

Lecture Notes in Computer Science 4639
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Erzsébet Csuhaj-Varjú
Zoltán Ésik (Eds.)

Fundamentals of
Computation Theory

16th International Symposium, FCT 2007
Budapest, Hungary, August 27-30, 2007
Proceedings

13

Volume Editors

Erzsébet Csuhaj-Varjú
Hungarian Academy of Sciences
Computer and Automation Research Institute
Budapest, Hungary
E-mail: csuhaj@sztaki.hu

Zoltán Ésik
University of Szeged
Department of Computer Science
Szeged, Hungary
E-mail: ze@inf.u-szeged.hu

Library of Congress Control Number: 2007932400

CR Subject Classification (1998): F.1, F.2, F.4.1, I.3.5, G.2

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-74239-5 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-74239-5 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12108152 06/3180 5 4 3 2 1 0

Preface

The Symposium on Fundamentals of Computation Theory was established in
1977 for researchers interested in all aspects of theoretical computer science,
in particular in algorithms, complexity, and formal and logical methods. It is a
biennial conference, which has previously been held in Poznan (1977), Wendisch-
Rietz (1979), Szeged (1981), Borgholm (1983), Cottbus (1985), Kazan (1987),
Szeged (1989), Gosen-Berlin (1991), Szeged (1993), Dresden (1995), Kraków
(1997), Iasi (1999), Riga (2001), Malmö (2003), and Lübeck (2005).

The 16th International Symposium on Fundamentals of Computation Theory
(FCT 2007) was held in Budapest, August 27–30, 2007, and was jointly organized
by the Computer and Automation Research Institute of the Hungarian Academy
of Sciences and the Institute of Computer Science, University of Szeged.

The suggested topics of FCT 2007 included, but were not limited to, au-
tomata and formal languages, design and analysis of algorithms, computational
and structural complexity, semantics, logic, algebra and categories in computer
science, circuits and networks, learning theory, specification and verification,
parallel and distributed systems, concurrency theory, cryptography and cryp-
tographic protocols, approximation and randomized algorithms, computational
geometry, quantum computation and information, and bio-inspired computation.

The Programme Committee invited lectures from Ahmed Bouajjani (Paris),
Oscar H. Ibarra (Santa Barbara), László Lovász (Budapest), and Philip J. Scott
(Ottawa) and, from the 147 submissions, selected 39 papers for presentation at
the conference and inclusion in the proceedings. This volume contains the texts
or the abstracts of the invited lectures and the texts of the accepted papers.

We would like to thank the members of the Programme Committee for the
evaluation of the submissions and their subreferees for their excellent cooper-
ation in this work. We are grateful to the contributors to the conference, in
particular to the invited speakers for their willingness to present interesting new
developments.

Finally, we thank Zsolt Gazdag and Szabolcs Iván for their technical assis-
tance during the preparation of these proceedings, and all those whose work
behind the scenes contributed to this volume.

June 2007 Erzsébet Csuhaj-Varjú
Zoltán Ésik

Organization

Programme Committee

Jiri Adámek (Braunschweig, Germany)
Giorgio Ausiello (Rome, Italy)
Jean Berstel (Marne-la-Vallée, France)
Flavio Corradini (Camerino, Italy)
Erzsébet Csuhaj-Varjú (Budapest, Hungary), co-chair
Zoltán Ésik (Szeged, Hungary), co-chair
Jozef Gruska (Brno, Czech Republic)
Masahito Hasegawa (Kyoto, Japan)
Juraj Hromkovic (Zurich, Switzerland)
Anna Ingólfsdóttir (Reykjavik, Iceland)
Masami Ito (Kyoto, Japan)
Frédéric Magniez (Paris, France)
Catuscia Palamidessi (Palaiseau, France)
Gheorghe Păun (Bucharest, Romania and Seville, Spain)
Jean-Éric Pin (Paris, France)
Alexander Rabinovich (Tel-Aviv, Israel)
R. Ramanujam (Chennai, India)
Wojciech Rytter (Warsaw, Poland)
Arto Salomaa (Turku, Finland)
David A. Schmidt (Manhattan, KS, USA)
Alex Simpson (Edinburgh, UK)
Michael Sipser (Cambridge, MA, USA)
Colin Stirling (Edinburgh, UK)
Howard Straubing (Chestnut Hill, MA, USA)
György Turán (Chicago, IL, USA)
Thomas Wilke (Kiel, Germany)

Steering Committee

Bogdan S. Chlebus (Warsaw, Poland and Denver, USA)
Zoltán Ésik (Szeged, Hungary)
Marek Karpinski (Bonn, Germany), chair
Andrzej Lingas (Lund, Sweden)
Miklos Santha (Paris, France)
Eli Upfal (Providence, RI, USA)
Ingo Wegener (Dortmund, Germany)

VIII Organization

Additional Referees

Scott Aaronson
Farid Ablayev
Luca Aceto
Dimitris Achlioptas
Ruben Agadzanyan
Jean-Paul Allouche
Roberto Amadio
Amihood Amir
Ricardo Baeza-Yates
Nikhil Bansal
Franco Barbanera
David A. Mix Barrington
Ezio Bartocci
Ingo Battenfeld
Pawe�l Baturo
Maurice H. ter Beek
Radim Bělohlávek
Dietmar Berwanger
Amitava Bhattacharya
Yngvi Björnsson
Zoltán Blázsik
Luc Boasson
Hans-Joachim

Böckenhauer
Andreas Brandstädt
Diletta Cacciagrano
Nicola Cannata
Silvio Capobianco
Venanzio Capretta
Olivier Carton
Matteo Cavaliere
Sourav Chakraborty
Jean-Marc

Champarnaud
Arkadev Chattopadhyay
Parimal P. Chaudhuri
Vincent Conitzer
José R. Correa
Bruno Courcelle
Pierluigi Crescenzi
Maxime Crochemore
Stefan Dantchev
Bhaskar DasGupta

Jürgen Dassow
Clelia De Felice
Camil Demetrescu
Mariangiola

Dezani-Ciancaglini
Michael Domaratzki
Alberto Peinado

Domı́nguez
Manfred Droste
Stefan Dziembowski
Bruno Escoffier
Olivier Finkel
Maurizio Gabbrielli
Peter Gacs
Ricard Gavaldà
Blaise Genest
Robert Gilman
Amy Glen
Judy Goldsmith
Éva Gombás
Martin Grohe
Jiong Guo
Dan Gutfreund
Michel Habib
Vesa Halava
Bjarni V. Halldórsson
Magnús M. Halldórsson
Joseph Y. Halpern
Laszlo Hars
Reinhold Heckmann
Yoram Hirshfeld
Petr Hliněný
Štěpán Holub
Hendrik Jan Hoogeboom
Tamás Horváth
Brian Howard
Mihály Hujter
Mathilde Hurand
Atsushi Igarashi
Lucian Ilie
Csanád Imreh
Chuzo Iwamoto
Klaus Jansen

Emmanuel Jeandel
Yoshihiko Kakutani
Haim Kaplan
Marc Kaplan
Christos Kapoutsis
Juhani Karhumäki
Marek Karpinski
Shin-ya Katsumata
Zurab Khasidashvili
Jürgen Koslowski
�Lukasz Kowalik
Mirek Kowaluk
Richard Kralovic
Manfred Kudlek
Werner Kuich
Arvind Kumar
Michal Kunc
Sonia L’Innocente
Anna Labella
Marie Lalire
Sophie Laplante
Peeter Laud
Troy Lee
Stefano Leonardi
Tal Lev-Ami
Nutan Limaye
Kamal Lodaya
Christof Löding
Sylvain Lombardy
Elena Losievskaja
Jack Lutz
Meena Mahajan
Sebastian Maneth
Pierre McKenzie
Paul-André Melliès
Massimo Merro
Antoine Meyer
Mehdi Mhalla
Sounaka Mishra
Tobias Mömke
Raúl Montes-de-Oca
Fabien de Montgolfier
Kenichi Morita

Organization IX

Mohammad Reza
Mousavi

Frantǐsek Mráz
Marcin Mucha
Loránd Muzamel
Kedar Namjoshi
Sebastian Nanz
Zoltán L. Németh
Jean Néraud
Frank Neven
Brian Nielsen
Vivek Nigam
Hidenosuke Nishio
Mitsunori Ogihara
Yoshio Okamoto
Alexander Okhotin
Carlos Olarte
Bernhard Ömer
Marion Oswald
Sang-il Oum
Prakash Panangaden
Madhusudan

Parthasarathy
Pawel Parys
Ion Petre
Wojciech Plandowski
Martin Plesch
Andrea Polini
Sanjiva Prasad

Pavel Pudlák
Tomasz Radzik
Stanis�law P.

Radziszowski
George Rahonis
Klaus Reinhardt
Eric Rémila
Vladimir Rogojin
Andrea Roli
Martin Rötteler
Michel de Rougemont
Michaël Rusinowitch
Jan Rutten
Marie-France Sagot
Miklos Santha
Jayalal Sarma
Benôıt Saussol
Marcus Schaefer
Manfred Schimmler
Sebastian Seibert
Olivier Serre
Ehud Shapiro
Jeong Seop Sim
Sunil Simon
Jerzy Skurczyński
Michiel Smid
Jǐŕı Srba
George Steiner
S. P. Suresh

Mario Szegedy
Luca Tesei
Carlo Toffalori
Masafumi Toyama
Vladimir Trifonov
Angelo Troina
Tomasz Truderung
Zsolt Tuza
Sándor Vágvölgyi
Frank D. Valencia
Leslie Valiant
Moshe Vardi
György Vaszil
Laurent Viennot
S. Vijayakumar
Leonardo Vito
Heiko Vogler
Laurent Vuillon
Bill Wadge
Magnus Wahlstrom
Thomas Worsch
Peng Wu
Yasushi Yamashita
Mihalis Yannakakis
Shoji Yuen
Eugen Zălinescu
Mario Ziman

Table of Contents

Invited Lectures

Rewriting Systems with Data . 1
Ahmed Bouajjani, Peter Habermehl, Yan Jurski, and
Mihaela Sighireanu

Spiking Neural P Systems: Some Characterizations 23
Oscar H. Ibarra and Sara Woodworth

Approximating Graphs by Graphs and Functions (Abstract) 38
László Lovász

Traces, Feedback, and the Geometry of Computation (Abstract) 39
Philip J. Scott

Contributions

A Largest Common d-Dimensional Subsequence of Two d-Dimensional
Strings . 40

Abdullah N. Arslan

Analysis of Approximation Algorithms for k-Set Cover Using
Factor-Revealing Linear Programs . 52

Stavros Athanassopoulos, Ioannis Caragiannis, and
Christos Kaklamanis

A Novel Information Transmission Problem and Its Optimal Solution . . . 64
Eric Bach and Jin-Yi Cai

Local Testing of Message Sequence Charts Is Difficult 76
Puneet Bhateja, Paul Gastin, Madhavan Mukund, and
K. Narayan Kumar

On Notions of Regularity for Data Languages . 88
Henrik Björklund and Thomas Schwentick

FJMIP: A Calculus for a Modular Object Initialization 100
Viviana Bono and Jaros�law D.M. Kuśmierek

Top-Down Deterministic Parsing of Languages Generated by CD
Grammar Systems . 113

Henning Bordihn and György Vaszil

XII Table of Contents

The Complexity of Membership Problems for Circuits over Sets of
Positive Numbers . 125

Hans-Georg Breunig

Pattern Matching in Protein-Protein Interaction Graphs 137
Gaëlle Brevier, Romeo Rizzi, and Stéphane Vialette

From Micro to Macro: How the Overlap Graph Determines the
Reduction Graph in Ciliates . 149

Robert Brijder, Hendrik Jan Hoogeboom, and Grzegorz Rozenberg

A String-Based Model for Simple Gene Assembly . 161
Robert Brijder, Miika Langille, and Ion Petre

On the Computational Power of Genetic Gates with Interleaving
Semantics: The Power of Inhibition and Degradation 173

Nadia Busi and Claudio Zandron

On Block-Wise Symmetric Signatures for Matchgates 187
Jin-Yi Cai and Pinyan Lu

Path Algorithms on Regular Graphs . 199
Didier Caucal and Dinh Trong Hieu

Factorization of Fuzzy Automata . 213
Miroslav Ćirić, Aleksandar Stamenković, Jelena Ignjatović, and
Tatjana Petković

Factorisation Forests for Infinite Words . 226
Thomas Colcombet

Marked Systems and Circular Splicing . 238
Clelia De Felice, Gabriele Fici, and Rosalba Zizza

The Quantum Query Complexity of Algebraic Properties 250
Sebastian Dörn and Thomas Thierauf

On the Topological Complexity of Weakly Recognizable Tree
Languages . 261

Jacques Duparc and Filip Murlak

Productivity of Stream Definitions . 274
Jörg Endrullis, Clemens Grabmayer, Dimitri Hendriks,
Ariya Isihara, and Jan Willem Klop

Multi-dimensional Packing with Conflicts . 288
Leah Epstein, Asaf Levin, and Rob van Stee

Table of Contents XIII

On Approximating Optimal Weighted Lobbying, and Frequency of
Correctness Versus Average-Case Polynomial Time 300

Gábor Erdélyi, Lane A. Hemaspaandra, Jörg Rothe, and
Holger Spakowski

Efficient Parameterized Preprocessing for Cluster Editing 312
Michael Fellows, Michael Langston, Frances Rosamond, and
Peter Shaw

Representing the Boolean OR Function by Quadratic Polynomials
Modulo 6 . 322

Gyula Győr

On the Complexity of Kings . 328
Edith Hemaspaandra, Lane A. Hemaspaandra, Till Tantau, and
Osamu Watanabe

Notions of Hyperbolicity in Monoids . 341
Michael Hoffmann and Richard M. Thomas

P Systems with Adjoining Controlled Communication Rules 353
Mihai Ionescu and Dragoş Sburlan

The Simplest Language Where Equivalence of Finite Substitutions Is
Undecidable . 365

Michal Kunc

Real-Time Reversible Iterative Arrays . 376
Martin Kutrib and Andreas Malcher

The Computational Complexity of Monotonicity in Probabilistic
Networks . 388

Johan Kwisthout

Impossibility Results on Weakly Black-Box Hardness Amplification 400
Chi-Jen Lu, Shi-Chun Tsai, and Hsin-Lung Wu

Maximal and Minimal Scattered Context Rewriting 412
Alexander Meduna and Jǐŕı Techet

Strictly Deterministic CD-Systems of Restarting Automata 424
H. Messerschmidt and F. Otto

Product Rules in Semidefinite Programming . 435
Rajat Mittal and Mario Szegedy

Expressive Power of LL(k) Boolean Grammars . 446
Alexander Okhotin

XIV Table of Contents

Complexity of Pebble Tree-Walking Automata . 458
Mathias Samuelides and Luc Segoufin

Some Complexity Results for Prefix Gröbner Bases in Free Monoid
Rings . 470

Andrea Sattler-Klein

Fast Asymptotic FPTAS for Packing Fragmentable Items with Costs . . . 482
Hadas Shachnai and Omer Yehezkely

An O(1.787n)-Time Algorithm for Detecting a Singleton Attractor in a
Boolean Network Consisting of AND/OR Nodes . 494

Takeyuki Tamura and Tatsuya Akutsu

Author Index . 507

Rewriting Systems with Data

A Framework for Reasoning About Systems with
Unbounded Structures over Infinite Data Domains�

Ahmed Bouajjani1, Peter Habermehl1,2, Yan Jurski1, and Mihaela Sighireanu1

1 LIAFA, CNRS & U. Paris 7, Case 7014, 2 place Jussieu, 75251 Paris 05, France
2 LSV, CNRS & ENS Cachan, 61 av Président Wilson, 94235 Cachan, France

Abstract. We introduce a uniform framework for reasoning about in-
finite-state systems with unbounded control structures and unbounded
data domains. Our framework is based on constrained rewriting systems
on words over an infinite alphabet. We consider several rewriting seman-
tics: factor, prefix, and multiset rewriting. Constraints are expressed in
a logic on such words which is parametrized by a first-order theory on
the considered data domain. We show that our framework is suitable for
reasoning about various classes of systems such as recursive sequential
programs, multithreaded programs, parametrized and dynamic networks
of processes, etc. Then, we provide generic results (1) for the decidability
of the satisfiability problem of the fragment ∃∗∀∗ of this logic provided
that the underlying logic on data is decidable, and (2) for proving in-
ductive invariance and for carrying out Hoare style reasoning within this
fragment. We also show that the reachability problem is decidable for a
class of prefix rewriting systems with integer data.

1 Introduction

Software verification requires in general reasoning about infinite-state models.
The sources of infinity in software models are multiple. They can be related
for instance to the complex control these system may have due, e.g., to recur-
sive procedure calls, communication through fifo channels, dynamic creation of
concurrent processes, or the consideration of a parametric number of parallel
processes. Other important sources of infinity are related to the manipulation of
variables and (dynamic) data structures ranging over infinite data domains such
as integers, reals, arrays, heap structures like lists and trees, etc.

In the last few years, a lot of effort has been devoted to the development of
theoretical frameworks for the formal modeling and the automatic analysis of
several classes of software systems. Rewriting systems (on words or terms), as
well as related automata-based frameworks, have been shown to be adequate
for reasoning about various classes of systems such as recursive programs, mul-
tithreaded programs, parametrized or dynamic networks of identical processes,
communicating systems through fifo-channels, etc. (see, e.g., [11,4,13] for survey

� Partially supported by the French ANR project ACI-06-SETI-001.

E. Csuhaj-Varjú and Z. Ésik (Eds.): FCT 2007, LNCS 4639, pp. 1–22, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

2 A. Bouajjani et al.

papers). These works address in general the problem of handling systems with
complex control structures, but where the manipulated data range of finite do-
mains, basically booleans. Other existing works address the problem of handling
models with finite control structures, but which manipulate variables over infi-
nite data domains such as counters, clocks, etc., or unbounded data structures
(over finite alphabets) such as stacks, queues, limited forms of heap memory
(e.g., lists, trees), etc. [2,14,29,8,6,26,25,27,12,15]. Notice that the boundary be-
tween systems with infinite control and systems with infinite data is not sharp.
For instance, recursive programs can be modeled as prefix rewrite systems which
are equivalent to pushdown systems, and (classes of) multithreaded programs
can be modeled using multiset rewrite systems which are equivalent to Petri nets
and to vector addition systems (a particular class of counter machines).

As already said, in all the works mentionned above, only one source of in-
finity is taken into account (while the others are either ignored or abstracted
away). Few works dealing with different sources of infinity have been carried
out nevertheless, but the research on this topic is still in its emerging phase
[5,1,21,19,17,3,16]. In this paper, we propose a uniform framework for reasoning
about infinite-state systems with both unbounded control structures and un-
bounded data domains. Our framework is based on word rewriting systems over
infinite alphabets where each element is composed from a label over a finite set
of symbols and a vector of data in a potentially infinite domain. Words over
such an alphabet are called data words and rewriting systems on such words
are called data word rewriting systems (DWRS for short). A DWRS is a set of
rewriting rules with constraints on the data carried by the elements of the words.

The framework we propose allows to consider different rewriting semantics
and different theories on data, and allows also to apply in a generic way decision
procedures and analysis techniques. The rewriting semantics we consider are
either the factor rewriting semantics (which consists in replacing any factor in
the word corresponding to the left hand side or a rule by the right hand side),
as well as the prefix and the multiset rewriting semantics. The constraints in
the rewriting systems are expressed in a logic called DWL which is an extension
of the monadic first-order theory of the natural ordering on positive integers
(corresponding to positions on the word) with a theory on data allowing to
express the constraints on the data values at each position of the word. The
theory on data, which is a parameter of the logic DWL, can be any fist-order
theory such as Presburger arithmetics, or the first-order theory on reals.

We show that this framework is expressive enough to model various classes of
infinite-state systems. Prefix rewriting systems are used to model recursive pro-
grams with global and local variables over infinite data domains. Factor rewrit-
ing systems are used for modeling parametrized networks of processes with a
linear topology (i.e., there is a total ordering between the identities of the pro-
cesses). This is for instance the case of various parallel and/or distributed al-
gorithms. (We give as an example a model for the Lamport’s Bakery algorithm
for mutual exclusion.) Multiset rewriting systems can be used for modeling mul-
tithreaded programs or dynamic/parametrized networks where the information

Rewriting Systems with Data 3

about identities of processes is not relevant. This is the case for various systems
such as cache coherence protocols (see, e.g., [23]).

We address the decidability of the satisfiability problem of the logic DWL. We
show that this problem is undecidable for very weak theories on data already
for the fragment of ∀∗∃∗ formulas. On the other hand, we prove the generic
result that whenever the underlying theory on data has a decidable satisfiability
problem, the fragment of ∃∗∀∗ formulas of DWL has also a decidable satisfiability
problem.

Then, we address the issue of automatic analysis of DWRS models. We provide
two kinds of results. First, we consider the problem of carrying out post and pre
condition reasoning based on computing immediate successors and immediate
predecessors of sets of configurations. We prove, again in a generic way, that the
fragment of ∃∗∀∗ formulas in DWL is effectively closed under the computation of
post and pre images by rewriting systems with constraints in ∃∗∀∗. We show how
this result, together with the decidability result of the satisfiability problem in
∃∗∀∗, can be used for deciding whether a given assertion is an inductive invariant
of a system, or whether the specification of an action is coherent, that is, the
execution of an action starting from the pre condition leads to configurations
satisfying the post condition. The framework we present here generalizes the one
we introduced recently in [16] based on constrained multiset rewriting systems.
Our generalization to word factor and prefix rewriting systems allows to deal in
a uniform and natural way with a wider class of systems where reasoning about
linearly ordered structures is needed.

Finally, we consider the problem of solving the reachability problem for a sub-
class of DWRS. We provide a new decidability result of this problem for the class
of context-free prefix rewriting systems (i.e., where the left hand side of each rule
is of size 1) over the data domain of integers with difference constraints. (Ex-
tensions of this class lead to undecidabilty.) This results generalizes a previous
result we have established few years ago in [17] for a more restricted class of
systems where not all difference constraints were allowed.

Related work: Regular model checking has been defined as a uniform framework
for reasoning about infinite-state systems [29,28,18,4]. However, this framework
is based on finite-state automata and transducers over finite alphabets which
does not allow to deal in a simple and natural way with systems with both
unbounded control and data domains. The same holds for similar frameworks
based on word/tree rewriting systems over a finite alphabet (e.g., [11,13]).

Works on the analysis of models for systems with two sources of infinity such
as networks of infinite-stat processes are not very numerous in the literature. In
[5], the authors consider the case of networks of 1-clock timed systems and show
that the verification problem for a class of safety properties is decidable under
some restrictions on the used constraints. Their approach has been extended in
[21,19] to a particular class of multiset rewrite systems with constraints (see also
[3] for recent developments of this approach). In [17], we have considered the
case of prefix rewrite systems with integer data which can be seen as models
of recursive programs with one single integer parameter. Again, under some

4 A. Bouajjani et al.

restrictions on the used arithmetical constraints, we have shown the decidability
of the reachability problem. The result we prove in section 7 generalization our
previous result of [17].

Recently, we have defined a generic framework for reasoning about paramet-
rized and dynamic networks of infinite-state processes based on constrained mul-
tiset rewrite systems [16]. The work we present generalizes that work to other
classes of rewriting systems.

In a series of papers, Pnueli et al. developed an approach for the verification
of parameterized systems combining abstraction and proof techniques (see, e.g.,
[7]). In [7], the authors consider a logic on (parametric-bound) arrays of integers,
and they identify a fragment of this logic for which the satisfiability problem is
decidable. In this fragment, they restrict the shape of the formula (quantification
over indices) to formulas in the fragment ∃∗∀∗ similarly to what we do, and also
the class of used arithmetical constraints on indices and on the associated values.
In a recent work by Bradley and al. [20], the satisfiability problem of the logic
of unbounded arrays with integers is investigated and the authors provide a
new decidable fragment, which is incomparable to the one defined in [7], but
again which imposes similar restrictions on the quantification alternation in the
formulas, and on the kind of constraints that can be used. In contrast with
these works, our decidable logical fragment has a weaker ability of expressing
ordering constraints on positions (used, e.g., to represent identities of processes
in parametrized/dynamic networks), but allows any kind of data, provided that
the used theory on the considered data domain is decidable. For instance, we
can use in our logic general Presburger constraints whereas [7] and [20] allow
limited classes of constraints.

Let us finally mention that there are recent works on logics (first-order logics,
or temporal logics) over finite/infinite structures (words or trees) over infinite
alphabets (which can be considered as abstract infinite data domains) [10,9,24].
The obtained positive results so far concern logics with limited data domain
(basically infinite sets with only equality, or sometimes with an ordering rela-
tion), and are based on reduction to complex problems such as reachability in
Petri nets. Contrary to these works, our approach is to prefer weakening the
first-order/model language for describing the structures while preserving the ca-
pacity of expressing constraints on data. We believe that this approach could be
more useful in practice since it allows to cover a large class of applications as
this paper tries to show.

2 A Logic for Reasoning About Words over Data
Domains

2.1 Preliminaries

Let Σ be a finite alphabet, and let D be a potentially infinite data domain. For
a given N ∈ N such that N ≥ 1, words over Σ × DN are called N -dim data
words. Let (Σ×DN)∗ (resp. (Σ×DN)ω) be the set of finite (resp. infinite) data

Rewriting Systems with Data 5

words, and let (Σ × DN)∞ be the union of these two sets. Given a data word
σ, we denote by |σ| the (finite or infinite) length of σ. A word σ ∈ (Σ × DN)∞

can be considered as a mapping from [0, |σ|) to Σ × DN , i.e., σ = σ(0)σ(1)
Given e = (A, d1, . . . , dN) ∈ Σ × DN , let label (e) denote the element A and let
data(e) denote the vector (d1, . . . , dN). For k ∈ {1, . . . , N}, datak(e) denotes
the elements dk of e. These notations are generalized in the obvious manner to
words over Σ × DN .

2.2 A First-Order Logic over Data Words

We introduce herefater the data word logic (DWL for short) which is a first order
logic allowing to reason about data words by considering the labels as well as
the data values at each of their positions. The logic DWL is parameterized by a
(first-order) logic on the considered data domain D, i.e., by the set of operations
and the set of basic predicates (relations) allowed on elements of D.

Let Ω be a finite set of functions over D, and let Ξ be a finite set of relations
over D. Consider also a set of position variables I ranging over positive integers
and a set of data variables D ranging over data values in D, and assume that
I ∩ D = ∅. Then, the set of terms of DWL(D, Ω,Ξ) is given by the grammar:

t ::= u | δk[x] | o(t1, . . . , tn)

where k ∈ {1, . . . , N}, x ∈ I, u ∈ D, and o ∈ Ω. The set of formulas of
DWL(D, Ω,Ξ) is given by:

ϕ ::= 0 < x | x < y | A[x] | r(t1, . . . , tn) | ¬ϕ | ϕ ∨ ϕ | ∃u. ϕ | ∃x. ϕ

where x, y ∈ I, u ∈ D, A ∈ Σ, and r ∈ Ξ.
As usual, boolean connectives such as conjunction ∧ and implication ⇒ are

defined in terms of disjunction ∨ and negation ¬, and universal quantification
∀ is defined as the dual of existential quantification ∃. We also define equality
= and disequality �= in terms of < and boolean connectives. Let x = 0 be an
abbreviation of ¬(0 < x) and let x = y be an abbreviation of ¬(x < y)∧¬(y < x).
We also write as usual t ≤ t′ for t < t′ ∨ t = t′, where t and t′ represent
either position variables or 0. Then, let t �= t′ be an abbreviation of ¬(t = t′),
for t, t′ ∈ I ∪ {0}. We denote by DWL= the set of DWL formulas where the
only comparisons constraints between position variables, and between position
variables and 0 are equality or disequality constraints.

The notions of bound and free variables are defined as usual in first-order
logic. Given a formula ϕ, the set of free variables in ϕ is denoted FV (ϕ).

Formulas are interpreted on finite or infinite words over the alphabet Σ×DN .
Intuitively, position variables correspond to positions in the considered word. The
formula A[x] is true if A is the label of the element at the position corresponding
to the position variable x. The term δk[x] represents the kth data value attached
to the element at the position corresponding to x. Terms are built from such
data values and from data variables by applying operations in Ω. Formulas of

6 A. Bouajjani et al.

the form r(t1, . . . , tn) allow to express constraints on data values at different
positions of the word.

Formally, we define a satisfaction relation between such models and formulas.
Let σ ∈ (Σ × DN)∞. In order to interpret open formulas, we need valuations of
position and data variables. Given μ : I → N and ν : D → D, the satisfaction
relation is inductively defined as follows:

σ |=μ,ν 0 < x iff 0 < μ(x)
σ |=μ,ν x < y iff μ(x) < μ(y)
σ |=μ,ν A[x] iff label(σ(μ(x))) = A

σ |=μ,ν r(t1, . . . , tm) iff r(〈t1〉σ,μ,ν , . . . , 〈tm〉σ,μ,ν)
σ |=μ,ν ¬ϕ iff σ �|=μ,ν ϕ

σ |=μ,ν ϕ1 ∨ ϕ2 iff σ |=μ,ν ϕ1 or σ |=μ,ν ϕ2

σ |=μ,ν ∃u. ϕ iff ∃d ∈ D. σ |=μ,ν[u←d] ϕ

σ |=μ,ν ∃x. ϕ iff ∃i ∈ N. i < |σ| and σ |=μ[x←i],ν ϕ

where the mapping 〈·〉σ,μ,ν , associating to each term a data value, is inductively
defined as follows:

〈u〉σ,μ,ν = ν(u)
〈δk[x]〉σ,μ,ν = datak(σ(μ(x)))

〈o(t1, . . . , tn)〉σ,μ,ν = o(〈t1〉σ,μ,ν , . . . , 〈tn〉σ,μ,ν)

Given a formula ϕ, let [[ϕ]]μ,ν = {σ ∈ (Σ × DN)∞ : σ |=μ,ν ϕ}. A formula ϕ
is satisfiable if and only if there exist valuations μ and ν such that [[ϕ]]μ,ν �= ∅.
The subscripts of |= and [[·]] are omitted in the case of a closed formula.

2.3 Quantifier Alternation Hierarchy

A formula is in prenex form if it is written Q1z1Q2z2 . . . Qmzm. ϕ where (1)
Q1, . . . , Qm ∈ {∃, ∀}, (2) z1, . . . , zm ∈ I ∪ D, and ϕ is a quantifier-free formula.
It can be proved that for every formula ϕ, there exists an equivalent formula ϕ′

in prenex form.
We consider two families {Σn}n≥0 and {Πn}n≥0 of sets of formulas defined

according to the alternation depth of existential and universal quantifiers in their
prenex form:

– Σ0 = Π0 is the set of formulas where all quantified variables are in D,
– For n ≥ 0, Σn+1 (resp. Πn+1) is the set of formulas Qz1 . . . zm. ϕ where
z1, . . . , zm ∈ I ∪ D, Q is the existential (resp. universal) quantifier ∃ (resp.
∀), and ϕ is a formula in Πn (resp. Σn).

It can be seen that, for every n ≥ 0, Σn and Πn are closed under conjunction
and disjunction, and that the negation of a Σn formula is a Πn formula and vice
versa. For every n ≥ 0, let B(Σn) denote the set of all boolean combinations
of Σn formulas. Clearly, B(Σn) subsumes both Σn and Πn, and is included in
both Σn+1 and Πn+1.

Rewriting Systems with Data 7

2.4 Data Independent Formulas

A DWL formula is data independent if it does not contain occurrences of data
predicates of the form r(t1, . . . , tn) and of quantification over data variables.
Syntactically, the set of data independent formulas is the same as the set of
formulas of the monadic first-order logic over integers with the usual ordering
relation. (Projections on the alphabet Σ of their models define star-free regular
languages.) Interpreted over data words, these formulas satisfy the following
closure properties: for every data words σ and σ′, and for every data independent
formula ϕ, if label(σ) = label (σ′), then σ |=μ,ν ϕ if and only if σ′ |=μ,ν ϕ.

3 The Satisfiability Problem

We investigate in this section the decidability of the satisfiability problem of
DWL. First, we can prove that the logic is undecidable for very simple data the-
ories starting from the fragment Π2. The proof is by a reduction of the halting
problem of Turing machines. The idea is to encode a computation of a ma-
chine, seen as a sequence of tape configurations, as a data word. Each position
corresponds to a cell in the tape of the machine at some configuration in the
computation. We associate to each position (1) a positive integer value corre-
sponding to its rank in a configuration, and (2) a label encoding informations
(ranging over a finite domain) such as the contents of the cell, the fact that a
cell corresponds to the location of the head, and the control state of the ma-
chine. Then, using DWL formulas in the Π2 (i.e., ∀∗∃∗) fragment, it is possible
to express that two consecutive configurations correspond indeed to a valid tran-
sition of the machine. Intuitively, this is possible because these formulas allow
to relate each cell at some configuration to the corresponding cell at the next
configuration. We need for that to use the ordering on positions to talk about
successive configurations, and the equality on the values attached to positions to
relate cells with the same rank in these successive configurations. For the logic
DWL=, since we do not have an ordering on positions, we need to attach another
value to position representing their rank in the configurations.

Theorem 1. The satisfiability problem of the fragment Π2 is undecidable for
DWL(N,=) and DWL=(N, 0, <).

Then, the main result of this section is that whenever the underlying theory on
data has a decidable satisfiability problem, the fragment Σ2 has also a decidable
satisfiability problem.

Theorem 2. If the satisfiability problem for FO(D, Ω,Ξ) is decidable, then the
satisfiability problem of the fragment Σ2 of DWL(D, Ω,Ξ) is also decidable.

The rest of the section is devoted to the proof of theorem above. We show that
the satisfiability problem in the fragment Σ2 of DWL(D, Ω,Ξ) can be reduced
to the satisfiability problem in logic on data FO(D, Ω,Ξ).

8 A. Bouajjani et al.

First of all, we need to introduce a slight modification in the definition of data
words: So far, we have considered that a data word σ is total mappings from the
interval [0, |σ|) to the alphabet Σ ×DN . Let us consider now that a word σ is a
total mapping from a set of natural numbers Sσ to the alphabet Σ×DN , where
Sσ is not necessarily an interval. Clearly, there is an isomorphism πσ from [0, |σ|)
to Sσ, and this isomorphism is monotonic. Let us denote [σ], for every word σ,
the (unique) mapping from [0, |σ|) to Σ × DN such that, for every i ∈ [0, |σ|),
[σ](i) = σ(πσ(i)).

Furthermore, assume that in the definition of the satisfaction relation |= be-
tween data words and DWL formulas, the last line (the case of existential quantifi-
cation over position variables) is substituted by: σ |=μ,ν ϕ iff ∃i ∈ Sσ. σ |=μ[x←i],ν

ϕ. Then, it can be checked that the following holds.

Lemma 1. For every data word σ, for every DWL formula ϕ, and for every
position/data variable valuations μ and ν, we have σ |=μ,ν ϕ iff [σ] |=μ,ν ϕ.

The lemma above implies that, for every two data words σ and σ′ such that
[σ] = [σ′], we have σ |=μ,ν ϕ iff σ′ |=μ,ν ϕ, for every ϕ, μ, and ν.

Before starting the proof, we need to introduce a syntactical form of Σn

formulas, for any n ≥ 1. We say that a formula in such a fragment is in special
form if it is a finite disjunction of formulas of the form

∃x1, . . . , xn∃u∀y.
(
(
∧

1≤i<j≤n

xi < xj) ∧ ϕ
)

where x = (x1, . . . , xn) and y are position variables, and u is a vector of data
variables. It is easy to show that every formula in the fragment Σn has an
equivalent Σn formula in special form.

We are now ready to stat the proof of Theorem 2. Let ϕ be a DWL formula,
and assume w.l.o.g. that ϕ is closed, in special form, and given by:

ϕ = ∃x. ∃u. ∀y. ψ

where x and y are vectors of position variables, u is a vector of data variables.
Assume also that ϕ is satisfiable, which means that there is a data word σ such
that σ |= ϕ.

Then, let Θ be the set of all possible (partial or total) mappings between the
variables in y and the variables in x. Then, we have σ |= ∃x. ∃u. ϕ(1) where

ϕ(1) =
∧
θ∈Θ

∀y.
((

(
∧

y∈dom(θ)

y = θ(y)) ∧ (
∧

y
∈dom(θ)

∧
x∈x

y �= x)
)
⇒ ψ

)
(1)

This means that there are positions i in the domain of σ, and there are data
values d, such that

σ |=μ,ν ϕ
(1) (2)

where μ and ν are valuations associating i with x and d with u, respectively.

Rewriting Systems with Data 9

Consider now the data word σ′ = σ|i, i.e., the subword of σ corresponding to
the positions in i. Then, it can be seen that (2) implies that:

σ′ |=μ,ν

∧
θ∈Θ

dom(θ)=y

∀y.
(∧
y∈y

y = θ(y) ⇒ ψ
)

(3)

which is equivalent to σ′ |= ϕ(2) where

ϕ(2) = ∃x. ∃u.
∧
θ∈Θ

dom(θ)=y

∧
y∈y

ψ[θ(y)/y] (4)

Conversely, every minimal model (according to the size of its domain) of the
formula ϕ(2) above is necessarily a model of the formula ∃x. ∃u. ϕ(1), which is
equivalent to the formula ϕ. Therefore, we have reduced the satisfiability problem
of Σ2 to the satisfiability problem in Σ1.

The last step of the proof is to reduce the satisfiability problem of the Σ1

formula ϕ(2) to the satisfiability problem of a pure data formula in FO(D, Ω,Ξ).
For that, we must get rid of the comparisons between position variables, and of
constraints on position labels.

Since the formula ϕ in special form, the values associated with the position
variables x are in the same order as their indices. Then, let ϕ(3) = ∃x. ∃u. ψ′ be
the formula obtained from ϕ(2) by replacing each constraint xi < xj by true if
i < j, or by false otherwise. The formula ϕ(3) is equivalent to the formula ϕ(2)

but has no comparison constraints between position variables. Now, since the
alphabet Σ is finite, we can build an equivalent formula to ϕ(3) which has no
label constraints: we consider a disjunction on all possible mappings λ from x to
Σ. For each of these mapping λ, we replace in ϕ(3) each occurrence of a formula
A[x] by true if λ(x) = A, or by false otherwise. Let ϕ(4) be the so obtained
formula.

Finally, we define a FO(D, Ω,Ξ) formula which is satisfiable if and only if
ϕ(4) is satisfiable. This formula is obtained by replacing in ϕ(4) terms involving
positions variables by data variables: for each variable x ∈ x and for each rank
k ∈ {1, . . . , N}, we associate a fresh data variable vx,k. Then, we remove in ϕ(4)

the quantification of x and we substitute each occurrence of a term δk(x) by the
variable vx,k.

4 Rewriting Systems over Data Words

4.1 Rewriting Rules

A data word rewriting rule over the logic DWL has the form:

A0 · · ·An �→ B0 · · ·Bm : ϕ

where Ai, Bj ∈ Σ for all i ∈ {0, . . . , n} and j ∈ {0, . . . ,m}, and ϕ is a DWL
formula such that (1) FV (ϕ) = {x0, . . . , xn} ∪ {y0, . . . , ym}, and (2) all the

10 A. Bouajjani et al.

occurrences in ϕ of the variables yj are in terms of the form δk(yj) for 0 ≤ k ≤ N .
We assume in this definition that the left hand side of a rule has at least one
symbol (n ≥ 0), and that its right hand side can be empty. When B0 · · ·Bm

is empty, the formula ϕ has only free variables {x0, . . . , xn} related to the left
hand side of the rule.

Intuitively, the application of a rewriting rule to a data word σ (leading to
a new word σ′) consists in replacing in σ a subword γ such that label (γ) is
equal to A0 · · ·An by another word γ′ such that label(γ′) is equal to B0 · · ·Bm,
provided that the formula ϕ, relating the data values in σ with data values in
γ′, is satisfied. Each variable xk (resp. yk) represents the position in σ (resp. σ′)
of the kth elements of γ (resp. γ′). The formula ϕ can constrain the positions
corresponding to elements of γ as well as their attached data values w.r.t. data
values at other position in σ. Moreover, the formula ϕ can constrain the data
values in the new word by relating these data values with data values attached
to positions in σ.

4.2 Rewriting Semantics

A rewriting system is given by a set of rewrite rules and a rewriting semantics.
Several rewriting relations between words can be considered depending on the
adopted semantics of rewriting. Given a set Δ of data word rewriting rules,
we consider here four relations ⇒Δ,f , ⇒Δ,p, and ⇒Δ,m corresponding respec-
tively to factor, prefix, and multiset rewriting. Subscripts are omitted whenever
the considered rewriting system and/or rewriting semantics are know from the
context.

Let us start by defining the semantics of factor and prefix rewriting. For that,
let us fix a rewrite system Δ. Then, for every σ, σ′ ∈ (Σ×DN)∗, we have σ ⇒f σ

′

(resp. σ ⇒p σ
′) if and only if there exists a rewrite rule “A0 · · ·An �→ B0 · · ·Bm :

ϕ” and there exist data words α, β, γ, γ′ ∈ (Σ × DN)∗ such that

– factor rewriting: σ = αγβ and σ′ = αγ′β,
– prefix rewriting: σ = γβ, σ′ = γ′β, and |α| = 0,

with label (γ) = A0 · · ·An, label(γ′) = B0 · · ·Bm and

σ |= ϕ[(|α|+ i)/xi]0≤i≤n[datak(γ′(j))/δk[yj]]0≤k≤N,0≤j≤m

Now, in order to define the multiset rewriting relation, we consider the equiv-
alence relation between words which abstracts away the ordering between sym-
bols: Given σ, σ′ ∈ (Σ × DN)∗, we have σ � σ′ if and only if there exists a
permutation π of {0, . . . , |σ| − 1} such that σ(π(0)) · · · σ(π(|σ| − 1)) = σ′. Then,
for every σ, σ′ ∈ (Σ ×DN)∗, we have σ ⇒m σ′ if and only if ∃θ, θ′ ∈ (Σ ×DN)∗

such that σ � θ, θ ⇒f θ
′, and θ′ � σ′.

It can be seen that for every σ, σ′ such that σ � σ′, and for every formula ϕ in
DWL=, we have σ |= ϕ if and only if σ′ |= ϕ. This fact is not true in general for
DWL formulas. Therefore, in the case of multiset rewriting, we assume naturally
that all the constraints in the rewriting rules are in DWL=.

Rewriting Systems with Data 11

Given a set of rewriting rules Δ, the corresponding factor, prefix, and multiset
rewriting system are denoted Δf , Δp, and Δm, respectively. Let DWRS� be the
class of all �-rewriting systems, for � ∈ {f, p,m}.

5 Models of Infinite-State Systems

5.1 Recursive Programs with Data

We show hereafter that sequential programs with recursive procedure calls can be
translated into prefix rewriting systems. We consider that a program has several
procedures, and we assume that it uses a set of global variables g = (g1, . . . , gN)
and that each procedure has a set of local variables l = (l1, . . . , lM). (We assume
w.l.o.g. that the local variables are the same for all procedures, all of them
ranging over some data domain D.)

A program is given by its inter-procedural control flow graphs (ICFG for
short) which is a collection of control flow graphs (CFG), one for each of its pro-
cedures. Nodes in the CFG of a procedure represent control points in its source
code, and edges represent transitions from a control point to another one. We as-
sume that each procedure Π has an initial node nΠin. Edges in CFGs are labeled
by statements which can be either (1) tests over the values of the global/local
variables, (2) assignments of the global/local variables, (3) procedure calls, or
(4) procedure returns leading to a termination control point. Variables are as-
signed values of expressions built from global and local variables using a set of
operations Ω. Tests over variables are first-order assertions based on a set of
predicates Ξ.

Consider an ICFG, and let N be the set of its nodes. We associate with the
considered ICFG a prefix rewriting systems over the alphabet (N∪{G})×DN+M

where G is a special symbol, N is the number of global variables, and M is
the number of local variables of each procedure. Indeed, we consider that a
configuration of the recursive program defined by the ICFG is represented by a
finite word of the form (G,d0)(n1,d1)(n2,d2) · · · (n
,d
) where ni ∈ N for all
i ≥ 1 and di ∈ DN+M for all i ≥ 0. The element (G,d0) at position 0 of the
word is used to store the value of the global variables: we assume that for every
k ∈ {1, . . . , N}, the value of the variable gk is equal to the kth element of the
vector d0. Moreover, the rest of the word (n1,d1)(n2,d2) · · · (n
,d
) represents
the call stack of the program. In the element (ni,di) of this stack, ni represents
the point at which the control of the program will return after all the calls higher
in stack (i.e., of index less than i in our word representation) will be done, and
di represents the values of the local variables which must be restored when the
control will reach the point ni: we assume that for every k ∈ {N+1, . . . , N+M},
the value of the variable lk is equal to the kth element of the vector di. Then,
the set of rewriting rules of the system associated with the considered ICFG is
defined as follows:

12 A. Bouajjani et al.

Test: n ϕ(g,l)−−−−→n′ where ϕ is a FO(D, Ω,Ξ) formula, is modeled by:

Gn �→ Gn′ : ϕζ ∧ ϕid

where ζ is the substitution [δk[x0]/gk]1≤k≤N [δk[x1]/lk]N+1≤k≤N+M , and

ϕid =
N∧
i=1

N+M∧
j=N+1

δi[y0] = δi[x0] ∧ δj [y1] = δj [x1]

Assignment: n (g,l):=t(g,l)−−−−−−−−→n′ where t is a vector of Ω-terms, is modeled by:

Gn �→ Gn′ :
N∧
i=1

N+M∧
j=N+1

δi[y0] = tiζ ∧ δj[y1] = tjζ

where ζ is the substitution defined in the previous case.

Procedure call: n call(Π)−−−−−→n′ is modeled by:

Gn �→ GnΠinn
′ : ϕ′

id

where

ϕ′
id =

N∧
i=1

N+M∧
j=N+1

δi[y0] = δi[x0] ∧ δj [y2] = δj [x1]

Procedure return: n return−−−−→n′ is modeled by:

Gn �→ G :
N∧
i=1

δi[y0] = δi[x0]

More general prefix rewriting systems can be used in order to handle appli-
cations where stack inspection is needed. Indeed, the side constraints we allow
in the rewriting rules can be used for the expression of global conditions on
the stack content that must be satisfied before the execution of certain actions.
This is important for modeling various control access and resource-usage scenar-
ios. For instance, operations on security-critical objects can be executed only if
certain conditions are satisfied, e.g., (1) all procedures in the call stack have a
certain permission, or (2) a “privileged” procedure is present in the call stack
and all procedures higher in the stack have a permission. These constraints can
be expressed as DWL (data independent) formulas in the fragment Σ2:

∀x. (x1 ≤ x⇒ perm[x])

∃x.
(
x1 ≤ x ∧ privilege[x] ∧ ∀y. ((x1 ≤ y ∧ y < x) ⇒ perm[y])

)

Rewriting Systems with Data 13

5.2 Dynamic/Parametrized Networks of Processes

Unbounded networks of identical processes can be modeled using rewriting sys-
tems. We assume that each process is defined by an extended automaton, i.e.,
a finite-control machine manipulating a set of variables v = (v1, . . . , vN) rang-
ing over some given data domain D. More precisely, an extended automaton is
defined by a finite set of control locations Q, and a set of transitions between
these locations. Each transition is labeled by a statement which can be either a
test over the values of the variables, or an assignments of the variables. As in
section 5.1, assigned values to variables are defined using expressions built from
variables and a set of operations Ω, and tests are first-order assertions based on
a set of predicates Ξ.

Consider a network of n processes, where n is an arbitrary positive integer
(greater than 1). We represent a configuration of such a network by a word of
length n over the alphabet Q× DN . Then, to reason uniformly about networks
with an arbitrary number of processes, (1) we consider the set of all finite words
over Q× DN as possible configurations, and (2) we model the dynamics of the
whole family of networks with an arbitrary size by means of a rewriting system.
We use different rewriting semantics depending on the topology of the network.
In general, using factor rewriting systems allows to reason about networks with
a linear topology, i.e., where processes are arranged sequentially (or sometimes
as a ring). This corresponds to the case where an ordering is assumed between
the process identities (inducing a notion of neighborhood). Multiset rewriting
systems are used when the ordering between process is not relevant. This is the
case of many systems such as cache coherence protocols [23] and some classes of
multithreaded programs [22,16].

Data rewriting systems we consider allow to model various communication
(and synchronization) schemas between processes (e.g., shared variables, rendez-
vous), tests on local and global configurations, as well as dynamic creation and
deletion of processes.

As an example, we give hereafter the model corresponding to (a simplified
version of) the Lamport’s Bakery protocol for mutual exclusion. As usual in such
protocols, the algorithms handle a set of processes which compete for entering
into a critical section. The model of each process is a machine with tree control
locations: nocs, req, and cs. The location nocs correspond to activities of the
processes outside the critical section. When the process needs to enter the critical
section, it takes a ticket with a number (a positive integer) which is bigger that
the number of all existing tickets, and moves to the control location req. Then,
the process waits at this location for his turn to enter the critical section, that
is, until the number on its tickets become the smallest of all numbers on existing
tickets. In case of a conflict (since it may happen actually that two processes
obtain the same ticket number), the process with the smallest rank (identity)
enters the critical section. Then, the process can exit the critical section and
return to the control location nocs.

14 A. Bouajjani et al.

The Bakery protocol can be modeled by the following factor rewriting system
Δbakery defined over the alphabet {nocs, req, cs} × N.

nocs �→ req : ∀i. δ[y0] > δ[i]
req �→ cs : ∀i.

(
δ[i] > 0 ⇒ (δ[x0] < δ[i] ∨ δ[x0] = δ[i] ∧ x0 < i)

)
∧

δ[y0] = δ[x0]
cs �→ nocs : δ[y0] = 0

Notice that Δbakery is a system of the class DWRSf [Π1] since all side constraints
in the rule are universally quantified formulas.

6 Post and Pre Condition Reasoning

We address in this section the problem of checking the validity of assertions
on the configurations of systems modeled by data word rewriting systems. We
show that the fragment Σ2 of DWL is effectively closed under the computation
of one (forward or backward) rewriting step of rewriting systems in DWRS[Σ2]
(for the three considered ewriting semantics). We show how to use this result
in checking inductive invariance of given assertions, and for carrying out Hoare-
style reasoning about our models.

6.1 post and pre Operators

We define hereafter the operators of immediate successors and immediate prede-
cessors. Let Δ be a set of data word rewriting rules over the alphabet Σ × DN .
Then, for every finite data word σ ∈ (Σ×DN)∗, we define, for any � ∈ {f, p,m}:

postΔ,�(σ) = {σ′ ∈ (Σ × DN)∗ : σ ⇒Δ,� σ
′}

preΔ,�(σ) = {σ′ ∈ (Σ × DN)∗ : σ′ ⇒Δ,� σ}

representing, respectively, the set of immediate successors and predecessors of σ
in the rewrite system Δ�. Then, let post∗Δ,� and pre∗Δ,� be the reflexive-transitive
closure of postΔ,� and preΔ,� respectively, i.e., post∗Δ,�(σ) (resp. pre∗Δ,�(σ)) is the
set of all successors (resp. predecessors) of σ in Δ�. These definitions can be
generalized straightforwardly to sets of words.

6.2 Computing post and pre Images

The main result of this section is the following:

Theorem 3. Let Δ� be a rewriting system in DWRS�[Σn], for � ∈ {f, p,m} and
n ≥ 2. Then, for every DWL closed formula ϕ in the fragment Σn, the sets
postΔ,�([[ϕ]]) and preΔ,�([[ϕ]]) are effectively definable by DWL formulas in the
same fragment Σn.

Rewriting Systems with Data 15

The rest of the section is devoted to the proof of the theorem above. Let
us consider first the problem of computing post images in the case of a factor
rewriting system.

Let ∃z. φ be a formula in Σ≥2, and let τ = A0 . . . An �→ B0 . . . Bm : ϕ(x,y)
be a data rewriting rule, with x = {x0, . . . , xn} and y = {y0, . . . , ym}. We
suppose w.l.o.g. that the sets of variables x,y, and z are disjoint.

By definition of the factor rewriting semantics, the positions associated with
the variables x are consecutive and correspond to a factor A0 . . . An in the rewrit-
ten word. We strengthen the constraint ϕ of the rule τ in order to make this fact
explicit. Then, we define the formula

ϕ(1) = ϕ ∧
(∧
i∈[0,n−1]

¬(∃t. xi < t < xi+1)
)
∧
∧

i∈[0,n]

Ai[xi]

By definition of data word rewriting systems, all the occurrences of positions
variables y in the constraint ϕ are used in terms of the form δk[y]. Then, we can
eliminate all occurrences of all variables in y by replacing each δk[y] in ϕ(1) by a
fresh data variable in a vector v. Let ξ : y× [1, N] → v be the bijective mapping
such that δk[y] is replaced by ξ(y, k). We define:

ϕ(2) = ϕ(1)[δk[y] ← ξ(y, k)]y∈y,k∈[1,N]

Then, the rule τ can be applied only on words satisfying

∃z. φ ∧ ∃x. ∃v. ϕ(2) (5)

This formula could be written in special form: For every vector t of (fresh)
position variables such that |x| ≤ |t| ≤ |x|+ |z|, consider the formula∨

θ∈Θ
∃t. ∃v. (

∧
ti,tj∈t,i<j

ti < tj) ∧ (φ ∧ ϕ(2))[x ← θ(x), z ← θ(z)] (6)

where Θ is the set of all total mappings from x ∪ z to t. Then, the formula (5)
is equivalent to the disjunction of all the formulas (6) for all the possible vectors
t defined as above. Let us focus in the sequel on one disjunct of the resulting
formula. Then, consider that such a disjunct is the formula:

ψ = ∃t1 . . . tp−1∃tp . . . tp+n∃tp+n+1 . . . tq∃v. φ(1)

with ∀i ∈ [0, n], θ(xi) = tp+i, p ≥ 1, p+ n ≤ q.
Let σ be a model of ψ. By definition of factor rewriting, the rule τ eliminates

from σ the factor corresponding to the position associated with the variables
tp..tp+n, and insert at position tp a new word of length m (labeled B0 · · ·Bm). By
Lemma 1, we can assume that the distance between the positions corresponding
to tp and tp+n+1 in σ is at least m + 1. Therefore, there is enough room for
inserting new positions in σ corresponding to the right hand the rule. These
positions will be associated with y.

16 A. Bouajjani et al.

The formula φ(2) below gives the constraints on positions and labels resulting
from the insertion of right hand side of the rule τ :

φ(2) =
(∧
i∈[0,m]

Bi(yi)
)
∧ tp−1 < y0 ∧ ym < tp+n+1

∧
(∧
i,j∈[0,m]

i<j

yi < yj ∧ ¬(∃x. yi < x < yj)
)
∧
(∧
k∈[1,N]
y∈y

δk(y) = ξ(y, k)
)

Let w be a new data variable vector of length n ·N , and let η be a bijective
mapping from {tp, . . . , tp+n} × [1, N] to w. (We use the mapping η for substi-
tuting occurrences of terms δk[x] in φ(1) by fresh data variables.)

Then, the formula corresponding to postτ,f ([[ψ]]) is given by:

∃y1 . . . ym∃w∃t1 . . . tp−1∃tp+n+1 . . . tq∃v. φ(3) ∧ φ(2)

where the formula φ(3) is the result of the application to φ(1) of a transformation
� defined inductively in Table 1:

φ(3) = φ(1) � (tp . . . tp+n, y0 . . . ym, lab, η, {t1, . . . , tp−1}, {tp+n+1, . . . , tq})

where for all i ∈ [0, n], lab(tp+i) = Ai.
The first parameter of the operator �, called x, is a set of position variables

that are deleted. The second parameter, called y, is a set of position variables
that are not concerned by the constraint. The third parameter of �, the mapping
lab, associates with position variables in x their label in A0, . . . , An. The fourth
parameter, η, associates with each position variable x ∈ x and each integer
k ∈ [1, N] a variable η(x, k) in v. The last parameters, Inf and Sup, are sets
of position variables which are ordered, by the context, before resp. after the
variables in x. Intuitively � deletes from a formula all occurences of the variables
in x and all constraints concerning them and preserves all constraints concerning
the rest of the configuration.

Notice that the obtained formula remains in the same fragment as the original
formula since only a prefix of existential quantification is added.

It is easy to adapt the construction above in order to deal with prefix rewrit-
ing or multiset rewriting semantics. Indeed, prefix rewriting is particular case
where the rewriting position is always the position 0. For multiset rewriting, the
construction is simplified since ordering constraints are not used (see [16]).

Finally, let us mention that it is possible to define a symmetrical (and very
similar) construction for preτ,ϕ images.

6.3 Application in Verification

Invariance checking consists in deciding whether a given property (1) is satis-
fied by the set of initial configurations, and (2) is stable under the transition
relation of a system. Formally, given a rewriting system Δ and a closed formula
ϕinit defining the set of initial configurations, we say that a closed formula ϕ

Rewriting Systems with Data 17

Table 1. The operation �

(0 < z) � (x,y, lab, η, Inf ,Sup) =

8<
:

0 < z if z ∈ Inf
false if z ∈ Sup or z = xi ∈ x with i > 0
0 < y0 if z is x0

(z < z′) � (x,y, lab, η, Inf ,Sup) =

8>>>><
>>>>:

z < z′ if z, z′ ∈ Inf or z, z′ ∈ Sup
true if z ∈ Inf and (z′ ∈ Sup or z′ ∈ x)

or z ∈ x z′ ∈ Sup
or z, z′ = xi, xj ∈ x with i < j

false otherwise

A[z] � (x,y, lab, η, Inf ,Sup) =

8<
:

true if z ∈ x and lab(z) = A
false if z ∈ x and lab(z) �= A
A[z] otherwise

r(. . . , ti, . . .) � (x,y, lab, η, Inf ,Sup) = r(. . . , ti[δk(x) ← η(x, k)]x∈x, . . .)

(¬ϕ) � (x,y, lab, η, Inf ,Sup) = ¬(ϕ � (x,y, lab, η, Inf ,Sup))

(ϕ1 ∨ ϕ2) � (x,y, lab, η, Inf ,Sup) = ϕ1 � (x,y, lab, η, Inf ,Sup)∨
ϕ2 � (x,y, lab, η, Inf ,Sup)

(∃u. ϕ) � (x,y, lab, η, Inf ,Sup) = ∃u. (ϕ � (x,y, lab, η, Inf ,Sup))

(∃z. ϕ) � (x,y, lab, η, Inf ,Sup) = ∃z.
V

y∈y

(z �= y) ∧ (ϕ � (x,y, lab, η, Inf ∪ {z},Sup))∨
∃z.

V
y∈y

(z �= y) ∧ (ϕ � (x,y, lab, η, Inf ,Sup ∪ {z}))∨
W

x∈x

ϕ[z ← x]) � (x,y, lab, η, Inf ,Sup)

is an inductive invariant of (Δ,ϕin) if and only if (1) [[ϕinit]] ⊆ [[ϕ]], and (2)
postΔ([[ϕ]]) ⊆ [[ϕ]]. Clearly, (1) is equivalent to [[ϕinit]] ∩ [[¬ϕ]] = ∅, and (2) is
equivalent to postΔ([[ϕ]]) ∩ [[¬ϕ]] = ∅. (Notice that this fact is also equivalent to
[[ϕ]] ∩ preΔ([[¬ϕ]]) = ∅.)

Corollary 1. The problem whether a formula ϕ ∈ B(Σ1) is an inductive in-
variant of (Δ,ϕinit), where Δ ∈ DWRS[Σ2] and ϕinit ∈ Σ2, is decidable.

For example, consider the system Δbakery ∈ DWRSf [Π1] introduced in sec-
tion 5.2. To prove that mutual exclusion is ensured, we check that the formula
ϕmutex = ∀x, y. x �= y ⇒ ¬(cs[x] ∧ cs[y]) (i.e., it is impossible to have two dif-
ferent proceses in the critical section simultaneously) is implied by an inductive
invariant ϕinv of (Δbakery , ϕinit) where ϕinit = ∀x. nocs[x] (i.e., all processes are
idle). For that, we consider the formula

ϕinv = ∀x. cs[x] ⇒
δ[x] �= 0 ∧ ∀y. x �= y ⇒ (δ[y] = 0 ∨ δ[x] < δ[y] ∨ δ[x] = δ[y] ∧ x < y)

Notice that all formulas ϕmutex , ϕinit , and ϕinv are in the fragment Π1. Then,
the validity of ϕinv ⇒ ϕmutex can be checked automatically by Theorem 2 since
it is a B(Σ1) formula, and the inductive invariance of ϕinv for (Δbakery , ϕinit)
can be decided by Corollary 1.

18 A. Bouajjani et al.

Hoare-style reasoning consists in, given two properties expressed by formulas
ϕ1 and ϕ2, and a given set of rules Δ, deciding whether starting from configura-
tions satisfying ϕ1, the property ϕ2 necessarily hold after the application of the
rules in Δ. Formally, this consists in checking that postΔ([[ϕ1]]) ⊆ [[ϕ2]]. In that
case, we say that (ϕ1, Δ, ϕ2) constitutes a Hoare triple.

Corollary 2. The problem whether (ϕ1, Δ, ϕ2) is a Hoare triple, where ϕ1 ∈ Σ2,
Δ ∈ DWRS[Σ2] and ϕ2 ∈ Π2, is decidable.

7 Reachability Analysis for Integer Context-Free Systems

In this section, we show that for restricted word rewriting systems (called CFSDL),
the reachability problem of sets described by data-independent formulas is de-
cidable. We consider a class of context-free prefix rewriting rules with integer
data and constraints in the difference logic. To show decidability, we use a slight
generalization of Z-input 1-counter machines introduced in [17] to represent set
of finite data words (subsets of (Σ × Z)∗). Then, we show that given CFSDL Δ,
and given a set of data words described by a Z-input 1-counter machine M , it
is possible to compute a machine M ′ representing the set of all reachable words
(by the iterative application of rules in Δ). This allows then to prove decidability
of the reachability problem for CFSDL.

In the sequel, we consider the logic DWL based on difference logic (DL) given
as DWL(Z, {0}, {≤k : k ∈ Z}) where for every u, v, k ∈ Z, (u, v) ∈≤k iff u−v ≤ k.
Then, context-free systems with difference constraints (CFSDL) are sets Δ of data
word rewriting rules with one symbol on the left-hand side and zero, one or two
symbols on the right-hand side. The formulas ϕ appearing in the rules are from
DWL(Z, {0},≤k : k ∈ Z).

A Z-input 1-counter machine1 M is described by a finite set of states Q, an
initial state q0 ∈ Q, a final state qf ∈ Q, a non-accepting state fail ∈ Q, and a
counter c that contains initially 0. The initial configuration is given by the tuple
(q0, 0). It reads pieces of input of the form S(i) where S is a symbol out of Σ
and i ∈ Z is an integer number. The instructions have the following form (q is
different from qf and fail):

1. (q : c := c+ 1; goto q′)
2. (q : c := c− 1; goto q′)
3. (q : If c ≥ 0 then goto q′ else goto q′′).
4. (q : If c = 0 then goto q′ else goto q′′).
5. (q : Read input S(i). If S = X and i = K then goto q′ else goto q′′).
6. (q : Read input S(i). If S = X and i#c+K then goto q′ else goto q′′),
7. (q : If P (c) then goto q′ else goto q′′), where P is a unary Presburger

predicate.

where # ∈ {≤,≥,=}, X ∈ Σ and K ∈ Z is an integer constant.
1 This definition generalizes the one in [17] by allowing difference constraints in the

read instructions.

Rewriting Systems with Data 19

The language L(M) ⊆ (Σ × Z)∗ is defined in a straightforward manner. It is
easy to see that for a data independent formula ϕ one can construct a machine
Mϕ whose language is [[ϕ]].

For any M we have the following theorem.

Theorem 4. Let Δ be a CFSDL and M a Z-input 1-counter machine. Then a
Z-input 1-counter machine M ′ with L(M ′) = post∗Δ,p(L(M)) can be effectively
constructed.

The proof is done in several steps and follows the line of the proof given in in
[17] for less general classes of rewriting systems and of counter machines M .

– The set {d | X(d) ⇒∗
p ε} can be characterized by a Presburger formula with

one free variable (difference + modulo constraints). This is done by using a
translation to alternating one-counter automata.

– The decreasing rules (with ε on the right-hand side) of Δ can be eliminated
from Δ. To do this, modulo constraints have to be added to the difference
logic. Modulo constraints can be eliminated by coding the information in the
control states.

– The set post∗Δ,p(L(M)) is then computed by (1) putting M into a special
form and (2) applying saturation rules adding a finite number of new tran-
sitions to it.

Now we can state the main result of this section.

Theorem 5. The problem post∗Δ,p([[ϕ1]]) ∩ [[ϕ2]] = ∅ is decidable for a CFSDL Δ
and two data independent formulas ϕ1 and ϕ2.

We give a sketch of the proof. We (1) construct a machine M for [[ϕ1]], (2) obtain
the machine M ′ for post∗Δ,p([[ϕ1]]) using theorem 4, (3) observe that intersection
with [[ϕ2]] can be done by computing the regular set over Σ corresponding to
[[ϕ2]] and restricting M ′ to words in this set and (4) observe that emptiness of a
Z-input 1-counter machine is decidable since emptiness of 1-counter machines is
decidable.

CFSDL allow to model recursive programs with one integer parameter. How-
ever, having only one symbol in the left-hand side of rules does not allow to
model return values. Let us therefore consider extensions of CFSDL with more
than one symbol in the left-hand side of rules. If we allow rewrite rules with two
symbols in the left-hand side where only the data attached to the first appears in
constraints, the reachability problem is already undecidable2. This model corre-
sponds to having integer return values. On the other hand, we can model return
values from a finite domain by adding to the rules of CFSDL a symbol to the be-
ginning of the left and the right hand sides, provided the constraints do not use
the data attached to these symbols. For this extension the reachability problem
can be shown to be still decidable.
2 A two-counter machine can be simulated : one counter is coded as the data value,

the other one is coded by the number of symbols.

20 A. Bouajjani et al.

8 Conclusion

We have presented a generic framework for reasoning about infinite-state systems
with unbounded control structures manipulating data over infinite domains. This
framework extend and unify several of our previous works [11,17,16].

The framework we propose is based on constrained rewriting systems on
words over infinite alphabets. The constraints are expressed in a logic which
is parametrized by a theory on the considered data domain. We provide generic
results for the decidability of the satisfiability problem of the fragment Σ2 of
this logic, and for proving inductive invariance and for carrying out Hoare style
reasoning within this fragment.

We have shown that our framework can be used for handling a wide class
of systems: recursive sequential programs, multithreaded programs, distributed
algorithms, etc. Actually, it is not difficult to consider other rewriting semantics
than those considered in the paper. For instance, all our results extend quite
straightforwardly to cyclic rewriting allowing to deal with fifo queues. Therefore,
our framework can also be used to reason about communicating systems through
fifo channels which may contain data over infinite domains. This is particularly
useful for handling in a parametric way communication protocols where message
have sequence numbers (such as the sliding window protocol). Another potential
application of our framework concern programs manipulating dynamic linked
lists.

Ongoing and future work include the extension of our framework to rewriting
systems on more general structures like trees and some classes of graphs.

References

1. Abdulla, P., Nylen, A.: Timed Petri Nets and BQOs. In: Colom, J.-M., Koutny,
M. (eds.) ICATPN 2001. LNCS, vol. 2075. Springer, Heidelberg (2001)

2. Abdulla, P.A., Cerans, K., Jonsson, B., Tsay, Y.-K.: General decidability theorems
for infinite-state systems. In: Proc. of LICS’96, pp. 313–321 (1996)

3. Abdulla, P.A., Delzanno, G.: On the Coverability Problem for Constrained Multiset
Rewriting. In: Proc. of AVIS’06, Satellite workshop of ETAPS’06, Vienna, Austria
(2006)

4. Abdulla, P.A., Jonsson, B., Nilsson, M., Saksena, M.: A Survey of Regular Model
Checking. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170.
Springer, Heidelberg (2004)

5. Abdulla, P.A., Jonsson, B.: Verifying networks of timed processes (extended ab-
stract). In: Steffen, B. (ed.) ETAPS 1998 and TACAS 1998. LNCS, vol. 1384.
Springer, Heidelberg (1998)

6. Annichini, A., Asarin, E., Bouajjani, A.: Symbolic techniques for parametric rea-
soning about counter and clock systems. In: Emerson, E.A., Sistla, A.P. (eds.) CAV
2000. LNCS, vol. 1855. Springer, Heidelberg (2000)

7. Arons, T., Pnueli, A., Ruah, S., Xu, J., Zuck, L.D.: Parameterized Verification with
Automatically Computed Inductive Assertions. In: Berry, G., Comon, H., Finkel,
A. (eds.) CAV 2001. LNCS, vol. 2102. Springer, Heidelberg (2001)

Rewriting Systems with Data 21

8. Boigelot, B.: Symbolic Methods for Exploring Infinite State Space. PhD thesis,
Faculté des Sciences, Université de Liège, vol. 189 (1999)

9. Bojanczyk, M., David, C., Muscholl, A., Schwentick, Th., Segoufin, L.: Two-
variable logic on data trees and XML reasoning. In: Proc. of PODS’06. ACM
Press, New York (2006)

10. Bojanczyk, M., Muscholl, A., Schwentick, Th., Segoufin, L., David, C.: Two-
variable logic on words with data. In: Proc. of LICS’06. IEEE, New York (2006)

11. Bouajjani, A.: Languages, Rewriting systems, and Verification of Infinte-State Sys-
tems. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS,
vol. 2076. Springer, Heidelberg (2001)

12. Bouajjani, A., Bozga, M., Habermehl, P., Iosif, R., Moro, P., Vojnar, T.: Programs
with Lists Are Counter Automata. In: Ball, T., Jones, R.B. (eds.) CAV 2006.
LNCS, vol. 4144. Springer, Heidelberg (2006)

13. Bouajjani, A., Esparza, J.: Rewriting Models for Boolean Programs. In: Pfenning,
F. (ed.) RTA 2006. LNCS, vol. 4098. Springer, Heidelberg (2006)

14. Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown automata:
Application to model-checking. In: Mazurkiewicz, A., Winkowski, J. (eds.) CON-
CUR 1997. LNCS, vol. 1243. Springer, Heidelberg (1997)

15. Bouajjani, A., Habermehl, P., Rogalewicz, A., Vojnar, T.: Abstract Tree Regular
Model Checking of Complex Dynamic Data Structures. In: Graf, S., Zhang, W.
(eds.) ATVA 2006. LNCS, vol. 4218. Springer, Heidelberg (2006)

16. Bouajjani, A., Jurski, Y., Sighireanu, M.: A generic framework for reasoning about
dynamic networks of infinite-state processes. In: TACAS’07. LNCS (2007)

17. Bouajjani, A., Habermehl, P., Mayr, R.: Automatic Verification of Recursive Pro-
cedures with one Integer Parameter. Theoretical Computer Science 295 (2003)

18. Bouajjani, A., Jonsson, B., Nilsson, M., Touili, T.: Regular Model Checking. In:
Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855. Springer, Heidelberg
(2000)

19. Bozzano, M., Delzanno, G.: Beyond Parameterized Verification. In: Katoen, J.-
P., Stevens, P. (eds.) ETAPS 2002 and TACAS 2002. LNCS, vol. 2280. Springer,
Heidelberg (2002)

20. Bradley, A.R., Manna, Z., Sipma, H.B.: What’s decidable about arrays? In: Emer-
son, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855. Springer, Heidel-
berg (2005)

21. Delzanno, G.: An assertional language for the verification of systems parametric
in several dimensions. Electr. Notes Theor. Comput. Sci. 50(4) (2001)

22. Delzanno, G., Raskin, J.-F., Van Begin, L.: Towards the automated verification
of multithreaded java programs. In: Katoen, J.-P., Stevens, P. (eds.) ETAPS 2002
and TACAS 2002. LNCS, vol. 2280, pp. 173–187. Springer, Heidelberg (2002)

23. Delzanno, G.: Constraint-based Verification of Parameterized Cache Coherence
Protocols. Formal Methods in System Design 23(3) (2003)

24. Demri, S., Lazic, R.: LTL with the freeze quantifier and register automata. In:
Proc. of LICS’06. IEEE, New York (2006)

25. Finkel, A., Leroux, J.: How to compose presburger-accelerations: Applications to
broadcast protocols. In: Agrawal, M., Seth, A.K. (eds.) FST TCS 2002: Founda-
tions of Software Technology and Theoretical Computer Science. LNCS, vol. 2556.
Springer, Heidelberg (2002)

22 A. Bouajjani et al.

26. Finkel, A., Schnoebelen, Ph.: Well-structured transition systems everywhere!
Theor. Comput. Sci. 256(1-2), 63–92 (2001)

27. Habermehl, P., Iosif, R., Vojnar, T.: Automata-Based Verification of Programs with
Tree Updates. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006 and ETAPS 2006.
LNCS, vol. 3920. Springer, Heidelberg (2006)

28. Kesten, Y., Maler, O., Marcus, M., Pnueli, A., Shahar, E.: Symbolic Model Check-
ing with Rich Assertional Languages. In: Grumberg, O. (ed.) CAV 1997. LNCS,
vol. 1254. Springer, Heidelberg (1997)

29. Wolper, P., Boigelot, B.: Verifying systems with infinite but regular state spaces.
In: Vardi, M.Y. (ed.) CAV 1998. LNCS, vol. 1427. Springer, Heidelberg (1998)

Spiking Neural P Systems: Some

Characterizations�

Oscar H. Ibarra and Sara Woodworth

Department of Computer Science
University of California, Santa Barbara, CA 93106, USA

{ibarra,swood}@cs.ucsb.edu

Abstract. We look at the recently introduced neural-like systems, called
SN P systems. These systems incorporate the ideas of spiking neurons
into membrane computing. We study various classes and characterize
their computing power and complexity. In particular, we analyze asyn-
chronous and sequential SN P systems and present some conditions un-
der which they become (non-)universal. The non-universal variants are
characterized by monotonic counter machines and partially blind counter
machines and, hence, have many decidable properties. We also investi-
gate the language-generating capability of SN P systems.

Keywords: Spiking neural P system, asynchronous mode, sequential
mode, partially blind counter machine, semilinear set, language
generator.

1 Introduction

The area of membrane computing [15,17] is a recent field of research looking
to biological cells as a motivation for computation. Many membrane computing
models have been defined with a plethora of interesting results. Recently a new
model called spiking neural P system (SN P system) was introduced in [11] and
this model has already been investigated in a series of papers (see the P Systems
Web Page [17]). SN P systems were inspired by the natural processes of spiking
neurons in our brain. These neurons process information that our brain receives
from the environment [5,12,13].

An SN P system consists of a set of neurons (membranes) connected by
synapses. The structure is represented as a directed graph where the directed
edges represent the synapses and the nodes represent the neurons. The system
has only a single unit of information referred to as the spike and represented by
symbol a. The spikes are stored in the neurons. When a neuron fires, it sends
a spike along each outgoing synapse which is then received and processed by
the neighboring neurons. A neuron can also send a spike to the environment
(thus, the environment can be considered as a neighbor). Such a neuron will
be called an output neuron. A neuron fires by means of firing rules that are
associated with each neuron. Firing rules are of the form E/aj → a; d where E
� This research was supported in part by NSF Grants CCF-0430945 and CCF-0524136.

E. Csuhaj-Varjú and Z. Ésik (Eds.): FCT 2007, LNCS 4639, pp. 23–37, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

24 O.H. Ibarra and S. Woodworth

a2

a2/a→a;0
a→λ

1

a
a→a;0
a→a;1

a2 →a;0
2

3

Fig. 1. SN P system generating the set Q = {n|n ≥ 1}

is a regular expression over the symbol a, j ≥ 1 is the number of spikes con-
sumed by processing the rule, and d ≥ 0 is the delay between the time the rule
is applied and the time the neuron emits its spike. A rule is applicable when the
neuron contains an spikes, and an ∈ L(E) = language denoted by E. If a rule is
used and the neuron fires with a delay, the neuron is said to be ‘closed’ during
the delay (otherwise the neuron is ‘open’). A closed neuron is unable to receive
spikes (all spikes received by the neuron during this time are lost) and unable
to fire any rule. For notational convenience, firing rules of the form aj/aj → a; d
are written as aj → a; d. A second rule type of the form aj → λ (referred to
as forgetting rules) are also allowed in the neurons and are used to remove aj

spikes from the neuron without emitting a spike. These rules are applicable if
the neuron currently contains exactly aj spikes. Forgetting rules are restricted
such that aj /∈ L(E) for any E in the same neuron. Hence forgetting rules are
disjoint from firing rules in each neuron. (In this paper, for convenience we refer
to forgetting rules as firing rules which emit no spike.)

SN P systems operate in a nondeterministic, maximally parallel manner (like
other P system models) using a global clock. However, each neuron is only able
to fire at most one rule per step since the rule must cover all the spikes currently
in the neuron. It is possible that two (or more) rules are applicable in a given
step. In this case, the applied rule is selected nondeterministically. The system
operates in a maximally parallel manner in that at each step, all neurons that
are fireable, must fire (applying some rule).

SN P systems are able to generate output in many different manners. Here, we
designate an output neuron which has a synapse to the environment. A number n
is said to be generated if n spikes (represented by an) are sent to the environment
during the computation and the computation eventually halts, i.e., it reaches a
configuration where all neurons are open but no neuron is fireable. Many other
methods of generating output have been defined and analyzed, but these other
methods do not make sense in terms of asynchronous SN P systems.

Figure 1 shows an example of an SN P system. This system generates the set
Q = {n|n ≥ 1}. During the first step, neuron 1 is fireable using rule a2/a→ a; 0.
Neuron 2 is fireable using either of its rules. If the first rule (a → a; 0) is used,
two spikes are sent to neuron 3 and the configuration of neuron 1 and neuron 2
remain the same after the first step. This continues (with neuron 3 emitting a

Spiking Neural P Systems: Some Characterizations 25

spike to the environment) in each additional step as long as neuron 2 picks the
first of its two fireable rules. Once neuron 2 chooses to fire the second rule (rather
than the first), neuron 2 becomes closed for one time step. This causes the spike
sent to it to be lost. Hence, in the next step, neuron 1 contains only a single
spike which is forgotten and neuron 3 does not spike. In this step, neuron 2 emits
its spikes. In the following step, neuron 1 again forgets its spike and neuron 3
can again spike. Now, no spikes exist in the system and all neurons are open,
which is a halting configuration. The output of the computation is the number
of times neuron 2 chose to fire its first rule plus 1.

Variations to the standard model of SN P system have been studied. In partic-
ular, an extended form of spiking rules was introduced and studied in [3,14]. An
extended rule has the form E/aj → ap; d. This rule operates in the same manner
as before except that firing sends p spikes along each outgoing synapse (and
these p spikes are received simultaneously by each neighboring neuron). Clearly,
when p = 1, the extended rules reduce to the standard (or non-extended) rules
in the original definition. Note also that forgetting rules are just a special case
of firing rules, i.e., when p = 0.

For the most part, we will deal with SN P systems with extended rules in this
paper. We will consider systems with three types of neurons:

1. A neuron is bounded if every rule in the neuron is of the form ai/aj → ap; d,
where 1 ≤ j ≤ i, p ≥ 0, and d ≥ 0. There can be several such rules in the
neuron. These rules are called bounded rules.

2. A neuron is unbounded if every rule in the neuron is of the form ai(ak)∗/aj →
ap; d, where i ≥ 0, k ≥ 1, j ≥ 1, p ≥ 0, d ≥ 0. Again, there can be several
such rules in the neuron. These rules are called unbounded rules.

3. A neuron is general if it can have general rules, i.e., bounded as well as
unbounded rules.

One can allow rules like α1 + ...+ αn → ap; d in the neuron, where all αi’s have
bounded (resp., unbounded) regular expressions as defined above. But such a
rule is equivalent to putting n rules αi → ap : d (1 ≤ i ≤ n) in the neuron. It is
known that any regular set over a 1-letter symbol a can be expressed as a finite
union of regular sets of the form {ai(aj)k | k ≥ 0} for some i, j ≥ 0. Note such
a set is finite if j = 0. We can define three types of SN P systems:

1. Bounded SN P system – a system in which every neuron is bounded.
2. Unbounded SN P system – a system in which every neuron is either bounded

or unbounded.
3. General SN P system – a system with general neurons (i.e., each neuron can

contain both bounded and unbounded rules).

Let k ≥ 1. A k-output SN P system has k output neurons, O1, ..., Ok. We say
that the system generates a k-tuple (n1, ..., nk) ∈ Nk if, starting from the ini-
tial configuration, there is a sequence of steps such that each output neuron
Oi generates (sends out to the environment) exactly ni spikes and the system
eventually halts.

26 O.H. Ibarra and S. Woodworth

We will consider systems with delays and systems without delays (i.e., d = 0
in all rules) in this paper.

2 Asynchronous General SN P Systems

In the standard (i.e., synchronized) model of an SN P system, all neurons fire at
each step of the computation whenever they are fireable. This synchronization
is quite powerful: It known that a set Q ⊆ N1 is recursively enumerable if and
only if it can be generated by a 1-output general SN P system (with or without
delays) [11,8]. This result holds for systems with standard rules or extended
rules, and it generalizes to systems with multiple outputs. Thus, such systems
are universal.

In [1] the computational power of SN P systems that operate in an asyn-
chronous mode was introduced and studied. In an asynchronous SN P system,
we do not require the neurons to fire at each step. During each step, any number
of fireable neurons are fired (including the possibility of firing no neurons). When
a neuron is fireable it may (or may not) choose to fire during the current step.
If the neuron chooses not to fire, it may fire in any later step as long as the rule
is still applicable. (The neuron may still receive spikes while it is waiting which
may cause the neuron to no longer be fireable.) Hence there is no restriction on
the time interval for firing a neuron. Once a neuron chooses to fire, the appro-
priate number of spikes are sent out after a delay of exactly d time steps and are
received by the neighboring neurons during the step when they are sent.

Before proceeding further, we recall the definition of a counter machine. A
nondeterministic multicounter machine (CM) M is a nondeterministic finite au-
tomaton with a finite number of counters (it has no input tape). Each counter
can only hold a nonnegative integer. The machine starts in a fixed initial state
with all counters zero. During the computation, each counter can be incremented
by 1, decremented by 1, or tested for zero. A distinguished set of k counters (for
some k ≥ 1) is designated as the output counters. The output counters are
non-decreasing (i.e., cannot be decremented). A k-tuple (n1, ..., nk) ∈ Nk is gen-
erated if M eventually halts in an accepting state, all non-output counters zero,
and the contents of the output counters are n1, ..., nk, respectively. We will refer
to a CM with k output counters (the other counters are auxiliary counters) as a
k-output CM.

It is well-known that a set Q ⊆ Nk is generated by a k-output CM if and only
if Q is recursively enumerable. Hence, k-output CMs are universal.

The following result was recently shown in [1]. It says that SN P systems which
operate in an asynchronous mode of computation are still universal provided the
neurons are allowed to use extended rules.

Theorem 1. A set Q ⊆ Nk is recursively enumerable if and only if it can be
generated by an asynchronous k-output general SN P system with extended rules.
The result holds for systems with or without delays.

Spiking Neural P Systems: Some Characterizations 27

It remains an open question whether the above result holds for the case when
the system uses only standard (i.e., non-extended) rules.

3 Asynchnronous Unbounded SN P Systems with
Extended Rules

In this section, we will examine unbounded SN P systems (again assuming the
use of extended rules). Recall that these systems can only use bounded and
unbounded neurons (i.e., no general neurons are allowed). In contrast to Theorem
1, these systems can be characterized by partially blind multicounter machines
(PBCMs).

A partially blind k-output multicounter machine (k-output PBCM) [7] is a k-
output CM, where the counters cannot be tested for zero. (The output counters
are non-decreasing.) The counters can be incremented by 1 or decremented by
1, but if there is an attempt to decrement a zero counter, the computation
aborts (i.e., the computation becomes invalid). Again, by definition, a successful
generation of a k-tuple requires that the machine enters an accepting state with
all non-output counters zero.

It is known that k-output PBCMs can be simulated by k-dimensional vector
addition systems, and vice-versa [7]. (Hence, such counter machines are not
universal.) In particular, a k-output PBCM can generate the reachability set
of a vector addition system.

3.1 Systems Without Delays

In [1], asynchronous unbounded SN P systems without delays were investigated.
The systems considered in [1] are restricted to halt in a pre-defined configuration.
Specifically, a computation is valid if, at the time of halting, the numbers of
spikes that remain in the neurons are equal to pre-defined values; if the system
halts but the neurons do not have the pre-defined values, the computation is
considered invalid and the output is ignored. These systems were shown to be
equivalent to PBCMs in [1]. However, it was left as an open question whether
the ‘pre-defined halting’ requirement was necessary to prove this result. Here
we show that the result still holds even if we do not have this condition. Note
that for these systems, firing zero or more neurons at each step is equivalent to
firing one or more neurons at each step (otherwise, since there are no delays, the
configuration stays the same when no neuron is fired).

Theorem 2. A set Q ⊆ Nk is generated by a k-output PBCM if and only if it
can be generated by an asynchronous k-output unbounded SN P system without
delays. Hence, such SN P systems are not universal.

Note that by Theorem 1, if we allow both bounded rules and unbounded rules
to be present in the neurons, SN P systems become universal.

Again, it remains an open question whether the above theorem holds for the
case when the system uses only standard rules.

28 O.H. Ibarra and S. Woodworth

It is known that PBCMs with only one output counter can only generate
semilinear sets of numbers. Hence:

Corollary 1. Asynchronous 1-output unbounded SN P systems without delays
can only generate semilinear sets of numbers.

The results in the following corollary can be obtained using Theorem 2 and the
fact that they hold for k-output PBCMs.

Corollary 2. 1. The family of k-tuples generated by asynchronous k-output
unbounded SN P systems without delays is closed under union and intersec-
tion, but not under complementation.

2. The membership, emptiness, infiniteness, disjointness, and reachability prob-
lems are decidable for asynchronous k-output unbounded SN P systems with-
out delays; but containment and equivalence are undecidable.

3.2 Systems with Delays

In Theorem 2, we showed that restricting an asynchronous SN P system with-
out delays to contain only bounded and unbounded neurons gives us a model
equivalent to a PBCM. However, it is possible that allowing delays would give
additional power. For asynchronous unbounded SN P systems with delays, we
can no longer assume that firing zero or more neurons at each step is equivalent
to firing one or more neurons at each step.

Note that not every step in a computation has at least one neuron with a
fireable rule. In a given configuration, if no neuron is fireable but at least one
neuron is closed, we say that the system is in a dormant step. If there is at
least one fireable neuron in a given configuration, we say the system is in a non-
dormant step. (Of course, if a given configuration has no fireable neuron, and all
neurons are open, we are in a halting configuration.) Thus, an SN P system with
delays might be dormant at some point in the computation until a rule becomes
fireable. However, the clock will keep on ticking. Interestingly, the addition of
delays does not increase the power of the system.

Theorem 3. A set Q ⊆ Nk is generated by a k-output PBCM if and only if
it can be generated by an asynchronous k-output unbounded SN P system with
delays.

This result contrasts the result in [8] which shows that synchronous unbounded
SN P systems with delays and standard rules (but also standard output) are
universal.

1-Asynchronous Unbounded SN P Systems. Define a 1-asynchronous un-
bounded SN P system with delays as an asynchronous unbounded SN P system
with delays where we require that in every non-dormant step at least one rule
is applied in the system. Thus, 1-asynchronous unbounded SN P systems differ
from the previously defined asynchronous unbounded SN P system with delays
because here idle steps (where no neuron fires) only occur when the system is
dormant.

Spiking Neural P Systems: Some Characterizations 29

For a PBCM to be able to simulate a 1-asynchronous unbounded SN P system,
it must be able to distinguish a non-dormant step from a dormant step. Thus
when the PBCM nondeterministically guesses to apply no rules in a given step, it
must guarantee that it is a dormant step. The method of simulating unbounded
neurons with a PBCM in Theorem 2 does not have this ability. In fact, no
simulation of a 1-asynchronous unbounded SN P system (with delays) by a
PBCM is possible since it can be shown that this system is universal.

Theorem 4. 1-asynchronous unbounded k-output SN P systems (with delays)
are universal.

Note that if a 1-asynchronous unbounded SN P system has no delay, the system
is equivalent to the asynchronous unbounded SN P system studied in Theorem 2.

Strongly Asynchronous Unbounded SN P Systems. Define a strongly
asynchronous unbounded SN P system as an asynchronous unbounded SN P
system which has the property that in a valid computation, every step of the
computation has at least one fireable neuron, unless the SN P system is in a
halting configuration. Otherwise (i.e., there is a step in which there is no fireable
rule), the computation is viewed as invalid and no output from such a compu-
tation is included in the generated set.

Since we are guaranteed to have at least one fireable neuron at each step
(meaning all steps are non-dormant), it is natural to also require at least one
neuron fires at each step. We call this model a strongly 1-asynchronous unbounded
SN P system. Interestingly, with these restrictions we again find equivalence with
PBCMs.

Theorem 5. Strongly 1-asynchronous unbounded k-output SN P systems with
delays and k-output PBCMs are equivalent.

Again note a strongly 1-asynchronous unbounded SN P systems without delays
reverts to the asynchronous unbounded SN P system model studied in Theorem 2.

4 Asynchronous Bounded SN P Systems

We consider in this section, asynchronous SN P systems, where the neurons
can only use bounded rules. We show that these bounded SN P systems with
extended rules generate precisely the semilinear sets.

A k-output monotonic CM is a nondeterministic machine with k counters, all
of which are output counters. The counters are initially zero and can only be
incremented by 1 or 0 (they cannot be decremented). When the machine halts in
an accepting state, the k-tuple of values in the k-counter is said to be generated
by the machine. Clearly, a k-output monotonic CM is a special case of a PBCM,
where all the counters are output counters and all the instructions are addition
instructions.

It is known that a set Q ⊆ Nk is semilinear if and only if it can be generated
by a k-output monotonic CM [6].

We can show the following:

30 O.H. Ibarra and S. Woodworth

Theorem 6. Q ⊆ Nk can be generated by a k-output monotonic CM if and
only if it can be generated by a k-output asynchronous bounded SN P system
with extended rules. The result holds for systems with or without delays.

Proof. To show that a k-output asynchronous bounded SN P system with ex-
tended rules Π can be simulated by a k-output monotonic CM M is straightfor-
ward. All of the rules and the configuration of the system can be simulated by
the finite control. (This is because each neuron has a bounded number of ‘useful’
spikes.) The counters in M are used to store the number of spikes sent to the
environment by the output neurons. For each emitted spike by output neuron
Oi, the corresponding counter ci is incremented by one.

a→a;0

a2→a2;0
a→λ
a3→λ

a→a;0

a2→a2;0 a2→a2;0

a4→a3;0a3→a3;0
a3→a2;0

a3→a;0
a2→λ

a3→λ
a2→a;0

li

lj lk

li1

li2 li3

li4li5

li6 li7 ...

All neurons li'1 where

li'1 = (ADD(r), lj', lk').

Or

Fig. 2. Asynchronous bounded SN P module simulating an instruction of the form
li = (ADD(r), lj , lk)

To show that a k-output monotonic CM M can be simulated by a k-output
asynchronous bounded SN P system with extended rules Π , we give a con-
struction from M to Π . This construction works by creating an asynchronous
bounded SN P system module to simulate each instruction in M. We assume
without loss of generality that M contains only a single HALT instruction.

Simulating an instruction of the form li = (ADD(r), lj , lk) is done by creating
the module shown in Figure 2. This module is initiated when a single spike is sent
to neuron li. Now neuron li will eventually fire sending a spike to neuron r and
neuron li1. Neuron Or will then eventually fire sending a spike to the environment
along with a spike to neuron li1 and each neuron li′1 where li′ = (ADD(r), lj′ , lk′).
Now, if li1 has previously forgotten its spike from neuron li, the computation will

Spiking Neural P Systems: Some Characterizations 31

not continue. In this case the computation will not halt do to the infinite looping
of the HALT module (described below). If, li1 has not forgotten its previous spike,
it is now fireable. (Also each neuron li′1 is able to forget its spike sent by neuron
Or.) Once neuron li1 eventually fires, it sends spikes to neurons li2 and li3 which
are used to multiply the spikes so that neuron li4 eventually contains a4 spikes.

When neuron li4 spikes, three spikes are sent to neuron li5 along with sending
three spikes to each neuron li′1 where li′ = (ADD(r), lj′ , lk′). Neuron li5 is used to
initiate the nondeterministic choice of which instruction will be executed next.
The three spikes sent to each li′1 guarantee that if the previous spike sent by
neuron Or was not forgotten, additional spikes will not cause these neurons to
execute their associated rule. These three spikes can again be forgotten by the
neurons, but if they do not do this before receiving additional spikes, the neuron
will become unusable (since they will have surpassed their bound).

a→a;0

a
a→a;0

li

a→a;0

a→a;0 a→a;0

a2 → a2;0

li1 li2

li3

li4 li5

Fig. 3. Asynchronous bounded SN P module simulating an instruction of the form
li = (HALT)

Neuron li5 nondeterministically picks the next rule by either emitting two
or three spikes when it is fired. If three spikes are emitted, instruction lj will
be simulated next. If two spikes are emitted, instruction lk will be simulated
next. Again, if neurons li6 and li7 do not properly forget their spikes (when
they should forget rather than fire) before more spikes are sent to them (if
the rule is executed again), the neuron becomes unusable which could stop the
simulation. If the simulation stops, the HALT instruction will never execute and
the computation will never halt.

Simulating an instruction of the form li = (HALT) is done by creating the
module shown in Figure 3. This module is initiated when a single spike is sent
to neuron li. This neuron eventually fires sending a spike to neuron li1 and neu-
ron li2 which both spike sending a spike to neuron li3. (This is done to increase
the number of spikes.) Neuron li3 will then eventually spike emitting two spikes
to neuron li4 and neuron li5 causing them to no longer be fireable and halting the

32 O.H. Ibarra and S. Woodworth

computation. If this instruction is never executed, neuron li4 and neuron li5 will
continuously pass a single spike between them causing the system to never halt.
Hence, if any of the previous simulation of the ADD instructions does not operate
‘correctly’, the halt instruction will never be executed and the computation will
never halt. ��

At present, we do not know whether Theorem 6 holds when the the system is
restricted to use only standard (non-extended) rules. However, we can show the
result holds for synchronous bounded SN P systems using only standard rules.

5 Sequential SN P Systems

Sequential SN P systems are another closely related model introduced in [10].
These are systems that operate in a sequential mode. This means that at every
step of the computation, if there is at least one neuron with at least one rule
that is fireable, we only allow one such neuron and one such rule (both nonde-
terministically chosen) to be fired. If there is no fireable rule, then the system is
dormant until a rule becomes fireable. However, the clock will keep on ticking.
The system is called strongly sequential if at every step, there is at least one
neuron with a fireable rule.

Unlike for asynchronous systems (in the previous section), where the results
relied on the fact that the systems use extended rules, the results here hold for
systems that use standard rules (as well as for systems that use extended rules).

Theorem 7. The following results hold for systems with delays.

1. Sequential k-output unbounded SN P systems with standard rules are uni-
versal.

2. Strongly sequential k-output general SN P systems with standard rules are
universal.

3. Strongly sequential k-output unbounded SN P systems with standard rules
and k-output PBCMs are equivalent.

The above results also hold for systems with extended rules.

Item 3 in the above results improves the result found in [10] which required a
special halting configuration similar to the halting configuration in [1]. Here, we
find this halting requirement is not necessary.

6 SN P Systems as Language Generators

In this section, we use the SN P system as a language generator as in two
recent papers [2,4]. Consider an SN P system Π with output neuron, O, which
is bounded. Interpret the output from O as follows. At times when O spikes, a
is interpreted to be 1, and at times when it does not spike, interpret the output
to be 0. We say a binary string x = a1...an, where n ≥ 1, is generated by Π if
starting in its initial configuration, it outputs x and halts. We assume that the
SN P systems use standard rules.

Spiking Neural P Systems: Some Characterizations 33

6.1 Regular Languages

It was recently shown in [2] that for any finite binary language F , the language
F1 (i.e., with a supplementary suffix of 1) can be generated by a bounded SN P
system. The following shows that, in general, this result does not hold when F
is an infinite regular language.

Observation 1. Let F = 0∗. Then F1 cannot be generated by a bounded SN P
system.

To generate F1, the SN P system must be able to generate the string 1, meaning
there must initially be at least one spike in the output membrane (say an, for
some n) and there must be a rule of the form E/aj → a; 0 where an ∈ E.
Therefore, there cannot be a forgetting rule of the form an → λ in the same
neuron. To generate the strings in 0+1 (i.e., there is at least one 0), the neuron
must contain a rule of the form E/aj → a; d where an ∈ E and d ≥ 1. (This is
necessary so the rule of the form E/aj → a; 0 in the output neuron is not used.)
Let d0 be the maximum d in all such rules. Clearly the output neuron must spike
within d0 + 1 steps from the beginning of the computation. Hence, there is no
way to produce the string 0d0+11.

It is interesting to note that by just modifying the previous language 0∗ to
always begin with at least one zero (so F = 0+) we can generate F1.

a
a→a;0

a→a;0
a2→λ

a
a→a;0
a→a;1

O

1 2

a→a;0
a2→λ

3

a→a;0
a2→λ

4

Fig. 4. Bounded SN P system generating the language F1 = 0+1

Observation 2. Let F = 0+. Then F1 can be generated by a bounded SN P
system. Thus, it is possible to generate some languages where F is an infinite
language.

We give a bounded SN P system which generates F1 (shown in Figure 4). Here
the output neuron initially contains no spikes guaranteeing it will not spike
during the first step. Both neurons 1 and 2 will fire during the first step. If neuron
1 chooses to fire the rule a→ a; 0 then two spikes are received by neurons 3, 4,
and O. These spikes are forgotten during the next step causing the output to be
0. This is repeated until neuron 1 chooses to fire rule a → a; 1. This will cause
neurons 3, 4, and O to receive one spike at this time step. This will cause all

34 O.H. Ibarra and S. Woodworth

three neurons to fire during the next time step (when neuron 1 also fires). This
causes the output to be 1 and leaves neurons 2, 3, 4, and O with three spikes.
No further neuron is fireable causing the system to halt after producing 0+1.

In contrast to Observation 1, we have:

Observation 3. Let F = 0∗. Then 1F can be generated by a bounded SN P
system.

We give a bounded SN P system which generates 1F (shown in Figure 5). Here,
the output neuron will spike during the first time step outputting a 1. The
additional two neurons are used to determine how many 0s will follow. Neurons
1 and 2 will fire until both choose to nondeterministically use rule a2 → a; 0 which
will cause both to contain only a single spike in the next time step causing the
system to halt. Since neurons 1 and 2 are not connected to neuron O, after the
first step, neuron O will never fire causing the remainder of the output to be 0’s.

a2

a2→a;0
a2/a→a;0

a
a→a;0

a2

a2→a;0
a2/a→a;0

O

1 2 3

Fig. 5. Bounded SN P system generating the language 1F = 10∗

Observation 3 actually generalizes to the following rather surprising result:

Theorem 8. Let L ⊆ (0+1)∗. Then the language 1L (i.e., with a supplementary
prefix 1) can be generated by a bounded SN P system if and only if L is regular.
(The result holds also for 0L, i.e., the supplementary prefix is 0 instead of 1.)

6.2 Another Way of Generating Languages

Now we define a new way of “generating” a string. Under this new definition,
various classes of languages can be obtained. We say a binary string x = a1...an,
where n ≥ 0, is generated by Π if it outputs 1x10d, for some d which may
depend on x, and halts. Thus, in the generation, Π outputs a 1 before gen-
erating x, followed by 10d for some d. (Note the prefix 1 and the suffix
10d are not considered as part of the string.) The set L(Π) of binary
strings generated by Π is called the language generated by Π . We can show the
following:

1. When there is no restriction, Π can generate any unary recursively enumer-
able language. Generalizing, for k ≥ 1, any recursively enumerable language

Spiking Neural P Systems: Some Characterizations 35

L ⊆ 0∗10∗...10∗ (k occurrences of 0∗s) can be generated by an unrestricted
SN P system.

There are variants of the above result. For example, for k ≥ 1, let w1, ..., wk

be fixed (not necessarily distinct) non-null binary strings. Let L ⊆ w∗
1 ...w

∗
k

be a bounded language. Then L can be generated by an unrestricted SN P
system if and only it is recursively enumerable.

2. There are non-bounded binary languages, e.g., L = {xxr | x ∈ {0, 1}+} (the
set of even-length palindromes), that cannot be generated by unrestricted SN
P systems. However, interestingly, as stated in item 5 below, the complement
of L can be generated by a very simple SN P system.

3. Call the SN P system linear spike-bounded if the number of spikes in the un-
bounded neurons at any time during the computation is at most O(n), where
n is the length of the string generated. Define polynomial spike-bounded SN
P system in the same way. Then linear spike-bounded SN P systems and
polynomial spike-bounded SN P systems are weaker than unrestricted SN P
systems. In fact, S(n) spike-bounded SN P systems are weaker than unre-
stricted SN P systems, for any recursive bound S(n).

4. Call the SN P system 1-reversal if every unbounded neuron satisfies the
property that once it starts “spiking” it will no longer receive future spikes
(but may continue computing). Generalizing, an SN P system is r-reversal
for some fixed integer r ≥ 1, if every unbounded neuron has the property
that the number of times its spike size changes values from nonincreasing to
nondecreasing and vice-versa during any computation is at most r. There
are languages generated by linear spike-bounded SN P systems that cannot
be generated by r-reversal SN P systems. For example, L = {1k2 | k ≥ 1}
can be generated by the former but not by the latter.

5. Let w1, ..., wk be fixed (not necessarily distinct) non-null binary strings. For
every string x in w∗

1 ...w
∗
k, let ψ(x) = (#(x)1, ...,#(x)k) in Nk, where #(x)i =

number of occurrences of wi in x. Thus, ψ(x) is the Parikh map of x with
respect to (w1, ..., wk). For L ⊆ w∗

1 ...w
∗
k, let ψ(L) = {ψ(x) | x ∈ L}. A 1-

reversal (resp. r-reversal) SN P system can generate L if and only if ψ(L) is
semilinear.

Similarly, a 1-reversal (resp., r-reversal) SN P system can generate a lan-
guage L ⊆ 0∗10∗...10∗ (k occurrences of 0∗s) if and only if {(n1, ..., nk) | 0n1

1...10nk ∈ L} is semilinear.
While the language L = {xxr | x ∈ {0, 1}+} cannot be be generated by

an unrestricted SN P system (by item 2), its complement can be generated
by a 1-reversal SN P system.

6. 1-reversal (resp., r-reversal) SN P system languages are closed under some
language operations (e.g., union) but not under some operations (e.g., com-
plementation). Many standard decision problems (e.g., membership, empti-
ness, disjointness) for 1-reversal (resp., r-reversal) SN P systems are
decidable, but not for some questions (e.g., containment and equivalence).

36 O.H. Ibarra and S. Woodworth

7 Conclusion

Theorem 2 solved an open question in [1]. We showed that the special halting
configuration with regard to the number of spikes within each neuron is not
necessary to prove equivalence to PBCMs.

We also looked at conditions under which an asynchronous unbounded SN P
system becomes universal. It is interesting to note that all of the following are
needed to gain universality:

1. Delays in the system are needed.
2. Dormant steps in the system are needed.
3. At least one neuron must fire at every step if the system is not in a dormant

state.

Clearly we must have 1 in order to have 2. If we just have 1 and 2, Theorem 3
shows the system is not universal. If we just have 1 and 3, Theorem 5 shows the
system is not universal.

An interesting open question is whether these results hold if we restrict the
SN P system to use only standard (i.e., non-extended) rules.

For sequential SN P systems, we were able to obtain similar results with the
use of only standard rules. If the system is strongly sequential with only bounded
and unbounded neurons, the model is only as powerful as PBCMs. However, if
we allow either general neurons or dormant steps, the system becomes universal.

We also showed that asynchronous bounded SN P systems with extended
rules are equivalent to monotonic counter machines which are known to generate
precisely the semilinear sets.

Finally, we presented some results concerning the language generating capa-
bility of SN P systems.

References

1. Cavaliere, M., Egecioglu, O., Ibarra, O.H., Ionescu, M., Păun, Gh., Woodworth,
S.: Asynchronous spiking neural P systems; Decidability and Undecidability 2006
(submitted)

2. Chen, H., Freund, R., Ionescu, M., Păun, Gh., Pérez-Jiménez, M.J.: On string
languages generated by spiking neural P systems. In: Proc. 4th Brainstorming
Week on Membrane Computing, pp. 169–194 (2006)

3. Chen, H., Ionescu, M., Ishdorj, T.-O., Păun, A., Păun, Gh., Pérez-Jiménez, M.J.:
Spiking neural P systems with extended rules: Universality and languages, Natural
Computing (special issue devoted to DNA12 Conf.) (to appear)

4. Chen, H., Ionescu, M., Păun, A., Păun, Gh., Popa, B.: On trace languages gener-
ated by (small) spiking neural P systems. In: Pre-proc. 8th Workshop on Descrip-
tional Complexity of Formal Systems (June 2006)

5. Gerstner, W., Kistler, W.: Spiking Neuron Models. Single Neurons, Populations,
Plasticity. Cambridge Univ. Press, Cambridge (2002)

6. Harju, T., Ibarra, O., Karhumaki, J., Salomaa, A.: Some decision problems concern-
ing semilinearity and commutation. Journal of Computer and System Sciences 65,
278–294 (2002)

Spiking Neural P Systems: Some Characterizations 37

7. Greibach, S.: Remarks on blind and partially blind one-way multicounter machines.
Theoretical Computer Science 7(3), 311–324 (1978)

8. Ibarra, O.H., Păun, A., Păun, Gh., Rodŕıguez-Patón, A., Sosik, P., Woodworth,
S.: Normal forms for spiking neural P systems. Theoretical Computer Science (to
appear)

9. Ibarra, O.H., Woodworth, S.: Characterizations of some restricted spiking neural
P systems. In: Hoogeboom, H.J., Păun, Gh., Rozenberg, G., Salomaa, A. (eds.)
WMC 2006. LNCS, vol. 4361, pp. 424–442. Springer, Heidelberg (2006)

10. Ibarra, O.H., Woodworth, S., Yu, F., Păun, A.: On spiking neural P systems and
partially blind counter machines. In: Calude, C.S., Dinneen, M.J., Păun, Gh.,
Rozenberg, G., Stepney, S. (eds.) UC 2006. LNCS, vol. 4135, pp. 113–129. Springer,
Heidelberg (2006)

11. Ionescu, M., Păun, Gh., Yokomori, T.: Spiking neural P systems. Fundamenta
Informaticae 71(2-3), 279–308 (2006)

12. Maass, W.: Computing with spikes. Special Issue on Foundations of Information
Processing of TELEMATIK 8(1), 32–36 (2002)

13. Maass, W., Bishop, C. (eds.): Pulsed Neural Networks. MIT Press, Cambridge
(1999)

14. Păun, A., Păun, Gh.: Small universal spiking neural P systems. In: BWMC2006.
BioSystems, vol. II, pp. 213–234, 2006 (in press)

15. Păun, Gh.: Membrane Computing – An Introduction. Springer, Heidelberg (2002)
16. Păun, Gh., Pérez-Jiménez, M.J., Rozenberg, G.: Spike trains in spiking neural P

systems. Intern. J. Found. Computer Sci. 17(4), 975–1002 (2006)
17. The P Systems Web Page: http://psystems.disco.unimib.it

http://psystems.disco.unimib.it

Approximating Graphs by Graphs and Functions

(Abstract)

László Lovász

Department of Computer Science
Eötvös Loránd University

Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary
lovasz@cs.elte.hu

In many areas of science huge networks (graphs) are central objects of study:
the internet, the brain, various social networks, VLSI, statistical physics. To
study these graphs, new paradigms are needed: What are meaningful questions
to ask? When are two huge graphs “similar”? How to “scale down” these graphs
without changing their fundamental structure and algorithmic properties? How
to generate random examples with the desired properties? A reasonably complete
answer can be given in the case when the huge graphs are dense (in the more
difficult case of sparse graphs there are only partial results).

E. Csuhaj-Varjú and Z. Ésik (Eds.): FCT 2007, LNCS 4639, p. 38, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Traces, Feedback, and the Geometry of

Computation
(Abstract)

Philip J. Scott

Department of Mathematics & Statistics, University of Ottawa,
Ottawa, Ontario K1N 6N5, Canada

phil@site.uottawa.ca

The notion of feedback and information flow is a fundamental concept arising
in many classical areas of computing. In the late 1980s and early 1990s, an
algebraic structure dealing with cyclic operations emerged from various fields,
including flowchart schemes, dataflow with feedback, iteration theories, action
calculi in concurrency theory, proof theory (Linear Logic and Geometry of In-
teraction), and network algebra, as well as in pure mathematics. This structure,
now known as a “traced monoidal category”, was formally introduced in an in-
fluential paper of Joyal, Street and Verity (1996) from current work in topology
and knot theory. However these authors were also keenly aware of its potential
applicability. Since then, such structures – with variations – have been pur-
sued in several areas of mathematics, logic and theoretical computer science,
including game semantics, quantum programming languages and quantum pro-
tocols, and computational biology. We shall survey applications in logic and the-
oretical computer science and discuss progress towards an abstract geometry of
algorithms.

E. Csuhaj-Varjú and Z. Ésik (Eds.): FCT 2007, LNCS 4639, p. 39, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Largest Common d-Dimensional Subsequence

of Two d-Dimensional Strings

Abdullah N. Arslan

Department of Computer Science
University of Vermont

Burlington, VT 05405, USA
aarslan@cs.uvm.edu

Abstract. We introduce a definition for a largest common d-dimensional
subsequence of two d-dimensional strings for d ≥ 1. Our purpose is to
generalize the well-known definition of a longest common subsequence
of linear strings for dimensions higher than one. We prove that comput-
ing a largest common two-dimensional subsequence of two given two-
dimensional strings is NP -complete. We present an algorithm for the
case of the problem when the definition is weakened.

Keywords: common subsequence, multi-dimensional string, image, NP ,
dynamic programming.

1 Introduction

A subsequence of a given string S is a string that is obtained from S by selecting
a sequence of symbols from S in their order of appearance in S. The longest
common subsequence of given two linear strings is a common subsequence of
these strings with the biggest length.

The approximate string matching and edit distance techniques have been ap-
plied to two dimensional shape recognition [8,11,2]. The longest common subse-
quence problem for strings in high dimensions can be applied to many problems
such as finding common subimages in given two images, finding a given image in
video where time could be regarded as the third dimension, image recognition
and classification in medical imaging, and finding common structures in given
three-dimensional protein structures.

We introduce a definition for a largest common d-dimensional subsequence of
two d-dimensional strings, which generalizes the definition of a longest common
subsequence of linear strings for higher dimensions. Our definition requires that
common symbols selected from each sequence preserve their relative position
ordering along each dimension simultaneously. Figure 1 shows a simple example
for two-dimensional strings. The two-dimensional string in Part (c) is a common
subsequence of both two-dimensional strings S1 (shown in Part (a)), and S2

(shown in Part (b)). We label the matching symbols with the same numbers.
The position ordering in the common subsequence is 5 < 2 < 1 = 3 < 4 < 6 on
dimension one (horizontal dimension), and 1 < 2 = 3 = 4 < 5 = 6 on dimension

E. Csuhaj-Varjú and Z. Ésik (Eds.): FCT 2007, LNCS 4639, pp. 40–51, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Largest Common d-Dimensional Subsequence 41

1

2
3

4

5 6

1

2
3

4

5 6

(b)(a) (c)

1

2
3

4

5 6

Fig. 1. A simple example for the definition of a largest common subsequence in two
dimensions

two (vertical dimension). These orderings are correct for the matching symbol
positions in both S1, and S2 on all dimensions (dimensions one and two in
this case).

Figure 2 contains some example cases that illustrate the capability of our
definition on identifying largest common subimages of two images. In Part (a),
if the position orders for matching symbols are not preserved then the true
common subimage that we show in Part (a.2) may be overshadowed by another
subimage of the same size as we depict such an example image in Part (a.1).
Our definition is powerful enough to capture the similarity between an image
and its enlarged version as we show in Part (b). In this case, position order
preservation in matching symbols makes it possible to realize that the original
image is contained in the enlarged version as a subimage.

Under our definition, computing a largest common d-dimensional subsequence
of two d-dimensional strings in NP -hard when d > 1. We show this by proving
that the decision version of the problem for d = 2 is NP -complete. We also
show that if we weaken this definition such that the relative ordering of selected

(a)

(b)

(a.1)

(a.2)

if position orders are not preserved
can be overshadowed
true largest common subimage

if position orders are preserved

comparing an image
with its enlarged version
when position orders are preserved

Fig. 2. Sample input images, and their common subimages

42 A.N. Arslan

symbol positions is constrained to be preserved on one dimension only then we
can solve the problem in O(n3) time, and O(n2) space when d = 2, where n is the
common size of the two d-dimensional strings compared. We also show how to
modify this algorithm for d > 2. The modified algorithm takes the same O(n3)
asymptotic time, and O(n2) asymptotic space, where n = md is the common
size of the images compared, and m is the size on each dimension.

The outline of this paper is as follows: we summarize previous work on multi-
dimensional string editing in Section 2. We give our definition of a largest com-
mon subsequence for multi-dimensional strings in Section 3. We show, in Section
4, that computing a largest common subsequence under our definition is NP -
hard. In Section 5, we present our algorithm for a weaker definition of a longest
common subsequence. We include our remarks in Section 6. We summarize our
results in Section 7.

2 Previous Related Work

String editing for linear strings is a very well-studied, and well-understood pro-
cess because the edit operations insert, delete, and substitute form a natural
basis for changing one string to another [10]. This frame-work of string edit-
ing gives rise to the definition of a longest common subsequence which can be
computed efficiently [3].

Several studies in the literature attempted to define edit distance between
strings in high dimensions. Krithivasan and Sitalakshmi [7] defined edit distance
between two images of the same size as the sum of the edit distances between
all pairs of rows in the same positions in both strings. Baeza-Yates [1] proposed
an edit distance model for two dimensional strings. This model allows deletion
of prefixes of rows or columns in each string (image), changing a prefix of a
row (or a column) in one image to a prefix of a row (or a prefix of a column if
columns are compared) in the other image using character level edit operations
between linear strings. Navarro and Baeza-Yates [9] extended this edit model
recursively to dimensions d ≥ 3. They develop an algorithm to compute the edit
distance in O(d!m2d) time, and O(d!m2d−1) space if each input string’s size in
each dimension is m. In this paper, we express the time complexity on input size
n (e.g. for images of size m×m, the input size n = m2).

For strings of dimensions higher than one, the string edit distance is difficult
to define because there is no commonly accepted single set of edit operations that
explains well possible transformations between any given two multi-dimensional
strings.

Baeza-Yates [1] had the following remark: a largest common subimage of given
two images can possibly be defined as a largest set of disjoint position-pairs that
match exactly in both images such that a suitable order given by the position
values is the same for both images.

In this paper, we give a definition for a largest common subsequence of two
given strings that naturally extends the definition for the case of linear strings
to higher dimensions. In our definition, we require that the order of matching

A Largest Common d-Dimensional Subsequence 43

positions is preserved on every dimension simultaneously (as we show it in an
example in Figure 1). This way the integral composition (or geometry) of the
subsequence is similar to those in the two strings from which this common sub-
sequence is obtained as we illustrate on some examples in Figure 2. This is an
essential property in our definition which has not been considered to this extent
in existing models in [7,1,9].

3 Definitions

We give our definitions for dimension two for simplicity. They can be extended
to higher dimensions easily.

An n×m string S is a two dimensional string (an image) that we represent
as a matrix ⎛⎜⎜⎝

s1,1 s1,2 . . . s1,m
s2,1 s2,2 . . . s2,m
.
sn,1 sn,2 . . . sn,m

⎞⎟⎟⎠
where each si,j ∈ Σ ∪ {ε} where ε denotes the null string. We also use {si,j} to
denote S. The null-symbol ε may be used to represent background of the image.

The size of S is
∑

si,j
=ε 1. That is, the size of S is the number of non-null
symbols in S.

Let (x1, x2, . . . , xd).k denote the kth component xk of a given point (i.e. po-
sition) (x1, x2, . . . , xd) in d-dimensional space.

Let i1 ≤1 i2 ≤2 . . . ≤k−1 ik be a sequence s where each ij is an integer for
1 ≤ j ≤ k, and each ≤r is in {′<′,′ =′}. We say that s is a correct ordering if for
every r, 1 ≤ r ≤ k − 1, ir < ir+1 when ≤r=′<′, and ir = ir+1 when ≤r=′=′.

An n′ ×m′ string S′ = {s′i,j} is a subsequence of an n ×m string S = {si,j}
if the following are true:

– for every p′ = (i′, j′) there exists a unique index f(p′) = (i, j) such that
si′,j′ = si,j ,

– let I ′ be the set of non-null symbol positions in S′, and let I be the set of
matching positions in S, i.e. I = {f(p′) | p′ ∈ I ′}. Let z denote the size of
I ′ (or I since |I ′| = |I|). For every dimension k, 1 ≤ k ≤ 2, if the ordering
in I ′ is p′1.k ≤1 p

′
2.k ≤2 . . . ≤z−1 p

′
z where each p′
 is a unique (i′
, j

′

), and

≤
 is ′ =′ if p′l.k = p′
+1.k, and ′ <′ if p′
.k < p′
+1.k for all �, 1 ≤ � ≤ z − 1.
This ordering is correct for f(p′)1.k ≤1 f(p′)2.k ≤2 . . . ≤z−1 f(p′z). That
is, on every dimension, the position ordering of indices in I ′ is identical
with the ordering of the corresponding indices in S. For the example, in
Figure 1, the string in Part (c) is a common subsequence of both strings in
parts (a) and (b). Matching positions are labelled with the same numbers
for simplicity. The orderings 5′ <′ 2‘ <′ 1′ =′ 3‘ <′ 4′ <′ 6 on dimension
one, and 1′ <′ 2′ =′ 3′ =′ 4′ <′ 5′ =′ 6 on dimension two obtained from the
common subsequence in Part (c) are all correct for the strings in parts (a)
and (b).

44 A.N. Arslan

We note that a subsequence S′ of S can be obtained by first deleting a set of
rows, and columns from S, and selecting the symbols that appear in the remain-
ing string such that the unselected symbols are all ε’s. It is easy to verify that
when S′ is obtained from S this way, the ordering of the positions of matching
symbols are identical in both S′ and S.

For given two-dimensional strings S1 and S2, where S1 is an n1×m1, and S2

is an n2×m2 string, S′ is a largest two-dimensional common subsequence of S1

and S2 if S′ is a two-dimensional common subsequence of both S1 and S2 with
the largest possible size.

Our definition makes it possible to capture the true subimages for the ex-
amples shown in Figure 2. Part (a.2) in the figure, since the position ordering
distinguishes between <, and =, the two skew edges of letter A do not match
straight vertical lines, and a false match shown in Part (a.1) is avoided. The
position order preservation on every dimension also functions as an invariant
when one image is an enlarged version of the other. Part (b) has an example
where the largest common subimage is the original image when the image and
its enlarged version are compared.

We can verify that our definition of largest common subsequence can easily
be generalized for strings of dimensions higher than two.

4 Complexity of Computing A Largest Common
Two-Dimensional Subsequence of Given Two
Two-Dimensional Strings

We consider the following decision problem, LCS-IMAGE: given two two-
dimensional strings X and Y , is the largest size for a two-dimensional common
subsequence of these strings ≥ J? We show that this problem is NP -complete.

This problem is clearly in NP since for a given two-dimensional sequence S,
and for each non-null symbol position in S, matching positions in both X and
Y , we can verify that the size of S is ≥ J , the ordering of positions in S for each
dimension is correct for orderings of matching positions in both X and Y . This
verification can be done in polynomial time.

We show next that an NP -complete problem, CLIQUE, is polynomial time
reducible to LCS-IMAGE, where CLIQUE is the following well-known prob-
lem [5]: given an undirected graph G, and integer K, does G contain a clique of
size ≥ K (is there a complete subgraph of G with K or more vertices?).

We construct from a given graph G = (V,E), where V is the set of vertices,
and E is the set of edges, two-dimensional strings X = {xi,j} and Y = {yi,j} as
follows:

– for all (i, j), 1 ≤ i, j ≤ |V |,

xi,j =
{

1, if i = j or (i, j) ∈ E;
0, otherwise.

A Largest Common d-Dimensional Subsequence 45

That is, X is the string corresponding to the adjacency matrix for G, where
the diagonal is entirely composed of 1’s,

– and Y is a K×K string where every symbol is a 1, i.e. for all (i, j), yi,j = 1.

We can create X and Y in time polynomial in the size of graph G.
G has a clique of size K iff Y is a common subsequence of X and Y , i.e. the

size of the common subsequence of X and Y is ≥ K2.
If G has a clique of size K then let C = {i1, i2, . . . , iK} be the set of vertices

in this clique. By keeping row ij , and column ij for all ij ∈ C, and deleting all
other rows, and columns, we can obtain Y as a subsequence of X (note that
we set all xi,i = 1 in X , and when Y is obtained from X this way the orders
of matching positions are correct for all dimensions). Therefore, in this case the
largest common subsequence of X and Y is Y whose size is K2.

If the size of a largest common subsequence of X and Y is ≥ K2, then this
common subsequence can only be the string Y . In this case, since the order of
matching positions in X has to be the same as that in Y , which is a K × K
string entirely composed of 1s, on every dimension, and since the only way to get
a 1 in position (i, i) for all i’s is to choose the same set of numbers for the rows,
and columns, we can see that the subsequence Y in X corresponds to a set of
identical row and column positions C = {i1, i2, . . . , iK}. From the construction,
we can verify that the vertices in C form a K-clique in G.

Clearly, since the problem is NP -complete for two-dimensional strings, it is
NP -hard for dimensions higher than two.

5 Computing A Largest Weak Common Subsequence

In this section, we weaken the definition of a common subsequence of two d-
dimensional (for d > 1) strings such that the order of matching positions is
required to be preserved on only one given dimension. More formally, for a
given dimension k, 1 ≤ k ≤ d, a d-dimensional string S′ is a subsequence of a d-
dimensional string S when the ordering of matching positions in S′ on dimension
k is a correct ordering with respect to <, and = operators for the ordering
of matching positions in S on dimension k. We use the adjective “weak” to
distinguish a largest common subsequence, and the problem of finding a largest
common subsequence in this definition from those that use the original definition.

We refer to a largest weak common subsequence (subimage when d = 2) by
lwcs, and we call the problem of finding it as the lwcs problem. This case of
the problem can still have many practical applications such as comparing two
images of objects moving in one dimension. For the examples in Figure 2, this
weak definition is still powerful enough to find letter A as the largest common
image in Part (a), and it can realize if one image is a widened or a lengthened
version of another image.

We present a dynamic programming algorithm for computing a largest weak
common subsequence of given two two-dimensional strings. The algorithm can
easily be modified for strings in dimensions higher than two.

46 A.N. Arslan

Without loss of generality, we choose the horizontal direction to represent
the dimension on which the ordering of matching positions is required to be
preserved.

We use S[i][j] to represent the symbol si,j in S. We denote by S[i][j..k] the sub-
string of row i in S starting at column j and ending at column k. S[(i, j)..(k, l)]
is the rectangular subimage of S whose top-left corner position is (i, j) and
bottom-right position is (k, l).

Let S1, and S2 be two given images of size n1×m1, and n2×m2, respectively.
We compute a largest weak common subimage between all subimages of S1 and
S2. When we compare two images, the left-most columns are not considered
for convenience in a future step. For this reason, we also imagine an additional
column, column 0, on the dimension that the ordering is preserved (the dimension
shown horizontally). For example, in Figure 3, two subimages S1[1, i−Δi, n1, i]
and S2[1, j−Δj, n2, j] are shown. In the lwcs computation, the left-most columns
S1[1..n1][i −Δi] and S2[1..n2][j −Δj] do not contribute to the total lwcs size.
We use empty circles on these positions to highlight this fact.

(n ,i)1

Δi) Δj)

,j)2(n

(1,0)

(n ,m)2 2

(1,0)

(n ,m)

(1,i-

1 1

(1,j-

Fig. 3. Regions involved when we compare two subimages from each image

Let Ri−Δi,i,j−Δj ,j be the lwcs size between two images S1[(1, i−Δi)..(n1, i)]
and S2[(1, j −Δj)..(n2, j)].

The boundary conditions are Ri,i,j−Δj ,j = 0 for all i,Δj, j, 0 ≤ i ≤ m1, 1 ≤
Δj ≤ m2, Δj ≤ j ≤ m2. Symmetrically, Ri−Δi,i,j,j = 0 for all i,Δi, j , 1 ≤ Δi ≤
m1, Δi ≤ i ≤ m1, 0 ≤ j ≤ m2.

We compute Ri−Δi,i,j−Δj ,j for all Δi, Δj , i, j. R0,m1,0,m2 is the lwcs size for
S1 and S2.

We first perform a step what we call the base step. Our definition of largest
weak common subsequence dictates that there is only one dimension on which
the ordering is required to be preserved. There is no requirement involving the
other dimensions. This freedom on other dimensions implies that a maximal
matching between two strings is sought. This gives rise to a well-known graph
problem if we represent each symbol in the strings by a vertex. A matching M
of an undirected graph G = (V,E), where V and E are the sets of vertices,
and edges respectively, is a subset of edges with the property that no two edges
in M share the same vertex. In this base step, we consider all columns from
each image pairwise as we depict in Figure 4. For all i, 1 ≤ i ≤ m1, for all
j, 1 ≤ j ≤ m2, we create a bipartite graph Gi,j = (V,E) and compute the

A Largest Common d-Dimensional Subsequence 47

cardinality of a maximal bipartite matching on Gi,j and store it in Ri−1,i,j−1,j .
A graph G = (V,E) is bipartite if the set of vertices V can be partitioned into
two sets A, and B such that each edge in E has one vertex in A, and one vertex
in B. The maximum cardinality bipartite matching problem on a given bipartite
graph seeks a matching in the graph with the maximum cardinality. In the base
step, we create Gi,j as follows:

– we set V = A∪B where A = {S1[k][i] | 1 ≤ k ≤ n1}, and B = {S2[k][j] | 1 ≤
k ≤ n2}: we create a vertex for each symbol in column i of S1 to obtain set
A, and create a vertex for each symbol in column j of S2 to obtain set B.
A ∪B is the set of vertices in Gi,j ;

– we set E = {(S1[k1][i], S2[k2][j]) | S1[k1][i]=S2[k2][j], S1[k1][i] ∈ A, S2[k2][j]
∈ B}: the edges in E have one end-point in A and the other end-point in B,
where the symbols corresponding to these vertices match.

We can use any maximum cardinality bipartite matching algorithm in this
step (for example, the algorithm proposed by Hopcroft and Karp [6] which was
shown to be a special case of the maximum-flow algorithm applied to a simple
network by Even and Tarjan [4]).

(n1,m)1

(1,0) (1,0) (1,j-1)

(n2,j) (n2,m)2

(1,i-1)

(n1,i)

Fig. 4. All columns of both images are considered pairwise, and for every-pair the
maximum cardinality bipartite matching problem is solved on the graph created

For all Δi, Δj , i, j, 1 ≤ Δi ≤ m1, 1 ≤ Δj ≤ m2, Δi ≤ i ≤ m1, Δj ≤ j ≤ m2

we compute Ri−Δi,i,j−Δj ,j as follows:
For all i′, j′, 1 ≤ i′ ≤ i, 1 ≤ j′ ≤ j, and i′ �= i or j′ �= j, but not both i′ = i

and j′ = j, we consider two parts of the subimage S1[1, i−Δi, n1, i] separated by
column i′, and similarly, two parts of the subimage S2[1, j−Δj , n2, j] separated
by column j′ as we show in Figure 5. We compute Ri−Δi,i,j−Δj ,j as the maximum
of the following:

– Ri′,i,j′,j+Ri−Δi,i′,j−Δj ,j′ : We can combine the order-preserved lwcs obtained
between regions 1 of S1 and 1 of S2 as shown in Figure 5 Part a. Note that
because the left-most columns are not counted in the lwcs computation
between two subimages, the intersecting lines in these regions belong to only
one region, and they are not counted more than once. Figure 5 depicts this
by using empty circles on the leftmost columns.

48 A.N. Arslan

– Ri′,i,j−Δj ,j : If region 1 of S1 and the entire subimage of S2 give an lwcs then
region 2 of S1 is avoided because otherwise the ordering will be violated.
This case is shown in Part b of the figure;

– Ri−Δi,i′,j−Δj ,j: Similarly, an lwcs can possibly be obtained between region
2 of S1 and the entire subimage of S2, and region 1 of S1 is avoided. This
case is shown in Part c of the figure;

– Ri−Δi,i,j′,j : This case is shown in Part d of the figure, and it is symmetric
to Part b;

– Ri−Δi,i,j−Δj ,j : This case is shown in Part e of the figure, and it is symmetric
to Part c.

Note that we do not consider all possible cases in Figure 5. Cases we do not
consider either violate the ordering, or they cannot have an optimal lwcs. For
example, pairing region 1 of S1 with 2 of S2, and region 2 of S1 with region
1 of S1 violates the ordering whenever both have more than zero matches. For
another example, pairing region 1 of S1, and region 2 of S2 alone cannot yield a
weak common subimage larger than that can be obtained in Part (b) in Figure 5
where region 1 of S1 is paired with the entire subimage of S2 if we think induc-
tively in increasing subimage sizes for pairings.

We claim that the Ri−Δi,i,j−Δj ,j we compute is the lwcs size between the
subimages S1[0, i−Δi, n1, i] and S2[0, j −Δj , n2, j].

For the correctness, we use induction. The induction is based on the subimage
sizes on the dimension the ordering is preserved (the dimension represented
horizontally), and within given sizes on this dimension it is based on all possible
subimage pairings. This ordering for the induction can be generated by the
following nested loops: For all Δi, Δj , i, j, i

′, j′, 1 ≤ Δi ≤ m1, 1 ≤ Δj ≤
m2, Δi ≤ i ≤ m1, Δj ≤ j ≤ m2, 1 ≤ i′ ≤ i, 1 ≤ j′ ≤ j, and not both
i′ = i and j′ = j (the latter conditions are necessary otherwise this would be a
self-referencing problem).

For the base case, we consider all pairwise comparisons between columns of
both images, and store the maximum matching cardinalities. Clearly, our claim
is true in the base case.

When one of the subimages is a column, and the other one includes more than
one columns, for the subimage with a single column, region 1 is the single column
of this image, and region 2 when paired with any region in the other subimage
will produce a 0, because of the boundary conditions we set. In this case, the
single column region of one image, and one of the regions in the other subimage
will produce an lwcs for this pairing of subimages. Obviously, the ordering is
preserved: essentially all matches are in one column in this case.

When each subimage paired for comparison is wider than a single column,
then there exist a column a∗ in S1, and b∗ in S2 such that when we consider re-
gions on both sides of these separator columns they pair in a way to maximize the
size of a common subsequence. In our algorithm, we consider all possible cases
which can yield a largest common subsequence, and we only allow pairings with
which order is preserved. Optimality, and preservation of the ordering are implied

A Largest Common d-Dimensional Subsequence 49

Δj)

,j)2(n(n ,i)1

Δi)

1 of S and 1 of S1 2

(n ,i)1

Δi)

,j)2(n

Δj)

,j)2(n(n ,i)1

Δi)

,j)2(n(n ,i)1

Δi)

Δj)

,j)2(n(n ,i)1

Δi)

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

(a)

(b)

12

(n2

(1,0)

(n ,m)2 2,j’)

(1,j-(1,0)

(n ,m)

(1,i-

1(n ,i’)1 1

12
+

2 of S and 2 of S1 2

(1,0)

(n ,m)

(1,i-

1(n ,i’)1 1

12 12

(n2

(1,0)

(n ,m)2 2,j’)

(1,j- Δj)

1

12

(n2

(1,0)

(n ,m)2 2,j’)

(1,j-

(n ,m)

(d)

(1,0) (1,i-

1(n ,i’)1 1

12

12

(n2

(1,0)

(n ,m)2 2,j’)

(1,j-

(n ,m)

(e)

(1,0) (1,i-

1(n ,i’)1 1

12

1

(n2

(1,0)

(n ,m)2 2,j’)

(1,j-

2 of S and

(n ,m)

(c)

(1,0) (1,i-

1(n ,i’)1 1

12 1

Δj)

2

1 of S and entire subimage of S2

entire subimage of S and 1 of S1 2

entire subimage of S and 2 of S1 2

entire subimage of S 2

Fig. 5. Computing lwcs of images S1[1, i − Δi, n1, i] and S2[1, j − Δj , n2, j]: All cases
for pairing parts of subimages in both images that can yield an optimal lwcs

50 A.N. Arslan

by the optimality, and order preservation by our strong induction hypothesis on
smaller sized pairs which have been computed earlier.

If both S1 and S2 are of size n = m×m, in the base step, the graph we create
for every pair has O(m) vertices. The maximum cardinality bipartite matching
problem for each pair can be solved in time O(m2.5) [6,4]. The total time for all
pairs spent in this step is O(m4.5). The dynamic programming step takes longer,
Θ(n3) = Θ(m6) time. The total time complexity of our algorithm for the lwcs
problem when d = 2 is therefore O(n3), and it requires O(n2) space since all
these steps can be performed using O(n2) space.

Our algorithm can be generalized for dimensions higher than two. For this,
we only need to change the base step of the algorithm. When the dimension
d > 2, each column becomes a (d− 1)-dimensional string. In Gi,j = (A ∪B,E),
we create a vertex in set A for each symbol in column i of S1, and we create a
vertex in set B for each symbol in column j of S2. We create E by including in
E every edge (a, b), a ∈ A and b ∈ B and the symbols that vertices a and b are
created from match. If both S1 and S2 are of size n = md, and each of the d
dimensions is of size m, in the base step, the graph we create for every pair has
O(md−1) vertices. We can verify that the total time spent in the base step is
O(m2.5d−0.5). The dynamic programming step takes O(n3) time. The resulting
complexities for this case are the same, i.e. O(n3) time, and O(n2) space.

If in addition to the lwcs size, an optimal lwcs is also desired we can achieve
this within O(n3) time, and O(n2) space, by storing the separator columns i′

and j′ that yielded optimal lwcs sizes in the pairings involved. Then we can
have a simple recursive algorithm that produces an optimal lwcs, following the
computation of the lwcs size.

6 Remarks

Since our definition of lwcs states that the ordering is required to be preserved
only on one dimension, we solved a maximum cardinality bipartite matching
in the base step. However, in practice alternate approaches help preserve the
ordering in other dimensions partially. For example, if d = 2 (when we compare
two images), in the base step of the algorithm we can compute the ordinary
longest common subsequence (lcs) length using an lcs algorithm for linear strings
[3]. This should perform better in detecting true common subimage because in
the lcs of two-columns, the matching symbols keep their correct ordering whereas
the maximum bipartite matching does not guarantee this.

When d > 2, we can modify the algorithm proposed by Navarro and Baeza-
Yates [9] to compute not the edit distance based on edit operations on prefixes
of rows and columns, but instead the maximum number of matches created by
applying these operations. This modification, although does not guarantee com-
plete order preservation on all d− 1 dimensions simultaneously, performs better
in terms of the satisfaction of the ordering of positions compared to our original
solution for the base step that uses maximum cardinality bipartite matching.
We can use this modified algorithm in the base step of our algorithm.

A Largest Common d-Dimensional Subsequence 51

We can easily verify that these replacements in the base step do not increase
the time or space complexity of our lwcs algorithm.

7 Conclusion

We introduce a definition for a largest common d-dimensional subsequence of
two d-dimensional strings for d ≥ 1. In our definition we require that orders
of matching positions are identical on all d dimensions simultaneously in the
strings compared. We show that under this definition, the problem of finding
a largest common subsequence of two given multi-dimensional strings is NP -
hard when d ≥ 2. However, if we weaken the definition so that the ordering of
matching positions is required to be preserved on only one given dimension, then
the problem has a polynomial time solution. We present a dynamic programming
algorithm for this case.

References

1. Baeza-Yates, R.A.: Similarity in two dimensional strings. In: Hsu, W.-L., Kao,
M.-Y. (eds.) COCOON 1998. LNCS, vol. 1449, pp. 319–328. Springer, Heidelberg
(1998)

2. Bunke, H., Buhler, U.: Applications of approximate string matching to 2d shape
recognition. Pattern Recognition 26(12), 1797–1812 (1993)

3. Bengroth, L., Hakkonen, H., Raita, T.: A survey of longest common subsequence
algorithms. In: Proc. SPIRE, pp. 39–48 (2000)

4. Even, S., Tarjan, R.E.: Network flow and testing graph connectivity. J. SIAM
Comp. 4(4), 507–512 (1975)

5. Garey, M.R., Johnson, D.S.: Computers and intractability: a guide to the theory
of NP-completeness. W. H. Freeman and Compnay, New York (1979)

6. Hopcroft, J.E., Karp, R.M.: An n5/2 algorithm for maximum matching in bipartite
graphs. J. SIAM Comp. 2, 225–231 (1973)

7. Krithivasan, K., Sitalakshmi, R.: Efficient two-dimensional pattern matching in
the presence of erriors. Information Sciences 43, 169–184 (1987)

8. Klein, P.N., Sebastian, T.B., Kimia, B.B.: Shape matching using edi-distance: an
implementation. In: Proc. SODA, pp. 781–790 (2001)

9. Navarro, G., Baeza-Yates, R.A.: Fast multi-dimensional approximate matching. In:
Crochemore, M., Paterson, M.S. (eds.) Combinatorial Pattern Matching. LNCS,
vol. 1645, pp. 243–257. Springer, Heidelberg (1999)

10. Wagner, R.A., Fisher, M.J.: The string-to-string correction problem. J. of
ACM 21(1), 168–173 (1974)

11. Wu, W.-Y., Wang, M.-J.: Two-dimensional object recognition through two-stage
string matching. IEEE Transactions on Image Processing 8(7), 978–981 (1999)

Analysis of Approximation Algorithms for k-Set

Cover Using Factor-Revealing Linear Programs�

Stavros Athanassopoulos, Ioannis Caragiannis, and Christos Kaklamanis

Research Academic Computer Technology Institute &
Department of Computer Engineering and Informatics

University of Patras, 26500 Rio, Greece

Abstract. We present new combinatorial approximation algorithms for
k-set cover. Previous approaches are based on extending the greedy al-
gorithm by efficiently handling small sets. The new algorithms further
extend them by utilizing the natural idea of computing large packings
of elements into sets of large size. Our results improve the previously
best approximation bounds for the k-set cover problem for all values
of k ≥ 6. The analysis technique could be of independent interest; the
upper bound on the approximation factor is obtained by bounding the
objective value of a factor-revealing linear program.

1 Introduction

Set cover is a fundamental combinatorial optimization problem with many appli-
cations. Instances of the problem consist of a set of elements V and a collection
S of subsets of V and the objective is to select a subset of S of minimum cardi-
nality so that every element is covered, i.e., it is contained in at least one of the
selected sets.

The natural greedy algorithm starts with an empty solution and augments
it until all elements are covered by selecting a set that contains the maximum
number of elements that are not contained in any of the previously selected
sets. Denoting by n the number of elements, it is known by the seminal papers
of Johnson [10], Lovasz [13], and Chvátal [1] that the greedy algorithm has
approximation ratio Hn. The tighter analysis of Slav́ık [14] improves the upper
bound on the approximation ratio to lnn− ln lnn+O(1). Asymptotically, these
bounds are tight due to a famous inapproximability result of Feige [3] which
states that there is no (1 − ε) lnn-approximation algorithm for set cover unless
all problems in NP have deterministic algorithms running in subexponential time
O
(
npolylog(n)

)
.

An interesting variant is k-set cover where every set of S has size at most k.
Without loss of generality, we may assume that S is closed under subsets. In
this case, the greedy algorithm can be equivalently expressed as follows:

� This work was partially supported by the European Union under IST FET Integrated
Project 015964 AEOLUS.

E. Csuhaj-Varjú and Z. Ésik (Eds.): FCT 2007, LNCS 4639, pp. 52–63, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Analysis of Approximation Algorithms 53

Greedy phases: For i = k down to 1 do:
Choose a maximal collection of disjoint i-sets.

An i-set is a set that contains exactly i previously uncovered elements and a
collection T of disjoint i-sets is called maximal if any other i-set intersects some
of the sets in T .

A tight bound of Hk on the approximation ratio of the greedy algorithm is
well known in this case. Since the problem has many applications for particu-
lar values of k and due to its interest from a complexity-theoretic viewpoint,
designing algorithms with improved second order terms in their approximation
ratio has received much attention. Currently, there are algorithms with approx-
imation ratio Hk − c where c is a constant. Goldschmidt et al. [4] were the first
to present a modified greedy algorithm with c = 1/6. This value was improved
to 1/3 by Halldórsson [6] and to 1/2 by Duh and Fürer [2]. Recently, Levin [12]
further improved the constant to 98/195 ≈ 0.5026 for k ≥ 4. On the negative
side, Trevisan [15] has shown that, unless subexponential-time deterministic al-
gorithms for NP exist, no polynomial-time algorithm has an approximation ratio
of ln k −Ω(ln ln k).

The main idea that has been used in order to improve the performance of the
greedy algorithm is to efficiently handle small sets. The algorithm of Goldschmidt
et al. [4] uses a matching computation to accommodate as many elements as
possible in sets of size 2 when no set of size at least 3 contains new elements.
The algorithms of Halldórsson [5,6] and Duh and Fürer [2] handle efficiently sets
of size 3. The algorithm of [2] is based on a semi-local optimization technique.
Levin’s improvement [12] extends the algorithm of [2] by efficiently handling of
sets of size 4.

A natural but completely different idea is to replace the phases of the greedy
algorithm associated with large sets with set-packing phases that also aim to
maximize the number of new elements covered by large maximal sets. The ap-
proximation factor is not getting worse (due to the maximality condition) while
it has been left as an open problem in [12] whether it leads to any improvement
in the approximation bound. This is the aim of the current paper: we show that
by substituting the greedy phases in the algorithms of Duh and Fürer with pack-
ing phases, we obtain improved approximation bounds for every k ≥ 6 which
approaches Hk − 0.5902 for large values of k.

In particular, we will use algorithms for the k-set packing problem which is
defined as follows. An instance of k-set packing consists of a set of elements
V and a collection S of subsets of V each containing exactly k elements. The
objective is to select as many as possible disjoint sets from S. When k = 2, the
problem is equivalent to maximum matching in graphs and, hence, it is solvable
in polynomial time. For k ≥ 3, the problem is APX-hard [11]; the best known
inapproximability bound for large k is asymptotically O

(
log k
k

)
[7]. Note that

any maximal collection of disjoint subsets yields a 1/k-approximate solution.
The best known algorithms have approximation ratio 2−ε

k for any ε > 0 [8] and
are based on local search; these are the algorithms used by the packing phases
of our algorithms.

54 S. Athanassopoulos, I. Caragiannis, and C. Kaklamanis

Our analysis is based on the concept of factor-revealing LPs which has been in-
troduced in a different context in [9] for the analysis of approximation algorithms
for facility location. We show that the approximation factor is upper-bounded
by the maximum objective value of a factor-revealing linear program. Hence,
no explicit reasoning about the structure of the solution computed by the algo-
rithms is required. Instead, the performance guarantees of the several phases are
used as black boxes in the definition of the constraints of the LP.

The rest of the paper is structured as follows. We present the algorithms
of Duh and Fürer [2] as well as our modifications in Section 2. The analysis
technique is discussed in Section 3 where we present the factor-revealing LP
lemmas. Then, in Section 4, we present a part of the proofs of our main results;
proofs that have been omitted from this extended abstract will appear in the
final version of the paper. We conclude in Section 5.

2 Algorithm Description

In this section we present the algorithms considered in this paper. We start by
giving an overview of the related results in [2]; then, we present our algorithms
and main statements.

Besides the greedy algorithm, local search algorithms have been used for the
k-cover problem, in particular for small values of k. Pure local search starts with
any cover and works in steps. In each step, the current solution is improved by
replacing a constant number of sets with a (hopefully smaller) number of other
sets in order to obtain a new cover. Duh and Fürer introduced the technique
of semi-local optimization which extends pure local search. In terms of 3-set
cover, the main idea behind semi-local optimization is that once the sets of size
3 have been selected, computing the minimum number of sets of size 2 and 1 in
order to complete the covering can be done in polynomial time by a matching
computation. Hence, a semi-local (s, t)-improvement step for 3-set cover consists
of the deletion of up to t 3-sets from the current cover and the insertion of up to
s 3-sets and the minimum necessary 2-sets and 1-sets that complete the cover.
The quality of an improvement is defined by the total number of sets in the
cover while in case of two covers of the same size, the one with the smallest
number of 1-sets is preferable. Semi-local optimization for k ≥ 4 is much similar;
local improvements are now defined on sets of size at least 3 while 2-sets and
1-sets are globally changed. The analysis of [2] shows that the best choice of the
parameters (s, t) is (2, 1).

Theorem 1 (Duh and Fürer [2]). Consider an instance of k-set cover whose
optimal solution has ai i-sets. Then, the semi-local (2, 1)-optimization algorithm
has cost at most a1 + a2 +

∑k
i=3

i+1
3 ai.

Proof (outline). The proof of [2] proceeds as follows. Let bi be the number of i-
sets in the solution. First observe that

∑k
i=1 ibi =

∑k
i=1 iai. Then, the following

two properties of semi-local (2, 1)-optimization are proved: b1 ≤ a1 and b1 +b2 ≤∑k
i=1 ai. The theorem follows by summing the three inequalities. ��

Analysis of Approximation Algorithms 55

This algorithm has been used as a basis for the following algorithms that ap-
proximate k-set cover. We will call them GSLIk,
 and GRSLIk,
, respectively.

Algorithm GSLIk,
.
Greedy phases: For i = k down to �+ 1 do:

Choose a maximal collection of i-sets.
Semi-local optimization phase: Run the semi-local (2, 1)-optimization

algorithm on the remaining instance.

Theorem 2 (Duh and Fürer [2]). Algorithm GSLIk,4 has approximation ratio
Hk − 5/12.

Algorithm GRSLIk,

Greedy phases: For i = k down to �+ 1 do:

Choose a maximal collection of i-sets.
Restricted phases: For i = � down to 4 do:

Choose a maximal collection of disjoint i-sets so that the choice of
these i-sets does not increase the number of 1-sets in the final solu-
tion.

Semi-local optimization phase: Run the semi-local optimization al-
gorithm on the remaining instance.

Theorem 3 (Duh and Fürer [2]). Algorithm GRSLIk,5 has approximation
ratio Hk − 1/2.

We will modify the algorithms above by replacing each greedy phase with a
packing phase for handling sets of not very small size. We use the local search
algorithms of Hurkens and Schrijver [8] in each packing phase. The modified
algorithms are called PSLIk,
 and PRSLIk,
, respectively.

A local search algorithm for set packing uses a constant parameter p (infor-
mally, this is an upper bound on the number of local improvements performed at
each step) and, starting with an empty packing Π , repeatedly updates Π by re-
placing any set of s < p sets of Π with s+1 sets so that feasibility is maintained
and until no replacement is possible. Clearly, the algorithm runs in polynomial
time. It has been analyzed in [8] (see also [5] for related investigations).

Theorem 4 (Hurkens and Schrijver [8]). The local search t-set packing algo-
rithm that performs at most p local improvements at each step has approximation
ratio ρt ≥ 2(t−1)r−t

t(t−1)r−t , if p = 2r − 1 and ρt ≥ 2(t−1)r−2
t(t−1)r−2 , if p = 2r.

As a corollary, for any constant ε > 0, we obtain a 2−ε
t -approximation algorithm

for t-set packing by using p = O(logt 1/ε) local improvements. Our algorithms
PSLIk,
 and PRSLIk,
 simply replace each of the greedy phases of the algorithms
GSLIk,
 and GRSLIk,
, respectively, with the following packing phase:

Packing phases: For i = k down to �+ 1 do:
Select a maximal collection of disjoint i-sets using a 2−ε

i -approximation
local search i-set packing algorithm.

56 S. Athanassopoulos, I. Caragiannis, and C. Kaklamanis

Our first main result (Theorem 5) is a statement on the performance of algorithm
PSLIk,
 (for � = 4 which is the best choice).

Theorem 5. For any constant ε > 0, algorithm PSLIk,4 has approximation ratio
at most Hk/2 + 1

6 + ε for even k ≥ 6, at most 2Hk − H k−1
2
− 11

9 + ε for k ∈
{5, 7, 9, 11, 13}, and at most H k−1

2
+ 1

6 + 2
k −

1
k−1 + ε for odd k ≥ 15.

Algorithm PSLIk,4 outperforms algorithm GSLIk,4 for k ≥ 5, algorithm GRSLIk,5
for k ≥ 19, as well as the improvement of Levin [12] for k ≥ 21. For large
values of k, the approximation bound approaches Hk − c with c = ln 2 − 1/6 ≈
0.5264. Algorithm PSLIk,
 has been mainly included here in order to introduce
the analysis technique. As we will see in the next section, the factor-revealing
LP is simpler in this case. Algorithm PRSLIk,
 is even better; its performance
(for � = 5) is stated in the following.

Theorem 6. For any constant ε > 0, algorithm PRSLIk,5 has approximation
ratio at most 2Hk−H k−1

2
− 77

60 + ε for odd k ≥ 7, at most 461
240 + ε for k = 6, and

at most 2Hk −Hk/2 − 77
60 + 2

k −
1

k−1 + ε for even k ≥ 8.

Algorithm PRSLIk,5 achieves better approximation ratio than the algorithm of
Levin [12] for every k ≥ 6. For example, the approximation ratio of 461

240 ≈ 1.9208
for 6-set cover improves the previous bound ofH6− 98

195 ≈ 1.9474. For large values
of k, the approximation bound approaches Hk−c with c = 77/60−ln 2 ≈ 0.5902.
See Table 1 for a comparison between the algorithms discussed in this section.

Table 1. Comparison of the approximation ratio of the algorithms GSLIk,4, PSLIk,4,
GRSLIk,5, the algorithm in [12] and algorithm PRSLIk,5 for several values of k

k GSLIk,4 [2] PSLIk,4 GRSLIk,5 [2] [12] PRSLIk,5

3 1.3333 1.3333 1.3333 1.3333 1.3333
4 1.6667 1.6667 1.5833 1.5808 1.5833
5 1.8667 1.8444 1.7833 1.7801 1.7833
6 2.0333 2 1.95 1.9474 1.9208
7 2.1762 2.1429 2.0929 2.0903 2.0690
8 2.3012 2.25 2.2179 2.2153 2.1762
9 2.4123 2.3524 2.3290 2.3264 2.2917
10 2.5123 2.45 2.4290 2.4264 2.3802
19 3.1311 3.0453 3.0477 3.0452 2.9832
20 3.1811 3.0956 3.0977 3.0952 3.0305
21 3.2287 3.1409 3.1454 3.1428 3.0784
22 3.2741 3.1865 3.1908 3.1882 3.1217
50 4.0825 3.9826 3.9992 3.9966 3.9187
75 4.4847 4.3814 4.4014 4.3988 4.3178
100 4.7707 4.6659 4.6874 4.6848 4.6021

large k Hk − 0.4167 Hk − 0.5264 Hk − 0.5 Hk − 0.5026 Hk − 0.5902

Analysis of Approximation Algorithms 57

3 Analysis Through Factor-Revealing LPs

Our proofs on the approximation guarantee of our algorithms essentially follow
by computing upper bounds on the objective value of factor-revealing linear
programs whose constraints capture simple invariants maintained in the phases
of the algorithms.

Consider an instance (V, S) of k-set cover. For any phase of the algorithms
associated with i (i = �, ..., k for algorithm PSLIk,
 and i = 3, ..., k for algorithm
PRSLIk,
), consider the instance (Vi, Si) where Vi contains the elements in V that
have not been covered in previous phases and Si contains the sets of S which
contain only elements in Vi. Denote by OPT i an optimal solution of instance
(Vi, Si); we also denote the optimal solution OPT k of (Vk, Sk) = (V, S) by OPT .
Since S is closed under subsets, without loss of generality, we may assume that
OPT i contains disjoint sets. Furthermore, it is clear that |OPT i−1| ≤ |OPT i|
for i ≤ k, i.e., |OPT i| ≤ |OPT |.

For a phase of algorithm PSLIk,
 or PRSLIk,
 associated with i, denote by ai,j
the ratio of the number of j-sets in OPT i over |OPT |. Since |OPT i| ≤ |OPT |,
we obtain that

i∑
j=1

ai,j ≤ 1. (1)

The i-set packing algorithm executed on packing phase associated with i in-
cludes in i-sets the elements in Vi\Vi−1. Since Vi−1 ⊆ Vi, their number is

|Vi\Vi−1| = |Vi| − |Vi−1| =

⎛⎝ i∑
j=1

jai,j −
i−1∑
j=1

jai−1,j

⎞⎠ |OPT |. (2)

Denote by ρi the approximation ratio of the i-set packing algorithm executed
on the phase associated with i. Since at the beginning of the packing phase
associated with i, there exist at least ai,i|OPT | i-sets, the i-set packing algorithm
computes at least ρiai,i|OPT | i-sets, i.e., covering at least iρiai,i|OPT | elements
from sets in OPT i. Hence, |Vi\Vi−1| ≥ iρiai,i|OPT |, and (2) yields

i−1∑
j=1

jai−1,j −
i−1∑
j=1

jai,j − i(1− ρi)ai,i ≤ 0. (3)

So far, we have defined all constraints for the factor-revealing LP of algorithm
PSLIk,
. Next, we bound from above the number of sets computed by algorithm
PSLIk,
 as follows. Let ti be the number of i-sets computed by the i-set packing
algorithm executed at the packing phase associated with i ≥ �+ 1. Clearly,

ti =
1
i
|Vi\Vi−1| =

⎛⎝1
i

i∑
j=1

jai,j −
1
i

i−1∑
j=1

jai−1,j

⎞⎠ |OPT |. (4)

58 S. Athanassopoulos, I. Caragiannis, and C. Kaklamanis

By Theorem 1, we have that

t
 ≤

⎛⎝a
,1 + a
,2 +

∑

j=3

j + 1
3

a
,j

⎞⎠ |OPT |. (5)

Hence, by (4) and (5), it follows that the approximation guarantee of algorithm
PSLIk,
 is

∑k
i=4 ti

|OPT | ≤
k∑

i=
+1

1
i

⎛⎝ i∑
j=1

jai,j −
i−1∑
j=1

jai−1,j

⎞⎠+ a
,1 + a
,2 +

∑

j=3

j + 1
3

a
,j

=
1
k

k∑
j=1

jak,j +
k−1∑

i=
+1

1
i(i+ 1)

i∑
j=1

jai,j +
�

�+ 1
a
,1

+
�− 1
�+ 1

a
,2 +

∑

j=3

(
j + 1

3
− j

�+ 1

)
a
,j (6)

Hence, an upper bound on the approximation ratio of algorithm PSLIk,
 fol-
lows by maximizing the right part of (6) subject to the constraints (1) for
i = �, ..., k and (3) for i = � + 1, ..., k with variables ai,j ≥ 0 for i = �, ..., k
and j = 1, ..., i. Formally, we have proved the following statement.

Lemma 1. The approximation ratio of algorithm PSLIk,
 when a ρi-approxi-
mation i-set packing algorithm is used at phase i for i = � + 1, ..., k is upper-
bounded by the maximum objective value of the following linear program:

maximize
1
k

k∑
j=1

jak,j +
k−1∑

i=
+1

1
i(i+ 1)

i∑
j=1

jai,j +
�

�+ 1
a
,1

+
�− 1
�+ 1

a
,2 +

∑

j=3

(
j + 1

3
− j

�+ 1

)
a
,j

subject to
i∑

j=1

ai,j ≤ 1, i = �, ..., k

i−1∑
j=1

jai−1,j −
i−1∑
j=1

jai,j − i(1− ρi)ai,i ≤ 0, i = �+ 1, ..., k

ai,j ≥ 0, i = �, ..., k, j = 1, ..., i

Each packing or restricted phase of algorithm PRSLIk,
 satisfies (3); a restricted
phase associated with i = 4, ..., � computes a maximal i-set packing and, hence,
ρi = 1/i in this case.

In addition, the restricted phases impose extra constraints. Denote by b1, b2,
and b3 the ratio of the number of 1-sets, 2-sets, and 3-sets computed by the

Analysis of Approximation Algorithms 59

semi-local optimization phase over |OPT |, respectively. The restricted phases
guarantee that the number of the 1-sets in the final solution does not increase,
and, hence,

b1 ≤ ai,1, for i = 3, ..., �. (7)

Following the proof of Theorem 1, we obtain b1 + b2 ≤ a3,1 + a3,2 + a3,3 while
it is clear that b1 + 2b2 + 3b3 = a3,1 + 2a3,2 + 3a3,3. We obtain that the num-
ber t3 of sets computed during the semi-local optimization phase of algorithm
PRSLIk,
 is

t3 = (b1 + b2 + b3)|OPT |

≤
(
b1
3

+
b1 + b2

3
+
b1 + 2b2 + 3b3

3

)
|OPT |

≤
(

1
3
b1 +

2
3
a3,1 + a3,2 +

4
3
a3,3

)
|OPT |. (8)

Reasoning as before, we obtain that (4) gives the number ti of i-sets computed
during the packing or restricted phase associated with i = 4, ..., k. By (4) and
(8), we obtain that the performance guarantee of algorithm PRSLIk,
 is

∑k
i=3 ti

|OPT | ≤
k∑

i=4

1
i

⎛⎝ i∑
j=1

jai,j −
i−1∑
j=1

jai−1,j

⎞⎠+
2
3
a3,1 + a3,2 +

4
3
a3,3 +

1
3
b1

=
1
k

k∑
j=1

jak,j +
k−1∑
i=4

1
i(i+ 1)

i∑
j=1

jai,j +
5
12
a3,1 +

1
2
a3,2

+
7
12
a3,3 +

1
3
b1 (9)

Hence, an upper bound on the approximation ratio of algorithm PRSLIk,

follows by maximizing the right part of (9) subject to the constraints (1) for
i = 3, ..., k, (3) for i = 4, ..., k, and (7), with variables ai,j ≥ 0 for i = 3, ..., k and
j = 1, ..., i, and b1 ≥ 0. Formally, we have proved the following statement.

