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Abstract. We provide competitive analyses for the online delay man-
agement problem on a single train line. The passengers that want to
connect to the train line might arrive delayed at the connecting stations,
and these delays happen in an online setting. Our objective is to minimize
the total passenger delay on the train line.

We relate this problem to the Ski-Rental problem and present a fam-
ily of 2-competitive online algorithms. Further, we show that no online
algorithm for this problem can be better than Golden Ratio competitive,
and that no online algorithm can be competitive if the objective accounts
only for the optimizable passenger delay.

1 Introduction

In the everyday operation of a railroad, it is unfortunately not uncommon for
a train to arrive at a station with a delay. In such a situation, some of the
train’s passengers may miss a connecting train, resulting in an even larger delay
for them since they have to wait for the next train. If, on the other hand, the
connecting train waits, then it is delayed itself, and so are all the passengers it is
carrying. Delay management consists of deciding which connecting trains should
wait for what delayed feeder trains, usually with the objective of minimizing
the overall discomfort faced by the passengers. Although railway optimization
and scheduling problems have been studied quite intensively the last decade, the
management of delayed trains has received much less attention.

Various approaches to delay management have been considered the last years,
such as simulations, Linear and Integer Programming, or complexity and algo-
rithmic analyses (Section 1.1 provides an overview of related research). However,
except for very few exceptions, these papers consider delay management as an
offline problem, where the delays are known a priori, and for which a global op-
timal solution is sought. But delays in a railway system are by nature not known
a priori (even though they may be correlated). Therefore, delay management is
inherently an online problem.

This paper studies delay management as an online problem, with a focus on
competitive analyses. Given the lack of research on online delay management,
we consider the basic case of a single train operating on a train line consisting
of several consecutive legs. Moreover, previous research on offline delay manage-
ment problems indicates that railway networks with a path topology are easier
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to analyze. At each intermediate stop of the train line, some passengers wish to
board the train. Each passenger has a destination, and possibly an initial de-
lay, meaning that she arrives at the transfer station with a delayed feeder train.
Should a passenger miss her connection at the transfer station, then she has to
wait for the next train. Further, we assume a timetable without buffer times, so
a train cannot catch up on any of its delay.

The problem is to decide, for each intermediate station, whether the train
waits for delayed passengers or not. If it waits, then all its passengers face an
arrival delay, including the ones that were so far on time. The same holds for
all passengers boarding the train at subsequent stations, since the train cannot
catch up on its delay. If the train departs on time, then all connecting passen-
gers will miss their train and have to wait for the next train. A waiting policy
specifies at which intermediate stations the train waits for delayed passengers.
The goal of the online delay management problem is to find a waiting policy
that minimizes the total passenger delay, without knowing beforehand whether
the connecting passengers will arrive with a delay at the subsequent intermedi-
ate stations. Although our descriptions are in terms of railways, we remark that
our model and results are also applicable to other modes of scheduled public
transportation, such as bus or metro.

1.1 Related Research

To the best of our knowledge, the only other theoretical online analysis of a delay
management problem is by [1]. They consider a bus station with buses arriving
at regular time intervals, and passengers arriving with a fixed arrival rate. For
this problem, the objective is to decide which buses should wait for how long at
the bus station such that the overall passenger waiting time is minimized.

A fair amount of research has been done on offline delay management. Several
network-based Mixed Integer Programming (MIP) formulations were introduced
[8,9], both for single criteria and bi-criterial objective functions. In particular,
some formulations allow special cases to be solved to optimality efficiently, and
the model’s structure can be used to derive an appropriate Branch-and-Bound
algorithm for solving the delay management problem to optimality.

Recently, [3] described polynomial time algorithms for special cases of the
delay management problem, such as a limited number of transfers, or a railway
network with a path topology. In a follow-up paper [4], a more general variant
of the delay management problem was shown to be NP-complete both with and
without slack times (or buffer times) in the timetable.

