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Abstract. A CD-system of restarting automata is called strictly de-
terministic if all its component systems are deterministic, and if there
is a unique successor system for each component. Here we show that
the strictly deterministic CD-systems of restarting automata are strictly
more powerful than the corresponding deterministic types of restarting
automata, but that they are strictly less powerful than the correspond-
ing deterministic types of nonforgetting restarting automata. In fact, we
present an infinite hierarchy of language classes based on the number of
components of strictly deterministic CD-systems of restarting automata.

1 Introduction

The restarting automaton was introduced by Jančar et. al. as a formal tool to
model the analysis by reduction, which is a technique used in linguistics to an-
alyze sentences of natural languages [4]. This technique consists in a stepwise
simplification of a given sentence in such a way that the correctness or incor-
rectness of the sentence is not affected. It is applied primarily in languages that
have a free word order. Already several programs used in Czech and German
(corpus) linguistics are based on the idea of restarting automata [9,12].

A (one-way) restarting automaton, RRWW-automaton for short, is a device M
that consists of a finite-state control, a flexible tape containing a word delimited
by sentinels, and a read/write window of a fixed size. This window is moved from
left to right until the control decides (nondeterministically) that the content of
the window should be rewritten by some shorter string. In fact, the new string
may contain auxiliary symbols that do not belong to the input alphabet. After
a rewrite, M can continue to move its window until it either halts and accepts,
or halts and rejects, or restarts, that is, it places its window over the left end
of the tape, and reenters the initial state. Thus, each computation of M can be
described through a sequence of cycles.

Many restricted variants of restarting automata have been studied and put
into correspondence to more classical classes of formal languages. For a recent
survey see [10] or [11]. Also further extensions of the model have been considered.
In particular, in [8] Messerschmidt and Stamer introduced the nonforgetting
restarting automaton, which, when executing a restart operation, simply changes
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its internal state as with any other operation, instead of resetting it to the initial
state. Further, in [7] the authors introduced cooperating distributed systems
(CD-systens) of restarting automata and proved that CD-systems of restarting
automata working in mode = 1 correspond to nonforgetting restarting automata.

Here we concentrate on CD-systems of restarting automata that are determin-
istic. It is known that deterministic restarting automata with auxiliary symbols
accept exactly the Church-Rosser languages (see, e.g., [10,11]), while nonforget-
ting deterministic restarting automata are strictly more powerful [6]. However,
for CD-systems of restarting automata the notion of determinism can be defined
in various different ways. A CD-system M := ((Mi, σi)i∈I , I0) of restarting auto-
mata could be called deterministic if within each computation of the system M,
each configuration has at most a single successor configuration. This is a global
view on determinism. On the other hand, we could follow the way determinism is
used in CD-grammar systems (see, e.g., [2,3]) and call M already deterministic
if all component automata Mi (i ∈ I) are deterministic. This is a local view on
determinism. Here we study a third option, called strict determinism, where we
require not only that all component automata Mi (i ∈ I) are deterministic, but
also that the successor set σi is a singleton for each i ∈ I. This is again a global,
but more restricted, view.

We will see that, in analogy to the situation for nondeterministic restarting
automata, the globally deterministic CD-systems of restarting automata, when
working in mode = 1, correspond exactly to nonforgetting deterministic restart-
ing automata. Further, the expressive power of strictly deterministic CD-systems
of restarting automata lies strictly in between that of deterministic restarting
automata and that of nonforgetting deterministic restarting automata. In fact,
based on the number of component systems of strictly deterministic CD-systems,
we will obtain a proper infinite hierarchy of language classes.

This paper is structured as follows. In Section 2 we introduce nonforgetting
restarting automata and CD-systems of restarting automata. Then, in Section 3,
we define the various types of deterministic CD-systems of restarting automata
formally and establish the announced relationship between nonforgetting deter-
ministic restarting automata and globally deterministic CD-systems of restarting
automata. In Section 4 we compare the expressive power of strictly determin-
istic CD-systems to that of globally deterministic CD-systems and to that of
deterministic restarting automata. Also we present the announced hierarchy on
the number of component systems. The paper concludes with a short discussion
pointing out some open problems for future work.