Lemma 2. The approximation ratio of algorithm PRSLIk,
 when a ρi-approxi-
mation i-set packing algorithm is used at phase i for i = � + 1, ..., k is upper-
bounded by the maximum objective value of the following linear program:

maximize
1
k

k∑
j=1

jak,j +
k−1∑
i=4

1
i(i+ 1)

i∑
j=1

jai,j +
5
12
a3,1 +

1
2
a3,2 +

7
12
a3,3 +

1
3
b1

subject to
i∑

j=1

ai,j ≤ 1, i = 3, ..., k

i−1∑
j=1

jai−1,j −
i−1∑
j=1

jai,j − i(1− ρi)ai,i ≤ 0, i = �+ 1, ..., k

60 S. Athanassopoulos, I. Caragiannis, and C. Kaklamanis

i−1∑
j=1

jai−1,j −
i−1∑
j=1

jai,j − (i− 1)ai,i ≤ 0, i = 4, ..., �

b1 − ai,1 ≤ 0, i = 3, ..., �
ai,j ≥ 0, i = 3, ..., k, j = 1, ..., i
b1 ≥ 0

4 Proofs of Main Theorems

We are now ready to prove our main results. We can show that the maximum
objective values of the factor-revealing LPs for algorithms PSLIk,4 and PRSLIk,5
are upper-bounded by the values stated in Theorems 5 and 6. In order to prove
this, it suffices to find feasible solutions to the dual LPs that have these values as
objective values. In the following, we prove Theorem 5 by considering the case
when k is even. The proof for odd k as well as the proof of Theorem 6 (which is
slightly more complicated) will appear in the final version of the paper.

Proof of Theorem 5. The dual of the factor-revealing LP of algorithm PSLIk,4 is:

minimize
k∑

i=4

βi

subject to β4 + γ5 ≥
4
5

β4 + 2γ5 ≥
3
5

β4 + 3γ5 ≥
11
15

β4 + 4γ5 ≥
13
15

βi + jγi+1 − jγi ≥
j

i(i+ 1)
, i = 5, ..., k − 1, j = 1, ..., i− 1

βi + iγi+1 − (i− 2 + ε)γi ≥
1

i+ 1
, i = 5, ..., k − 1

βk − jγk ≥
j

k
, j = 1, ..., k − 1

βk − (k − 2 + ε)γk ≥ 1
βi ≥ 0, i = 4, ..., k
γi ≥ 0, i = 5, ..., k

We consider only the case of even k. We set γk = 1
k(k−1) and γk−1 = 0. If k ≥ 8,

we set γi = γi+2 + 2
i(i+1)(i+2) for i = 5, ..., k−2. We also set βk = 1+(k−2+ε)γk,

β4 = 13
15 − 4γ5 and

βi =
1

i+ 1
− iγi+1 + (i− 2 + ε)γi

for i = 5, ..., k − 1.

Analysis of Approximation Algorithms 61

We will show that all the constraints of the dual LP are satisfied. Clearly,
γi ≥ 0 for i = 5, ..., k. Observe that γk−1 + γk = 1

k(k−1) . If k ≥ 8, by the
definition of γi for i = 5, ..., k − 2, we have that

γi + γi+1 −
1

i(i+ 1)
= γi+1 + γi+2 +

2
i(i+ 1)(i + 2)

− 1
i(i+ 1)

= γi+1 + γi+2 −
1

(i + 1)(i+ 2)

and, hence,

γi + γi+1 −
1

i(i+ 1)
= γk−1 + γk −

1
k(k − 1)

= 0,

i.e., γi + γi+1 = 1
i(i+1) for i = 5, ..., k − 1. Now, the definition of βi’s yields

βi =
1

i+ 1
− iγi+1 + (i− 2 + ε)γi

=
i− 1
i(i+ 1)

− (i− 1)γi+1 + (i− 1)γi + εγi (10)

≥ j

i(i+ 1)
− jγi+1 + jγi

≥ 0

for i = 5, ..., k − 1 and j = 1, ..., i − 1. Hence, all the constraints on βi for
i = 5, ..., k − 1 are satisfied.

The constraints on βk are also maintainted. Since γk = 1
k(k−1) ≤

1
k we have

that βk = 1 + (k − 2 + ε)γk ≥ k−1
k + (k − 1)γk + εγk ≥ j

k + jγk ≥ 0 for
j = 1, ..., k − 1. It remains to show that the constraints on β4 are also satisfied.
It suffices to show that γ5 ≤ 1/45. This is clear when k = 6. If k ≥ 8, consider
the equalities γi +γi+1 = 1

i(i+1) for odd i = 5, ..., k−3 and −γi−γi+1 = − 1
i(i+1)

for even i = 6, ..., k − 2. Summing them, and since γk−1 = 0, we obtain that

γ5 =
k/2−1∑
i=3

(
1

2i(2i− 1)
− 1

2i(2i+ 1)

)

=
k/2−1∑
i=3

(
1

2i− 1
− 1

2i
− 1

2i
+

1
2i+ 1

)

=
k/2−1∑
i=3

(
1

2i− 1
+

1
2i+ 1

)
−

k/2−1∑
i=3

1
i

= −1
5

+
k/2−1∑
i=3

2
2i− 1

+
1

k − 1
−Hk/2−1 +

3
2

= −1
5

+ 2Hk−2 −Hk/2−1 −
8
3

+
1

k − 1
−Hk/2−1 +

3
2

62 S. Athanassopoulos, I. Caragiannis, and C. Kaklamanis

= 2Hk−2 − 2Hk/2−1 +
1

k − 1
− 41

30

≤ 2 ln 2− 41
30

≤ 1/45

The first inequality follows since 2Hk−2 − 2Hk/2−1 + 1
k−1 is increasing on k

(this can be easily seen by examining the original definition of γ5) and since
limt→∞Ht/ ln t = 1.

We have shown that all the constraints of the dual LP are satisfied, i.e., the
solution is feasible. In order to compute the objective value, we use the definition
of βi’s and equality (10). We obtain

k∑
i=4

βi = β4 + β5 +
k/2−1∑
i=3

(β2i + β2i+1) + βk

=
13
15

− 4γ5 +
2
15

+ 4γ5 − 4γ6 +
k/2−1∑
i=3

(
1

2i+ 1
− 2iγ2i+1 + (2i− 2)γ2i

+
2i

(2i+ 1)(2i+ 2)
− 2iγ2i+2 + 2iγ2i+1

)
+ 1 + (k − 2)γk + ε

k∑
i=5

γi

= 2 +
k/2−1∑
i=3

1
i+ 1

− 4γ6 +
k/2−1∑
i=3

((2i− 2)γ2i − 2iγ2i+2) + (k − 2)γk

+ε
k∑

i=5

γi

≤ Hk/2 + 1/6 + ε

where the last inequality follows since
∑k

i=5 γi ≤
∑k

i=5
1

i(i−1)=
∑k

i=5

(
1

i−1 −
1
i

)
=

1/4− 1/k.
By duality,

∑k
i=4 βi is an upper bound on the maximum objective value of

the factor-revealing LP. The theorem follows by Lemma 1. ��

5 Extensions

We have experimentally verified using Matlab that our upper bounds are tight in
the sense that they are the maximum objective values of the factor-revealing LPs
(ignoring the ε term in the approximation bound). Our analysis technique can
also be used to provide simpler proofs of the results in [2] (i.e., Theorems 2 and
3); this is left as an exercise to the reader. The several cases that are considered
in the proofs of [2] are actually included as constraints in the factor-revealing
LPs which are much simpler than the ones for algorithms PSLIk,
 and PRSLIk,
.
Furthermore, note that we have not combined our techniques with the recent
algorithm of Levin [12] that handles sets of size 4 using a restricted local search
phase. It is tempting to conjecture that further improvements are possible.

Analysis of Approximation Algorithms 63

References

1. Chvátal, V.: A greedy hueristic for the set-covering problem. Mathematics of Op-
erations Research 4, 233–235 (1979)

2. Duh, R., Fürer, M.: Approximation of k-set cover by semi local optimization. In:
Proceedings of the 29th Annual ACM Symposium on Theory of Computing (STOC
’97), pp. 256–264. ACM Press, New York (1997)

3. Feige, U.: A threshold of ln n for approximating set cover. Journal of the
ACM 45(4), 634–652 (1998)

4. Goldschmidt, O., Hochbaum, D., Yu, G.: A modified greedy heuristic for the set
covering problem with improved worst case bound. Information Processing Let-
ters 48, 305–310 (1993)

5. Halldórsson, M.M.: Approximating discrete collections via local improvements. In:
Proceedings of the 6th Annual ACM/SIAM Symposium on Discrete Algorithms
(SODA ’95), pp. 160–169 (1995)

6. Halldórsson, M.M.: Approximating k-set cover and complementary graph coloring.
In: Cunningham, W.H., Queyranne, M., McCormick, S.T. (eds.) Integer Program-
ming and Combinatorial Optimization. LNCS, vol. 1084, pp. 118–131. Springer,
Heidelberg (1996)

7. Hazan, E., Safra, S., Schwartz, O.: On the complexity of approximating k-set pack-
ing. Computational Complexity 15(1), 20–39 (2006)

8. Hurkens, C.A.J., Schrijver, A.: On the size of systems of sets every t of which
have an SDR, with an application to the worst-case ratio of heuristics for packing
problems. SIAM Journal on Discrete Mathematics 2(1), 68–72 (1989)

9. Jain, K., Mahdian, M., Markakis, E., Saberi, A., Vazirani, V.V.: Greedy facility
location algorithms analyzed using dual fitting with factor-revealing LP. Journal
of the ACM 50(6), 795–824 (2003)

10. Johnson, D.S.: Approximation algorithms for combinatorial problems. Journal of
Computer and System Sciences 9, 256–278 (1974)

11. Kann, V.: Maximum bounded 3-dimensional matching is MAX SNP-complete.
Information Processing Letters 37, 27–35 (1991)

12. Levin, A.: Approximating the unweighted k-set cover problem: greedy meets local
search. In: Erlebach, T., Kaklamanis, C. (eds.) WAOA 2006. LNCS, vol. 4368, pp.
290–310. Springer, Heidelberg (2007)

13. Lovász, L.: On the ratio of optimal integral and fractional covers. Discrete Math-
ematics 13, 383–390 (1975)

14. Slav́ık, P.: A tight analysis of the greedy algorithm for set cover. Journal of Algo-
rithms 25, 237–254 (1997)

15. Trevisan, L.: Non-approximability results for optimization problems on bounded
degree instances. In: Proceedings of the 33rd Annual ACM Symposium on Theory
of Computing (STOC ’01), pp. 453–461. ACM Press, New York (2001)

A Novel Information Transmission Problem and

Its Optimal Solution

Eric Bach1,� and Jin-Yi Cai2,��

1 Computer Sciences Department, University of Wisconsin
Madison, WI 53706, USA

bach@cs.wisc.edu
2 Computer Sciences Department, University of Wisconsin

Madison, WI 53706, USA
jyc@cs.wisc.edu

Abstract. We propose and study a new information transmission
problem motivated by today’s internet. Suppose a real number needs
to be transmitted in a network. This real number may represent
data or control and pricing information of the network. We propose
a new transmission model in which the real number is encoded using
Bernoulli trials. This differs from the traditional framework of Shannon’s
information theory. We propose a natural criterion for the quality of an
encoding scheme. Choosing the best encoding reduces to a problem in
the calculus of variations, which we solve rigorously. In particular, we
show there is a unique optimal encoding, and give an explicit formula
for it.

We also solve the problem in a more general setting in which there is
prior information about the real number, or a desire to weight errors for
different values non-uniformly.

Our tools come mainly from real analysis and measure-theoretic
probability, but there is also a connection to classical mechanics.
Generalizations to higher dimensional cases are open.

1 Introduction

In Shannon’s information theory and the theory of error correcting codes, the
following communication model is basic. Two parties A and B share a line of
transmission, on which one can send an ordered sequence of bits. The receiver
gets another ordered sequence of bits, possibly corrupted. While this corruption
can change, omit, or locally transpose bits, by and large the order of the bits
is kept intact.1 Of course this model was very much motivated by the teletype
networks of Shannon’s day.
� Supported by NSF CCF-0523680, CCF-0635355, and a Vilas Research Associate

Award.
�� Supported by NSF CCR-0511679.
1 Most work has focused on the so-called discrete memoryless channel, in which only

bit changes are allowed. The model of [13] allows arbitrary changes, but only on
fixed-length blocks.

E. Csuhaj-Varjú and Z. Ésik (Eds.): FCT 2007, LNCS 4639, pp. 64–75, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Novel Information Transmission Problem 65

With today’s internet, one might revisit this model. When a message is sent
from one node to another, it has no fixed path. Abstractly, one might imagine a
model in which symbols are being sent in a highly parallel and non-deterministic
fashion with no particular fixed route. The receiver receives these symbols in
some probabilistic sense but in no particular order.

Suppose we still consider sending bit sequences. Then if arbitrary re-orderings
are allowed, then only the cardinality, or what amounts to the same thing,
the fraction of 1’s observed, will matter. Furthermore, if some omissions occur
probabilistically then even this fraction is only meaningful approximately. Thus,
with arbitrary re-ordering of the bits, it severely restricts the ways by which
information may be meaningfully conveyed.

Instead of sending bit sequences, what about sending a real number holis-
tically? Let’s consider the following new model of information transmission.
Two parties A and B have access to a one-way communication medium, and
A wishes to transmit a real number x to B. The medium may transmit signals,
with some probabilistic error, in large multiplicity but in no particular order.
By normalizing we assume 0 ≤ x ≤ 1, and think of x as a probability.
Communication is done by the following process. Party A can send a large
number of i.i.d. samples from a Bernoulli distribution to B. The receiver observes
these bits and estimates x. (The Bernoulli distribution, on the samples generated
a priori, accounts for the probabilistic nature of errors and losses of signals due
to the communication medium.)

The new information transmission problem is the following. We may think
of the Bernoulli random variable as an “encoding” of x, through its mean
value. Then what does it mean to be a good encoding scheme? How do we
evaluate encoding strategies, and is there an optimal one? We note that x is
only transmitted completely in the limit, so the answers must be asymptotic.

Although abstract, this problem is motivated by concrete current research in
computer networking. As is familiar, messages are broken up into small packets
which are then sent more or less independently along different routes. These
routes can vary with time of day, system load, etc., so the network must maintain
and transmit information about their quality.

We can think of a particular route as consisting of � links, say vi−1 → vi for
i = 1, . . . , �. Each link has an associated number pi, 0 ≤ pi ≤ 1. For example,
pi could be a normalized cost or a measure of congestion for using the i-th link.
The network can determine through observation the average x = (

∑
i pi)/� for

a particular route, allowing the routing protocol to take this into account so as
to avoid congestion.

To allow efficient estimation of this average, researchers have investigated the
possibility of using current packet designs, which already specify a bit called
the Explicit Congestion Notification (ECN) bit. Each link on a route may set
this bit to 0 or 1 as it sees fit, for every packet it handles. This bit then gets
transmitted to the next link, which may be reset again. Recently, networking
researchers have focused on a class of protocols using ECN (so-called one-bit
protocols), which can be defined mathematically as follows. The link vi−1 → vi

66 E. Bach and J.-Y. Cai

receives a bit Xi−1 ∈ {0, 1} from the previous link; based on Xi−1 and pi it uses
randomization to produce Xi. The last node can observe X
 many times and
combine these observations to produce an estimate for x.

Several protocols of this type appear in the literature [2,10]. What they have
in common is that the expected value of X
 is some function f of the average x.
The observer then tries to infer x from the observed approximate value of f(x).
This is an example of our new model of information transmission, in that, one
produces a collection of 0-1 random variables all with the expected value equal
to some function f of some number x. The receiver observes these 0-1 random
variables, in no particular order and with probabilistic losses and delays. From
an observational record the receiver tries to infer x.

Since one can imagine more general schemes using this idea, there is no reason
to expect developments to stop with ECN. For inspiration, we look to Shannon,
who did not waste time optimizing teletype codes, but rather went on to study
general methods of symbolic encoding. It is compelling, therefore, to develop
a theory applicable to all of the more general schemes, and ask if there is any
choice of f that is in some sense optimal. In this paper, we answer this question
affirmatively, under conditions on f that are as general as could be desired.

2 The Formalized Problem and a Guide to Its Solution

Initially, A and B agree on a transformation function f . To send x ∈ [0, 1], to B,
the transmitterA generates random bits, which are i.i.d. 0-1 random variables with
expected value y = f(x). The receiver B gets n of these, say Y1, . . . , Yn, and uses
f−1

(
1
n

∑n
i=1 Yi

)
to estimate x. For this to work, f must be strictly monotonic, say

increasing. Also, f should map 0 to 0 and 1 to 1, to avoid loss of bandwidth.
We now outline our criterion for evaluating f , and justify its choice. Let

g = f−1 and Ȳ = n−1
∑n

i=1 Yi. If g is smooth, then by the strong law of large
numbers, g(Ȳ) → x, a.e. We expect g(Ȳ) − x to be Θ(n−1/2), so the natural
measure for the error is E[n(g(Ȳ)−x)2]. By the mean value theorem, we should
have n(g(Ȳ)− x)2 ≈ g′(y)2[n(Ȳ − y)2], and E

[
n(Ȳ − y)2

]
= y(1− y). Thus, we

expect

E
[
n(g(Ȳ)− x)2

]
→ g′(y)2y(1− y). (1)

Written in terms of f , this is f(x)(1−f(x))
f ′(x)2 . Thus, we should try to minimize∫ 1

0

f(x)(1− f(x))
f ′(x)2

dx, (2)

over a suitable class of functions f . The optimal choice turns out to be

f =
1− cos(πx)

2
. (3)

In particular, the optimal choice is not the identity function, as one might naively
suppose. Nor is the naive choice even close: its value of (2) exceeds the optimum
by about 64%.

A Novel Information Transmission Problem 67

In the rest of this paper, we carry out this argument in a rigorous way. The
interchange of limits and integration is not trivial, because we want it to hold for
the optimum curve, for which the integrand is unbounded. Also, we derive the
optimal curve using the calculus of variations. But as is typical with the calculus
of variations, this derivation only suggests optimality. (Euler’s mathematics may
have been brilliant, but it lacked a certain rigor.) As with the Dirichlet problem
[7, p. 119], the hard part is to prove optimality. We will do this by an independent
argument, under very general conditions on the curve. Our tools come mainly
from real analysis and measure-theoretic probability, in particular Lebesgue’s
convergence theorems, Fatou’s lemma, and uniform integrability.

The rest of the paper is organized as follows. In Section 3 we prove (1), and
then show that the limit of its average (over possible values of x) is given by (2),
for the particular choice (3). In Section 4 we prove that (3) actually minimizes
(2). Section 5 treats these problems in a more general setting in which the
receiver has prior information about x, or wishes to weight errors for different x
differently. The full version of this paper includes two appendices. The more
difficult proof of a general limit theorem is given in Appendix 1, where we
show that the average of (1) has a limit, for a wide class of transformations.
In Appendix 2 we connect our variational problems to classical mechanics.

3 Two Convergence Theorems

3.1 Notation

We call f admissible if f ∈ C[0, 1] (continuous), and is strictly increasing, with
f(0) = 0 and f(1) = 1. Let g = f−1 be its inverse function (also admissible).
Since f and g are increasing, f ′ and g′ exist a.e. [12]. Whenever f ′(x) �= 0, then
at y = f(x), g′(y) exists and g′(y) = 1/f ′(x). If f ′(x) = 0, we say g′ has a
singularity at y.

Our class of functions is the natural one to consider, for f can only be
computable if it is continuous, as is well known [6].

Let Y1, Y2, . . . , Yn be i.i.d. 0-1 random variables with Pr[Yi = 1] = y, and let

Y =
∑n

i=1 Yi

n be their sample mean. We also let Ŷ =
(∑n

i=1(Yi−y)√
n

)2

, so that

n(Y − y)2 = Ŷ . Note that 0 ≤ Ŷ ≤ n.
We will find it convenient to use measure theory notation. Accordingly, let

Ω = {0, 1}n, with the measure μ induced by n Bernoulli trials with success
probability y. Then, for example, E[Ŷ] =

∫
Ω
Ŷ dμ = Var(Y1) = y(1− y).

For a choice of f as above, it will be convenient to let

Fn(y) =
∫
Ω

n(g(Y)− g(y))2 dμ, (4)

and α = n(g(Y)− g(y))2. Since α ≤ n, we have 0 ≤ Fn(y) ≤ n.

68 E. Bach and J.-Y. Cai

3.2 A Pointwise Convergence Theorem

Theorem 1. Let f be admissible and 0 < y < 1. If g′(y) exists, we have
limn→∞ Fn(y) = (g′(y))2y(1 − y), where Fn is given by (4). Therefore, the
convergence is almost everywhere (a.e.).

Proof. The proof is easiest when g′ is continuous in an interval around y, so we
assume this first. Then, for any ε > 0, there exists a δ > 0 such that if |y′−y| ≤ δ
then |(g′(y′))2 − (g′(y))2| ≤ ε

2y(1−y) . For this δ, let Bδ = {ω ∈ Ω | |Y − y| > δ}.
Since

∫
Ω Ŷ dμ = y(1 − y), we have Fn(y) − (g′(y))2y(1 − y) = I1 + I2 + I3,

where

I1 =
∫
Ω−Bδ

[α− (g′(y))2Ŷ] dμ; I2 =
∫
Bδ

α dμ; I3 = −
∫
Bδ

(g′(y))2Ŷ dμ.

We will estimate these three integrals separately.
For I1, by the mean value theorem (MVT), there exists some ξ = ξ(y, Y)

which lies between y and Y , such that g(Y) − g(y) = g′(ξ)(Y − y). Thus, α =
(g′(ξ))2Ŷ . Note that n(Y − y)2 = Ŷ , and on Ω − Bδ, |ξ − y| ≤ δ, we have
|(g′(ξ))2 − (g′(y))2| ≤ ε

2y(1−y) . It follows that |I1| is at most∫
Bc

δ

∣∣(g′(ξ))2 − (g′(y))2
∣∣ Ŷ dμ ≤ ε

2y(1− y)

∫
Bc

δ

Ŷ dμ ≤ ε

2y(1− y)

∫
Ω

Ŷ dμ =
ε

2
.

By the Chernoff bound [3], μ(Bδ) < 2e−2δ2n, so |I2| ≤ n
∫
Bδ

dμ = nμ(Bδ) <

2ne−2δ2n, and since Ŷ ≤ n, we have |I3| ≤ (g′(y))2n
∫
Bδ

dμ ≤ 2n(g′(y))2e−2δ2n.
Combining these three estimates, we get

|Fn(y)− (g′(y))2y(1− y)| = |I1 + I2 + I3| ≤
ε

2
+ 2ne−2δ2n(1 + (g′(y))2) < ε,

for sufficiently large n. Since ε was arbitrary, we get Theorem 1.
We indicate briefly how to modify this proof to work at any y �= 0, 1 where

g′(y) exists. Only I1 needs to be reconsidered. Suppose first that g′(y) > 0. Then
there is a δ > 0 such that for Y within δ of y (but not equal to y), we have

g(Y)− g(y)
Y − y

= g′(y)(1 + η),

with |η| ≤ ε/(6g′(y)2y(1− y)), and |η| ≤ 1. Then (even allowing Y = y),

α = n(g(Y)− g(y))2 = ng′(y)2(Y − y)2(1 + η)2.

Plug this into I1, and expand (1 + η)2. The main terms will cancel, and we can
estimate η2 by |η|, we find

|I1| ≤
∫
Ω

ε

2y(1− y)
Ŷ =

ε

2
.

A Novel Information Transmission Problem 69

We handle g′ = 0 similarly, but with

g(Y)− g(y)
Y − y

= η,

where η2 ≤ ε/(2y(1− y)). The case g′ < 0 is forbidden by monotonicity. ��

3.3 Convergence for the Optimal Transformation

Our information transmission problem is concerned with minimizing the limit of∫ 1

0

∫
Ω

n(g(Y)− x)2 dμ dx,

for an unknown function y = f(x), where g = f−1. Assuming the relevant
integrals exist, we can write this entirely in terms of its inverse function g,∫ 1

0

g′(y)
∫
Ω

n(g(Y)− g(y))2 dμ dy.

In this section, we evaluate the limit of this for the optimal f . A corresponding
theorem for general f was stated in [2], and proved in [1]. This result, however,
assumed g′(y) to be continuous on [0, 1], and in particular bounded on this
interval. While adequate for the class of functions realizable in the on-line setting
for the ECN bit in a network, this assumption is not satisfied by our optimal
function f . In particular, our particular g′(y) is unbounded near 0 and 1, making
the resulting proof much more difficult. A proof for the general case is provided
in Appendix 1 of the full paper.

In the remainder of this section, we let f(x) = (1 − cosπx)/2. We note that
f is smooth and strictly increasing. Its inverse function g(y) is continuously
differentiable except at 0 and 1. Explicitly,

(g′(y))2 =
1

π2y(1− y)
; (5)

this has a pole of order 1 at y = 0 and y = 1. Let F̃n(y) = g′(y)Fn(y).

Theorem 2. For f(x) = (1 − cosπx)/2, we have

lim
n→∞

∫ 1

0

F̃n(y) dy =
∫ 1

0

lim
n→∞

F̃n(y) dy =
∫ 1

0

(g′(y))3y(1− y) dy.

Proof. Observe that there is a symmetry between the first and the second half of
the interval, by the map y �→ 1− y, and therefore we will only need to evaluate
limn→∞

∫ 1/2

0 F̃n(y) dy.
Let δn = 8 logn

n . Then∫ 1/2

0

F̃n(y) dy =
∫ δn

0

F̃n(y) dy +
∫ 1/2

0

F ∗
n(y) dy, (6)

70 E. Bach and J.-Y. Cai

where F ∗
n(y) = F̃n(y)1[δn,1/2], and 1 denotes the indicator function. Our strategy

will be to prove that the first term has the limit 0, and use Lebesgue’s dominated
convergence theorem to evaluate the limit of the second.

Let y < δn. As Fn(y) is itself an integral, we may (as with Gaul) divide it
into three parts:

Fn(y) =
∫
Y≤y

α dμ+
∫
y<Y≤1/2

α dμ +
∫
Y >1/2

α dμ. (7)

We will show that the contributions of each part in the integral
∫ δn

0 F̃n(y) dy
goes to 0.

If Y ≤ y, by the monotonicity of g we get (g(Y) − g(y))2 ≤ (g(y))2 = x2. It
is easy to check by elementary calculus that 1 − cos t ≥ t2/4 for 0 ≤ t ≤ π/3.
then y = f(x) = (1 − cosπx)/2 ≥ π2

8 x
2, for 0 ≤ x ≤ 1/3. It follows that, for

0 ≤ y ≤ 1/4, ∫
Y≤y

α dμ ≤ nx2

∫
Ω

dμ = nx2 ≤ 8ny
π2

.

So, there is a c > 0 such that for Y ≤ y and sufficiently large n,∫ δn

0

g′(y)
∫
Y≤y

α dμ dy ≤ cn

∫ δn

0

√
y dy =

2c
3
nδ3/2n −→ 0. (8)

For y < Y ≤ 1/2, by MVT, there exists some ξ = ξ(y, Y) such that g(Y) −
g(y) = g′(ξ)(Y − y), satisfying y ≤ ξ ≤ Y ≤ 1/2. By the explicit formula for g′

we have (g′(ξ))2 ≤ 2
π2y . Thus∫

y<Y≤1/2

α dμ ≤ 2
π2y

∫
Ω

Ŷ dμ ≤ 2
π2
.

Then ∫ δn

0

g′(y)
∫
y<Y≤1/2

α dμ dy ≤ 2g(δn)
π2

−→ 0. (9)

Finally we treat Y > 1/2. From the Chernoff bound, we have∫
Y >1/2

α dμ ≤ nμ(Y > 1/2) < ne−n/8.

Therefore∫ δn

0

g′(y)
∫
Y >1/2

α dμ dy < ne−n/8

∫ δn

0

g′(y) dy = ne−n/8g(δn) −→ 0. (10)

Combining (8)–(10) with (7), we get limn→∞
∫ δn

0
F̃n(y) dy = 0.

We now consider the second integral in (6). Our first goal is to bound Fn(y)
independently of n on δn ≤ y ≤ 1/2.

A Novel Information Transmission Problem 71

Let B denote the event that [Y < y/2 or Y > 3/4]. Inspired by King Solomon,
we now divide Fn into two:

Fn(y) =
∫
B

α dμ+
∫
Bc

α dμ.

By the Chernoff bound [3], and y ≥ δn,

μ(B) < e−yn/8 + e−n/8 < 2/n.

It follows that ∫
B

α dμ ≤ nμ(B) < 2. (11)

On Bc, by the mean value theorem (MVT), there exists some ξ = ξ(y, Y)
which lies between y and Y , such that g(Y) − g(y) = g′(ξ)(Y − y). Therefore
α = (g′(ξ))2Ŷ . Since Ȳ ∈ Bc, we have y/2 ≤ Y ≤ 3/4. Combining this with
y ≤ 1/2, we get y/2 ≤ ξ ≤ 3/4. Using this in (5), we see that (g′(ξ))2 ≤ 8

π2y .
Then ∫

Bc

α dμ ≤ 8
π2y

∫
Bc

Ŷ dμ ≤ 8
π2y

∫
Ω

Ŷ dμ =
8(1− y)
π2

≤ 8
π2
. (12)

From (11) and (12) we see that for y ≥ δn, Fn(y) ≤ 8
π2 + 2 < 3. This implies

that
|F ∗

n | ≤ 3g′(y),

and since g′ is integrable on [0, 1/2] (near 0, g′ is of order 1/
√
y) we can apply

dominated convergence to get

lim
n→∞

∫ 1/2

0

F ∗
n(y) dy =

∫ 1/2

0

lim
n→∞

F̃n(y) dy =
∫ 1/2

0

(g′(y))3y(1− y) dy. ��

4 Deriving the Optimal Transformation

We consider the following optimization problem. Let

Iy =
∫ 1

0

y(1− y)
(y′)2

dx.

We seek a smooth increasing function y, satisfying the boundary conditions
y(0) = 0 and y(1) = 1, that minimizes Iy . (Note that we are now letting y stand
for a function, instead of a value.)

We use the calculus of variations to get a guess for y. Form the Euler-Lagrange
equation

∂L

∂y
− d

dx

∂L

∂y′
= 0,

72 E. Bach and J.-Y. Cai

with L(y, y′) = y(1−y)/(y′)2. Then, y(x) = (1−cosπx)/2 is a solution matching
the boundary conditions, for which Iy = 1/π2. (Integrability is to be expected
here, since L did not involve x explicitly. See [4].)

More work is needed to prove this is optimal. Recall that y is admissible if it
is in C[0, 1], strictly increasing, with y(0) = 0, and y(1) = 1.

Theorem 3. For any admissible function y, we have∫ 1

0

y(1− y)
(y′)2

dx ≥ 1
π2
,

with equality iff y = (1− cosπx)/2. The case where the integral is infinite is not
excluded.

Proof. Define a new admissible function θ by y(x) = (1 − cosπθ(x))/2. Since θ
increases, θ′ exists a.e., and at any point x of differentiability, y′(x) = π

2 sinπθ(x)·
θ′(x), by the mean value theorem. Also y(x) �= 0, 1 except for x = 0, 1, so we
have (using sin2 + cos2 = 1) (y′)2

y(1−y) = π2θ′, a.e.
We may assume that θ′ is positive a.e. and Iy < +∞, as otherwise the theorem

is true. Then, by Jensen’s inequality,∫ 1

0

y(1− y)
(y′)2

dx =
1
π2

∫ 1

0

1
(θ′)2

dx ≥ 1

π2
(∫ 1

0 θ
′(x)dx

)2 .

(To apply this, we need θ′ ∈ L1[0, 1], which is true. See [12, Ex. 13, p. 157].)
We have

∫ 1

0
θ′ ≤ θ(1) − θ(0) = 1, with equality iff θ is absolutely continuous

(AC). (Combine [11, Thm. 2, p. 96] and [12, Thm. 7.18].) This gives the
inequality of the theorem.

We may assume that θ is AC (otherwise, the inequality is strict). If θ′ is not
constant a.e., then the Jensen inequality is strict and we are done. On the other
hand, if the inequality becomes equality, we have to have θ′(x) = c a.e. Then,
θ(x) =

∫ x
0
c = cx, so c = 1 and θ = x (everywhere!), giving the theorem. ��

Remarks. It is possible that the integral is infinite; this happens, for example, if
y = x3. Also, without the monotonicity condition, the minimum need not exist.
Consider, for example, yn = sin2((n + 1)πx). Then we have 0 ≤ yn ≤ 1, with
yn(0)=0 and yn(1)=1. However,

∫ 1

0 yn(1− yn)(y′n)−2dx = 1/(4π2(n+1)2) → 0.

Theorem 4. Let f be any admissible function. If f �= (1− cosπx)/2, there is a
constant δf > 0 with the following property. For sufficiently large n,∫ 1

0

E[n(g(Ȳ)− y)2]dx ≥ 1
π2

+ δf .

Proof. By Fatou’s lemma [12] and Theorem 1,

lim inf
n→∞

∫ 1

0

E[n(g(Ȳ)−y)2]dx ≥
∫ 1

0

lim
n→∞

E[n(g(Ȳ)−y)2]dx =
∫ 1

0

g′(y)2y(1−y)dx.

A Novel Information Transmission Problem 73

But this is strictly greater than the corresponding integral for f = (1−cos πx)/2,
which is 1/π2. ��

5 Modeling Prior Information and Non-uniform Penalties

In this section we generalize our model to let the the receiver have prior
information about the transmitter’s value x. To convey this information, we
use a weight function ϕ (“prior density” in Bayesian jargon) that we assume
differentiable and positive on (0, 1).

Such a weight function also allows us to weight errors differently, depending
on the value of x. For example, to send 0 and receive 0.1 might be much worse
than to send 0.5 and receive 0.6, and the weight function can reflect this.

We are thus led to the more general problem of choosing an admissible y to
minimize ∫ 1

0

w(y)ϕ(x)
(y′)2

dx.

For simplicity and clarity of exposition we will assume y smooth, i.e. y ∈ C1[0, 1].
Again, we begin with a variational approach. If L is the integrand, then

∂L

∂y
− d

dx

∂L

∂y′
= 3w′ϕ(y′)−2 + 2wϕ′(y′)−3 − 6wϕ(y′)−4y′′. (13)

On the other hand,

d

dx

(
wϕα(y′)β

)
= w′ϕα(y′)β+1 + αwϕα−1ϕ′(y′)β + βwϕα(y′)β−1y′′. (14)

The coefficients of (13) and (14) are proportional provided that (3 : 2 : −6) =
(1 : α : β). Therefore, for α = 2/3 and β = −2, we can put the Euler-Lagrange
equation in the form

ϕ1/3(y′)−1 d

dx

(
wϕ2/3(y′)−2

)
= 0.

This implies that w(y)ϕ(x)2/3 = c(y′)2, for some constant c. If we take the
square root of both sides and then separate variables, we see that∫

ϕ1/3dx = c1

∫
dy√
w(y)

+ c2. (15)

This relation plus the boundary conditions y(0) = 0, y(1) = 1 will determine y.
When w(y) = y(1 − y) we can integrate the right hand side and solve for y

to obtain y = 1−cos(AΦ(x)+B)
2 , where Φ(x) =

∫ x
0
ϕ(t)1/3dt. The optimal function

will not change if we multiply ϕ by a constant, so let us normalize ϕ so that
Φ(1) = 1. Clearly Φ is monotonic, and Φ(0) = 0. From the boundary conditions,
we get A = π and B = 0, so y = 1−cos(πΦ(x))

2 .

74 E. Bach and J.-Y. Cai

Optimality now can be proved as before. First, for our choice of y we have∫ 1

0

y(1− y)ϕ(x)
(y′)2

dx =
∫ 1

0

ϕ(x)
π2Φ′(x)2

dx =
1
π2

∫ 1

0

ϕ(x)1/3dx =
1
π2
.

Now, suppose y is any other function. Then there is a function θ, increasing
from 0 to 1 on [0,1], for which

y =
1− cos(πθ(Φ(x)))

2
.

Then ∫ 1

0

y(1− y)ϕ(x)
(y′)2

dx =
1
π2

∫ 1

0

ϕ(x)1/3

[θ′(Φ(x))]2
dx.

Since
∫ 1

0
ϕ1/3 = 1, we can apply Jensen’s inequality to get

∫ 1

0

ϕ(x)1/3

[θ′(Φ(x))]2
dx ≥

[∫ 1

0

θ′(Φ(x))ϕ(x)1/3dx
]−2

= [θ(1)− θ(0)]−2 = 1.

It follows from the considerations above that any admissible C1 function is
optimal with respect to some weight. Indeed, let the equation of the path be y =
(1− cos(πθ(x)))/2, where θ increases from 0 to 1. Then we may take ϕ = (θ′)3.

6 Open Problems

One way to generalize our information transmission problem is to consider a
higher dimensional analog of it.

In the problem we have just addressed, there is one real number x ∈ [0, 1]
that A wishes to transmit to B. A natural 2-dimensional version of it is this:
We have a point x on the convex hull Δ of {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. That is,
x = p1e1 +p2e2 +p3e3, where p1, p2, p3 ≥ 0 and p1 +p2 +p3 = 1. The transmitter
A can generate i.i.d. random variables with three outcomes, perhaps Red, White,
and Blue with probabilities q1, q2 and q3. Of course, (q1, q2, q3) ∈ Δ as well. Now
the transmitter A and the receiver B must choose beforehand a transformation
f which maps Δ to itself, with an inverse g. Then, in the same formulation of
this paper, what would be the optimal transformation function f , if one exists?

This problem is open, as is the analogous problem for any higher dimension.
We don’t have any significant results to report, but we can make two remarks.

First, the Euler-Lagrange equation is a nonlinear PDE with 95 terms, leading
to some pessimism about the possibility of a closed form solution. (Recall that
with all problems in the calculus of variations, even if the Euler-Lagrange
equation is solved, we still do not have a guarantee of optimality.) It might
be amenable to numerical approximations.

Second, some of the naive functions from Δ to Δ are not optimal.

A Novel Information Transmission Problem 75

Acknowledgements

We thank John Gubner and Jack Lutz for useful comments on this work.

References

1. Adler, J., Cai, J.-Y., Shapiro, J.K., Towsley, D.: Estimate of congestion price using
probabilistic packet marking. Technical Report UM-TR-200223, UMASS-Amherst,
(2002), See http://www-net.cs.umass.edu/∼jshapiro/um-tr-2002-23.pdf

2. Adler, J., Cai, J.-Y., Shapiro, J.K., Towsley, D.: Estimate of congestion price using
probabilistic packet marking. In: Proc. INFOCOMM 2003, pp. 2068–2078 (2003)

3. Alon, N., Spencer, J.: The Probabilistic Method. Wiley-Interscience, Chichester
(1992)

4. Gelfand, I.M., Fomin, S.V.: Calculus of Variations. Prentice-Hall, Englewood Cliffs
(1963)

5. Grimmett, G.R., Stirzaker, D.R.: Probability and Random Processes, 2nd edn.
Oxford Univ. Press, Oxford (1992)

6. Ko, K.: Computational Complexity of Real Functions. Birkhauser (1991)
7. Körner, T.W.: Fourier Analysis. Cambridge Univ. Press, Cambridge (1990)
8. Lanczos, C.: The Variational Principles of Mechanics, 3rd edn. Univ. Toronto Press

(1966)
9. Landau, L.D., Lifshitz, E.M.: Mechanics, 3rd edn. Pergamon Press, London (1976)

10. Low, S.H., Lapsley, D.E.: Optimization flow control, I: Basic algorithm and
convergence. IEEE/ACM Transactions on Networking 7, 861–875 (1999)

11. Royden, H.L.: Real Analysis. Macmillan, NYC (1968)
12. Rudin, W.: Real and Complex Analysis. McGraw-Hill, New York (1974)
13. Verdú, S., Han, T.S.: A general formula for channel capacity. IEEE Transactions

on Information Theory 4, 1147–1157 (1994)

Summaries of Appendices

The full version of this paper contains two appendices, which we summarize here.
In Appendix 1, we investigate the convergence properties of

∫ 1

0
F̃n(y) dy,

as n → ∞. We show that under very general conditions on an admissible f ,
limn→∞

∫ 1

0
F̃n(y) dy exists, and

lim
n→∞

∫ 1

0

F̃n(y) dy =
∫ 1

0

lim
n→∞

F̃n(y) dy =
∫ 1

0

(g′(y))3y(1− y) dy.

In Appendix 2, we discuss our variational problems using the language and
methods of classical mechanics [8,9]. In particular, it follows from Hamilton-Jacobi
theory that our variational problems can always be reduced to quadrature [4].

http://www-net.cs.umass.edu/~jshapiro/um-tr-2002-23.pdf

Local Testing of Message Sequence Charts

Is Difficult�

Puneet Bhateja1, Paul Gastin2,
Madhavan Mukund1, and K. Narayan Kumar1

1 Chennai Mathematical Institute, Chennai, India
{puneet,madhavan,kumar}@cmi.ac.in
2 LSV, ENS Cachan & CNRS, France
Paul.Gastin@lsv.ens-cachan.fr

Abstract. Message sequence charts are an attractive formalism for
specifying communicating systems. One way to test such a system is to
substitute a component by a test process and observe its interaction with
the rest of the system. Unfortunately, local observations can combine in
unexpected ways to define implied scenarios not present in the original
specification. Checking whether a scenario specification is closed with re-
spect to implied scenarios is known to be undecidable when observations
are made one process at a time. We show that even if we strengthen
the observer to be able to observe multiple processes simultaneously, the
problem remains undecidable. In fact, undecidability continues to hold
even without message labels, provided we observe two or more processes
simultaneously. On the other hand, without message labels, if we observe
one process at a time, checking for implied scenarios is decidable.

1 Introduction

Message Sequence Charts (MSCs) [7] are an appealing visual formalism that
are used in a number of software engineering notational frameworks such as
SDL [15] and UML [4]. A collection of MSCs is used to capture the scenarios
that a designer might want the system to exhibit (or avoid).

A standard way to generate a set of MSCs is via Hierarchical (or High-level)
Message Sequence Charts (HMSCs) [10]. Without losing expressiveness, we con-
sider only a subclass of HMSCs called Message Sequence Graphs (MSGs). An
MSG is a finite directed graph in which each node is labeled by an MSC. An
MSG defines a collection of MSCs by concatenating the MSCs labeling each path
from an initial vertex to a terminal vertex.

A natural way to test a distributed implementation against an MSG specifi-
cation is to substitute test processes for one or more components and record the
interactions between the test process(es) and the rest of the system. We refer
to this form of testing of distributed message-passing systems as local testing.

� Partially supported by Timed-DISCOVERI, a project under the Indo-French
Networking Programme.

E. Csuhaj-Varjú and Z. Ésik (Eds.): FCT 2007, LNCS 4639, pp. 76–87, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Local Testing of Message Sequence Charts Is Difficult 77

The implementation is said to pass a local test if the observations at the test
process(es) are consistent with the MSG specification.

An important impediment to local testing is the possibility of implied sce-
narios. Let T = {P1, P2, . . . , Pk} be a collection of subsets of processes. We say
that an MSC M is T -implied by an MSC language L if the projections of M
onto each subset Pi ∈ T agree with the projections onto Pi of some good MSC
MPi ∈ L. Implied scenarios have been studied in [2,3], where the observations
are restricted to individual processes rather than arbitrary subsets.

Let Tk denote the set of all subsets of processes of size k. We say that an MSC
language L is k-testable if every Tk-implied scenario is already present in L. In
other words, if a specification is k-testable, it is possible to accurately test an
implementation by performing a collection of local tests with respect to Tk. On
the other hand, if L is not k-testable, even an exhaustive set of local tests with
respect to Tk cannot rule out an undesirable implied scenario.

It has been shown in [3] that 1-testability is undecidable, even for regular MSG
specifications. (The results of [3] are formulated in the context of distributed
synthesis, but they can also be interpreted in terms of local testing.) We extend
the results of [3] to show that for any n, k-testability of an MSG specification
with n processes is undecidable, for all k ∈ {1, 2, . . . , n− 1}.

We also consider MSG specifications over n processes without message labels.
Somewhat surprisingly, k-testability remains undecidable for k ∈ {2, . . . , n− 1}.
However, for unlabelled MSG specifications, 1-testability is decidable.

The paper is organized as follows. We begin with preliminaries about MSCs,
before we formally define k-testability in Section 3. The next section establishes
various undecidability results. In Section 5, we show that 1-testability is decid-
able for unlabelled MSG specifications. We conclude with a brief discussion.

2 Preliminaries

2.1 Message Sequence Charts

Let P = {p, q, r, . . .} be a finite set of processes (agents) that communicate with
each other through messages via reliable FIFO channels using a finite set of
message types M. For p ∈ P , let Σp = {p!q(m), p?q(m) | p �= q ∈ P ,m ∈ M} be
the set of communication actions in which p participates. The action p!q(m) is
read as p sends the message m to q and the action p?q(m) is read as p receives
the message m from q. We set Σ =

⋃
p∈P Σp. We also denote the set of channels

by Ch = {(p, q) ∈ P2 | p �= q}.

Labelled posets. A Σ-labelled poset is a structure M = (E,≤, λ) where (E,≤)
is a partially ordered set and λ : E → Σ is a labelling function. For e ∈ E, let
↓e = {e′ | e′ ≤ e}. For p ∈ P and a ∈ Σ, we set Ep = {e | λ(e) ∈ Σp} and
Ea = {e | λ(e) = a}, respectively. For (p, q) ∈ Ch, we define the relation <pq:

e <pq e
′ def= ∃m ∈M such that λ(e) = p!q(m), λ(e′) = q?p(m) and

|↓e ∩ Ep!q(m)| = |↓e′ ∩ Eq?p(m)|

78 P. Bhateja et al.

The relation e <pq e
′ says that channels are FIFO with respect to each message—

if e <pq e
′, the message m read by q at e′ is the one sent by p at e.

Finally, for each p ∈ P , we define the relation ≤pp= (Ep ×Ep) ∩≤, with <pp

standing for the largest irreflexive subset of ≤pp.

Definition 1. An MSC over P is a finite Σ-labelled poset M = (E,≤, λ) where:

1. Each relation ≤pp is a linear (total) order.
2. If p �= q then for each m ∈ M, |Ep!q(m)| = |Eq?p(m)|.
3. If e <pq e

′, then |↓e ∩
(⋃

m∈MEp!q(m)

)
| = |↓e′ ∩

(⋃
m∈MEq?p(m)

)
|.

4. The partial order ≤ is the reflexive, transitive closure of
⋃

p,q∈P <pq.

The second condition ensures that every message sent along a channel is received.
The third condition says that every channel is FIFO across all messages.

p q r

e1

e′1

e2

e′2 e3

e′3

m1

m2

m3

Fig. 1. An MSC

In diagrams, the events of an MSC are presented
in visual order. The events of each process are ar-
ranged in a vertical line and messages are displayed as
horizontal or downward-sloping directed edges. Fig. 1
shows an example with three processes {p, q, r} and
six events {e1, e′1, e2, e′2, e3, e′3} corresponding to three
messages—m1 from p to q, m2 from q to r and m3

from p to r.
For an MSC M = (E,≤, λ), we let lin(M) =

{λ(π) | π is a linearization of (E,≤)}. For instance,
p!q(m1) q?p(m1) q!r(m2) p!r(m3) r?q(m2) r?p(m3) is
one linearization of the MSC in Fig. 1.

MSC languages. An MSC language is a set of MSCs. We can also regard an MSC
language L as a word language over Σ given by lin(L) =

⋃
{lin(M) |M ∈ L}.

Definition 2. An MSC language L is said to be a regular MSC language if the
word language lin(L) is a regular language over Σ.

Let M be an MSC and B ∈ N. We say that w ∈ lin(M) is B-bounded if for
every prefix v of w and for every channel (p, q) ∈ Ch,

∑
m∈M |πp!q(m)(v)| −∑

m∈M |πq?p(m)(v)| ≤ B, where πΓ (v) denotes the projection of v on Γ ⊆ Σ.
This means that along the execution of M described by w, no channel ever
contains more than B-messages. We say that M is (universally) B-bounded if
every w ∈ lin(M) is B-bounded. An MSC language L is B-bounded if every
M ∈ L is B-bounded. Finally, L is bounded if it is B-bounded for some B.

We then have the following result [5].

Theorem 3. If an MSC language L is regular then it is bounded.

2.2 Message Sequence Graphs

Message sequence graphs (MSGs) are finite directed graphs with designated
initial and terminal vertices. Each vertex in an MSG is labelled by an MSC. The
edges represent (asynchronous) MSC concatenation, defined as follows.

Local Testing of Message Sequence Charts Is Difficult 79

Let M1 = (E1,≤1, λ1) and M2 = (E2,≤2, λ2) be a pair of MSCs such that E1

and E2 are disjoint. The (asynchronous) concatenation of M1 and M2 yields the
MSC M1 ◦M2 = (E,≤, λ) where E = E1∪E2, λ(e) = λi(e) if e ∈ Ei, i ∈ {1, 2},
and ≤ = (≤1 ∪ ≤2 ∪

⋃
p∈P E

1
p × E2

p)∗.
A Message Sequence Graph is a structure G = (Q,→, Qin, F, Φ), where Q is a

finite and nonempty set of states, → ⊆ Q×Q, Qin ⊆ Q is a set of initial states,
F ⊆ Q is a set of final states and Φ labels each state with an MSC.

A path π through an MSG G is a sequence q0 → q1 → · · · → qn such that
(qi−1, qi) ∈ → for i ∈ {1, 2, . . . , n}. The MSC generated by π is M(π) = M0 ◦
M1 ◦ M2 ◦ · · · ◦ Mn, where Mi = Φ(qi). A path π = q0 → q1 → · · · → qn
is a run if q0 ∈ Qin and qn ∈ F . The language of MSCs accepted by G is
L(G) = {M(π) | π is a run through G}. We say that an MSC language L is
MSG-definable if there exists and MSG G such that L = L(G).

⇒M1 M2

p q r s

M1

m

m

p q r s

M2

m

m

p q

r s

CGM1◦M2

Fig. 2. A message sequence graph

An example of an MSG is depicted in Fig. 2. The initial state is marked ⇒
and the final state has a double line. The language L defined by this MSG is not
regular: L projected to {p!q(m), r!s(m)}∗ consists of σ ∈ {p!q(m), r!s(m)}∗ such
that |σ�p!q(m)| = |σ�r!s(m)| ≥ 1, which is not a regular string language.

In general, it is undecidable whether an MSG describes a regular MSC lan-
guage [5]. However, a sufficient condition for the MSC language of an MSG to
be regular is that the MSG be locally synchronized.

Communication graph. For an MSC M = (E,≤, λ), let CGM , the commu-
nication graph of M , be the directed graph (P , �→) where:

– P is the set of processes of the system.
– (p, q) ∈ �→ iff there exists an e ∈ E with λ(e) = p!q(m).

M is said to be com-connected if CGM consists of one nontrivial strongly con-
nected component and isolated vertices.

Locally synchronized MSGs. The MSG G is locally synchronized [12] (or
bounded [1]) if for every loop π = q → q1 → · · · → qn → q, the MSC M(π) is
com-connected. In Fig. 2, CGM1◦M2 is not com-connected, so the MSG is not
locally synchronized. We have the following result for MSGs [1].

Theorem 4. If G is locally synchronized, L(G) is a regular MSC language.

80 P. Bhateja et al.

3 Locally Testable MSC Languages

In local testing, we substitute test process(es) for one or more components and
record the interactions between the test process(es) and the rest of the system.
The implementation is said to pass a local test if the observations at the test
process(es) are consistent with the MSG specification. An important impediment
to local testing is the possibility of implied scenarios.

Definition 5. Let M = (E,≤, λ) be an MSC and P ⊆ P a set of processes. The
P -observation of M , M�P , is the collection of local observasions {(Ep,≤pp)}p∈P ,
where ≤pp= ≤∩(Ep×Ep). The collection {(Ep,≤pp)}p∈P can also be viewed as a

labelled partial order (EP ,≤P) where EP =
⋃

p∈P Ep and ≤p=
(⋃

p,q∈P <pq

)∗
.

Let T ⊆ 2P be a family of subsets of processes. An MSC M is said to be
T -implied by an MSC-language L if for every subset P ∈ T there is an MSC
MP ∈ L such that MP �P = M�P .

We denote by Tk the set {P ⊆ P | |P | = k} of all subsets of P of size k and
we say that an MSC is k-implied if it is Tk-implied.

Fig. 3 illustrates the idea of implied scenarios. The MSC M ′ is 1-implied by
{M1,M2}. However, M ′ is not 2-implied by {M1,M2} because the {p, s}-
observation of M ′ does not match either M1 or M2.

p q r s

M1

m

m

p q r s

M2

m

m

p q r s

M ′

m m

m

Fig. 3. An example of implied scenarios

We are interested in checking the global behaviour of a distributed implemen-
tation by testing it locally against an MSG specification. For this to be mean-
ingful, the MSG should be closed with respect to implied scenarios generated by
the test observations. This leads to the following definition.

Definition 6. Let |P| = n. An MSG G is said to be k-testable if every scenario
M that is k-implied by L(G) is already a member of L(G).

We have the following negative result from [3] (adapted to our context).

Theorem 7. Let G be a locally-synchronized MSG, so that L(G) is a regular
MSC language. It is undecidable whether L(G) is 1-testable.

This result is somewhat surprising, since the analogous problem for synchronous
systems is decidable [16]. The root cause of this undecidability is the fact that
even when a MSC language L is regular, and hence B-bounded for some B,
the set of scenarios implied by L may not be bounded. An example is shown in
Fig. 4—all messages are labelled m and labels are omitted.

Local Testing of Message Sequence Charts Is Difficult 81

p M1 q

p M2 q

M1

M1

M1

M1

M2

M2

M2

M2

M1

M1

M1

M1

Fig. 4.

Since M1 and M2 are both com-
connected, the language (M1 +M2)∗

is a regular MSG-definable language.
On the other hand, for each

k ∈ N, the MSC in which the p-
observation matches M2k

1 Mk
2 and the

q-observation matches Mk
2M

2k
1 has a

global cut where the channel (p, q)
has capacity k + 1. The figure shows
the case k = 2. The dotted line
marks the global cut where the chan-
nel (p, q) has maximum capacity.

4 Undecidability

We know from [3] that 1-testability is undecidable for regular MSG-definable
languages. The example in Fig. 3 suggests that it might be possible to deter-
mine the smallest k < n such that an MSG specification with n processes is
k-testable. (Observe that every MSC language over n processes is trivially n-
testable.) Unfortunately, this is not the case. For all k < n, the problem of
determining whether a regular MSG specification is k-testable is undecidable.

The undecidability proofs in this section use reductions from the Modified
Post’s Correspondence Problem (MPCP) [6]. An instance of MPCP is a collection
{(v1, w1), (v2, w2) . . . , (vr, wr)} of pairs of words over an alphabet Σ. A solution
is a sequence i2i3 . . . im of indices from {1, 2, . . . , r} such that v1vi2vi3 · · · vim =
w1wi2wi3 · · ·wim . It is proved in [6] that checking whether an instance of MPCP
admits a solution is undecidable. A careful examination of the proof in [6] shows
that MPCP is undecidable even under following assumptions:

1. For each word u in the list {(v1, w1), (v2, w2) . . . , (vr , wr)}, 1 ≤ |u| ≤ 4.
2. w1 is a strict prefix of v1 and is shorter by at least 2 letters.
3. If the instance has a solution then it has a solution of the form i2i3 . . . im

such that w1wi2 . . . wik is a strict prefix of v1vi2 . . . vik for each k < m.

Theorem 8. For 3 ≤ k ≤ n, (k − 1)-testability is undecidable for regular 1-
bounded MSG-definable languages over n processes.

Proof. Let Δ = {(v1, w1), (v2, w2), . . . , (vr, wr)} be an instance of MPCP sat-
isfying the assumptions described above. For each pair (v
, w
), we construct k
MSCs Mv�

, Mw�
and {M j

v�,w�
| 1 < j < k} over processes {1, 2, . . . , n}, such that

only processes {1, 2, . . . , k} are active in these k MSCs. The message alphabet
for these MSCs is the alphabet of the MPCP instance along with the integers
{1, 2, . . . , r}. In the definition below, vj
 and wj

 are the jth symbols in the strings
v
 and w
, respectively. Also, i m−→ j denotes the MSC generated by the sequence
i!j(m) j?i(m) where i sends message m to j. For m ∈ M and i < j we define

N i,j
m = (i m−→ i+ 1) · · · (j − 1 m−→ j)(j m−→ j − 1) · · · (i+ 1 m−→ i).

82 P. Bhateja et al.

In this MSC, the messagem is sent from i to j through the intermediate processes
i+ 1, . . . , j − 1 and an acknowledgment is sent back from j to i through the same
route. We also let N
 = (k
−→ 1) and define for 1 < j < k the MSCs

Mv�
= N
N

1,k
v1

�
· · ·N1,k

v
|v�|
�

Mw�
= N
N

1,k
w1

�

· · ·N1,k

w
|w�|
�

M j
v�,w�

= N
N
1,j
v1

�

N j,k
w1

�

· · ·N1,j

v
|w�|
�

N j,k

w
|w�|
�

N1,j

v
|w�|+1
�

· · ·N1,j

v
|v�|
�

if |w
| ≤ |v
|

M j
v�,w�

= N
N
1,j
v1

�

N j,k
w1

�

· · ·N1,j

v
|v�|
�

N j,k

w
|v�|
�

N j,k

w
|v�|+1
�

· · ·N j,k

w
|w�|
�

otherwise.

Since each word in the MPCP instance is nonempty, each of these MSCs is
com-connected, so any MSG whose node labels are drawn from this set of MSCs
is guaranteed to be locally-synchronized. For 1 < j < k, we define

Lv = Mv1{Mv�
| 1 ≤ � ≤ r}∗

Lw = Mw1{Mw�
| 1 ≤ � ≤ r}∗

Lj
v,w = M j

v1,w1
{M j

v�,w�
| 1 ≤ � ≤ r}∗

LΔ = Lv ∪ Lw ∪
⋃

1<j<n

Lj
v,w.

Claim. Δ has a solution iff LΔ is not (k − 1)-testable.

Let i2, i3,, im be a solution of Δ that satisfies Condition 3 listed above. Let
v1vi2vim = w1wi2wim = a1a2 . . . a
. Then, we first construct the MSC M ′ =
N1,k

a1
N1,k

a2
· · ·N1,k

a�
. In M ′, we insert events labelled k!1(1), k!1(i2),. . . ,k!1(im) into

k so as to partition its communications with k − 1 as w1,wi2 , . . . , wim . Finally,
we insert events labelled 1?k(1), 1?k(i2), . . . , 1?k(im) into 1 to partition its
communications with 2 as v1, vi2 , . . . , vim . Call this MSC M . To observe that
M is indeed a valid MSC, we note that for each j < m, w1wi2 . . . wij is a prefix
of v1vi2 . . . vij , so the receive event 1?k(ij) inserted into 1 can occur later than
the corresponding send event k!1(ij) inserted into n.

It is easy to verify that M�{1,2,...,k−1} = (Mv1Mvi2
· · ·Mvim

)�{1,2,...,k−1}. Sim-
ilarly, M�{2,3,...,k} = (Mw1Mwi2

· · ·Mwim
)�{2,3,...,k}. Finally, for 1 < j < k

we have M�{1,...,j−1,j+1,...,k} = (M j
v1w1

M j
vi2wi2

· · ·M j
vimwim

)�{1,...,j−1,j+1,...,k}.
Thus M is (k − 1)-implied by LΔ.

To see that M is not already in LΔ, simply observe that there is at least one
event in M between the second k!1 event and the second 1?k event and this is
not the case for any MSC in L.

Conversely, suppose there is an MSC M /∈ LΔ that is (k − 1)-implied by LΔ.
The MSC M must be of one of the following two types:

Type 1. M�{j} /∈ ({N1,k
m | m ∈ M}∗)�{j} for some 1 < j < k.

Type 2. M�{j} ∈ ({N1,k
m | m ∈ M}∗)�{j} for all 1 < j < k.

Local Testing of Message Sequence Charts Is Difficult 83

If M is of type 1 as witnessed by j, it must be the case that M�{1,2,...,k−1} =
(M j

v1w1
M j

vi2wi2
· · ·M j

vimwim
)�{1,2,...,k−1}. Similarly, we also have M�{2,3,...,k} =

(M j
v1w1

M j
vi2wi2

· · ·M j
vimwim

)�{2,3,...,k}. Hence, M = M j
v1w1

M j
vi2wi2

· · ·M j
vimwim

,
which in turn implies that M ∈ LΔ thus contradicting our initial assumption.
Therefore M cannot be of type 1.

On the other hand, if M is of type 2, we show that if M is 1-implied by LΔ

then either M ∈ Lv ∪Lw or Δ has a solution. Note that this is a stronger result
since we only assume that M is 1-implied instead of (k − 1)-implied.

We have (Lj
v,w)�1 = (Lv)�1 and (Lj

v,w)�k = (Lw)�k. Hence, M�1 ∈ (Lv∪Lw)�1

and M�k ∈ (Lv ∪ Lw)�k. Using in addition the fact that M is of type 2, we
deduce that if we remove from M the messages from k to 1 we obtain an MSC
M ′ = N1,k

a1
N1,k

a2
· · ·N1,k

a�
for some word a1a2 · · ·a
.

Now, if M /∈ Lv ∪ Lw then we must have M�1 ∈ (Lv)�1 and M�k ∈ (Lw)�k
(otherwise the second message from k to 1 would induce a cycle in the MSC).
Therefore, the sequence of messages from k to 1 parses on the left the se-
quence a1a2 · · · a
 into some v1vi2 · · · vim and on the right the same sequence
into w1wi2 · · ·wim and Δ has a solution. ��
Remark 9. We can modify the proof to obtain the undecidability of 1-testability
even for regular 1-bounded MSG-definable languages over n ≥ 3 processes. Be-
low, we get down to 2 processes but the regular language is only 4-bounded.

4.1 Undecidability of 1-Testability for 2 Processes

The argument in [3] shows that 1-testability is undecidable for regular MSG-
definable languages with four processes. We tighten this result to show that 1-
testability is undecidable for regular MSG-definable languages over 2 processes.

Theorem 10. For n ≥ 2, 1-testability is undecidable for regular 4-bounded
MSG-definable languages over n processes.

i

a1

a2
...
ak

Fig. 5.

Proof. As before, let Δ = {(v1, w1), (v2, w2), . . . , (vr, wr)}
be an instance of MPCP satisfying the assumptions (1–3)
stated earlier. With each word vi = a1a2 . . . ak we associate
an MSC Mvi as indicated in Fig. 5.

Similarly we construct the MSCs Mwi . First, observe that
each of these MSCs is com-connected, so any MSG that uses
these MSCs as node labels is locally synchronized. Also,
from assumption 1 of the MPCP instance, the MSCs are
4-bounded and therefore, any language generated by these
MSCs is 4-bounded.

Let Lv = {Mvi | 1 ≤ i ≤ r} and Lw = {Mwi | 1 ≤
i ≤ r}. Consider the MSG-definable regular language LΔ =
Mv1 .(Lv)∗ +Mw1 .(Lw)∗.

If M is any MSC in L then M�1 is a word of the form 1!2(1) 1?2(x1) 1!2(i2)
1?2(xi2) · · · 1!2(ik) 1?2(xik) where either each xij is vij or each xij is wij . A
similar property holds for M�2.

84 P. Bhateja et al.

j j + 1

... i times

0 n 1

... i times

Fig. 6.

Suppose there is a 1-implied MSC M that is not in LΔ. Then, M�1 =
(Mw1Mwi2

· · ·Mwik
)�1 and M�2 = (Mv1Mvi2

· · ·Mvik
)�2. It follows that the

MPCP instance Δ has a solution.
Conversely, from any solution i2i3 . . . ik to the MPCP instance Δ, it is quite

easy to construct a 1-implied scenario where p1 witnesses the w1wi2 · · ·wik and
p2 witnesses the v1vi2 · · · vik . ��

Finally, we turn our attention to MSGs over a singleton message alphabet. As
we shall see in the next section, 1-testability is decidable for locally-synchronized
MSG languages over singleton message alphabets. However, k-testability is un-
decidable for any k > 1.

Theorem 11. Let n and k be any two integers with n > 2 and 1 < k < n− 1.
There is a constant B such that the problem of deciding whether a B-bounded
HMSC language over a singleton alphabet is k-testable is undecidable.

Proof. (Sketch) Following the proof of Theorem 10, it suffices to prove the result
for k = n−2. We modify the reduction used in the proof of Theorem 8 to
use a singleton message alphabet. Let us assume that the message alphabet is
{a1, a2, . . . ak}. A communication ai between process j and j + 1 is replaced
by the communication pattern at the left of Fig. 6. Since k > 1, any subset
containing j and j + 1 would witness that the communication between j and
j + 1 is uniquely and correctly parsed. We still have to deal with the message
from process n to 1. We add an additional process 0 and simulate the act of
sending i from n to 1 by the MSC at the right of Fig. 6. Since k > 1, the pair
{n, 0} will jointly witness that i is sent from n to 1. ��

5 Decidability

In this section we consider the 1-testability problem for regular MSC languages
where the message alphabet for each channel is a singleton. In this case, we may
omit the message content in any event. Throughout this section, we write p!q
and q?p rather than p!q(m) and q?p(m).

Proper and complete words. For a word w and a letter a, #a(w) denotes
the number of times a appears in w. We say that σ ∈ Σ∗ is proper if for every
prefix τ of σ and every pair p, q of processes, #p!q(τ) ≥ #q?p(τ). We say that σ
is complete if σ is proper and #p!q(σ) = #q?p(σ) for every pair p, q of processes.

Local Testing of Message Sequence Charts Is Difficult 85

Every linearization of any MSC is a complete word and every complete word is
the linearization of a unique MSC.

Suppose L is the set of linearizations of a MSC language. Let Lp = {w�p |
w ∈ L}. Let, 1-closure(L) = {w | w is complete and ∀p. w�p ∈ Lp}. Observe
that 1-closure(L) is the set of 1-implied words of L.

Let L be the set of linearizations of some regular MSC language over a single-
ton message alphabet. From any finite automaton A = (Q,Σ, δ, i, F) accepting L
we can easily construct for each p ∈ P an automaton Ap = (Qp, Σ�p, δp, ip, Fp)
that accepts Lp. Note that 1-closure(L) is exactly the set of complete words
accepted by the (free) product

∏
pAp of these automata. The product automa-

ton accepts a regular language. The difficulty is in ensuring that a word that
is accepted is complete. However, since the message alphabet is a singleton, it
suffices to keep track of the number of sent and as yet unreceived messages along
any channel. This leads us naturally to the following idea.

From these automata (Ap)p∈P , we construct a labelled Petri net N whose
firing sequences are related to words in 1-closure(L).1

1. The set of places is
⋃

p∈P Qp ∪ {cpq | p, q ∈ P}.
2. The set of transtions is

⋃
p∈P δp.

3. The transition (s, p!q, t) ∈ δp removes a token from the place s and deposits
a token each at the places t and cpq.

4. The transition (s, q?p, t) ∈ δp removes a token each from the places s and
cqp and deposits a token at t.

5. The initial marking has one token in each place ip, p ∈ P , corresponding to
the initial states of the automata Ap.

6. The label on the transition (s, x, t) is x ∈ Σ.

From the definition of N it follows that in any reachable marking, for any
p ∈ P , exactly one place in Qp has a token. We say that a marking of this net is
final if every place of the form cpq is empty and for each p ∈ P there is fp ∈ Fp

such that fp is marked. There are only finitely many final markings.
It is quite easy to observe that a word w ∈ 1-closure(L) if and only if there

is a firing sequence labelled w from the initial marking to some final marking.
This leads us naturally to the following proposition:

Proposition 12. Let B be any integer. We can decide if 1-closure(L) contains
a word that is not B-bounded.

Proof. The set of markings where exactly one of the places of the form cpq
has B + 1 tokens (and all other places have at most B tokens) is finite. Since
reachability is decidable for Petri nets [8,9], we can check for each such marking
χ whether χ is reachable from the initial marking and if some final marking is
reachable from χ. ��

Now, if the given MSC language L is regular we can compute a bound B from
its presentation such that L is B-bounded. Using the proposition above, we can
1 Due to lack of space, we are constrained to omit basic definitions concerning Petri

nets. See [14] for a detailed introduction.

86 P. Bhateja et al.

check if 1-closure(L) contains words that are notB-bounded. If the answer is yes,
then L is not 1-testable. On the other hand, if there are no words in 1-closure(L)
that violate the B bound on any channel, we can look for 1-implied scenarios
using the following proposition.

Proposition 13. Let L be a B-bounded MSC regular language. We can decide
if 1-closure(L) contains any B-bounded words not in L.

Proof (Sketch). Construct the net N corresponding to the product automaton∏
pAp as described earlier. Explore all reachable configurations in which each

place in {cpq | p, q ∈ P} has no more than B tokens. This results in a finite
automaton that accepts all the B-bounded words in 1-closure(L). ��

From the two propositions described above, we conclude that:

Theorem 14. The 1-testability problem for regular MSC languages over a sin-
gleton message alphabet is decidable.2

In fact, in this case we can even decide if 1-closure(L) is regular.

Theorem 15. Let L be a regular MSC language over a singleton message al-
phabet. Then, it is decidable whether 1-closure(L) is regular.

Proof. We reduce this to the Intermediate Marking Problem (IMP) for Petri
nets, which is known to be decidable [17].

Consider the Petri net constructed above. Define an intermediate marking to be
one that can be reached from the initial configuration and from which some final
marking is reachable. If the number of intermediate markings is finite, there is a
bound B such that along any firing sequence from the initial marking to a final
marking, no place ever contains more than B tokens. In other words, if w is the
word generated by some firing sequence from the initial to a final configuration
then the number of unreceived messages at any prefix ofw is bounded byB. Thus,
the language 1-closure(L) is the language of a bounded Petri net and hence regular.

On the other hand, if the number of intermediate markings is infinite, we may
conclude that for any B there is a word w ∈ 1-closure(L) which has a prefix with
B sent and as yet unreceived messages. Thus 1-closure(L) is not B-bounded for
any B and hence not regular. ��

6 Discussion

We have seen in this paper that developing a framework for locally testing MSC
based specifications is hard. This is because MSG-based specifications permit
unintended implied scenarios that cannot, in general, be detected algorithmically.

There are two approaches to attack the problem of local testing in light of this
bottleneck. One is to characterize structural conditions for k-testability. This
2 This theorem can also be viewed as a special case of the result proved in [11] that 1-

testability is decidable for MSCs without fifo channels, but our proof for this special
case is simpler than the general proof in [11].

Local Testing of Message Sequence Charts Is Difficult 87

is analogous to identifying locally synchronized MSGs as those that generate
regular MSC specifications, even though the general problem of checking whether
an MSG specification describes a regular MSC language is undecidable [5].

Another tactic would be to recognize that practical implementations always
work with bounded buffers and impose an upper bound B on the buffer size.
The set of B-bounded MSCs in the k-closure of a regular MSC language is again
regular, so the B-bounded k-testability problem is decidable for all regular MSG-
definable languages. The focus could now be on efficiently identifying the smallest
k for which an MSG specification is k-testable. Another interesting problem is
to identify a minimal set of tests to validate a k-testable specification.

References

1. Alur, R., Yannakakis, M.: Model checking of message sequence charts. In: Baeten,
J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 114–129. Springer,
Heidelberg (1999)

2. Alur, R., Etessami, K., Yannakakis, M.: Inference of message sequence graphs.
IEEE Trans. Software Engg. 29(7), 623–633 (2003)

3. Alur, R., Etessami, K., Yannakakis, M.: Realizability and Verification of MSC
Graphs. Theor. Comput. Sci. 331(1), 97–114 (2005)

4. Booch, G., Jacobson, I., Rumbaugh, J.: Unified Modeling Language User Guide.
Addison-Wesley, London, UK (1997)

5. Henriksen, J.G., Mukund, M., Narayan Kumar, K., Sohoni, M., Thiagarajan, P.S.:
A Theory of Regular MSC Languages. Inf. Comp. 202(1), 1–38 (2005)

6. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation. Addison-Wesley, London, UK (1979)

7. ITU-TS Recommendation Z.120: Message Sequence Chart (MSC). ITU-TS,
Geneva (1997)

8. Kosaraju, S.R.: Decidability of Reachability in Vector Addition Systems. Proc 14th
ACM STOC, 267–281 (1982)

9. Mayr, E.W.: An Algorithm for the General Petri Net Reachability Problem. SIAM
J. Comput 13(3), 441–460 (1984)

10. Mauw, S., Reniers, M.A. (eds.): High-level message sequence charts. In: Proc
SDL’97, pp. 291–306. Elsevier, Amsterdam (1997)

11. Morin, R.: Recognizable Sets of Message Sequence Charts. In: Alt, H., Ferreira, A.
(eds.) STACS 2002. LNCS, vol. 2285, pp. 523–534. Springer, Heidelberg (2002)

12. Muscholl, A., Peled, D.: Message sequence graphs and decision problems on
Mazurkiewicz traces. In: Kuty�lowski, M., Wierzbicki, T., Pacholski, L. (eds.) MFCS
1999. LNCS, vol. 1672, pp. 81–91. Springer, Heidelberg (1999)

13. Muscholl, A., Peterson, H.: A note on the commutative closure of star-free lan-
guages. Information Processing Letters 57(2), 71–74 (1996)

14. Reisig, W., Rozenberg, G. (eds.): Lectures on Petri Nets I: Basic Models, Advances
in Petri Nets. LNCS, vol. 1491. Springer, Heidelberg (1998)

15. Rudolph, E., Graubmann, P., Grabowski, J.: Tutorial on message sequence charts.
Computer Networks and ISDN Systems — SDL and MSC 28 (1996)

16. Thiagarajan, P.S.: A Trace Consistent Subset of PTL. In: Lee, I., Smolka, S.A.
(eds.) CONCUR 1995. LNCS, vol. 962, pp. 438–452. Springer, Heidelberg (1995)

17. Wimmel, H.: Infinity of Intermediate States Is Decidable for Petri Nets. In: Cor-
tadella, J., Reisig, W. (eds.) ICATPN 2004. LNCS, vol. 3099, pp. 426–434. Springer,
Heidelberg (2004)

On Notions of Regularity for Data Languages�

Henrik Björklund and Thomas Schwentick

University of Dortmund

Abstract. Motivated by considerations in XML theory and model
checking, data strings have been introduced as an extension of finite al-
phabet strings which carry, at each position, a symbol and a data value
from an infinite domain. Previous work has shown that it is not easy
to come up with an expressive yet decidable automata model for data
languages. Recently, such an automata model, data automata, was in-
troduced. This paper introduces a simpler but equivalent model and
investigates its expressive power, algorithmic and closure properties and
some extensions.

1 Introduction

Regular string languages are clearly one of the most fundamental concepts in
(Theoretical) Computer Science. They have applications in basically all branches
of Computer Science. It can be argued that the following properties are the basis
of their success: (1) Expressiveness, (2) Decidability, (3) Efficiency, (4) Closure
properties, and (5) Robustness. The notion of regularity has been generalized
to other structures, such as infinite strings and finite or infinite trees. Recent
applications of regular languages are in Model Checking and XML processing.

– In model checking, whether a formula holds in a system is checked on the
product of the system automaton and an automaton obtained from the for-
mula. The step from the “real” system to its finite state representation usu-
ally involves many abstractions, especially with respect to data values. Even
though this approach has been successful and found its way into large scale
industrial applications, it has some inherent shortcomings. As an example,
n identical processes with m states each give rise to an overall model size of
mn. If the number of processes is unbounded and/or unknown in advance
the finite state approach fails. Decidability can sometimes still be obtained
by restricting the problem in various ways [9,1].

– In XML document processing, regular concepts occur in various contexts.
First, most applications restrict the structure of the allowed documents to
conform to a certain specification (DTD or XML Schema), which can be
modeled as a regular tree language. Second, navigation (XPath) and trans-
formation (XSLT) languages have tight connections to various tree automata
models and other regular description mechanisms (see, e.g., [13]).

These approaches abstract away from attributes of XML documents, and
concentrate on their structure. This is not always enough: a schema should

� This work was supported by the DFG Grant SCHW678/3-1.

E. Csuhaj-Varjú and Z. Ésik (Eds.): FCT 2007, LNCS 4639, pp. 88–99, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

On Notions of Regularity for Data Languages 89

also allow definitions of restrictions on the data values through integrity
constraints. This problem has been addressed (see, e.g., [3]), but as in the
case of model checking, the methods largely rely on a case-to-case analysis.

Thus, in both settings, the finite state abstraction leads to interesting results but
does not address all problems arising in applications. It would already be a big
step if each position could carry a data value in addition to its label. This paper
is part of a broader research program which aims at studying such extensions in
a systematic way. We concentrate on the setting, where data values can only be
tested for equality. Furthermore, we only consider finite data strings.

Quite a number of specification mechanisms for data languages have been
suggested, such as register automata [11], pebble automata [14], quasi-regular
expressions [12], data automata [4], and LTL with freeze quantifier [6]. For an
overview of these models, see [16]. There are also investigations which assume
more knowledge of the data [5,17]. Two observations are immediate from this
work: the classes of data languages are very heterogeneous, i.e., pairs of defined
classes are often incomparable, and one quickly obtains undecidable mechanisms.

Thus, the question remains whether there is a decent notion of regularity
for data languages. The results so far are not very promising. Maybe there is
no single class of data languages sharing all required properties. Rather there
could be several classes fulfilling the requirements only to a certain extent. The
research dedicated to this question therefore has to study a broad variety of
models in order to identify important concepts.

In this paper, our requirements on expressive power are guided by the goal of
model checking in the presence of an unbounded number of processes. Each com-
putation naturally gives rise to a data string, where the data values represent pro-
cess numberss. We aim at describing global properties of the computation, taking
the whole string into consideration, as well as local properties which concern the ac-
tions of individual processes. As an example, consider processes sharing a printer.
Consider three kinds of events: a print job can be requested (r), start (s), and ter-
minate (t). A global property could be that a started job must terminate before the
next job can start, giving rise to a regular constraint of the form (r∗sr∗tr∗)∗. A nat-
ural local property is stated by the regular expression (rst)∗, i.e., each process goes
arbitrarily often through a request-start-terminate cycle. Thus, we are interested
in mechanisms which are at least able to specify global properties as well as local
properties through regular (finite alphabet) languagesRglob andRloc, respectively.
Formalisms will differ in their ability to coordinate the local and global properties.

Register automata [11] are a quite natural decidable model for data lan-
guages.1 They are able to deal with any regular global properties, but are weak
when it comes to local properties.

Another natural approach to specification is through logics. Data strings can
be modeled as finite structures. Due to the limited access to data values, they
can be represented by an equivalence relation. Although first-order logic on data
strings is undecidable, the two-variable fragment has decidable satisfiability [4].
1 The authors called the model finite memory automata, but we adopt the name

register automata, used in the later literature.

90 H. Björklund and T. Schwentick

The latter paper introduced a new automaton model for data strings, data au-
tomata (DAs). As they have the expressive power described above and decidable
emptiness, they fulfill, to some extent, the requirements (1) expressiveness and
(2) decidability. Requirements (3)-(5) were not studied in depth in [4], but a
characterization of the class R of data languages accepted by DAs in terms of
an existential MSO logic was given. Thus a certain robustness was established.
We study R and some extensions and restrictions more thoroughly.
Contributions. First, we address the robustness of R, and show that there are a
couple of simplifications of DAs which do not affect their expressive power (cf.
3.4 and 3.6). We arrive at the new, equivalent model of class memory automata
(CMAs). Next, in one of our main results, we confirm the expressiveness of R
by showing that it (strictly) captures all data languages accepted by register
automata (4.1). We then turn to the complexity of model checking, and first
consider register automata. Even though their data complexity is polynomial,
the combined complexity is NP-complete [15]. The number k of registers turns
out to be crucial.With respect to k, the problem is W [1]-complete (5.3). For
CMAs, the data complexity is already NP-complete (5.1).

The high data complexity of CMAs suggests the consideration of deterministic
CMAs. The data and combined complexity of model checking become polyno-
mial (5.1). Even though deterministic CMAs can express regular global and
local properties, they are considerably weaker than CMAs, as they neither cap-
ture register automata (4.2) nor two-variable logics (4.3). Allowing deterministic
CMAs to operate in a two-way fashion results in undecidability (5.4).
R is closed under union, intersection, product, and concatenation, but neither

under complement nor under Kleene star. The former follows from the undecid-
ability of universality for register automata [14], the latter is Proposition 6.1.
Deterministic CMAs are closed under intersection but not under union, concate-
nation, or complement. To obtain a deterministic model closed under Boolean
operations, we add certain Presburger conditions to the acceptance conditions
(6.3). Despite its closure under negation this model is still decidable.

Since R is still unable to handle a number of natural properties, we investigate
how much it can be extended, while preserving decidability. More precisely, we
consider two extensions of CMAs which allow more interaction between global
and local properties: one model with a synchronization mechanism and one with
the ability to “reset” information seen for a data value. Returning to our printer
example, these automata can handle, e.g., restarts of the system.

Most proofs have been left out, and will appear in the full version of the paper.
An overview of the classes under consideration is given by Figure 1.

2 Preliminaries

Data words. Let Σ be a finite alphabet and Δ an infinite set. A data word
is a finite sequence over Σ × Δ. A data language is a set of such words. If
w = (a1, d1) . . . (an, dn), then str(w) = a1 . . . an is the string projection of
w. The marked string projection mstr(w) is the string (a1, b1) · · · (an, bn) over
Σ × {0, 1} for which bi = 1 iff di = di−1 (b1 = 0) For each data value d, the set

On Notions of Regularity for Data Languages 91

CMA + Sync 2D-CMA Undecidable

DecidableCMA + Reset CMA + restr. Sync

CMA
CMA+Presb.

DA
EMSO2(+1, <,∼, �)

FO2(+1, <,∼) RA D-CMA + Presb.

D-CMAD-RA

Fig. 1. A schematic picture of inclusions among classes of data languages. The lower-
most three (branches of) classes are pairwise incomparable.

of all positions with value d is called a class of w, the string induced by these
positions is called a class string. A position j is called the class successor
of a position i (denoted i � j), if both have the same data value, and there is
no other position with the same value between i and j. Unless otherwise stated
data values can only be compared with respect to equality. In the sequel, we will
assume w.l.o.g. that all data languages and automata we investigate are defined
over the same data set Δ, which contains all data values used in examples and
proofs. In particular N ⊆ Δ. We will also talk about data languages over Σ,
where Σ is an finite alphabet, implicitly assuming that the data set is Δ.

Register automata. Register automata (RAs) were introduced in [11] and have
later been studied in, e.g., [14,6]. They were defined for sequences of data values
only, but the generalization to data words is straightforward. RAs have registers
in which they can store data values which can later be compared with the data
value of the current position. We extend the notion of [11].

Definition 2.1 ([11,14]). A register automaton over finite alphabet Σ is a
tuple R = (Q, q0, F, k, τ0, P), whereQ is a finite set of states, q0 is the initial state,
F are the accepting states, k is the number of registers, τ0 : {1, . . . , k} → Δ∪{⊥}
is the initial register assignment (⊥�∈ δ is a special value, indicating an empty
assignment), and P is a finite set of transitions. There are two kinds of transitions,
write and read transitions. A read transition (i, p, a) → q can be applied if the
current state is p, the next input symbol is a and the next input data value is
already stored in register i. It preservs register contents and goes to state q. A
write transition (p, a) → (q, i) can be applied if the current state is p, the next
input symbol is a and the next input data value d is currently not stored in any
register. It writes d into register i and goes to state q. R is deterministic if for
each state p and letter a there is exactly one transition (p, a) → (q, i), and for
each register i at most one transition (i, p, a) → q. A run on a data string w is a
sequence (q0, τ0), . . . , (qn, τn) of configurations, defined in the obvious way.

92 H. Björklund and T. Schwentick

In [11] languages recognized by register automata are called quasi-regular. We
mention some of the results from [11]: The class of quasi-regular languages is
closed under union, intersection, concatenation, and Kleene star, but not under
complementation. The emptiness problem for register automata is decidable. If
R1 and R2 are register automata, and R2 has at most 2 registers, then it is
decidable whether L(R1) ⊆ L(R2).

In [14] different versions of register automata are investigated (2-way, alter-
nating, etc.). In particular, it is shown that deterministic RA are strictly weaker
than RA, which are in turn strictly weaker than 2-way RA, and that RA are
strictly weaker than MSO∗. As the following example shows, register automata
are not sufficiently expressive for our purposes: their ability to combine global
and local properties is severely limited.

Example 2.2. We take up the printer example from the introduction. Let L0

be the set of valid traces, i.e., the data words whose string projection matches
the expression (r∗sr∗tr∗)∗ and for which each class string satisfies (rst)∗. There
is no register automaton for L0.

For the sake of a contradiction, assume that register automaton R accepts
L0. Let k be the number of registers of R. Let w be the data string of the form
(r, 1) · · · (r, k+ 1)(s, 1)(t, 1) · · · (s, k+ 1)(t, k+ 1). As w ∈ L0, R has an accepting
run ρ on w. After reading the first k + 1 positions of w, there is at least one
data value d ∈ {1, . . . , k + 1} which does not occur in any register of R. We can
conclude that R also accepts the string w′ �∈ L0 resulting from w by replacing
(s, d), (t, d) with (s, k + 2), (t, k + 2).

3 Data and Class-Memory Automata

Definition 3.1 ([4]). A data automaton D is a pair (A,B), where A is
a nondeterministic letter-to-letter transducer (the base automaton) with a
finite output alphabet Γ and B an NFA (the class automaton). A data
word w = w1 . . . wn over Σ is accepted by D if there is an accepting run of A on
the marked string projection mstr(w), yielding an output string g1 . . . gn, such
that B accepts each string gi1 . . . gik induced by a class of w. ��

Example 3.2. We construct a data automaton D = (A,B) for the language
L0 from Example 2.2. The transducer A makes sure that the string projection
matches (r∗sr∗tr∗)∗, and copies its input to the class strings. The class automa-
ton B verifies that each class string matches (rst)∗. The resulting automata are
shown in Figure 2.

Data automata were used as a tool in the decidability proof of [4]. We show here
that their definition can be simplified. First, we show that it is not necessary
that A reads the marked string projection mstr(w) (indicating where the data
value changes): the expressive power is the same if it only reads str(w). Second,
we exhibit an equivalent model, class memory automata, which combines the
two automata into a single one. We illustrate the coloring technique used in the
proof of the first result with an example.

On Notions of Regularity for Data Languages 93

A : i a

s

t

r r B :

c w

p

r

st

Fig. 2. A data automaton for the language L0. A has states i (idle) and a (active). B
has states c (computing), w (waiting) and p (printing). States i and c are the initial
and final states of A and B.

Example 3.3. We consider the language L1 of traces in which the pattern
(t, d)(r, d) does not occur, i.e., after a print job of a process terminates it can
request the next one only after some other event occurred. We note that a DA
whose base automaton reads mstr(w) can easily accept this language by simply
avoiding the pattern (t, b)(r, 0), for b ∈ {0, 1}.

However, it is less obvious how a data automaton can proceed if its base
automaton only sees str(w). Intuitively, the class automaton has no clue whether
between a t and the subsequent r of some class some other event occurred. On the
other hand, the base automaton does not know about data values whatsoever.

Nevertheless, by working together, the base and class automaton can accept
L1 by using the color technique explained next. The idea is that the base au-
tomaton guesses a color (black or yellow), for each t-position and each r-position,
such that the following two conditions hold.

(1) Every r-position shares the color of the previous t-position in the same class
(if it exists).

(2) If an r-position immediately follows a t-position they have different colors.

Obviously, if colors can be assigned such that (1) and (2) hold, then w ∈ L1.
Furthermore, condition (1) can be checked by the class automaton, condition (2)
by the base automaton.

It remains to show that for each w ∈ L1 a coloring fulfilling (1) and (2) can
be found. To this end, we associate with w a directed graph G(w) whose vertices
are the positions of w carrying t or r and which has an edge from i to j if

(i) j < i, j carries t and i is the next position of w in the class of j (carrying
r), or

(ii) j = i+ 1, i carries t and j carries r.

The intuitive meaning of an edge (i, j) is that the color of i determines the
color of j. Observe that each node in G(w) has in-degree at most one. Further-
more, there are no cycles. Thus, we can assign colors as follows: (1) Each node
of in-degree 0 gets the color black. (2) Whenever there is an edge (i, j) and i is a
t-position which is already colored then j gets a different color of i. (3) Whenever
there is an edge (i, j) and i is an r-position which is already colored then j gets
the same color as i. Clearly, this leads to a coloring respecting conditions (1)
and (2). Figure 3 gives an illustration.

Proposition 3.4. For every data automaton, there is an equivalent data au-
tomaton for which the transducer A only reads str(w) instead of mstr(w).

94 H. Björklund and T. Schwentick

r
d1

1
b

r
d2

2
b

s
d1

3
b

t
d1

4
b

r
d3

5
y

s
d2

6
b

t
d2

7
y

r
d1

8
b

s
d3

9
b

t
d3

10
b

r
d2

11
y

s
d1

12
b

t
d1

13
b

s
d2

14
b

t
d2

15
b

Fig. 3. A data string w with its graph G(w) and the induced coloring

We now introduce class memory automata, which are conceptually simpler than
data automata but equally expressive. Moreover, they have a meaningful notion
of determinism but we will see that the deterministic variant is less expressive.

Definition 3.5. A class-memory automaton C is a tuple (Q,Σ,δ,qI,FL,FG),
where Q is a finite set of states, Σ is a finite alphabet, qI is the initial state, and

– δ : (Q×Σ × (Q ∪ {⊥})) → P (Q) is a transition function;
– FG and FL are the sets of globally and locally accepting states, respectively;

The semantics of class memory automata (CMA) is defined through the notion
of class-memory functions. Such a function simply assigns to every data value d
the state of the automaton that was assumed after reading the last (previous)
position with value d. More formally, a class-memory function is a function
f : Δ→ Q∪ {⊥} such that f(d) �=⊥ for only finitely many d. A configuration
of C is a pair (q, f) where q ∈ Q and f is a class-memory function. We call q the
global state of C and f(d) the local state of d. The initial configuration of
A is (qI , fI), where fI(d) =⊥ for all d ∈ Δ. When reading a pair (a, d) ∈ Σ×Δ,
the automaton can go from configuration (q, f) to (q′, f ′) if (1) q′ ∈ δ(q, a, f(d)),
(2) f ′(d) = q′, and (3) for all d′ �= d, f ′(d′) = f(d′). The automaton accepts if,
for the final configuration (q, f), q ∈ FG and f(d) ∈ FL ∪ {⊥}, for all d ∈ Δ. A
CMA is deterministic if each δ(p, a, q) is a singleton.

CMAs are similar to the automata studied in [2] for nested words. However,
stated in the terms of this paper, in [2] each data value can only appear twice
and the edges between positions with equal value must be nested.

Proposition 3.6. Data automata and CMAs are expressively equivalent.

It should be stressed that it is due to Proposition 3.4 that CMAs do not need
to read extended symbols indicating data value changes.

4 Expressiveness

In this section, we compare the expressive power of CMAs with that of RAs.
The main result is that CMAs are strictly stronger than RAs. Remarcably, his
result does not carry over to the deterministic counterparts.

Theorem 4.1. CMAs are strictly more expressive than register automata.

On Notions of Regularity for Data Languages 95

Proof. The set L0 of valid traces is not recognized by any RA (Example 2.2)
but by a CMA. It remains to show that for every RA, we can construct an
equivalent CMA. Let R = (Q, q0, F, k, τ0, P) be a fixed RA with k registers.
Without loss of generality, we can assume that each state q determines whether
it is reached by a read or a write transition. Let ρ = (q0, τ0), . . . , (qn, τn) be a
run of R on some input w = (a1, d1) · · · (an, dn). Note that, after each step i,
di is stored in some register of R, i.e., τi(j) = di, for some j. We say that a
transition closes a register j if either it is the last transition for this register in
the run or there is no transition reading from j before the next write to j.

Intuitively, the CMA C guesses, for each transition, whether it closes the
register. To ensure that the guesses are correct, C makes use of the coloring
technique that was already used in Example 3.3 and Proposition 3.6.

More precisely, the states of C are of the form (q, l, S, p), where q ∈ Q,
l ∈ {1, . . . , k}, p stores some information to be specified below, and S is a
subset of {open(black), open(yellow), close(black), close(yellow)}. Intuitively, it
corresponds to a configuration of R with state q, in which the last transition
affected register l, and in which this transition was a write iff open(b) ∈ S, for
some b and it closed the register iff close(c) ∈ S, for some c. We show that C
can be constructed such that the following holds.

Claim. C has a run ρ = (q0, l0, S0, p0), . . . , (qn, ln, Sn, pn) on w, fulfilling condi-
tion (1)-(3) below if and only if R has an accepting run on w.

A position is opening if open(b) ∈ Si, for some b and closing if close(c) ∈ Si,
for some c.

(1) The transitions of C are consistent with the transition relation of R, i.e.,
for each i, 0 < i ≤ n, R has a read transition (li, qi−1, ai) → qi or a write
transition (qi−1, ai) → (qi, li). Furthermore, i is opening if and only if the
latter applies.

(2) For each position i, there is an opening position j ≤ i and a closing position
j′ ≥ i with (a) li = lj = lj′ , (b) di = dj = dj′ , and (c) for all positions m,
j < m < j′ it holds either lm �= li and dm �= di or lm = li, dm = di and
Sm = ∅.

(3) If open(b) ∈ Si, for some b, then either there is no j < i with dj = di, or the
following two conditions hold.
(a) For the largest position j < i with dj = di, close(b) ∈ Sj .
(b) If the largest position m < i with lm = lj is closing then close(c) ∈ Sm,

for c �= b.

The proof of the claim is left out. We note how conditions (1)-(3) can be checked
by C: (1) is straightforward. (2) can be checked by the local states. For each data
value, the sequence of opening, closing and other positions must be ok. Condition
(3a) can be also checked by using local states whereas (3b) uses the global state.
The necessary information is stored in the p-component of the states of C. ��
In the next section, we show that Model Checking for CMAs is computationally
expensive, due to the possible non-determinism. Thus, it is natural to consider

96 H. Björklund and T. Schwentick

deterministic CMAs. Although they can check useful properties, they are not as
powerful as unrestricted CMAs.

Proposition 4.2. Deterministic RAs and deterministic CMAs are expressively
incomparable.

Data languages can also be described in terms of logic. It is shown in [4] that
emptiness for data automata is decidable, and that they capture FO2(+1, <,∼),
that is, the two-variable fragment of first order logic with the usual string predi-
cates +1 and <, and the ∼-predicate, which is true for two positions in the same
class. Actually, marked data automata are shown to be expressively equivalent
to EMSO2(+1, <,∼,�), i.e., existential monadic second-order logic with the
class successor � as additional predicate. By Propositions 3.4 and 3.6 and their
constructive proofs, all these results carry over to unmarked data automata and
CMAs. Consider the FO2(+1,∼)-formula Ψ ≡ ∀x∀y (x+ 1 = y ∧ t(x) ∧ r(y)) →
x �∼ y. As Ψ defines L1 we can conclude the following.

Proposition 4.3. Deterministic CMAs cannot express all FO2(+1,∼)-definable
properties.

5 Algorithmic Properties

The model checking problem for automata asks whether a data word w is in the
language L(A), for an automaton A. If A is fixed, we refer to the complexity of
the problem as data complexity. If A is considered as part of the input we speak
about combined complexity.

Proposition 5.1. (a) For deterministic CMAs and deterministic RAs, data
and combined complexity are polynomial.

(b) The data complexity (and thus also the combined complexity) of model check-
ing for CMAs is NP-complete.

For RAs, the data and combined complexity are (probably) different.

Proposition 5.2. The data complexity of model checking for RAs is polynomial.

Proof. Consider an RA R with k registers. The number of possible configura-
tion of R on input w is polynomial, more precisely bounded by |Q| ·

(|w|
k

)
· k!.

Thus, one can check w ∈ L(R) in polynomial time by inductively computing the
set of reachable configurations, for each position of w. ��
Intuitively, RAs have a lower complexity as they can only store information about
a bounded number of classes. The combined complexity of model checking for
RAs is, however, NP-complete [15]. Clearly, the number of registers is crucial for
the complexity of model checking. The following result shows that the problem
is indeed hard w.r.t. this parameter.

Proposition 5.3. The combined complexity of model checking for RAs, param-
eterized by the number of registers, is W [1]-hard.2

2 For an introduction to fixed-parameter complexity and W [1], see, e.g., [8,7,10].

On Notions of Regularity for Data Languages 97

No parameterized upper bound for this problem is yet known, except that it
belongs to XP (as can be seen from the proof of Proposition 5.2).

2-Way Deterministic CMAs. Since deterministic CMAs are clearly weaker than
general CMAs, it is natural to ask whether we can allow them to move both ways.
(Transitions depend on the current state and the target state of the previous
transition at a position with the same data value.) Unfortunately, this extension
does not preserve decidability.

Theorem 5.4. Emptiness for 2-way deterministic CMAs is undecidable.

6 Closure Properties

For automata-theoretic approaches to static analysis tasks and verification, clo-
sure properties are of great importance, since they facilitate modular reasoning.

Proposition 6.1. (a) The class R of languages accepted by class-memory au-
tomata is effectively closed under intersection, union and concatenation.

(b) It is not closed under complementation and Kleene star.

For (a), closure under union and intersection for data automata was shown in [4].
Closure under concatenation is shown by a construction that lets two CMAs run
after each other. The proof of (b) shows that if R were closed under Kleene star,
the halting problem for 2-counter machines would reduce to CMA emptiness.

Proposition 6.2. The class of languages recognized by deterministic CMAs is
effectively closed under intersection. It is not closed under union, concatenation,
or Kleene star.

Presburger conditions. Instead of just requiring that the memory states for all
data values are locally accepting, we can generalize the acceptance condition
in the following way. Suppose that CMA C has states Q = {q1, . . . , qm}. Each
computation ρ of C with final configuration (p, f) induces a function g : Q→ N,
where g(q) is the number of data values d with f(d) = q.

We consider atomic formulas of two kinds: (1) q, where q ∈ Q and (2) (q1 +
· · · + qk mod c) = c′, where the qi are from Q and c, c′ are constant numbers.
A configuration (p, f) fulfills q iff p = q. It fulfills (q1 + · · ·+ qk mod c) = c′ iff
(g(q1) + · · ·+ g(qk) mod c) = c′.

A Presburger CMA C is a CMA with a Boolean combination Φ of such
formulas. A run of C is accepting if its final configuration satisfies Φ.

Proposition 6.3. (a) For each Presburger CMA there is an equivalent CMA.
(b) The class of languages accepted by deterministic Presburger CMAs is closed

under Boolean operations (intersection, union, and complementation).
(c) For each deterministic Presburger CMA there is an equivalent 2-way deter-

ministic CMA.

98 H. Björklund and T. Schwentick

7 CMA with Synchronization and Reset

The expressive power of CMAs is sufficient to handle many parameterized veri-
fication tasks, but there are also properties which they cannot express. We next
investigate ways of strengthening the expressive power, while maintaining decid-
ability of the emptiness problem. CMAs can combine global regular properties
with local regular properties (of class strings). The “communication” between
the global and the local properties is limited: the global automaton can send
information to a class only when the class occurs in the input. Our next model
allows synchronous communication with all processes.

Definition 7.1. A CMA with synchronization is a CMA C = (Q,Σ, δ, qI , g,
FL, FG) equipped with a synchronization function g : Q × P(Q). Some of the
transitions apply g. When such a transition is taken from a configuration the
automaton first changes state and updates the memory function for the current
data value as usual, assuming a configuration (q, f). Then, it updates the class
memory function by setting f(d) to some state in g(f(d)), unless f(d) = ⊥.

Theorem 7.2. Emptiness for CMAs with synchronization is undecidable.

The proof is by reduction from the 2-counter machine halting problem. We can,
however, allow synchronization, if we restrict the synchronization function.

Definition 7.3. Let C be a CMA with synchronization,Q the states of C, and g
its synchronization function. Consider the graph Gg = (Q,E) such that there is
an edge from p to q if and only if q ∈ g(p). A subset E′ of E defines a permutation
on Q if it is functional and bijective (each state in Q has exactly one incoming
and one outgoing edge in E′). We say that C has restricted synchronization
if there is a subset of E that induces a permutation on Q.

Example 7.4. Consider a variation Ls of the language L0 from Examples 2.2
and 3.2 where we use an additional symbol n (network failure). When a network
failure occurs, some printer jobs that have been requested may disappear and
thus these requests have to be repeated. The network failure notifications are
sent by a special network process. Thus, Ls is the set of data words w such that

1. there is exactly one class string matching n∗,
2. each other class string of w matches (rst + r)∗,
3. if i � j and both i and j carry label r, there must be a position k with

i < k < j that has label n, and
4. str(w) matches ((r + n)∗s(r + n)∗t(r + n)∗)∗.

It is easy to construct a CMA with restricted synchronization that accepts Ls.

Proposition 7.5. (a) CMAs with restricted synchronization are strictly
stronger than CMAs.

(b) Emptiness for CMAs with restricted synchronization is decidable.

On Notions of Regularity for Data Languages 99

Another way of restricting the synchronization, which is very natural when con-
sidering verification problems, is to allow only synchronization transitions that,
for each class, drop all information computed so far.

Definition 7.6. A class-memory automaton with reset is a CMA with synchro-
nization function g such that g(q) = {⊥} for all states q.

Proposition 7.7. (a) CMA with reset are strictly stronger than ordinary CMA.
(b) Emptiness for CMA with reset is decidable.

Acknowledgements. We thank Mikolaj Bojańczyk, Anca Muscholl and Luc
Segoufin for many valuable discussions.

References

1. Abdulla, P., Jonsson, B., Nilsson, M., Saksena, M.: A survey of regular model
checking. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp.
35–48. Springer, Heidelberg (2004)

2. Alur, R., Madhusudan, P.: Adding nesting structure to words. In: Ibarra, O.H.,
Dang, Z. (eds.) DLT 2006. LNCS, vol. 4036, pp. 1–13. Springer, Heidelberg (2006)

3. Arenas, M., Fan, W., Libkin, L.: Consistency of XML specifications. In: Bertossi,
L., Hunter, A., Schaub, T. (eds.) Inconsistency Tolerance. LNCS, vol. 3300, pp.
15–41. Springer, Heidelberg (2005)

4. Bojańczyk, M., Muscholl, A., Schwentick, T., Segoufin, L., David, C.: Two-variable
logic on words with data. In: LICS’06, pp. 7–16 (2006)

5. Bouyer, P., Petit, A., Thérien, D.: An algebraic approach to data languages and
timed languages. Information and Computation 182(2), 137–162 (2003)

6. Demri, S., Lazić, R.: LTL with the freeze quantifier and register automata. In:
LICS’06, pp. 17–26 (2006)

7. Downey, R.G.: Parameterized complexity for the skeptic. In: CCC’03, pp. 147–169
(2003)

8. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg
(1999)

9. Emerson, E., Namjoshi, K.: Reasoning about rings. In: POPL’95, pp. 85–94 (1995)
10. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg

(2006)
11. Kaminski, M., Francez, N.: Finite-memory automata. TCS 132(2), 329–363 (1994)
12. Kaminski, M., Tan, T.: Regular expressions for languages over infinite alphabets.

In: Chwa, K.-Y., Munro, J.I.J. (eds.) COCOON 2004. LNCS, vol. 3106, pp. 171–
178. Springer, Heidelberg (2004)

13. Neven, F.: Automata, logic, and XML. In: Bradfield, J.C. (ed.) CSL 2002 and
EACSL 2002. LNCS, vol. 2471, pp. 2–26. Springer, Heidelberg (2002)

14. Neven, F., Schwentick, T., Vianu, V.: Finite state machines for strings over infinite
alphabets. ACM transactions on computational logic 15(3), 403–435 (2004)

15. Sakamoto, H., Ikeda, D.: Intractability of decision problems for finite-memory au-
tomata. TCS 231(2), 297–308 (2000)

16. Segoufin, L.: Automata and logics for words and trees over an infinite alphabet. In:
Ésik, Z. (ed.) CSL 2006. LNCS, vol. 4207, pp. 41–57. Springer, Heidelberg (2006)

17. Wilke, T.: Automaten und Logiken zur Beschreibung zeitabhängiger Systeme. PhD
thesis, University of Kiel (1994)

FJMIP: A Calculus for a Modular Object

Initialization

Viviana Bono1,� and Jaros�law D.M. Kuśmierek2,��

1 Torino University, Department of Computer Science
2 Warsaw University, Institute of Informatics

Abstract. In most mainstream object-oriented languages, the object
initialization protocol is based on constructors, where different construc-
tors of the same class are, in fact, overloaded variants of the same method.
This approach has some disadvantages: it forces an exponential growth
of the code with respect to the number of properties, it may cause du-
plication of code, and it may create unnecessary code dependencies.

To the best of our knowledge, the literature lacks formal proposals
that model non-trivial object initialization protocols.

In this paper we present a calculus (called FJMIP), which is an ex-
tension of the Igarashi-Pierce-Wadler Featherweight Java and models a
novel object initialization protocol. Our calculus is reasonably simple,
but it offers two benefits: (i) it formalizes a modular way of initializing
objects that does not suffer from the previous mentioned flaws, while still
being an expressive object initialization protocol; (ii) as a by-product,
it allowed us to introduce a novel technique to prove that our object
initialization process actually initializes all the fields of an object.

1 Introduction

Most object-oriented class-based languages are equipped with some form of
object initialization protocol. This protocol describes two aspects:

– what kind of information must be supplied to a class, to create and initialize
an object. A class may support more than one variant of object initializa-
tion, which means that there may be more than one accepted set of such
information;

– what code is executed during this initialization. The sequence of instructions
which should be executed depends on the kind of information supplied, there-
fore if the class supports distinct sets of information to be supplied during
initialization, then, for any such a set, a different sequence of instructions
must be executed.

Usually, initialization protocols are specified by a list of constructors. Each
constructor corresponds to one accepted set of information and every construc-
tor consists of: (i) a list of parameters (names and types), specifying a set of
� Partly supported by MIUR Cofin ’06 EOS DUE project.

�� Partly supported by the Polish government grant 3 T11C 002 27 and by SOFTLAB
- Poland, Warsaw, Jana Olbrachta 94.

E. Csuhaj-Varjú and Z. Ésik (Eds.): FCT 2007, LNCS 4639, pp. 100–112, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

FJMIP: A Calculus for a Modular Object Initialization 101

information required to initialize an object; (ii) a body, containing a list of in-
structions which should be executed in order to initialize an object.

This traditional constructor approach has many different disadvantages: (i)
it makes the number of constructors grow exponentially with respect to the
number of properties, and this is noticeable especially when a class contains
many different properties, each of them with multiple variants of initialization;
(ii) very often, it enforces the duplication of the initialization code; (iii) it causes
unnecessary code dependencies.

Our novel initialization protocol is based on the idea of splitting big construc-
tor declarations into smaller and composable parts, called initialization modules
(or ini modules). Ini modules still allow a static verification of the declarations
of the initialization parameters and of the object creation expressions, but: (i)
they need less coding than constructors; (ii) they do not enforce copying of the
code (as the constructors do).

In order to know more about ini modules, we direct the reader to the papers
[9,3] that contain: (i) a detailed description of the motivations for introducing
ini modules; (ii) a description of the full version of our initialization protocol,
extending the one presented here by allowing more flexibility in the declaration
of the ini modules, expressions evaluating into default values for ini modules
parameters, exceptions declarations to be thrown by the ini modules; (iii) a
detailed comparison of our proposal with related proposals of initialization pro-
tocols present in the literature; (iv) the presentation of JavaMIP, which is an
extension of Java with ini modules; (v) a seamless integration of the new ap-
proach with mainstream languages (such as Java); (vi) and the description of a
JavaMIP working implementation equipped with some evaluation benchmarks.
However, the papers [9,3] do not deal with the formalization of this approach.

In the literature, there exist a few proposals of formal calculi modelling well
the concepts of class and object, and the operations on them, such as the method
call. Those calculi are usually equipped with type-checking systems, and proven
sound via some well-known properties, such as the subject reduction. However,
most of those calculi do not deal with the formalization of any non-trivial object
initialization protocol. We believe that this depends mainly on the fact that
classical constructors are almost always modelled as overloaded variants of the
same method.

In this paper we present FJMIP, which is an extension of FJ [8], that models
our novel object initialization protocol based on ini modules. FJMIP is reason-
ably simple, but it has some unusual properties: the formalization of the step-
by-step initialization process (which concerns the change of state of the object
being initialized) is done without the typical but complicated usage of heap and
references. Additionally, we use null values during the the initialization process
to represent fields not yet initialized, and we prove that, at the end of the pro-
cess, no field will have a null value, i.e., no field remains uninitialized. This is a
strong property that our modular approach enjoys, which cannot be verified for
most object-oriented languages.

102 V. Bono and J.D.M. Kuśmierek

In order to read this paper, some knowledge on FJ would be preferable, but: (i)
our initialization protocol is orthogonal to the other features of FJ (in particular,
to the semantics of method invocation); (ii) FJ is a functional subset of Java.
Therefore, the reader needs only some familiarity with Java itself.

2 FJMIP Syntax

In the definition of the FJMIP calculus, we will use the following notations:

– a to denote a set of elements {a1, ..., an}.
– −→a to denote a sequence of elements (a1, ..., an). We assume that every se-

quence can be implicitly converted to a corresponding set.
– A · B to denote a concatenation of two sequences. In contexts in which a is

an element, we will use A · a to denote A · (a), and a ·A instead of (a) ·A.
– t[e/x] denotes the term t where every occurrence of x is substituted by e.
– t[−→e /−→x] (defined if the length of −→e is equal to the length of −→x) denotes the

parallel substitution of a sequence of variables by a sequence of expressions.
– s[i← e] denotes a sequence, which in every position has the same element as

in s, except for position i in which it has e. For example, (a, b)[2 ← h]=(a, h).
– denotes the union of disjoint (tagged) sets. A tagged set is a set of pairs

(name,type).

We present now the FJMIP context-free grammar (which was derived from the
FJ one, and it is a subset of the full JavaMIP grammar, [9]). The shaded pro-
ductions are used only during the evaluation, and they are not part of the “pro-
grammer syntax”:

L ::= class C extends C { −−→
C f; RIM;

−−−−→
OIM;

−→
M }

M ::= C m (
−−→
C x) { return e }

RIM ::= required C (
−−→
C p) initializes () { −−−−−−−−−→

this.f = e; }
OIM ::= optional C (

−−→
C p) initializes (−→p) { new[p := e] }

IM ::= RIM | OIM
e ::= x | e.f | e.m(−→e) | (C) e | new C[p := e] |

new C(−→e) | new C(
−−−−−→
e | null)[p := e][

−−→
IM]

The productions define the following syntactic domains:

L: declarations of classes. A declaration consists of the name of the class, the
name of the parent class, and the members of the class, which are fields,
initialization modules (one required and some optional) and methods;

M : methods;
IM = RIM ∪ OIM : declarations of initialization modules, required and

optional1;
e: terms (also called expressions).

1 In the production for OIM , the 2nd and 3rd occurrences of p will be always instan-
tiated with the same sequence of variables (see Sections 4 and 5).

FJMIP: A Calculus for a Modular Object Initialization 103

Symbols C, D, E, T range over class names, symbols f , g range over field names,
symbol m indicates a method identifier, p, q, r range over names of initialization
parameters (which are a special case of variable), and e, t range over expressions.
Moreover, we use the meta-keyword mod to denote one of the keywords required
or optional. We identify terms up to an equivalence relation, including permu-
tation over sets of assignments.

Methods, fields, method invocation, field lookup, and casts are the same as for
FJ. However, an FJMIP class does not have the FJ constructor, but contains,
besides field and method declarations, the declaration of ini modules, whose
execution will induce a modular object initialization process. Each class must
contain exactly one required ini module and can contain some optional ini mod-
ules.

A required ini module takes some input parameters −−→C p that may be used in
the expressions e to initialize the class fields f . An optional ini module takes some
input parameters (listed before the keyword initializes) that may be used to
initialize the output parameters (listed after) via the e expressions. Those output
parameters are input parameters of other modules declared above in the same
class or up in the hierarchy, thus their initialization causes the “following” ini
module to be executed, according to a semantical order which will be explained
later in the paper.

The execution of the ini modules is triggered by an expression of the form new
C[p := e], that will invoke the first ini module, i.e., the one that will consume
(some of) the p parameters, explicitly initialized in the new. Note that here we
use square brackets instead of parentheses, as it is instead in new C(e), to obtain
a non-ambiguous syntax in the case of empty sets of parameters.

An expression representing an object during the initialization process, called
the intermediate form, has the syntax new C(

−−−−−→
e | null)[p := e][−−→IM]. It (i) de-

scribes the state of the object (that is, for every field, there is a corresponding
expression, or a null if the field is not yet initialized); (ii) lists the parameters
not yet consumed; (iii) and keeps track of those ini modules which are to be
executed in order to consume the parameters. The execution proceeds from the
last ini module in the sequence.

An initialized object is represented by the expression new C(−→e). In particular,
the −→e are the initialization expressions for the fields. The expression new C(−→e)
is part of the original FJ object syntax, therefore the original FJ reduction rules
apply to it.

As it is for FJ, a class table CT is a mapping from class names C to class
declarations, and an FJMIP (FJ) program is a pair (CT ,e) of a class table
and an expression. Likewise in the presentation of FJ, we assume a fixed class
table CT (on which we assume that the same sanity checks of FJ are
done).

Below we present an example of FJMIP program (using the type float only
for the example’s sake, even though there are no primitive types in FJMIP), to
which we will refer in the sequel:

104 V. Bono and J.D.M. Kuśmierek

/* Class of points definable by two different coordinate systems: */

class Pt { float x,y;

required Pt (float x, float y) initializes ()

{ this.x = x; this.y=y; } //RPt - main ini module for Pt

optional Pt (float angle, float rad) initializes (x,y)

{ new[x:=cos(angle)*rad, y:=sin(angle)*rad];} //OPt

}
/* Class of colored points whose color is definable by two different color palettes:*/

class ClPt extends Pt { float r, g, b;

required ClPt (float r, float g, float b) initializes ()

{ this.r = r; this.g = g; this.b = b; } //RClPt - main ini module for ClPt

optional ClPt (float c, float m, float yc, float k) initializes (r,g,b)

{ new[r:=..., g:=..., b:=...]; } //OClPt - calls the main ini module of ClPt

}
/* An expression creating a ClPt object with polar coordinates and CMYK palette: */

new ClPt [angle:=1.2, rad:=4, c:=0, m:=1, yc:=1, k:=0]

/* A class extending the set of options of the inherited property (color): */

class HSBClPt extends ClPt {
optional HSBClPt(float h, float s, float b) initializes(r,g,b) {...}

}
/* Another initialization of fields via the (colored) offset of ColorVector: */

class VectorClPt extends ClPt {
optional VectorClPt(ColorVector c) initializes(x,y,r,g,b) {...}

}

3 Auxiliary Functions

We inherit from FJ the auxiliary functions for field lookup (fields), for method
type lookup (mtype), and for method body lookup (mbody). We define our own
ones to deal with ini modules.

Initialization modules lookup. The function IModules takes a class name as a
parameter, and returns the sequence of all ini modules declared in this class and
in all of the class’ ancestors.

IModules(Object)=ε
CT (C)=class C extends D{−−→E f ; RIM ; −−−→OIM ;−→M}

IModules(C) = RIM · IModules(D) · −−−→OIM

In the example from Section 2, IModules(ClPt) = (RClPt, RPt, OPt, OClPt).
The order in the resulting sequence of ini modules determines the order of

execution of the ini modules themselves, as it will be shown in the operational
semantics. The required ini modules of the hierarchy are placed in the IModules
result in the reverse order with respect to the order of declaration. This is because

FJMIP: A Calculus for a Modular Object Initialization 105

required ini modules are executed after all the superclass ini modules. Instead,
optional ini modules are executed starting from the given class.

Notice that we fixed a precise execution order of ini modules for simplicity, but
the full version of our approach, [9], allows to define any possible combination of
execution among them. Moreover, note that our present choice is as restrictive
as the one for Java, where the super call must be the first instruction.

Activated module lookup. The function activated takes as arguments a class
name and a set of parameters. It returns a sequence of ini module declarations
from that class and its ancestors which are activated by the given set of param-
eters. This function uses the above defined function IModules and another one,
activated′. The function activated′ takes a sequence of ini modules and a set of
parameters and returns a sequence of ini modules, which is a subsequence of the
one passed as the first argument. In the example from Section 2, activated(ClPt,
{angle, rad, r, g, b}) = (RClPt, RPt, OPt).

activated(C, p) = activated′(IModules(C), p)

activated′(ε, ∅)=ε
aIM=modC (

−→
Dq) initializes(−→r){...} −→q ∩p=∅ �=−→q

activated′(−−→IM · aIM, p) = activated′(−−→IM, p)

aIM = mod C (
−−→
D q) initializes(−→r){...} −→q ∩ p = −→q

activated′(−−→IM · aIM, p) = activated′(−−→IM, (p−−→q) −→r) · aIM

The first set of parameters p triggers the lookup, that looks for an ini module
aIM whose input parameters are all included within p, then the lookup proceeds
recursively by looking for the ini modules that are activated by what remains of
the p plus the output parameters of aIM . Notice that this function performs also
a correctness check: it checks that all parameters, starting from p, are consumed
by some ini modules belonging to the given class and its ancestors. The condition
−→q ∩ p = ∅ �= −→q ensures that activated is indeed a function.

Notice that the order of activation of the ini modules depends strictly on the
order in which those are declared in the classes. This may look like a limitation,
but the declaration order inducing the correct activation of the ini modules is
enforced by the typing rules (see Section 5), therefore the programmer is guided
by the compiler.

Class initialization parameter declaration lookup. The function params looks
up the set of all input parameters of the ini modules of the given class and its
ancestors. Every parameter is equipped with its type.

ip(mod C (
−−→
D p) initializes (−→q) {...}) = D p

params(Object) = ∅
CT (C) = class C extends D{ ... −−→IM ;−→M ; }

params(C) = params(D) ip(IM1) ... ip(IMn)

Note that the union of disjoin sets works as a consistency check: there can-
not exist two declarations of input parameters with the same name in the ini

106 V. Bono and J.D.M. Kuśmierek

modules belonging to the hierarchy of a given class. In the example from Sec-
tion 2, params(ClPt)={float x, float y, float angle, float rad, float r, float

g, float b, float c, float m, float yc, float k}

Required initialization module lookup. The function Rmodules, when applied to
a class name, returns the set of declarations of required ini modules found in
this class and all its ancestors. In the example from Section 2, RModules(ClPt)
= {RClPt, RPt}.

Rmodules(Object) = ∅ CT (C) = class C extends D {... RIM...}
Rmodules(C) = Rmodules(D) ∪ {RIM}

Expected input parameter lookup. The function input takes a sequence of ini
modules, and returns the list of all input parameters from such modules that
are not matched with the output parameters of modules appearing after in the
sequence itself. This function is defined only if all output parameters of a module
match the input parameters of modules appearing before it in the sequence itself.
In the example from Section 2, input((RClPt, RPt, OPt))= {angle, rad, r, g, b}.

input(ε)=∅
aIM=modC (

−→
D q) initializes (−→r){...} input(−−→IM)=−→A r

input(−−→IM · aIM) = −→
A q

Property 1. For every class C and set of parameters p such that activated(C, p)
is defined, input(activated(C, p)) = p holds.

Initialized field lookup. The function RIMFields takes a list of ini modules and
returns the sequence of fields initialized by the required ini modules. We recall
that in FJMIP only required ini modules initialize the fields. In the example
from Section 2, RIMFields((RClPt, RPt, OPt)) = (x, y, r, g, b).

RIMfields(ε) = ε
aIM = optional C ...

RIMFields(−−→IM · aIM) = RIMFields(−−→IM)

aIM = required C (...) initializes () { −−−−−−−−→
this.f = e; }

RIMFields(−−→IM · aIM) = RIMFields(−−→IM) · −→f

4 Operational Semantics

We inherit all of the reduction rules of FJ and add rules responsible for the
execution of the initialization process. We start with the rule triggering the
object initialization process:

new C[p := e] → new C(null|fields(C)|)[p := e][activated(C, p)] (StartRed)

FJMIP: A Calculus for a Modular Object Initialization 107

This rule evaluates an FJMIP new expression into an intermediate form, in order
to start the actual field initialization process. This intermediate form is built
from: (i) a sequence of null values, one for each of the fields of C; (ii) the set
of parameters p that trigger the initialization process, with their initialization
expressions; (iii) the set of ini modules taken from class C and its ancestors
activated by p; this set of ini modules must be executed in order to initialize the
fields of the created object.

The next rule is responsible for the execution of optional ini modules:

OIM = optional C(−→q) initializes(−→r) {new(r := e)}
p1 = {q1:=t1, ..., qk := tk} � p

p2 = {r1:=e1[
−→
t /−→q], ..., rl:=el[

−→
t /−→q]} � p

new C(−→est)[p1][
−−→
IM · OIM] → new C(−→est)[p2][

−−→
IM]

(OptionalRed)

The last-in-the-sequence optional ini module of the intermediate form is exe-
cuted. The intermediate form reduces into another intermediate form which: (i)
has the same sequence of field initialization expressions est (we recall that op-
tional ini modules do not initialize fields); (ii) has one less ini module to execute;
(iii) has an updated set of initialization parameters, containing those parame-
ters among the p1 which are not yet consumed (that is, not corresponding to
any input parameter of the OIM), plus the output parameters of OIM , whose
initialization expressions now “contain” the initialization terms supplied to the
OIM ’s input parameters (see p2). Note that the union of disjoint sets here is
important: it prevents the execution of an ini module whose output parameters
are already present in the set of the calculated parameters.

The next rule is responsible for the execution of required ini modules:

fields(C) =
−−→
C f

RIM=required D(−→q) initializes() {this.fj1=e1;...; this.fjn=en;}
p1 = {q1 := t1, ..., qk := tk} � p−→

e′′st = −→est[j1 ← e1[
−→t /−→q], ..., jn ← en[−→t /−→q]]

new C(−→est)[p1][
−−→
IM · RIM] → new C(

−→
e′′st)[p][

−−→
IM] (RequiredRed)

The last-in-the-sequence required ini module of the intermediate form is exe-
cuted. The intermediate form reduces into another intermediate form which: (i)
has more fields initialized: a subset fj1 , ..., fjn of the fields f has been initialized
(see e′′st) by the expressions in RIM ’s body (substituted for the corresponding
null place holder); (ii) has one less ini module to execute; (iii) has a reduced
set of initialization parameters, containing all parameters from the set p1, minus
the input parameter of RIM .

Finally, a rule concluding the object initialization process turns the last in-
termediate form into a FJ object expressions (to which the FJ reduction rules
apply):

new C(−→e)[][]→ new C(−→e) (EndRed)

108 V. Bono and J.D.M. Kuśmierek

FJMIP values are the ones of FJ, i.e., new C(−→v).
Note that the execution of the object initialization could get stuck in three cases:

– not enough initialization parameters have been supplied in order to execute
all the required ini modules (we recall that all required ini modules of the
hierarchy must be executed to have a fully initialized object);

– too many initialization parameters have been supplied, which would prevent
the set of expected input parameters not to be empty after the execution of
the ini modules (see the auxiliary function input);

– a parameter is supplied in two ways at the same time, for example, it is an
output parameter of two activated optional modules.

The reduction sequence for the example from Section 2 is as follows:

new ClPt[angle:=1.2, rad:=4, r:=1, g:=1, b:=0] →
new ClPt(null, null, null, null, null)[angle:=1.2, rad:=4, r:=1, g:=1, b:=0]

[RClPt,RPt,OPt] →
new ClPt(null, null, null, null, null)[x:=1.45, y:=3.73, r:=1, g:=1, b:=0]

[RClPt,RPt] →
new ClPt(1.45, 3.73, null, null, null)[r:=1, g:=1, b:=0][RClPt] →
new ClPt(1.45, 3.73, 1, 1, 0)[][] →
new ClPt(1.45, 3.73, 1, 1, 0)

5 Type Checking

Types are all induced by classes, therefore they are named by classes, as in FJ.
The subtyping relation <: of FJ is inherited by FJMIP, as well as all the type
checking rules with the following modification and additions:

– a rule for class declaration is extended by a check responsible for ini modules;
– a rule for the FJMIP object creation expression is added. The original typ-

ing rule for the FJ new(...) expression is kept, because it belongs also to
FJMIP;

– a rule for the intermediate form is added.

In the typing rules, we use the following judgement forms:

– M OK IN C: methods M type check correctly in the environment endowed
by class C.

– −−→
IM OK with C p: (i) ini modules −−→IM type check correctly in the environ-
ment endowed by the classes of a hierarchy containing ini modules whose
input parameters include the C p; (ii) every output parameter of modules−−→
IM either is contained in p or corresponds to an input parameter of one of
the −−→IM (if this is the case, this one was declared before in the code of the
same class, or in a superclass). The typing rules introduced below will detail
the meaning of this judgment.

FJMIP: A Calculus for a Modular Object Initialization 109

– p : D ! e : C: expression e has type C in the context where p are assumed
to be of types D. A context can be abbreviated by the symbol Γ .

– class C extends D { ... } OK: the declaration of class C is correct.
– CT OK: for every class C in the domain of CT , we have CT (C) OK.

In the sequel, when we will say that a certain judgement holds, we mean that
this judgement is derivable in the system we are defining.

The following rule checks class declarations:

(1.a) M OK IN C
(1.b) −−→

IM OK with params(D)
(1.c) params(C) =

class C extends D { −−→
C f;

−−→
IM;

−→
M } OK

(ClassDecl)

This rule is analogous to the corresponding FJ rule but with one extra judge-
ment, responsible for checking the ini modules. Premise (1.b) type checks the
expressions inside the modules and triggers the recursive check on the output
parameters of C’s ini modules IM , that are to be consumed by the input pa-
rameters of some ini modules declared before in the same class, or by some ini
modules of the superclass or of any other ancestor up in the hierarchy. The fact
that we start this check from params(D) ensures that the first declared ini mod-
ule in C will be checked against the ini modules of the ancestors only. Note that
the initialization parameters declared in the hierarchy must be distinct and this
is implied by the fact that otherwise params(C) would be undefined (premise
(1.c)).

The following rule checks optional ini module declarations:

(2.a) OIM = optional C (
−−→
D p) initializes(−→g){new(−−−→g := e)}

(2.b) CT (C) = class C extends E {...}
(2.c) T g ⊆ s
(2.d) p : D � e : C′ −→

C′ <:
−→
T

(2.e) −−→
IM OK with s ∪ D p

OIM · −−→IM OK with s
(OptionalOK)

Premise (2.c) says that the output parameters of the module OIM are contained
in the set s and are tagged with some types T , premise (2.d) says that the
expressions assigned to those output parameters must be type-compatible with
T , and premise (2.e) says that remaining modules must be checked against the
set of parameters extended with the set of input parameters of OIM .

The following rule checks required ini module declarations:

(2.f) RIM = required C (
−−→
D p) initializes () { −−−−−−−−−→

this.f = e; }
(2.g) CT (C) = class C extends E { −−→

C f; ... }
(2.h) p : D � e : C′ −→

C′ <:
−→
C

(2.i) −−→
IM OK with s ∪ Dp

RIM · −−→IM OK with s
(RequiredOK)

110 V. Bono and J.D.M. Kuśmierek

Premise (2.h) says that expressions assigned to fields in the required module must
have types matching the declarations of the fields in that class. Analogously to
the condition on the standard FJ constructor, the list of fields initialized in
the FJMIP required module must be equal to the list of fields declared in the
class. Premises (2.e) of rule (OptionalOK) and (2.i) of rule (RequiredOK) are
the recursive calls for the OK with check. In fact, we recall that the activation
order for ini modules is dependant on the actual declaration order in the code,
therefore the first ini module declared in a class is type-checked against the ini
modules of the ancestors only (see rule (ClassDecl)), while the others are checked
against the ini modules of the ancestors and the ini modules declared above in
the code of the same class (by rules (OptionalOK) and (RequiredOK)).

The following axiom makes the type checking definition for ini modules sound:

ε OK with s (AxiomOK)

We state two properties, whose proofs can be found in [2].

Property 2. We assume CT OK. Then, for every class C and set of parameters p
such that activated(C, p) is defined, activated(C, p) OK with ∅ holds.

Property 3. We assume that the judgement CT OK holds. If the judgement −−→IM ·
M OK with s holds, then the judgement −−→IM OK with s holds as well.

The following rule checks object creation expressions:
(3.a) Rmodules(C) ⊆ activated(C, {pj1 , ..., pjk})
(3.b) params(C) = {T1 p1, ..., Tn pn}
(3.c) Γ � e1 : U1 U1 < Tj1 ... Γ � ek : Uk Uk <: Tjk

Γ � new C [pj1:=e1, ..., pjk := ek] : C
(New)

This rule says that the list of activated modules must contain all the required
ini modules of C’s hierarchy (premise (3.a)). Moreover, the parameters initial-
ized by the new must be contained in the set of input parameters of the ini
modules from C’s hierarchy, and the types of the initialization expressions must
match their declaration types (premises (3.b) and (3.c)). Additionally, the fact
that activated(C, {pj1 , ..., pjk

}) is defined guarantees that the passed parame-
ters form a proper set (so there are no duplicates in it), and that no unnecessary
parameters are passed.

The following rule checks intermediate forms:

(4.a) params(C) = {T1 p1, ..., Tn pn}
(4.b) {pj1 , ..., pjk} = input(

−−→
IM)

(4.c) Γ � e1 : W1 W1 < Tj1 ... Γ � ek : Wk Wk <: Tjk
(4.d) RIMfields(

−−→
IM) = (fj , ..., fl)

(4.e) fields(C) = (U1 f1, ..., Ul fl)
(4.f) ∀i<j . gi �= null ∧ gi : Vi ∧ Vi <: Ui
(4.g) ∀i≥j . gi = null
(4.h) ∀

im∈−−→IM
.im = mod D(...) initializes ... ∧ C <: D

(4.i) −−→
IM OK with ∅

Γ � new C (−→g) [pj1 := e1, ..., pjk := ek][
−−→
IM] : C

(Intermediate)

FJMIP: A Calculus for a Modular Object Initialization 111

This rule ensures that the intermediate forms, which result from FJMIP pro-
grams via the execution process, are well typed. Premise (4.b) checks if the set
of initialization parameters not yet consumed is a subset of all input parameters
of C’s hierarchy (with respect to premise (4.a)), and if they correspond exactly
to the input parameters of the not-yet-executed ini modules −−→IM , so that they
will be all consumed. Premise (4.c) ensures that the types of the initialization
expressions ei are compatible with the corresponding parameters’ types. Premise
(4.f) guarantees that: (i) the fields already initialized are a subset of the fields
that must be initialized in the required modules (with respect to premise (4.d));
and that each corresponding initialization expression gi is typed correctly (with
respect to premise (4.e)). Premise (4.g) ensures that the remaining fields are not
yet initialized. Premise (4.h) checks if the sequence −−→IM of ini modules is part
of the hierarchy of C. Premise (4.i) states that all output parameters of the ini−−→
IM modules must type check and be consumed within the −−→IM themselves.

Our calculus enjoys the subject reduction property and a form of type sound-
ness. This ensure that each null present in an intermediate form is replaced
by the appropriate expression for each field, yielding the property that no field
remains uninitialized after the initialization process is finished. The proofs of
these properties, and other results, can be found in [2].

Theorem 1 (SR). If Γ ! e : C and e→ e′, then Γ ! e′ : C′, for some C <: C′.

Theorem 2 (TS). If ∅ ! e : C and e → e′ with e′ a normal form, then e′ is
either a value v with ∅ ! e : D and D <: C, or an expression containing (D)new

C(−→g), where C <: D does not hold.

6 Conclusion and Related Work

In the literature there exist studies of different variants of typed and untyped
object-oriented calculi. Some of them are the cornerstones of the theory of object-
oriented languages, such as the ones presented in [1,4,5,6]. However, none of those
calculi allow any specification of non-trivial object initialization protocols. If we
move into the Java-like realm, we find the elegant work by Flatt et al. [7], but
also their proposal does not model constructors at all. FJ [8] itself is a functional
subset of Java that allow only one trivial constructor per class.

We believe that our FJMIP calculus is the first attempt to model a non-trivial
object initialization protocol, one that also offers some practical advantages with
respect to the traditional constructor-based one, such as: (i) it reacts better when
a superclass is extended: if a parent class is extended with a new optional pa-
rameter, then the subclass gains automatically the corresponding set of options
of initialization; (ii) it reduces the number of initialization modules from ex-
ponential to linear: different points of view of the instantiation can be defined
separately; (iii) as a further effect, it discards code duplication: if a subclass
must add something to the object initialization protocol, it does not have to
reference all the parent constructors; (iv) it discards ambiguities introduced by

112 V. Bono and J.D.M. Kuśmierek

constructor overloading. Moreover, FJMIP is also sound from the object initial-
ization point of view: we proved that at the end of the initialization process no
field will remain uninitialized.

FJMIP has a “bigger brother”, JavaMIP [9], which is an extension of Java.
The JavaMIP language allows more flexibility in the design of the object ini-
tialization protocol. In the paper [9] there is also a description of related work
concerning different solutions to the problem of constructors. An implementation
of JavaMIP, by Giovanni Monteferrante, together with some working examples
and benchmarks, is available at [10].

References

1. Abadi, M., Cardelli, L.: A Theory of Objects. Springer, Heidelberg (1996)
2. Bono, V., Kuśmierek, J.: Featherweight JavaMIP: a calculus for a modular object

initialization protocol. Manuscript (2007), available at
http://www.di.unito.it/∼bono/papers/FWJavaMIP.pdf

3. Bono, V., Kuśmierek, J.: Modularizing constructors. In: Proc. TOOLS ’07, 2007
(to appear)

4. Bruce, K.B.: Foundations of Object-Oriented Languages: Types and Semantics.
MIT Press, Cambridge (2002)

5. Fisher, K., Honsell, F., Mitchell, J.C.: A lambda-calculus of objects and method
specialization. Nordic J. of Computing, 1(1), 3–37 (1994). Preliminary version ap-
peared In: Proc. LICS ’93, pp. 26–38.

6. Fisher, K., Mitchell, J.C.: A delegation-based object calculus with subtyping. In:
Proc. FCT ’95, vol. 965, pp. 42–61. Springer, Heidelberg (1995)

7. Flatt, M., Krishnamurthi, S., Felleisen, M.: Classes and Mixins. In: Proc. POPL
’98, pp. 171–183. ACM Press, New York (1998)

8. Igarashi, A., Pierce, B., Wadler, P.: Featherweight Java: A minimal core calculus
for Java and GJ. ACM SIGPLAN Transactions on Programming Languages and
Systems (TOPLAS), 23(3) (May 2001)

9. Kuśmierek, J., Bono, V.: A modular object initialization protocol. Manuscript
(2006), available at http://www.di.unito.it/∼bono/papers/JavaMIP02.pdf

10. Monteferrante, G.: javamip2java: A preprocessor for the JavaMIP language(2006),
Available at http://www.di.unito.it/∼bono/papers/javamip/

http://www.di.unito.it/~bono/papers/FWJavaMIP.pdf
http://www.di.unito.it/~bono/papers/JavaMIP02.pdf
http://www.di.unito.it/~bono/papers/javamip/

Top-Down Deterministic Parsing of Languages

Generated by CD Grammar Systems

Henning Bordihn1,� and György Vaszil2,��

1 Institut für Informatik, Universität Gießen, Arndstraße 2
D-35392 Gießen, Germany

bordihn@informatik.uni-giessen.de
2 Computer and Automation Research Institute, Hungarian Academy of Sciences

Kende utca 13-17, H-1111 Budapest, Hungary
vaszil@sztaki.hu

Abstract. The paper extends the notion of context-free LL(k) gram-
mars to CD grammar systems using two different derivation modes, ex-
amines some of the properties of the resulting language families, and
studies the possibility of parsing these languages deterministically, with-
out backtracking.

1 Introduction

Most of the efficient parsers which have been developed are applicable to the
class of context-free grammars or subclasses thereof. On the other hand, also
non-context-free aspects are encountered in several applications of formal lan-
guages [7]. Since the late sixties, a series of grammars has been proposed which
use—in the core—context-free productions but posses some additional control on
the application of the productions, adding to the generative capacity of context-
free grammars [7]. In 1990, the concept of cooperating distributed grammar
systems (CDGS, in short) has been introduced in [4] as a model of distributed
problem solving. Context-free CDGS consist of several context-free grammars,
the components of the system, which jointly derive a formal language, rewrit-
ing the sentential form in turns, according to some cooperation protocol (the
so-called mode of derivation). In the present paper, two different cooperation
protocols are taken into consideration, namely the =m-mode and the t-mode,
in which a component, once started, has to perform exactly m and as many as
possible derivation steps, respectively. This approach enhances the descriptive
power of (single) context-free grammars, as well. For a survey on CDGS, see the
monograph [5] or the handbook chapter [8].

Our aim is to restrict context-free CDGS so that deterministic one pass no
backtrack parsing in a top-down manner becomes possible. The initial steps in

� Most of the work was done while the first author was at the University of Potsdam,
Institut für Informatik, August-Bebel-Straße 89, D-14482 Potsdam, Germany.

�� The second author was supported by a research scholarship of the Alexander von
Humboldt Foundation.

E. Csuhaj-Varjú and Z. Ésik (Eds.): FCT 2007, LNCS 4639, pp. 113–124, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

114 H. Bordihn and G. Vaszil

this direction have already been taken by the authors of the present paper in [2].
(For a different approach towards the deterministic parsing of languages gener-
ated by CDGS, see also [9].) In order to make these systems deterministic, we
first restrict context-free CDGS to leftmost derivations. Two kinds of leftmost-
ness are taken into consideration which, in contrast to context-free grammars,
can alter the generative capacity of CDGS; for an extensive investigation of
leftmost context-free CDGS see [3]. At second, some sort of LL(k) condition is
imposed on the systems which guarantees that for any sentential form of any
leftmost derivation, the first k symbols of the resulting string which have not
yet been derived to the left of the leftmost nonterminal in the sentential form
determine the next step to be performed by the CDGS. That is, according to the
derivation mode, a unique sequence of productions from a unique component.

In the present paper, we first define the concept of LL(k) context-free CDGS
working in the =m- and t-modes of derivation using two different types of left-
most restrictions, and prove some first hierarchical properties for these systems.
Then we focus on the =m-mode of derivation. We show that LL(k) CDGS work-
ing in the =m-mode, for any m ≥ 2, can be simulated by LL(k) CDGS working
in the =2-mode if the so-called sw-type of leftmostness is imposed, and that
LL(k) systems of this type can generate non-semilinear languages. Then we de-
fine the notion of a lookup table which, based on pairs of nonterminals and
lookahead strings, identifies the component and the sequence of rules needed for
the continuation of the derivation according to the LL(k) condition. Opposed
to the case of LL(k) context-free grammars, the existence and the effective con-
structibility of the lookup table is not obvious, but we show that in most cases,
if we have the lookup table, then a lookup string of length one is sufficient, and
a parsing algorithm of strictly sub-quadratic time complexity (see also [2]) can
be given. Finally, we present a decidable condition which implies the effective
constructibility of the lookup table.

2 Definitions

We assume the reader to be familiar with the basic notions of formal languages,
as contained for example in [11]. The set of positive integers is denoted by N
and the cardinality of a set M is denoted by #M . By V + we denote the set of
nonempty words over an alphabet V ; if the empty word ε is included, then we
use the notation V ∗. The length, the number of symbols contained by a word
w ∈ V ∗ is denoted by |w|, the set of elements of V ∗ with length at most k, for
some k ∈ N, is denoted by V ≤k. By prefk(w), w ∈ V ∗, we denote the prefix
of length k of w if |w| ≥ k or, otherwise, the string w itself. Set union and
subtraction are denoted by ∪ and −, respectively, ⊆ denotes inclusion, while ⊂
denotes strict inclusion.

A context-free grammar is a quadruple G = (N,T, P, S), where N and T
are disjoint alphabets of nonterminals and terminals, respectively, S ∈ N is the
axiom, and P is a finite set of productions of the form A→ z, where A ∈ N and
z ∈ (N ∪ T)∗.

Top-Down Deterministic Parsing of Languages Generated by CDGS 115

Now we repeat the definition of a cooperating distributed grammar system,
where we restrict ourselves (without further mentioning) to the case of context-
free components. A cooperating distributed grammar system of degree n is an
(n + 3)-tupleG = (N,T, S, P1, P2, . . . , Pn) whereN and T are two disjoint alpha-
bets, the alphabet of nonterminals and the alphabet of terminals, respectively,
S ∈ N is the axiom, and for 1 ≤ i ≤ n, Pi is a finite set of context-free produc-
tions, i.e., productions of the form A → z, A ∈ N , z ∈ (N ∪ T)∗. The sets Pi

are called components of the system G. Let dom(Pi) = {A ∈ N | A→ z ∈ Pi },
the domain of Pi, and let Ti = (N ∪ T) − dom(Pi), 1 ≤ i ≤ n. We call a
CD grammar system deterministic, if for all 1 ≤ i ≤ n, Pi contains at most
one rule for each nonterminal, that is, for each symbol A ∈ N , the property of
#{w | A→ w ∈ Pi} ≤ 1 holds.

Now we recall the definition of two different types of leftmost rewriting steps
from [3]. A strong leftmost rewriting step is a direct derivation step that rewrites
the leftmost nonterminal of a sentential form. Formally, x =⇒

s
i y where x =

x1Ax2, y = x1zx2, A→ z ∈ Pi, and x1 ∈ T ∗, x2, z ∈ (N ∪ T)∗.
A weak leftmost rewriting step is a direct derivation step that rewrites the

leftmost nonterminal from the domain of the active component. Formally, x=⇒
w

iy
where x = x1Ax2, y = x1zx2, A→ z ∈ Pi, and x1 ∈ T ∗

i , x2, z ∈ (N ∪ T)∗.
Let =⇒l

s
i and =⇒l

w
i denote l consecutive strong and weak derivation steps of

component Pi, l ≥ 1, respectively. Further, let =⇒∗
α

i denote the reflexive and
transitive closure of =⇒

α
i, α ∈ {s,w}.

Let m be a positive integer. An m-step derivation by the ith component in
the αβ-type of leftmostness, where α, β ∈ {s,w}, denoted by =m=⇒

αβ
i, is defined as

x
=m=⇒
αβ

i y, iff x=⇒
α

i x1 and x1 =⇒
β

m−1
i y,

for some x1 ∈ (N ∪ T)∗.
A t-derivation by the ith component in the αβ manner, where α, β ∈ {s,w},

denoted by t=⇒
αβ

i, is defined as

x
t=⇒

αβ
i y, iff x=⇒

α
i x1, x1 =⇒

β

∗
i y, and there is no z with y =⇒

β
i z,

for some x1 ∈ (N ∪ T)∗.
Let prod(x

μ

=⇒
αβ

i y) denote the set of production sequences which can be used
in the derivation step x

μ

=⇒
αβ

i y, μ ∈ {t,=m | m ≥ 1}, α, β ∈ {s,w} . More
precisely,

(A0 → w0, A1 → w1, . . . , Al−1 → wl−1) ∈ prod(x
μ

=⇒
αβ

i y)

if and only if there are strings x0, x1, . . . , xl with xj−1 = zj−1Aj−1z
′
j−1 and

xj = zj−1wj−1z
′
j−1, and Aj−1 → wj−1 ∈ Pi, for 1 ≤ j ≤ l, l ≥ 1.

In the following we will consider derivations in the ss- and sw-types of left-
mostness. Note that these types of derivations were also considered in [6] where
they were called “strong-leftmost” and “weak-leftmost”, respectively.

The language generated by a CD grammar system G of degree n in the
μ-mode of derivation, μ ∈ {t,=m | m ≥ 1}, with the γ-type of leftmostness,

116 H. Bordihn and G. Vaszil

γ ∈ {ss, sw}, is defined by Lγ(G,μ) = {w ∈ T ∗ | S μ

=⇒∗
γ

w } where x
μ

=⇒∗
γ

y, for
x, y ∈ (N ∪ T)∗, denotes the fact that there is a γ-leftmost derivation by G con-
sisting of an arbitrary number of μ-mode derivation steps yielding y from x, that
is, either x = y, or x

μ

=⇒
γ

i1 x1
μ

=⇒
γ

i2 x2 . . .
μ

=⇒
γ

ir xr = y, 1 ≤ ij ≤ n, 1 ≤ j ≤ r.
Next, we present the definition of an LL(k) condition appropriate for (deter-

ministic) CD grammar systems. It is adopted from the context-free case which
can be found, e.g., in [1,10,11].

Definition 1. A CD grammar system G = (N,T, S, P1, P2, . . . Pn), n ≥ 1, sat-
isfies the LL(k) condition for some k ≥ 1, if for any two leftmost derivations of
type α ∈ {ss, sw} and of mode μ ∈ {t,=m | m ≥ 1},

S
μ

=⇒∗
α

uXy
μ

=⇒
α

i uz
μ

=⇒∗
α

uv and S
μ

=⇒∗
α

uXy′
μ

=⇒
α

i′ uz
′ μ

=⇒∗
α

uv′

with u, v, v′ ∈ T ∗, X ∈ N , y, y′, z, z′ ∈ (N ∪ T)∗, if prefk(v) = prefk(v′), then
i = i′ and prod(uXy

μ

=⇒
α

i uz) = prod(u′Xy′
μ

=⇒
α

i′ u
′z′) is a singleton set.

The idea behind this concept is the following: Given a terminal word uv and a
sentential form uXy, X ∈ N and y ∈ (N ∪T)∗, which has been obtained from S,
then the first k letters of v allow to determine the component and the sequence
of rules of that component which is to be applied to uXy in order to derive uv.

Note that, also according to the sw-type of leftmostness, X must be the
very leftmost occurrence of a nonterminal in the sentential form since in those
situations a new component has to start over working on the sentential forms.

By CDn(μ, α) with n ≥ 1, μ ∈ {t,=m | m ≥ 1}, α ∈ {ss, sw} the fam-
ily of languages which can be generated by a CD grammar system of degree
n working in the α-type of leftmostness and the μ-mode of derivation is de-
noted. When deterministic components are considered, we replace CD with
dCD. If we restrict to grammar systems of degree n which satisfy the LL(k)-
condition for some k ≥ 1, then the families of languages obtained are denoted by
XnLL(k)(μ, α), X ∈ {CD, dCD}. If the number of components is not restricted,
we write CD∗(μ, α), dCD∗(μ, α), CD∗LL(k)(μ, α), and dCD∗LL(k)(μ, α), respec-
tively. Finally, let RE, CF, LL(k), and ET0L denote the families of all recur-
sively enumerable, context-free, context-free LL(k) languages, and the family of
languages generated by so called extended interactionless tabled Lindenmayer
systems, respectively [11].

Some of the proofs of the results from [3,6] can also be adapted to the deter-
ministic case, thus, we can formulate them as follows.

1. CD∗(μ, ss) = dCD∗(μ, ss) = CF, for μ ∈ {t,=m | m ≥ 1},
2. ET0L ⊂ CD3(t, sw) = CD∗(t, sw), and
3. CD∗(=m, sw) = dCD∗(=m, sw) = RE, for any m ≥ 2.

Before continuing, we illustrate the notion of LL(k) CD grammar systems with
two examples.

Example 1. Consider G = (N, {a, b, c}, S, P1, P2, P3), the deterministic CDGS
with N = {S, S′, S′′, A,B,C,A′, B′, C′}, and

Top-Down Deterministic Parsing of Languages Generated by CDGS 117

P1 = {S → S′, S′ → S′′, S′′ → ABC,A′ → A,B′ → B,C′ → C},
P2 = {A→ aA′, B → bB′, C → cC′}, P3 = {A→ a,B → b, C → c}.

This system generates by leftmost derivations of type sw, in the =3-mode the
language L1 = { anbncn | n ≥ 1 }, and as can easily be checked, satisfies the
LL(2) condition, thus, { anbncn | n ≥ 1 } ∈ dCD3LL(2)(=3, sw).

The languages L2 = {wcw | w ∈ {a, b}∗} and L3 = {anbmcndm | n,m ≥ 1} are
shown to be in dCD4LL(2)(=2, sw) and in dCD4LL(2)(=2, sw) in a similar way,
respectively. Furthermore, the respective CDGS generate the same languages
in the t-mode of derivation and the sw-type of leftmostness, still satisfying the
LL(2) condition.

The CD grammar system of the next example is working in the ss-type of
leftmostness and the t-mode of derivation. Although these systems generate
only context-free languages, the LL(k) variants are also able to deterministically
describe languages (and thus allow their deterministic top-down parsing) which
cannot be generated by context-free LL(k) grammars.

Example 2. Consider G = ({S, S′, A}, {a, b, c}, S, P1, P2, P3, P4, P5) with com-
ponents

P1 = {S → aS′A}, P3 = {S′ → ε}, P5 = {A→ c}.
P2 = {S′ → S}, P4 = {A→ b},

This deterministic system generates by leftmost derivations of type ss, in the
t-mode the non-LL(k) language Lss(G, t) = {anbn | n ≥ 1} ∪ {ancn | n ≥ 1},
and as can easily be checked, satisfies the LL(1) condition.

3 Properties of Languages Generated by LL(k) CD
Grammar Systems

First we present the following trivial hierarchies.

Lemma 1. For any integers k ≥ 1, n ≥ 1, μ ∈ {t,=m | m ≥ 1}, α ∈ {ss, sw},
and X ∈ {CD, dCD}, we have

1. dCDnLL(k)(μ, α) ⊆ CDnLL(k)(μ, α),
2. XnLL(k)(μ, α) ⊆ XnLL(k + 1)(μ, α),
3. XnLL(k)(μ, α) ⊆ Xn+1LL(k)(μ, α).

Now we summarize the relationship of context-free LL(k) languages and the
languages generated by LL(k) CD grammar systems.

Theorem 2. For any k ≥ 1,

1. LL(k) = CD∗LL(k)(=1, α) = dCD∗LL(k)(=1, α), for α ∈ {ss, sw},
2. LL(k) ⊆ dCD∗LL(k)(=m, ss), for m ≥ 2,
3. LL(k) ⊂ dCD∗LL(k)(=m, sw), for m ≥ 2,
4. dCD∗LL(k)(t, α) − LL(k) �= ∅, for α ∈ {ss, sw}.

118 H. Bordihn and G. Vaszil

Proof. Let L ∈ LL(k) for some k ≥ 1, and let G = (N,T, P, S) be a context-
free LL(k) grammar with L = L(G). Let the rules r ∈ P be labeled by 1 ≤
lab(r) ≤ #P . First we construct a deterministic CD grammar system G′ =
(N ′, T, S, P1, P2, . . . , Pn) satisfying the LL(k) condition and generating L in the
=m-mode of derivation, for any m ≥ 2, using any of the ss or sw-types of
leftmostness, as follows. The number of components of G′ is going to be n = #P .
Let N ′ = N ∪ {X(i) | 1 ≤ i ≤ m − 1, X ∈ N }, and for 1 ≤ i ≤ #P , if
i = lab(X → α), then let

Pi = {X → X(1), X(1) → X(2), . . . , X(m−1) → α }.

It is easy to see that for any μ ∈ {=m | m ≥ 2}, α ∈ {ss, sw}, a rewriting step
x

μ

=⇒
α

i y in G′ is possible if and only if x =⇒i y is possible in G, where =⇒i

denotes a rewriting step on the leftmost nonterminal using rule r with lab(r) = i.
To prove the equality in point 1, note that any CD grammar system G =

(N,T, S, P1, P2, . . . , Pn) working in the =1-mode is equivalent to a context free
grammar (N,T, S, P) where P =

⋃
1≤i≤n Pi using any of the two types of left-

mostness in the derivations. Moreover, both of them are equivalent to a deter-
ministic CDGS G′ = (N,T, S, P ′

1, P
′
2, . . . , P

′
r) working in the =1-mode, where

r = #P , #Pi = 1 for 1 ≤ i ≤ r, and
⋃

1≤i≤r Pi = P . Then the equality follows
from point 1 of Lemma 1.

The strictness of the inclusions in point 3 and the statement of 4 follows from
Example 1 and Example 2 above.

Now we study further properties of the families of languages generated by LL(k)
CDGS in the =m-mode of derivation, m ≥ 2, and the sw-type of leftmostness.
We show that any language in this family can also be generated by deterministic
systems in the =2-mode.

Theorem 3. For any k ≥ 1, m ≥ 2,

CD∗LL(k)(=m, sw) = dCD∗LL(k)(=m, sw) = X∗LL(k)(= 2, sw),

where X ∈ {dCD,CD}.

Proof. We show that the inclusion CD∗LL(k)(=m1, sw) ⊆ dCD∗LL(k)(=m2, sw)
holds for any m2 ≥ 2. Let G = (N,T, S, P1, P2, . . . , Pn) be a CDGS satisfying
the LL(k) condition, k ≥ 1, in derivation mode =m1 for some m1 ≥ 2, with the
sw-type of leftmostness. For any m2 ≥ 2, we construct a deterministic CDGS
G′ satisfying the LL(k) condition, such that Lsw(G,=m1) = Lsw(G′,=m2). Let
the set of terminals and the start symbol of G′ be the same as that of G, let
the set of nonterminals be defined as N ′ = N ∪ {X(l)

i,j | 1 ≤ i ≤ n, 1 ≤ j ≤
m1, 1 ≤ l ≤ m2 − 1}, the union being disjoint, and let us define for all Pi,
1 ≤ i ≤ n, the rule sets Pi,j , 1 ≤ j ≤ ri for some ri ≥ 1, in such a way that for
all 1 ≤ i ≤ n,

Top-Down Deterministic Parsing of Languages Generated by CDGS 119

–
⋃

1≤j≤ri
Pi,j = Pi,

– dom(Pi,j) = dom(Pi) for all 1 ≤ j ≤ ri, and
– Pi,j is deterministic, that is, for allA∈dom(Pi),#{w |A→w∈Pi,j}=1.

Now for all i, j, li, 1 ≤ i ≤ n, 2 ≤ j ≤ m1 − 1, 1 ≤ li ≤ ri, let the components
of G′ be defined as follows.

Pi,1,li = {A→ X
(1)
i,1 w | A→ w ∈ Pi,li} ∪

{X(s)
i,1 → X

(s+1)
i,1 , X

(m2−1)
i,1 → X

(1)
i,2 | 1 ≤ s ≤ m2 − 2},

Pi,j,li = Pi,li ∪ {X
(s)
i,j → X

(s+1)
i,j , X

(m2−1)
i,j → X

(1)
i,j+1 | 1 ≤ s ≤ m2 − 2},

Pi,m1,li = Pi,li ∪ {X
(s)
i,m1

→ X
(s+1)
i,m1

, X
(m2−1)
i,m1

→ ε | 1 ≤ s ≤ m2 − 2}.

To see that the Lsw(G,=m1) = Lsw(G′,=m2) holds, consider that for u ∈ T ∗,
G can execute a derivation step uAy

=m1
=⇒
sw

i uy
′ if and only if

uAy
=m2
=⇒
sw

i,1,li,1 uX
(1)
i,2 y1

=m2
=⇒
sw

i,2,li,2 uX
(1)
i,3 y2 . . . uX

(1)
i,m1

ym1−1

=m2
=⇒
sw

i,m1,li,m1
uy′

for some 1 ≤ li,j ≤ ri for all 1 ≤ j ≤ m1, can be executed by G′. Note that
the nonterminals X(l)

i,j must always be replaced as they appear leftmost in the
sentential forms. The leftmostness of these nonterminals also implies that until
they have been erased, no new terminal symbols are added to the already de-
rived terminal prefix of the generated string appearing left of these nonterminals,
so the rule sequence determined by the LL(k) property at the beginning of an
m1-step derivation of G and these nonterminals of the form X

(s)
i,j also determine

the unique rule sequence for each m2-step derivation of G′ which means that it
also satisfies the LL(k) property.

The statements of the theorem are consequences of the inclusion we have
proved above, and the results of Lemma 1.

Lemma 4. For any X ∈ {dCD,CD}, μ ∈ {t,=m | m ≥ 2}, there are non-
semilinear languages in X∗LL(1)(μ, sw).