Another approach, based on simulation, applies deterministic waiting rules
[2]. The delays are introduced on trains randomly over time with an exponential
distribution, and the quality of the waiting rule is derived with an agent-based
simulation tool.

Finally, [5,7] considered simulation studies for delay management, which are
less related to this paper because we are interested in strategies with a theoret-
ically guaranteed performance.
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1.2 Results

We consider the above described setting of a simple railway network with a
path topology, which is a natural next step after the station analysis by [1]. We
relate this setting of the online delay management problem to a variant of the
well-known ski rental problem [6]. Based on this relation, we propose a family
of 2-competitive online algorithms, and show that the competitive analysis for
this family of algorithms is tight. Further, we prove that no online algorithm for
this setting can be better than Φ-competitive, where Φ ≈ 1.618 is the golden
ratio. Finally, we consider the slightly different objective function of minimizing
only the additionally faced delays of the passenger paths. For this objective, we
show that no deterministic online algorithm can have bounded competitive ratio.
Remarkably, the only strategy for this case not having infinite competitive ratio
is the trivial strategy of waiting for any delayed passengers, and departing on
time otherwise.

1.3 Outline

The next section defines the problem statement and our assumptions on the
problem. Section 3 first introduces some notation, and discusses the relation be-
tween the online delay management problem and the so-called Discounted Ski
Rental problem. Next, we present the family of 2-competitive online algorithms,
as well as the tightness of the competitive analysis. Section 4 contains the two
competitive ratio bounds for any online algorithm for the single train line, af-
ter which Section 5 concludes the paper and suggest some topics for further
research.

2 Problem Statement

We consider a directed graph G = (V, E), with the vertices V = {v1, . . . , vn}.
Let E = {(vi, vi+1)|i ∈ {1, . . . , n − 1}}, i.e. the graph forms a simple directed
path from v1 to vn. The vertices v ∈ V represent the stations which are served
by a single railway line. An edge (u, v) ∈ E represents a direct link served by the
train along the railway line. Hence, the train serving this line starts its journey
at station v1, and traverses the graph through the directed edges. We assume
that the train stops at every intermediate station vi, i ∈ {2, . . . , n − 1} and ends
its journey at station vn. At each stop, passengers may board or alight from
the train. We refer to the passenger streams as passenger paths. Each passenger
path boards the train at a station vi, and alights at station vj , j > i. We say the
passenger paths enter at station vi. These passenger paths represent passengers
either starting their journey at station vi, or having arrived at station vi with
another train, a feeder train, and wishing to connect to the train line. The
passenger paths may continue their journey outside the train line, but this is not
part of the considered problem. The passenger paths are known a priori, as well
as the number of passengers travelling along each of them.
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Fig. 1. An illustration of a railway line. The railway line has two intermediate stations
(v2 and v3), and four paths: P1, P2, P3 and P4.

An illustration of a railway line and its paths is given in Figure 1. In the
example, the passenger path P1 connects to the train at station v1 and alights
from the train at station v2. Similarly, path P0 connects to the train at station
v1 and alights from the train at station v3, where it continues its journey outside
our track.

Some of the connecting passenger paths at the stations vi ∈ V might arrive
there delayed. We say these paths enter the train line delayed, or that they have
a source delay. This reflects the model of feeder trains arriving delayed at station
vi. For simplicity, we assume that all source delays equal δ time units. In order
to allow such delayed paths to connect to the train, the train must wait for the
delayed paths. Once delayed, the train is not able to catch up on any of this
delay, and will hence arrive at its target station vn with a delay of δ time units.
Furthermore, the next train departs T time units later, and will run on time.
Hence, should a passenger path miss its connection, it will catch the next train
along the line and arrive at its destination with a total delay of T time units.
We refer to passenger paths which have missed a connection as dropped paths,
and to those facing an arrival delay as delayed paths.

It is not a priori known which passenger paths entering at station vi ∈ V start
delayed. The delays occur in an online fashion. The online setting, which can be
thought of as an adversary, notifies the online algorithm which of the entering
paths at station vi ∈ V are delayed only when the train arrives at station vi.
Hence, only at that point in time can an online algorithm figure out how many
passengers reach the station delayed, and how many are still on time.