2 Definitions

An RRWW-automaton is a one-tape machine that is described by an 8-tuple
M = (Q, Σ, Γ, c, $, q0, k, δ), where Q is a finite set of states, Σ is a finite input
alphabet, Γ is a finite tape alphabet containing Σ, the symbols c, $ �∈ Γ serve
as markers for the left and right border of the work space, respectively, q0 ∈ Q
is the initial state, k ≥ 1 is the size of the read/write window, and δ is the
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transition relation that associates a finite set of transition steps to each pair
(q, u) consisting of a state q ∈ Q and a possible contents u of the read/write
window. There are four types of transition steps:

– Move-right steps of the form (q′, MVR), where q′ ∈ Q, which cause M to
shift the read/write window one position to the right and to enter state q′.

– Rewrite steps of the form (q′, v), where q′ ∈ Q, and v is a string satisfying
|v| < |u|. This step causes M to replace the content u of the read/write
window by the string v, thereby shortening the tape, and to enter state q′.
Further, the read/write window is placed immediately to the right of the
string v. However, some additional restrictions apply in that the border
markers c and $ must not disappear from the tape nor that new occurrences
of these markers are created.

– Restart steps of the form Restart, which cause M to place the read/write
window over the left end of the tape, so that the first symbol it sees is the
left border marker c, and to reenter the initial state q0.

– Accept steps of the form Accept, which cause M to halt and accept.

If δ(q, u) = ∅ for some pair (q, u), then M necessarily halts, and we say that M
rejects in this situation. There is one additional restriction that the transition
relation must satisfy: ignoring move operations, rewrite steps and restart steps
alternate in any computation of M , with a rewrite step coming first. However,
it is more convenient to describe M by a finite set of so-called meta-instructions
(see below).

A configuration of M is described by a string αqβ, where q ∈ Q, and either
α = ε (the empty word) and β ∈ {c} · Γ ∗ · {$} or α ∈ {c} · Γ ∗ and β ∈ Γ ∗ · {$};
here q represents the current state, αβ is the current content of the tape, and it is
understood that the head scans the first k symbols of β or all of β when |β| ≤ k.
A restarting configuration is of the form q0cw$, where w ∈ Γ ∗; if w ∈ Σ∗, then
q0cw$ is an initial configuration.

In general, an RRWW-automaton is nondeterministic, that is, to some con-
figurations several different instructions may apply. If that is not the case, then
the automaton is called deterministic.

A rewriting meta-instruction for M has the form (E1, u → v, E2), where E1

and E2 are regular expressions, and u, v ∈ Γ ∗ are words satisfying |u| > |v|. To
execute a cycle M chooses a meta-instruction of the form (E1, u → v, E2). On
trying to execute this meta-instruction M will get stuck (and so reject) starting
from the restarting configuration q0cw$, if w does not admit a factorization
of the form w = w1uw2 such that cw1 ∈ E1 and w2$ ∈ E2. On the other
hand, if w does have factorizations of this form, then one such factorization
is chosen nondeterministically, and q0cw$ is transformed into q0cw1vw2$. This
computation is called a cycle of M . It is expressed as w �c

M w1vw2. In order to
describe the tails of accepting computations we use accepting meta-instructions
of the form (E1, Accept), which simply accepts the strings from the regular
language E1.
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An input word w ∈ Σ∗ is accepted by M , if there is a computation which,
starting with the initial configuration q0cw$, consists of a finite sequence of cycles
that is followed by an application of an accepting meta-instruction. By L(M)
we denote the language consisting of all words accepted by M .

We are also interested in various restricted types of restarting automata. They
are obtained by combining two types of restrictions:

(a) Restrictions on the movement of the read/write window (expressed by the
first part of the class name): RR- denotes no restriction, R- means that each
rewrite step is immediately followed by a restart.

(b) Restrictions on the rewrite-instructions (expressed by the second part of
the class name): -WW denotes no restriction, -W means that no auxiliary
symbols are available (that is, Γ = Σ), -ε means that no auxiliary symbols
are available and that each rewrite step is simply a deletion (that is, if the
rewrite operation u → v occurs in a meta-instruction of M , then v is obtained
from u by deleting some symbols).