Proof. In [2] a deterministic CDGS is presented which satisfies the LL(1) condi-
tion and generates a non-semilinear language in the derivation mode =2 with the
sw-type of leftmostness. By analyzing this system, we can see that it generates
the same non-semilinear language also in the t-mode of derivation. Thus, our
statement follows from the proof found in [2] and from Theorem 3.

4 Using Lookup Tables

We are going to define the notion of a lookup table for CD grammar systems
satisfying the LL(k) condition in some mode μ of derivation using type α of
leftmostness, μ ∈ {t,= m}, α ∈ {ss, sw}. The lookup table determines the

120 H. Bordihn and G. Vaszil

component and the sequence of rules which are needed for the continuation of
the derivation, according to the definition of the LL(k) condition. The selection
of the rules is based on pairs of nonterminals (the leftmost nonterminal in the
leftmost derivation) and lookahead strings (the first k terminal letters of the
suffix of the resulting terminal word which is derived by the remaining part of
the leftmost derivation).

A lookup table can be very useful. First of all, it provides us with the possi-
bility of constructing efficient parsers, that is, algorithms which, when given a
grammar G and a terminal string w as input, decide whether w can be generated
by G, and if so, reconstruct the derivation.

For CDnLL(k)(μ, ss), μ ∈ {t,= m | m ≥ 1} slight modifications of the
usual top down methods for context-free LL(k) parsing can be used to provide
parsing algorithms also for grammar systems of these types. For context-free
LL(k) parsing, see, for example, [1].

For CD grammar systems working in the sw-type of leftmostness we need more
sophisticated methods while derivations of this type also rewrite nonterminals
which are not the leftmost ones in the sentential form. In Figure 1 we present a
parsing algorithm for languages in CDnLL(k)(= m, sw). This algorithm already
appeared in [2] where also an initial version of the following theorem was given.

Theorem 5. If a CD grammar system G satisfying the LL(k) condition in the
=m derivation mode using the sw-type of leftmostness is given together with its
lookup table, then for Lsw(G,=m) a parser can be constructed as presented in
Figure 1, which halts on every input word w in O(n · log2 n) steps, where n is
the length of w.

In case of deterministic systems, the lookup table is more simple, it only needs
to give a component for the pairs of nonterminals and lookahead strings, the
exact order of the application of the rules is automatically determined due to
the restriction to sw-type of leftmost derivations.

Definition 2. Let G = (N,T, S, P1, P2, . . . Pn) ∈ dCDnLL(k)(μ, α), for some
μ ∈ {t,=m | m ≥ 1}, α ∈ {ss, sw}, n ≥ 1, and k ≥ 1. The lookup table MG for
G is a subset of N × T≤k × {P1, . . . , Pn} such that for all uXy with

S
μ

=⇒∗
α

uXy
μ

=⇒
α

uz
μ

=⇒∗
α

uv

u, v ∈ T ∗, X ∈ N , y, z ∈ (N ∪ T)∗, the entry (X, prefk(v)) contains the compo-
nent which is to be applied to the sentential form uXy.

Clearly, to have a lookup table, it is necessary for a grammar system to satisfy
the LL(k) condition. The implication in the other direction, opposed to the
context-free case, is not as obvious. Just as unclear is the existence of a general
algorithm for the construction of a lookup table when a (deterministic) grammar
system is given.

Sometimes it is not difficult to construct a lookup table, as in the case of the
grammar system from Example 1, which is as follows:

{(S, aa, P1), (S, ab, P1), (A, aa, P2), (A, ab, P3), (A′, aa, P1), (A′, ab, P1)}.

Top-Down Deterministic Parsing of Languages Generated by CDGS 121

1 step ← 0
2 mainStack ← push(mainSt, S)
3 stacksForN(S) ← push(stacksForN(S), 0)
4 while mainStack is not empty and there is no ERROR do
5 if top(mainStack) is a terminal symbol then
6 if top(mainStack) coincides with the first symbol of input then
7 mainStack ← pop(mainStack)
8 input ← input without its first symbol
9 else ERROR
10 else topmost ← top(mainStack)
11 stepOfTopmost← top(stacksForN(topmost))
12 stacksForN(topmost) ← pop(stacksForN(topmost))
13 if there exist (i; pQueue) ∈ pQueuesLeft such that

i ≥ stepOfTopmost, left(first(pQueue)) = topmost,
and furthermore, if (i′; pQueue′) ∈ pQueuesLeft
with left(first(pQueue′)) = topmost, then i < i′, then

14 pQueuesLeft ← pQueuesLeft − {(i; pQueue)}
15 pToUse ← first(pQueue)
16 pQueue ← butfirst(pQueue)
17 if pQueue is not empty then
18 pQueuesLeft ← pQueuesLeft ∪ {(i; pQueue)}
19 mainStack ← pop(mainStack)
20 mainStack ← push(mainStack, right(pToUse))
21 for each symbol X from right(pToUse) do
22 if X ∈ N then
23 stacksForN(X) ← push(stacksForN(X), step)
24 else step ← step + 1
25 lookahead ← the next k symbols of input
26 pQueue ← lookupTable(topmost, lookahead)
27 if pQueue is empty then
28 ERROR
29 else pToUSe ← first(pQueue)
30 pQueue ← butfirst(pQueue)
31 if pQueue is not empty then
32 pQueuesLeft ← pQueuesLeft ∪ {(step, pQueue)}
33 mainStack ← pop(mainStack)
34 mainStack ← push(mainStack, right(pToUse)
35 for each symbol X from right(pToUse) do
36 if X ∈ N then
37 stacksForN(X) ← push(stacksForN(X), step)
38 if there is no ERROR then successful termination

Fig. 1. The parsing algorithm. It uses the variables: step, stepOfTopmost ∈ N;
mainStack, a stack over N ∪ T , the “main” stack of the parser; stacksForN , an
l-tuple of stacks where l = #N , it provides a stack over N for each nonterminal;
input ∈ T ∗, the string to be analyzed; topmost ∈ N ; pQueue, a production queue;
pQueuesLeft ⊆ N×PQ, where PQ denotes the set of all production queues of length
at most m, that is, pQueuesLeft is a set of pairs of the form (i; pq) where i is an
integer and pq is a production queue; pToUse ∈ N × (N ∪ T)∗, a production.

122 H. Bordihn and G. Vaszil

Now we show that if we assume the existence of a lookup table, then in the
case of the sw-type of leftmostness, the length of the necessary lookahead can be
decreased to k = 1. That is, in contrast to the context-free case, the hierarchies
of language classes corresponding to deterministic LL(k) CDGS induced by k
collapse, namely to the first level.

Theorem 6. Given a deterministic CD grammar system G satisfying the LL(k)
condition for some derivation mode μ ∈ {t,= m | m ≥ 2} with the sw-type of
leftmostness, and its lookup table MG, then Lsw(G,μ) ∈ dCD∗LL(1)(μ, sw).

Proof. Given G = (N,T, S, P1, P2, . . . Pn), a deterministic CDGS as above, sat-
isfying the LL(k) condition for some k ≥ 2. Let the look-up table of G denoted
by MG. We construct a context-free CD grammar system H which satisfies the
LL(1) condition and for which Lsw(H,μ) = Lsw(G,μ) holds, μ is as above. Let
the set of non-terminals for H be the set

N ′ = N ∪ {(X, v), (X, v)(i)(A, v), (A, v)′, (A, v)(i), (ā, v), (ā, v)(i) | A ∈ N,

v ∈ T≤k, a ∈ T, 1 ≤ i < m} ∪ {ā | a ∈ T },

where X is a new symbol, and let the axiom of H be (S, ε). Let us define for
any α = x1x2 . . . xt, xi ∈ N ∪ T , 1 ≤ i ≤ t, the string ᾱ = b(x1)b(x2) . . .b(xt)
with b(x) = x for x ∈ N , and b(x) = x̄ ∈ T̄ for x ∈ T .

We construct the following components.
(1) Scanning components. For all A ∈ N and u ∈ T≤k−1, v ∈ T≤k, we have:

{(A, u) → (A, u)(1), . . . , (A, u)(m−2) → (A, u)(m−1), (A, u)(m−1) → a(A, ua)′},

and also the components:

{(A, v)′ → (A, v)(1), . . . , (A, v)(m−2) → (A, v)(m−1), (A, v)(m−1) → (A, v)}.

These collect the look-ahead string v of length at most k symbol by symbol.
Their correct, deterministic use is guaranteed by the look-ahead of length one.
If |u| = k for some (A, u), or the look-ahead symbol is ε, then these components
cannot be used any more.

(2) Direct simulating components. For (A, v, Pi) ∈MG, A→ α ∈ Pi, α = uBβ
with u ∈ T ∗, B ∈ N , β ∈ (N ∪ T)∗, we have:

{(A, v) → v1(X, v2)Bβ̄} ∪ P̄i

where if u = vv′, for some v′ ∈ T ∗, then v1 = v′ and v2 = ε. Otherwise, if
v = uu′, for some u′ ∈ T ∗, then v1 = ε and v2 = u′. Furthermore, P̄i denotes
the set {A→ ᾱ | A→ α ∈ Pi}.

If α = u with u ∈ T ∗, then we have:

{(A, v) → v1(X, v2)} ∪ P̄i

where if u = vv′, for some v′ ∈ T ∗, then v1 = v′ and v2 = ε, or otherwise, if
v = uu′, for some u′ ∈ T ∗, then v1 = ε and v2 = u′, and P̄i is as above. These

Top-Down Deterministic Parsing of Languages Generated by CDGS 123

components will do the same as the component Pi of G under look-ahead v. It is
taken into consideration that either the prefix v of u has already been generated
by the scanning components and only the corresponding suffix must be produced
in the first step, or the suffix of the scanned look-ahead string which is no part
of u is stored in the new nonterminal which is now leftmost.

Note that the scanning components have nonempty look-aheads, the simulat-
ing components which rewrite some (A, v) with |v| < k, on the other hand, are
to be used under empty look-ahead string.

(3) Look-ahead shifting components. For all u ∈ T≤k, we have:

{(X,u) → (X,u)(1), . . . , (X,u)(m−1) → (X,u)(m−2), (X,u)(m−2) → ε}∪

{B → (B, u) | B ∈ N ∪ T̄ }, and

{(b̄, u) → (b̄, u)(1), . . . , (b̄, u)(m−1) → (b̄, u)(m−2), (b̄, u)(m−2) → b(X, δ) | b̄ ∈ T̄ ,

δ = ε if u = ε, or δ = u′ if u = bu′}.
By these components the stored look-ahead string u is transferred to the next
symbol to the right of the leftmost nonterminal symbol. If this next symbol is
from T̄ , then the corresponding terminal symbol is generated and the rest of
the look-ahead is shifted further, if it is from N , a look-ahead string of maximal
possible length (k, in general) is supplemented to it with the help of the scanning
components. Only then, the next simulation can be performed.

The comments given to the components constructed above show that the
equalities Lsw(H,μ) = Lsw(G,μ), μ ∈ {t,=m | m ≥ 2}, hold, and as H is LL(1),
the proof of is complete.

From Theorem 3, and Theorem 6 we obtain the following corollary.

Corollary 7. Given a deterministic CD grammar system G satisfying the LL(k)
condition, k ≥ 1, and its lookup table for derivation mode =m, m ≥ 2 with type
of leftmostness sw. Then Lsw(G,=m) ∈ dCD∗LL(1)(=2, sw).

Now we present a decidable condition that the CD grammar system has to satisfy
in order that the lookup table be effectively constructable.

First we need the notion of the FIRST and FOLLOW sets, as defined for
example in [1]. Let (N,T, S, P) be a context-free grammar, and let k ≥ 1. Now,
for any x ∈ (N∪T)∗, let FIRSTk(x) = prefk(L(x)), where L(x) denotes the set of
terminal words that can be derived from x, L(x) = {w ∈ T ∗ | x⇒∗

P w}. Let also,
for any A ∈ N , FOLLOWk(A) = {w ∈ T ∗ | S ⇒∗

P xAy and w ∈ FIRSTk(y)}.
For an effective construction of these sets, see for example [1].

Definition 3. A deterministic CD grammar system G = (N,T, S, P1, . . . , Pn),
n ≥ 1, satisfies the strong-LL(k) condition for some k ≥ 1, if for all i, 1 ≤ i ≤ n,
and productions A → α ∈

⋃
1≤i≤n Pi, the fact that A → α ∈ Pi implies that

A → α �∈ Pj for all j �= i. Moreover, for all productions A → α, A → β ∈⋃
1≤i≤n Pi for some A ∈ N , such that α �= β, the condition

FIRSTk(αFOLLOWk(A)) ∩ FIRSTk(βFOLLOWk(A)) = ∅

holds with respect to the context-free grammar (N,T, S,
⋃

1≤i≤n Pi).

124 H. Bordihn and G. Vaszil

Note that, as we have already mentioned, since the FIRST and FOLLOW sets are
effectively constructable, the strong-LL(k) condition is algorithmically decidable.
Note also, that all examples presented in the paper satisfy the strong-LL(k)
property.

For all context-free grammars (N,T, S, P) which satisfy the strong-LL(k)
property, a lookup table M ⊂ (N × T≤k × P) can be effectively constructed
as described for example in [1]. Thus, we can effectively construct a lookup ta-
ble MG also for any CDGS G = (N,T, S, P1, P2, . . . , Pn) satisfying the strong
LL(k) property by constructing MH for H = (N,T, S,

⋃
1≤i≤n Pi), and then let

(A,w, Pi) ∈MG if and only if (A,w,A→ α) ∈MH for some A→ α ∈ Pi.

Corollary 8. For any deterministic CD grammar system G satisfying the
strong-LL(k) property, k ≥ 1, a derivation mode μ ∈ {t,= m | m ≥ 2}, we have
that Lsw(G,μ) ∈ dCDnLL(1)(μ, sw), and moreover, the corresponding determin-
istic CDGS satisfying the LL(1) condition and the lookup table for deterministic
parsing can be effectively constructed.

References

1. Aho, A.V., Ulmann, J.D.: The Theory of Parsing, Translation, and Compiling,
vol. I. Prentice-Hall, Englewood Cliffs, N.J. (1973)

2. Bordihn, H., Vaszil, Gy.: CD grammar systems with LL(k) conditions. In: Csuhaj-
Varjú, E., Vaszil, Gy. (eds.) Proceedings of Grammar Systems Week, MTA
SZTAKI, Budapest, pp. 95–112 (2004)

3. Bordihn, H., Vaszil, Gy.: On leftmost derivations in CD grammar systems. In:
Loos, R., Fazekas, Sz. Zs., Mart́ın-Vide, C. (eds.) Pre-Proceedings of the First
International Conference on Language and Automata Theory and Applications,
LATA 2007, Universitat Rovira i Virgili, Tarragona, pp. 187–198 (2007)

4. Csuhaj-Varjú, E., Dassow, J.: On cooperating/distributed grammar systems. Jour-
nal of Information Processing and Cybernetics EIK, 26(1-2), 49–63 (1990)(Pre-
sented at the 4th Workshop on Mathematical Aspects of Computer Science, Magde-
burg, 1998)

5. Csuhaj-Varjú, E., Dassow, J., Kelemen, J.,Păun, Gh.: Grammar Systems. A Gram-
matical Approach to Distribution and Cooperation, Gordon and Breach Science
Publishers, Yverdon (1994)

6. Dassow, J., Mitrana, V.: On the leftmost derivation in cooperating grammar sys-
tems. Rev. Roumaine Math. Pures Appl. 43, 361–374 (1998)

7. Dassow, J., Păun, Gh.: Regulated Rewriting in Formal Language Theory. Springer,
Heidelberg (1989)

8. Dassow, J., Păun, Gh., Rozenberg, G.: Grammar Systems. In: Rozenberg, G., Sa-
lomaa, A. (eds.) Handbook of Formal Languages, ch. 4, pp. 155–213. Springer,
Heidelberg (1997)

9. Mitrana, V.: Parsability approaches in CD grammar systems. In: Freund, R., Kele-
menová, A. (eds.) Proceedings of the International Workshop Grammar Systems
2000, Silesian University at Opava, pp. 165–185 (2000)

10. Rosenkrantz, D.J., Stearns, R.E.: Properties of deterministic top-down grammars.
Information and Control 17, 226–256 (1970)

11. Salomaa, A.: Formal Languages. Academic Press, New York (1973)

The Complexity of Membership Problems for

Circuits over Sets of Positive Numbers

Hans-Georg Breunig

Universität Würzburg
Institut für Informatik, Am Hubland, 97074 Würzburg, Germany

breunig@informatik.uni-wuerzburg.de

Abstract. We investigate the problems of testing membership in the
subset of the positive numbers produced at the output of (∪,∩, −, +,×)
combinational circuits. These problems are a natural modification of
those studied by McKenzie and Wagner (2003), where circuits computed
sets of natural numbers. It turns out that the missing 0 has strong impli-
cations, not only because 0 can be used to test for emptiness. We show
that the membership problem for the general case and for (∪,∩, +,×)
is PSPACE-complete, whereas it is NEXPTIME-hard if one allows 0.
Furthermore, testing membership for (∩,×) is NL-complete (as opposed
to C=L-hard), and several other cases are resolved.

Keywords: Computational complexity, Arithmetic circuits, Combina-
tional circuits.

1 Introduction

Consider arithmetic expressions over the power set of N using pair-wise addition
(+) and pair-wise multiplication (×) as well as the set operators union (∪),
intersection (∩), and complement (−), e.g. ({2, 5}∪{1})+{4}. Such formulae are
called Integer Expressions and they were introduced by Stockmeyer and Meyer as
early as 1973. The corresponding membership problem, that asks whether a given
number is in the set computed by the formula, is denoted by N-MEMBER [5].
McKenzie and Wagner exhaustively studied membership problems of formulae
and circuits from {∪,∩,−,+,×} [3]. It turned out that, depending on the set of
allowed operations, these problems belong to a wide range of complexity classes
ranging from L to (possibly) undecidabilty. Further related problems for integer
circuits were studied in [8][9][6][2].

In this paper we study membership problems for circuits (and formulae), but
this time over the positive natural numbers N+ instead of N. Concerning mem-
bership problems for formulae we cannot prove that they become easier when
omitting 0. Although the general case probably is undecidable for formulae over
N we obtain the same lower bound for formulae over N+. Things are different
for circuit problems. Not only that the membership problem for the general case
is decidable, we can prove it to be in PSPACE as opposed to the NEXPTIME-
hardness for circuits over N. Additionally, for circuits having all but complement

E. Csuhaj-Varjú and Z. Ésik (Eds.): FCT 2007, LNCS 4639, pp. 125–136, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

126 H.-G. Breunig

gates, we also show that the membership problem becomes easier when omit-
ting 0 (PSPACE-completeness instead of NEXPTIME-completeness). Another
difference is that the membership problem for {∩,×}-circuits is NL-complete
while McKenzie and Wagner showed it to be C=L-hard when using N.

2 Preliminaries

If A is a set, then ‖A‖ denotes the cardinality of A. The length of a string x is
denoted by |x|.

We use the following complexity classes which can be found in textbooks on
computational complexity (e.g. [4]): P, NP, L, NL, and PSPACE as well as FP,
FL, and #L.

LOGDCFL: A language A is in LOGDCFL if there exists a Turing machine
with an unlimited stack, but a logarithmic bound for the space it may use on
the working tape as well as a polynomial bound for its runtime which decides A.

C=L: A language A is in C=L if there exist functions f ∈ #L and g ∈ FL
such that x ∈ A⇔ f(x) = g(x).

We use the following well-known reducibilities: ≤log
m and ≤p

m ([4]). The former
is used in this paper unless otherweise noted.

AC0-reduction: The AC0-reduction is defined using Boolean circuits. A cir-
cuit family is a set {Cn : n ∈ N} where each Cn is a circuit with n Boolean
inputs x1, . . . , xn and output gates y1, . . . , yr. {Cn} has size s(n) if each circuit
Cn has at most s(n) gates; it has depth d(n) if the length of the longest path
from an input gate to an output gate is at most d(n). A family {Cn} is uniform
if the function n �→ Cn is easy to compute in some sense. A function f is in AC0

if there is an uniform circuit family {Cn} of size nO(1) and depth O(1) consisting
of AND, OR, and NOT gates with unbounded in-degree such that for each input
x of length n, the output of Cn on input x is f(x).

Let GAP (graph accessibility problem) be the set of all tuples (G, s, t) where G
is a graph and there is a path from s to t. It holds that GAP is NL-complete (see
[4]). Let GAP′ be the set of all elements in GAP where the vertices have in-degree
0 or 2 and where the vertices are ordered topologically. We now show that GAP′

is NL-hard. This works by reducing an arbitrary NL-problem A (decided by a
Turing machine M) to GAP′. Without loss of generality we assume that M has
a unique accepting configuration t and all other configurations have exactly two
successor configurations. We construct a new machine M ′ that works like M , but
that has a counter for every transition of M . The value of this counter is placed
leftmost on the tape, resulting in configurations that are ordered chronologically.
This implies that a given configuration is lexicographically smaller than the
configurations of all direct and indirect successors. Now, consider the transition
graph G′ of M ′ on input x. It holds that M halts on input x with the start
configuration s if and only if (G′, s, t) ∈ GAP′. Thus GAP′ is NL-hard and it
follows that GAP′ is coNL-hard.

The Complexity of Membership Problems for Circuits 127

3 Definitions

The set of positive numbers is given by N+ =def 1, 2, 3, . . . and the set of natural
numbers by N =def N+ ∪ {0}. Z denotes the set of integer numbers. For two sets
U, V ⊆ Z we define U ⊕ V =def {u+v : u ∈ U and v ∈ V } and U ⊗ V =def

{u·v : u ∈ U and v ∈ V }.

3.1 (O, U)-Circuits

A circuit C = (G,A, gC) is a finite acyclic graph (G,A) with a specified node
gC , the output gate. The gates with in-degree 0 are called input gates.
We consider different types of circuits. Let O ⊆ {∪,∩,−,+,×} and let U ⊆ Z
be decidable in logarithmic space and closed under + and ×. An (O, U)-circuit
C = (G,A, gC , α) is a circuit (G,A, gC) whose gates have in-degree 0, 1, or 2
and are labeled by the function α : G→ O∪U in the following way: Every gate
of in-degree 0 has label α(g) ∈ U , every gate g of in-degree 1 has label α(g) = −,
and every gate g of in-degree 2 has label α(g) ∈ {∪,∩,+,×}.
For an (O, U)-circuit C we define an interpretation function IU :

– If g is an input gate with label a, then IU (g) =def {a}.
– If g is a +-gate with predecessors g1, g2, then IU (g) =def IU (g1)⊕ IU (g2).
– If g is a ×-gate with predecessors g1, g2, then IU (g) =def IU (g1)⊗ IU (g2).
– If g is an ∪-gate with predecessors g1, g2, then IU (g) =def IU (g1) ∪ IU (g2).
– If g is a ∩-gate with predecessors g1, g2, then IU (g) =def IU (g1) ∩ IU (g2).
– If g is a −-gate with predecessor g1, then IU (g) =def U \ IU (g1).

The set IU (C) =def IU (gC) is called the set computed by C. An (O, U)-formula
is an (O, U)-circuit with maximum out-degree 1.
For O ⊆ {∪,∩,−,+,×} the membership problems for (O, U)-circuits and (O, U)-
formulae are defined as
MCU (O) =def {(C, b) : C is an (O, U)-circuit, b ∈ U , and b ∈ IU (C)} and
MFU (O) =def {(C, b) : C is an (O, U)-formula, b ∈ U , and b ∈ IU (C)}.

4 General Considerations

The following proposition allows us to compare membership problems of circuits
over different domains.

Proposition 1. Let O ⊆ {∪,∩,+,×} and let U ⊆ U ′ ⊆ Z where U,U ′ are
logarithmic-space decidable and closed under +,×.

1. MCU (O) ≤log
m MCU ′ (O).

2. MFU (O) ≤log
m MFU ′(O).

Proof. The reduction function f works as follows: Check (in logarithmic space)
whether C contains an input value from U ′ \ U or whether b ∈ U ′ \ U . If this
is not the case, then output (C, b). Otherwise, output (C0, b0), which is not in
MFU ′′ (O) for all U ′′ ⊆ Z (think of a syntactically invalid instance for example).
So it holds that (C, b) ∈ MCU (O) ⇐⇒ f(C, b) ∈ MCU ′(O). ��

128 H.-G. Breunig

The reason why membership problems for circuits over N are (in some cases)
more difficult than for circuits over N+, can be found in the possibility to use the
question of whether 0 is a member to test for emptiness. Let EMPTYU (O) =def

{C : C is an (O, U)-circuit and IU (C) = ∅} and for 0 ∈ U let 0-MCU (O) =def

{C : (C, 0) ∈ MCU (O)}.

Proposition 2. Let {∩,×} ⊆ O ⊆ {∪,∩,+,×}.

0-MCN(O) ≡AC0

m EMPTYN(O)

Proof. It holds that C /∈ 0-MCN(O) ⇐⇒ C ∩ 0 ∈ EMPTYN(O) and C ∈
EMPTYN ⇐⇒ C × 0 /∈ 0-MCN(O). ��

Given ({∪,∩,−,×},N)-circuits, we want to evaluate C with respect to N+.
Therefore, we define for all input gates g ∈ G where α(g) = 0: IN+(g) =def ∅.

Lemma 1. Let C = (G,A, gC , α) be a ({∪,∩,−,×},N)-circuit. For all g ∈ G it
holds that

IN+(g) = IN(g) \ {0}.

Proof. We prove this by induction on the structure of C.

IB: Let g be an input gate. If α(g) = 0, then IN+(g) = IN(g) \ {0} = ∅. If
α(g) > 0, then IN+(g) = IN(g) \ {0} = IN(g) = α(g).

IS: Let α(g) = − and let g1 be the predecessor of g.

IN+(g) = N+ \ IN+(g1)
= N+ \ (IN(g1) \ {0})
= N+ \ (IN(g1) ∩ {0})
= N+ ∩ (IN(g1) ∪ {0})
= (N+ ∩ IN(g1)) ∪ (N+ ∩ {0})
= IN(g1) \ {0} = IN(g) \ {0}

Let α(g) ∈ {∪,∩,×} and let g1 and g2 be the predecessors of g.

α(g) = ∩ : IN+(g) = IN+(g1) ∩ IN+(g2)
= (IN(g1) ∩ IN(g2)) \ {0} = IN(g) \ {0}

α(g) = ∪ : IN+(g) = IN+(g1) ∪ IN+(g2)
= (IN(g1) ∪ IN(g2)) \ {0} = IN(g) \ {0}

α(g) = × : IN+(g) = IN+(g1)⊗ IN+(g2)
= (IN(g1) \ {0})⊗ (IN(g2) \ {0})
= {k · l : k ∈ IN(g1) ∧ l ∈ IN(g2) ∧ k · l �= 0}
= (IN(g1)⊗ IN(g2)) \ {0} = IN(g) \ {0} ��

The Complexity of Membership Problems for Circuits 129

5 Upper Bounds

Compared to the results for membership problems for circuits over N [3], we
will give new upper bounds for MCN+(∩,×), MCN+(∩,+,×), MCN+(∪,∩,+,×),
MCN+(∪,∩,−,+,×), and MFN+(∪,∩,−,+,×).

5.1 Using Known Upper Bounds

Many results that have already been shown for circuits over N can be adopted
as the following corollary states.

Corollary 1. Let O ⊆ {∪,∩,+,×}.

1. MCN+(O) ≤log
m MCN(O)

2. MFN+(O) ≤log
m MFN(O)

Proof. Follows from Proposition 1. ��

Given the upper bounds from McKenzie and Wagner [3] for membership prob-
lems where complement is not used within the respective circuits, we obtain
immediately:

Corollary 2

1. MFN+(∩), MFN+(∩,×), MFN+(∩,+), MFN+(∪), MFN+(∪,∩), MFN+(×),
and MFN+(+) are in L.

2. MCN+(∩) and MCN+(∪) are in NL.
3. MCN+(+) and MCN+(∩,+) are in C=L.
4. MFN+(+,×) and MFN+(∩,+,×) are in LOGDCFL.
5. MCN+(∪,∩) and MCN+(+,×) are in P.
6. MCN+(∪,×), MFN+(∪,×), MFN+(∪,+), MFN+(∪,∩,×), MCN+(∪,+),

MFN+(∪,∩,+), MFN+(∪,+,×), and MFN+(∪,∩,+,×) are in NP.
7. MCN+(∪,∩,×), MCN+(∪,∩,+), and MCN+(∪,+,×) are in PSPACE.

5.2 An Upper Bound for MCN+(∪, ∩, −, +, ×)

For ({∪,∩,−,+,×},N)-circuits the complexity of the membership problem is
not known. McKenzie and Wagner proved it to be NEXPTIME-hard.

Given ({∪,∩,−,+,×},N+)-circuits, we show that it suffices to consider only
finite sets of numbers. Thus the problem is decidable. We prove that it is even
in PSPACE.

Theorem 1. MCN+(∪,∩,−,+,×) is in PSPACE.

Proof. Let (C, b) be an input instance of MCN+(∪,∩,−,+,×) where
C = (G,A, gC , α) and b > 0. Let S =def {1, . . . , b}.
For a (∪,∩,−,+,×,N+)-circuit C define a modified interpretation I ′ as follows:

130 H.-G. Breunig

If g is an input gate with label a then I ′(g) = {a} if a ≥ b,
I ′(g) = ∅ otherwise.

If g is a ¯ -gate with predecessor g1 then I ′(g) = S \ I ′(g1).
Let g be a gate of in-degree 2 with predecessors g1 and g2.

If g is a +-gate then I ′(g) = {k +m : k ∈ I ′(g1) ∧ m ∈ I ′(g2)} ∩ S.
If g is a ×-gate then I ′(g) = {k ·m : k ∈ I ′(g1) ∧ m ∈ I ′(g2)} ∩ S.
If g is a ∩-gate then I ′(g) = I ′(g1) ∩ I ′(g2).
If g is a ∪-gate then I ′(g) = I ′(g1) ∪ I ′(g2).

Claim. For all g ∈ G it holds that I ′(g) = IN+(g) ∩ S.

We show this by induction on the structure of C.
Let g ∈ G be an input gate. Then I(g) ⊆ S by definition.
Let g be a −-gate with predecessor g1. Then
I ′(g) = S\I ′(g1) = S\(IN+(g1)∩S) = S\IN+(g1) = (N\IN+(g1))∩S = IN+(g)∩S.
Let g be a gate of in-degree 2 with predecessors g1 and g2.
If α(g) = +:

I ′(g) = {k + l : k ∈ I ′(g1) ∧ l ∈ I ′(g2)} ∩ S
= {k + l : k ∈ IN+(g1) ∩ S ∧ l ∈ IN+(g2) ∩ S} ∩ S
(∗)
= {k + l : k ∈ IN+(g1) ∧ l ∈ IN+(g2)} ∩ S
= I(g) ∩ S

(*): Since k, l > 0 it holds that k + l ≤ b implies k < b and l < b.
If α(g) = ×, then we get a chain of equations that is analogous to the one in the
‘+’-case. (*): Since k, l > 0 it holds that k · l ≤ b implies k ≤ b and l ≤ b.
If α(g) = ∩: I ′(g) = I ′(g1)∩ I ′(g2) = (IN+(g1)∩S)∩ (IN+ (g2)∩S) = IN+(g)∩S.
If α(g) = ∪: I ′(g) = I ′(g1)∪ I ′(g2) = (IN+(g1)∩ S)∪ (IN+(g2)∩ S) = (IN+(g1)∪
IN+(g2)) ∩ S = IN+(g) ∩ S.
It follows that I ′(C) = IN+(C) ∩ S.

The following shows an alternating decision algorithm for “b ∈ I ′(C)”. For a
gate g with α(g) ∈ {+,×,∪,∩}, let g1 and g2 be the predecessor gates. For a
gate g with α(g) = −, let g1 be the predecessor gate.

g := gC ; a := b; σ := 1
while g is not an input gate do:

if σ = 1 then
if α(g) = + then choose ex. c1, c2 ∈ S s.t. a = c1 + c2;

choose univ. i ∈ {1, 2}; g := gi; a := ci
if α(g) = × then choose ex. c1, c2 ∈ S s.t. a = c1 · c2;

choose univ. i ∈ {1, 2}; g := gi; a := ci
if α(g) = ∪ then choose existentially i ∈ {1, 2}; g := gi
if α(g) = ∩ then choose universally i ∈ {1, 2}; g := gi
if α(g) = − then g := g1; σ := 0

The Complexity of Membership Problems for Circuits 131

if σ = 0 then
if α(g) = + then choose univ. c1, c2 ∈ S s.t. a = c1 + c2;

choose ex. i ∈ {1, 2}; g := gi; a := ci
if α(g) = × then choose univ. c1, c2 ∈ S s.t. a = c1 · c2;

choose ex. i ∈ {1, 2}; g := gi; a := ci
if α(g) = ∪ then choose universally i ∈ {1, 2}; g := gi
if α(g) = ∩ then choose existentially i ∈ {1, 2}; g := gi
if α(g) = − then g := g1; σ := 1

if g is an input gate then if(σ = 1 ⇔ a = α(g)) then accept else reject

This alternating algorithm runs in polynomial time, since the number of loop
traversals is linearly bounded. ��

Corollary 3. MFN+(∪,∩,−,+,×), MFN+(∪,∩,−,+), MFN+(∪,∩,−,×),
MCN+(∪,∩,+,×), MCN+(∪,∩,−,+), and MCN+(∪,∩,−,×) are in PSPACE.

5.3 Circuits with Intersection as the Only Set Operation

Lemma 2. MCN+(∩,+,×) is in P.

Proof. Consider the input (C, b). The decision algorithm works by evaluating
C, starting with the input gates and working downwards. Once there are gates
whose interpretation would give a value that is larger than b, we replace it with
the empty set. ��

Lemma 3. MCN+(∩,×) is in NL.

Proof. Let C = (G,A, gC , α) be an ({∩,×},N+)-circuit with m ∩-gates. Choose
an ∩-gate gk ∈ G (1 ≤ k ≤ m) and let g1

k and g2
k be the left and right predecessor

of gk, respectively. We construct a new circuit Ci
k = (Gi

k, A
i
k, gC , α

1
k) (i ∈ {1, 2})

from C as follows: Gi
k =def G ∪ {g′} where g′ is a new gate, Ai

k =def (A \
{gik, gk)}) ∪ {(g′, gk)}, and αi

k(g′) =def 1, αi
k(gk) =def ×, and αi

k(g) =def α(g)
for all g ∈ G \ {gk}. It holds that

b ∈ IN+(C) ⇐⇒ b ∈ IN+(C1
k) and b ∈ IN+(C2

k). (#)

We already know that MCN+(×) ∈ NL (Corollary 2). We now give a coNL-
algorithm that decides MCN+(∩,×) using MCN+(×) as oracle. It works by testing
(#) for every ∩-gate. Consider the input (C, b) where C = (GC , AC , gC , αC).

output a new input gate g′ with label 1 on the oracle tape
output all gates from GC along with their label, but replace ∩-labels with
the ×-label.
for each (g1, g2) ∈ AC do

if αC(g2) �= ∩ then output (v1, v2)
if αC(g2) = ∩ then {

search g3 �= g1 such that (g3, g2) ∈ AC

choose i ∈ {1, 3}

132 H.-G. Breunig

output (g′, g2) and (gi, g2)
}

(let C′ be the circuit that is given by the previous output operations)
if (C′, b) ∈ MCN+(×) then accept else reject

This is a logarithmic-space algorithm, since we only need to store two pointers:
one for the outer loop and one for the search function. Furthermore, there are
only linear-sized questions asked to the oracle. ��

6 Lower Bounds

6.1 NP- and PSPACE-hard Problems

Lemma 4

1. MFN+(∪,×) is NP-hard.
2. MCN+(∪,∩,×) is PSPACE-hard.
3. MFN+(∪,∩,−,×) is PSPACE-hard.

Proof. All three proofs can essentially be found in the full paper by McKenzie
and Wagner. ��

Corollary 4. MCN+(∪,×), MFN+(∪,∩,×), MFN+(∪,+,×), and
MFN+(∪,∩,+,×) are NP-hard.
MFN+(∪,∩,−,+,×), MCN+(∪,∩,−,×), MCN+(∪,∩,+,×), and
MCN+(∪,∩,−,+,×) are PSPACE-hard.

The following theorem was proven by Yang [9]. Rather than MCN+(∪,+,×), he
called this problem Integer Circuit Evaluation.

Theorem 2 ([9]). MCN+(∪,+,×) is PSPACE-hard.

This theorem also gives a lower bound for circuits over natural numbers [3], since
MCN+(∪,+,×) ≤log

m MCN(∪,+,×) (see Proposition 1).

Lemma 5. MFN+(∪,+) is NP-hard.

Proof. We show that the NP-complete sum of subset (SOS) problem is logarith-
mic-space many-one reducible to MFN+(∪,+). The reduction function maps
(a1, . . . , an, b) to (F, b+n) where

F =def ({a1 + 1} ∪ {1}) + · · ·+ ({an + 1} ∪ {1}).

Now we obtain

(a1, . . . , an, b) ∈ SOS ⇐⇒ ∃ I ⊆ {1, . . . , n} :
∑
i∈I

ai = b

⇐⇒ ∃ I ⊆ {1, . . . , n} :
∑
i∈I

(ai + 1) +
∑
i/∈I

1 = b+ n. ��

The Complexity of Membership Problems for Circuits 133

Corollary 5. MCN+(∪,+) and MFN+(∪,∩,+) are NP-hard.

For O ⊆ {∪,∩,−,+} we define the generalized membership problems MC�
U (O)

and MF�
U (O). Here, the sets that are processed by the circuits contain values

from U ′ =def U
n ∪ {∞}. Note that the addition is defined componentwise and

a+∞ = ∞+ a = ∞ for all a ∈ U ′.

Lemma 6. Let O ⊆ {∪,∩}.
MCN+(O ∪ {×}) ≤p

m MC�
N

(O ∪ {+}).

Proof. The idea is to split values into (relatively prime) factors and represent them
by tuples. Multiplication is done by adding these tuples componentwise. This case
is a restriction of the proof found in the full paper by McKenzie and Wagner. ��

The following is also known from their full paper:

Lemma 7. Let O ⊆ {∩}.
MC�

N
(O ∪ {∪,+}) ≡log

m MCN+(O ∪ {∪,+}).

From lemmas 6, 7 we obtain: MCN+(∪,∩,×) ≤p
m MCN+(∪,∩,+), so:

Corollary 6. MCN+(∪,∩,+) and MCN+(∪,∩,−,+) are PSPACE-hard with re-
spect to polynomial-time reducibility.

Lemma 8. MFN+(−,+) is PSPACE-hard.

Proof. We use a technique that was used by Travers for circuits over integers[6].
Define the following variant of the sum of subset problem.

QSOS =def

{
(a1, . . . , an, b) : a1, . . . , an, b ∈ N, n ≡ 1 (mod 2), and

∃c1∈{0,1}∀c2∈{0,1} . . . ∃cn∈{0,1}

(
(

n∑
i=1

ci · ai) = b
)}

QSOS is PSPACE-complete and QSOS ≤log
m MFN(−,+) [6].

We now show that QSOS ≤log
m MFN+(−,+). For this we modify the proof in

[6] as follows. Since we do not allow 0, we define

Ai =def

{
1 + (ai) if ai ≥ 1
1 otherwise

for the construction of F . Since it holds that

(a1, . . . , an, b) ∈ QSOS

⇐⇒ ∃c1∈{0,1}∀c2∈{0,1} . . .∃cn∈{0,1}

(
(

n∑
i=1

ci · ai) = b
)

⇐⇒ ∃a′
1∈{1,a1+1}∀a′

2∈{1,a2+1} . . . ∃a′
n∈{1,an+1}

(
(

n∑
i=1

ci · a′i) = b+ n
)

,

we obtain that (a1, . . . , an, b) ∈ QSOS ⇐⇒ (F, b+n) ∈ MFN+(−,+). ��

134 H.-G. Breunig

Corollary 7. MFN+(∪,∩,−,+) is PSPACE-hard.

6.2 L-, NL-, and P-hard Problems

Lemma 9. Let O ⊆ {∪,∩,−}.

1. MCN(O) ≡AC0

m MCN+(O).
2. MFN(O) ≡AC0

m MFN+(O).

Proof. “≤AC0

m ”: Given (C, b) as input where C = (G,A, gC , α), the reducing
function f outputs (C′, b+ 1) where C′ = (G,A, gC , α′) and α′(g) =def α(g) + 1
for all input gates g ∈ G. It holds that (C, b) ∈ MCN(O) if and only if f((C, b)) ∈
MCN+(O) since N → N+, x �→ x + 1 is an isomorphism from (P(N),∪,∩,−) to
(P(N+),∪,∩,−).
“≥AC0

m ”: We can use the identity function with the only exception that we need
to map an instance containing a gate labeled with 0 to an invalid instance. ��

Given the results from McKenzie and Wagner [3], we obtain:

Corollary 8. The following holds with respect to AC0-reducibility.

1. MCN+(∪,∩) and MCN+(∪,∩,−) are P-hard.
2. MCN+(∪) and MCN+(∩) are NL-hard.
3. MFN+(∩), MFN+(∩,×), MFN+(∩,+), MFN+(∩,+,×), MFN+(∪),

MFN+(∪,∩), and MFN+(∪,∩,−) are L-hard.
4. MCN+(∪,∩,−) is in P.
5. MFN+(∪,∩,−) is in L.

Lemma 10. MCN+(×) is NL-hard.

Proof. We show that the coNL-complete problem GAP′ is logarithmic-space
many-one reducible to MCN+(×). Let G = (V,A) be a directed acyclic graph
and s, t ∈ V be the source and target vertices, respectively. Assume that every
vertex has in-degree 0 or 2 and s has in-degree 0 (otherwise C ∈ GAP′ anyway).
Now convertG into a ({×},N+)-circuit C by labeling every vertex with in-degree
2 by ×, the source vertex s by 2, and all other vertices with in-degree 0 by 1.
Let t be the output vertex gC . We obtain

(G, s, t) ∈ GAP′ ⇐⇒ there is no path in G from s to t
⇐⇒ 1 ∈ I(C)
⇐⇒ (C, 1) ∈ MCN+(×). ��

Corollary 9. MCN+(∩,×) is NL-hard.

Lemma 11. MCN+(+) is C=L-hard.

The Complexity of Membership Problems for Circuits 135

Table 1. Summary of results. Bold entries show differences to [3] (cf. footnotes).

MCN+(O) MCN+(O) MFN+(O) MFN+(O)

O lower bound upper bound cf. lower bound upper bound cf.

∪ ∩ − + × PSPACE2 PSPACE1 C4, Th1 PSPACE PSPACE1 C4, C3

∪ ∩ + × PSPACE2 PSPACE2 C4, C3 NP NP C4, C2

∪ + × PSPACE PSPACE Th2, C2 NP NP C4, C2

∩ + × C=L4 P5 C10, L2 L LOGDCFL C8, C2

+ × C=L4 P C10, C2 — LOGDCFL C2

∪ ∩ − + PSPACE PSPACE C6, C3 PSPACE PSPACE C7, C3

∪ ∩ + PSPACE PSPACE C6, C2 NP NP C5, C2

∪ + NP NP C5, C2 NP NP L5, C2

∩ + C=L C=L C10, C2 L L C8, C2

+ C=L C=L L11, C2 — L C2

∪ ∩ − × PSPACE PSPACE C4, C3 PSPACE PSPACE L4, C3

∪ ∩ × PSPACE PSPACE L4, C2 NP NP C4, C2

∪ × NP NP C4, C2 NP NP L4, C2

∩ × NL5 NL4 C9, L3 L L C8, C2

× NL NL L10, C2 — L C2

∪ ∩ − P P C8, C8 L L C8, C8

∪ ∩ P P C8, C2 L L C8, C2

∪ NL NL C8, C2 L L C8, C2

∩ NL NL C8, C2 L L C8, C2

Proof. Let A ∈ C=L. By definition there exist functions f ∈ #L and g ∈ FL
such that x ∈ A ⇐⇒ f(x) = g(x).

Let M be a non-deterministic logaritmic-space Turing machine such that f(x)
is the number of accepting paths of M on input x. Without loss of generality, we
can assume that each configuration ofM has exactly two successor configurations
and that all computation paths have the same length.

Let Cx be the transition graph ofM on input x. Since M is a logarithmic-space
Turing machine it holds that every configuration of M on input x has length
log |x|. Given a configuration, both successor configurations can be computed
in constant-time. Hence, Cx can be constructed in logarithmic space. But we
additionally change Cx in such a way that inner nodes are replaced by +-gates
and nodes at the end of accepting and rejecting paths are labeled 2 and 1,
respectively. Thus, Cx becomes a ({+},N+)-circuit. We define f ′(x) = I(Cx).

1 ?
2 NEXPTIME
3 co-R
4 P
5 C=L

136 H.-G. Breunig

Let m be the number of paths in Cx and let l be the length of a computation
path. It holds that m = 2l which can be computed in logarithmic space.

Since g is a logarithmic space computable function, the same holds for g′ =def

g + m. So x ∈ A ⇐⇒ f ′(x) = g′(x) ⇐⇒ g′(x) ∈ IN+(Cx) ⇐⇒ (Cx, g
′(x)) ∈

MCN+(+). ��

Corollary 10. MCN+(∩,+), MCN+(+,×), and MCN+(∩,+,×) are C=L-hard.

7 Conclusion and Open Problems

In Table 1 we give an overview of our results. Open problems are apparent.
MCN+(∩,+,×) and MCN+(+,×) seem to be rather difficult open problems. It
seems unlikely that one can reduce a P-complete problem (like a variant of the
Boolean Circuit Evaluation problem) to one of these problems due to the missing
0. On the other hand, P was the best upper bound we could obtain. The gap
at MFN+(∩,+,×) and MFN+(+,×) has already been present in [3] for the N+

counterparts.

Acknowledgments. The author is very grateful to Christian Glaßer, Klaus
W. Wagner, Daniel Meister, Bernhard Schwarz, and Stephen Travers for very
useful discussions and important hints, and to the anonymous referees for their
suggestions.

References

[1] Agrawal, M., Allender, E., Impagliazzo, R., Pitassi, T., Rudich, S.: Reducing the
Complexity of Reductions. Computational Complexity 10, 117–138 (2001)

[2] Glaßer, C., Herr, K., Reitwießner, C., Travers, S., Waldherr, M.: Equivalence Prob-
lems for Circuits over Sets of Natural Numbers. In: International Computer Science
Symposium in Russia (CSR) 2007 (to appear)

[3] McKenzie, P., Wagner, K.W.: The Complexity of Membership Problems for Cir-
cuits over Sets of Natural Numbers. In: Alt, H., Habib, M. (eds.) STACS 2003.
LNCS, vol. 2607, pp. 571–582. Springer, Heidelberg (2003)

[4] Papadimitriou, C.H.: Computational Complexity. Pearson (1994)
[5] Stockmeyer, L.J., Meyer, A.R.: Word Problems Requiring Exponential Time. In:

Proceedings 5th ACM Symposium on the Theory of Computation, pp. 1–9 (1973)
[6] Travers, S.: The Complexity of Membership Problems for Circuits over Sets of

Integers. Theor. Comput. Sci. 211–229 (2006)
[7] Vollmer, H.: Introduction to Circuit Complexity. Springer, Heidelberg (1999)
[8] Wagner, K.W.: The Complexity of Problems Concerning Graphs with Regularities.

In: Chytil, M.P., Koubek, V. (eds.) Mathematical Foundations of Computer Science
1984. LNCS, vol. 176, pp. 544–552. Springer, Heidelberg (1984)

[9] Yang, K.: Integer circuit evaluation is PSPACE-complete. In: Proceedings 15th
Conference on Computational Complexity, pp. 204–211 (2000)

Pattern Matching in Protein-Protein

Interaction Graphs

Gaëlle Brevier1, Romeo Rizzi2, and Stéphane Vialette3

1 G-SCOP, Grenoble, France
Gaelle.Giberti@imag.fr

2 Dipartimento di Matematica ed Informatica (DIMI),
Università di Udine, Italy

Romeo.Rizzi@dimi.uniud.it
3 Laboratoire de Recherche en Informatique (LRI), UMR CNRS 8623

Université Paris-Sud 11, France
Stephane.Vialette@lri.fr

Abstract. In the context of comparative analysis of protein-protein in-
teraction graphs, we use a graph-based formalism to detect the preserva-
tion of a given protein complex (pattern graph) in the protein-protein in-
teraction graph (target graph) of another species with respect to (w.r.t.)
orthologous proteins. We give an efficient exponential-time randomized
algorithm in case the occurrence of the pattern graph in the target graph
is required to be exact. For approximate occurrences, we prove a tight
inapproximability results and give four approximation algorithms that
deal with bounded degree graphs, small ortholog numbers, linear forests
and very simple yet hard instances, respectively.

1 Introduction

High-throughput analysis makes possible the study of protein-protein interac-
tions at a genome-wise scale [5,6,16], and comparative analysis tries to deter-
mine the extent to which protein networks are conserved among species. Indeed,
mounting evidence suggests that proteins that function together in a pathway
or a structural complex are likely to evolve in a correlated fashion, and, during
evolution, all such functionally linked proteins tend to be either preserved or
eliminated in a new species [9].

Protein interactions identified on a genome-wide scale are commonly visual-
ized as protein interaction graphs, where proteins are vertices and interactions
are edges [14]. Experimentally derived interaction networks can be extremely
complex, so that it is a challenging problem to extract biological functions
or pathways from them. However, biological systems are hierarchically orga-
nized into functional modules. Several methods have been proposed for identi-
fying functional modules in protein-protein interaction graphs. As observed in
[10], cluster analysis is an obvious choice of methodology for the extraction of
functional modules from protein interaction networks. Comparative analysis of
protein-protein interaction graphs aims at finding complexes that are common

E. Csuhaj-Varjú and Z. Ésik (Eds.): FCT 2007, LNCS 4639, pp. 137–148, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

138 G. Brevier, R. Rizzi, and S. Vialette

to different species. Kelley et al. [7] developed the program PathBlast, which
aligns two protein-protein interaction graphs combining topology and sequence
similarity. Sharan et al. [11] studied the conservation of complexes (they focused
on dense, clique-like interaction patterns) that are conserved in Saccharomyces
cerevisae and Helicobacter pylori, and found 11 significantly conserved complexes
(several of these complexes match very well with prior experimental knowledge
on complexes in yeast only). They actually recasted the problem of searching
for conserved complexes as a problem of searching for heavy subgraphs in an
edge- and node-weighted graph, whose vertices are orthologous protein pairs.
A promising computational framework for alignment and comparison of more
than one protein network together with a three-way alignment of the protein-
protein interaction network of Caenorhabditis elegans, Drosophila melanogaster
and Saccharomyces cerevisae is presented in [12]. The related problem of finding
a query path or a query graph that is most similar to a target graph is considered
in [19].

In [3], this pattern matching problem was stated as the problem of finding an
occurrence of a pattern graph G in a target graphs H w.r.t lists constraints (re-
ferred hereafter as the Exact-(ρ, σ)-Matching problem): to each vertex u of G is
associated a lists L(u) of vertices in H and the occurrence of G is H is required
to be an injective graph homomorphism φ from G to H such that φ(u) ∈ L(u)
for each vertex u in G. The two parameters ρ and σ denote the maximum size
of a list of G and the maximum number of occurrences of a vertex of H among
the lists of G, respectively. Roughly speaking, the rationale of this approach is
as follows. First, graph homomorphism only preserves adjacency, and hence can
deal with interaction datasets that are missing many true protein interactions.
Second, injectivity is required in order to establish a bijective relationship be-
tween proteins in the complex and proteins in the occurrence. Finally, graph
homomorphism with respect to orthologous links can be easily recasted as list
homomorphism: a list of putative orthologs is associated to each protein (vertex)
of the complex, and each such protein can only be mapped by the homomor-
phism to a protein occurring in its list. In the context of comparative analysis of
protein-protein interaction graphs, drastic restrictions were imposed on the size
of the lists. Some (classical and parameterized) hardness results together with
several heuristics for the Exact-(ρ, σ)-Matching problem were presented in [3].
These results were improved in [4]. Of particular importance in the context of
computational biology, we investigated in [4] the problem of finding approximate
occurrences (the Max-(ρ, σ)-Matching problem), i.e., the injective mapping of
G to H were no longer required to be a graph homomorphism but to match as
many edges as possible.

Aiming at presenting accurate computational models, we combine state-of-
the art approaches to identifying orthologs, i.e, genes in different species that
originate from a single gene in the last common ancestor of these species for
transferring functional information between genes in different organisms with
a high degree of reliability [13], and the above mentioned line of research by

Pattern Matching in Protein-Protein 139

considering additional structural constraints on the lists: for each distinct vertices
u and v of G, either L(u) = L(v) or L(u) ∩ L(v) = ∅. The obtained problem
is modeled by replacing lists by colors: to all vertices of G and H is associated
a color and a vertex of G can only be mapped to a vertex of H with the same
color.

This paper is organized as follows. We briefly discuss in Section 2 basic no-
tations and definitions that we will use throughout the paper. In Section 3 we
give a randomized algorithm for finding an injective mapping w.r.t to the col-
orings that matches all the edges of the pattern graph. We prove in Section 4
that the problem of finding an injective mapping w.r.t to the colorings that
matches as many edges of the pattern graph as possible is hard to approxi-
mate even if both the pattern graph and the target graph are linear forests
or trees. Section 5 is devoted to approximation. with a focus on two restricted
but still hard cases: (i) the pattern graph or the target graph has bounded
degree, (ii) the number of occurrences of each color in the target graph is con-
sidered to be small and (iii) both the pattern graph and the target graphs are
linear forests. Section 6 concludes our word and propose future directions of
research.

2 Preliminaries

We assume readers have basic knowledge about graph theory [2] and we shall
thus use most conventional terms of graph theory without defining them (we
only recall basic notations), we only recall basic notations. Let G be a graph.
We write V(G) for the set of vertices and E(G) for the set of edges. Also,
we write n(G) for #V(G) and m(G) for #E(G). The maximum degree Δ(G)
of a graph G is the largest degree over all vertices. A graph is called a linear
forest if every component is a path. Let G be a graph together with a coloring
λ : V(G) → C of its vertices. For any color ci ∈ C, we denote by CG(ci) the set
of vertices of G that are colored with color ci, i.e., CG(ci) = {u ∈ V(G) : λ(u) =
ci}. The multiplicity of λ in G, written mult(G, λ), is the maximum number
of occurrences of a color in G, i.e., mult(G, λ) = max{#CG(ci) : ci ∈ C}. Let
G and H be two graphs and let θ : V(G) → V(H) be an injective mapping.
The set of edges of G that are preserved in H by θ is written match(G,H, θ),
i.e., match(G,H, θ) = {{u, v} ∈ E(G) : {θ(u), θ(v)} ∈ E(H)}. If both G and
H are equipped with some colorings λG : V(G) → C and λH : V(H) → C
of their vertices, a mapping θ : V(G) → V(H) is said to be with respect to
(w.r.t.) λG and λH if λG(u) = λH(θ(u)) for every u ∈ V(G), i.e., θ is a color
preserving mapping. For simplicity, we shall usually abbreviate such a mapping
as θ : V(G)

λG,λH−−−−→ V(H).
We are now in position to formally define the Max–(ρ, σ)–Matching–Color

problem we are interested in.

140 G. Brevier, R. Rizzi, and S. Vialette

Max–(ρ, σ)–Matching–Color

• Input : Two graphs G and H together with the coloring mappings λG :
V(G) → C, mult(G, λG) = ρ, and λH : V(H) → C, mult(H,λH) = σ.

• Solution : An injective mapping θ : V(G)
λG,λH−−−−→ V(H).

•Measure : The number of edges of G matched by the injective mapping
θ, i.e., #match(G,H, θ).

We designate by Exact–(ρ, σ)–Matching–Color the extremal problem of
finding an injective mapping θ : V(G)

λG,λH−−−−→ V(H) that matches all the edges
of G, i.e., θ is required to be an injective graph homomorphism [4]. Also, we
call an instance of both the Max–(ρ, σ)–Matching–Color and Exact–(ρ, σ)–

Matching–Color problems colorful if ρ = 1.
Let (G,H, C, λG, λH) be an instance of the Max–(ρ, σ)–Matching–Color.

First, a necessary and sufficient condition for an injective mapping to exists
is #CG(ci) ≤ #CH(ci) for each color ci ∈ C. Second, an edge {u, v} ∈ E(G),
λG(u) = cu and λG(v) = cv, is called a bad edge if there does not exist distinct
u′ ∈ CH(cu) and v′ ∈ CH(cv) such that {u′, v′} ∈ E(H). Clearly, if we remove
from G its bad edges, this does not affect the optimal solutions for the Max–

(ρ, σ)–Matching–Color problem, since bad edges can never be matched. Notice
that we can tell bad edges apart in O(σ2 m(G)) = O(m(G)) time, provided σ is
a constant. Therefore, throughout the paper, we will consider only trim instances
as defined in the following.

Definition 1 (Trim instance). An instance (G,H, C, λG, λH) of the Max–

(ρ, σ)–Matching–Color or the Exact–(ρ, σ)–Matching–Color problem is said
to be trim if the following conditions hold true:

– for each color ci ∈ C, #CG(ci) ≤ #CH(ci), and
– for each edge {ui, uj} ∈ E(G), there exists an edge {vi, vj} ∈ E(H) such that
λG(ui) = λH(vi) and λG(uj) = λH(vj).

3 Exact Colorful Instances

This section is devoted to the Exact–(1, σ)–Matching–Color problem. On the
one hand, both the Exact–(1, σ)–Matching–Color problem for Δ(G) ≤ 2 and
the Exact–(ρ, 2)–Matching–Color problem are solvable in polynomial-time for
any constant ρ and σ [3]. On the other hand, the Exact–(1, 3)–Matching–

Color problem for Δ(G) = 3 and Δ(H) = 4 is NP–complete [4]. We first
observe that the Exact–(1, σ)–Matching–Color problem is easily solvable in
Õ(σn(G)) time: the brute-force algorithm tries all possible injective mappings

θ : V(G)
λG,λH−−−−→ V(H) and returns the best one. We give a faster randomized

Pattern Matching in Protein-Protein 141

algorithm (referred hereafter as Algorithm Rand-Exact-Matching-Colors) than runs
in Õ(f(σ)n(G)) expected time, where

f(σ) =
4σ(2σ − 2)3

4(2σ − 2)3 + 27(2σ − 3)
.

Observe that f(σ) < σ, for σ > 2. For the sake of illustration, f(3) < 2.279,
f(4) < 3.460 and f(5) < 4.578.

We present here a random walk algorithm for the Exact–(1, σ)–Matching–

Color problem similar to [8]. For simplicity, we assume the worst case where
each color occurs exactly σ times in graph H . The basic idea is to start with a
random injective mapping θ, look at an edge e of G that is not matched by θ,
select at random one end-vertex u of e and finally change at random the image
of u, i.e., θ(u). Observe however that, oppositely to satisfiability-like algorithms
where changing the assignment of a boolean variable in an unsatisfied clause
result in a satisfied clause, the edge e might be here still not matched by the
new injective mapping θ.

Algorithm 1: Rand-Exact-Matching-Colors

Input: An instance (G, H, C, λG, λH) of the Exact–(1, σ)–Matching–Color
problem.

Output: An occurrence of G in H , i.e., an injective homomorphism

θ : V(G)
λG,λH−−−−→ V(H) (if such a mapping exists).

begin
repeat terminating whether an occurrence of G in H w.r.t λG and λH is
found.

Let θ : V(G)
λG,λH−−−−→ V(H) be a random injective.

repeat up to 3n(G) times, terminating whether an occurrence of G in H
w.r.t λG and λH is found.

(1) Choose at random an edge e ∈ E(G) that is not matched by θ.
(2) Choose at random one vertex u ∈ e.
(3) Change at random the value of θ(u) w.r.t λG and λH .

end

end

end

Fig. 1. Algorithm Rand-Exact-Matching-Colors

Let (G,H, C, λG, λH) be an arbitrary instance of the Exact–(1, σ)–Matching–

Color problem, and suppose that there exists an injective homomorphism
θOPT : V(G)

λG,λH−−−−→ V(H), i.e., (G,H, C, λG, λH) is a YES instance. With-
out loss of generality we may assume that, for each color ci ∈ C, exactly σ
vertices of H are colored with color ci (and hence H has σ #C vertices). Fix

any injective mapping θ : V(G)
λG,λH−−−−→ V(H) and let θi : V(G)

λG,λH−−−−→ V(H)
be the injective mapping after the i-th step of the inner loop of Algorithm
Rand-Exact-Matching-Colors. Let Xi be the number of vertices u ∈ V(G) such that

142 G. Brevier, R. Rizzi, and S. Vialette

θi(u) = θopt(u). If Xi = n(G), Algorithm Rand-Exact-Matching-Colors terminates
with an injective homomorphism. Clearly, the algorithm could terminate before
Xi = n(G) by finding a different injective homomorphism, but for our analysis
the worst case is that the algorithm only stops when Xi = n(G).

Suppose 1 ≤ Xi ≤ n(G) − 1. At each step, we choose an edge e = {u, v} ∈
E(G) that is not matched. Since (G,H, C, λG, λH) is a YES instance, θi and θopt

disagree on at least one of u and v. Suppose first that θi and θopt disagree on
exactly one of u and v. Then, the probability of increasing the number of agree-
ments between θopt and θi+1 is 1

2σ−2 , the probability of decreasing the number
of agreements between θopt and θi+1 is σ−1

2σ−2 and the probability of obtaining
the same number of agreements between θopt and θi+1 is σ−2

2σ−2 . Suppose now
that θi and θopt disagree on both u and v. Then, the probability of increasing
the number of agreements between θopt and θi+1 is 2

2σ−2 , the probability of
decreasing the number of agreements between θopt and θi+1 is 0 (θi and θopt

indeed already both disagree on both vertices) and the probability of obtaining
the same number of agreements between θopt and θi+1 is 2σ−4

2σ−2 .
We now consider a pessimistic stochastic process (Y1, Y2, . . .) defined as

follows:

Pr[Yi+1 = j + 1|Yi = j] ≥ 1
2σ − 2

Pr[Yi+1 = j − 1|Yi = j] ≤ 2σ − 3
2σ − 2

.

This stochastic process is best understood by using the same metaphor as in
[8]: consider a particle moving on the integer line, with probability (2σ − 1)−1

of moving up by one and probability (2σ − 3)(2σ − 2)−1 of moving down by
one. Observe that in the pessimistic stochastic process (Y1, Y2, . . .) the particle
never stays in place whereas the probability of obtaining the same number of
agreements is non-zero in Algorithm Rand-Exact-Matching-Colors. Let rj be the
probability of exactly k “moves down”, and j + k “moves up” in a sequence of
2k + j moves. We have

rj ≥
(

2σ − 3
2σ − 2

)k (1
2σ − 2

)j+k

.

Now, let qj be the probability that the algorithm finds an injective homomor-
phism within j + 2k ≤ 3 n(G) steps, starting from a random injective mapping

θ : V(G)
λG,λH−−−−→ V(H).

Lemma 1. qj ≥
√

3
8
√
πj

(
27(2σ − 3)
4(2σ − 2)3

)j

.

Let pj be the probability that a random injective mapping θ : V(G)
λG,λH−−−−→

V(H) has j disagreements with θopt. We now derive a lower bound for q, the
probability that the process finds an occurrence of G in H w.r.t λG and λH in
3 n(G) steps stating from a random injective mapping.

Pattern Matching in Protein-Protein 143

Lemma 2. q ≥
√

3
8
√
π n(G)

f(σ)−n(G).

Therefore, if we assume that there exists an injective mapping θ : V(G)
λG,λH−−−−→

V(H), the number of random injective mappings the process tries before finding
an occurrence of G in H is a geometric random variable with parameter q. Hence,
the expected of random injective mappings tried is q−1, and for each injective
mapping the algorithm uses at most 3 n(G) steps. Thus, the expected number
of steps until a solution is found is bounded by O(n(G)3/2 f(σ)n(G)). We have
thus proved the following.

Proposition 1. Algorithm Rand-Exact-Matching-Colors returns an injective ho-
momorphism θ : V(G)

λG,λH−−−−→ V(H) (if such a solution mapping exists) in
Õ(f(σ)n(G))time, where

f(σ) =
4σ(2σ − 2)3

4(2σ − 2)3 + 27(2σ − 3)
.

4 Hardness Results

The Max–(1, 2)–Matching–Color problem for bipartite graphs G and H with
Δ(G) = 3 and Δ(H) = 2 (resp. Δ(G) = 6 and Δ(H) = 5) is APX–hard
and is not approximable within ratio 1.0005 (resp. 1.0014), unless P = NP [4].
Therefore, there is a natural interest to investigate the complexity issues of
the Max–(ρ, σ)–Matching–Color problem for restricted graph classes. Unfor-
tunately, as we shall prove here, the Max–(3, 3)–Matching–Color (resp. Max–

(2, 2)–Matching–Color) problem is APX–hard even if both G and H are linear
forests (resp. trees with maximum degree 3).

Proposition 2. The Max–(3, 3)–Matching–Color problem is APX–hard even
if both G and H are linear forests.

It remains open, however, whether the Max–(ρ, σ)–Matching–Color problem for
linear forests G and H is polynomial-time solvable in case ρ < 3. The rationale
of this question stems from the following proposition.

Proposition 3. The Max–(2, 2)–Matching–Color problem is APX–hard even
if both G and H are trees.

5 Approximation Algorithms

We proved in Section 4 that the Max–(3, 3)–Matching–Color problem for lin-
ear forests is APX–hard. In the light of this negative result, we first focus
here on approximating the Max–(ρ, σ)–Match–colors problem for bounded de-
gree graphs and give a polynomial-time approximation algorithm that achieves a

144 G. Brevier, R. Rizzi, and S. Vialette

performance ratio of 2(Δmin + 1), where Δmin = min{Δ(G), Δ(H)}. Next, we
propose a randomized algorithm with performance ratio 4σ. Finally, we give an
approximation algorithm that achieves a performance ratio of 4 in case both G
and H are linear forests.

5.1 Bounded Degree Graphs

We first consider bounded degree graphs. Let C = {c1, c2, . . . , cm} be a set of
colors and G be a graph whose vertices are colored with colors taken from C.
Also, let A = [ai,j] be a symmetric matrix of order m whose entries are natural
integers. Consider the problem, referred hereafter as the Max-Matching-with-

Color-Constraints (MMwCC) problem, of finding in G a maximum cardinality
matching M ⊆ E(G) subject to the constraint that, for 1 ≤ i ≤ j ≤ m, the
number of edges in M having one end-vertex colored ci and one end-vertex
colored cj is at most ai,j . It is clear that a straightforward greedy algorithm
delivers a 2-approximation algorithm for the MMwCC problem.

Lemma 3. The MMwCC problem is NP–complete but is approximable within
ratio 2.

Recall that an edge coloring of a graph G is proper if no two adjacent edges
are assigned the same color. A proper edge coloring with k colors is called a
proper k-edge-coloring and is equivalent to the problem of partitioning the edge
set into k matchings. The smallest number of colors needed in a proper edge
coloring of a graph G is the chromatic index χ′(G) [2]. Vizing’s theorem [18]
states that χ′(G) ≤ Δ(G) + 1 and that such an edge coloring can be found
in polynomial-time. Combining Lemma 3 and Vizing’s theorem we obtain the
following result.

Proposition 4. For any ρ and σ, the Max–(ρ, σ)–Match–colors problem is
approximable within ratio 2(Δmin + 1), where Δmin = min{Δ(G), Δ(H)}.

5.2 A Randomized Algorithm

We give here a randomized approximation algorithm which achieves a
performance ratio of 4 σ for the Max–(ρ, σ)–Match–colors problem, for any ρ
and σ.

Let C be a set of colors and G be a graph whose vertices are colored with
colors taken from C. Define a legal (�1, �2)-labeling of G to be an assignment
to labels {�1, �2} to the vertices of G such that, for each color ci ∈ C, either⌊
#CG(ci)

2

⌋
or
⌈
#CG(ci)

2

⌉
vertices in CG(ci) are labeled �1. Of particular importance

here is the fact that it is easy to choose at random a legal (�1, �2)-labeling of G.
Define the cut induced by a legal (�1, �2)-labeling to be the set of edges that have
one end-vertex with label �1 and one end-vertex with label �2.

Pattern Matching in Protein-Protein 145

Consider now an arbitrary trim instance (G,H, C, λG, λH) of the Max–(ρ, σ)–

Match–colors problem and let θopt : V(G)
λG,λH−−−−→ V(H) be an optimal solu-

tion. Now, let L be a random legal (�1, �2)-labeling of G and CL ⊆ E(G) be the
cut induced by L. Finally, let E′ = CL ∩ match(G,H, θopt). The expected size
of E′ and the size of match(G,H, θopt) are related by the following lemma.

Lemma 4. Exp[#E′] ≥ #match(G,H, θopt)
2

.

Combining Lemma 4 with a weighted bipartite matching algorithm yields the
following result.

Proposition 5. There exists a randomized algorithm with expected performance
ratio 4 σ for the Max–(ρ, σ)–Matching–Color problem.

5.3 Linear Forests

We proved in Section 4 that the Max–(3, 3)–Matching–Color problem is APX-
hard even if both G and H are linear forests. Furthermore, according to Propo-
sition 4, the Max–(ρ, σ)–Matching–Color problem for linear forests is approx-
imable within ratio 2(Δmin +1) = 6. We strengthen this result here by giving an
algorithm that achieves a performance ratio of 4 for the Max–(ρ, σ)–Matching–

Color problem for linear forests. The proof make use of weighted 2-intervals sets.
More precisely, our approach is based on the 2-Interval–Pattern problem [17,1].
This problem, initially motivated by RNA secondary structure prediction, asks
to find a maximum cardinality subset of a 2-interval set with respect to some
prespecified geometric constraints.

We need some additional definitions. A 2-interval [15,17] is the union of two
disjoint intervals defined over a line. A 2-interval is denoted by D = (I, J),
where I and J are two closed intervals defined over a single line such that I is
completely to the left of J . Two 2-intervals D1 = (I1, J1) and D2 = (I2, J2) are
disjoint, if both 2-intervals share no common point, i.e., (I1∪J1)∩ (I2 ∪J2) = ∅.
A 2-interval D = (I, J) is said to be balanced if |I| = |J |, i.e., both intervals
have the same length. By abuse of notation, a set of balanced 2-interval is also
said to be balanced. Let D be a set 2-intervals. If we associate to each 2-interval
D ∈ D a weight ω(D), the weight of D, denoted ω(D), is defined to be the sum
of the weights of all the 2-intervals in D.

Let (G,H, C, λG, λH) be a trim instance of the Max–(ρ, σ)–Matching–Color

problem where both G and H are linear forests. Let PG
1 , P

G
2 , . . . , P

G
k (resp.

PH
1 , PH

2 , . . . , PH

) be the collection of all paths of G (resp. H). First, we arrange

the paths PG
1 , P

G
2 , . . . , P

G
k and next the paths PH

1 , PH
2 , . . . , PH

 along an hori-
zontal line, arbitrarily. According to this arrangement, we define the label (resp.
reversal label) of any subpath of a path to be string obtained by concatenat-
ing the colors (view as letters) of the vertices of the path reading from left to
right (resp. right to left). Second, we construct a corresponding set of weighted
2-intervals D[G,H] as follows. For each pair (QG

i , Q
H
j), where QG

i is a subpath
of length at least one of a path in {PG

1 , P
G
2 , . . . , P

G
k } and QH

j is a subpath of

146 G. Brevier, R. Rizzi, and S. Vialette

length at least one of a path in {PH
1 , PH

2 , . . . , PH

 } Qi

G and QH
j having the same

length, if the label of QG
i is identical to the label of QH

j or to the reversal label
of QH

j , we add to D[G,H] a 2-interval whose left interval covers all the vertices
(and only those vertices) of the subpath QG

i and whose right interval covers all
the vertices (and only those vertices) of the subpath QH

j . The weight of this
2-interval is defined to be the length of the subpath QG

i (which also the length
of the subpath QH

j). Without loss of generality, we may assume that each 2-
interval in D[G,H] is balanced and that two 2-intervals that correspond to two
vertex-disjoint pairs of subpaths are disjoint. See Figure 2 for an illustration of
this construction. The rationale of this construction stems from the following
lemma.

c3 c2 c1

c1 c2 c1

c1 c2 c3

c1c1 c2

c2c1

G H

P G
1

P G
2

P H
1

P H
2

P H
3

D[G, H]

c1 c2 c3 c1 c1 c2 c1 c2c2 c2c3 c1c1c1

P H
3P H

2P G
2 P H

1P G
1

1
1
1
1
2

1
1
1
1
1
1

Fig. 2. Constructing a weighted 2-intervals set from an instance (G, H,C, λG, λH) of
the Max–(ρ, σ)–Matching–Color problem where both G and H are linear forests.
The weights of all the 2-intervals in the set D[G, H] are given in the left part of the
figure.

Lemma 5. There exists a pairwise disjoint subset D′ ⊆ D[G,H] of weight ω(D′)

if and only if there exists an injective mapping θ : V(G)
λG,λH−−−−→ V(H) such that

#match(G,H, θ) ≥ ω(D′).

According to Lemma 5 it is thus enough to focus on finding a maximum weighted
subset ofD[G,H] of disjoint 2-intervals, which is exactly the 2-Interval–Pattern

problem. In [1], an algorithm with performance ratio 4 is proposed for finding a
subset of disjoint 2-intervals in a balanced 2-intervals set. We have thus proved
the following.

Pattern Matching in Protein-Protein 147

Corollary 1. For any ρ and σ, the Max–(ρ, σ)–Matching–Color problem is
approximable within ratio 4 in case both G and H are linear forests.

6 Conclusion

In the context of comparative analysis of protein-protein interaction graphs,
we considered the problem of finding an occurrence of a given complex in the
protein-protein interaction graph of another species. We gave an efficient ran-
domized algorithm in case the mapping is required to be an injective homo-
morphism. Also, we proved the Max–(3, 3)–Matching–Color problem for linear
forests to be APX–hard and we gave an approximation algorithm that achieves
a performance ratio of 2(Δmin +1), a randomized algorithm with approximation
ratio 4 σ and a simple approximation algorithm with performance ratio 4 in case
both G and H are linear forests.

We mention here some possible directions for future works. First, is it possi-
ble to improve the approximation ratio for bounded degree graphs presented in
Proposition 4? Second, due to biological constraints, improving Proposition 5 is
of particular interest. In particular, does a deterministic or randomized approxi-
mation algorithm with performance ratio σ exist for the Max–(ρ, σ)–Matching–

Color problem?

References

1. Crochemore, M., Hermelin, D., Landau, G., Rawitz, D., Vialette, S.: Approximat-
ing the 2-interval pattern problem, Theoretical Computer Science (special issue for
Alberto Apostolico) 2006 (to appear)

2. Diestel, R.: Graph theory, 2nd edn. Graduate texts in Mathematics, vol. 173.
Springer, Heidelberg (2000)

3. Fagnot, I., Lelandais, G., Vialette, S.: Bounded list injective homomorphism for
comparative analysis of protein-protein interaction graphs. In: Proc. 1st Algorithms
and Computational Methods for Biochemical and Evolutionary Networks (Comp-
BioNets), pp. 45–70. KCL publications (2004)

4. Fertin, G., Rizzi, R., Vialette, S.: Finding exact and maximum occurrences of pro-
tein complexes in protein-protein interaction graphs. In: Jedrzejowicz, J., Szepi-
etowski, A. (eds.) MFCS 2005. LNCS, vol. 3618, pp. 328–339. Springer, Heidelberg
(2005)

5. Gavin, A.C., Boshe, M., et al.: Functional organization of the yeast proteome by
systematic analysis of protein complexes. Nature 414(6868), 141–147 (2002)

6. Ho, Y., Gruhler, A., et al.: Systematic identification of protein complexes in Sac-
charomyces cerevisae by mass spectrometry. Nature 415(6868), 180–183 (2002)

7. Kelley, B.P., Sharan, R., Karp, R.M., Sittler, T., Root, D.E., Stockwell, B.R.,
Ideker, T.: Conserved pathways within bacteria and yeast as revealed by global
protein network alignment. PNAS 100(20), 11394–11399 (2003)

8. Mitzenmacher, M., Upfal, E.: Probability and computing: Randomized algorithms
and probabilistic analysis. Cambridge University Press, Cambridge (2005)

9. Pellegrini, M., Marcotte, E.M., Thompson, M.J., Eisenberg, D., Yeates, T.O.: As-
signing protein functions by comparative genome analysis: protein phylogenetic
profiles. PNAS 96(8), 4285–4288 (1999)

148 G. Brevier, R. Rizzi, and S. Vialette

10. Pereira-Leal, J.B., Enright, A.J., Ouzounis, C.A.: Detection of functional modules
from protein interaction networks. Proteins 54(1), 49–57 (2004)

11. Sharan, R., Ideker, T., Kelley, B., Shamir, R., Karp, R.M.: Identification of protein
complexes by comparative analysis of yeast and bacterial protein interaction data.
In: Proc. 8th annual international conference on Computational molecular biology
(RECOMB), pp. 282–289. ACM Press, New York (2004)

12. Sharan, R., Suthram, S., Kelley, R.M., Kuhn, T., McCuin, S., Uetz, P., Sittler, T.,
Karp, R., Ideker, T.: Conserved patterns of protein interaction in multiple species.
PNAS 102(6), 1974–1979 (2004)

13. Tatusov, R.L., Koonin, E.V., Lipman, D.J.: A genomic perspective on protein
families. Science 278(5338), 631–637 (1997)

14. Titz, B., Schlesner, M., Uetz, P.: What do we learn from high-throughput protein
interaction data? Expert Review of Anticancer Therapy 1(1), 111–121 (2004)

15. Trotter, W.T., Harary, F.: On double and multiple interval graphs. J. Graph The-
ory 3, 205–211 (1979)

16. Uetz, P., Giot, L., et al.: A comprehensive analysis of protein-protein interactions
in Saccharomyces cerevisae. Nature 403(6770), 623–627 (2000)

17. Vialette, S.: On the computational complexity of 2-interval pattern matching. The-
oretical Computer Science 312(2-3), 223–249 (2004)

18. Vizing, V.G.: On an estimate of the chromatic class of a p-graph. Diskret. Analiz 3,
23–30 (1964)

19. Yang, Q., Sze, S.-H.: Path matching and graph matching in biological networks.
JCB 14(1), 56–67 (2007)

From Micro to Macro: How the Overlap Graph

Determines the Reduction Graph in Ciliates�

Robert Brijder, Hendrik Jan Hoogeboom, and Grzegorz Rozenberg

Leiden Institute of Advanced Computer Science, Universiteit Leiden,
Niels Bohrweg 1, 2333 CA Leiden, The Netherlands

rbrijder@liacs.nl

Abstract. The string pointer reduction system (SPRS) and the graph
pointer reduction system (GPRS) are important formal models of gene
assembly in ciliates. The reduction graph is a useful tool for the analysis
of the SPRS, providing valuable information about the way that gene as-
sembly is performed for a given gene. The GPRS is more abstract than
the SPRS – not all information present in the SPRS is retained in the
GPRS. As a consequence the reduction graph cannot be defined for the
GPRS in general, but we show that it can be defined if we restrict our-
selves to the so-called realistic overlap graphs (which correspond to genes
occurring in nature). Defining the reduction graph within the GPRS al-
lows one to carry over from the SPRS to the GPRS several results that
rely on the reduction graph.

1 Introduction

Gene assembly is a process that takes place in unicellular organisms called
ciliates, which have two functionally different nuclei: micronucleus (MIC) and
macronucleus (MAC). Gene assembly transforms the genome of MIC into the
genome of MAC. During gene assembly each gene in its MIC form gets trans-
formed into the same gene in its MAC form. Among the formal models of gene
assembly the string pointer reduction system (SPRS) and the graph pointer re-
duction system (GPRS) [5] are of interest for this paper. The former consist of
three types of string rewriting rules operating on so-called legal strings, while
the latter consist of three types of graph rewriting rules operating on so-called
overlap graphs. The GPRS is an abstraction of the SPRS with some information
present in the SPRS lost in the GPRS.

Legal strings represent genes in their micronuclear form. The reduction graph,
which is defined for legal strings, is a notion that describes the corresponding
gene in its macronuclear form (along with its waste products, the substrings
“spliced out” in the process) – it is unique for a given legal string. It has been
shown that the reduction graph contains the information needed for the use of
string negative rules (one of the three types of string rewriting rules) in the

� This research was supported by the Netherlands Organization for Scientific Research
(NWO) project 635.100.006 “VIEWS” and NSF grant 0622112.

E. Csuhaj-Varjú and Z. Ésik (Eds.): FCT 2007, LNCS 4639, pp. 149–160, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

150 R. Brijder, H.J. Hoogeboom, and G. Rozenberg

transformation of a MIC form of a gene to its MAC form [3,2,1]. Therefore it
would be useful to have a notion of the reduction graph also for the GPRS. How-
ever, this is not so straightforward, because as we will show, since the GPRS
loses some information concerning the application of string negative rules, there
is no unique reduction graph for a given overlap graph, cf. Example 6. We will
show that when we restrict ourselves to “realistic” overlap graphs then one gets
a unique reduction graph. These overlap graphs are called realistic since they
correspond to (micronuclear) genes. In this paper, we explicitly define the no-
tion of reduction graph for realistic overlap graphs (within the GPRS) and show
its equivalence with the notion of reduction graph for legal strings (within the
SPRS). Finally, we give a number of direct corollaries of this equivalence, includ-
ing an answer to an open problem formulated in Chapter 13 in [5]. Due to space
constraints, proofs of our results are omitted – they are given in an extended
version of this paper [4].

2 Gene Assembly in Ciliates

Two models that are used to formalize the process of gene assembly in ciliates
are the string pointer reduction system (SPRS) and the graph pointer reduction
system (GPRS). The SPRS consist of three types of string rewriting rules oper-
ating on legal strings while the GPRS consist of three types of graph rewriting
rules operating on overlap graphs. For the purpose of this paper it is not nec-
essary to recall the string and graph rewriting rules; a complete description of
SPRS and GPRS, as well as a proof of their “weak” equivalence, can be found
in [5]. We do recall the notions of legal string and overlap graph, and we also
recall the notion of realistic string.

We fix κ ≥ 2, and define the alphabet Δ = {2, 3, . . . , κ}. For D ⊆ Δ, we define
D̄ = {ā | a ∈ D} and ΠD = D ∪ D̄; also Π = ΠΔ. The elements of Π will be
called pointers. We use the “bar operator” to move from Δ to Δ̄ and back from
Δ̄ to Δ. Hence, for p ∈ Π , ¯̄p = p. For a string u = x1x2 · · ·xn with xi ∈ Π , the
inverse of u is the string ū = x̄nx̄n−1 · · · x̄1. For p ∈ Π , we define p to be p if
p ∈ Δ, and p̄ if p ∈ Δ̄, i.e., p is the “unbarred” variant of p. The domain of u,
denoted by dom(u), is {p | p occurs in v}. We say that u is a legal string if for
each p ∈ dom(u), u contains exactly two occurrences (of elements) from {p, p̄}.
For a pointer p and a legal string u, if both p and p̄ occur in u then we say that
both p and p̄ are positive in u; if on the other hand only p or only p̄ occurs in
u, then both p and p̄ are negative in u. So, every pointer occurring in a legal
string is either positive or negative in it. Therefore, we can define a partition of
dom(u) = pos(u)∪neg(u), where pos(u) = {p ∈ dom(u) | p is positive in u} and
neg(u) = {p ∈ dom(u) | p is negative in u}.

Let u = x1x2 · · ·xn be a legal string with xi ∈ Π for 1 ≤ i ≤ n. For a pointer
p ∈ Π , the p-interval of u is the substring xixi+1 · · ·xj with {xi, xj} ⊆ {p, p̄}
and 1 ≤ i < j ≤ n. Substrings xi1 · · ·xj1 and xi2 · · ·xj2 overlap in u if i1 <
i2 < j1 < j2 or i2 < i1 < j2 < j1. Two distinct pointers p, q ∈ Π overlap
in u if the p-interval of u overlaps with the q-interval of u. Thus, two distinct

From Micro to Macro 151

pointers p, q ∈ Π overlap in u iff there is exactly one occurrence from {p, p̄}
in the q-interval, or equivalently, there is exactly one occurrence from {q, q̄} in
the p-interval of u. Also, for p ∈ dom(u), we denote the set of all q ∈ dom(u)
such that p and q overlap in u by Ou(p), and for 0 ≤ i ≤ j ≤ n, we denote
by Ou(i, j) the set of all p ∈ dom(u) such that there is exactly one occurrence
from {p, p̄} in xi+1xi+2 · · ·xj . Also, we define Ou(j, i) = Ou(i, j). Intuitively,
Ou(i, j) is the set of p ∈ dom(u) for which the the substring between “positions”
i and j in u contains exactly one representative from {p, p̄}, where position i
for 0 < i < n means the “space” between xi and xi+1 in u. For i = 0 it is the
“space” on the left of x1, and for i = n it is the “space” on the right of xn.
We have Ou(i, n) = Ou(0, i) for i with 0 ≤ i ≤ n. The symmetric difference of
sets X and Y , (X\Y)∪ (Y \X), is denoted by X ⊕Y . We denote the symmetric
difference of a family of sets (Xi)i∈A by

⊕
i∈AXi. For i, j, k ∈ {0, . . . , n}, we

have Ou(i, j)⊕Ou(j, k) = Ou(i, k).
A labelled graph is a 4-tuple G = (V,E, f, Γ), where V is a finite set of

vertices, E ⊆ {{x, y} | x, y ∈ V, x �= y} is a set of edges, Γ a finite set of labels,
and f : V → Γ is the labelling function. Labelled graphs G = (V,E, f, Γ) and
G′ = (V ′, E′, f ′, Γ) are isomorphic, denoted by G ≈ G′, if there is a bijection α :
V → V ′ such that f(v) = f ′(α(v)) for v ∈ V , and {x, y} ∈ E iff {α(x), α(y)} ∈
E′ for x, y ∈ V . Bijection α is then called an isomorphism from G to G′.

Definition 1. Let u be a legal string. The overlap graph of u, denoted by γu, is
the labelled graph (dom(u), E, σ, {+,−}), where for p, q ∈ dom(u) with p �= q,
{p, q} ∈ E iff p and q overlap in u, and σ is defined by: σ(p) = + if p ∈ pos(u),
and σ(p) = − if p ∈ neg(u).

Example 1. Let u = 24535423 be a legal string. The overlap graph of u is

γ = ({2, 3, 4, 5}, {{2, 3}, {4, 3}, {5, 3}}, σ, {+,−}),

where σ(v) = − for all vertices v of γ.

Let γ be an overlap graph. Similar to legal strings, we define dom(γ) as the set
of vertices of γ, pos(γ) = {p ∈ dom(γ) | σ(p) = +}, neg(γ) = {p ∈ dom(γ) |
σ(p) = −} and for q ∈ dom(u), Oγ(q) = {p ∈ dom(γ) | {p, q} ∈ E}.

We define the alphabet Θκ = {Mi, M̄i | 1 ≤ i ≤ κ}. We say that δ ∈ Θ∗
κ is a

micronuclear arrangement if for each i with 1 ≤ i ≤ κ, δ contains exactly one
occurrence from {Mi, M̄i}. With each string overΘκ, we associate a unique string
over Π through the homomorphism πκ : Θ∗

κ → Π∗, thus πκ(uv) = πκ(u)πκ(v)
for all u, v ∈ Θ∗

κ, defined by: πκ(M1) = 2, πκ(Mκ) = κ, πκ(Mi) = i(i + 1) for
1 < i < κ, and πκ(M̄j) = πκ(Mj) for 1 ≤ j ≤ κ.

We say that string u is a realistic string if there is a micronuclear arrangement
δ such that u = πκ(δ). Note that every realistic string is a legal string. Realis-
tic strings are most useful for the gene assembly models, since only these legal
strings can correspond to genes in ciliates. An overlap graph γ is realistic if it is

152 R. Brijder, H.J. Hoogeboom, and G. Rozenberg

the overlap graph of a realistic string. Not every overlap graph of a legal string is
realistic. For example, it can be shown that the overlap graph γ of u = 24535423
given in Example 1 is not realistic. In fact, one can show that it is not even
realizable — there is no isomorphism α such that α(γ) is realistic.

3 The Reduction Graph

We now recall the notion of a (full) reduction graph, which was first introduced
in [3]. Below we present this graph in a slightly modified form. The reduction
graph is a 2-edge coloured graph. A 2-edge coloured graph is a 5-tuple G =
(V,E1, E2, f, Γ), where both (V,E1, f, Γ) and (V,E2, f, Γ) are labelled graphs.
The basic notions for labelled graphs carry over to 2-edge coloured graphs.

Definition 2. Let u = p1p2 · · · pn with p1, . . . , pn ∈ Π be a legal string. The
reduction graph of u, denoted by Ru, is a 2-edge coloured graph
(V,E1, E2, f, dom(u)), where

V = {I1, I2, . . . , In} ∪ {I ′1, I ′2, . . . , I ′n},

E1 = {e1, e2, . . . , en} with ei = {I ′i, Ii+1} for 1 ≤ i ≤ n− 1, en = {I ′n, I1},

E2 = {{I ′i, Ij}, {Ii, I ′j} | i, j ∈ {1, 2, . . . , n} with i �= j and pi = pj} ∪
{{Ii, Ij}, {I ′i, I ′j} | i, j ∈ {1, 2, . . . , n} and pi = p̄j}, and

f(Ii) = f(I ′i) = pi for 1 ≤ i ≤ n.

The edges of E1 are called the reality edges, and the edges of E2 are called the
desire edges. Intuitively, the “space” between pi and pi+1 corresponds to the

I1, 3 I ′
1, 3

�����
�

I ′
6, 4

������
I2, 2

I6, 4 I ′
2, 2

I ′
5, 2 I3, 4

I5, 2 I ′
3, 4

��
����

I ′
4, 3

������
I4, 3

Fig. 1. The reduction graph of u of Example 2

From Micro to Macro 153

reality edge ei = {I ′i, Ii+1}. Hence, we say that i is the position of ei, denoted by
posn(ei), for all i ∈ {1, 2, . . . , n}. Note that positions are only defined for reality
edges. Since for every vertex v there is a unique reality edge e such that v ∈ e,
we also define the position of v, denoted by posn(v), as the position of e. Thus,
posn(I ′i) = posn(Ii+1) = i (while posn(I1) = n).

Example 2. Let u = 324̄32̄4 be a legal string. Since 4̄32̄ can not be a substring
of a realistic string, u is not realistic. The reduction graph Ru of u is depicted in
Figure 1. The labels of the vertices are also shown in this figure. Note the desire
edges corresponding to positive pointers (here 2 and 4) cross (in the figure),
while those for negative pointers are parallel. Since the exact identity of the
vertices in a reduction graph is not essential for the problems considered in this
paper, in order to simplify the pictorial representation of reduction graphs we
will omit this in the figures. We will also depict reality edges as “double edges”
to distinguish them from the desire edges. Figure 2 shows the reduction graph
in this simplified representation.

2 4 2 3 3 4

2 4 2 3 3 4

Fig. 2. The reduction graph of u of Example 2 in the simplified representation

3 3 6 6 2 2

7 7 5 5 4 4

2 2 3 3 4 4

7 7 6 6 5 5

Fig. 3. The reduction graph of u of Example 3

Example 3. Let u = π7(M7M1M6M3M5M2M4) = 726734563̄2̄45. Thus, unlike
the previous example, u is a realistic string. The reduction graph is given in
Figure 3. As usual, the vertices are represented by their labels.

The reduction graph is defined for legal strings. In this paper, we show how to
directly construct the reduction graph of realistic string u from only the overlap
graph of u. In this way we can define the reduction graph for realistic overlap
graphs in a direct way.

154 R. Brijder, H.J. Hoogeboom, and G. Rozenberg

Next we consider sets of overlapping pointers corresponding to pairs of vertices
in reduction graphs, and start to develop a calculus for these sets that will later
enable us to characterize the existence of certain edges in the reduction graph,
cf. Theorem 12.

Example 4. We again consider the legal string u = 324̄32̄4 and its reduction
graph Ru from Example 2. Desire edge e = {I ′2, I ′5} is connected to reality edges
e1 = {I ′2, I3} and e2 = {I ′5, I6} with positions 2 and 5 respectively. We have
Ou(2, 5) = {2, 3, 4}. Also, reality edges {I ′1, I2} and {I ′2, I3} have positions 1 and
2 respectively. We have Ou(1, 2) = {2}.

Lemma 3. Let u be a legal string. Let e = {v1, v2} be a desire edge of Ru and
let p be the label of both v1 and v2. Then Ou(posn(v1), posn(v2)) is Ou(p) if p is
negative in u, and Ou(p)⊕ {p} if p is positive in u.

Let u be a legal string. We define, for P ⊆ dom(u), Πu(P) = (pos(u) ∩ P) ⊕(⊕
t∈P Ou(t)

)
. Similarly, we define Πγ(P) for an overlap graph γ.

Let

p0 p1 p1 p2 p2 .. pn pn pn+1

be a subgraph of Ru, where (as usual) the vertices in the figure are represented
by their labels, and let e1 (e2, resp.) be the leftmost (rightmost, resp.) edge. Note
that e1 and e2 are reality edges and therefore posn(e1) and posn(e2) are defined.
Then by Lemma 3 Ou(posn(e1), posn(e2)) = Πu(P) with P = {p1, . . . , pn}.

By the definition of the reduction graph the following lemma holds.

Lemma 4. Let u be a legal string. If Ii and I ′i are vertices of Ru, then
Ou(posn(Ii), posn(I ′i)) = {p}, where p is the label of Ii and I ′i.

Example 5. We again consider the legal string u and desire edge e as in the
previous example. Since e has vertices labelled by positive pointer 2, by Lemma 3
we have (again) Ou(2, 5) = Ou(2) ⊕ {2} = {2, 3, 4}. Also, since I2 and I ′2 with
positions 1 and 2 respectively are labelled by 2, by Lemma 4 we have (again)
Ou(1, 2) = {2}.

4 The Reduction Graph of Realistic Strings

The next theorem asserts that the overlap graph γ for a realistic string u retains
all information of Ru (up to isomorphism). In fact, the operations on strings
that were shown in [7] (and [5]) to keep the overlap graph unchanged, also lead
to the same reduction graph. In the sequel of this paper, we will give a method
to determine Ru (up to isomorphism), from γ. Of course, the naive method is
to first determine a legal string u corresponding to γ and then to determine the
reduction graph of u. However, we present a method that allows one to construct
Ru in a direct way from γ.

From Micro to Macro 155

Theorem 5. Let u and v be realistic strings. If γu = γv, then Ru ≈ Rv.

This theorem does not hold for legal strings in general — the next example
illustrates that legal strings having the same overlap graph can have different
reduction graphs.

Example 6. Let u = πκ(M1M2M3M4) = 223344 be a realistic string and let
v = 234432 be a legal string. Note that v is not realistic. Legal strings u and v
have the same overlap graph γ (γ = ({2, 3, 4},∅, σ, {+,−}), where σ(p) = − for
p ∈ {2, 3, 4}). Both Ru and Rv have four connected components. However, Ru

has three connected components consisting of two vertices and one consisting of
six vertices, while Rv has two connected components consisting of two vertices
and two consisting of four vertices. Therefore, Ru �≈ Rv.

Definition 6. Let u be a legal string and let κ = |dom(u)|+ 1. If Ru contains
a subgraph L of the following form:

2 2 3 3 .. κ κ

where the vertices in the figure are represented by their labels, then we say that
u is rooted and L is called a root subgraph of Ru.

Note that realistic string u with dom(u) = {2, 3, . . . , 7} from Example 3 is rooted.
It turns out that this illustrates a general property.

Theorem 7. Every realistic string is rooted.

In the remaining of this paper, we will denote |dom(u)|+1 by κ for rooted strings,
when the rooted string u is understood from the context of considerations. The
reduction graph of a realistic string may have more than one root subgraph: it
is easy to verify that realistic string 234 · · ·κ234 · · ·κ for κ ≥ 2 has two root
subgraphs.

Example 2 shows that not every rooted string is realistic. The results in the
sequel of this paper that consider realistic strings also hold for rooted strings,
since we will not be using any properties of realistic string that are not true for
rooted strings in general.

The next lemma is essential to prove the main result of this paper.

Lemma 8. Let u be a rooted string. Let L be a root subgraph of Ru. Let i and
j be positions of reality edges in Ru that are not edges of L. Then Ou(i, j) = ∅
iff i = j.

The following lemma is easy to verify.

Lemma 9. Let u be a rooted string. Let L be a root subgraph of Ru. If Ii and
I ′i are vertices of Ru, then exactly one of Ii and I ′i belongs to L.

The following result captures the main idea that allows for the determination of
the reduction graph from the overlap graph only. It relies on Lemmas 3, 4, 8,
and 9.

156 R. Brijder, H.J. Hoogeboom, and G. Rozenberg

Theorem 10. Let u be a rooted string, let L be a root subgraph of Ru, and let
p, q ∈ dom(u) with p < q. Then there is a reality edge e in Ru with both vertices
not in L, one labelled by p and the other by q iff Πγ(P) = {p} ⊕ {q}, where
P = {p+ 1, . . . , q − 1} ∪ P ′ for some P ′ ⊆ {p, q}.

5 Compressing the Reduction Graph

It is obvious that in reduction graphs one can replace each subgraph p p

(a desire edge with its vertices) by a single vertex labelled by p without losing
information. We denote this compressed version of the reduction graph Ru by
cps(Ru). Clearly, Ru can be easily reconstructed from cps(Ru) (up to isomor-
phism).

3 6 2 2 3 4

7 5 4 7 6 5

Fig. 4. The labelled graph cps(Ru), where Ru is defined in Example 7. The vertices
in the figure are represented by their labels.

Example 7. We are again considering the realistic string u defined in Example 3.
The reduction graph of Ru is depicted in Figure 3. The labelled graph cps(Ru) is
depicted in Figure 4. Since this graph has just one set of edges, the reality edges
are depicted as “single edges” instead of “double edges” as we did for reduction
graphs.

In the next section we define the compressed reduction graph directly for overlap
graphs and show that it is isomorphic to the compressed reduction graph of the
underlying legal string.

6 From Overlap Graph to Reduction Graph

Here we define (compressed) reduction graphs for realistic overlap graphs, in-
spired by the characterization from Theorem 10. In the remaining part of this
section we will show its equivalence with reduction graphs for realistic strings.

Definition 11. Let γ = (Domγ , Eγ , σ, {+,−}) be a realistic overlap graph
and let κ = |Domγ | + 1. The (compressed) reduction graph of γ, denoted by
Rγ , is a labelled graph (V,E, f,Domγ), where V = {Jp, J ′

p | 2 ≤ p ≤ κ},
f(Jp) = f(J ′

p) = p, for 2 ≤ p ≤ κ, and e ∈ E iff one of the following conditions
hold:

From Micro to Macro 157

1. e = {J ′
p, J

′
p+1} and 2 ≤ p < κ.

2. e = {Jp, Jq}, 2 ≤ p < q ≤ κ, and Πγ(P) = {p} ⊕ {q}, where P =
{p+ 1, . . . , q − 1} ∪ P ′ for some P ′ ⊆ {p, q}.

3. e = {J ′
2, Jp}, 2 ≤ p ≤ κ, and Πγ(P) = {p}, where P = {2, . . . , p − 1} ∪ P ′

for some P ′ ⊆ {p}.
4. e = {J ′

κ, Jp}, 2 ≤ p ≤ κ, and Πγ(P) = {p}, where P = {p + 1, . . . , κ} ∪ P ′

for some P ′ ⊆ {p}.
5. e = {J ′

2, J
′
κ}, κ > 3, and Πγ(P) = ∅, where P = {2, . . . , κ}.

2− 3− 4−

6− 7− 5−

Fig. 5. The overlap graph γ of a realistic string (used in Example 8)

4 7 2 3 4 5

2 6 3 5 7 6

Fig. 6. The reduction graph Rγ of the overlap graph γ of Example 8. The vertices in
the figure are represented by their labels.

Example 8. The overlap graph γ in Figure 5 is realistic. Indeed, realistic string
u = π7(M4M3M7M5M2M1M6) = 453475623267 has this overlap graph. Clearly,
the reduction graphRγ of γ has the edges {J ′

p, J
′
p+1} for 2 ≤ p < 7. The following

table lists the remaining edges of Rγ . The table also states the characterizing
conditions for each edge as stated in Definition 11.

Edge P Witness
{J2, J6} {3, 4, 5} {2, 4, 5, 6, 7}⊕ {3, 5} ⊕ {3, 4, 7} = {2, 6}
{J2, J6} {2, 3, 4, 5, 6} {3} ⊕ {2, 4, 5, 6, 7}⊕ {3, 5} ⊕ {3, 4, 7} ⊕ {3} = {2, 6}
{J4, J7} {5, 6} {3, 4, 7} ⊕ {3} = {4, 7}
{J4, J7} {4, 5, 6, 7} {3, 5} ⊕ {3, 4, 7} ⊕ {3} ⊕ {3, 5} = {4, 7}
{J3, J5} {4} {3, 5} = {3, 5}
{J5, J

′
7} {6, 7} {3} ⊕ {3, 5} = {5}

{J ′
2, J3} {2} {3} = {3}

We have now completely determined Rγ ; it is shown in Figure 6. As we have
done for reduction graphs of legal strings, in the figures the vertices of reduction
graphs of realistic overlap graphs are represented by their labels.

Example 9. In the second example we construct the reduction graph of an over-
lap graph that contains positive pointers. The overlap graph γ in Figure 7 is
realistic. Indeed, realistic string u = π7(M7M1M6M3M5M2M4) = 726734563̄2̄45

158 R. Brijder, H.J. Hoogeboom, and G. Rozenberg

2+

��
��

��

��
��

��

�������������

5−

��
��

��

��
��

��
��

��
��

� 4−

��
��

��

��
��
��
��
��
��
�

7−

��
��

��
��

��
��

��
��

3+

6−

Fig. 7. The overlap graph γ of a realistic string (used in Example 9)

3 6 2 2 3 4

7 5 4 7 6 5

Fig. 8. The reduction graph Rγ of the overlap graph γ of Example 9

introduced in Example 3 has this overlap graph. Again, the reduction graph Rγ

of γ has the edges {J ′
p, J

′
p+1} for 2 ≤ p < 7. The remaining edges are listed in

the table below.

Edge P Witness
{J3, J7} {4, 5, 6} {2, 3, 5, 6}⊕ {2, 3, 4, 6}⊕ {3, 4, 5, 7} = {3, 7}
{J3, J6} {3, 4, 5} {3} ⊕ {4, 5, 6} ⊕ {2, 3, 5, 6}⊕ {2, 3, 4, 6} = {3, 6}
{J2, J6} {2, 3, 4, 5, 6} {2} ⊕ {4, 5, 7} ⊕ {3} ⊕ {4, 5, 6} ⊕ {2, 3, 5, 6}

⊕{2, 3, 4, 6}⊕ {3, 4, 5, 7} = {2, 6}
{J2, J4} {3, 4} {3} ⊕ {4, 5, 6} ⊕ {2, 3, 5, 6} = {2, 4}
{J4, J5} {4, 5} {2, 3, 5, 6}⊕ {2, 3, 4, 6} = {4, 5}
{J5, J7} {5, 6, 7} {2, 3, 4, 6}⊕ {3, 4, 5, 7}⊕ {2, 6} = {5, 7}
{J ′

2, J
′
7} {2, . . . , 7} {2} ⊕ {4, 5, 7} ⊕ . . .⊕ {2, 6} = ∅

Again, we have now completely determined the reduction graph; it is shown
in Figure 8.

Figures 4 and 8 show, for u = 726734563̄2̄45, that cps(Ru) ≈ Rγ . The next
theorem shows that this is a general property for realistic strings u. The proof
of the result relies on Theorem 10.

Theorem 12. Let u be a realistic string. Then, cps(Ru) ≈ Rγu .

Example 10. The realistic string u = 453475623267 was introduced in Exam-
ple 8. The reduction graph Rγ of the overlap graph of u is given in Figure 6.
The reduction graph Ru of u is given in Figure 9. It is easy to see that af-
ter applying cps to Ru one obtains a graph that is indeed isomorphic to Rγ .

From Micro to Macro 159

4 7 2 6 2 2 3 3 4 4 5 5

4 7 2 6 3 3 5 5 7 7 6 6

Fig. 9. The reduction graph of u of Example 10. The vertices in the figure are repre-
sented by their labels.

This makes clear why there were two proofs for both edges {J2, J6} and {J4, J7}
in Example 8; each one corresponds to one reality edge in Ru (outside L).

7 Consequences

Using the previous theorem and [6] (or Chapter 13 in [5]), we can now eas-
ily characterize successfulness for realistic overlap graphs in any given S ⊆
{Gnr,Gpr,Gdr}. The notions of successful reduction, string negative rule and
graph negative rule used in this section are defined in [5]. Due to the “weak
equivalence” of the string pointer reduction system and the graph pointer re-
duction system, proved in Chapter 11 of [5], we can, using Theorem 12, restate
Theorem 26 in [3] in terms of graph reduction rules.

Theorem 13. Let u be a realistic string, and N be the number of connected
components in Rγu . Then every successful reduction of γu has exactly N − 1
graph negative rules.

As an immediate consequence we get the following corollary. It provides a solu-
tion to an open problem formulated in Chapter 13 in [5].

Corollary 14. Let u be a realistic string. Then γu is successful in {Gpr,Gdr}
iff Rγu is a connected graph.

Example 11. Every successful reduction of the overlap graph of Example 8 has
exactly two graph negative rules, because its reduction graph consist of exactly
three connected components. For example gnr4 gdr5,7 gnr2 gdr3,6 is a success-
ful reduction of this overlap graph. Similarly, every successful reduction of the
overlap graph of Example 9 has exactly one graph negative rule. One example
is gnr2 gpr4 gpr5 gpr7 gpr6 gpr3.

With the help of [6] (or Chapter 13 in [5]) and Corollary 14, we are ready to
complete the characterization of successfulness for realistic overlap graphs in any
given S ⊆ {Gnr,Gpr,Gdr}.

Theorem 15. Let u be a realistic string. Then γu is successful in:

– {Gnr} iff γu is a discrete graph (it has no edges) with only negative vertices.
– {Gnr,Gpr} iff each connected component of γu that consists of more than

one vertex contains a positive vertex.

160 R. Brijder, H.J. Hoogeboom, and G. Rozenberg

– {Gnr,Gdr} iff all vertices of γu are negative.
– {Gnr,Gpr,Gdr}.
– {Gdr} iff all vertices of γu are negative and Rγu is a connected graph.
– {Gpr} iff each connected component of γu contains a positive vertex and Rγu

is a connected graph.
– {Gpr,Gdr} iff Rγu is a connected graph.

8 Discussion

We have shown how to directly construct the reduction graph of a realistic
string u (up to isomorphism) from the overlap graph γ of u. This allows one to
reconstruct a representation of the macronuclear gene (and its waste products)
given only the overlap graph of the micronuclear gene. Moreover, this results
allows one to (directly) determine the number n of graph negative rules that are
necessary to reduce γ successfully. Along with some results in previous papers,
it also allows us to give a complete characterization of the successfulness of γ in
any given S ⊆ {Gnr,Gpr,Gdr}.

It remains an open problem to find a (direct) method to determine this number
n for overlap graphs γ in general (not just for realistic overlap graphs).

References

1. Brijder, R., Hoogeboom, H.J., Muskulus, M.: Applicability of loop recombination
in ciliates using the breakpoint graph. In: Berthold, M.R., Glen, R.C., Fischer, I.
(eds.) CompLife 2006. LNCS (LNBI), vol. 4216, pp. 97–106. Springer, Heidelberg
(2006)

2. Brijder, R., Hoogeboom, H.J., Rozenberg, G.: The breakpoint graph in ciliates.
In: Berthold, M.R., Glen, R.C., Diederichs, K., Kohlbacher, O., Fischer, I. (eds.)
CompLife 2005. LNCS (LNBI), vol. 3695, pp. 128–139. Springer, Heidelberg (2005)

3. Brijder, R., Hoogeboom, H.J., Rozenberg, G.: Reducibility of gene patterns in cili-
ates using the breakpoint graph. Theor. Comput. Sci. 356, 26–45 (2006)

4. Brijder, R., Hoogeboom, H.J., Rozenberg, G.: How overlap determines the macronu-
clear genes in ciliates. LIACS Technical Report 2007-02, [arXiv:cs.LO/0702171]
(2007)

5. Ehrenfeucht, A., Harju, T., Petre, I., Prescott, D.M., Rozenberg, G.: Computation
in Living Cells – Gene Assembly in Ciliates. Springer, Heidelberg (2004)

6. Ehrenfeucht, A., Harju, T., Petre, I., Rozenberg, G.: Characterizing the micronuclear
gene patterns in ciliates. Theory of Computing Systems 35, 501–519 (2002)

7. Harju, T., Petre, I., Rozenberg, G.: Formal properties of gene assembly: Equivalence
problem for overlap graphs. In: Jonoska, N., Păun, G., Rozenberg, G. (eds.) Aspects
of Molecular Computing. LNCS, vol. 2950, pp. 202–212. Springer, Heidelberg (2003)

A String-Based Model for Simple Gene

Assembly

Robert Brijder1, Miika Langille2, and Ion Petre2,3

1 Leiden Institute of Advanced Computer Science, Universiteit Leiden
Niels Bohrweg 1, 2333 CA Leiden, The Netherlands

rbrijder@liacs.nl
2 Turku Centre for Computer Science

Department of IT, Åbo Akademi University
Turku 20520, Finland

miika.langille@abo.fi

ion.petre@abo.fi
3 Academy of Finland

Abstract. The simple intramolecular model for gene assembly in cili-
ates is particularly interesting because it can predict the correct assembly
of all available experimental data, although it is not universal. The sim-
ple model also has a confluence property that is not shared by the general
model. A previous formalization of the simple model through sorting of
signed permutations is unsatisfactory because it effectively ignores one
operation of the model and thus, it cannot be used to answer questions
about parallelism in the model, or about measures of complexity. We
propose in this paper a string-based model in which a gene is repre-
sented through its sequence of pointers and markers and its assembly
is represented as a string rewriting process. We prove that this string-
based model is equivalent to the permutation-based model as far as gene
assembly is concerned, while it tracks all operations of the model.

1 Introduction

Gene assembly in ciliates has been subject to extensive combinatorial research
in recent years, see [2]. Ciliates are unicellular eukaryotes that organize their
genome differently in their two types of nuclei. In micronuclei, genes are split
into blocks (called MDSs), placed in a shuffled order on the chromosome, sep-
arated by non-coding blocks. Moreover, some of the MDSs are even presented
in an inverted form. In macronuclei however, genes are contiguous sequences of
nucleotides, with all blocks sorted in the orthodox order. The assembly of genes
from their micronuclear to their macronuclear form has a definite combinatorial
and computational flavor: each MDS M ends with a sequence of nucleotides
(called a pointer) that is repeated identically in the beginning of the MDS that
should follow M in the macronuclear gene.

The exact kinetical mechanisms of gene assembly still remain to be clari-
fied through further laboratory experiments. Two models have been proposed
for gene assembly: an intermolecular one, see [7,8] and an intramolecular one,

E. Csuhaj-Varjú and Z. Ésik (Eds.): FCT 2007, LNCS 4639, pp. 161–172, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

162 R. Brijder, M. Langille, and I. Petre

see [3,10]. The intramolecular model, that we consider in this paper, consists of
three operations: ld, hi, and dlad. For a detailed discussion of these operations,
including their formalization on various levels of abstraction, we refer to [2]. We
consider in this paper the simple variant of the model, in which the sequences
manipulated by each operation are minimal, see [5] for a detailed discussion. It
turns out that although not universal, the simple model is capable of correctly
predicting the assembly of all currently available data on genes in stichotrichous
ciliates, see [6]. Also, the model has an interesting confluence property that does
not hold in the general model, see [9].

The simple model for gene assembly has been investigated in [9] as a process
of sorting signed permutations. A major shortcoming of this formalization is that
the ld operations are not explicitly modeled and it is only assumed that they
take place eventually at some arbitrary moment of time. Although sufficient for
the purpose of [9], this formalization does not allow reasoning about parallelism
or complexity of assemblies.

Abstracting the gene to its sequence of pointers has been a solution to this
problem in the case of the general model. In this way, the gene assembly process
is formalized through a process of string rewriting. Doing the same in the case
of simple operations does not work, as shown in Example 9 of this paper: the
string-based model is not equivalent with the permutation-based model.

We propose in this paper a simple solution to this problem. Rather than
representing a gene only through its sequence of pointers, we preserve also the
beginning and ending markers (starting the first MDS and ending the last MDS,
respectively). We prove that with this simple addition, the string-based model
is equivalent with the permutation-based model.

2 Mathematical Preliminaries

For a finite alphabet A = {a1, . . . , an}, we denote by A∗ the free monoid gen-
erated by A and call any element of A∗ a word. Let A = {a1, . . . , an}, where
A ∩ A = ∅. For p, q ∈ A ∪ A, we say that p, q have the same signature if either
p, q ∈ A, or p, q ∈ A and we say that they have different signatures otherwise.

We denote A� = (A ∪ A)∗. For any u ∈ A�, u = x1 . . . xk, with xi ∈ A ∪A,
for all 1 ≤ i ≤ k, we denote ‖u‖ = ‖x1‖ . . . ‖xk‖, where ‖a‖ = ‖a‖ = a, for all
a ∈ A. We also denote u = xk . . . x1, where a = a, for all a ∈ A. For two alphabets
A,B, a mapping f : A� → B� is called a morphism if f(uv) = f(u)f(v) and
f(u) = f(u).

A permutation π over A is a bijection π : A → A. Fixing the order relation
(a1, a2, . . . , am) over A, we often denote π as the word π(a1) . . . π(am) ∈ A∗.
A signed permutation over A is a string ψ ∈ A�, where ‖ψ‖ is a permutation
over A.

A string v ∈ Σ∗ over an (unsigned) alphabet Σ is a double occurrence string
if every pointer a ∈ dom(v) occurs exactly twice in v. A signing of a non-empty
double occurrence string is a legal string.

A String-Based Model for Simple Gene Assembly 163

Two legal strings, u and v over alphabets A and B, respectively, are said to
have the same structure if there is a morphism f : A� → B� such that f(u) = v,
and is denoted by u ≡ v.

3 Permutations and Strings

Simple operations have previously been defined in terms of signed permuta-
tions, see [9]. This formalism was useful for observing simple operations applied
sequentially, with the arrangement of explicit MDSs being clearly visible. How-
ever, note that with signed permutations the ld operation is always assumed to
occur at some point in the assembly. This is not sufficient for studying some
aspects of simple gene assembly, and so we now task ourselves with providing
a formal framework for performing simple gene assembly on legal strings. Mi-
cronuclear and intermediate genes are represented as a sequence of pointers and
the operations defined as a string pointer reduction system. Moreover, we will
show that simple gene assembly on legal strings is equivalent to that on signed
permutations.

Legal strings have been used before to formalise the general operations in [2].
This definition is missing one crucial piece of information, necessary to model
simple operations in particular. Namely, the absence of markers indicating the
beginning and end of the macronuclear gene make it necessary to extend the
definition.

Let us now briefly describe the signed permutations, followed then by the
extended definition of legal strings and the string pointer reduction system.

3.1 Signed Permutations

Genes may be represented as a sequence of MDSs. Using the alphabet Πn =
{1, 2, . . . , n} to denote MDSs, where the numbering is given by the order in
which MDSs are assembled in the macronuclear gene. Thus, a micronuclear gene
will be a signed permutation over Πn and a macronuclear gene will be a sorted
signed permutation over Πn.

Definition 1. We say that a signed permutation π is sorted if either:

i. π = i(i+ 1) . . . n1 . . . (i− 1), or
ii. π = (i− 1) . . . 1n . . . (i+ 1)i,

for some 1 ≤ i ≤ n. If i = 1 we say that π is a linear permutation. We call π
circular otherwise. In case i. we say that π is sorted in the orthodox order, while
in case ii. we say that π is sorted in the inverted order.

The term circular in the above definition refers to a gene that gets assembled,
say in the form i . . . n1 . . . (i − 1), and then gets excised from the chromosome
by an ld operation applied on the pointer in the beginning of i and its identical
copy at the end of (i− 1).

164 R. Brijder, M. Langille, and I. Petre

Given this definition for genes, we may now consider gene assembly as a sorting
of signed permutations. We will define the simple operations as transformation
rules for signed permutations in such a way that a simple operation is applicable
on a gene pattern if and only if the corresponding rule is applicable on the
associated signed permutation.

As mentioned previously, when using signed permutations to model gene as-
sembly, the ld operation is ignored. Indeed, ld only combines two MDSs i and
(i+ 1) already placed next to each other into a bigger composite MDS. To avoid
renaming the alphabet after each ld operation, we will consider that when i
and (i+ 1) are placed next to each other, the operation joining them is already
accomplished.

Definition 2. The molecular model of simple hi and simple dlad can be formal-
ized as follows.

i. For each p ≥ 1, shp is defined as follows:

shp(xp . . . (p + i)(p + k) . . . (p + i + 1)y) = xp . . . (p + i)(p + i + 1) . . . (p + k)y,

shp(x(p + i) . . . p(p + i + 1) . . . (p + k)y) = xp . . . (p + i)(p + i + 1) . . . (p + k)y,

shp(x(p + i + 1) . . . (p + k)(p + i) . . . py) = x(p + k) . . . (p + i + 1)(p + i) . . . py,

shp(x(p + k) . . . (p + i + 1)p . . . (p + i)y) = x(p + k) . . . (p + i + 1)(p + i) . . . py,

where k > i ≥ 0 and x, y, z are signed strings over Πn. We denote Sh =
{shi | 1 ≤ i ≤ n}.

ii. For each p, 2 ≤ p ≤ n− 1, sdp is defined as follows:

sdp(x p . . . (p + i) y (p − 1) (p + i + 1) z) = xy(p− 1)p . . . (p + i)(p + i + 1)z,

sdp(x (p − 1)(p + i + 1)yp . . . (p + i)z) = x(p − 1)p . . . (p + i)(p + i + 1)yz,

where i ≥ 0 and x, y, z are signed strings over Πn. We also define sdp as
follows:

sdp(x(p + i + 1)(p − 1)y(p + i) . . . pz) = x (p + i + 1)(p + i) . . . p(p − 1)yz,

sdp(x(p + i) . . . py(p + i + 1)(p − 1)z) = xy(p + i + 1)(p + i) . . . p(p − 1)z,

where i ≥ 0 and x, y, z are signed strings over Πn. We denote Sd = {sdi, sdi |
1 ≤ i ≤ n}.

We say that a signed permutation π over the set of integers {i, i+ 1, . . . , i+ l}
is sortable if there are operations φ1, . . . , φk ∈ Sh∪Sd such that (φk ◦ . . .◦φ1)(π)
is a sorted permutation. We say that π is blocked if neither an sh operation, nor
an sd one is applicable to π and π is not sorted.

Let φ = φk ◦ . . . ◦ φ1, φi ∈ Sh∪Sd, for all 1 ≤ i ≤ k. We say that φ is a
strategy for π if φ(π) is either sorted, or blocked. In the former case we say that
φ is a sorting strategy, while in the latter case we say that φ is an unsuccessful
strategy for π.

If φ = φk ◦ . . . ◦ φ1 is a sorting strategy for π, we say that π is Sh-sortable if
φ1, . . . , φk ∈ Sh and we say that π is Sd-sortable if φ1, . . . , φk ∈ Sd.

A String-Based Model for Simple Gene Assembly 165

Example 1. i. The permutation π1 = 21435 is sortable. It has the following
sorting strategies: sh1 ◦ sd4 ◦ sh1(π1) = 12345 and sh1 ◦ sh1 ◦ sd4(π1) = 12345.

ii. The permutation π2 = 25314 is blocked as no operations are applicable and
it is not sorted.

iii. The permutation π3 = 35124 has two assembly strategies which lead to dif-
ferent results: sd3(π3) = 51234 and sd4(π3) = 34512.

3.2 Legal Strings

Using signed permutations, we hold the information of explicit MDSs. It is suf-
ficient, however, to consider the gene as a sequence of pointers. Moving to le-
gal strings, we remove all notation pertaining to explicit MDSs, and represent
the gene as a string of pointers, with each pointer occurring twice in the gene.
Though some information is lost about the gene, the notation is elegant and the
characteristics and rules of the model are maintained.

To represent a micronuclear or intermediate gene as a legal string, we need
a set of pointers, Δk = {2, 3, . . . , k}, and the set of markers M = {b, e}. Note
that each marker will occur only once in the string, and each pointer will occur
twice. As with signed permutations, k represents the length of the gene, and
we shall assume that it will be clear from the context. Let this be our alphabet
Σ = Δk ∪M .

The definition for legal strings given in [2] did not include the markers, but
as it turns out, they are essential to being able to formalise simple operations
on legal strings. Additionally, not including the markers meant that it was no
longer possible to uniquely obtain a signed permutation from a legal string, as
too much information was lost.

Let a ∈ Σ ∪Σ and let u ∈ Σ� be a legal string. If u contains both substrings
a and a then a is positive in u; otherwise, a is negative in u.

Example 2. i. Consider the signed string u1 = b23423e4 over Σ4. Clearly, u1

is legal. Pointer 4 is positive in u1, while 2 and 3 are negative in u1.
ii. The string u2 = 43b234 is not legal, since 2 has only one occurrence in u2

and the end marker does not occur at all.

Let u = a1a2 . . . an ∈ Σ� be a legal string over Σ, where ai ∈ Σ ∪Σ for each i.
For each letter a ∈ dom(u), there are indices i and j with 1 ≤ i < j ≤ n such that
‖ai‖ = a = ‖aj‖, excepting of course the two markers present. The substring
u(a) = aiai+1 . . . aj is the a–interval of u. Two different letters a, b ∈ Σ are said to
overlap in u if the a–interval and the b–interval of u overlap: if u(a) = ai1 . . . aj1
and u(b) = ai2 . . . aj2 , then either i1 < i2 < j1 < j2 or i2 < i1 < j2 < j1.
Moreover, for each letter a, we denote by

Ou(a) = {b ∈ Σ | b overlaps with a in u} ∪ {a}.

Example 3. Let u = b2342354e656 be a legal string. The 5–interval of u is the
substring u(5) = 5465, which contains only one occurrence of the pointers 4 and 6,

166 R. Brijder, M. Langille, and I. Petre

but either two or no occurrences of 2 and 3 and so Ou(5) = {4, 5, 6}. Note that
the marker is not included in the interval. Similarly,

u(2) = 2342, and 2 overlaps with 3 and 4,
u(3) = 3423, and 3 overlaps with 2 and 4,

u(4) = 42354, and 4 overlaps with 2, 3 and 5,

u(6) = 656, and 6 overlaps with 5.

We will now consider the transformation from signed permutations to legal
strings, carried out by replacing each MDS with the pointers at either end of it.
When transforming from signed permutations to legal strings, there is a prob-
lem with how to deal with sorted blocks of pointers. Therefore, when doing the
transformation, the signed permutation must be assumed to be micronuclear,
i.e., no MDSs have been joined together. This allows for the following morphism
from a signed permutation π to a legal string u. ζ : Π�

n → Σ�
n is applied to each

letter in π, and is defined as follows

i. i→ i(i+ 1),
ii. 1 → b2,

iii. n→ ne,

where 1 ≤ i ≤ n.

Example 4. i. The signed permutation π = 12, is equivalent to the following
legal string ζ(π) = b2e2.

ii. The signed permutation π = 2314765, is equivalent to the following legal
string ζ(π) = 2334b245e76765.

We say that a legal string u is realistic if there exists a signed permutation π
such that u = ζ(π). It is important to note, however, that not all legal strings
are realistic. The following example illustrates this point.

Example 5. The string u = be22 is legal but it is not realistic, since it has no
“realistic parsing”, i.e., there is no signed permutation which would transform
to this legal string.

Let us first give our full definition of legal strings and the simple operations, and
then we will show why the markers are necessary to the abstraction.

3.3 Simple Operations on Signed Strings

Recall that in signed permutations gene assembly was simulated by joining to-
gether MDSs to obtain a (circularly) sorted sequence, the macronuclear gene.
With the move to legal strings we have now removed all details of individual
MDSs, leaving us with a string of pointers. The goal remains the same though,
to remove all pointers by matching them together, consequently building the

A String-Based Model for Simple Gene Assembly 167

macronuclear gene. We shall now introduce the string pointer reduction system
for simple operations to formalise the three molecular operations ld, hi and dlad.

A realistic legal string is considered sorted, once all pointers are removed,
leaving us with one of the following possible sorted permutations: be, eb, eb and
be. The first two cases represent linear sortings, and the latter two are considered
circular.

In the following we shall consider only realistic legal strings, that is, the strings
are from Σ�

k for some k ≥ 2. Each of the rules below is a function that maps
legal strings to legal strings.

i. The string negative rule snr for a pointer p ∈ Δk (k ≥ 2) is the equivalent of
the ld operation. As with ld, the string negative rule is always simple, and as
such, it is the same for the general and simple model. It can only be applied
when the pointers are adjacent, i.e., not separated by any other pointers. It
can be formalised in the following way

snrp(u1ppu2) = u1u2,

snrp(pu3p) = u3,

where u1, u2 ∈ Σ� and u3 contains only markers (boundary case). Let

Snr = {snrp | p ∈ Δk, k ≥ 2}

be the set of all simple string negative rules.
ii. The simple string positive rule sspr for a pointer p ∈ Δk(k ≥ 2) is the

equivalent of the sh operation. Recall that in the simple hi operation the
pointers may only be separated by one MDS, and thus only a single pointer
or marker. This gives us the following formalisation

ssprp(u1pu2pu3) = u1u2u3,

where |u2| = 1 and u1, u2, u3 ∈ Σ�. Let

Sspr = {ssprp | p ∈ Δk, k ≥ 2}

be the set of all simple string positive rules.
iii. The simple string double rule ssdr for pointers p, q ∈ Δk(k ≥ 2) is the

equivalent of the sd operation. Recall that in the simple dlad operation the
first occurrences of p and q must be adjacent, with the same condition applied
to the second occurrences. This gives us the following formalisation

ssdrp,q(u1pqu2pqu3) = u1u2u3,

where u1, u2, u3 ∈ Σ�. Let

Ssdr = {ssdrp,q | p, q ∈ Δk, k ≥ 2}

be the set of all simple string double rules.

168 R. Brijder, M. Langille, and I. Petre

Note that the operations have now become very simple indeed, with only
pointers being removed. The sspr operation is the only one that affects the re-
maining permutation, inverting the pointer or marker separating the two occur-
rences.

Example 6. Consider the following signed permutation π = 12354. It has the
following realistic legal string u = ζ(π) = 2b23345e45, and these simple opera-
tions applicable to it.

i. The snr operation removes two adjacent pointers with the same signature.
E.g., snr3(u) = 2b245e45.

ii. The sspr operation removes two pointers with different signatures, separated
by exactly one pointer or marker, inverting the sequence separating them.
E.g., sspr2(u) = b3345e45.

iii. The ssdr operation removes two overlapping pointers, where the first occur-
rences are adjacent, as are the second occurrences. E.g., ssdr4,5(u) = 2b233e.

Example 7. Let us consider the actin I gene from Sterkiella nova, which has
the following signed permutation π = 346579218. The corresponding legal string
would be

u = ζ(π) = 34456756789e32b289.
It has the following assembly strategy using the simple string pointer reduction
system.

sspr2(u) = 34456756789e3b89

ssdr5,6 ◦ sspr2(u) = 3447789e3b89

snr4 ◦ ssdr5,6 ◦ sspr2(u) = 37789e3b89

snr7 ◦ snr4 ◦ ssdr5,6 ◦ sspr2(u) = 389e3b89

ssdr8,9 ◦ snr7 ◦ snr4 ◦ ssdr5,6 ◦ sspr2(u) = 3e3b

sspr3 ◦ ssdr8,9 ◦ snr7 ◦ snr4 ◦ ssdr5,6 ◦ sspr2(u) = eb

It is important to note that the naming of simple operations on legal strings does
not follow the same standard as for signed permutations. On signed permuta-
tions an operation was always named by the smallest MDS in the composite
involved. However, on legal strings we have lost the information of MDSs, and
only remaining pointers are shown. Thus an operation must be named according
to the pointer on which the fold is made. This is illustrated in the following
example.

Example 8. Let u = b2452334e5 be a realistic legal string corresponding to
the signed permutation π = 14235. They have the following equivalent assembly
strategies,

snr3(u) = b24524e5, (ld operation is assumed here)

ssdr2,4 ◦ snr3(u) = b5e5, sd2(π) = 12345,
sspr5 ◦ ssdr2,4 ◦ snr3(u) = be, sh1 ◦ sd2(π) = 12345.

A String-Based Model for Simple Gene Assembly 169

Let us now show that the operations on legal strings are equivalent to those on
signed permutations.

Theorem 1. For any signed permutations π and π′, with π′ = φm ◦ . . . φ1(π),
φi ∈ Sh∪Sd, let u = ζ(π) and u′ = ζ(π′). Then τ0(u′) = ψm ◦ τm ◦ . . . ψ1 ◦ τ1(u),
where ψi is the equivalent of φi, and τi is a composition of snr operations.

Proof. We will only prove the claim for m = 1. In its full generality, the claim
can be proved by iterating the same argument.

Case 1: φ1 ∈ Sh. Then π is of one of the four forms in Definition 2(i). As-
sume that π = xp . . . (p + i)(p+ k) . . . (p + i+ 1)y, as the other cases are
completely similar. Then u = ζ(x)p(p + 1)(p + 1) . . . (p + i)(p + i)(p + i +
1)(p+ k + 1)(p + k)(p + k) . . . (p + i+ 2)(p + i+ 2)(p + i+ 1)ζ(y) and

shp(π) = xp . . . (p + k)y,
ζ(shp(u)) = ζ(x)p(p + 1)(p+ 1) . . . (p + k)(p + k)(p+ k + 1)
(ssprp+i+1 ◦ snrp+1 ◦ snrp+i snrp+i+2 ◦ snr p + k)(u) = ζ(x)p(p + k + 1)ζ(y) =

= (snrp+1 ◦ . . . ◦ snrp+k)(ζ(shp(u))).

Case 2: φ1 ∈ Sd. Then π is of one of the forms in Definition 2(ii). Assume
that π = x p . . . (p + i) y (p − 1) (p + i + 1) z, as the other cases are com-
pletely similar. Then u = ζ(x)p(p+ 1)(p+ 1) . . . (p+ i)(p+ i)(p+ i+ 1)ζ(y)
(p− 1)p(p+ i+ 1)(p+ i+ 2)ζ(z) and

sdp(π) = xy(p− 1)p . . . (p + i)(p+ i+ 1)z,
ζ(sdp(π)) = ζ(xy)(p− 1)pp . . . (p + i+ 1)(p+ i+ 1)(p + i+ 2)ζ(z),
(ssdrp,p+i+1 ◦ snrp+1 ◦ . . . ◦ snrp+i)(u) = ζ(x)ζ(y)(p − 1)(p + i+ 2)ζ(z) =
= (snrp ◦ . . . ◦ snrp+i+1)(ζ(sdp(π))).

Thus we have shown that the operations on legal strings are equivalent to those
for signed permutations. ��

Now that we have defined legal strings and formalised simple operations on
legal strings we will show why it was necessary to extend the definition of legal
strings without markers given in [2]. Consider the definition of the sspr operation
ssprp(u1pu2pu3) = u1u2u3. The operation ssprp may only be applied if |u2| = 1,
i.e., it contains a single pointer or a single marker. As no markers are recorded in
the definition given in [2], u2 could in fact contain a pointer and a marker, thus
making ssprp inapplicable. The problem is illustrated in the following example.

Example 9. Let u = 324234 be a legal string with the markers removed. It
would seem that sspr2 should be applicable to u, as they are separated by only a
single pointer. However, u can be obtained from the following signed permutation
π = 2413. It is clear that sh1 is not applicable to π because of MDS 4. Since the
permutation-based model and the string-based one should be equivalent, this in
turn implies that sspr2 should not be applicable to u.

170 R. Brijder, M. Langille, and I. Petre

3.4 Confluent Strategies on Legal Strings

It was shown in [9] that assembly strategies for a given signed permutation using
simple operations are confluent: they are either all successful, or all unsuccessful
and moreover, they lead to final results having the same structure. We will now
show that the same applies on legal strings. Note that we have no need to define
structure for legal strings, as they are in fact isomorphic and thus share the same
characteristics and the same operations may be applied to both. Note also that
the results of this section are simpler to prove and more general than the similar
results in [9].

We will now show that assembly strategies on legal strings are confluent.
Lemma 1will show the case where one of the operations is an snroperation, Lemma 2
considers two sspr operations, and Lemma 3 considers two ssdr operations.

Lemma 1. Let u be a legal string over Σn and φ, ψ ∈ Snr∪Sspr∪Ssdr be two
operations applicable to u. If φ ∈ Snr or ψ ∈ Snr, then φ ◦ ψ(u) = ψ ◦ φ(u).

Proof. The proof for this is straightforward as the pointers involved in an snr
operation must be adjacent, and thus cannot overlap or affect any other pointers.

��

Lemma 2. Let u be a legal string over Σn and ψ, φ ∈ Sspr be two operations
applicable to u. Then either φ ◦ ψ(u) = ψ ◦ φ(u), or ψ(u) ≡ φ(u).

Proof. Let ψ = ssprp and φ = ssprq, for some p �= q. If pqpq �≤ u and qpqp �≤ u,
then clearly ssprq ◦ ssprp(u) = ssprp ◦ ssprq(u).

Now, if pqpq ≤ u or qpqp ≤ u, then clearly applying one operation makes the
other inapplicable, but if ψ(u) = qq and φ(u) = pp then ψ(u) ≡ φ(u). ��

Note, however, that after applying one of the sspr operations, an snr operation
on the remaining pointer becomes available, giving us the following:

ssprp(u1pqpqu2) = u1qqu2,

ssprq(u1pqpqu2) = u1ppu2,

snrq ◦ ssprp(u1pqpqu2) = u1u2 = snrp ◦ ssprq(u1pqpqu2),

for some legal strings u1, u2 over Σn.

Lemma 3. Let u be a legal string over Σn and ψ, φ ∈ Ssdr be two operations
applicable to u. Then either φ ◦ ψ(u) = ψ ◦ φ(u), or ψ(u) ≡ φ(u).

Proof. Let ψ = ssdrp,q and φ = ssdrr,s, for some p, q �= r, s. If they have a different
signature, then clearly φ◦ψ(u) = ψ ◦φ(u). Assume then that p, q, r, s ∈ Σn. The
cases when one or more of p, q, r, s are in Σn are completely similar.

Also, if p, q �= r, s then φ ◦ ψ(u) = ψ ◦ φ(u), so let q = r (the case when p = s
is similar). Thus either pqsu1pqs ≤ u or sqpu1sqp ≤ u. Both operations cannot
be applied, but ssdrp,q(u) and ssdrq,s(u) arrive at equivalent results. Indeed,
ssdrp,q(u) = u2su1su3, ssdrq,s(u) = u2pu1pu3 and so, ssdrp,q(u) ≡ ssdrq,s(u). ��

We can now extend the results above for strategies using all three operations.

A String-Based Model for Simple Gene Assembly 171

Theorem 2. Let u be a legal string over Σn and φ, ψ ∈ Snr∪Sspr∪Ssdr be two
operations applicable to u. Then either φ ◦ ψ(u) = ψ ◦ φ(u), or ψ(u) ≡ φ(u).

Proof. Based on the previous three lemmata, we only need to prove the claim
in the case φ ∈ Sspr, ψ ∈ Ssdr. Now, if φ = ssprp, ψ = ssdrq,r, and p �= q, r, then
φ ◦ ψ(u) = ψ ◦ φ(u).

Assume then that p = q. Then in ssprp, the occurrences of p must have
different signatures, and in ssdrp,r, all occurrences of p and r must have the
same signature, a contradiction. ��

Example 10. Let u = b2345623456e.

i. Both ssdr2,3 and ssdr5,6 are applicable to u. Moreover, ssdr2,3 ◦ ssdr5,6 and
ssdr5,6 ◦ ssdr2,3 are also applicable to u and

ssdr2,3 ◦ ssdr5,6(u) = ssdr5,6 ◦ ssdr2,3(u) = b44e.

ii. Both ssdr2,3 and ssdr3,4 are applicable to u. Moreover, applying either oper-
ation gives an equivalent result:

σ(ssdr2,3(u)) = b456456e ≡ b256256e = σ(ssdr3,4(u)).

We now have the necessary information to show that the result for signed per-
mutations described in [9] also applies on legal strings, namely that simple op-
erations on legal strings are confluent.

Theorem 3. Let u be a legal string over Σn and φ, ψ be two strategies for u.
Then either φ and ψ are both sorting strategies for u, or they are both unsuc-
cessful strategies. Moreover, φ(u) ≡ ψ(u).

Proof. Assume that the claim of the theorem is not true and consider a legal
string u of minimal length such that φ = φ1 . . . φk is a successful strategy for u,
while ψ = ψ1 . . . ψl is an unsuccessful one, φi, ψj ∈ Snr∪Sspr∪Ssdr, 1 ≤ i ≤ k,
1 ≤ j ≤ l.

It follows from Theorem 2 that either φk(u) ≡ ψl(u), or φk◦ψl(u) = ψl◦φk(u).
If they are equivalent, then φk(u) or ψl(u) would be a smaller counterexample
than u contradicting the minimality of u. In the latter case note that due to the
minimality of u, it follows that φk(u) has only successful strategies and ψl(π)
has only unsuccessful strategies. Consequently, ψl ◦ φk(π) has both successful
and unsuccessful strategies, contradicting the minimality of u. ��

Example 11. The legal string u = 45767eb2323456 has several sorting strate-
gies. some of them are shown below.

φ1(u) = snr6 ◦ snr3 ◦ sspr2 ◦ sspr7 ◦ ssdr4,5(u) = eb,

φ2(u) = snr4 ◦ ssdr5,6 ◦ sspr7 ◦ snr2 ◦ sspr3(u) = eb,

φ3(u) = snr6 ◦ ssdr4,5 ◦ sspr7 ◦ snr3 ◦ sspr2(u) = eb,

φ4(u) = snr4 ◦ ssdr5,6 ◦ sspr7 ◦ snr3 ◦ sspr2(u) = eb.

172 R. Brijder, M. Langille, and I. Petre

Example 12. The legal string v = b234678e56782345 has several unsuccessful
strategies. Some of them are shown below.

ψ1(v) = ssdr6,7 ◦ ssdr2,3(v) = b48e5845,
ψ2(v) = ssdr7,8 ◦ ssdr3,4(v) = b26e5625,
ψ3(v) = ssdr6,7 ◦ ssdr3,4(v) = b28e5825,
ψ4(v) = ssdr2,3 ◦ ssdr7,8(v) = b46e5645.

Note that ψ1(v) ≡ ψ2(v) ≡ ψ3(v) ≡ ψ4(v).

References

1. Cavalcanti, A., Clarke, T.H., Landweber, L.: MDS IES DB: a database of macronu-
clear and micronuclear genes in spirotrichous ciliates. Nucleic Acids Research 33,
396–398 (2005)

2. Ehrenfeucht, A., Harju, T., Petre, I., Prescott, D.M., Rozenberg, G.: Computation
in Living Cells: Gene Assembly in Ciliates. Springer, Heidelberg (2003)

3. Ehrenfeucht, A., Prescott, D.M., Rozenberg, G.: Computational aspects of gene
(un)scrambling in ciliates. In: Landweber, L.F., Winfree, E. (eds.) Evolution as
Computation, pp. 216–256. Springer, New York (2001)

4. Harju, T., Li, C., Petre, I., Rozenberg, G.: Parallelism in gene assembly. Natural
Computing (2006)

5. Harju, T., Li, C., Petre, I., Rozenberg, G.: Complexity Measures for Gene Assembly.
In: Tuyls, K., Westra, R., Saeys, Y., Nowé, A. (eds.) KDECB 2006. LNCS (LNBI),
vol. 4366. Springer, Heidelberg (2007)

6. Harju, T., Li, C., Petre, I., Rozenberg, G.: Modelling simple operations for gene
assembly. In: Chen, J., Jonoska, N., Rozenberg, G. (eds.) Nanotechnology: Science
and Computation, pp. 361–376. Springer, Heidelberg (2006)

7. Landweber, L.F., Kari, L.: The evolution of cellular computing: Nature’s solution
to a computational problem. In: Proceedings of the 4th DIMACS Meeting on DNA-
Based Computers, Philadelphia, PA, pp. 3–15 (1998)

8. Landweber, L.F., Kari, L.: Universal molecular computation in ciliates. In: Landwe-
ber, L.F., Winfree, E. (eds.) Evolution as Computation. Springer, New York (2002)

9. Langille, M., Petre, I.: Simple gene assembly is deterministic. Fundamenta Infor-
maticae 72, 1–12 (2006)

10. Prescott, D.M., Ehrenfeucht, A., Rozenberg, G.: Molecular operations for DNA
processing in hypotrichous ciliates. Europ. J. Protistology 37, 241–260 (2001)

On the Computational Power of Genetic Gates

with Interleaving Semantics:
The Power of Inhibition and Degradation

Nadia Busi1 and Claudio Zandron2

1 Dipartimento di Scienze dell’Informazione, Università di Bologna,
Mura A. Zamboni 7, I-40127 Bologna, Italy

busi@cs.unibo.it
2 DISCo, Università di Milano-Bicocca,

via Bicocca degli Arcimboldi 8, I-20126, Milano, Italy
zandron@disco.unimib.it

Abstract. Genetic Systems are a formalism inspired by genetic regula-
tory networks, suitable for modeling the interactions between genes and
proteins, acting as regulatory products. The evolution is driven by ge-
netic gates: a new object (representing a protein) is produced when all
activator objects are available in the system, and no inhibitor object is
present. Activators are not consumed by the application of such a rule.
Objects disappear because of degradation: each object is equipped with
a lifetime, and the object decays when such a lifetime expires.

We investigate the computational expressiveness of Genetic Systems
with interleaving semantics (a single action is executed in a computa-
tional step): we show that they are Turing equivalent by providing a
deterministic encoding of Random Access Machines in Genetic Systems.
We also show that the computational power strictly decreases when mov-
ing to Genetic Systems where either the degradation or the inhibition
mechanism are absent.

1 Introduction

Most biological processes are regulated by networks of interactions between reg-
ulatory products and genes. To investigate the dynamical properties of these
genetic regulatory networks, various formal approaches, ranging from discrete to
stochastic and to continuous models, have been proposed (see [8] for a review).

In [6] we introduced Genetic Systems, a simple discrete formalism for the
modeling of genetic networks, and we started an investigation of the ability of
such a formalism to act as a computational device. We continue here along the
lines of [6], by investigating the computational expressiveness obtained when
equipping Genetic Systems with a different semantics w.r.t. the one used in [6].

Genetic Systems are based on the following ingredients: genetic gates, that
are rules modeling the behaviour of genes, and objects, that represent proteins.
Proteins both regulate the activity of a gene – by activating or inhibiting tran-
scription – and represent the product of the activity of a gene.

E. Csuhaj-Varjú and Z. Ésik (Eds.): FCT 2007, LNCS 4639, pp. 173–186, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

174 N. Busi and C. Zandron

A genetic gate is essentially a contextual rewriting rule consisting of three
components: the set of activators, the set of inhibitors and the transcription
product. A genetic gate is activated if the activator objects are present in the
system, and all inhibitor objects are absent. The result of the application of
a genetic gate rule is the production of a new object (without removing the
activator objects from the system).

In biological systems, proteins can disappear in (at least) two ways (see,
e.g., [1]): a protein can either decay because its lifetime is elapsed, or because it
is neutralized by a repressor protein. To model the decaying process, we equip
objects with a lifetime, which is decremented at each computational step. When
the lifetime of an object becomes zero, the object disappears. In our model we
represent both decaying and persistent objects: while the lifetime of a decaying
object is a natural number, persistent objects are equipped with an infinite life-
time. The behaviour of repressor proteins is modeled through repressor rules,
consisting of two components: the repressor object and the object to be de-
stroyed. When both objects are present in the system, the rule is applied: the
object to be destroyed disappears, while the repressor is not removed.

In [6] we investigated the computational power of Genetic Systems with the
maximal parallelism semantics – all the rules that can be applied simultaneously,
must be applied in the same computational step – and we gave a deterministic
encoding of Random Access Machines (RAMs) [16], a well-known, deterministic
Turing equivalent formalism. As the maximal parallelism semantics is a very
powerful synchronization mechanism, we consider the semantics at the opposite
side of the spectrum, namely, the interleaving (or sequential) semantics, where
a single rule is applied in each computational step. The biological intuition be-
hind this choice is that the cell contains a finite number of RNA polymerases,
that are the enzymes that catalyze the transcription of genes: the case of in-
terleaving semantics corresponds to the presence of a single RNA polymerase
enzyme. Universality is not affected when moving to the interleaving semantics,
as shown in [5], where a variant of the RAM encoding of [6] is provided. The
encoding is deterministic and a RAM terminates if and only if its encoding ter-
minates (i.e. no additional divergent or failed computations are added in the
encoding). Hence, both existential termination (i.e., the existence of a termi-
nated, or deadlocked, computation) and universal termination (i.e., all compu-
tations terminate) are undecidable in this case. Such an universality result is
obtained by using several ingredients: persistent and decaying objects, repres-
sor rules, positive and negative regulation. Here we investigate what happens
when some of these ingredients are removed; we obtain that both decaying ob-
jects and negative regulation are needed to obtain deterministic encodings of
RAMs. We also show that the existential termination is decidable for Genetic
Systems without decaying objects. Hence, there exists no encoding of RAMs in
Genetic Systems without decaying objects. This is shown by means of a safe Petri
net with contextual (i.e., inhibitor and read) arcs, that has the same behaviour
w.r.t. termination. Then, we show that universal termination is decidable for Ge-
netic Systems without negative regulation; the proof is based on the theory of

On the Computational Power of Genetic Gates with Interleaving Semantics 175

Well-Structured Transition Systems [9]. Thus, there exists no deterministic en-
coding of RAMs in Genetic Systems without negative regulation.

The paper is organized as follows. In Section 2 we give basic definitions that
will be used throughout the paper. The syntax and the semantics of Genetic
Systems is presented in Section 3; we also show that Genetic Systems with
interleaving semantics are Turing equivalent, by providing an encoding of RAMs
(the details are reported in [5]). Then, we give some results concerning weaker
Genetic Systems: in Section 4 we consider systems without decaying objects,
and in section 5 we consider systems without inhibitors. Section 6 reports some
conclusive remarks.

2 Basic Definitions

In this section we provide some basic definitions that will be used throughout
the paper. With IN we denote the set of natural numbers, whereas IN∞ denotes
IN ∪ {∞}. We start with the definition of multisets and multiset operations.

Definition 1. Given a set S, a finite multiset over S is a function m : S → IN
such that the set dom(m) = {s ∈ S |m(s) �= 0} is finite. The multiplicity of
an element s in m is given by the natural number m(s). The set of all finite
multisets over S, denoted by Mfin(S), is ranged over by m. A multiset m such
that dom(m) = ∅ is called empty. The empty multiset is denoted by ∅. Given
the multiset m and m′, we write m ⊆ m′ if m(s) ≤ m′(s) for all s ∈ S while ⊕
denotes their multiset union: m⊕m′(s) = m(s) +m′(s). The operator \ denotes
multiset difference: (m \m′)(s) = if m(s) ≥ m′(s) then m(s)−m′(s) else 0.

The set of parts of a set S is defined as P(S) = {X | X ⊆ S}. Given a set
X ⊆ S, with abuse of notation we use X to denote also the multiset

mX(s) =
{

1 if s ∈ X
0 otherwise

We provide some basic definitions on strings, cartesian products and relations.

Definition 2. A string over S is a finite (possibly empty) sequence of elements
in S. Given a string u = x1 . . . xn, the length of u is the number of occurrences
of elements contained in u and is defined as follows: |u| = n. The empty string
is denoted by λ. With S∗ we denote the set of strings over S, and u, v, w, . . .
range over S∗. Given n ≥ 0, with Sn we denote the set of strings of length n
over S. Given a string u = x1 . . . xn, the multiset corresponding to u is defined
as follows: for all s ∈ S, mu(s) = |{i | xi = s ∧ 1 ≤ i ≤ n}|. With abuse of
notation, we use u to denote also mu

1.

Definition 3. With S × T we denote the cartesian product of sets S and T ,
with ×nS, n ≥ 1, we denote the cartesian product of n copies of set S and with
1 In some cases we denote a multiset by one of its corresponding strings, because this

permits to define functions on multisets in a more insightful way.

176 N. Busi and C. Zandron

×n
i=1Si we denote the cartesian product of sets S1, . . . , Sn, i.e., S1 × . . . × Sn.

The ith projection of x = (x1, . . . , xn) ∈ ×n
i=1Si is defined as πi(x) = xi, and

lifted to subsets X ⊆ ×n
i=1Si as follows: πi(X) = {πi(x) | x ∈ X}.

Given a binary relation R over a set S, with Rn we denote the composition of n
instances of R, with R+ we denote the transitive closure of R, and with R∗ we
denote the reflexive and transitive closure of R.

3 Genetic Systems

In this section, we present the definition of Genetic Systems (G Systems for
short) and the definitions which we need to describe their functioning. To this
aim, given a set X , we define RX = P(X)× P(X)× (X × IN∞).

Definition 4. A Genetic System is a tuple G = (V,GR,RR,w0) where

1. V is a finite alphabet whose elements are called objects;
2. GR is a finite multiset2 over RV of genetic gates over V ; these gates are of

the forms uact,¬uinh :→ (b, t) where uact∩uinh = ∅. uact ⊆ V is the positive
regulation (activation)3, uinh ⊆ V the negative regulation (inhibition), b ∈ V
the transcription of the gate4 and t ∈ IN∞ the duration of object b;

3. RR is a finite set5 of repressor rules of the form (rep : b→) where rep, b ∈ V
and rep �= b;

4. w0 is a string over V ×IN∞, representing the multiset of objects contained in
the system at the beginning of the computation. The objects are of the form
(a, t), where a is a symbol of the alphabet V and t > 0 represents the decay
time of that object.

We say that a gate is unary if |uact⊕ uinh| = 1. The multiset represented by w0

constitutes the initial state of the system.
A transition between states is governed by an application of the transcrip-

tion rules (specified by the genetic gates) and of the repressor rules. The gate
uact,¬uinh :→ (b, t) can be activated if the current state of the system contains
enough free activators and no free inhibitors. If the gate is activated, the reg-
ulation objects (activators) in the set uact are bound to such a gate, and they
cannot be used for activating any other gate in the same maximal parallelism
evolution step. In other words, the gate uact,¬uinh :→ (b, t) in a state formed
by a multiset of (not yet bound) objects w can be activated if uact is contained
in w and no object in uinh appears in w; if the gate performs the transcription,
2 Here we use multisets of rules, instead of sets, for compatibility with the definition

in [6].
3 We consider sets of activators, meaning that a genetic gate is never activated by

more than one instance of the same protein.
4 Usually the expression of a genetic gate consists of a single protein.
5 We use sets of rules, instead of multisets, because each repressor rule denotes a

chemical law; hence, a repressor rule can be applied for an unbounded number of
times in each computational step.

On the Computational Power of Genetic Gates with Interleaving Semantics 177

then a new object (b, t) is produced. Note that the objects in uact and uinh are
not consumed by the transcription operation, but will be released at the end of
the operation and (if they do not disappear because of the decay process) they
can be used in the next evolution step. Each object starts with a decay number,
which specify the number of steps after which this object disappears. The decay
number is decreased after each parallel step; when it reaches the value zero, the
object disappears. If the decay number of an object is equal to ∞, then the object
is persistent and it never disappears. The repressor rule (rep : b→) is activated
when both the repressor rep and the object b are present, and the repressor
rep destroys the object b. We adopt the following notation for gates. The acti-
vation and inhibition sets are denoted by one of the corresponding strings, i,e,
a, b,¬c :→ (c, 5) denotes the gate {a, b},¬{c} :→ (c, 5). If either the activation
or the inhibition is empty then we omit the corresponding set, i.e., a :→ (b, 3)
is a shorthand for the gate {a},¬∅ :→ (b, 3). The nullary gate ∅,¬∅ :→ (b, 2) is
written as :→ (b, 2).

3.1 Configurations, Reaction Relation and Interleaving
Computational Step

Once defined Genetic Systems, we are ready to describe their functioning. A
transition between two states of the system is governed by an application of the
transcription rules (specified by the genetic gates) and of the repressor rules.
Different semantics can be adopted, depending on the number of rules that are
applied in each computational step, and on the way in which the set of rules
to be applied is chosen. In [6] we adopted the so-called maximal parallelism
semantics: all the rules that can be applied simultaneously, must be applied in
the same computational step. In this paper we consider the semantics at the
opposite side of the spectrum, i.e., the interleaving (or sequential) semantics. In
this case, at each computational step only a single rule is applied. In particular,
for deterministic systems, at each computational step there is at most one rule
that can be applied. For non–deterministic systems, at each computational step
one rule, among all applicable ones, is chosen to be applied.

We give now the definitions for configuration, reaction relation, and heating
and decaying function. A configuration represents the current state of the system,
consisting in the (multi)set of objects currently present in the system.

Definition 5. Let G = (V,GR,RR,w0) be a Genetic System. A configuration
of G is a multiset w ∈ Mfin(V × IN∞). The initial configuration of G is the
multiset w0.

The activation of a genetic gate is formalized by the notion of reaction relation.
In order to give a formal definition we need the function obj : (V ×IN∞)∗ → V ∗,
defined as follows. Assume that (a, t) ∈ (V × (IN∞)) and w ⊆ (V × (IN∞))∗.
Then, obj(λ) = λ and obj((a, t)w) = a obj(w).

We also need to define a function DecrTime which is used to decrement the
decay time of objects, destroying the objects which reached their time limit.

178 N. Busi and C. Zandron

Definition 6. The function DecrT ime : (V × IN∞)∗ → (V × IN∞)∗ is defined
as follows: DecrT ime(λ) = λ and

DecrT ime((a, t)w) =
{

(a, t− 1)DecrT ime(w) if t > 1
DecrT ime(w) if t = 1

We are now ready to give the notion of reaction relation.

Definition 7. Let G = (V,GR,RR,w0) be a Genetic System. The reaction re-
lation �→ over Mfin(V × IN∞)×Mfin(V × IN∞) is defined as follows:
w �→ w′ iff one of the following holds:

– there exist uact,¬uinh :→ (b, t) ∈ GR and wact ⊆ w such that
• uinh ∩ dom(obj(w)) = ∅
• mobj(wact) = muact

6

• w′ = DecrT ime(w)⊕ {(b, t)}
– there exists (rep : b→) ∈ RR such that

• there exist trep, tb ∈ IN∞ such that {(rep, trep), (b, tb)} ⊆ w
• w′ = DecrT ime(w) \ {(rep, trep), (b, tb)} ⊕DecrT ime((rep, trep))

Now we are ready to define the interleaving computational step �:

Definition 8. Let G = (V,GR,RR,w0) be a Genetic System. The interleaving
computational step � over configurations of G is defined as follows: w1 � w2

iff one of the following holds:

– either w1 �→ w2, or
– w1 ��→ and there exists (a, t) ∈ w1 such that t �= ∞ and w2 = DecrT ime(w1).

We say that a configuration w is terminated if no interleaving step can be per-
formed, i.e., w ��. The set of configurations reachable from a given configuration
w is defined as Reach(w) = {w′ | w �∗ w′}. The set of reachable configurations
in G is Reach(w0).

Note that a computational step can consist either in the application of a rule,
or in the passing of one time unit, in case the system is deadlocked (i.e., no rule
can be applied). We also need computational steps of the second kind, as it may
happen that the computation restarts after some object – acting as inhibitor for
some rule – decays. Consider, e.g., a system with a negative gate ¬b :→ (a, 3)
and a positive gate a :→ (a, 3), reaching a configuration containing only the
object (b, 2). The system cannot evolve until 2 time units have elapsed; then, an
object (a, 3) is produced and, because of the positive gate, the system will never
terminate.

To illustrate the difference between the interleaving and the maximal paral-
lelism semantics, consider a system with gates ¬d, a :→ b and ¬b, c :→ d and
with initial state ac. According to the maximal parallelism semantics only the
6 We recall that muact is the multiset containing exactly one occurrence of each object

in the set uact. Hence, the operator = is intended here to be the equality operator
on multisets.

On the Computational Power of Genetic Gates with Interleaving Semantics 179

following step can be performed: ac �⇒ acbd ��⇒, where �⇒ is a maximal par-
allelism computational step. On the other hand, according to the interleaving
semantics also the following sequence of steps can be performed: ac � acb �
acbb � acbbb �

Now we introduce some notions concerned with divergence and termination
that will be useful in the following.

Definition 9. Let G = (V,GR,RR,w0) be a Genetic System. We say that a
configuration w has a divergent computation (or infinite computation) if there
exists an infinite sequence of configurations w1, . . . , wi, . . . such that w = w1 and
∀i ≥ 1 : wi � wi+1. We say that a configuration w universally terminates if it
has no divergent computations. We say that w is deterministic iff for all w′, w′′:
if w � w′ and w � w′′ then w′ = w′′. We say that w has a terminating com-
putation (or a deadlock) if there exists w′ such that w �∗ w′ and w ��. The
system G satisfies the universal termination property if w0 has no divergent com-
putations. The system G satisfies the existential termination property if w0 has
a deadlock. Note that the existential termination and the universal termination
properties are equivalent on deterministic systems.