When the train reaches station vi ∈ V , the traffic control must decide whether
the train departs on time, or whether it waits for the delayed passenger paths
boarding the train in vi. If the train departs on time, the delayed entering pas-
sengers miss their connection and will have to board the next train along this
route. If the train waits for the delayed passengers, it will be delayed by δ time
units. As the delays of the passenger paths are of the same size, a decision to
wait will immediately guarantee the connections for all future delayed entering
passenger paths. Hence, the decision to be taken is from which station on the
train will wait, from then on allowing transfers of all future delayed entering
passenger paths. Naturally, non-delayed passengers paths which are influenced
by this decision thereby face a delay of δ time units.



310 M. Gatto et al.

Our objective is to minimize the total passenger delay occurring on the train
line, i.e. the sum of the delays over all passengers which travel with the line.
Notice that, in general, the objective includes the unavoidable delay of δ time
units per passenger of the passenger paths that enter the line delayed.

As mentioned, we analyze the online setting of this problem. To solve the of-
fline problem we merely have to decide where to start waiting. Therefore, we can
efficiently enumerate the n different waiting policies. The adversary can decide
which of the passenger paths to delay. When the train arrives at station vi, the
adversary must notify which passenger paths entering at that station are de-
layed. This implies that the online algorithm, when arriving at station vi, knows
exactly which passenger paths were delayed at stations vj , j ∈ {1, . . . , i-1}, and
which passenger paths are delayed at station vi. As giving the least information
to the online algorithm is advantageous for the adversary, we assume the adver-
sary does not reveal the delayed passenger paths connecting at stations vk, k > j
until we reach these stations.

3 Competitive Online Algorithms

This section presents a family of 2-competitive online algorithms for the de-
scribed delay management problem. First, we introduce some notation and some
inequalities needed to prove the competitiveness of the online algorithms. Next,
we point out the similarity between the presented online delay management
problem and the Ski-Rental problem. Finally, we move the focus to the online
algorithms and their analysis.

3.1 Notation and A-Priori Knowledge

As mentioned earlier, we assume the passengers paths on the train line to be
known. Table 1 introduces a set of variables representing the number of pas-
sengers having a specified status at their connecting station (delayed, on time).
These variables reflect the a-posteriori knowledge of the delays, i.e. the number
of passenger in a specific state when the delay configuration is entirely known.
If the train starts to wait for delayed entering passenger paths at station j, the
value of our objective Δ(j) is:

Δ(j) = (T − δ)
∑

i<j

Di + δ

n∑

i=1

Di + δO≥j

We wish to find j such, that Δ(j) is minimal. Notice that we include the delay
δ
∑n

i=1 Di, which we cannot optimize, in the objective. In Section 4 we show that
if we do not include this delay, no online algorithm can be more competitive than
applying a trivial strategy having unbounded competitiveness.

We define the variables of Table 1 also for the point of view of an online
algorithm, see Table 2. The variables are identified by the same letters used for
the offline algorithm, but by using lowercases. The following relations hold:
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Table 1. The passenger variables for the offline setting

O≥i The number of passengers which stay on the train at station i plus on
time connecting passengers at and after station i, i.e. passengers newly
subject to a delay if the train waits at station i.

Di The number of connecting passengers which arrive delayed at station i,
i.e. passengers subject to be dropped at station i if the train departs
on time from station i.

Table 2. The passenger variables for the online setting

o≥i The sum of the number of passengers which are on the train at station i,
the number of on time passengers connecting at i, and the number of
connecting passengers at future stations. Note that the online algo-
rithm believes that the latter passengers will be on time. These are the
passengers subject to be newly delayed if the train waits at station i.

di The number of connecting passengers which arrive delayed at station
i. These will be dropped if the train departs on time from station i.

