boarding a train at a station S are as-
signed the transfer time gS = transfer(S), edges modeling getting off a train
are assigned zero length, and the edges representing the train routes have time-
dependent lengths as in the basic modeling described in Section 3.2. Given the
query to solve, all internal edges are assigned zero length, and the modified
version of Dijkstra’s algorithm (cf. Section 3.2) is applied.

Extended Transfer Rules

Additionally to the transfer times at stations, exceptions which explicitly allow
specific transfers can be modeled in the realistic time-expanded graph as addi-
tional edges connecting the arrival with the departure node of the correspond-
ing elementary connections. Concerning the time-dependent approach, in [29] a
graph similar to the train-route graph is constructed that allows to model also
variable transfer times.
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4.2 Foot-Edges

In the time-dependent approach a foot-edge from station A to station B can
be directly modeled as an edge in the train-route graph between the two nodes
representing the stations A and B. For the earliest arrival problem, such an edge
is assigned a constant edge length: the walking time.

The straight-forward modeling of foot-edges in the time-expanded case is of
course done by time expansion. For each transfer node of A in the (realistic) time-
expanded graph an additional edge is maintained to the first possible transfer
node at B. Another solution for the time-expanded approach is to apply the
time-dependent idea and compute the additional edges during the algorithm
(the node at B has to be calculated depending on the arrival time at B) instead
of explicitly constructing them.

4.3 Traffic Days

Edges representing elementary connections of trains that are not valid can be
simply ignored during Dijkstra’s algorithm in the time-expanded approach, and
the test whether an elementary connection is valid or not can be done by a
lookup in the traffic day bit-mask of the corresponding train, if the day of de-
parture is known. However, the algorithm has to be slightly modified because
it may happen that an optimal connection stays more than a day at a station,
and such connections would not be found otherwise. See [30] for details con-
cerning the modification of the algorithm. In the time-dependent approach, the
traffic days have to be considered in the calculation of the time-dependent edge
lengths.

Problems with traffic days occur when speed-up techniques for Dijkstra’s algo-
rithm are applied that require preprocessing (cf. Section 6), because then every
day is different and the preprocessing basically has to be done separately for
each day.

4.4 The Minimum Number of Transfers Problem

The realistic time-expanded graph as well as the train-route graph (cf. Sec-
tion 4.1) can be used to solve a minimum number of transfers query with a
similar method (cf. [20,22,30,28]): edges that model transfers are assigned a
length of one, and all the other edges are assigned length zero. In the time-
expanded case all incoming edges of transfer nodes have length one, whereas in
the time-dependent case the edges that represent getting off a train, except those
belonging to the departure station, are assigned length one, and all other edges
have length zero. Note that the edge lengths in the time-dependent train-route
graph are all static here.

A shortest path in one of the graphs from a node belonging to (resp. rep-
resenting) the departure station to a node belonging to (resp. representing)
the arrival station provides a solution to the minimum number of transfers
problem.
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4.5 Extended Queries

Latest Departure

Determining a connection optimized for the latest departure combined with the
earliest arrival can be done in the time-expanded case by introducing the latest
departure as second criterion and determining the lexicographically first solution.
In the time-dependent model the standard approach is to carry out a backward
search from the destination station to the arrival station once the earliest arrival
at the destination station is known.

Time Intervals

In pre-trip planning one often seeks the fastest connection which starts within
a certain departure interval [t0, t1] (or arrives within a certain arrival time in-
terval). This variant can also be solved by Dijkstra’s algorithm. With a single
starting point, Dijkstra’s algorithm starts by labeling the corresponding event
node with distance 0 and puts it into the priority queue. With a time interval
the only difference is that one initially inserts a label for each departure event
between t0 and t1 into the priority queue and marks all corresponding nodes
with a distance label of 0.

Excluding Trains

The exclusion of specific trains or of train classes, the exclusion or required
inclusion of train attributes with respect to a given query can be handled like
traffic days: We simply mark train edges as invisible for the search if they do
not meet all requirements of the given query.