3.2 Expressiveness of Genetic Systems with Interleaving Semantics

In [6] we showed that Genetic Systems with maximal parallelism semantics are
Turing powerful. We strengthen the result by showing that interleaving semantics
is enough to get Turing equivalence. As maximal parallelism semantics turns
out to be a very powerful synchronization mechanism, often the expressiveness
of a formalism is increased when moving from the interleaving to the maximal
parallelism semantics; see, e.g., [10] for some examples of this phenomenon in
Membrane Systems [13] and [3] for a fragment of the Brane Calculus [7].

In order to show that Genetic Systems with interleaving semantics are Turing
powerful, we provide a variant of the encoding of Random Access Machines
(RAMs) [16] proposed in [6]. Such an encoding is deterministic and it enjoys the
following property: a RAM terminates if and only if its encoding terminates (i.e.
no additional divergent or failed computations are added in the encoding).

The detailed description of the encoding, preceded by a description of RAMs
are given in the extended version of this paper [5].

4 Genetic Systems Without Decaying Objects

In the result we presented in the previous section, we proved Turing equivalence
of Genetic Systems by using several ingredients: persistent and decaying ob-
jects, repressor rules, positive and negative regulation. Are all such ingredients
needed in order to obtain such a result? In this section, we show that existential
termination is decidable for Genetic Systems without decaying objects. As a con-
sequence, there exist no (deterministic or weak) encoding of RAMs in Genetic
systems without decaying objects. This is shown by constructing a safe Petri
net with contextual (i.e., inhibitor and read) arcs, that has the same behaviour
w.r.t. termination.

180 N. Busi and C. Zandron

4.1 Contextual P/T Nets

We recall Place/Transition nets (see, e.g., [15]) extended with contextual (i.e.,
inhibitor and read) arcs (see, e.g., [12,2]). Read (resp. inhibitor) arcs do not
modify the contents of the places of the net, but permit to test respectively for
presence (resp. absence) of a token in a place for a transition to fire. Here we
provide a characterization of this model which is convenient for our aims.

Definition 10. A Contextual P/T net is a pair (S, T) where S is the set of
places and T ⊆Mfin(S)× P(S)× P(S)×Mfin(S) is the set of transitions.

Finite multisets over the set S of places are called markings. Given a marking
m and a place s, we say that the place s contains m(s) tokens. A Contextual
P/T net is finite if both S and T are finite.

A Contextual P/T system is a triple N = (S, T,m0) where (S, T) is a P/T
net and m0 is the initial marking.

A transition t = (Pre,Read, Inhib, Post) is usually written in the following
form: (Pre;Read; Inhib) → Post. The marking Pre, denoted by •t, is called the
preset of t and represents the tokens to be consumed; the marking Post, denoted
by t•, is called the postset of t and represents the tokens to be produced. The set
Read, denoted with t̂, is called the contextual set of t and represents the tokens
to be tested for presence; the set Inhib, denoted with ◦t, is called the inhibitor
set of t and represents the tokens to be tested for absence.

A transition t is enabled at m if •t⊕ t̂ ⊆ m and dom(m) ∩ ◦t = ∅.
The execution of a transition t enabled at m produces the marking m′ =

(m \ •t) ⊕ t•. This is written as m[t〉m′ or simply m[〉m′ when the transition t
is not relevant. We use σ, τ to range over sequences of transitions; the empty
sequence is denoted by ε; let σ = t1, . . . , tn, we write m[σ〉m′ to mean the firing
sequence m[t1〉 · · · [tn〉m′.

A marking m′ is reachable from a marking m if there exists a sequence of
transitions σ such that m[σ〉m′. The set of markings reachable from m is denoted
by [m〉.We say that the marking m is reachable in the Contextual P/T system
N if m ∈ [m0〉 (i.e., if m is reachable from the initial marking).

A deadlock is a marking m such that, for all t ∈ T , ¬m[t〉. We say that the
Contextual P/T system N has a deadlock if there exists a deadlock m ∈ [m0〉.
A Contextual P/T system is safe if, in all reachable markings, each place contains
at most one token.

Definition 11. A Contextual P/T system N = (S, T,m0) is safe if, for all
m ∈ [m0〉 and for all s ∈ S, m(s) ≤ 1.

Clearly, for safe, finite systems the set [m0〉 of reachable markings is finite; hence,
both existential and universal termination are decidable for such a class of nets.

4.2 Mapping Genetic Systems Without Degradation on Safe
Contextual P/T Systems

Given a Genetic System without degradation, we show how to construct a cor-
responding P/T system with the same behaviour w.r.t. existential termination.

On the Computational Power of Genetic Gates with Interleaving Semantics 181

More precisely, given a Genetic System G, we construct a safe Contextual P/T
system Net(G) satisfying the following property: G has a deadlock if and only
if Net(G) has a deadlock.

The net has a place a for each object (a,∞) of the system; place a con-
tains a token iff there is at least one occurrence of object (a,∞) in the system.
Given, e.g., a genetic gate a,¬b :→ (c,∞), the net has the following transitions:
(∅; a; bc) → c and (∅; ac; b) → ∅. For each repressor rule repr : c → there is
the following transition: (c; repr; emptyset) → ∅. The idea is the following: if a
transition corresponding to a repressor rule (c; repr; emptyset) → ∅ fires, this
corresponds to the fact that all the occurrences of c are destroyed. The function
dec maps configurations of the system to markings of the net, and is defined as
dec(w) = π1(dom(w)). The idea is the following: a place a in the net contains one
token iff the corresponding configuration contains at least one occurrence of ob-
ject a; on the other hand, if no object of kind a is contained in the configuration,
then the place a is empty in the corresponding marking.

Definition 12. Let G = (V,GR,RR,w0) be a Genetic System. The function
dec : Mfin(V × IN∞) → P(V) is defined as follows: dec(w) = π1(dom(w)) for
all configurations w.

The Contextual P/T system Net(G) = (S, T,m0) is defined as follows:
S = V
T = {(∅;uact;uinhib ∪ {b}) → {b} | (uact,¬uinh :→ (b,∞)) ∈ GR}∪

{(∅;uact ∪ {b};uinhib) → ∅ | (uact,¬uinh :→ (b,∞)) ∈ GR}∪
{(b; rep; ∅) → ∅ | (rep : b→) ∈ RR}

m0 = dec(w0)

Proposition 1. Let G = (V,GR,RR,w0) be a Genetic System. Then the Con-
textual P/T system Net(G) is safe and finite.

Lemma 1. Let G = (V,GR,RR,w0) be a Genetic System and w,w′ be config-
urations of G. If w � w′ then either dec(w) = dec(w′) or dec(w)[t〉dec(w′).

Lemma 2. Let G = (V,GR,RR,w0) be a Genetic System, w a configuration
of G and m a marking of Net(G). If dec(w)[t〉m′ then there exists w′ such that
w �+ w′ and m = dec(w′).

Theorem 1. Let G = (V,GR,RR,w0) be a Genetic System and w,w′ be con-
figurations of G. If w �∗ w′ �� then there exists a sequence of transitions σ such
that dec(w)[σ〉dec(w′) and dec(w′) is a deadlock.

Theorem 2. Let G = (V,GR,RR,w0) be a Genetic System, w a configuration
of G and m′ a marking of Net(G). If dec(w)[σ〉m′ and m′ is a deadlock then
there exists a configuration w′ such that w �∗ w′ �� and dec(w′) = m′.

Corollary 1. Let G = (V,GR,RR,w0) be a Genetic System. G has a deadlock
if and only if Net(G) has a deadlock.

We notice that this approach cannot be trivially extended to the maximal par-
allelism semantics, because in this case the number of occurrences of an object

182 N. Busi and C. Zandron

does matter. Consider, e.g., the system with rules ¬d, a :→ b and ¬b, a :→ d. In
this case, the initial states a and aa lead to different evolutions: from a an infinite
computation can start, but from aa only a deadlocked state can be reached.

5 Genetic Systems Without Inhibitors

In this section we show that universal termination is decidable for Genetic
Systems without inhibitors. The decidability proof is based on the theory of
Well-Structured Transition Systems [9]: the existence of an infinite computation
starting from a given state is decidable for finitely branching transition systems,
provided that the set of states can be equipped with a well-quasi-ordering, i.e., a
quasi-ordering relation which is compatible with the transition relation and such
that each infinite sequence of states admits an increasing subsequence. After re-
calling the part of theory of Well-Structured Transition Systems needed for our
aim, we show that the condition above is fulfilled by Genetic systems.

5.1 Well-Structured Transition Systems

We start by recalling some basic definitions and results from [9], concerning
well-structured transition systems, that will be used in the following.

A quasi-ordering (qo) is a reflexive and transitive relation.

Definition 13. A well-quasi-ordering (wqo) is a quasi-ordering ≤ over a set X
such that, for any infinite sequence x0, x1, x2, . . . in X, there exist indexes i < j
such that xi ≤ xj .

Note that, if ≤ is a wqo, then any infinite sequence x0, x1, x2, . . . contains an
infinite increasing subsequence xi0 , xi1 , xi2 , . . . (with i0 < i1 < i2 < . . .).

Transition systems can be formally defined as follows.

Definition 14. A transition system is a structure TS = (S,→), where S is a
set of states and →⊆ S×S is a set of transitions. We write Succ→(s) to denote
the set {s′ ∈ S | s→ s′} of immediate successors of s ∈ S.
TS is finitely branching if ∀s ∈ S : Succ(s) is finite. We restrict to finitely

branching transition systems.

Well-structured transition systems, defined as follows, provide the key tool to
decide properties of computations.

Definition 15. A well-structured transition system (with strong compatibility)
is a transition system TS = (S,→), equipped with a quasi-ordering ≤ on S, also
written TS = (S,→,≤), such that the following two conditions hold:

1. well-quasi-ordering: ≤ is a well-quasi-ordering, and
2. strong compatibility: ≤ is (upward) compatible with →, i.e., for all s1 ≤

t1 and all transitions s1 → s2, there exists a state t2 such that t1 → t2 and
s2 ≤ t2.

On the Computational Power of Genetic Gates with Interleaving Semantics 183

The following theorem (a special case of a result in [9]) will be used to obtain
our decidability result.

Theorem 3. Let TS = (S,→,≤) be a finitely branching, well-structured transi-
tion system with decidable ≤ and computable Succ. The existence of an infinite
computation starting from a state s ∈ S is decidable.

To show that the quasi-ordering relation we will define on Genetic systems is a
well-quasi-ordering we need the following result on well-quasi-ordering relations
for multisets.

Lemma 3. Let S be a finite set. The relation ⊆ is a wqo over Mfin(S).

5.2 Decidability of Universal Termination for Genetic Systems
Without Inhibition

We show that it is possible to equip the set of reachable configurations of a
Genetic System with a well-quasi-ordering relation, compatible with �, that
permits to fulfill the conditions of Theorem 3. The idea is to use Lemma 3
to show that the multiset inclusion ⊆ is a wqo over (a superset of) the set of
reachable configurations. Two problems need to be solved:

– The relation ⊆ is not compatible with �. Consider, e.g., the Genetic System
containing only the repressor rule (rep : a →), and the two related configu-
rations (a, 5) ⊆ (a, 5)(rep, 2). The only move that can be performed by the
first configuration is the passing of time, i.e., (a, 5) � (a, 4), whereas for the
second configuration the only move is the application of the repressor rule,
i.e., (a, 5)(rep, 2) � (rep, 1), and (a, 4) �⊆ (rep, 1). However, we note that
for Genetic Systems with positive regulation only the passing of time does
not influence the overall behaviour of the system. Hence, the interleaving
computational step � is equivalent to the reaction relation �→ w.r.t. the
terminating behaviour of the system.

– We cannot take Mfin(V ×IN∞) as a superset of the reachable configurations
of a Genetic System, because the set V × IN∞ is infinite and the Lemma
cannot be applied. However, we show that there exists an upper bound for
the decay time of all nonpersistent objects belonging to a reachable con-
figuration. This fact permits to define a finite set, such that all reachable
configurations of a Genetic System turn out to be finite multisets over such
a finite set.

The following definition turns out to be useful to solve the above problems. The
maximum decay time of decaying objects belonging to a configuration, produced
by a genetic gate and belonging to a Genetic System is defined as follows:

Definition 16. Let G = (V,GR,RR,w0) be a Genetic System and w be a con-
figuration of G. The function maxtime : (V × IN∞) → IN is defined on config-
urations as follows:

maxtime(ε) = 0

maxtime(w(a, t)) =
{
maxtime(w) if t = ∞
max{t,maxtime(w) otherwise

184 N. Busi and C. Zandron

The function maxtime is defined on a genetic gate gg = uact,¬uinib :→ (b, t)
as follows:

maxtime(uact,¬uinib :→ (b, t)) =
{

0 if t = ∞
t otherwise

The function maxtime is defined on the Genetic System G as follows:

maxtime(G) = max{maxtime(w0),max{maxtime(gg) | gg ∈ GR}}

The first problem is solved by considering the relation �→ instead of � for Genetic
Systems with positive regulation. The following proposition is useful to show that
�→ and � are equivalent w.r.t. the termination of the system.

Proposition 2. Let G = (V,GR,RR,w0) be a Genetic System and w,w′ con-
figurations of G. If w ��→ and w � w′ then w′ ��→. If w ��→ and w �n w′ then
n ≤ maxtime(w).

Corollary 2. Let G = (V,GR,RR,w0) be a Genetic System. There exist {wi |
1 ≤ i ≤ n} such that w0 � w1 � . . . wi � . . . if and only if there exist
{w′

i | 1 ≤ i ≤ n} such that w0 �→ w′
1 �→ . . . w′

i �→

Now we tackle the second problem. The decay time of the nonpersistent objects
in a reachable configuration is bounded by the maximum decay time of a Genetic
System:

Proposition 3. Let G = (V,GR,RR,w0) be a Genetic System. For all reach-
able configurations w, for all (a, t) ∈ dom(w), if t �= ∞ then t ≤ maxtime(G).

Hence, all the reachable configurations of a Genetic System turn out to be finite
multisets over the finite set V × {0, . . . ,maxtime(G),∞}

Corollary 3. Let G = (V,GR,RR,w0) be a Genetic System. For all configura-
tions w, w0 �→∗ w then w ∈ Mfin(V × {0, . . . ,maxtime(G),∞}).

We are ready to build the transition system corresponding to a Genetic System:

Definition 17. The transition system corresponding to a Genetic System G =
(V,GR,RR,w0) is TS(G) = (Mfin(V × {0, . . . ,maxtime(G),∞}), �→,⊆).

To apply Theorem 3 we need to show that TS(G) is finitely branching:

Proposition 4. Let G = (V,GR,RR,w0) be a Genetic System and w be a
configuration of G. The set {w′ | w �→ w′} is finite.

Now we are ready to show that the conditions of Theorem 3 are fulfilled:

Theorem 4. Let G = (V,GR,RR,w0) be a Genetic System. Then TS(G) is a
finitely branching, well-structured transition system with decidable ≤ and com-
putable Succ.

On the Computational Power of Genetic Gates with Interleaving Semantics 185

Thus, universal termination is decidable for Genetic Systems without inhibitors.
Note that, if we add inhibition, the above result does not hold because the
ordering relation ⊆ cannot be compatible with �. (Consider, e.g., the system
with genetic gate a,¬b :→ (c,∞) and the two related configurations (a,∞) ⊆
(a,∞)(b,∞)).

We showed that universal termination is decidable, hence there exist no de-
terministic encoding of RAMs in Genetic Systems without inhibitors. We leave
as an open problem the existence of a nondeterministic encoding of RAMs. Note
that the results of Section 4 cannot be applied. In Section 4 we consider systems
without decaying objects, and such systems satisfy the following property (P):
given a repressor rule (rep : b →), once the repressor object rep is produced, it
can be used to remove all the occurrences of (b,∞) in the system. Clearly, such
a rule is not satisfied by systems with decaying objects, because the repressor
object rep can decay before it has consumed all occurrences of b (consider, e.g.,
by the configuration (rep, 1)(b,∞)(b,∞). We mimicked the behavior of a Ge-
netic System without decaying objects with a safe net, where each repressor rule
(rep : b→) is either mimicked by a transition that removes the token in place b
(corresponding to the fact that all the occurrences of (b,∞) in the corresponding
configuration of the system are removed, by a sequence of computational steps),
or by no transition (corresponding to the fact that at least one occurrence of
(b,∞) is left in the system after the application of hte repressor rule). In pres-
ence of decaying objects, the transition of the net – that mimicks the fact that
all objects of kind (b, t) in the system are removed – may be not reproducible in
the corresponding Genetic System, because property (P) may not hold.

6 Conclusion

We investigated the computational expressiveness of Genetic Systems, a formal-
ism modeling the interactions occurring between genes and regulatory products.

A study of the expressiveness of rewriting rules inspired by genetic networks
have been carried out in [4], in the context of Membrane Systems [13]. The re-
sult presented in [4] is incomparable with the result presented in this paper,
because the semantics of the rules are different (in this paper, the modeling of
repressors is more faithful to the biological reality, a more abstract semantics
for genetic gates is used, and interleaving semantics instead of maximal paral-
lelism is adopted), and because the result in [4] crucially depends on the use of
membranes, permitting to localize to a specific compartment the objects and the
rules, and of rules modeling the movement of objects across membranes. While
both approaches are inspired by DNA, Genetic Systems turn out to be different
from DNA computing (see, e.g., [14] for a survey), where the basic ingredients are
strings, representing DNA strands, that evolve through the splicing operation.

In the result we presented in section 4, several ingredients are used to achieve
Turing equivalence: the use of both persistent and decaying objects, repressor
rules, positive and negative regulation. We showed that both Genetic Systems
with persistent objects only and Genetic Systems with positive regulation cannot

186 N. Busi and C. Zandron

provide a deterministic encoding of RAMs. Regarding systems without repressor
rules, we conjecture that existential termination is decidable, hence it is not
possible to provide an encoding of RAMs in such a class of systems. The idea is to
provide a mapping of Genetic Systems without repressor rules on safe Contextual
Petri Net, which preserves the existence of a deadlock, using a technique similar
to the one employed in Section 4.

References

1. Blossey, R., Cardelli, L., Phillips, A.: A Compositional Approach to the Stochastic
Dynamics of Gene Networks. In: Priami, C., Cardelli, L., Emmott, S. (eds.) Trans-
actions on Computational Systems Biology IV. LNCS (LNBI), vol. 3939. Springer,
Heidelberg (2006)

2. Busi, N., Pinna, G.M.: A Causal Semantics for Contextual P/T nets. In: Proc.
ICTCS’95, pp. 311–325. World Scientific, Singapore (1995)

3. Busi, N.: On the Computational Power of the Mate/Bud/Drip Brane Calculus:
Interleaving vs. Maximal Parallelism. In: Freund, R., Păun, G., Rozenberg, G.,
Salomaa, A. (eds.) WMC 2005. LNCS, vol. 3850. Springer, Heidelberg (2006)

4. Busi, N., Zandron, C.: Computing with Genetic Gates, Proteins and Membranes.
In: Hoogeboom, H.J., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2006.
LNCS, vol. 4361. Springer, Heidelberg (2006)

5. Busi, N., Zandron, C.: On the computational power of Genetic Gates with inter-
leaving semantics: The power of inhibition and degradation,
www.cs.unibo.it/%7Ebusi/FCT07long.pdf

6. Busi, N., Zandron, C.: Computing with Genetic Gates. In: Proc. Third Conference
on Computability in Europe. Computation and Logic in the Real World (CiE 2007).
LNCS, vol. 4497. Springer, Heidelberg 2007 (to appear)

7. Cardelli, L.: Brane Calculi - Interactions of Biological Membranes. In: Danos, V.,
Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 257–280. Springer,
Heidelberg (2005)

8. De Jong, H.: Modeling and Simulation of Genetic Regulatory Systems: A Literature
Review. Journal of Computatonal Biology 9, 67–103 (2002)

9. Finkel, A., Schnoebelen, Ph.: Well-Structured Transition Systems Everywhere!
Theoretical Computer Science 256, 63–92 (2001)

10. Freund, R.: Asynchronous P Systems and P Systems Working in the Sequential
Mode. In: Mauri, G., Păun, G., Pérez-Jiménez, M.J., Rozenberg, G., Salomaa, A.
(eds.) WMC 2004. LNCS, vol. 3365, pp. 36–62. Springer, Heidelberg (2005)

11. Minsky, M.L.: Computation: Finite and Infinite Machines. Prentice-Hall, Engle-
wood Cliffs (1967)

12. Montanari, U., Rossi, F.: Contextual Nets. Acta Inform. 32(6), 545–596 (1995)
13. Păun, G.: Membrane Computing. An Introduction. Springer, Heidelberg (2002)
14. Păun, G., Rozenberg, G., Salomaa, A.: DNA Computing. New computing

paradigms. Springer, Heidelberg (1998)
15. Reisig, W.: Petri nets: An Introduction. EATCS Monographs in Computer Science.

Springer, Heidelberg (1985)
16. Shepherdson, J.C., Sturgis, J.E.: Computability of Recursive Functions. Journal of

the ACM 10, 217–255 (1963)

www.cs.unibo.it/%7Ebusi/FCT07long.pdf

On Block-Wise Symmetric Signatures for

Matchgates

Jin-Yi Cai1 and Pinyan Lu2,�

1 Computer Sciences Department, University of Wisconsin
Madison, WI 53706, USA

jyc@cs.wisc.edu
2 Department of Computer Science and Technology, Tsinghua University

Beijing, 100084, P.R. China
lpy@mails.tsinghua.edu.cn

Abstract. We give a classification of block-wise symmetric signatures
in the theory of matchgate computations. The main proof technique is
matchgate identities, a.k.a. useful Grassmann-Plücker identities.

1 Introduction

The most fundamental question in computational complexity theory is what dif-
ferentiate between polynomial time and exponential time problems. On the one
hand, we have many completeness results and conjectured separations of com-
plexity classes. On the other hand we have precious few unconditional separa-
tions. In fact, the most spectacular advances in the field in the past 20 years have
been upper bounds, i.e., surprising ways to do computation efficiently. Valiant’s
theory of matchgate and holographic algorithms [11,13] is one such methodology.

The basic idea in matchgate computations is to encode 0-1 bits of a com-
putation in terms of perfect matchings. The complexity of graph matching is
very interesting in its own right, having inspired the notion of P in the first
place [5]. While a brute force attempt at graph matching seems to take ex-
ponential time, it turns out that the decision problem is in P. More relevant,
counting perfect matchings is known to be in P for planar graphs by the FKT
method [7,8,10]. (Counting all, not necessarily perfect, matchings for planar
graphs is #P-complete, as is counting perfect matchings for general graphs [6].)
So one can say that graph matching is right at the border of polynomial time
and (probably) exponential time. Valiant’s theory of matchgate computations
uses the FKT method as the starting point.

To give a flavor of this methodology, let’s consider the problem #7Pl-Rtw-
Mon-3CNF. Given a planar read-twice monotone 3CNF formula, this problem
asks for the number of satisfying assignments modulo 7. Without the modulo 7,
it is #P-complete even for such restricted formulae [14]. Furthermore, counting
� Supported by NSF CCR-0511679 and by the National Natural Science Foundation

of China Grant 60553001 and the National Basic Research Program of China Grant
2007CB807900, 2007CB807901.

E. Csuhaj-Varjú and Z. Ésik (Eds.): FCT 2007, LNCS 4639, pp. 187–198, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

188 J-Y. Cai and P. Lu

mod 2, denoted as #2Pl-Rtw-Mon-3CNF, is ⊕P-complete (hence NP-hard). But,
using matchgates Valiant showed that #7Pl-Rtw-Mon-3CNF ∈ P [14].

A matchgate is a weighted planar graph with some external nodes. E.g., let
π be a path of length 3: all 3 edges have weight 1, and the two end vertices are
external nodes. If we remove exactly one of the two external nodes we have 3
vertices left and therefore there is no perfect matching. If we remove either both
or none of the two external nodes we get a unique perfect matching with weight
1 (the product of weights of matching edges). We can record this information
as (1, 0, 0, 1)T, indexed by 00, 01, 10, 11; this is called the (standard) signature of
π. One can use this gadget to replace a Boolean variable x in a planar formula
ϕ, and 00, 01, 10, 11 will naturally correspond to truth values of x to be fanned-
out to the 2 clauses of ϕ in which x appears (recall it is read-twice). Then the
signature (1, 0, 0, 1)T indicates consistency of this truth assignment on x.

Now for each clause in ϕ we wish to find a matchgate with 3 external nodes
having signature (0, 1, 1, 1, 1, 1, 1, 1)T, indexed by 000, 001, . . . , 111. This signa-
ture corresponds to a Boolean OR. One can replace each clause by such a gadget,
and connect its 3 external nodes to the gadgets of its 3 variables. Then the total
number of perfect matchings of the resulting planar graph is exactly the number
of satisfying assignments of ϕ. This can be computed by the FKT method, which
would imply P#P = P.

It turns out that a matchgate with the standard signature (0, 1, 1, 1, 1, 1, 1, 1)T

does not exist. However, using a basis transformation a (non-standard) signature
in the form (0, 1, 1, 1, 1, 1, 1, 1)T is realizable over the field Z7 (but not Q). This
gives the result that #7Pl-Rtw-Mon-3CNF ∈ P. (In this paper we will not be
concerned with non-standard signatures.)

The signatures (1, 0, 0, 1)T and (0, 1, 1, 1, 1, 1, 1, 1)T are called symmetric sig-
natures, since their values only depend on the Hamming weight of the index.
Symmetric signatures have natural combinatorial meanings (such as two equal
bits or the Boolean OR). Therefore the study of symmetric signatures is of fore-
most importance in order to understand the power of these exotic algorithms.
To this end, we have achieved a complete classification of bit-wise symmetric
signatures [3].

In Valiant’s surprising algorithm for #7Pl-Rtw-Mon-3CNF he took another
innovative step in the use of matchgates. In his algorithm, the matchgates have
external nodes grouped in blocks of 2 each (called “2-rail” in [14]). This nat-
urally raises the question of classification of block-wise symmetric signatures.
This paper is concerned with this classification.

The classification theorem of block-wise symmetric signatures is more diffi-
cult compared to that of bit-wise symmetric signatures. The main reason for this
is that matchgate signatures are characterized by a set of parity requirements
(due to consideration of perfect matchings) and an exponential sized set of alge-
braic constraints called Matchgate Identities (MGI) a.k.a. the useful Grassman-
Plücker Identities [9,12,2,1]. These MGI are non-linear, and are more subtle
compared to parity requirements. They come about due to an equivalence be-
tween the perfect matching polynomial PerfMatch and the Pfaffian [2,1]. For

On Block-Wise Symmetric Signatures for Matchgates 189

bit-wise symmetric signatures, these MGI degenerate into something more read-
ily treatable. This paper is the first time one is able to mount a successful and
systematic attack on these MGI. We find proofs on MGI technically challenging,
with almost every step a struggle (at least to the authors).

At a higher level, the new theory of matchgate and holographic algorithms
represents a novel algorithm design methodology by Valiant, with its ultimate
reach unknown. Will the new theory lead to a collapse of complexity classes? We
don’t know. Only a systematic study will (hopefully) tell. To get a classification
theorem for block-wise symmetric signatures seems a useful step.

2 Background

Let G = (V,E,W) be a weighted undirected planar graph. A matchgate Γ is a
tuple (G,X) where X ⊆ V is a set of external nodes, ordered counterclockwise
on the external face. Γ is called an odd (resp. even) matchgate if it has an odd
(resp. even) number of nodes.

Each matchgate Γ with n external nodes is assigned a (standard) signature
(Γα)α∈{0,1}n with 2n entries,

Γ i1i2...in = PerfMatch(G− Z) =
∑
M

∏
(i,j)∈M

wij ,

where the sum is over all perfect matchings M of G − Z, and Z ⊆ X is the
subset of external nodes having the characteristic sequence χZ = i1i2 . . . in.

An entry Γα is called an even (resp. odd) entry if the Hamming weight wt(α) is
even (resp. odd). It was proved in [1,2] that standard signatures are characterized
by the following two sets of conditions. (1) The parity requirements: either all
even entries are 0 or all odd entries are 0. This is due to perfect matchings. (2)
A set of Matchgate Identities (MGI) defined as follows: A pattern α is an n-bit
string, i.e., α ∈ {0, 1}n. A position vector P = {pi}, i ∈ [l], is a subsequence of
{1, 2, . . . , n}, i.e., pi ∈ [n] and p1 < p2 < · · · < pl. We also use p to denote the
pattern, whose (p1, p2, . . . , pl)-th bits are 1 and others are 0. Let ei ∈ {0, 1}n
be the pattern with 1 in the i-th bit and 0 elsewhere. Let α + β be the bitwise
XOR of α and β. Then for any pattern α ∈ {0, 1}n and any position vector
P = {pi}, i ∈ [l],

l∑
i=1

(−1)iΓα+epiΓα+p+epi = 0. (1)

The use of MGI will be central in this paper. These MGI come from the
Grassmann-Plücker identities valid for Pfaffians. In fact initially Valiant
introduced two theories of matchgate computation: The first is the matchcir-
cuit theory with general (non-planar) matchgates [11]. These matchgates have
characters which are defined in terms of Pfaffians. The second is the theory of
matchgrid/holographic algorithms [13]. These use planar matchgates with signa-
tures defined by PerfMatch. In [2] it was proved that MGI characterize (general)

190 J-Y. Cai and P. Lu

matchgate characters. In [1] an equivalence theorem of characters and signatures
was established, and thus MGI also characterize planar matchgate signatures.
The dual forms of the theory have been useful in both ways: some times it is
easier to reason and construct planar gadgets, other times the algebraic Pfaffian
setup seems essential. A case in point is symmetric signatures.

A signature Γ is (bit-wise) symmetric if Γα only depends on wt(α). A bit-
wise symmetric signature can be denoted as [z0, z1, . . . , zn], where Γα = zwt(α).
It was proved in [2] that for even matchgates, a signature [z0, z1, . . . , zn] is real-
izable iff for all odd i, zi = 0, and there exist constants r1, r2 and λ, such that
z2i = λ · (r1)�n/2�−i · (r2)i, for 0 ≤ i ≤ (n2). Similar results hold for odd match-
gates. These are proved via MGI and Pfaffians. It is interesting to note that
the only construction for a planar matchgate realizing this signature is through
a non-planar matchgate Γ and its character theory. There is no known direct
construction.

A tensor (Γα) on index α = α1 . . . αn, where each αi ∈ {0, 1}k, is block-
wise symmetric if Γα only depends on the number of k-bit patterns of αi, i.e.,
Γ ...αi...αj ... = Γ ...αj ...αi..., for all 1 ≤ i < j ≤ n.

For an even (resp. odd) matchgate Γ with arity n, the condensed signature
(gα) of Γ is a tensor of arity n − 1, and gα = Γαb (resp. gα = Γαb), where
α ∈ {0, 1}n−1 and b = p(α) is the parity of wt(α).

3 Decomposition Theory for Block-Wise Symmetric
Signatures

Theorem 1. Let (Γα) be a block-wise symmetric tensor with block size k and
arity nk. Assume n ≥ 4 and Γ 00···0 �= 0 (or Γ e10···0 �= 0). Then Γ is realizable
by a matchgate iff there exist a matchgate Γ0 with arity k + 1 and condensed
signature (gα)α∈{0,1}k , and a symmetric matchgate Γs such that

Γα1α2···αn = Γ p(α1)p(α2)···p(αn)
s gα1gα2 · · · gαn . (2)

We only prove the case Γ 00···0 �= 0 here, So it must be an even matchgate. For
odd matchgates (the case Γ e100···0 �= 0), the proof is slightly more complicated
but along similar lines. Due to space limitation, the proof of this case is omitted
here and can be found in the full paper[4].

Proof. We prove “⇐” by a direct construction. In Figure 1, we extend every
external node of Γs by a copy of the matchgate with condensed signature g,
and view the remaining k external nodes of each copy as external. This gives
us a new matchgate with nk external nodes, whose signature is given by (2).
Therefore every signature which has form (2) is realizable.

Now we prove “⇒”: Since Γ 00···0 �= 0, by adding an extra isolated edge with
weight 1/Γ 00···0 we can assume Γ 00···0 = 1. First we assume r1 = Γ e1e100···0 �= 0
(where for convenience we consider e1 ∈ {0, 1}k), and prove the theorem under
this assumption. We take Γs to be an even symmetric matchgate with signature
z2i = (r1)−i. By [2] this Γs exists. Since the given (Γα) is realizable, it can be

On Block-Wise Symmetric Signatures for Matchgates 191

Fig. 1. Block-wise symmetric signature

realized by a matchgate Γ with nk external nodes. View its first k + 1 external
nodes still as external nodes and the other nodes as internal, we have a matchgate
with k+ 1 external nodes. This is our Γ0. By definition its condensed signature is

gα =

{
Γα00···0 when wt(α) is even,

Γαe10···0 when wt(α) is odd.

Note that g0 = 1 and ge1 = r1. We prove (2) by induction on wt(α1α2 · · ·αn) ≥ 0
and wt(α1α2 · · ·αn) is even.

If wt(α1α2 · · ·αn) = 0, we have the only case that α1α2 · · ·αn = 00 · · · 0. In
this case (2) is obvious.

If wt(α1α2 · · ·αn) = 2, we have two cases depending on whether the two 1s
are in the same block or not. If they are in the same block, we can assume it is in
the first block since Γ is block symmetric, then Γα1α2···αn = Γα100···0 = gα1 and
(2) is satisfied. If they are not in the same block, by symmetry, we may assume
α1α2 · · ·αn has the form eiej00 · · ·0. When 0 appears in the sup index of Γ , sup
index of g, a pattern or positions used by a MGI for Γ , it means a block of all
zero. Using the pattern 0eje1e100 · · · 0 and positions eieje1e100 · · ·0, from (1)
we have the following matchgate identity (applying block-wise symmetry):

Γ eieje1e10···0Γ 00···0−Γ e1e10···0Γ eiej0···0+Γ eje10···0Γ eie10···0−Γ eje10···0Γ eie10···0 = 0.

The last two terms cancel out, we get:

Γ eieje1e100···0 = Γ eiej00···0Γ e1e100···0. (3)

192 J-Y. Cai and P. Lu

Next, using the pattern 0e1eje100 · · · 0 and positions eie1eje100 · · ·0, we have
the following matchgate identity:

Γ eieje1e10···0Γ 00···0−Γ eje10···0Γ eie10···0+Γ e1e10···0Γ eiej0···0−Γ eje10···0Γ eie10···0 = 0.

Together with (3), we have Γ eiej00···0Γ e1e100···0 = Γ eie100···0Γ eje100···0. Since
Γ e1e100···0 = r1 �= 0, we have Γ eiej00···0 = Γ eie100···0Γ eje100···0/r1 = (r1)−1geigej .
So (2) is satisfied.

Inductively we assume (2) has been proved for all wt(α1α2 · · ·αn) ≤ 2(i− 1),
for some i ≥ 2. Now wt(α1α2 · · ·αn) = 2i > 0. By symmetry, we can assume α1 �=
00 · · ·0. Let t be the position of the first 1 in α1. Using the pattern α1α2 · · ·αn+et
and positions α1α2 · · ·αn (we denote it as P = {pj} where j = 1, 2, . . . , 2i), we
have the following matchgate identity:

Γα1α2···αn =
2i∑
j=2

(−1)jΓα1α2···αn+et+epjΓ et+epj . (4)

Since every Γ β in the RHS has wt(β) ≤ 2i− 2, we can apply (2) to them.
Now we do the summation of the RHS in (4) block by block; the sum of the

r-th block is denoted as Sr. Let wr = wt(αr). Let 2q be the number of odd wr ,
i.e., the number of blocks among α1, α2, . . . , αn with odd weight. Note that this
number is even.

For the first block, if w1 = 1, then S1 = 0, being an empty sum. Assume
w1 > 1. In the notation below we consider et, epj ∈ {0, 1}k for convenience.

S1 =
w1∑
j=2

(−1)jΓ (α1+et+epj
)α2···αnΓ (et+epj

)00···0 (5)

= r−q
1 gα2 · · · gαn

w1∑
j=2

(−1)jgα1+et+epj get+epj . (6)

Note that the exponent q in r−q
1 comes from the fact that the number of blocks

with odd weight among α1 + et + epj , α2, . . . , αn is 2q.
If w1 is odd, using the pattern (α1 + et)1 and positions α11, we have the

following matchgate identity for Γ0:

−gα1 +
w1∑
j=2

(−1)jgα1+et+epj get+epj + gα1+etget = 0.

Substituting this in (6), we have:

S1 = r−q
1 gα2 · · · gαn(gα1 − gα1+etget). (7)

We note that this is also valid for w1 = 1.
If w1 is even, using the pattern (α1 + et)0 and positions α10, we have the

following matchgate identity for Γ0:

−gα1 +
w1∑
j=2

(−1)jgα1+et+epj get+epj = 0.

On Block-Wise Symmetric Signatures for Matchgates 193

Substituting this in (6), we have:

S1 = r−q
1 gα1gα2 · · · gαn . (8)

If all Sr are empty block-wise sums for r > 1 (i.e., wr = 0 for all r > 1), then
w1 must be even, and we are done. Now suppose there are non-empty block-wise
sums Sr, for r > 1. For the r-th block, let vr be the number of 1s in the first
r − 1 blocks, and prj (j ∈ [wr]) be the position of the j-th 1 in αr. Then

Sr = (−1)vr

wr∑
j=1

(−1)jΓ
(α1+et)α2···(αr+epr

j
)···αn

Γ
(et)00···(epr

j
)···0

(9)

= (−1)vrr−q′
1 getgα1+etgα2 · · · ĝαr · · · gαn

wr∑
j=1

(−1)jg
αr+epr

j g
epr

j , (10)

where ĝαr denotes a missing factor, and 2q′ is the total number of odd blocks in
α1 +et, α2, . . . , αr +epr

j
, . . . , αn from the first factor Γ and in (et)00 · · · (epr

j
) · · · 0

from the second factor Γ . If wr is even, using the pattern αr1 and positions αr0,
we have the following matchgate identity for Γ0:

wr∑
j=1

(−1)jgαr+epr
j g

epr
j = 0.

Substituting this in (10), we have Sr = 0.
Therefore, among block sums Sr, for r > 1, we need only consider blocks with

odd wr. Assume wr is odd now, we have q′ = q if w1 is odd, and q′ = q + 1 if
w1 is even. Using the pattern αr0 and positions αr1, we have the following MGI
for Γ0:

wr∑
j=1

(−1)jg
αr+epr

j g
epr

j + gαr = 0.

Substituting this in (10), we have Sr = −(−1)vrr−q′
1 getgα1+etgα2 · · · gαr · · · gαn .

To summarize, after the first block sum S1, every even block will be zero,
and every odd block will alternatingly contribute a ±r−q′

1 getgα1+etgα2 · · · gαn . If
S1 is an even block sum, then this alternating sum has an even number of such
terms, and they all cancel out. This leaves us with the desired result Γα1α2···αn =
S1 = r−q

1 gα1gα2 · · · gαn from (8). If the first block is odd, then q′ = q, and there
are an odd number of alternating Sr for r > 1 and wr odd, starting with the sign
−(−1)v2 = +1. These will cancel out pairwise except one r−q

1 getgα1+etgα2 · · · gαn

left, which cancels the −r−q
1 getgα1+etgα2 · · · gαn in S1 from (7). Finally in either

cases, we have Γα1α2···αn = r−q
1 gα1gα2 · · · gαn . This is precisely (2).

Now we consider the case Γ e1e100···0 = 0. If there exists any i ∈ [k] such that
Γ eiei00···0 �= 0, the above proof can go through similarly. Therefore we assume
for all i ∈ [k], Γ eiei00···0 = 0.

194 J-Y. Cai and P. Lu

Consider any 1 ≤ i, j, s, t ≤ k (not necessarily distinct). Using the pattern
0ejeset00 · · · 0 and positions eiejeset00 · · · 0 we get (applying block symmetry),

Γ eiejeset0···0Γ 00···0−Γ eset0···0Γ eiej0···0+Γ eies0···0Γ ejet0···0−Γ ejes0···0Γ eiet0···0 = 0.

Also use the pattern 0esejet00 · · ·0 and positions eiesejet00 · · ·0 we get

Γ eiesejet0···0Γ 00···0−Γ ejet0···0Γ eies0···0+Γ eset0···0Γ eiej0···0−Γ esej0···0Γ eiet0···0 = 0.

Adding the two, we get Γ eiesejet00···0 = Γ esej00···0Γ eiet00···0.
From this we have

(Γ eiej00···0)2 = Γ eiejeiej00···0 = Γ eiejejei00···0 = Γ eiei00···0Γ ejej00···0 = 0.

Therefore for all i, j ∈ [k], we have Γ eiej00···0 = 0. Now we define gα = Γα00···0

when wt(α) is even, and gα = 0 when wt(α) is odd, and inductively prove (2)
similarly as before. (gα) is the condensed signature of a realizable matchgate Γ0

of arity k + 1 obtained from Γ as follows: View its first k external nodes (in the
first block) still as external and the rest as internal, add a new isolated edge
with weight 1, and one end as the (k+ 1)-st external node and the other end an
internal node. We will still arrive at (4). Now all block sums Sr = 0, for r > 1,
since it involves a Γ et+epj , and et appears in the first block.

Consider the first block sum S1. Suppose q > 0, i.e., there are some odd wr .
Then there are at least two odd blocks. Only the first block has a changed index
in the sum, so some odd block among α2, . . . , αn remains in Γα1α2···αn+et+epj .
Thus, by induction it is 0, since the corresponding gαi = 0. Now suppose q = 0,
i.e., all blocks are even. By induction we get

Γα1α2···αn = gα2 · · · gαn

w1∑
j=2

(−1)jgα1+et+epj get+epj .

Using the pattern (α1 + et)0 and positions α10 on Γ0, we have MGI,

−gα1 +
w1∑
j=2

(−1)jgα1+et+epj get+epj = 0,

This gives Γα1α2···αn = gα1gα2 · · · gαn proving (2). �

These theorems give an elegant decomposition structure of block-wise sym-
metric signatures. There is an underlying bit-wise symmetric signature Γs, whose
structure is very clear to us. Therefore, the realizability condition is within each
block.

4 Characterization of Block-Wise Symmetric Signature
with Block Size 2

In Theorem 1, we have two assumptions n ≥ 4 and Γ 00...0 �= 0. n ≥ 4 is necessary
for some boundary reason. The assumption Γ 00...0 �= 0 is more technical but we
are not able to bypass it in general. However, in this section we show that this
assumption is not necessary for block size k = 2.

On Block-Wise Symmetric Signatures for Matchgates 195

Theorem 2. If Γ is a block-wise symmetric signature for some matchgate,
whose block size is 2 and arity 2n where n ≥ 4. Then there exist four num-
bers g00, g01, g10, g11 and a realizable bit-wise symmetric signature Γs such that

Γα1α2···αn = Γ p(α1)p(α2)···p(αn)
s gα1gα2 · · · gαn . (11)

We only prove it for even matchgates here; the proof is similar for odd match-
gates. If Γ 00,00,...,00 �= 0 or Γ 11,11,...,11 �= 0 (we use “,” to separate blocks), we are
done by Theorem 1. Note that flipping all bits preserves block-symmetry. Now
we assume Γ is an even matchgate, n ≥ 4, and Γ 00,00,...,00 = Γ 11,11,...,11 = 0.
This assumption is made for all the following Claims.

Claim 1. For any α ∈ {00, 01, 10, 11}n−4 , we have

Γ 01,01,01,01,αΓ 00,00,00,00,α = (Γ 01,01,00,00,α)2.

Γ 10,10,10,10,αΓ 00,00,00,00,α = (Γ 10,10,00,00,α)2.

Γ 01,01,10,10,αΓ 00,00,00,00,α = Γ 01,01,00,00,αG10,10,00,00,α = (Γ 01,10,00,00,α)2.

Proof. All three equations follow from MGI. The α part is not involved in the
MGI. This means that the pattern for these bits is exactly α and the position
vector bits for these bit locations are all 0. For convenience, we only list below
the pattern and positions for the other bits, which are really involved in the
MGI. We also use this simplified notation in the following Claims.

This Claim is quite direct from MGI. We only list the pattern and po-
sitions used, and omit the actual MGI. The first equation uses the pattern
00, 01, 01, 01 and positions 01, 01, 01, 01. The second equation uses the pattern
00, 10, 10, 10 and positions 10, 10, 10, 10. The last equation is from two MGI:
one uses the pattern 00, 01, 10, 10 and positions 01, 01, 10, 10, the other uses the
pattern 00, 10, 01, 10 and positions 01, 10, 01, 10. �

Claim 2
Γ 00,00,{00,01,10}n−2

= 0.

Γ 11,11,{11,01,10}n−2
= 0.

Proof. We only prove Γ 00,00,{00,01,10}n−2
= 0; the second equation can be

obtained for the first by flipping all the bits. For α ∈ {00, 01, 10}n−2, we prove
it by induction on wt(α) ≥ 0 and wt(α) is even. The case wt(α) = 0 is by
assumption. We use Claim 1 to go from weight i to weight i+ 2. �

Claim 3. For any α ∈ {00, 01, 10, 11}n−3,

Γ 00,00,00,α = 0.

Γ 11,11,11,α = 0.

196 J-Y. Cai and P. Lu

Proof. We also only need to prove Γ 00,00,00,α = 0. For α ∈ {00, 01, 10, 11}n−3,
we prove it by induction on the number of non-“00” blocks in α. (We denote
this number by N0(α).)

If every block in α is 00, then it is by assumption. Inductively we assume it
has been proved for all N0(α) < i. Now N0(α) = i. If α does not have any block
“11”, it has been proved by Claim 2. Otherwise, we can assume α = 11, α′ by
block-symmetry. Since N0(00, α′) = i− 1, we have Γ 00,00,00,00,α′

= 0.
Using the pattern 00, 00, 01, 11 and positions 00, 00, 11, 11, we have MGI:

(Note that we omit the α′ part, and also we omit the symbol Γ in the MGI.)

0 = (00, 00, 11, 11)(00, 00, 00, 00)
− (00, 00, 00, 11)(00, 00, 11, 00)
+ (00, 00, 01, 01)(00, 00, 10, 10)
− (00, 00, 01, 10)(00, 00, 10, 01)

The first term is 0, and by Claim 1, the last two terms cancel out. It follows that
Γ 00,00,00,11,α′

Γ 00,00,11,00,α′
= 0, which is exactly Γ 00,00,00,α = 0. �

From Claim 3 and Claim 1, we have

Claim 4. For any α ∈ {00, 01, 10, 11}n−4,

Γ 01,10,00,00,α = Γ 01,01,00,00,α = Γ 10,10,00,00,α = 0.

Claim 5. For any α ∈ {00, 01, 10, 11}n−2, the following are all valid,

Γ 00,00,α = 0, Γ 11,11,α = 0, Γ 00,11,α = 0.

Claim 5 says that every non-zero entry Γα can have at most one even block. This
is an important step in the proof. However, due to space limitation, the proof
is omitted here, and is presented in the full paper[4]. The proof is by repeated
applications of MGI (death by a thousand cuts, an ancient Chinese disgrace;
unfortunately we cannot find a coup de grâce.)

Claim 6. For any α ∈ {00, 01, 10, 11}n−2, we have

Γ 01,01,αΓ 10,10,α = (Γ 01,10,α)2.

Proof. Using the pattern 00, 01 and positions 11, 11 (omitting α), we have MGI:

0 = (10, 01)(01, 10)− (01, 01)(10, 10) + (00, 11)(11, 00)− (00, 00)(11, 11).

From Claim 5, we know the last two terms are both 0. So we have

Γ 01,01,αΓ 10,10,α = (Γ 01,10,α)2. �

Claim 7. For n ≥ 4, k = 2, if n is even and Γ 00,00,...,00 = Γ 11,11,...,11 = 0,
Theorem 2 holds.

On Block-Wise Symmetric Signatures for Matchgates 197

Proof. Suppose Γα1,α2,...,αn �= 0, we show each αi ∈ {01, 10}. Since n is even
and we have an even matchgate, the number of odd blocks must be even, so that
if it has any even block it has at least two even blocks. Then by Claim 5 it is 0.

If Γ 01,01,...,01 �= 0, w.l.o.g, we assume Γ 01,01,...,01 = 1. Let Γs be the matchgate
having symmetric signature [0, 0, . . . , 0, 1] (in the notation for bit-wise symmetric
signatures), let g01 = 1 and g10 = Γ 10,01,01,...,01/Γ 01,01,...,01 = Γ 10,01,01,...,01.
From Claim 6, we can verify that (11) is satisfied. This is seen as follows: Claim
6 allows one to “exchange” one block of 10 for one block of 01, incurring a factor
of g10. This works as long as g10 �= 0. If g10 = 0, we can instead use Claim 6
to show that Γ 01,10,α = 0, for all α ∈ {01, 10}n−2. Moreover we want to show
that Γ 10,10,...,10 = 0 as well. For this purpose, we use MGI with the pattern
00, 10, 10, . . . , 10 and all positions, and get

0 = (10, 10, . . . , 10)(01, 01, . . . , 01)− (01, 10, . . . , 10)(10, 01, . . . , 01) + . . .

The remaining terms (omitted) all have a 00 block in its first factor, and so
they are all 0. The second term is also 0 as g10 = 0. Yet (01, 01, 01, . . . , 01) = 1,
so (10, 10, 10, . . . , 10) = 0. This proves the Claim when Γ 01,01,...,01 �= 0.

If Γ 01,01,...,01 = 0, again from the “exchange” argument by Claim 6, the
only possible non-zero entry of Γ is Γ 10,10,...,10. Let g00 = g11 = g01 = 0 and
g10 = n

√
Γ 10,10,...,10. Then (11) is satisfied. (This may require us to go to an

algebraic extension field.) �

Claim 8. For n ≥ 4, k = 2, n is odd and Γ 00,00,...,00 = Γ 11,11,...,11 = 0, Theorem
2 holds.

Proof. Since n is odd and Γ is an even matchgate, from Claim 5, we know
that if Γα1α2···αn �= 0, then there is exactly one αi ∈ {00, 11} and all other
αj ∈ {01, 10}. By block-symmetry, we assume α1 ∈ {00, 11} and αi ∈ {01, 10}
(where i = 2, 3, . . . , n).

If Γ 00,01,01,...,01 �= 0, w.l.o.g, we assume Γ 00,01,01,...,01 = 1. Let g00 = g01 = 1.
Using the pattern 10, 01, 01, . . . , 01 and the first four bits as positions, we have

(00, 01)(11, 10)− (11, 01)(00, 10) + (10, 11)(01, 00)− (10, 00)(01, 11) = 0.

By block-symmetry, the first and the last two terms are equal. So we have

Γ 00,01,01,...,01Γ 11,10,01,...,01 − Γ 11,01,01,...,01Γ 00,10,01,...,01 = 0. (12)

Since Γ 00,01,01,...,01 = 1, let g11 = Γ 11,01,01,...,01 and g10 = Γ 00,10,01,...,01,
we have Γ 11,10,01,...,01 = g11g10. And let Γs be the matchgate with symmetric
signature [0, 0, . . . , 1, 0]. The proof is similar with Claim 7. Degenerate cases
happen when g10 = 0, or g11 = 0, or both. In particular, when g10 = 0, we
need to prove Γ 00,10,10...10 = 0, which goes beyond Claim 6. This is shown by
the MGI using the pattern 00, 00, 10, . . . , 10 and positions 00, 11, 11, . . . , 11 (all
the bits except the first two). We also need to prove Γ 11,10,10,...,10 = 0 when
g10 = 0 or g11 = 0 or both. This can be shown by the MGI using the pattern
10, 01, 01, . . . , 01 and all positions.

If Γ 11,01,01,...,01 �= 0, we have a similar proof.

198 J-Y. Cai and P. Lu

Finally assume Γ 00,01,01,...,01 = Γ 11,01,01,...,01 = 0. From Claim 6 and the “ex-
change” argument, the only two possible non-zero entries of Γ are Γ 00,10,10,...,10

and Γ 11,10,10,...,10. If they are both 0, then Γ is trivial. Otherwise w.l.o.g. we
assume Γ 00,10,10,...,10 = 1. Let g01 = 0, g00 = g10 = 1 and g11 = Γ 11,10,10,...,10.
And let Γs be the matchgate with symmetric signature [0, 0, . . . , 1, 0], we can
verify that (11) is satisfied. �

Together with Claim 7 and Claim 8, we have a complete proof for Theorem 2.
This paper presents an elegant decomposition theorem on the structure of

block-wise symmetric signatures for matchgates. The main tool is Matchgate
Identities. However the statement of Theorem 2 for k > 2 without any non-zero
conditions is open. It would also be interesting to simplify the proofs.

References

1. Cai, J.-Y., Choudhary, V.: Some Results on Matchgates and Holographic Algo-
rithms. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006.
LNCS, vol. 4051, pp. 703–714. Springer, Heidelberg (2006)

2. Cai, J.-Y., Choudhary, V., Lu, P.: On the Theory of Matchgate Computations. In:
IEEE Conference on Computational Complexity 2007 (to appear)

3. Cai, J.-Y., Lu, P.: On Symmetric Signatures in Holographic Algorithms. In:
Thomas, W., Weil, P. (eds.) STACS 2007. LNCS, vol. 4393, pp. 429–440. Springer,
Heidelberg (2007)

4. Cai, J.-Y., Lu, P.: On Block-wise Symmetric Signatures for Matchgates. Available
at ECCC Report TR07-019

5. Edmonds, J.: Minimum partition of a matroid into independent subsets. J. Res.
Nat. Bur. Standards Sect. B 69, 67–72 (1965)

6. Jerrum, M.: Two-dimensional monomer-dimer systems are computationally in-
tractable. J. Stat. Phys. 48, 121–134 (1987) erratum, 59, 1087–1088 (1990)

7. Kasteleyn, P.W.: The statistics of dimers on a lattice. Physica 27, 1209–1225 (1961)
8. Kasteleyn, P.W.: Graph Theory and Crystal Physics. In: Harary, F. (ed.) Graph

Theory and Theoretical Physics, pp. 43–110. Academic Press, London (1967)
9. Murota, K.: Matrices and Matroids for Systems Analysis. Springer, Heidelberg

(2000)
10. Temperley, H.N.V., Fisher, M.E.: Dimer problem in statistical mechanics – an exact

result. Philosophical Magazine 6, 1061–1063 (1961)
11. Valiant, L.G.: Quantum circuits that can be simulated classically in polynomial

time. SIAM Journal of Computing 31(4), 1229–1254 (2002)
12. Valiant, L.G.: Expressiveness of Matchgates. Theoretical Computer Science 281(1),

457–471 (2002)
13. Valiant, L.G.: Holographic Algorithms (Extended Abstract). In: Proc. 45th IEEE

Symposium on Foundations of Computer Science, pp. 306–315 (2004). A more
detailed version appeared in ECCC Report TR05-099.

14. Valiant, L.G.: Accidental Algorithms. In: Proc. 47th Annual IEEE Symposium on
Foundations of Computer Science, pp. 509–517 (2006)

Path Algorithms on Regular Graphs

Didier Caucal and Dinh Trong Hieu

IGM–CNRS, 5 bd Descartes, 77454 Marne-la-Vallée, France
caucal@univ-mlv.fr, dinh@univ-mlv.fr

Abstract. We consider standard algorithms of finite graph theory, like
for instance shortest path algorithms. We present two general methods
to polynomially extend these algorithms to infinite graphs generated by
deterministic graph grammars.

1 Introduction

The regularity of infinite graphs was first considered by Muller and Schupp [6].
They studied the transition graphs of pushdown automata, called pushdown
graphs, and showed that their connected components are the connected graphs
of finite degree whose decomposition by distance from a(ny) vertex yields finitely
many non-isomorphic connected components. More generally, a graph is regular
if it admits a finite decomposition (not necessarily by distance) or, equivalently,
if it can be generated by a deterministic graph grammar. Regular graphs have
been defined by Courcelle and called hyperedge replacement equational graphs
[3]. Any connected regular graph is finitely decomposable by distance, hence the
connected components of pushdown graphs coincide with the connected regular
graphs of finite degree. This identity was also generalized to non connected
graphs: the regular restrictions of pushdown graphs are the regular graphs of
finite degree [1]. A regular graph may be seen as an infinite automaton [9] : it
recognizes the set of path labels between two given finite vertex sets. Even though
a regular graph can have vertices of infinite degree, regular graphs recognize
exactly the family of context-free languages. Many publications focus on finite
graphs and their applications, but few deal with regular graphs. This paper is a
first step towards developing an algorithmic theory of regular graphs.

We consider a set of edge labels forming an idempotent and continuous semir-
ing. For any graph, we define the value of a path to be the product of its suc-
cessive labels, that we extend by summation to any set of paths between vertex
sets. The value (or the computation) of a grammar is then a vector whose com-
ponents are the values of the graphs generated from each of the left hand sides
of the grammar. In the case of deterministic graph grammars in a restricted
form, we show the equivalence between the algebraic and operational semantics:
the value of the grammar is the least upper bound of the sequence obtained by
iteratively applying the interpretation of the grammar from the least element
(Theorem 2.5). We then present two methods to compute the value of a gram-
mar over a commutative (idempotent and continuous) semiring. The first method

E. Csuhaj-Varjú and Z. Ésik (Eds.): FCT 2007, LNCS 4639, pp. 199–212, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

200 D. Caucal and T.H. Dinh

applies to linear semirings having a greatest element reached by any increasing
Kleene sequence. In this case, the grammar value is determined by applying the
grammar interpretation a number of times (Theorem 3.1). The second algorithm
works with any commutative semiring and is a simple graph generalization of
the Hopkins-Kozen method [5] developped for context-free grammars (cf. Corol-
lary 3.5). Finally we give a polynomial transformation of any grammar into
an equivalent grammar in restricted form (Proposition 4.3). We end up with a
polynomial complexity algorithm to solve the shortest path problem on regular
graphs using graph grammars (Corollary 4.4).

2 Computations with Graph Grammars

We consider a graph as a denumerable set of labelled arcs. The arc labels are
elements of an idempotent and continuous semiring. The value of a path is the
product of its successive labels. The value of a graph from initial vertices to final
vertices is the sum of the values of its paths from an initial vertex to a final vertex.

We want to compute values of graphs generated by a deterministic graph
grammar. In this section, we restrict ourselves to grammars in which each left
hand side is a labelled arc from vertex 1 to vertex 2, and no right hand side has
an arc from 2 or an arc to 1. The value of any left hand side is the value from 1
to 2 of its generated graph. The value of a grammar is the vector of its left hand
side values. By considering a grammar as a function from and into the semiring
(to the power of the rule number), its iterative application from the least element
gives by least upper bound the value of the grammar (Theorem 2.5).

Recall that an algebra (K,+, ·, 0, 1) is a semiring if (K,+, 0) is a commuta-
tive monoid, (K, ·, 1) is a monoid, multiplication · distributes over addition + ,
and 0 annihilates K : 0·a = a·0 = 0 for any a ∈ K.

We say that a semiring K is complete if for the following relation:
a ≤ b if a+ c = b for some c ∈ K,

any increasing sequence a0 ≤ a1 ≤ . . . ≤ an ≤ . . . has a least upper bound∨
n an . This implies that ≤ is a partial order, 0 is the least element, and the

operations + and · are monotonous:
a ≤ b ∧ a′ ≤ b′ =⇒ a+ a′ ≤ b+ b′ ∧ a·a′ ≤ b·b′.

This also permits to define the sum of any sequence (an)n ≥ 0 in K by∑
n≥0 an :=

∨
n≥0

(∑n
i=0 ai

)
.

We say that a semiring K is idempotent if + is idempotent:
a+ a = a for any a ∈ K or equivalently 1 + 1 = 1 .

For K complete and idempotent, we have
∑

n≥0 an =
∑

n≥0 aπ(n) for any
permutation π, and this sum is also denoted

∑
n≥0{ an | n ≥ 0 } .

We say that a complete semiring K is continuous if + and · are continuous i.e.
commute with

∨
: for any increasing sequences (an)n ≥ 0 and (bn)n ≥ 0 ,(∨

n≥0 an
)
∗
(∨

n≥0 bn
)

=
∨

n≥0(an ∗ bn) where ∗ stands for + or ·
So

(∑
n≥0 an

)
+
(∑

n≥0 bn
)

=
∑

n≥0 (an + bn) for any an , bn ∈ K .
ForK continuous and idempotent and for any sequences (an)n ≥ 0 and (bn)n≥0

Path Algorithms on Regular Graphs 201(∑
n≥0 an

)
·
(∑

n≥0 bn
)

=
∑
{ ai·bj | i, j ≥ 0 } .

From now on K will denote a complete and idempotent semiring.
Recall that (K∗, ., ε) is the free monoid generated by the set K, i.e. K∗ =⋃
n≥0K

n is the set of tuples of elements of K where . is the tuple concatenation
and the neutral element ε is the 0-tuple (). Any tuple (a1, . . ., ap) is written
a1. . .ap . The identity relation on K is extended to the morphism [[]] from
(K∗, ., ε) into the monoid (K, ·, 1) :

[[ε]] = 1 ; ∀ a ∈ K, [[a]] = a ; ∀ u, v ∈ K∗, [[u.v]] = [[u]]·[[v]] .
We extend by summation the value mapping [[]] to any language:

[[U]] :=
∑
{ [[u]] | u ∈ U } for any U ⊆ K∗.

Let L be an arbitrary set. Here a L-graph is just a set of arcs labelled in L.
Precisely, a L-graph G is a subset of V ×L×V where V is an arbitrary set such
that the vertex set of G defined by

VG := { s | ∃ a, t, (s, a, t) ∈ G ∨ (t, a, s) ∈ G }
is finite or countable, and its label set

LG := { a ∈ L | ∃ s, t, (s, a, t) ∈ G } is finite.
Any (s, a, t) of G is a labelled arc of source s, of goal (or target) t, with label
a, and is identified with the labelled transition s

a−→
G

t , or directly s
a−→ t if G

is understood. The transformation of a graph G by a function h from VG into
a set V is the graph

h(G) := { h(s) a−→ h(t) | s a−→
G

t ∧ s, t ∈ Dom(h) } .

An isomorphism h from a graph G to a graph H is a bijection from VG to
VH such that h(G) = H . The language recognized by G from a vertex set I to
a vertex set F is the set of labels of the paths from I to F :

L(G, I, F) := { a1. . .an | n ≥ 0 ∧ ∃ s0, . . ., sn, s0 ∈ I ∧ sn ∈ F ∧
s0

a1−→ s1 . . . sn−1
an−→ sn }.

In particular ε ∈ L(G, I, F) for I ∩ F �= ∅.
We also write s −→

G

∗ t for L(G, s, t) �= ∅ , and s
u

=⇒
G

t for u ∈ L(G, s, t).
The graph value on a K-graph G from I ⊆ VG to F ⊆ VG is defined as the
value of its recognized language:

[[G, I, F]] := [[L(G, I, F)]] .
For any graph G and by identifying any label a ∈ LG with {a}, we can take the
semiring (2L

∗
G ,∪, ., ∅, {ε}) of languages in which [[u]] = {u} for any u ∈ L∗

G .
For this semiring, the values of G are the recognized languages:

[[G, I, F]] = L(G, I, F) for any I, F ⊆ L∗
G .

Example 2.1. We consider the following graph G :
a

b

a

b

b
a

b

a

b12

a) By identifying a with {a} and b with {b}, the value [[G, 1, 2]] of G from
vertex 1 to vertex 2 for the semiring (2{a,b}

∗
,∪, ., ∅, {ε}) is the Lukasiewicz

language.

202 D. Caucal and T.H. Dinh

b) Now taking the semiring (2IN×IN,∪,+, ∅, (0, 0)) with a = {(1, 0)} and b =
{(0, 1)}, the value [[G, 1, 2]] is the Parikh image { (n, n + 1) | n ≥ 0 } of the
Lukasiewicz language.

c) Taking a, b ∈ IR and the semiring (IR ∪ {−ω, ω},Min,+, ω, 0), the value

[[G, 1, 2]] =
{
b if a+ b ≥ 0,
−ω otherwise,

is the smallest value labelling the paths from 1 to 2.

d) Finally having a, b ∈ IR+ the set of non negative real numbers and for the
semiring (IR+ ∪ {ω},Max,×, 0, 1), the value from 1 to 2 is

[[G, 1, 2]] =
{
b if a× b ≤ 1,
ω otherwise.

For continuous and idempotent semirings, we want to extend algorithms com-
puting the values of finite graphs to the graphs generated by graph grammars.

In this section, we restrict ourselves to grammars in which each left hand side
is a labelled arc from vertex 1 to vertex 2, and no right hand side has an arc of
goal 1 or of source 2.

Precisely a 2-grammar R is a finite set of rules of the form:
(1, A, 2) −→ H

where (1, A, 2) is an arc labelled by A from vertex 1 to vertex 2, and H is a
finite graph.

The labels of the left hand sides form the set NR of non-terminals of R :
NR := { A | (1, A, 2) ∈ Dom(R) }

and the remaining labels in R form the set TR of terminals :
TR := { A �∈ NR | ∃ H ∈ Im(R), ∃ s, t, (s,A, t) ∈ H }.

Furthermore we require that each right hand side has no arc of goal 1 or of
source 2 :

∀ H ∈ Im(R), ∀ (s, a, t) ∈ H, s �= 2 ∧ t �= 1.
We say that R is an acyclic grammar if its right hand sides are acyclic graphs.

Starting from any graph, we want a graph grammar to generate a unique graph
up to isomorphism. We thus restrict ourselves to deterministic 2-grammars in
which two rules have distinct left hand sides:

((1, A, 2) , H) , ((1, A, 2) , K) ∈ R =⇒ H = K.
An example is given below.

;

a

c

b

d

a

a

c

A

A

A

1

2

1

2

1

2

1

2

B B

Fig. 2.2. A deterministic graph grammar

Starting from a graph, this grammar generates a unique infinite graph ob-
tained by applying indefinitely parallel rewritings. Precisely and for any 2-
grammar R, the rewriting −→

R
is the binary relation between graphs defined

Path Algorithms on Regular Graphs 203

by M −→
R

N if we can choose a non-terminal arc X = (s,A, t) in M and a
right hand side H of A in R to replace X by H in M :

N = (M − {X}) ∪ h(H)
for some function h mapping vertex 1 to s, vertex 2 to t, and the other ver-
tices of H injectively to vertices outside of M ; this rewriting is denoted by
M −→

R, X
N . The rewriting −→

R, X
of a non-terminal arc X is extended in an obvi-

ous way to the rewriting −→
R, E

of any subset E of non-terminal arcs. A complete

parallel rewriting =⇒
R

is the rewriting according to the set of all non-terminal
arcs: M =⇒

R
N if M −→

R, E
N where E is the set of all non-terminal arcs of M .

A

a

c

A

a

c

b

a

c

a

d

A

A

=⇒=⇒ =⇒

a

c

b

a

c

a

d

c

a

B

B

c

a

Fig. 2.3. Parallel rewritings according to the grammar of Figure 2.2

Due to the two non-terminal arcs in the right hand side of B for the grammar
of Figure 2.2, we get after n parallel rewritings from H0 = { 1 A−→ 2 }, a graph
Hn having an exponential number |Hn| of arcs.

The derivation =⇒
R

∗ is the reflexive and transitive closure for the composition
of the parallel rewriting =⇒

R
i.e. G =⇒

R

∗ H if H is obtained from G by a

consecutive sequence of parallel rewritings. We denote by [M] the set of terminal
arcs of M :

[M] := M ∩ VM×TR×VM .
We now assume that any 2-grammar is deterministic.A 2-grammar over K is

a 2-grammar R such that TR ⊆ K.
A graph G is generated by a 2-grammar R from a graph H if G is isomorphic

to a graph in the following set Rω(H) of isomorphic graphs:
Rω(H) := {

⋃
n≥0[Hn] | H0 = H ∧ ∀ n ≥ 0, Hn =⇒

R
Hn+1 } .

For instance by iterating indefinitely the derivation of Figure 2.3, we get the
infinite graph depicted below.

a

c

b

a

c

a

d

c

a

c

a

Fig. 2.4. Graph generated by the grammar of Figure 2.2

For any 2-grammar R and any non-terminal A ∈ NR ,
its right hand side in R is R({(1, A, 2)}), also denoted R(A),

204 D. Caucal and T.H. Dinh

the generated graph by R from A is Rω({(1, A, 2)}), also denoted Rω(A),
if TR ⊆ K, the value of A by R is [[Rω(A), 1, 2]] also denoted [[Rω(A)]] .
Given a 2-grammar R over K, we want to compute [[Rω(A)]] for any non-

terminal A. First we put R in the following reduced form S :
NS = { A ∈ NR | L(Rω(A), 1, 2) �= ∅ } and 0 �∈ TS

and for every A ∈ NS , we have
[[Sω(A)]] = [[Rω(A)]] and ∀ s ∈ VS(A), 1 −→

S(A)

∗ s −→
S(A)

∗ 2 .

We begin by removing the arcs labelled by 0 in the right hand sides of R.
Then we compute the set

E = { A ∈ NR | L(Rω(A), 1, 2) �= ∅ }
of non-terminals whose generated graph has a path from 1 to 2. This set E is
the least fixed point of the following equation:

E = { A ∈ NR | ∃ u ∈ (TR ∪ E)∗, 1 u
=⇒
R(A)

2 } .

This allows us to restrict to the rules of non-terminals in E and to remove the
arcs labelled by a non-terminal not in E in the right hand sides of the grammar.
Finally we get S by restricting each right hand side to the vertices accessible
from 1 and co-accessible from 2. The overall time complexity is quadratic ac-
cording to the description length of R (due to the computation of E).
Henceforth we assume that any 2-grammar R is in reduced form. In that case,

R is acyclic ⇐⇒ Rω(A) is acyclic for all A ∈ NR .
Given a 2-grammar R over K, we order the set NR = {A1, . . ., Ap} of its p

non-terminals. We want to determine the grammar value [[Rω]] of R as being
the following tuple in Kp :

[[Rω]] := ([[Rω(A1)]], . . ., [[Rω(Ap)]]) .
A standard semantic way is to define the interpretation [[R]] of R as being

the mapping:
[[R]] : Kp −→ Kp

(a1, . . ., ap) �−→ ([[R(A1)[a1, . . ., ap]]], . . ., [[R(Ap)[a1, . . ., ap]]])
where G[a1, . . ., ap] is the graph obtained from graph G by replacing each label
Ai by ai for every 1 ≤ i ≤ p. This interpretation [[R]] is a continuous mapping.

As Kp is a complete set for the product order whose least element is 0 =
(0, . . ., 0), we can apply the Knaster-Tarsky theorem: the least upper bound of
the iterative application of [[R]] from 0, is the least fixed point of [[R]] denoted
μ [[R]] . A first result is that this least upper bound is also the value [[Rω]] of R.

Theorem 2.5. For any continuous and idempotent semiring K and for any
2-grammar R over K,

[[Rω]] =
∨

n≥0 [[R]]n(0) = μ [[R]] .

The first equality holds for K complete and idempotent when R is acyclic.

Note that the first equality of Theorem 2.5 can be false if we allow in a right
hand side of the grammar an arc of goal 1 or of source 2. For instance, taking
the semiring (2{a,b,c}

∗
,∪, ., ∅, {ε}) and the grammar R reduced to the rule:

Path Algorithms on Regular Graphs 205

1

2

1

2

A A

a

b

c

we have
∨

n≥0 [[R]]n(∅) = ∅ �= [[Rω]] .

3 Computation Algorithms

We present two general algorithms to compute the value of any 2-grammar
R for idempotent and continuous semirings which are commutative. The first
algorithm compares the differences between the |R|-th (|R| is the number of
rules) approximant [[R]]|R|(0) with the next one in order to detect increments
strictly greater than 1 in the value of the generated graphs (cf. Theorem 3.1).
The second algorithm is a simple graph generalization of the Hopkins-Kozen
method [5] developped for context-free grammars (cf. Corollary 3.5). Although
the first algorithm is more efficient than the second one, it works with semirings
whose order is linear and admits a greatest element.

Given a semiring and an algorithm to compute [[G, I, F]] for any finite graph
G (and vertex sets I, F) of time complexity CG,I,F , we want to use this algo-
rithm to compute [[Rω]] for any 2-grammar R. The complexity will be expressed
with the following parameters:

|R| = |NR| the number p of rules of R (its cardinality),
�R :=

∑
{ |R(A)| | A ∈ NR } the length of the description of R,

CR :=
∑
{ CR(A)[0],1,2 | A ∈ NR } the time complexity to compute [[R]](0).

Theorem 2.5 requires continuous and idempotent semirings. Our algorithms re-
quire that these semirings are commutative: the multiplication · is commutative.
A cci-semiring means a commutative continuous idempotent semiring.
The first algorithm also needs that the semirings be linear, meaning that the
relation ≤ is a linear (total) order. Let us describe this first algorithm.
For any 2-grammar R, Theorem 2.5 gives a standard way to compute [[Rω]] : if
there exists n such that [[R]]n(0) = [[R]]n+1(0) then [[Rω]] = [[R]]n(0). This
is true for any bounded semiring i.e. with no infinite increasing sequence. But
the sequence

(
[[R]]n(0)

)
n

is strict in general. We compare the vectors [[R]]p(0)
and [[R]]p+1(0) (with p = |R|) and determine the ranks for which they differ:

E = { Ai | ([[R]]p(0))i �= ([[R]]p+1(0))i } .
By a classical pumping argument and for each A ∈ E, we can find an increment
> 1 in the value of its generated graph. Assuming that we have a greatest element
+ reached by any strict increasing sequence (an)n≥0 , we get [[Rω(A)]] = +.

This is also true for any non-terminal having A in its right hand side. We
complete E into the set E which is the least fixed point of the following
equation:

E = E ∪ { A ∈ NR | LR(A) ∩ E �= ∅ } .
We deduce that for any rank 1 ≤ i ≤ p,

206 D. Caucal and T.H. Dinh

(
[[Rω]]

)
i

=
{
+ if Ai ∈ E,(
[[R]]p(0)

)
i

otherwise.

The time complexity is the complexity to compute [[R]]p(0) .

Theorem 3.1. For any linear cci-semiring K having a greatest element +
such that

∨
n a

n = + for every a > 1 and a·+ = + for every a �= 0 ,
we can compute [[Rω]] in time O(|R|CR) for any 2-grammar R over K.

We can apply Theorem 3.1 to the semiring (IR ∪ {−ω, ω},Min,+, ω, 0) of Ex-
ample 2.1 (c). This allows us to solve the shortest path problem on any graph
generated by a 2-grammar. We take Floyd’s algorithm (with negative cycle test)
on finite graphs. For any 2-grammar R, we have CR in O(� 3

R) thus the com-
plexity to compute [[Rω]] is O(|R| � 3

R).
When R is acyclic, we can take Bellman’s algorithm on finite graphs; so CR

is O(�R) and the complexity for [[Rω]] is O(|R| �R), hence quadratic time. For
instance taking the following 2-grammar R :

; ;A

1

2

1

2

−2

1

3 B

1

2

B

1

2

−2
1

2

1

2

A C C1

−1

22

we have the following approximants:

n 0 1 2 3 4(
[[R]]n(0)

)
A
ω 3 3 2 2(

[[R]]n(0)
)
B
ω ω 3 3 2(

[[R]]n(0)
)
C
ω 1 1 1 1

giving by Theorem 3.1 the value [[Rω]] = (−ω,−ω, 1) i.e.
[[Rω(A)]] = [[Rω(B)]] = −ω and [[Rω(C)]] = 1 .

Note that we can apply Theorem 3.1 to the semiring (IR+ ∪{ω},Max,×, 0, 1)
of Example 2.1 (d).

For the second algorithm, we need to show that (graph) 2-grammars are
language-equivalent to cf-grammars (on words), ‘cf’ is short for context-free.
Recall that a context-free grammar P is a finite binary relation on words in
which each left hand side is a letter called a non-terminal, and the remaining
letters of P are terminals. By denoting NP and TP the respectives sets of non-
terminals and terminals of P , the rewriting −→

P
according to P is the binary

relation on (NP ∪ TP)∗ defined by
UAV −→

P
UWV if (A,W) ∈ P and U, V ∈ (NP ∪ TP)∗.

The derivation −→
P

∗ is the reflexive and transitive closure of −→
P

with respect to

composition. The language L(P,U) generated by P from any U ∈ (NP ∪ TP)∗

is the set of terminal words deriving from U :
L(P,U) := { u ∈ T ∗

P | U −→
P

∗ u } .
2-grammars and cf-grammars are language-equivalent with linear time
translations.

Path Algorithms on Regular Graphs 207

Proposition 3.2. a) We can transform in linear time any 2-grammar R into
a cf-grammar P such that L(Rω(A), 1, 2) = L(P,A) for any A ∈ NR .

b) We can transform in linear time any cf-grammar P into an acyclic 2-
grammar R such that L(P,A) = L(Rω(A), 1, 2) for any A ∈ NP .

The first transformation is analogous to the translation of any finite automaton
into an equivalent right linear grammar. For each non-terminal A ∈ NR , let hA
be a vertex renaming of R(A) such that hA(1) = A and hA(2) = ε , and the
image Im(hA) − {ε} is a set of symbols with Im(hA) ∩ Im(hB) = {ε} for
any B ∈ NR − {A} . We define:

P := { (hA(s), ahA(t)) | ∃ A ∈ NR, s
a−→

R(A)
t }.

Note that each right hand side of P is a word of length at most 2, and the
number of non-terminals of P depends on the description length �R of R :

|NP | =
(∑

A∈NR
|VR(A)|

)
− |NR| .

For the second transformation, we have NR = NP and for each A ∈ NP ,
its right hand side in R is the set of distinct paths from 1 to 2 labelled by
the right hand sides of A in P . Note that by using the two transformations
of Proposition 3.2, we can transform in linear time any 2-grammar into a lan-
guage equivalent acyclic 2-grammar. Then we can apply Theorem 3.1 with the
Bellman’s algorithm for the shortest path problem.

Corollary 3.3. For the semiring (IR ∪ {−ω, ω},Min,+, ω, 0), any 2-grammar
R and any A ∈ NR, the shortest path problem [[Rω(A12), 1, 2]] can be solved in
O(� 2

R), and in O(|R| �R) when Rω(A12) is acyclic.

In particular for any context-free grammar P , the shortest path problem can be
solved in O(|P | �P).

Starting from any pushdown automaton R, it is easy to transform R into a
pushdown automaton R′ recognizing the same language (by final states and/or
empty stack) such that each right hand side is a state followed by at most two
stack letters ; the number of rules |R′| hence its length of description �R′ are in
O(|R|.�2R). Then we apply to R′ the usual transformation to get an equivalent
cf-grammar P : |P | and �P are in O(|R′|3). Thus for any pushdown automaton
R, the shortest path problem can be solved in O((|R|.�2R)6) = O(|R|6.�12R).

In next section, Corollary 3.3 will be extended to Corollary 4.4 starting from
any generalized graph grammar.

Note also that by the two transformations of Proposition 3.2 and by the first
equality of Theorem 2.5, we can compute the value of any 2-grammar for non
continuous (but complete and idempotent) semirings.

A cf-grammar over K is a context-free grammar P such that TP ⊆ K .
By ordering the non-terminal set: NP = {A1, . . ., Ap}, the cf-grammar value is

[[L(P)]] := ([[L(P,A1)]], . . ., [[L(P,Ap)]]) .
For the semiring (2INq

,∪,+, ∅, (0, . . ., 0)) in Example 2.1 (b) of commutative
languages over q terminals of the form {(0, . . ., 0, 1, 0, . . ., 0)}, a first solution to
determine [[L(P)]] was given by Parikh [7]. This method was refined in [8] and

208 D. Caucal and T.H. Dinh

generalized in [5], and works for any cci-semiring. This last method is presented
briefly below.

The derivative of any language E ⊆ (NP ∪ TP)∗ by A ∈ NP is the following
language:

∂E
∂A := { UV | UAV ∈ E }

and as + is idempotent, we can restrict to remove only the first occurrence of A
i.e. |U |A = 0. The Jacobian matrix of P is

P ′ :=
(
∂P (Ai)
∂Aj

)
1≤i,j≤p

where P (A) = { U | (A,U) ∈ P } is the image of A ∈ NP by P .
The interpretation [[P ′]] of P ′ is the mapping:

[[P ′]] : Kp −→ Kp×p

(a1, . . ., ap) �−→
(
[[∂P (Ai)

∂Aj
[a1, . . ., ap]]]

)
1≤i,j≤p

where E[a1, . . ., ap] is the language over K obtained from E ⊆ (NP ∪ TP)∗ by
replacing in the words of E each label Ai by ai for every 1 ≤ i ≤ p.

The Hopkins-Kozen transformation is the mapping:
HK : Kp −→ Kp

(a1, . . ., ap) �−→
(
[[P ′]](a1, . . ., ap)

)∗×(a1, . . ., ap)

where M×→
v :=

(
M ·(→v)t

)t with t for vector transposition, · for matrix multi-
plication and ∗ for its Kleene closure.

By applying iteratively this transformation from ([[P (A1)[0]]], . . ., [[P (Ap)[0]]]),
we get an increasing sequence which reaches its least upper bound [[L(P)]] after
a finite number of iterations [5], and even after p iterations [4].

Theorem 3.4. [5] [4] For any cci-semiring K and any cf-grammar P over K,

[[L(P)]] = HK|P |([[P (A1) ∩ T ∗]], . . ., [[P (Ap) ∩ T ∗]]
)

.

Theorem 3.4 remains true even if the languages P (A1), . . ., P (Ap) are infinite
[4].

By applying the transformation of Proposition 3.2 (a) to any 2-grammar R
over K, we get in linear time a cf-grammar R̂ over K such that [[Rω]] = [[L(R̂)]]
that we can compute by Theorem 3.4 for any cci-semiring K. However the non-
terminal set NR̂ depends on �R and not on |R|. So it is more efficient to extend
Theorem 3.4 directly to 2-grammars.

Let R be any graph grammar over K with non-terminal set NR={A1, . . ., Ap}.
Let us extend the derivative to any (K ∪ NR)-graph G with 1, 2,∈ VG.
Let A ∈ NR . We take a new symbol A0 and we define the synchronization

product
H :=

(
G ∪ { s A0−→ t | s A−→

G
t }
)

× SA

with SA := { 1 a−→ 1 | a ∈ K ∪ NP − {A} } ∪ {1 A0−→ 2}
∪ { 2 a−→ 2 | a ∈ K ∪ NP } .

Taking the vertex renaming h of H defined by h(1, 1) = 1, h(2, 2) = 2, and
h(x) = x for any x ∈ VH − {(1, 1) , (2, 2)}, and by restricting h(H) to the

Path Algorithms on Regular Graphs 209

graph H with vertices accessible from 1 and co-accessible from 2, the derivative
of graph G by A is the graph:

∂G
∂A :=

(
H − VH×A0×VH) ∪ { s 1−→ t | s A0−→

H

t } .

The Jacobian matrix of R is R′ :=
(
∂R(Ai)
∂Aj

)
1≤i,j≤p

and its interpretation is

[[R′]](a1, . . ., ap) :=
(
[[∂R(Ai)

∂Aj
[a1, . . ., ap]]]

)
1≤i,j≤p

for any a1, . . ., ap ∈ K.

So [[R′]] = [[P ′]] for the infinite cf-grammar P : P (A) = L(R(A), 1, 2) for any
A ∈ NR .

Corollary 3.5. For any cci-semiring K and any graph grammar R over K,
[[Rω]] = HK|R|([[R]](0)

)
.

For +, ·, ∗ in K in O(1), the complexity is in O(|R|4 + |R|2CR).

Contrary to Theorem 3.1, this corollary can be used for any cci-semiring. The
computation of the Jacobian matrix R′ is O

(∑
A∈NR

|R||R(A)|
)

= O(|R|�R).
We compute [[R′]](a1, . . ., ap) in O

(∑
A∈NR

|R|CR(A)[a1,...,ap],1,2

)
= O(|R|CR).

Having a square matrix M ∈ Kp×p and a vector
→
a ∈ Kp, the value of

→
b =

M∗.
→
a corresponds to solving the linear system

→
b =

→
a + M.

→
b of p equations

with p variables {b1, . . ., bp}. By the Gauss elimination method, we use O(p3)
operations + and · operations, and O(p) ∗ operations.

For the semiring (IR ∪ {−ω, ω},Min,+, ω, 0) of Example 2.1 (c) and using
Floyd’s algorithm over finite graphs, we get a complexity in O(|R|2 � 3

R) hence
in O(� 5

R) for computing [[Rω]] for any 2-grammar R over K. This is a greater
complexity than for Theorem 3.1.

4 Computations on Regular Graphs

The family of regular graphs contains the pushdown graphs. Precisely the regular
graphs of finite degree are the regular restrictions of pushdown graphs. They are
the graphs generated by deterministic graph grammars allowing non-terminal
hyperarcs of arity greater than 2. By splitting these hyperacs into arcs, we pro-
vide a polynomial transformation of any graph grammar to a language-equivalent
2-grammar (Proposition 4.3). Then we can apply the previous results to obtain
polynomial algorithms for solving the shortest path problem on regular graphs
(Corollary 4.4).

We denote by a word as1. . .s�(a) a hyperarc of label a with an arity %(a) ≥
1, linking in order the vertices s1, . . ., s�(a) . A hyperarc ast of arity %(a) =
2 is an arc (s, a, t). A hypergraph G is a set of hyperarcs, and its length is
�G :=

∑
{ |u| | u ∈ G } for G finite.

A graph grammar R is a finite set of rules of the form:
A 1. . .%(A) −→ H

where A 1. . .%(A) is a hyperarc labelled by A linking the vertices 1, . . ., %(A) ,
and H is a finite hypergraph. Again the labels of the left hand sides form the

210 D. Caucal and T.H. Dinh

set NR of non-terminals, and the remaining labels in the right hand sides form
the set TR of terminals. As we only want to generate graphs, we assume that
any terminal is of arity 2.

We extend in a natural way to any graph grammar R the notions of rewriting
−→

R
and of parallel rewriting =⇒

R
.

Henceforth a graph grammar R is deterministic : two rules have distinct left
hand sides, and like for 2-grammars, we define the graph Rω(H) generated from
any hypergraph H . We give below a graph grammar reduced to a unique rule,
and its generated graph.

A

3 3

A

1 1

2 2

c

d d

c

d

a

c
b

c

b

d

=⇒ω

a

b a

Fig. 4.1. Graph grammar and generated graph

A graph grammar R over K means that TR ⊆ K .
For any graph grammar R and for any non-terminal A ∈ NR ,

its right hand side in R is R(A 1. . .%(A)), also denoted R(A),
the graph generated by R from A is Rω(A 1. . .%(A)), also denoted Rω(A),
|R| = |NR| is the number of rules of R (its cardinality),
�R :=

∑
{ |R(A)|+ %(A) | A ∈ NR } is the length of R,

%R :=
∑
{ %(A) | A ∈ NR } is the arity of R.

A regular graph is a graph generated by a graph grammar from a non-terminal.
We transform any graph grammar R into a language-equivalent 2-grammar

by splitting any non-terminal hyperarc into all the possible arcs.
We assume that 0 is not a vertex of R and we take a new set of symbols

{ Ai,j | A ∈ NR ∧ 1 ≤ i, j ≤ %(A) } .
We define the splitting ≺G- of any (TR ∪ NR)-hypergraph G by the graph:

≺G- := { s a−→ t | ast ∈ G ∧ a ∈ TR }
∪ { s Ai,j−→ t | A ∈ NR∧1 ≤ i, j ≤ %(A) ∧

∃ s1, . . ., s�(A), As1. . .s�(A) ∈ H ∧ s = si ∧ t = sj } .

This allows us to define the splitting of R by the 2-grammar:

≺R- := { (1, Ai,j , 2) −→ hi,j(R(A)i,j) | A∈NR ∧ 1 ≤ i, j ≤ %(A) }
where for i �= j ,

R(A)i,j := { s a−→
≺R(A)�

t | s �= j∧t �= i ∧ s, t �∈ {1, . . ., %(A)} − {i, j} }
with hi,j the vertex renaming of R(A)i,j defined by

hi,j(i) = 1 , hi,j(j) = 2 , hi,j(x) = x otherwise,
and R(A)i,i := { s a−→

≺R(A)�
t | t �= i ∧ s, t �∈ {1, . . ., %(A)} − {i} }

∪ { s a−→ 0 | s a−→
≺R(A)�

i }

Path Algorithms on Regular Graphs 211

; ; ;

a 1

2

1

2

A2,1

1

2

1

2

a 1

2

1

2

1

2

1

2

A1,3 A1,2A1,2 A2,1

A1,3b

A2,1A1,2 c
A2,3

dA2,3

Fig. 4.2. Splitting in reduced form of the graph grammar of Figure 4.1

with hi,i the vertex renaming of R(A)i,i defined by
hi,i(i) = 1 , hi,i(0)=2 , hi,i(2)=0 , hi,i(x) = x otherwise.

We then put ≺R- into the reduced form of Section 2.
Note that |≺R-| =

∑
A∈NR

%(A)2 ≤ % 2
R

and �≺R� ≤
∑

A∈NR
%(A)2 |R(A)|2 ≤ % 2

R � 2
R .

So the splitting transformation is polynomial and is also language equivalent.

Proposition 4.3. For any graph grammar R, any (TR ∪ NR)-hypergraph H
and any s, t ∈ VH , we have L(Rω(H), s, t) = L(≺R-ω(≺H-), s, t) .

Proposition 4.3 and Proposition 3.2 imply the well-known fact that the languages
recognized (from and to a vertex) by regular graphs are exactly the context-
free languages. But the judiciousness of Proposition 4.3 is that we can apply
Theorem 3.1 and Corollary 3.5 to compute values of regular graphs. Let us
extend Corollary 3.3.

Corollary 4.4. For the semiring (IR ∪ {−ω, ω},Min,+, ω, 0), any graph gram-
mar R, any left hand side X and any vertices i, j ∈ VX , the shortest path prob-
lem [[Rω(X), i, j]] can be solved in O(% 4

R � 4
R), and in O(% 4

R � 2
R) when Rω(X)

is acyclic.

Corollary 4.4 is just a particular path problem which can be solved with poly-
nomial complexity by using Proposition 4.3 with Theorem 3.1 or Corollary 3.5.
To summarize the shortest path problem from devices generating context-free
languages, we got the complexity

O(n2) for any context-free grammar,
O(n2) for any 2-grammar,
O(n6) for any graph grammar generating an acyclic graph,
O(n8) for any graph grammar,
O(n18) for any pushdown automaton.

These algorithms result from a pumping argument: Theorem 3.1.
Of course, the complexity of the shortest path problem for pushdown au-

tomata would be improved. In this paper, we focus on path algorithms starting
from graph grammars over semirings. We thank an ‘anonymous’ referee for this
conclusion.

Note that the semiring approach cannot be used for computing the throughput
value of cf-languages; a polynomial solution to this particular problem has been
given in [2].

Many thanks to Antoine Meyer for his help in the writing of this paper.

212 D. Caucal and T.H. Dinh

References

1. Caucal, D.: On the regular structure of prefix rewriting. Theoretical Computer Sci-
ence 106, 61–86 (1992)

2. Caucal, D., Czyzowicz, J., Fraczak, W., Rytter, W.: Efficient computation of
throughput values of context-free languages. In: 12th CIAA, LNCS 2007 (to ap-
pear)

3. Courcelle, B.: Infinite graphs of bounded width. Mathematical Systems The-
ory 21(4), 187–221 (1989)

4. Esparza, J., Kiefer, S., Luttenberger, M.: On fixed point equations over commutative
semirings. In: Thomas, W., Weil, P. (eds.) STACS 2007. LNCS, vol. 4393, pp. 296–
307. Springer, Heidelberg (2007)

5. Hopkins, M., Kozen, D.: Parikh’s theorem in commutative Kleene algebra. In: Longo,
G. (ed.) 14th LICS, pp. 394–401. IEEE, Los Alamitos (1999)

6. Muller, D., Schupp, P.: The theory of ends, pushdown automata, and second-order
logic. Theoretical Computer Science 37, 51–75 (1985)

7. Parikh, R.: On context-free languages. JACM 13(4), 570–581 (1966)
8. Pilling, D.: Commutative regular equations and Parikh’s theorem. J. London Math.

Soc. 6(4), 663–666 (1973)
9. Thomas, W.: A short introduction to infinite automata. In: Kuich, W., Rozenberg,

G., Salomaa, A. (eds.) DLT 2001. LNCS, vol. 2295, pp. 130–144. Springer, Heidel-
berg (2002)

Factorization of Fuzzy Automata�

Miroslav Ćirić1, Aleksandar Stamenković1, Jelena Ignjatović1,
and Tatjana Petković2

1 Faculty of Sciences and Mathematics, University of Nǐs,
Vǐsegradska 33, 18000 Nǐs, Serbia

ciricm@bankerinter.net, aca@pmf.ni.ac.yu, jejaign@yahoo.com
2 Nokia, Joensuunkatu 7, FIN-24100 Salo, Finland

tatjana.petkovic@nokia.com

Abstract. We show that the size reduction problem for fuzzy automata
is related to the problem of solving a particular system of fuzzy relation
equations. This system consists of infinitely many equations, and finding
its general solution is a very difficult task, so we first consider one of its
special cases, a finite system whose solutions, called right invariant fuzzy
equivalences, are common generalizations of recently studied right invari-
ant or well-behaved equivalences on NFAs, and congruences on fuzzy au-
tomata. We give a procedure for constructing the greatest right invariant
fuzzy equivalence contained in a given fuzzy equivalence, which work if the
underlying structure of truth values is a locally finite residuated lattice.

1 Introduction

Unlike deterministic automata, whose minimization is efficiently possible, it is
well-known that the state minimization of non-deterministic automata (NFA) is
computationally hard. For that reason, many researchers aimed their attention to
efficient NFA size reduction methods which do not necessarily give a minimal one.
The basic idea of reducing the size of NFAs by computing and merging indistin-
guishable states resembles the minimization algorithm for deterministic auto-
mata, but it is more complicated. That led to the concept of a right invariant
equivalence on an NFA, studied first by Ilie and Yu in [9], and then in [5, 6, 10,
11, 12]. From another aspect, the same concept was studied by Calude at all.
in [4], under the name well-behaved equivalence.

Fuzzy automata are generalizations of NFAs, and the mentioned problems con-
cerning NFAs still exist in work with fuzzy automata. Size reduction algorithms
for fuzzy automata given in [1,7,13,15,16,17] are also based on the idea of compu-
ting and merging indistinguishable states, and the term minimization that we
meet there does not mean the usual construction of the minimal one in the set of
all fuzzy automata recognizing a given fuzzy language, but just the procedure of
computing and merging indistinguishable states.

� Research supported by Ministry of Science and Environmental Protection, Republic
of Serbia, Grant No. 144011.

E. Csuhaj-Varjú and Z. Ésik (Eds.): FCT 2007, LNCS 4639, pp. 213–225, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

214 M. Ćirić et al.

In this paper we consider size reduction of fuzzy automata from another point
of view. We start from a fuzzy equivalence E on a set of states A of a fuzzy auto-
maton A , and without any restriction on E we turn the transition function on A
into a related transition function on the factor set AE , what results in the factor
fuzzy automaton AE. However, fuzzy automata AE and A are not necessarily
compatible. We show that they are compatible if and only if E is a solution of a
particular system of fuzzy relation equations including E, as an unknown fuzzy
relation, and the transition relations on A . If A is a fuzzy recognizer, it also in-
cludes fuzzy sets of initial and final states. The system consists of infinitely many
equations, and finding its general solution is a very difficult task, so we point to
certain special cases consisting of finitely many equations. One of them is a sys-
tem whose solutions, called right invariant fuzzy equivalences, are common gener-
alizations of the above mentioned right invariant or well-behaved equivalences,
and of congruences of fuzzy automata, studied by the fourth author in [17]. We
prove that any fuzzy equivalence E on A contains the greatest right invariant
one, and we give a procedure for its construction, which works if the underlying
structure L of truth values is a locally finite residuated lattice, but it does not
necessarily work if L is not locally finite. This fact is not surprising if we have in
mind recent results by Bělohlávek [2] and Li and Pedrycz [14], who found out that
any finite fuzzy recognizer over L is equivalent to a deterministic fuzzy recog-
nizer if and only if the semiring reduct S = (L,∨,⊗, 0, 1) of L is locally finite.

2 Preliminaries

In this paper we will use complete residuated lattices as the structures of truth
values. A residuated lattice is an algebra L = (L,∧,∨,⊗,→, 0, 1) such that

(L1) (L,∧,∨, 0, 1) is a lattice with the least element 0 and the greatest element 1,
(L2) (L,⊗, 1) is a commutative monoid with the unit 1,
(L3) ⊗ and → form an adjoint pair , i.e., they satisfy the adjunction property:

for all x, y, z ∈ L,
x⊗ y � z ⇔ x � y → z. (1)

If, in addition, (L,∧,∨, 0, 1) is a complete lattice, then we call L a complete
residuated lattice. The operations ⊗ (multiplication) and → (residuum) are in-
tended for modeling the conjunction and implication of the corresponding logical
calculus, supremum (

∨
) and infimum (

∧
) are used for modeling the existential

and general quantifier, and an operation ↔ defined by x↔ y = (x→ y) ∧ (y →
x), called a biresiduum (or a biimplication), is used for modeling the equiva-
lence of truth values. Emphasizing their monoidal structure, in some sources
residuated lattices are called integral, commutative, residuated l-monoids.

It can be easily verified that with respect to �,⊗ is isotonic in both arguments,
→ is isotonic in the second and antitonic in the first argument, and for any
x, y, z ∈ L and any {xi}i∈I , {yi}i∈I ⊆ L, the following hold:

Factorization of Fuzzy Automata 215

x↔ y � x⊗ z ↔ y ⊗ z, (2)(∨
i∈I

xi

)
⊗ x =

∨
i∈I

(xi ⊗ x), (3)

∧
i∈I

(xi ↔ yi) �
(∨
i∈I

xi

)
↔
(∨
i∈I

yi

)
. (4)

For other properties of complete residuated lattices we refer to [2].
The most studied and applied structures of truth values, defined on the real

unit interval [0, 1] with x ∧ y = min(x, y), x ∨ y = max(x, y), are: �Lukasiewicz
structure (x⊗y = max(x+y−1, 0), x→ y = min(1−x+y, 1)), product structure
(x ⊗ y = x · y, x → y = 1 if x � y and = y/x otherwise) and Gödel structure
(x⊗ y = min(x, y), x→ y = 1 if x � y and = y otherwise).

More generally, an algebra ([0, 1],∧,∨,⊗,→, 0, 1) is a complete residuated lat-
tice if and only if ⊗ is a left-continuous t-norm and the residuum is defined by
x→ y =

∨
{u ∈ [0, 1] |u⊗x � y} (cf. [2]). Another important set of truth values

is {a0, a1, . . . , an}, 0 = a0 < · · · < an = 1, with ak ⊗ al = amax(k+l−n,0) and
ak → al = amin(n−k+l,n). A special case of the latter algebras is the two-element
Boolean algebra of classical logic with the support {0, 1}. The only adjoint pair
on the two-element Boolean algebra consist of the classical conjunction and
implication operations. A residuated lattice L satisfying x⊗ y = x∧ y is called
a Heyting algebra, whereas a Heyting algebra satisfying the prelinearity axiom
(x → y) ∨ (y → x) = 1 is called a Gödel algebra. If any finitelly generated sub-
algebra of L is finite, then L is called locally finite. For example, every Gödel
algbera, and hence, the Gödel structure, is locally finite, whereas the product
structure is not locally finite.

In the further text L will be a complete residuated lattice. A fuzzy subset
of a set A over L , or simply a fuzzy subset of A, is any mapping of A into
L. Let f and g be two fuzzy subsets of A. The equality of f and g is defined
as the usual equality of mappings, i.e., f = g if and only if f(a) = g(a), for
every a ∈ A. The inclusion f � g is also defined pointwise: f � g if and only if
f(a) � g(a), for every a ∈ A. Endowed with this partial order the set F (A) of
all fuzzy subsets of A forms a completely distributive lattice, in which the meet
(intersection)

∧
i∈I fi and the join (union)

∨
i∈I fi of an arbitrary family {fi}i∈I

of fuzzy subsets of A are mappings from A into L defined by(∧
i∈I

fi

)
(a) =

∧
i∈I

fi(a),
(∨

i∈I
fi

)
(a) =

∨
i∈I

fi(a).

The crisp part of a fuzzy subset f of A, in notation f̂ , is a crisp subset of
A defined by f̂ = {a ∈ A | f(a) = 1}. We will also consider f̂ as a mapping
f̂ : A→ L defined by f̂(a) = 1, if f(a) = 1, and f̂(a) = 0, if f(a) < 1.

A fuzzy relation on A is any mapping from A× A into L, that is to say, any
fuzzy subset of A × A, and the equality, inclusion, joins, meets and ordering of
fuzzy relations are defined as for fuzzy sets. For fuzzy relations R and S on A,
their composition R ◦ S is a fuzzy relation on A defined by

216 M. Ćirić et al.

(R ◦ S)(a, b) =
∨
c∈A

R(a, c)⊗ S(c, b), (5)

for all a, b ∈ A, and for a fuzzy subset f of A and a fuzzy relation R on A, the
compositions f ◦R and R ◦ f are fuzzy subsets of A defined, for any a ∈ A, by

(f ◦R)(a) =
∨
b∈A

f(b)⊗R(b, a), (R ◦ f)(a) =
∨
b∈A

R(a, b)⊗ f(b). (6)

If R is symmetric, then f ◦R = R ◦ f . For fuzzy subsets f, g ∈ F (A) we write

f ◦ g =
∨
a∈A

f(a)⊗ g(a). (7)

We know that the composition of fuzzy relations is associative, and also

(f ◦R) ◦ S = f ◦ (R ◦ S), (f ◦R) ◦ g = f ◦ (R ◦ g), (8)

for arbitrary fuzzy subsets f and g of A, and fuzzy relations R and S on A, and
hence, the parentheses in (8) can be omitted. Note also that if A is a finite set
with n elements, then R and S can be treated as n × n fuzzy matrices over L
and R ◦S is the matrix product, whereas f ◦R can be treated as the product of
a 1 × n matrix f and an n× n matrix R, and R ◦ f as the product of an n× n
matrix R and an n× 1 matrix f t (the transpose of f).

A fuzzy relation E on A is

(R) reflexive if E(a, a) = 1, for every a ∈ A;
(S) symmetric if E(a, b) = E(b, a), for all a, b ∈ A;
(T) transitive if E(a, b)⊗ E(b, c) � E(a, c), for all a, b, c ∈ A.

If E is reflexive and transitive, then E ◦ E = E. A fuzzy relation on A which
is reflexive, symmetric and transitive is called a fuzzy equivalence. With respect
to the ordering of fuzzy relations, the set E (A) of all fuzzy equivalence relations
on a set A is a complete lattice, in which the meet coincide with the ordinary
intersection of fuzzy relations, but in the general case, the join in E (A) does not
coincide with the ordinary union of fuzzy relations. For a fuzzy equivalence E
on A and a ∈ A we define a fuzzy subset Ea ∈ F (A) by:

Ea(x) = E(a, x), for every x ∈ A.

We call Ea an equivalence class of E determined by a. The set AE = {Ea | a ∈ A}
is called the factor set of A w.r.t. E (cf. [2,8]). Cardinality of the factor set AE ,
in notation ind(E), is called the index of E. To any fuzzy subset f of A we assign
a fuzzy equivalence Ef on A defined by Ef (a, b) = f(a) ↔ f(b), for all a, b ∈ A.

3 Fuzzy Automata

By a fuzzy automaton over L , or simply a fuzzy automaton, we mean a triple
A = (A,X, δ), where A and X are sets, called respectively a set of states and

Factorization of Fuzzy Automata 217

an input alphabet , and δ : A×X×A→ L is a fuzzy subset of A×X×A, called
a fuzzy transition function. The input alphabet X will be always finite, but from
methodological reasons we will allow the set of states A to be infinite. A fuzzy
automaton whose set of states is finite is called a finite fuzzy automaton.

Let X∗ denote the free monoid over the alphabet X , and let e ∈ X∗ be the
empty word. Then δ can be extended up to a mapping δ∗ : A×X∗ ×A→ L in
the following way: If a, b ∈ A, then δ∗(a, e, b) = 1, for a = b, and δ∗(a, e, b) = 0,
for a �= b, and if a, b ∈ A, u ∈ X∗ and x ∈ X , then

δ∗(a, ux, b) =
∨
c∈A

δ∗(a, u, c)⊗ δ(c, x, b). (9)

Without danger of confusion we shall write just δ instead of δ∗.
By (3) and Theorem 3.1 [14], we have that

δ(a, uv, b) =
∨
c∈A

δ(a, u, c)⊗ δ(c, v, b), (10)

for all a, b ∈ A and u, v ∈ X∗, i.e., if w = x1 · · ·xn, for x1, . . . , xn ∈ X , then

δ(a,w, b) =
∨

(c1,...,cn−1)∈An−1

δ(a, x1, c1)⊗ δ(c1, x2, c2)⊗· · ·⊗ δ(cn−1, xn, b). (11)

If for any u ∈ X∗ we define a fuzzy relation δu ∈ F (A×A), called the transition
relation determined by u, by δu(a, b) = δ(a, u, b), for all a, b ∈ A, then for all
u, v ∈ X∗, the equality (10) can be written as δuv = δu ◦ δv.

A fuzzy recognizer is a five-tuple A = (A, σ,X, δ, τ), where (A,X, δ) is a fuzzy
automaton, and σ and τ are fuzzy subsets of A, called respectively a fuzzy set
of initial states , and a fuzzy set of terminal states .

A fuzzy language in X∗ over L , or briefly a fuzzy language, is any fuzzy subset
of X∗, i.e., any mapping from X∗ into L. A fuzzy recognizer A = (A, σ,X, δ, τ)
recognizes a fuzzy language f ∈ F (X∗) if for any u ∈ X∗ we have

f(u) =
∨

a,b∈A
σ(a)⊗ δ(a, u, b)⊗ τ(b). (12)

Using notation from (6), and the second equality in (8), we can state (12) as

f(u) = σ ◦ δu ◦ τ. (13)

The fuzzy language recognized by a fuzzy recognizer A is denoted by L(A),
and called the fuzzy language of A .

If δ is a crisp subset of A ×X × A, i.e., δ : A × X × A → {0, 1}, then A is
an ordinary crisp non-deterministic automaton, and if δ is a mapping of A×X
into A, then A is an ordinary deterministic automaton. Evidently, in these two
cases we have that δ is also a crisp subset of A × X∗ × A, and a mapping of
A×X∗ into A, respectively.

For undefined notions and notations we refer to [2] and [16].

218 M. Ćirić et al.

4 Factor Fuzzy Automata and Fuzzy Relation Equations

Let A = (A,X, δ) be a fuzzy automaton and let E be a fuzzy equivalence on A.
Without any restriction on the fuzzy equivalence E, we can define a fuzzy tran-
sition function δE : AE ×X ×AE → L by

δE(Ea, x, Eb) =
∨

a′,b′∈A
E(a, a′)⊗ δ(a′, x, b′)⊗ E(b′, b) (14)

or equivalently,

δE(Ea, x, Eb) = (E ◦ δx ◦ E)(a, b) = Ea ◦ δx ◦ Eb, (15)

for any a, b ∈ A and x ∈ X . Evidently, δE is well-defined, and AE = (AE , X, δE)
is a fuzzy automaton, called the factor fuzzy automaton of A w.r.t. E.

If, in addition, A = (A, σ,X, δ, τ) is a fuzzy recognizer, then without any
restriction on E, we can also define a fuzzy set σE ∈ F (AE) of initial states and
a fuzzy set τE ∈ F (AE) of terminal states by

σE(Ea) =
∨
a′∈A

σ(a′)⊗ E(a′, a) = (σ ◦ E)(a) = σ ◦ Ea, (16)

τE(Ea) =
∨
a′∈A

τ(a′)⊗ E(a′, a) = (τ ◦ E)(a) = τ ◦ Ea, (17)

for any a ∈ A. Clearly, σE and τE are well-defined and AE = (AE , σE , X, δE, τE)
is a fuzzy recognizer, called the factor fuzzy recognizer of A w.r.t. E.

The factor automaton AE is not necessarily compatible with A , i.e., for any
a, b ∈ A and u = x1x2 · · ·xn ∈ X∗ we have that

δE(Ea, u, Eb) = (E ◦ δx1 ◦ E ◦ δx2 ◦ E ◦ · · · ◦ δxn ◦ E)(a, b), (18)

and, in the general case, δE(Ea, u, Eb) is not necessarily equal to (E◦δu◦E)(a, b).
If for all a, b ∈ A and u ∈ X∗ we have that

δE(Ea, u, Eb) = (E ◦ δu ◦ E)(a, b), (19)

then we say that the factor fuzzy automaton AE is compatible with A . Thus, AE

is compatible with A if and only if E is a solution of a fuzzy relation equation

E ◦ δx1 ◦ E ◦ δx2 ◦ E ◦ · · · ◦ δxn ◦ E = E ◦ δx1 ◦ δx2 ◦ · · · ◦ δxn ◦ E, (20)

for every n ∈ N and x1, x2, . . . , xn ∈ X .
Furthermore, if A is a fuzzy recognizer, then the fuzzy language recognized

by the factor fuzzy recognizer AE is given by

L(AE)(u) = σ ◦ E ◦ δx1 ◦ E ◦ δx2 ◦ E ◦ · · · ◦ δxn ◦ E ◦ τ, (21)

for any u = x1x2 · · ·xn ∈ X∗, and we have that L(A) = L(AE) if and only if E
is a solution of a fuzzy relation equation

σ ◦ E ◦ δx1 ◦ E ◦ δx2 ◦ E ◦ · · · ◦ δxn ◦ E ◦ τ = σ ◦ δx1 ◦ δx2 ◦ · · · ◦ δxn ◦ τ (22)

Factorization of Fuzzy Automata 219

for every n ∈ N and x1, x2, . . . , xn ∈ X . Clearly, the systems (20) and (22)
have at least one solution in E (A), the equality relation on A, but to obtain the
best possible reduction of A we have to find the greatest solution in E (A), if it
exists, or to find as big a solution as possible.

The systems (20) and (22) consist of infinitely many equations, and finding
their general solution is a very difficult task. However, imposing certain condi-
tions on E, the number of equations can be considerably reduced. In particular,
if we assume that E is a solution of a finite system

δx ◦ E ◦ δy ◦ E = δx ◦ δy ◦ E, x, y ∈ X, (23)

by induction we can prove that E is also a solution of any equation of the form

δx1 ◦ E ◦ δx2 ◦ E ◦ · · · ◦ δxn ◦ E = δx1 ◦ δx2 ◦ · · · ◦ δxn ◦ E, (24)

for any n ∈ N, x1, . . . , xn ∈ X , so it is a solution of the system (20). In this case
we have the following system, whose any solution is also a solution of (22):

δx ◦ E ◦ δy ◦ E = δx ◦ δy ◦ E, x, y ∈ X,

σ ◦ E = σ,

τ ◦ E = τ.

(25)

Analogously, if we assume that E is a solution of a finite system

E ◦ δx ◦ E ◦ δy = E ◦ δx ◦ δy, x, y ∈ X, (26)

we obtain the following system, whose any solution is also a solution of (22):

E ◦ δx ◦ E ◦ δy = E ◦ δx ◦ δy, x, y ∈ X,

σ ◦ E = σ,

τ ◦ E = τ.

(27)

Note that the equations σ ◦ E = σ and τ ◦ E = τ can be easily solved. It is
well-known that E is a solution of σ ◦ E = σ (resp. τ ◦ E = τ) if and only if
E � Eσ (resp. E � Eτ), and hence, Eσ (resp. Eτ) is the greatest solution of
this equation. Thus, solutions of the system (25) (resp. (27)) are exactly those
solutions of the system (23) (resp. (26)) which are contained in Eσ ∧ Eτ . The
equations σ ◦ E = σ and τ ◦ E = τ also have a natural interpretation. Roughly
speaking, E(a, b) � Eσ(a, b) and E(a, b) � Eτ (a, b), for all a, b ∈ A, mean that
E does not merge initial and noninitial, and terminal and nonterminal states.

5 Right Invariant Fuzzy Equivalences

We start study of the system (23) considering one of its most interesting spe-
cial cases, whose solutions in E (A) are generalizations both of right invari-
ant equivalences on non-deterministic automata, studied by Ilie, Yu and oth-
ers [5, 6, 9, 10, 11, 12], or well-behaved equivalences, studied by Calude et al. [4],
and of congruences on fuzzy automata, studied by the fourth author in [17].

220 M. Ćirić et al.

Let A = (A,X, δ) be a fuzzy automaton. A fuzzy equivalence E on A will be
called right invariant if it is a solution of the system of fuzzy relation equations

E ◦ δx ◦ E = δx ◦ E, x ∈ X. (28)

Using the reverse equations we define left invariant fuzzy equivalences.
Right invariant fuzzy equivalences can be characterized as follows:

Theorem 1. Let A = (A,X, δ) be a fuzzy automaton and E a fuzzy equivalence
on A. Then the following conditions are equivalent:

(i) E is a right invariant fuzzy equivalence;
(ii) E ◦ δx � δx ◦ E, for every x ∈ X;

(iii) for every a, b ∈ A we have

E(a, b) �
∧
x∈X

∧
c∈A

(δx ◦ E)(a, c) ↔ (δx ◦ E)(b, c). (29)

Proof. (i)⇔(ii). Consider an arbitrary x ∈ X . If E ◦ δx ◦ E = δx ◦ E, then we
have that E ◦ δx � E ◦ δx ◦ E = δx ◦ E. Conversely, if E ◦ δx � δx ◦ E then
E ◦ δx ◦E � δx ◦E ◦E = δx ◦E, and since the opposite inequality always hold,
we conclude that E ◦ δx ◦ E = δx ◦ E.

(i)⇒(iii). Let E be right invariant. Then for any x ∈ X and a, b, c ∈ A we
have that E(a, b)⊗ (δx ◦E)(b, c) � (E ◦ δx ◦E)(a, c) = (δx ◦E)(a, c), and by the
adjunction property, we obtain that E(a, b) � (δx ◦E)(b, c) → (δx ◦E)(a, c). By
symmetry, E(a, b) = E(b, a) � (δx ◦ E)(a, c) → (δx ◦ E)(b, c), and hence,

E(a, b) � (δx ◦ E)(a, c) ↔ (δx ◦ E)(b, c). (30)

Since (30) is satisfied for every c ∈ A and x ∈ X , we conclude that (29) holds.
(iii)⇒(i). If (iii) holds, then for arbitrary x ∈ X and a, b, c ∈ A we have that

E(a, b) � (δx ◦ E)(a, c) ↔ (δx ◦ E)(b, c) � (δx ◦ E)(b, c) → (δx ◦ E)(a, c),

and by the adjunction property, E(a, b)⊗ (δx ◦ E)(b, c) � (δx ◦ E)(a, c). Now,

(E ◦ δx ◦ E)(a, c) =
∨
b∈A

E(a, b)⊗ (δx ◦ E)(b, c) � (δx ◦ E)(a, c),

and hence, E ◦ δx ◦ E � δx ◦ E. Since the opposite inequality always hold, we
conclude that E ◦ δx ◦ E = δx ◦ E, for each x ∈ X . ��

The next two remarks show that right invariant fuzzy equivalences are com-
mon generalizations of right invariant or well-behaved equivalences on non-deter-
ministic automata and of congruences on fuzzy automata.

Remark 1. Let A = (A,X, δ) be a crisp non-deterministic automaton and E an
equivalence on A. It is easy to check that E ◦ δx ⊆ δx ◦ E is equivalent to

Factorization of Fuzzy Automata 221

(P2) (∀a, b ∈ A)(∀x ∈ X)((a, b) ∈ E ⇒ (∀b′ ∈ δ(b, x))(∃a′ ∈ δ(a, x))(a′, b′) ∈ E),

what is the second of two conditions by which Ilie, Navarro and Yu in [11] defined
the notion of a right invariant equivalence on a non-deterministic automaton (see
also [12,6]). The first one, which requires that terminal and non-terminal states
are not E-equivalent, can be written in the fuzzy case as τ ◦E = τ . Here we have
excluded this condition from the definition of a right invariant fuzzy equivalence,
and it will be considered separately. Calude et al. in [4] called equivalences satis-
fying (P2) well-behaved. Note also that an equivalent form of the condition (P2),
appearing in [9, 10], correspond to our condition (iii) in Theorem 1.

Remark 2. Let A = (A,X, δ) be a fuzzy automaton and E a crisp equivalence on
A. By (iii) of Theorem 1 we have that E is a right invariant equivalence on A if
and only if for any a, a′ ∈ A, by (a, a′) ∈ E it follows (δx◦E)(a, b) = (δx◦E)(a′, b),
for all x ∈ X and b ∈ A. But, (δx ◦ E)(a, b) = (δx ◦ E)(a′, b) is equivalent to∨

b′∈Eb

δ(a, x, b′) =
∨

b′∈Eb

δ(a′, x, b′),

and hence, right invariant crisp equivalences on fuzzy automata are nothing else
than congruences on fuzzy automata studied by the fourth author in [17] (or par-
titions with substitution property from [1]).

Let A = (A,X, δ) be a fuzzy automaton and E a fuzzy equivalence on A. Let us
define the fuzzy relations Ex :A×A→ L, for any x ∈ X , and Er :A×A→ L by

Ex(a, b) =
∧
c∈A

(δx ◦ E)(a, c) ↔ (δx ◦ E)(b, c), Er(a, b) =
∧
x∈X

Ex(a, b). (31)

By the well-known Valverde’s Representation Theorem [18] (see also [2, 8]) we
have that Ex, for each x ∈ X , and Er are fuzzy equivalences.

Lemma 1. Let A = (A,X, δ) be a fuzzy automaton, and let E and F be fuzzy
equivalences on A. If E � F , then Er � F r.

Proof. Consider arbitrary a, b ∈ A and x ∈ X . By E � F it follows E ◦ F = F ,
and by (2), for arbitrary c, d ∈ A we have that

(δx ◦E)(a, c) ↔ (δx ◦E)(b, c) � (δx ◦E)(a, c)⊗F (c, d) ↔ (δx ◦E)(b, c)⊗F (c, d).

Now, by (4) we obtain that

Er(a, b) �
∧
c∈A

(δx ◦ E)(a, c) ↔ (δx ◦ E)(b, c)

�
∧
c∈A

[
(δx ◦ E)(a, c) ⊗ F (c, d) ↔ (δx ◦ E)(b, c)⊗ F (c, d)

]
�
[∨
c∈A

(δx ◦ E)(a, c) ⊗ F (c, d)
]
↔
[∨
c∈A

(δx ◦ E)(b, c)⊗ F (c, d)
]

= (δx ◦ E ◦ F)(a, d) ↔ (δx ◦ E ◦ F)(b, d) = (δx ◦ F)(a, d) ↔ (δx ◦ F)(b, d).

This holds for any x ∈ X and d ∈ A, so we conclude that Er � F r. ��

222 M. Ćirić et al.

Theorem 2. The set E ri(A) of all right invariant fuzzy equivalences on a fuzzy
automaton A = (A,X, δ) forms a complete lattice. This lattice is a complete
join-subsemilattice of the lattice E (A) of all fuzzy equivalences on A.

Proof. Since E ri(A) contains the least element of E (A), the equality relation on
A, it is enough to prove that E ri(A) is a complete join-subsemilattice of E (A).

Let {Ei}i∈I be a family of right invariant fuzzy equivalences on A , and E its
join in E (A). For any i ∈ I, by Ei � E and Lemma 1 we have that Ei � Er

i � Er,
so E � Er. Thus, by (iii) of Theorem 1 we obtain that E is right invariant. ��

By Theorem 2 it follows that for any fuzzy equivalence E on A there exists the
greatest right invariant fuzzy equivalence contained in E, that will be denoted
by E�. In the next theorem we consider the problem how to construct it.

Theorem 3. Let A = (A,X, δ) be a fuzzy automaton, E a fuzzy equivalence on
A and E� the greatest right invariant fuzzy equivalence contained in E.

Define inductively a sequence {Ek}k∈N of fuzzy equivalences on A as follows:

E1 = E, Ek+1 = Ek ∧ Er
k, for each k ∈ N.

Then

(a) E� � · · · � Ek+1 � Ek � · · · � E1 = E;
(b) If Ek = Ek+m, for some k,m ∈ N, then Ek = Ek+1 = E�;
(c) If A is finite and L is locally finite, then Ek = E� for some k ∈ N.

Proof. (a) Evidently, Ek � Ek+1, for each k ∈ N, and E� � E1. Suppose that
E� � Ek, for some k ∈ N. Then E� � (E�)r � Er

k, so E� � Ek ∧ Er
k = Ek+1.

Hence, by induction we obtain that E� � Ek, for any k ∈ N.
(b) Let Ek = Ek+m, for some k,m ∈ N. Then Ek = Ek+m � Ek+1 =

Ek ∧Er
k � Er

k, what means that Ek is a right invariant fuzzy equivalence. Since
E� is the greatest right invariant fuzzy equivalence contained in E, we conclude
that Ek = Ek+1 = E�.

(c) Let A be a finite fuzzy automaton and L be a locally finite algebra. Let
the carrier of a subalgebra of L generated by the set δ(A×X×A)∪E(A×A) be
denoted by LA . This generating set is finite, so LA is also finite, and hence, the
set LA×A

A of all fuzzy relations on A with values in LA is finite. By definitions
of fuzzy relations Ek and Er

k we have that Ek ∈ LA×A
A , which implies that there

are k, n ∈ N such that Ek = Ek+m, and by (b) we conclude that Ek = E�. ��

The above theorem gives a procedure for construction of the greatest right in-
variant fuzzy equivalence contained in a given fuzzy equivalence E on a finite
fuzzy automaton, which works if L is locally finite, but it does not necessarily
work if L is not locally finite, what the following example shows:

Example 1. Let L be the product structure, A = (A,X, δ) a fuzzy automaton
over L with A = {1, 2}, X = {x}, and a transition relation δx given as in (32),
and E the universal relation on A. Applying to E the procedure from Theorem 3,

Factorization of Fuzzy Automata 223

we obtain a sequence {Ek}k∈N of fuzzy equivalences (shown also in (32)) whose
all members are different. We have that E� is the equality relation on A, since
it is the only right invariant fuzzy equivalence on A .

δx =

[
0 1
1
2

0

]
, Ek =

[
1 1

2k−1
1

2k−1 1

]
, k ∈ N, E� =

[
1 0
0 1

]
. (32)

Therefore, if the complete residuated lattice L is not locally finite, we know
that there exists the greatest right invariant fuzzy equivalence E� contained in E,
but the problem is how to construct it. In some cases, to reduce A , we can try to
find the greatest right invariant crisp equivalence E◦ contained in E (or in Ê),
which can have the same index as E�, so the factor fuzzy automata AE◦ and
AE� would have the same number of states. This can be done using a procedure
given by the fourth author in [17], which can be stated here as follows:

Theorem 4. [17] Let A = (A,X, δ) be a fuzzy automaton, % an equivalence
on A and %◦ the greatest right invariant equivalence contained in %.

Define inductively a sequence {%k}k∈N of fuzzy equivalences on A as follows:

%1 = %, %k+1 = %k ∩ %rk, for each k ∈ N, where
(a, b) ∈ %rk ⇔ (∀x ∈ X)(∀c ∈ A)(δx ◦ %k)(a, c) = (δx ◦ %k)(b, c).

Then

(a) %◦ � · · · � %k+1 � %k � · · · � %1 = %;
(b) If %k = %k+m, for some k,m ∈ N, then %k = %k+1 = %◦;
(c) If A is finite, then %k = %◦ for some k ∈ N. ��

However, E◦ can have the greather index than E�, and hence, AE◦ can have
more states than AE� , as the following example shows:

Example 2. Let L be the Gödel structure, A = (A,X, δ) a fuzzy automaton
over L with A = {1, 2, 3, 4}, X = {x, y}, and transition relations given by

δx =

⎡⎢⎣ 1 0.8 0.6 0.8
0.8 1 0.8 0.6
0.2 0.3 0.8 0.9
0.2 0.3 0.8 0.9

⎤⎥⎦ , δy =

⎡⎢⎣ 0.8 1 0.6 0.8
1 0.6 0.5 0.9

0.3 0.2 0.4 0.8
0.5 0.3 0.3 1

⎤⎥⎦ .
and let E be the universal relation on A. Applying to E procedures from Theo-
rems 3 and 4, we obtain that E2 = E3 = E� and %3 = %4 = E◦, where

E� =

⎡⎢⎣ 1 1 0.8 0.9
1 1 0.8 0.9

0.8 0.8 1 0.8
0.9 0.9 0.8 1

⎤⎥⎦ , E◦ =

⎡⎢⎣ 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎦ .
Therefore, E◦ does not make a reduction of A , whereas E� has three classes, and
reduces A to a fuzzy automaton AE� having three states and transition matrices

δE
�

x =

[
1 0.8 0.9

0.9 0.8 0.9
0.9 0.8 0.9

]
, δE

�

y =

[
1 0.8 0.9

0.8 0.8 0.8
0.9 0.8 1

]
,

224 M. Ćirić et al.

with entries taken from the matrices δx ◦ E� = δx ◦ E2 and δy ◦ E� = δy ◦ E2.

If L has a property that ∨K = 1 implies 1 ∈ K, for any finite K ⊆ L, what is
satisfied, for example, whenever L is linearly ordered, then for arbitrary fuzzy
relations R and S on a finite set A we have that R̂◦S = R̂◦Ŝ. In this case, for any
right invariant fuzzy equivalence E on a fuzzy automaton A = (A,X, δ) we have
that Ê is a right invariant crisp equivalence on the non-deterministic automaton
Â = (A,X, δ̂), the crisp part of A . Also, for any fuzzy equivalence F on A , the
crisp part of F � is the greatest right invariant equivalence on Â contained in F̂ .

Note that dual results for left invariant fuzzy equivalences can be obtained.
As a conclusion let us remark that this paper imposes a lot of open questions,

like: Whether the systems (20) and (22) have greatest solutions in E (A), and
what their special cases have such solutions? When such solutions exist, how to
construct them? Especially, how to construct the greatest right invariant fuzzy
equivalence in the case when L is not locally finite? As different special cases of
the systems (20) and (22) give different types of fuzzy equivalence relations, how
to achieve a better reduction combining various types of these fuzzy equivalence
relations? All these questions will be considered in our further research.

References

1. Basak, N.C., Gupta, A.: On quotient machines of a fuzzy automation and the
minimal machine. Fuzzy Sets and Systems 125, 223–229 (2002)

2. Bělohlávek, R.: Fuzzy Relational Systems: Foundations and Principles. Kluwer,
New York (2002)

3. Bělohlávek, R.: Determinism of fuzzy automata. Information Sciences 143, 205–209
(2002)

4. Calude, C.S., Calude, E., Khoussainov, B.: Finite nondeterministic automata: Sim-
ulation and minimality. Theoretical Computer Science 242, 219–235 (2000)

5. Câmpeanu, C., Sântean, N., Yu, S.: Mergible states in large NFA. Theoretical
Computer Science 330, 23–34 (2005)

6. Champarnaud, J.-M., Coulon, F.: NFA reduction algorithms by means of regular
inequalities. Theoretical Computer Science 327, 241–253 (2004)

7. Cheng, W., Mo, Z.: Minimization algorithm of fuzzy finite automata. Fuzzy Sets
and Systems 141, 439–448 (2004)

8. Ćirić, M., Ignjatović, J., Bogdanović, S.: Fuzzy equivalence relations and their
equivalence classes. Fuzzy Sets and Systems 158, 1295–1313 (2007)

9. Ilie, L., Yu, S.: Algorithms for computing small NFAs. In: Diks, K., Rytter, W.
(eds.) MFCS 2002. LNCS, vol. 2420, pp. 328–340. Springer, Heidelberg (2002)

10. Ilie, L., Yu, S.: Reducing NFAs by invariant equivalences. Theoretical Computer
Science 306, 373–390 (2003)

11. Ilie, L., Navarro, G., Yu, S.: On NFA reductions. In: Karhumäki, J., Maurer, H.,
Păun, G., Rozenberg, G. (eds.) Theory Is Forever. LNCS, vol. 3113, pp. 112–124.
Springer, Heidelberg (2004)

12. Ilie, L., Solis-Oba, R., Yu, S.: Reducing the size of NFAs by using equivalences and
preorders. In: Apostolico, A., Crochemore, M., Park, K. (eds.) CPM 2005. LNCS,
vol. 3537, pp. 310–321. Springer, Heidelberg (2005)

Factorization of Fuzzy Automata 225

13. Lei, H., Li, Y.M.: Minimization of states in automata theory based on finite lattice-
ordered monoids. Information Sciences 177, 1413–1421 (2007)

14. Li, Y.M., Pedrycz, W.: Fuzzy finite automata and fuzzy regular expressions with
membership values in lattice ordered monoids. Fuzzy Sets and Systems 156, 68–92
(2005)

15. Malik, D.S., Mordeson, J.N., Sen, M.K.: Minimization of fuzzy finite automata.
Information Sciences 113, 323–330 (1999)

16. Mordeson, J.N., Malik, D.S.: Fuzzy Automata and Languages: Theory and Appli-
cations. Chapman & Hall/CRC, Boca Raton, London (2002)

17. Petković, T.: Congruences and homomorphisms of fuzzy automata. Fuzzy Sets and
Systems 157, 444–458 (2006)

18. Valverde, L.: On the structure of F-indistinguishability operators. Fuzzy Sets and
Systems 17, 313–328 (1985)

Factorisation Forests for Infinite Words

Application to Countable Scattered Linear Orderings

Thomas Colcombet

Cnrs/Irisa
thomas.colcombet@irisa.fr

Abstract. The theorem of factorisation forests shows the existence of
nested factorisations — a la Ramsey — for finite words. This theorem
has important applications in semigroup theory, and beyond.

We provide two improvements to the standard result. First we improve
on all previously known bounds for the standard theorem. Second, we
extend it to every ‘complete linear ordering’. We use this variant in a
simplified proof of complementation of automata over words of countable
scattered domain.

Keywords: Formal languages, semigroups, infinite words, automata.

1 Introduction

Factorisation forests were introduced by Simon [15]. The associated theorem
— which we call the theorem of factorisation forests below — states that for
every semigroup morphism from words to a finite semigroup S, every word has
a Ramseyan factorisation tree of height linearly bounded by |S| (see below).
An alternative presentation states that for every morphism ϕ from A+ to some
finite semigroup S, there exists a regular expression evaluating to A+ in which
the Kleene star L∗ is allowed only when ϕ(L) = {e} for some e = e2 ∈ S; i.e. the
Kleene star is allowed only if it produces a Ramseyan factorisation of the word.

The theorem of factorisation forests provides a very deep insight on the struc-
ture of finite semigroups, and has therefore many applications. Let us cite some
of them. Distance automata are nondeterministic finite automata mapping words
to naturals. An important question concerning them is the limitedness problem:
decide whether this mapping is bounded or not. It has been shown decidable by
Simon using the theorem of factorisation forests [15]. This theorem also allows
a constructive proof of Brown’s lemma on locally finite semigroups [2]. It is also
used in the characterisation of subfamilies of the regular languages, for instance
the polynomial closure of varieties in [11]. Or to give general characterisations
of finite semigroups [10]. In the context of languages of infinite words indexed
by ω, it has also been used in a complementation procedure [1] extending Buchi’s
lemma [4]. In [7], a deterministic variant of the theorem of factorisation forest
is used for proving that every monadic second-order interpretation is equiva-
lent over trees to the composition of a first-order interpretation and a monadic

E. Csuhaj-Varjú and Z. Ésik (Eds.): FCT 2007, LNCS 4639, pp. 226–237, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Factorisation Forests for Infinite Words 227

second-order marking. This itself provides new result in the theory of finitely
presentable infinite structures.

The present paper aims first at advertising the theorem of factorisation forest
which, though already used in many papers, is in fact known only to a quite lim-
ited community. The reason for this is that its proofs rely on the use of Green’s
relations: Green’s relations form an important tool in semigroup theory, but are
technical and uncomfortable to work with. The merit of the factorisation forest
theorem is that it is usable without any significant knowledge of semigroup the-
ory, while it encapsulates nontrivial parts of this theory. Furthermore, as briefly
mentioned above, this theorem has natural applications in automata theory.

This paper contains three contributions. First, we provide a new proof of
the original theorem improving on all previously known bounds in [15] and [6].
Second, we extend the result to the infinite case (i.e., to infinite words, though
we use a different presentation). Third, we use this last extension in a simplified
proof of complementation of automata on countable scattered linear orderings,
a result known from Carton and Rispal [5].

The content of the paper is organised as follows. Section 2 is dedicated to
definitions. Section 3 presents the original theorem of factorisation forests as well
as a variant in terms of Ramseyan splits and its extension to the infinite case.
In Section 4 we apply this last extension to the complementation of automata
over countable scattered linear orderings.

2 Definitions

In this section, we successively present linear orderings, words indexed by them,
semigroups and additive labellings.

2.1 Linear Orderings

A linear ordering α = (L,<) is a set L equipped with a total ordering relation <;
i.e., an irreflexive, antisymmetric and transitive relation such that for every dis-
tinct elements x, y in L, either x < y or y < x. Two linear orderings α = (L,<)
and β = (L′, <′) have same order type if there exists a bijection f from L onto L′

such that for every x, y in L, x < y iff f(x) <′ f(y). We denote by ω,−ω, ζ the
order types of respectively (N, <), (−N, <) and (Z, <). Below, we do not distin-
guish between a linear ordering and its order type unless necessary. This is safe
since all the constructions we perform are defined up to similar order type.

A subordering β of α is a subset of L equipped with the same ordering relation;
i.e., β = (L′, <) with L′ ⊆ L. We write β ⊆ α. A convex subset of α is a subset S
of α such that for all x, y ∈ S and x < z < y, z ∈ S. We use the notations
[x, y], [x, y[,]x, y],]x, y[,]−∞, y],]−∞, y[, [x,+∞[and]x,+∞[for denoting the
usual intervals. Intervals are convex, but the converse does not hold in general
if α is not complete (see below). Given two subsets X,Y of a linear ordering,
X < Y holds if for all x ∈ X and y ∈ Y , x < y.

228 T. Colcombet

The sum of two linear orderings α1 = (L1, <1) and α2 = (L2, <2) (up to
renaming, assume L1 and L2 disjoint), denoted α1 + α2, is the linear order-
ing (L1 ∪ L2, <) with < coinciding with <1 on L1, with <2 on L2 and such
that L1 < L2. More generally, given a linear ordering α = (L,<) and for
each x ∈ L a linear ordering βx = (Kx, <x) (the Kx are assumed disjoint),
we denote by

∑
x∈α βx the linear (∪x∈LKx, <

′) with x′ <′ y′ if x < y or x = y
and x′ <x y

′, where x′ ∈ Kx and y′ ∈ Ky.
A linear ordering α is complete if every nonempty subset of α with an upper

bound has a least upper bound in α, and every nonempty subset of α with a
lower bound has a greatest lower bound in α.

A (Dedekind) cut of a linear ordering α = (L,<) is a couple (E,F) where
{E,F} is a partition of L, and E < F . Cuts are totally ordered by (E,F) <
(E′, F ′) if E � E′. This order has a minimal element ⊥ = (∅, L) and a maximal
element + = (L, ∅). We denote by α the set of cuts of α, and we abbreviate by
α[], α[[, α]], α][the sets α, α\{+}, α\{⊥}, α\{⊥,+} respectively. An important
remark is that α is a complete linear ordering. Cuts can be thought as new ele-
ments located between the elements of α: given x ∈ α, x− = (]−∞, x[, [x,+∞[)
represents the cut placed just before x, while x+ = (]−∞, x],]x,+∞[) is the cut
placed just after x. We say in this case that x+ is the successor of x− through x.
But not all cuts are successors or predecessors of another cut. A cut c is a right
limit (resp. a left limit) if it is not the minimal element and not of the form x+

for some x in α (resp. not the maximal element and not of the form x−).
A linear ordering α is dense if for every x < y in α, there exists z in]x, y[. A

linear ordering is scattered if none of its subordering is dense. For instance (Q, <)
and (R, <) are dense, while (N, <) and (Z, <) are scattered. Being scattered is
preserved under taking a subordering. A scattered sum of scattered linear order-
ings also yields a scattered linear ordering. Every ordinal is scattered. Further-
more, if α is scattered, then α is scattered. And if α is countable and scattered,
then α is also countable and scattered.

Additional material on linear orderings can be found in [13].

2.2 Words, Languages

We use a generalised version of words: words indexed by linear orderings. Given
a linear ordering α = (L,<) and a finite alphabet A, an α-word u over the
alphabet A is a mapping from L to A. We also say that α is the domain of the
word u, or that u is a word indexed by α. Below we always consider word up
to isomorphism of the domain, unless a specific presentation of the domain is
required. Standard finite words are simply the words indexed by finite linear
orderings. Given a word u of domain α and β ⊆ α, we denote by u|β the word u
restricted to its positions in β. Given an α-word u and a β-word v, uv represents
the (α + β)-word defined by (uv)(x) is u(x) if x belongs to α and v(x) if x
belongs to β. The product is extended to languages of words in a natural way. The
product of words is naturally generalised to the infinite product

∏
i∈α ui, where α

is an order type and ui are linear βi-words; the resulting being a (
∑

i∈α βi)-word.

Factorisation Forests for Infinite Words 229

For a language W and a linear ordering α, one defines Wα to be the language
containing all the words

∏
i∈α ui, where ui ∈W for all i ∈ α.

Given an alphabet A, we denote by A� the set of words indexed by a countable
scattered linear ordering.

2.3 Semigroups and Additive Labellings

For a thorough introduction to semigroups, we refer the reader to [8,9]. A semi-
group (S, .) is a set S equipped with an associative binary operator written
multiplicatively. Groups and monoids are particular instances of semigroups.
The set of nonempty finite words A+ over an alphabet A is a semigroup – it is
the semigroup freely generated by A. A morphism of semigroups from a semi-
group (S, .) to a semigroup (S′, .′) is a mapping ϕ from S to S′ such that for
all x, y in S, ϕ(x.y) = ϕ(x).′ϕ(y). An idempotent in a semigroup is an element e
such that e2 = e.

Let α be a linear ordering and (S, .) be a semigroup. A mapping σ from
couples (x, y) with x, y ∈ α and x < y to S is called an additive labelling if for
every x < y < z in α, σ(x, y).σ(y, z) = σ(x, z).

Given a semigroup morphism ϕ from (A�, .) to some semigroup (S, .) and
a word u in A� of domain α, there is a natural way to construct an additive
labelling ϕu from α to (S, .): for every two cuts x < y in α, set ϕu(x, y) to
be ϕ(ux,y), where ux,y is the word u restricted to its positions between x and y;
i.e., ux,y = u|F∩E′ for x = (E,F) and y = (E′, F ′).

3 Factorisation Forest Theorems

In this section, we present various theorems of factorisation forest. We first give
the original statement in Section 3.1. In Section 3.2, we introduce the notion of a
split, and use it in a different presentation of the result. In Section 3.3, we state
the extension to every complete linear ordering.

3.1 Factorisation Forest Theorem

Fix an alphabet A and a semigroup morphism ϕ from A+ to a finite semi-
group (S, .). A factorisation tree is an ordered unranked tree in which each node
is either a leaf labelled by a letter, or an internal node. The value of a node is

2 1 0 2 3 2 3 0 0 3 2 2 0 0 0 2

Fig. 1. A factorisation tree

230 T. Colcombet

the word obtained by reading the leaves below from left to right. A factorisa-
tion tree of a word u ∈ A+ is a factorisation tree of value u. The height of the
tree is defined as usual, with the convention that the height of a single leaf is
0. A factorisation tree is Ramseyan (for ϕ) if every node 1) is a leaf, or 2) has
two children, or, 3) the values of its children are all mapped by ϕ to the same
idempotent of S.

Example 1. Fix A = {0, 1, 2, 3, 4}, (S, .) = (Z/5Z,+) and ϕ to be the only
semigroup morphism from A+ to (S, .) mapping each letter to its value. Figure 1
presents a Ramseyan factorisation tree for the word u = 210232300322002. In
this drawing, internal nodes appear as horizontal lines. Double lines correspond
to case 3 in the description of Ramseyanity.

The theorem of factorisation forests is then the following.

Theorem 1 (factorisation forests, Simon [15]). For every alphabet A, finite
semigroup (S, .), semigroup morphism ϕ from A+ to S and word u in A+, u has
a Ramseyan factorisation tree of height at most 3|S|.

The original theorem is due to Simon [15], with a bound of 9|S|. An improved
bound of 7|S| is provided by Chalopin and Leung [6]. The value of 3|S| is a
byproduct of the present work (see Theorem 2 below and subsequent comments).

3.2 A Variant Via Ramseyan Splits

The variant presented here of the factorisation forest theorem uses the notion of
splits. We reuse this framework later on.

A split of height N of a linear ordering α is a mapping s from α to [1, N].
Given a split, two elements x and y in α such that s(x) = s(y) = k are k-
neighbours if s(z) ≥ k for all z ∈ [x, y]. k-neighbourhood is an equivalence
relation over s−1(k). Fix an additive labelling from α to some finite semigroup S.
A split of α is Ramseyan for σ — we also say a Ramseyan split for (α, σ) — if
for every k ∈ [1, N], every x < y and x′ < y′ such that all the elements x, y, x′, y′

are k-neighbours, then σ(x, y) = σ(x′, y′) = (σ(x, y))2; Equivalently, for all k,
every class of k-neighbourhood is mapped by σ to a single idempotent.

Example 2. Let S be Z/5Z equipped with the addition +. Consider the linear
ordering of 17 elements and the additive labelling σ defined by:

| 3 | 1 | 0 | 2 | 3 | 2 | 3 | 0 | 0 | 3 | 2 | 2 | 0 | 0 | 0 | 2 |

Each symbol ‘|’ represents an element, the elements being ordered from left
to right. Between two consecutive elements x and y is represented the value
of σ(x, y) ∈ S. In this situation, the value of σ(x, y) for every x < y is uniquely
defined according to the additivity of σ: it is obtained by summing all the values
between x and y modulo 5.

Factorisation Forests for Infinite Words 231

A split s of height 3 is the following, where we have written above each ele-
ment x the value of s(x):

1 3 2 2 1 2 1 2 2 2 3 2 1 1 1 1 2
| 2 | 1 | 0 | 2 | 3 | 2 | 3 | 0 | 0 | 3 | 2 | 2 | 0 | 0 | 0 | 2 |

In particular, if you choose x < y such that s(x) = s(y) = 1, then the sum
of elements between them is 0 modulo 5. If you choose x < y such that s(x) =
s(y) = 2 but there is no element z in between with s(z) = 1 — i.e., x and y are 2-
neighbours — the sum of values separating them is also 0 modulo 5. Finally, it
is impossible to find two distinct 3-neighbours in our example.

Theorem 2. For every finite linear ordering α, every finite semigroup (S, .) and
additive labelling σ from α to S, there exists a Ramseyan split for (α, σ) of height
at most |S|.

Let us state the link between Ramseyan splits and factorisation trees. Fix an
alphabet A, a semigroup S, a morphism ϕ from A+ to S and a word u ∈ A+ of
finite domain α. The following is easy to establish:

– every Ramseyan factorisation tree of height k of u can be turned into a
Ramseyan split of height at most k of (α][, ϕu),

– every Ramseyan split of height k of (α][, ϕu) can be turned into a factorisation
tree of height at most 3k of u.

Using this last argument and Theorem 2, we directly obtain a proof of Theorem 1
with the announced bound of 3|S|.

3.3 Ramseyan Splits for Complete Linear Orderings

We generalise Theorem 2 to complete linear orderings as follows.

Theorem 3. For every complete linear ordering α, every finite semigroup (S, .)
and additive labelling σ from α to S, there exists a Ramseyan split for (α, σ) of
height at most 3|S| (|S| if α is an ordinal).

Compared to Theorem 2, we trade the finiteness — which is replaced by the
completeness — for a bound of 3|S| — which replaces a bound of |S|. The
special case of α being a finite ordinal yields Theorem 2.

The proof by itself follows the lines of [6]. This means using three different
arguments according to three different situations arising in the decomposition
of the semigroup by Green’s relations. The first situation amounts to treat the
case of S being a group. The second case is the one of a single J -class (J is one
of the Green’s relation). And finally one performs an induction on the number
of J -classes. Examples 1 and 2 do only involve the first situation.

This rough sketch contains certain technicalities when the proof need be for-
malised. In particular one performs many gluing and nesting of splits. An expla-
nation of the improvement of the bound in the finite case is that splits are more

232 T. Colcombet

versatile in handling those details. E.g., the use of the ‘border types’ [[,][,]], []
allow to glue more easily pieces of Ramseyan splits together, while Ramseyan
factorisation trees do correspond only to the case][.

4 Application to Countable Scattered Linear Orderings

In this section, we present the automata theoretic approach to regularity of lan-
guages over words of countable scattered domain. This notion has been developed
in [3], in which a suitable family of automata is proposed. These automata are
easily shown closed under union, intersection and projection, and their emptiness
is decidable. The closure under complementation is more involved and is due to
Carton and Rispal [5]. In this section we give a simplified proof to this result.

The properties of these automata result directly in the decidability of the
monadic (second-order) theory of countable scattered linear orderings. This de-
cidability result can be independently established using the famous theorem of
Rabin [12] (see [16] for a modern presentation), and its consequence, the decid-
ability of the monadic theory of (Q, <). But this technique is less informative and
is not totally satisfying. More precisely, using the theorem of Rabin signifies the
use of infinite trees, and also has to do with the theory of Müller/parity games
and their determinacy. We believe that these subtle issues are not relevant when
considering the theory of linear orderings, and thus are worth being avoided.
Furthermore the approach using the theorem of Rabin does not help much for
understanding the notions of regularity over linear orderings.

Another application of Theorem 3 – to some extent a variant of the appli-
cation proposed here – is to give a compositional proof for the decidability of
the monadic theory of countable scattered linear orderings. Generally speaking,
the compositional method allows to devise automata-free proofs of decidability
of monadic theories (or other logics). It was used by Shelah [14] in his seminal
work on the monadic theory of linear orderings. But so far it could not be used
in situations like scattered orderings by lack of the correct combinatorial result.
Theorem 3 bridges this gap.

In this section we concentrate ourselves solely on the technical core of the the-
ory: the closure under complementation of automata over countable scattered
linear orderings. We present the suitable family of automata, then the corre-
sponding semigroup, and finally the complementation proof itself.

4.1 Automata over Countable Scattered Linear Orderings

In this section, we define priority automata and show how they accept words in-
dexed by countable scattered linear orderings. Those automaton were introduced
in [3], but in their ‘Muller’ form, while here we adopt the ‘parity-like’ approach
(to this respect, the results given below are new).

Definition 1. A priority automaton A = (Q,A, I, F, p, δ) consists of a finite set
of states Q, a finite alphabet A, a set of initial states I, a set of final states F ,

Factorisation Forests for Infinite Words 233

a priority mapping p : Q �→ [1, N] (N being a natural) and a transition relation
δ ⊆ (Q×A×Q) ([1, N]×Q) (Q× [1, N]).

A run of the automaton A over an α-word u is a mapping ρ from α to Q such
that for all cuts c, c′:

– if c′ is the successor of c through x, then (ρ(c), u(x), ρ(c′)) ∈ δ,
– if c is a right limit, then (k, ρ(c)) ∈ δ where k = max

⋂
c′<c

p(ρ(]c′, c[)),

– if c is a left limit, then (ρ(c), k) ∈ δ where k = max
⋂

c′>c

p(ρ(]c, c′[)).

The first case corresponds to standard automata on finite words: a transition
links one state to another while reading a single letter in the word. The second
case verifies that the highest priority appearing infinitely close to the left of c
corresponds to a transition. The third case is symmetric. An α-word u is accepted
by A if there is a run ρ of A over u such that ρ(⊥) ∈ I and ρ(+) ∈ F .

Example 3. Consider the automaton with states {q, r}, alphabet {a}, initial
states {q, r}, final state q, priority mapping constant equal to 0 and transi-
tions {(q, a, q), (q, a, r), (0, q), (r, 0)}). It accepts those words in {a}� which have
a complete domain. For this, note that a linear ordering is complete iff no cut is
simultaneously a left and a right limit.

Consider a word u ∈ {a}� which has a complete domain α. For c ∈ α, set ρ(c)
to be q if c is + or if c has a successor, else ρ(c) is r. Under the hypothesis of
completeness, it is simple to verify that ρ is a run witnessing the acceptance of
the word. Conversely, assume that there is a run ρ over the α-word u with α
not complete. There is a cut c ∈ α which is both a left and a right limit. If ρ(c)
is r, then, as c is a left limit, there is no corresponding transition; else if ρ(c)
is q the same argument can be applied to the right of c. In both cases there is a
contradiction.

It is easy to prove that the languages of /-words accepted by priority automata are
closed under union, intersection, and projection [5]. It is also easy to establish the
decidability of their emptiness problem. Below, after introducing the necessary
semigroup, we show the more difficult closure under complementation.

4.2 Semigroup Structure

In order to use Theorem 3, we have to relate automata with semigroups. Let us
fix ourselves an automaton of states Q and priorities [1, N]. One equips

S = 2Q×[1,N]×Q

of a semigroup structure as usual with

for a, b ∈ S, a.b = {(p,max{m,n}, r) : (p,m, q) ∈ a, (q, n, r) ∈ b} .

234 T. Colcombet

This definitions naturally comes together with a semigroup morphism ϕ from
/-words to S such that for every word u, ϕ(u) contains (p, n, q) iff there exists
a run of the automaton reading u, starting from state p, finishing with state q,
and of maximal priority n.

The semigroup defined so far does not entirely capture the semantic of the
automaton. In particular it contains no limit passing features. We resolve this
issue by defining the exponentiations under ω and −ω of idempotents of the
semigroup. One defines eω (and symmetrically e−ω) for an idempotent e by:

eω = e.{(q,m, r) : (q,m, q) ∈ e, (max(m, p(q)), r) ∈ δ} ,
and e−ω = {(r,m, q) : (q,m, q) ∈ e, (r,max(m, p(q))) ∈ δ}.e .

One also defines eζ as e−ω.eω.
The essential property of these exponentiations is the following. Given a se-

quence of words (ui)β indexed by β = ω,−ω, ζ, and such that for all i in β,
ϕ(ui) = e, then

ϕ(
∏
i∈β

ui) = eβ .

4.3 Complementation

We sketch now a short proof of the following theorem.

Theorem 4 (Carton and Rispal [5]). Languages of countable scattered words
accepted by priority automata are closed under complement.

Let k be a natural number, a be in S, and ι among [], [[,]],][, set S ι
k(a) to be

the set of /-words u such that ϕ(u) = a and (αι, ϕu) admits a Ramseyan split
of height k (by convention, ε does not belong to S][

k (a)). We prove by induction
on k that for every a in S and ι = [], [[,]],][, S ι

k(a) is accepted by a priority
automaton. Since by Theorem 3, ϕ−1(a) = S []

3|S|(a), we deduce that ϕ−1(a)
would be accepted by a priority automaton. As the complement language we
are aiming at is a finite union of such languages, it would also be accepted by
a priority automaton. This argument concludes the proof. What remains to be
done is to establish the induction.

The base case is obtained by remarking that the following languages are ac-
cepted by priority automata:

S][
0 (a) = ϕ−1(a) ∩A , S [[

0 (a) = S]]
0 (a) = ϕ−1(a) ∩ {ε} , and S []

0 (a) = ∅ .

For all k ≥ 1 and idempotent e, let Ce,k be the set of /-words u of domain α
such that ϕ(u) = e, and there exists a split s of height k of α such that s(⊥) =
s(+) = 1.

Factorisation Forests for Infinite Words 235

Our first step is to show how to construct an automaton accepting Ce,k+1

from automata accepting the languages S ι
k(a). For this, consider the following

languages:

Me,k = S][
k (e) , M←

e,k =
∑

ae−ω=e

S]]
k (a),

M→
e,k =

∑
eωa=e

S [[
k (a), and M→←

e,k =
∑

eωae−ω=e

S []
k (a).

By induction hypothesis, those languages are accepted by priority automata.
Wlog, we choose them to use distinct priorities, and we set n − 1 to be the
maximal priority involved in those automata. We use them in the construction
of the automaton Ae,k+1 depicted Fig. 2.

p : n r : n

q : n

M→
e,k M←

e,k

Me,k

M→←
e,k

ε ε

ε ε

ε ε

ε ε

n n

Fig. 2. The automaton Ae,k+1

This construction makes use of ε-transitions. This is just a commodity of
notation and can be removed using standard techniques. The automaton itself
is made of disjoint copies of the automata accepting Me,k,M

→←
e,k ,M→

e,k, and
M←

e,k, together with three new states p, q, r. Each ε-transition entering one of the
subautomata represents in fact all possible ε-transitions with an initial state as
destination; similarly, every ε-transition exiting a subautomaton represents all
possible ε-transitions with as origin any of the final states of the automaton. The
priority of the new state q is n, a priority unused elsewhere by construction. One
chooses also p and r to have priority n (this is not of real importance since it is
impossible to see infinitely often p or r in a run without seeing infinitely often q:
the priority of q only matters). The two dashed arrows represent the two limit
transitions (n, p) and (r, n).

Let Le,k+1[q1, q2] be the language accepted by this automaton with initial
state q1 and final state q2 for q1, q2 among p, q, r.

The core of the proof is embedded in the following lemma.

Lemma 1. For every idempotent e, Le,k+1[q, q] = Ce,k+1.

Proof. (sketch of the difficult inclusion: Le,k+1[q, q] ⊆ Ce,k+1)
Let u be in Le,k+1[q, q], we have to construct a Ramseyan split s of height k+1

of ϕ[]
u with s(⊥) = s(+) = 1. Since u ∈ Le,k[q, q], there exists a corresponding

236 T. Colcombet

run ρ of the automaton Ae,k+1 from state q to state q. Let I be the set of cuts c
such that ρ(c) = q.

Set s(c) = 1 for all c in I. Let now J ⊆ α be a maximal interval not inter-
secting I. Let us define s over J . Let x be inf J and y be sup J , J is either [x, y],
[x, y[,]x, y] or]x, y[. Assume J = [x, y[. In this case, since y �∈ J , y ∈ I and
hence ρ(y) = q. Furthermore, since x ∈ J , there exists an infinite sequence
x1 < x2 < . . . of length ω and limit x in I. As the priority of ρ(xi) = q is the
maximal one, namely n, the only possible state for ρ(x) compatible with limit
transitions is p. Furthermore the state q is never visited by ρ in [x, y[(by defini-
tion of J). By inspecting the automaton, we conclude that the only possibility is
that ρ restricted to [x, y] is in fact a run of the subautomaton M→

e,k. By induction

hypothesis, since M→
e,k is a union of languages S [[

k , this means that there exists a
split sJ of height k of J , Ramseyan for σ. We set s to coincide with sJ +1 over J .
For the other possibilities for J , runs of the automata M→

e,k, M←
e,k and M→←

e,k are
involved in a similar way.

Proving the correctness of this construction requires some more arguments.
Let us come back to the case J = [x, y[above. The run ρ over [x, y] together with
the definition of M→

e,k witnesses that eωσ(x, y) = e. This is a local correctness
property for the construction. What we have to prove is that σ(x, y) = e for
every x < y in I; i.e., a global correctness conclusion. This propagation of the
local equalities to the global level is achieved using topological arguments. In
particular, it uses the scatteredness hypothesis over α as well as the countability
hypothesis. It also involves the use the countable axiom of choice. ��

We can derive from the last lemma the following.

Corollary 1. Le,k[q, p] = Cω
e,k, Le,k[r, q] = C−ω

e,k , and Le,k[r, p] = C ζ
e,k.

And we terminate by remarking that, for ι = [], [[,]],][and a ∈ S, the language
S ι
k(a) can be written in terms of the Sk−1 and the Ce,k languages using finite

sums, concatenation and ω,−ω and ζ exponentiations.

5 Conclusion and Future Work

We believe that the factorisation forest theorem cannot be improved further in
the directions presented here. In particular, the bounds in Theorem 2 cannot be
improved in general. And in Theorem 3, removing the completeness hypothesis
makes the result fail.

Concerning automata over countable scattered linear orderings, our comple-
mentation proof has the advantage – with respect to the original one in [5] – to
isolate the combinatorial part from the problems related to scatteredness itself.
Our proof is in fact very resemblant to the original one of Buchi for ω-words [4] in
which the theorem of Ramsey would be replaced by Theorem 3. Along the same
lines, Theorem 3 can also be used in a compositional proof of the decidability of
the monadic theory of countable scattered linear orderings.

Factorisation Forests for Infinite Words 237

The question is whether there are other applications for Theorem 3 since
(R, <) does not have a decidable monadic theory [14]. We believe that it is the
case, for instance for tackling the conjecture of Rabin that the monadic theory
of (R, <) is decidable when monadic variables are interpreted over Borelian sets
(let us remark that the theory of (R, <) with quantification over boolean com-
binations of opens sets is already known to be decidable from Rabin [12]). We
are working in this direction.

Acknowledgement. I am very grateful to Olivier Carton for his numerous
comments on this work. I also thank the anonymous referees who helped in
improving this document.