A cooperating distributed system of RRWW-automata, CD-RRWW-system for
short, consists of a finite collection M := ((Mi, σi)i∈I , I0) of RRWW-automata
Mi = (Qi, Σ, Γi, c, $, q

(i)
0 , k, δi) (i ∈ I), successor relations σi ⊆ I (i ∈ I), and

a subset I0 ⊆ I of initial indices. Here it is required that Qi ∩ Qj = ∅ for all
i, j ∈ I, i �= j, that I0 �= ∅, that σi �= ∅ for all i ∈ I, and that i �∈ σi for all i ∈ I.
Further, let m be one of the following modes of operation, where j ≥ 1:

= j : execute exactly j cycles;
t : continue until no more cycle can be executed.

The computation of M in mode = j on an input word x proceeds as follows. First
an index i0 ∈ I0 is chosen nondeterministically. Then the RRWW-automaton
Mi0 starts the computation with the initial configuration q

(i0)
0 cx$, and executes

j cycles. Thereafter an index i1 ∈ σi0 is chosen nondeterministically, and Mi1

continues the computation by executing j cycles. This continues until, for some
l ≥ 0, the machine Mil

accepts. Should at some stage the chosen machine Mil

be unable to execute the required number of cycles, then the computation fails.
In mode t the chosen automaton Mil

continues with the computation until it
either accepts, in which case M accepts, or until it can neither execute another
cycle nor an accepting tail, in which case an automaton Mil+1 with il+1 ∈ σil

takes over. Should this machine not be able to execute a cycle or an accepting
tail, then the computation of M fails.

By Lm(M) we denote the language that the CD-RRWW-system M accepts
in mode m. It consists of all words x ∈ Σ∗ that are accepted by M in mode m
as described above. If X is any of the above types of restarting automata, then
a CD-X-system is a CD-RRWW-system for which all component automata are of
type X.

The following simple example shows that CD-R-systems have much more ex-
pressive power than R-automata. As R-automata restart immediately after exe-
cuting a rewrite operation, rewriting meta-instructions for them are of the form
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(E, u → v), where E is a regular language, and u → v is a rewrite step of M
(see, e.g., [11]).

Example 1. Let M := ((M1, {2}), (M2, {1}), {1}) be a CD-R-system, where M1

is described by the following three meta-instructions:

(c · {a, b}∗ · c · # · {a, b}∗, c · $ → $), c ∈ {a, b}, and (c · # · $, Accept),

and M2 is given through the meta-instructions:

(c · {a, b}∗, c · # → #), c ∈ {a, b}.
In mode =1 the machines M1 and M2 alternate, with M1 beginning the compu-
tation. Starting with a word of the form u#v, where u, v ∈ {a, b}+, M1 always
deletes the last letter of the second factor, provided it coincides with the last
letter of the first factor, and M2 simply deletes the last letter of the first factor. It
follows that L=1(M) coincides with the language Lcopy := {w#w | w ∈ {a, b}∗ }.
On the other hand, it is easily seen that Lcopy is not accepted by any R-
automaton.

The nonforgetting restarting automaton is a generalization of the restarting au-
tomaton that is obtained by combining restart transitions with a change of state
just like the move-right and rewrite transitions. This allows a nonforgetting
restarting automaton M to carry some information from one cycle to the next.
We use the notation (q1, x) �c

M (q2, y) to denote a cycle of M that transforms
the restarting configuration q1cx$ into the restarting configuration q2cy$.

3 Various Notions of Determinism

A CD-system M := ((Mi, σi)i∈I , I0) of restarting automata is called locally
deterministic if Mi is a deterministic restarting automaton for each i ∈ I. As
the successor system is chosen nondeterministically from among all systems Mj

with j ∈ σi, computations of a locally deterministic CD-system of restarting
automata are in general not completely deterministic.

To avoid this remaining nondeterminism we strengthen the above definition.
We call a CD-system M := ((Mi, σi)i∈I , I0) strictly deterministic if I0 is a
singleton, if Mi is a deterministic restarting automaton and if |σi| = 1 for each
i ∈ I. Observe that the CD-R-system of Example 1 is strictly deterministic.