Via Stations

A query may contain one (or more) so called vias, i.e., stations the connection
has to visit and where at least a specified amount of time can be spent. As-
sume that we have a query (A = S0, B = Sk, t0) with via stations S1, S2, Sk−1
and corresponding stay durations d1, d2, . . . dk. To answer such a query, one can
simply split the query into basic queries without vias. More precisely, we first
answer the query (A, S1, t0) and may find out that the earliest arrival time at
S1 is t1. Then we answer the query (S1, S2, t1 + d1). If ti denotes the earliest
arrival time at Si (provided that we have visited S1, S2, . . . , Si−1 before), we
continue with basic queries of the form (Si, Si+1, ti + di) for i = 1, . . . , k − 1.
Finally, we concatenate the connections found in each of the basic queries to get
the connection which solves the earliest arrival problem.

Cheapest Connections

Many customers are interested in finding a cheapest connection from station A
to B within a certain time interval. Unfortunately, given the complicated fare
regulations in most countries, this goal seems to be intractable. Recall that a
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shortest path problem on a given digraph usually assumes that the length of a
path can be calculated as the sum over the edge lengths which constitute the
path. Given nonnegative lengths, the separability of the objective function then
suffices to apply Dijkstra’s algorithm.

Even in the standard tariff, the fare of a connection is usually not additive
based on its elementary connections. The situation becomes substantially worse if
one would also like to consider the many exceptions and special offers which exist
and frequently change. Hence, there is no hope to solve the cheapest connection
problem exactly and simultaneously efficiently.

However, what one can do is to use fare estimations based on a simpler model.
Müller-Hannemann and Weihe [22] and Müller-Hannemann and Schnee [20] use
a simplified fare model which assumes that the basic fare is proportional to the
distance traveled. Depending on the train class an extra supplementary fare is
charged. For the fastest trains like German ICE and French TGV, this supple-
ment is assumed to be proportional to the speed of the train, whereas certain
trains like Eurocity and Intercity trains have a constant surcharge which has
to be paid at most once. With such a simplified fare model we can again use
Dijkstra’s algorithm if we store in our distance labels also flags indicating which
train classes have been used.

Müller-Hannemann and Schnee [20] use these fare estimates to find low cost
connections in a framework which does not only look for a single best connection
but for several attractive connections.

5 Multi-criteria Optimization

In the previous sections we focused on single-criterion optimization, and in par-
ticular on finding fastest connections. In practice, however, one wishes to find
optimal connections under several criteria. For instance, a customer may want
to ask for a connection with a small number of transfers that departs later than
a given time and does not arrive at the destination too late.

Other additional criteria of interest are fares, convenience (for example, mea-
sured by the used train classes in a connection), stability of a connection in case
of delays (for example, measured by the minimum buffer time of a transfer within
a connection, where the buffer time of a transfer is the difference between the
waiting time and the minimum transfer time), seat reservability (is it possible
to get a seat reservation for all those parts of a connection where the used trains
do in principle allow a seat reservation), etc.

Computing optimal connections under multiple criteria reduces (in a com-
pletely analogous to the single-criterion case) to the multi-criteria or multi-
objective shortest path (MOSP) problem – a fundamental problem in the area
of multi-criteria or multi-objective optimization [10]. An instance of a multi-
criteria optimization problem is associated with a set of feasible solutions Q and
a d-vector function f = [f1, . . . , fd]T (d is typically a constant) associating each
feasible solution q ∈ Q with a d-vector f(q) (w.l.o.g we assume that all objec-
tives fi, 1 ≤ i ≤ d, are to be minimized). In multi-criteria optimization we are
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interested not in finding a single optimal solution, but in computing the trade-
off among the different objective functions, called the Pareto set (or curve) P ,
which is the set of all feasible solutions in Q whose vector of the various objec-
tives is not dominated by any other solution (a solution p dominates another
solution q iff fi(p) ≤ fi(q), for all 1 ≤ i ≤ d, and fj(p) < fj(q), for at least one
j, 1 ≤ j ≤ d).