References

1. Bojańczyk, M., Colcombet, T.: Bounds in omega-regularity. In: IEEE Symposium
on Logic In Computer Science, pp. 285–296. IEEE Computer Society Press, Los
Alamitos (2006)

2. Brown, T.C.: An interesting combinatorial method in the theory of locally finite
semigroups. Pacific Journal of Mathematics 36(2), 277–294 (1971)

3. Bruyère, V., Carton, O.: Automata on linear orderings. In: Sgall, J., Pultr, A.,
Kolman, P. (eds.) MFCS 2001. LNCS, vol. 2136, pp. 236–247. Springer, Heidelberg
(2001)

4. Büchi, J.R.: On a decision method in restricted second order arithmetic. In: Pro-
ceedings of the International Congress on Logic, Methodology and Philosophy of
Science, pp. 1–11. Stanford University press (1960)

5. Carton, O., Rispal, C.: Complementation of rational sets on countable scattered
linear orderings. Int. J. Found. Comput. Sci. 16(4), 767–786 (2005)

6. Chalopin, J., Leung, H.: On factorization forests of finite height. Theoretical Com-
puter Science 310(1–3), 489–499 (2004)

7. Colcombet, T.: A combinatorial theorem for trees. In: ICALP’07. LNCS, Springer,
Heidelberg (2007)

8. Lallement, G.: Semigroups and Combinatorial Applications. Wiley, New-York
(1979)

9. Pin, J.: Varieties of formal languages. North Oxford, London and Plenum,
New-York (1986)

10. Pin, J., le Saëc, B., Weil, P.: Semigroups with idempotent stabilizers and applica-
tion to automata theory. Int. J. of Alg. and Comput. 1(3), 291–314 (1991)

11. Pin, J.-E., Weil, P.: Polynominal closure and unambiguous product. Theory Com-
put. Syst. 30(4), 383–422 (1997)

12. Rabin, M.: Decidability of second-order theories and automata on infinite trees.
Trans. Amer. Math. soc. 141, 1–35 (1969)

13. Rosenstein, J.G.: Linear Orderings. Academic Press, New York (1982)
14. Shelah, S.: The monadic theory of order. Annals Math. 102, 379–419 (1975)
15. Simon, I.: Factorization forests of finite height. Theor. Comput. Sci. 72(1), 65–94

(1990)
16. Thomas, W.: Languages, automata, and logic. In: Rozenberg, G., Salomaa, A.

(eds.) Handbook of Formal Language Theory, vol. III, pp. 389–455. Springer,
Heidelberg (1997)

Marked Systems and Circular Splicing�

Clelia De Felice, Gabriele Fici, and Rosalba Zizza

Dipartimento di Informatica e Applicazioni
Università di Salerno
via Ponte Don Melillo

84084 Fisciano (SA), Italy
{defelice,fici,zizza}@dia.unisa.it

Abstract. Splicing systems are generative devices of formal languages,
introduced by Head in 1987 to model biological phenomena on linear
and circular DNA molecules. In this paper we introduce a special class
of finite circular splicing systems named marked systems. We prove that
a marked system S generates a regular circular language if and only if
S satisfies a special (decidable) property. As a consequence, we show
that we can decide whether a regular circular language is generated by a
marked system and we characterize the structure of these regular circular
languages.

1 Introduction

The notion of splicing systems was first introduced in [11], where Head modelled
a recombinant behaviour of DNA molecules (under the action of restriction and
ligase enzymes) as a particular operation between words. In short, two strands
of DNA are cut at specified substrings (sites) by restriction enzymes that recog-
nize a pattern inside the molecule and then the fragments are pasted by ligase
enzymes. Since 1987, this basic idea has been formalized in terms of genera-
tive mechanisms for formal languages, the splicing systems. A splicing system
is defined by giving an initial language I (initial set of DNA molecules) and a
set of special words or rules R (enzymes). The set I is then transformed by re-
peated applications of the splicing operation. In nature, the DNA molecules are
present in the form of a linear or a circular sequence and, correspondingly, there
are three definitions of linear splicing systems and three definitions of circular
splicing systems, given by Head, Paun and Pixton respectively [12].

While there have been many articles on linear splicing, relatively few works
on circular splicing systems have been published [12,15]. In particular, some
questions still unanswered are related to the computational power of the latter
systems. Notice that in this context, at least three aspects should be considered.
� Partially supported by MIUR Project “Automi e Linguaggi Formali: aspetti mate-

matici e applicativi” (2005), by 60% Project “Linguaggi formali e codici: problemi
classici e modelli innovativi” (University of Salerno, 2005) and by 60% Project “Lin-
guaggi formali e codici a lunghezza variabile: proprietà strutturali e nuovi modelli di
rappresentazione” (University of Salerno, 2006).

E. Csuhaj-Varjú and Z. Ésik (Eds.): FCT 2007, LNCS 4639, pp. 238–249, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Marked Systems and Circular Splicing 239

Indeed, this computational power depends on (a) whether additional hypotheses
are taken into account (i.e., reflexive and symmetric set of rules, self-splicing, see
Sections 2.2 and 5), (b) which of the three definitions (Head’s, Paun’s or Pixton’s
definition) is considered, (c) the level in the (circular) Chomsky hierarchy the
initial set I and the set R of rules belong to. It is known that Paun circular
splicing systems generate regular (resp. context-free, recursively enumerable)
circular languages when I is a regular (resp. context-free, recursively enumerable)
circular language and R is a finite set of rules which satisfies the additional
hypotheses in (a) (see [12] for a more general result). Furthermore, the same
result holds for Pixton splicing systems with a regular set of rules in place of
a finite one [16,17]. However, as observed in [12], the problem of characterizing
the corresponding generated languages remains open in all these cases.

The results presented in this paper fit into this framework. We mainly deal
with finite Paun systems SCPA = (A, I,R), i.e., Paun circular splicing systems
with both I and R finite sets, with no additional hypotheses, and with the cor-
responding class of generated languages, denoted C(Fin, F in). It is known that
in contrast with the linear case, C(Fin, F in) is not intermediate between two
classes of languages in the Chomsky hierarchy. Indeed, C(Fin, F in) contains
context-free circular languages which are not regular (see [20]), context-sensitive
circular languages which are not context-free (see [10]) and there exist regular
circular languages which are not in C(Fin, F in) (see [5]). Furthermore, it has
been claimed that C(Fin, F in) is contained in the class of context-sensitive cir-
cular languages (see [10]). However, the structure of regular circular languages
in C(Fin, F in) is not completely understood. Thus, we focus our interest on the
search for a characterization of these languages. Partial results are known (see
[3,4,5,6]). In particular the above problem has been solved for languages over a
one-letter alphabet in [5,6]. On the other hand, a special class of circular splicing
systems (Paun circular semi-simple splicing systems or CSSH systems) has al-
ready been considered in [7,8,20]. Concerning the computational power of CSSH
systems, in [10] the author claimed that the class of circular languages generated
by circular semi-simple splicing systems is contained in the class of context-free
circular languages. Once again, a characterization of the regular circular lan-
guages generated by circular semi-simple splicing systems is still lacking.

Let us briefly explain the results proved in this paper. In Section 3.1 we
define marked systems, i.e., CSSH systems with I and R satisfying additional
hypotheses. In the same section we also prove that the language L generated
by a marked system S is a disjoint union of a finite number of languages Lg

generated by special “subsystems” of S, defined by means of an equivalence
relation on I. Therefore, we prove that L is a regular (resp. context-free) circular
language if and only if each Lg is regular (resp. context-free). As a direct result,
we prove that in order to characterize regular circular languages generated by
marked systems, it suffices to characterize them for transitive marked systems,
i.e., marked systems such that I is an equivalence class (Section 3.2).

As a main result, we prove that a (transitive) marked system S generates a
regular circular language if and only if S satisfies a special (decidable) property

240 C. De Felice, G. Fici, and R. Zizza

(Section 4). As a consequence, we show that we can decide whether a regular
circular language is generated by a marked system and we characterize the struc-
ture of these regular circular languages (Section 4). We also give a classification
of transitive marked systems S generating regular circular languages in terms
of their diameter d(S), a notion that will be defined in Section 3.3. Finally, we
prove that each language generated by a marked system with self-splicing is a
regular circular language (Section 5).

Let us briefly illustrate the organization of this paper. In Section 2 we gathered
basics on circular words and circular splicing. Sections 3 and 4 are devoted to
our main results on marked systems without self-splicing whereas Section 5 deals
with marked systems with self-splicing. The main results of this paper were also
presented at AutoMathA 2007 (Palermo, Italy, 18-22 June 2007).

2 Basics

2.1 Circular Words and Languages

We denote by A∗ the free monoid over a finite alphabet A and we set A+ = A∗\1,
where 1 is the empty word. For a word w ∈ A∗, |w| is the length of w and for
every a ∈ A, we denote by |w|a the number of occurrences of a in w. We also
set alph(w) = {a ∈ A | |w|a > 0}. For a subset X of A∗, |X | is the cardinality
of X . A word x ∈ A∗ is a prefix of w ∈ A∗ if y ∈ A∗ exist such that w = xy and
we set Pref(w) = {x ∈ A+ | ∃y ∈ A∗ : xy = w}. Furthermore, Fin (resp. Reg)
denotes the class of finite (resp. regular) languages over A, at times represented
by means of regular expressions.

Circular splicing deals with circular strings, a notion which has been inten-
sively examined in formal language theory (see [2,9,14,19]). For a given word
w ∈ A∗, a circular word ∼w is the equivalence class of w with respect to the
conjugacy relation ∼ defined by xy ∼ yx, for x, y ∈ A∗ (see [14]). The notations
|∼w|, alph(∼w) will be defined as |w|, alph(w) for any representative w of ∼w.
When the context does not make it ambiguous, we will use the notation w for
a circular word ∼w. Prefixes of the words w′ such that w′ ∼ w are also needed,
and so we set Prefc(w) = {x ∈ A+ | ∃w′ ∼ w : x ∈ Pref(w′)}.

Let ∼A∗ denote the set of all circular words over A, i.e., the quotient of A∗

with respect to ∼. Given L ⊆ A∗, ∼L = {∼w | w ∈ L} is the circularization of
L, i.e., the set of all circular words corresponding to elements of L. A subset C
of ∼A∗ is named a circular language and every language L such that ∼L = C is
called a linearization of C. In particular, the full linearization Lin(C) of C is the
set of all the strings in A∗ corresponding to the elements of C, i.e., Lin(C) =
{w′ ∈ A∗ | ∃ ∼w ∈ C : w′ ∼ w}. For simplicity of notation, we will use the
same letter to designate a set of words (resp. circular words) of length one and
its circularization (resp. full linearization). We will also often write ∼w instead
of {∼w} when no confusion arises.

Given a family of languages FA in the Chomsky hierarchy, FA∼ is the set
of all those circular languages C which have some linearization in FA. In this

Marked Systems and Circular Splicing 241

paper we deal only with circular languages having a regular linearization, i.e.,
with Reg∼ = {C ⊆ ∼A∗ | ∃L ∈ Reg : ∼L = C}. It is classically known
that given a regular language L ⊆ A∗, Lin(∼L) is regular (see Exercise 4.2.11
in [13]). As a result, given a circular language C, we have C ∈ Reg∼ if and
only if its full linearization Lin(C) is regular [12]. If C ∈ Reg∼ then C is a
regular circular language. Analogously, we can define context-free (resp. context-
sensitive, recursive, recursively enumerable) circular languages and, once again,
a circular language C is context-free if and only if Lin(C) is context-free [12].

2.2 Circular Splicing

As in the linear case, there are three definitions of the circular splicing operation.
In this paper, we will mainly take into account a restricted version of Paun’s
definition reported below.

Paun’s definition [12,18]. A Paun circular splicing system is a triple
SCPA = (A, I,R), where A is a finite alphabet, I is the initial circular lan-
guage, with I ⊆ ∼A∗ and R is the set of rules, with R ⊆ A∗#A∗$A∗#A∗ and
#, $ �∈ A. Then, given a rule r = u1#u2$u3#u4 and two circular words w′ =
∼u2hu1, w′′ = ∼u4ku3, the rule r cuts and linearizes the two circular strings,
obtaining u2hu1, u4ku3, pastes them and circularizes, obtaining ∼u2hu1u4ku3.
We say that ∼u2hu1u4ku3 is generated starting with w′, w′′ and by using r. We
also say that u1u2, u3u4 are sites of splicing and we denote SITES(R) the set
of sites of the rules in R.

We must note that in the original definition of circular splicing languages given
by Paun, rules in R can be used in two different ways [12]. One way has been
described above while we will be concerned with the other, known as self-
splicing, in Section 5 only. Furthermore, as observed in [12], additional hypothe-
ses can be added to the definition of circular splicing. Namely, we may assume
that R is reflexive (i.e., for each u1#u2$u3#u4 ∈ R, we have u1#u2$u1#u2,
u3#u4$u3#u4 ∈ R) or R is symmetric (i.e., for each u1#u2$u3#u4 ∈ R, we
have u3#u4$u1#u2 ∈ R).

Remark 1. In view of the definition of circular splicing, for every circular splicing
system SCPA = (A, I,R), it is natural to assume that R is symmetric [12]. On
the contrary, we do not assume that R is reflexive.

In the remainder of this paper, “splicing system” will be synonymous with “cir-
cular splicing system”. Furthermore, we assume that SCPA = (A, I,R) is a finite
splicing system, i.e., a circular splicing system with both I and R finite sets. We
now give the definition of circular splicing languages. For a given splicing system
SCPA, we denote (w′, w′′)!rw the fact that w is generated (or spliced) starting
with w′, w′′ and by using a rule r. Furthermore, given a language C ⊆ ∼A∗, we
denote σ′(C) = {z ∈ ∼A∗ | ∃w′, w′′ ∈ C, ∃r ∈ R : (w′, w′′)!r z}. Then, we define
σ0(C) = C, σi+1(C) = σi(C) ∪ σ′(σi(C)), i ≥ 0, and σ∗(C) =

⋃
i≥0 σ

i(C).

242 C. De Felice, G. Fici, and R. Zizza

Definition 1. Given a splicing system SCPA = (A, I,R), the circular language
C(SCPA) = σ∗(I) is the language generated by SCPA.
A circular language C is CPA generated (or C is a circular splicing language) if
a splicing system SCPA exists such that C = C(SCPA).

2.3 Circular Semi-simple Splicing Systems

As already said, we are interested in finding a characterization of regular circular
languages generated by splicing systems and, as a first step, we restrict our
attention to a special class of systems already considered in [7,8,10,20].

Precisely, let us consider those splicing systems SCPA = (A, I,R), named
Paun circular semi-simple splicing systems (or CSSH systems) in [7], such that,
for each rule r = u1#u2$u3#u4 ∈ R, we have |u1u2| = |u3u4| = 1. Thus, using
the terminology of [7], an (i, j)-CSSH system, with (i, j) ∈ {(1, 3), (2, 4)}, (resp. a
(2, 3)-CSSH system) is a CSSH system where for each u1#u2$u3#u4 ∈ R we have
ui, uj ∈ A (resp. u2, u3 ∈ A or u1, u4 ∈ A). The special case u1u2 = u3u4 ∈ A
(simple systems) was first considered in [20] using Head’s definition and then in
[8] by taking into account Paun’s definition. Given (i, j) ∈ {(1, 3), (2, 4), (2, 3)},
an (i, j)-circular simple system is an (i, j)-CSSH system which is simple [8]. In
the former paper [20], the authors claim that these systems generate regular
circular languages. In the latter paper [8], the authors compared the class of
all circular languages generated by (i, j)-circular simple systems with that of
all circular languages generated by (i′, j′)-circular simple systems, with (i, j) �=
(i′, j′) and they gave a precise description of the relationship among these classes
of languages along with some of their closure properties. An analogous viewpoint
was adopted for Paun circular semi-simple splicing systems in [7] where the
authors strengthened differences between circular simple and CSSH systems.
Finally, in [10], the author claimed that the class of circular languages generated
by semi-simple splicing systems is contained in the class of context-free circular
languages. However, the following problem is still unsolved:

Problem 1. Find a characterization of the class of regular circular languages
generated by finite circular semi-simple splicing systems.

In this paper we focus on a restricted version of Problem 1, namely we will only
take into account (1, 3)-CSSH systems with I satisfying an additional hypothesis.
While it is not difficult to extend our results to (2, 4)-CSSH systems, we do not
yet know whether these results still hold when the hypothesis on the position of
the letters is dropped.

Remark 2. Notice that in a (1, 3)-CSSH system, each rule r in R has the form
r = ai#1$aj#1, with ai, aj ∈ A. Furthermore, the circular splicing can be
rephrased as follows: given a rule ai#1$aj#1 and two circular words ∼hai, ∼kaj ,
the circular splicing yields as a result ∼haikaj.

Marked Systems and Circular Splicing 243

3 Marked Systems Without Self-splicing

3.1 Marked Systems

In this section we define the circular splicing systems we deal with. We consider
the special class of (1, 3)-CSSH systems SCPA = (A, I,R) such that each word
in I contains as a factor one occurrence of a site of R at most, i.e., for each
w ∈ I, for each a ∈ SITES(R), we have |w|a ≤ 1 (e.g. SCPA = (A, I,R), with
A = {a, b, c}, I = ∼{cca, b}, R = {a#1$b#1}). It can be proved that in order to
characterize the class of regular circular languages generated by these systems,
we can adopt the definition that follows.

Definition 2 (Marked system). A marked system SCPA = (A, I,R) is a
(1, 3)-CSSH system such that I = SITES(R) = A.

To shorten notation, from now on S = (I, R) will denote a marked system
and L(I, R) will be the corresponding generated language. Furthermore, it is
understood that (ai, aj) is an abridged notation for a rule r = ai#1$aj#1 in R.
It is a simple matter to prove the proposition that follows.

Proposition 1. For each marked system S = (I, R), we have L(I, R) ⊆ ∼I∗.
Furthermore, for every a ∈ I, we have L(I, R)∩∼a+a �= ∅ if and only if (a, a) ∈
R. If (a, a) ∈ R then ∼a+ ⊆ L(I, R).

We now introduce a relation ≈ in I that allows us to state a useful decomposition
of the language generated by a marked system in Proposition 3.

Definition 3. Let ai, aj ∈ I. Then ai ≈ aj if and only if b1, . . . , bk ∈ I exist
such that b1 = ai, bk = aj and (bh, bh+1) ∈ R, for all h ∈ {1, . . . , k − 1}.

Example 1. Let S = (I, R) be a marked system, with I = {a, b}, R = {(a, b)}.
Then, a ≈ b (by taking k = 2 and b1 = a, b2 = b), a ≈ a (by taking k = 3 and
b1 = a = b3, b2 = b) and b ≈ b (by taking k = 3 and b1 = b = b3, b2 = a).

Proposition 2. The relation ≈ is an equivalence relation on I.

Remark 3. We denote I1, . . . , Ig the equivalence classes with respect to ≈. Obvi-
ously I≈ = {I1, . . . , Ig} is a partition of I. Furthermore, notice that if (ai, aj) ∈ R
then ai ≈ aj and so, ≈ also defines a partition R≈ = {R1, . . . , Rg} of R, where
Rh is defined by SITES(Rh) = Ih, 1 ≤ h ≤ g.

Given a marked system S = (I, R), we now define some special “subsystems” of
S by means of ≈.

Definition 4 (Canonical decomposition). Let S = (I, R) be a marked sys-
tem. The canonical decomposition of S is the family {(Ih, Rh) | 1 ≤ h ≤ g} of
marked systems, with I≈ = {I1, . . . , Ig} (resp. R≈ = {R1, . . . , Rg}) being the
partition of I (resp. R) induced by ≈.

244 C. De Felice, G. Fici, and R. Zizza

We now state the already mentioned canonical decomposition of the language
generated by a marked system.

Proposition 3. Let S = (I, R) be a marked system and let {(Ih, Rh) | 1 ≤ h ≤
g} be the canonical decomposition of S. Then L = L(I, R) =

⋃g
h=1 Lh, where

Lh = L(Ih, Rh), and Lh ∩ Lh′ = ∅, for h, h′ ∈ {1, . . . , g}.

3.2 Transitive Marked Systems

As stated in Proposition 3, each circular language L(I, R) generated by a marked
system S = (I, R) is a disjoint union of the circular languages L(Ig, Rg) gener-
ated by means of the canonical decomposition of S = (I, R), i.e., L = L(I, R) =⋃g

h=1 Lh. Consequently, Lin(L) =
⋃g

h=1 Lin(Lh). On the other hand, it is classi-
cally known that the class of regular (resp. context-free) languages is closed under
union and intersection (resp. intersection with a regular language). As a result, L
is regular (resp. context-free) circular if and only if each Lin(Lh) = Lin(L)∩ I+

h

is regular (resp. context-free). The above arguments show that in order to
characterize the structure of the regular languages generated by marked sys-
tems, we can assume that S is transitive, i.e., S satisfies the definition given
below.

Definition 5. Let S = (I, R) be a marked system. S is transitive if {(I, R)} is
the canonical decomposition of S, i.e., for each ai, aj ∈ I we have ai ≈ aj.

Lemma 1 will be mentioned in Section 3.4.

Lemma 1. Let L = L(I, R) be the circular language generated by a transitive
marked system. Then Prefc(Lin(L)) = ∪w∈Lin(L)Prefc(w) = I+.

3.3 Distance and Diameter

We introduce two notions, both given below: the distance between two letters
and the diameter of a transitive marked system.

Definition 6. Let S = (I, R) be a transitive marked system. For each ai, aj ∈ I
the distance d(ai, aj) between ai and aj is defined by d(ai, aj) = min {k | ∃b1, . . . ,
bk ∈ I : (bh, bh+1) ∈ R, 1 ≤ h ≤ k − 1, b1 = ai, bk = aj}.

Definition 7. Let S = (I, R) be a transitive marked system. The diameter of
S is d(S) = max{d(ai, aj) | ai, aj ∈ I, ai �= aj} if |I| ≥ 2, d(S) = 2 otherwise.

Notice that if S = (I, R) is a marked system with I = {a}, S is transitive if
and only if R = {(a, a)}. In Section 4 we will see that the class of transitive
marked systems S such that d(S) = 3 is a boundary between Reg∼ and its
complement.

Marked Systems and Circular Splicing 245

3.4 Forbidden Chains

The main result of this section shows that if a transitive marked system S =
(I, R) satisfies a special condition, then the corresponding generated language
L(I, R) is not regular (Proposition 6). As a matter of fact, in Section 4, we prove
that this condition characterizes transitive marked systems generating regular
languages.

In order to prove this result, until further notice we assume that S = (I, R),
where I = {a1, a2, a3, a4} and R = {(a1, a2), (a2, a3), (a3, a4)}. We recall that,
for each word v ∈ I+ there exists ∼w in L(I, R) such that v ∈ Prefc(w) (Lemma
1). So, we define some special words v and we prove that for each w satisfying
the above property we have |w| ≥ 2|v| (Definition 8, Lemma 3). An application
of the classical pumping lemma allows us to state that L(I, R) is not regular
(Proposition 4). Then, by using classical closure properties of regular languages
along with Proposition 5, we prove the more general result in Proposition 6. The
special above-mentioned words are defined below.

Definition 8. Let φ be the morphism from I∗ to I∗ defined by φ(a1) = a4,
φ(a4) = a1, φ(a2) = a3, φ(a3) = a2. For every n ≥ 2 we define:

vn = φ(v′n) =
{

(a1a4)
n
2 if n is even,

(a1a4)
n−1

2 a1 if n is odd.

v′n = φ(vn) =
{

(a4a1)
n
2 if n is even,

(a4a1)
n−1

2 a4 if n is odd.

We also denote by Wn = {wn | n ≥ 1} (resp. W ′
n = {w′

n | n ≥ 1}) the set of the
words wn (resp. w′

n) recursively defined as follows:

– w1 = a1a2, w′
1 = a4a3.

– ∀n ≥ 1 wn = a1w
′
n−1a2, w′

n = a4wn−1a3.

We consider the circular words ∼wn (resp. ∼w′
n) corresponding to the words wn

(resp. w′
n) and we will refer to wn (resp. w′

n) as to the canonical linearization of
∼wn (resp. ∼w′

n). By abuse of notation, we set Wn = {∼wn | n ≥ 1} (resp. W ′
n =

{∼w′
n | n ≥ 1}). We also extend φ to the circular words and we set φ(∼wn) =

∼φ(wn). Notice that the φ(∼wn) does not depend on which representative in
∼wn we choose to define it. Finally, if r = (x, y) ∈ R, then we also have φ(r) =
(φ(x), φ(y)) ∈ R.

Example 2. We have ∼w4 = ∼a1a4a1a4a3a2a3a2 and ∼w′
4 = ∼a4a1a4a1a2a3a2a3.

Special properties of the words in Wn ∪W ′
n are pointed out in Lemmas 2 and 3.

Lemma 2. Wn ∪W ′
n ⊆ L(I, R).

Lemma 3. Let n be a positive integer such that n ≥ 2. Then, for each ∼w ∈
L(I, R) such that ∼w = ∼vnz (resp. ∼w = ∼v′nz) we have |∼w| ≥ 2n. Further-
more, there exists a unique shortest word ∼w ∈ L(I, R) (of length 2n) such that
∼w = ∼vnz (resp. ∼w = ∼v′nz), namely ∼w = ∼wn (resp. ∼w = ∼w′

n).

246 C. De Felice, G. Fici, and R. Zizza

In view of Lemma 3, Proposition 4 is a consequence of a particular version of
Pumping Lemma, also reported in [1] (Ogden’s Iteration Lemma for Regular
Languages).

Proposition 4. L(I, R) is not a regular language.

Obviously Proposition 4 still holds if R = {(ai, aj), (aj , ah), (ah, ak)}, where
{ai, aj , ah, ak} = {a1, a2, a3, a4}. We now assume that S is a transitive marked
system with no additional hypotheses.

Proposition 5. Let S = (I, R) be a transitive marked system. Let J ⊆ I and let
RJ = R∩ (J ×J) = {(ai, aj) ∈ R | ai, aj ∈ J}. Then L(I, R)∩∼J+ = L(J,RJ).
Consequently, we have Lin(L(J,RJ)) = Lin(L(I, R) ∩ ∼J+) = Lin(L(I, R)) ∩
J+.

By using Proposition 5 we prove the result below which is an extension of Propo-
sition 4 to the general case.

Proposition 6. Let S = (I, R) be a transitive marked system. Assume that
there exists a subset J = {a1, a2, a3, a4} of I such that RJ = {(a1, a2), (a2, a3),
(a3, a4)}. Then L(I, R) is not a regular circular language.

4 A Classification of Marked Systems

In this section we give results which allow us to give a description of the be-
haviour of a transitive marked system S and in this description the diameter of
S intervenes. We begin with a result concerning marked systems S with d(S) �= 3.

Proposition 7. Let S = (I, R) be a transitive marked system. If d(S) = 2 then
L(I, R) = ∼I+ \ ∪a∈I, (a,a)
∈R

∼a+a is a regular circular language. If d(S) ≥ 4
then L(I, R) is not a regular circular language.

The main difficulty in carrying out a classification of transitive marked systems
is to handle the case d(S) = 3. Indeed, it is easy to give an example of a
marked system S = (I, R) with L(I, R) being regular and d(S) = 3 (e.g., all
transitive marked systems S = (I, R) with |I| = 3) but we can also exhibit a
non regular circular language generated by a transitive marked system having
the same diameter 3. A characterization of regular circular languages generated
by transitive marked systems (with diameter 3) will be given in Theorem 1.

In the remainder of this section we assume S = (I, R) to be a transitive marked
system such that |I| ≥ 4 (otherwise L(I, R) is a regular circular language) and
d(S) = 3 (otherwise Proposition 7 applies). Furthermore, in the property that
follows, we say that a subset J of I is transitive if SJ = (J,RJ) is a transitive
marked system.

Property 1. For every transitive subset J = {a1, a2, a3, a4} of I we have RJ �=
{(ai, aj), (aj , ah), (ah, ak)}, where {ai, aj, ah, ak} = {a1, a2, a3, a4}.

Marked Systems and Circular Splicing 247

Propositions 8 and 10 may be summarized by saying that L(I, R) is regular if
and only if S = (I, R) satisfies Property 1.

Proposition 8. If L(I, R) is regular then S = (I, R) satisfies Property 1.

In Proposition 10, we state that if S = (I, R) satisfies Property 1 then L(I, R)
is regular. In order to do so, Proposition 9 is a preliminary step.

Proposition 9. For each ∼w, with ∼w ∈ L(I, R) and |w| ≥ 2, the set J =
alph(w) is a transitive subset of I and ∼w ∈ L(J,RJ). Consequently, we have
L(I, R) ⊆ I ∪

⋃
J⊆I, J transitive

∼(∩ai∈JJ
∗aiJ

∗).

Proposition 10. Assume that S = (I, R) satisfies Property 1 and let ∼w be
such that alph(w) is a transitive subset of I. Then ∼w ∈ L(I, R). Consequently,
L(I, R) = I ∪

⋃
J⊆I, J transitive

∼(∩ai∈JJ
∗aiJ

∗) is a regular circular language.

Theorem 1. The following conditions are equivalent:

1) L(I, R) is a regular circular language.
2) S = (I, R) satisfies Property 1.
3) L(I, R) = I ∪ {w ∈ ∼I+ | alph(w) is transitive }.
4) L(I, R) = I ∪

⋃
J⊆I, J transitive

∼(∩ai∈JJ
∗aiJ

∗).

Proposition 11. Given a marked splicing system S, we can decide whether
L(I, R) is a regular circular language. Given a regular circular language C we can
decide whether a marked splicing system S = (I, R) exists such that C = L(I, R).

Remark 4. In this paper we have restricted our attention to marked systems.
Attempting to extend the corresponding results to the more general case of
CSSH systems is a natural research direction which arose. The following example
shows that this attempt fails and actually underlines the difference between
marked and CSSH systems. Indeed, let S = (I, R) be a marked system, where
R = {(a, b)}. Then, we necessarily have I = ∼{a, b} and, in view of Proposition
7, L(I, R) is regular. On the contrary, we can prove that C(SCPA) is not a
regular circular language, where SCPA = (A, I,R) is the (1, 3)-CSSH system
defined by A = {a, b}, I = ∼{ab}, R = {(a, b)}.

5 Marked Systems with Self-splicing

As we have already said, in the original definition of circular splicing languages
given by Paun in [12], rules in R can be used in two different ways: one way was
described in Section 2.2, the other, called self-splicing, will be reported below.
In the remainder of this paper we assume that both splicing and self-splicing
are allowed and the results proved in the previous sections are correspondingly
reviewed. For better readability, we continue to use the same terminology (finite
splicing systems, CSSH systems, (i, j)-CSSH systems, marked systems) even if
it is understood that we refer to this different setting.

248 C. De Felice, G. Fici, and R. Zizza

We recall that given a circular word w = ∼hu1u2ku3u4 and a rule r =
u1#u2$u3#u4, the self-splicing produces z′ = ∼hu1u2, z′′ = ∼ku3u4 [12]. The
notation w !r(z′, z′′) means that z′, z′′ are obtained by application of self-
splicing, starting with w and by using r. In particular, for (1, 3)-CSSH systems
we have u2 = u4 = 1 and w = ∼hu1ku3 !r (∼hu1,

∼ku3).
The definition of the circular language generated by a splicing system is given

below.

Definition 9. Let SCPA = (A, I,R) be a splicing system and let C ⊆∼A∗. We
denote: τ ′(C) = {z ∈ ∼A∗ | ∃w′, w′′ ∈ C, ∃r ∈ R (w′, w′′)!r z} ∪ {z′, z′′ ∈
∼A∗ | ∃w ∈ C, ∃r ∈ R w !r(z′, z′′)}. Thus, we define: τ0(C) = C, τ i+1(C) =
τ i(C) ∪ τ ′(τ i(C)), i ≥ 0, τ∗(C) =

⋃
i≥0 τ

i(C). We say that C(SCPA) = τ∗(I)
is the language generated by SCPA.

As in the first part of this paper, three models of splicing systems exist according
to which of the three definitions (Head’s, Paun’s or Pixton’s definition) is con-
sidered. When we refer to the computational power of these systems, one of the
most interesting results deals with Pixton systems with additional hypotheses
(see Section 2.2). This result, which is partially reported below, generalizes a
similar theorem proved for linear splicing [17].

Theorem 2. [16,17] Let SCPI = (A, I,R) be a Pixton circular splicing system,
where I is a regular circular language and R is a regular, reflexive and symmetric
set of rules. Then τ∗(I) is a regular circular language.

It can be proved that Proposition 3 and Lemma 1 are still true if we assume that
self-splicing is also taken into account. Finally, we state below that each marked
system generates a regular circular language. We recall that in the special case of
CSSH systems, each finite Paun circular splicing system S may be transformed
into a finite Pixton circular splicing system which generates the same language
as S (see Remark 3.1 in [5]). However, Proposition 12 is not a consequence of
Theorem 2 since in a marked system the set of rules is not necessarily assumed
to be reflexive.

Proposition 12. Let S = (I, R) be a marked system and let L = τ∗(I). Then
we have L =

⋃g
h=1

∼I+
h and L is a regular circular language. In particular, if S

is transitive then we have L = ∼I+.

Acknowledgments. The authors wish to thank the referees for a number of
helpful comments.

References

1. Berstel, J.: Transductions and Context-free Languages. B.G. Teubner, Stuttgart
(1979)

2. Berstel, J., Restivo, A.: Codes et sousmonoides fermes par conjugaison. Sem. LITP
81(45), 10 pages (1981)

Marked Systems and Circular Splicing 249

3. Bonizzoni, P., De Felice, C., Mauri, G., Zizza, R.: DNA and Circular Splicing.
In: Condon, A., Rozenberg, G. (eds.) DNA 2000. LNCS, vol. 2054, pp. 117–129.
Springer, Heidelberg (2001)

4. Bonizzoni, P., De Felice, C., Mauri, G., Zizza, R.: Decision Problems on Linear and
Circular Splicing. In: Ito, M., Toyama, M. (eds.) DLT 2002. LNCS, vol. 2450, pp.
78–92. Springer, Heidelberg (2003)

5. Bonizzoni, P., De Felice, C., Mauri, G., Zizza, R.: Circular splicing and regularity.
Theoretical Informatics and Applications 38, 189–228 (2003)

6. Bonizzoni, P., De Felice, C., Mauri, G., Zizza, R.: On the power of circular splicing.
Discrete Applied Mathematics 150, 51–66 (2005)

7. Ceterchi, R., Martin-Vide, C., Subramanian, K.G.: On Some classes of splicing
languages. In: Jonoska, N., Păun, G., Rozenberg, G. (eds.) Aspects of Molecular
Computing. LNCS, vol. 2950, pp. 83–104. Springer, Heidelberg (2003)

8. Ceterchi, R., Subramanian, K.G.: Simple circular splicing systems. Romanian Jour-
nal of Information Science and Technology 6, 121–134 (2003)

9. Choffrut, C., Karhumaki, J.: Combinatorics on words. In: Rozenberg, G., Salomaa,
A. (eds.) Handbook of Formal Languages, vol. 1, pp. 329–438. Springer, New York
(1996)

10. Fagnot, I.: Simple circular splicing systems. Preproc. of Dixième Journées Mon-
toises d’Informatique Théorique, Liege (2004)

11. Head, T.: Formal Language Theory and DNA: an analysis of the generative ca-
pacity of specific recombinant behaviours. Bulletin of Mathematical Biology 49,
737–759 (1987)

12. Head, T., Paun, G., Pixton, D.: Language theory and molecular genetics. Gener-
ative mechanisms suggested by DNA recombination. In: Rozenberg, G., Salomaa,
A. (eds.) Handbook of Formal Languages, vol. 2, pp. 295–360. Springer, New York
(1996)

13. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Lan-
guages, and Computation. Addison-Wesley, Reading, Mass (2001)

14. Lothaire, M.: Combinatorics on Words. Encyclopedia of Mathematics and its Ap-
plications. Addison Wesley, Reading (1983)

15. Paun, G., Rozenberg, G., Salomaa, A.: DNA computing, New Computing
Paradigms. Springer, New York (1998)

16. Pixton, D.: Linear and Circular Splicing Systems. In: Proceedings of the 1st Inter-
national Symposium on Intelligence in Neural and Biological Systems, pp. 181–188.
IEEE Computer Society Press, Los Alamitos (1995)

17. Pixton, D.: Regularity of splicing languages. Discrete Applied Mathematics 69,
101–124 (1996)

18. Pixton, D.: Splicing in abstract families of languages. Theoretical Computer Sci-
ence 234, 135–166 (2000)

19. Reis, C., Thierren, G.: Reflective star languages and codes. Information and Con-
trol 42, 1–9 (1979)

20. Siromoney, R., Subramanian, K.G., Dare, A.: Circular DNA and splicing systems.
In: Nakamura, A., Saoudi, A., Inoue, K., Wang, P.S.P., Nivat, M. (eds.) ICPIA
1992. LNCS, vol. 654, pp. 260–273. Springer, Heidelberg (1992)

The Quantum Query Complexity

of Algebraic Properties

Sebastian Dörn1 and Thomas Thierauf2

1 Institut für Theoretische Informatik, Universität Ulm
Sebastian.Doern@Uni-Ulm.de

2 Fakultät Elektronik und Informatik, HTW Aalen
Thomas.Thierauf@HTW-Aalen.de

Abstract. We present quantum query complexity bounds for testing
algebraic properties. For a set S and a binary operation on S, we consider
the decision problem whether S is a semigroup or has an identity element.
If S is a monoid, we want to decide whether S is a group.

We present quantum algorithms for these problems that improve the
best known classical complexity bounds. In particular, we give the first
application of the new quantum random walk technique by Magniez,
Nayak, Roland, and Santha [18] that improves the previous bounds by
Ambainis [3] and Szegedy [23]. We also present several lower bounds for
testing algebraic properties.

1 Introduction

Quantum algorithms have the potential to demonstrate that for some problems
quantum computation is more efficient than classical computation. A goal of
quantum computing is to determine whether quantum computers are faster than
classical computers.

In search problems, the access to the input is done via an oracle. This mo-
tivates the definition of the query complexity, which measures the number of
accesses to the oracle. Here we study the quantum query complexity, which is
the number of quantum queries to the oracle. For some problems the quantum
query complexity can be exponentially smaller than the classical one; an example
is the Simon algorithm [22].

Quantum query algorithms have been presented for several problems, see [8,3,
13,17,19,10,11,12]. These algorithms use search techniques like Grover search [14],
amplitude amplification [9] and quantum random walk [3, 23].

In this paper we study the quantum query complexity for testing algebraic
properties. Our input is a multiplication table for a set S of size n × n. In
Section 3 we consider the semigroup problem, that is, whether the operation on S
is associative. Rajagopalan and Schulman [21] developed a randomized algorithm
for this problem that runs in time O(n2). As an additional parameter, we consider
the binary operation ◦ : S × S → M , where M ⊆ S. We construct a quantum
algorithm for this problem whose query complexity is O(n5/4), if the size of M
is constant. Our algorithm is the first application of the new quantum random

E. Csuhaj-Varjú and Z. Ésik (Eds.): FCT 2007, LNCS 4639, pp. 250–260, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

The Quantum Query Complexity of Algebraic Properties 251

walk search scheme by Magniez, Nayak, Roland, and Santha [18]. With the
quantum random walk of Ambainis [3] and Szegedy [23], the query complexity
of our algorithm would not improve the obvious Grover search algorithm for this
problem. We show a quantum query lower bound for the semigroup problem of
Ω(n) in Section 5.

In Section 4 we consider the group problem, that is, whether the monoid M
given by its multiplication table is a group. We present a randomized algorithm
that solves the problem with O(n

3
2) classical queries to the multiplication table.

This improves the naive O(n2) algorithm that searches for an inverse in the mul-
tiplication table for every element. Then we show that on a quantum computer
the query complexity can be improved to Õ(n

11
14), where the Õ-notation hides a

logarithmic factor.
In Section 5, we show linear lower bounds for the semigroup problem and the

identity problem. In the latter problem we have given a multiplication table of a
set S and have to decide whether S has an identity element. As an upper bound,
the identity problem can be solved with linearly many quantum queries, which
matches the lower bound. Finally we show linear lower bounds for the quasigroup
and the loop problem, where one has to decide whether a multiplication table is
a quasi group or a loop, respectively.

2 Preliminaries

2.1 Quantum Query Model

In the query model, the input x1, . . . , xN is contained in a black box or oracle
and can be accessed by queries to the black box. As a query we give i as input to
the black box and the black box outputs xi. The goal is to compute a Boolean
function f : {0, 1}N → {0, 1} on the input bits x = (x1, . . . , xN) minimizing the
number of queries. The classical version of this model is known as decision tree.

The quantum query model was explicitly introduced by Beals et al. [6]. In
this model we pay for accessing the oracle, but unlike the classical case, we use
the power of quantum parallelism to make queries in superposition. The state
of the computation is represented by |i, b, z〉, where i is the query register, b is
the answer register, and z is the working register.

A quantum computation with k queries is a sequence of unitary transformations

U0 → Ox → U1 → Ox → . . .→ Uk−1 → Ox → Uk,

where each Uj is a unitary transformation that does not depend on the input x,
and Ox are query (oracle) transformations. The oracle transformation Ox can
be defined as Ox : |i, b, z〉 → |i, b⊕ xi, z〉.

The computation consists of the following three steps:

1. Go into the initial state |0〉.
2. Apply the transformation UTOx · · ·OxU0.
3. Measure the final state.

252 S. Dörn, T. Thierauf

The result of the computation is the rightmost bit of the state obtained by the
measurement.

The quantum computation determines f with bounded error, if for every x,
the probability that the result of the computation equals f(x1, . . . , xN) is at least
1 − ε, for some fixed ε < 1/2. In the query model of computation each query
adds one to the query complexity of an algorithm, but all other computations
are free.

2.2 Tools for Quantum Algorithms

For the basic notation on quantum computing, we refer the reader to the text-
book by Nielsen and Chuang [20]. Here, we give three tools for the construction
of our quantum algorithms.

Quantum Search. A search problem is a subset P ⊆ {1, . . . , N} of the search
space {1, . . . , N}. With P we associate its characteristic function
fP : {1, . . . , N} → {0, 1} with

fP (x) =

{
1, if x ∈ P,
0, otherwise.

Any x ∈ P is called a solution to the search problem. Let k = |P | be the number
of solutions of P .

Theorem 1. [14,7] For k > 0, the expected quantum query complexity for find-
ing one solution of P is O(

√
N/k), and for finding all solutions, it is O(

√
kN).

Futhermore, whether k > 0 can be decided in O(
√
N) quantum queries to fP .

Amplitude Amplification. LetA be an algorithm for a problem with small success
probability at least ε. Classically, we need Θ(1/ε) repetitions of A to increase
its success probability from ε to a constant, for example 2/3. The corresponding
technique in the quantum case is called amplitude amplification.

Theorem 2. [9] Let A be a quantum algorithm with one-sided error and success
probability at least ε. Then there is a quantum algorithm B that solves A with
success probability 2/3 by O(1√

ε
) invocations of A.

Quantum Walk. Quantum walks are the quantum counterpart of Markov chains
and random walks. The quantum walk search provide a promising source for
new quantum algorithms, like quantum walk search algorithm [16], element dis-
tinctness algorithm [3], triangle finding [19], testing group commutativity [17],
and matrix verification [10].

Let P = (pxy) be the transition matrix of an ergodic symmetric Markov chain
on the state space X . Let M ⊆ X be a set of marked states. Assume that the
search algorithms use a data structure D that associates some data D(x) with
every state x ∈ X . From D(x), we would like to determine if x ∈ M . When
operating on D, we consider the following three types of cost:

The Quantum Query Complexity of Algebraic Properties 253

Setup cost s: The worst case cost to compute D(x), for x ∈ X .
Update cost u: The worst case cost for transition from x to y, and update

D(x) to D(y).
Checking cost c: The worst case cost for checking if x ∈M by using D(x).

Magniez et al. [18] developed a new scheme for quantum search, based on any
ergodic Markov chain. Their work generalizes previous results by Ambainis [3]
and Szegedy [23]. They extend the class of possible Markov chains and improve
the query complexity as follows.

Theorem 3. [18] Let δ > 0 be the eigenvalue gap of a ergodic Markov chain
P and let |M|

|X| ≥ ε. Then there is a quantum algorithm that determines if M is
empty or finds an element of M with cost

s+
1√
ε

(
1√
δ
u+ c

)
.

In the most practical application (see [3, 19]) the quantum walk takes place on
the Johnson graph J(n, r), which is defined as follows: the vertices are subsets
of {1, . . . , n} of size r and two vertices are connected iff they differ in exactly
one number. It is well known, that the spectral gap δ of J(n, r) is 1/r.

2.3 Tool for Quantum Query Lower Bounds

In this paper, we use the following special case of a method by Ambainis [1] to
prove lower bounds for the quantum query complexity.

Theorem 4. [1] Let A ⊂ {0, 1}n, B ⊂ {0, 1}n and f : {0, 1}n → {0, 1} such
that f(x) = 1 for all x ∈ A, and f(y) = 0 for all y ∈ B. Let m and m′ be
numbers such that

1. for every (x1, . . . , xn) ∈ A there are at least m values i ∈ {1, . . . , n} such
that (x1, . . . , xi−1, 1− xi, xi+1, . . . , xn) ∈ B,

2. for every (x1, . . . , xn) ∈ B there are at least m′ values i ∈ {1, . . . , n} such
that (x1, . . . , xi−1, 1− xi, xi+1, . . . , xn) ∈ A.

Then every bounded-error quantum algorithm that computes f has quantum
query complexity Ω(

√
m ·m′).

3 The Semigroup Problem

In the semigroup problem we have given two sets S and M ⊆ S and a binary
operation ◦ : S × S → M represented by a table. We denote with n the size
of the set S. One has to decide whether S is a semigroup, that is, whether the
operation on S is associative.

The complexity of this problem was first considered by Rajagopalan and
Schulman [21], who gave a randomized algorithm with time complexity of

254 S. Dörn, T. Thierauf

O(n2 log 1
δ), where δ is the error probability. They also showed a lower bound

of Ω(n2). The previously best known algorithm was the naive Ω(n3)-algorithm
that checks all triples.

In the quantum setting, one can do a Grover search over all triples (a, b, c) ∈ S3

and check whether the triple is associative. The quantum query complexity of the
search is O(n3/2). We construct a quantum algorithm for the semigroup problem
that has query complexity O(n5/4), if the size of M is constant. In Section 5 we
give a quantum query lower bound of Ω(n) for this problem.

Our algorithm is the first application of the recent quantum random walk
search scheme by Magniez et al. [18]. The quantum random walk of Ambainis [3]
and Szegedy [23] doesn’t suffice to get an improvement of the Grover search
mentioned above.

Theorem 5. Let k = nα be the size of M with 0 ≤ α ≤ 1. The quantum query
complexity of the semigroup problem is⎧⎪⎨⎪⎩

O(n
5
4+ α

2), for 0 < α ≤ 1
6 ,

O(n
6
5+ 4

5α), for 1
6 < α ≤ 3

8 ,

O(n
3
2), for 3

8 < α ≤ 1.

Proof . We use the quantum walk search scheme of Theorem 3. To do so, we
construct a Markov chain and a database for checking if a vertex of the chain is
marked.

Let A and B two subsets of S of size r that are disjoint from M . We will
determine r later. The database is the set

D(A,B) = { (a, b, a ◦ b) | a ∈ A ∪M and b ∈ B ∪M }.

Our quantum walk is done on the categorical graph product of two Johnson
graphs GJ = J(n − k, r) × J(n − k, r). The marked vertices of GJ correspond
to pairs (A,B) with (A ◦ B) ◦ S �= A ◦ (B ◦ S). In every step of the walk, we
exchange one row and one column of A and B.

Now we compute the quantum query costs for the setup, update and checking.
The setup cost for the database D(A,B) is (r+k)2 and the update cost is r+k.
To check whether a pair (A,B) is marked, we search for a pair (b, c) ∈ B×S with
(A ◦ b) ◦ c �= A ◦ (b ◦ c). The quantum query cost to check this inequality is O(k),
by using our database. Therefore, by applying Grover search, the checking cost
is O(k

√
nr). The spectral gap of the walk on GJ is δ = O(1/r) for 1 ≤ r ≤ n

2 ,
see [10]. If there is a triple (a, b, c) with (a ◦ b) ◦ c �= a ◦ (b ◦ c), then there are at
least

(
n−k−1
r−k−1

)2
marked sets (A,B). Therefore we have

ε ≥ |M |
|X | ≥

((
n−k−1
r−k−1

)(
n−k
r−k

))2

≥
(
r − k

n− k

)2

.

Let r = nβ , for 0 < β < 1. Assuming r > 2k we have

1√
ε
≤ n− k

r − k
≤ n

r/2
=

2n
r
.

The Quantum Query Complexity of Algebraic Properties 255

Then the quantum query complexity of the semigroup problem is

O
(
r2 +

n

r

(√
r · r +

√
nr · k

))
= O

(
n2β + n1+ β

2 + n
3
2+α− β

2

)
.

Now we choose β depending on α such that this expression is minimal. A straight
forward calculation gives the bounds claimed in the theorem. �

For the special case that α = 0, i.e., only a constant number of elements occurs
in the multiplication table, we get

Corollary 1. The quantum query complexity of the semigroup problem is
O(n

5
4), if M has constant size.

Note that the time complexity of our algorithm is O(n1.5 log n).

4 Group Problems

In this section we consider the problem whether a given finite monoid M is in
fact a group. That is, we have to check whether every element of M has an
inverse. The monoid M has n elements and is given by its multiplication table
and the identity element e.

To the best of our knowledge, the group problem has not been studied before.
The naive approach for the problem checks for every element a ∈M , whether e
occurs in a’s row in the multiplication table. The query complexity is O(n2). We
develop a (classical) randomized algorithm that solves the problem with O(n

3
2)

queries to the multiplication table. Then we show that on a quantum computer
the query complexity can be improved to Õ(n

11
14).

Theorem 6. Whether a given monoid with n elements is a group can be decided
with query complexity

1. O(n
3
2) by a randomized algorithm with probability ≥ 1/2,

2. O(n
11
14 logn) by a quantum query algorithm.

Proof . Let a ∈M . We consider the sequence of powers a, a2, a3, Since M is
finite, there will be a repetition at some point. We define the order of a as the
smallest power t, such that at = as, for some s < t. Clearly, if a has an inverse,
s must be zero.

Lemma 1. Let a ∈M of order t. Then a has an inverse iff at = e.

Hence the powers of a will tell us at some point whether a has an inverse. On
the other hand, if a has no inverse, the powers of a provide more elements with
no inverse as well.

Lemma 2. Let a ∈ M . If a has no inverse, then ak has no inverse, for all
k ≥ 1.

256 S. Dörn, T. Thierauf

Our algorithm has two phases. In phase 1, it computes the powers of every
element up to certain number r. That is, we consider the sequences Sr(a) =
(a, a2, . . . , ar), for all a ∈ M . If e ∈ Sr(a) then a has an inverse by Lemma 1.
Otherwise, if we find a repetition in the sequence Sr(a), then, again by Lemma 1,
a has no inverse and we are done.

If we are not already done by phase 1, i.e. there are some sequences Sr(a)
left such that e �∈ Sr(a) and Sr(a) has pairwise different elements, then the
algorithm proceeds to phase 2. It selects some a ∈ M uniformly at random
and checks whether a has an inverse by searching for e in the row of a in the
multiplication table. This step is repeated n/r times.

The query complexity t(n) of the algorithm is bounded by nr in phase 1 and
by n2/r in phase 2. That is t(n) ≤ nr + n2/r, which is minimized for r = n

1
2 .

Hence we have t(n) ≤ 2n
3
2 .

For the correctness observe that the algorithm accepts with probability 1
if M is a group. Now assume that M is not a group. Assume further that the
algorithm does not already detect this in phase 1. Let a be some element without
an inverse. By Lemma 1, the sequence Sr(a) has r pairwise different elements
which don’t have inverses too by Lemma 2. Therefore in phase 2, the algorithm
picks an element without an inverse with probability at least r/n. By standard
arguments, the probability that at least one out of n/r many randomly chosen
elements has no inverse is constant.

For the quantum query complexity we use Grover search and amplitude am-
plification. In phase 1, we search for an a ∈ M , such that the sequence Sr(a)
has r pairwise different entries different from e. This property can be checked
by first searching Sr(a) for an occurance of e by a Grover search with

√
r log r

queries. Then, if e doesn’t occur in Sr(a), we check whether there is an element
in Sr(a) that occurs more than once. This is the element distinctness problem
and can be solved with r2/3 log r queries, see [3]. Therefore the quantum query
complexity of phase 1 is bounded by

√
n · r2/3 log r.

In phase 2 we search for an a ∈ M such that a has no inverse. In phase 2
we actually search the row of a in the multiplication table. Hence this takes√
n queries. Since at least r of the a’s don’t have an inverse, by amplitude

amplification we get
√
n
√
n/r = n/

√
r queries in phase 2.

In summary, the quantum query complexity is
√
n ·r2/3 log r+n/

√
r, which is

minimized for r = n
3
7 . Hence we have a O(n

11
14 logn) quantum query algorithm.

�

5 Lower Bounds

Theorem 7. The semigroup problem requires Ω(n) quantum queries.

Proof . Let S be a set of size n and ◦ : S × S → {0, 1} a binary operation
represented by a table. We apply Theorem 4. The set A consists of all n × n
matrices, where the entry of position (1, 1), (1, c), (c, 1) and (c, c) is 1, for c ∈
S − {0, 1}, and zero otherwise. It is easy to see, that the multiplication tables

The Quantum Query Complexity of Algebraic Properties 257

of A are associative, since (x ◦ y) ◦ z = x ◦ (y ◦ z) = 1 for all x, y, z ∈ {1, c} and
zero otherwise.

The setB consists of all n×nmatrices, where the entry of position (1, 1), (1, c),
(c, 1), (c, c) and (a, b) is 1, for fixed a, b, c ∈ S − {0, 1} with a, b �= c, and zero
otherwise. Then (a ◦ b) ◦ c = 1 and a ◦ (b ◦ c) = 0. Therefore the multiplication
tables of B are not associative.

From each T ∈ A, we can obtain T ′ ∈ B by replacing the entry 0 of T at (a, b)
by 1, for any a, b /∈ {0, 1, c}. Hence we have m = Ω(n2). From each T ′ ∈ B,
we can obtain T ∈ A by replacing the entry 1 of T ′ at position (a, b) by 0,
for a, b /∈ {0, 1, c}. Then we have m′ = 1. By Theorem 4, the quantum query
complexity is Ω(

√
m ·m′) = Ω(n). �

Next, we consider the identity problem: given the multiplication table on a set S,
decide whether there is an identity element.1 We show that the identity problem
requires linearly many quantum queries. We start by considering the 1-column
problem: given a 0-1-matrix of order n, decide whether it contains a column that
is all 1.

Lemma 3. The 1-column problem requires Ω(n) quantum queries.

Proof . We use Theorem 4. The set A consists of all matrices, where in n − 1
columns there is exactly one entry with value 0, and the other entries of the
matrix are 1. The set B consists of all matrices, where in every column there is
exactly one entry with value 0, and the other entries of the matrix are 1. From
each matrix T ∈ A, we can obtain T ′ ∈ B by changing one entry in the 1-column
from 1 to 0. Then we have m = n. From each matrix T ′ ∈ B, we can obtain
T ∈ A by changing one entry from 0 to 1. Then we have m′ = n. By Theorem
4, the quantum query complexity is Ω(n). �

Theorem 8. The identity problem requires Ω(n) quantum queries.

Proof . We reduce the 1-column problem to the identity problem. Given a 0-1-
matrix M = (mi,j) of order n. We define S = {0, 1, . . . , n} and a multiplication
table T = (ti,j) with 0 ≤ i, j ≤ n for S as follows:

ti,j =

{
0, if mi,j = 0,
i, if mi,j = 1,

and t0,j = ti,0 = 0. Then M has a 1-column iff T has an identity element. �

Finding an identity element is simple. We choose an element a ∈ S and then
we test if a is the identity element by using Grover search in O(

√
n) quantum

queries. The success probability of this procedure is 1
n . By using the amplitude

amplification we get an O(n) quantum query algorithm for finding an identity
element (if there is one). Since the upper and the lower bound match, we have
determined the precise complexity of the identity problem.
1 Here we consider right identity, the case of left identity is analogous.

258 S. Dörn, T. Thierauf

Corollary 2. The identity problem has quantum query complexity Θ(n).

In the quasigroup problem we have given a set S and a binary operation on S
represented by a table. One has to decide whether S is a quasigroup, that is,
whether all equations a ◦ x = b and x ◦ a = b have unique solutions. In the loop
problem, one has to decide whether S is a loop. A loop is a quasigroup with an
identity element e such that a ◦ e = a = e ◦ a for all a ∈ S.

In the multiplication table of a quasigroup, every row and column is a permu-
tation of the elements of S. In a loop, there must occur the identity permutation
in some row and some column. We have already seen how to determine an iden-
tity element with O(n) quantum queries. A row or column is a permutation, if
no element appears twice. Therefore one can use the element distinctness quan-
tum algorithm by Ambainis [3] to search for a row or column with two equal
elements. The quantum query complexity of the search is O(

√
n · n 2

3) = O(n
7
6).

We show in the following theorem an Ω(n) lower bound for these problems.

Theorem 9. The quasigroup problem and the loop problem require Ω(n) quan-
tum queries.

Proof . We reduce the identity matrix problem to the loop problem. Given a
0-1-matrix M = (mi,j) of order n, decide whether M is the identity matrix. It is
not hard to see that the identity matrix problem requires Ω(n) quantum queries
(similar as for the 1-column problem).

We define S = {0, 1, . . . , n − 1} and a multiplication table T = (ti,j) for S.
For convenience, we take indices 0 ≤ i, j ≤ n − 1 for M and T . The entries of
the second diagonal are

ti,n−1−i =

{
n− 1, if mi,i = 1,
0, otherwise.

For j �= n− 1− i we define

ti,j =

⎧⎪⎨⎪⎩
(i+ j) mod n, if mi,n−1−j = 0,
0, if mi,n−1−j = 1 and (i+ j) mod n �= 0,
1, otherwise.

If M is the identity matrix, then T is a circular permutation matrix

T =

⎛⎜⎜⎜⎝
0 1 · · · n− 2 n− 1
1 2 · · · n− 1 0
...

...
...

...
n− 1 0 · · · n− 3 n− 2

⎞⎟⎟⎟⎠ .

Hence S is a loop with identity 0.
Suppose M is not the identity matrix. If M has a 0 on the main diagonal, say

at position (i, i), then the value n−1 doesn’t occur in row i in T , and hence, row i

The Quantum Query Complexity of Algebraic Properties 259

is not a permutation of S. If M has a 1 off the main diagonal, say at position
(i, n− 1− j), then there will be a 0 or 1 at position (i, j) in T , which is different
from (i + j) mod n. Hence, either there will be two 0’s or two 1’s in row i in T ,
in which case row i is not a permutation of S, or a 0 or 1 changes to 1 or 0. In
the latter case, the i-th row of T can be a permutation only if correspondingly
the other 0 or 1 changes as well to 1 or 0, respectively. But then this carries over
to the other rows and columns of T . That is, there must be more 1’s in M off
the main diagonal, so that all 0’s and 1’s in T switch their place with respect to
their position when M is the identity matrix. However, then there is no identity
element in T and hence, T is not a loop.

The reduction to the quasigroup problem can be done with similar arguments.
�

6 Conclusion and Open Problems

In this paper we present quantum query complexity bounds of algebraic proper-
ties. We construct a quantum algorithm for the semigroup problem whose query
complexity is O(n5/4), if the size of M is constant. Then we consider the group
problem, and presented a randomized algorithm that solves this problem with
O(n

3
2) classical queries and Õ(n

11
14) quantum queries to the multiplication table.

Finally we show linear lower bounds for the semigroup, identity, quasigroup and
loop problem.

Some questions remain open: Is there a quantum algorithm for the semigroup
problem which is better then the Grover search bound of O(n

3
2) for |M | ≥ 3

8 . It
is not clear, whether we can apply the technique of the randomized associative
algorithm by Rajagopalan and Schulman [21] in connection with the quantum
walk search schema of Magniez et al. [18].

Some quantum query lower bound remain open. Are we able to prove a non-
trivial lower bound for the group problem. Our upper bound for this problem is
Õ(n

11
14). It would also be very interesting to close the gap between the Ω(n) lower

bound and the O(n7/6) upper bound for the quasigroup and the loop problem.

References

1. Ambainis, A.: Quantum Lower Bounds by Quantum Arguments. Journal of Com-
puter and System Sciences 64, 750–767 (2002)

2. Ambainis, A.: Quantum walks and their algorithmic applications. International
Journal of Quantum Information 1, 507–518 (2003)

3. Ambainis, A.: Quantum walk algorithm for element distinctness. In: Proceedings
of FOCS’04, pp. 22–31 (2004)

4. Ambainis, A.: Quantum Search Algorithms, Technical Report arXiv:quant-
ph/0504012 (2005)

5. Ambainis, A., Špalek, R.: Quantum Algorithms for Matching and Network Flows.
In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884. Springer, Hei-
delberg (2006)

260 S. Dörn, T. Thierauf

6. Beals, R., Buhrman, H., Cleve, R., Mosca, M., de Wolf, R.: Quantum lower bounds
by polynomials. Journal of ACM 48, 778–797 (2001)

7. Boyer, M., Brassard, G., Høyer, P., Tapp, A.: Tight bounds on quantum searching.
Fortschritte Der Physik 46(4-5), 493–505 (1998)

8. Buhrman, H., Dürr, C., Heiligman, M., Høyer, P., Magniez, F., Santha, M., de Wolf,
R.: Quantum Algorithms for Element Distinctness. In: Proceedings of CCC’01, pp.
131–137 (2001)

9. Brassard, G., Hóyer, P., Mosca, M., Tapp, A.: Quantum amplitude amplification
and estimation. In: Quantum Computation and Quantum Information: A Millen-
nium Volume. AMS Contemporary Mathematics Series (2000)

10. Buhrman, H., Špalek, R.: Quantum Verification of Matrix Products. In: Proceed-
ings of SODA’06, pp. 880–889 (2006)

11. Dörn, S.: Quantum Complexity Bounds of Independent Set Problems. In: van
Leeuwen, J., Italiano, G.F., van der Hoek, W., Meinel, C., Sack, H., Plášil, F.
(eds.) SOFSEM 2007. LNCS, vol. 4362, pp. 25–36. Springer, Heidelberg (2007)

12. Dörn, S.: Quantum Algorithms for Graph Traversals and Related Problems. In:
Proceedings of CIE’07 (2007)

13. Dürr, C., Heiligman, M., Høyer, P., Mhalla, M.: Quantum query complexity of
some graph problems. In: Dı́az, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.)
ICALP 2004. LNCS, vol. 3142, pp. 481–493. Springer, Heidelberg (2004)

14. Grover, L.: A fast mechanical algorithm for database search. In: Proceedings of
STOC’96, pp. 212–219 (1996)

15. Kavitha, T.: Efficient Algorithms for Abelian Group Isomorphism and Related
Problems. In: Pandya, P.K., Radhakrishnan, J. (eds.) FST TCS 2003: Foundations
of Software Technology and Theoretical Computer Science. LNCS, vol. 2914, pp.
277–288. Springer, Heidelberg (2003)

16. Kempe, J., Shenvi, N., Whaley, K.B.: Quantum Random-Walk Search Algorithm.
Physical Review Letters A 67(5) (2003)

17. Magniez, F., Nayak, A.: Quantum complexity of testing group commutativity. In:
Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP
2005. LNCS, vol. 3580, pp. 1312–1324. Springer, Heidelberg (2005)

18. Magniez, F., Nayak, A., Roland, J., Santha, M.: Search via Quantum Walk. In:
Proceedings of STOC’07 (2007)

19. Magniez, F., Santha, M., Szegedy, M.: Quantum Algorithms for the Triangle Prob-
lem. In: Proceedings of SODA’05, pp. 1109–1117 (2005)

20. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information.
Cambridge University Press, Cambridge (2003)

21. Rajagopalan, S., Schulman, L.J.: Verification of identities. SIAM J. Comput-
ing 29(4), 1155–1163 (2000)

22. Simon, D.R.: On the power of quantum computation. In: Proceedings of FOCS’94,
pp. 116–123 (1994)

23. Szegedy, M.: Quantum speed-up of markov chain based algorithms. In: Proceedings
of FOCS’04, pp. 32–41 (2004)

On the Topological Complexity of

Weakly Recognizable Tree Languages

Jacques Duparc1 and Filip Murlak2,�

1 Université de Lausanne, Switzerland
jduparc@unil.ch

2 Warsaw University, Poland
fmurlak@mimuw.edu.pl

Abstract. We show that the family of tree languages recognized by
weak alternating automata is closed by three set theoretic operations
that correspond to sum, multiplication by ordinals < ωω, and pseudo-
exponentiation with the base ω1 of the Wadge degrees. In consequence,
the Wadge hierarchy of weakly recognizable tree languages has the height
of at least ε0, that is the least fixed point of the exponentiation with the
base ω.

1 Introduction

Topological hierarchies stormed into the theory of formal languages with Klaus
Wagner’s fundamental works on regular ω-languages [16,17]. The incredible co-
incidence of the Wagde hierarchy and the index hierarchy for these languages
encouraged further investigation of the Wadge hierarchies of wider classes of
ω-languages, corresponding to more powerful recognizing devices: push-down
automata and Turing machines [3,4,13]. It was only a matter of time before
the same questions were asked for tree languages. Deterministic languages, an
acclaimed “easy” subclass, were considered first. Albeit more complex, they ad-
mitted a number of techniques developed for ω-languages. Soon, the Borel hierar-
chy, the Wadge hierarchy, and the index hierarchy of deterministic tree languages
were described and proved decidable [7,8,9,10].

The real challenge seems to be nondeterminism. The power it gives to tree
automata makes them extremely difficult to tackle. Therefore, the investigation
has basically concentrated on a very special sub-case – weakly recognizable lan-
guages. This class is the intersection of Büchi and co-Büchi languages [6,12], so
it is a rather small subclass of all regular tree languages. In fact, it does not
even contain all deterministic languages. On the other hand, it captures some
real nondeterminism, as it contains a lot of languages that cannot be recognized
by deterministic automata: Skurczyński showed that weakly recognizable lan-
guages can have any finite Borel rank [14], while deterministic languages are
either Π1

1 -complete or are in Π0
3 [9].

� The second author was supported by Polish government grant no. N206 005 31/0881.
A part of this work was done during the author’s visit at the University of Lausanne,
Switzerland, financed by AutoMathA (ESF Short Visit Grant 1410).

E. Csuhaj-Varjú and Z. Ésik (Eds.): FCT 2007, LNCS 4639, pp. 261–273, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

262 J. Duparc and F. Murlak

More precisely, Skurczyński gave examples of Π0
n and Σ0

n-complete languages
recognized by weak alternating automata using ranks [0, n] and [1, n+1] accord-
ingly. In this paper we extend this result by showing that weak automata using
ranks [0, n] can only recognize Π0

n languages, and dually [1, n + 1]-automata
can only recognize Σ0

n languages. (One may conjecture that the converse also
holds, i. e., every weakly recognizable Π0

n language can be recognized by a [0, n]-
automaton, and dually for the additive classes.) We actually prove a bit stronger
result. We consider so called weak game languages W[ι,κ], to which all languages
recognized by weak [ι, κ]-automata can be reduced. We show that W[0,n] ∈ Π0

n

and W[1,n+1] ∈ Σ0
n (by Skurczyński’s results, they are hard for these classes).

The languages W[ι,κ] are natural weak counterparts of strong game languages
considered lately by Arnold and Niwiński. The strong game languages also form
a strict hierarchy, but they are all non-Borel [1].

The main result of this paper is a lower bound for the Wadge hierarchy of
weakly recognizable languages. We show that weakly recognizable languages are
closed by three set-theoretic operations corresponding to the sum, multiplication
by ordinals < ωω and pseudo-exponentiation with the base ω1 of the Wadge
degrees. As a consequence, the hierarchy has the height of at least ε0, which
is the least fixpoint of the exponentiation with the base ω. Again, this should
be contrasted with the height of the hierarchy of deterministic tree languages,
which is as low as (ωω)3 + 3.

2 Weak Alternating Automata

A tree over Σ is a partial function t : X∗ �→ Σ with a prefix closed domain. For
the purpose of this paper we call such trees conciliatory. We do that to remind
the reader that we are working with the trees that may have infinite and finite
branches. A tree t is full if dom t = X∗. A tree is called binary if X = {0, 1}.
Let TΣ denote the set of full binary trees over Σ, and let T̃Σ be the set of all
conciliatory binary trees over Σ. By t.v we denote the subtree of t rooted in
v ∈ dom t.

A weak alternating automaton A = 〈Σ,Q∃, Q∀, q0, δ, rank〉 consists of a finite
input alphabet Σ, a finite set of states Q partitioned into existential states Q∃
and universal states Q∀, an initial state q0, a transition relation δ ⊆ Q × Σ ×
{0, 1, ε} × Q, and a priority function rank : Q → [ι, κ], where [ι, κ] stands for

{ι, ι+1, . . . , κ}. The transitions of the automaton are usually written as p
σ,d−→ q,

instead of (p, σ, d, q) ∈ δ.
The run of the automaton A on a conciliatory input tree t ∈ T̃Σ is a finitely

branching conciliatory tree ρt labeled with Q × {0, 1, ε}. The root of the tree is
labeled with (q0, ε). Suppose we have already labeled a node X of ρt. Let (p1, d1),
(p2, d2), . . . , (pm, dm) be the sequence of labels on the unique path leading form
the root toX . Let v = d1d2 . . . dm, where the ε’s occurring in the sequence d1d2 . . .
dm are interpreted as empty words. If v /∈ dom t, then X is a leaf in ρt. Otherwise,

for each transition pm
t(v),d−→ q, add a child Y to the node X and label it with (q, d).

Note that the number of children of each node can by bounded by 3|Q|.

On the Topological Complexity of Weakly Recognizable Tree Languages 263

The reader should not be puzzled by the fact that leaves of ρt do not corre-
spond to any nodes of t. This is a notorious inconvenience in automata on finite
objects: the number of states visited always exceeds by one the number of letters
read. Let us imagine that cutting off a subtree produces a stub, and this is where
the leaves of ρt dwell.

The accepting runs are defined by means of a modified weak parity game.
Let ρ be a run of A. The game Gρ is played by Adam and Eve on the tree ρ.
They move a token along the edges of the tree, starting from the root. The move
is always made by the owner of the node: if the current node is labeled with
a state from Q∃, it is Eve who moves the token to the next node, otherwise it is
Adam. The play is infinite, unless it reaches a leaf. A play is won by Eve if the
maximum of the ranks of states seen on the labels of visited nodes is even. Note
that classically, when a play is finite, the owner of the last position looses. Here,
we give no special rules for finite plays: the highest rank decides.

A run ρ is accepting if Eve has a winning strategy in the game Gρ. A tree t
is accepted by the automaton if ρt is accepting. The language recognized by the
automaton, L(A), is the set of accepted trees. A language is weakly recognizable
if it is recognized by a weak alternating automaton.

While our automata work on conciliatory trees, the classical automata work
on full binary trees. Instead of L(A) one considers Lω(A) = L(A)∩TΣ. In order
to relate the two versions we have to disguise conciliatory trees to make them
look full.

Consider TΣ∪{s}, where s stands for “skip”. For a tree t ∈ TΣ∪{s} we will
define a conciliatory tree u(t), called the undressing of t. Informally, we want
to omit the skips in a top-down manner. Suppose we are in a node v such that
t(v) = s. We would like to ignore this node and replace it with the next one,
but in case of trees we have two nodes to choose from: v0 and v1. Let us always
choose v0. Another problem is that we may encounter an infinite sequence of s’s.
This would keep us replacing the current node with its left child, and never get
to a symbol different from s. In that case, the tree u(t) simply does not contain
this node. Now, let us see a formal definition. Let v be the first node not labeled
with s on the leftmost path of t (if there is no such node, u(t) is empty). For
each w ∈ {0, 1}∗ consider two possibly infinite sequences:

– v0 = v, w0 = w,
– vi+1 = vib, wi+1 = w′

i if wi = bw′
i and t(vib) �= s,

– vi+1 = vi0, wi+1 = wi if wi = bw′
i and t(vib) = s.

If wn = ε for some n, then w ∈ domu(t) and u(t)(w) = t(vn). Otherwise,
w /∈ domu(t). For a conciliatory language L, define Ls as the set of trees that
belong to L after undressing, i. e., Ls = {t ∈ TΣ∪{s} : u(t) ∈ L}.

An automaton A can be transformed easily into A′ such that Lω(A′) =
(L(A))s. Simply, whenever you see a node labeled with s, move deterministi-
cally to the left without changing the state. In other words, it is enough to add
{q s,0−→ q : q ∈ Q} to the transition relation of A.

264 J. Duparc and F. Murlak

3 Games, Hierarchies, and Topology

Let us start this section with the definition of a conciliatory version of the
Wadge game (see [2]). For any pair of conciliatory tree languages L,M the game
GC(L,M) is played by Spoiler and Duplicator. Each player builds a tree, tS and
tD respectively. In every round, first Spoiler adds a finite number of nodes to
tS and then Duplicator adds a finite number of nodes to tD. Nodes added by
Duplicator and Spoiler must be children of nodes previously added. Both players
are allowed to skip, i. e., add no nodes to their trees. Duplicator wins the game
if tS ∈ L ⇐⇒ tD ∈M . Note that the resulting trees are conciliatory: they may
contain finite branches, or even be finite.

For conciliatory languages L,M we use the notation L ≤C M iff Duplicator
has a winning strategy in the game GC(L,M). If L ≤C M and M ≤C L, we will
write L ≡C M . The conciliatory hierarchy is the order induced by ≤C on the
≡C classes of conciliatory languages.

The classical Wadge game GW (L,M) is defined for languages of full infinite
trees, therefore a restriction on the moves is needed. The players must add both
child nodes under each node they had put in the previous round. Only Duplicator
is allowed to skip, and he must not skip forever. He must make infinitely many
real moves, so that the tree he constructs is full.

The classical Wadge games provide a well-known criterion for continuous re-
ducibility. TΣ and the space of ω-words over Σ are equipped with the standard
Cantor-like topology. For trees it is induced by the metric

d(s, t) =
{

2−min{|x| : x∈{0,1}∗, s(x)
=t(x)} if s �= t ,
0 if s = t .

L is continuously reducible (or Wadge reducible) to M , if there exists a continuous
function ϕ such that L = ϕ−1(M). We will write L ≤W M , if L is Wadge
reducible to M . Similarly we define ≡W and <W . The Wadge hierarchy is the
order induced on ≡W classes of languages.

Lemma 1 (Wadge). For L,M ⊆ TΣ, L ≤W M iff Duplicator has a winning
strategy in GW (L,M).

The conciliatory hierarchy embeds naturally into the Wadge hierarchy by the
mapping L �→ Ls. A strategy in one game can be translated easily to a strategy
in the other: arbitrary skipping in GC(L,M) gives the same power as the s labels
in GW (Ls,Ms).

Lemma 2. For all conciliatory languages L and M , L ≤C M ⇐⇒ Ls ≤W Ms.

Recall that a language L is called self dual if it is equivalent to its complement
L�. The conciliatory hierarchy does not contain self dual languages: a strategy
for Spoiler in GC(L,L�) is to skip in the first round, and then copy Duplicator’s
moves. By the lemma above, Ls is non self dual in terms of ordinary Wadge
reducibility. Altogether, this shows that the conciliatory languages correspond

On the Topological Complexity of Weakly Recognizable Tree Languages 265

to certain non self dual languages. Which ones? For sets of infinite words of the
finite Borel ranks – all of them.

A conciliatory word language is simply L ⊆ Σ≤ω = Σ∗ ∪ Σω, i. e. a set of
finite or infinite words. As for trees, we define Ls as the set of words over Σ∪{s},
such that when we ignore all the s we obtain a word (finite or infinite) from L.
Obviously, Lemma 2 holds also for words, but – as we have already disclosed –
we get much more than that.

Theorem 1. (Duparc [2]) For every L ⊆ Σω of finite Borel rank, L is non self
dual iff there exists F ⊆ Σ∗ such that L ≡W (F ∪ L)s.

In particular, an ω-language of finite Borel rank is non self dual iff it is Wadge
equivalent to a disguised conciliatory set. From the theorem above it follows that
this also holds for tree languages.

Corollary 1. For every L ⊆ TΣ of finite Borel rank, L is non self dual iff
L ≡W Cs for some conciliatory language C.

Proof. First, observe that L is Wadge equivalent to Lw, which is the set of
sequences obtained by writing down the trees from L level by level from left to
right. The “writing down” and its inverse are suitable continuous reductions. By
Theorem 1, Lw is equivalent to (Lw ∪ F)S for some set of finite words F . Now,
we need a conciliatory tree language C, equivalent to Lw ∪F . For a conciliatory
tree t let fixed(t) denote the sequence obtained by writing down the tree level
by level from left to right until the first missing node is found. Note that fixed(t)
is infinite iff t is a full tree. Let C = {t ∈ T̃Σ : fixed(t) ∈ Lw ∪ F}. The identity
function reduces L to Cs, so Cs ≥W L ≡W Lw ∪ F . Let us prove the converse
inequality.

We will consider a mixed game G(Cs, (Lw ∪F)s). (Formally, instead of (Lw ∪
F)s one can take a Wadge equivalent language T (Lw ∪ F), consisting of trees
which have the leftmost path in (Lw∪F)s.) A winning strategy for Duplicator is
to undress on-line the tree tS constructed by Spoiler and write it down level by
level, from left to right. When Duplicator finds a missing node, he plays s until
Spoiler plays the missing node. At the end of the play, fixed(u(tS)) = u(wD).
Hence, tS ∈ Cs ⇐⇒ wD ∈ (Lw ∪ F)s. ��

Let us end this section by recalling the notion of the Wadge degree. Since the
Wadge ordering is well-founded [5], one may proceed by induction:

– dW (∅) = dW (∅�) = 1,
– dW (L) = sup{dW (M) + 1 : M is non self dual, M <W L} for L >W ∅.

The conciliatory degree of a language is defined analogously:

– dC(∅) = dC(∅�) = 1,
– dC(L) = sup{dC(M) + 1 : M <C L} for L >C ∅.

By Corollary 1, for conciliatory L such that Ls has finite Borel rank, dC(L) =
dW (Ls). This observation lets us work with the conciliatory hierarchy instead
of the Wadge hierarchy, as long as we restrict ourselves to non self dual sets of
finite Borel ranks.

266 J. Duparc and F. Murlak

4 Up and Down the Hierarchy

In this section we present a handful of set-theoretical operations. Four of them
will be the main tools in the remaining of the paper.

First, note that the choice of the alphabet Σ is of no importance. Let Σ and
Σ′ be finite alphabets containing at least two letters. For any language L over Σ
(conciliatory or not), one can find an equivalent language L′ over Σ′. Further-
more, if L is recognized by an automaton, so can be L′, and the construction
of the new automaton is effective. Therefore, without loss of generality we may
assume Σ = {a, b}.

For L,M ⊆ T̃Σ define M + L as the set of trees t ∈ T̃Σ satisfying any of the
following conditions:

– t.0 ∈ L and t(10n) = a for all n,
– 10n is the first node on the path 10∗ labeled with b and either t(10n0) = a

and t.10n00 ∈M or t(10n0) = b and t.10n00 ∈M�.

When playing a conciliatory Wadge game, being in charge of the language M+L
is like being in charge of L with one extra move that erases everything played so
far and replaces L with M or M�. This move can be played only once during the
play, and is executed by playing b on the path 10∗ for the first time. By choosing
the next letter on this path we make choice between M and M�.

The next operation is a generalization of the previous one. It lets a player
choose from a countable collection of languages. Let Ln ⊆ T̃Σ for n < ω. Define
supn<ω Ln as the set of trees t ∈ T̃Σ satisfying one of the following conditions:

– t(1n) = a for all n,
– 1n is the first node on 1∗ labeled with b and t.1n0 ∈ Ln.

Note that supn<ω Ln is conciliatory, even if the languages Ln contain only full
trees.

The multiplication by countable ordinals is defined as an iterated sum:

– L · 1 = L,
– L · (α + 1) = L · α+ L,
– L · λ = supγ<λL · γ for limit ordinals λ.

Finally let us define the pseudo-exponentiation. Let L ⊆ T̃Σ . For t ∈ T̃Σ let

i(t)(a1a2 . . . an) =
{
t(a10a2 . . . 0an0) if ∀k t(a10a2 . . . 0an1k) = a
s if ∃k t(a10a2 . . . 0an1k) = b

.

Intuitively, the rightmost path starting in a10a2 . . . 0an tells us whether to skip
the node a10a2 . . . 0an0 or not. Let

expL = {t ∈ T̃Σ : u(i(t)) ∈ L} .
A player in charge of expL is like a player in charge of L with an extra possibility
to decide that a chosen node labeled in the past (and the subtree rooted in its
right child) is to be ignored.

On the Topological Complexity of Weakly Recognizable Tree Languages 267

The names of the operations and the notation used make the following theo-
rem rather expected.

Theorem 2 (Duparc [2]). For L,M ⊆ T̃Σ, Ls,Ms Borel of finite rank, and
a countable ordinal α it holds that

dC(L+M) = dC(L) + dC(M) ,
dC(L · α) = dC(L) · α ,
dC(expL) = ω

dC(L)+ε
1 ,

where

ε =

⎧⎨⎩
−1 if dC(L) < ω
0 if dC(L) = β + n and cofβ = ω1

+1 if dC(L) = β + n and cofβ = ω
.

A kind of inverse operation for expL was introduced in [2]. The operation relies
on auxiliary moves and involves games where players must, along with playing
letters as usual, answer questions about the future of the play. One may easily
imagine that when the opponent asks questions like this, it may be much more
difficult to win. For convenience, we describe this operation on infinite words, but
it can easily be modified to apply to infinite trees (via the usual correspondence
between infinite sequences and trees with finite branching).

Let us define the space in which the player evolves when answering questions
about the future of the play. We call such a space a question tree. We will be
working with non-labeled trees, which are simply prefix closed subsets of X∗ for
a fixed set X . A tree is pruned if it has no finite branches. For a finite or infinite
word x = x0x1x2 . . . we write x

2 for the word x0x2x4 . . . = 〈x2i : i < |x|/2〉.

Definition 1. A question tree related to an alphabet Σ is a non-labeled non-
empty pruned tree T ⊆ (Σ′)ω, with Σ′ = Σ ∪ {〈!w〉 : w ∈ Σ} ∪ {〈?〉}, satisfying
for every node u ∈ T :

if |u| is even, then u = vσ for some σ ∈ Σ (these nodes correspond to the
main play),

if |u| is odd, then it is an auxiliary move with two different kinds of options:
〈!〉 u = v 〈!w〉 for some w ∈ Σ∗ extending u

2 . In this case we demand that
any node u′ ∈ T extending u satisfies u′

2 0 w or w 0 u′
2 . Moreover, we

require that for any v 〈!w′〉 ∈ T either w′ = w or w′ �0 w ∧ w �0 w′.
〈?〉 u = v 〈?〉. This is an option to avoid all positions of the form v 〈!w〉.

Formally, for each u′ ∈ T extending v 〈?〉 and each w such that v 〈!w〉 ∈
T , w �0 u′

2 .

Recall that [T] denotes the set of branches of T . Notice that for every infinite
word x ∈ Σω there exists a unique infinite branch y ∈ [T] such that y

2 = x.
In even moves a player moving along a question tree simply plays letters from

Σ, just like in an ordinary play. In odd moves, everything looks like his opponent
were asking him questions of the form: “Do you intend to stay forever in this

268 J. Duparc and F. Murlak

closed subset of Σω? If you are willing to exit, let me know which of the positions
I submitted to you, you intend to reach.” So, the player can choose 〈!v′〉 and
say: “OK, I’m going to reach this position v”, or taking the option 〈?〉 he may
answer: “No, I won’t reach any of these, I will rather stay out of the open set
formed by the union of the basic open sets vΣω for all positions v you are asking
me about.” Taking the latter option means remaining in the complement of this
open set, hence in a closed subset of Σω.

Definition 2. Let L ⊆ Σω and T be a question tree on Σ′ related to Σ. LT
consists of x ∈ (Σ′)ω such that x ∈ [T] ∧ x

2 ∈ L or x /∈ [T] ∧ ∃x′ (wx′ ∈
[T] ∧ wx′

2 ∈ L) where w is the longest prefix of x that belongs to T .

The definition of LT may seem a bit awkward. We defined it this way so that
Duplicator still has a winning strategy in the restricted version of the Wadge
game GW (LT , LT), where Duplicator is not allowed to exit the question tree
T , while Spoiler can play anything he wants. Hence, a player in charge of LT in
a Wadge game has a winning strategy if and only if he has a winning strategy
that always remains inside T . Therefore in the sequel we always assume that
a strategy involving a set of the form LT remains in the underlying question
tree; in other words it restricts its moves to the legal ones.

For any L ⊆ Σω and any question tree T related to Σ, LT ≤W L. In partic-
ular, whenever L is Borel, LT is Borel too.

Definition 3. Let L ⊆ Σω be Borel, logL stands for a <W -minimal element of
the form LT where T ranges over all question trees related to Σ.

In [2] it is proved that for a fixed L all <W -minimal sets of the form LT are
Wadge equivalent. However, L �→ logL is an operation only if we make it func-
tional, which requires the full Axiom of Choice. Since this functional character
is not needed in the proofs, we insist on the fact that logL is just a notational
convenience and none of the foregoing proofs involving it requires the Axiom of
Choice.

The operation log preserves the Wadge ordering.

Proposition 1. For L,M ⊆ Σω Borel, L ≤W M =⇒ logL ≤W logM .

For the present application the key property of the operation log is the following.

Proposition 2. Let L ⊆ Σω,

L is Π0
n+1-complete ⇐⇒ logL is Π0

n-complete,
L is Σ0

n+1-complete ⇐⇒ logL is Σ0
n-complete.

Actually, the operation is even finer: it is a precise counterpart of the pseudo-
-exponentiation. We state the following result for tree languages despite the
fact it was proved for word languages in [2]. The extension to tree languages is
straightforward.

On the Topological Complexity of Weakly Recognizable Tree Languages 269

Proposition 3. Given L a (full) tree language, and M a conciliatory tree lan-
guage, with L,Ms both Borel,

logL ≤W Ms ⇐⇒ L ≤W (expM)s ,
Ms ≤W logL ⇐⇒ (expM)s ≤W L .

5 Weak Index Vs. Borel Rank

Fix a natural number N . Let us call a game-tree, a N -ary tree T whose nodes
are boxes or diamonds equipped with ranks. For ι = 0, 1 and κ > ι let W[ι,κ]

be the set of all game-trees T with ranks inside [ι, κ] and such that Eve has
a winning strategy in the underlying weak parity game.

Theorem 3. For each n, W[0,n] ∈ Π0
n and W[1,n+1] ∈ Σ0

n.

Proof. By the determinacy of parity games, (W[0,n])� ≡W W[1,n+1]. Hence, it is
enough to prove the claim for ranks inside [0, n]. The proof goes by induction
with respect to n.

Let us first see that W[0,1] is closed. Let tk denote the restriction of a tree t
to its k first levels. By Weak König Lemma, Adam has a winning strategy in t
iff for some k, Adam has a winning strategy in tk. This means that if a tree t
does not belong to W[0,1], then one already knows it after looking at some finite
initial part of it. This is precisely the condition that defines closed sets.

Let T be a question tree defined as follows. Given any game tree t with ranks
inside [0, n+ 1], for each node u in t which is the first node on this branch with
priority n, T asks the question whether Adam or Eve would have a winning
strategy if the game were to start from this particular node. By what we have
already proved, if n is even, “Eve has a winning strategy” is a closed condition
and if n is odd, “Adam has a winning strategy” is a closed condition. Hence, the
question above is legal.

Fix a tree T over Σ ∪ {〈!w〉 : w ∈ Σ} ∪ {〈?〉}, where Σ = {♦,�} × [0, n+ 1],
which answers questions asked by T (strictly speaking this means the one and
only play inside T which corresponds to T). Let us construct a tree t′ over
{♦,�} × [0, n] which is exactly the same as T except that for each node u as
above: if the answer is “Adam has a winning strategy”, every node in the subtree
rooted in u receives the rank n for odd n’s and n−1 for even n’s, and if the answer
is “Eve has a winning strategy” – the other way round. This gives a continuous
reduction of W T

[0,n+1] to W[0,n].
Hence, lgW[0,n+1] ≤W W T

[0,n+1] ≤W W[0,n]. By induction hypothesis we have
W[0,n] ∈ Π0

n, and in consequence W[0,n+1] ∈ Π0
n+1. ��

As a corollary we get the promised improvement of Skurczyński’s result [14].

Corollary 2. For every weak alternating automaton with ranks inside [0, n]
(resp. [1, n+ 1]) it holds that Lω(A) ∈ Π0

n (resp. Lω(A) ∈ Σ0
n).

270 J. Duparc and F. Murlak

Proof. Let A be an automaton with priorities inside [ι, κ]. For sufficiently large
N we may assume without loss of generality that the runs of the automaton are
N -ary trees. By assigning to an input tree the run of A, one obtains a continuous
function reducing Lω(A) to W(ι,κ). Hence, the claim follows from the theorem
above. ��

The results described in this section give yet another argument to one of the
opposing parties in the everlasting dispute between the big-endians and the
little-endians of game theory. Had we defined a play to be winning for Eve if the
lowest rank was even, the correspondence between the indices and Borel classes
would be rather ugly.

6 Three Simple Constructions

Let A, B be weak alternating tree automata. As it was explained in the beginning
of Sect. 4, we may assume without loss of generality that the automata have
the same input alphabet Σ = {a, b}. We will construct automata recognizing
languages equivalent (in the conciliatory sense) to L(B) + L(A), L(A) · ω, and
expL(A).

Sum. Consider the automaton B + A defined on Fig. 1. The diamond states
are existential and the box states are universal. The circle states can be treated
as existential, but in fact they give no choice to either player. The transitions
leading to A, B and B� should be understood as transitions to the initial states of
the according automata. The priority functions of B and B� might need shifting
up, so that they were not using the value 0. It is easy to check that L(B+A) =
L(B) + L(A).

Multiplication by ω. The automaton A · ω is shown on Fig. 1. The language
recognized by A · ω consists of trees having no b’s on the path 1∗ or satisfying
the following conditions for some 0 < i ≤ k and n:

– 1k is the first node labeled with b on the path 1∗,
– i is minimal such that for all i < j ≤ k the path 1j0+ contains no b’s,
– 1i0n is the first node labeled with b lying on the path 1i0+,
– either t(1i0n0) = a and t.1i0n00 ∈ L(A) or t(1i0n0) = b and t.1i0n00 ∈
L(A)�.

Let Lk denote the set of trees satisfying the four conditions above for a fixed
k. Observe that Lk ≡W ∅ + L(A) · k. Intuitively, we cannot use the subtrees
rooted in 10, 110, . . . , 1k0 together, because making the first nontrivial move in
the subtree rooted in 1i0 (putting the first b on the path 1i0+) makes the subtrees
rooted in 10, 110, . . . , 1i−10 irrelevant. The best we can do is to use them one by
one, and this gives exactly the power of ∅+ L(A) · k.

On the Topological Complexity of Weakly Recognizable Tree Languages 271

Fig. 1. The automata B + A and A · ω

Now, consider GC(L(A) · ω,L(A · ω)). By definition, L(A) · ω consists of
trees having no b on the rightmost path, or such that 1k is the first node on
this path labeled with b, and t.1k0 ∈ L(A) · k. Consider the following strategy
for Duplicator. First, only observe the rightmost path of Spoiler’s tree tS . While
Spoiler plays a’s, keep playing a’s in tD (Duplicator’s tree). If Spoiler never plays
a b, Duplicator wins. Suppose Spoiler plays his first b in the node 1k. Duplicator
should also play b in the node 1k. Now, the result of the play depends only on
whether tS .1k0 ∈ L(A) · k ⇐⇒ tD ∈ Lk, and Duplicator should simply use the
strategy from GC(L(A) · k, Lk).

In the game GC(L(A · ω), L(A) · ω)) the only difference is that Duplicator
should play one more a: if Spoiler plays the first b on the rightmost path in the
node 1k, then Duplicator should put his first b in 1k+1, so that he can later use
the strategy from GC(Lk, L(A) · (k + 1)).

Pseudo-exponentiation. Both previous constructions were performed by combin-
ing two or three automata with a particularly chosen gadget. The automaton
expA is a bit more tricky. This time, we have to change the whole structure
of the automaton. Instead of adding one gadget, we replace each state of A by
a different gadget.

The gadget for a state p is shown on Fig. 2. By replacing p with the gadget we
mean that all the transitions ending in p should now end in p′ and all the tran-
sitions starting in p should start in p′′. Note that the state p′′ is the place where
the original transition is chosen, so p′′ should be existential iff p is existential. It
is not difficult to see that expA recognizes exactly expL(A).

272 J. Duparc and F. Murlak

Fig. 2. The gadget to replace p in the construction of expA. The state p′′ is existential
iff p is existential, i = rank p, and j is the least even number greater or equal to i.

7 A Lower Bound

In the previous section we have shown that weakly recognizable languages are
closed by sum, multiplication by ω, and pseudo-exponentiation with the base ω1.
By iterating finitely many times sum and multiplication by ω we obtain closure
by multiplication by ordinals of the form ωnkn + . . .+ωk1 + k0, i.e., all ordinals
less then ωω. In other words, we can find a weakly recognizable language of any
conciliatory degree from the closure of {1} by ordinal sum, multiplication by
ordinals < ωω and pseudo-exponentiation with the base ω1. It is easy to see that
the order type of this set is not changed if we replace pseudo-exponentiation with
ordinary exponentiation α �→ ωα

1 . This in turn is isomorphic with the closure of
{1} by ordinal sum, multiplication by ordinals < ωω, and exponentiation with
the base ωω. This last set is obviously ε0, the least fixpoint of the exponentiation
with the base ω.

By Lemma 2 and the final remark of Sect. 2 it follows that the mapping
L �→ Ls embeds the conciliatory hierarchy of weakly recognizable languages into
the Wadge hierarchy of weakly recognizable languages of full trees. Hence, we
obtain the main result of this paper.

Theorem 4. The Wadge hierarchy of weakly recognizable tree languages has the
height of at least ε0.

Our intuition tells us the bound is tight, but we have no evidence for that. The
question of the exact height of the hierarchy for weak automata remains open.

On the Topological Complexity of Weakly Recognizable Tree Languages 273

Acknowledgments

The first author would like to express his gratitude to David Janin who inci-
dentally made him initiate this study of the hierarchy of weak alternating tree
automata. We also thank Damian Niwiński and the anonymous referees for very
helpful comments.

References

1. Arnold, A., Niwiński, D.: Continuous separation of game languages. Manuscript,
2006 (submitted)

2. Duparc, J.: Wadge hierarchy and Veblen hierarchy. Part I: Borel sets of finite rank.
The Journal of Symbolic Logic 66 (2001)

3. Duparc, J.: A hierarchy of deterministic context-free ω-languages. Theoret. Com-
put. Sci. 290, 1253–1300 (2003)

4. Finkel, O.: Wadge Hierarchy of Omega Context Free Languages. Theoret. Comput.
Sci. 269, 283–315 (2001)

5. Kechris, A.S.: Classical Descriptive Set Theory. Graduate Texts in Mathemat-
ics 156 (1995)

6. Muller, D.E., Saoudi, A., Schupp, P.E.: Alternating automata. The weak monadic
theory of the tree, and its complexity. In: Kott, L. (ed.) Automata, Languages and
Programming. LNCS, vol. 226, pp. 275–283. Springer, Heidelberg (1986)

7. Murlak, F.: On deciding topological classes of deterministic tree languages. In: Ong,
L. (ed.) CSL 2005. LNCS, vol. 3634, pp. 428–441. Springer, Heidelberg (2005)

8. Murlak, F.: The Wadge hierarchy of deterministic tree languages. In: Bugliesi, M.,
Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp.
408–419. Springer, Heidelberg (2006)

9. Niwiński, D., Walukiewicz, I.: A gap property of deterministic tree languages. The-
oret. Comput. Sci. 303, 215–231 (2003)

10. Niwiński, D., Walukiewicz, I.: Deciding nondeterministic hierarchy of deterministic
tree automata. In: Proc. WoLLiC 2004. Electronic Notes in Theoret. Comp. Sci.,
pp. 195–208 (2005)

11. Perrin, D., Pin, J.-E.: Infinite Words. Automata, Semigroups, Logic and Games.
Pure and Applied Mathematics, vol. 141. Elsevier, Amsterdam (2004)

12. Rabin, M.O.: Weakly definable relations and special automata. In: Mathematical
Logic and Foundations of Set Theory, North-Holland, pp. 1–70 (1970)

13. Selivanov, V.: Wadge Degrees of ω-languages of deterministic Turing machines.
Theoret. Informatics Appl. 37, 67–83 (2003)

14. Skurczyński, J.: The Borel hierarchy is infinite in the class of regular sets of trees.
Theoret. Comput. Sci. 112, 413–418 (1993)

15. Urbański, T.F.: On deciding if deterministic Rabin language is in Büchi class. In:
Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, pp.
663–674. Springer, Heidelberg (2000)

16. Wagner, K.: Eine topologische Charakterisierung einiger Klassen regulärer Folgen-
mengen. J. Inf. Process. Cybern. EIK 13, 473–487 (1977)

17. Wagner, K.: On ω-regular sets. Inform. and Control 43, 123–177 (1979)

Productivity of Stream Definitions�

Jörg Endrullis1, Clemens Grabmayer3, Dimitri Hendriks1,
Ariya Isihara1, and Jan Willem Klop1,2

1 Vrije Universiteit Amsterdam, Department of Computer Science,
De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands

{ariya,joerg}@few.vu.nl, {diem,klop}@cs.vu.nl
2 Radboud Universiteit Nijmegen, Department of Computer Science,

Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
3 Universiteit Utrecht, Department of Philosophy,

Heidelberglaan 8, 3584 CS Utrecht, The Netherlands
clemens@phil.uu.nl

Abstract. We give an algorithm for deciding productivity of a large
and natural class of recursive stream definitions. A stream definition is
called ‘productive’ if it can be evaluated continuously in such a way that
a uniquely determined stream is obtained as the limit. Whereas produc-
tivity is undecidable for stream definitions in general, we show that it can
be decided for ‘pure’ stream definitions. For every pure stream definition
the process of its evaluation can be modelled by the dataflow of abstract
stream elements, called ‘pebbles’, in a finite ‘pebbleflow net(work)’. And
the production of a pebbleflow net associated with a pure stream defi-
nition, that is, the amount of pebbles the net is able to produce at its
output port, can be calculated by reducing nets to trivial nets.

1 Introduction

In functional programming, term rewriting and λ-calculus, there is a wide arsenal
of methods for proving termination such as recursive path orders, dependency
pairs (for term rewriting systems, [15]) and the method of computability (for
λ-calculus, [13]). All of these methods pertain to finite data only. In the last two
decades interest has grown towards infinite data, as witnessed by the application
of type theory to infinite objects [2], and the emergence of coalgebraic techniques
for infinite data types like streams [11]. While termination cannot be expected
when infinite data are processed, infinitary notions of termination become rele-
vant. For example, in formal frameworks for the manipulation of infinite objects
such as infinitary rewriting [7] and infinitary λ-calculus [8], basic notions are the
properties WN∞ of infinitary weak normalisation and SN∞ of infinitary strong
normalisation [9].

In the functional programming literature the notion of ‘productivity’ has
arisen, initially in the pioneering work of Sijtsma [12], as a natural strengthening

� This research has been partially funded by the Netherlands Organisation for Scien-
tific Research (NWO) under FOCUS/BRICKS grant number 642.000.502.

E. Csuhaj-Varjú and Z. Ésik (Eds.): FCT 2007, LNCS 4639, pp. 274–287, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Productivity of Stream Definitions 275

of the property WN∞. A recursive stream definition is called productive if not
only can the definition be evaluated continuously to build up an infinite normal
form, but the resulting infinite expression is also meaningful in the sense that it
is a constructor normal form which allows to read off consecutively individual
elements of the stream. Since productivity of stream definitions is undecidable in
general, the challenge is to find increasingly larger classes of stream definitions
significant to programming practice for which productivity is decidable, or for
which at least a powerful method for proving productivity exists.

Contribution and Overview. We show that productivity is decidable for a rich
class of recursive stream definitions that hitherto could not be handled auto-
matically. In Section 2 we define ‘pure stream constant specifications’ (SCSs) as
orthogonal term rewriting systems, which are based on ‘weakly guarded stream
function specifications’ (SFSs). In Section 3 we develop a ‘pebbleflow calculus’
as a tool for computing the ‘degree of definedness’ of SCSs. The idea is that a
stream element is modelled by an abstract ‘pebble’, a stream definition by a finite
‘pebbleflow net’, and the process of evaluating a definition by the dataflow of
pebbles in the associated net. More precisely, we give a translation of SCSs into
‘rational’ pebbleflow nets, and prove that this translation is production preserv-
ing. Finally in Section 4, we show that the production of a ‘rational’ pebbleflow
net, that is, the amount of pebbles such a net is able to produce at its output
port, can be calculated by an algorithm that reduces nets to trivial nets. We
obtain that productivity is decidable for pure SCSs. We believe our approach
is natural because it is based on building a pebbleflow net corresponding to an
SCS as a model that is able to reflect the local consumption/production steps
during the evaluation of the definition in a quantitatively precise manner.

We follow [12] in describing the quantitative input/output behaviour of a
stream function f by a non-decreasing ‘production function’ βf : (N)r → N such
that the first βf (n1, . . . , nr) elements of f(t1, . . . , tr) can be computed whenever
the first ni elements of ti are defined. More specifically, we employ ‘rational’
production functions β : (N)r → N that, for r = 1, have eventually periodic dif-
ference functions Δβ(n) := β(n+ 1)−β(n), that is ∃n, p ∈ N.∀m ≥ n.Δβ(m) =
Δβ(m+ p). This class is effectively closed under composition, and allows to cal-
culate fixed points of unary functions. Rational production functions generalise
those employed by [16], [5], [2], and [14], and enable us to precisely capture the
consumption/production behaviour of a large class of stream functions.

Related Work. It is well-known that networks are devices for computing least
fixed points of systems of equations [6]. The notion of ‘productivity’ (some-
times also referred to as ‘liveness’) was first mentioned by Dijkstra [3]. Since
then several papers [16,12,2,5,14,1] have been devoted to criteria ensuring pro-
ductivity. The common essence of these approaches is a quantitative analy-
sis. In [16], Wadge uses dataflow networks to model fixed points of equations.
He devises a so-called cyclic sum test, using production functions of the form
βf (n1, . . . , nr) = min(n1 +af,1, . . . , nr +af,r) with af,i ∈ Z, i.e. the output leads
or lags the input by a fixed value af,i. Sijtsma [12] points out that this class
of production functions is too restrictive to capture the behaviour of commonly

276 J. Endrullis et al.

used stream operations like even, dup, zip and so forth. Therefore he develops an
approach allowing arbitrary production functions βf : Nr → N, having the only
drawback of not being automatable in full generality. Coquand [2] defines a syn-
tactic criterion called ‘guardedness’ for ensuring productivity. This criterion is
too restrictive for programming practice, because it disallows function applica-
tions to recursive calls. Telford and Turner [14] extend the notion of guardedness
with a method in the flavour of Wadge. However, their approach does not over-
come Sijtsma’s criticism. Hughes, Pareto and Sabry [5] introduce a type system
using production functions with the property that βf (a ·x+b) = c ·x+d for some
a, b, c, d ∈ N. This class of functions is not closed under composition, leading to
the need of approximations and a loss of power. Moreover their typing system
rejects definitions like M = a :b :tail(M), where ‘:’ is the infix stream constructor,
because tail is applied to the recursive call. Buchholz [1] presents a formal type
system for proving productivity, whose basic ingredients are, closely connected
to [12], unrestricted production functions βf : Nr → N. In order to obtain an
automatable method, Buchholz also devises a syntactic criterion to ensure pro-
ductivity. This criterion easily handles all the examples of [14], but fails to deal
with functions that have a negative effect ‘worse than tail’.

2 Recursive Stream Specifications

In this section the concepts of ‘stream constant specification’ (SCS) and ‘stream
function specification’ (SFS) are introduced. We use a two-layered set-up, which
is illustrated by the well-known definition M = 0:1:zip(tail(M), inv(tail(M))) of the
Thue–Morse sequence. This corecursive definition employs separate definitions of
the stream functions zip and tail, contained in Ex. 1 below, and of the definition
inv(x:σ) = (1−x):inv(σ) of the stream function inv. Stream constants are written
using uppercase letters, stream and data functions are written lowercase.

In order to distinguish between data terms and streams we use the framework
of many-sorted term rewriting. Let S be a finite set of sorts. An S-sorted set A is a
family of sets (As)s∈S . An S-sorted signature Σ is a set of function symbols, each
having a fixed arity ar(f) ∈ S∗×S. Let X be an S-sorted set of variables. The S-
sorted set of terms Ter(Σ,X) is inductively defined by: Xs ⊆ Ter(Σ,X)s for all
s ∈ S and f(t1, . . . , tn) ∈ Ter(Σ,X)s whenever f ∈ Σ with arity 〈s1 · · · sn, s〉
and ti ∈ Ter(Σ,X)si . An S-sorted term rewriting system (TRS) over an S-
sorted signature Σ is an S-sorted set R where Rs ⊆ Ter(Σ,X)s × Ter(Σ,X)s
for all s ∈ S, satisfying the standard TRS requirements for rules. An S-sorted
TRS is called finite if both its signature and the set of all of its rules are finite.

In the sequel let S = {d , s} where d is the sort of data terms and s is the sort
of streams. We say that a {d , s}-sorted TRS 〈Σ, R〉 is a stream TRS if there
exists a partition of the signature Σ = Σd Σsf Σsc {:} such that the arity
of the symbols from Σd is in 〈d∗, d〉, for Σsf in 〈{s , d}∗, s〉, for Σsc in 〈ε, s〉
and ‘:’ has arity 〈ds , s〉. Accordingly, the symbols in Σd are referred to as the
data symbols, ‘:’ as the stream constructor symbol, the symbols in Σsf as the
stream function symbols and the symbols in Σsc as the stream constant symbols.

Productivity of Stream Definitions 277

Without loss of generality we assume that for all f ∈ Σsf the stream arguments
are in front. That is, f has arity 〈srsdrd , s〉 for some rs, rd ∈ N; we say that f has
arity 〈rs, rd〉 for short.

Definition 1. Let T = 〈Σ, R〉 be a finite stream TRS with Σ = Σd Σsf {:}
and a partition R = Rd Rsf of its set of rules. Then T (together with these
partitions) is called a weakly guarded stream function specification (SFS) if:

(i) T is orthogonal (i.e. left-linear, non-overlapping redex patterns, see [15]).
(ii) 〈Σd , Rd 〉 is a strongly normalising TRS.

(iii) For every stream function symbol f ∈ Σsf there is precisely one rule in Rsf ,
denoted by ρ f , the defining rule for f. Furthermore, for all f ∈ Σsf with
arity 〈rs, rd〉, the rule ρ f ∈ Rsf has the form:

f((x1 : σ1), . . . , (xrs : σrs), y1, . . . , yrd) → u

where xi : σi stands for xi,1 : . . . : xi,ni : σi, and u is one of the following
forms:

u ≡ t1 : . . . : tm f
: g(σπ f(1), . . . , σπ f(r′s), t

′
1, . . . , t

′
r′
d
), (1)

u ≡ t1 : . . . : tm f
: σi (2)

Here, the terms t1, . . . , tm f
∈ Ter(Σd) are called guards of f. Furthermore,

g ∈ Σsf with arity 〈r′s, r′d〉, π f : {1, . . . , r′s} → {1, . . . , rs} is an injection used
to permute stream arguments, n1, . . . , nrs ,m f ∈ N, and 1 ≤ i ≤ rs. In
case (1) we write f � g, and say f ‘depends on’ g.

(iv) Every stream function symbol f ∈ Σsf is weakly guarded in T , i.e. on every
dependency cycle f � g � · · · � f there is at least one guard.

It is easy to show that every function symbol f ∈ Σsf in an SFS defines a unique
function that maps stream arguments and data arguments to a stream, which can
be computed, for given infinite stream terms u1, . . . , urs in constructor normal
form (that is, being of the form s0 :s1 :s2 :. . .) and data terms t1, . . . , trd , by infini-
tary rewriting as the infinite normal form of the term f(u1, . . . , urs , t1, . . . , trd).
Note that the definition covers a large class of stream functions including tail,
even, odd, zip, add. However, the function head defined by head(x :σ) = x, possi-
bly creating ‘look-ahead’ as in the well-defined example S = 0 : head(tail2(S)) : S
from [12], is not included.

Now we are ready to define the concept of ‘stream constant specification’.

Definition 2. Let T = 〈Σ, R〉 be a finite stream TRS with a partition Σ =
Σd Σsf Σsc {:} of its signature and a partition R = Rd Rsf Rsc of
its set of rules. Then T (together with these partitions) is called a pure stream
constant specification (SCS) if the following conditions hold:

(i) 〈Σd Σsf {:}, Rd Rsf 〉 is an SFS.
(ii) Σsc = {M1, . . . ,Mn} is a non-empty set of constant symbols, and Rsc =

{Mi → rhs Mi | 1 ≤ i ≤ n, rhs Mi ∈ Ter(Σ)s}. The rule ρMi := Mi → rhs Mi

is called the defining rule for Mi in T .

278 J. Endrullis et al.

Note that an SCS T is orthogonal as a consequence of (i) and (ii).
An SCS is called productive if every M ∈ Σsc has a stream of data terms as

infinite normal form (an infinite constructor normal form). Note that orthogo-
nality implies that infinite normal forms are unique.

Example 1. Let TD = 〈Σd Σsf Σsc {:}, Rd Rsf Rsc〉 be the SCS with
Σd = {s, 0, a}, Σsf = {tail, even, odd, zip, add}, Σsc = {D}, and Rsc consists of

D → 0 : 1 : 1 : zip(add(tail(D), tail(tail(D))), even(tail(D))),

Rsf consists of the rules

tail(x : σ) → σ even(x : σ) → x : odd(σ) odd(x : σ) → even(σ)

zip(x : σ, τ) → x : zip(τ, σ) add(x : σ, y : τ) → a(x, y) : add(σ, τ)

and Rd = {a(x, s(y)) → s(a(x, y)), a(x, 0) → x}. Note that D has the infinite
constructor normal form 0 :1 : 1 : 2 :1 : 3 :2 : 3 : 3 :4 : 3 : 5 :4 : 5 : 5 :6 : 5 :7 : 6 : 7 :7 : . . . ,
and hence is productive in TD.

Example 2. Consider the rule J → 0 : 1 : even(J) together with Σ,Rd , Rsf as in
Ex. 1. The infinite normal form of J is 0 : 1 : 0 : 0 : even(even(. . .)), which is not a
constructor normal form. Hence J is WN∞ (in fact SN∞), but not productive.

3 Modelling with Nets

We introduce nets as a means to model SCSs and to visualise the flow of stream
elements. As our focus is on productivity of SCSs, we are interested in the
production of such a net, that is, the number of stream elements produced by
a net. Therefore, stream elements are abstracted from in favour of occurrences
of the symbol •, which we call pebble. The nets we study are called pebbleflow
nets ; they are inspired by interaction nets [10], and could be implemented in the
framework of interaction nets with little effort.

First we give an operational description of pebbleflow nets, explaining what
the components of nets are and the way how the components process pebbles. To
ease manipulation of and reasoning about nets, we employ term representations.
Term constructs corresponding to net components, as well as the rules governing
the flow of pebbles through a net, are given on the fly. Their formal definitions
are given in Subsec. 3.2. Finally, in Subsec. 3.3, we define a production preserving
translation of pure stream specifications into rational nets.

We denote the set of coinductive natural numbers by N = N ∪ {∞} and the
numerals representing the elements of N by n = sn(0) for n ∈ N, and ∞ = sω.

3.1 Nets

Wires. The directed edges of a net, along which pebbles travel, are called
wires. Wires are idealised in the sense that there is no upper bound on the num-
ber of pebbles they can store; arbitrarily long queues are allowed. Wires have

Productivity of Stream Definitions 279

N2 N1 N2N1

Fig. 1. �(•(N1), •(N2)) → •(�(N1, N2))

N N

Fig. 2. μx.•(N(x)) → •(μx.N(•(x)))

no counterpart on the term level; in this sense they are akin to the edges of a
term tree. Wires connect boxes, meets, fans, and sources, that we describe next.

Meets. A meet is waiting for a pebble at each of its input ports and only then
produces one pebble at its output port, see Fig. 1. Put differently, the number of
pebbles a meet produces equals the minimum of the numbers of pebbles available
at each of its input ports. Meets enable explicit branching; they are used to model
stream functions of arity > 1, as will be explained in the part “Boxes and gates”
below. A meet with an arbitrary number n ≥ 1 of input ports is implemented
by using a single wire in case n = 1, and if n = k + 1 with k ≥ 1, by connecting
the output port of a ‘k-ary meet’ to one of the input ports of a (binary) meet.

Fans. The behaviour of a fan is dual to that of a meet: a pebble at its input
port is duplicated along its output ports. A fan can be seen as an explicit sharing
device, and thus enables the construction of cyclic nets. More specifically, we use
fans only to implement feedback when drawing nets; there is no explicit term
representation for the fan in our term calculus. In Fig. 2 a pebble is sent over the
output wire of the net and at the same time is fed back to the ‘recursion wire(s)’.
Turning a cyclic net into a term (tree) means to introduce a notion of binding;
certain nodes need to be labelled by a name (μx) so that a wire pointing to that
node is replaced by a name (x) referring to the labelled node.

Sources. A source has an output port only, contains a number k ∈ N of pebbles,
and can fire if k > 0. In Sec. 4 we show how to reduce ‘closed’ nets to sources.

Boxes and Gates. A box consumes pebbles at its input port and produces
pebbles at its output port, controlled by an infinite sequence σ ∈ {+,−}ω asso-
ciated with the box. This consumption/production behaviour of the box is then
also be expressed by the ‘production function’ βσ : N → N of the box, see Fig. 5.
For example, consider the unary stream function dup, defined as follows, and its
corresponding ‘I/O sequence’:

dup(x : σ) = x : x : dup(σ) −++−++−++ . . .

which is to be thought of as: for dup to produce two outputs, it first has to
consume one input, and this process repeats indefinitely. Intuitively, the symbol−
represents a requirement for an input pebble, and + represents a ready state for
an output pebble. Pebbleflow through boxes is visualised in Figs. 3 and 4.

280 J. Endrullis et al.

N N

σ+σ

Fig. 3. box(+σ, N) → •(box(σ, N))

N N

σ−σ

Fig. 4. box(−σ, •(N)) → box(σ, N)

Definition 3. The set ±ω of I/O sequences is defined as the set of infinite
sequences over the alphabet {+,−} that contain an infinite number of +’s:

±ω := {σ ∈ {+,−}ω | ∀n. ∃m. σ(n +m) = +}

Further, we define the set ±ω
rat ⊆ ±ω of rational I/O sequences. A sequence

σ ∈ ±ω is called rational if there exist lists α, γ ∈ {+,−}∗ such that σ = αγ,
where γ is not the empty list and γ denotes the infinite sequence γγγ The
pair 〈α, γ〉 is called a rational representation of σ.

To model stream functions of arbitrary arity, we introduce gates. Gates are
compounded of meets and boxes, as depicted in Fig. 6. The precise construction
of a gate corresponding to a given stream function is described in Subsec. 3.3.

N N

}
n

σ′

βσ(n)
{

σ

Fig. 5. box(σ, •n(N)) → •βσ(n)(box(σ′, N))

σrsσ1

Fig. 6. A gate for modelling rs-ary
stream functions

Definition 4. The production function βσ : N → N of (a box containing) a
sequence σ ∈ ±ω is corecursively defined, for all n ∈ N, by βσ(n) := β(σ, n):

β(+σ, n) = s(β(σ, n)) β(−σ, 0) = 0 β(−σ, s(n)) = β(σ, n)

Intuitively, βσ(n) is the number of outputs of a box containing sequence σ when
fed n inputs. Note that production functions are well-defined due to our require-
ment on I/O sequences.

3.2 A Rewrite System for Pebbleflow

We define terms representing nets, and a rewrite system to model pebbleflow.

Definition 5. Let V be a set of variables. The set N of terms for pebbleflow
nets is generated by:

N ::= src(k) | x | •(N) | box(σ,N) | μx.N | 1(N,N)

Productivity of Stream Definitions 281

where k ∈ N, x ∈ V , and σ ∈ ±ω. Furthermore, the set Nrat of terms for
rational pebbleflow nets is defined by the same inductive clauses, but now with
the restriction σ ∈ ±ω

rat .

The importance of identifying the subset of rational nets will become evident
in Sec. 4, where we introduce a rewrite system for reducing nets to trivial nets
(pebble sources). That system will be terminating for rational nets, and will
enable us to determine the total production of a rational net.

The rules that govern pebbleflow are listed in Def. 6.

Definition 6. The pebbleflow rewrite relation →P is defined as the compatible
closure of the union of the following rules:

1(•(N1), •(N2)) → •(1(N1, N2)) (P1)
μx.•(N(x)) → •(μx.N(•(x))) (P2)

box((+σ), N) → •(box(σ,N)) (P3)
box((−σ), •(N)) → box(σ,N) (P4)

src(s(k)) → •(src(k)) (P5)

The first four rewrite rules in the definition above are visualised in Figures 1, 2,
3, and 4, respectively. In rule (P2) the feedback of pebbles along the recursion
wire(s) of the net N is accomplished by substituting •(x) for all free occurrences
x of N . Observe that →P constitutes an orthogonal CRS [15], hence:

Theorem 1. The relation →P is confluent.

3.3 Translating Pure Stream Specifications

First we give a translation of the stream function symbols in an SFS into rational
gates (gates with boxes containing rational I/O sequences) that precisely model
their quantitative consumption/production behaviour. The idea is to define, for
a stream function symbol f, a rational gate by keeping track of the ‘production’
(sequence of guards encountered) and the ‘consumption’ of the rules applied,
during the finite or eventually periodic dependency sequence on f.

Definition 7. Let T = 〈Σd Σsf {:}, Rd Rsf 〉 be an SFS. Then, for each
f ∈ Σsf with arity 〈rs, rd〉 the translation of f is a rational gate [f] : N rs → N as
defined by:

[f](N1, . . . , Nrs) = 1rs(box([f]1, N1), . . . , box([f]rs , Nrs))

where [f]i ∈ ±ω
rat is defined as follows. We distinguish the two formats a rule

ρ f ∈ Rsf can have. Let xi : σi stand for xi,1 : . . . : xi,ni : σi. If ρ f has the form:
f(x1 : σ1, . . . ,xrs : σrs , y1, . . . , yrd) → t1 : . . . : tm f

: u, where:

(a) u ≡ g(σπ f (1), . . . , σπ f(r′s), t
′
1, . . . , t

′
r′d

), then (b) u ≡ σj , then

[f]i =

{
−ni+m f [g]j if π f(j) = i

−ni+ if ¬∃j. π f(j) = i
[f]i =

{
−ni+m f−+ if i = j

−ni+ if i �= j

282 J. Endrullis et al.

In the second step, we define a translation of the stream constants in an SCS into
rational nets. Here the idea is that the recursive definition of a stream constant
M is unfolded step by step; the terms thus arising are translated according to
their structure by making use of the translation of the stream function symbols
encountered; whenever a stream constant is met that has been unfolded before,
the translation stops after establishing a binding to a μ-binder created earlier.

Definition 8. Let T = 〈Σd Σsf Σsc {:}, Rd Rsf Rsc〉 be an SCS. Then,
for each M ∈ Σsc with rule ρM ≡ M → rhs M the translation [M] := [M]∅ of M to
a pebbleflow net is recursively defined by (α a set of stream constant symbols):

[M]α =

{
μM.[rhs M]α∪{M} if M �∈ α
M if M ∈ α

[t : u]α = •([u]α)
[f(u1, . . . , urs , t1, . . . , trd)]α = [f]([u1]α, . . . , [urs]α)

Example 3. Reconsider the SCS defined in Example 1. The translation of the
stream function symbols tail, zip ∈ Σsf is carried out as follows:

[tail](N) = �1(box([tail]1, N)) [zip](N1, N2) = �2(box([zip]1, N1), box([zip]2, N2))

= box([tail]1, N) [zip]1 = −+[zip]2 = −++[zip]1 = −++

[tail]1 = −−+ [zip]2 = +[zip]1 = +−+[zip]2 = +−+

(Note that to obtain rational representations of the translated stream functions
we use loop checking on top of Def. 7.) Then, the stream constant D is translated
to the following pebbleflow net, depicted in Fig. 7:

[D] = μD.•(•(•([zip]([add]([tail](D), [tail]([tail](D))), [even]([tail](D)))))) .

[tail]1

[even]1

[zip]1 [zip]2

[zip] [add]1 [add]2

[add]

[tail]1

[tail]1

[tail]1

Fig. 7. The pebbleflow net [D] corresponding to the stream D

Productivity of Stream Definitions 283

The theorem below is the basis of our decision algorithm. It states that the
translation is ‘production preserving’, based on the following terminology: The
production π(N) of a pebbleflow net N is the supremum of the number of pebbles
the net can ‘produce’: π(N) := sup{n ∈ N | N 	P •n(N ′)}, where 	P denotes
the reflexive–transitive closure of →P. Likewise for an SCS T = 〈Σ, R〉 the
production πT (t) of a term t ∈ Ter(Σ) is the supremum of the number of data
elements t can ‘produce’: πT (t) := sup{n ∈ N | t 	 s1 : . . . : sn : t′}.

Theorem 2. Let T be a pure SCS. Then, π([M]) = πT (M) for all M ∈ Σsc.

4 Deciding Productivity

We define a rewriting system for pebbleflow nets that, for every net N , allows
to reduce N to a single source while preserving the production of N .

Definition 9. We define the net reduction relation →R on closed pebbleflow nets
by the compatible closure of the following rule schemata:

•(N) → box((+−+), N) (R1)
box(σ, box(τ,N)) → box((σ · τ), N) (R2)

box(σ,1(N1, N2)) →1(box(σ,N1), box(σ,N2)) (R3)
μx.1(N1, N2) →1(μx.N1, μx.N2) (R4)

μx.N → N if x �∈ FV(N) (R5)
μx.box(σ, x) → src(fix(σ)) (R6)

1(src(k1), src(k2)) → src(min(k1, k2)) (R7)

box(σ, src(k)) → src(βσ(k)) (R8)

μx.x→ src(0) (R9)

where σ, τ ∈ ±ω, k, k1, k2 ∈ N, and min(n,m), βσ(k), σ · τ (see Def. 10) and
fix(σ) (see Def. 11) are term representations of operation results.

Definition 10. The operation composition · : ±ω ×±ω → ±ω, 〈σ, τ〉 �→ σ · τ of
I/O sequences is defined corecursively by the following equations:

(+σ) · τ = +(σ · τ) (−σ) · (+τ) = σ · τ (−σ) · (−τ) = −((−σ) · τ)

Composition of sequences σ · τ ∈ ±ω exhibits analogous properties as composi-
tion of functions over natural numbers: it is associative, but not commutative.
Furthermore, for all σ, τ ∈ ±ω, n ∈ N we have βσ·τ (n) = βσ(βτ (n)). Because
we formalised the I/O behaviour of boxes by sequences and because we are
interested in (dis)proving productivity, for the formalisation of the pebbleflow
rewrite relation in Def. 6 the choice has been made to give output priority over
input. This becomes apparent in the definition of composition above: the net
box(+−+, box(−−+, x)) is able to consume an input pebble at its free input
port x as well as to produce an output pebble, whereas the result box(+−−+, x)
of the composition can only consume input after having fired.

284 J. Endrullis et al.

The fixed point of a box is the production of the box when fed its own output.

Definition 11. The operations fixed point fix : ±ω → N and requirement re-
moval δ : ±ω → ±ω on I/O sequences are corecursively defined as follows:

fix(+σ) = s(fix(δ(σ))) δ(+σ) = +δ(σ)

fix(−σ) = 0 δ(−σ) = σ

For all σ ∈ ±ω, we have βσ(fix(σ)) = fix(σ). Moreover, fix(σ) is the least fixed
point of βσ. Observe that βσ·σ·σ·... = βσ(βσ(βσ(. . .))) = fix(σ). Therefore, the
infinite self-composition box(σ, box(σ, box(σ, . . .))) is ‘production equivalent’ to
src(fix(σ)).

Lemma 1. The net reduction relation →R is production preserving, that is,
N →R N ′ implies π(N) = π(N ′), for all nets N,N ′ ∈ N . Furthermore, →R is
terminating and every closed net normalises to a unique normal form, a source.

Observe that net reduction employs infinitary rewriting for fixed point compu-
tation and composition (Def. 10 and 11). To compute normal forms in finite
time we make use of finite representations of rational sequences and exchange
the numeral sω with a constant ∞. The reader may confer [4] for further details.

Lemma 2. There is an algorithm that, if N ∈ Nrat and rational representations
of the sequences σ ∈ ±ω

rat in N are given, computes the →R-normal form of N .

Proof (Hint). Note that composition preserves rationality, that is, σ · τ ∈ ±ω
rat

whenever σ, τ ∈ ±ω
rat . Similarly, it is straightforward to show that for sequences

σ, τ ∈ ±ω
rat with given rational representations the fixed point fix(σ) and a ratio-

nal representation of the composition σ · τ can be computed in finite time. ��

Theorem 3. Productivity is decidable for pure stream constant specifications.

Proof. The following steps describe a decision algorithm for productivity of a
stream constant M in an SCS T : First, the translation [M] of M into a pebbleflow
net is built according to Def. 8. It is easy to verify that [M] is in fact a rational
net. Second, by the algorithm stated by Lem. 2, [M] is collapsed to a source
src(n) with n ∈ N. By Thm. 2 it follows that [M] has the same production as M
in T , and by Lem. 1 that the production of [M] is n. Consequently, πT (M) = n.
Hence the answers “T is productive for M” and “T is not productive for M” are
obtained if n = ∞ and if n ∈ N, respectively. ��

5 Examples

We give three examples to show how our algorithm decides productivity of SCSs.
First we recognise our running example (Ex. 1) to be productive. Next, we give
a simple example of an SCS that is not productive. Finally, we illustrate that
productivity is sensitive to the precise definitions of the stream functions used.

Productivity of Stream Definitions 285

Example 4. We revisit Ex. 3 where we calculated the pebbleflow net [D] for D
and show the last five steps of the reduction to →R-normal form.

[D] 	R �(�(μD.box(+++−−++, D), μD.box(+++−−++, box(−−+, D))), src(∞))

→R6 �(�(src(∞), μD.box(+++−−++, box(−−+, D))), src(∞))

→R2 �(�(src(∞), μD.box(+++−−−++, D)), src(∞))

→R6 �(�(src(∞), src(∞)), src(∞)) →R7 �(src(∞), src(∞)) →R7 src(∞) .

Hence D is productive in the SCS of Ex. 1.

Example 5. For the definition of J from Ex. 2 we get:

[J] = μJ.•(•(box(−+−, J))) →2
R1 μJ.box(+−+, box(+−+, box(−+−, J)))

→R2 μJ.box(++−+, box(−+−, J)) →R2 μJ.box(++−+−, J) →R6 src(4) ,

proving that J is not productive (only 4 elements can be evaluated).

Example 6. Let T = 〈Σd Σsf Σsc {:}, Rd Rsf Rsc〉 be an SCS where
Σd = {0}, Σsf = {zip, tail, even, odd}, Σsc = {C}, Rd = ∅, Rsc consists of:

C → 0 : zip(C, even(tail(C))) ,

and Rsf consists of the rules:

tail(x : σ) → σ zip(x : σ, τ) → x : zip(τ, σ)
even(x : σ) → x : odd(σ) odd(x : σ) → even(σ) .

Then, we obtain the following translations:

[zip](N1, N2) = �2(box(−++, N1), box(+−+, N2))

[even](N) = box(−+−, N)

[tail](N) = box(−−+, N)

[C] = μC.•(�(box(−++, C), box(+−+, box(−+−, box(−−+, C))))) .

Now by rewriting [C] with parallel outermost rewriting (except that composition
of boxes is preferred to reduce the size of the terms) according to →R we get:

[C] →R2 μC.•(�(box(−++, C), box(+−++−, box(−−+, C))))

→R2 μC.•(�(box(−++, C), box(+−−+, C)))

→R1 μC.box(+−+,�(box(−++, C), box(+−−+, C)))

→R3 μC.�(box(+−+, box(−++, C)), box(+−+, box(+−−+, C)))

→2
R2 μC.�(box(+−+, C), box(++−−, C))

→R4 �(μC.box(+−+, C), μC.box(++−−, C))

→2
R6 �(src(∞), src(∞))

→R7 src(∞)

witnessing productivity of C in T . Note that the ‘fine’ definitions of zip and even
are crucial in this setting. If we replace the definition of zip in T by the ‘coarser’
one: zip∗(x : σ, y : τ) → x : y : zip∗(σ, τ), we obtain an SCS T ∗ where:

[zip∗](N1, N2) = �2(box(−++, N1), box(−++, N2))

286 J. Endrullis et al.

[C] = μC.•(�(box(−++, C), box(−++, box(−+−, box(−−+, C)))))

→R2 μC.•(�(box(−++, C), box(−++−, box(−−+, C))))

→R2 μC.•(�(box(−++, C), box(−−++, C)))

→R1 μC.box(+−+,�(box(−++, C), box(−−++, C)))

→R3 μC.�(box(+−+, box(−++, C)), box(+−+, box(−−++, C)))

→2
R2 μC.�(box(+−+, C), box(+−−+, C))

→R4 �(μC.box(+−+, C), μC.box(+−−+, C))

→2
R6 �(src(∞), src(1))

→R7 src(1) .

Hence C is not productive in T ∗ (here it produces only one element).
Similarly, if we change the definition of even to even(x : y : σ) → x : even(σ),

giving rise to the translation [even](N) = box(−−+, N), then only the first two
elements of C can be evaluated.

6 Conclusion and Ongoing Research

We have shown that productivity is decidable for stream definitions that belong
to the format of SCSs. The class of SCSs contains definitions that cannot be
recognised automatically to be productive by the methods of [16,12,2,5,14,1] (e.g.
the stream constant definition in Ex. 1). These previous approaches established
criteria for productivity that are not applicable for disproving productivity; fur-
thermore, these methods are either applicable to general stream definitions, but
cannot be mechanised fully, or can be automated, but give a ‘productive’/‘don’t
know’ answer only for a very restricted subclass. Our approach combines the
features of being automatable and of obtaining a definite ‘productive’/‘not pro-
ductive’ decision for a rich class of stream definitions.

Note that we obtain decidability of productivity by restricting only the stream
function definition part of a stream definition (formalised as an orthogonal TRS),
while imposing no conditions on how the stream constant definition part makes
use of the stream functions. The restriction to weakly guarded stream function
definitions in SCSs is motivated by the wish to formulate an effectively recog-
nisable format of stream definitions for which productivity is decidable. More
general recognisable formats to which our method can be applied are possible.
If the requirement of a recognisable format is dropped, our approach allows to
show decidability of productivity for stream definitions that are based on stream
function specifications which can (quantitatively) faithfully be described by ‘ra-
tional’ I/O sequences. Finally, also lower and upper ‘rational’ bounds on the
production of stream functions can be considered to obtain computable crite-
ria for productivity and its complement. This will allow us to deal with stream
functions that depend quantitatively on the value of stream elements and data
parameters. All of these extensions of the result presented here are the subject
of ongoing research (see also [4]).

Productivity of Stream Definitions 287

The reader may want to visit http://infinity.few.vu.nl/productivity/ for
additional material. There, an implementation of the decision algorithm for pro-
ductivity of SCSs as well as an animation tool for pebbleflow nets can be found.
We have tested the usefulness and feasibility of the implementation of our deci-
sion algorithm on various SCSs from the literature, and so far have not encoun-
tered excessive run-times. However, a precise analysis of the run-time complexity
of our algorithm remains to be carried out.

Acknowledgement. For useful discussions we want to thank Clemens Kupke, Mi-
lad Niqui, Vincent van Oostrom, Femke van Raamsdonk, and Jan Rutten. Also,
we would like to thank the anonymous referees for their encouraging comments.

References

1. Buchholz, W.: A term calculus for (co-)recursive definitions on streamlike data
structures. Annals of Pure and Applied Logic 136(1-2), 75–90 (2005)

2. Coquand, Th.: Infinite Objects in Type Theory. In: Barendregt, H., Nipkow, T.
(eds.) TYPES 1993. LNCS, vol. 806, pp. 62–78. Springer, Heidelberg (1994)

3. Dijkstra, E.W.: On the productivity of recursive definitions, EWD749 (1980)
4. Endrullis, J., Grabmayer, C., Hendriks, D.: Productivity of stream definitions.

Technical report, Vrije Universiteit Amsterdam (2007), available via
http://infinity.few.vu.nl/productivity/

5. Hughes, J., Pareto, L., Sabry, A.: Proving the correctness of reactive systems using
sized types. In: POPL ’96, pp. 410–423 (1996)

6. Kahn, G.: The semantics of a simple language for parallel programming. Informa-
tion Processing, 471–475 (1974)

7. Kennaway, R., Klop, J.W., Sleep, M.R., de Vries, F.-J.: Transfinite reductions in
orthogonal term rewriting systems. Inf. and Comput. 119(1), 18–38 (1995)

8. Kennaway, R., Klop, J.W., Sleep, M.R., de Vries, F.-J.: Infinitary lambda calculus.
TCS 175(1), 93–125 (1997)

9. Klop, J.W., de Vrijer, R.: Infinitary normalization. In: We Will Show Them: Essays
in Honour of Dov Gabbay (2). College Publications, pp. 169–192 (2005), Item 95
at http://web.mac.com/janwillemklop/iWeb/Site/Bibliography.html

10. Lafont, Y.: Interaction nets. In: POPL ’90, pp. 95–108. ACM Press, New York
(1990)

11. Rutten, J.J.M.M.: Behavioural differential equations: a coinductive calculus of
streams, automata, and power series. TCS 308(1-3), 1–53 (2003)

12. Sijtsma, B.A.: On the productivity of recursive list definitions. ACM Transactions
on Programming Languages and Systems 11(4), 633–649 (1989)

13. Tait, W.W.: Intentional interpretations of functionals of finite type I. Journal of
Symbolic Logic 32(2) (1967)

14. Telford, A., Turner, D.: Ensuring the Productivity of infinite structures. Technical
Report 14-97, The Computing Laboratory, Univ. of Kent at Canterbury (1997)

15. Terese: Term Rewriting Systems. Cambridge Tracts in Theoretical Computer Sci-
ence, vol. 55. Cambridge University Press, Cambridge (2003)

16. Wadge, W.W.: An extensional treatment of dataflow deadlock. TCS 13, 3–15 (1981)

http://infinity.few.vu.nl/productivity/
http://infinity.few.vu.nl/productivity/
http://web.mac.com/janwillemklop/iWeb/Site/Bibliography.html

Multi-dimensional Packing with Conflicts

Leah Epstein1, Asaf Levin2, and Rob van Stee3,�

1 Department of Mathematics, University of Haifa, 31905 Haifa, Israel
lea@math.haifa.ac.il

2 Department of Statistics, The Hebrew University, Jerusalem 91905, Israel
levinas@mscc.huji.ac.il

3 Department of Computer Science, University of Karlsruhe,
D-76128 Karlsruhe, Germany

vanstee@ira.uka.de

Abstract. We study the multi-dimensional version of the bin packing
problem with conflicts. We are given a set of squares V = {1, 2, . . . , n}
with sides s1, s2, . . . , sn ∈ [0, 1] and a conflict graph G = (V, E). We seek
to find a partition of the items into independent sets of G, where each
independent set can be packed into a unit square bin, such that no two
squares packed together in one bin overlap. The goal is to minimize the
number of independent sets in the partition.

This problem generalizes the square packing problem (in which we
have E = ∅) and the graph coloring problem (in which si = 0 for all
i = 1, 2, . . . , n). It is well known that coloring problems on general graphs
are hard to approximate. Following previous work on the one-dimensional
problem, we study the problem on specific graph classes, namely, bipar-
tite graphs and perfect graphs.

We design a 2+ε-approximation for bipartite graphs, which is almost
best possible (unless P = NP). For perfect graphs, we design a 3.2744-
approximation.

1 Introduction

Two-dimensional packing of squares is a well-known problem, with applications
in stock cutting and other fields. In the basic problem, the input consists of a set
of squares of given sides. The goal is to pack the input into bins, which are unit
squares. A packed item receives a location in the bin so that no pair of squares
have an overlap. The goal is to minimize the number of used bins.

However, in computer related applications, items often represent processes.
These processes may have conflicts due to efficiency, fault tolerance or security
reasons. In such cases, the input set of items is accompanied with a conflict graph
where each item corresponds to a vertex. A pair of items that cannot share a bin
are represented by an edge in the conflict graph between the two corresponding
vertices.

Formally, the problem is defined as follows. We are given a set of squares
V = {1, 2, . . . , n} whose sides are denoted by s1, s2 . . . , sn and satisfy si ∈ [0, 1]
� Research supported by Alexander von Humboldt Foundation.

E. Csuhaj-Varjú and Z. Ésik (Eds.): FCT 2007, LNCS 4639, pp. 288–299, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Multi-dimensional Packing with Conflicts 289

for all 1 ≤ i ≤ n. We are also given a conflict graph G = (V,E). A valid output
is a partition of the items into independent sets of G, together with a packing
of the squares of each set into a unit square bin. The packing of a bin is valid if
no two squares that are packed together in this bin overlap. The goal is to find
such a packing with a minimum number of independent sets.

This problem is a generalization of the square packing problem [1], where
E = ∅, and of the graph coloring problem, where si = 0 for all i = 1, 2, . . . , n. It
is well known that coloring problems on general graphs are hard to approximate.
Following previous work on the one-dimensional problem, we study the problem
on specific graph classes, namely, bipartite graphs and perfect graphs.

For an algorithm A, we denote its cost on an input I by A(I), and simply
by A, if I is clear from the context. An optimal algorithm that uses a minimum
number of bins is denoted by opt. We consider the (absolute) approximation
ratio that is defined as follows. The (absolute) approximation ratio of A is the
infimum R such that for any input I, A(I) ≤ R · opt(I). We restrict ourselves
to algorithms that run in polynomial time. The asymptotic approximation ratio
is defined as be lim sup

n→∞
sup
I

{
A(I)

opt(I) |opt(I) = n
}

.

The one dimensional problem (where items are one-dimensional rather than
squares) was studied on these graph classes. Jansen and Öhring [12] introduced
the problem and designed approximation algorithms which work in two phases.
The first phase is a coloring phase, where the graph is colored using a mini-
mum number of colors. In the second phase, each independent set (which cor-
responds to a color class) is packed using a bin packing algorithm. Using this
method, they obtained a 2-approximation algorithm for bipartite graphs and a
2.7-approximation algorithm for perfect graphs.

In [6], improved algorithms were designed. It was shown that the approxima-
tion ratio of the algorithm of [12] for perfect graphs is actually approximately
2.691, and a 2.5-approximation algorithm was designed. The algorithm applies a
matching phase in which some pairs of relatively large items are packed in dedi-
cated bins, and applies the methods of [12] as above on the remaining subgraph.
An improved 1.75-approximation for bipartite conflict graphs was achieved by
applying the algorithm of [12] on inputs with large enough values of opt, while
finding better solutions for inputs with small values of opt.

Several papers [12,11,6] contain further results for additional graph classes.
The paper [12] considered a class of graphs, on which the precoloring exten-
sion problem (see [10,16,17]) can be solved in polynomial time. In this problem a
graph is to be colored using a minimum number of colors with the constraint that
some vertices already have given colors (a different color to each such vertex).
This class contains chordal graphs, interval graphs, forests, split graphs, comple-
ments of bipartite graphs, cographs, partial K-trees and complements of Meyniel
graphs. For these graphs, they designed a 2.5-approximation algorithm which is
based on solving the precoloring extension problem on the graph (where
the items of size larger than 1

2 are pre-colored each with a different color). In
[6] an improved 7

3 -approximation algorithm, which is based on a pre-processing

290 L. Epstein, A. Levin, and R. van Stee

phase in which subsets of at most three items are packed into dedicated bins,
was designed.

For all ε > 0, Jansen and Öhring [12] also presented a (2 + ε)-approximation
algorithm for one-dimensional packing with conflicts on cographs and partial
K-trees. Jansen [11] showed an asymptotic fully polynomial time approximation
scheme for the one-dimensional problem on d-inductive graphs, where d is a
constant. A d-inductive graph has the property that the vertices can be assigned
distinct numbers 1, . . . , n such that each vertex is adjacent to at most d lower
numbered vertices. This includes the cases of trees, grid graphs, planar graphs
and graphs with constant tree-width. Additional papers [20,18] studied the one-
dimensional problem on graphs that are unions of cliques, but their results are
inferior to work of Jansen and Öhring [12].

The inapproximability results known for the two-dimensional and one-dimen-
sional packing problems are as follows. Since standard bin packing (two-dimen-
sional packing of squares and one-dimensional packing, respectively), is a special
case of the problems with conflicts, the same inapproximability results holds for
them as well. This means that the one-dimensional problem cannot be approxi-
mated up to a factor smaller than 3

2 , unless P = NP , (due to a simple reduction
from the partition problem, see problem SP12 in [8]). Also, the two-dimensional
problem cannot be approximated up to a factor smaller than 2, unless P = NP ,
since it was shown in [15] that given a set of squares, it is NP -hard to check
whether these squares can be packed into one bin. These results hold for the
graph classes we consider since an empty graph (i.e., a graph with an empty
edge set) is both bipartite and perfect.

Square packing was studied in many variants. An algorithm of approximation
2 (best possible unless P = NP) was shown in [22]. Unlike coloring problems,
bin packing is often studied with respect to the asymptotic approximation ratio.
An asymptotic approximation scheme was given by Bansal et al. [1,2,5]. This
was the last result after a sequence of improvements [4,13,3,14,21,7].

Our results. In this paper we design approximation algorithms for bipartite
graphs and perfect graphs. For bipartite graphs, we give an algorithm of approx-
imation ratio 2+ε for any ε > 0. Note that unlike the one-dimensional case, this
is almost best possible unless P = NP . The algorithm chooses the best solution
out of several algorithms, which are designed for various values of opt. For per-
fect graphs we design algorithms which have clever pre-processing phases. We
analyze an algorithm which chooses the best solution out of the outputs of all
the algorithms we design. This results in an algorithm of approximation ratio at
most 3.2744.

2 Bipartite Graphs

In this section, we present an algorithm and analysis for the case where the
conflict graph is bipartite. This algorithm will use the well-known square packing
algorithm Next Fit Decreasing (NFD) [19] and a natural variant of it, First
Fit Decreasing (FFD), as subroutines. We begin by giving some properties of

Multi-dimensional Packing with Conflicts 291

these two algorithms in Section 2.1. In Section 2.2, we introduce a new algorithm
called SixEleven, which is a variation of FFD which packs items differently in
one special, crucial case. This helps to get a better area guarantee in a bin packed
with SixEleven. We then describe our main algorithm for the cases opt = 1 and
opt = 2 (Section 2.3), opt = 3 (Section 2.4), opt is a constant k > 3 (Section
2.5) and finally the case where opt is not constant (Section 2.6). Since the value
of opt is unknown to the algorithm, the algorithm needs to apply all these
possibilities and among these that output a valid solution, choose the one with
the smallest cost. We will therefore assume that opt is known to the algorithm
(but make sure that the number of different algorithms applied is constant).

2.1 NFD and FFD

NFD packs items in slices, which are rectangular regions of the bin of width 1
that are stacked on top of each other starting from the bottom of the bin. The
height of a slice is defined as the side of the first item packed into it. Each item
is packed immediately to the right of the previously packed item, or in the next
slice in case it does not fit in the current slice. When a new slice does not fit in
the current bin, a new bin is opened for it. FFD works the same, but tries to put
each new item in each slice that has been opened so far (to the right of the last
item in the slice) instead of only trying the last slice or a new one. Regarding
NFD and FFD, we have the following results.

Lemma 1 (Meir & Moser [19]). Let L be a list of squares with sides x1 ≥
x2 ≥ . . . Then L can be packed in a rectangle of height a ≥ x1 and width b ≥ x1

using Next Fit Decreasing if one of the following conditions is satisfied:

– the total area of items in L is at most x2
1 + (a− x1)(b − x1).

– the total area of items in L is at most ab/2.

In the following, we will abuse notation and use xi to denote both the ith item
in the input and its side, i.e., the length of one of its sides.

Lemma 2 (van Stee [22]). Consider a bin that is packed by NFD, and suppose
the largest item in this bin has side at most 1/3. If after packing this bin, there
are still unpacked items with side at most 1

3 left, then the total area of the items
in the bin is at least 9/16.

2.2 Algorithm SixEleven

Algorithm SixEleven is displayed in Figure 1. It has the following properties.

Lemma 3. Consider a set of squares where the largest item has side strictly more
than 1/3. If the two largest items have total side (i.e., sum of sides) at most 1, and
the largest item that remains unpacked has side at most 1/5, then SixEleven packs
at least a total area of 6/11 in this bin, unless it runs out of items.

Define a large item to be an item with side more than 1/88. An item that is not
large is said to be a small item. A large item is huge if its side is more than 1/3.

292 L. Epstein, A. Levin, and R. van Stee

Input: A list of squares {x1, . . . , xn}, sorted in
order of nonincreasing side
Output: A packing of the input or a prefix of it in
a single bin.

1. If x1 + x2 + x3 > 1, but x1 + x2 + x4 ≤ 1,
pack the three largest items as shown on the
right. Pack the area A using NFD starting
from the fourth item, then continue in area
B with NFD (considering this to be a single
slice), and finally pack area C using NFD.

2. Else, use FFD.

3 B

C

1
2

A

Fig. 1. Algorithm SixEleven

Definition 1. A good set of squares is a set S with at least one of the following
properties:

1. The two largest items in S have total side at most 1, and the total area of
the large items is at most 6/11.

2. S contains only one large item.

Theorem 1. For any input set S which is good, SixEleven either packs S in
one bin, or packs at least an area of 6/11 in the first bin.

This Theorem implies that when SixEleven packs a good set, all the large items
in the set are packed in the first bin.

2.3 The Algorithm for OPT = 1 and OPT = 2

Recall that the conflict graph is bipartite. Thus, it is 2-colorable in all cases. If
opt = 1, we get that all items can be packed into a single bin, and therefore the
conflict graph is empty. We can apply the 2-approximation from [22].

If opt = 2, we act as follows. There are at most 18 huge items. Consider all
partitions (a constant number) of the huge items into two sets L1 and L2. For
the analysis it suffices to consider the iteration of the correct guess. So each such
set of huge items can be packed with one bin (and we can find such a packing
using the algorithm from Bansal et al. [1], which gives a constant time algorithm
to pack a constant number of squares into a bin, is possible), and the coloring
of the huge items (where the color of an item is determined by the set it is in)
can be extended to a 2-coloring of the entire input as explained below.

For each connected component that contains a huge item the 2-coloring is
defined uniquely (unless it contains at least two huge items and we get that
it is impossible to extend the coloring accordingly, in this case the partition
of the huge items is incorrect), and it remains to decide on the 2-coloring of
the connected components of the remaining items. For this problem we apply a
similar idea to the one in [6] on the 1-dimensional case, only the partition into

Multi-dimensional Packing with Conflicts 293

two sets must be done more carefully here. For each connected component we
find its 2-coloring and we need to decide which color is red and which color is blue
(in each of the connected components). We see the problem of balancing the area
of blue items and red items as a load balancing problem. Let t be the number
of connected components. For each connected component i, let ci and di be the
areas of items of the two colors in component i, we define pi = max{ci, di} and
Δ(i) = min{ci, di}. Clearly, each color has in total an area of at least

∑t
i=1Δ(i).

We define a load balancing problem on the residual area, i.e., we would like to
balance the loads pi − Δ(i) between two “machines”, where assigning “job” i
to machine 1 means that in component i, the color class of larger area got red
color, and assigning “job” i to machine 2 means that in component i, the color
class of larger area got blue color. Some “jobs” are pre-assigned to a machine if
the coloring of this component is determined by the huge items. Therefore, we
have a restricted assignment problem. This is a special case of load balancing on
two unrelated machines, which admits an FPTAS, see [9].

Consider an optimal solution to the original bin packing problem. The total
size of the items that are packed with Li for i = 1, 2 is at most 1. Since we are
using an FPTAS, where some area may be removed, the totals remain at most
1 and the total size of the larger set of items is at most 1.006 (for ε = 0.006).

Next we show that we can apply an algorithm based on SixEleven for each
color class, which uses at most two bins (and four in total). First consider the
case where the set of the huge items in this color has size at least 4/9. Then the
huge items use at most one bin (using the packing of the algorithm from [1]),
and for the other items, if by packing them using SixEleven, we need at least
two bins, then we have an area guarantee of at least 9/16 in the second bin by
Lemma 2, and this is a contradiction as 4/9 + 9/16 > 1.006.

On the other hand, if the total area of the huge items is at most 4/9, then we
use SixEleven on the complete color class. We would like to show that the area
guarantee of the first packed bin is at least 4/9, if there is a second bin. If there
is a single huge item and it has side at least 2/3 we are done. Otherwise, the
huge item can fit next to any other item. If there are at least two huge items,
since the huge items can fit into one bin, the sum of sides of the largest two
items in at most 1. We get from the proof of Lemma 3 that if an item does not
fit into the first bin, then the area guarantee is 6/11 in cases 1,2,4, no matter
what the size of the next item is, and a guarantee of 1/2 in case 3, unless the bin
contains exactly four items. Since the next item had side of at most 1/3, we get
a guarantee of 4

9 in this case (similarly to the proof for the case that this item is
bounded by 1/5). So if there is a second bin, the first one has an area guarantee
of 4

9 . If we are using three bins, then the second bin again has an area guarantee
of 9/16 by Lemma 2, which again leads to a contradiction.

2.4 The Algorithm for OPT = 3

We call items with side in (1/3, 1/2] items of type 2, and larger items are type
1. In this section, items with side at most 1/88 are called small, and the others
are large. If opt = 3, there are at most 3 ·872 large items. In constant time, find

294 L. Epstein, A. Levin, and R. van Stee

– A two-coloring of these items that can be extended to a valid coloring for
the entire input. This can be done by standard methods. We color the entire
conflict graph ignoring the sizes of items.

– A packing of these items in at most three bins. This can be again done by
checking all possible partitions of large items into three sets, and application
of the algorithm of [1] on each set to pack it into a bin.

Note that the two results are unrelated and we do not require the packing to be
consistent with the two-coloring. There are two cases. First, if the total area of
the small items is at most 2 · (87

88)2 ≈ 1.9548, do the following.

1. Use an arbitrary valid two-coloring for the small items.
2. Pack the largest set of small items in 2 bins, and the smallest set in at most

1 bin, using NFD.
3. Pack the large items in at most three bins according to the packing found

above.

To see that Step 2 can indeed by applied, note that the smallest set has area
at most (87

88)2, and the largest set has area at most twice this. The first bin
packed for the largest set has area packed at least (87

88)2 by Lemma 1, leaving
at most the same amount for the second bin, which can be packed there using
NFD again by Lemma 1.

If the total area of the small items is more than 2 · (87
88)2, consider the packing

for the large items (in at most 3 bins) that we have found. This packing gives
us (at most) three sets, denoted by L1, L2, L3. Each set may contain items of
both colors. The total area of these items is at most 1.0452. In total, there are
at most three items with side more than 1/2, since all items can be packed in
three bins.

We are going to repack these items so that each bin contains only items of
one color. In this way we ensure that we do not pack conflicting items together.
We next show the following auxiliary claim.

Claim. All large items can be packed in at most four bins. For any color, if not
all items of that color are packed with large items, then the bins with large items
have area guarantee of at least 6/11.

We now have two cases. First, one of the colors (say blue) might be good. This
means that if we pack all blue items using SixEleven, by Theorem 1 SixEleven
packs an area of at least 6/11 in the first blue bin (unless perhaps if it needs
only one bin for all blue items). By Lemma 1, the area guarantee of any other
bin for this color (except, always, the last one) is (87

88)2 > 0.977. This gives us
the following area guarantees.

Bins needed for blue items 1 2 3 4
Total area guarantee of blue items packed 6/11 1.5228 2.5002 3
Maximum possible area of red items 3 2.4546 1.4772 0.4998
Packed in red bin 1, 2, 3 6/11 6/11 6/11 1/2
Packed in red bin 4, 5 (if needed) 0.977 0.977 - -

Multi-dimensional Packing with Conflicts 295

The area guarantees for the red bins follow from Claim 2.4. Using this table,
it is easy to verify that in this case (i.e., if the set of blue items is good) we never
need more than six bins.

We give one example of such a verification. Suppose the total area of the blue
items is 1.6, and the set of blue items is good. Then by the above table, we need
at most three bins for the blue items. Since the total area guarantee for the first
three red bins is 18/11 > 1.4 = 3 − 1.6, we need at most three bins for the red
items as well, so at most six bins in total.

If neither color is good, the large blue items are packed into two bins (either
by SixEleven, or in some other way). In this case by Claim 2.4, we can pack the
red items with area guarantees of 6/11 in the first two bins. Therefore, all large
red items are packed in the first two bins since 12/11 > 1.0452. Therefore, any
further red bin that is packed using SixEleven (which uses FFD in this case) will
again have an area guarantee of (87

88)2 > 0.977 by Lemma 1. Overall we find the
following table.

Bins needed for blue items 1 2 3 4
Total area guarantee of blue items packed 6/11 12/11 2.068 3
Maximum possible area of red items 3 2.4546 1.909 0.932
Packed in red bin 1, 2 6/11 6/11 6/11 6/11
Packed in red bin 3, 4 (if needed) 0.977 0.977 0.977 -

Again, it can be verified that this is sufficient to pack all items in at most six
bins in all cases.

2.5 The Algorithm for OPT = k > 3

For any constant value k of OPT, we can find using Lemma 1 a value ε such
that the area guarantee for NFD on items of side at most ε is at least (k −
1.0452)/(k − 1) = 1 − 0.0452

k−1 . Then, if the small items have total area at most
k−1.0452, we can pack them into at most k bins using NFD, and find an optimal
packing for the items with side larger than ε using complete enumeration.

Else, the items with side at least ε have total area at most 1.0452. The proof
of Claim 1 shows that in case there are at most three items of type 1 we need at
most four bins for all large items. We now show that we need at most 2k bins for
all the items. If SixEleven needs more bins for both colors, this follows because
the area guarantee in the four bins with large items is 24/11, so a total area of
at most k − 24

11 remains to be packed, and we have

k − 24
11

< (2k − 6)
(

1− 0.0452
k − 1

)
for k ≥ 4. (1)

So we need at most 2k − 5 bins for the small items of both colors: we lose (at
most) one bin compared to (1) because there are two colors. (If there are less than
four bins with large items, the area guarantee of the remaining bins improves.)

If SixEleven has already packed one color, then the small items of the other
color have total area at most min(k, k − 6

11 (j − 2)) where j ≤ 4 is the number

296 L. Epstein, A. Levin, and R. van Stee

of bins packed so far (there may be two almost empty bins that contain large
items, since we have two colors). These items can be packed in at most 2k − j
bins for k ≥ 4, since

min(k, k− 6
11

(j−2)) < (2k− j)
(

1− 0.0452
k − 1

)
for k ≥ 4, j = 0, . . . , 4. (2)

The only case that is not covered yet is the case where there are four items
of type 1 (since there cannot be more than four such items because the total
size of items with side at least ε is at most 1.0452). If all these items are red
(say), the blue items are good, and we pack the large red items in four bins.
In case we need more bins for both colors, we now have five bins with area
guarantee 6/11, and we can pack the remaining items in at most 2k − 5 bins
since k − 30

11 < (2k − 6)(1 − 0.0452
k−1) for k ≥ 4. If one color is already packed, we

can pack the remaining items into at most 2k − 6 bins by (1) if we packed five
bins so far, and into at most 2k − j bins by (2) if we packed j < 5 bins so far.

If only one item of type 1 is blue, the blue items are still good. In this case the
red items are also good if we exclude the two largest red items, so we need only
four bins for all large items (again packing the red items as in Case 1A). Finally,
if there are two blue items of type 1, we can pack the large items of each color into
two bins, since removing the largest item of either color leaves a good set.

2.6 The Algorithm for Large OPT

Consider a fixed value ε > 0. There are two cases: if ε · opt > 2, color the items
with two colors, and on each of them apply the APTAS of [1] for square packing.
Since the minimum number of bins required to pack each color class is no larger
than opt, it needs only at most 2((1 + ε)opt + 1) ≤ (2 + 3ε)opt bins. Else,
opt ≤ 2/ε which is a constant, so use the method from the previous section
and use at most 2opt bins. Note that for the case ε · opt > 2, we run just one
algorithm, so in total we run at most 2/ε + 1 polynomial-time algorithms and
take the one that gives the best output.

3 An Algorithm for Perfect Graphs

3.1 An Algorithm for Independent Sets

Given an independent set of items, we use the following packing algorithm.