However, the restriction of having at most a single possible successor for each
component system is a rather serious one, as we will see below. Thus, we define a
third notion. A CD-system M := ((Mi, σi)i∈I , I0) is called globally deterministic
if I0 is a singleton, if Mi is a deterministic restarting automaton for each i ∈ I,
and if, for each i ∈ I, each restart operation of Mi is combined with an index
from the set σi. Thus, when Mi finishes a part of a computation according
to the actual mode of operation by executing the restart operation δi(q, u) =
(Restart, j), where j ∈ σi, then the component Mj takes over. In this way it
is guaranteed that all computations of a globally deterministic CD-system are



Strictly Deterministic CD-Systems of Restarting Automata 429

deterministic. However, for a component system Mi there can still be several
possible successor systems. This is reminiscent of the way in which nonforgetting
restarting automata work.

We use the prefix det-global to denote globally deterministic CD-systems, and
the prefix det-strict to denote strictly deterministic CD-systems. For each type
of restarting automaton X ∈ {R, RR, RW, RRW, RWW, RRWW}, it is easily seen
that the following inclusions hold:

L(det-X) ⊆ Lm(det-strict-CD-X) ⊆ Lm(det-global-CD-X).

Concerning the globally deterministic CD-systems, we have the following re-
sults, which correspond to the results for nondeterministic CD-systems estab-
lished in [7].

Theorem 1. If M is a nonforgetting deterministic restarting automaton of type
X for some X ∈ {R, RR, RW, RRW, RWW, RRWW}, then there exists a glob-
ally deterministic CD-system M of restarting automata of type X such that
L=1(M) = L(M) holds.

For the converse we even have the following stronger result.

Theorem 2. For each X ∈ {R, RR, RW, RRW, RWW, RRWW}, if M is a globally
deterministic CD-X-system, and if j is a positive integer, then there exists a
nonforgetting deterministic X-automaton M such that L(M) = L=j(M) holds.

Thus, we see that globally deterministic CD-systems of restarting automata
working in mode = 1 are just as powerful as deterministic nonforgetting restart-
ing automata. It remains to study CD-systems that work in mode t.

Theorem 3. Let X ∈ {RR, RRW, RRWW}, and let M be a globally deterministic
CD-X-system. Then there exists a nonforgetting deterministic X-automaton M
such that L(M) = Lt(M) holds.

It is not clear whether the latter result extends to CD-systems of R(W)(W)-
automata. The problem with these types of restarting automata stems from the
fact that within a cycle such an automaton will in general not see the complete
tape content.

4 Strictly Deterministic CD-Systems

Here we study the expressive power of strictly deterministic CD-systems of
restarting automata. As seen in Example 1 the copy language Lcopy is accepted
by a strictly deterministic CD-R-system with two components. This language
is not growing context-sensitive [1,5]. As deterministic RRWW-automata only
accept Church-Rosser languages, which are a proper subclass of the growing
context-sensitive languages, this yields the following separation result.
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Proposition 1. For all X ∈ {R, RR, RW, RRW, RWW, RRWW},
L(det-X) ⊂ L=1(det-strict-CD-X).

Let Lcopym := {w(#w)m−1 | w ∈ Σ+
0 } be the m-fold copy language. Analo-

gously to Example 1 it can be shown that this language is accepted by a strictly
deterministic CD-R-system with m components that works in mode = 1. The
next example deals with a generalization of these languages.

Example 2. Let Lcopy∗ := {w(#w)n | w ∈ (Σ2
0)+, n ≥ 1 } be the iterated copy

language, where Σ0 := {a, b}. This language is accepted by a strictly determinis-
tic CD-RWW-system M = ((M1, {2}), (M2, {1}), {1}) with input alphabet Σ :=
Σ0∪{#} and tape alphabet Γ := Σ∪Γ0, where Γ0 := {Aa,a, Aa,b, Ab,a, Ab,b}. The
RWW-automata M1 and M2 are given through the following meta-instructions,
where c, d, e, f ∈ Σ0:

M1 : (c · (Σ2
0)∗ · cd · # · (Σ2

0)∗, cd · # → Ac,d · #),
(c · (Σ2

0)∗ · cd · # · (Σ2
0)∗, cd · $ → Ac,d · $),

(c · (Σ2
0)∗ · cd · # · (Σ2

0)∗, cdAe,f → Ac,dAe,f ),
(c · Γ ∗

0 · Ac,d · # · (Σ2
0)∗, cd · # → Ac,d · #),

(c · Γ ∗
0 · Ac,d · # · (Σ2

0)∗, cd · $ → Ac,d · $),
(c · Γ ∗

0 · Ac,d · # · (Σ2
0)∗, cdAe,f → Ac,dAe,f ),

(c · Γ+
0 · $, Accept),

M2 : (c · (Σ2
0)+, cd · # → #), (c, cd · # → ε),

(c · Γ+
0 , Ac,d · # → #), (c, Ac,d · # → ε).

In mode = 1, the two components M1 and M2 are used alternatingly, with M1

starting the computation. Let x := w1#w2# . . . #wm be the given input, where
w1, w2, . . . , wm ∈ (Σ2

0 )+ and m ≥ 2. First w1 is compared to w2 by processing
these strings from right to left, two letters in each round. During this process
w1 is erased, while w2 is encoded using the letters from Γ0. Next the encoded
version of w2 is used to compare w2 to w3, again from right to left. This time
the encoded version of w2 is erased, while w3 is encoded. This continues until
all syllables wi have been considered. It follows that L=1(M) = Lcopy∗ holds.

For accepting the language Lcopy∗ without using auxiliary symbols we have a
CD-system of restarting automata that is globally deterministic.

Lemma 1. The language Lcopy∗ is accepted by a globally deterministic CD-R-
system working in mode = 1.

Proof. Let M = ((Mi, σi)i∈I , I0) be the CD-R-system that is specified by I :=
{0, 1, 2, 3, 4, 5, 6}, I0 := {0}, σ(0) := {5}, σ(1) := {2, 6}, σ(2) := {1, 6}, σ(3) :=
{4, 5}, σ(4) := {3, 5}, σ(5) := {1}, σ(6) := {3}, and M0 to M6 are given through
the following meta-instructions, where c, d ∈ Σ0:

M0 : (c · ((Σ2
0)+ · Σ0 · c · #)+ · (Σ2

0)+ · Σ0, c · $ → $, Restart(5)),
(c · (u · #)+ · u · $, Accept) for all u ∈ Σ2

0 ,
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M1 : (c · ((Σ2
0 )+ · c · #)+ · (Σ2

0)+, c · $ → $, Restart(6)),
(c · ((Σ2

0 )+ · c · #)+ · (Σ2
0)+ · c, d · # → #, Restart(2)),

M2 : (c · ((Σ2
0 )+ · c · #)+ · (Σ2

0)+, c · $ → $, Restart(6)),
(c · ((Σ2

0 )+ · c · #)+ · (Σ2
0)+ · c, d · # → #, Restart(1)),

M3 : (c · ((Σ2
0 )+ · Σ0 · c · #)+ · (Σ2

0)+ · Σ0, c · $ → $, Restart(5)),
(c · ((Σ2

0 )∗ · Σ0 · c · #)+ · (Σ2
0)∗ · Σ0 · c, d · # → #, Restart(4)),

(c · (u · #)+ · $, Accept) for all u ∈ Σ2
0 ,

M4 : (c · ((Σ2
0 )+ · Σ0 · c · #)+ · (Σ2

0)+ · Σ0, c · $ → $, Restart(5)),
(c · ((Σ2

0 )∗ · Σ0 · c · #)+ · (Σ2
0)∗ · Σ0 · c, d · # → #, Restart(3)),

(c · (u · #)+ · $, Accept) for all u ∈ Σ2
0 ,

M5 : (c · Σ+
0 , c · # → #, Restart(1)),

M6 : (c · Σ+
0 , c · # → #, Restart(3)).