Multi-objective optimization problems are usually NP-hard (as indeed is the
case for MOSP), since the Pareto set is typically exponential in size (even in the
case of two objectives). Hence, exact methods (i.e., methods that find all Pareto
optimal solutions) may be efficient under certain circumstances that depend on
the particular instance of a given problem. On the other hand, even if a decision
maker is armed with the entire Pareto set, s/he is still left with the problem
of which is the “best” solution for the application at hand. Consequently, three
natural approaches to deal with multiobjective optimization problems are to: (i)
study approximate versions of the Pareto set that result in (guaranteed) near
optimal but smaller Pareto sets; (ii) optimize one objective while bounding the
rest (constrained approach); and (iii) proceed in a normative way and choose
the “best” solution by introducing a utility (often non-linear) function on the
objectives (normalization or decision maker’s approach).

In the following, we will discuss the above exact and non-exact approaches in
computing optimal connections under multiple criteria.

5.1 Exact Approaches

The straightforward approach in dealing with multiple criteria is to find the
entire Pareto set, that is, all Pareto-optimal (i.e., feasible and undominated)
solutions (connections). As mentioned above, this may be a hard problem. Even
very simple instances of graphs – actually chains of parallel arcs with just two
criteria – may have exponentially many different Pareto optima [14]. In certain
cases, however, the cardinality of the Pareto set may not be too large and the
Pareto set can be computed efficiently. In the following, we discuss such cases.

Size of the Pareto Set

If the range of valid values of some criterion is restricted to a small discrete set,
adding such a criterion cannot lead to an exponential blow-up. For example, for
the number of transfers we can safely assume a small constant k as an upper
bound on its number in practice. Hence, if we add the number of transfers as an
additional criterion to one or more other criteria, the size of the Pareto set can
only increase by a factor of k.

Empirical results indicate that one may have small Pareto sets in timetable
information. In a recent study with 25000 queries to the server of Deutsche
Bahn AG, Müller-Hannemann and Schnee observed only 3.6 Pareto optimal
connections on average if the three criteria travel time, number of transfers, and
fares are used. The observed maximum was 19 Pareto-optimal connections.

Müller-Hannemann and Weihe [22] studied the size of the Pareto set also from
a theoretical point of view. They considered certain characteristics found in the
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application scenario in an attempt to explain the huge gap between the poten-
tially exponentially sized Pareto set and the small sizes observed in practice.

An important characteristic of our application is that we can partition the
edge set of our graph models into a small number of different edge classes such
that each edge class has a certain semantics. Naturally, we can take the different
types of edges as individual classes. Moreover, we can refine the class of those
edges modeling elementary train connections into further classes derived from
the type of train (train classes). A similar way to partition the edge set is to
group them by average speed.

Average speed as the ratio of travel distance and travel time relates two cri-
teria together. If we now assume that there are only k different average speeds
(and therefore only k different edge classes), we arrive at the ratio-restricted
lengths model. More generally than just considering speed, but still with two
criteria, we assume in this model that every edge class is equipped with a
value r which denotes the ratio between the length values of the first and sec-
ond criterion, respectively. But even in a bicriteria model with at most k > 1
different ratios, the number of Pareto optima can still be exponentially large
(Lemma 2.1 in [22]).

Another important characteristic of our application is that Pareto-optimal
connections typically show a certain pattern with respect to the order of used
train classes. Namely, if we order the train classes by their maximum speed, from
slowest to fastest means of transportation, then most connections turn out to
be bitonic: they consist of one acceleration and one deceleration phase. In the
acceleration phase, we start with a slower train and from transfer to transfer we
monotonically use trains with higher average speed until we reach a maximum.
Then the deceleration phase starts and we use again slower and slower trains.
Of course, there are exceptions: for example, in cities like Paris or London one
may have to use the subway when changing between two high-speed trains. But
it seems reasonable to assume that the number of changes between acceleration
and deceleration phases is rather limited for Pareto-optimal connections. This
model has been called restricted non-monotonical.