Algorithm Pack Independent Set (PackIS):

1. As long as there exists an item of side in (1
2 , 1], pack such an item in a bin.

2. As long as the number of items of side in (1
3 ,

1
2] is at least four, pack four

such items in a bin.
3. As long as the number of items of side in (1

4 ,
1
3] is at least 9, pack 9 such

items in a bin.
4. As long as the number of items of side in (1

5 ,
1
4] is at least 16, pack 16 such

items in a bin.

Multi-dimensional Packing with Conflicts 297

5. If there are no items of side in (1
3 ,

1
2] left, pack the remaining items using

NFD and halt.
6. Pack all items of side in (0, 1

3] using NFD. Call the resulting set of bins S,
and let m = |S|. Let sa be the side of the first item of bin m of S.
Take bin m of S and remove all items from it. Pack its contents together with
the remaining larger items (of side in (1

3 ,
1
2]), possibly using a second bin, by

applying algorithm SixEleven on the first bin, and NFD on the second bin.
The items packed in the second adapted bin are those which did not fit into
the first adapted bin.

If a second bin is needed for the adapted packing and sa ≤ 1
5 , keep the

first adapted bin packed with the items of side in (1
3 ,

1
2]. Re-pack all other

items (the ones in S plus the ones in the second adapted bin) once again
with NFD. Note that this may affect the packing of bin m−1. Otherwise, the
current packing (S without bin m together with one or two adapted bins) is
given as output.

Note that there is at most one bin packed in the last step whose first packed
item has side in the interval (1

k+1 ,
1
k], for k = 2, 3, 4, 5. To analyze our algorithm,

we use three parameters, 8
5 ≤ r ≤ 16

9 , 1
4 ≤ μ ≤ 2

7 and 1
9 ≤ ν ≤ 1

7 . These bounds
imply

ν ≥ r

16
and μ ≥ r

9
. (3)

We moreover require

r
43
99

+ μ ≥ 1, r
5
16

+ 4ν ≥ 1, r
331
648

+ ν ≥ 1. (4)

We assign weights as follows.

side (1
2 , 1] (1

3 ,
1
2] (1

4 ,
1
3] (0, 1

4]
weight 1 μ + r(x2 − 1

9) ν + r(x2 − 1
16) r · x2

expansion 1 r + (μ− r
9)/x2 r + (ν − r

16)/x2 r

Expansion is defined as the minimum ratio of weight over size of an item. By
(3), it can be seen that the expansion of any item of side at most 1

2 is at least r,
so it is at least 8

5 .

Claim. Let � be the number of bins created by Algorithm PackIS applied on a
given color class. The sum of weights of items in this color class is at least �− 1.

3.2 The General Algorithm

Algorithm Matching Preprocessing (PM):

1. Define the following auxiliary bipartite graph. One set of vertices consists of
all items of side in (1

2 , 1]. The other set of vertices consists of items of side
in (1

4 ,
1
2]. An edge (a, b) between vertices of items of sides sa > 1

2 and sb ≤ 1
2

occurs if both following conditions hold.

298 L. Epstein, A. Levin, and R. van Stee

(a) sa + sb ≤ 1.
(b) (a, b) /∈ E(G).
That is, if these two items can be placed in a bin together. If this edge occurs,
we give it the cost μ if sb ≥ 1

3 and ν otherwise.
2. Find a maximum cost matching in the bipartite graph.
3. Each pair of matched vertices is removed from G and packed into a bin

together.
4. Let G′ denote the induced subgraph over the items that were not packed in

the preprocessing (i.e., during Steps 1,2,3).
5. Compute a feasible coloring of G′ using χ(G′) colors.
6. For each color class, apply the PackIS algorithm described above .

We analyze algorithm PM using weighting functions. Denote the weight func-
tion defined in the analysis of Algorithm PackIS for independent sets by w1. We
define the weight function for items packed into bins which are created in the
preprocessing to be 1 − μ for an item of side in (1

2 , 1] which is packed with an
item of side in (1

3 ,
1
2], and 1 − ν otherwise (i.e., if it is packed with an item of

side in
(

1
4 ,

1
3

]
).

We define a second weight function w2 which is based on an optimal pack-
ing opt of the entire input which we fix now. This weight function is defined
differently from w1 only for items of side in (1

2 , 1]. Specifically, for a given such
item x, consider the bin in which opt packs x. If all items in this bin are of
side in (0, 1

4], we define w2(x) = 1. If the bin contains at least one other item of
side larger than 1

3 , we define w2(x) = 1 − μ and otherwise w2(x) = 1− ν. Note
that matching each item of side in (1

2 , 1], which got a weight strictly smaller
than 1 with respect to w2, with the largest item that shares its bin in opt, gives
a valid matching in the auxiliary bipartite graph. Therefore, if Wi denotes the
total weight of all items with respect to the weight function wi, then we have
W1 ≤W2.

Theorem 2. The approximation ratio of PM is at most 3.277344.

Running an alternative algorithm which combines five possible preprocessing
steps instead of just one improves the upper bound on the approximation ratio
to 3.2743938. Details for this are omitted due to space constraints.

References

1. Bansal, N., Correa, J., Kenyon, C., Sviridenko, M.: Bin packing in multiple di-
mensions: Inapproximability results and approximation schemes. Mathematics of
Operations Research 31(1), 31–49 (2006)

2. Bansal, N., Sviridenko, M.: New approximability and inapproximability results for
2-dimensional packing. In: Proceedings of the 15th Annual Symposium on Discrete
Algorithms, pp. 189–196. ACM/SIAM (2004)

3. Caprara, A.: Packing 2-dimensional bins in harmony. In: Proc. 43rd Annual Sym-
posium on Foundations of Computer Science, pp. 490–499 (2002)

Multi-dimensional Packing with Conflicts 299

4. Chung, F.R.K., Garey, M.R., Johnson, D.S.: On packing two-dimensional bins.
SIAM Journal on Algebraic and Discrete Methods 3, 66–76 (1982)

5. Correa, J., Kenyon, C.: Approximation schemes for multidimensional packing. In:
Proceedings of the 15th ACM/SIAM Symposium on Discrete Algorithms, pp. 179–
188. ACM/SIAM (2004)

6. Epstein, L., Levin, A.: On bin packing with conflicts. In: Proc. of the 4th Workshop
on Approximation and online Algorithms (WAOA2006), pp. 160–173 (2006)

7. Epstein, L., van Stee, R.: Optimal online bounded space multidimensional pack-
ing. In: Proc. of 15th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA’04), pp. 207–216. ACM Press, New York (2004)

8. Garey, M.R., Johnson, D.S.: Computers and intractability. W. H. Freeman and
Company, New York (1979)

9. Horowitz, E., Sahni, S.: Exact and approximate algorithms for scheduling noniden-
tical processors. Journal of the ACM 23(2), 317–327 (1976)

10. Hujter, M., Tuza, Z.: Precoloring extension, III: Classes of perfect graphs. Combi-
natorics, Probability and Computing 5, 35–56 (1996)

11. Jansen, K.: An approximation scheme for bin packing with conflicts. Journal of
Combinatorial Optimization 3(4), 363–377 (1999)

12. Jansen, K., Öhring, S.: Approximation algorithms for time constrained scheduling.
Information and Computation 132, 85–108 (1997)

13. Kenyon, C., Rémila, E.: A near optimal solution to a two-dimensional cutting stock
problem. Mathematics of Operations Research 25(4), 645–656 (2000)

14. Kohayakawa, Y., Miyazawa, F.K., Raghavan, P., Wakabayashi, Y.: Multidimen-
sional cube packing. Algorithmica 40(3), 173–187 (2004)

15. Leung, J.Y.-T., Tam, T.W., Wong, C.S., Young, G.H., Chin, F.Y.L.: Packing
squares into a square. Journal on Parallel and Distributed Computing 10, 271–
275 (1990)

16. Marx, D.: Precoloring extension, http://www.cs.bme.hu/dmarx/prext.html
17. Marx, D.: Precoloring extension on chordal graphs. In: Graph Theory in Paris.

Proceedings of a Conference in Memory of Claude Berge, Trends in Mathematics,
pp. 255–270. Birkhäuser (2007)

18. McCloskey, B., Shankar, A.: Approaches to bin packing with clique-graph conflicts.
Technical Report UCB/CSD-05-1378, EECS Department, University of California,
Berkeley (2005)

19. Meir, A., Moser, L.: On packing of squares and cubes. J. Combinatorial Theory
Ser. A 5, 126–134 (1968)

20. Oh, Y., Son, S.H.: On a constrained bin-packing problem. Technical Report CS-
95-14, Department of Computer Science, University of Virginia (1995)

21. Seiden, S.S., van Stee, R.: New bounds for multi-dimensional packing. Algorith-
mica 36(3), 261–293 (2003)

22. van Stee, R.: An approximation algorithm for square packing. Operations Research
Letters 32(6), 535–539 (2004)

http://www.cs.bme.hu/dmarx/prext.html

On Approximating Optimal Weighted Lobbying,

and Frequency of Correctness Versus
Average-Case Polynomial Time�

Gábor Erdélyi1, Lane A. Hemaspaandra2, Jörg Rothe1, and Holger Spakowski1

1 Institut für Informatik, Universität Düsseldorf, 40225 Düsseldorf, Germany
{erdelyi,rothe,spakowski}@ccc.cs.uni-duesseldorf.de

2 Department of Computer Science, University of Rochester, Rochester,
NY 14627, USA

www.cs.rochester.edu/u/www/u/lane/

Abstract. We investigate issues regarding two hard problems related
to voting, the optimal weighted lobbying problem and the winner prob-
lem for Dodgson elections. Regarding the former, Christian et al. [2]
showed that optimal lobbying is intractable in the sense of parameter-
ized complexity. We provide an efficient greedy algorithm that achieves
a logarithmic approximation ratio for this problem and even for a more
general variant—optimal weighted lobbying. We prove that essentially
no better approximation ratio than ours can be proven for this greedy
algorithm.

The problem of determining Dodgson winners is known to be
complete for parallel access to NP [11]. Homan and Hemaspaandra [10]
proposed an efficient greedy heuristic for finding Dodgson winners with
a guaranteed frequency of success, and their heuristic is a “frequently
self-knowingly correct algorithm.” We prove that every distributional
problem solvable in polynomial time on the average with respect to the
uniform distribution has a frequently self-knowingly correct polynomial-
time algorithm. Furthermore, we study some features of probability weight
of correctness with respect to Procaccia and Rosenschein’s junta distri-
butions [15].

1 Introduction

Preference aggregation and election systems have been studied for centuries in
social choice theory, political science, and economics. Recently, these topics have
become the focus of attention in various areas of computer science as well, such
as artificial intelligence (especially with regard to distributed AI in multiagent
settings), systems (e.g., for spam filtering), and computational complexity.
� Supported in part by DFG grants RO 1202/9-1 and RO 1202/9-3, NSF grant CCF-

0426761, the Alexander von Humboldt Foundation’s TransCoop program, and a
Friedrich Wilhelm Bessel Research Award. Work done in part while the second
author was visiting Heinrich-Heine-Universität Düsseldorf. Some of the results of
Section 3 of this paper were presented at the First International Workshop on Com-
putational Social Choice, December 2006.

E. Csuhaj-Varjú and Z. Ésik (Eds.): FCT 2007, LNCS 4639, pp. 300–311, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Approximating Optimal Weighted Lobbying 301

This paper’s topic is motivated by two hard problems that both are related
to voting, the optimal weighted lobbying problem and the winner problem for
Dodgson elections. Regarding the former problem, Christian et al. [2] defined its
unweighted variant as follows: Given a 0-1 matrix that represents the No/Yes
votes for multiple referenda in the context of direct democracy, a positive in-
teger k, and a target vector (of the outcome of the referenda) of an external
actor (“The Lobby”), is it possible for The Lobby to reach its target by chang-
ing the votes of at most k voters? They proved the optimal lobbying problem
complete for the complexity class W[2], thus providing strong evidence that it is
intractable even for small values of the parameter k. However, The Lobby might
still try to find an approximate solution efficiently. We propose an efficient greedy
algorithm that establishes the first approximation result for the weighted version
of this problem in which each voter has a price for changing his or her 0-1 vector
to The Lobby’s specification. Our approximation result applies to Christian et
al.’s original optimal lobbying problem (in which each voter has unit price), and
also provides the first approximation result for that problem. In particular, we
achieve logarithmic approximation ratios for both these problems.

The Dodgson winner problem was shown NP-hard by Bartholdi, Tovey, and
Trick [1]. Hemaspaandra, Hemaspaandra, and Rothe [11] optimally improved
this result by showing that the Dodgson winner problem is complete for PNP

‖ ,
the class of problems solvable via parallel access to NP. Since these hardness
results are in the worst-case complexity model, it is natural to wonder if one
at least can find a heuristic algorithm solving the problem efficiently for “most
of the inputs occurring in practice.” Homan and Hemaspaandra [10] proposed
a heuristic, called Greedy-Winner, for finding Dodgson winners. They proved
that if the number of voters greatly exceeds the number of candidates (which in
many real-world cases is a very plausible assumption), then their heuristic is a
frequently self-knowingly correct algorithm, a notion they introduced to formally
capture a strong notion of the property of “guaranteed success frequency” [10].
We study this notion in relation with average-case complexity. We also investi-
gate Procaccia and Rosenschein’s notion of deterministic heuristic polynomial
time for their so-called junta distributions, a notion they introduced in their
study of the “average-case complexity of manipulating elections” [15]. We show
that under the junta definition, when stripped to its basic three properties, ev-
ery NP-hard set is ≤p

m-reducible to a set in deterministic heuristic polynomial
time relative to some junta distribution and we also show a very broad class of
sets (including many NP-complete sets) to be in deterministic heuristic polyno-
mial time relative to some junta distribution. We note (see also [17]) that the
“average-case complexity” results of [15] are not really average-case complexity
results (in the sense of being about some sort of averaging of running times), but
rather are frequency of correctness—or, to be more precise, probability weight
of correctness—results (as are also the results of Homan and Hemaspaandra).

This paper is organized as follows. In Section 2, we propose and analyze an
efficient greedy algorithm for approximating the optimal weighted lobbying prob-
lem. In Section 3, we show that every problem solvable in average-case polynomial

302 G. Erdélyi et al.

time with respect to the uniform distribution has a frequently self-knowingly cor-
rect polynomial-time algorithm, and we study Procaccia and Rosenschein’s junta
distributions. The heuristic Greedy-Score on which Greedy-Winner is based [10],
some technical definitions from average-case complexity theory [13,9,18], and the
proofs omitted due to space constraints can be found in the full version of this
paper [6].

2 Approximating Optimal Weighted Lobbying

2.1 Optimal Lobbying and Its Weighted Version

Christian et al. [2] introduced and studied the following problem. Suppose there
are m voters who vote on n referenda, and there is an external actor, which is
referred to as “The Lobby” and seeks to influence the outcome of these referenda
by making voters change their votes. It is assumed that The Lobby has complete
information about the voters’ original votes, and that The Lobby’s budget allows
for influencing the votes of a certain number, say k, of voters. Formally, the
Optimal-Lobbying problem is defined as follows: Given an m×n 0-1 matrix V
(whose rows represent the voters, whose columns represent the referenda, and
whose 0-1 entries represent No/Yes votes), a positive integer k ≤ m, and a
target vector x ∈ {0, 1}n, is there a choice of k rows in V such that by changing
the entries of these rows the resulting matrix has the property that, for each j,
1 ≤ j ≤ n, the jth column has a strict majority of ones (respectively, zeros) if
and only if the jth entry of the target vector x of The Lobby is one (respectively,
zero) [2]?

Christian et al. [2] showed that Optimal-Lobbying (with respect to parame-
ter k, the number of voters influenced by The Lobby) is complete for the com-
plexity class W[2]; see, e.g., Downey and Fellows [4] and Flum and Grohe [7] for
background on the theory of parameterized complexity and in particular for the
definition of W[2].

This result is considered strong evidence that Optimal-Lobbying is intractable,
even for small values of the parameter k. However, even though the optimal goal
of The Lobby cannot be achieved efficiently, it might be approximable within
some factor. That is, given an m×n 0-1 matrix V and a target vector x ∈ {0, 1}n,
The Lobby might try to reach its target by changing the votes of as few voters
as possible.

We consider the more general problem Optimal-Weighted-Lobbying, where
we assume that influencing the 0-1 vector of each voter vi exacts some price,
price(vi) ∈ Q, where Q denotes the set of nonnegative rational numbers. In
this scenario, The Lobby seeks to minimize the amount of money spent to
reach its goal. The problem Optimal-Lobbying (redefined as an optimization
problem rather than a parameterized problem) is the unit-prices special case
of Optimal-Weighted-Lobbying, i.e., where price(vi) = 1 for each voter vi. It
follows that Optimal-Weighted-Lobbying (redefined as a parameterized rather
than an optimization problem, where the parameter is The Lobby’s budget of
money to be spent) inherits the W[2]-hardness lower bound from its special case

Approximating Optimal Weighted Lobbying 303

Optimal-Lobbying, and that the logarithmic approximation algorithm we build
for Optimal-Weighted-Lobbying will provide the same approximation ratio for
Optimal-Lobbying.

In the remainder of this section, we describe and analyze an efficient greedy
algorithm for approximating Optimal-Weighted-Lobbying.

2.2 A Greedy Algorithm for Optimal Weighted Lobbying

Let a matrix V ∈ {0, 1}m×n be given, where the columns r1, r2, . . . , rn of V
represent the referenda and the rows v1, v2, . . . , vm of V represent the voters.
Without loss of generality, we may assume that The Lobby’s target vector is of
the form x = 1n (and thus may be dropped from the problem instance), since
if there is a zero in x at position j, we can simply flip this zero to one and also
flip the corresponding zeros and ones in column rj .

For each column rj , define the deficit dj to be the minimum number of zeros
that need to be flipped to ones such that there are strictly more ones than zeros
in this column. Let D0 =

∑n
j=1 dj be the sum of all initial deficits.

Figure 1 gives the greedy algorithm, which proceeds by iteratively choosing
a most “cost-effective” row of V and flipping to ones all those zeros in this row
that belong to columns with a positive deficit, until the deficits in all columns
have decreased to zero. We assume that ties between rows with equally good cost-
effectiveness are broken in any simple way, e.g., in favor of the tied vi with lowest i.

Let R be the set of columns of V whose deficits have already vanished at
the beginning of an iteration, i.e., all columns in R already have a strict ma-
jority of ones. Let vi�Rc denote the entries of vi restricted to those columns not
in R, and let #0(vi�Rc) denote the number of zeros in vi�Rc . (For i such that
#0(vi�Rc) = 0, we consider price(vi)/#0(vi�Rc) to be +∞.) During an iteration,
the cost per flipped entry in row vi (for decreasing the deficits in new columns by
flipping vi’s zeros to ones) is price(vi)/#0(vi�Rc). We say a voter vi is more cost-
effective than a voter vj if vi’s cost per flipped entry is less than vj ’s. When our
algorithm chooses to alter a row vi, we will think of its price being distributed
equally among the new columns with decreased deficit, and at that instant will
permanently associate with every flipped entry, ek, in that row its portion of the
cost, i.e., cost(ek) = price(vi)/#0(vi�Rc).

Clearly, the greedy algorithm in Figure 1 always stops, and its running time
is polynomial, since the while loop requires only linear (in the input size) time
and has to be executed at most D0 =

∑n
j=1 dj ≤ n · 2(m + 1)/23 times (note

that at most 2(m+ 1)/23 flips are needed in each column to achieve victory for
The Lobby’s position).

Now, enumerate the D0 entries of V that have been flipped in the order in
which they were flipped by the algorithm. Let e1, e2, . . . , eD0 be the resulting
enumeration. Let OPT be the money that would be spent by The Lobby for an
optimal choice of voters such that its target is reached.

Lemma 1. For each k ∈ {1, 2, . . . , D0}, we have cost(ek) ≤ OPT/(D0− k+ 1).

The proof of Lemma 1 can be found in the full version of this paper [6].

304 G. Erdélyi et al.

1. Input: A matrix V ∈ {0, 1}m×n.
2. Initialize:

Compute the deficits dj , 1 ≤ j ≤ n.
D ←∑n

j=1 dj . /∗ Initially, D = D0. ∗/
X ← ∅.

3. While D �= 0 do
Let R be the set of columns rj with dj = 0.
Find a voter whose cost-effectiveness is greatest, say vi.
Let γi = price(vi)/#0(vi
Rc).
Choose vi and flip all zeros in vi
Rc to ones.
For each flipped entry e in vi, let cost(e) = γi.

/∗ cost(e) will be used in our analysis. ∗/
X ← X ∪ {i}.
dj ← dj − 1, for each column rj for which a zero was flipped.
D ←∑n

j=1 dj .
4. Output: X.

Fig. 1. Greedy algorithm for Optimal-Weighted-Lobbying

Theorem 1. The greedy algorithm presented in Figure 1 approximates the prob-
lem Optimal-Weighted-Lobbying with approximation ratio at most

D0∑
i=1

1
i
≤ 1 + lnD0 ≤ 1 + ln

(
n

⌈
m+ 1

2

⌉)
.

Proof. The total price of the set of voters X picked by the greedy algo-
rithm is the sum of the costs of those entries flipped. That is, price(X) =∑

i∈X price(vi) =
∑D0

k=1 cost(ek) ≤
(

1 + 1
2 + · · ·+ 1

D0

)
·OPT, where the last in-

equality follows from Lemma 1. ❑

Since the input size is lower-bounded by m ·n, Theorem 1 establishes a logarith-
mic approximation ratio for Optimal-Weighted-Lobbying (and also for Optimal-
Lobbying). Note that the proof of Theorem 1 establishes an approximation ratio
bound that is (sometimes nonstrictly) stronger than

∑D0
i=1 1/i. In particular, if

the number of zeros flipped in successive iterations of the algorithm’s while loop
are �1, �2, . . . , �p, where �1 + �2 + · · ·+ �p = D0, then the proof gives a bound on
the approximation ratio of

�1
D0

+
�2

D0 − �1
+ · · ·+ �p

D0 − (�1 + · · ·+ �p−1)
=

p∑
j=1

�j

D0 −
∑j−1

k=1 �k
.

This is strictly better than
∑D0

i=1 1/i except in the case that each �j equals 1.
And this explains why, in the example we are about to give that shows that

Approximating Optimal Weighted Lobbying 305

Table 1. A tight example for the greedy algorithm in Figure 1

r1 r2 r3 · · · rn price(vi)

v1 0 1 1 · · · 1 1

v2 1 0 1 · · · 1 1/2

v3 1 1 0 · · · 1 1/3
...

...
...

...
. . .

...
...

vn 1 1 1 · · · 0 1/n

vn+1 0 0 0 · · · 0 1 + ε

vn+2 1 0 0 · · · 0 2

vn+3 0 1 0 · · · 0 2

vn+4 0 0 1 · · · 0 2
...

...
...

...
. . .

...
...

v2n+1 0 0 0 · · · 1 2

the algorithm can at times yield a result with ratio essentially no better than∑D0
i=1 1/i, each �j will equal 1.
Now, we show that the

∑D0
i=1 1/i approximation ratio stated in Theorem 1

is essentially the best possible that can be stated for the greedy algorithm of
Figure 1. Consider the example given in Table 1. The prices for changing the
voters’ 0-1 vectors are shown in the right-most column of Table 1: Set price(vi) =
1/i for each i ∈ {1, 2, . . . , n}, set price(vi) = 2 for each i ∈ {n+2, n+3, . . . , 2n+
1}, and set price(vn+1) = 1 + ε, where ε > 0 is a fixed constant that can be set
arbitrarily small. Note that, for each j, 1 ≤ j ≤ n, we have dj = 1, and hence
D0 = n.

When run on this input, our greedy algorithm sequentially flips, for i = n,
n − 1, . . . , 1, the single zero-entry of voter vi to a one. Thus the total money
spent is 1 + 1/2 + · · · + 1/n = 1 + 1/2 + · · · + 1/D0. On the other hand, the
optimal choice consists of influencing just voter vn+1 by flipping all of vn+1’s
entries to ones, which costs only 1 + ε.

3 Frequency of Correctness Versus Average-Case
Polynomial Time

3.1 A Motivation: How to Find Dodgson Winners Frequently

An election (C, V) is given by a set C of candidates and a set V of voters, where
each vote is specified by a preference order on all candidates and the underlying
preference relation is strict (i.e., irreflexive and antisymmetric), transitive, and
complete. A Condorcet winner of an election is a candidate i such that for each
candidate j �= i, a strict majority of the voters prefer i to j. Not all elections have
a Condorcet winner, but when a Condorcet winner exists, he or she is unique. In
1876, Dodgson [5] proposed an election system that is based on a combinatorial

306 G. Erdélyi et al.

optimization problem: An election is won by those candidates who are “closest”
to being a Condorcet winner. More precisely, given a Dodgson election (C, V),
every candidate c in C is assigned a score, denoted by DodgsonScore(C, V, c),
which gives the smallest number of sequential exchanges of adjacent preferences
in the voters’ preference orders needed to make c a Condorcet winner with respect
to the resulting preference orders. Whoever has the lowest Dodgson score wins.

The problem Dodgson-Winner is defined as follows: Given an election (C, V)
and a designated candidate c in C, is c a Dodgson winner in (C, V)? (The search
version of this decision problem can easily be stated.) As mentioned earlier,
Hemaspaandra et al. [11] have shown that this problem is PNP

‖ -complete.
It certainly is not desirable to have an election system whose winner problem

is hard, as only systems that can be evaluated efficiently are actually used in
practice. Fortunately, there are a number of positive results on Dodgson elections
and related systems as well (see, e.g., [1,8,16,14]). One of these positive results
is due to Homan and Hemaspaandra [10] who proposed a greedy heuristic that
finds Dodgson winners with a “guaranteed high frequency of success.” To capture
a strengthened version of this property formally, they introduced the notion of
a “frequently self-knowingly correct algorithm.”

Definition 1 ([10]). Let f : S → T be a function, where S and T are sets. We
say an algorithm A : S → T ×{“definitely”, “maybe”} is self-knowingly correct
for f if, for each s ∈ S and t ∈ T , whenever A on input s outputs (t, “definitely”)
then f(s) = t. An algorithm A that is self-knowingly correct for g : Σ∗ → T is
said to be frequently self-knowingly correct for g if

lim
n→∞

‖{x ∈ Σn |A(x) ∈ T × {“maybe”}}‖
‖Σn‖ = 0.

3.2 On AvgP and Frequently Self-knowingly Correct Algorithms

The theory of average-case complexity was initiated by Levin [13]. A prob-
lem’s average-case complexity can be viewed as a more significant measure than
its worst-case complexity in many cases, for example in cryptographic appli-
cations. For an excellent introduction to this theory, we refer to Goldreich [9]
and Wang [18]. Formal definitions can be found there and in the full version
of this paper [6]. An alternative view of the definition of Levin’s class average
polynomial time (AvgP) was provided by Impagliazzo [12].

Definition 2 ([12]). An algorithm computes a function f with benign faults
if it either outputs an element of the image of f or “ ?,” and if it outputs any-
thing other than “?” it is correct. For any distribution μ on Σ∗, let μ≤n denote
the restriction of μ to strings of length at most n. A polynomial-time benign
algorithm scheme for a function f on μ is an algorithm A(x, δ) such that:

1. A runs in time polynomial in |x| and 1/δ.
2. A computes f with benign faults.
3. For each δ, 0 < δ < 1, and for each n ∈ N+, Probμ≤n

[A(x, δ) = ?] ≤ δ.

Approximating Optimal Weighted Lobbying 307

Our main result in this section is that every distributional problem that has a
polynomial-time benign algorithm scheme with respect to the uniform distribu-
tion must also have a frequently self-knowingly correct polynomial-time algo-
rithm. It follows that all uniformly distributed AvgP problems have a frequently
self-knowingly correct polynomial-time algorithm. The proofs of Theorem 2 and
Proposition 1 (which says that the converse implication of that of Corollary 1
below is not true) can be found in the full version of this paper [6].

Theorem 2. Suppose that A(x, δ) is a polynomial-time benign algorithm scheme
for a distributional problem f on the standard uniform distribution. Then there
is a frequently self-knowingly correct polynomial-time algorithm A′ for f .

Theorem 2 and Proposition 2 in [12] establish the following corollary.

Corollary 1. Every distributional problem that under the standard uniform dis-
tribution is in AvgP has a frequently self-knowingly correct polynomial-time
algorithm.

Proposition 1. There exist (distributional) problems with a frequently self-
knowingly correct polynomial-time algorithm that are not in AvgP under the
standard uniform distribution.

3.3 A Basic Junta Distribution for SAT

Procaccia and Rosenschein [15] introduced “junta distributions” in their study
of NP-hard manipulation problems for elections. The goal of a junta is to be
such a hard distribution (that is, to focus so much weight on hard instances)
that, loosely put, if a problem is easy relative to a junta then it will be easy
relative to any reasonable distribution (such as the uniform distribution). This
is a goal, not (currently) a theorem; Procaccia and Rosenschein [15] do not
formally establish this, but rather seek to give a junta definition that might
satisfy this. Their paper in effect encourages others to weigh in and study the
suitability of the notion of a junta and the notion built on top of it, heuristic
polynomial time. Furthermore, they repeatedly describe their theory as one of
average-case complexity. In the full version of this paper [6] we suggest that
it is potentially confusion-inducing to describe their theory as one of average-
case complexity. Their theory adds to the study of frequency of correctness the
notion of probability weight of correctness. This is a very valuable direction, but
we point out (see also [17]) that it is neither explicitly about, nor does it seem to
implicitly yield claims about, average-case complexity. Their paper states that
work of Conitzer and Sandholm [3] is also about average-case complexity but,
similarly, we mention that that work is not about average-case complexity; it
is about (and carefully and correctly frames itself as being about) frequency of
correctness. We do not mean this as a weakness: We feel that frequency of (or
probability weight of) correctness, most especially when as in the work of Homan
and Hemaspaandra [10] the algorithm is “self-knowingly” correct a guaranteed
large portion of the time, is an interesting and important direction.

308 G. Erdélyi et al.

Regarding Procaccia and Rosenschein’s notion of juntas, they state three
“basic” conditions for a junta, and then give two additional ones that are tai-
lored specifically to the needs of NP-hard voting manipulation problems. They
state their hope that their scheme will extend more generally, using the three
basic conditions and potentially additional conditions, to other mechanism prob-
lems. One might naturally wonder whether their junta/heuristic polynomial-
time/susceptibility approach applies more generally to studying the probability
weight of correctness for NP-hard problems, since their framework in effect (aside
from the two “additional” junta conditions just about voting manipulation) is
a general one relating problems to probability weight of correctness. We first
carefully note that in asking this we are taking their notion beyond the realm
for which it was explicitly designed, and so we do not claim to be refuting any
claim of their paper. What we will do, however, is show that the three basic con-
ditions for a junta are sufficiently weak that one can construct a junta relative
to which the standard NP-complete problem SAT—and a similar attack can be
carried out on a wide range of natural NP-complete problems—has a determinis-
tic heuristic polynomial-time algorithm. So if one had faith in the analog of their
approach, as applied to SAT, one would have to believe that under essentially
every natural distribution SAT is easy (in the sense that there is an algorithm
with a high probability weight of correctness under that distribution). Since the
latter is not widely believed, we suggest that the right conclusion to draw from
the main result of this section is simply that if one were to hope to effectively
use on typical NP-complete sets the notion of juntas and of heuristic polynomial
time w.r.t. juntas, one would almost certainly have to go beyond the basic three
conditions and add additional conditions. Again, we stress that Procaccia and
Rosenschein didn’t focus on examples this far afield, and even within the world
of mechanisms implied that unspecified additional conditions beyond the core
three might be needed when studying problems other than voting manipulation
problems. This section’s contribution is to give a construction indicating that
the core three junta conditions, standing on their own, seem too weak.

Since we will use the Procaccia–Rosenschein junta notion in a more general set-
ting than merely manipulation problems, we to avoid any chance of confusion will
use the term “basic junta” to denote that we have removed the word “manipula-
tion” and that we are using their three “basic” properties, and not the two addi-
tional properties that are specific to voting manipulation. Our definition of “de-
terministic heuristic polynomial-time algorithm” is identical to theirs, except we
have replaced the word “junta” with “basic junta”—and so again we are allowing
their notion to be extended beyond just manipulation and mechanism problems.

Definition 3 (see [15]). Let μ = {μn}n∈N be a distribution over the possible
instances of an NP-hard problem L. (In this model, each μn sums to 1 over all
length n instances.) We say μ is a basic junta distribution if and only if μ has
the following properties:

1. Hardness: The restriction of L to μ is the problem whose possible instances
are only

⋃
n∈N

{x | |x| = n and μn(x) > 0}. Deciding this restricted problem
is still NP-hard.

Approximating Optimal Weighted Lobbying 309

2. Balance: There exist constants c > 1 and N ∈ N such that for all n ≥ N
and for all instances x, |x| = n, we have 1/c ≤ Probμn [x ∈ L] ≤ 1− 1/c.

3. Dichotomy: There exists some polynomial p such that for all n and for all
instances x, |x| = n, either μn(x) ≥ 2−p(n) or μn(x) = 0.

Let (L, μ) be a distributional decision problem (see, e.g., [6, Definition B.1]). An
algorithm A is said to be a deterministic heuristic polynomial-time algorithm for
(L, μ) if A is a deterministic polynomial-time algorithm and there exist a polyno-
mial q and N ∈ N such that for each n ≥ N , Probμn [x �∈ L⇐⇒ A accepts x] <

1
q(n) .

We now explore their notion of deterministic heuristic polynomial time and
their notion of junta, both however viewed for general NP problems and using
the “basic” three conditions. We will note that the notion in such a setting is in
some senses not restrictive enough and in other senses is too restrictive. Let us
start with the former. We need a definition.

Definition 4. We will say that a set L is well-pierced (respectively, uniquely
well-pierced) if there exist sets Pos ∈ P and Neg ∈ P such that Pos ⊆ L,
Neg ⊆ L, and there is some N ∈ N such that at each length n ≥ N , each of Pos
and Neg has at least one string at length n (respectively, each of Pos and Neg
has exactly one string at length n).

Each uniquely well-pierced set is well-pierced. Note that, under quite natural
encodings, such NP-complete sets as, for example, SAT certainly are well-pierced
and uniquely well-pierced. (All this says is that, except for a finite number of
exceptional lengths, there is one special string at each length that can easily,
uniformly be recognized as in the set and one that can easily, uniformly be
recognized as not in the set.) Indeed, under quite natural encodings, undecidable
problems such as the halting problem are uniquely well-pierced.

Recall that juntas are defined in relation to an infinite list of distributions,
one per length (so μ = {μn}n∈N). The Procaccia and Rosenschein definition of
junta does not explicitly put computability or uniformity requirements on such
distributions in the definition of junta, but it is useful to be able to make claims
about that. So let us say that such a distribution is uniformly computable in
polynomial time (respectively, is uniformly computable in exponential time) if
there is a polynomial-time function (respectively, an exponential-time function)
f such that for each i and each x, f(i, x) outputs the value of μi(x) (say, as a
rational number—if a distribution takes on other values, it simply will not be
able to satisfy our notion of good uniform time).

Theorem 3. LetA be any NP-hard set that is well-pierced. Then there exists a ba-
sic junta distribution relative to which A has a deterministic heuristic polynomial-
time algorithm (indeed, it even has a deterministic heuristic polynomial-time
algorithm whose error weight is bounded not merely by 1/poly as the definition
requires, but is even bounded by 1/2n

2−n). Moreover, the junta is uniformly com-
putable in exponential time, and if we in addition assume that A is uniquely well-
pierced, the junta is uniformly computable in polynomial time.

310 G. Erdélyi et al.

The proof of Theorem 3, additional results, and extensive related discussions on
the junta approach can be found in the full version of this paper [6].

4 Conclusions

Christian et al. [2] introduced the optimal lobbying problem and showed it com-
plete for W[2], and so generally viewed as intractable in the sense of parame-
terized complexity. In Section 2, we proposed an efficient greedy algorithm for
approximating the optimal solution of this problem, even if generalized by assign-
ing prices to voters. This greedy algorithm achieves a logarithmic approximation
ratio and we prove that that is essentially the best approximation ratio that can
be proven for this algorithm. We mention as an interesting open issue whether
more elaborate algorithms can achieve better approximation ratios.

Section 3 studied relationships between average-case polynomial time, benign
algorithm schemes, and frequency (and probability weight) of correctness. We
showed that all problems having benign algorithm schemes relative to the uni-
form distribution (and thus all sets in average-case polynomial time relative
to the uniform distribution) have frequently self-knowingly correct algorithms.
We also studied, when limited to the “basic” three junta conditions, the notion
of junta distributions and of deterministic heuristic polynomial time, and we
showed that they admit some extreme behaviors. We argued that determinis-
tic heuristic polynomial time should not be viewed as a model of average-case
complexity.

Acknowledgments. We are deeply grateful to Chris Homan for his interest in
this work and for many inspiring discussions on computational issues related to
voting. We also thank the anonymous FCT 2007 and COMSOC 2006 workshop
referees for their helpful comments.

References

1. Bartholdi III, J., Tovey, C., Trick, M.: Voting schemes for which it can be difficult
to tell who won the election. Social Choice and Welfare 6(2), 157–165 (1989)

2. Christian, R., Fellows, M., Rosamond, F., Slinko, A.: On complexity of lobbying
in multiple referenda. In: Endriss, U., Lang, J. (eds.) First International Workshop
on Computational Social Choice (COMSOC 2006), pp. 87–96 (workshop notes).
Universiteit van Amsterdam (December 2006)

3. Conitzer, V., Sandholm, T.: Nonexistence of voting rules that are usually hard to
manipulate. In: Proceedings of the 21st National Conference on Artificial Intelli-
gence. AAAI Press, Stanford, California, USA (2006)

4. Downey, R., Fellows, M.: Parameterized Complexity. Springer, New York (1999)
5. Dodgson, C.: A method of taking votes on more than two issues. Pamphlet printed

by the Clarendon Press, Oxford (1876)
6. Erdélyi, G., Hemaspaandra, L., Rothe, J., Spakowski, H.: On approximating opti-

mal weighted lobbying, and frequency of correctness versus average-case polynomial
time. Technical Report TR-914, Department of Computer Science, University of
Rochester, Rochester, NY (March 2007)

Approximating Optimal Weighted Lobbying 311

7. Flum, J., Grohe, M.: Parameterized Complexity Theory. EATCS Texts in Theo-
retical Computer Science. Springer, Heidelberg (2006)

8. Fishburn, P.: Condorcet social choice functions. SIAM Journal on Applied Math-
ematics 33(3), 469–489 (1977)

9. Goldreich, O.: Note on Levin’s theory of average-case complexity. Technical Report
TR97-058, Electronic Colloquium on Computational Complexity (November 1997)

10. Homan, C., Hemaspaandra, L.: Guarantees for the success frequency of an algo-
rithm for finding Dodgson-election winners. In: Královič, R., Urzyczyn, P. (eds.)
MFCS 2006. LNCS, vol. 4162, pp. 528–539. Springer, Heidelberg (2006)

11. Hemaspaandra, E., Hemaspaandra, L., Rothe, J.: Exact analysis of Dodgson elec-
tions: Lewis Carroll’s 1876 voting system is complete for parallel access to NP.
Journal of the ACM 44(6), 806–825 (1997)

12. Impagliazzo, R.: A personal view of average-case complexity. In: Proceedings of the
10th Structure in Complexity Theory Conference, pp. 134–147. IEEE Computer
Society Press, Los Alamitos (1995)

13. Levin, L.: Average case complete problems. SIAM Journal on Computing 15(1),
285–286 (1986)

14. McCabe-Dansted, J., Pritchard, G., Slinko, A.: Approximability of Dodgson’s rule.
In: Endriss, U., Lang, J. (eds.) First International Workshop on Computational
Social Choice (COMSOC 2006), pp. 331–344 (workshop notes). Universiteit van
Amsterdam (December 2006)

15. Procaccia, A., Rosenschein, J.: Junta distributions and the average-case complexity
of manipulating elections. Journal of Artificial Intelligence Research 28, 157–181
(2007)

16. Rothe, J., Spakowski, H., Vogel, J.: Exact complexity of the winner problem for
Young elections. Theory of Computing Systems 36(4), 375–386 (2003)

17. Trevisan, L.: Lecture notes on computational complexity (Lecture 12) (2002),
www.cs.berkeley.edu/∼luca/notes/complexitynotes02.pdf

18. Wang, J.: Average-case computational complexity theory. In: Hemaspaandra, L.,
Selman, A. (eds.) Complexity Theory Retrospective II, pp. 295–328. Springer,
Heidelberg (1997)

www.cs.berkeley.edu/~luca/notes/complexitynotes02.pdf

Efficient Parameterized Preprocessing for

Cluster Editing

Michael Fellows1,2,�, Michael Langston3,��, Frances Rosamond1,���,
and Peter Shaw1

1 University of Newcastle, Callaghan NSW 2308, Australia
{michael.fellows,frances.rosamond,peter.shaw}@newcastle.edu.au

2 Durham University, Institute of Advanced Study,
Durham DH1 3RL, United Kingdom

3 University of Tennessee, Knoxville, Tennessee 37996-3450, U.S.A.
langston@cs.utk.edu

Abstract. In the Cluster Editing problem, a graph is to be changed
to a disjoint union of cliques by at most k operations of edge insertion
or edge deletion. Improving on the best previously known quadratic-size
polynomial-time kernelization, we describe how a crown-type structural
reduction rule can be used to obtain a 6k kernelization bound.

1 Introduction

The Cluster Editing problem takes as input an undirected graph G, and asks
whether k edge changes are sufficient to transform G into a graph G′ that is a
disjoint union of complete subgraphs. Such a graph G′ is called a cluster graph.
The problem was first introduced by Bansal, Blum and Chawla [2] (where it is
called Correlation Clustering) in the context of machine learning, and by
Shamir, Sharan and Tsur [25] in the context of bioinformatics applications such
as the analysis of gene expression data. Chen, Jiang and Lin [9] and Damaschke
[12] have described applications in phylogenetics. An implementation with target
applications in gene regulatory network analysis has been described in [15].

� Research supported by the Australian Research Council through the Australian
Centre in Bioinformatics, by the University of Newcastle Parameterized Complexity
Research Unit under the auspices of the Deputy Vice-Chancellor for Research,
by a Fellowship to the Durham University Institute for Advanced Studies and
by a William Best Fellowship at Grey College, Durham, while the paper was in
preparation.

�� Research supported in part by the U.S. National Institutes of Health under grants
1-P01-DA-015027-01, 5-U01-AA-013512 and 1-R01-MH-074460-01, by the U.S. De-
partment of Energy under the EPSCoR Laboratory Partnership Program, by the
European Commission under the Sixth Framework Programme, and by the Aus-
tralian Research Council under grants to Griffith University and the University of
Newcastle.

��� Research supported by the Australian Centre in Bioinformatics.

E. Csuhaj-Varjú and Z. Ésik (Eds.): FCT 2007, LNCS 4639, pp. 312–321, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Efficient Parameterized Preprocessing for Cluster Editing 313

In the latter application, the vertices represent genes, and edges join co-
regulated genes belonging to functional groups represented by the complete sub-
graphs. The observed graph G might not be a cluster graph, due to experimental
errors, noisy data and other reasons. A reasonable approach to formulating a par-
simonious hypothesis concerning a hidden clustering is to determine a minimum
number of edge changes that can transform the observed graph into a cluster
graph.

1.1 Previous Work

Cluster Editing is NP-hard [20] and does not admit a PTAS unless P = NP
[8]. A polynomial-time 4-approximation algorithm for Cluster Editing is de-
scribed in [8]. The problem is easily seen to be in FPT by a search tree algorithm
that runs in time O∗(3k), based on the observation that the problem is equivalent
to destroying (by means of the allowed operations) all occurences of an induced
P3 (a vertex-induced path consisting of three vertices). (It can also be classified
as FPT using general results of Cai [5].) This was improved by a more sophis-
ticated search tree strategy by Gramm, Guo, Hüffner and Niedermeier [18] to
O∗(2.27k), and then further improved to O∗(1.92k) based on automated search
tree generation and analysis [17]. In realistic applications, the enumeration of
all possible solutions, for a given G and k, may be important, and Damaschke
has described practical FPT algorithms for this [10]. Damaschke has also shown
that a number of nontrivial and applications-relevant generalizations of Clus-
ter Editing are fixed-parameter tractable [11]. (These generalizations study
situations where the clusters may have limited overlap, rather than be com-
pletely disjoint, a matter of importance in many data-clustering applications.)
For general background on parameterized complexity, see [13, 16, 21].

The best known FPT kernelization for Cluster Editing, to a graph on
O(k2) vertices having O(k3) edges, is shown in [18] (exposited in [21]) and has
been further improved by a constant factor by Damaschke [10]. Subsequent to,
and extending the work reported here, a polynomial-time kernelization to a graph
on at most 4k vertices has been announced [19].

1.2 Our Results

We describe a many:1 polynomial time kernelization to a problem kernel graph
on O(k) vertices, based on a crown-type reduction rule. Crown-type reduction
rules have proved to be a surprisingly powerful method in FPT kernelization,
applicable to a wide variety of problems [7, 14, 24, 23]. In particular, we obtain a
kernelization to a graph on at most 6k vertices. Our result is roughly analogous
to the 2k kernelization for the Vertex Cover problem due to Nemhauser and
Trotter [22]. In the case of Vertex Cover, linear kernelization can be achieved
more than one way. In particular, a 2k kernelization for the Vertex Cover
problem can be achieved by a crown reduction rule (see [21] for an exposition),
that resembles the reduction rule for Cluster Editing that we employ here.
The main idea of a crown-type reduction rule is to identify cutsets that separate
off a subgraph with homogeneous structure, allowing the input to be simplified.

314 M. Fellows et al.

Reduction rules often cascade and can have great power in practical settings.
Although parameterization allows the efficiency of reduction rules to be mea-
sured, it is not necessary for the parameter to be small in order for this output
of the study of parameterized algorithmics and complexity to be useful, because
the reduction rules can be applied in polynomial time, and hence are of use even
when the parameter is not guaranteed to be small.

2 A Crown Reduction Rule

Suppose that (G, k) is a yes-instance of the Cluster Editing problem. Figure 1
shows a depiction of a solution, where the cliques that result from the editing are
represented by the boxes Ci, i = 1, ...,m. The depiction shows only the edits of
the solution. Define a vertex to be of type A if it is involved in an edge addition.
Define a vertex to be of type B if it is not of type A, and is involved in an edge
deletion. Define a vertex to be of type C if it is not of type A and not of type B.

A

B

C

C1 C2 C3

added edge

deleted edge

Fig. 1. A depiction of a solution showing (only) the edits

The following lemma is trivial.

Lemma 1. There are at most 2k vertices of type A or B in a solution S.

It follows from the lemma that if G is “large”, then almost all of the vertices of
the graph are of type C. Consider two vertices u and v of type C that belong to
the clique Ci. Then u and v are adjacent, and adjacent to every vertex of type
A or type B in Ci, and are not adjacent to any vertex of a clique Cj for j �= i. In
other words, we know everything there is to know about u and v, merely because
they are of type C. We might expect that if the number of vertices of type C,
for a given clique Ci is sufficiently large, then some reduction rule might apply.
We identify such a reduction rule, based on the following notion of a structural
decomposition applicable to this problem.

Efficient Parameterized Preprocessing for Cluster Editing 315

Definition 1. A cluster crown decomposition of a graph G = (V,E) is a par-
tition of the vertices of V into four sets (C,H,N,X) satisfying the following
conditions:

1. C is a clique.
2. Every vertex of C is adjacent to every vertex of H.
3. H is a cutset, in the sense that there are no edges between C and N ∪X.
4. N = {v ∈ V − C −H : ∃u ∈ H,uv ∈ E}.

Our kernelization algorithm is based on the following reduction rule.

The Cluster Crown Reduction Rule. If (G, k) is an instance of the Cluster
Editing problem, and G admits a cluster crown decomposition (C,H,N,X)
where

|C| ≥ |H |+ |N | − 1

then replace (G, k) with (G′, k′) where G′ = G − C − H and k′ = k − e − f ,
where e is the number of edges that need to be added between vertices of H in
order to make C ∪ H into a clique, and f is the number of edges between H
and N .

3 A Linear Kernelization Bound

We defer the discussion of soundness for the Cluster Crown Reduction Rule, as
well as a proof that it can be exhaustively applied in polynomial time, to §4 and
§5.

We next argue that this rule gives us a linear kernelization for the problem.

Theorem 1. Suppose that (G, k) is a yes-instance that does not admit a cluster
crown decomposition to which the Cluster Crown Reduction Rule applies. Then
G has less than 6k vertices.

Proof. In order to discuss the situation, we introduce some notation. Suppose
S is a solution for the instance (G, k). Let Ci denote the cliques formed by
S, i = 1, ...,m. Corresponding to each Ci is a cluster crown decomposition
(Ci, Hi, Ni, Xi) of G. Let ci = |Ci|, hi = |Hi| and ni = |Ni|.

By the assumption that the Cluster Crown Reduction Rule does not apply,
we have that for ∀i :

ci ≤ hi + ni − 2

It follows that
m∑
i=1

ci ≤
m∑
i=1

hi +
m∑
i=1

ni − 2m

Lemma 1 shows that
∑m

i=1 hi ≤ 2k, and we also have the bound
∑m

i=1 ni ≤ 2k
because the solution S involves deleting at most k edges between the sets Hi.
These edges are the only source of neighbors in the sets Ni, and each such edge is
counted twice in the sum

∑m
i=1 ni. Therefore

∑m
i=1 ci ≤ 4k− 4, and G therefore

has at most 6k − 4 vertices, noting that |V | =
∑

i(ci + hi). �

316 M. Fellows et al.

Fig. 2. Irreducible “yes” instance for k = 3 with 6k − 4 vertices

Figure 2 shows that the bound of Theorem 1 cannot be improved: shown is
a construction (for k = 3, this easily generalizes) of an irreducible yes-instance
having 6k − 4 vertices.

4 Soundness of the Reduction Rule

In this section we prove the soundness of the Cluster Crown Reduction Rule.

Lemma 2. The Cluster Crown Reduction Rule is sound. That is, suppose we
have a cluster crown decomposition (C,H,N,X) where |C| ≥ |H |+ |N | − 1 for
an instance (G, k), and that (G′, k′) is the reduced instance. Then (G, k) is a
YES-instance for Cluster Editing if and only if (G′, k′) is a YES-instance.

Proof. Any solution to the problem may be viewed as a partition of the vertex set
of G, with associated costs: (1) the number of edges that must be added within
classes of the partition, (2) the number of edges that must be deleted between
classes of the partition, where the total cost is minimized. If π is a partition of
V , then we will use Γ (π) to denote the total editing cost of making the vertex
classes of π into the disjoint cliques of a solution.

Consider a partition π of the vertex set V that minimizes the total editing
cost, where π partitions V into m classes Vi, i = 1, ...,m. In this situation, we
use Ci to denote C ∩ Vi, Hi to denote H ∩ Vi, Ni to denote N ∩ Vi and Xi to
denote X ∩ Vi. Let ci = |Ci|, hi = |Hi|, ni = |Ni| and xi = |Xi|. If U and W are
two disjoint sets of vertices, we write e(U,W) to denote the number of adjacent
pairs of vertices, u ∈ U and w ∈ W , and we will write e(U,W) to denote the
number of nonadjacent pairs of vertices, u ∈ U and w ∈W .

We argue that the partition π′ that subtracts all vertices of C ∪H from the
classes of π and makes a new class consisting of C ∪ H , has total editing cost
no worse than that of π. That is, we will argue that Γ (π) − Γ (π′) ≥ 0. It is
sufficient to show that

Efficient Parameterized Preprocessing for Cluster Editing 317∑
i<j

cicj +
∑
i<j

(cihj + cjhi) +
∑
i

cini +
∑
i

hixi (1)

+
∑
i<j

e(Hi, Hj)−
∑
i<j

e(Hi, Hj) (2)

+
∑
i

e(Hi, Ni)−
∑
i

e(Hi, Ni) (3)

≥ 0 (4)

The terms in line (2) are greater than or equal to −
∑

i<j hihj , and the terms in
line (3) are greater than or equal to −

∑
i hini. Therefore it is enough to show

that the following inequality holds.∑
i<j

cicj +
∑
i<j

(cihj + cjhi) +
∑
i

cini −
∑
i<j

hihj −
∑
i

hini ≥ 0 (5)

Let c = |C| =
∑

i ci, h = |H | =
∑

i hi and n = |N | =
∑

i ni. We can think of
the inequality (5) as simply a statement to be proved about 3 by m matrices of
non-negative integers, where the first row is c1...cm, the second row is h1...hm
and the third row is n1...nm. The statement is to hold for any such matrix, so
long as c ≥ h + n− 1.

Observation. An inspection of (5) shows that if there is any counterexample,
then there is a counterexample where c = h + n − 1. Call such a matrix M
balanced if for all i, ci ≥ hi. It is straightforward to verify that (5) holds for all
balanced matrices; the first positive sum dominates the first negative sum, and
the third positive sum dominates the second negative sum.

The inequality (5) also holds if m = 1, since the hypothesis that c ≥ h+n−1
implies that cn ≥ hn + n2 − n so that cn ≥ hn (which is what we must show
in this simple case). We have now established the necessary base cases for an
induction. Suppose the matrix M is not balanced and that M has l columns.
Then M has a column j where cj < hj . The truth of the inequality (5) is
unaffected by permutations of the columns, so we can assume that j = l. Write
α(M) to denote the value of the lefthand side of (5) for a matrix M . Let M ′ be
M with column l deleted. Certainly M ′ satisfies c′ ≥ h′ +n′−1, where c′, h′ and
n′ denote the row sums for M ′. However, while we assume that c = h + n − 1
for M , the analogous equality does not hold for M ′, but this is not a problem,
because, by the observation above, and our induction on l, α(M ′) ≥ 0 for any
M ′ with l − 1 columns. It suffices to argue that Δ(M) = α(M) − α(M ′) ≥ 0.
Elaborating, we must show that:

Δ(M) =
l−1∑
i=1

cicl +
l−1∑
i=1

(hicl + cihl)−
l−1∑
i=1

hihl + clnl − hlnl ≥ 0

Factoring some of these terms, what we must show is:

cl

(∑
i

ci

)
+ cl

(∑
i

hi

)
+ hl

(∑
i

ci

)
− hl

(∑
i

hi

)
+ clnl − hlnl ≥ 0

318 M. Fellows et al.

The last inequality holds if

clh
′ + hlc

′ − hlh
′ + clnl − hlnl ≥ 0

and this holds if

clh
′ + hlc− clhl − hlh

′ + clnl − hlnl ≥ 0

Replacing c with h+ n− 1, it is enough to show

clh
′ + hl

(
l∑

i=1

(hi + ni)− 1

)
− clhl − hlh

′ + clnl − hlnl ≥ 0

which can be rewritten as

clh
′ + (hlh′ + hln

′ + h2
l + hlnl − hl)− clhl − hlh

′ + clnl − hlnl ≥ 0

Cancelling and gathering terms, our task is to show

clh
′ + hln

′ + hl(hl − cl − 1) + clnl ≥ 0

which is true, because cl < hl. �

5 Efficiently Applying the Reduction Rule

In this section we describe how to compute in polynomial time whether the
input graph G admits a cluster crown decomposition to which the Cluster Crown
Reduction Rule can be applied.

Definition 2. Distinct vertices u, v of a graph G are termed twins if:
(1) u and v are adjacent, and
(2) N [u] = N [v].
For vertices u and v that are twins, we will denote this by u ∼ v.

Observe that if (C,H,N,X) is a cluster crown decomposition for a graph G,
then every pair of vertices in C are twins. The next lemma shows that in some
sense we can restrict our attention to cluster crown decompositions that have a
kind of “maximality” property.

Lemma 3. If G admits any cluster crown decomposition (C,H,N,X)
satisfying:
(1) |C| ≥ |H |+ |N | − 1
then G admits a cluster crown decomposition (C′, H ′, N ′, X ′) that satisfies (1)
and also the further condition:
(2) ∀u ∈ C′ ∀v ∈ H : ¬(u ∼ v).

Proof. Suppose (C,H,N,X) is a cluster crown decomposition satisfying (1), and
that there are vertices u ∈ C and v ∈ H with u ∼ v. This implies that v has no
neighbors in N ∪ X . If we take C′ = C ∪ {v} and H ′ = H − {v} then we also
have a cluster crown decomposition satisfying (1). �

Efficient Parameterized Preprocessing for Cluster Editing 319

A cluster crown decomposition that satisfies the two conditions of the lemma
above is termed maximal.

Definition 3. The twin graph τ(G) of a graph G = (V,E) has the same vertex
set V , and two vertices u, v are adjacent in τ(G) if and only if u ∼ v.

We say that a subgraph H of a graph G is an isolated clique if H is a complete
subgraph, and the vertices of H are adjacent in G only to vertices of H . (In
other words, G consists of a disjoint union of H and the subgraph G−H .)

Lemma 4. (1) If (C,H,N,X) is a maximal cluster crown decomposition of a
graph G = (V,E), then the vertices of C form an isolated clique in τ(G).
(2) Conversely, an isolated clique in τ(G) corresponds to a maximal cluster
crown decomposition where the vertices of the set C are the vertices of the isolated
clique.

Proof. (1) follows from the observation that every pair of vertices in C are twins,
and the definition of maximality. To see that (2) holds, let C denote the set of
vertices of an isolated clique in τ(G). Take

H = (∪v∈CN(v))− C

N = N(H)− C

X = V − C −H −N

It is easy to check that the conditions for a cluster crown decomposition are
satisfied. �

Our algorithm is described as follows.

Kernelization Algorithm.
On input (G, k):
Step 1. Compute the twin graph τ(G).
Step 2. Identify the isolated cliques in τ(G), and the corresponding maximal
cluster crown decompositions. Apply the Reduction Rule if an opportunity is
found.

The algorithm can clearly be implemented in polynomial time.

6 Discussion and Open Problems

We have shown that the Cluster Editing problem admits a polynomial time
many:1 kernelization to a graph on at most 6k vertices. Based in part on the
ideas introduced here, this kernelization bound has recently been improved to
4k [19].

Linear kernelization for the Cluster Editing problem could be viewed as an
analog result, for a problem somewhat related to the Vertex Cover problem, of
the first linear kernelization result for that problem due to Nemhauser and Trot-
ter [22]. Later (recently) a different combinatorial route to linear kernelization

320 M. Fellows et al.

for Vertex Cover was discovered [7, 1], based on so-called “crown-type” reduc-
tion rules. This has proved useful in practical applications [3, 4]. Both approaches
yield a 2k kernelization for Vertex Cover. The importance of kernelization is
that pre-processing is a nearly universal practical strategy for coping with hard
problems. Since kernelization rules can be applied in polynomial time, the overall
situation is that parameterization allows us to measure their efficiency, but their
relevance and practical significance is not tied to situations where the parameter
is small: the main outcome, as seen from the practical side, is just a “smart”
preprocessing subroutine that can be deployed in any algorithmic approach to
the NP-hard Cluster Editing problem, including heuristic approaches.

The Vertex Cover problem, the Cluster Editing problem, and (for ex-
ample) the generalizations studied by Damaschke [11], are all, roughly speaking,
concerned with editing a graph to one or more (or a specified number) of clus-
ters (possibly with limited overlap). We may roughly conceptualize here a class
of “graph editing” problems, parameterized by the number of edit operations.
Suitably formalized: are all such problems fixed-parameter tractable? Do they
all admit linear kernels? Are general results possible concerning this area of
investigation?

References

1. Abu-Khzam, F., Collins, R., Fellows, M., Langston, M., Suters, W.H., Symons, C.:
Kernelization algorithms for the vertex cover problem: theory and experiments. In:
Proceedings of ALENEX’04, pp. 62–69. ACM-SIAM Publications (2004)

2. Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Machine Learning 56,
89–113 (2004) (Preliminary version In: Proceedings 43rd IEEE FOCS 2002, pp.
238–247)

3. Baldwin, N.E., Chesler, E.J., Kirov, S., Langston, M.A., Snoddy, J.R., Williams,
R.W., Zhang, B.: Computational, integrative and comparative methods for the
elucidation of gene regulatory networks. J. Biomedicine and Biotechnology 2, 172–
180 (2005)

4. Baldwin, N.E., Collins, R.L., Langston, M.A., Leuze, M.R., Symons, C.T., Voy,
B.H.: High performance computational tools for motif discovery. In: Proceedings
of the IEEE International Workshop on High Performance Computational Biology
(HiCOMB). IEEE Computer Society Press, Los Alamitos (2004)

5. Cai, L.: Fixed-parameter tractability of graph modification problems for hereditary
properties. Information Processing Letters 58, 171–176 (1996)

6. Chleb́ık, M., Chleb́ıková, J.: Improvement of Nemhauser-Trotter theorem and its
applications in parameterized complexity. In: Hagerup, T., Katajainen, J. (eds.)
SWAT 2004. LNCS, vol. 3111, pp. 174–186. Springer, Heidelberg (2004)

7. Chor, B., Fellows, M., Juedes, D.: Linear kernels in linear time. In: Hromkovič, J.,
Nagl, M., Westfechtel, B. (eds.) WG 2004. LNCS, vol. 3353, pp. 36–53. Springer,
Heidelberg (2004)

8. Charikar, M., Guruswami, V., Wirth, A.: Clustering with qualitative information.
Journal of Computer and System Sciences 71, 360–383 (2005)

9. Chen, Z.Z., Jiang, T., Lin, G.: Computing phylogenetic roots with bounded degrees
and errors. SIAM J. Computing 32, 864–879 (2003)

Efficient Parameterized Preprocessing for Cluster Editing 321

10. Damaschke, P.: On the fixed-parameter enumerability of cluster editing. In:
Kratsch, D. (ed.) WG 2005. LNCS, vol. 3787, pp. 283–294. Springer, Heidelberg
(2005)

11. Damaschke, P.: Fixed-parameter tractable generalizations of cluster editing. In:
Calamoneri, T., Finocchi, I., Italiano, G.F. (eds.) CIAC 2006. LNCS, vol. 3998,
pp. 321–332. Springer, Heidelberg (2006)

12. Damaschke, P.: Parameterized enumeration, transversals, and imperfect phylogeny
reconstruction. Theoretical Computer Science 351, 337–350 (2006)

13. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg
(1999)

14. Dehne, F., Fellows, M., Rosamond, F., Shaw, P.: Greedy localization, iterative
compression and modeled crown reductions: new FPT techniques, an improved
algorithm for set splitting and a novel 2k kernelization for vertex cover. In: Downey,
R.G., Fellows, M.R., Dehne, F. (eds.) IWPEC 2004. LNCS, vol. 3162, pp. 271–280.
Springer, Heidelberg (2004)

15. Dehne, F., Langston, M.A., Luo, X., Pitre, S., Shaw, P., Zhang, Y.: The Clus-
ter Editing problem: implementations and experiments. In: Bodlaender, H.L.,
Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 13–24. Springer, Hei-
delberg (2006)

16. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg
(2006)

17. Gramm, J., Guo, J., Hüffner, F., Niedermeier, R.: Automated generation of search
tree algorithms for hard graph modification problems. Algorithmica 39, 321–347
(2004)

18. Gramm, J., Guo, J., Hüffner, F., Niedermeier, R.: Graph-modeled data clustering:
exact algorithms for clique generation. Theory of Computing Systems 38, 373–
392 (2005) (preliminary version In: Proceedings of the 5th Italian Conference on
Algorithms and Complexity (CIAC ’03). Lecture Notes in Computer Science 2653,
pp. 108–119. Springer-Verlag (2003))

19. Guo, J.: Manuscript (2007)
20. Krivanek, M., Moravek, J.: NP-hard problems in hierarchical tree clustering. Acta

Informatica 23, 311–323 (1986)
21. Niedermeier, R.: Invitation to Fixed Parameter Algorithms. Oxford University

Press, Oxford (2006)
22. Nemhauser, G., Trotter, L.: Vertex packings: structural properties and algorithms.

Mathematical Programming 8, 232–248 (1975)
23. Prieto-Rodriguez, E.: Systematic kernelization in FPT algorithm design. Ph.D.

Thesis, School of EE&CS, University of Newcastle, Australia (2005)
24. Prieto, E., Sloper, C.: Looking at the stars. In: Downey, R.G., Fellows, M.R., Dehne,

F. (eds.) IWPEC 2004. LNCS, vol. 3162, pp. 138–148. Springer, Heidelberg (2004)
25. Shamir, R., Sharan, R., Tsur, D.: Cluster graph modification problems. Discrete

Applied Mathematics 144, 173–182 (2004) (Preliminary version In: 28th WG 2002,
LNCS 2573, pp. 379–390 (2002))

Representing the Boolean OR Function by

Quadratic Polynomials Modulo 6

Gyula Győr

Eötvös Loránd University, Budapest
Pázmány P. sétány 1/C, H-1117, Budapest, Hungary
angelofd.gy@gmail.com, angelofd@inf.elte.hu

Abstract. We give an answer to a question of Barrington, Beigel and
Rudich, asked in 1992, concerning the largest n such that the OR func-
tion in n variables can be weakly represented by a quadratic polynomial
modulo 6. More specifically, we show that no 11-variable quadratic poly-
nomial exists that is congruent to zero modulo 6 if all arguments are 0,
and non-zero modulo 6 on the set {0, 1}, otherwise.

1 Introduction

In this paper we answer an open question of Barrington, Beigel and Rudich [1]
asked in 1992. The polynomial P weakly represents the N -variable OR function
modulo m if P (0, 0, · · · , 0) ≡ 0 (mod m) and for all x ∈ {0, 1}N , where x �=
(0, 0, . . . , 0) it holds that P (x) �≡ 0 (mod m). It is known that if the polynomial
P weakly represents the N -variable Boolean OR function modulo p, where p is
a prime, then its degree is at least

⌈
N
p−1

⌉
[4]. On the other hand Barrington,

Beigel and Rudich proved that there exists a degree O(r
√
N) polynomial that

weakly represents the N -variable OR function modulo m, where r is the number
of distinct prime divisors of m. So polynomials modulo 6 are more powerful
than polynomials modulo a prime power. This construction uses only symmetric
polynomials where the bounds are matching. Barrington, Beigel and Rudich
asked what is the largest N such that the N -variable Boolean OR function can
be weakly represented by a quadratic polynomial modulo 6? It is known [1]
that for symmetric polynomials the answer is 8, but it is not hard to construct
polynomials showing that N ≥ 10. As a consequence of their theorem, Tardos
and Barrington[5] showed that N ≤ 18.

Supposing that P is a multilinear polynomial containing no constant mono-
mials, deciding this question by a brute force algorithm is hopeless, because we
need to check 6(11

2)+11 = 666 polynomials. To check one polynomial we need
211 = 2048 operations, so it will take 1.48 · 1038 years to complete the task at
the speed of 109 operations/sec.

Our algorithm does exhaustive search in approximately 800 2.2GHz-CPU
hours.

Ramsey’s theorem shows that each graph with 2n vertices has either a clique
or an independent set of n

2 vertices. Erdős showed with the probabilistic method

E. Csuhaj-Varjú and Z. Ésik (Eds.): FCT 2007, LNCS 4639, pp. 322–327, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Representing the Boolean OR Function by Quadratic Polynomials Modulo 6 323

[2] that there exists a graph with 2n vertices with no clique and independent
set of size 2 · n. Constructive bounds to date are far from the upper bound.
The connection between these problems was shown by Grolmusz [3]. He used
polynomial representations of the OR function to construct Ramsey graphs and
showed that lower degree representation leads to better Ramsey graphs. Because
the best lower bound for these type of representations is only Ω(log n) it may
be possible to achieve better graph constructions this way.

2 The Testing Algorithm

Definition 1 ([1]). We say that the n-variable polynomial P over the ring of
integers modulo m weakly represents f : {0, 1}n → {0, 1} if and only if

∀x, y ∈ {0, 1}n : (f(x) �= f(y)) implies (P (x) �= P (y)).

Let P ∗(n,m) denote the set of n-variable multilinear polynomials over the ring of
integers modulo m that do not contain constant monomials. For any polynomial
that weakly represents the n-variable OR, there exists a multilinear polynomial
that weakly represents the n-variable OR and does not contain constant mono-
mials. The proof is immediate from the fact that

∣∣OR(−1)(0)
∣∣ = 1 and xi = x2

i

on the set {0, 1}.

Definition 2. Let H∗(n,m) ⊆ P ∗(n,m) be defined as

H∗(n,m) :=
{
h ∈ P ∗(n,m) : h weakly represents the n-variable OR function.

}
(1)

Let us call the elements of H∗(n,m) well representing.

Definition 3 ([5]). We call a Boolean function g a strict restriction of the
Boolean function f if g can be obtained from f by setting some variables of f to
0 and identifying some variables. The number of variables of g is therefore the
number of equivalence classes of the nonzero variables of f . We call polynomial
Q a strict restriction of polynomial P if we can obtain Q from P via this kind of
restriction.

Definition 4. Let p ∈ P ∗(n,m). Let x be the first variable of p for some fixed
total ordering of the variables and z the vector of all other variables. p can be
written in the following unique form: p = (a+L(z))x+Q(z) where a is a number,
L is linear, Q is quadratic, and L and Q do not contain variable x and constant
monomials. Let

C(p) := a;L(p) := L(z) and Q(p) := Q(z).

The following function maps three well representing n-variable polynomials to
an (n + 1)-variable polynomial.

324 G. Győr

Definition 5. Let Φ :
(
H∗(n,m)

)3 → P ∗(n+1,m). We define

Φ(h1, h2, h3) := (C(h1) + L(h1))x + (C(h2) + L(h2))y
+ (C(h3)− C(h1)− C(h2))xy +Q(h1)

where x and y are new variables.

The following main lemma shows a method to build all (n + 1)-variable well
representing polynomials from the n-variable ones. The main idea is to split the
first variable.

Lemma 1

H∗(n+1,m) = {Φ(h1, h2, h3) : ∃h1, h2, h3 ∈ H∗(n,m) : L(h1) + L(h2) ≡
≡ L(h3) (mod m) and Q(h1) = Q(h2) = Q(h3) }.

Proof. Let H ′ denote the set on the RHS of the equation.

Fact 1. H∗(n+1,m) ⊆ H ′.
Let h(x, y, z) ∈ H∗(n+1,m) where x is the first, y is the second variable and z is
the array of the other variables. We will show that h ∈ H ′. Let

h1 := h(x, 0, z), h2 := h(0, x, z), h3 := h(x, x, z)

Because any strict restriction of OR is also an OR function, h1, h2, h3 ∈ H∗(n,m),
and these satisfy L(h1) +L(h2) ≡ L(h3) (mod m) and Q(h1) = Q(h2) = Q(h3).

Fact 2. H ′ ⊆ H∗(n+1,m).
Let h = Φ(h1, h2, h3) ∈ H ′. It is enough to show that h is well representing. If
x = 0 then h behaves exactly like h2. If y = 0 then h behaves exactly like h1. If
x = y then h behaves exactly like h3. Because h1, h2 and h3 are well representing,
h is also well representing. ��

Remark 1. It is easy to show that if H1, H2 ∈ H∗(n,m) for some n and Q(H1) �=
Q(H2), then for every H∗

1 that is a descendant of H1 and for every H∗
2 that is

a descendant of H2 : Q(H∗
1) �= Q(H∗

2). So function Q partitions H∗(n,m) into
classes, therefore we should search separately in these classes. We can thus divide
the problem into disjoint subproblems and solve these subproblems with reduced
computational resources.

Remark 2. H∗(1,m) = {x, 2x, · · · , (m− 1)x} .

The basic algorithm builds all (n+1)-variable well representing polynomials from
the n-varaible ones by induction, using Lemma 1, Remark 1 and Remark 2.

3 Permutation Filtering

We say that two polynomials are equivalent if and only if there exists a permu-
tation of their variables that makes them equal. Clearly, this relation partitions
the polynomials.

Representing the Boolean OR Function by Quadratic Polynomials Modulo 6 325

Lemma 2. Let polynomials P1 and P2 be in the same class. Then P1 represents
the OR function if and only if P2 does.

Proof. Since OR is a symmetric function the proof is obvious. ��

The previous algorithm does not filter such permutations. Our goal is to check
one representative in each class. This is a hard task, but we can define the
following property of our polynomials, that helps us to check only a small number
of polynomials in each class.

Let h ∈ P ∗(n,m). h can be written in the following form:

h(x) =
n∑

i=1

⎛⎝aixi +
∑
i>j

ai,jxixj

⎞⎠ .

We say that τ(h) is true exactly when the following conditions are satisfied:

– a2 ≤ a3 ≤ · · · ≤ an.
– If ai = aj for some 1 < i < j, then (an,i, an−1,i, · · · , aj+1,i) is lexicographi-

cally not greater than (an,j , an−1,j , · · · , aj+1,j).

The search is performed only for polynomials satisfying τ .

Remark 3. There are no conditions for the first variable.

Lemma 3. For all polynomial classes there is at least one polynomial that sat-
isfies τ .

Proof. We will show that there exists at least one permutation of variables for
any polynomial in P ∗(n,m) that satisfies τ .

Let h ∈ P ∗(n,m) be given in the above form. In this part we represent the
ring of integers modulo m by the numbers 0, 1, · · · ,m − 1 and we use the nat-
ural ordering on these numbers. Let π : {1, 2, · · · , n} → {1, 2, · · · , n}. We con-
struct the inverse of the promised permutation. Let πn satify the following:
∀i ∈ {1, 2, · · · , n} : ai ≤ aπn We assume that πs+1, · · · , πn are already defined.
Now we construct πs. Let relation R be defined on the set of non-chosen vari-
ables, where xi is non-chosen if π(−1)(i) = ∅.

Let xiRxj (where xi, xj are non-chosen) if and only if

(ai < aj) or (ai = aj and ∃t ∈ {s+ 1, s+ 2, · · · , n}∀t′ ∈ {t+ 1, t+ 2, · · · , n} :
amax{i,πt′},min{i,πt′} = amax{j,πt′},min{j,πt′}∧
∧ amax{i,πt},min{i,πt} < amax{j,πt},min{j,πt})

Relation R is antisymmetric and transitive, so it is a partial order on the set of
non-chosen variables. Let πs be the index of one of the maximal variables with
respect to R.

Now π is a one-to-one mapping and τ
(
h(xπ−1

1
, xπ−1

2
, · · · , xπ−1

n
)
)

is true. ��

326 G. Győr

Definition 6. We define

H∗∗(n,m) :=
{
h ∈ H∗(n,m) : τ(h)

}
.

The following lemma corresponds to Lemma 1, but now the sets contain only
polynomials that satisfy τ .

Lemma 4

H∗∗(n+1,m) = {Φ(h1, h2, h3) : τ(Φ(h1, h2, h3)) ∧ ∃h1, h2, h3 ∈ H∗∗(n,m) :

L(h1) + L(h2) ≡ L(h3) (mod m) and Q(h1) = Q(h2) = Q(h3) }.

Proof. The proof follows from Lemma 1, Remark 3, and the definition ofH∗∗. ��

Remark 4. τ(Φ(h1, h2, h3)) depends only on h2.

Algorithm 1 Final

H:={[x],[2x],[3x],[4x],[5x]}
for level:=2 to 11 do
begin
Hnew:=empty;
forall H’ Q-class of H do
forall h2 in H’ do
if isGoodPermutation(h2) then

forall h1,h3 in H’ do
if (L(h1)+L(h2)-L(h3) mod 6=0) then
Hnew:=Hnew+[PHI(h1,h2,h3)];

H:=Hnew;
end;
if H=empty then
print(‘There is no quadratic polynomial ’+

‘representing the 11 variables OR.’)
else
print(‘There is quadratic polynomial ’+

‘representing the 11 variables OR.’);

4 The Result

We have used the above algorithm with minor technical modifications and im-
plemented it in C++. It uses STL data structures (sets) to speed up the search.
It did not find any 11 variable polynomials, so the largest n such that the OR
function of n variable can be weakly represented by a quadratic polynomials
modulo 6, is 10.

The computation took approximately 800 2.2GHz-CPU hours on 6 computers.

Representing the Boolean OR Function by Quadratic Polynomials Modulo 6 327

Acknowledgements. The author wishes to thank Vince Grolmusz for his help
in this work.

References

1. Mix Barrington, D.A., Beigel, R., Rudich, S.: Representing boolean functions as
polynomials modulo composite numbers (extended abstract). In: STOC, pp. 455–
461. ACM Press, New York (1992)

2. Erdős, P.: Some remarks on the theory of graphs. Bull. Am. Math. Soc. 53, 292–294
(1947)

3. Grolmusz, V.: Superpolynomial size set-systems with restricted intersections mod 6
and explicit ramsey graphs. Combinatorica 20(1), 71–86 (2000)

4. Smolensky, R.: Algebraic methods in the theory of lower bounds for boolean circuit
complexity. In: STOC, pp. 77–82. ACM, New York (1987)

5. Tardos, G., Mix Barrington, D.A.: A lower bound on the mod 6 degree of the or
function. In: ISTCS, pp. 52–56 (1995)

On the Complexity of Kings

Edith Hemaspaandra1,�, Lane A. Hemaspaandra2,��, Till Tantau3,
and Osamu Watanabe4,���

1 Dept. of Comput. Science, Rochester Institute of Technology, Rochester, NY, USA
2 Dept. of Comput. Science, University of Rochester, Rochester, NY, USA
3 Inst. of Theoretical Comput. Science, Universität zu Lübeck, Germany

4 Dept. of Math. & Comput. Sciences, Tokyo Institute of Technology, Japan

Abstract. A k-king in a directed graph is a node from which each node
in the graph can be reached via paths of length at most k. Recently,
kings have proven useful in theoretical computer science, in particular
in the study of the complexity of reachability problems and semifeasi-
ble sets. In this paper, we study the complexity of recognizing k-kings.
For each succinctly specified family of tournaments (completely oriented
digraphs), the k-king problem is easily seen to belong to Πp

2 . We prove
that the complexity of kingship problems is a rich enough vocabulary to
pinpoint every nontrivial many-one degree in Πp

2 . That is, we show that
for every k ≥ 2 every set in Πp

2 other than ∅ and Σ∗ is equivalent to
a k-king problem under ≤p

m-reductions. The equivalence can be instan-
tiated via a simple padding function. Our results can be used to show
that the radius problem for arbitrary succinctly represented graphs is
Σp

3 -complete. In contrast, the diameter problem for arbitrary succinctly
represented graphs (or even tournaments) is Πp

2 -complete.

1 Introduction

We study the complexity of recognizing k-kings in graphs. A vertex of a graph is
said to be a k-king if every vertex of the graph can be reached from it via a path
of length at most k. For the k-kingship problem we are given a graph and a vertex
as inputs and would like to tell whether the vertex is a k-king. We can vary the
problem by allowing different ways of encoding graphs (the more succinctly, the
harder the problem) and by allowing different kinds of input graphs (the more
restricted, the easier the problem).

Much is known about the existence of kings in graphs. For example, in the
1950s Landau [11] discovered the simple but lovely result that every tournament

� Supported in part by grant NSF-CCR-0311021. Work done in part while on sab-
batical at the University of Rochester and while visiting the Tokyo Institute of
Technology.

�� Supported in part by grant NSF-CCF-0426761, JSPS Invitational Fellowship S-
05022, a TransCoop grant, and a Friedrich Wilhelm Bessel Research Award. Work
done in part while visiting the Tokyo Institute of Technology.

��� Supported in part by “New Horizons in Computing” (2004–2006), an MEXT Grant-
in-Aid for Scientific Research on Priority Areas.

E. Csuhaj-Varjú and Z. Ésik (Eds.): FCT 2007, LNCS 4639, pp. 328–340, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

On the Complexity of Kings 329

has a 2-king. A tournament is a directed graph G such that for each pair u and v
of distinct vertices exactly one of the directed edges u→ v or v → u is present in
the graph and such that there are no loops. A well-known (see [21]) way to easily
see that Landau’s result holds is to note that every vertex with maximum degree
must be a 2-king. More recently, similar results were proven for generalizations
of tournaments, such as multipartite tournaments ([5, 14], see also [1] and the
references therein).

When graphs are specified explicitly in the natural way (say, via an adjacency
matrix), it is not hard to see that the k-kingship problem is first-order definable
and thus very simple from a computational point of view. However, when we
specify graphs succinctly, k-kingship problems (provably) get harder. There are
different ways of specifying graphs succinctly, ranging from the general Galperin–
Wigderson model to the polynomial-time uniform tournament family specifiers
that arise in the study of semifeasible sets.

In the Galperin–Wigderson model, input graphs are specified as follows: A
directed graph G with a vertex set {0, 1}n is specified using a circuit C with 2n
input gates and one output gate. For any two vertices x, y ∈ {0, 1}n there is an
edge x→ y in G if and only if C(xy) = 1. (This definition does allow the possi-
bility of self-loops.) Note that a circuit whose size is polynomial in n can encode
a graph whose vertex set has size 2n, which is exponential in n. For this model,
the k-kingship problem can be formalized as follows: succinct- k -kings =
{〈code(C), x〉 | C specifies (in the manner specified above) a graph G in which x
is a k-king}. Here, code(C) denotes a standard binary encoding of the circuit C.
Furthermore, 〈code(C), x〉 is a standard binary encoding of the circuit C paired
with a bitstring x.

In the tournament family specifier model, input graphs are specified using
polynomial-time computable, commutative selector functions. A selector func-
tion f gets two words u and v as inputs and outputs one of them, thereby telling
us where the edge between u and v heads. More formally, a selector function
f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ defines an (infinite) graph with the vertex set
{0, 1}∗ where there is an edge from u to v if and only if f(u, v) = v and u �= v.
The graph will be a tournament if f is commutative, that is, if for each u and
v it holds that f(u, v) = f(v, u). Polynomial-time selector functions were origi-
nally introduced by Selman [17, 18, 19] in his study of so-called P-selective sets:
P-selective set can be defined as the sets of vertices in tournaments specified
by polynomial-time computable, commutative selector functions that are closed
under reachability.

Instead of using a selector function to describe a single infinite tournament,
we can also use them to describe one tournament per word length: Given a
commutative selector function f and a word length n, we say that f describes
the length-n tournament whose vertex set is {0, 1}n and whose edge set is defined
as above: There is an edge from u ∈ {0, 1}n to v ∈ {0, 1}n if f(u, v) = v and
u �= v. In this model we can also consider the k-kingship problem:

k -Kingsf = {x ∈ {0, 1}∗ | x is a k-king in the length-|x| tournament
specified by f}.

330 E. Hemaspaandra et al.

A language L ⊆ {0, 1}∗ for which there exists a commutative polynomial-time
selector function f such that L = k -Kingsf will be called a P-k-king lan-
guage. Our main interest in this paper is to study which languages are P-k-
king languages.

One can view the k -Kingsf problems (one for each f) as very restricted
cases of the more general succinct- k -kings problem: For the k -Kingsf we
must check k-kingship for a single tournament per word length. In complex-
ity terms, this tremendous uniformity of specification—a polynomial-time com-
putable function specifying for us a single tournament at each length—will
naturally tend to tie our hands in terms of showing hardness for higher lev-
els of the polynomial hierarchy. Nonetheless, what we will actually show in this
paper is that we can free our hands from those cords. Our main result is that, for
each k ≥ 2, every language in Πp

2 −{∅, Σ∗} is many-one equivalent to a P-k-king
language. Informally put, this shows that k-king languages are comprehensively
descriptive in terms of naming the complexity of the nontrivial Πp

2 many-one
degrees.

We obtain this main result via an even stronger main tool, which shows some-
thing about the uniformity and simplicity of a set of reductions that can instanti-
ate the above equivalences. Namely, we show that, for every k ≥ 2, a language L
is in Πp

2 if and only if pad′
j(L) is a P-k-king language for some j. Here, pad′

j is
a padding operator whose exact definition will be given later.

Motivations for studying P-k-king languages. Our study of P-k-king lan-
guages is motivated from several contrasting directions.

Relationship to the radius problem. Kings are closely related to the radius prob-
lem for graphs. A ball of radius r around a vertex v is the set of vertices that
can be reached from v in r steps. The radius of a graph is smallest radius of a
ball that covers the whole graph. This means that the radius of a graph is at
most r if and only if there exists an r-king in the graph. (Note, in contrast, that
the k-king problems focus on whether a given node, which is explicitly stated
as part of the input, is a k-king.) We use our results on P-k-king languages to
give a short proof that radius problems for succinctly specified graphs (using the
Galperin–Wigderson model) are complete for the third level of the polynomial
hierarchy [12, 20], i.e., are complete for Σp

3 = NPNPNP
. This result is interest-

ing in its own right. While for the first level of the polynomial hierarchy (NP)
countless natural complete problems are known, for higher levels the collection
of such problems is less extensive (see also Section 1’s comments on complete
sets for such classes). The succinct radius problem is a new and fairly natural
problem that is complete for Σp

3 .

Relationship to the diameter problem. Kings are also closely related to the di-
ameter problem for graphs. The diameter of a graph is the maximum over all
ordered vertex pairs of the shortest distance (via a directed path) from the first
vertex of the pair to the second vertex of the pair. (If the second node isn’t reach-
able from the first, this distances is ∞.) This means that a graph has diameter

On the Complexity of Kings 331

at most d if and only if every vertex of the graph is a d-king of the graph. Based
on this relationship we show that diameter problems for succinctly represented
graphs are complete for the second level of the polynomial hierarchy, i.e., are
complete for Πp

2 = coNPNP.

Relationship to P-selective sets. P-2-king languages are closely related to P-sel-
ective languages. For a P-selective language A, for each n, within the length-n
graph specified by the selector function it always holds that the reachability
closure of the length n words of A is precisely the length n words of A. For a
P-2-king language, the words in the language of length n are the 2-kings in the
length-n tournament specified by the selector function. This means that for a P-
selective set the 2-kings of the tournaments induced by a selector are (speaking
very informally) the “least likely” words to be contained in the language. More
precisely, unless all words of a given word length are in the language, none of
the 2-kings of the tournament specified by the selector for this word length is in
the language. This observation can be used to show that P-selective sets cannot
be Πp

2 /1-immune [10].

Relationship to the second level of the polynomial hierarchy. Despite the close
relationship of P-2-king languages and P-selective languages, there are funda-
mental differences. For example, it is easy to see that all P-k-king languages are
in Πp

2 , see [9] for a detailed proof, but can be “arbitrarily complex” in a sense
that can be crisply formalized. This encourages us to investigate which languages
are P-k-king languages. Many languages in Πp

2 are not P-k-king languages—for
example, since every tournament has a 2-king, a P-k-king language contains at
least one word for every word length. However, the tool underpinning our main
result shows that for every k ≥ 2 and every language L ∈ Πp

2 a certain padded
version of L is a P-k-king language. Thus, although not every language in Πp

2 is
a P-k-king language, for every such language a very closely related language is a
P-k-king language. And from this we have our main result, which is that every
Πp

2 (many-one) degree, except those of ∅ and Σ∗, contains a P-k-king language.

Relationship to quantifier characterizations. By the quantifier characterization
of the polynomial hierarchy a language L is in Πp

2 if and only if there exist a
polynomial p and a ternary polynomial-time decidable relation R such that x ∈
L ⇐⇒ (∀y ∈ {0, 1}p(|x|))(∃z ∈ {0, 1}p(|x|))[R(x, y, z)]. For P-2-king languages a
more restrictive characterization is possible: A language L is a P-2-king language
if and only if there exists a binary polynomial-time decidable relation S such that
x ∈ L ⇐⇒ (∀y ∈ {0, 1}|x|)(∃z ∈ {0, 1}|x|)[S(x, y) ∧ S(y, z)] and such that for
all distinct x, y ∈ {0, 1}∗ we have S(x, y) ↔ ¬S(y, x).

Related work. The work most closely related to that of this paper is the work
of Nickelsen and Tantau on the complexity of reachability problems [13], the
path-breaking modeling and complexity work of Galperin and Wigderson [3],
and the existing work on the complexity of kings and in particular their use in
the study of the semifeasible sets [8, 10, 9].

332 E. Hemaspaandra et al.

It is well worth mentioning that without the work of Landau [11], which
showed that 2-kings always exist in tournaments, it is unlikely that the notion
of 2-kings would even be available for study. And Landau’s work has led to a
rich (though, naturally, not complexity-theoretic) body of work on the existence
of k-kings in a variety graph-theoretic structures (for example, for the case of
multipartite tournaments see [5, 14, 1] and the references therein).

For reasons of focus and coherence, all tournaments in this paper follow the
typical notion of a tournament. However, one central result of this paper, our
Πp

2 -completeness result for the k-kings problem, has been studied for the case of
j-partite tournaments (though in a more circuit-focused model) in [6], where a
dichotomy theorem is given that completely characterizes what happens in that
case, namely, for the boundary case of “1-kingship” one gets P algorithms and
for all other cases Πp

2 -completeness holds.
In this paper, we will show problems to be complete for classes at the second

and third levels of the polynomial hierarchy. These levels have nothing resembling
the range and number of known, natural complete problems that NP has (see,
for example, the famous compendium of Garey and Johnson [4]). Nonetheless,
these levels do have a larger range and number of known, natural complete
problems than many people realize. Schaefer and Umans have provided a very
nice “Garey and Johnson” for classes at levels of the polynomial hierarchy beyond
the first [15, 16].

Organization of this paper. Section 2 provides notations and definitions.
Section 3 studies the complexity of the diameter problem, and shows that it is
complete for the Πp

2 level of the polynomial hierarchy. That section also intro-
duces tools that will be used in subsequent proofs in the paper. Section 4 proves
our main result, namely, that k-kings problems have the descriptive flexibility
to name every nontrivial Πp

2 degree. We do so by showing that for each k ≥ 2
it holds that via a certain family of padding functions each Πp

2 language can be
turned into a P-k-king language. Section 5 studies the complexity of the radius
problem, and shows that it is complete for the Σp

3 level of the polynomial hier-
archy, which provides an interesting contrast with Section 3’s Πp

2 -completeness
result for the diameter problem. Due to lack of space, this extended abstract con-
tains no proofs and some technical definitions have been replaced by descriptions
of the key ideas; we refer the interested reader to the technical report version of
this paper [6] for the complete proofs and technical definitions.

2 Basic Definitions and Tools

Alphabets, padding, reductions. Throughout this paper Σ = {0, 1}. We refer to
elements of {0, 1}∗ = Σ∗ as bitstrings. The length of a bitstring b is denoted |b|.
We define a pairing function 〈., .〉 : Σ∗ ×Σ∗ → Σ∗ as follows (unlike some other
papers, we will not require our pairing function to be a surjective function): For
every two bitstrings x, y ∈ Σ∗ where the individual bits of x are x1 to xn, let
〈x1x2 · · ·xn, y〉 = 0x10x2 · · · 0xn1y. This function, which clearly is injective, has

On the Complexity of Kings 333

a number useful properties: It is polynomial-time computable, polynomial-time
invertible, when |x| = |x′| and |y| = |y′| then |〈x, y〉| = |〈x′, y′〉|, and no word
pair is mapped to an element of {0}∗. For a tuple (x1, . . . , xn) of words, n ≥ 1,
let 〈x1, . . . , xn〉 = 〈x1, 〈x2, . . . , 〈xn−1, xn〉 · · · 〉〉.

For a positive integer j, we define a padding function padj : Σ∗ → Σ∗ by
padj(x) = x0|x|

j+j+3. Thus, we add |x|j + j + 3 zeros after x. The reason for
the slightly startling “+ 3” will become clear later on. Note that for every word
y ∈ Σ∗ there can be at most one word x such that padj(x) = y and, if such an
x exists, it is easy to compute.

We define two padded versions of languages. The “usual” way to define a
padded version of a language L is to consider the image of L under the padding
function padj , that is, for a given language L ⊆ Σ∗ let padj(L) = {padj(x) |
x ∈ L}. The “interesting” words in a padded language are those in padj(Σ∗).
Words outside padj(Σ

∗) are not in L. For the second padded version of L we
change this latter property: The membership of the words in padj(Σ

∗) is the
same, but (almost) all other words are in the second padded version. Formally,
for a language L ⊆ Σ∗ we define

pad′
j(L) = padj(L) ∪

(
Σ∗ − padj(Σ

∗)− {1, 11}
)
.

Once more, there is a startling part of the definition, namely the “− {1, 11}” and,
once more, this will be explained later on. The padded versions of a language L
has exactly the typical properties that we expect from a padded language.

Let A ≤p
m B denote that A is many-to-one polynomial-time reducible to B.

Graphs and tournaments. A directed graph is a pair (V,E) consisting of a
nonempty vertex set V together with an edge set E ⊆ V × V and we write
u → v if (u, v) ∈ E. A path of length l in a graph is sequence (v0, v1, . . . , vl)
of distinct vertices such that vi−1 → vi holds for all i ∈ {1, . . . , l}. For positive
integers k, a k-king of a graph is a vertex v such that there is a path of length
at most k from v to every other vertex. The diameter of a graph is the smallest
number d such that for every pair u, v ∈ V of vertices there is a path from
u to v of length at most d. Note that the diameter of a graph is exactly the
smallest number k such that every vertex of the graph is a k-king. If a graph has
more than one strongly connected component, its diameter is ∞. The radius of a
graph is the smallest number r such there exists a vertex v from which there are
paths of length at most r to all other vertices. Note that the radius of a graph is
exactly the smallest number k such that there exists a k-king in the graph. It is
possible for a graph (though, as we will see, not a tournament) to have a radius
of ∞.

A tournament is a directed graph such that (a) there are no self-loops, that
is, the edge relation E is irreflexive and (b) for every pair u, v ∈ V of dis-
tinct vertices we have either (u, v) ∈ E or (v, u) ∈ E, but not both. It is well
known that any vertex of maximal out-degree in a tournament is a 2-king of the
tournament. In particular, every tournament has a 2-king. Except for the tour-
nament consisting of a single vertex or of no vertices, a tournament obviously
cannot have a diameter strictly less than 2. In the following, we will often need to

334 E. Hemaspaandra et al.

construct tournaments that have diameter exactly 2. The following lemmas show
when and how this can be done.

Lemma 2.1. Let n be a positive integer. Then there exists an n-vertex tourna-
ment of diameter 2 if and only if n /∈ {1, 2, 4}.

Succinct representations of general graphs. By circuit we refer to combinatorial
circuits containing input-, output-, negation-, and-, and or-gates. The fan-in of
each gate is at most 2. Fan-out is not restricted. For a circuit C with n input
gates and m output gates, we in a slight overloading of notation also use C to
denote the function computed by the circuit C. This function, C, maps elements
of Σn to Σm. For a circuit C we use code(C) to denote a standard binary
encoding of the circuit. The exact details of such a coding will not be important,
but note that for n-input and m-output circuits C the coding will have length
at least n+m.

We use circuits to define graphs succinctly. For positive integers n, given a
2n-input, 1-output circuit C, we say that it specifies the graph G whose vertex
set is V = Σn and whose edge set is defined as follows: There is an edge from
x ∈ V to y ∈ V if and only if C(xy) = 1. We say that C is a succinct repre-
sentation of G and write G(C) for G. Note that a graph G has many succinct
representations. We formalize the radius, diameter, and k-kingship problems for
succinctly specified graphs for fixed positive integers k as follows:

succinct-k-radius = {code(C) | G(C) has radius ≤ k}.
succinct-k-diameter = {code(C) | G(C) has diameter ≤ k}.

succinct-k-king = {〈code(C), x〉 | x is a k-king in G(C)}.

Tournament family specifiers. We can use circuits as introduced above to de-
scribe tournaments succinctly. A second way of specifying tournaments, which
we sketched already in the introduction, is more computationally uniform, but
less flexible: A tournament family specifier is a function f : Σ∗×Σ∗ → Σ∗ such
that

1. f is a polynomial-time computable function.
2. f is commutative, that is, for all x, y ∈ Σ∗ we have f(x, y) = f(y, x).
3. f is a selector, that is, for all x, y ∈ Σ∗ we have f(x, y) ∈ {x, y}.

We interpret this as specifying, in the following way, a family of tournaments,
one per length. At each length n, the nodes in the length-n tournament specified
by f will be the bitstrings in Σn. For each two distinct nodes among these, x
and y, the edge between them will be x→ y if f(x, y) = y and it will be y → x
if f(x, y) = x. There will be no self-loops. Since our function f always chooses
one of its inputs and is commutative, this indeed yields a family of tournaments.
We call the tournament just described the length-n tournament induced by f .

Recall from the introduction that k -Kingsf is the set of all k-kings in the
tournaments specified by f and a language L is called a P-k-king language if
there exists a tournament family specifier f with k -Kingsf = L.

On the Complexity of Kings 335

3 The Complexity of the Diameter Problem

In this section we prove that the succinct diameter problem is complete for Πp
2 ,

see Theorem 3.6 for the exact claim. Indeed, we show that the problem is already
hard when we restrict ourselves to tournaments. The tools that we introduce for
the proof of this result will be important in the following sections.

Definition 3.1. An �-layer tournament is a tournament whose vertex set is the
disjoint union of � nonempty sets L1, . . . , L
 such that the following holds: For
any vertex u ∈ Li and v ∈ Lj with i < j − 1, there is an edge v → u.

Lemma 3.2. Let T be an �-layer tournament, let u ∈ L1, and let v ∈ L
. Then
the shortest path from u to v has length at least �− 1.

Our next task is the definition of a rather complex tournament that will be used
in later proofs. Recall that we want to show that every problem in Πp

2 reduces
to the succinct diameter problem. For this, we construct a tournament in which
all vertices are k-kings, except possibly for one vertex, which will be a k-king
exactly if a certain “for all . . . exists . . . ” property is true.

For the definition of the tournament and also for the definition of even more
complicated tournaments later on, we proceed in three steps. First, we describe
the structure of the tournament. This means that we explain how many vertices
are present, which names we are going to use to abstractly refer to these vertices,
and how these vertices are connected by edges. However, in this first step we
do not yet fix which words will later on be used as being associated with these
vertices. Rather, the description of the structure of the tournament is given only
in terms of the names of the vertices. Second, we prove important properties of
the tournament, such as the property that all vertices except possibly for one
vertex are k-kings. Here, we still argue in terms of the names of the vertices
of the tournament and are not interested which words are represented by the
names. Third, we fix which words we are going to use. That is, for each named
vertex we present a unique word that is represented by that name.

The following definition of the tournament T k(R, J) just explains the basic
idea behind the construction.

Definition 3.3. Let a word length n, an integer k, a relation R ⊆ Σn × Σn,
and a set J of even cardinality be given. The vertices in J are called the junk
vertices, which are mainly needed to ensure later on that tournaments have a
size that is a power of 2. We define a tournament T k(R, J) as follows: It has
k + 1 layers L1, . . . , Lk+1. The first layer, called the potential king layer, and
the next k − 2 layers, called the antenna layers, all contain a single vertex. The
vertex in the potential king layer is called p, the vertex in antenna layer Li is
called ai. Layer Lk is called the z-layer and contains one vertex named βz for
each z ∈ Σn plus two vertices z1, z2 and possibly a vertex z3 so that the whole
tournament has even size. Let Z denote the set {βz | z ∈ Σn}. Layer Lk+1 is
called the y-layer and contains one vertex named αy for each y ∈ Σn plus six
special vertices {c0, c1, c2, d0, d1, d2} and all the junk vertices. Let Y denote the

336 E. Hemaspaandra et al.

set {αy | y ∈ Σn}. The edges between the vertices are directed as follows: Between
vertices in nonadjacent layers, the direction is already fixed by the fact that the
tournament is layered. For the potential king layer and the antenna layers, there
is an edge to every vertex on the next layer. For the z- and y-layers, the most
important connections are those between a vertex βz and a vertex αy: The edge
goes from βz to αy iff (y, z) ∈ R. The remaining edges (to and from the junk
vertices and the special vertices zi, ci, and di) are setup appropriately so that all
vertices except possibly p are k-kings of the tournament.

We will often need to talk about “an arbitrary vertex in some layer Li.” We will
generally use the variables li, l′i and so on to denote such vertices.

Lemma 3.4. Let k ≥ 2, let n ≥ 3, let R ⊆ Σn ×Σn be a relation, and let J be
a set of even size. Then the tournament T k(R, J) has the following properties:

1. The vertex p in the potential k-king layer is a k-king if and only if for every
y ∈ Σn there exists a z ∈ Σn such that (y, z) ∈ R holds.

2. All other vertices are k-kings of the tournament.

In the definition of the tournament T k(R, J) we left open which vertices are to be
used as vertices p or ai or αy. We only needed that all these vertices are different.
Since our aim is to prove something about succinctly specified tournaments, we
will have to use the set Σm for some m as the set of vertices. This means that we
have to use bitstrings for the vertices p, ai, and so on. The following definition
fixes which bitstrings we are going to use.

Definition 3.5. Let k ≥ 2 and n ≥ 3 be integers, let R ⊆ Σn ×Σn, and let m
be an integer such that 2m > k + 8 + 2 · 2n. We define a tournament T k

Σm(R)
as follows. Its vertex set is Σm. Let r be the size of the tournament T k(R, ∅)
from Definition 3.3. Let σi denote the lexicographically ith element of the set
Σm, starting with i = 1. Thus, σ1 is the all-0 bitstring of length m, while σ2m

is the all-1 bitstrings. Let J = {σi | r − 5 ≤ i ≤ 2m − 6} and note that J has
even cardinality. The tournament T k

Σm(R) is the tournament T k(R, J) with the
named vertices assigned to bitstrings in the manner described in the following.

1. The vertex p is mapped to σ1.
2. The vertices a2, . . . , ak−2 in the antenna layers are mapped to σ2, . . . , σk−2,

respectively.
3. The vertices in the z-layer are mapped to the vertices σk−1, . . . , σk+2n−1 for

even k and to σk−1, . . . , σk+2n for odd k. The ordering of the vertices of the
z-layer is the same as the one described in the Definition 3.3: The vertices
βz ∈ Z come first, in their lexicographic ordering, followed by z1, z2, and
possibly z3.

4. The vertices in the y-layer are mapped to the remaining vertices as follows.
The vertices αy are mapped, in lexicographical order, to the vertices σr−2n−6,
. . . , σr−6. The junk vertices inside the y-layer are simply mapped to them-
selves, namely to σr−5 to σ2m−6. The six special vertices ci and dj are mapped
to σ2m−5 and σ2m .

On the Complexity of Kings 337

The above establishes a one-to-one correspondence between the vertices men-
tioned in the definition of T k(R, J) and the elements of Σm. This concludes the
description of the tournament T k

Σm(R).

We now introduce the restricted version of the succinct diameter problem and
prove its hardness. Let succinct-k-diameter-tournament denote the set
{code(C) | the graph specified by C is a tournament of diameter at most k}.

Theorem 3.6. Let k ≥ 2. Then succinct-k-diameter-tournament is ≤p
m-

complete for Πp
2 .

A simple corollary of the above theorem is that succinct-k-diameter is also
≤p

m-complete for Πp
2 for k ≥ 2. Note that succinct-1-diameter is easily seen

to be ≤p
m-complete for coNP while succinct-1-tournament-diameter is the

empty set (graphs specified by circuits have size at least 2).

4 The Complexity of P-k-King Languages

In this section we establish the following result, which is the main result of this
paper.

Theorem 4.1. Let k ≥ 2. Each language in Πp
2 − {∅, Σ∗} is ≤p

m-equivalent to
a P-k-king language.

This result says that, excluding from our attention the trivial singleton degrees
of the empty set and of Σ∗, every many-one degree can be named by a k-kings
problem (for each k). That is, k-kings problems are so flexible that they take on
every possible nontrivial Πp

2 complexity level.
Note in particular that the theorem applies to the complete Πp

2 degree. Thus
we have the following corollary, which shows that the result of [9] that P-2-king
languages are all in Πp

2 is optimal.

Corollary 4.2. For each k ≥ 2, there is a Πp
2 -complete P-k-king language.

We prove Theorem 4.1 via showing a result, Theorem 4.3, that is even stronger.

Theorem 4.3. Let L be a language and let k ≥ 2. Then L ∈ Πp
2 if and only if

there exists a positive integer j such that pad′
j(L) is a P-k-king language.

Theorem 4.3 says that each set in Πp
2 has a padded version of itself that is

a P-k-king language. In light of the particular class of padding functions we
use, it is easy to see that Theorem 4.1 follows easily from this, as each padded
version is clearly many-one equivalent to the underlying set it is a padding of
when that underlying set is neither the empty set nor Σ∗. Indeed, a nontrivial
language and its padded versions are even equivalent under first-order reduc-
tions (and even under even more restrictive reductions), which are the same
as dlogtime-uniform many-one AC0-reductions, see Barrington, Immerman,
and Straubing [2]. This means that the ≤p

m-equivalence in Theorem 4.1 and

338 E. Hemaspaandra et al.

the (implicit) ≤p
m-completeness in Corollary 4.2 can be respectively replaced by

first-order equivalence and completeness.
To prove Theorem 4.3, we introduce new tournaments and, as in the previous

section, we do so in three steps: First, we explain how these tournaments are
structured, but do not fix which words we are going to use as vertices. Second,
we prove that the tournament has desirable properties. Third, we explain which
words we are going to use for the vertices. The core idea behind the definition
of the tournaments is to “weave together” multiple T k

Σm(R) tournaments.

Definition 4.4. Let k ≥ 2, n ≥ 1, n′ ≥ 3, and m > log2(k + 8 + 2 · 2n
′
) be

integers, let R ⊆ Σn ×Σn′ ×Σn′
, and let F (called the fill-up vertices) be a set

whose cardinality is neither 0, 2, nor 4. The woven tournament W k(R,F,m) is
obtained as follows: Each x ∈ Σn induces a relation Rx ⊆ Σn′ × Σn′

, namely
the set of all pairs (y, z) such that (x, y, z) ∈ R. For each x ∈ Σn we build a new
version of the tournament T k

Σm(Rx) by tagging each vertex v ∈ T k
Σm(Rx) with x

and we write vx for this tagged vertex. The vertices of the woven tournament are
all these tagged vertices, that is, all vertices vx for x ∈ Σn and v ∈ T k

Σm(Rx), plus
the vertices in the set F . The woven tournament is also a layered tournament
and tagging does not change the layer, that is, if v ∈ T k

Σm(Rx) lies in layer Li,
then vx also lies on layer Li of the woven tournament. The fill-up vertices lie on
layer Lk. The edges between the vertices of the woven tournament are directed
as follows: We inherit all edges from the individual tournaments T k

Σm(Rx) and
the property that the woven tournament is layered fixes the direction of edges
between nonadjacent layers. For adjacent layers, edges generally point from the
vertex in the layer with the larger index to the layer with the smaller index; but
there are two exceptions: First, edges point from the vertices in layer Lk−1 to
the fill-up vertex. Second, for every vertex vx in layer Lk and every vertex ux

′

in layer Lk+1 with x �= x′ there is an edge from vx to ux
′
. Inside each layer,

edges that are not yet fixed are setup appropriately to ensure that all vertices
except possibly the vertices in the potential king layer are k-kings of the woven
tournament.

Lemma 4.5. Let k ≥ 2, n ≥ 1, and n′ ≥ 3 be integers, let R ⊆ Σn×Σn′ ×Σn′

be a ternary relation, let m be an integer with 2m > k + 8 + 2 · 2n′
, and let F be

a set of vertices whose cardinality is not 0, 2, or 4. Then the woven tournament
W k(R,F,m) has the following properties:

1. For every x ∈ Σn the vertex px is a k-king of the woven tournament if and
only if for every y ∈ Σn′

there exists a z ∈ Σn′
such that (x, y, z) ∈ R holds.

2. All other vertices (vertices other than the px) are k-kings of the woven tour-
nament.

The next step is to fix how the vertices of the tournamentW k(R,F,m) are coded.
Lemma 4.7 then tells us that the resulting tournament has all the properties
needed to prove the main result, Theorem 4.3.

Definition 4.6. Let k ≥ 2, n ≥ 0, and n′ ≥ 3 be integers, let R ⊆ Σn ×Σn′ ×
Σn′

be a ternary relation, and let m be an integer such that 2m > k + 8 + 2 · 2n′

On the Complexity of Kings 339

and let l = n+m+ 3. The tournament W k
Σl(R) has the vertex set V = Σl. The

set F is the set of all elements of V that do not end with 000. Note that this set
does not have size 0, 2, or 4. The vertices of the different T k

Σm(Rx) are encoded
as follows: A vertex ux is mapped to the bitstring xu000. Thus, we prefix the
vertices of T k

Σm(Rx) with x and add 000 at the end.

Lemma 4.7. Let k ≥ 2, n ≥ 0, and n′ ≥ 3 be integers, let R ⊆ Σn×Σn′ ×Σn′

be a ternary relation. Then the woven tournament W k
Σl(R) has the following

properties:

1. For every x ∈ Σn, the bitstring x0l−n is a k-king of the woven tournament
if and only if for every y ∈ Σn′

there exists a z ∈ Σn′
such that (x, y, z) ∈ R

holds.
2. All bitstrings that do not end with 0l−n are k-kings of the woven tournament.

5 The Complexity of the Radius Problem

The results on P-king languages can be directly used to prove that the succinct
radius problem for directed graphs is complete for Σp

3 :

Theorem 5.1. Let k ≥ 2. Then succinct-k-radius is ≤p
m-complete for Σp

3 .

The proof of the theorem uses Theorem 4.3 instead of just the statement that
every nontrivial language in Πp

2 is equivalent to a P-k-king language. We remark
that it is also possible to prove Theorem 5.1 directly, but the proof then has to
redo several of the constructions of the proof of Theorem 4.3.

6 Conclusion

Kings problems have tremendous flexibility, and in fact can be used as a naming
scheme for the nontrivial Πp

2 many-one degrees. We found that king, radius, and
diameter problems for succinctly specified graphs are complete for classes at the
second or third level of the polynomial hierarchy. However, defining languages in
terms of k-kings does not always lead to sets that are complete for different levels
of the polynomial hierarchy. In the technical report version [6] of this paper we
study initial component languages, which are languages of the form

⋃
k k -Kingsf ,

and show that such languages always lie in Πp
2 , but cannot be NP-hard unless

P = NP.

References

1. Bang-Jensen, J., Gutin, G.: Generalizations of tournaments: A survey. J. Graph
Theory 28(4), 171–202 (1998)

2. Barrington, D., Immerman, N., Straubing, H.: On uniformity within NC1. J. Com-
put. Syst. Sci. 41(3), 274–306 (1990)

340 E. Hemaspaandra et al.

3. Gál, A., Wigderson, A.: Boolean complexity classes versus their arithmetic analogs.
Random Structures and Algorithms 9(1–2), 99–111 (1996)

4. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman and Company, New York (1979)

5. Gutin, G.: The radii of n-partite tournaments. Math. Notes 40, 414–417 (1986)
6. Hemaspaandra, E., Hemaspaandra, L., Tantau, T., Watanabe, O.: On the com-

plexity of kings. Technical Report URCS-TR905, Computer Science Dept., Univ.
Rochester (2006)

7. Hemaspaandra, E., Hemaspaandra, L., Watanabe, O.: The complexity of kings.
Technical Report URCS-TR870, Computer Science Dept., Univ. Rochester (2005)

8. Hemaspaandra, L., Nasipak, C., Parkins, K.: A note on linear-nondeterminism,
linear-sized, Karp–Lipton advice for the P-selective sets. J. Universal Comput.
Sci. 4(8), 670–674 (1998)

9. Hemaspaandra, L., Ogihara, M., Zaki, M., Zimand, M.: The complexity of find-
ing top-Toda-equivalence-class members. Theory of Comput. Sys. 39(5), 669–684
(2006)

10. Hemaspaandra, L., Torenvliet, L.: P-selectivity, immunity, and the power of one bit.
In: Gibet, S., Courty, N., Kamp, J.-F. (eds.) GW 2005. LNCS (LNAI), vol. 3881,
pp. 323–331. Springer, Heidelberg (2006)

11. Landau, H.: On dominance relations and the structure of animal societies, III: The
condition for score structure. Bulletin of Math. Biophysics 15(2), 143–148 (1953)

12. Meyer, A., Stockmeyer, L.: The equivalence problem for regular expressions with
squaring requires exponential space. In: Proc. 13th IEEE Symposium on Switching
and Automata Theory, pp. 125–129. IEEE Press, Los Alamitos (1972)

13. Nickelsen, A., Tantau, T.: The complexity of finding paths in graphs with bounded
independence number. SIAM J. Comput. 34(5), 1176–1195 (2005)

14. Petrovic, V., Thomassen, C.: Kings in k-partite tournaments. Discrete Math. 98,
237–238 (1991)

15. Schaefer, M., Umans, C.: Completeness in the polynomial-time hierarchy: Part I:
A compendium. SIGACT News 33(3) (2002)

16. Schaefer, M., Umans, C.: Completeness in the polynomial-time hierarchy: Part II.
SIGACT News 33(4) (2002)

17. Selman, A.: P-selective sets, tally languages, and the behavior of polynomial time
reducibilities on NP. Math. Syst. Theory 13(1), 55–65 (1979)

18. Selman, A.: Some observations on NP real numbers and P-selective sets. J. Comput.
Syst. Sci. 23(3), 326–332 (1981)

19. Selman, A.: Reductions on NP and P-selective sets. Theoret. Comput. Sci. 19(3),
287–304 (1982)

20. Stockmeyer, L.: The polynomial-time hierarchy. Theoret. Comput. Sci. 3(1), 1–22
(1976)

21. West, D.: Introduction to Graph Theory, 2nd edn. Prentice-Hall, Englewood Cliffs
(2001)

Notions of Hyperbolicity in Monoids

Michael Hoffmann and Richard M. Thomas�

Department of Computer Science, University of Leicester, Leicester LE1 7RH, UK
mh55@mcs.le.ac.uk, rmt@mcs.le.ac.uk

Abstract. We introduce a notion of hyperbolicity in monoids which is
a restriction of that suggested by Duncan and Gilman. One advantage
is that the notion gives rise to efficient algorithms for dealing with cer-
tain questions; for example, the word problem can be solved in time
O(n log n). We also introduce a new way of defining automatic monoids
which provides a uniform framework for the discussion of these concepts.

1 Introduction

The notions of hyperbolic [7] and automatic [4] groups have played a fundamental
role in computational group theory in recent years. It has been noted (see [12,13]
for example) that the definition of automaticity generalizes naturally from groups
to semigroups and an exploration of the basic properties of automatic semigroups
was undertaken in [2]. There are some issues with this generalization; see [9], for
example, where it was shown that the idea generalizes in several non-equivalent
ways. Notwithstanding this, a coherent theory of automatic semigroups has been
developed, with some fundamental properties (such as the solution of the word
problem in quadratic time) generalizing to semigroups.

Whilst the usual definition of automatic lends itself naturally to such a gen-
eralization, this has not been the case for hyperbolic. There were several equiva-
lent ways known of defining hyperbolic groups (see [1] for example) but none of
these really apply to semigroups. The situation changed with Gilman’s elegant
characterization of hyperbolic groups in [6] using pushdown automata; this new
condition generalizes naturally to the semigroup setting. As a result, Duncan
and Gilman [3] proposed this as the definition of a hyperbolic semigroup.

Their definition is entirely natural. One issue, however, is the absence (so far)
of efficient algorithms for dealing with hyperbolic semigroups and monoids. It is
well known that the word problem for hyperbolic groups can be solved in linear
time (even in real time [11]) but the best known algorithm for the word problem
in a hyperbolic monoid is exponential [8]. Other questions (such as the conjugacy

� This paper was written whilst the authors were on study leave from the University
of Leicester and the support of the University in this regard is much appreciated. In
addition, the paper was completed whilst the authors were visiting Friedrich Otto
in Kassel; they are very grateful to him for his hospitality and for his constructive
comments on the paper. The authors would also like to thank Chen-Hui Chiu and
Hilary Craig for all their help and encouragement.

E. Csuhaj-Varjú and Z. Ésik (Eds.): FCT 2007, LNCS 4639, pp. 341–352, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

342 M. Hoffmann and R.M. Thomas

problem, which can be solved efficiently in hyperbolic groups [5]) are still open
as far as hyperbolic monoids are concerned, even as regards decidability.

The purpose of this paper is to show how a restriction of the definition used
by Duncan and Gilman in [3] does lead to efficient algorithms. An analysis
of Gilman’s proof in [6] shows that one can impose restrictions on the push-
down automata used in the definition; we describe these in Section 3. These
new definitions are also natural; we point out that it is possible to define au-
tomaticity and biautomaticity in terms of pushdown automata (see Remark 2),
and these new notions of hyperbolicity arise directly from this observation. An
essential part of all this is the definition of a special type of context-free lan-
guage which we term “sync linear” (see Definition 5). This gives rise to new
perspectives on the relationship between hyperbolic and automatic monoids; it
enables us to view hyperbolic monoids (at least, in the sense presented here)
and automatic monoids in a more uniform fashion than has previously been the
case.

A particular aspect of this is the following. It is known that a hyperbolic group
is necessarily automatic [4], but this does not generalize to monoids [8]. With
the notions of hyperbolicity given here, we recapture this connection; in fact, a
monoid satisfying one of these new notions is (as is the case in groups) neces-
sarily biautomatic (see Theorem 3); this means that, for example, the conjugacy
problem is solvable in such monoids.

In general, the algorithmic properties of this new class of monoids suggest that
they are worthy of further study. Whilst the new definitions are equivalent to
the previous one in the group setting (see Theorem 1), they allow us to develop
efficient algorithms for monoids; for example, the word problem can be solved
in time O(n log n) (see Theorem 2). Further work is in progress, and it seems
that the techniques described here give rise to a number of efficient algorithms
for other problems. One interesting feature (which mirrors the developments in
automatic monoids) is that, when developing algorithms, the techniques involve
formal languages and automata (as opposed to the situation in groups, where
the techniques have been more geometric).

We conclude this section by mentioning some notation we will use. For any
k ∈ N, let Ak denote the set of all words α in A∗ with |α| = k and A�k the set
of all words α with |α| � k. Let αrev denote the reversal of the word α. If M is
a monoid and A ⊆ M a set of generators of M , then there is a homomorphism
θ : A∗ →M where each α in A∗ is mapped to the corresponding element of M .
We will be concerned with finite sets A, so that M is finitely generated. In this
context, if α and β are elements of A∗, we write α ≡ β if α and β are identical as
words, and α = β if α and β represent the same element of M (i.e. if αθ = βθ).

2 Synchronously Regular Languages

In this section we describe some aspects of synchronous two-tape finite automata
that will be used in our algorithms; we also define some notions of biautomaticity
in monoids that we will need later in the paper.

Notions of Hyperbolicity in Monoids 343

If α ≡ a1a2 . . . an and β ≡ b1b2 . . . bm, we have an FSA (finite state automa-
ton) with input alphabet A × A and reading pairs (a1, b1), (a2, b2), and so on.
To deal with the case where n �= m, we introduce a padding symbol $. More
formally, we define a mapping δR : A∗ × A∗ → A(2, $)∗, where $ /∈ A and
A(2, $) = (A ∪ {$})× (A ∪ {$})− {($, $)}, by

(α, β)δR =

⎧⎨⎩ (a1, b1) . . . (an, bn) if n = m
(a1, b1) . . . (an, bn)($, bn+1) . . . ($, bm) if n < m
(a1, b1) . . . (am, bm)(am+1, $) . . . (an, $) if n > m.

We have a map that inserts paddings on the left instead of the right; we define
δL : A∗ × A∗ → A(2, $)∗ by (α, β)δL = ((αrev, βrev)δR)rev. If α and β have
the same length then (α, β)δL and (α, β)δR coincide; we sometimes just write
(α, β)δ in this case. The following facts about regular languages will be useful:

Lemma 1. If J ⊆ (A∗ × B∗)δX and K ⊆ (B∗ × C∗)δX are regular with X ∈
{L,R}, then {(α, γ)δX : ∃β ∈ B with (α, β)δX ∈ J, (β, γ)δX ∈ K} is regular.

Lemma 2. Suppose that K ⊆ (A∗×A∗)δX is regular and X ∈ {L,R}. Let α be
a word in A∗. If there exists β ∈ A∗ such that (α, β)δX ∈ K, then such a word
β can be found in time O(|α|).

Lemma 3. Let M = (Q,A(2, $), τ, q0, F) be an FSA and X ∈ {L,R}. For any
α ≡ a1a2 . . . an ∈ A∗ we can create the following collection of sets in time O(n):

Di = {q ∈ Q : there exists β ∈ A∗ with q0
(a1...ai,β)δX

−−−−−−−−→ q}.

Fundamental in the notion of automatic and biautomatic monoids is the concept
of “padded” pairs of words. If M is a monoid generated by a finite set A, L is a
regular subset of A∗ and a ∈ A ∪ {ε}, then we define:

$
aL = {(α, β)δL : α, β ∈ L, aα = β}; $La = {(α, β)δL : α, β ∈ L,αa = β};
aL

$ = {(α, β)δR : α, β ∈ L, aα = β}; L$
a = {(α, β)δR : α, β ∈ L,αa = β}.

Recall that αa = β means that αa and β represent the same element of M , not
that αa and β are identical as words. Given this, we now recall some notions of
biautomaticity in monoids (see [10]):

Definition 1. Let M be a monoid generated by a finite set A and suppose that
L is a regular language over A that maps onto M . Let Ā represent A∪ {ε}. The
pair (A,L) is said to be

– a left-biautomatic structure if $
aL and $La are regular for a ∈ Ā;

– a right-biautomatic structure if aL
$ and L$

a are regular for a ∈ Ā.

A monoid M is said to be left-biautomatic if it has a left-biautomatic structure
and right-biautomatic if it has a right-biautomatic structure.

344 M. Hoffmann and R.M. Thomas

3 Types of Context-Free Languages

Throughout this paper, if P = (Q,Σ, Γ, τ, q0, F) is a PDA (pushdown automa-
ton), we assume there is a special symbol ⊥ (where ⊥ �∈ Γ) on the bottom of the
stack. This symbol is present at the start of the computation (i.e. the stack only
contains ⊥ initially), is never deleted nor appears anywhere else on the stack. We
accept by accept state but our machines all have an “empty stack” (i.e. a stack
only containing ⊥) when a word is accepted. If (r, ω′) ∈ τ((q, ω), α) we have
a transition from state q to state r reading α where the stack contents change
from ω to ω′; we write (q, ω) α→ (r, ω′). When we refer to the stack contents, we
omit ⊥ unless the stack is empty (in which case we denote the contents by ⊥).

As we mentioned above, we consider restrictions to PDA’s. To do this, we
want to define types of sequences of moves. As above, let Ā denote A ∪ {ε}. Let
O = {h, y, p} represent the possible operations push, stay, pop to the stack .

Definition 2. Let (q, ω1) α→ (r, ω2) be a transition in a PDA P . We say that
(a1, o1)(a2, o2) . . . (an, on), where ai ∈ Ā and oi ∈ O, is a trace of the transition
if α ≡ a1 . . . an and there exists a computation path from (q, ω1) to (r, ω2) such
that the ith step reads ai and performs the stack operation oi. (We may have that
ai = ε for some values of i.)

If α ∈ L(P) we say α has a trace t = (a1, o1)(a2, o2) . . . (an, on) if there exists
q ∈ F such that there is a transition (q0,⊥) α→ (q,⊥) with trace t.

Note that, when defining traces for words, we are are only doing so for words
accepted by P . We have an analogous concept for a language:

Definition 3. Let T ⊆ (Ā×O)∗. A PDA is of type T if every word accepted has
a trace in T ; a language L is of type T if there is a PDA of type T accepting L.

To reduce the notation needed for types and traces we use the following:

Definition 4. If B ⊆ Ā and o ∈ {h, y, p} we write Bo for B × {o} and bo for
{b}×{o}. Let (p, ω) α−→

T
(q, ω′) denote a transition with trace in T which starts in

state p with stack contents ω, reads α, and ends in state q with stack contents ω′.

We now introduce a certain kind of CFL (context-free language):

Definition 5. A CFG (context-free grammar) G = (N,A ∪ {#}, R, S) (where
�∈ A) is said to be sync linear if each production rule in R is of the form
X → aY b or X → # where X,Y ∈ N and a, b ∈ A. A language K is said to be
sync linear if it is generated by a sync linear grammar.

Remark 1. If K is a sync linear language (as in Definition 5), then K must be a
subset of {α#β : α, β ∈ A∗, |α| = |β|}. ��

The following result will be used throughout the paper:

Lemma 4. If Σ = A ∪ {#} and K ⊆ Σ∗, then the following are equivalent:

(i) K is sync linear.
(ii) Krev is sync linear.

Notions of Hyperbolicity in Monoids 345

(iii) K ⊆ {α#β : |α| = |β|} and {(α, β)δ : αrev#β ∈ K} is regular.
(iv) K ⊆ {α#β : |α| = |β|} and {(α, β)δ : α#βrev ∈ K} is regular.
(v) K is a CFL of type A∗

h #y A
∗
p.

Remark 2. An advantage of Lemma 4 is that it lets us consider automaticity
and biautomaticity in terms of CFLs. For example, if L ⊆ A∗ and we consider
L$
a = {(α, β)δR : α, β ∈ L,αa = β} (as in Definition 1), the regularity of L$

a is
equivalent to K = {α̃#β̃rev : (α, β)δR ∈ L$

a} being sync linear, where α̃ and β̃
are obtained from α and β by padding the shorter of the two words on the right
by symbols $ to make them of the same length. Another way of saying that L$

a

is regular is to say that K is a CFL of type B∗
h#yB

∗
p where B = A ∪ {$}. ��

The next result is straightforward; the proof via PDA’s that CFL’s are closed
under concatenation and union still works if we restrict the types of machine
(given that, in our machines, the stack is always empty when accepting a word).

Lemma 5. If L and K are CFL’s of type TL and TK respectively then LK is a
CFL of type TLTK and L ∪K is a CFL of type TL ∪ TK .

It is also known that one can insert a CFL into another to yield a CFL; modifying
the proof slightly gives the following result:

Lemma 6. Suppose that L ⊆ A∗{#}A∗ (where # /∈ A) is a CFL of type
W1#yW2 with W1,W2 ⊆ (Ā × {h,y,p})∗ and that K is a CFL of type TK.
Then L′ = {αβγ : α#γ ∈ L, β ∈ K} is a CFL of type W1TKW2.

Another result in a similar vein is the following:

Lemma 7. If L ⊆ A∗ is a CFL of type T and K ⊆ A∗ is a regular language
then L ∩K is a CFL of type T .

The following result, which allows us to change the type of a language, is a little
technical but will be useful in what follows:

Lemma 8. If B ⊆ A, W1,W2 ∈ ({A ∪ {ε})× {h, y, p} −By)∗ and L ⊆ A∗ is a
CFL of type W1ByW2, then L is also of type W1BhW2εp.

4 Hyperbolic Structures

In this section we introduce our notions of hyperbolicity; as we explained in
Section 1, these are obtained by following the definition given in [3] but imposing
constraints on the type of the PDA. The three types we will consider are:

T1 = A∗
h #y A

∗
p A

�1
y A∗

h #y A
∗
p;

T2 = A∗
h #y A

∗
p A

∗
h #y A

∗
p (ε∗p ∪ Ay);

T3 = A∗
h #y A

∗
p A

∗
h #y (ε∗p ∪ Ay) A∗

p.

346 M. Hoffmann and R.M. Thomas

Given this, we now make the following definition:

Definition 6. A monoid M is called Ti-hyperbolic if M has a hyperbolic struc-
ture (A,L) such that {α#β#γrev : α, β, γ ∈ L,αβ = γ} is of type Ti; (A,L) is
then a Ti-hyperbolic structure for M .

We will refer to the language {α#β#γrev : α, β, γ ∈ L,αβ = γ} as Lhyp for the
remainder of this paper.

Not all monoids which are hyperbolic in these new ways are close to being
groups; for example, consider M = 〈a, b, x : xaix = xbix for i > 0〉. M is neither
finitely presented nor cancellative; however we can show that M is T1-hyperbolic.
Let A = {a, b, x} and L = A∗ − A∗{x}{b}∗{x}A∗; then, for all α, β ∈ L, either
αβ ≡ γ ∈ L or α ≡ α1xb

i and β ≡ bjxβ2 for some i+ j > 0 and α1, β2 ∈ A∗. In
the latter case αβ = α1xa

i+jxβ2 ≡ γ ∈ L. A PDA that pushes all the elements
of α and β onto the stack can verify that γ is of the required form while reading
γrev and popping a symbol off the stack for each symbol of γrev.

The following result follows directly from Lemma 8:

Lemma 9. If M is a T1-hyperbolic monoid then M is also T2-hyperbolic.

Remark 3. In a similar fashion (given an analogue of Lemma 8) one can show
that, if M is a T1-hyperbolic monoid, then M is also T3-hyperbolic. In fact,
using the techniques developed in this paper, one can show that a monoid M is
T3-hyperbolic if and only if M rev is T2-hyperbolic. ��

Given Remark 3, we will focus on T2-hyperbolic. As we explained in the intro-
duction, part of the motivation for these notions springs from the following:

Theorem 1. If M is a group then M is hyperbolic if and only if M is Ti-
hyperbolic for 1 � i � 3.

Proof. “⇒”: Let M be a hyperbolic group generated by a set A; given Lemma 9
and Remark 3, it is sufficient to show that M is T1-hyperbolic.

Each element in M is represented by several words in A∗; we are only inter-
ested in, for any given element, the representatives of minimum length. Let L
be the set of all such words (so that, if α ∈ L, β ∈ A∗ and α = β, then |α| � |β|;
such words α label geodesics in the Cayley graph of M). It is well known that,
for a hyperbolic group, this set L is regular. In addition, Gilman’s characteri-
zation of hyperbolic groups in [6] shows that the language Lhyp is context-free.
His proof proceeds via a CFG G which can be taken to be of the following form.
The set of non-terminals N is the disjoint union of sets X (which contains the
sentence symbol), Y and Z; the production rules are of the form:

Xi → aXjb; Xi → YkZl; Xi → YkcZl;
Yi → aYjb; Yi → #; Zi → aZjb; Zi → #,

where a, b, c ∈ A, X
 ∈ X , Y
 ∈ Y and Z
 ∈ Z. We will build L = L(G) out
of smaller components of particular types; we then assemble these components
and show that Lhyp is of type T1.

Notions of Hyperbolicity in Monoids 347

Let LYi = {η ∈ A∗ : Yi
∗⇒ η} and LZi = {η ∈ A∗ : Zi

∗⇒ η}; these are sync
linear and, by Lemma 4, are of type A∗

h#yA
∗
p. By Lemma 5, for any Yi and Zj and

any c ∈ A, the languages LYiLZj and LYicLZj are of type A∗
h#yA

∗
pA

�1
y A∗

h#yA
∗
p.

Let G′ be the CFG with non-terminals X , the same starting symbol as G and
the following transitions:

Xk → aXlb if Xk → aXlb is a transition in G;
Xk → #i,c,j if Xk → YicZj is a transition in G;
Xk → #i,j if Xk → YiZj is a transition in G.

Let Li,c,j = L(G′)∩A∗{#i,c,j}A∗ and Li,j = L(G′)∩A∗{#i,j}A∗. By Lemmas 4
and 7, each of Li,j and Li,c,j is of type A∗

hByA
∗
p with B the set of all the symbols

#i,j and #i,c,j. If we replace #i,c,j in Li,c,j with LZi{c}LYj we get Ki,c,j, and
Ki,j is obtained in a similar fashion:

Ki,c,j = {ηξζ : η#i,c,jζ ∈ Li,c,j, ξ ∈ LZi{c}LYj},
Ki,j = {ηξζ : η#i,jζ ∈ LZiLYj , ξ ∈ Li,j}.

By Lemma 6, Ki,c,j and Ki,j are of type T1. Since, by construction, L = L(G) =⋃
Ki,c,j ∪

⋃
Ki,j , we have, by Lemma 5, that L is of type T1 as required.

“⇐”: If M is a group with Ti-hyperbolic structure (A,L) then the set Lhyp is
a CFL; so M is hyperbolic by [6]. ��

5 Word Problem of Ti-Hyperbolic Monoids

Given a monoid with a T2-hyperbolic structure (A,L) we will show that the
word problem is solvable in time O(n log(n)). Our first aim is perform a “mul-
tiplication” of two words in L into a word in L in linear time.

Let P = (Q,A∪ {#}, Γ, τ, qo, F) be a PDA of type T2 with L(P) = Lhyp. We
are particular interested at what happens when we read the # symbols; we think
of a triangle with sides labelled by α, β and γrev, and talk about the “corners”
of the triangle. Let Γ ′ denote Γ ∪ {⊥}. For μ, ν ∈ A∗ and ω ∈ Γ ∗ let

Tμ,ν,ω = {(p, q, t) ∈ Q×Q× Γ ′ : (p, tω)
μ#ν−−−−−→

A∗
h#yA∗

p

(q, tω)}.

If t = ⊥ we must have ω ≡ ε (this convention applies to similar situations in the
remainder of the paper). Here μ represents a suffix of α and ν a prefix of β.

The trace of the transition specifies that elements will be pushed on the stack,
followed by a stay operation, and then elements will be popped off the stack.
Since the end configuration has the same stack as the initial one, P has performed
the same number of pushes as pops. The element t will never removed from the
stack during the transition and therefore the set is independent of ω; so, from
now on, we will omit ω and denote this set by Tμ,ν . Each such set Tμ,ν is a subset
of Q×Q× Γ ′ and is therefore bounded in size by the choice of P .

When dealing with these sets we want to be able to construct Taμ,νb out of
Tμ,ν ; this can be done in the following way:

348 M. Hoffmann and R.M. Thomas

Taμ,νb = {(p, q, t) ∈ Q×Q× Γ ′ : there exists (p′, q′, t′) ∈ Tμ,ν

with (p, tω) a−−→
Ah

(p′, t′tω) and (q′, t′tω) b−−→
Ap

(q, tω)}.

If t = ⊥, then we have (p, tω) = (p,⊥) a−−→
Ah

(p′, t′) and (q′, t′) b−−→
Ap

(q,⊥); again,

we adopt a similar convention for the remainder of the paper. This enables us
to create a complete deterministic FSA MT where each state corresponds to a
subset of Q×Q×Γ ′; the input alphabet is A×A and τT (sT , (μrev, ν)δ) = Tμ,ν .

For any given p, q ∈ Q and t ∈ Γ ′ we can choose the accept states of M to be
all states which contain (p, q, t). Hence the set

Cp,q,t = {(μrev, ν)δ : (p, tω) μ#ν−−−−−→
A∗

h#yA∗
p

(q, tω)} = {(μrev, ν) : (p, q, t) ∈ Tμ,ν

is regular. In terms of our triangle, the sets Cp,q,t are relevant when considering
the corner between α and β. We will now give similar arguments to define a
deterministic complete FSA and regular set for each of the other two corners.

First consider the corner between β and γ. For μ, ν ∈ A∗ and ω ∈ Γ ∗ let

Vμ,ν,ω = {(p, q, t) ∈ Q×Q× Γ ′ : (p, tω)
μ#ν−−−−−−−→

A∗
h#yA∗

pε
∗
p

(q, tω)}.

Again these sets are independent of ω and we can build the sets up. Here μ
represents a suffix of β and ν a prefix of γrev. Since μ could be longer than ν,
we have to distinguish between the following two cases:

for |μ| = |ν|: Vbμ,νc = {(p, q, t) ∈ Q×Q× Γ ′ : ∃(p′, q′, t′) ∈ Vμ,ν
with (p, tω) b−−→

Ah
(p′, t′tω), (q′, t′tω) c−−→

Ap
(q, tω)};

for any μ, ν: Vbμ,ν = {(p, q, t) ∈ Q×Q× Γ ′ : ∃(p′, q′, t′) ∈ Vμ,ν

(|μ|
 |ν|) with (p, tω) b−−→
Ah

(p′, t′tω), (q′, t′tω) ε−→
εp

(q, tω)}.
This leads to a complete deterministic FSA MV with two sorts of transition
depending whether or not a padding symbol has already been used. The states of
are subsets of Q×Q×Γ ′, the alphabet is A(2, $) and τV (sV , (μrev, ν)δR) = Vμ,ν .

As before, for any p, q ∈ Q and t ∈ Γ ′, we can set the accept states in MV to
be all states that contain (p, q, t); so the following set is regular:

Ep,q,t = {(μrev, ν)δR : (p, q, t) ∈ Vμ,ν}.

We now use similar arguments for the corner between α and γ. For μ, ν ∈ A∗ let

Uμ,ν = {(p, q, t) ∈ Q×Q× Γ ′ : (q0,⊥)
μ−−→
A∗

h

(p, tω),

(q, tω) νrev

−−−−−−−→
A∗

p(A∗
y∪ε∗p)

(qf ,⊥) for some qf ∈ F for some ω ∈ Γ ∗}.

Again we can build the sets up. Here μ represents a prefix of α and ν a prefix of γ.
However due to the fact that we can either clear the stack with empty moves or

Notions of Hyperbolicity in Monoids 349

else read the rest of γrev whilst the stack is empty, we have to distinguish three
cases. Let μ, ν ∈ A∗ and a, c ∈ A; then:

Uμa,νc = {(p, q, t) : ∃(p′, q′, t′) ∈ Uμ,ν with (p′, t′ω) a−−→
Ah

(p, tt′ω),

(q′, tt′ω) c−−→
Ap

(q, t′ω)};

Uμa,ε = {(p, q, t) : ∃(p′, q′, t′) ∈ Uμ,ε with (p′, t′ω) a−−→
Ah

(p, tt′ω),

(q′, tt′ω) ε−→
εp

(q, t′ω)};

Uε,νc = {(q0, q,⊥) : ∃(q0, q′,⊥) ∈ Uε,ν with (q′,⊥) c−−→
Ay

(q,⊥)}.

This leads to a deterministic complete FSA MU over the alphabet A(2, $) with
states Q × Q × Γ ′ and transitions τU (sU , (μ, ν)δL) = Uμ,ν . As before, for any
p, q ∈ Q and t ∈ Γ ′, we can set the accept states to be all states that contain
(p, q, t); therefore the following set is regular:

Dp,q,t = {(μ, ν)δL : (p, q, t) ∈ Uμ,ν}.

The main step in solving the word problem is now the following result:

Lemma 10. Let M be a monoid with a T2-hyperbolic structure (A,L). Given
α, β ∈ L, a word γ ∈ L with αβ = γ can be constructed in time O(|α| + |β|).

Proof. Let P = (Q,A ∪ {#}, Γ, τ, q0, F) be a PDA of type T2 accepting Lhyp.
Assume that α ≡ a1a2 . . . an and β ≡ b1b2 . . . bm are given; we want to construct
γ ∈ L with γ = αβ. The algorithm will work in two steps; the figure below
indicates some of the notation used.

γ1 γ2
(p3, tω)

β2

(p2, tω)

β1
α2

(p1, tω)

α1

γ2

β2

β1
α2

α1

MU , Dp1,p3,t MV , Ep2,p3,t

MT , Cp1,p2,t

Goal 1: Find i, p1, p2, p3 and t such that there exist γ1, γ2 ∈ A∗, ω ∈ Γ ∗ and
qf ∈ F with either:

(q0,⊥) α1−−→
A∗

h

(p1, tω)
α2#β1−−−−−→
A∗

h#yA∗
p

(p2, tω)
β2#γrev

2−−−−−→
A∗

h#yA∗
p

(p3, tω)
γrev
1−−−−−−−→

A∗
p(ε∗p∪A∗

y)
(qf ,⊥)

or: (q0,⊥) α1−−→
A∗

h

(p1, tω)
α2#β1−−−−−→
A∗

h#yA∗
p

(p2, tω)
β2#γrev

2−−−−−−−→
A∗

h#yA∗
pε

+
p

(p3, tω) ε−→
ε∗p

(qf ,⊥)

where α ≡ α1α2 with |α2| = i and β ≡ β1β2 with |β1| = i.

Goal 2: Create γ ∈ L with γ = αβ.
We now describe the steps of our algorithm that allow us to achieve these goals.

350 M. Hoffmann and R.M. Thomas

Step 1: Let Gj be the set of states which MU can be in for any input of the
form (a1a2 . . . aj, γ1)δL with γ1 ∈ A∗. and Ik the set of states that MV can be in
for any input (bm . . . bm−k+1, γ2)δR with γ2 ∈ A∗. Let Hi be Tan...an−i+1,b1...bi .

By Lemma 3 all of these sets can be created in time O(|α|+|β|). The algorithm
will now find the least i such that there exists p1, p2, p3 ∈ Q, t ∈ Γ , I ∈ Im−i,
G ∈ Gn−i and H ∈ Hi such that (p1, p2, t) ∈ H , (p2, p3, t) ∈ I and (p1, p3, t) ∈ G.
Since the sizes of all sets Hi, Gj and Ik can be uniformly bounded in terms of
P , the check for any particular i is done in constant time; hence we obtain i in
time O(|α| + |β|).
Step 2: From Step 1 we have determined i, p1, p2, p3 and t. Let α1α2 ≡ α with
|α2| = i and β1β2 ≡ β with |β1| = i.

Since Dp1,p3,t is regular we can find γ1 such that (α1, γ1)δ ∈ Dp1,p3,t in time
O(n− i) by Lemma 2. Similarly, Ep2,p3,t is regular and we can find γ2 such that
(βrev2 , γrev2)δL ∈ Ep2,p3,t in time O(m− i) by Lemma 2. So we have that either:

(q0,⊥) α1−−→
A∗

h

(p1, tω)
α2#β1−−−−−→
A∗

h#yA∗
p

(p2, tω)
β2#γrev

2−−−−−→
A∗

h#yA∗
p

(p3, tω)
γrev
1−−−−−−−→

A∗
p(ε∗p∪A∗

y)
(qf ,⊥)

or: (q0,⊥) α1−−→
A∗

h

(p1, tω)
α2#β1−−−−−→
A∗

h#yA∗
p

(p2, tω)
β2#γrev

2−−−−−−−→
A∗

h#yA∗
pε

+
p

(p3, tω) ε−→
ε∗p

(qf ,⊥)

for some qf ∈ F and ω ∈ Γ ∗. Hence we have that α#β#(γ1γ2)rev ∈ L(P) and
γ ≡ γ1γ2 = αβ with so γ ∈ L as required. ��

Given this, we now have the following:

Lemma 11. Let (A,L) be a T2-hyperbolic structure of a monoid M . If ζ ∈ A∗

with |ζ| = n, then λ ∈ L with λ = ζ can be calculated in time O(n logn).

Proof. We split ζ into two words ζ1 and ζ2 of length at most 2|ζ|/23 and construct
λ1, λ2 ∈ L with λ1 = ζ1 and λ2 = ζ2 recursively. By Lemma 10 we can construct
λ from λ1 and λ2 in time O(|λ1|+ |λ2|), and hence find λ in time O(n logn). ��

The last step in solving the word problem is given by the following result:

Lemma 12. Let (A,L) be a T2-hyperbolic structure for a monoid M and β ∈ L;
then the set {(α, γ)δL : α, γ ∈ L,αβ = γ} is regular.

Proof. We will continue the notation used above. We are interested in the set S
of all (μ, ν, p, q, t) ∈ A∗ ×A∗ ×Q×Q× Γ ′ such that

(p, tω)
μ#β#νrev

−−−−−−−−−−−−−−−→
Ak

h#yAk
pA

l
h#yA

l−m
p εm

p

(q, tω)

is a transition in P for some k, l,m ∈ N and some ω ∈ Γ ∗.
Since β is fixed and k, l,m � |β|, the set S is finite. As described above the

FSA MU reads words over A(2, $) and τ(sU , (α1, γ1)δL) = Uα1,γ1 . We construct
a new FSA M ′ by adding a state f (the only accept state of M ′) and transitions

{x (μ,ν)δR

−−−−−→ f : there exists (p, q, t) ∈ x and (μ, ν, p, q, t) ∈ S}.

Notions of Hyperbolicity in Monoids 351

Note that words accepted by M ′ are generally padded at the left, but a bounded
number of padding symbols can appear on the right (due to the transitions to f).
Let (a1, c1) . . . (an, cn) ∈ L(M ′); let α be the word resulting from a1 . . . an after
removing all the padding symbols and let γ be the analogous word for c1 . . . cn.
By the construction of M ′ there must exist α1, α2, γ1, γ2 ∈ A∗, p, q ∈ Q and
t ∈ Γ ′ with α1α2 ≡ α, γ1γ2 ≡ γ, (p, q, t) ∈ U(α1,γ1)δL and

(q0,⊥) α1−→ (p, tω)
α2#β#γrev

2−−−−−−−−→ (q, tω)
γrev
1−−−→ (qf ,⊥)

for some qf ∈ F , ω ∈ Γ ∗. Hence α#β#γrev ∈ L(P) and αβ = γ with α, γ ∈ L.
Conversely, if α, γ ∈ L with αβ = γ, then α#β#γrev is in L(P). So there

exist α1, α2, γ1, γ2 ∈ A∗ with α1α2 ≡ α, γ1γ2 ≡ γ, |α2| = k, |γ2| = l, and either:

(q0,⊥) α1−−→
A∗

h

(p, tω)
α2#β#γrev

2−−−−−−−−−−→
Ak

h#yAk
pA

l
h#Al

p

(q, tω)
γrev
1−−−−−−−→

A∗
p(ε∗p∪A∗

y)
(qf ,⊥)

or: (q0,⊥) α1−−→
A∗

h

(p, tω)
α2#β#γrev

2−−−−−−−−−−−−−−→
Ak

h#yAk
pA

l
h#Al−m

p εm
p

(q, tω)
γrev
1−−−→
ε∗p

(qf ,⊥)

for some m > 0, p, q ∈ Q, t ∈ Γ ′, qf ∈ F and ω ∈ Γ ∗; note that γ1 must
be the empty word in the second case. By the construction of M ′ the word
(α1, γ1)δL(α2, γ2)δR is accepted by M ′. Using Lemma 4.1 from [9] we see that
the set {(α, γ)δL : α, γ ∈ L,αβ = γ} is regular. ��

In a similar vein, one can prove:

Lemma 13. Let (A,L) be a T2-hyperbolic structure for a monoid M and α ∈ L;
then the set {(β, γ)δL : β, γ ∈ L,αβ = γ} is regular.

Given Lemma 12, we can check whether two given words in L represent the same
element of M in linear time by choosing β to represent the identity element.
Given Lemma 11, we now have the following result:

Theorem 2. The word problem of a T2-hyperbolic monoid is solvable in time
O(n logn).

Given Remark 3 the word problem of a T3-hyperbolic monoid is solvable in time
O(n logn); by Lemma 9, this is also true for T1-hyperbolic monoids.

6 Connections with Biautomaticity

Lemmas 12 and 13 give that, for any given element m in a monoid M with
a T2-hyperbolic structure (A,L), the sets $

mL = {(α, β)δL : mα = β} and
$Lm = {(α, β)δL : αm = β} are regular. Since, by the definition of a T2-hyperblic
structure, L is regular and L maps onto M , we have the following.

Theorem 3. If M is a monoid with a T2-hyperbolic structure (A,L) then (A,L)
is also a left-biautomatic structure for M .

We note that, by Remark 3, a T3-hyperbolic structure for a monoid M is also a
right-biautomatic structure for M . Given Lemma 9, we see that a T1-hyperbolic
structure is both a left-biautomatic and a right-biautomatic structure.

352 M. Hoffmann and R.M. Thomas

We finish with the following observation:

Lemma 14. If (A,L) is a T2-hyperbolic structure for a monoid M then there
exists K ⊆ L such that (A,K) is a T2-hyperbolic structure for M and K maps
bijectively to M .

Proof. (A,L) is also a left-biautomatic structure for M by Theorem 3. By Corol-
lary 5.5 in [2] there exists a regular languageK ⊆ L such that K maps bijectively
to M . The set K{#}K{#}Krev is clearly regular; by Lemma 7 the set

K{#}K{#}Krev ∩ Lhyp = {(α#β#γrev : αβ = γ, α, β, γ ∈ K} = Khyp

is also a CFL of type T2; hence (A,K) is also a T2-hyperbolic structure for M
and K maps bijectively to M as required. ��
We have a similar result to Lemma 14 for T1-hyperbolic and T3-hyperbolic
structures.

References

1. Alonso, J.M, Brady, T., Cooper, D., Ferlini, V., Lustig, M., Michalik, M., Shapiro,
M., Short, H.: Notes on word hyperbolic groups. In: Ghys, E., Haefliger, A., Ver-
jovsky, A. (eds.) Group Theory from a Geometric Viewpoint, pp. 3–63. World
Scientific, Singapore (1991)

2. Campbell, C.M., Robertson, E.F., Ruškuc, N., Thomas, R.M.: Automatic semi-
groups. Theoret. Comp. Sci. 250, 365–391 (2001)

3. Duncan, A., Gilman, R.H.: Word hyperbolic semigroups. Math. Proc. Cambridge
Philos. Soc. 136, 513–524 (2004)

4. Epstein, D.B.A., Cannon, J.W., Holt, D.F., Levy, S., Paterson, M.S., Thurston,
W.: Word Processing in Groups. Jones & Barlett (1992)

5. Epstein, D.B.A., Holt, D.F.: The linearity of the conjugacy problem in word-
hyperbolic groups. Internat. J. Algebra Comput. 16, 287–305 (2006)

6. Gilman, R.H.: On the definition of word hyperbolic groups. Math. Z. 242, 529–541
(2002)

7. Gromov, M.: Hyperbolic groups. In: Gersten, S.M. (ed.) Essays in Group Theory,
vol. 8, pp. 75–263 (MSRI Publ., Springer-Verlag) (1987)

8. Hoffmann, M., Kuske, D., Otto, F., Thomas, R.M.: Some relatives of automatic and
hyperbolic groups. In: Gomes, G.M.S., Pin, J.-E., Silva, P.V. (eds.) Semigroups,
Algorithms, Automata and Languages, pp. 379–406. World Scientific, Singapore
(2002)

9. Hoffmann, M., Thomas, R.M.: Notions of automaticity in semigroups. Semigroup
Forum 66, 337–367 (2003)

10. Hoffmann, M., Thomas, R.M.: Biautomatic semigroups. In: Lískiewicz, M., Reis-
chuk, R. (eds.) FCT 2005. LNCS, vol. 3623, pp. 56–67. Springer, Heidelberg (2005)

11. Holt, D.F.: Word-hyperbolic groups have real-time word problem. Internat. J. Al-
gebra Comput. 10, 221–227 (2000)

12. Hudson, J.F.P.: Regular rewrite systems and automatic structures. In: Almeida,
J., Gomes, G.M.S., Silva, P.V. (eds.) Semigroups, Automata and Languages, pp.
145–152. World Scientific, Singapore (1998)

13. Otto, F., Sattler-Klein, A., Madlener, K.: Automatic monoids versus monoids with
finite convergent presentations. In: Nipkow, T. (ed.) Rewriting Techniques and
Applications. LNCS, vol. 1379, pp. 32–46. Springer, Heidelberg (1998)

P Systems with Adjoining Controlled

Communication Rules

Mihai Ionescu1 and Dragoş Sburlan2,3

1 Rovira i Virgili University,
Research Group on Mathematical Linguistics,

Tarragona, Spain
armandmihai.ionescu@urv.cat

2 Ovidius University
Faculty of Mathematics and Informatics

Constantza, Romania
dsburlan@univ-ovidius.ro

3 Research Group on Natural Computing,
University of Seville, Spain

Abstract. This paper proposes a new model of P systems where the
rules are activated by the presence/absence of certain objects in the
neighboring regions. We obtain the computational completeness con-
sidering only two membranes, external inhibitors, and carriers. Leaving
the carriers apart we obtain equivalence with ET0L systems in terms of
number sets.

1 Introduction

Having as inspiration the way living cells are divided by membranes into cellular
compartments where various biochemical processes take place, P systems (also
known as membrane systems) area grew rapidly since Gheorghe Păun proposed
the first model in 1998 ([5]). A complete bibliography of P systems can be found
on the P system webpage ([9]).

Within the living cell there are several energy consuming activities. Among
them there is the transport activity which is of three types: diffusion, facilitated
diffusion, and active transport. Simple diffusion means that the molecules can
pass directly through the membrane, always down a concentration gradient,
while in the case of facilitated diffusion and active transport, molecules can
pass both down an up the concentration gradient. In the facilitated diffusion
membrane protein channels are used to allow charged molecules (which otherwise
could not diffuse across the cell membrane) to freely diffuse the cell, while active
transport requires the expenditure of energy to transport the molecule from one
side of the membrane to the other.

Hence, living cells get/expel from/to their environment many substances and
for this aim they have developed specific transport systems across membranes,
even against a concentration gradient. Often enough this necessity of the living cell

E. Csuhaj-Varjú and Z. Ésik (Eds.): FCT 2007, LNCS 4639, pp. 353–364, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

354 M. Ionescu and D. Sburlan

to expel or attract various molecules is triggered by the presence or the absence
of certain chemicals in the immediate neighboring (inner or outer) regions.

Here we deal with P systems where the rules from a given region are activated
precisely by the presence or the absence of certain symbols in the neighboring
regions. This model has a biological counterpart and it is inspired by the chem-
icals that pass through the membranes of the cell, from one region to another,
in the sense of polarization gradient. In this case, the electrical charge plays the
role of the promoter. Attempts to formalize these biological phenomena were
done also in [1].

Before going into the definition of the new model and its computational power
under certain restrictions (Section 3) we briefly remind the reader some basic
notions and notations (Section 2). Section 4 is dedicated to the conclusions and
challenges for further research.

2 Preliminaries and Definitions

We assume familiarity with the basics of formal language theory (see [7]), as well
as with the basics of membrane computing (see [6]).

An alphabet is a finite set of symbols (letters), and a word (string) over an
alphabet Σ is a finite sequence of letters from Σ. We denote the empty word by
λ, the length of a word w by |w|, and the number of occurrences of a symbol a
in w by |w|a. The (con)catenation of two words x and y is denoted by xy.

A language over Σ is a (possibly infinite) set of words over Σ. The language
consisting of all words overΣ is denoted by Σ∗, and Σ+ = Σ∗\{λ}. We denote by
REG, CF, ET0L, CS, RE the families of languages generated by regular, context-free,
extended tabled interactionless Lindemayer systems, context-sensitive, and of
arbitrary Chomsky grammars, respectively (RE stands for the class of recursively
enumerable languages). The following strict inclusions hold: REG ⊂ CF ⊂ ET0L ⊂
CS ⊂ RE.

For a family FL of languages, NFL denotes the family of length sets of languages
in FL. The following relations hold: NREG = NCF ⊂ NET0L ⊂ NCS ⊂ NRE.

The multisets over a given finite support (alphabet) are represented by strings
of symbols. The order of symbols does not matter, because the number of copies
of an object in a multiset is given by the number of occurrences of the corre-
sponding symbol in the string (see [2] for other ways to specify multisets).

3 The Model

Based on the biological observations mentioned in the introductory section we
introduce the following new class of P systems.

3.1 Defining the Model

Definition 1. A P system with adjoining controlled communication rules (called
in short, a PACC system) is a construct

Π = (V,C, μ, w1, . . . , wm, R1, . . . , Rm, i0),

P Systems with Adjoining Controlled Communication Rules 355

where:

– V is the alphabet of objects;
– C ⊆ V is the set of carriers;
– μ is a membrane structure with m membranes (labeled in a one-to-one man-

ner by 1, . . . ,m);
– w1, . . . , wm are the multisets of objects initially present in the regions of Π;
– R1, . . . , Rm are finite sets of communication rules associated to membranes,

that are of the following types:
/ simple rules:[
A
]
i
−→

[]
i
α or A

[]
i
−→

[
α
]
i
, for A ∈ V \ C, α ∈ (V \ C)∗,

/ promoted simple rules:[
A
]
i
B −→

[]
i
α or A

[
B
]
i
−→

[
α
]
i
, for A,B ∈ V \ C, α ∈ (V \ C)∗,

/ inhibited simple rules:[
A
]
i
¬B −→

[]
i
α or A

[
¬B
]
i
−→

[
α
]
i
, for A,B ∈ V \ C, α ∈ (V \ C)∗,

/ carrier rules:
pairs of rules

[
cA
]
i
−→

[]
i
cα and c

[]
i
−→

[
c
]
i
, for A ∈ V \ C, c ∈ C,

α ∈ (V \C)∗, or
pairs of rules cA

[]
i
−→

[
cα
]
i

and
[
c
]
i
−→

[]
i
c for A ∈ V \ C, c ∈ C,

α ∈ (V \C)∗,
/ promoted carrier rules:
pairs of rules

[
cA
]
i
B −→

[]
i
cα and c

[]
i
−→

[
c
]
i
, for A,B ∈ V \ C,

c ∈ C, α ∈ (V \ C)∗, or
pairs of rules cA

[
B
]
i
−→

[
cα
]
i

and
[
c
]
i
−→

[]
i
c, for A,B ∈ V \C, c ∈ C,

α ∈ (V \C)∗;
/ inhibited carrier rules:
pairs of rules

[
cA
]
i
¬B −→

[]
i
cα and c

[]
i
−→

[
c
]
i
, for A,B ∈ V \ C,

c ∈ C, α ∈ (V \ C)∗, or
pairs of rules cA

[
¬B
]
i
−→

[
cα
]
i

and
[
c
]
i
−→

[]
i
c, for A,B ∈ V \ C,

c ∈ C, α ∈ (V \ C)∗;
– i0 ∈ {1, . . . ,m} is an elementary membrane of μ (the output membrane).

In a simple rule an object is rewritten in a multiset of objects, in the inner or
in the outer region with respect to the initial position of the object. A promoted
simple rule/inhibited simple rule has the same action as a simple rule but it
can be applied only in the presence/absence of certain objects (chemicals) called
promoters/inhibitors. To be more precise we take as example the rule

[
A
]
i
B −→[]

i
α, which implies that object A is rewritten in α in the outer membrane only

if promoter B is present there. If we replace B with ¬B, the object plays the
role of the inhibitor, and only by its presence it blocks the execution of the rule.