Clearly M0 to M6 are deterministic R-automata. Given an input of the form
w#w# · · ·#w, where |w| = 2m > 2, M0 verifies that all syllables are of even
length, and that they all end in the same letter, say c. This letter c is deleted
from the last syllable, and M5 is called, which simply deletes the last letter
(that is, c) from the first syllable. Now M1 is called, which in cooperation with
M2, removes the last letter from all the other syllables. Finally the tape content
w1#w1# · · ·#w1 is reached, where w = w1c. In this situation M1 (or M2) notices
that all syllables are of odd length, and that they all end with the same letter,
say d, which it then removes from the last syllable. Now using M6, M3, and M4

this letter is removed from all other syllables. This process continues until either
an error is detected, in which case M rejects, or until a tape content of the form
u#u# · · ·#u is reached for a word u ∈ Σ2

0 , in which case M accepts. Thus, we
see that M accepts the language Lcopy∗ working in mode = 1. 
�
Contrasting the positive results above we have the following result.

Theorem 4. The language Lcopy∗ is not accepted by any strictly deterministic
CD-RRW-system that is working in mode = 1.

Proof. LetM = ((Mi, σi)i∈I , I0) be a strictly deterministic CD-RRW-system that
accepts the language Lcopy∗ in mode = 1. We can assume that I = {0, 1, . . . , m},
that I0 = {0}, that σi = {i + 1} for all i = 0, 1, . . . , m− 1, and that σm = {s} for
some s ∈ I. Thus, each computation of M has the following structure:

w0 �cs

M ws �c
Ms

ws+1 �cm−s−1

M wm �c
Mm

wm+1 �c
Ms

wm+2 �cm−s−1

M · · · ,

that is, it is composed of a head w0 �cs

M ws that consists of s cycles and of a
sequence of meta-cycles of the form ws �c

Ms
ws+1 �cm−s−1

M wm �c
Mm

wm+1 that
consist of m − s + 1 cycles each.

Let x := w#w(#w)n be an input word with w ∈ (Σ2
0)∗, where |w| and the

exponent n are sufficiently large. Then x ∈ Lcopy∗ , and hence, the computation
of M that begins with the restarting configuration q

(0)
0 cx$ is accepting. We
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will now analyze this computation. The factors w of x and their descendants in
this computation will be denoted as syllables. To simplify the discussion we use
indices to distinguish between different syllables.

M must compare each syllable wi to all the other syllables. As |wi| = |w| is
large, it can compare wi to wj for some j �= i only piecewise. However, during
this process it needs to distinguish the parts that have already been compared
from those parts that have not. This can only be achieved by rewriting wi and
wj accordingly. Since no auxiliary symbols are available, this must be done by
rewrite operations that either delete those parts of wi and wj that have already
been compared, or that use the symbol # to mark the active positions within
wi and wj . Hence, it takes at least |w|/k many rewrite operations on wi and the
same number of rewrite operations on wj to complete the comparison, where
k is the maximal size of the read/write window of a component system of M.
As each rewrite operation is length-reducing, we see that after wi and wj have
been compared completely, the remaining descendants of wi and of wj are of
length at most (1−1/k) · |w|, that is, information on wi and on wj has been lost
during this process. It follows that M actually needs to compare wi to all other
syllables simultaneously.

Now assume that, for some j, no rewrite operation of the j-th meta-cycle is
performed on the first two syllables of x. Then from that point on, no rewrite
operation will be performed on the first syllable for many more meta-cycles.
Indeed, as all component systems of M are deterministic, a change has to be
propagated all the way from the third syllable back to the first syllable by a se-
quence of rewrites before another rewrite operation can affect w1. This, however,
means that at least |w2|/k many rewrite operations are applied to the second
syllable, while no rewrite operation is applied to the first syllable. As observed
above this destroys information on w2 such that it is not possible anymore to
verify whether or not w1 and w2 were identical.

It follows that at least one rewrite operation is applied to the first two syllables
in each meta-cycle. As each rewrite operation is length-reducing, this implies
that after at most 2 · |w| + 1 many meta-cycles the first two syllables have been
completely erased. However, altogether these meta-cycles only execute (2 · |w|+
1) · (m − s + 1) many rewrite operations, that is, only some of the syllables
of x have been compared to w1 and to w2 during this process, provided that
n > (2 · |w| + 1) · (m − s + 1). It follows that L=1(M) �= Lcopy∗ . 
�
Corollary 1. For all types X ∈ {R, RR, RW, RRW},

L=1(det-strict-CD-X) ⊂ L=1(det-global-CD-X).