O≥i+1 ≤ O≥i (1)

o≥i+1 ≤ o≥i (2)

O≥i ≤ o≥i (3)

o≥i = O≥i +
∑

j>i

Dj ≤ O≥i +
∑

j

Dj (4)

Inequalities (1) and (2) hold, because at each station passengers may alight from
the train. Hence, the number of passengers influenced by a delay monotonically
decreases if the train starts to wait at a later station. Inequality (3) holds, as
the online algorithm does not know which passengers will arrive delayed after
station i. Hence, o≥i is an upper bound on the number of passengers that will be
delayed by a waiting decision. Finally, this overestimate equals the actual number
of passengers influenced by this decision (i.e. with the a-posteriori knowledge of
the delayed passenger paths), plus the number of passengers that will be delayed
after station i. This number can naturally be bounded as shown in inequality (4).

When at a station i, the online algorithm knows the correct number of delayed
passengers: dj = Dj , ∀j ≤ i.

3.2 Relation to the Ski-rental Problem

In the Ski-Rental problem, a skier wishes to go skiing. He does not known how
many times he will actually go skiing, because he will only ski if the weather is
nice and there is enough snow. This reflects the online situation. Initially, the
skier does not own a pair of skis. Each time he goes skiing, he can either rent
the skis at a fixed price or buy the skis. Obviously, buying is more expensive
than renting. With the a-posteriori knowledge on the number of times he went
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skiing, it is clear that it only makes sense to buy the skis if the overall renting
costs exceed the price of buying the skis. Furthermore, in that case the skier
should buy the skis the first time he goes skiing. Indeed, the only decision to be
taken is whether to buy the skis or to rent them. A well known online strategy
is to buy the skis as soon as the overall renting costs would exceed the costs of
buying the skis. This online strategy is 2-competitive, as analyzed in [6].

We introduce a slight variant of the above Ski-Rental problem. As the skier
rents the skis always at the same shop, the shop owner gives him a discount
on buying the skis. The discount is proportional to the amount of money the
skier has already paid for renting skis, and the proportionality factor is α. Next,
we allow the renting price to be variable, but known each time the skier wishes
to rent the skis. We call this problem the Discounted Ski-Rental problem. The
usual strategy for the Ski-Rental problem can also be applied to the Discounted
Ski-Rental problem. The skier buys the skis as soon as the overall renting costs
would exceed the actual costs of buying the skis, i.e. the price of the skis with
the discount.

In the following, we present a one to one correspondence between a restricted
version of the online delay management problem and the Discounted Ski-Rental
problem. We restrict the online delay management problem as follows: all pas-
senger paths have as destination vn. The objective is still to minimize the overall
passenger delay, including the delay δ of passenger paths entering delayed at the
stations along the train line. Note that the latter part of the objective cannot be
optimized. In this setting, the contribution to the objective of δ

∑
i Di + δO≥j ,

i.e. the delay of the paths arriving with a delay δ at their destination, plus the
δ delay of all dropped paths, is independent of the waiting decision.

We map this constant sum of delays to the original, undiscounted, price of
buying the skis in the Discounted Ski-Rental problem. Moreover, the sum of
the costs of the dropped paths (i.e. T time units per passenger) at station vj

corresponds to the renting price of the skis on that day. Therefore, there is a
bijection between waiting at station vj and buying the skis on day j. Hence, the
cost of buying the skis on day j corresponds to the delay caused by waiting at
station vj , whereas the cost of renting the skis on day j corresponds to the cost
of dropping the delayed paths at station vj . By setting the proportional discount
factor to α = δ

T we complete the mapping. Indeed, the cost of waiting at station
vj is the same as buying the skis on day j:

ski-cost(j) = T
∑

i<j

Di + δ
∑

i

Di + δO≥j − δ

T
T

∑

i<j

Di = Δ(j)

Our analysis of the online delay management problem hence also provides a
2-competitive algorithm for the above Discounted Ski-Rental problem. Further,
the mapping also provides some intuition for the online algorithm in Section 3.3.
In the 2-competitive algorithm for the Discounted Ski-Rental problem, the skier
buys the skis as soon as the overall renting costs exceed the costs of buying the
skis. In the next section we show that a similar strategy is 2-competitive for the
online delay management problem.
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We point out that the general setting where passengers can alight from the
train at any station along the path, is still related to a Ski-Rental problem.
However, the mapping is much less intuitive, and therefore we omit it. Finally,
differently from the Ski-Rental problem, the maximum number of times the
decision is to be taken is known a priori in the online delay management problem,
as the number of stations on the train line is known in each instance.