In a carrier rule the objects can be rewritten only if they are guided by an
object, the carrier. Note that the carrier is not actively participating in the
reaction. Its role is to “accompany” the reaction and to inhibit the parallelism.
As an example, by rule

[
cA
]
i
−→

[]
i
cα we mean that object A evolves to α (in

the outer region of object A) iff there is an object c that helps A to be rewritten.

356 M. Ionescu and D. Sburlan

Promoted/Inhibited carrier rules can be applied if besides the carrier there is
also a promoter/inhibitor which triggers/blocks the reaction.

As usual in membrane computing, the rules are used in a nondeterministic
maximally parallel manner starting from an initial configuration. In this way,
we obtain transitions between the configurations of the system. A configuration
is described by the m-tuple of the multisets of objects present in the m regions
of the system. The initial configuration is (w1, . . . , wm).

A sequence of transitions between configurations of the system constitutes a
computation; a computation is successful if it halts, i.e., it reaches a configuration
(the halting configuration) where no rule can be applied to any of the objects.

The result of a successful computation is the number of objects present within
the membrane with the label io in the halting configuration. A computation
which never halts yields no result.

We use the notation NPACCm(α, β), where α ∈ {smp} ∪ {cark | k ≥ 0},
β ∈ {proRi, inhRi} to denote the family of sets of natural numbers generated
by P systems with adjoining controlled communication rules having at most
m membranes, communication rules that can be simple α = smp, or carrier
α = cark, using at most k carriers, and external promoters β = proRi or external
inhibitors β = inhRi of weight i at the level of rules.

3.2 An Example

Let us now exemplify the functioning of the model defined above throughout an
example. Here it shown how such machines can be used to compute functions.

Consider the following system

Π1 = ({A,B,D}, C = {c}, [[]2]1, w1 = An, w2 = c, R1, R2, 2),

where:

– R1=∅, R2={A
[]

2
−→

[
ABD

]
2
,
[
B
]
2
−→

[]
2
B,
[
cD
]
2
−→

[]
2
c,

B
[
D
]
2
−→

[
AB
]
2
, c
[]

2
−→

[
c
]
2
}.

The system Π is fed with n ≥ 1 copies of object A in region 1 and when it halts,
the contents of the output region contains n2 copies of A.

The functioning of the system is rather simple. The only rule we can apply in
the initial configuration is the one which rewrites object A in ABD in the inner
region, hence in the second step of the computation we will have all the objects
of the system (n copies of A, n copies of B, n copies of D and the object initially
present here, carrier c) in region 2. Then, we expel all objects B in region 1 and
we start consuming objects D by applying the rule

[
cD
]
2
−→

[]
2
c, hence

object D is sent outside membrane 2 and is rewritten to λ having carrier c
accompanying the reaction.

Note that object D plays the role of the counter and each time a copy of
D is deleted (for example in step i of the computation), n more copies of A
are produced (in step i + 2 of the computation). One by one, the n-th copies
of D are consumed, adding for each of them n copies to object A. In the rule
B
[
D
]
2
−→

[
AB
]
2
, the object D plays also the role of promoter and the object

P Systems with Adjoining Controlled Communication Rules 357

B can be rewritten into AB only in its presence. The computation ends with
n2 copies of A in region 2, hence the system computes the number-theoretic
function f(n) = n2, n ≥ 1.

3.3 The Results

In what follows we will prove that the class of sets of numbers generated by P
systems with external inhibitors equals the class of sets of numbers generated
by P systems with external inhibitors and only two membranes.

Lemma 1. NPACCm(smp, inhR1) = NPACC2(smp, inhR1),m ≥ 2.

Proof. Obviously, NPACCm(smp, inhR1) ⊇ NPACC2(smp, inhR1). For the
opposite inclusion we have to show that for any P system with external in-
hibitors Π = (V ,C, μ,R, i0) generating a set of natural numbers, there exists
an equivalent P system with external inhibitors Π = (V,C, μ,R, i0) with only 2
membranes.

To this aim, we simulate the computation of Π , with the system Π defined
as follows.

Let us denote by L = {1, 2, . . . ,m} the set of labels of the regions in Πm. In
addition, assume that R = {R1, . . . , Rm}, and each Ri ∈ R, 1 ≤ i ≤ m, contains
all the rules whose objects “cross” membrane i. Then, we define:
• V = {ai | a ∈ V , i ∈ L};
• C = C = ∅;
Let h : V

∗ × L → V ∗ be a mapping such that
1) h(a, i) = ai, a ∈ V , i ∈ L,
2) h(λ, j) = λ, j ∈ L,
3) h(x1x2, j) = h(x1, j)h(x2, j), x1, x2 ∈ V

∗
, j ∈ L,

• denote w = h(w1, 1)h(w2, 2) . . . h(wm,m), where wi is the multiset present in
region i ∈ L of Πm at the beginning of the computation.
• R is defined as follows.

For each rule A
[]

i
−→

[
α
]
i
∈ Ri, A ∈ V , α ∈ V

∗
, i ∈ L, we add to R

the rule h(A, j)
[]

1
−→

[
h(α′, i)

]
1
, providing that j is the label of the

outer membrane of membrane i.

For each rule A
[
¬B
]
i
−→

[
α
]
i
∈ Ri, A,B ∈ V , α ∈ V

∗
, i ∈ L, we add

to R the rule h(A, j)
[
¬h(B, i)

]
1
−→

[
h(α′, 2)

]
1
, providing that j is the

label of the outer membrane of membrane i.

For each rule
[
A
]
i
−→

[]
i
α ∈ Ri, A,B ∈ V , α ∈ V

∗
, i ∈ L, we add

to R the rule
[
h(A, i)

]
1
−→

[]
1
h(α′, j) providing that j is the outer

membrane of membrane i.

For each rule
[
A
]
i
¬B −→

[]
i
α ∈ Ri, A,B ∈ V , α ∈ V

∗
, i ∈ L, we add

to R the rule
[
h(A, i)

]
1
¬h(B, j) −→

[]
1
h(α′, j) providing that j is the

outer membrane of membrane i.
Generally speaking, the purpose of membranes is to keep private the interior

rules and objects from the neighboring ones and vice-versa. However, in our

358 M. Ionescu and D. Sburlan

case we can express the passage of certain symbol through the membranes by
using new symbols that we add to vocabulary and that encode both the crossed
membrane label and the symbols from where they derive. In this way we can
rewrite the rules, using the new symbols that perfectly describe the passage of
objects in the membrane structure; consequently, in our case, we can shrink an
arbitrarily membrane structure to only two membranes. The morphism used by
the above construction accomplishes the encoding procedure.

The system Π simulates all the moves of Π and it stops whenever Π stops.
However, in the halting configuration, in the designated output region ofΠ , there
could be some objects representing the encoded version of the objects present in
the regions of Π. Therefore, we have to modify the above set of rules such that
Π eliminates all these objects in order to generate the same set of numbers as
Π . This can be accomplish by producing an object D whenever a rule of Π is
simulated (by adding the object D at the right hand side of each above rule),
deleting it at each step (we add to R rules of type D

[]
1
−→

[
λ
]
1

and
[
D
]
1
−→[]

1
λ). Finally, if Π stops, then Π will not produce the object D anymore,

hence the absence of this object can trigger an inhibited rule that deletes all
the unnecessary objects. Consequently, we have that NPACCm(smp, inhR1) =
NPACC2(smp, inhR1),m ≥ 2. �

Here we will prove that the family of sets of numbers generated by P systems
with external inhibitors equals the family of sets of numbers generated by ET0L
systems.
Theorem 1. NPACC2(smp, inhR1) = NET 0L.

Proof. We will prove the result by showing that P systems with external in-
hibitors are equivalent with P systems with inhibitors, which at their turn, gen-
erates the same class of sets of numbers as the Parikh image of ET 0L as shown
in [8]. Let NP1(smp, inhR1) be the family of sets of numbers generated by P
systems with inhibitors.

The proof of the inclusion NP1(smp, inhR1) ⊇ NPACC2(smp, inhR1) is
rather simple and is based on a similar encoding of regions into new objects as
was presented above.

For the inclusion NP1(smp, inhR1) ⊆ NPACC2(smp, inhR1) we will simu-
late the computation of a P system with one region Πinh = (V,C, μ, w,R, i0).
We assume that the set of rules R contains rules of type A → α or A → α|¬B ,
A,B ∈ V , α ∈ V ∗.

Let us consider the sets Ṽ = {Ã | A ∈ V } and V̇ = {Ȧ | A ∈ V }. In addition,
let us define the morphisms:

h1 : V ∗ → Ṽ ∗, such that h1(A) = Ã, for all A ∈ V ;
h2 : V ∗ → V̇ ∗, such that h3(A) = Ȧ, for all A ∈ V .

We construct a P system Πcc = (V ,C, μ,R, i0), simulating Πinh, defined as
follows:

V = V ∪ Ṽ ∪ V̇ ∪ {F}; w1 = w;
C = ∅; w2 = w;
μ =

[[]
2

]
1
; i0 = 1.

P Systems with Adjoining Controlled Communication Rules 359

The set of rules R is defined as follows1:

step i A
[
¬B
]
−→

[
h1(α)h2(α)

]
, for all rules A→ α|¬B ∈ Rinh,

step i A
[]

−→
[
h1(α)h2(α)

]
, for all rules A→ α ∈ Rinh,

step i
[
A
]
−→

[]
F, if exists A→ α ∈ Rinh,

step i
[
A
]
¬B −→

[]
F, if exists A→ α|¬B ∈ Rinh,

step i+ 1 F
[]

−→
[
λ
]
,

step i+ 1
[
h1(A)

]
−→

[]
h1(A), for all objects A ∈ V,

step i+ 2 h1(A)
[]

−→
[
A
]
, for all objects A ∈ V,

step i+ 2
[
h2(A)

]
¬F −→

[]
A, for all A ∈ V.

Here is how the system Πcc simulates the computation of Πinh. First, remark
that in order to correctly simulate the moves of Πinh, we will maintain during
the computation in both regions of Πcc a copy of the multiset w – the multiset
that represent the current configuration of Πinh. This is especially useful when
trying to simulate rules of type A → α|¬B ∈ Rinh because we have to know
whether or not the external inhibitor is present.

We assume that the system is in a configuration given by the strings w1 =
w2 = w. The system attempts to execute simultaneously the rules of type

step i A
[
¬B
]
−→

[
h1(α)h2(α)

]
, for all rules A→ α|¬B ∈ Rinh,

step i A
[]

−→
[
h1(α)h2(α)

]
, for all rules A→ α ∈ Rinh,

step i
[
A
]
−→

[]
F, if exists A→ α ∈ Rinh,

step i
[
A
]
¬B −→

[]
F, if exists A→ α|¬B ∈ Rinh.

Remark that the rules of first two types are used to generate inside the inner
region, two copies of multiset α (represented by h1(α) and h2(α)). In the same
time, the rules of second type delete from region 2 the objects that were within
the scope of rules of first type. In addition, remark that there are no other rules
that can be applied in this step. Moreover, they produce in region 1 objects R;
these objects will be used later for synchronizing the moments when multiset α
appears in both regions.

Next, are executed the rules of type:

step i+ 1 F
[]

−→
[
λ
]
,

step i+ 1
[
h1(A)

]
−→

[]
h1(A), for all objects A ∈ V.

Observe that the presence of object(s) F in this computational step inhibits the
executions of rules of type

[
h2(A)

]
¬F −→

[]
A, for all A ∈ V . Hence, in the

third step, the rules of type
1 For the present proof, we will simplify the notation by not including the membrane

labels into the syntax of the rules; this is possible here since we have only two
membranes and we do not allow the interaction with the environment. In addition,
we have specified on their left hand side the moment of their executions during the
simulation of one computational step in Πinh.

360 M. Ionescu and D. Sburlan

h1(A)
[]

−→
[
A
]
, for all objects A ∈ V,[

h2(A)
]
¬F −→

[]
A, for all A ∈ V,

will be executed. The new objects appear at the same time in both regions of
the system Πcc and the simulation of the next computational step of Πinh can
start. Finally, if the system Πinh stops because there are no rules to be applied,
then also Πcc halts.

Before we conclude, remark that the maximal parallelism as well as the uni-
versal clock is fundamental for the construction.

Consequently we have proved that the computation of an arbitrary P system
with inhibitors can be simulated by a P system with external inhibitors, hence
we have NP1(smp, inhR1) ⊆ NPACC2(smp, inhR1). Therefore we have that
NP1(smp, inhR1) = NPACC2(smp, inhR1) = NET 0L. �

The following theorem shows that P systems with external inhibitors and carriers
are computationally complete.

Theorem 2. NPACC2(car1, inhR1) = NRE.

Proof. The inclusion NPACC2(car1, inhR1) ⊆ NRE is assumed true by invok-
ing the Turing-Church thesis.

For the inclusion NPACC2(car1, inhR1) ⊇ NRE we will simulate the com-
putation of an arbitrary non-deterministic register machine M = (n,P , l0, lh).
Such register machines are computational universal if n ≥ 3.

We construct Π = (V,C, μ, w1, w2, R1, i0) as follows.

V = {ai, Ai, Si | 1 ≤ i ≤ n} ∪ {l, l, l, l̃,˜̃l, L | l ∈ Lab(P)} ∪ {c}

∪ {K,K,K,K, T0, T1, X,X};
C = {c};
μ =

[[]
2

]
1
;

w1 = l0L0a
k1
1 . . . akn

n c;
w2 = A1 . . . AnS1 . . . Sn;
i0 = 1.

The set of rules R is defined as follows:
• for each instruction (l1 : ADD(j), l2, l3) ∈ P , the set R contains the rules:
l1
[]

−→
[
A1 . . . Aj−1Aj+1 . . . AnS1 . . . Snaj l2

]
, l1 �= lh,

l1
[]

−→
[
A1 . . . Aj−1Aj+1 . . . AnS1 . . . Snaj l3

]
, l1 �= lh,

L1

[
¬Aj

]
−→

[
A1 . . . AnS1 . . . Sn

]
,[

l2
]
−→

[]
l2,[

l3
]
−→

[]
l3,[

aj
]
−→

[]
aj ,[

Ai

]
−→

[]
λ, 1 ≤ i ≤ n,[

Si
]
−→

[]
λ, 1 ≤ i ≤ n;

P Systems with Adjoining Controlled Communication Rules 361

• for each instruction (l1 : SUB(r), l2, l3) ∈ P , the set R contains the rules:
l1
[]

−→
[
A1 . . . AnS1 . . . Sj−1Sj+1 . . . Snl1

]
, l1 �= lh,

caj
[
¬Sj

]
−→

[
A1 . . . AnS1 . . . SnX

]
,

L1

[
¬Sj

]
−→

[
A1 . . . AnS1 . . . SnK

]
,[

l1
]
−→

[]
l1,[

X
]
−→

[]
X ,

l1
[]

−→
[
l1T0A1 . . . AnS1 . . . Sn

]
,[

K
]
−→

[]
K,[

l1
]
¬X −→

[]
l̃3,

X
[
¬T0

]
−→

[
l2
]
,

K
[]

−→
[
A1 . . . AnS1 . . . SnK

]
,[

T0

]
−→

[]
T1,[

l1
]
¬K −→

[]
λ,[

l2
]
−→

[]
l2L2,

T1

[]
−→

[
A1 . . . AnS1 . . . Sn

]
,

l̃3
[]

−→
[˜̃
l3
]
,[˜̃

l3
]
−→

[]
l3L3,[

K
]
−→

[]
K,

K
[]

−→
[
A1 . . . AnS1 . . . Sn

]
,[

Ai

]
−→

[]
λ, 1 ≤ i ≤ n,[

Si
]
−→

[]
λ, 1 ≤ i ≤ n.

Here is how the P system Π simulates the computation of the register ma-
chine M . Observe for the beginning that in the P system Π we will represent the
number stored into register j of M as the multiplicity of the object aj . In addi-
tion, remark that objects Aj , Sj, 1 ≤ j ≤ n, stand for the addition/subtraction
command over register j – both in the simulation of an ADD or SUB instruction,
the absence of symbol Aj or Sj allows the addition or deletion of one occurrence
of object aj . Objects Aj , Sj , 1 ≤ j ≤ n, are produced all the time during the
computation except the moment when we actually want to increment or subtract
one occurrence of object aj from the multiset; at that moment we generate all
objects Ai, Si, 1 ≤ i ≤ n, such that i �= j.

Let us see in more details how the simulation of the addition instruction
(l1 : ADD(j), l2, l3) ∈ P works. Assume that at a certain moment during the
computation, the current multisets in regions 1 and 2 are represented by the
strings w1 = l1L1a

k1
1 . . . akn

n c and w2 = A1 . . . AnS1 . . . Sn, respectively. Then,
the rules that can be executed are:

362 M. Ionescu and D. Sburlan

l1
[]

−→
[
A1 . . . Aj−1Aj+1 . . . AnS1 . . . Snaj l2

]
or the rule involving l3,[

Ai

]
−→

[]
λ, 1 ≤ i ≤ n,[

Si
]
−→

[]
λ, 1 ≤ i ≤ n.

As a consequence of executing the above rules the next configuration will be
described by w1 = L1a

k1
1 . . . akn

n c and w2 = A1 . . . Aj−1Aj+1 . . . AnS1 . . . Snaj l2.
Now, since in region 2 the object Aj is missing, then the rule
L1

[
¬Aj

]
−→

[
A1 . . . AnS1 . . . Sn

]
can be executed; its role is to reestablish the initial configuration in region 2.
Simultaneously, the system runs the rules[

l2
]
−→

[]
l2,[

aj
]
−→

[]
aj ,[

Ai

]
−→

[]
λ, 1 ≤ i ≤ n,[

Si
]
−→

[]
λ, 1 ≤ i ≤ n.

The rule
[
l2
]
−→

[]
l2 produces in region 1 the object l2 that corresponds to

register machine label l2. In addition, by the execution of the rule
[
aj
]
−→

[]
aj ,

the number of objects aj in region 1 (that corresponds to the number stored in
register j of M) is incremented.

Concerning the simulation of the subtract instruction (l1 : SUB(j), l2, l3) ∈ P ,
the system Π , being in a configuration represented by w1 = l1L1a

k1
1 . . . akn

n c and
w2 = A1 . . . AnS1 . . . Sn, executes first the rules:
l1
[]

−→
[
A1 . . . AnS1 . . . Sj−1Sj+1 . . . Snl1

]
,[

Ai

]
−→

[]
λ, 1 ≤ i ≤ n,[

Si
]
−→

[]
λ, 1 ≤ i ≤ n.

In a similar manner as presented in the addition simulation, the rule l1
[]

−→[
A1 . . . AnS1 . . . Sj−1Sj+1 . . . Snl1

]
creates the context required for starting the

simulation. The absence of object Sj in region 2 allows, in the second step, the
(possible) execution of the rules
caj
[
¬Sj

]
−→

[
A1 . . . AnS1 . . . SnX

]
,

L1

[
¬Sj

]
−→

[
A1 . . . AnS1 . . . SnK

]
.

Observe that in case there exists an object aj in region 1, both rules are
executed, while if there is not, only the rule L1

[
¬Sj

]
−→

[
A1 . . . AnS1 . . . SnK

]
will be executed.

In the same step, the rule
[
l1
]
−→

[]
l1 performs. As we will see, the

objects derived from object l1 will be used later to check whether or not the rule
caj
[
¬Sj

]
−→

[
A1 . . . AnS1 . . . SnX

]
was executed. Moreover, they will be also

used to introduce in region 2 the objects A1, . . . , An, S1, . . . , Sn, that forbid a
new addition or subtraction of objects aj .

Let us consider the first case, i.e., the region 1 contains at least one object aj .
Then, as a consequence of executing the above rules we will have the multisets
w1 = ak1

1 . . . a
kj−1
j . . . akn

n c and w2 = A2
1 . . . A

2
nS

2
1 . . . S

2
nXK. The following rules

will be further applied:

P Systems with Adjoining Controlled Communication Rules 363

l1
[]

−→
[
l1T0A1 . . . AnS1 . . . Sn

]
,[

K
]
−→

[]
K,

and possibly the rule[
X
]
−→

[]
X .

Remark that the objects derived from l1 are within the scope of rules that
introduce at each odd step the objects A1, · · · , An, S1, . . . , Sn (or the objects
A1, . . . , Aj−1, Aj+1, . . . , An, S1, . . . , Sn, in the first step). In a similar manner
the objects derived from K are within the scope of rules that introduce at each
even step the objects A1, . . . , An, S1, . . . , Sn. Anyway, at each step we delete by
the rules Ai → λ and Si → λ, 1 ≤ i ≤ n, all the objects Ai and Si.

Now, since in the third step an object X was introduced in region 1 then,

in the fourth step, the rule
[
l1
]
¬X −→

[]
l̃3 cannot be executed. Moreover,

because in region 2 exists an object T0 also the rule X
[
¬T0

]
−→

[
l2
]

cannot be
executed. However, in the fourth step the rule

[
T0

]
−→

[]
T1 runs and it will

allow, in the fifth step, the execution of the rule X
[
¬T0

]
−→

[
l2
]
. In the same

time, rule
[
l1
]
¬K −→

[]
λ is executed and so there will be no way to rewrite

l1 into l̃3 and furthermore into l3. Finally, by rule
[
l2
]
−→

[]
l2L2 the label of

the new register machine instruction to be simulated is generated.
Now let us see what how the simulation is done when the system Π attempts

to simulate the instruction (l1 : SUB(j), l2, l3) ∈ P in the case when the register
j is empty. Then, the simulation works in a similar manner as in the above
presented case with the main difference being that in the fourth step the rule[
l1
]
¬X −→

[]
l̃3 is executed because the object X was not produced (the

rules caj
[
¬Sj

]
−→

[
A1 . . . AnS1 . . . SnX

]
and

[
X
]
−→

[]
X were not ran since

the object aj was missing from the initial multiset). So, the following rules are

executed in sequence l̃3
[]

−→
[˜̃
l3
]
,
[˜̃
l3
]
−→

[]
l3L3. As a consequence, the

symbol that corresponds to the next instruction to be simulated is generated.
If lh is generated then the computation stops, having in the output region a

number of objects ai, 1 ≤ i ≤ n, equals with the contents of register i of M . In
this way the execution of the entire register machine program is simulated.

Since one can easily construct a register machine, equivalent with M , that in
a successful computation clears its registers except a special designated one (the
output register) we have that NPACC2(car, inhR1) ⊇ NRE.

Therefore, we have proved the equality NPACC2(car1, inhR1) = NRE. �

4 Conclusions and Further Research

The model we introduced is based on the observation that various chemical
reactions within a compartment of a living cell are activated from the neighboring
compartments of the cell. We have proved that the family of sets of vectors
of numbers generated by P systems with adjoining controlled communication
rules when only simple inhibited rules are used equals the family of sets of

364 M. Ionescu and D. Sburlan

numbers generated by ET0L systems. We have also proved the computational
completeness if, in addition, carriers are used. In addition, we conjecture that
similar results can be obtained if, instead of inhibited simple rules, promoted
ones are considered.

Trying to get more “realistic”, we believe that it is worthwhile to investigate
the power of the above systems to whom we add execution times for the rules and
to study their properties (for more details we refer to [3]). Another possible line
for further research is to investigate the power of the systems not considering
the family of sets of vectors of numbers generated as we have done here, but
considering the family of Parikh images generated by such systems.

References

1. Bernardini, F., Manca, V.: P Systems with Boundary Rules. In: Păun, Gh., Rozen-
berg, G., Salomaa, A., Zandron, C. (eds.) Membrane Computing. LNCS, vol. 2597.
Springer, Heidelberg (2003)

2. Calude, C., Păun, Gh., Rozenberg, G., Salomaa, A.: Multiset Processing. LNCS,
vol. 2235. Springer, Heidelberg (2001)

3. Cavaliere, M., Sburlan, D.: Time and Synchronization in Membrane Systems. Fun-
damenta Informaticae 64(1-4), 65–77 (2005)

4. Ionescu, M., Sburlan, D.: On P Systems with Promoters/Inhibitors. Journal of Uni-
versal Computer Science 10(5), 581–599 (2004)

5. Păun, Gh.: Computing with Membranes. Journal of Computer and System Sci-
ences 618(1), 108–143 (2000)

6. Păun, Gh.: Membrane Computing. An Introduction. Springer, Heidelberg (2002)
7. Salomaa, A., Rozenberg, G. (eds.): Handbook of Formal Languages. Springer, Hei-

delberg (1997)
8. Sburlan, D.: Further Results on P Systems with Promoters/Inhibitors. International

Journal of Foundations of Computer Science 17(1), 205–221 (2006)
9. The P Systems Web Page: http://psystems.disco.unimib.it/

http://psystems.disco.unimib.it/

The Simplest Language Where

Equivalence of Finite Substitutions
Is Undecidable

Michal Kunc�

Department of Mathematics and Statistics, Masaryk University,
Janáčkovo nám. 2a, 602 00 Brno, Czech Republic

kunc@math.muni.cz

http://www.math.muni.cz/~kunc/

Abstract. We show that it is undecidable whether two finite substitu-
tions agree on the binary language a∗b. This in particular means that
equivalence of nondeterministic finite transducers is undecidable even for
two-state transducers with unary input alphabet and whose all transi-
tions start from the initial state.

1 Introduction

Existence of solutions of equations over words was proved decidable in a break-
through paper of Makanin [12]. It is now also well known that solvability of
word equations is decidable even for infinite rational systems of equations [2,1,5].
However, if we consider instead of equations over words equations over languages
where the only operation is concatenation, the solvability problem becomes much
more complicated.

If constants in equations are allowed to be any regular languages, existence of
arbitrary solutions becomes undecidable already for very simple systems of equa-
tions [9]. But there is no such result about equations with only finite constants,
and we also have virtually no knowledge about the solvability of finite systems of
equations over finite or regular languages, i.e. where only finite or regular solu-
tions are allowed. On the other hand, it is known that already for a very simple
fixed rational system of such equations, it is even undecidable whether given
finite languages form its solution. This can be equivalently formulated as unde-
cidability of equivalence of two finite substitutions on a fixed regular language.
Such a result was first proved for the regular language a{b, c}∗d by Lisovik [11],
and later improved to the language ab∗c in [8]. In this paper we prove that the
same undecidability result actually holds even for the simplest language where
the problem is not trivially decidable, namely for the language a∗b (note that
for each language over a one-letter alphabet it is always sufficient to perform
a certain fixed finite number of tests).

These results about finite substitutions can be also interpreted as undecid-
ability of the equivalence problem for very restricted classes of finite transducers,
� Supported by the Grant no. 201/06/0936 of the Grant Agency of the Czech Republic.

E. Csuhaj-Varjú and Z. Ésik (Eds.): FCT 2007, LNCS 4639, pp. 365–375, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

366 M. Kunc

continuing the long lasting search for such restrictions initiated in 1968 by the
undecidability result of Griffiths [4] for general transducers (see [8] for a more
comprehensive overview of related results). From this point of view, our result
corresponds to transducers over unary input alphabet having only two states
and no transitions starting from the final state. Therefore the result provides in
this direction the smallest class where the equivalence problem is undecidable.

We assume the reader to be familiar with basic notions of formal language
theory, which can be found for instance in [13]. As usual, we denote by X∗ the
set of all finite words obtained by concatenating elements of X together with the
empty word ε. The length of a word w ∈ A∗ over an alphabet A is written as |w|.
The concatenation of two words u, v ∈ A∗ is denoted by uv. The operation of
concatenation is extended to languages by the rule KL = { uv | u ∈ K, v ∈ L }.
If some words u, v, w ∈ A∗ satisfy uv = w, then u and v are called a prefix and
a suffix of w, respectively, and we write u = wv−1 and v = u−1w. We will also
use the notation A−1L = {w ∈ A∗ | Aw ∩ L �= ∅ }. And if uvw = z for some
u, v, w, z ∈ A∗, then v is called a factor of z.

2 Main Result

We are going to prove our result in the following form:

Theorem 1. It is undecidable whether given three finite languages K, L, M
satisfy KnM = LnM for every non-negative integer n. In particular, the system
of language equations {XnZ = Y nZ | n ∈ IN0 } is not equivalent to any finite
system.

This result can be easily translated to undecidability results for the problems of
equivalence of finite substitutions on a∗b and equivalence of finite transducers. If
we consider for finite languages K, L, M the substitutions ϕ, ψ : {a, b}∗ → A∗

defined by ϕ(a) = K, ψ(a) = L and ϕ(b) = ψ(b) = M , then Theorem 1 can
be directly reformulated in terms of deciding equivalence of finite substitutions as
follows:

Corollary 1. Equivalence of finite substitutions on the binary language a∗b is
undecidable.

As in [8], the language a∗b can be replaced by a two-state automaton with
outputs of loops in the initial state defined according to K or L and outputs of
transitions leading to the final state defined according to M ; this way our result
immediately implies undecidability of equivalence of finite transducers of a very
special form.

Corollary 2. It is undecidable whether given two nondeterministic two-state
finite transducers with unary input alphabet, whose all transitions start from the
initial state, are equivalent.

Equivalence of Finite Substitutions 367

3 Proof of the Result

The rest of the paper is devoted to proving Theorem 1. The proof generally fol-
lows the idea used to prove the analogous result in [8] for the equality NKnM =
NLnM . We encode into our problem the universality problem for blind counter
automata with all states final; these automata were first studied by Greibach [3],
and the universality problem for the restricted class of blind counter automata
we consider was proved undecidable by Lisovik [10] (see also [6]). A blind counter
automaton consists of a nondeterministic finite automaton and one counter that
can assume arbitrary integer values. Each transition of the automaton reads
a letter from the input and possibly modifies the counter by either adding or
subtracting one. No information about the current value of the counter is avail-
able to the automaton. The automaton accepts a given word if, starting from
the initial state and zero-valued counter, it can read the word so that at the end
the counter returns back to zero. We can assume that the automaton works over
a binary alphabet {a, b} (see [7, Corollary 1.2]).

Formally, such an automaton is a triple S = (S, 1, δ), where S = {1, . . . , s} is
its set of states, that we denote simply by numbers, 1 is the initial state, and
δ = {t1, . . . , tt} ⊆ S × S × {a, b} × {−1, 0, 1} is the set of transitions, where
a transition tq = (i, j, x, k) starting from the state i and leading to the state j
is labelled by x and has value k. Without loss of generality, we additionally
assume that the initial state 1 is not the target of any transition of S and
that all transitions starting from the initial state have value zero (since we are
interested only in universality of the automaton, we can add to it a new initial
state together with a zero-valued transition to the original initial state for both
labels a and b). The set of all states reachable from a state i by a path labelled
by a word v ∈ {a, b}∗ and having the sum of values of its transitions p will be
denoted δ∗(i, v, p). The automaton accepts a word v ∈ {a, b}∗ if δ∗(1, v, 0) �= ∅.

In order to prove Theorem 1, we construct for each such automaton S finite
languages K, L, M such that the automaton accepts all words of length n if and
only if these languages satisfy KnM = LnM . This is achieved by encoding into
both languages KnM and LnM all computations of the automaton S and by
adding into LnM all words representing zero-valued computations of length n.

The main difference from the construction in [8] is that we have to encode into
the languages K and L not only transitions of the automaton and their labels
and values, but also the start of the computation. In the case of substitutions
on ab∗c, all the additional words in the second substitution are placed into the
image of a, so that they start the composition of words corresponding to zero-
valued computations. However, in our case these additional initial words have
to be placed into L, so they can occur also in the middle of concatenations from
LnM , and we have to ensure that all incorrect words produced in LnM by using
the additional words in the middle belong also to KnM .

The words in KnM encoding computations of S consist of many concatenated
copies of the words (wa)3 and (wb)3, where w is a certain word containing only
auxiliary letters distinct from a and b, which can be cut in different places
to represent the current state of the computation or the currently performed

368 M. Kunc

transition. A word read by the automaton S represented by a given element of
KnM is obtained by replacing every copy of (wa)3 by a and every copy of (wb)3

by b.
The values of transitions are encoded as the number of words fromK needed to

construct the corresponding copy of (wa)3 or (wb)3. For zero-valued transitions,
the corresponding copy is constructed using one element of K; for decrementing
transitions, already one half of an element of K builds the whole copy; and for
incrementing transitions, one and a half element of K is needed. This means that
the number of copies of (wa)3 and (wb)3 in a word from KnM corresponding to
a correct computation of S is equal to n only if the final value of the counter is
zero. If the value is positive, less than n copies are produced, and if it is negative,
then we obtain more than n copies.

In order to achieve this, all words in K and L will be in fact constructed by
concatenating two words from a certain language L1 of basic building blocks,
and each of these blocks will represent one half of a word from K or L.

The language L ⊇ K is constructed so that LnM contains in addition to
the words of KnM exactly words obtained by concatenating n copies of words
(wa)3 and (wb)3, so it allows to count the number of performed transitions and
to compare it with the values obtained by accumulating the numbers during the
production of a word in KnM . These numbers are equal if and only if the sum
of transition values of the computation corresponding to the word from KnM
is zero. Therefore the equality KnM = LnM becomes true precisely if all words
over {a, b} of length n correspond to some computation of S that resets the
counter to zero.

This is achieved by constructing L by adding to the language K two words
(the sublanguage J below) that start this counting. Then counting proceeds
by building each copy of (wa)3 and (wb)3 using exactly two basic blocks, which
corresponds to zero-valued transitions. Since the words initiating counting belong
to L, they can actually occur anywhere in the power Ln, and therefore we need
many auxiliary words in K for building words obtained in Ln by using words
from J inside the product.

Finally, the language M serves for stopping the computation at any state by
completing the currently unfinished copy of w.

The languages K, L, M will be defined over the alphabet

A = {a, b,#, $, a1, . . . , as, b1, . . . , bt, c1, . . . , ct, e, ē, f, f̄ , g, ḡ} .

First, consider the word w = #a1 · · · as$eēf f̄gḡb1c1 · · · btct, and note that
every letter occurs only once in w. We denote by xw the suffix of w starting
with x ∈ A. Let wx = w(xw)−1 be the corresponding prefix, and let xwy =
(wx)−1w(yw)−1 be the factor of w determined by letters x, y ∈ A. The fact that
the automaton S is in a state i will be represented by cutting the word w right
before the corresponding letter ai. Similarly, we will cut w before bq or cq if the
automaton is just performing the transition tq. Both letters bq and cq are needed
to deal with transitions incrementing the counter (recall that the corresponding
copy of (wa)3 or (wb)3 should consist of three basic blocks; the first cut will

Equivalence of Finite Substitutions 369

occur right before bq, and the second cut right before cq). Only the first cutting
point is needed for zero-valued transitions, which are produced from two blocks,
and none for decrementing transitions. Finally, the letters e, f and g will be used
for the same purpose during counting in LnM : building a new copy of (wa)3 or
(wb)3 will start with the letter g, and we will cut before e or f to separate the
two blocks producing a copy of (wa)3 or (wb)3, respectively.

Now we take the two words responsible for starting counting in Ln:

J = {(wa)2we, (wb)2wf}

Then we define an auxiliary language L0, which is a union of several languages
defined below. The first part of L0 consists of the two words from J and some
additional words used to compensate these two words in KnM whenever they
occur in LnM somewhere else than at the very beginning:

{#−1, ε,#}(wa)2we{$−1, ε, $, ē, f̄} ∪
{#−1, ε,#}(wb)2wf{ē−1, ε, $, ē, f̄} ⊆ L0

Note that these additional words differ from the words of J by at most one
additional or removed letter on each side. This allows us to deal with words
from J placed in the middle of an element of LnM as follows. We add to L1

words that differ from words already in L1 by only one letter at the beginning
or at the end. Incorrectly placed words from J can then be modified either by
adding one letter from the neighbouring word or by removing one letter and
shifting it to the neighbouring word; in this way the word from J is replaced by
another word belonging to L1, and so a word from L containing it is replaced by
a word from K. Let us point out that these modified words can again appear in
LnM as words neighbouring with words from J . This is why we have to properly
alternate addition and removal of letters in order to prevent words in L1 from
becoming too long. Actually, it turns out that we do not need to cut more than
one letter and to add more than two letters on each side.

The rest of counting is performed by means of the words

{ewawg , fwbwg, gwawawe, gwbwbwf} ⊆ L0 . (1)

These words will be compensated by

$wawg{f̄−1, $, ē, f̄} ∪ ēwbwg{f̄−1, $, ē, f̄} ∪

f̄wawawe{$−1, $, ē, f̄} ∪ f̄wbwbwf{ē−1, $, ē, f̄} ⊆ L0 .

Now we can see why letters e, f and g are doubled in w. The only words we
would like to have in LnM in addition to elements of KnM are those starting
with a word from J and continuing by correctly appending words from (1) up
to a word from M . Therefore, if an element of LnM starts with a word from J
followed by several correctly placed words from (1), but it is not of the desired
form, we still need to find this element also in KnM . This is achieved by adding
to L1 words from (1) shifted by one letter to the left (for instance, $wawf̄ arises

370 M. Kunc

from shifting ewawg). Then we can produce this element of LnM in KnM by
shortening the initial word by one letter and shifting all the correctly placed
words from (1).

Now we add to L0 some words for every transition tq = (i, j, x, k). If it is an
initial transition, i.e. i = 1, then we add the words (wx)2wbq and bqwxwaj . If
this transition decrements the counter, i.e. k = −1, then we add only the word
aiwx(wx)2waj . If k = 0 and i �= 1, we add to L0 the words aiwxwxwbq and
bqwxwaj . And finally, if k = 1 then we add the words aiwxwbq , bqwxwcq and
cqwxwaj . This concludes the definition of L0.

To complete the definition of basic blocks, it remains to say which words
created by adding letters to the beginning or to the end of words from L0 should
also belong to L1. The main restriction on adding new words is that we have
to ensure that there is no way of using these new words to produce in LnM
some word corresponding to a correct computation of an automaton. As every
word representing a computation is a factor of some word from the language
{wa,wb}∗, the easiest way to achieve this is to require that no new words are
such factors. Let us denote the language consisting of all factors of words from
{wa,wb}∗ by F .

Let L1 consist of

L′
1 = {$wawg#, ēwbwg#, f̄wawawe#, f̄wbwbwf#}

and of all words of the form xuy, where x ∈ {ε, $, ē, f̄}, u ∈ L0 and y ∈ {ε,#},
such that

x �= ε =⇒ xu /∈ F and y �= ε =⇒ uy /∈ F .

In this definition, we require both words xu and uy not to belong to F since then
removal of one of the letters x and y from xuy produces again a word satisfying
this condition and therefore belonging to L1. This property is useful when we
need to move one of the letters x and y to a word neighbouring with xuy in
some element of LnM .

In the following, we will also use the notations K0 = L0 \ J and K1 = L1 \ J .
Note that in particular L0 ⊆ L1 and K0 ⊆ K1.

Finally, words in K and L should be formed by concatenating arbitrary two
basic blocks, and so we define K = K2

1 , L = L2
1 and

M = {ε} ∪
⋃
i
=1

{aiwg, f̄aiwg} .

Claim 1. For every n ≥ 1, the languages K, L, M satisfy

LnM = KnM ∪ {(wa)3, (wb)3}nwg .

Proof. Since L ⊆ K, in order to prove the claim, it is enough to verify the
inclusions

{(wa)3, (wb)3}nwg ⊆ LnM , (2)

LnM ⊆ KnM ∪ {(wa)3, (wb)3}nwg . (3)

Equivalence of Finite Substitutions 371

The inclusion (2) follows by induction on n using the empty word from M and
the formulas

(wa)3wg = (wa)2we · ewawg ∈ L ,

(wb)3wg = (wb)2wf · fwbwg ∈ L

for the basis of the induction and

{(wa)3, (wb)3}n(wa)3wg = {(wa)3, (wb)3}nwg · gwawawe · ewawg ⊆ Ln+1 ,

{(wa)3, (wb)3}n(wb)3wg = {(wa)3, (wb)3}nwg · gwbwbwf · fwbwg ⊆ Ln+1

for the induction step.
In order to verify (3), we take any 2n+ 1-element sequence σ belonging to

L1 × · · · × L1︸ ︷︷ ︸
2n times

×M

whose concatenation does not belong to {(wa)3, (wb)3}nwg, and successively
modify σ to replace all words from J in this sequence by words from K1 without
changing neither the length of the sequence nor the resulting concatenation. We
distinguish several cases according to the word in σ directly preceding the word
from J . When writing parts of σ, we separate neighbouring words in the sequence
by means of the multiplication sign.

Let us start with the case of a word from J preceded by a word from L′
1. Then

the word from J can be replaced using one of the following rules:

$wawg# · J = $wawf̄ · f̄#J ⊆ K0 ·K1

ēwbwg# · J = ēwbwf̄ · f̄#J ⊆ K0 ·K1

f̄wawawe# · J = f̄wawaw$ · $#J ⊆ K0 ·K1

f̄wbwbwf# · J = f̄wbwbwē · ē#J ⊆ K0 ·K1 .

Next we deal with words from L1 with y = ε, i.e. of the form xu, where
x ∈ {ε, $, ē, f̄} and u ∈ L0. First, observe that no word from L0 ends on a or b,
and therefore xu# ∈ K1. This allows us to replace any word from J following xu
by means of the inclusion

xu · J = xu# ·#−1J ⊆ K1 ·K0 .

Now consider the other words from L1, i.e. of the form xu#, where x ∈
{ε, $, ē, f̄} and u ∈ L0. In this case we have xu ∈ L1. If xu ∈ K1 then we can
use

xu# · J ⊆ K1 ·K0 .

And if xu ∈ J then xu ∈ K0{$, ē} and from the inclusion #J ⊆ L0\F we obtain

xu# · J ⊆ K0{$, ē}(L0 \ F) ⊆ K0 ·K1 .

372 M. Kunc

It remains to deal with a word from J that is the first word of σ. We can
assume that it is already the only word from J in σ. Let us take the longest
initial part ρ of σ which is also an initial part of some of the sequences of the
form

{(wa)2we · ewawg , (wb)2wf · fwbwg} · {gwawawe · ewawg , gwbwbwf · fwbwg}∗ .

If the length of ρ is greater than one, we replace every word belonging to ρ except
for the last one according to the following rules: (wa)2we by (wa)2w$ ∈ K0,
(wb)2wf by (wb)2wē ∈ K0, ewawg by $wawf̄ ∈ K0, fwbwg by ēwbwf̄ ∈ K0,
gwawawe by f̄wawaw$ ∈ K0 and gwbwbwf by f̄wbwbwē ∈ K0. Observe that
this modification does not affect the concatenation of these words of ρ except
for losing one letter at the end, which is one of $, ē and f̄ , depending on what
the last word of ρ is. This letter together with the last word of ρ forms one of
the following words, that remain to be dealt with: $wawg , ēwbwg, f̄wawawe and
f̄wbwbwf . If the sequence ρ consists of only one word, then we have to deal with
this sole word, which belongs to J . Let us denote this remainder of ρ in both
cases by r, and let v be the word that follows r in σ.

First assume that the length of ρ is maximal possible, i.e. equal to 2n. Then
v ∈M is the last word of σ and the remainder r is either $wawg or ēwbwg. The
last word in σ cannot be the empty word ε ∈ M , since then the concatenation
of σ would belong to {(wa)3, (wb)3}nwg. If the last word in σ is aiwg ∈ M ,
then it is sufficient to add to v the redundant letter f̄ of r to obtain the word
f̄aiwg ∈ M . And if the last word in σ is f̄aiwg ∈ M , then we replace r by one
of the words $wawg f̄ ∈ K0 and ēwbwg f̄ ∈ K0, and v by the word aiwg ∈M .

Now assume that the length of ρ is smaller than 2n. If v ∈ L′
1 then r · v can

be replaced by a sequence from r{$, ē, f̄} ·A−1L′
1 ⊆ K0 ·K1. Otherwise, we have

v = xuy ∈ K1. If x ∈ {$, ē, f̄} then uy ∈ L1 and we distinguish two cases. For
uy ∈ K1, we replace r · v by rx · uy ∈ K0 ·K1. And for uy ∈ J , we replace it by
rx# ·#−1uy ∈ K1 ·K0.

It remains to consider words v where x = ε. In this case we replace r in the
same way as the other words of ρ and denote by z the last letter of r, which is
again one of $, ē and f̄ . It remains to verify that the word zv belongs to K1,
so that we can use it instead of v. This is certainly true if zv does not start
with one of the pairs $e, ēf and f̄ g, since then we can take the letter z for x.
So assume that zv starts with one of these pairs. Observe that v cannot be one
of the words ewawg , fwbwg , gwawawe and gwbwbwf because of the maximality
of ρ. Therefore we have

v ∈ {ewawg#, fwbwg#, gwawawe#, gwbwbwf#} ,

which means that zv ∈ L′
1 ⊆ K1. ��

To describe which words from {(wa)3, (wb)3}nwg belong to KnM we will use
the injective homomorphism ϕ : {a, b}∗ → A∗ defined by the rule ϕ(x) = (wx)3

for x ∈ {a, b}.

Equivalence of Finite Substitutions 373

Claim 2. For every n ≥ 1, the languages K, M satisfy

KnM ∩ {(wa)3, (wb)3}nwg = {ϕ(v)wg | v ∈ {a, b}n, δ∗(1, v, 0) �= ∅ } .

Proof. In order to prove the converse inclusion, we show by induction with re-
spect to the length of a word v ∈ {a, b}+ that if i ∈ δ∗(1, v, p) for some state i
and some integer p, then

ϕ(v)wai ∈ K
2|v|+p
0 . (4)

Starting with words of length one, take any x ∈ {a, b} and any transition from
the initial state labelled by x, which is by our initial assumption of the form
tq = (1, j, x, 0). Then

ϕ(x)waj = (wx)2wbq · bqwxwaj ∈ K2
0 .

Now assume that (4) is true for some v, i and p, and consider any transition
starting from i, i.e. of the form tq = (i, j, x, k) with x ∈ {a, b} and k ∈ {−1, 0, 1}.
If k = −1 then

ϕ(vx)waj = ϕ(v)wai · aiwx(wx)2waj ∈ K
2|vx|+(p−1)
0 .

For k = 0, we have i �= 1 since the initial state is not reachable by v, and
therefore

ϕ(vx)waj = ϕ(v)wai · aiwxwxwbq · bqwxwaj ∈ K
2|vx|+p
0 .

And finally, if k = 1 then

ϕ(vx)waj = ϕ(v)wai · aiwxwbq · bqwxwcq · cqwxwaj ∈ K
2|vx|+(p+1)
0 .

This proves the induction step.
If we now take v ∈ {a, b}n such that i ∈ δ∗(1, v, 0), then (4) gives us ϕ(v)wai ∈

Kn, which implies

ϕ(v)wg = ϕ(v)wai · aiwg ∈ Kn ·M ,

as required.
Now we turn to the direct inclusion. Since all factors of words from the set

{(wa)3, (wb)3}nwg are in F , it is enough to consider only words from K and M
which belong to F . Observe that all words in K ∩F clearly belong to (K0∩F)2,
and that the language K0 ∩ F consists of the words

a1wawaw$, a1wawawe, (wa)2w$, a1wbwbwē, a1wbwbwf , (wb)2wē,

ewawg , fwbwg , gwawawe, gwbwbwf , $wawf̄ , ēwbwf̄ , f̄wawaw$, f̄wbwbwē

and additionally all words corresponding to the transitions of the automaton S.
It is easy to verify by induction on m that every word u ∈ Km

1 , which is a prefix
of a word from {wa,wb}∗, actually belongs to one of the following sets:

374 M. Kunc

{wa,wb}∗{w$, wē, wf̄}
{ϕ(v)wai | i ∈ δ∗(1, v, p), m = 2|v|+ p }

{ϕ(v)(wx)2wbq | i ∈ δ∗(1, v, p), tq = (i, j, x, 0) ∈ δ, m = 2|v|+ p+ 1 }
{ϕ(v)wxwbq | i ∈ δ∗(1, v, p), tq = (i, j, x, 1) ∈ δ, m = 2|v|+ p+ 1 }
{ϕ(v)(wx)2wcq | i ∈ δ∗(1, v, p), tq = (i, j, x, 1) ∈ δ, m = 2|v|+ p+ 2 }

This in particular shows that u cannot belong to the language {(wa)3, (wb)3}nwg.
Since M∩F contains, apart from the empty word, only words aiwg , every element
of KnM ∩ {wa,wb}∗wg belongs to the set

{ϕ(v)wai · aiwg | i ∈ δ∗(1, v, p), 2n = 2|v|+ p } .

This finally gives

KnM ∩ {(wa)3, (wb)3}nwg ⊆ {ϕ(v)wg | δ∗(1, v, p) �= ∅, 2n = 2|v|+ p, |v| = n }
⊆ {ϕ(v)wg | v ∈ {a, b}n, δ∗(1, v, 0) �= ∅ } ,

which concludes the proof of the claim. ��

From these two claims we can now easily prove the main result.

Proof (of Theorem 1). It is sufficient to show that S accepts all words from
{a, b}+ if and only if the languages K, L, M constructed from S satisfy KnM =
LnM for every n. First assume that S accepts all words. Then Claim 2 gives us

KnM ∩ {(wa)3, (wb)3}nwg = ϕ({a, b}n)wg = {(wa)3, (wb)3}nwg ,

and therefore KnM = LnM by Claim 1. Conversely, if KnM = LnM then
Claim 1 implies {(wa)3, (wb)3}nwg ⊆ KnM , which turns Claim 2 into

{ϕ(v)wg | v ∈ {a, b}n, δ∗(1, v, 0) �= ∅ } = {(wa)3, (wb)3}nwg ,

showing δ∗(1, v, 0) �= ∅ for every word v ∈ {a, b}n. This proves that every word
in {a, b}+ is accepted by S. ��

References

1. Albert, M.H., Lawrence, J.: A proof of Ehrenfeucht’s conjecture. Theoret. Comput.
Sci. 41(1), 121–123 (1985)

2. Culik II, K., Karhumäki, J.: Systems of equations over a free monoid and Ehren-
feucht’s conjecture. Discrete Math. 43(2-3), 139–153 (1983)

3. Greibach, S.A.: Remarks on blind and partially blind one-way multicounter ma-
chines. Theoret. Comput. Sci. 7(3), 311–324 (1978)

4. Griffiths, T.V.: The unsolvability of the equivalence problem for Λ-free nondeter-
ministic generalized machines. J. Assoc. Comput. Mach. 15, 409–413 (1968)

5. Guba, V.S.: Equivalence of infinite systems of equations in free groups and semi-
groups to finite subsystems. Mat. Zametki 40(3), 321–324 (1986)

Equivalence of Finite Substitutions 375

6. Halava, V., Harju, T.: Undecidability in integer weighted finite automata. Fund.
Inform. 38(1-2), 189–200 (1999)

7. Halava, V., Harju, T.: Undecidability of the equivalence of finite substitutions on
regular language. Theor. Inform. Appl. 33, 117–124 (1999)

8. Karhumäki, J., Lisovik, L.P.: The equivalence problem of finite substitutions on
ab∗c, with applications. Internat. J. Found. Comput. Sci. 14(4), 699–710 (2003)

9. Kunc, M.: The power of commuting with finite sets of words. Theory Comput.
Syst. 40(4), 521–551 (2007)

10. Lisovik, L.P.: An undecidable problem for countable Markov chains. Kibernetika 2,
1–6 (1991)

11. Lisovik, L.P.: The equivalence problem for finite substitutions on regular languages.
Dokl. Akad. Nauk 357(3), 299–301 (1997)

12. Makanin, G.S.: The problem of solvability of equations in a free semigroup. Mat.
Sb. 103(2), 147–236 (1977)

13. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages. Springer, Hei-
delberg (1997)

Real-Time Reversible Iterative Arrays

Martin Kutrib1 and Andreas Malcher2

1 Institut für Informatik, Universität Giessen,
Arndtstr. 2, 35392 Giessen, Germany
kutrib@informatik.uni-giessen.de

2 Institut für Informatik,
Johann Wolfgang Goethe-Universität Frankfurt,

60054 Frankfurt am Main, Germany
a.malcher@em.uni-frankfurt.de

Abstract. Iterative arrays are one-dimensional arrays of interconnected
interacting finite automata. The cell at the origin is equipped with a one-
way read-only input tape. We investigate iterative arrays as acceptors for
formal languages. In particular, we consider real-time devices which are
reversible on the core of computation, i.e., from initial configuration to
the configuration given by the time complexity. This property is called
real-time reversibility. It is shown that real-time reversible iterative ar-
rays can simulate restricted variants of stacks and queues. It turns out
that real-time reversible iterative arrays are strictly weaker than real-
time reversible cellular automata. On the other hand, a non-semilinear
language is accepted. We show that real-time reversibility itself is not
even semidecidable, which extends the undecidability for cellular au-
tomata and contrasts the general case, where reversibility is decidable
for one-dimensional devices. Moreover, we prove the non-semidecidability
of several other properties. The closure under Boolean operations is also
derived.

1 Introduction

Reversibility in the context of computing devices means that deterministic com-
putations are also backward deterministic. Roughly speaking, in a reversible de-
vice no information is lost and every configuration occurring in any computation
has at most one predecessor. Many different formal models have been studied
in connection with reversibility. For example, reversible Turing machines have
been introduced in [3], where it is shown that any irreversible Turing machine
can be simulated by a reversible one. With respect to the number of tapes and
tape symbols the result is significantly improved in [20]. On the opposite end
of the automata hierarchy, reversibility in very simple devices, namely deter-
ministic finite automata, has been studied in [2] and [25]. Here we study linear
arrays of identical copies of deterministic finite automata. The single nodes, ex-
cept the node at the origin, are homogeneously connected to its both immediate
neighbors. Moreover, they work synchronously at discrete time steps. The dis-
tinguished cell at the origin, the communication cell, is equipped with a one-way

E. Csuhaj-Varjú and Z. Ésik (Eds.): FCT 2007, LNCS 4639, pp. 376–387, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Real-Time Reversible Iterative Arrays 377

read-only input tape. Such devices are commonly called iterative arrays (IA).
In connection with formal language recognition IAs have been introduced in [7].
In [9] a real-time acceptor for prime numbers has been constructed. A charac-
terization of various types of IAs in terms of restricted Turing machines and
several results, especially speed-up theorems, are given in [11]. Some recent re-
sults concern infinite hierarchies beyond linear time [13] and between real time
and linear time [6], hierarchies depending on the amount of nondeterminism [5],
and descriptional complexity issues [18].

Closely related to iterative arrays are cellular automata (CA). Basically, the
difference is that cellular automata receive their input in parallel. That is, in our
setting the input is fed to the cells 0 to n−1 in terms of states during a pre-initial
step. There is no extra input tape. It is well known that conventional real-time
cellular automata are strictly more powerful than real-time iterative arrays [26].
Our particular interest lies in reversible iterative arrays as acceptors for formal
languages. An early result on general reversible CAs is the possibility to make
any CA, possibly irreversible, reversible by increasing the dimension. In detail,
in [27] it is shown that any k-dimensional CA can be embedded into a (k + 1)-
dimensional reversible CA. Again, this result has significantly been improved
by showing how to make irreversible one-dimensional CAs reversible without
increasing the dimension [23]. A solution is presented which preserves the neigh-
borhood but increases time (O(n2) time for input length n). Furthermore, it is
known that even reversible one-dimensional one-way CAs are computationally
universal [19,21]. Once a reversible computing device is under consideration, the
natural question arises whether reversibility is decidable. For example, reversibil-
ity of a given deterministic finite automaton or of a given regular language is
decidable [25]. For cellular automata, injectivity of the global transition func-
tion is equivalent to the reversibility of the automaton. It is shown in [1] that
global reversibility is decidable for one-dimensional CAs, whereas the problem is
undecidable for higher dimensions [14]. Additional information on some aspects
of CAs may be found in [15]. All these results concern cellular automata with
unbounded configurations. Moreover, in order to obtain a reversible device the
neighborhood as well as the time complexity may be increased. In [8] it is shown
that the neighborhood of a reverse CA is at most n−1 when the given reversible
CA has n states. Additionally, this upper bound is shown to be tight. In con-
nection with pattern recognition reversible two-dimensional partitioned cellular
automata have been investigated in [22,24].

Here we consider iterative arrays that are reversible on the core of compu-
tation, i.e., from initial configuration to the configuration given by the time
complexity. Our main interest is in fast computations, i.e., real-time computa-
tions. Consequently, we call such devices real-time reversible. Recently, cellular
automata have been investigated under this aspect [17]. Here we continue this
work. In particular, we want to know whether for a given real-time IA there exists
a reverse real-time IA with the same neighborhood. At first glance, such a set-
ting should simplify matters. But quite the contrary, we prove that real-time re-
versibility is not even semidecidable, which extends the undecidability for cellular

378 M. Kutrib and A. Malcher

automata and contrasts the general case, where reversibility is decidable for one-
dimensional devices. Moreover, in Section 4 we prove the non-semidecidability
of several other properties. Section 3 is devoted to the simulation of restricted
variants of stacks and queues by real-time reversible iterative arrays. It turns out
that real-time reversible iterative arrays are strictly weaker than real-time re-
versible cellular automata. In the following section we present some basic notions
and definitions. The particularities in connection with reversibility are identified
by an example which deals with a non-semilinear language. The closure under
Boolean operations is also derived.

2 Real-Time Reversible Iterative Arrays

We denote the set of non-negative integers by N. The empty word is denoted
by λ, and the reversal of a word w by wR. For the length of w we write |w|.
We use ⊆ for inclusions and ⊂ for strict inclusions. An iterative array is a semi-
infinite array of deterministic finite automata, sometimes called cells. Except
for the leftmost automaton each one is connected to its both nearest neighbors.
For convenience we identify the cells by their coordinates, i.e., by non-negative
integers. The distinguished leftmost cell at the origin is connected to its right
neighbor and, additionally, equipped with a one-way read-only input tape. At
the outset of a computation the input is written with an infinite number of
end-of-input symbols to the right on the input tape, and all cells are in the so-
called quiescent state. The finite automata work synchronously at discrete time
steps. The state transition of all cells but the communication cell depends on the
current state of the cell itself and the current states of its neighbors. The state
transition of the communication cell additionally depends on the current input
symbol. The head of the one-way input tape is moved at any step to the right.
With an eye towards language recognition the machines have no extra output
tape but the states are partitioned in accepting and rejecting states.

Definition 1. An iterative array (IA) is a system 〈S,A, F, s0,�, δ, δ0〉, where S
is the finite, nonempty set of cell states, A is the finite, nonempty set of input
symbols, F ⊆ S is the set of accepting states, s0 ∈ S is the quiescent state,
� /∈ A is the end-of-input symbol, δ : S3 → S is the local transition function for
non-communication cells satisfying δ(s0, s0, s0) = s0, δ0 : (A ∪ {�}) × S2 → S
is the local transition function for the communication cell.

Let M be an IA. A configuration of M at some time t ≥ 0 is a description
of its global state which is a pair (wt, ct), where wt ∈ A∗ is the remaining
input sequence and ct : N → S is a mapping that maps the single cells to
their current states. The configuration (w0, c0) at time 0 is defined by the input
word w0 and the mapping c0(i) = s0, i ≥ 0, while subsequent configurations are
chosen according to the global transition function Δ: Let (wt, ct), t ≥ 0, be a
configuration, then its successor configuration (wt+1, ct+1) is as follows:

(wt+1, ct+1) = Δ
(
(wt, ct)

)
⇐⇒

{
ct+1(i) = δ

(
ct(i− 1), ct(i), ct(i+ 1)

)
, i ≥ 1,

ct+1(0) = δ0
(
a, ct(0), ct(1)

) ,

Real-Time Reversible Iterative Arrays 379

where a = �, wt+1 = λ if wt = λ, and a = a1, wt+1 = a2 · · · an if wt = a1 · · · an.
Thus, the global transition function Δ is induced by δ and δ0. A word is accepted
by an IA if at some time during its course of computation the communication
cell becomes accepting.

Let M = 〈S,A, F, s0,�, δ, δ0〉 be an IA. A word w ∈ A∗ is accepted by M,
if there exists a time step i ≥ 1 such that ci(0) ∈ F . L(M) = {w ∈ A∗ |
w is accepted by M} is the language accepted by M. Let t : N → N, t(n) ≥ n+1,
be a mapping. If all w ∈ L(M) are accepted with at most t(|w|) time steps,
then L is said to be of time complexity t.

Now we turn to iterative arrays that are reversible on the core of computation,
i.e., from initial configuration to the configuration given by the time complexity.
Consequently, we call them t-time reversible, if the time complexity t is obeyed.
Reversibility is meant with respect to the possibility of stepping the computation
back and forth. Due to the domain S3 and the range S, obviously, the local
transition function cannot be injective in general. But for reverse computation
steps we may utilize the information which is available for the cells, that is, the
states of their neighbors, respectively. So, we have to provide a reverse local
transition function.

For some mapping t : N → N let M = 〈S,A, F, s0,�, δ, δ0〉 be a t-time iterative
array. Then M is defined to be t-reversible (REV-IA), if there exist reverse local
transition functions δR and δR0 such that ΔR(Δ(ci)) = ci, for all configurations ci
of M, 0 ≤ i ≤ t(n)−1. The global transition functions Δ and ΔR are induced by
δ, δ0 and δR, δR0 , respectively. For distinctness, we denote 〈S,A, F, s0,�, δR, δR0 〉
by MR. The head of the input tape is always moved to the left when the reverse
transition function is applied.

The family of all languages that are accepted by some REV-IA with time
complexity t is denoted by Lt(REV-IA). If t equals the function n+1, acceptance
is said to be in real time, and we write Lrt(REV-IA).

In order to introduce some of the particularities in connection with reversible
language recognition we continue with an example. The goal is to define a real-
time REV-IA that accepts the non-context-free language {an2

b2n−1 | n ≥ 1},
which is not even semilinear. We start with a conventional iterative array. Basi-
cally, the idea is to recognize time steps which are square numbers. To this end,
assume k cells of the array are marked at time k2. Then a signal can be emitted
by the communication cell. The signal moves through the marked area, extends
it by one cell, and moves back again. So, the signal arrives at the communication
cell at time (k + 1)2. Finally, the number of bs is checked by sending another
signal through the marked area and back. Figure 1 (left) shows an accepting
computation. But the transition functions have to be extended in order to reject
words not belonging to the language. To this end, we consider possible errors
and observe that all errors can be detected by the communication cell. We iden-
tify the following errors: (1) the first input symbol is a b, (2) an a follows b, (3)
the number of as is not a square number, (4) the number of bs is insufficient,
or (5) there are too many bs. Accordingly, we provide rules to cope with the
situations. An example of a rejecting computation is given in Figure 1 (middle).

380 M. Kutrib and A. Malcher

a

a !
a >
a ◦ <0

a ! ◦
a > ◦
a ◦ >
a ◦ ◦ <0

a ◦ < ◦
b ! ◦ ◦
b b> ◦ ◦
b b> b> ◦
b b> b> <b

b b> <b <b

� <b <b <b

� + <b <b

a

a !
a >
a ◦ <0

a ! ◦
a > ◦
a ◦ >

b ◦ ◦ <0

a - < ◦
b - ◦ ◦
b - ◦ ◦
b - ◦ ◦
b - ◦ ◦
b - ◦ ◦
� - ◦ ◦
� - ◦ ◦

a

a !
a >
a ◦ <0

a ! ◦
a > ◦
a ◦ >

b ◦ ◦ <0

a ◦- < ◦
b ◦- <- ◦
b ◦- <- ◦-
b ◦- <- ◦- s-0
b ◦- <- ◦- s-0 s-0
b ◦- <- ◦- s-0 s-0 s-0
� ◦- <- ◦- s-0 s-0 s-0 s-0
� ◦- <- ◦- s-0 s-0 s-0 s-0 s-0

Fig. 1. Real-time IA accepting {an2
b2n−1 | n ≥ 1} (left), not being reversible (middle),

rejecting reversibly (right). Cells in quiescent state are left blank.

Moreover, in our current construction the whole computation may get frozen
before time step n + 1, for inputs not belonging to the language. Clearly, this
implies non-reversibility. One reason is that for conventional computations we do
not care about rejecting computations, except for keeping them rejecting. Nor
do we care about the part of the computation that cannot influence the overall
result, that is, the computation of cell i ≥ 1 after time step n + 1 − i, i.e., the
area below the diagonal starting from the lower left corner of the space-time
diagram.

For reversible computations we do have to care about rejecting computations
as well as for computations in the mentioned area. The idea of our construction
is to send a signal from left to right which freezes the computation, whereby each
cell passed through has to remember its current state. Clearly, this idea does not
work in general. Sometimes much more complicated computations are necessary
in order to obtain reversible computations. Next, we present the complete tran-
sition functions of a REV-IA accepting the language {an2

b2n−1 | n ≥ 1}. For
convenience, δ(p, q, r) = s is written as pqr → s, and the same holds for δ0. By
x, z we denote arbitrary states.

δ0

a s0 s0 → !

a ! z → >

a > z → ◦
a ◦ < → !

a ◦ <0 → !

b ! s0 → <b

b ! ◦ → b>

b b> <b → <b

� <b z → +

δ

> s0 s0 → <0

> ◦ y → >

x ◦ <0 → <

x ◦ < → <

x > z → ◦
x <0 s0 → ◦
x < z → ◦
b> ◦ ◦ → b>

b> ◦ s0 → <b

x b> <b → <b

δ0

b s0 s0 → s0
-

a b> z → b>
-

a <b z → <-b
b ◦ z → ◦-
b > z → >-

b <b z → <-b
� s0 z → s-0
� ! z → !-

� > z → >-

� ◦ z → ◦-
� b> z → b>

-

δ

>- s0 s0 → s-0
>- ◦ y → ◦-
x- ◦ <0 → ◦-
x- ◦ < → ◦-
x- > z → >-

x- <0 s0 → <-0
x- < z → <-

b>
- ◦ ◦ → ◦-

b>
- ◦ s0 → ◦-

x- b> <b → b>
-

x- s0 s0 → s-0

Real-Time Reversible Iterative Arrays 381

The two blocks of transition rules at the left are for accepting computations.
The third block provides rules for detecting that the input is of wrong format.
The rules of the fourth block are for the freezing error signal. An example for
a reversible rejecting computation is given in Figure 1 (right). It is not hard to
obtain the reverse local transition functions δR0 and δR.

The technique to send a signal that freezes the computation in order to main-
tain reversibility in certain situations, yields the closure of the family in question
under Boolean operations. A family of languages is said to be effectively closed
under some operation, if the result of the operation can be constructed from the
given language(s).

Lemma 2. The family Lrt(REV-IA) is effectively closed under the Boolean op-
erations complementation, union, and intersection.

Proof. A real-time REV-IA accepts an input, if and only if the communication
cell becomes accepting at any time during the computation. Once this happens,
a freezing signal can be sent. So, the communication cell remembers forever
that it has accepted. Next, we provide a copy of the non-accepting states, and
modify the transition function δ0 such that it changes to the corresponding new
state if and only if the end-of-input symbol appears and the computation is
not accepting. The real-time REV-IA is still reversible. Moreover, it accepts if
and only if the state of the communication cell is accepting at time n + 1, and
it rejects if and only if the state of the communication cell is a copied one at
time n + 1. Simply defining the copied states to be accepting states shows the
effective closure under complementation.

The closure under union and intersection follows by the well-known two-track
technique. When two reversible computations are performed separately on differ-
ent tracks, clearly, the whole computation is reversible, too. The interpretation
of the states of the communication cell on both tracks at time n + 1 yields the
closures. ��

3 Reversible Simulation of Data Structures

We next want to explore the computational capacity of real-time REV-IAs. To
this end, we first consider the data structures stack and queue, and show that
REV-IAs can simulate special variants thereof. We start with the stack. In de-
tail, we consider real-time deterministic pushdown automata accepting linear
context-free languages. Moreover, the stack behavior is restricted in such a way
that in every step exactly one symbol is pushed on or popped from the stack.
For convenience, we denote the family of languages accepted by such automata
by DLR.

Theorem 3. Every language from DLR belongs to the family Lrt(REV-IA).

Proof. The principal idea is to simulate a stack by using the three register tech-
nique described in [4]. The content of the stack is stored in the first two registers

382 M. Kutrib and A. Malcher

and the third register is used as a buffer. Due to the fact that the given push-
down automaton accepts a linear language, we know that there is at most one
change between increasing and decreasing the stack. Thus, the stack behavior
can be described as a sequence of push operations followed by a sequence of pop
operations in which exactly one stack symbol is pushed or popped, respectively.
An example of a computation is shown in Figure 2. Cells which represent an
increasing stack or a decreasing stack are marked with the symbol ↑ or ↓, re-
spectively. When the stack changes from increasing to decreasing, a signal →
is sent to the right. With an eye towards reversibility, the communication cell
stores a popped symbol on an additional track, and this information is shifted
to the right. Thus, the history of the stack content is stored in the cells and
can be reconstructed. Finally, the communication cell also simulates the state
transition of the pushdown automaton, and stores the states on an additional
track which also is shifted to the right.

We now have to show that a computation as described above is reversible.
Obviously, shifting to the right can be made reversible by shifting to the left.
The first phase of the computation (increasing stack height) is reversible, since
in one step exactly one symbol has to be shifted backwards through the three
registers in all cells. The second phase of the computation (decreasing stack
height) consists of shifting the first register of each cell to the left. Thus, we
obtain reversibility by shifting the first register of each cell to the right. The
signal → is sent to the right and forces each cell to switch from increasing
to decreasing. To achieve reversibility here, we send the signal to the left and
observe that it meets the first entry of the stack (which is marked suitably)
in the rightmost cell, which carries stack symbols in its first registers. In the
next time step, cells with increasing stack height can be reconstructed. Finally,

0

↑
1
0
↑

2
1
0 ↑
3
2
1 ↑

0

↑
4
3
2 ↑

1
0
↑

5
4
3 ↑

2
1
0 ↑

6
5
4 ↑

3
2
1 ↑

0

↑
7
6
5 ↑

4
3
2 ↑

1
0
↑

8
7
6 ↑

5
4
3 ↑

2
1
0 ↑

9
8
7 ↑

6
5
4 ↑

3
2
1 ↑

0

↑

8

→
7
6
5 ↑

4
3
2 ↑

1
0
↑

7

↓
6

→
5
4
3 ↑

2
1
0 ↑

6

↓
5

↓
4

→
3
2
1 ↑

0

↑
5

↓
4

↓
3

↓
2

→
1
0
↑

4

↓
3

↓
2

↓
1

↓
0

→
3

↓
2

↓
1

↓
0

↓ ↓ →
2

↓
1

↓
0

↓ ↓ ↓ ↓
1

↓
0

↓ ↓ ↓ ↓ ↓
0

↓ ↓ ↓ ↓ ↓ ↓

↓ ↓ ↓ ↓ ↓ ↓

Fig. 2. Pushing (left) and popping (right) of ten pushdown symbols in real time. The
left half of each cell contains the three registers for simulating the stack. The first two
registers of the right half are used to store the current state of the communication cell
and the last popped stack symbol, respectively. The last register indicates whether the
stack is increasing (↑), decreasing (↓), or a switch takes place (→). The first entry of
the stack is marked by underlining.

Real-Time Reversible Iterative Arrays 383

due the history of states and stack contents, the communication cell can always
compute its predecessor state. ��

Now we can utilize the simulation in order to derive particular languages be-
longing to the family Lrt(REV-IA).

Example 4. Every regular language as well as the languages {anbn | n ≥ 1} and
{wccwR | w ∈ {a, b}+} are in DLR and, thus, belong to Lrt(REV-IA).

Similar to the restricted stack behavior, we can show that real-time REV-IAs
can simulate queues under certain conditions.

Lemma 5. Let Q be an empty queue which is filled by a number of in opera-
tions, and then emptied by a sequence of out operations. Moreover, in every time
step exactly one in or out operation is performed. Then Q can be simulated by
a real-time REV-IA.

Example 6. Consider the language L = {wcwc | w ∈ {a, b}+}. First, the input
prefix wc is inserted into a queue. Then, the content of the queue is removed
step by step, whereby it is matched against the remaining input wc. Due to
Lemma 5, language L belongs to the family Lrt(REV-IA).

The restrictions on the data structures seem to be very natural, since in [16]
it has been shown that the deterministic, linear context-free language L =
{xk · · ·$x1#y1$ · · ·yk | xRi = yizi, xi, yi, zi ∈ {a, b}∗} is not accepted by
any conventional real-time iterative array. Related to iterative arrays are cel-
lular automata. In [17] reversible language recognition by cellular automata is
investigated. It is not hard to construct a real-time reversible cellular automaton
which accepts L. So, we obtain a reversible relationship equal to the relationship
in the conventional case.

Theorem 7. The family Lrt(REV-IA) is properly included in the family of lan-
guages accepted by real-time reversible cellular automata.

4 Decidability Questions

Now we turn to explore undecidable properties for real-time REV-IAs. To this
end, we consider valid computations of Turing machines [10]. Roughly speaking,
these are histories of accepting Turing machine computations. It suffices to con-
sider deterministic Turing machines with a single tape and a single read-write
head. Without loss of generality and for technical reasons, one can assume that
any accepting computation has at least three and, in general, an odd number of
steps. Therefore, it is represented by an even number of configurations. More-
over, it is assumed that the Turing machine cannot print blanks, and that a
configuration is halting if and only if it is accepting. The language accepted by
some machine M is denoted by L(M).

Let S be the state set of some Turing machine M , where s0 is the initial
state, T ∩S = ∅ is the tape alphabet containing the blank symbol, A ⊂ T is the

384 M. Kutrib and A. Malcher

input alphabet, and F ⊆ S is the set of accepting states. Then a configuration
of M can be written as a word of the form T ∗ST ∗ such that t1 · · · tisti+1 · · · tn is
used to express that M is in state s, scanning tape symbol ti+1, and t1 to tn is
the support of the tape inscription. The set of valid computations VALC(M) is
now defined to be the set of words of the form w1####w2#### · · ·####w2m####,
where m ≥ 2, # /∈ T ∪ S, wi ∈ T ∗ST ∗ are configurations of M , w1 is an initial
configuration of the form s0A

∗, w2m is an accepting configuration of the form
T ∗FT ∗, and wi+1 is the successor configuration of wi, with 0 ≤ i ≤ 2m− 1. The
set of invalid computations INVALC(M) is the complement of VALC(M) with
respect to the alphabet {#} ∪ T ∪ S.

The following lemma is the key tool to prove undecidability properties for
real-time REV-IAs.

Lemma 8. Let M be a Turing machine. Then the set VALC[M] can be repre-
sented as the intersection of two languages from Lrt(REV-IA).

Proof. Let L3 = {y####z#### | z is successor of y}. Then VALC(M) equals the
intersection L1 ∩ L2, where L1 = L+

3 and L2 = s0A
∗####L∗

3T
∗FT ∗####. We

first describe how L3 can be accepted by a real-time REV-IA. The principal
idea is to read y, to compute its successor configuration y′, and to store y′ in
a queue Q. Then y′ is matched against the input z. If y′ = z, then the input
is accepted, and otherwise rejected. To compute y′ from y, we consider the four
possible steps of M: (1) ZqX is replaced by pZY , if M writes Y , and moves
the head to the left, (2) Zq# is replaced by pZY #, if M writes Y extending the
support of the configuration at the right, and moves the head to the left, (3) qX
is replaced by Y p, if M writes Y , and moves the head to the right, (4) q# is
replaced by Y p#, if M writes Y extending the support of the configuration at
the left, and moves the head to the right. Thus, a string of length at most 3
is replaced by some string of length at most 4. Since M is deterministic, we
know which of the above four cases applies. We add to the communication cell
two buffers (buffer1, buffer2) of length 3 and 4, respectively. Now, the input
is read and the first three input symbols are written into buffer1. Any next
input symbol is written into the third place of buffer1 and the contents of the
third and second place are shifted to the second and first place, respectively.
The content of the first place is inserted into the queue. If buffer1 contains
some triple to which δ can be applied, we write the result of the replacement
into buffer2. While reading the next input symbols, the first place of buffer2
is inserted into the queue, all other places are shifted to the left, and the last
read input symbol is written into the rightmost place of buffer2. It should be
remarked that the handling of buffer2 is depending on the fact which case has
to be simulated. If the fourth symbol # is read, we start to empty the queue and
match the input with the queue. We observe that after filling buffer1 within
the first three time steps, there is exactly one in or out operation in Q. Due
to Lemma 5, we know that Q can be implemented reversibly. Finally, since the
management of the buffers and the checking of the correct format take place in
the communication cell only, the computation can be made reversible by storing
a “protocol” of their states on an additional track similar to the construction in

Real-Time Reversible Iterative Arrays 385

Theorem 3. Thus, we obtain that L3 ∈ Lrt(REV-IA). By a simple extention of
the queue simulation we obtain L1 = L+

3 ∈ Lrt(REV-IA).
To accept L2, we consider the above-constructed IA and check in the com-

munication cell whether the input starts with a string of the form s0A
∗####.

If so, the simulation of the queue is started. Otherwise, the input is rejected.
To check that the input has a suffix of the form T ∗FT ∗####, we implement a
deterministic finite automaton A in the communication cell, which starts after
every substring #### to check whether the next input is of the form T ∗FT ∗####.
If the end-of-input symbol is read and A is in an accepting state, then the input
is accepted, and otherwise rejected. ��

By Lemma 2 the family Lrt(REV-IA) is closed under intersection. So, we obtain
the following corollary.

Corollary 9. Let M be a Turing machine. Then the set VALC[M] belongs to
the family Lrt(REV-IA).

Theorem 10. Emptiness, finiteness, infiniteness, universality, inclusion, equiv-
alence, regularity, and context-freedom are not semidecidable for real-time
REV-IAs.

Proof. Let M be a Turing machine. By simple pumping arguments it can be
shown that VALC(M) is context free if and only if M accepts a finite set.
The finiteness problem of Turing machines is known to be not semidecidable.
If, e.g., regularity were semidecidable for real-time REV-IAs, then we could
semidecide whether a real-time REV-IA accepting VALC(M) accepts a regular
language. Thus, we could semidecide the finiteness of Turing machines which
is a contradiction. Similarly, the problems of emptiness, finiteness, inclusion,
equivalence, and context-freedom can be proven to be not semidecidable for
real-time REV-IAs. If VALC(M) is infinite, then M accepts an infinite set.
Thus, infiniteness is also not semidecidable. Since Lrt(REV-IA) is closed under
complementation, universality is not semidecidable as well. ��

Theorem 11. Let M be a real-time IA. It is not semidecidable whether or
not M is real-time reversible.

Proof. Let M′ be a real-time REV-IA. We consider a real-time IA M′′ accepting
{w##va4(|w|+2) | w ∈ L(M′), v = λ if |w| is even, and v = #a4 if |w| is odd},
where a and # are new alphabet symbols. We show that M′′ is reversible if
and only if L(M′) is empty. Since emptiness is not semidecidable for real-time
reversible IAs, we obtain that reversibility is not semidecidable for real-time IAs.

The construction of M′′ may be sketched as follows. We consider four tracks.
The correct input format is checked in the communication cell. On the first
track the correct number of as is verified. To this end, all input symbols up to
the first a are stored in a queue which uses n = (|w| + 2)/2 cells. In detail,
we implement four copies of an empty queue (queue1, . . . ,queue4) and insert
all incoming symbols into queue1. When reading the first a we start to empty
queue1 and insert all deleted symbols from queue1 into queue2. When queue1

386 M. Kutrib and A. Malcher

is empty, we start to empty queue2 and insert their symbols into queue3. Then,
queue3 is copied into queue4 and finally queue4 is emptied. When reading the
end-of-input symbol we know whether the number of as is correct, and can accept
or reject. Clearly, the computation on the first track is reversible.

The second track is used to store the input w = a1a2 . . . a|w|## in a stack.
Observe that a1 arrives in cell n − 1 at time |w| + 2 + n. Subsequently, the
simulation of M′ is started on the third track from right to left, i.e., cell n− 1
serves as the communication cell which gets its input from the stack stored on
the second track. Additionally, two cells of M′ are packed into one cell of the
third track. Observe that the simulation takes time |w| + 1 and that we can
decide after at most 2|w| + 3 + n time steps in cell n − 1 whether or not the
input w is accepted in M′. We want to achieve that cell n− 1 accepts or rejects
after exactly 2(|w| + 2) + n time steps. This can be realized reversibly by using
similar techniques as in Lemma 2. Thus, we can observe that the computation
on the second and third track is reversible, because a stack can be simulated
reversibly and M′ is reversible.

If w is accepted, then we send a signal with speed 1/5 to the left which
causes each cell to enter some new permanent state g. Obviously, g erases any
information from the cells. The communication cell changes to state g at time
5(|w|+2). If the input has the correct format and the correct number of as, then
we accept the input, and reject it in all other cases. Thus, w ∈ L(M′) results in
an accepting, non-reversible computation of M′′.

When the first a is read a reversible version of the FSSP according to the
construction given in [12] is started on the fourth track. At time 2(|w| + 2) + n
the cells 0, . . . , n− 1 are synchronized and change synchronously to some states
which preserve the current contents of their second and third tracks. On the
fourth track the reverse FSSP is started. So, the whole computation is reversible
as long as no state g occurs. Thus, w �∈ L(M′) results in a non-accepting,
reversible computation of M′′. Altogether, we obtain that M′′ is reversible if
and only if L(M′) is empty. ��

References

1. Amoroso, S., Patt, Y.N.: Decision procedures for surjectivity and injectivity of
parallel maps for tesselation structures. J. Comput. System Sci. 6, 448–464 (1972)

2. Angluin, D.: Inference of reversible languages. J. ACM 29, 741–765 (1982)

3. Bennet, C.H.: Logical reversibility of computation. IBM Journal of Research and
Development 17, 525–532 (1973)

4. Buchholz, Th., Kutrib, M.: Some relations between massively parallel arrays. Par-
allel Comput. 23, 1643–1662 (1997)

5. Buchholz, Th., Klein, A., Kutrib, M.: Iterative arrays with limited nondeterministic
communication cell. In: Words, Languages and Combinatorics III, pp. 73–87. World
Scientific Publishing, Singapore (2003)

6. Buchholz, Th., Klein, A., Kutrib, M.: Iterative arrays with small time bounds. In:
Nielsen, M., Rovan, B. (eds.) MFCS 2000. LNCS, vol. 1893, pp. 243–252. Springer,
Heidelberg (2000)

Real-Time Reversible Iterative Arrays 387

7. Cole, S.N.: Real-time computation by n-dimensional iterative arrays of finite-state
machines. IEEE Trans. Comput. C-18, 349–365 (1969)

8. Czeizler, E., Kari, J.: A tight linear bound on the neighborhood of inverse cellular
automata. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M.
(eds.) ICALP 2005. LNCS, vol. 3580, pp. 410–420. Springer, Heidelberg (2005)

9. Fischer, P.C.: Generation of primes by a one-dimensional real-time iterative array.
J. ACM 12, 388–394 (1965)

10. Hartmanis, J.: Context-free languages and Turing machine computations. Proc.
Symposia in Applied Mathematics 19, 42–51 (1967)

11. Ibarra, O.H., Palis, M.A.: Some results concerning linear iterative (systolic) arrays.
J. Parallel Distributed Comput. 2, 182–218 (1985)

12. Imai, K., Morita, K.: Firing squad synchronization problem in reversible cellular
automata. Theoret. Comput. Sci. 165, 475–482 (1996)

13. Iwamoto, C., Hatsuyama, T., Morita, K., Imai, K.: Constructible functions in cellu-
lar automata and their applications to hierarchy results. Theoret. Comput. Sci. 270,
797–809 (2002)

14. Kari, J.: Reversibility and surjectivity problems of cellular automata. J. Comput.
System Sci. 48, 149–182 (1994)

15. Kari, J.: Theory of cellular automata: a survey. Theoret. Comput. Sci. 334, 3–33
(2005)

16. Kutrib, M.: Automata arrays and context-free languages. In: Where Mathematics,
Computer Science and Biology Meet, pp. 139–148. Kluwer Academic Publishers,
Dordrecht (2001)

17. Kutrib, M., Malcher, A.: Fast reversible language recognition using cellular au-
tomata. In: Language and Automata Theory and Applications (LATA 2007).
LNCS, Springer, Heidelberg 2007 (to appear)

18. Malcher, A.: On the descriptional complexity of iterative arrays. IEICE Trans. Inf.
Syst. E87-D, 721–725 (2004)

19. Morita, K., Harao, M.: Computation universality of one dimensional reversible
injective cellular automata. Trans. IEICE E72, 758–762 (1989)

20. Morita, K., Shirasaki, A., Gono, Y.: A 1-tape 2-symbol reversible Turing machine.
Trans. of the IEICE E72, 223–228 (1989)

21. Morita, K.: Computation-universality of one-dimensional one-way reversible cellu-
lar automata. Inform. Process. Lett. 42, 325–329 (1992)

22. Morita, K., Ueno, S.: Parallel generation and parsing of array languages using
reversible cellular automata. Int. J. Pattern Recog. and Artificial Intelligence 8,
543–561 (1994)

23. Morita, K.: Reversible simulation of one-dimensional irreversible cellular automata.
Theoret. Comput. Sci. 148, 157–163 (1995)

24. Morita, K., Ueno, S., Imai, K.: Characterizing the ability of parallel array gen-
erators on reversible partitioned cellular automata. Int. J. Pattern Recog. and
Artificial Intelligence 13, 523–538 (1999)

25. Pin, J.E.: On reversible automata. In: Simon, I. (ed.) LATIN 1992. LNCS, vol. 583,
pp. 401–416. Springer, Heidelberg (1992)

26. Smith III, A.R.: Real-time language recognition by one-dimensional cellular au-
tomata. J. Comput. System Sci. 6, 233–253 (1972)

27. Toffoli, T.: Computation and construction universality of reversible cellular au-
tomata. J. Comput. System Sci. 15, 213–231 (1977)

The Computational Complexity of Monotonicity

in Probabilistic Networks

Johan Kwisthout�

Department of Information and Computer Sciences, University of Utrecht,
P.O. Box 80.089, 3508 TB Utrecht, The Netherlands

johank@cs.uu.nl

Abstract. Many computational problems related to probabilistic net-
works are complete for complexity classes that have few ’real world’
complete problems. For example, the decision variant of the inference
problem (pr) is PP-complete, the map-problem is nppp-complete and
deciding whether a network is monotone in mode or distribution is co-
nppp-complete. We take a closer look at monotonicity; more specific, the
computational complexity of determining whether the values of the vari-
ables in a probabilistic network can be ordered, such that the network is
monotone. We prove that this problem – which is trivially co-nppp-hard

– is complete for the class co-npnppp in networks which allow implicit
representation.

1 Introduction

Probabilistic networks [6] (also called Bayesian or belief networks) represent a
joint probability distribution on a set of statistical variables. A probabilistic
network is often described by a directed acyclic graph and a set of conditional
probabilities. The nodes represent the statistical variables, the arcs (or lack of
them) represent (in)dependencies induced by the joint probability distribution.
Probabilistic networks are often used in decision support systems such as medical
diagnosis systems (see e.g. [2] or [11]). Apart from their relevance in practical
situations, they are interesting from a theoretical viewpoint as well.

Many problems related to probabilistic networks happen to be complete for
complexity classes that have few ’real world’ complete problems. For example,
the decision variant of the inference problem Pr (is the probability of a specific
instantiation of a variable higher than p) is PP-complete [3], where the exact
inference problem is #P-complete [7]. The problem of finding the most probable
explanation (mpe), i.e., the most likely instantiation to all variables, has an NP-
complete decision variant [8]. On the other hand, determining whether there is
an instantiation to a subset of all variables (the so-called map variables), such
that there exists an instantiation to the other variables with probability higher

� The work of this author was partially supported by the Netherlands Organisation
for Scientific Research NWO.

E. Csuhaj-Varjú and Z. Ésik (Eds.): FCT 2007, LNCS 4639, pp. 388–399, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

The Computational Complexity of Monotonicity in Probabilistic Networks 389

than p (the map problem) is nppp-complete [5]. Determining whether a network
is monotone (in mode or in distribution) is co-nppp-complete [10].

Monotonicity is often studied in the context of probabilistic classification,
where a network is constructed of evidence variables (like observable symptoms
and test results), non-observable intermediate variables, and one or more clas-
sification variables. Informally, the conditional probability of a variable C given
evidence variables E is monotone, if higher ordered instantiations to E always
lead to higher values of C (isotone) or always lead to lower values of C (anti-
tone). The question whether these relations are monotone is particularly relevant
during the construction and verification of the network. Often, domain experts
will declare that certain relations ought to be monotone, and the conditional
probabilities in the network should then respect these assumptions. When a vi-
olation is found, the probabilities should be reconsidered, by elicitating better
estimations or using more data to learn from.

While complexity results are known for the Monotonicity problem when
all variables have fixed orderings, no such results have been obtained yet for
the related problem where no such fixed order is presumed. Nevertheless, while
variables sometimes have a trivial ordering (e.g., always > sometimes > never),
such an ordering might be arbitrary, and determining a ’good’ ordering might
reduce the part of the network where monotonicity is violated. This problem is
interesting from a theoretical viewpoint as well. If we can determine whether
adding this extra ‘degree of freedom’ to the Monotonicity problem ‘lifts’ the
complexity of the problem into a broader class, we gain some insight in the
properties and power of these types of complexity classes.

In the remainder of this paper, some preliminaries are introduced in Section 2,
and various monotonicity problem variants and their computational complexity
are discussed in Section 3. In Section 4, we present an (alternative) proof for a
restricted version of the Monotonicity problem as presented in [10]. This proof
technique is then used in Section 5 to show that the Monotonicity problem

with no fixed orderings, is indeed complete for the class co-npnppp if we allow
a (rather broad) implicit probability representation. Finally, in Section 6 these
results are discussed and the paper is concluded.

2 Preliminaries

Before formalising the problems for which we want to determine their computa-
tional complexity, we first need to introduce some definitions and notations. Let
B = (G,Γ) be a probabilistic or Bayesian network where Γ , the set of condi-
tional probability distributions, is composed of rational probabilities, and let Pr
be its joint probability distribution. The conditional probability distributions in Γ
can be explicit, i.e., represented with look-up tables, or implicit, i.e., represented
by a polynomial time computable function. If Γ consists only of explicit distri-
butions then B will be denoted as an explicit network. Let Ω(V) denote the set
of values that V ∈ V (G) can take. Vertex A is denoted as a predecessor of B
if (A,B) ∈ A(G). For a node B with predecessors A1, . . . , An, the configuration

390 J. Kwisthout

template A is defined asΩ(A1)×. . .×Ω(An); a particular instantiation ofA1, . . . ,
An will be denoted as a configuration of A.

Monotonicity can be defined as stochastical dominance (monotone in distribu-
tion) or in a modal sense (monotone in mode)1, furthermore monotonicity can be
defined on a global scale, or locally (only relations along the arcs of the network
are considered). In this paper, we discuss global monotonicity in distribution
only. We distinguish between weak and strong global monotonicity.

Definition 1 (global monotonicity [10]). Let FPr be the cumulative distri-
bution function for a node V ∈ V (G), defined by FPr(v) = Pr(V ≤ v) for all
v ∈ Ω(V). Let C be a variable of interest (e.g., the main classifier or output
variable in the network), let E denote the set of observable variables, and let E
be the configuration template of E. The network is strongly monotone in E, if
either

e 6 e′ → FPr(c |e) ≤ FPr(c |e′) for all c ∈ Ω(C) and all e, e′ ∈ E , or
e 6 e′ → FPr(c |e) ≥ FPr(c |e′) for all c ∈ Ω(C) and all e, e′ ∈ E

The network is weakly monotone in E, if the network is strongly monotone in
{Ei}, for all variables Ei ∈ E.

Note that all networks that are strongly monotone in E are also weakly mono-
tone, but not vice versa: whereas the strong variant assumes a partial order on
all configurations of E, the weak variant allows independent isotone or antitone
effects for all variables in E. Put in another way: we could make a weakly mono-
tone network also strongly monotone by reversing the order of the values of some
variables in E, such that all effects are antitone or all effects are isotone.

The above notions of monotonicity assume an implicit ordering on the values
of the variables involved. Such an ordering is often trivial (e.g., x > x̄ and
always > sometimes > never) but sometimes it is arbitrary, like an ordering of
the organs that might be affected by a disease. Nevertheless, a certain ordering is
necessary to determine whether the network is monotone, or to determine which
parts of the network are violating monotonicity assumptions. Thus, for nodes
where no a priori ordering is given, we want to order the values of these nodes
in a way that maximises the number of monotone arcs. We define the notion of
an interpretation of V to denote a certain ordering on Ω(V), the set of values
of V . Note, that the number of distinct interpretations of a node with k values
equals k!, the number of permutations of these values.

Definition 2 (interpretation). An interpretation of V ∈ V (G), denoted IV ,
is a total ordering on Ω(V). We will often omit the subscript if no confusion is
possible; for arbitrary interpretations we will often use σ and τ . The interpreta-
tion set IV is defined as the set of all possible interpretations of V .
1 For variable set E, with value assignments e and e′ (e ≺ e′) and output C, the

network is isotone in distribution if Pr(C |e) is stochastically dominant over Pr(C |e′).
The network is isotone in mode if the most probable c ∈ C given assignment e is
lower ordered than the most probable c ∈ C given assignment e′.

The Computational Complexity of Monotonicity in Probabilistic Networks 391

In the remainder, we assume that the reader is familiar with basic concepts of
computational complexity theory, such as the classes P, NP and co-NP, hard-
ness, completeness, oracles, and the polynomial hierarchy (PH). For a thorough
introduction to these subjects, we refer to textbooks like [1] and [4].

In addition to these concepts, we use the counting hierarchy (CH) [12,9]. The
counting hierarchy closely resembles (in fact, contains) the polynomial hierarchy,
but also involves the class PP (probabilistic polynomial time), i.e., the class that
contains languages accepted by a non-deterministic Turing Machine where the
majority of the paths accept a string if and only if it is in that language. Recall
that the polynomial hierarchy can be characterised by alternating existential
and universal operators applied to P , where ∃PP equals Σp

1 = NP, ∀PP equals
Πp

1 = co-NP, while ∀P∃P∀P . . . P equals Πp
k and ∃P∀P∃P . . . P equals Σp

k , where
k denotes the number of alternating quantifiers.

A convenient way to relate the counting hierarchy to the polynomial hierar-
chy is by introducing an additional operator C, where Cp0 equals P, Cp1 equals
PP, and in general Cpk+1 = C · Cpk = (Cpk)pp. Interesting complexity classes can
be defined using these operators ∃P , ∀P and C in various combinations. For ex-
ample, ∃PCP equals the class nppp, ∀P CP equals co-npppand ∃P∀PCP equals

npnppp . Default complete problems for these kind of complexity classes are de-
fined by Wagner [12] using quantified satisfiability variants. In this paper we
consider in particular the complete problems Majsat, E-Majsat, A-Majsat,
EA-Majsat and AE-Majsat which will be used in the hardness proofs. These
problems are proven complete by Wagner [12] for the classes PP, nppp, co-nppp,

npnpppand co-npnppp , respectively. In all problems, we consider a boolean for-
mula φ with n variables Xi, with 1 ≤ i ≤ n, and we introduce quantifiers to
bound subsets of these variables.

Majsat
Instance: Let X denote the configuration template for φ.
Question: Does at least half of the instantiations of X satisfy φ?

E-Majsat
Instance: Let 1 ≤ k ≤ n, let XE denote the configuration template for
the variables X1 to Xk and let XM denote the configuration template for
Xk+1 to Xn.
Question: Is there an instantiation to XE, such that at least half of the
instantiations of XM satisfy φ?

A-Majsat
Instance: Sets XA and XM as in E-Majsat.
Question: Does, for every possible instantiation to XA, at least half of
the instantiations of XM satisfy φ?

EA-Majsat
Instance: Let 1 ≤ k ≤ l ≤ n, let XE, XA, and XM denote the

392 J. Kwisthout

configuration templates for the variables X1 to Xk, Xk+1 to Xl, and Xl+1

to Xn, respectively.
Question: Is there an instantiation to XE, such that, for every possible
instantiation of XA, at least half of the instantiations of XM satisfy φ?

AE-Majsat
Instance: Sets XA, XE, and XM as in EA-Majsat.
Question: Is there, for all instantiations to XA, a possible instantiation
of XE, such that at least half of the instantiations of XM satisfy φ?

In the remainder, we denote the complement of a problem P as not-P, with
‘yes’ and ‘no’ answers reversed with respect to the original problem P. Note
that, by definition, if P is in complexity class C, then not-P is in co-C, and,
likewise, if not-P is in C, then P is in co-C.

3 Monotonicity Variants and Their Complexity

In this paper, we study the computational complexity of various variants of global
monotonicity. The following problems are defined on a probabilistic network
B = (G,Γ), where G = (V,A) is a directed acyclic graph.

1. The strong Global Monotonicity problem is the problem of testing
whether B is strongly globally monotone, given an interpretation for V .
This problem is co-nppp-complete [10] for explicit networks.

2. The weak Global Monotonicity problem is the problem of testing
whether B is weakly globally monotone, given an interpretation for V .

3. The Global E-Monotonicity problem is the problem of testing whether
there exists an interpretation to Ω(V), such that B is globally monotone.

Note that, if there exists an interpretation such that B is weakly monotone,
there must also be an interpretation such that B is strongly monotone.

weak Global Monotonicity and Global E-Monotonicity will be dis-
cussed in Sections 4 and 5. In these sections, we use a proof technique introduced
by Park and Darwiche [5] to construct a probabilistic network Bφ from a given
Boolean formula φ with n variables. For all variables Xi(1 ≤ i ≤ n) in this for-
mula, we create a variable Xi in G, with possible values T and F and uniform
probability distribution. For each logical operator in φ, we create an additional
variable, whose parents are the corresponding sub-formulas (or single variable
in case of a negation operator) and whose conditional probability table is equal
to the truth table of that operator. For example, the ∧-operator would have a
conditional probability of 1 if and only if both its parents have the value T ,
and 0 otherwise. Furthermore, we denote the top-level operator in φ with Vφ. In
Figure 1 such a network is constructed for the formula ¬(x1 ∨ x2) ∧ ¬x3. Now,
for any particular instantiation x of the set of all variables X in the formula
we have that the probability of Vφ, given the corresponding configuration equals
1 if x satisfies φ, and 0 if x does not satisfy φ. Without any instantiation, the

The Computational Complexity of Monotonicity in Probabilistic Networks 393

X1 X2

X3∨

¬¬

∧
Vφ

Fig. 1. The probabilistic network corresponding to ¬(x1 ∨ x2) ∧ ¬x3

probability of Vφ is #q

2n , where #q is the number of satisfying instantiations of
X. Using such constructs, Park and Darwiche proved that the decision variant of
the map problem is nppp-complete; we will use this construct as a starting point
to prove completeness results for weak Global Monotonicity and Global
E-Monotonicity in the following Sections.

4 Weak Global Monotonicity

In this section, we present a proof for weak Global Monotonicity (with ex-
plicit representations) along the lines of Park and Darwiche. Note that strong
Global Monotonicity has been proven to be co-nppp-complete in [10] using
a reduction from the decision variant of the map-problem, and that hardness of
the weak variant can be proven by restriction. We construct a reduction from
A-Majsat, the relevant satisfiability variant discussed in Section 2, in order to
facilitate our main result in the next section. First, we state the relevant decision
problem:

weak Global Monotonicity
Instance: Let B = (G,Γ) be a Bayesian network where Γ is composed of
explicitly represented rational probabilities, and let Pr be its joint prob-
ability distribution. Let C ∈ V (G) and E ⊆ V (G) \ {C}.
Question: Is B weakly monotone in distribution in E?

We will see that any instance (φ,XA,XM) of A-Majsat can be translated
in a probabilistic network that is monotone, if and only if (φ,XA,XM) is satisfi-
able. As an example, let us consider the formula φ = ¬(x1∧x2)∨¬x3 (Figure 2),
and let XA = {x1, x2} and XM = {x3}. This is a ’yes’-instance of A-Majsat
because, for every configuration of XA, at least half of the configurations of XM

satisfies φ. From φ we construct a network Bφ as described in the previous sec-
tion. Furthermore, a node C (’classifier’) and a node S (’select’) is added, with
arcs (S,C) and (Vφ, C), where Vφ is the top node in Bφ. S has values T and
F with uniform distribution, and C has conditional probabilities as denoted in

394 J. Kwisthout

X1 X2

X3

S

C

∨

¬¬

∧

XA

Vφ

XM

Fig. 2. Construct for hardness proof Monotonicity

Table 1. Conditional probability table for C

c1 c2 c3

S = T ∧ Vφ = T 0.5 0.25 0.25

S = T ∧ Vφ = F 0.5 0.25 0.25

S = F ∧ Vφ = T 0.25 0.375 0.375

S = F ∧ Vφ = F 0.375 0.5 0.125

Table 1. We claim, that Pr(C |S∧XA) in the thus constructed network, is weakly
monotone in distribution, if and only if the corresponding A-Majsat-instance
(φ,XA,XM) is satisfiable.

Theorem 1. weak Global Monotonicity is co-nppp-complete

Proof. To prove membership of co-nppp, we consider not-weak Global Mo-
notonicity and prove membership of nppp. In this complement problem we
want to know if there exist instantiations to the evidence variables E such
that B is not monotone in distribution. This is clearly in nppp: we can non-
deterministically choose instantiations e1 6 e2 to E and values c < c′ ∈ Ω(C),
and verify that FPr(c | e1) ≤ FPr(c′ | e1), but FPr(c′ | e2) ≤ FPr(c | e2) since Pr
is pp-complete.

To prove co-nppp-hardness, we construct a transformation from A-Majsat.
Let (φ,XA,XM) be an instance of this problem, and let Bφ be the network
constructed from φ as described above. Given a particular configuration x of
all n variables in XA ∪XM, Pr(Vφ | x) equals 1 if x is a satisfying configura-
tion and 0 if it is not, hence, for any configuration XA, Vφ ≥ 1

2 if at least half
of the instantiations to XM satisfy φ. Since C is conditioned on Vφ, it follows
from Table 1 that if any configuration of XA leads to Pr(Vφ) < 1

2 , then C is
no longer monotone in S ∧XA, since FPr(c1 | S = T) > FPr(c1 | S = F), but

The Computational Complexity of Monotonicity in Probabilistic Networks 395

FPr(c2 | S = T) < FPr(c2 | S = F) as we can calculate2 from the conditional
probability table for C.

Thus, if we can decide whether Bφ is weakly globally monotone in S∪XA, we
are able to decide (φ,XA,XM). On the other hand, if (φ,XA,XM) is a satisfying
instantiation of A-Majsat, then Pr(Vφ) ≥ 1

2 and thus Bφ is weakly globally
monotone. Therefore weak Global Monotonicity is co-nppp-hard. ��

5 Global E-Monotonicity

We now use the proof technique from the previous section to prove that Global

E-Monotonicity is co-npnppp-complete if we allow implicit representations
for the conditional probability distributions, using a reduction from not-EA-
Majsat, which is equivalent to AE-Majsat3. Again, we start with a formal
definition of the relevant decision problem:

Global E-Monotonicity
Instance: Let B = (G,Γ) be a Bayesian network where Γ is composed of
rational probabilities, and let Pr be its joint probability distribution. Let
Ω(V) denote the set of values that V ∈ V (G) can take, and let C ∈ V (G)
and E ⊆ V (G) \ {C}.
Question: Is there an interpretation IV for all variables V ∈ V (G), such
that B is monotone in distribution in E?

We will see that any instance (φ,XE,XA,XM) of not-EA-Majsat can be
translated in a probabilistic network for which exists an ordering of the values of
its variables that makes the network monotone, if and only if (φ,XE,XA,XM)
is unsatisfiable. As an example of the Global E-Monotonicity problem, let
us consider the formula φ = ¬((x1 ∨ x2) ∧ (x3 ∨ x4)) ∧ x5 (Figure 3), let XE =
{x1, x2} and let XA = {x3, x4} and XM = {¬x5}. One can verify that this is
indeed a ’yes’-instance of not-EA-Majsat: For every configuration of XE, the
configuration x3 = x4 = F ensures that at least half of the instantiations of
XM satisfies φ. Thus, there does not exist an instantiation to XE, such that
for all instantiations to XA at least half of the instantiations of XM does not
satisfy φ.

Again, we denote Vφ as the top node in Bφ. We now add three additional
variables, C with values c1, c2, c3, D with values d1, d2, and a variable ψ. This
variable is implicitly defined and has (implicit) values w0 to w2m−1 (m =| XE |)
that correspond to configurations xE of XE. These values are ordered by the
2 FPr(c1 | S = T) = Pr(c1 | Vφ = T ∧ S = T) · Pr(Vφ = T) + Pr(c1 | Vφ = F ∧ S =

T) · Pr(Vφ = F) = (0.5 + ε) · 0.5 + (0.5 − ε) · 0.5 = 0.5. Likewise, FPr(c1 | S =
F) = 0.25 · (0.5 − ε) + 0.375 · (0.5 + ε) = 0.3125 + 0.125ε. On the other hand,
FPr(c2 |S = T) = Pr(c1 |S = T) + Pr(c2 |S = T) = 0.5 + 0.25 < FPr(c2 |S = F) =
Pr(c1 |S = F)+Pr(c2 |S = F) = (0.3125+0.125ε)+(0.4375+0.125ε) = 0.75+0.25ε.

3 Thus, instead of ∀P∃PC we use the equivalent problem statement ¬∃P∀P¬C. The
reader can verify that this is an equivalent problem formulation.

396 J. Kwisthout

∨

¬
¬∧

XA

Vφ

∨

∧

D

C

ψ

X5 XM

X3 X4
X1 X2

XE

Fig. 3. Construct for hardness proof E-Monotonicity

binary representation of each configuration xE, e.g. for an instantiation xE =
X1 = F, . . . , Xm−1 = F,Xm = T the binary representation would be 0 . . . 01
and therefore this particular configuration would correspond with w1. Likewise,
all possible configurations of XE are mapped to values wi of ψ. Furthermore,
there are arcs (Vφ, C), (ψ,C), (C,D), and from every variable in XE to ψ.
The conditional probability Pr(C | Vφ ∧ ψ) is defined in Table 2, where ε is a
sufficiently small number, e.g. ε ≤ 1

2m+3 . The conditional probabilities Pr(ψ |XE)
and Pr(D | C) are defined in Table 3. Note, that the conditional probability
distribution of both ψ and C are defined implicitly.

Table 2. Conditional probability for C

Pr(C = c1 |Vφ = T ∧ ψ = wi) = 1
2
− i

2m+1 − ε if i = 0

1
2
− i

2m+1 otherwise

Pr(C = c2 |Vφ = T ∧ ψ = wi) = i+1
2m − 1

2m+1

Pr(C = c3 |Vφ = T ∧ ψ = wi) = 1
2
− i+1

2m+1 + ε if i = 0

1
2
− i+1

2m+1 otherwise

Pr(C = c1 |Vφ = F ∧ ψ = wi) = 1 − i+1
2m

Pr(C = c2 |Vφ = F ∧ ψ = wi) = i+1
2m+1

Pr(C = c3 |Vφ = F ∧ ψ = wi) = i+1
2m+1

Table 3. Conditional probabilities for Pr(D |C) and Pr(ψ |X)

d1 d2

c1 0.20 0.80 Pr(ψ = wi |xE) = 1 if wi corresponds to xE

c2 0.40 0.60 0 otherwise
c3 0.60 0.40

The Computational Complexity of Monotonicity in Probabilistic Networks 397

Table 4. Conditional probability for C in the example

c1 c2 c3 c1 c2 c3

ψ = w0 ∧ Vφ = T 0.5 − ε 0.125 0.375 + ε ψ = w0 ∧ Vφ = F 0.75 0.125 0.125
ψ = w1 ∧ Vφ = T 0.375 0.375 0.25 ψ = w1 ∧ Vφ = F 0.5 0.25 0.25
ψ = w2 ∧ Vφ = T 0.25 0.625 0.125 ψ = w2 ∧ Vφ = F 0.25 0.375 0.375
ψ = w3 ∧ Vφ = T 0.125 0.875 0 ψ = w3 ∧ Vφ = F 0 0.5 0.5

The conditional probabilities of D are chosen in such a way, that D is mono-
tone in C if and only if IC = {c1 < c2 < c3}. We claim, that there is a possible in-
terpretation I for all variables in XE∪{ψ} in the thus constructed network, such
that the network is globally monotone, if and only if the corresponding not-EA-
Majsat-instance is satisfiable. To support this claim, we take a closer look at the
example. The possible values of ψ are numbered as follows: w0 = {X1 = F,X2 =
F}, w1 = {X1 = F,X2 = T }, w2 = {X1 = T,X2 = F}, w3 = {X1 = T,X2 = T }.
For i = 0 . . . 3, the conditional probability table Pr(C | Vφ ∧ ψ = wi) is de-
fined as in Table 4. We have already seen that, for all configurations to XA, the
configuration X3 = X4 = F of XE ensures that the majority of the possible
configurations of XM satisfies φ. Therefore, for all configurations of XA, there
is at least one configuration of ψ (namely, ψ = w0) such that Vφ ≥ 1

2 . Since
C is conditioned on Vφ, we can calculate from the table that monotonicity is
violated: FPr(c1 | ψ = w0) = 0.625 − 0.5ε > FPr(c1 | ψ = w1) = 0.4375 but
FPr(c2 |ψ = w0) = 0.75− 0.5ε < FPr(c2 |ψ = w1) = 0.75. Thus, independent of
the way the values of Ω(ψ) are ordered, there is always at least one violation of
monotonicity for any interpretation in Iψ if Vφ ≥ 1

2 . If, on the other hand, there
does not exist such configuration to XE, then Vφ <

1
2 for all possible configura-

tions of XE, and thus there is an ordering of the interpretations in Iψ such that
Pr(C |XA) is monotone. Note that we cannot assume an a priori ordering on the
values of ψ in this situation: although all configurations of XE lead to Vφ <

1
2 ,

some may be closer to 1
2 than others and thus, because of the conditioning on

Vφ, lead to higher values in C.

Theorem 2. Global E-Monotonicity is co-npnppp -complete

Proof. For a membership proof we use not-weak Global Monotonicity as
an nppporacle. With the aid of this oracle, an interpretation for the values of the
variables that violates monotonicity is an NP membership certificate for not-

Global E-Monotonicity , thus by definition the problem is in co-npnppp .

To prove co-npnppp -hardness, we construct a transformation from not-EA-
Majsat. Let (φ,XE,XA,XM) be an instance of this problem, and let Bφ be
the network constructed from φ as described above. If (φ,XE,XA,XM) is not
satisfiable, then there exists an instantiation to ψ, such that Pr(Vψ) ≥ 1

2 and thus
– again, because of the conditioning of C on Vψ – monotonicity is violated. But if
this is the case, then there exist wi, wj ∈ ψ and c < c′ ∈ C such that FPr(c |ψ =
wi) ≤ FPr(c′ |ψ = wi), but FPr(c′ |ψ = wj) ≤ FPr(c |ψ = wj) independent of

398 J. Kwisthout

weak
global
explicit

strong
global
explicit

strong
global
implicit

weak
global
implicit

E-global
explicit

E-global
implicit

co-NPNPPP

co-NPPP

Fig. 4. Known complexity results

the ordering of the values of ψ. Note that the variable-and operator-nodes have
binary values, making an ordering irrelevant4, and the ordering on C and D is
imposed by the conditional probability Pr(D |C). Thus, if we would be able to
decide that there is an interpretation of the values of the variables of Bφ such that
Bφ is globally monotone in distribution, we are able to decide (φ,XE,XA,XM).
On the other hand, given that the network is globally monotone, we know that
there cannot be an instantiation to XE such that (φ,XE,XA,XM) is satisfied.

Hence, Global E-Monotonicity is co-npnppp-hard.
It may not be obvious that the above construction can be made in polynomial

time. Note that, however large XE may become, both the conditional probabili-
ties Pr(ψ |XE) and Pr(C |Vφ∧ψ) can be described using only a constant number
of bits, since we explicitly allowed Γ to have implicit representations. Therefore,
we need only time, polynomial in the size of the input (i.e., the not-EA-Majsat
instance), to construct Bφ. ��

6 Conclusion

In this paper, several variants of the Monotonicity problem in probabilistic
networks were introduced. In Figure 4, the known complexity results for strong
and weak global monotonicity variants, with explicit or implicit conditional prob-
ability distribution, and fixed or variable variable orderings are presented. The
main result is the completeness proof of Global E-Monotonicity with im-
plicit probability representation. It is established that this problem is complete

for the class co-npnppp , a class for which few real-world problems are known
to be complete. Unfortunately, a similar complexity result for the variant with
explicit representation (or, with a representation where the variables are explic-
itly defined, while the probabilities are implicit) could not be established. This

leaves us with a number of problems that are either in co-nppp, co-npnppp , or
somewhere in between.

4 if Bφ is isotone for x < x̄, it is antitone for x̄ < x and vice versa.

The Computational Complexity of Monotonicity in Probabilistic Networks 399

Acknowledgements

The author wishes to thank Hans Bodlaender, Gerard Tel, and Linda van der
Gaag, for fruitful discussions on this subject and useful comments on earlier
drafts of this paper. Furthermore, the author is very grateful to three anonymous
reviewers for their constructive critiques.

References

1. Garey, M.R., Johnson, D.S.: Computers and Intractability. A Guide to the Theory
of NP-Completeness. W. H. Freeman and Co., San Francisco (1979)

2. Kappen, B., Wiegerinck, W., Akay, E., Nijman, M., Neijt, J., van Beek, A.:
Promedas: A diagnostic decision support system. In: Proceedings of the 15th
Belgian-Dutch Conference on Artificial Intelligence (BNAIC’03), pp. 455–456
(2003)

3. Littman, M.L., Majercik, S.M., Pitassi, T.: Stochastic boolean satisfiability. Jour-
nal of Automated Reasoning 27(3), 251–296 (2001)

4. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading (1994)
5. Park, J.D., Darwiche, A.: Complexity results and approximation settings for MAP

explanations. Journal of Artificial Intelligence Research 21, 101–133 (2004)
6. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible

Inference. Morgan Kaufmann, Palo Alto (1988)
7. Roth, D.: On the hardness of approximate reasoning. Artificial Intelligence 82(1-2),

273–302 (1996)
8. Shimony, S.E.: Finding MAPs for belief networks is NP-hard. Artificial Intelli-

gence 68, 399–410 (1994)
9. Torán, J.: Complexity classes defined by counting quantifiers. Journal of the

ACM 38, 752–773 (1991)
10. van der Gaag, L.C., Bodlaender, H.L., Feelders, A.: Monotonicity in Bayesian net-

works. In: Twentieth Conference on Uncertainty in Artificial Intelligence, pp. 569–
576. AUAI Press (2004)

11. van der Gaag, L.C., Renooij, S., Witteman, C.L.M., Aleman, B.M.P., Taa, B.G.:
Probabilities for a probabilistic network: a case study in oesophageal cancer. Arti-
ficial Intelligence in Medicine 25, 123–148 (2002)

12. Wagner, K.W.: The complexity of combinatorial problems with succinct input rep-
resentation. Acta Informatica 23, 325–356 (1986)

Impossibility Results on Weakly Black-Box

Hardness Amplification

Chi-Jen Lu1, Shi-Chun Tsai2, and Hsin-Lung Wu2

1 Institute of Information Science, Academia Sinica, Taipei, Taiwan
cjlu@iis.sinica.edu.tw

2 Department of Computer Science, National Chiao-Tung University, Hsinchu, Taiwan
{sctsai,hsinlung}@csie.nctu.edu.tw

Abstract. We study the task of hardness amplification which trans-
forms a hard function into a harder one. It is known that in a high
complexity class such as exponential time, one can convert worst-case
hardness into average-case hardness. However, in a lower complexity class
such as NP or sub-exponential time, the existence of such an amplifica-
tion procedure remains unclear.

We consider a class of hardness amplifications called weakly black-box
hardness amplification, in which the initial hard function is only used as
a black box to construct the harder function. We show that if an am-
plification procedure in TIME(t) can amplify hardness beyond an O(t)
factor, then it must basically embed in itself a hard function computable
in TIME(t). As a result, it is impossible to have such a hardness amplifi-
cation with hardness measured against TIME(t). Furthermore, we show
that, for any k ∈ N, if an amplification procedure in ΣkP can amplify
hardness beyond a polynomial factor, then it must basically embed a
hard function in ΣkP. This in turn implies the impossibility of having
such hardness amplification with hardness measured against ΣkP/poly.

1 Introduction

Randomness and hardness are two fundamental notions in complexity theory.
They turn out to be closely related, and their connection has provided an im-
portant tool in our study of the BPP versus P problem. A major open problem
in complexity theory, the BPP versus P problem asks whether or not all random-
ized polynomial-time algorithms can be derandomized into deterministic ones.
A general framework for removing randomness from randomized algorithms is to
construct the so-called psudorandom generator (PRG), which stretches a short
random seed into a long random-looking string. Blum and Micali [4] and Yao [25]
first showed that PRGs can be built from cryptographic one-way functions. In
a seminal work, Nisan and Wigderson [17] made explicit the concept of trading
hardness for randomness, and showed how to construct PRGs based on hard-
to-compute Boolean functions. The construction of a PRG from an average-case
hard function can be done efficiently [17]. To get a stronger result, one would like
to start from a slightly hard function and transform it into a much harder one
before using it to build a PRG. This is the task known as hardness amplification.

E. Csuhaj-Varjú and Z. Ésik (Eds.): FCT 2007, LNCS 4639, pp. 400–411, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Impossibility Results on Weakly Black-Box Hardness Amplification 401

Let us be more precise. We say that a Boolean function f : {0, 1}n → {0, 1} is
ε-hard against circuits of size s if any such a circuit attempting to compute f fails
on at least ε fraction of inputs. We will focus more on the parameter ε and usually
pay less attention to the parameter s. We call f worst-case hard, mildly hard,
and average-case hard if ε is 1/2n, 1/poly(n), and 1/2 − 1/2Ω(n), respectively.
The task of hardness amplification is to design a procedure that transforms any
function f which is ε-hard against circuits of size s into a function f̄ which is
ε̄-hard against circuits of size s̄, with ε̄ > ε and s̄ close to s. One typically would
like to have f̄ and f in the same complexity class so as to obtain the relation
between different hardness conditions within the same class. After a series of
works [25,17,3,9], Impagliazzo and Wigderson [12] finally were able to convert a
function in E which is worst-case hard into one which is average-case hard, with
hardness against circuits of exponential size. As a result, they have BPP = P
under the assumption that such a worst-case hard function exists. Since then,
simpler proofs and better trade-offs have been obtained [20,11,21,22].

On the other hand, it is known that from a PRG one can obtain a worst-case
hard function in E [17]. Thus, in a high complexity class such as E, the notions of
pseudrandomness and various degrees of hardness are equivalent. Are they still
equivalent in a lower complexity class such as NP? Using the technique in [10],
one can transform a PRG into an average-case hard function using a procedure
in NP, and by [17], one can also transform an average-case hard function into a
PRG in polynomial time. This implies that the notions of average-case hardness
and pseudorandomness remain equivalent for functions in NP. However, the re-
lationship between worst-case and average-case hardness is not clear, as all the
known transformations from a worst-case hard function to even a mildly hard
one require exponential time (or linear space) [12,20,13,11,21,22]. In fact, it ap-
pears very difficult to bring down the complexity, and we would like to show
that it is actually impossible. For this, we need to clarify what type of hard-
ness amplification we are talking about, especially given the possibility that an
average-case hard function may indeed exist.

Black-Box Constructions. One important type of hardness amplification is the
strongly black-box hardness amplification. Such a hardness amplification from
ε-hardness to ε̄-hardness satisfies the following two conditions. First, the initial
function f is given as a black box to construct the new function f̄ , in the sense
that there is an oracle Turing machine Amp(·) such that f̄ = Ampf . Furthermore,
the ε̄-hardness of the new function f̄ is also guaranteed in a black box way, in
the sense that there is another oracle Turing machine Dec(·) such that given any
adversary A which computes f̄ correctly on at least (1 − ε̄) fraction of inputs,
Dec using A as oracle can compute f correctly on at least (1 − ε) fraction of
inputs. We call Amp the encoding procedure and Dec the decoding procedure.
In fact, almost all previous constructions of hardness amplification were done in
such a strongly black-box way [25,3,9,12,20,13,18,8].

We consider a relaxation called weakly black-box hardness amplification, in
which the black-box requirement on the hardness proof is dropped, while the
black-box requirement on the encoding procedure is still kept. That is, the

402 C.-J. Lu, S.-C. Tsai, and H.-L. Wu

hardness of the new function f̄ now can be proved in an arbitrary way, and
no decoding procedure is required.

Previous Results. For the strongly black-box case, Viola [23] proved that no am-
plification procedures from worst-case hardness to mild hardness can be realized
in PH. This was generalized by Lu et al. [14], who showed the impossibility of
amplifying hardness from (1−δ)/2 to (1−δk)/2 in PH for any super-polynomial
k. Furthermore, they showed that such a hardness amplification must be highly
non-uniform in nature, in the sense that one must start from a function f which
is hard against a very non-uniform complexity class even if one only wants to
obtain a function f̄ which is hard against a uniform complexity class [14].

Since the strongly black-box approach has its limitation, one may look for a
weaker type of hardness amplification. Bogdanov and Trevisan [5] showed that
even if the black-box constraint on the encoding procedure is dropped, one still
cannot amplify from worst-case hardness to mild hardness for functions in NP
unless PH collapses, when the decoding procedure is required to be computable
in polynomial time and make only non-adaptive queries to the oracle.

The other possibility is to consider weakly black-box hardness amplification,
in which the black-box constraint on the decoding procedure is dropped. Viola
[24] proved that if a weakly black-box procedure amplifying from worst-case
hardness to mild hardness can be realized in PH, then one can obtain from it a
mildly hard function computable in PH. Although this can be seen as a negative
result, it does not rule out the possibility of such a weakly black-box hardness
amplification. In fact, it appears difficult to establish impossibility results in the
weakly black-box model. This is because if an average-case hard function indeed
exists, an amplification procedure may simply ignore the initial hard function and
compute the average-case hard function from scratch. Then can one prove any
meaningful impossibility result for a weakly black-box hardness amplification?

Our Results. We derive two negative results for weakly black-box hardness am-
plification. First, we prove that if a weakly black-box procedure realized in
TIME(t) can amplify hardness by an ω(t) factor, from hardness ε = ε̄/ω(t)
against a complexity class C ⊆ SIZE(2n/3) to hardness ε̄ against any complexity
class C̄, then one can obtain from it a function computable in TIME(t) with hard-
ness about ε̄ against C̄. Note that a function in TIME(t) cannot be hard against
a class containing TIME(t). Therefore, we have an unconditional impossibility
result: it is impossible to use a procedure realized in TIME(t) to transform a
function which is ε̄/ω(t)-hard against a class C ⊆ SIZE(2n/3) into a function
which is ε̄-hard against a class C̄ ⊇ TIME(t). Note that with t = 2o(n), this gives
an impossibility result for amplifying from worst-case hardness to mild hardness
in sub-exponential time. We also extend this impossibility result to the case with
C being any uniform complexity class equipped with an advice of length at most
2n/3. This says that such a weakly hardness amplification, just as in the strongly
black-box case [14], must also be highly non-uniform in nature: it is impossible to
have such a weakly hardness amplification if one starts from an initial function
which is hard against a complexity class with only 2n/3 bits of non-uniformity
(even of arbitrarily high uniform complexity).

Impossibility Results on Weakly Black-Box Hardness Amplification 403

Second, we prove that if a weakly black-box procedure realized in NP (ΣkP,
respectively) can amplify hardness beyond a polynomial factor, from hardness
ε = ε̄/nω(1) against a complexity class C ⊆ SIZE(2n/3) to hardness ε̄ against
a complexity class C̄ with C̄/poly = C̄, then one can obtain from it a function
computable in NP (ΣkP, respectively) with hardness about ε̄ against C̄. This
improves the result in [24], as the hard function obtained there seems to need
at least the complexity of Σ2P (Σk+1P, respectively), one level higher than ours
in PH. This in turn enables us to derive an unconditional impossibility result:
it is impossible to use a procedure realized in NP (ΣkP, respectively) for such
a hardness amplification, if one starts from an initial function which is hard
against a complexity class with only 2n/3 bits of non-uniformity, but is required
to produce a new function which is hard against a class containing NP/poly
(ΣkP/poly, respectively).

Let us make some remarks on our results. We show that a low-complexity
procedure basically cannot amplify hardness substantially in a weakly black-box
way for high-complexity functions. One may question that if the goal is to estab-
lish an equivalence between two hardness conditions in a complexity class, then
it suffices to have an amplification procedure in the same, instead of a lower,
complexity class. However, we believe that it is interesting and worthwhile to
know how low in complexity the amplification procedure can be, as it reflects
how close the two hardness conditions really are.1 For example, we can say that
mild hardness and average-case hardness are close as one can be converted to
the other in polynomial-time [12], while they may not be as close to pseudoran-
domness since the best transformation from pseudorandomness to them known
so far requires the complexity of NP [10]. Note that the XOR lemma [25,17] and
its derandomized version [12] show that a low complexity procedure is indeed
capable of amplifying hardness for high-complexity (say, exponential-time) func-
tions, as long as the hardness is only amplified within a certain factor. It is only
when we want to go beyond the factor that a higher complexity amplification
procedure is then required, as shown by our results.

2 Preliminaries

For any n ∈ N, let [n] denote the set {1, . . . , n} and let Un denote the uniform
distribution over {0, 1}n. For a finite set S, we also use S to denote the uniform
distribution over S. We will sometimes view a Boolean function f : {0, 1}n →
{0, 1} as a 2n-bit string (its truth table) and vice versa. For a string x ∈ {0, 1}n
and i ∈ [n], we use xi to denote the i’th bit of x. For two strings u, v ∈ {0, 1}n,

1 Similar scenarios also appear elsewhere. For example, in the study of NP-complete
problems, people at first only looked for polynomial-time reductions. It was found
out later that most of the “natural” NP-complete problems are in fact NC0-reducible
to each other, so one may argue that these problems are very close to each other,
or can even be seen as the same problem in some sense. Similar results also hold
for several other standard complexity classes. See for example [1] and the references
therein for more details.

404 C.-J. Lu, S.-C. Tsai, and H.-L. Wu

let 1(u, v) denote their relative Hamming distance 1
n |{i ∈ [n] : ui �= vi}|. All

the logarithms in this paper will have base two.
We consider circuits with AND/OR/NOT gates, in which AND/OR gates are

allowed to have unbounded fan-in. The size of a circuit is the number of its gates
and the depth is the number of gates on the longest path from an input bit to
the output gate. Let AC(d, s) (SIZE(s), respectively) denote the class of Boolean
functions computed by circuits of depth d and size s (of arbitrary depth and
size s, respectively). More information about complexity classes can be found in
standard textbooks, such as [19]. As usual in complexity theory, when we talk
about a function f : {0, 1}n → {0, 1}m, we usually mean a sequence of functions
(f : {0, 1}n → {0, 1}m(n))n∈N, and when we make a statement about f , we
usually mean that it holds for any sufficiently large n ∈ N.

We define the hardness of a function against a complexity class as follows.

Definition 1. We say that a function f : {0, 1}n → {0, 1} is (ε, C)-hard, for a
complexity class C, if for any C ∈ C, Prx∈Un [C(x) �= f(x)] > ε. We will call f
ε-hard when the complexity class C is clear.

The parameter ε in the definition above is allowed to be a function of n, so
a better notation should be ε(n), but for simplicity we drop the parameter n.
In previous works, people usually consider hardness against circuits, i.e., with
C = SIZE(s) for some s. Since we will consider hardness against other complexity
classes, we introduce this slightly more general definition.

Next, we define the notion of a weakly black-box hardness amplification.

Definition 2. Let C and C̄ be complexity classes. We say that an oracle algo-
rithm Amp(·) : {0, 1}n̄ → {0, 1} realizes a weakly black-box (n, ε, ε̄, C, C̄) hardness
amplification, if given any (ε, C)-hard function f : {0, 1}n → {0, 1}, the function
Ampf : {0, 1}n̄ → {0, 1} is (ε̄, C̄)-hard. We say that such a hardness amplification
is realized in some complexity class A if Ampf ∈ Af for any f .

Here, the reduction from the initial function f to the harder function is done in
a black-box way, as the harder function Ampf only uses f as an oracle.

We will need the following, known as the Borel-Cantelli Lemma (see e.g. [2]).

Lemma 1. Let E1, E2, . . . be a sequence of probability events on the same prob-
ability space. Suppose that

∑∞
n=1 Pr [En] <∞. Then Pr [∧∞

k=1 ∨n≥k En] = 0.

3 Impossibility of Hardness Amplification in TIME(t)

In this section, we show that if a weakly black-box hardness amplification realized
in TIME(t) can amplify hardness beyond an O(t) factor, then it must basically
embed a hard function in it.

Theorem 1. Suppose a weakly black-box (n, ε, ε̄, C, C̄) hardness amplification
can be realized in TIME(t) with 2−n/2 ≤ ε ≤ o(ε̄/t), C = SIZE(2n/3), and C̄
being any complexity class. Then one can obtain from it an (ε̄/2, C̄)-hard func-
tion Ā : {0, 1}poly(n) → {0, 1} computable in TIME(t).

Impossibility Results on Weakly Black-Box Hardness Amplification 405

Using t = 2o(n), this implies that if such a hardness amplification from worst-case
hardness to mild hardness can be realized in sub-exponential time (or sub-linear
space), then it must basically embed a mildly hard function in it. Furthermore,
since a function in TIME(t) cannot be hard against TIME(t), we have the fol-
lowing unconditional impossibility result on weakly black-box hardness amplifi-
cation.

Corollary 1. It is impossible to realize a weakly black-box (n, ε, ε̄, C, C̄) hardness
amplification in TIME(t), with 2−n/2 ≤ ε ≤ o(ε̄/t), C = SIZE(2n/3), and C̄ ⊇
TIME(t).

Now we prove Theorem 1.

Proof. (of Theorem 1) Assume that such a weakly hardness amplification exists,
with Amp realized in TIME(t). We will show that the function Amp0 is (ε̄/2, C̄)-
hard, where 0 is the constant zero function which always outputs zero for every
input. The idea is to choose a certain kind of random function f and show that
f is likely to be hard and Amp is unlikely to tell it apart from the function 0. A
natural candidate is the following, which is obtained by adding random noise of
certain rate to the function 0.2

Definition 3. Let Fδ denote the distribution of functions f : {0, 1}n → {0, 1}
such that for any x ∈ {0, 1}n, f(x) = 0 with probability 1− δ, and f(x) is given
a random bit with probability δ.

We next show that it gives us what we want, with δ = 4ε.

Lemma 2. Prf∈Fδ [Ampf is (ε̄, C̄)-hard] ≥ 1− 2−Ω(n).

Proof. Consider any D ∈ C = SIZE(2n/3). Note that for any x ∈ {0, 1}n, we
have Prf [D(x) �= f(x)] ≥ δ/2 = 2ε. This implies that Ef [Prx [D(x) �= f(x)]] =
Ex[Prf [D(x) �= f(x)]] ≥ 2ε, and thus Prf [Prx [D(x) �= f(x)] < ε] ≤ 2−Ω(ε2n) by
a Chernoff bound. Then Prf [f is not (ε, C)-hard] equals

Pr
f

[
∃D ∈ SIZE(2n/3) : Pr

x
[D(x) �= f(x)] < ε

]
≤ 2O(2n/3·n/3) · 2−Ω(ε2n) ≤ 2−Ω(n),

by a union bound. So, Prf [Ampf is not (ε̄, C̄)-hard] ≤ Prf [f is not (ε, C)-hard]
≤ 2−Ω(n). ��

Lemma 3. Prf∈Fδ [1(Ampf ,Amp0) ≤ ε̄/2] ≥ 1− o(1).

Proof. For any input x̄, Ampf (x̄) �= Amp0(x̄) only when Ampf (x̄) ever makes
an oracle query x to f with f(x) �= 0. Amp runs in time t and can make at
most t queries to the oracle, so for every x̄, Prf [Ampf (x̄) �= Amp0(x̄)] ≤ t · δ =
o(ε̄). Then Prf,x̄[Ampf (x̄) �= Amp0(x̄)] = o(ε̄), and by Markov’s inequality,
Prf [Prx̄[Ampf (x̄) �= Amp0(x̄)] ≥ ε̄/2] = o(1).
2 A similar idea also appeared in [15] for the problem of amplifying hardness of one-way

permutations.

406 C.-J. Lu, S.-C. Tsai, and H.-L. Wu

From these two lemmas, there exists a function f such that Ampf is (ε̄, C̄)-hard
and 1(Ampf ,Amp0) ≤ ε̄/2. This implies that the function Amp0 is (ε̄/2, C̄)-
hard. Since Amp0 clearly belongs to TIME(t), we have Theorem 1. ��
In fact we can have a similar impossibility result even if we replace the class
SIZE(2n/3) by any uniform complexity class B equipped with an advice of length
2n/3, denoted as B/2n/3. This means that such a weakly black-box hardness
amplification can only work in a highly non-uniform setting.

Theorem 2. It is impossible to realize a weakly black-box (n, ε, ε̄, C, C̄) hardness
amplification in TIME(t), with 2−n/2 ≤ ε ≤ o(ε̄/(t · n2)), C = B/2n/3 for any
uniform complexity class B, and C̄ ⊇ TIME(t).

Proof. The proof is largely based on that for Theorem 1, but here we need to
treat things in a more careful way. As now we often need to talk about a sequence
of functions, one on each input length, we change the notation slightly by adding
a subscript n to a function of input length n. That is, now we write fn : {0, 1}n →
{0, 1}, and write f for the sequence of functions (fn)n∈N. Similarly, we use Fδ

n

for the distribution of functions fn : {0, 1}n → {0, 1} in the proof of Theorem 1,
and Fδ for the sequence of distributions (Fδ

n)n∈N.

Lemma 4. With measure one over f ∈ Fδ, Ampf is (ε̄, C̄)-hard.

Proof. Consider any Turing machine M in the uniform complexity class B.
Consider any input length n and let En denote the event that there exists
an advice ν ∈ {0, 1}2n/3

such that Prx∈Un [Mν(x) �= fn(x)] < ε. Then as in
Lemma 2, one can show that Prfn∈Fδ

n
[En] ≤ 2O(2n/3·n/3) · 2−Ω(ε2n) < 1/n2.

Since
∑∞

n=1 1/n2 < ∞, the event that En happens for infinitely many n has
measure zero over f ∈ Fδ, by the Borel-Cantelli Lemma. Since there are only
countable many Turing machines M ’s, the event that f is not (ε, C)-hard has
measure zero over f ∈ Fδ. Finally, Ampf is not (ε̄, C̄)-hard only when f is not
(ε, C)-hard, so we have the lemma. ��
Lemma 5. With measure one over fn ∈ Fδ

n, 1(Ampfn ,Amp0n) ≥ ε̄/2 for only
finitely many n.

Proof. Similarly to the proof of Lemma 3, but now with ε ≤ o(ε̄/(t · n2)),
one can show that for any n, Prfn,x̄[Ampfn(x̄) �= Amp0n(x̄)] = o(ε̄/n2), and
Prfn [1(Ampfn ,Amp0n) ≥ ε̄/2] < 1/n2. Since

∑∞
n=1 1/n2 < ∞, the lemma im-

mediately follows from the Borel-Cantelli Lemma. ��
As in Theorem 1, the two lemmas above imply that the function Amp0 is
(ε̄/2, C̄)-hard. Since Amp0 belongs to TIME(t), it cannot be hard against any
C̄ ⊇ TIME(t), and we have Theorem 2.

4 Impossibility Results in ΣkP

In this section, we consider weakly black-box hardness amplification realized in
ΣkP. We will show that if it can amplify hardness beyond a certain factor, then
it must basically embed a hard function in it.

Impossibility Results on Weakly Black-Box Hardness Amplification 407

Theorem 3. Suppose a weakly black-box (n, ε, ε̄, C, C̄) hardness amplification
can be realized in NP (ΣkP, respectively), with 2−n/2 ≤ ε ≤ ε̄2/nω(1), C =
SIZE(2n/3), and C̄ satisfying C̄/poly = C̄. Then one can obtain from it an
(ε̄/3, C̄)-hard function Ā : {0, 1}poly(n) → {0, 1} computable in NP (ΣkP, re-
spectively).

Since a function in NP (ΣkP, respectively) cannot be hard against NP/poly
(ΣkP/poly, respectively), we have the following unconditional impossibility re-
sult on weakly black-box hardness amplification.

Corollary 2. It is impossible to realize a weakly black-box (n, ε, ε̄, C, C̄) hard-
ness amplification in NP (ΣkP, respectively), with 2−n/2 ≤ ε ≤ ε̄2/nω(1), C =
SIZE(2n/3), and any C̄ ⊇ NP (ΣkP, respectively) satisfying C̄/poly = C̄.

We will need the notion of random restriction [6,7]. A restriction ρ on N variables
is an element of {0, 1, #}N , or seen as a function ρ : [N] → {0, 1, #}. A variable
is fixed by ρ if it receives a value in {0, 1} while a variable remains free if it
receives the symbol #. For a string y ∈ {0, 1}N and a restriction ρ ∈ {0, 1, #}N ,
let y�ρ ∈ {0, 1}N be the restriction of y with respect to ρ: for i ∈ [N], the i’th
bit of y�ρ is yi if ρi = # and is ρi if ρi ∈ {0, 1}.

Suppose there exists such a weakly black-box hardness amplification, with
Amp realized in NP (ΣkP, resp.). Then Amp can be computed by an AC(c, 2n

c

)
circuit, for some constant c, with the truth table of the oracle function given as
part of the input (c.f. [6]). We will show how to derive a hard function from it.

The idea, which basically follows Viola’s [24], is as follows. We know that a
random function f is likely to be hard and a hard f gives a hard function Ampf ,
but we do not know which f to choose. One attempt is to include f as part of the
input in the new function, but the description of f is too long. The idea is that
by choosing a suitable random restriction ρ̄, the function f�ρ̄ is still likely to be
hard, and so is the function Ampf�ρ̄ . On the other hand, a random restriction
is likely to kill off the effect of a random function f on Ampf�ρ̄ , so it becomes
possible to replace the random function by a pseudo-random one f̄ , which has a
short description. Therefore, if we have a random restriction which has a short
description and satisfies the properties above, we can define the new function
which includes ρ̄ and f̄ as part of the input and computes the function Ampf̄�ρ̄

as its output. The existence of such a random restriction is guaranteed by the
following lemma of Viola’s [24]. For our purpose here, we state it in a slightly
more general form.

Lemma 6. [24] For any n ∈ N, any constant c, and any ε, ε̄ ∈ (0, 1) such that
2−n ≤ ε ≤ ε̄2/nω(1), there is a distribution R̄ on restrictions ρ̄ : {0, 1}n →
{0, 1, #} such that the following three conditions all hold.

– Every ρ̄ ∈ R̄ can be described by poly(n) bits, and given such a description
and x ∈ {0, 1}n, one can compute ρ̄(x) in time poly(n).

– Prρ̄∈R̄[|{x : ρ̄(x) = #}| < 3ε2n] = o(ε̄).
– Prρ̄∈R̄;y,y′∈U2n [C(y�ρ̄) �= C(y′�ρ̄)] = o(ε̄2), for any C : {0, 1}2n → {0, 1} ∈

AC(c, 2n
c

).

408 C.-J. Lu, S.-C. Tsai, and H.-L. Wu

Let F denote the set of all functions f : {0, 1}n → {0, 1}. It remains to show
that the random restriction given in Lemma 6 can achieve what we discussed
before. First, by using the second item of Lemma 6, we show that the function
Ampf�ρ̄ is hard with high probability over ρ̄ ∈ R̄ and f ∈ F .

Lemma 7. Prρ̄∈R̄,f∈F [Ampf�ρ̄ is not (ε̄, C̄)-hard] = o(ε̄).

Proof. Call a restriction ρ̄ ∈ R̄ good if |{x : ρ̄(x) = #}| ≥ 3ε2n. Consider
any good ρ̄ and any D ∈ C = SIZE(2n/3). Note that for any x such that
ρ̄(x) = #, Prf [D(x) �= f�ρ̄(x)] = 1/2. So we have Ef [Prx [D(x) �= f�ρ̄(x)]] =
Prx,f [D(x) �= f�ρ̄(x)] ≥ 3ε/2, and Prf [Prx [D(x) �= f�ρ̄(x)] < ε] ≤ 2−Ω(ε2n), by
a Chernoff bound. As a result, for any good ρ̄, Prf [f�ρ̄ is not (ε, C)-hard] is

Pr
f

[
∃D ∈ SIZE(2n/3) : Pr

x
[D(x) �= f�ρ̄(x)] < ε

]
≤ 2O(2n/3·n/3) · 2−Ω(ε2n) = o(ε̄).

From Lemma 6, Prρ̄∈R̄[ρ̄ is not good] = o(ε̄), and by definition, Ampf�ρ̄ is (ε̄, C̄)-
hard whenever f�ρ̄ is (ε, C)-hard. Therefore, Prρ̄,f [Ampf�ρ̄ is not (ε̄, C̄)-hard] is
at most Prρ̄ [ρ̄ is not good] + Prρ̄,f [f�ρ̄ is not (ε, C)-hard | ρ̄ is good] = o(ε̄). ��

From this lemma, we know that the function Ampf�ρ̄ is hard for most ρ̄ ∈ R̄
and f ∈ F , but we do not know which ρ̄ and f give a hard function. While
ρ̄ has a short description, f does not, so we cannot just include both ρ̄ and f
as part of the input. Viola’s approach in [24] is to remove the dependence of
f altogether, by considering the function A′ which on input (x̄, ρ̄) outputs the
majority value of Ampf�ρ̄(x̄) over f ∈ F . The hardness of A′ is guaranteed by the
third item in Lemma 6, because for most ρ̄ and for most f , the function Ampf�ρ̄

is hard and A′(ρ̄, ·) is close to it. However, to compute such a majority value over
f ∈ F costs one additional level in the polynomial hierarchy in [24], and with
Amp ∈ NP (ΣkP, respectively), Viola needs at least Σ2P (Σk+1P, respectively)
to compute the function A′. Our idea is to replace the random function by a
pseudorandom one.

Definition 4. Let Nis : {0, 1}r → {0, 1}2n

be Nisan’s o(ε̄2)-PRG for AC(c +
2, 2n

c+2), with r = poly(n) [16]. Let F̄ be the class of functions f̄z : {0, 1}n →
{0, 1}, with z ∈ {0, 1}r, defined as f̄z(x) = Nis(z)x, the x’th bit in Nis(z).

There seems to be an obstacle in front of us. Unlike a random function, such a
pseudo-random f̄ is not hard at all. Then how do we guarantee the hardness of
the function Ampf̄�ρ̄? We resolve this by showing that the function Ampf̄�ρ̄ is
likely to be close to a hard function Ampf�ρ̄ . For this, we first show the following.

Lemma 8. For any x̄ ∈ {0, 1}n̄, Prρ̄∈R̄,f∈F ,f̄∈F̄ [Ampf�ρ̄(x̄) �= Ampf̄�ρ̄(x̄)] =
o(ε̄2).

Proof. Let N = 2n. Fix any x̄ ∈ {0, 1}n̄, and let C : {0, 1}N → {0, 1} be the
function which takes a function g : {0, 1}n → {0, 1}, seen as g ∈ {0, 1}N , as the
input and outputs the value Ampg(x̄). Clearly, C ∈ AC(c, 2n

c

). Now for ρ̄ ∈ R̄,

Impossibility Results on Weakly Black-Box Hardness Amplification 409

let C̄ρ̄ : {0, 1}N×{0, 1}N → {0, 1} be the function such that C̄ρ̄(f, f ′) = 1 if and
only if C(f�ρ̄) �= C(f ′�ρ̄), which is computable by an AC(c + 2, 2n

c+2) circuit.
Since Nis is an o(ε̄2)-PRG for such circuits,∣∣∣∣ Pr

ρ̄,f,f̄

[
C̄ρ̄(f, f̄) = 1

]
− Pr

ρ̄,f,f ′

[
C̄ρ̄(f, f ′) = 1

]∣∣∣∣
≤ E

ρ̄,f

[∣∣∣∣Pr
z

[
C̄ρ̄(f,Nis(z)) = 1

]
− Pr

f ′

[
C̄ρ̄(f, f ′) = 1

]∣∣∣∣] = o(ε̄2).

By Lemma 6, Prρ̄,f,f ′
[
C̄ρ̄(f, f ′) = 1

]
= o(ε̄2), so we have Prρ̄,f,f̄

[
C̄ρ̄(f, f̄) = 1

]
≤ Prρ̄,f,f ′

[
C̄ρ̄(f, f ′) = 1

]
+ o(ε̄2) = o(ε̄2). ��

From this, we can show that the function Ampf̄�ρ̄ is hard for most ρ̄ ∈ R̄ and
f̄ ∈ F̄ .

Lemma 9. Prρ̄∈R̄,f̄∈F̄ [Ampf̄�ρ̄ is not (ε̄/2, C̄)-hard] = o(ε̄).

Proof. From Lemma 7, we know that Prρ̄,f [Ampf�ρ̄ is not (ε̄, C̄)-hard] = o(ε̄).
From Lemma 8, we know that Prρ̄,f,f̄ ,x̄[Ampf�ρ̄(x̄) �= Ampf̄�ρ̄(x̄)] = o(ε̄2),
and by Markov’s inequality, we have Prρ̄,f,f̄ [1(Ampf�ρ̄ ,Ampf̄�ρ̄) > ε̄/2] =
o(ε̄). Note that Ampf̄�ρ̄ is (ε̄/2, C̄)-hard whenever Ampf�ρ̄ is (ε̄, C̄)-hard and
1(Ampf�ρ̄ ,Ampf̄�ρ̄) ≤ ε̄/2. Thus, Prρ̄,f̄ [Ampf̄�ρ̄ is not (ε̄/2, C̄)-hard] is at most

Pr
ρ̄,f

[
Ampf�ρ̄ is not (ε̄, C̄)-hard

]
+ Pr

ρ̄,f,f̄

[
1(Ampf�ρ̄ ,Ampf̄�ρ̄) > ε̄/2

]
= o(ε̄). ��

From the lemma above, we know that Ampf̄�ρ̄ is hard for most ρ̄ and f̄ . We
do not know which ρ̄ and f̄ give a hard function, but since they have short
description, we can include them as part of the input. Define the function Ā :
{0, 1}n̄×R̄× F̄ → {0, 1} as Ā(x̄, ρ̄, f̄) = Ampf̄�ρ̄(x̄). Note that the input length
of Ā is at most poly(n) as ρ̄ and f̄ can be described by poly(n) bits.

Lemma 10. The function Ā is (ε̄/3, C̄)-hard.

Proof. Consider any D̄ : {0, 1}n̄× R̄× F̄ → {0, 1} ∈ C̄. Note that for any ρ̄ ∈ R̄
and f̄ ∈ F̄ such that Ampf̄�ρ̄ is (ε̄/2, C̄)-hard, Prx̄[D̄(x̄, ρ̄, f̄) = Ā(x̄, ρ̄, f̄)] =
Prx̄[D̄(x̄, ρ̄, f̄) = Ampf̄�ρ̄(x̄)] < 1 − ε̄/2, since the function D̄(·, ρ̄, f̄) belongs to
C̄/poly = C̄. Thus, for any D̄ ∈ C̄, Prx̄,ρ̄,f̄

[
D̄(x̄, ρ̄, f̄) = Ā(x̄, ρ̄, f̄)

]
is less than

Pr
ρ̄,f̄

[
Ampf̄�ρ̄ is not (ε̄/2, C̄)-hard

]
+ 1− ε̄/2 ≤ 1− ε̄/3,

which means that Ā is (ε̄/3, C̄)-hard. ��

Now we are ready to prove Theorem 3.

410 C.-J. Lu, S.-C. Tsai, and H.-L. Wu

Proof. (of Theorem 3) By Lemma 10, Ā is (ε̄/3, C̄)-hard. Note that given f̄ ∈ F̄ ,
ρ̄ ∈ R̄, and any x ∈ {0, 1}n, one can compute f̄�ρ̄(x) in time poly(n). Therefore,
if Amp can be realized in NP (ΣkP, resp.), the function Ā is computable in NP
(ΣkP, resp.), and we have the theorem. ��

Similar to Theorem 2, we have the following.

Theorem 4. It is impossible to realize a weakly black-box (n, ε, ε̄, C, C̄) hardness
amplification in NP (ΣkP, resp.) with 2−n/2 ≤ ε ≤ ε̄2/nω(1), C = B/2n/3 for any
uniform complexity class B, and any C̄ ⊇ NP/poly (ΣkP/poly, resp.) satisfying
C̄/poly = C̄.

Proof. Similarly to how we modify the proof of Theorem 1 to prove Theorem 2,
we can also modify the proof of Theorem 3 to prove Theorem 4. Here we also
change the notation slightly, by writing f̄n ∈ F̄n and ρ̄n ∈ R̄n for functions and
restrictions on inputs of length n, respectively, and writing f̄ , ρ̄, F̄ , R̄ for the
sequences (fn)n∈N, (ρ̄n)n∈N, (F̄n)n∈N, (R̄n)n∈N, respectively. Again, we will apply
the Borel-Cantelli Lemma, and it is easy to check that the proof for Theorem 3
can be modified to prove the following lemma.

Lemma 11. With measure one over ρ̄ ∈ R̄ and f̄ ∈ F̄ , Ampf̄�ρ̄ is (ε̄/2, C̄)-hard.

Unlike for Theorem 3, we now cannot show that the function Ā is hard. Never-
theless, from the lemma above, we know that for any large enough n, there exists
ρ̄n ∈ R̄n and f̄n ∈ F̄n such that the function Ā(ρ̄n, f̄n, ·) = Ampf̄n�ρ̄n (·) is hard.
We can see such ρ̄n’s and f̄n’s as advice strings, which are of length poly(n), and
as a result we have a hard function which is computable in NP/poly (ΣkP/poly,
resp.). Since such a function cannot be hard against any C̄ ⊇ NP/poly (ΣkP/poly,
resp.), we have Theorem 4. ��

References

1. Agrawal, M., Allender, E., Rudich, S.: Reductions in circuit complexity: an isomor-
phism theorem and a gap theorem. Journal of Computer and System Sciences 57,
127–143 (1998)

2. Billingsley, P.: Probability and measure, 3rd edn. Wiley & Sons, Chichester (1995)
3. Babai, L., Fortnow, L., Nisan, N., Wigderson, A.: BPP has subexponential time

simulations unless EXPTIME has publishable proofs. Computational Complex-
ity 3(4), 307–318 (1993)

4. Blum, M., Micali, S.: How to generate cryptographically strong sequences of pseudo
random bits. In: Proceedings of the 23rd Annual IEEE Symposium on Foundations
of Computer Science, pp. 112–117. IEEE Computer Society Press, Los Alamitos
(1982)

5. Bogdanov, A., Trevisan, L.: On worst-case to average-case reductions for NP prob-
lems. In: Proceedings of the 44th Annual Symposium on Foundations of Computer
Science, Cambridge, Massachusetts, pp. 11–14 (2003)

6. Furst, M.L., Saxe, J.B., Sipser, M.: Parity, circuits, and the polynomial-time hier-
archy. Mathematical Systems Theory 17(1), 13–27 (1984)

Impossibility Results on Weakly Black-Box Hardness Amplification 411

7. H̊astad, J.: Computational limitations for small depth circuits. PhD thesis, MIT
Press (1986)

8. Healy, A., Vadhan, S., Viola, E.: Using nondeterminism to amplify hardness. In:
Proceedings of the 36th ACM Symposium on Theory of Computing, pp. 192–201.
ACM Press, New York (2004)

9. Impagliazzo, R.: Hard-core distributions for somewhat hard problems. In: Proceed-
ings of the 36th Annual IEEE Symposium on Foundations of Computer Science,
pp. 538–545. IEEE Computer Society Press, Los Alamitos (1995)

10. Impagliazzo, R., Levin, L.: No better ways to generate hard NP instances than
picking uniformly at random. In: Proceedings of the 31st Annual IEEE Symposium
on Foundations of Computer Science, pp. 812–821. IEEE Computer Society Press,
Los Alamitos (1990)

11. Impagliazzo, R., Shaltiel, R., Wigderson, A.: Extractors and pseudo-random gen-
erators with optimal seed length. In: Proceedings of the 32nd ACM Symposium on
Theory of Computing, pp. 1–10. ACM Press, New York (2000)

12. Impagliazzo, R., Wigderson, A.: P=BPP if E requires exponential circuits: De-
randomizing the XOR lemma. In: Proceedings of the 29th ACM Symposium on
Theory of Computing, pp. 220–229. ACM Press, New York (1997)

13. Klivans, A., van Melkebeek, D.: Graph nonisomorphism has subexponential size
proofs unless the polynomial-time hierarchy collapses. In: Proceedings of the 31st
ACM Symposium on Theory of Computing, pp. 659–667. ACM Press, New York
(1999)

14. Lu, C.-J., Tsai, S.-C., Wu, H.-L.: On the complexity of hardness amplification. In:
Proceedings of the 20th Annual IEEE Conference on Computational Complexity,
pp. 170–182. IEEE Computer Society Press, Los Alamitos (2005)

15. Lin, H., Trevisan, L., Wee, H.: On hardness amplification of one-way functions. In:
Proceedings of the 2nd Theory of Cryptography Conference, pp. 34–49 (2005)

16. Nisan, N.: Pseudorandom bits for constant depth circuits. Combinatorica 11(1),
63–70 (1991)

17. Nisan, N., Wigderson, A.: Hardness vs Randomness. Journal of Computer and
System Sciences 49(2), 149–167 (1994)

18. O’Donnell, R.: Hardness amplification within NP. In: Proceedings of the 34th ACM
Symposium on Theory of Computing, pp. 751–760. ACM Press, New York (2002)

19. Papadimitriou, C.: Computational Complexity. Addison-Wesley, Reading (1994)
20. Sudan, M., Trevisan, L., Vadhan, S.: Pseudorandom generators without the XOR

lemma. Journal of Computer and System Sciences 62(2), 236–266 (2001)
21. Shaltiel, R., Umans, C.: Simple extractors for all min-entropies and a new pseudo-

random generator. In: Proceedings of the 42nd Annual IEEE Symposium on Foun-
dations of Computer Science, pp. 648–657. IEEE Computer Society Press, Los
Alamitos (2001)

22. Umans, C.: Pseudo-random generators for all hardnesses. Journal of Computer and
System Sciences 67(2), 419–440 (2003)

23. Viola, E.: The complexity of constructing pseudorandom generators from hard
functions. Computational Complexity 13(3-4), 147–188 (2004)

24. Viola, E.: On constructing parallel pseudorandom generators from one-way Func-
tions. In: Proceedings of the 20th Annual IEEE Conference on Computational
Complexity, pp. 183–197. IEEE Computer Society Press, Los Alamitos (2005)

25. Yao, A.C.-C.: Theory and applications of trapdoor functions. In: Proceedings of the
23rd Annual IEEE Symposium on Foundations of Computer Science, pp. 80–91.
IEEE Computer Society Press, Los Alamitos (1982)

Maximal and Minimal Scattered Context

Rewriting

Alexander Meduna� and Jǐŕı Techet��

Department of Information Systems, Faculty of Information Technology,
Brno University of Technology, Božetěchova 2, Brno 61266, Czech Republic

techet@fit.vutbr.cz

Abstract. As their name suggest, during a maximal derivation step, a
scattered context grammar G rewrites the maximal number of nonter-
minals while during a minimal derivation step, G rewrites the minimal
number of nonterminals. This paper demonstrates that if the propagat-
ing scattered context grammars derive their sentences by making either
of these two derivation steps, then they characterize the family of context
sensitive languages.

1 Introduction

Since their introduction (see [3]), the propagating scattered context grammars
have always represented an intensively investigated type of semi-parallel rewrit-
ing systems (see [1,2,3,5,7,8,9,13,14]). The language family generated by these
grammars is included in the family of context-sensitive languages; on the other
hand, the question of whether this inclusion is proper represents an open prob-
lem in the formal language theory. As a result, the theory has modified these
grammars in several ways and demonstrated that these modified grammars char-
acterize the family of context-sensitive languages (see [1,2,9]). The present paper
introduces two new modifications of this kind.

As a matter of fact, the simple modifications discussed in this paper only
modify the way the propagating scattered context grammars perform deriva-
tions while keeping their grammatical concept unchanged. More specifically, this
modification requires that during every derivation step, a production containing
maximal or minimal number of nonterminals on its left-hand side is chosen from
the set of all applicable productions. The paper demonstrates that these gram-
mars characterize the family of context-sensitive languages if they work in this
modified way.

Consequently, if in the future the formal language theory demonstrates that
any propagating scattered context grammar making maximal or minimal
derivations can be transformed to an equivalent propagating scattered context
grammar making ordinary derivations, it also demonstrates that these gram-
mars generate the family of all context-sensitive languages and, thereby, solves
� Supported by GAČR grant 201/07/0005 and Research Plan MSM 021630528.

�� Supported by GAČR grant 102/05/H050 and FRVŠ grant FR762/2007/G1.

E. Csuhaj-Varjú and Z. Ésik (Eds.): FCT 2007, LNCS 4639, pp. 412–423, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Maximal and Minimal Scattered Context Rewriting 413

the long-standing open problem formulated above. From this point of view, the
characterization achieved in this paper is of some interest to the formal language
theory.