Using similar techniques as in the proof of Theorem 4 the following result can
be shown.

Theorem 5. Lcopym is not accepted by any strictly deterministic CD-RRW-
system with less than m components working in mode = 1.

By L=1(det-strict-CD-X(m)) we denote the class of languages that are accepted
by strictly deterministic CD-systems of restarting automata of type X that have
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m components and that work in mode = 1. As the m-fold copy language Lcopym

is accepted by a strictly deterministic CD-R-system with m components that is
working in mode = 1, the above result yields the following proper inclusion.

Corollary 2. For all types X ∈ {R, RR, RW, RRW} and all m ≥ 1,

L=1(det-strict-CD-X(m)) ⊂ L=1(det-strict-CD-X(m + 1)).

Thus, for each type X ∈ {R, RR, RW, RRW}, we have an infinite hierarchy be-
tween the class of languages accepted by deterministic restarting automata of
type X and the class of languages accepted by nonforgetting deterministic restart-
ing automata of that type. However, strictly deterministic CD-systems working
in mode t are more expressive.

Proposition 2. The language Lcopy∗ is accepted by a strictly deterministic CD-
RW-system working in mode t.

Proof. Lcopy∗ is accepted by the CD-RW-system M = ((Mi, σi)i∈I , I0) that is
specified by I := {0, 1, 2}, I0 := {0}, σ(0) := {1}, σ(1) := {2}, σ(2) := {0}.
Here M0, M1, and M2 are given through the following meta-instructions, where
Σ0 := {a, b} and c, d, e ∈ Σ0:

M0 : (c · ((Σ2
0)+ · cd · #)+ · (Σ2

0)+, cd · $ → #$),
(c · cd · (# · cd)+ · $, Accept),

M1 : (c · (Σ2
0)+ · (## · (Σ2

0)+)∗, cd · # · e → ## · e),
M2 : (c · (Σ2

0)+ · (# · (Σ2
0)+)∗, ## → #),

(c · (Σ2
0)+ · (# · (Σ2

0)+)+, #$ → $). 
�

5 Concluding Remarks

We have seen that for restarting automata without auxiliary symbols the strictly
deterministic CD-systems yield an infinite hierarchy that lies strictly in be-
tween the deterministic restarting automata and the nonforgetting deterministic
restarting automata. However, the following related questions remain open:

1. Does this result extend to restarting automata with auxiliary symbols?
2. Are the locally deterministic CD-systems of restarting automata strictly

more expressive than the globally deterministic CD-systems of restarting
automata of the same type?

3. A nondeterministic CD-system of restarting automata is called strict if there
is only a single initial system (that is, |I0| = 1), and if the set of successors
is a singleton for each component. It is easily seen that strict CD-systems
are more expressive than restarting automata. However, is there a proper
hierarchy of strict CD-systems, based on the number of component systems,
that lies in between the (nondeterministic) restarting automata and the non-
forgetting restarting automata?
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4. Jančar, P., Mráz, F., Plátek, M., Vogel, J.: Restarting automata. In: Reichel, H.
(ed.) FCT 1995. LNCS, vol. 965, pp. 283–292. Springer, Heidelberg (1995)

5. Lautemann, C.: One pushdown and a small tape. In: Wagner, K. (ed.) Dirk Siefkes
zum 50. Geburtstag, Technische Universität Berlin and Universität Augsburg, pp.
42–47 (1988)

6. Messerschmidt, H., Otto, F.: On nonforgetting restarting automata that are deter-
ministic and/or monotone. In: Grigoriev, D., Harrison, J., Hirsch, E.A. (eds.) CSR
2006. LNCS, vol. 3967, pp. 247–258. Springer, Heidelberg (2006)

7. Messerschmidt, H., Otto, F.: Cooperating distributed systems of restarting auto-
mata. Intern. J. Found. Comput. Sci. (to appear)

8. Messerschmidt, H., Stamer, H.: Restart-Automaten mit mehreren Restart-
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