3.3 A Family of 2-Competitive Online Algorithms

In this section, we describe a family of 2-competitive online policies for the delay
management problem described in Section 2. Recall that paths may end before
the last station of the line. Hence, the problem is structurally different from
both the Discounted Ski-Rental problem and the general Ski-Rental problem.
In fact, in most Ski-Rental problems the key decision for an optimal adversary
is whether or not to buy skis. Hence, the decision is boolean. On the contrary,
for an optimal adversary of the online delay management problem, the decision
is not only whether to wait or not, but additionally where the online algorithm
should start to wait in order to achieve the optimal policy.

Nevertheless, the family of online algorithms resembles the classical online
algorithm for the Ski-Rental problem. Loosely speaking, the train should wait
at station vj if the delay caused by dropping passengers up to and including
station vj exceeds the delay caused to on time passengers by waiting in vj .

As we present a family of algorithms, we must be a little more precise. For
t ∈ [T − δ, T ], the online algorithm Alg(t) of the family lets the train wait at
station j if

t
∑

i≤j

di ≥ δo≥j .

Note that the two extremal values of t lead to two extremal behaviors within the
same policy. By setting t = T − δ we obtain the algorithm that starts to wait as
late as possible. By setting t = T , we obtain the algorithm of the family that
starts to wait as early as possible. Below, we show that both extremal algorithms
are 2-competitive.

Intuitively, these algorithms achieve the competitive ratio of 2 by a similar
argument as for the Ski-Rental problem: the algorithms drop all source delayed
passenger paths, until the accumulated delay balances the delay which would
occur if the train started to wait. At this point, an adversary could leave all
other remaining passenger paths to be on time, thus causing again the same
amount of delay to the online algorithm, whereas it would have been optimal
not to wait at all. On the other hand, should the online algorithm have waited
earlier, the analysis shows that the adversary must also have had a delay equal
to the one of the online algorithm.

Theorem 1. The family of online algorithms Alg(t) which start to wait at
station j if t

∑
i≤j di ≥ δo≥j , t ∈ [T − δ, T ], is 2-competitive on the single train

line with fixed passenger paths.
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Proof. Let j∗ be the station where the optimal offline algorithm waits and j be
the station where the online algorithm Alg(t) waits. The analysis is subdivided
into two cases. In fact, if not optimal, the online algorithm either started waiting
too early (j < j∗) or too late (j∗ < j). In a worst-case scenario, for analyzing
the first case, we take the algorithm of the family which waits the earliest, i.e.
Alg(T ). Similarly, for analyzing the case where the algorithm waits too late, we
take the algorithm of the family which waits the latest, i.e. Alg(t − δ).

Case j∗ < j: we compare the objective value of the two solutions:

Δ(j) =(T − δ)
∑

i<j

Di + δ
∑

i

Di + δO≥j

= (T − δ)
∑

i<j∗

Di + δ
∑

i

Di + δO≥j∗

︸ ︷︷ ︸
Δ(j∗)

−δO≥j∗ + δO≥j + (T − δ)
j−1∑

i=j∗

Di

First, we note that as j∗ < j, inequality (1) implies the following: −δO≥j∗ +
δO≥j ≤ 0.

Second,
j−1∑

i=j∗

Di ≤
∑

i≤j−1

Di.