Combining the ratio-restricted lengths model with the restricted non-monoto-
nical case it is possible to give tight polynomial worst case bounds on the size
of the Pareto set (Lemma 2.3 and Lemma 2.7. in [22]).

Finding the Pareto Set

The standard approaches to the case that all Pareto optima have to be computed
are generalizations of the standard algorithms for the single-criterion case (for a
survey see Ehrgott and Gandibleux [10]).

The main difference is that instead of one scalar distance label, each node
v maintains a list of d-dimensional distance labels assuming that we work with
d criteria. Such a list contains a set of Pareto-optimal paths from the start
node to v.

This immediately leads to a “Pareto version” of Dijkstra’s algorithm (first de-
scribed by Hansen [14] and Martins [18]). Instead of storing temporarily labeled
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nodes, the priority queue now maintains d-dimensional labels. In each iteration
of the main loop, we extract the lexicographic smallest label from the priority
queue instead of choosing the node with smallest distance label. If v is the cor-
responding node to the extracted label one updates for all feasible edges of type
(v, w) the list of Pareto optima stored at the head node w. More precisely, a
tentative new d-dimensional label is created and compared to all labels in the
list of Pareto-optima held at node w. It is only inserted into that list if it is not
dominated by any other label in the list. Moreover, labels dominated by the new
label are removed. For a more detailed description of the generalized Dijkstra
algorithm and a correctness proof we refer to [19] and [35].

An adaption of this algorithm has been used by Müller-Hannemann and
Schnee to build the timetable information server PARETO [20] which relies
on the time-expanded graph model.

In [30,28], Pareto-optimal connections concerning the earliest arrival and mini-
mum number of transfers have been considered for the time-dependent approach.
In this work, it is further shown that the Pareto-set in the special case of a bi-
criteria problem involving the earliest arrival as one criterion can be determined
in the time-expanded approach by running Dijkstra’s algorithm on the real-
istic time-expanded graph with lexicographically ordered distance labels. The
Pareto-optimal solutions are enumerated by the solutions that Dijkstra’s algo-
rithm reports at the destination station (i.e., the algorithm is not terminated
until all Pareto-optimal solutions have been found).

5.2 Approximation Approaches

The ultimate goal of a traffic information system is to offer a small set of highly
attractive connections as an answer to a customer query. In that respect finding
the whole set of Pareto-optimal solutions bears two problems:

1. Not every Pareto-optimal solution is really noteworthy for a customer.
2. Many attractive connections are dominated only slightly.

The first of these two problems can be solved easily by filtering out unattrac-
tive connections. To tackle the second problem, we need a proper notion of
approximate Pareto optimal solutions. Current research concentrates along two
directions: the (recently re-investigated) concept of (1 + ε)-Pareto set [27], and
the concept of relaxed Pareto dominance, usually called ε-efficiency [17,42].

Approximate Pareto Sets

Despite so much research in multiobjective optimization [9,10], only recently a
systematic study of the complexity issues regarding the construction of approx-
imate Pareto sets has been initiated [27]. Informally, an (1 + ε)-Pareto set Pε

is a subset of feasible solutions such that for any Pareto optimal solution and
any ε > 0, there exists a solution in Pε that is no more than (1 + ε) away in
all objectives. Although this concept is not new (it has been previously used in
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the context of bicriteria and multiobjective shortest paths [14,41]), Papadim-
itriou and Yannakakis in a seminal work [27] show that for any multiobjective
optimization problem there exists a (1 + ε)-Pareto set Pε of (polynomial) size
|Pε| = O((4B/ε)d−1), where B is the number of bits required to represent the
values in the objective functions (bounded by some polynomial in the size of
the input). They also provide a necessary and sufficient condition for its effi-
cient (polynomial in the size of the input and 1/ε) construction. In particular,
Pε can be constructed by O((4B/ε)d) calls to a GAP routine that solves (in
time polynomial in the size of the input and 1/ε) the following problem: given
a vector of values a, either compute a solution that dominates a, or report that
there is no solution better than a by at least a factor of 1 + ε in all objectives.
Extensions to that method to produce a constant approximation to the smallest
possible (1 + ε)-Pareto set for the cases of 2 and 3 objectives are presented in
[38], while for d > 3 objectives inapproximability results are shown for such a
constant approximation.