Since the train did not wait at station j − 1, and we use t = T − δ, the following
inequalities hold:

(T − δ)
∑

i≤j−1

Di ≤ δo≥j−1
(4)
≤ δ

(
O≥j−1 +

∑

i

Di

)

≤ δ

(
O≥j∗

+
∑

i

Di

)
≤ Δ(j∗).

Concluding,

Δ(j) ≤ Δ(j∗) − δO≥j∗ + δO≥j + δ

(
O≥j∗

+
∑

i

Di

)
≤ 2Δ(j∗).

Case j∗ > j: similarly to the previous case, we compare the values of the two
solutions:

Δ(j) =Δ(j∗) − δO≥j∗
+ δO≥j − (T − δ)

j∗−1∑

i=j

Di.

Inequality (3) and waiting at j with t = T imply

δO≥j ≤δo≥j ≤ T
∑

i≤j

Di ≤ T
∑

i≤j∗

Di.
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Since

T
∑

i≤j∗

Di ≤ (T − δ)
∑

i≤j∗

+δ
∑

i

Di ≤ Δ(j∗),

we finally have

Δ(j) ≤Δ(j∗) − δO≥j∗
+ Δ(j∗) − (T − δ)

j∗−1∑

i=j

Di ≤ 2Δ(j∗). ��

We have shown that the family of online algorithms Alg(t), t ∈ [T − δ, T ] is
2-competitive.

Corollary 1. The analysis of the family of online algorithms Alg(t), with
t ∈ [T − δ, T ], is tight.

Proof. We show that the analysis is tight, both when the online algorithm starts
waiting earlier or later than optimum. For each case, we analyze the worst-case
scenario for the family Alg(t): for starting to wait too late, we analyze the
criterion which will wait the latest, i.e. (T − δ)

∑
i≤j di ≥ δo≥j ; for starting to

wait too early, we analyze the criterion of the family which will wait the earliest,
i.e. T

∑
i≤j di ≥ δo≥j .

We start by analyzing the case where the online algorithm starts waiting
after the optimal solution. Consider the simple train line built by three stations,
V = {v1, v2, v3}, E = {(v1, v2), (v2, v3)}. We introduce two passenger paths
P0 = {v1, v2} and P1 = {v2, v3}, both connecting from other feeder trains.
Potentially, these passenger paths could be delayed. Let p0 be the number of
passengers following path P0, p1 = (T−δ)

δ p0+ε the number of passengers following
path P1. At station v1, the adversary declares P0 to be delayed and P1 to be on
time. As (T − δ)p0 < δp1 = (T − δ)p0 + δε, the online algorithm will not wait.
Upon the arrival of the train at v2, the adversary also delays P1. Then, the online
algorithm will certainly wait in v2, as it will not delay any other passengers. The
optimal offline solution would already have waited at v1, hence online algorithm
started to wait after the optimum. The ratio between the two solutions is:

Online
Opt

=
Tp0 + δp1

δ(p0 + p1)
= 2

Tp0 + δε

Tp0 + δε
− δp0 + δε

Tp0 + δε
= 2 − δp0 + δε

Tp0 + δε
(5)

For ε → 0 the ratio converges to r1 = 2 − δ
T . For δ

T = ε′, and by letting ε′ → 0,
we get arbitrarily close to 2. For analyzing the case where the online algorithm
starts waiting too early, we consider a train line similar to the above, but with
different passenger paths. Let P0 = {v1, v2, v3}, P1 = {v1, v2}, P2 = {v2, v3},
carrying p0, p1 and p2 = T

δ p0 − ε passengers, respectively. Initially, the adversary
shows P0 to be delayed. The online algorithm does not wait at station v0, as
the other two paths are assumed to be on time: indeed, δ(p1 + p2) > Tp0, for
δp1 > δε. When the train arrives at station v1, the adversary leaves P2 on time.
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But then, Tp0 > δp2 = Tp0 − δε, hence the online algorithm starts to wait at v2,
interestingly enough, for nobody. The optimal algorithm would not have waited
anywhere, and would only have dropped the path P0. This gives the competitive
ratio of

Online
Opt

=
Tp0 + δp2

Tp0
=

2Tp0 − δε

Tp0

ε→0= 2. (6)

This case is thus independent from the ratio δ
T , and the analysis directly shows

its tightness. ��

4 Competitiveness of Online Algorithms

In the following, we show two bounds on the competitive ratio for all online
algorithms on the train line. First, we discuss that, if the objective accounts only
for the delay which can be optimized, we cannot be better than T

δ -competitive.
This actually implies that we cannot do better than applying the trivial strategy
of waiting as soon as there is a delayed entering passenger path, and to stay on
time otherwise. We then analyze the objective discussed in Section 3.1 and show
that no online algorithm can be better than Φ-competitive, where Φ =

√
5+1
2 is

the Golden Ratio.

4.1 Competitiveness with Additional Delay Objective

In this section, we consider the so-called additional delay objective function,
which accounts only for the delay which can be optimized on the network, i.e.
without the unavoidable delay δ

∑
i Di. With the previously introduced notation,

the objective value occurring if the train waits at station j is defined as

ΔAdd(j) = (T − δ)
∑

i<j

Di + δO≥j

Theorem 2. No online algorithm on a single train line with fixed passenger
paths can be better than T

δ -competitive when minimizing only the additional
delay.

Proof. We analyze the network shown in Figure 2. The line we wish to optimize
travels between stations A and C, and has an intermediate stop in B. We in-
troduce two passenger paths, P1 connecting to the train line in A and carrying
p1 = 1 passengers, P2 connecting to the train line in B and carrying p2 = T (T−δ)

δ2

passengers. When in A, the adversary announces that the passenger path P1 is
delayed by δ time units. He can still choose if or not he will delay the passenger
path P2.

If the online algorithm decides to wait in A, the adversary leaves P2 on time.
Thus, the optimal offline policy is to stay on time to the end of the trip. The delay
accumulated by the online algorithm is T (T−δ)

δ2 δ = T (T−δ)
δ , the optimal strategy

accumulates only (T − δ) delay. Hence, the online algorithm is T
δ -competitive.
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P 2, ?

A CB
P 1, Delayed

Fig. 2. The train network used for showing the non-competitiveness of the additional
delay-objective

If the online algorithm decides to leave A on time, the adversary will delay P2
as well. The optimal offline policy in this case is to wait in A, which produces a
zero valued objective. The online algorithm produces an additional delay of at
least T , hence the competitive ratio in this case is infinite. ��

The setting for proving the T
δ -competitiveness might seem peculiar, as in one

case the train travels empty between stations A and B. This can be resolved
by introducing an on time passenger path between A and C carrying just one
passenger. The same setting can then be used to prove a lower bound on the
competitiveness of T

δ − 1. This is asymptotically the same as above, and in
practice it does not change significantly if T

δ is large.

4.2 Φ-Competitiveness for Total Delay Objective

In the following section, we prove that no online algorithm can be better than Φ-
competitive if we use the objective function accounting for all delays introduced
in Section 3.1.

Theorem 3. No online algorithm on a train line with fixed passenger paths can
be better than Φ-competitive when minimizing the total delay, where Φ =

√
5+1
2

is the Golden Ratio.

Proof. We introduce a network similar to the one of the previous proof (see
Figure 3). This time, we introduce three passenger paths: P1, carrying p1 pas-
sengers and connecting to the train line at station A; P2, carrying p2 passengers,
starting their journey in A; P3, carrying p3 passengers, connecting to the train
line in B. At the beginning, the adversary declares P1 to be delayed and P2 to
be on time.