Apart from the above general results, there has been very recent work on im-
proved approximation algorithms (FPTAS) for multiobjective shortest paths by
Tsaggouris and Zaroliagis in [36]. In that paper, a new and remarkably simple
algorithm is given that constructs (1 + ε)-Pareto sets for the single-source mul-
tiobjective shortest path problem, which improves considerably upon previous
approaches. The algorithm can be viewed as a generalization of the Bellman-
Ford algorithm. It proceeds in rounds. In each round i and for each node v, the
algorithm maintains a d-dimensional label representing an approximate Pareto
set to all Pareto optimal s-v paths with no more than i edges (s is the source
node). When an edge (u, v) is considered during round i, the algorithm performs
(instead of a relaxation) an extend-&-merge operation. This operation extends
the node label of u in round i−1 with the edge (u, v) and merges the resulting set
with the label associated with v by keeping the solution that approximately dom-
inates all other solutions. This keeps the size of all labels polynomially bounded,
contrary to previous label correcting or setting approaches which used to keep
all undominated solutions and thus resulting in exponentially large sets of labels.

Relaxed Pareto Dominance

Müller-Hannemann and Schnee [20] recently generalized the concept of relaxed
Pareto dominance (also known as ε-efficiency [17,42]) and applied it to traffic
information. In relaxed Pareto dominance, a solution p dominates (in the relaxed-
Pareto sense) another solution q iff fi(p) + hi(p, q) ≤ fi(q), for all 1 ≤ i ≤ d,
and fi(p) + hi(p, q) < fi(q), for at least one j, 1 ≤ j ≤ d, where hi(p, q) is
an appropriately chosen relaxation function. The idea is to make more pairs
of connections mutually incomparable by redefining the dominance relation for
certain criteria. For example, if we do not want to suppress a connection with a
slightly longer travel time, say of less than 5 minutes, then we would define that
connection A will dominate connection B with respect to travel time only if the
travel time of A plus these 5 minutes are less or equal to the travel time of B.
For more examples how to apply relaxed dominance, see [20].
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5.3 Normalization Approaches

In this approach, a utility function is introduced that translates (in a linear or
non-linear way) the different criteria into a common cost (utility) measure. For
instance, when traveling in a traffic network one typically wishes to minimize
travel distance and time; both criteria can be translated into a common cost
measure (e.g., money), where the former is linearly translated, while the lat-
ter non-linearly (small amounts of time have relatively low value, while large
amounts of time are very valuable). Under the normalization approach, we seek
for a single optimum in the Pareto set (a feasible solution that optimizes the
utility function). We distinguish between the case where all criteria are linearly
translated to the common cost measure and to the case where some (or all) of
the criteria are non-linearly translated.

The Linear Case – Weighted Sum of Criteria

The straightforward (and simplest) approach could be to express the relative
importance of optimization criteria by weights and then to optimize a weighted
sum of the criteria. This approach reduces the multi-criteria problem to a single-
criterion optimization which can be solved by the standard Dijkstra algorithm
provided we use a graph model where each criterion is non-negative and additive
on the edges. Setting all but one weight to zero, we get the single-criterion
optimization as a special case.

Such an approach has two serious drawbacks. First, it will inevitably miss
many attractive connections as it will find just one single solution (and not all
Pareto optima). The second drawback of such an approach lies in the choice
of suitable weight parameters. Each potential customer has its own preference
system, but typically this preference system is not given explicitly in terms of
weight parameters. The user (customer or salesperson of a train company) of a
traffic information system and/or the system itself might set the parameters in-
correctly as neither of them will typically know the customer’s preference system
to its full extent.