Now, an online algorithm must decide whether to wait in A or not. The
situation the adversary wants to enforce is the following: whatever decision the
online algorithm takes, it is c-competitive. Then, he chooses the parameters such
that c is maximal. The following mathematical program describes the adversary’s
parameter choices:

max c

δ(p1 + p2 + p3) ≥ cTp1 (7)
Tp1 + δ(p2 + p3) ≥ cδ(p1 + p2 + p3) (8)

T (p1 + p3) ≥ cδ(p1 + p2 + p3) (9)



318 M. Gatto et al.

A B C
P 1, Delayed

P 3, ?On Time
P 2,

Fig. 3. The simple network used in the proof for not competitiveness of the all-delay
objective

Inequality (7) reflects the situation when the online algorithm waits in A, thus
delaying all three paths, but it would have been better not to wait, as P3 was
on time. The left hand side (LHS) reflects the costs of the online algorithm, the
right hand side (RHS) the costs of the optimal offline solution, weighted with
the competitive ratio c. Inequality (8) reflects the situation where the online
algorithm does not wait in A but waits in B, as the adversary then delays P3,
and it would have been better to wait in A. Again, the LHS describes the costs
of the online algorithm, the RHS the costs of the optimal delay policy weighted
with the competitive ratio. Finally, inequality (9) describes the situation where
the online algorithm decides not to wait at all even if P3 delays, and it would
have been better to wait in A. The LHS and RHS of the inequality describe the
costs as before. For this last online policy we do not consider the case where the
optimal offline strategy waits in B. Were this strategy better than waiting in A,
we would only make the bound on the competitive ratio bigger than what we
show here.

For simplicity, we normalize all passenger numbers with respect to p1, and
the delays with respect to δ. Hence, P1 carries 1 passenger, and δ = 1. Due to
this normalization, in the following we should formally refer to the drop delay as
T ′ and to the passenger numbers as p′2 and p′3. To improve readability, we omit
the primes. The mathematical program becomes:

max c

1 + p2 + p3 ≥ cT (10)
T + p2 + p3 ≥ c(1 + p2 + p3) (11)

T (1 + p3) ≥ c(1 + p2 + p3) (12)

We restrict our attention to the case where p2 ≤ (T − 1)p3. In this case, (11) is
tighter than (12), so we can omit the latter equation. As we are constructing a
specific solution to the mathematical program, we let inequality (10) be tight.
Note that by choosing (11) to be tight, we can construct an example with the
same competitive ratio as shown below. Now we can set p3 = cT − 1 − p2. Thus,
substituting into (11):

T + p2 + cT − 1 − p2 ≥ c + cp2 + c2T − c − cp2

T (1 + c) − 1 ≥ c2T
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Let c = Φ − ε, and recall that Φ + 1 = Φ2:

T (1 + Φ) − T ε − 1 ≥ Φ2T − 2ΦεT + ε2T

(2Φ − 1 − ε)εT ≥ 1 (13)

As long as (2Φ − 1 − ε)ε ≥ 0, we can choose T such that (13) is satisfied. The
condition is satisfied for 0 < ε ≤ 2Φ−1, and we can set T = 1

(2Φ−1−ε)ε . By letting
ε → 0, we can get arbitrarily close to Φ. In all, this shows that the competitive
ratio of any online algorithm cannot be better than Φ.

Notice that a closer inspection of the constructed instance shows that within
the setting of this example, we cannot prove the competitive ratio to be greater
than Φ, as choosing a negative ε leads to a contradiction. ��

5 Conclusion

We considered the online delay management problem for a single train line with
passengers transferring from other feeder trains. Since such a feeder train may
arrive at a transfer station with an arrival delay, the connecting passengers may
be delayed as well. In this online setting, the train line only knows the delays of
the entering passengers at its current station, as well as at the previous stations
on the line.

As such, we provided a natural next step to the research in [1], who considered
the online situation of delays at a single station. We proposed a family of Ski
Rental-like 2-competitive online algorithms, and presented lower bounds on the
competitive ratio that hold for any online algorithm for the single train line. As
we do not know of any other theoretical work on online delay management prob-
lems, our results provide a first step in the direction of online delay management
for more general networks and with more realistic assumptions.

Indeed, the extension of our results to two crossing train lines, or to a railway
network with a tree topology are interesting topics for further research. Other
directions for future research include different arrival delays for the connecting
passengers, and the inclusion of timetable buffer times.
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