The Non-linear Case

The case of non-linear utility function is the most interesting one, since it reflects
realistic scenaria in traffic optimization. Experience shows that users of traffic
networks value certain attributes (e.g., time) non-linearly [15]: small amounts
have relatively low value, while large amounts are very valuable. Also, the vast
majority of transit systems have a non-additive (non-linear) fare structure [12].
Consequently, the most interesting theoretical models for traffic equilibria involve
minimizing a monotonic non-linear utility function. In this case, the problem
of computing optimal connections reduces to the so-called non-additive short-
est path (NASP) problem: given a digraph whose edges are associated with
d-dimensional cost vectors, the task is to find a path that minimizes a certain
d-attribute non-linear cost function.
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Very recently, Tsaggouris and Zaroliagis [36] presented the first FPTAS for
NASP. In particular, they showed how the FPTAS for multiobjective shortest
paths can provide a FPTAS for NASP for any number of objectives and for a
rather general form of a utility function that includes all polynomials of bounded
degree with non-negative coefficients. For the bicriteria case, a FPTAS for NASP
was independently presented in [1].

5.4 Lexicographical Ordering

One other possibility is to settle for only one specific Pareto-optimal solution: the
lexicographically first one. Dijkstra’s algorithm works not only for non-negative
real edge weights, but in general for semi-rings [31]. In our case, edge weights
and node labels are d-tuples, with lexicographical ordering and element-wise
addition.

With the simplified version of the time-expanded approach the lexicograph-
ically first solution can be computed for any d-tuples as edge weights. For ex-
ample, if d = 2, the first element being the travel time and the second one the
number of transfers, among all fastest connections the one with the minimum
number of transfers is computed. With the realistic version of the time-expanded
approach only tuples can be used where the first criterion is travel time. This
restriction is due to the 24-hour cycles induced by the stay-edges belonging to
each station. A special case are pairs as edge weights with travel time as first
criterion. In this case all Pareto-optimal solutions can be computed by Dijkstra’s
algorithm (cf. the last paragraph of Section 5.1).

In the time-dependent approach the edge weights are required to be non-
decreasing (cf. Section 3.2). This is not necessarily true for arbitrary d-tuples
as edge weights, but it can be shown that for the case d = 2, where the first
element is the number of transfers and the second one is the travel time, the
time-dependent version of Dijkstra’s algorithm can be extended to find the lex-
icographically first solution. See [28,29,32] for further details.

6 Performance

As mentioned in the introduction, the performance of the core algorithms is
crucial for a timetable information system. The average performance is partic-
ularly important in a scenario of a central server that has to answer several
hundreds of (on-line) queries which are issued, for example, through the Inter-
net or through terminals at train stations. We review the results of experimental
studies involving the approaches introduced in the previous sections.

6.1 Simplified Earliest Arrival Problem

The approaches introduced in Section 3 for solving the simplified earliest arrival
problem have been extensively studied, both in the time-expanded and the time-
dependent approach.
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Time-Expanded Approach

Schulz, Wagner, and Weihe [33] conducted an experimental study based on the
time-expanded graph (cf. Section 3.1) with realistic timetable data of the Ger-
man railway company Deutsche Bahn and a sample of half a million of real-world
customer queries. Using a single 336 MHz Ultra-SPARC-II processor, the aver-
age running time per query of Dijkstra’s algorithm was 0.103 seconds. The main
contribution of the study is that it demonstrates that the average running time of
Dijkstra’s algorithm can be drastically improved by applying distance-preserving
speed-up techniques (which still guarantee optimal solutions): a speed-up of a
factor of 34 could be observed, yielding an average running time of 0.003 sec-
onds. More precisely, they used a geometric speed-up technique based on angular
sectors limiting the reachable nodes through an edge, and a graph decomposi-
tion technique based on a small “backbone graph” for finding the shortest path.
Both techniques reduce the search space of the algorithm and rely on a pre-
processing step in which the additional information is pre-computed. Wagner
and Willhalm [40] have shown that other geometric containers are better suited
and yield even higher speed-up factors, in particular bounding boxes around the
reachable nodes through an edge show good results.

The second technique has been generalized by Schulz, Wagner, and Zaroliagis
in [34]. They demonstrated, also conducting experiments with the same time-
expanded graph as in [33], that several hierarchical levels (3 or 4 levels for the
data used) of backbone graphs yield better running times than only one addi-
tional level (by a factor of roughly 3). See also [39] for a survey on speed-up
techniques for shortest path algorithms.

Time-Dependent Approach

Brodal and Jacob proved in [4] by a detailed theoretical analysis of operation
counts in both approaches that the time-dependent approach is more efficient
than the time-expanded approach. This was also the starting point of an experi-
mental comparison of the two approaches conducted by Pyrga, Schulz, Wagner,
and Zaroliagis [30,28]. They revealed that indeed the time-dependent approach is
faster than the time-expanded approach by factors in the range 12 to 40 depend-
ing on the data set (timetables consisting of French and German long-distance
traffic as well as two timetables consisting of local traffic have been used).

Basically, the preprocessing speed-up techniques mentioned above for the
time-expanded case can also be applied in the time-dependent approach; how-
ever, we are not aware of experimental studies dealing with this issue.

6.2 Realistic Single-Criterion Problems

In the experiments mentioned above [28], also the realistic specifications have
been considered. Solving the minimum number of transfers problem is clearly
faster (by a factor of roughly 4) in the train-route graph than in the realistic
time-expanded graph. This is due to the fact that in this case the train-route
graph is also static and smaller than the time-expanded graph.
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Concerning the realistic earliest arrival problem, the picture looks different: The
average running times of the time-expanded and the time-dependent approach are
almost equal, only a speed-up factor of 1.5 was observed. Comparing the aver-
age running time for solving the simplified earliest arrival problem to the realistic
earliest arrival problem, the time-expanded implementations solved the simplified
version only slightly faster (by a factor of less than 2), while the simplified time-
dependent implementation was faster by a factor of 5.

6.3 Multi-criteria Optimization

Finding all attractive connections with respect to travel time, fare, and number
of interchanges is of course more expensive than just searching for a fastest
connection. In the implementation of [20], such a search needs about 10 times
as long as the search with a single criterion. For the multi-criteria case, we still
need more effective speed-up techniques.

7 Conclusion

We have discussed time-expanded and time-dependent models for several kinds
of single- and multi-criteria optimization problems for timetable information
systems that provide optimal solutions via shortest paths. Extensions that model
realistic requirements (like train transfers) can be integrated in both approaches.

The time-dependent approach is clearly superior with respect to performance
when the simplified earliest arrival problem is considered, and speed-up factors
in the range from 10 to 40 were observed. When considering extensions of the
models for the solution of realistic versions of optimization problems in the single-
criterion case, the performance of the two approaches is almost equal. Speed-up
techniques yield running times indicating that these approaches are applicable
in practice. The main open question is how these speed-up techniques—relying
on additional information computed beforehand—can be extended to deal with
dynamic changes of the timetable; such a change of the timetable invalidates the
preprocessed information. Possibly, the additional information can be adapted
by small updates to cope with both “off-line” changes like the treatment of
different traffic days and “on-line” changes caused for example by accidents.

For other optimization criteria, it is more likely that the integration can be
modeled directly by edge lengths in the time-expanded model than in the time-
dependent model: In case the criterion can be expressed as additive costs for
elementary connections, these costs induce edge lengths in the time-expanded
graph. In contrast, in the time-dependent approach it is not clear if the costs can
be mapped to feasible edge lengths, since only the first elementary connection
per edge is considered. Because of this most studies concerning multi-criteria
optimization have focused on the time-expanded approach. In that, (relaxed)
Pareto-optimal solutions are desirable, and it turns out that in practice the size
of the Pareto frontier is quite small, such that labeling approaches are feasible.
For practical application, the multi-criteria optimization techniques provide the
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most satisfactory solutions. However, further speed-up techniques are required
(the techniques for the single-criterion problems cannot be directly applied for
the general multi-criteria algorithms) in order to yield a performance that is
acceptable for a real-world timetable information system.
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