2 Preliminaries

We assume that the reader is familiar with the language theory (see [6,10,11,12]).
V ∗ represents the free monoid generated by V . The unit of V ∗ is denoted by ε.
Set V + = V ∗ − {ε}. For w ∈ V ∗, |w| and alph(w) denote the length of w and
the set of symbols occurring in w, respectively. For L ⊆ V ∗,

alph(L) = {a : a ∈ alph(w), w ∈ L} .

For x1, . . . , xn ∈ V ∗, Π((x1, . . . , xn), i) = xi. For a finite set of integers, I,
max(I) and min(I) denote the maximal and the minimal element of I, respec-
tively. Let Δ(t) be the set of all permutations of {1, . . . , t}. For some n,m ≥ 0,
define

permute(n,m) = {(i1, . . . , in+m) ∈ Δ(n +m) : 1 ≤ ik < il ≤ n implies k < l} .

For x1, . . . , xn ∈ V ∗, (i1, . . . , in) ∈ Δ(n), define

reorder((x1, . . . , xn), (i1, . . . , in)) = (xi1 , . . . , xin) .

A state grammar (see [4]) is a sixtuple, G = (V, T,K, P, S, p0), where K is
a finite set of states, V is an alphabet, T ⊆ V , S ∈ V − T , p0 ∈ K, P is a
finite set of productions of the form (A, p) → (x, q), where p, q ∈ K, A ∈ V − T ,
x ∈ V +. Let lhs((A, p) → (x, q)) and rhs((A, p) → (x, q)) denote (A, p) and
(x, q), respectively. If (A, p) → (x, q) ∈ P , u = (rAs, p), and v = (rxs, q), where
r, s ∈ V ∗, and for every (B, p) → (y, t) ∈ P , B /∈ alph(r), then G makes a
derivation step from u to v according to (A, p) → (x, q), symbolically written
as u ⇒ v [(A, p) → (x, q)] in G or, simply, u ⇒ v. Let ⇒+ and ⇒∗ denote the
transitive closure of ⇒ and the transitive-reflexive closure of ⇒, respectively.
The language of G is denoted by L(G) and defined as

L(G) = {x ∈ T ∗ : (S, p0) ⇒∗ (x, q) for some q ∈ K} .

3 Definitions

A scattered context grammar (see [1,2,3,5,7,8,9,13,14]), a SC grammar for short,
is a quadruple, G = (V, T, P, S), where V is an alphabet, T ⊆ V , S ∈ V − T ,
and P is a finite set of productions such that each production has the form
(A1, . . . , An) → (x1, . . . , xn), for some n ≥ 1, where Ai ∈ V −T , xi ∈ V ∗, for ev-
ery 1 ≤ i ≤ n. If every production (A1, . . . , An) → (x1, . . . , xn) ∈ P satisfies xi ∈
V + for all 1 ≤ i ≤ n, G is a propagating scattered context grammar, a PSC gram-
mar for short. If (A1, . . . , An) → (x1, . . . , xn) ∈ P , u = u1A1u2 . . . unAnun+1,

414 A. Meduna and J. Techet

and v = u1x1u2 . . . unxnun+1, where ui ∈ V ∗, for all 1 ≤ i ≤ n, then G makes a
derivation step from u to v according to (A1, . . . , An) → (x1, . . . , xn), symboli-
cally written as

u ⇒ v [(A1, . . . , An) → (x1, . . . , xn)]

in G or, simply, u ⇒ v. Set

len((A1, . . . , An) → (x1, . . . , xn)) = |A1 . . . An| = n .

Let ⇒+ and ⇒∗ denote the transitive closure of ⇒ and the transitive-reflexive
closure of ⇒, respectively. The language of G is denoted by L(G) and defined
as L(G) = {x ∈ T ∗ : S ⇒∗ x}.

Let G = (V, T, P, S) be a scattered context grammar. Define a maximal deriva-
tion step, max⇒, as u max⇒ v [p], p ∈ P if and only if u ⇒ v [p] and there is
no r ∈ P , len(r) > len(p), such that u ⇒ w [r]. Similarly, define a minimal
derivation step, min⇒, as u min⇒ v [p], p ∈ P if and only if u ⇒ v [p] and
there is no r ∈ P , len(r) < len(p), such that u ⇒ w [r]. Define the transitive
and transitive-reflexive closure of maximal and minimal derivation steps in the
standard way. The language of G which uses maximal and minimal derivations
is denoted by Lmax(G) and Lmin(G) and defined as

Lmax(G) = {x ∈ T ∗ : S max⇒∗ x}

and
Lmin(G) = {x ∈ T ∗ : S min⇒∗ x} ,

respectively. The corresponding language families are denoted by L(PSC,max)
and L(PSC,min).

4 Results

In this section, we demonstrate that propagating scattered context grammars
which use maximal and minimal derivations characterize the family of context-
sensitive (L(CS)) languages.

Theorem 1. L(CS) = L(PSC,max).

Proof. Let L be a context-sensitive language. As state grammars characterize the
family of context-sensitive languages (see [4]), we suppose that L is described by
a state grammar, Ḡ = (V̄ , T,K, P̄ , S̄, p0). Set

Y = {〈A, q〉 : A ∈ V̄ − T, q ∈ K} ,

and Z = {ā : a ∈ T }. Define the isomorphism, α, form V̄ ∗ to ((V̄ − T)∪Z)∗ as
α(A) = A for all A ∈ V̄−T and α(a) = ā for all a ∈ T . Set V = V̄ ∪Y ∪Z∪{S,X}.
Define the propagating scattered context grammar, G, as

G = (V, T, P, S) ,

where P is constructed as follows:

Maximal and Minimal Scattered Context Rewriting 415

1. For every x ∈ L(Ḡ), |x| ≤ 2, add
(S) → (x) to P ;

2. For every

(x, q) ∈ {(x, q) : (S̄, p0) ⇒+
Ḡ

(x, q) for some q ∈ K
and 3 ≤ |x| ≤ min({3,max({|Π(rhs(p), 1)| : p ∈ P̄})})} ,

where
(a) x ∈ T ∗, add

(S) → (x) to P ;
(b) x = x1Ax2, A ∈ V̄ − T , x1, x2 ∈ V̄ ∗, add

(S) → (α(x1)〈A, q〉α(x2)) to P ;
3. For every (A, p) → (x, q), (B, p) → (y, r) ∈ P̄ , C ∈ V̄ , Γ21 ∈ permute(2, 1),

z = reorder((B, 〈A, p〉, α(C)), Γ21) ,

add
z → (X,X,X) to P ;

4. For every (A, p) → (x, q) ∈ P̄ , B ∈ V̄ − T , C ∈ V̄ , Γ11 ∈ permute(1, 1),

y = reorder((〈A, p〉, α(C)), Γ11) ,

add
(a) (B, 〈A, p〉) → (〈B, q〉, α(x)),
(b) (〈A, p〉, B) → (α(x), 〈B, q〉) to P ;
(c) If x = vBw, v, w ∈ V̄ ∗, for every

z = reorder((α(v)〈B, q〉α(w), α(C)), Γ11) ,

add
y → z to P ;

(d) For every
u = reorder((α(x), α(C)), Γ11) ,

add
y → u to P ;

5. For every a ∈ T , add
(ā) → (a) to P .

Basic Idea. The state grammar, Ḡ, is simulated by the propagating scattered
context grammar, G, which performs maximal derivations. Productions intro-
duced in step (1) of the construction are used to generate sentences w ∈ L(Ḡ),
|w| ≤ 2, while the productions introduced in (2) start the simulation of a deriva-
tion of Ḡ’s sentences, w, |w| ≥ 3. Let (A, p) → (x, q) be a production of Ḡ, which
is applicable to a sentential form (w1Aw2, p) generated by Ḡ. The sentential form
(w1Aw2, p) in Ḡ corresponds to the sentential form α(w1)〈A, p〉α(w2) in G. To
simulate an application of (A, p) → (x, q) in G, it is checked first whether the
production is applied to the leftmost nonterminal of the sentential form for the

416 A. Meduna and J. Techet

given state p. If not, some production from (3) is applicable. This production is
applied because it has the highest priority of all productions, and its application
introduces the symbol X to the sentential form, which blocks the derivation.
The successful derivation proceeds by a production from (4a), (4b), and (4c),
which nondeterministically selects the following nonterminal to be rewritten and
appends the new state to it. The production which finishes the derivation of a
sentence in Ḡ is simulated by a production from (4d), which removes the com-
pound nonterminal, 〈. . .〉, from the sentential form. Finally, each symbol ā, a ∈ T
is rewritten to a.

Formal Proof

Claim 1. Every x ∈ L(Ḡ), |x| ≤ 2 is generated by G as follows:

S max⇒ x [p1] ,

where p1 is one of the productions introduced in step (1) of the construction. ��

Claim 2. Every
(S̄, p0) ⇒+

Ḡ
(x, q) ,

where q ∈ K, x ∈ T+,

3 ≤ |x| ≤ min({3,max({|Π(rhs(p), 1)| : p ∈ P̄})})

is generated by G as follows:

S max⇒ x [p2a] ,

where p2a is one of the productions introduced in step (2a) of the construction. ��

Claim 3. Every
(S̄, p0) ⇒+

Ḡ
(x, q) ⇒+

Ḡ
(u, r) ,

where q, r ∈ K, u ∈ T+, x = v0Aw0, A ∈ V̄ − T , v0, w0 ∈ V̄ ∗,

3 ≤ |x| ≤ min({3,max({|Π(rhs(p), 1)| : p ∈ P̄})}) ,

can only be generated by G as follows:

S max⇒ α(v0)〈A, q〉α(w0) [p2b]
max⇒∗ y [Ξ4]
max⇒ z [p4d]
max⇒|u| u [Ξ5] ,

where y ∈ Z∗Y Z∗, z = α(u); p2b and p4d is one of the productions introduced in
steps (2b) and (4d), respectively, and Ξ4 and Ξ5 are sequences of productions
introduced in steps (4a), (4b), (4c), and (5), respectively.

Maximal and Minimal Scattered Context Rewriting 417

Proof. Observe that the productions introduced in steps (1) and (2) of the con-
struction are the only productions containing S on their left-hand sides and no
other productions contain S on their right-hand sides. To generate a sentence u,
|u| ≥ 3, the derivation has to start with

S max⇒ α(v0)〈A, q〉α(w0) [p2b] ,

and productions from (1) and (2) are not used during the rest of the derivation.
Further observe that none of the productions introduced in step (3) of the

construction can be applied during a successful generation as no productions
rewrite the nonterminal, X , which is contained on the right-hand side of every
production from step (3).

To generate a sentence over T , all symbols from V̄ − T have to be removed
from the sentential form. Only productions from step (4) can be used for their
replacement as they contain symbols from V̄ −T on their left-hand sides. Further,
productions (4a), (4b), (4c) contain one symbol from Y both on their left and
their right-hand sides, while productions from (4d) contain a symbol form Y
only on their left-hand sides. Therefore, after the application of a production
from (4d), none of the productions from step (4) is applicable. Because for every
production p4 and p5 introduced in step (4) and (5), respectively, it holds that
len(p4) > len(p5), no production from step (5) is applied while some production
from step (4) is applicable. As a result, the corresponding part of the derivation
looks as follows:

α(v0)〈A, q〉α(w0) max⇒∗ y [Ξ4]
max⇒ z [p4d] .

At this point, z = α(u) in a successful derivation. Productions from step (5)
replace every ā ∈ alph(z) with a in |u| steps so we obtain

z max⇒|u| u [Ξ5] .

Putting together the previous observations, we obtain the formulation of
Claim 3 so the claim holds. ��

Claim 4. In a successful derivation, every

α(v0)〈B0, q0〉α(w0)
max⇒ α(v1)〈B1, q1〉α(w1) [p0]

...
max⇒ α(vn)〈Bn, qn〉α(wn) [pn−1]

is performed in G if and only if

(v0B0w0, q0)
⇒Ḡ (v1B1w1, q1) [(B0, q0) → (x1, q1)]

...
⇒Ḡ (vnBnwn, qn) [(Bn−1, qn−1) → (xn, qn)]

418 A. Meduna and J. Techet

is performed in Ḡ, where vi, wi ∈ V̄ ∗, Bi ∈ V̄ − T , qi ∈ K for all i ∈ {0, . . . , n}
for some n ≥ 0, x1, . . . , xn ∈ V̄ +, and p0, . . . , pn−1 are productions introduced
in steps (4a), (4b), (4c) of the construction.

Proof

Only If : We show that

α(v0)〈B0, q0〉α(w0) max⇒m α(vm)〈Bm, qm〉α(wm)

implies
(v0B0w0, q0) ⇒m

Ḡ (vmBmwm, qm)

by induction on m.

Basis : Let m = 0. Then,

α(v0)〈B0, q0〉α(w0) max⇒0 α(v0)〈B0, q0〉α(w0)

and clearly
(v0B0w0, q0) ⇒0

Ḡ (v0B0w0, q0) .

Induction Hypothesis : Suppose that the claim holds for all k-step derivations,
where k ≤ m, for some m ≥ 0.

Induction Step: Let us consider a derivation

α(v0)〈B0, q0〉α(w0) max⇒m+1 α(vm+1)〈Bm+1, qm+1〉α(wm+1) .

Since m+ 1 ≥ 1, there is some

α(vm)〈Bm, qm〉α(wm) ∈ ((V̄ − T) ∪ Z)∗Y ((V̄ − T) ∪ Z)∗

and a production pm such that

α(v0)〈B0, q0〉α(w0) max⇒m α(vm)〈Bm, qm〉α(wm)
max⇒ α(vm+1)〈Bm+1, qm+1〉α(wm+1) [pm] .

By the induction hypothesis, there is a derivation

(v0B0w0, q0) ⇒m
Ḡ (vmBmwm, qm) .

The production pm is one of the productions introduced in steps (4a) through
(4c) and may be of the following three forms depending on the placement of
Bm+1:

– (Bm+1, 〈Bm, qm〉) → (〈Bm+1, qm+1〉, α(xm+1)) for vm = v′mBm+1v
′′
m,

– (〈Bm, qm〉, Bm+1) → (α(xm+1), 〈Bm+1, qm+1〉) for wm = w′
mBm+1w

′′
m,

– (〈Bm, qm〉, α(A)) → (α(x′m+1)〈Bm+1, qm+1〉α(x′′m+1), α(A)) or
(α(A), 〈Bm, qm〉) → (α(A), α(x′m+1)〈Bm+1, qm+1〉α(x′′m+1)) for
xm+1 = x′m+1Bm+1x

′′
m+1,

Maximal and Minimal Scattered Context Rewriting 419

where A ∈ V̄ , and xm+1, x
′
m+1, x

′′
m+1 ∈ V̄ ∗. Their construction is based on P̄ so

there is a production (Bm, qm) → (xm+1, qm+1) ∈ P̄ .
As we simulate G’s derivation by Ḡ, we have to demonstrate that for a given

state, qm, the leftmost nonterminal in a sentential form is rewritten in G. We
prove it by contradiction. Suppose that there is a production, p′m ∈ P , from
step (4) which rewrites some B′

m ∈ V̄ − T in a state qm, and B′
m ∈ alph(vm).

Then, there exists (B′
m, qm) → (x′m+1, q

′
m+1) ∈ P̄ , and, therefore, there also

exist productions introduced in step (3) of the construction which are based on
(Bm, qm) → (xm+1, qm+1) and (B′

m, qm) → (x′m+1, q
′
m+1). These productions

have the following forms:

– (B′
m, 〈Bm, qm〉, α(A)) → (X,X,X),

– (B′
m, α(A), 〈Bm, qm〉) → (X,X,X),

– (α(A), B′
m, 〈Bm, qm〉) → (X,X,X),

where A ∈ V̄ . Because |α(vm)〈Bm, qm〉α(wm)| ≥ 3, one of these productions is
applicable. As productions introduced in step (3) have higher precedence than
productions introduced in step (4), one of them is applied which introduces X
to the sentential form. This symbol, however, can never be removed from the
sentential form so the derivation is not successful.

As a result, the leftmost nonterminal for a state qm is rewritten in G, so
(Bm, qm) → (xm+1, qm+1) is used in Ḡ and we obtain

(vmBmwm, qm) ⇒Ḡ (vm+1Bm+1wm+1, qm+1) [(Bm, qm) → (xm+1, qm+1)] .

If : We show that
(v0B0w0, q0) ⇒m

Ḡ (vmBmwm, qm)

implies
α(v0)〈B0, q0〉α(w0) max⇒m α(vm)〈Bm, qm〉α(wm)

by induction on m.

Basis : Let m = 0. Then

(v0B0w0, q0) ⇒0
Ḡ (v0B0w0, q0) .

Clearly,
α(v0)〈B0, q0〉α(w0) max⇒0 α(v0)〈B0, q0〉α(w0) .

Induction Hypothesis : Suppose that the claim holds for all k-step derivations,
where k ≤ m, for some m ≥ 0.

Induction Step: Consider a derivation

(v0B0w0, q0) ⇒m+1
Ḡ

(vm+1Bm+1wm+1, qm+1) .

Since m+ 1 ≥ 1, there is some (vmBmwm, qm), vm, wm ∈ V̄ ∗, Bm ∈ V̄ − T , and
a production (Bm, qm) → (xm+1, qm+1) such that

(v0B0w0, q0) ⇒m
Ḡ

(vmBmwm, qm)
⇒Ḡ (vm+1Bm+1wm+1, qm+1) [(Bm, qm) → (xm+1, qm+1)] .

420 A. Meduna and J. Techet

By the induction hypothesis, there is a derivation

α(v0)〈B0, q0〉α(w0) max⇒m α(vm)〈Bm, qm〉α(wm) .

Because (Bm, qm) → (xm+1, qm+1) rewrites the leftmost rewritable symbol,
Bm, for a given state, qm, there is no production (B′

m, qm) → (x′m+1, q
′
m+1)

satisfying B′
m ∈ alph(vm). As a result, none of the productions from step (3) is

applicable.
For every (Bm, qm) → (xm+1, qm+1) ∈ P̄ there are productions of the following

three forms in G whose use depends on the placement of Bm+1:

1. (Bm+1, 〈Bm, qm〉) → (〈Bm+1, qm+1〉, α(xm+1)) for vm = v′mBm+1v
′′
m,

2. (〈Bm, qm〉, Bm+1) → (α(xm+1), 〈Bm+1, qm+1〉) for wm = w′
mBm+1w

′′
m,

3. (〈Bm, qm〉, α(A)) → (α(x′m+1)〈Bm+1, qm+1〉α(x′′m+1), α(A)) or
(α(A), 〈Bm, qm〉) → (α(A), α(x′m+1)〈Bm+1, qm+1〉α(x′′m+1)) for
xm+1 = x′m+1Bm+1x

′′
m+1,

where A ∈ V̄ , and xm+1, x
′
m+1, x

′′
m+1 ∈ V̄ ∗. As |α(vm)〈Bm, qm〉α(wm)| ≥ 3, one

of them is applicable in G so we obtain

α(vm)〈Bm, qm〉α(wm) max⇒ α(vm+1)〈Bm+1, qm+1〉α(wm+1) . ��

By Claim 1 through 4 it follows that L(CS) ⊆ L(PSC,max). As PSC gram-
mars do not contain ε-productions, their derivations can be simulated by linear
bounded automata. As a result, L(PSC,max) ⊆ L(CS). Therefore, L(CS) =
L(PSC,max). ��

Theorem 2. L(CS) = L(PSC,min).

Proof. Let L be a context-sensitive language described by a state grammar,
Ḡ = (V̄ , T,K, P̄ , S̄, p0). Set

Y = {〈A, q〉 : A ∈ V̄ − T, q ∈ K} ,

and Z = {ā : a ∈ T }. Define the isomorphism, α, form V̄ ∗ to ((V̄ − T)∪Z)∗ as
α(A) = A for all A ∈ V̄−T and α(a) = ā for all a ∈ T . Set V = V̄ ∪Y ∪Z∪{S,X}.
Define the propagating scattered context grammar, G′, as

G′ = (V, T, P ′, S) ,

where P ′ is constructed as follows:

1. For every x ∈ L(Ḡ), |x| ≤ 3, add
(S) → (x) to P ′;

2. For every

(x, q) ∈ {(x, q) : (S̄, p0) ⇒+
Ḡ

(x, q) for some q ∈ K
and 4 ≤ |x| ≤ min({4,max({|Π(rhs(p), 1)| : p ∈ P̄})})} ,

Maximal and Minimal Scattered Context Rewriting 421

where
(a) x ∈ T ∗, add

(S) → (x) to P ′;
(b) x = x1Ax2, A ∈ V̄ − T , x1, x2 ∈ V̄ ∗, add

(S) → (α(x1)〈A, q〉α(x2)) to P ′;
3. For every (A, p) → (x, q), (B, p) → (y, r) ∈ P̄ , add

(B, 〈A, p〉) → (X,X) to P ′;
4. For every (A, p) → (x, q) ∈ P̄ , B ∈ V̄ − T , D,E ∈ V̄ , Γ21 ∈ permute(2, 1),

Γ12 ∈ permute(1, 2),

u = reorder((B, 〈A, p〉, α(D)), Γ21), u′ = reorder((〈B, q〉, α(x), α(D)), Γ21),
r = reorder((〈A, p〉, B, α(D)), Γ21), r′ = reorder((α(x), 〈B, q〉, α(D)), Γ21),

y = reorder((〈A, p〉, α(D), α(E)), Γ12) ,

add
(a) u → u′,
(b) r → r′ to P ′;
(c) If x = vBw, v, w ∈ V̄ ∗, for every

z = reorder((α(v)〈B, q〉α(w), α(D), α(E)), Γ12) ,

add
y → z to P ′;

(d) For every
u = reorder((α(x), α(D), α(E)), Γ12) ,

add
y → u to P ′;

5. For every a, b, c, d ∈ T , add
(a) (ā, b̄, c̄, d̄) → (a, b̄, c̄, d̄),
(b) (ā, b̄, c̄, d̄) → (a, b, c, d) to P ′.

Claim 5. Every
(S̄, p0) ⇒+

Ḡ
(x, q) ⇒+

Ḡ
(u, r) ,

where q, r ∈ K, u ∈ T+, x = v0Aw0, A ∈ V̄ − T , v0, w0 ∈ V̄ ∗,

4 ≤ |x| ≤ min({4,max({|Π(rhs(p), 1)| : p ∈ P̄})}) ,

can only be generated by G′ as follows:

S min⇒ α(v0)〈A, q〉α(w0) [p2b]
min⇒∗ y [Ξ4]
min⇒ z [p4d]
min⇒|u|−4 v [Ξ5]
min⇒ u [p5b] ,

where y ∈ Z∗Y Z∗, z = α(u), v ∈ (T ∪ Z)+; p2b, p4d, and p5b is one of the
productions introduced in steps (2b), (4d), and (5b), respectively, and Ξ4 and
Ξ5 are sequences of productions introduced in steps (4a), (4b), (4c), and (5a),
respectively.

422 A. Meduna and J. Techet

Proof. The proof of the beginning of the derivation,

S min⇒ α(v0)〈A, q〉α(w0) [p2b]
min⇒∗ y [Ξ4]
min⇒ z [p4d] ,

is analogous to the proof of Claim 3 (in terms of minimal derivations), and is
left to the reader.

Recall that z satisfies z = α(u). Each of the productions introduced in step
(5a) of the construction replaces one occurrence of ā with a for some a ∈ T , and,
finally, the application of a production from step (5b) replaces the remaining
four nonterminals with their terminal variants. Therefore,

z min⇒|u|−4 v [Ξ5]
min⇒ u [p5b] ,

so the claim holds. ��

Notice that len(p3) < len(p4) < len(p5) for every production p3, p4, and p5

introduced in steps (3), (4), and (5), respectively, so the priorities (and the use)
of the productions from the individual steps are the same as in case of grammars
which use maximal derivations. As a result, formulations of Claim 1, 2, and
4 can be changed in terms of minimal derivations. As their proofs resemble
the proofs of the claims mentioned above, these proofs are left to the reader.
Therefore, L(CS) ⊆ L(PSC,min) and for the same reason as in Theorem 1,
L(PSC,min) ⊆ L(CS), so L(CS) = L(PSC,min). ��

References

1. Fernau, H.: Scattered context grammars with regulation. Annals of Bucharest Uni-
versity, Mathematics-Informatics Series 45(1), 41–49 (1996)

2. Gonczarowski, J., Warmuth, M.K.: Scattered versus context-sensitive rewriting.
Acta Informatica 27, 81–95 (1989)

3. Greibach, S., Hopcroft, J.: Scattered context grammars. Journal of Computer and
System Sciences 3, 233–247 (1969)

4. Kasai, T.: An hierarchy between context-free and context-sensitive languages. Jour-
nal of Computer and System Sciences 4(5), 492–508 (1970)

5. Meduna, A.: A trivial method of characterizing the family of recursively enumerable
languages by scattered context grammars. EATCS Bulletin 56, 104–106 (1995)

6. Meduna, A.: Automata and Languages: Theory and Applications. Springer, London
(2000)

7. Meduna, A.: Generative power of three-nonterminal scattered context grammars.
Theoretical Computer Science 246, 276–284 (2000)

8. Meduna, A., Techet, J.: Generation of sentences with their parses: the case of
propagating scattered context grammars. Acta Cybernetica 17, 11–20 (2005)

9. Milgram, D., Rosenfeld, A.: A note on scattered context grammars. Information
Processing Letters 1, 47–50 (1971)

10. Revesz, G.E.: Introduction to Formal Language Theory. McGraw-Hill, New York
(1983)

Maximal and Minimal Scattered Context Rewriting 423

11. Rozenberg, G., Salomaa, A.: Handbook of Formal Languages, vol. 1–3. Springer,
Heidelberg (1997)

12. Salomaa, A.: Formal Languages. Academic Press, New York (1973)
13. Vaszil, G.: On the descriptional complexity of some rewriting mechanisms regulated

by context conditions. Theoretical Computer Science 330, 361–373 (2005)
14. Virkkunen, V.: On scattered context grammars. Acta Universitatis Ouluensis Series

A, Mathematica 6, 75–82 (1973)

Strictly Deterministic CD-Systems of

Restarting Automata

H. Messerschmidt and F. Otto

Fachbereich Elektrotechnik/Informatik, Universität Kassel
34109 Kassel, Germany

{hardy,otto}@theory.informatik.uni-kassel.de

Abstract. A CD-system of restarting automata is called strictly de-
terministic if all its component systems are deterministic, and if there
is a unique successor system for each component. Here we show that
the strictly deterministic CD-systems of restarting automata are strictly
more powerful than the corresponding deterministic types of restarting
automata, but that they are strictly less powerful than the correspond-
ing deterministic types of nonforgetting restarting automata. In fact, we
present an infinite hierarchy of language classes based on the number of
components of strictly deterministic CD-systems of restarting automata.

1 Introduction

The restarting automaton was introduced by Jančar et. al. as a formal tool to
model the analysis by reduction, which is a technique used in linguistics to an-
alyze sentences of natural languages [4]. This technique consists in a stepwise
simplification of a given sentence in such a way that the correctness or incor-
rectness of the sentence is not affected. It is applied primarily in languages that
have a free word order. Already several programs used in Czech and German
(corpus) linguistics are based on the idea of restarting automata [9,12].

A (one-way) restarting automaton, RRWW-automaton for short, is a device M
that consists of a finite-state control, a flexible tape containing a word delimited
by sentinels, and a read/write window of a fixed size. This window is moved from
left to right until the control decides (nondeterministically) that the content of
the window should be rewritten by some shorter string. In fact, the new string
may contain auxiliary symbols that do not belong to the input alphabet. After
a rewrite, M can continue to move its window until it either halts and accepts,
or halts and rejects, or restarts, that is, it places its window over the left end
of the tape, and reenters the initial state. Thus, each computation of M can be
described through a sequence of cycles.

Many restricted variants of restarting automata have been studied and put
into correspondence to more classical classes of formal languages. For a recent
survey see [10] or [11]. Also further extensions of the model have been considered.
In particular, in [8] Messerschmidt and Stamer introduced the nonforgetting
restarting automaton, which, when executing a restart operation, simply changes

E. Csuhaj-Varjú and Z. Ésik (Eds.): FCT 2007, LNCS 4639, pp. 424–434, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Strictly Deterministic CD-Systems of Restarting Automata 425

its internal state as with any other operation, instead of resetting it to the initial
state. Further, in [7] the authors introduced cooperating distributed systems
(CD-systens) of restarting automata and proved that CD-systems of restarting
automata working in mode = 1 correspond to nonforgetting restarting automata.

Here we concentrate on CD-systems of restarting automata that are determin-
istic. It is known that deterministic restarting automata with auxiliary symbols
accept exactly the Church-Rosser languages (see, e.g., [10,11]), while nonforget-
ting deterministic restarting automata are strictly more powerful [6]. However,
for CD-systems of restarting automata the notion of determinism can be defined
in various different ways. A CD-system M := ((Mi, σi)i∈I , I0) of restarting auto-
mata could be called deterministic if within each computation of the system M,
each configuration has at most a single successor configuration. This is a global
view on determinism. On the other hand, we could follow the way determinism is
used in CD-grammar systems (see, e.g., [2,3]) and call M already deterministic
if all component automata Mi (i ∈ I) are deterministic. This is a local view on
determinism. Here we study a third option, called strict determinism, where we
require not only that all component automata Mi (i ∈ I) are deterministic, but
also that the successor set σi is a singleton for each i ∈ I. This is again a global,
but more restricted, view.

We will see that, in analogy to the situation for nondeterministic restarting
automata, the globally deterministic CD-systems of restarting automata, when
working in mode = 1, correspond exactly to nonforgetting deterministic restart-
ing automata. Further, the expressive power of strictly deterministic CD-systems
of restarting automata lies strictly in between that of deterministic restarting
automata and that of nonforgetting deterministic restarting automata. In fact,
based on the number of component systems of strictly deterministic CD-systems,
we will obtain a proper infinite hierarchy of language classes.

This paper is structured as follows. In Section 2 we introduce nonforgetting
restarting automata and CD-systems of restarting automata. Then, in Section 3,
we define the various types of deterministic CD-systems of restarting automata
formally and establish the announced relationship between nonforgetting deter-
ministic restarting automata and globally deterministic CD-systems of restarting
automata. In Section 4 we compare the expressive power of strictly determin-
istic CD-systems to that of globally deterministic CD-systems and to that of
deterministic restarting automata. Also we present the announced hierarchy on
the number of component systems. The paper concludes with a short discussion
pointing out some open problems for future work.

2 Definitions

An RRWW-automaton is a one-tape machine that is described by an 8-tuple
M = (Q,Σ, Γ, c, $, q0, k, δ), where Q is a finite set of states, Σ is a finite input
alphabet, Γ is a finite tape alphabet containing Σ, the symbols c, $ �∈ Γ serve
as markers for the left and right border of the work space, respectively, q0 ∈ Q
is the initial state, k ≥ 1 is the size of the read/write window, and δ is the

426 H. Messerschmidt and F. Otto

transition relation that associates a finite set of transition steps to each pair
(q, u) consisting of a state q ∈ Q and a possible contents u of the read/write
window. There are four types of transition steps:

– Move-right steps of the form (q′,MVR), where q′ ∈ Q, which cause M to
shift the read/write window one position to the right and to enter state q′.

– Rewrite steps of the form (q′, v), where q′ ∈ Q, and v is a string satisfying
|v| < |u|. This step causes M to replace the content u of the read/write
window by the string v, thereby shortening the tape, and to enter state q′.
Further, the read/write window is placed immediately to the right of the
string v. However, some additional restrictions apply in that the border
markers c and $ must not disappear from the tape nor that new occurrences
of these markers are created.

– Restart steps of the form Restart, which cause M to place the read/write
window over the left end of the tape, so that the first symbol it sees is the
left border marker c, and to reenter the initial state q0.

– Accept steps of the form Accept, which cause M to halt and accept.

If δ(q, u) = ∅ for some pair (q, u), then M necessarily halts, and we say that M
rejects in this situation. There is one additional restriction that the transition
relation must satisfy: ignoring move operations, rewrite steps and restart steps
alternate in any computation of M , with a rewrite step coming first. However,
it is more convenient to describe M by a finite set of so-called meta-instructions
(see below).

A configuration of M is described by a string αqβ, where q ∈ Q, and either
α = ε (the empty word) and β ∈ {c} · Γ ∗ · {$} or α ∈ {c} · Γ ∗ and β ∈ Γ ∗ · {$};
here q represents the current state, αβ is the current content of the tape, and it is
understood that the head scans the first k symbols of β or all of β when |β| ≤ k.
A restarting configuration is of the form q0cw$, where w ∈ Γ ∗; if w ∈ Σ∗, then
q0cw$ is an initial configuration.

In general, an RRWW-automaton is nondeterministic, that is, to some con-
figurations several different instructions may apply. If that is not the case, then
the automaton is called deterministic.

A rewriting meta-instruction for M has the form (E1, u → v,E2), where E1

and E2 are regular expressions, and u, v ∈ Γ ∗ are words satisfying |u| > |v|. To
execute a cycle M chooses a meta-instruction of the form (E1, u → v,E2). On
trying to execute this meta-instruction M will get stuck (and so reject) starting
from the restarting configuration q0cw$, if w does not admit a factorization
of the form w = w1uw2 such that cw1 ∈ E1 and w2$ ∈ E2. On the other
hand, if w does have factorizations of this form, then one such factorization
is chosen nondeterministically, and q0cw$ is transformed into q0cw1vw2$. This
computation is called a cycle of M . It is expressed as w !cM w1vw2. In order to
describe the tails of accepting computations we use accepting meta-instructions
of the form (E1,Accept), which simply accepts the strings from the regular
language E1.

Strictly Deterministic CD-Systems of Restarting Automata 427

An input word w ∈ Σ∗ is accepted by M , if there is a computation which,
starting with the initial configuration q0cw$, consists of a finite sequence of cycles
that is followed by an application of an accepting meta-instruction. By L(M)
we denote the language consisting of all words accepted by M .

We are also interested in various restricted types of restarting automata. They
are obtained by combining two types of restrictions:

(a) Restrictions on the movement of the read/write window (expressed by the
first part of the class name): RR- denotes no restriction, R- means that each
rewrite step is immediately followed by a restart.

(b) Restrictions on the rewrite-instructions (expressed by the second part of
the class name): -WW denotes no restriction, -W means that no auxiliary
symbols are available (that is, Γ = Σ), -ε means that no auxiliary symbols
are available and that each rewrite step is simply a deletion (that is, if the
rewrite operation u→ v occurs in a meta-instruction ofM , then v is obtained
from u by deleting some symbols).

A cooperating distributed system of RRWW-automata, CD-RRWW-system for
short, consists of a finite collection M := ((Mi, σi)i∈I , I0) of RRWW-automata
Mi = (Qi, Σ, Γi, c, $, q

(i)
0 , k, δi) (i ∈ I), successor relations σi ⊆ I (i ∈ I), and

a subset I0 ⊆ I of initial indices. Here it is required that Qi ∩ Qj = ∅ for all
i, j ∈ I, i �= j, that I0 �= ∅, that σi �= ∅ for all i ∈ I, and that i �∈ σi for all i ∈ I.
Further, let m be one of the following modes of operation, where j ≥ 1:

= j : execute exactly j cycles;
t : continue until no more cycle can be executed.

The computation ofM in mode = j on an input word x proceeds as follows. First
an index i0 ∈ I0 is chosen nondeterministically. Then the RRWW-automaton
Mi0 starts the computation with the initial configuration q

(i0)
0 cx$, and executes

j cycles. Thereafter an index i1 ∈ σi0 is chosen nondeterministically, and Mi1

continues the computation by executing j cycles. This continues until, for some
l ≥ 0, the machine Mil accepts. Should at some stage the chosen machine Mil

be unable to execute the required number of cycles, then the computation fails.
In mode t the chosen automaton Mil continues with the computation until it

either accepts, in which case M accepts, or until it can neither execute another
cycle nor an accepting tail, in which case an automaton Mil+1 with il+1 ∈ σil
takes over. Should this machine not be able to execute a cycle or an accepting
tail, then the computation of M fails.

By Lm(M) we denote the language that the CD-RRWW-system M accepts
in mode m. It consists of all words x ∈ Σ∗ that are accepted by M in mode m
as described above. If X is any of the above types of restarting automata, then
a CD-X-system is a CD-RRWW-system for which all component automata are of
type X.

The following simple example shows that CD-R-systems have much more ex-
pressive power than R-automata. As R-automata restart immediately after exe-
cuting a rewrite operation, rewriting meta-instructions for them are of the form

428 H. Messerschmidt and F. Otto

(E, u → v), where E is a regular language, and u → v is a rewrite step of M
(see, e.g., [11]).

Example 1. Let M := ((M1, {2}), (M2, {1}), {1}) be a CD-R-system, where M1

is described by the following three meta-instructions:

(c · {a, b}∗ · c ·# · {a, b}∗, c · $ → $), c ∈ {a, b}, and (c ·# · $,Accept),

and M2 is given through the meta-instructions:

(c · {a, b}∗, c ·# → #), c ∈ {a, b}.

In mode =1 the machines M1 and M2 alternate, with M1 beginning the compu-
tation. Starting with a word of the form u#v, where u, v ∈ {a, b}+, M1 always
deletes the last letter of the second factor, provided it coincides with the last
letter of the first factor, and M2 simply deletes the last letter of the first factor. It
follows that L=1(M) coincides with the language Lcopy := {w#w | w ∈ {a, b}∗ }.
On the other hand, it is easily seen that Lcopy is not accepted by any R-
automaton.

The nonforgetting restarting automaton is a generalization of the restarting au-
tomaton that is obtained by combining restart transitions with a change of state
just like the move-right and rewrite transitions. This allows a nonforgetting
restarting automaton M to carry some information from one cycle to the next.
We use the notation (q1, x) !cM (q2, y) to denote a cycle of M that transforms
the restarting configuration q1cx$ into the restarting configuration q2cy$.

3 Various Notions of Determinism

A CD-system M := ((Mi, σi)i∈I , I0) of restarting automata is called locally
deterministic if Mi is a deterministic restarting automaton for each i ∈ I. As
the successor system is chosen nondeterministically from among all systems Mj

with j ∈ σi, computations of a locally deterministic CD-system of restarting
automata are in general not completely deterministic.

To avoid this remaining nondeterminism we strengthen the above definition.
We call a CD-system M := ((Mi, σi)i∈I , I0) strictly deterministic if I0 is a
singleton, if Mi is a deterministic restarting automaton and if |σi| = 1 for each
i ∈ I. Observe that the CD-R-system of Example 1 is strictly deterministic.

However, the restriction of having at most a single possible successor for each
component system is a rather serious one, as we will see below. Thus, we define a
third notion. A CD-system M := ((Mi, σi)i∈I , I0) is called globally deterministic
if I0 is a singleton, if Mi is a deterministic restarting automaton for each i ∈ I,
and if, for each i ∈ I, each restart operation of Mi is combined with an index
from the set σi. Thus, when Mi finishes a part of a computation according
to the actual mode of operation by executing the restart operation δi(q, u) =
(Restart, j), where j ∈ σi, then the component Mj takes over. In this way it
is guaranteed that all computations of a globally deterministic CD-system are

Strictly Deterministic CD-Systems of Restarting Automata 429

deterministic. However, for a component system Mi there can still be several
possible successor systems. This is reminiscent of the way in which nonforgetting
restarting automata work.

We use the prefix det-global to denote globally deterministic CD-systems, and
the prefix det-strict to denote strictly deterministic CD-systems. For each type
of restarting automaton X ∈ {R,RR,RW,RRW, RWW,RRWW}, it is easily seen
that the following inclusions hold:

L(det-X) ⊆ Lm(det-strict-CD-X) ⊆ Lm(det-global-CD-X).

Concerning the globally deterministic CD-systems, we have the following re-
sults, which correspond to the results for nondeterministic CD-systems estab-
lished in [7].

Theorem 1. If M is a nonforgetting deterministic restarting automaton of type
X for some X ∈ {R,RR,RW,RRW,RWW,RRWW}, then there exists a glob-
ally deterministic CD-system M of restarting automata of type X such that
L=1(M) = L(M) holds.

For the converse we even have the following stronger result.

Theorem 2. For each X ∈ {R,RR,RW,RRW,RWW,RRWW}, if M is a globally
deterministic CD-X-system, and if j is a positive integer, then there exists a
nonforgetting deterministic X-automaton M such that L(M) = L=j(M) holds.

Thus, we see that globally deterministic CD-systems of restarting automata
working in mode = 1 are just as powerful as deterministic nonforgetting restart-
ing automata. It remains to study CD-systems that work in mode t.

Theorem 3. Let X ∈ {RR,RRW,RRWW}, and let M be a globally deterministic
CD-X-system. Then there exists a nonforgetting deterministic X-automaton M
such that L(M) = Lt(M) holds.

It is not clear whether the latter result extends to CD-systems of R(W)(W)-
automata. The problem with these types of restarting automata stems from the
fact that within a cycle such an automaton will in general not see the complete
tape content.

4 Strictly Deterministic CD-Systems

Here we study the expressive power of strictly deterministic CD-systems of
restarting automata. As seen in Example 1 the copy language Lcopy is accepted
by a strictly deterministic CD-R-system with two components. This language
is not growing context-sensitive [1,5]. As deterministic RRWW-automata only
accept Church-Rosser languages, which are a proper subclass of the growing
context-sensitive languages, this yields the following separation result.

430 H. Messerschmidt and F. Otto

Proposition 1. For all X ∈ {R,RR,RW,RRW,RWW,RRWW},

L(det-X) ⊂ L=1(det-strict-CD-X).

Let Lcopym := {w(#w)m−1 | w ∈ Σ+
0 } be the m-fold copy language. Analo-

gously to Example 1 it can be shown that this language is accepted by a strictly
deterministic CD-R-system with m components that works in mode = 1. The
next example deals with a generalization of these languages.

Example 2. Let Lcopy∗ := {w(#w)n | w ∈ (Σ2
0)+, n ≥ 1 } be the iterated copy

language, where Σ0 := {a, b}. This language is accepted by a strictly determinis-
tic CD-RWW-system M = ((M1, {2}), (M2, {1}), {1}) with input alphabet Σ :=
Σ0∪{#} and tape alphabet Γ := Σ∪Γ0, where Γ0 := {Aa,a, Aa,b, Ab,a, Ab,b}. The
RWW-automata M1 and M2 are given through the following meta-instructions,
where c, d, e, f ∈ Σ0:

M1 : (c · (Σ2
0)∗ · cd ·# · (Σ2

0)∗, cd ·# → Ac,d ·#),
(c · (Σ2

0)∗ · cd ·# · (Σ2
0)∗, cd · $ → Ac,d · $),

(c · (Σ2
0)∗ · cd ·# · (Σ2

0)∗, cdAe,f → Ac,dAe,f),
(c · Γ ∗

0 ·Ac,d ·# · (Σ2
0)∗, cd ·# → Ac,d ·#),

(c · Γ ∗
0 ·Ac,d ·# · (Σ2

0)∗, cd · $ → Ac,d · $),
(c · Γ ∗

0 ·Ac,d ·# · (Σ2
0)∗, cdAe,f → Ac,dAe,f),

(c · Γ+
0 · $,Accept),

M2 : (c · (Σ2
0)+, cd ·# → #), (c, cd ·# → ε),

(c · Γ+
0 , Ac,d ·# → #), (c, Ac,d ·# → ε).

In mode = 1, the two components M1 and M2 are used alternatingly, with M1

starting the computation. Let x := w1#w2# . . .#wm be the given input, where
w1, w2, . . . , wm ∈ (Σ2

0)+ and m ≥ 2. First w1 is compared to w2 by processing
these strings from right to left, two letters in each round. During this process
w1 is erased, while w2 is encoded using the letters from Γ0. Next the encoded
version of w2 is used to compare w2 to w3, again from right to left. This time
the encoded version of w2 is erased, while w3 is encoded. This continues until
all syllables wi have been considered. It follows that L=1(M) = Lcopy∗ holds.

For accepting the language Lcopy∗ without using auxiliary symbols we have a
CD-system of restarting automata that is globally deterministic.

Lemma 1. The language Lcopy∗ is accepted by a globally deterministic CD-R-
system working in mode = 1.

Proof. Let M = ((Mi, σi)i∈I , I0) be the CD-R-system that is specified by I :=
{0, 1, 2, 3, 4, 5, 6}, I0 := {0}, σ(0) := {5}, σ(1) := {2, 6}, σ(2) := {1, 6}, σ(3) :=
{4, 5}, σ(4) := {3, 5}, σ(5) := {1}, σ(6) := {3}, and M0 to M6 are given through
the following meta-instructions, where c, d ∈ Σ0:

M0 : (c · ((Σ2
0)+ ·Σ0 · c ·#)+ · (Σ2

0)+ ·Σ0, c · $ → $,Restart(5)),
(c · (u ·#)+ · u · $,Accept) for all u ∈ Σ2

0 ,

Strictly Deterministic CD-Systems of Restarting Automata 431

M1 : (c · ((Σ2
0)+ · c ·#)+ · (Σ2

0)+, c · $ → $,Restart(6)),
(c · ((Σ2

0)+ · c ·#)+ · (Σ2
0)+ · c, d ·# → #,Restart(2)),

M2 : (c · ((Σ2
0)+ · c ·#)+ · (Σ2

0)+, c · $ → $,Restart(6)),
(c · ((Σ2

0)+ · c ·#)+ · (Σ2
0)+ · c, d ·# → #,Restart(1)),

M3 : (c · ((Σ2
0)+ ·Σ0 · c ·#)+ · (Σ2

0)+ ·Σ0, c · $ → $,Restart(5)),
(c · ((Σ2

0)∗ ·Σ0 · c ·#)+ · (Σ2
0)∗ ·Σ0 · c, d ·# → #,Restart(4)),

(c · (u ·#)+ · $,Accept) for all u ∈ Σ2
0 ,

M4 : (c · ((Σ2
0)+ ·Σ0 · c ·#)+ · (Σ2

0)+ ·Σ0, c · $ → $,Restart(5)),
(c · ((Σ2

0)∗ ·Σ0 · c ·#)+ · (Σ2
0)∗ ·Σ0 · c, d ·# → #,Restart(3)),

(c · (u ·#)+ · $,Accept) for all u ∈ Σ2
0 ,

M5 : (c ·Σ+
0 , c ·# → #,Restart(1)),

M6 : (c ·Σ+
0 , c ·# → #,Restart(3)).

Clearly M0 to M6 are deterministic R-automata. Given an input of the form
w#w# · · ·#w, where |w| = 2m > 2, M0 verifies that all syllables are of even
length, and that they all end in the same letter, say c. This letter c is deleted
from the last syllable, and M5 is called, which simply deletes the last letter
(that is, c) from the first syllable. Now M1 is called, which in cooperation with
M2, removes the last letter from all the other syllables. Finally the tape content
w1#w1# · · ·#w1 is reached, where w = w1c. In this situationM1 (or M2) notices
that all syllables are of odd length, and that they all end with the same letter,
say d, which it then removes from the last syllable. Now using M6, M3, and M4

this letter is removed from all other syllables. This process continues until either
an error is detected, in which case M rejects, or until a tape content of the form
u#u# · · ·#u is reached for a word u ∈ Σ2

0 , in which case M accepts. Thus, we
see that M accepts the language Lcopy∗ working in mode = 1. ��

Contrasting the positive results above we have the following result.

Theorem 4. The language Lcopy∗ is not accepted by any strictly deterministic
CD-RRW-system that is working in mode = 1.

Proof. LetM = ((Mi, σi)i∈I , I0) be a strictly deterministic CD-RRW-system that
accepts the language Lcopy∗ in mode = 1. We can assume that I = {0, 1, . . . ,m},
that I0 = {0}, that σi = {i+ 1} for all i = 0, 1, . . . ,m− 1, and that σm = {s} for
some s ∈ I. Thus, each computation of M has the following structure:

w0 !c
s

M ws !cMs
ws+1 !c

m−s−1

M wm !cMm
wm+1 !cMs

wm+2 !c
m−s−1

M · · · ,

that is, it is composed of a head w0 !cs

M ws that consists of s cycles and of a
sequence of meta-cycles of the form ws !cMs

ws+1 !c
m−s−1

M wm !cMm
wm+1 that

consist of m− s+ 1 cycles each.
Let x := w#w(#w)n be an input word with w ∈ (Σ2

0)∗, where |w| and the
exponent n are sufficiently large. Then x ∈ Lcopy∗ , and hence, the computation
of M that begins with the restarting configuration q

(0)
0 cx$ is accepting. We

432 H. Messerschmidt and F. Otto

will now analyze this computation. The factors w of x and their descendants in
this computation will be denoted as syllables. To simplify the discussion we use
indices to distinguish between different syllables.
M must compare each syllable wi to all the other syllables. As |wi| = |w| is

large, it can compare wi to wj for some j �= i only piecewise. However, during
this process it needs to distinguish the parts that have already been compared
from those parts that have not. This can only be achieved by rewriting wi and
wj accordingly. Since no auxiliary symbols are available, this must be done by
rewrite operations that either delete those parts of wi and wj that have already
been compared, or that use the symbol # to mark the active positions within
wi and wj . Hence, it takes at least |w|/k many rewrite operations on wi and the
same number of rewrite operations on wj to complete the comparison, where
k is the maximal size of the read/write window of a component system of M.
As each rewrite operation is length-reducing, we see that after wi and wj have
been compared completely, the remaining descendants of wi and of wj are of
length at most (1−1/k) · |w|, that is, information on wi and on wj has been lost
during this process. It follows that M actually needs to compare wi to all other
syllables simultaneously.

Now assume that, for some j, no rewrite operation of the j-th meta-cycle is
performed on the first two syllables of x. Then from that point on, no rewrite
operation will be performed on the first syllable for many more meta-cycles.
Indeed, as all component systems of M are deterministic, a change has to be
propagated all the way from the third syllable back to the first syllable by a se-
quence of rewrites before another rewrite operation can affect w1. This, however,
means that at least |w2|/k many rewrite operations are applied to the second
syllable, while no rewrite operation is applied to the first syllable. As observed
above this destroys information on w2 such that it is not possible anymore to
verify whether or not w1 and w2 were identical.

It follows that at least one rewrite operation is applied to the first two syllables
in each meta-cycle. As each rewrite operation is length-reducing, this implies
that after at most 2 · |w|+ 1 many meta-cycles the first two syllables have been
completely erased. However, altogether these meta-cycles only execute (2 · |w|+
1) · (m − s + 1) many rewrite operations, that is, only some of the syllables
of x have been compared to w1 and to w2 during this process, provided that
n > (2 · |w|+ 1) · (m− s+ 1). It follows that L=1(M) �= Lcopy∗ . ��

Corollary 1. For all types X ∈ {R,RR,RW,RRW},

L=1(det-strict-CD-X) ⊂ L=1(det-global-CD-X).

Using similar techniques as in the proof of Theorem 4 the following result can
be shown.

Theorem 5. Lcopym is not accepted by any strictly deterministic CD-RRW-
system with less than m components working in mode = 1.

By L=1(det-strict-CD-X(m)) we denote the class of languages that are accepted
by strictly deterministic CD-systems of restarting automata of type X that have

Strictly Deterministic CD-Systems of Restarting Automata 433

m components and that work in mode = 1. As the m-fold copy language Lcopym

is accepted by a strictly deterministic CD-R-system with m components that is
working in mode = 1, the above result yields the following proper inclusion.

Corollary 2. For all types X ∈ {R,RR,RW,RRW} and all m ≥ 1,

L=1(det-strict-CD-X(m)) ⊂ L=1(det-strict-CD-X(m + 1)).

Thus, for each type X ∈ {R,RR,RW,RRW}, we have an infinite hierarchy be-
tween the class of languages accepted by deterministic restarting automata of
type X and the class of languages accepted by nonforgetting deterministic restart-
ing automata of that type. However, strictly deterministic CD-systems working
in mode t are more expressive.

Proposition 2. The language Lcopy∗ is accepted by a strictly deterministic CD-
RW-system working in mode t.

Proof. Lcopy∗ is accepted by the CD-RW-system M = ((Mi, σi)i∈I , I0) that is
specified by I := {0, 1, 2}, I0 := {0}, σ(0) := {1}, σ(1) := {2}, σ(2) := {0}.
Here M0,M1, and M2 are given through the following meta-instructions, where
Σ0 := {a, b} and c, d, e ∈ Σ0:

M0 : (c · ((Σ2
0)+ · cd ·#)+ · (Σ2

0)+, cd · $ → #$),
(c · cd · (# · cd)+ · $,Accept),

M1 : (c · (Σ2
0)+ · (## · (Σ2

0)+)∗, cd ·# · e→ ## · e),
M2 : (c · (Σ2

0)+ · (# · (Σ2
0)+)∗,## → #),

(c · (Σ2
0)+ · (# · (Σ2

0)+)+,#$ → $). ��

5 Concluding Remarks

We have seen that for restarting automata without auxiliary symbols the strictly
deterministic CD-systems yield an infinite hierarchy that lies strictly in be-
tween the deterministic restarting automata and the nonforgetting deterministic
restarting automata. However, the following related questions remain open:

1. Does this result extend to restarting automata with auxiliary symbols?
2. Are the locally deterministic CD-systems of restarting automata strictly

more expressive than the globally deterministic CD-systems of restarting
automata of the same type?

3. A nondeterministic CD-system of restarting automata is called strict if there
is only a single initial system (that is, |I0| = 1), and if the set of successors
is a singleton for each component. It is easily seen that strict CD-systems
are more expressive than restarting automata. However, is there a proper
hierarchy of strict CD-systems, based on the number of component systems,
that lies in between the (nondeterministic) restarting automata and the non-
forgetting restarting automata?

434 H. Messerschmidt and F. Otto

References

1. Buntrock, G.: Wachsende kontext-sensitive Sprachen. Habilitationsschrift, Fakultät
für Mathematik und Informatik, Universität Würzburg (1996)

2. Csuhaj-Varju, E., Dassow, J., Kelemen, J., Păun, G.: Grammar Systems. A Gram-
matical Approach to Distribution and Cooperation. Gordon and Breach, London
(1994)

3. Dassow, J., Păun, G., Rozenberg, G.: Grammar systems. In: Rozenberg, G., Sa-
lomaa, A. (eds.) Handbook of Formal Languages, vol. 2, pp. 155–213. Springer,
Heidelberg (1997)

4. Jančar, P., Mráz, F., Plátek, M., Vogel, J.: Restarting automata. In: Reichel, H.
(ed.) FCT 1995. LNCS, vol. 965, pp. 283–292. Springer, Heidelberg (1995)

5. Lautemann, C.: One pushdown and a small tape. In: Wagner, K. (ed.) Dirk Siefkes
zum 50. Geburtstag, Technische Universität Berlin and Universität Augsburg, pp.
42–47 (1988)

6. Messerschmidt, H., Otto, F.: On nonforgetting restarting automata that are deter-
ministic and/or monotone. In: Grigoriev, D., Harrison, J., Hirsch, E.A. (eds.) CSR
2006. LNCS, vol. 3967, pp. 247–258. Springer, Heidelberg (2006)

7. Messerschmidt, H., Otto, F.: Cooperating distributed systems of restarting auto-
mata. Intern. J. Found. Comput. Sci. (to appear)

8. Messerschmidt, H., Stamer, H.: Restart-Automaten mit mehreren Restart-
Zuständen. In: Bordihn, H. (ed.) Workshop Formale Methoden in der Linguistik
und 14. Theorietag Automaten und Formale Sprachen, Proc., pp. 111–116. Institut
für Informatik, Universität Potsdam (2004)

9. Oliva, K., Kvĕton̆, P., Ondrus̆ka, R.: The computational complexity of rule-based
part-of-speech tagging. In: Matoušek, V., Mautner, P. (eds.) TSD 2003. LNCS
(LNAI), vol. 2807, pp. 82–84, Springer, Heidelberg (2003)

10. Otto, F.: Restarting automata and their relations to the Chomsky hierarchy. In:
Ésik, Z., Fülöp, Z. (eds.) DLT 2003. LNCS, vol. 2710, pp. 55–74. Springer, Heidel-
berg (2003)

11. Otto, F.: Restarting automata. In: Ésik, Z., Martin-Vide, C., Mitrana, V. (eds.)
Recent Advances in Formal Languages and Applications. Studies in Computational
Intelligence, vol. 25, pp. 269–303. Springer, Heidelberg (2006)

12. Plátek, M., Lopatková, M., Oliva, K.: Restarting automata: Motivations and ap-
plications. In: Holzer, M. (ed.) Workshop Petrinets und 13. Theorietag Automaten
und Formale Sprachen, Institut für Informatik, Technische Universität München,
Garching, pp. 90–96 (2003)

Product Rules in Semidefinite Programming

Rajat Mittal and Mario Szegedy

Rutgers University

Abstract. In recent years we witness the proliferation of semidefinite
programming bounds in combinatorial optimization [1,5,8], quantum
computing [9,2,3,6,4] and even in complexity theory [7]. Examples to such
bounds include the semidefinite relaxation for the maximal cut problem
[5], and the quantum value of multi-prover interactive games [3,4]. The
first semidefinite programming bound, which gained fame, arose in the
late seventies and was due to László Lovász [11], who used his theta
number to compute the Shannon capacity of the five cycle graph. As
in Lovász’s upper bound proof for the Shannon capacity and in other
situations the key observation is often the fact that the new parameter
in question is multiplicative with respect to the product of the prob-
lem instances. In a recent result R. Cleve, W. Slofstra, F. Unger and S.
Upadhyay show that the quantum value of XOR games multiply under
parallel composition [4]. This result together with [3] strengthens the
parallel repetition theorem of Ran Raz [12] for XOR games. Our goal is
to classify those semidefinite programming instances for which the opti-
mum is multiplicative under a naturally defined product operation. The
product operation we define generalizes the ones used in [11] and [4].
We find conditions under which the product rule always holds and give
examples for cases when the product rule does not hold.

1 Introduction

The Shannon capacity of a graph G is defined by limn→∞ stbl(Gn)1/n, where
stbl(G) denotes the maximal independence set size of G. In his seminal paper
of 1979, L. Lovász solved the open question that asked if the Shannon capac-
ity of the five cycle, C5 is

√
5 [11]. The proof was based on that stbl(C2

5) = 5
and that the independence number of any graph G is upper bounded by a cer-
tain semidefinite programming bound, that he called ϑ(G). Lovász showed that
ϑ(C5) =

√
5, and that ϑ is multiplicative: ϑ(G × G′) = ϑ(G) × ϑ(G′), for any

two graphs, G and G′. These facts together with the super-multiplicativity of
stbl(G) are clearly sufficient to imply the conjecture.

In a recent result R. Cleve, W. Slofstra, F. Unger and S. Upadhyay show that
the quantum value of XOR games multiply under parallel composition [4]. The
quantum value of a XOR game arises as the solution of an associated semidefinite
program [14] and upper bounds the classical value of the game. The result, when
combined with the fact there is a relation between the classical and quantum
values of a multi-prover game [3] gives a new proof for the parallel repetition

E. Csuhaj-Varjú and Z. Ésik (Eds.): FCT 2007, LNCS 4639, pp. 435–445, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

436 R. Mittal and M. Szegedy

theorem of Ran Raz [12] at least for XOR games, which is stronger than the
original theorem of Raz when the game value approaches 1.

These successful applications of semidefinite programming bounds together
with other ones, such as bounding acceptance probabilities achievable with var-
ious computational devices for independent copies of a given computational
problem (generally known as “direct sum theorems”), point to the great use
of product theorems for semidefinite programming.

In spite of these successes we do not know of any work which systematically
investigates the conditions under which such product theorems hold. This is
what we attempt to do in this article. While we do not manage to classify all
cases, we hope that our study will serve as a starting point for such investigations.
We define a brand of semidefinite programming instances with significantly large
subclasses that obey the product rule. In Theorems 1 and 2 we describe two cases
when product theorems hold, while in Proposition 3 we give an example when
it does not. We also raise several questions that intuit that product theorems
always hold for “positive” instances, although that what should be the notion
of positivity is not yet clear. Our goal is to provoke ideas, and set the scene for
what one day might hopefully becomes a complete classification.

2 Affine Semidefinite Program Instances

We will investigate a brand of semidefinite programming instances, which is
described by a triplet π = (J,A, b), where

– J is a matrix of dimension n× n;
– A = (A(1), . . . , A(m)) is a list of m matrices, each of dimension n × n. We

may view A as a three-dimensional matrix Akij of dimensions n × n × m,
where the last index corresponds to the upper index in the list;

– b is a vector of length m.

With π we associate a semidefinite programming instance with optimal value
α(π):

α(π) = {maxJ ∗X | AX = b and X 7 0} (1)

We define dimension of the instance as the dimension of A. Here variable matrix
X has the same dimension (n× n) as J and also the elements of the list A. To
avoid complications we assume that all matrices involved are symmetric. The
operator that we denote by ∗ is the dot product (tr(JTX) =

∑
ij JijXij) of

matrices, so it results in a scalar. The set of m linear constraints are often of
some simple form, e.g. in the case of Lovász’s theta number all constraints are
either of the form Xij = 0 or Tr(X) = 1. In our framework the constraints can
generally be of the form

∑
i,j AkijXij = bk, and the only restriction they have

compared to the most general form of semidefinite programming instances is
that all relations are strictly equations as opposed to inequalities and equations.
These types of instances we call affine. In our notation the “scalar product” AX
simply means the vector (A(1) ∗X, . . . , A(m) ∗X).

Product Rules in Semidefinite Programming 437

We will need the dual of π, which we denote by π∗ (for the method to express
the dual see for example [13]):

{min y.b | yA− J 7 0} (2)

where y is a row vector of length m. Here yA is the matrix
∑m

k=1 ykA
(k). The

well known duality theorem for semidefinite programming states that the value
of the dual agrees with the value of the primal.

3 Product Instance

Definition 1. Let π1 = (J1, A1, b1) and π2 = (J2, A2, b2) be two semidefinite
instances with dimensions (n1, n1,m1) and (n2, n2,m2), respectively. We define
the product instance as π1 × π2 = (J1 ⊗ J2, A1 ⊗A2, b1 ⊗ b2), where A1 ⊗A2 is
by definition the list (A(k)

1 ⊗ A
(l)
2)k,l of length m1m2 of n1n2 × n1n2 matrices.

The product instance has dimensions (n1n2, n1n2,m1m2).

Although the above is a fairly natural definition, as it was pointed out in [10] in
the special case of the Lovász’s theta number, a slightly different definition gives
the same optimal value, which is useful in some cases. The idea is that in lucky
cases, when b1 and/or b2 have zeros, we may add new equations (extra to ones
in Definition 1) to the primal system representing the product instance without
changing its optimum value. The new instances that arise this way we call weak
product and denote by “×w,” even though there is a little ambiguity in the
definition (it will only be clear from the context to an individual instance which
equations we wish to add). Since if we add extra constraints to a maximization
problem, the objective value does not increase, we have that

Proposition 1. α(π1 ×w π2) ≤ α(π1 × π2).

In Section 6 we give precise definitions for weak products and investigate their
properties further. For the forthcoming sections we restrict ourselves to the prod-
uct as defined in Definition 1.

4 Product Solution

Definition 2. A subclass C of affine instances is said to obey the product rule
if α(π1 × π2) = α(π1)α(π2) for every π1, π2 ∈ C.

In section 5.4 we will give an example to an affine instance whose square does
not obey the product rule. Therefore, for the product rule to hold we need to
look for proper subclasses of all affine instances.

Let π1 and π2 be two affine instances with optimal solutions X1 and X2 for
the primal and optimal solutions y1 and y2 for the dual. The first instinct for
proving the product theorem would be to show that X1⊗X2 is a solution of the
product instance with objective value α(π1)α(π2), and y1 ⊗ y2 is a solution of

438 R. Mittal and M. Szegedy

the dual of the product instance with the same value. The above two potential
solutions for the product instance and its dual we call product-solution and dual
product-solution. In other words, in order to show that the product rule holds
for π1 and π2 it is sufficient to prove:

1. Feasibility of the product-solution: (A1 ⊗A2)(X1 ⊗X2) = b1 ⊗ b2;
2. Feasibility of the dual product-solution: y1 ⊗ y2(A1 ⊗A2)− J1 ⊗ J2 7 0;
3. Objective value of the primal product-solution: (J1 ⊗ J2) ∗ (X1 ⊗ X2) =

(J1 ∗X1)(J2 ∗X2);
4. Objective value of the dual product-solution: (y1 ⊗ y2).(b1 ⊗ b2) = (y1.b1)

(y2.b2).

We also need the positivity of X1⊗X2, but this is automatic from the positivity
of X1 and X2. Which of 1–4 fail to hold in general? Basic linear algebra gives
that conditions 1, 3 and 4 hold without any further assumption. Thus we already
have that:

Proposition 2. Let π1 and π2 be two affine instances. Then α(π1 × π2) ≥
α(π1)α(π2).

In what follows, we will examine cases when Condition 2 also holds.

5 The Missing Condition

In the sequel we will present two different sufficient conditions for Condition 2
of the previous section and we also derive a necessary condition for it (which
is also sufficient if we restrict our attention to an instance and its square), but
the latter expression uses y1 and y2, like Condition 2 itself. It remains a task
for the future to develop a necessary and sufficient condition whose criterion is
formulated solely in terms of the problem instances π1 and π2.

5.1 Positivity of Matrix J

Our first simple condition is the positivity of J .

Theorem 1. Assume that both J1 and J2 are positive semidefinite. Then α(π1×
π2) = α(π1)α(π2).

Proof. As we noted in Section 4 it is sufficient to show that Condition 2 of
that section holds. By our assumptions on y1 and y2 we have that y1A1 − J1

and y2A2 − J2 are positive semi-definite. So y1A1 + J1 and y2A2 + J2 are also
positive semi-definite, since they arise as sums of two positive matrices. For
instance, y1A1 + J1 = (y1A1 − J1) + 2J1. The above implies that

(y1A1−J1)⊗(y2A2+J2) = y1A1⊗y2A2−J1⊗y2A2+y1A1⊗J2−J1⊗J2 7 0. (3)

Also

(y1A1+J1)⊗(y2A2−J2) = y1A1⊗y2A2−y1A1⊗J2+J1⊗y2A2−J1⊗J2 7 0 (4)

Product Rules in Semidefinite Programming 439

Taking the average of the right hand sides of Equations (3) and (4) we obtain
that

y1A1 ⊗ y2A2 − J1 ⊗ J2 7 0, (5)

which is the desired Condition 2. (Note: It is easy to see that y1A1 ⊗ y2A2 =
y1 ⊗ y2(A1 ⊗ A2).)

Lovász theta number ([11]) is an example that falls into this category. Consider
the definition of Lovász theta number in [13]. Then J is the all 1′s matrix, which
is positive semidefinite. The matrix remains positive definite even if we consider
the weighted version of the theta number [10], in which case J is of the form
wwT for some column wector w.

5.2 All A(k) Are Block Diagonal, and J Is Block Anti-diagonal

The argument in the previous section is applicable whenever ycAc + Jc (c ∈
{1, 2}) are known to be positive semidefinite matrices. Let us state this explicitly:

Lemma 1. Whenever ycAc + Jc (c ∈ {1, 2}) are positive definite, where y1 and
y2 are the optimal solutions of π∗

1 and π∗
2 , respectively, then the product theorem

holds for π1 and π2.

This is the avenue Cleve et. al. take in [4]. Following their lead, but slightly
generalizing their argument we show:

Lemma 2. For a semidefinite programming instance π = (A, J, b) if the matrix
J is block anti-diagonal and if y is a feasible solution of the dual such that yA
is block diagonal then yA + J 7 0.

Block diagonal and anti-diagonal matrices have the following structure:

Block anti-diagonality Block diagonality(
0 M
MT 0

) (
P 0
0 Q

)
In our definition block diagonal and anti-diagonal matrices have two by two
blocks. We require that if J is block anti-diagonal and yA is block-diagonal,
then their rows and columns be divided to blocks in exactly the same way.

We will prove our claim by contradiction. Suppose yA and J are of the required
form but yA + J is not positive semidefinite. Then there exists a vector w, in
block form w = (w′, w′′) for which wT (yA+J)w is negative (we treat all vectors
as column vectors). Define v = (w′,−w′′). Now

vT (yA− J)v =
(w′,−w′′)T yA(w′,−w′′)− (w′,−w′′)TJ(w′,−w′′) =

(w′, w′′)T yA(w′, w′′) + (w′, w′′)TJ(w′, w′′) =
wT (yA+ J)w < 0.

440 R. Mittal and M. Szegedy

This implies that yA−J is not positive semidefinite, which is a contradiction
since by our assumption y is a solution of π∗. We can generalize the proof for
case when J is of the form J1 + J2, where J1 is of the form as before and J2 is
positive semidefinite (yA should still be block diagonal). Notice that the block
diagonality of yA automatically holds if A = (A(1), . . . , A(m)), where each A(k)

is block diagonal. We summarize the findings of this section in the following
theorem:

Theorem 2. Let π1 = (A1, J1, b1) and π2 = (A2, J2, b2) be affine instances such
that for c ∈ {1, 2}:

1. Ac = (A(1)
c , . . . , A

(m)
c), where each A

(k)
c is block diagonal;

2. Jc = J ′
c + J ′′

c (c ∈ {1, 2}), where J ′
c is block anti-diagonal and J ′′

c is positive.

(All blocked matrices have the same block divisions.) Then for π1 and π2 the
product theorem holds.

5.3 A Necessary Condition for the Feasibility of y1 ⊗ y2

In this section we show that the condition in Lemma 1 is not only sufficient, but
also necessary (or at least “half of it”), if we insist on the “first instinct” proof
method.

Lemma 3. For two instances π1 and π2, let y1 and y2 be optimal solutions of π∗
1

and π∗
2 , respectively. Then y1⊗y2 is a feasible solution of the dual of the product

instance (i.e. Condition 2 of section 4 holds) only if at least one of ycAc + Jc
(c ∈ {1, 2}) are positive definite.

Proof. Let us assume the contrary. Then we have vectors wc (c ∈ {1, 2}) such
that wT

c (ycAc + Jc)wc < 0 (c ∈ {1, 2}). Our assumptions imply that wT
c (ycAc −

Jc)wc ≥ 0 (c ∈ {1, 2}). Now it holds that

(w1 ⊗ w2)T ((y1A1 − J1)⊗ (y2A2 + J2))(w1 ⊗ w2) < 0
⇒ (w1 ⊗ w2)T (y1A1 ⊗ y2A2 − J1 ⊗ J2 − J1 ⊗ y2A2 + y1A1 ⊗ J2)(w1 ⊗ w2) < 0

⇒ (w1 ⊗ w2)T (y1A1 ⊗ y2A2 − J1 ⊗ J2)(w1 ⊗ w2) +
(w1 ⊗ w2)T (y1A1 ⊗ J2 − J1 ⊗ y2A2)(w1 ⊗ w2) < 0

By similar argument, considering now the inequality

(w1 ⊗ w2)T ((y1A1 + J1)⊗ (y2A2 − J2))(w1 ⊗ w2) < 0,

we can show that

(w1 ⊗ w2)T (y1A1 ⊗ y2A2 − J1 ⊗ J2)(w1 ⊗ w2) +
(w1 ⊗ w2)T (−y1A1 ⊗ J2 + J1 ⊗ y2A2)(w1 ⊗ w2) < 0

By averaging the two inequalities we get that

(w1 ⊗ w2)T (y1A1 ⊗ y2A2 − J1 ⊗ J2)(w1 ⊗ w2) < 0

This contradicts to the assumption of the lemma that y1⊗y2 is a feasible solution
of π1×π2 (which in turn implies that y1A1⊗y2A2−J1⊗J2 is positive definite).

Product Rules in Semidefinite Programming 441

One might suspect that the full converse of Lemma 1 holds, i.e. in the case
of the feasibility of y1 ⊗ y2 both y1A1 + J1 and y2A2 + J2 should be positive
semi-definite, but in the next section we give a counter-example to this.

5.4 Maximum Eigenvalue of a Matrix

In this section we give an example when the product theorem does not hold.
The example is the maximal eigenvalue function of a matrix, which, in contrast
to the similar notion of spectral norm, is not multiplicative. Indeed, let M be
a matrix with maximal eigenvalue 1 and minimal eigenvalue −2. Then, using
the fact that under tensor product the spectra of matrices multiply, we get that
M ⊗M has maximal eigenvalue 4 �= 12 (the corresponding spectral norms would
be 2 for M and 4 for M ⊗M).

Proposition 3. The maximal eigenvalue of a matrix can be formulated as the
optimal value of an affine semidefinite programming instance. This instance is
not multiplicative.

Proof. First notice that

maxeigenvalue(M) = {minλ | λI −M 7 0}. (6)

This is a dual (minimization) instance. Observe that m = 1, n′ = n, A = (I),
J = M and b = 1. For the sake of completeness we describe the primal problem:

maxeigenvalue(M) = {max
∑

1≤i,j≤n

MijXij | TrX = 1; X 7 0}. (7)

The product instance associated with two matrices, M1 and M2, has parameters
I = I1⊗I2, M = M1⊗M2 and b = 1. Since I is an identity matrix of appropriate
dimensions, the optimum value of this instance is exactly the maximal eigenvalue
of M1 ⊗M2. On the other hand, as was stated in the beginning of the section,
the maximal eigenvalue problem is not multiplicative.

It is educational to see where the condition of Proposition 3 fails. Recall that
J = M , A = (I) and y = λ (the maximal eigenvalue of M). The point is that
even when λI−M is positive, λI+M is not necessarily. On the other hand, if M
is positive then λI−M 7 0 ⇒ λI+M 7 0, and indeed the maximum eigenvalue
of positive matrices multiply under tensor product. As a perhaps far-fetched
conjecture we ask:

Conjecture 1. For an affine instance π = (A, J, b) define

α+(π) = {max |J ∗X | | AX = b and X 7 0}.

Is it true that α+ is always multiplicative? Here α+ represents a generalized
“spectral norm.”

442 R. Mittal and M. Szegedy

We can extend the above example to show that in Lemma 3 we cannot exchange
the “one of” to “both.” Let M1 be the matrix with eigenvalues −2 and 1 and
let M2 be the matrix with eigenvalues 0 and 1. Then y1 = 1 and y2 = 1, so
y1 ⊗ y2 = 1, which is a solution of

{minλ | λI −M1 ⊗M2 7 0}, (8)

even though I +M1 is not positive semidefinite.

6 The Weak Product

A surprising observation about the theta number of Lovász, well described in
[10], is that it is multiplicative with two different notions of products:

Definition 3 (Strong product “×” of graphs). (u′, u′′)−− (v’,v”) or (u′, u′′)
= (v′, v′′) in G′ ×G′′ if and only if (u′ −− v′ or u′ = v′ in G′) and (u′′ −− v′′ or
u′′ = v′′ in G′′).

and

Definition 4 (Weak product “×w” of graphs). G′ ×w G
′′ = G′ ×G′′.

Recall that ϑ(G) is defined by [13] (by J we denote the matrix with all 1 ele-
ments):

ϑ(G) = {maxJ ∗X | I ∗X = 1; ∀(i, j) ∈ E(G) : Xi,j = 0; X 7 0}. (9)

That is, every edge gives a new linear constraint, increasing m by one. In general,
E(G′ ×w G

′′) ⊇ E(G′ ×G′′), because (u′, u′′) −− (v′, v′′) is an edge of G′ ×G′′

if and only if both of its projections are edges or identical coordinates, but
(u′, u′′) �= (v′, v′′). On the other hand, (u′, u′′) −− (v′, v′′) is an edge of G′×wG

′′

if and only if there exists at least one projection which is an edge.
It is easy to see that the constraint in Expression (9) for ϑ(G′ × G′′) has a

constraint for every constraint pair in the corresponding expression for G′ and
G′, so the strong product is the one that corresponds to our usual product notion
that appears in previous sections. In contrast, when we write down Expression
(9) for ϑ(G′ ×w G

′′), we see a lot of extra constrains.
How do they arise? In general, assume that we know that the product solution

X1 ⊗X2 is the optimal solution for π1 × π2 (which is indeed the case under the
conditions we considered in earlier sections). Assume furthermore that some
coordinate i of b1 is zero. Then A

(i)
1 ∗ X1 = 0. Now we may take any n2 × n2

matrix B, and it will hold that

(A(i)
1 ⊗B) ∗ (X1 ⊗X2) = (A(i)

1 ∗X1)(B ∗X2) = 0.

Therefore adding matrices of the form A
(i)
1 ⊗ B to A1 ⊗A2 and setting the the

corresponding entry of the longer b vector of the product instance to zero will

Product Rules in Semidefinite Programming 443

not influence the objective value. The same can be said about about exchanging
the roles of π1 and π2.

We can easily see that the weak product in the case of the theta number arises
this way. That what equations to the product system we wish to add this way is
a matter of taste, and we believe it depends on the specific class of semidefinite
programming instances under study. We summarize the finding of this section
in the following proposition

Proposition 4. Assume that for affine instances π1 and π2 the multiplicative
rule holds. Then if define a system π1×w π2 that we call “weak product” by con-
veniently adding arbitrary number of new constrains to the system that follow the
construction rules described above (in particular, every added constraint should
be associated with a zero entry of b1 or b2), the multiplicative rule will also hold
for the weak product.

The above lemma explains why the theta number of Lovász is multiplicative
with respect to the weak product of graphs.

7 Some Open Problems

We formulate some further open problems all coming from the intuition that
there must be a notion of “positive” affine instances for which the product the-
orem always holds.

Conjecture 2. Is it true that if for an instance π it holds that α(π2) = α(π)2,
then for every d > 2 integer it holds that α(πd) = α(π)d.

The next question relates to monotonicity:

Conjecture 3. Let π1 = (A1, J1, b1) and π2 = (A2, J2, b2) be the affine instances
for which the product theorem holds. Then it also holds for the instance pair
π′

1 = (A1, J1 + J, b1) and π′
2 = (A2, J2 + J ′, b2), where J and J ′ are positive

matrices.

The following question suggests that the more negative J is, the more special A
has to be. In particular, if J is not positive then at least some A is excluded.

Conjecture 4. For every strictly non-positive J (i.e. J has a negative eigenvalue)
there are A and b such that for the instance π = (A, J, b) it holds that α(π2) �=
α(π)2.

On the other hand, we may conjecture that whether the product theorem holds
or not is entirely independent of b:

Conjecture 5. Let π1 = (A1, J1, b1) and π2 = (A2, J2, b2) be the affine instances
for which the product theorem holds. Then it also holds for the instance pair
π′

1 = (A1, J1, b1 + b) and π′
2 = (A2, J2, b2 + b′) for any b and b′.

444 R. Mittal and M. Szegedy

Another question is: What are those instances π (if there are any) for which the
product theorem always holds with any other instance?

8 Conclusions

We have started to systematically investigate product theorems for affine in-
stances of semidefinite programming. Our theorems imply the important result
of Cleve. et al. [4] about the multiplicativity of the quantum value for the XOR
games and the multiplicativity of the theta number of Lovász [11]. Although
their proof came both logically and chronologically first, the mere fact that the
proposed theory has such immediate consequences, in our opinion serves as a
worthwhile motivation for its development. Added to this that various direct
sum results for different computational models would also be among the imme-
diate consequences of the theory, we conclude that we have hit upon a basic
research topic with immediate and multiple applications in computer science.
The issue, therefore, at this point is not the number of potential applications,
which seems abundant, but rather the relative scarcity of positive results. In
the paper we have formulated conjectures that we hope will raise interest in
researchers who intend to study this topic further.

References

1. Arora, S., Rao, S., Vazirani, U.: Expander Flows, Geometric Embeddings and
Graph Partitioning. In: Proceedings of Symposium on the Theory of Computing
(2004)

2. Barnum, H., Saks, M.E., Szegedy, M.: Quantum query complexity and semi-definite
programming. In: IEEE Conference on Computational Complexity, pp. 179–193
(2003)

3. Cleve, R., Hoyer, P., Toner, B., Watrous, J.: Consequences and Limits of Nonlocal
Strategies. In: IEEE Conference on Computational Complexity, pp. 236–249 (2004)

4. Cleve, R., Slofstra, W., Unger, F., Upadhyay, S.: Strong parallel repetition Theorem
for Quantum XOR Proof Systems: quant-ph (August 2006)

5. Goemans, M.X., Williamson, D.P.: Approximation Algorithms for MAX-3-CUT
and Other Problems Via Complex Semidefinite Programming. Journal of Com-
puter and System Sciences (Special Issue for STOC 2001), 68, 442–470 (2004)
(Preliminary version in Proceedings of 33rd STOC, Crete, 443–452 (2001))

6. Hoyer, P., Lee, T., Spalek, R.: Negative weights makes adversaries stronger, quant-
ph/0611054

7. Laplante, S., Lee, T., Szegedy, M.: The Quantum Adversary Method and Classical
Formula Size Lower Bounds. Computational Complexity 15(2), 163–196 (2006)

8. Karger, D.R., Motwani, R., Sudan, M.: Approximate Graph Coloring by Semidef-
inite Programming. J. ACM 45(2), 246–265 (1998)

9. Kitaev(unpublished proof). Quantum Coin Tossing. Slides at the archive of MSRI
Berkeley

10. Knuth, D.E.: The Sandwich Theorem. Electron. J. Combin. (1994)

Product Rules in Semidefinite Programming 445

11. Lovász, L.: On the Shannon capacity of a graph. IEEE Transactions on Information
Theory (January 1979)

12. Raz, R.: A Parallel Repetition Theorem. SIAM Journal of Computing 27(3), 763–
803 (1998)

13. Szegedy, M.: A note on the theta number of Lovász and the generalized Delsarte
bound. In: FOCS (1994)

14. Tsirelson, B.S.: Quantum analogues of the Bell inequalities: The case of two spa-
tially separated domains. Journal of Soviet Mathematics 36, 557–570 (1987)

Expressive Power of LL(k) Boolean Grammars�

Alexander Okhotin

Academy of Finland and Department of Mathematics,
University of Turku, FIN-20014 Turku, Finland

alexander.okhotin@utu.fi

Abstract. The family of languages generated by Boolean grammars
and usable with recursive descent parsing is studied. It is demonstrated
that Boolean LL languages over a unary alphabet are regular, while
Boolean LL subsets of Σ∗a∗ obey a certain periodicity property, which,
in particular, makes the language {anb2n | n
 0} nonrepresentable. It
is also shown that {anbncs | n
 0, s ∈ {a, b}} is not generated by
any linear conjunctive LL grammar, while linear Boolean LL grammars
cannot generate {anbnc∗ | n
 0}.

1 Introduction

Boolean grammars [5] are an extension of the context-free grammars, in which
the rules may contain explicit Boolean operations. While context-free grammars
can combine syntactical conditions using only disjunction (effectively specified
by multiple rules for a single symbol), Boolean grammars additionally allow
conjunction and negation. The extended expressive power of Boolean grammars
and their intuitive clarity make them a much more powerful tool for specifying
languages than the context-free grammars. Another important fact is that the
main context-free parsing algorithms, such as the Cocke–Kasami–Younger, the
recursive descent and the generalized LR, can be extended to Boolean grammars
without an increase in computational complexity [5,6,7].

Though the practical properties of Boolean grammars seem to be as good as
in the case of the more restricted context-free grammars, theoretical questions
for Boolean grammars present a greater challenge. Already a formal definition
of Boolean grammars involves certain theoretical problems [2,5]. A major gap
in the knowledge on these grammars is the lack of methods of proving non-
representability of languages [5]. Even though the family generated by Boolean
grammars has been proved to be contained in DTIME (n3)∩DSPACE(n), there is
still no proof that any context-sensitive language lies outside of this class.

Results of the latter kind are hard to obtain for many interesting classes of
automata and grammars. Consider the family of trellis automata, also known as
one-way real-time cellular automata, which were studied since 1970s, and which
have recently been proved to be equal in power to a subclass of Boolean grammars
[4]. No methods of establishing nonrepresentability of languages in this class were

� Supported by the Academy of Finland under grant 118540.

E. Csuhaj-Varjú and Z. Ésik (Eds.): FCT 2007, LNCS 4639, pp. 446–457, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Expressive Power of LL(k) Boolean Grammars 447

known for two decades, until the first such result by Yu [10], who established a
pumping lemma for a special case. Only a decade later the first context-free lan-
guage not recognized by these automata was found by Terrier [9]. Another exam-
ple is given by growing context-sensitive languages, for which a method of proving
nonrepresentability was discovered by Jurdzinski and Loryś [1].

The purpose of this paper is to establish some limitations of the expressive
power of the subcase of Boolean grammars to which the recursive descent parsing
is applicable: the LL(k) Boolean grammars [7]. Already for this class, obtain-
ing nonrepresentability proofs presents a challenge: consider that there exists an
LL(1) linear conjunctive grammar for the language of computations of a Turing
machine, which rules out a general pumping lemma. There also exists an LL(1)
Boolean grammar for a P-complete language [8], which shows computational
nontriviality of this class. This paper proposes several methods for proving non-
representability of languages by these grammars, which become the first results
of such kind in the field of Boolean grammars.

Following a definition of Boolean grammars in Section 2, recursive descent
parsers for Boolean grammars and their simple formal properties are described
in Sections 3 and 4. In Section 5 it is proved that Boolean LL grammars over a
unary alphabet generate only regular languages. Section 6 considers subsets of
Σ∗a∗ representable by Boolean LL grammars and establishes a periodicity prop-
erty of such languages, which, in particular, implies nonrepresentability of the
language {anb2n |n
 0}. Stronger nonrepresentability results for two subclasses
of Boolean LL grammars with linear concatenation are obtained in Sections 7
and 8. Based on these results, in Section 9, a detailed hierarchy of language
families is obtained.

2 Boolean Grammars and Their Non-left-Recursive
Subset

Definition 1 ([5]). A Boolean grammar is a quadruple G = (Σ,N, P, S), where
Σ and N are disjoint finite nonempty sets of terminal and nonterminal symbols
respectively; P is a finite set of rules of the form

A→ α1& . . .&αm&¬β1& . . .&¬βn, (1)

where m+ n
 1, αi, βi ∈ (Σ ∪N)∗; S ∈ N is the start symbol of the grammar.

Let us further assume that m
 1 and n
 0 in every rule (1). Note that if
m = 1 and n = 0 in every such rule, then a context-free grammar is obtained.
An intermediate family of conjunctive grammars [3] has m
 1 and n = 0 in
every rule. Linear subclasses of Boolean, conjunctive and context-free grammars
are defined by the additional requirement that αi, βi ∈ Σ∗ ∪Σ∗NΣ∗.

For each rule (1), the objects A → αi and A → ¬βj (for all i, j) are called
conjuncts, positive and negative respectively, and αi and βj are their bodies.
The notation A→ ±αi and A→ ±βj is used to refer to a positive or a negative
conjunct with the specified body.

448 A. Okhotin

The intuitive semantics of a Boolean grammar is fairly clear: a rule (1) spec-
ifies that every string that satisfies each of the conditions αi and none of the
conditions βi is therefore generated by A. However, constructing a mathematical
definition of a Boolean grammar has proved to be a rather nontrivial task. Gen-
erally, a grammar is interpreted as a system of language equations in variables
N , in which the equation for each A ∈ N is

A =
⋃

A→α1&...&αm&¬β1&...&¬βn∈P

[m⋂
i=1

αi ∩
n⋂

j=1

βj

]
(2)

The vector (. . . , LG(A), . . .) of languages generated by the nonterminals of the
grammar is defined to be a solution of this system. Since this system, in general,
may have no solutions or multiple solutions, this definition requires more precise
conditions, which have been a subject of research [2,5].

Fortunately, for the subclass of Boolean grammars studied in this paper, the
formal definition is much simplified. For a recursive descent parser to work cor-
rectly, a grammar needs to satisfy the following strong requirement.

Definition 2 ([7]). Let G = (Σ,N, P, S) be a Boolean grammar. The relation
of context-free reachability in one step, �, is a binary relation on the set of
strings with a marked substring {α〈β〉γ | α, β, γ ∈ (Σ ∪N)∗}, defined as

α〈βAγ〉δ � αβη〈σ〉θγδ,
for all α, β, γ, δ ∈ (Σ ∪N)∗, A ∈ N and for all conjuncts A→ ±ησθ.

Definition 3 ([7]). A Boolean grammar G = (Σ,N, P, S) is said to be strongly
non-left-recursive if and only if for all A ∈ N and θ, η ∈ (Σ ∪ N)∗, such that
ε〈A〉ε �+ θ〈A〉η, it holds that ε /∈ LG+(θ), where G+ is a conjunctive grammar
obtained from G by removing all negative conjuncts from every rule.

The height of a nonterminal A, denoted h(A), is the greatest number of steps
in a derivation ε〈A〉ε �∗ θ〈B〉η, where ε ∈ LG+(θ) and B ∈ N .

For every strongly non-left-recursive grammar, the corresponding system of equa-
tions (2) has a unique solution [7]. Then, for every A ∈ N , LG(A) is defined as
the value of A in this solution. Let L(G) = LG(S).

Consider the following two simple examples of Boolean grammars (both are
strongly non-left-recursive):

Example 1. The language {anbncn | n
 0} is linear conjunctive. The grammar,
the corresponding system of equations and its unique solution are as follows:

S → A&C
A→ aA | D
D → bDc | ε
C → aCc | B
B → bB | ε

S = A ∩ C
A = aA ∪D
D = bDc ∪ ε
C = aCc ∪B
B = bB ∪ ε

LG(S) = {anbncn | n
 0}
LG(A) = {aibjck | j = k}
LG(D) = {bmcm |m
 0}
LG(C) = {aibjck | i = k}
LG(B) = b∗

It is based upon the representation of {anbncn | n
 0} as LG(A) ∩ LG(C).

Expressive Power of LL(k) Boolean Grammars 449

Example 2. The following grammar [8] generates a P-complete language:

S → E&¬AbS&¬CS
A→ aA | ε

C → aCAb | b
E → aE | bE | ε

Note that the entire family generated by Boolean grammars is contained in
DTIME(n3) ⊂ P [5], and hence this language is among the hardest of its kind.

3 Boolean Recursive Descent Parser

A recursive descent parser for a Boolean grammar uses a parsing table similar
to the well-known context-free LL table. Let k
 1. For a string w, define

Firstk(w) =
{
w, if |w| � k
first k symbols of w, if |w| > k

This definition can be extended to languages as Firstk(L) = {Firstk(w)|w ∈ L}.
Define Σ�k = {w | w ∈ Σ∗, |w| � k}.

Definition 4 ([7]). A string v ∈ Σ∗ is said to follow σ ∈ (Σ ∪N)∗ if ε〈S〉ε �
θ〈σ〉η for some θ, η ∈ (Σ ∪N)∗, such that v ∈ LG(η).

Definition 5 ([7]). Let G = (Σ,N, P, S) be a strongly non-left-recursive
Boolean grammar, let k > 0. An LL(k) table for G is a function Tk : N×Σ�k →
P ∪ {−}, such that for every rule A → ϕ and u, v ∈ Σ∗, for which u ∈ LG(ϕ)
and v follows A, it holds that Tk(A,F irstk(uv)) = A→ ϕ.

A Boolean grammar is said to be LL(k) if such a table exists.

Both grammars in Examples 1–2 are LL(1). For the grammar in Example 1,
consider that ε〈S〉ε �+ a〈B〉c, and therefore T (B, c) = B → ε and T (B, b) =
B → bB, while the value of T (B, a) can be anything in {B → ε,B → bB,−}.

A recursive descent parser, as in the context-free case, contains a procedure
for each terminal and nonterminal symbol. There are two global variables used
by all procedures: the input string w = w1w2 . . . w|w| and a positive integer p
pointing at a position in this string. Each procedure s(), where s ∈ Σ∪N , starts
with some initial value of this pointer, p = i, and eventually either returns,
setting the pointer to p = j (where i � j � |w|), or raises an exception, in the
sense of an exception handling model of, e.g., C++.

The text of procedures corresponding to every terminal a ∈ Σ and to every
nonterminal A ∈ N is given in Figure 1 along with the main procedure [7].
Procedures a() are as in the context-free case. Procedure A() chooses a rule
using the parsing table and then proceeds checking the conjuncts one by one.
The code for the first conjunct A → α1 stores the initial value of the pointer
in the variable start, and remembers the end of the substring recognized by
α1 in the variable end. Every subsequent positive conjunct A → αi is tried
starting from the same position start, and the variable end is used to check that
it consumes exactly the same substring. The code for every negative conjunct

450 A. Okhotin

Fig. 1. Boolean recursive descent parser: procedures A(), a() and main()

tries to recognize a substring in the same way, but reports a successful parse if
and only if the recognition is unsuccessful, thus implementing negation.

The correctness of Boolean recursive descent has been established as follows:

Lemma 1 ([7]). Let k
 1. Let G = (Σ,N, P, S) be an LL(k) Boolean gram-
mar. Let T : N × Σ�k → P ∪ {−} be an LL(k) table for G, let the set of
procedures be constructed with respect to G and T . Then, for every y, z, z̃ ∈ Σ∗

and s1, . . . , s
 ∈ Σ ∪ N (�
 0), such that z follows s1 . . . s
 and Firstk(z) =
Firstk(z̃), the code s1(); . . . ; s
(), executed on the input yz̃,

– returns, consuming y, if y ∈ LG(s1 . . . s
);
– raises an exception, if y /∈ LG(s1 . . . s
).

Expressive Power of LL(k) Boolean Grammars 451

4 Simple Formal Properties

A few technical results need to be established for use in the subsequent argu-
ments. There is nothing interesting in their proofs.

Definition 6. An LL(k) Boolean grammar G = (Σ,N, P, S) is said to be well-
behaved, if, for every A ∈ N , (i) L(A) �= ∅ and (ii) there exist θ, η ∈ (Σ ∪N)∗,
such that ε〈S〉ε � θ〈A〉η. The grammar G = (Σ, {S}, {S → aS}, S) generating
∅ is also considered well-behaved.

Lemma 2. For every LL(k) Boolean grammar G = (Σ,N, P, S) there exists an
equivalent well-behaved LL(k) Boolean grammar.

Lemma 3. Let G = (Σ,N, P, S) be a well-behaved LL(k) Boolean grammar.
Then, for every A ∈ N , the grammar G′ = (Σ,N, P,A) is a well-behaved LL(k)
Boolean grammar, and LG′(C) = LG(C) for all C ∈ N .

Lemma 4. Let G = (Σ,N, P, S) be a well-behaved LL(k) Boolean grammar, let
a ∈ Σ. Then there exists a well-behaved LL(k) Boolean grammar for L(G) ∩ a∗.

Lemma 5. For every well-behaved LL(k) Boolean grammar G there exists and
can be effectively constructed a well-behaved LL(k) Boolean grammar G′, such
that L(G′) = L(G) and for each nonterminal A in G′ there is either one or
more rules of the form A → B1& . . .&Bm&¬C1& . . .&¬Cn, or a single rule of
the form A→ BC, A→ a or A→ ε.

5 Boolean LL(k) Grammars over a Unary Alphabet

Context-free grammars over a one-letter alphabet are known to generate only
regular languages, and linear conjunctive grammars have the same property.
On the other hand, Boolean grammars can generate the nonregular language
{a2n | n
 1} [5]. We shall now demonstrate that Boolean LL(k) grammars over
the unary alphabet generate only regular languages, and hence are weaker in
power than Boolean grammars of the general form.

Theorem 1. Every Boolean LL(k) language over a unary alphabet is regular.

The following lemma is an essential component of the proof:

Lemma 6. Let G = (Σ,N, P, S) be a well-behaved LL(k) Boolean grammar, let
B ∈ N , a ∈ Σ and let some string in akΣ∗ follow B. Then there exists at most
one number i
 0, such that ai ∈ LG(B).

Proof. Supposing the contrary, let ai1 , ai2 ∈ L(B), where 0 � i1 � i2, and let
am, where m
 k, be a string that follows B. Consider the string am+(j2−j1), for
which m+(j2−j1)
 k as well. By Lemma 1, ai1 ∈ L(B) implies that B() returns
on the input w1 = ai1am+(j2−j1), consuming ai1 . On the other hand, ai2 ∈ L(B)
implies that B() should return on w2 = ai2am, consuming ai2 . Since w1 = w2,
the computations of B() on w1 and w2 are actually the same computation, and
hence i1 and i2 must coincide, proving the claim. ��

452 A. Okhotin

Proof (Theorem 1). According to Lemmata 2 and 5, there is no loss of generality
in the assumption that the given language is generated by a well-behaved LL(k)
Boolean grammar G = ({a}, N, P, S), such that for every A ∈ N the set P
contains either one or more rules of the form A→ D1& . . .&Dq&¬E1& . . .&¬Er,
or a single rule of the form A→ BC, A→ a or A→ ε.

Let us prove that in every rule A → BC, if L(C) �⊆ a�k−1, then L(B) is a
singleton. By assumption, there exists aj ∈ L(C), where j
 k. Let a
 be a string
that follows A, then aj+
 ∈ aka∗ follows B. Since we know that L(B) ⊆ a∗ and
L(B) �= ∅, Lemma 6 states that |L(B)| = 1.

Now let us reconstruct the grammar to show that L(G) is regular. For every
rule A → BC, such that L(B) is a singleton, replace the rule with the rule
A → aiC, where L(B) = {ai}. If L(B) is not a singleton, then L(C) ⊆ a�k by
the claim above, and the rule can be equivalently replaced with {A→ aiB | ai ∈
L(C)}. The system of language equations corresponding to the transformed
grammar has the same set of solutions as the original system, that is, it has
a unique solution (. . . , LG(A), . . .). Since the system uses one-sided concatena-
tion, all components of this solution are regular. ��

Corollary 1. Let G = (Σ,N, P, S) be a well-behaved Boolean LL(k) grammar.
Then, for every a ∈ Σ and for every A ∈ N , the language LG(A)∩a∗ is regular.

Proof. Consider the grammar G′ = (Σ,N, P,A). According to Lemma 3, G′ is
a well-behaved Boolean LL(k) grammar generating LG(A). Then, by Lemma 4,
there exists a well-behaved Boolean LL(k) grammar G′′, such that L(G′′) =
LG(A) ∩ a∗. This language is regular by Theorem 1. ��

6 Nonrepresentability Results for Subsets of Σ∗a∗

Let us establish a method of proving nonrepresentability of some languages over
non-unary alphabets. This method exploits long blocks of identical letters in a
certain similarity to Yu’s [10] nonrepresentability argument for trellis automata.

Theorem 2 (Periodicity theorem). For every Boolean LL(k) language L ⊆
Σ∗ there exist constants d, d′, p
 0, such that for all w ∈ Σ∗, a ∈ Σ, n

d · |w|+ d′ and i
 0, wan ∈ L if and only if wan+ip ∈ L.

Proof. By Lemmata 2 and 5, assume that L is generated by a well-behaved
LL(k) Boolean grammar G = (Σ,N, P, S), in which, for every A ∈ N , there is
either one or more rules of the form A → D1& . . .&Dq&¬E1& . . .&¬Er, or a
unique rule of the form A→ BC, A→ a or A→ ε.

According to Corollary 1, for every A ∈ N and a ∈ Σ, the set LG(A) ∩ a∗
is regular. Let d(A, a)
 0 and p(A, a)
 1 be numbers, such that L(A) ∩ a∗

is ultimately periodic starting from d(A, a) and with the least period p(A, a).
Define p = lcmA,a p(A, a), d0 = maxA,a d(A, a) and d = d0 · |N |.

The first claim is that if A() returns on a string of the form wa∗ without
seeing the end of the string, then the number of a’s in the tail cannot exceed
d · (|w| + 1). To prove this inductively, a more elaborate formulation is needed:

Expressive Power of LL(k) Boolean Grammars 453

Claim 2.1. If A() returns on wanat (where w ∈ Σ∗, n
 0, t
 k) consuming
wan, and any string in aka∗ follows A, then

n < d · |w|+ d0 · |X |+ 1 (3)

where X ⊆ N is the set of all nonterminals X, such that in course of the com-
putation of A() the procedure X() is ever called on wanat.

The proof is an inductive analysis of the computation of A(), which reveals that
the parser must be matching the symbols of w to the first symbols of an. The
essence of this claim is that if there are too many as, then the parser cannot
keep count.

Claim 2.2. Let w ∈ Σ+, 0 � t < k and n
 d · (|w| + 1) + d0 + p + k − t + 1,
and suppose at follows A. Then, if wan ∈ LG(A), then wan+p ∈ LG(A) and
wan−p ∈ LG(A).

The proof of this claim analyzes the generation of wan, using Claim 2.1 to single
out a nonterminal C generating a sufficiently long sequence of as. Then the
periodicity of L(C) ∩ a∗ is used to pump this sequence.

Finally, define d′ = d + d0 + p + k − t + 1, and the statement of the theorem
follows from Claim 2.2. ��

Corollary 2. If a language of the form {anbf(n) | n
 1}, where f : N → N is
an integer function, is Boolean LL, then the function f(n) is bounded by C · n
for some constant C
 1.

Proof. By Theorem 2, there exist constants d, d′, p
 0, such that for every
string anb
 ∈ L with �
 dn + d′, it holds that anb
+p ∈ L. Since, for every an,
the language L contains only one string of the form anb∗, this condition should
never hold, that is, for every anb
 ∈ L we must have � < dn+d′. In other words,
f(n) < dn+ d′ � (d + d′)n, and setting C = d+ d′ proves the theorem. ��

Example 3. The linear conjunctive language {anb2n | n
 0} is not Boolean LL.

7 Linear Conjunctive LL Grammars

Consider the family of languages generated by linear conjunctive grammars sat-
isfying the definition of an LL(k) Boolean grammar. Though these grammars
are capable of specifying such a sophisticated language as the language of com-
putations of a Turing machine, it turns out that some very simple languages are
beyond their scope:

Theorem 3. Let Σ be an alphabet, let a, b ∈ Σ (a �= b). Then, for every lan-
guage L ⊆ Σ∗, L · {a, b} is linear conjunctive LL if and only if L is regular.

454 A. Okhotin

Proof. The proof in one direction is trivial: if L is regular, then so is L·{a, b}, and
a finite automaton for the latter language can be transcribed as an LL(1) linear
context-free grammar. Let us show that an LL(k) linear conjunctive grammar
for L · {a, b} can be effectively transformed to a finite automaton for L. Let G =
(Σ,N, P, S) be an LL(k) linear conjunctive grammar for L, let T : N×Σ�k → P
be a parsing table.

The first claim states that as long as a procedure B() cannot see the end of
the input in the beginning of the computation (that is, it is outside of the range
of the lookahead), it must read the entire input. Otherwise it would have to
decide in the beginning whether the last symbol is a or b, which cannot be done
before seeing this last symbol.

Claim 3.1. Let w ∈ L and s ∈ {a, b}. If the successful computation of the parser
on ws contains a call to B() on a suffix yz, with ws = xyz and |yz| > k, which
returns, consuming y, then z = ε and ε follows B.

Let us now define a new grammar G′ = (Σ,N, P ′, S) as follows. Let m be the
greatest length of the right-hand side of a rule in P . Every rule of the form
A → u (u ∈ Σ∗) or A → u1B1& . . .&unBn in P is in P ′ as well. In addition,
for every A ∈ N and for every w ∈ LG(A), such that |w| � k + m, the set P ′

contains a rule A→ w. Let us prove that L(G′) = L(G).

Claim 3.2. For every A ∈ N , LG′(A) ⊆ LG(A).

Claim 3.3. Let w ∈ L and s ∈ {a, b} and consider the recursive descent parser
for G. If its successful computation on ws contains a call to A() on a suffix yz
(with ws = xyz), which returns, consuming y, and z follows A, then y ∈ LG′(A).

The proof of this claim can be summarized as follows: if y is sufficiently short, it is
generated by a rule A→ y, and if y is long enough, then Claim 3.1 is applicable,
and it implies that y is derived using a rule of the form A→ u1B1& . . .&unBn.

Claim 3.4. L(G′) = L(G).

We have thus shown that the language L · {a, b} is generated by a conjunctive
grammar G′ with one-sided concatenation, and therefore it is regular. Hence, L
is regular as well, which completes the proof of the theorem. ��
Example 4. The context-free LL language {anbncs | n
 0, s ∈ {a, b}}, which is
at the same time linear context-free, is not linear conjunctive LL.

Theorem 4. The family of LL linear conjunctive languages is closed under in-
tersection. It is not closed under union, concatenation and reversal.

Proof. The closure under intersection is given by a direct application of conjunc-
tion. If LinConjLL were closed under union, then {anbnca|n
 0}∪{anbncb|n
 0}
would be in LinConjLL, which would contradict Example 4. If LinConjLL were
closed under concatenation, then {anbnc | n
 0} · {a, b} would be in LinConjLL,
which would again contradict Example 4. Suppose LinConjLL is closed under re-
versal. Then the language ({scbnan | n
 0, s ∈ {a, b}})R would be in LinConjLL

in violation of Example 4. ��

Expressive Power of LL(k) Boolean Grammars 455

8 LL Linear Boolean Grammars

Linear Boolean grammars are known to have the same expressive power as linear
conjunctive grammars [4,5]. In contrast, their LL subsets differ in power:

Example 5. The following LL(1) linear Boolean grammar generates the language
{anbncs | n
 0, s ∈ {a, b}}:

S → X&¬T
T → X&¬Aca&¬Acb
A→ aAb | ε
X → aX | bX | cX | ε

Note that, by Lemma 4, there is no equivalent LL(k) linear conjunctive grammar.

This separate class of languages thus deserves a separate study. The following
nonrepresentability result, proved by a counting argument, is useful in assessing
their expressive power.

Lemma 7. The language {anbnc
 | n, �
 0} is not LL linear Boolean.

Proof. Suppose there exists a well-behaved LL(k) linear Boolean grammar G =
(Σ,N, P, S) for this language. Assume, without loss of generality, that every
conjunct in this grammar is of the form A→ ±B, A→ ±sB, A→ ±Ct, A→ s
or A→ ε, where s, t ∈ Σ and B,C ∈ N .

First infer the following property from Theorem 2:

Claim 7.1. There exist numbers d, p
 0, such that for every nonterminal B ∈
N and for all n
 1, �
 dn and i
 0,

bnc
+ip ∈ L(B) if and only if bnc
 ∈ L(B).

It is first proved that for any fixed numbers m, �
 0 and for a nonterminal A, the
membership of strings of the form ambnc
 (with various n
 0) in L(A) depends
upon the membership of strings bnc
 in the languages L(B), for different B ∈ N ,
and the dependence function is unique for all values of n.

Claim 7.2. For every A ∈ N , for every m
 0, and for every �
 m·|N |+h(A),
there exists a Boolean function fA,m,
(. . . , xB,i, . . .), where B ∈ N and 0 � i � �,
such that for every n � m, ambnc
 ∈ L(A) if and only if fA,m,
(. . . , σD,i, . . .),
where σD,i = 1 if and only if bnci ∈ L(D).

Next, let us improve the statement of Claim 7.2, so that every function fA
(. . . , xD,
, . . .) depends upon a bounded number of Boolean variables, which
does not increase with m and �.

Claim 7.3. For every A ∈ N , for every m
 0, and for every �
 m · |N | +
h(A), there exists a Boolean function fA,m,
(. . . , xB,i, . . .), where B ∈ N and
0 � i < d + p, such that for every n � m, ambnc
 ∈ L(A) if and only if
fA,m,
(. . . , σD,i, . . .), where σD,i = 1 if and only if bnci ∈ L(D).

456 A. Okhotin

Now define m0 = 22|N|·(d+p)
and �0 = |N | · m0 + maxA h(A). For every m ∈

{0, . . . ,m0}, denote f̂m = fS,m,
0. Each function f̂m depends on |N | · (d + p)
variables. There exist 22|N|·(d+p)

= m0 distinct Boolean functions over this num-
ber of variables, and hence our set of m0 + 1 such functions must contain a pair
of duplicates:

Claim 7.4. There exist two numbers m and m̃, with 0 � m < m̃ � m0, such
that f̂m ≡ f̂m̃.

Consider strings of the form a∗bmc
0 . For all i ∈ {�0 − (d + p − 1), . . . , �0} and
D ∈ N , define σD,i = 1 if bmci ∈ LG(B) and σD,i = 0 otherwise. Take a
true statement ambmc
0 ∈ L(G). By Claim 7.3, ambmc
0 ∈ L(G) if and only
if f̂m(. . . , σD,i, . . .) = 1. The latter, according to Claim 7.4, is equivalent to
f̂m̃(. . . , σD,i, . . .) = 1, which, by Claim 7.3 again, holds if and only if am̃bmc
0 ∈
L(G), which is not true. A contradiction of the form “true if and only if false”
has thus been obtained, which proves the lemma. ��

Theorem 5. The family of LL linear Boolean languages is closed under all
Boolean operations. It is not closed under concatenation and reversal.

Proof. Intersection and complementation can be specified directly, the closure
under union follows by de Morgan’s laws.

Suppose LinBoolLL is closed under concatenation. Then the language {anbn |n

0} · c∗ is in LinBoolLL, which contradicts Lemma 7.

Similarly, if LinBoolLL were closed under reversal, then ({c
bnan | n, �
 0})R
would be in LinBoolLL, again contradicting Lemma 7. ��

9 Hierarchy

The results of this paper lead to a detailed comparison of different subfamilies
of LL(k) Boolean grammars with each other and with different subfamilies of
Boolean grammars. The following theorem summarizes these results.

Theorem 6

1. LinCFLL ⊂ LinConjLL, with {anbncn | n
 0} ∈ LinConjLL \ LinCFLL.
2. LinCFLL ⊂ CFLL, with {anbnc | n
 0} · {a, b} ∈ CFLL \ LinCFLL.
3. LinConjLL ⊂ ConjLL, with {anbnc | n
 0} · {a, b} ∈ ConjLL \ LinConjLL.
4. CFLL ⊂ ConjLL, with {anbncn | n
 0} ∈ ConjLL \ CFLL.
5. LinConjLL ⊂ LinBoolLL, with {anbnc | n
 0} · {a, b} ∈ LinBoolLL \ LinConjLL.
6. LinBoolLL ⊂ BoolLL, with {anbnc
 | n, �
 0} ∈ BoolLL \ LinBoolLL.
7. LinCFLL ⊂ LinCF , with {anbnc | n
 0} · {a, b} ∈ LinCF \ LinCFLL.
8. LinBoolLL ⊂ LinConj, with {anbnc
 | n, �
 0} ∈ LinConj \ LinConjLL.
9. CFLL ⊂ CF , with {anibin | n
 0, i ∈ {1, 2}} ∈ CF \ CFLL.

10. ConjLL ⊂ Conj, with {anb2n | n
 1} ∈ Conj \ ConjLL.
11. BoolLL ⊂ Bool , with {anb2n | n
 1} ∈ Bool \ BoolLL.

The resulting inclusion diagram is given in Figure 2, in which arrows with a
question mark denote inclusions not known to be proper, the rest being proper.

Expressive Power of LL(k) Boolean Grammars 457

Fig. 2. Expressive power of subfamilies of Boolean grammars

Let us note some open problems. It remains to determine whether the families
ConjLL and BoolLL are different. For some useful abstract languages generated by
Boolean grammars, most notably for {wcw |w ∈ {a, b}∗}, it is important to know
whether they are Boolean LL(k). Finally, while this paper establishes the first
negative results for Boolean LL(k) grammars, it remains to invent a method of
proving languages to be nonrepresentable by Boolean grammars of the general
form. The lack of such a method limits our understanding of Boolean grammars.

References

1. Jurdzinski, T., Loryś, K.: Church-Rosser Languages vs. UCFL. In: Widmayer, P.,
Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP
2002. LNCS, vol. 2380, pp. 147–158. Springer, Heidelberg (2002)

2. Kountouriotis, V., Nomikos, Ch., Rondogiannis, P.: Well-founded semantics for
Boolean grammars. In: Ibarra, O.H., Dang, Z. (eds.) DLT 2006. LNCS, vol. 4036,
pp. 203–214. Springer, Heidelberg (2006)

3. Okhotin, A.: Conjunctive grammars. Journal of Automata, Languages and Com-
binatorics 6(4), 519–535 (2001)

4. Okhotin, A.: On the equivalence of linear conjunctive grammars to trellis automata.
RAIRO Informatique Théorique et Applications 38(1), 69–88 (2004)

5. Okhotin, A.: Boolean grammars. Information and Computation 194(1), 19–48
(2004)

6. Okhotin, A.: Generalized LR parsing algorithm for Boolean grammars. Interna-
tional Journal of Foundations of Computer Science 17(3), 629–664 (2006)

7. Okhotin, A.: Recursive descent parsing for Boolean grammars. Acta Informatica
(to appear)

8. Okhotin, A.: A simple P-complete problem and its representations by language
equations. Machines, Computations and Universality (MCU 2007, Orléans, France,
September 10–14, 2007) accepted

9. Terrier, V.: On real-time one-way cellular array. Theoretical Computer Science 141,
331–335 (1995)

10. Yu, S.: A property of real-time trellis automata. Discrete Applied Mathemat-
ics 15(1), 117–119 (1986)

Complexity of Pebble Tree-Walking Automata

Mathias Samuelides and Luc Segoufin

LIAFA, Paris 7
INRIA, Paris 11

Abstract. We consider tree-walking automata using k pebbles. The
pebbles are either strong (can be lifted from anywhere) or weak (can be
lifted only when the automaton is on it). For each k, we give the precise
complexities of the problems of emptiness and inclusion of tree-walking
automata using k pebbles.

1 Introduction

There are two natural ways to extend the classical finite state string automata
on finite binary trees.

In the first one, which is the most studied one in the literature (see for in-
stance [5]), the automata have parallel control and process the tree bottom-up.
It forms a robust class of automata (it has minimization and determinization)
and the class of languages accepted by them enjoys most of the nice properties
of the string case. For instance it is closed under all Boolean operations and
it corresponds to MSO definability. Tree languages accepted by bottom-up tree
automata are called regular.

The second kind of tree automata has only one control. It is a sort of se-
quential automaton which moves from node to node in a tree, along its edges.
They are called tree-walking automata and, in a sense, generalize the notion of
two-way string automata by making use of all possible directions allowed in a
tree [1,9]. However they are not determinizable [2] and have a rather weak ex-
pressive power [3]. For this reason pebble tree automata were introduced in [7] as
a model with an interesting intermediate expressive power between tree-walking
automata and bottom-up tree automata. A pebble tree automaton is a tree-
walking automaton with a finite set {1, . . . , k} of pebbles which it can drop at
and lift from a node. There is a stack discipline restriction though: pebble i can
only be dropped at the current node if pebbles i + 1, . . . , k are already on the
tree. Likewise, if pebbles i, . . . , k are on the tree only pebble i can be lifted. In
the first model of pebble automata the pebbles were only allowed to be lifted
by the automaton when its head is on it, but recently, in order to capture logics
with transitive closure on trees, a stronger model of pebble automata was intro-
duced in [8]. In the strong model pebbles are viewed as pointers and can be lifted
from everywhere. Perhaps surprisingly, in [4] it was shown that the two models
of pebble tree automata have the same expressive power. More precisely it was
shown that for each k and each pebble tree automaton using k pebbles with the
strong behavior, there exists a pebble tree automaton using k pebbles with the

E. Csuhaj-Varjú and Z. Ésik (Eds.): FCT 2007, LNCS 4639, pp. 458–469, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Complexity of Pebble Tree-Walking Automata 459

weak behavior accepting the same tree language. However the current transla-
tion yields an automaton whose size is a tower of k− 1 exponents. It seems, but
this has not been proved yet, that pebble tree automata using k strong pebbles
are (k−1)-exponentially more succinct than pebble tree automata using k weak
pebbles.

It is still conceivable that the class of pebble automata forms a robust class of
tree languages. The main open issues are whether they are determinizable and
whether they are closed under complement (the former would imply the later as
mentioned in [13]). If they would be closed under complement, the family of tree
languages accepted by pebble automata would also correspond to definability
in unary transitive closure logic on trees [7]. The recent new interest in this
family comes from their close relationship with some aspects of XML languages:
They are a building block of pebble transducers which were used to capture XML
transformations (cf. [12,10]).

In this paper we study the complexity of emptiness test for pebble automata
and the complexity of testing whether one pebble automaton is included into
another.

From each pebble automaton, weak or strong, it is easy to compute an equiv-
alent MSO formula [7]. This shows that they define only regular tree languages
and immediately yields a non-elementary test for emptiness and inclusion. This
non-elementary complexity is unavoidable as shown in [12].

We are interested in the problem when k, the number of pebbles, is fixed and
not part of the input. Emptiness and inclusion for tree-walking automata (the
case k = 0) are exptime-complete. The upper-bound follows from the exponen-
tial time transformations of tree-walking automata and their complement into
top-down tree automata given in [6,15]. The lower-bound is implicit in [14]. For
k > 0, we extend these results and show that both emptiness and inclusion are
k-exptime-complete. For each k, we prove the upper-bounds using the strong
model and the lower-bounds using the weak and deterministic model. Therefore
all variants considered here yield k-exptime-complete problems.

The upper-bounds are proved by constructing, in time k-exponential, a
bottom-up tree automaton for the language recognized by a tree-walking au-
tomata using k-pebbles and another one for the complement language. This is
done by induction on the number of pebbles using an intermediate model which
combines a tree-walking behavior with a bottom-up one. This induction is quite
simple in the case where all pebbles have a weak behavior. In this case the subrun
between the drop and the lift of the last pebble starts and ends at the same node
and can therefore be replaced by a regular test. It is then possible to remove the
last pebble by computing a product automaton. In the case of strong pebbles,
subruns start and end at different nodes of the tree, and this complicates the
construction.

The lower-bounds are proved by simulating a run of an alternating Turing
machine using (k − 1)-expspace by a deterministic pebble automaton using k
pebbles with weak behaviors.

460 M. Samuelides and L. Segoufin

For each k, the complexities obtained for strong and weak pebble automata
are the same. However we conjecture that pebble automaton using k strong
pebbles is (k − 1)-exponentially more succinct than pebble automaton using
k weak pebbles. Therefore the strong model is more interesting as it achieves
similar performances in terms of expressive power and of complexity but with a
more succinct presentation.

When restricted to string models, our results show that both emptiness and
inclusion for pebble automata using k pebbles are (k − 1)-expspace-complete.
Pebble string automata were already studied in [11] where it was shown that a
pebble string automaton using k weak pebbles is k-exponentially more succinct
than an one-way finite state automaton (the use of pebbles in [11] is actually
even more restricted than the weak behavior mentioned above). The coding for
proving our lower bounds is inspired from this result.

2 Definitions

The trees we consider are finite binary trees, with nodes labeled over a finite
alphabet Σ. We insist that each internal node (non-leaf node) has exactly two
children. A set of trees over a given alphabet is called a tree language.

Definition 2.1. A bottom-up automaton B is a tuple (Σ,Q, q0, F, δ), where
Q is a finite set of states, Σ is a finite alphabet, q0 is the initial state, F is the
set of accepting states and δ ⊆ (Σ ×Q×Q)×Q is the transition relation.

A run of a bottom-up automaton B on a tree t is a function ρ from the set of
nodes of t to Q such that for every node x of label σ,

– If x is a leaf, then ((σ, q0, q0), ρ(x)) ∈ δ.
– If x has two children x1 and x2, then ((σ, ρ(x1), ρ(x2)), ρ(x)) ∈ δ.

A run of B on t is accepting, and the tree t is accepted by B, if the state at the
root is accepting. The family of tree languages defined by bottom-up automata
is called the class of regular tree languages.

Pebble tree automata. Informally a pebble tree automaton walks through its
input tree from node to node along its edges. Additionally it has a fixed set
of pebbles, numbered from 1 to k that it can place in the tree. At each time,
pebbles i, · · · , k are placed on some nodes of the tree, for some i. In one step
the automaton can stay at the current node, move to its parent , to its left or to
its right child, or it can lift pebble i or place pebble i− 1 on the current node.
Which of these transitions can be applied depends on the current state, the set
of pebbles at the current node, the label and the type of the current node (root,
left or right child and leaf or internal node).

We consider two kinds of pebble automata which differ in the way they can
lift the pebble. In the weak model a pebble can be lifted only if it is on the
current node. In the strong model this restriction does not apply.

Complexity of Pebble Tree-Walking Automata 461

Remark: In both models the placement of the pebbles follows a stack discipline:
only the pebble with the number i can be lifted and only the pebble with number
i − 1 can be placed. This restriction is essential as otherwise we would obtain
k-head automata that recognize non-regular tree languages.

We turn to the formal definition of pebble automata. The set types =
{r, 0, 1} × {l, i} describes the possible types of a node. Here, r stands for the
root, 0 for a left child, 1 for a right child, l for a leaf and i for an internal node.
We indicate the possible kinds of moves of a pebble automaton by elements of
the set moves = {ε, ↑,↙,↘, lift, drop}, where informally ↑ stands for ’move to
parent’, ε stands for ’stay’, ↙ stands for ’move to the left child’ and ↘ stands
for ’move to the right child’. Clearly drop refers to dropping a pebble and lift to
lifting a pebble. Finally if S is a set then P(S) denotes the powerset of S.

Definition 2.2. A pebble tree automaton using k pebbles is a tuple A =
(Σ,Q, I, F, δ), where Q is a finite set of states, I, F ⊆ Q are respectively the set
of initial and terminal states and δ is the transition relation of the form

δ ⊆
(
Q× types× {1, . . . , k + 1} × P({1, · · · , k})×Σ

)
× (Q×moves)

A tuple (q, β, i, S, σ, q′,m) ∈ δ means that if A is in state q with pebbles i, · · · , k
on the tree, the current node contains exactly the pebbles from S, has type β
and is labeled by σ then A can enter state q′ and move according to m.

A pebble set of A is a set P ⊆ {1, · · · , k}. For a tree t, a P -pebble assignment
is a function which maps each j ∈ P to a node in t. For 0 ≤ i ≤ k, an
i-configuration c of A on t is a tuple (x, q, f), where x is a node, q a state
and f an {i + 1, · · · , k}-pebble assignment. In this case x is called the current
node, q the current state and f the current pebble assignment. We also write
(x, q, xi+1, · · · , xk) if f(j) = xj for each j ≥ i + 1. We write c

A,t−−→ c′ when A
can make a (single step) transition from the configuration c to c′ according to

its transition relation. The relation
A,t−−→ is defined in the obvious way following

the intuition described above for δ. However in the weak model of pebble tree
automata there is a restriction on the lift-operation: a lift transition can be
applied to an i-configuration (x, q, f) only if f(i+ 1) = x, i.e., if pebble i+ 1 is
on the current node. In the strong model this restriction does not hold. A run
is a nonempty sequence c1, · · · , cl of configurations such that cj

A,t−−→ cj+1 holds

for each j < l. We write c
A,t ∗−−−→ c′ when there is a run of A from c to c′.

Instead of having a set of accepting states and acceptance at the root as
usual, we assume that a walking automaton has a set of terminal states. Once
a terminal state is reached, the automaton immediately stops walking the tree.
When the automaton is used as an acceptor for trees, we further assume a
partition of the terminal states into accepting and rejecting ones (note that the
automaton always rejects if no terminal state is ever reached). As an acceptor
for tree languages, this hypothesis does not make any difference as it is always
possible to go back to the root of the tree once a terminal state is reached.

A pebble tree automaton is deterministic if δ is a partial function from
Q× types× {1, · · · , k + 1} × P({1, · · · , k})×Σ to Q×moves.

462 M. Samuelides and L. Segoufin

We use PAk to denote the (strong) pebble automata using k pebbles, wPAk

the weak pebble automata using k pebbles, DPAk and wDPAk for the cor-
responding deterministic automata. By default we assume the strong case. A
pebble automaton without pebbles is just a tree-walking automaton. We write
TWA and DTWA for PA0 and DPA0.

Complexities. In this paper k-exptime refers to the set of problems solvable by a
Turing machine using a time which is a tower of k exponentials of a polynomial
in the size of its input. In order to avoid a case analysis we sometime write
0-exptime for ptime. Similarly we define k-expspace with 0-expspace for
pspace.

3 From Pebble Automaton to Bottom-Up Automaton

Given A ∈ PAk we construct in this section a bottom-up tree automaton B
recognizing the same language as A and a bottom-up tree automaton C recog-
nizing the language of trees rejected by A. The constructions are performed in
k-exptime. They are done by induction on k. During the induction we shall
make use of the following intermediate model of automata which combines a
tree-walking behavior with a bottom-up one.

Intuitively a wPABUk is a wPAk that can simulate a bottom-up automaton
while placing its last pebble on the current node. More formally we have:

Definition 3.1. A wPABUk is a pair (A,B) where

– B is a (non deterministic) bottom-up automaton on Σ × P({1, · · · , k})
– A is a wPAk such that the transitions that drop pebble 1 are of the form

(QA × types× {2} × P({2, · · · , k})×Σ ×QB)× (QA × {drop})

where QA and QB are the set of states of A and B.

A wPABUk (A,B) behaves like a pebble tree automaton until it wants to drop
pebble 1. When it drops pebble 1, it immediately simulates B on the current
pebbled tree and resumes its walking behavior with a state which depends on
the state reached by B at the root of the tree as specified by the transition above.

More formally, for 0 ≤ i ≤ k, an i-configuration of (A,B) on a tree t is a
tuple (x, q, f) where x is a node of t, q a state of A and f an {i + 1, · · · , k}-
pebble assignment. Let t be a tree, x a node of t of type τ and of label a and
let c = (x, q, f) and c′ = (x′, q′, f ′) be i-configurations of (A,B). A single step

transition c
(A,B),t−−−−−→ c′ of (A,B) is defined as c

A,t−−→ c′ if A does not drop pebble
1 while making the transition step from c to c′. Otherwise we must have x′ = x,
f ′ = f ∪ {(1, x)} and ((q, τ, 2, f−1(x), a, qb), (q′, drop)) is a transition of (A,B)
where qb is the state accessed by a run of B at the root of the pebbled tree (t, f ′).

In order to handle the strong behaviors of pebbles we need to extend this
definition. The idea is to use BU∗ automata instead of bottom-up automata.
Intuitively a BU∗ automaton is a bottom-up automaton that can select a node.
More formally this means:

Complexity of Pebble Tree-Walking Automata 463

Definition 3.2. A BU∗ automaton is a tuple (Q, q0, Qf , Q
′, δ) such that Q′ ⊆ Q

and (Q, q0, Qf , δ) is a bottom-up tree automaton such that for each tree t and
each accepting run ρ on t there is an unique node x ∈ t with ρ(x) ∈ Q′.

A PABU∗
k is like a wPABUk but the pebble tree automaton part is strong and the

bottom-up part is a BU∗. When dropping the last pebble, the pebble automaton
simulates the bottom-up part and resumes its run at the node selected by the
BU∗ automaton by lifting the last pebble. More formally this gives:

Definition 3.3. A PABU∗
k is a pair (A,B) where

– B is a (non deterministic) BU∗ on Σ × P({1, · · · , k})
– A is a PAk such that the transitions dropping and lifting the last pebble are

replaced by transitions of the form

(QA × types× {2} × P({2, · · · , k})×Σ ×QfB)×QA

where QA is the set of states of A and QfB is the set of accepting states of B.

More formally, for 1 ≤ i ≤ k, an i-configuration of (A,B) is a tuple (x, q, f)
where x is a node, q a state of A and f an {i+ 1, · · · , k}-pebble assignment.

Let t be a tree, x be a node of t of type τ and of label a and let c = (x, q, f) and

c′ = (x′, q′, f ′) be configurations of (A,B). A single step transition c
(A,B),t−−−−−→ c′

of (A,B) is defined as c
A,t−−→ c′ if A does not drop pebble 1 while making the

transition step from c to c′. Otherwise we must have f ′ = f , x′ is the node
selected by B on the pebbled tree (t, f ∪ {(1, x)}) and ((q, τ, 2, f−1(x), a, qb), q′)
is a transition of (A,B) where qb is the state accessed by a run of B at the root
of the pebbled tree (t, f ∪ {(1, x)}).

A node x in a tree t is a marked node if x is the unique node of t having the
type or pebble assignment of x. If m is the marking type or pebble assignment,
we then say that t is marked by m, and that x is the m-node of t. For instance
a tree is always marked by its root. At any moment during the run of a tree-
walking automaton, a tree is marked by any of the pebbles which are currently
dropped.

Given a PABU∗
k (A,B) and a BU∗ C, we say that C simulates exactly (A,B)

on trees marked by m if: (i) each set of pairs of states of A is an accepting state of
C, (ii) for each tree t marked by node u, C reaches the root of t after selecting node

v, in an accepting state qf = {(q, q′) | (q, u,)
(A,B),t ∗−−−−−−→ (q′, v,), q′ is terminal}.

In other words the state reached by C at the root contains exactly the beginning
and the ending states of all the terminating runs of A between nodes u and v.
Note that this implies that C is unambiguous once the choice of v is made.

In a sense, our first lemma below extends the result of [6,15] for TWA, and
translates a wPABU1 and its complement into a bottom-up automaton. This is
done with the same complexity bounds as for TWA: One exponential. The proof
is omitted in this abstract. The idea is classical, the bottom-up tree automaton
has to compute all possible loops of the tree-walking automaton while moving
up the tree. The main new difficulty is to take care of the loops which involve
the use of the pebble.

464 M. Samuelides and L. Segoufin

Lemma 3.4. Let (A,B) be a wPABU1. For any marking m, we can construct
in time exponential in |(A,B)|, C ∈ BU∗ such that C simulates exactly (A,B) on
trees marked by m.

We now extend the previous lemma to the strong pebble case. This is done
by reducing the strong pebble case to the weak pebble one. Given two walking
automata A and B we say that B simulates exactly A if (i) the set of states of
A is included into the set of states of B, (ii) for all tree t and all nodes u and

v of t we have (u, q,)
A,t−−→ (v, q′,) iff (u, q,)

B,t−−→ (v, q′,) for all pair (q, q′) of
states of A.

Lemma 3.5. Given (A,B) ∈ PABU∗
1, we can construct in polynomial time

(A′,B′) in wPABU1 simulating exactly (A,B).

Proof. The idea is as follows, A′ will simulate A until the pebble is dropped.
Then A′ will move step by step the pebble in the tree until it reaches the position
where the pebble is lifted. The difficulty is that A′ cannot find out which node
is selected by B, until A′ is on that node, and that as soon as A′ moves the
pebble, the simulation of B is no longer valid. To cope with this situation, A′

will maintain extra information in its state and only simulate B partially.
Assume now that A drops the pebble on the node xd, evaluates B and resumes

its run from node xl after lifting the pebble. Let QB be the set of states of B.
We show how to simulate this behavior using a wPABU1 (A′,B′). On the tree

t there is an unique path from xd to xl. The goal of A′ is to transfer step by
step the pebble on that path. To do this, at any time, assuming its pebble is on
position x in the path, it will remember in its state (i) the state qr reached by
B at the root of the tree when it was simulated by A, (ii) the state qx reached
by B on the current node x when it was simulated by A, and (iii) the direction
from x to the next node on the path from xd to xl.

This information is computed and maintained using B′.
To do this B′ will do the following. It first guesses a state qx ∈ QB and a

direction Δ ∈ { DownLeft, DownRight, UpRight, UpLeft, Init, Here},
which are expected to match those currently stored in the state of A′ (A′ will
verify this in the next step), except for the first time where Δ is Init. We then
distinguish three cases:

– Case 1: Δ is Init. Then B′ simulates B and ends in a state containing: qx
the state reached by B at the position of the pebble, Δ′ ∈ { DownLeft,
DownRight, UpRight, UpLeft, Here} the direction from the pebble to
the selected node and qr the state reached by B at the root. Note that Δ′

could be Here if the selected position is the current position of the pebble.
– Case 2: Δ is UpRight (the case UpLeft is similar).

In this case, B′ simulates B unless it reaches x (marked by the pebble).
When x is reached, if B already selected its node in the left subtree of x,
then B′ rejects. Otherwise, the current state is ignored and B′ recomputes
the current state assuming the state qx at the left child of x. It remembers the
new state q′x and the direction Δ′ from x to the selected node and resumes

Complexity of Pebble Tree-Walking Automata 465

its simulation of B. At the root B′ ends in a state containing qx, Δ and the
state reached by B at the root during the current simulation together with
q′x and Δ′.

– Case 3: Δ is DownRight (the case DownLeft is similar).
In this case B′ simulates B until it reaches x. When x is reached B′ knows
whether a node has been indeed selected in the right subtree of x. If this is
not the case, or if the current state is not qx, it rejects. If this is the case,
B′ remembers the state q′x B has reached at the right child of x and also the
direction Δ′ from this right child to the node xl. At the root B′ accepts in a
state containing qx and Δ together with the state reached by B at the root
during the current simulation together with q′x and Δ′.

We can now define A′. A′ simulates A until the pebble is dropped at position
xd. At position xd, when the pebble is first dropped it simulates B′, verifies that
B′ indeed guessed the Init case and stores the output of B′ in its state. It then
does the following until a Here case is reached. It moves the pebble one step
according to Δ, simulates B′, verifies that the guessed values of B′ are consistent
with what it currently has in its state. If not it rejects, if yes it updates those
values according to the output of B′. When B′ outputs Here then A′ lifts the
pebble and resumes the simulation of A. �

We are now ready for the main induction loop.

Lemma 3.6. Let (A,B) in PABU∗
k . Let m be any marking. We can construct

in time k-exponential in |(A,B)|, a BU∗ C that simulates exactly (A,B) on trees
marked by m.

Proof. This is done by induction on n. The case k = 1 is given by combining
Lemma 3.5 with Lemma 3.4. Assume now that the lemma is proved for k and we
will prove it for k+1. Let A′ be the PA1 defined from A as follows. The states of
A′ are all the states of A corresponding to configurations where all the pebbles
k, · · · , 2 are dropped. The transitions of A′ are all the transitions of A restricted
to the states of A′. The terminal states of A′ are exactly those that lift pebble
2. The marking is the position of pebble 2. Then (A′,B) and (A,B) have exactly
the same runs from a node u where pebble 2 is dropped to a node v where it is
next lifted. From Lemma 3.5 we obtain (A′′,B′) in wPABU1 simulating exactly
(A′,B) assuming pebbles k, · · · , 2 are already on the tree. Now by Lemma 3.4 we
obtain in exponential time a BU∗ automaton C′ that simulates exactly (A′′,B′)
on trees marked by pebble 2, assuming pebbles k, · · · , 2 are already on the tree.
Let now (A′′′, C′) be the PABU∗

k−1 defined from A as follows. The states of A′′′

are all the states of A corresponding to all configurations where pebble 1 is not
dropped. The terminal states of A′′′ are the terminal states of A. The transitions
of A′′′ are all the transitions of A restricted to the states of A′′′ where all the
transitions dropping pebble 2 are now replaced by a simulation of C′. It is easy
to verify that (A′′′, C′) simulates exactly (A,B), and we obtain the desired C by
induction. �

466 M. Samuelides and L. Segoufin

Theorem 3.7. Let A in PAk. We can construct in time k-exponential in |A|
a bottom-up automaton C accepting the same language as A and a bottom-up
automaton C accepting the complement of the language accepted by A.

Proof. We shall make use of this lemma which shows that we can always assume
that the last pebble is weak. Its proof is a straightforward adaptation of the
proof of Lemma 3.5.

Lemma 3.8. Let A be in PAk. We can construct in time polynomial in |A| an
automaton B ∈ PAk accepting the same tree language as A and such that the
pebble 1 of B is weak.

Let A in PAk. Let A′ in PAk recognizing the same language as A but with
pebble 1 weak as given by Lemma 3.8. Let A′′ be the wPA1 defined from A′ as
follows. The states of A′′ are all the states of A′ corresponding to configurations
where all the pebbles n, · · · , 2 are dropped. The transitions of A′′ are all the
transitions of A′ restricted to states of A′′. The terminal states of A′′ are exactly
those that lift pebble 2. Let B be the trivial bottom-up tree automaton with only
one state that does nothing. Then (A′′,B) is a wPABU1 having the same runs
as A′ from a node u where pebble 2 is dropped to a node v where it is next
lifted. Now by Lemma 3.4 we obtain in exponential time a BU∗ automaton C′
that simulates exactly (A′′,B) on trees marked by pebble 2. Let now (A′′′, C′)
be the PABU∗

k−1 defined from A as follows. The states of A′′′ are all the states
of A corresponding to all configurations where pebble 1 is not dropped. The
terminal states of A′′′ are the terminal states of A. The transitions of A′′′ are
all the transitions of A restricted to the states of A′′′ where all the transitions
dropping pebble 2 are now replaced with a simulation of C′. It is easy to verify
that (A′′′, C′) simulates exactly A. Let D be the BU∗ obtained by applying
Lemma 3.6 on trees marked by the root. Note that D always marks the root and
therefore can be seen as a bottom-up tree automaton. By construction of D, the
state reached by D at the root of any input tree contains exactly all the pair
(q, q′) so that if A starts at the root in state q then it comes back at the root in
state q′. It is now immediate to define C and C from D by choosing appropriately
the set of accepting states. �

The emptiness problem for pebble tree automata is the problem of checking,
given a pebble tree automaton, whether it accepts at least one tree. The inclu-
sion problem for pebble tree automata is the problem of checking, given two
tree automata A and B whether any tree accepted by A is also accepted by B.
As the emptiness problem for bottom-up tree automata is in ptime we immedi-
ately derive from Theorem 3.7 an upper-bound for the emptiness and inclusion
problems for PA, and therefore for wPA.

Theorem 3.9. Let k > 0. The emptiness and the inclusion problems for PAk

are in k-exptime.

Complexity of Pebble Tree-Walking Automata 467

4 Lower Bounds

In this section we show that the complexities obtained previously are tight. We
actually prove a stronger result as we show that the lower bounds already hold
in the weak pebble model and with deterministic control.

For k > 0, let exp(k, n) be the function defined by exp(1, n) = 2n and
exp(k, n) = 2exp(k−1,n). A k-number of size n is defined recursively as follows.
If k = 1 it is a tree formed by a root of label � followed by a unary tree forming
a sequence of n bits, defining a number from 0 to 2n − 1 (this tree can be made
binary by adding enough dummy extra nodes). For k > 1 it is a tree t having
the following properties: (i) The root of t is labeled by �, (ii) The path from the
root of t to the rightmost leaf (excluding the root) contains exactly exp(k−1, n)
nodes having label in {0, 1}. This path will be called: rightmost branch, (iii)
The left child of each node x of the rightmost branch is a (k − 1)-number that
encodes the distance from � to x (the topmost branching node is assumed to
have distance zero from �).

We can easily see that the exp(k−1, n) bits in the rightmost branch in t define
a number from 0 to exp(k, n)− 1.

In the rest of this section we blur the distinction between the root of a k-
number and the integer it encodes. We will make use of the following terminology.
If x is a k-number, the nodes of the rightmost branch of x are called the bits
of x. For each such bit, the (k − 1)-number branching off that node is called a
position of x.

Let f be a function associating to a node x of a tree t a set f(x) of nodes of t.
Such a function f is said to be determined if there is a DTWA with a specific
state qS such that, when started at x in a tree t, it sequentially investigates
all the nodes in f(x), being in state qS at a node y iff y ∈ f(x). Typically
determined functions are the set of positions of the k-number which is located
immediately above or below x. In the following we will only use very simple
determined functions f . In particular the size of the DTWA involved has a size
which will not depend on the parameters k and n.

The main technical lemma is the following one which is inspired by the suc-
cinctness result of [11].

Lemma 4.1. Let n > 0 and k > 0.

1. There exists a wDPA(k−1), of size polynomial in n, such that when started
on a node x of a tree t, it returns to x in a state which is accepting iff the
subtree rooted in x forms a k-number of size n.

2. For each determined function f , there exists a wDPAk, of size polynomial
in n, such that when started on a marked node x of a tree t, it returns to x
in a state which is accepting iff there is a node y ∈ f(x) such that x and y
form the same k-number of size n.

3. There exists a wDPAk, of size polynomial in n, such that when started on
a node x of a tree t, it returns to x in a state which is accepting iff the k-
number of size n rooted at the left child of x is the successor of the k-number
of size n rooted at the left child of the right child of x.

468 M. Samuelides and L. Segoufin

Proof. Fix n > 0. All items are proved simultaneously by induction on k. For
point 2 let A{ be the DTWA for f .

If k = 1, point 1 is clear. The automaton uses n states to check that the
tree has the correct depth and then comes back to the initial place. For point 2,
the automaton successively drops the pebble on each node y of the set of nodes
in f(x) using A{, simulates the automaton obtained for point 1 to check that
the subtrees of x and y are indeed 1-number. Once this is done it processes the
subtrees of x and y bit per bit, going back and forth between x and y (recall
that x is marked by hypothesis and that y is marked by the pebble), checking
for equality. The current position being processed is stored in the state and this
requires O(n) states. For point 3 the pebble is dropped on the appropriate child
of x and we proceed as for point 2, simulating addition with 1 instead of checking
equality.

Assume now that k > 1. Consider point 1. By induction it is easy to verify
with a wDPA(k−2) that the subtree rooted in x has the right shape: it starts with
a � and is a sequence of (k − 1)-number. It remains to check that this sequence
codes all (k− 1)-number in the order from 0 to exp(k− 1, n)− 1. For each node
y of the rightmost branch of x the automaton drops pebble k on y and simulates
the wDPA(k−1) obtained from point 3 by induction in order to verify that the
positions of y and of the right child of y are successive (k − 1)-number. Once
this is done for each bit y of x the automaton goes back to x by going up in the
tree until a � is found.

Consider now point 2. The automaton first checks by induction that x is the
root of a k-number. Then for each node y ∈ f(x) it does the following. It first
checks whether y is the root of k-number and if this is the case it drops pebble k
successively on each position z of y. Let g be the function which associates to z
the set of positions of x. It is easy to see that g is determined by the deterministic
automaton which from z goes back to x, which is marked, and then successively
investigates all position of x by going down to the right child. By induction on
point 2 the automaton can find with the remaining k − 1 pebbles, among the
positions of x, the one with the same (k − 1)-number as z and checks that the
associated bits are equal. If the bits are different the automaton comes back to
z, lifts pebble k and moves back to y by going up until it finds a � and then
proceeds with the next node of f(x). If the bits match the automaton comes
back to z, lifts pebble k and proceeds with the next bit of y. Once all bits of y
are processed successfully, it goes back to x and accepts.

Consider finally point 3. This is done as is point 2 above with the following
differences. The set of nodes f(x) is a singleton and the node x does not have to
be marked anymore as it can be recover from the position of pebble k. Moreover,
instead of checking equality of two (k − 1)-number the automaton simulates
addition with 1. �
Using this lemma the coding of alternating Turing machines is rather
straightforward.

Theorem 4.2. Let k ≥ 1. The emptiness problem (and hence the inclusion
problem) for wDPAk (and hence for PAk) is k-exptime-hard.

Complexity of Pebble Tree-Walking Automata 469

5 Discussion

It is not too hard to see that when restricted to strings, the techniques developed
in this paper imply:

Theorem 5.1. For k ≥ 1 (the case k = 0 is equivalent to the case k = 1).

1. The emptiness and inclusion problems for wDPAk over strings are (k − 1)-
expspace-hard.

2. The emptiness and inclusion problems for PAk over strings are in (k − 1)-
expspace.

Over trees our result and the one of [4] show that both the weak model and the
strong model of pebble have the same expressive power and the same complex-
ities. We believe that pebble tree automata using k strong pebbles are (k − 1)-
exponentially more succinct than pebble tree automata using k weak pebbles. It
would be interesting to settle this issue.

References

1. Aho, A.V., Ullman, J.D.: Translations on a Context-Free Grammar. Information
and Control 19(5), 439–475 (1971)

2. Bojańczyk, M., Colcombet, T.: Tree-Walking Automata Cannot Be Determinized.
Theor. Comput. Sci. 350(2-3), 164–173 (2006)

3. Bojańczyk, M., Colcombet, T.: Tree-walking automata do not recognize all regular
languages. In: STOC (2005)

4. Bojańczyk, M., Samuelides, M., Schwentick, T., Segoufin, L.: Expressive power of
pebble automata. In: ICALP (2006)

5. Comon, H., et al.: Tree Automata Techniques and Applications. Available at
http://www.grappa.univ-lille3.fr/tata

6. Cosmadakis, S.S., Gaifman, H., Kanellakis, P.C., Vardi, M.Y.: Decidable Optimiza-
tion Problems for Database Logic Programs. In: STOC (1988)

7. Engelfriet, J., Hoogeboom, H.J.: Tree-walking pebble automata. In: Karhumäki,
J., et al. (ed.) Jewels are forever, pp. 72–83. Springer, Heidelberg (1999)

8. Engelfriet, J., Hoogeboom, H.J.: Nested Pebbles and Transitive Closure. In: STACS
(2006)

9. Engelfriet, J., Hoogeboom, H.J., Van Best, J.-P.: Trips on Trees. Acta Cy-
bern. 14(1), 51–64 (1999)

10. Engelfriet, J., Maneth, S.: A comparison of pebble tree transducers with macro
tree transducers. Acta Inf. 39(9), 613–698 (2003)

11. Globerman, N., Harel, D.: Complexity Results for Two-Way and Multi-Pebble
Automata and their Logics. Theor. Comput. Sci. 169(2), 161–184 (1996)

12. Milo, T., Suciu, D., Vianu, V.: Typechecking for XML transformers. J. Comput.
Syst. Sci. 66(1), 66–97 (2003)

13. Muscholl, A., Samuelides, M., Segoufin, L.: Complementing deterministic tree-
walking automata. IPL 99(1), 33–39 (2006)

14. Neven, F.: Extensions of Attribute Grammars for Structured Documents Queries.
In: DBPL (1999)

15. Vardi, M.Y.: A note on the reduction of two-way automata to one-way automata.
IPL 30, 261–264 (1989)

http://www.grappa.univ-lille3.fr/tata

Some Complexity Results for Prefix Gröbner

Bases in Free Monoid Rings

Andrea Sattler-Klein

Technische Universität Kaiserslautern, Fachbereich Informatik
Postfach 3049, 67653 Kaiserslautern, Germany

sattler@informatik.uni-kl.de

Abstract. We establish the following complexity results for prefix
Gröbner bases in free monoid rings: 1. |R|·size(p) reduction steps are suf-
ficient to normalize a given polynomial p w.r.t. a given right-normalized
system R of prefix rules compatible with some total admissible well-
founded ordering >. 2. O(|R|2 · size(R)) basic steps are sufficient to
transform a given terminating system R of prefix rules into an equivalent
right-normalized system. 3. O(|R|3 ·size(R)) basic steps are sufficient to
decide whether or not a given terminating system R of prefix rules is a
prefix Gröbner basis. The latter result answers an open question posed
by Zeckzer in [10].

1 Introduction

The importance of the theory of Gröbner bases for ideals in commutative poly-
nomial rings over fields as introduced by Buchberger in 1965 has led to various
generalizations. An important one is the theory of prefix Gröbner bases intro-
duced by Madlener and Reinert in [2] (see also [5]) for handling right-ideals in
monoid and group rings. Their work generalizes the theory introduced by Mora
for Gröbner bases in non-commutative polynomial rings [3] (see also [4]) and has
recently been further generalized to modules over monoid rings in [1].

Based on the ideas of Madlener and Reinert, Zeckzer has developed the system
MRC, a system for computing prefix Gröbner bases in monoid and group rings (see
[6],[7],[10]). While in general the procedure for computing prefix Gröbner bases
may not terminate, its termination is guaranteed for free monoid rings. Therefore,
the class of prefix Gröbner bases in free monoid rings are of particular interest.

In the following we will restrict our attention on prefix Gröbner basis in free
monoid rings and study the complexity of some related problems and algorithms.
When doing this we will abstract from the underlying field operations.

A fundamental algorithm needed when dealing with prefix Gröbner bases is
one for computing normal forms. It is a well known fact that the number of
reduction steps needed for computing a normal form of a given polynomial p
w.r.t. a given prefix Gröbner basis R can be exponential in the size of the input,
i.e. in the size size(p) + size(R) (see e.g. [10]). Thus, one question that arises
iswhether there exists an interesting subclass of prefix Gröbner bases that allows
a more efficient normal form algorithm.

E. Csuhaj-Varjú and Z. Ésik (Eds.): FCT 2007, LNCS 4639, pp. 470–481, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Some Complexity Results for Prefix Gröbner Bases 471

Here, we will investigate the class of right-normalized prefix Gröbner bases
with regard to this question. It will turn out that polynomially many reduction
steps are sufficient for computing normal forms in this case. More precisely, we
will establish the following upper bound on the number of reduction steps needed
to normalize a given polynomial p w.r.t. a given right-normalized terminating
system R of prefix rules: |R| · size(p). Thus, for a right-normalized terminating
system R of prefix rules, the number of reduction steps needed by the normal
form algorithm does not depend on the sizes of the rules in R, but only on the
number of rules in R.

The next question that then arises is how a terminating system R of prefix
rules, can be efficiently transformed into a corresponding right-normalized sys-
tem. We will answer this question by presenting an algorithm that solves this
problem in polynomially many basic steps. These results about right-normalized
systems will be presented in Section 3.

In Section 4 we will turn our attention to the problem to decide for a given
finite and terminating system R of prefix rules in a free monoid ring whether or
not R is a prefix Gröbner basis. The standard way to solve this decision problem
is to test if all S-polynomials of R can be reduced to 0. Since the computation
of a normal form for a given polynomial p w.r.t. a given finite and terminating
system R of prefix rules may require exponentially many basic steps in general,
the time complexity for this standard decision algorithm is not bounded above
by a polynomial function.

Based on the presented results concerning right-normalized systems we will de-
velop a more efficient decision algorithm for the problem: The new algorithm de-
cides inO(|R|3 ·size(R)) basic steps whether or not a given finite and terminating
system R of prefix rules is a prefix Gröbner basis. This result gives an answer to
one of the open problems listed by Zeckzer in [10]: Herein Zeckzer asks whether
or not the described decision problem can be solved in polynomial time.

Due to lack of space we will omit all proofs in the following. We refer to the
full version of the paper for the proofs (see [9]).

2 Preliminaries

In the following we introduce the basic definitions and foundations that are
needed when considering prefix Gröbner bases in free monoid rings from a
rewriter’s point of view. For further reading concerning prefix Gröbner bases
we refer to [2], [5] and [10].

Let Σ be a finite alphabet and let K be a computable field. Then Σ∗ de-
notes the set of all strings (words) over Σ including the empty string ε, i.e.,
Σ∗ is the free monoid generated by Σ. For u, v ∈ Σ∗ and Γ ⊆ Σ∗, uΓv de-
notes the set { uwv | w ∈ Γ }. Moreover, for a set Γ ⊆ Σ∗ and a number
n ∈ IN0, Γn denotes the set { u1u2...un | u1, u2, ..., un ∈ Γ }. An ordering > on
Σ∗ is called admissible if u > v implies xuy > xvy for all u, v, x, y ∈ Σ∗, and
it is called wellfounded if there is no infinite descending chain u1 > u2 > u3 >

472 A. Sattler-Klein

For a finite set Γ ⊆ Σ∗ and a total ordering on Σ∗, max>Γ denotes the largest
string of Γ w.r.t. >.

The free monoid ring K[Σ∗] is the ring of all formal sums (called polynomials)∑n
i=1 αi ∗ wi (n ∈ IN0) with coefficients αi ∈ K − {0} and terms wi ∈ Σ∗ such

that for all i, j ∈ {1, ..., n} with i �= j, wi �= wj holds. The products αi ∗ wi

(αi ∈ K−{0}, wi ∈ Σ∗) are called monomials and the set of all terms occurring
in a polynomial p is denoted by T (p). Instead of 1 ∗ wi we will also sometimes
simply write wi. For a polynomial p =

∑n
i=1 αi ∗wi, a string x ∈ Σ∗ and β ∈ K,

β · p ◦ x denotes the polynomial
∑n

i=1(β · αi) ∗ wix. Moreover, for a finite set
Γ ⊆ Σ∗,

∑
Γ denotes the polynomial

∑
w∈Γ 1 ∗ w.

A pair (α∗t, r) with α ∈ K−{0}, t ∈ Σ∗ and r ∈ K[Σ∗] is called a rule. Given
a total wellfounded admissible ordering > on Σ∗ we associate with each non-zero
polynomial p ∈ K[Σ∗] a rule (l, r) ∈ KΣ∗×K[Σ∗] with l = α ∗ t (α ∈ K −{0},
t ∈ Σ∗), namely the one that satisfies the following two properties: 1. l−r = p, 2.
(l, r) is compatible with >, i.e., t > s for all s ∈ T (r). Accordingly, we associate
with a set F ⊆ K[Σ∗] of polynomials the set of corresponding rules that are
compatible with >. For a rule (l, r) ∈ KΣ∗ ×K[Σ∗] we also write l → r. If the
coefficient of the left-hand side of a rule (l, r) associated with a polynomial p is
1 then (l, r) as well as p are called monic. A set of rules R ⊆ KΣ∗ ×K[Σ∗] is
called monic if each rule of R is monic.

If (l, r) is a rule of R ⊆ KΣ∗ × K[Σ∗] then the term of the monomial l is
called the head term of the rule (l, r) and of the polynomial l − r, respectively.
The head term of the polynomial l − r is denoted by HT (l − r). The set of all
head terms of R is denoted by HT (R) and the set of all right-hand sides of R
is denoted by RHS(R). Moreover, for a set T of terms PSUF (T) denotes the
set of proper suffixes of the terms in T .

A set of rules R ⊆ KΣ∗×K[Σ∗] induces a reduction relation →R on K[Σ∗]
which is defined in the following way: For p, q ∈ K[Σ∗], p →R q if and only if
there exists a rule (α ∗ t, r) ∈ R (with α ∈ K and t ∈ Σ∗), a monomial β ∗ s
in p (with β ∈ K, s ∈ Σ∗) and a string x ∈ Σ∗ such that 1. tx = s and 2.
q = p− β ∗ s+ (β ·α−1) · r ◦ x. We also write p −→β∗s R q in this case to indicate
the monomial that is substituted by the reduction step and say that the rule
α∗ t→ r (prefix) reduces p to q in one step. If α∗ t→ r (with α ∈ K, t ∈ Σ∗ and
r ∈ K[Σ∗]) is a rule, β ∈ K and x ∈ Σ∗ then (β ·α) ∗ tx→R β · r ◦x is called an
instance of the rule α∗ t→ r. A polynomial p ∈ K[Σ∗] is called (prefix) reducible
w.r.t. a set of rules R ⊆ KΣ∗ ×K[Σ∗] if there exists a polynomial q ∈ K[Σ∗]
with p→R q. Otherwise, p is called R-irreducible.

As usually,→∗
R denotes the reflexive and transitive closure of→R, i.e., p→∗

R q
means that p can be reduced to q in n reduction steps for some n ∈ IN0. We
also write p →n

R q if p reduces to q in n steps and we denote by D→R(p, q)
the minimum of the set {n ∈ IN0 | p →n

R q} in this case. If p →∗
R q holds,

then q is called a descendant of p. An irreducible descendant of p is called a
normal form of p. If p has a unique normal form w.r.t. R then this normal
form is denoted by NFR(p). Moreover, ↔∗

R denotes the reflexive, symmetric

Some Complexity Results for Prefix Gröbner Bases 473

and transitive closure of →R. Two sets of rules R,S ⊆ KΣ∗×K[Σ∗] are called
equivalent if ↔∗

R = ↔∗
S .

If (α ∗ t, r1) and (β ∗ s, r2) (α, β ∈ K and t, s ∈ Σ∗) are two rules of R ⊆
KΣ∗ ×K[Σ∗] such that t = sx for some x ∈ Σ∗ then (r1, (α · β−1) · r2 ◦ x) is
a critical pair (of R) and the corresponding polynomial r1 − (α · β−1) · r2 ◦ x
is called a (prefix) S-polynomial (of R). The set of all S-polynomials of R is
denoted by SPOL(R). A set of rules R ⊆ KΣ∗ × K[Σ∗] is called confluent
if for all p, q, r ∈ K[Σ∗] the following holds: If q and r are descendants of p
then they are joinable in R, i.e., they have a common descendant w.r.t. R.
Moreover, R is called noetherian (or terminating) if no infinite chain of the form
p0 →R p1 →R p2 →R ... exists. If R is compatible with a total wellfounded
admissible ordering then it is noetherian. If in addition, each critical pair of R is
joinable in R, or in other words, each S-polynomial of R is R-reducible to 0, then
R is confluent. R ⊆ KΣ∗ ×K[Σ∗] is called left-normalized if for all (l, r) ∈ R,
l is irreducible w.r.t. R − {(l, r)}. Moreover, R is called right-normalized if for
all (l, r) ∈ R, r is irreducible w.r.t. R and it is called interreduced if it is left-
and right-normalized.

Let F ⊆ K[Σ∗] be a set of non-zero polynomials, let > be a total wellfounded
admissible ordering on Σ∗ and let R ⊆ KΣ∗ × K[Σ∗] be the associated set
of rules. Then a set of rules S ⊆ KΣ∗ × K[Σ∗] is called a prefix Gröbner
basis for F (or for R) w.r.t. > if the following holds: 1. ↔∗

S =↔∗
R , 2. S is

compatible with > , 3. S is confluent. If S is a prefix Gröbner basis for a set
F ⊆ K[Σ∗], then a polynomial p is an element of the right-ideal generated by
F if and only if its uniquely determined S-normal form is equal to 0. For a set
F ⊆ K[Σ∗] (R ⊆ KΣ∗×K[Σ∗]) of non-zero polynomials (of rules) and a given
total wellfounded admissible ordering> onΣ∗ there exists a uniquely determined
finite, monic set R∗ ⊆ KΣ∗ × K[Σ∗] that is an interreduced prefix Gröbner
basis for F (R) w.r.t. >. Since in a left-normalized set R ⊆ KΣ∗×K[Σ∗] there
are no critical pairs, any left-normalized set R ⊆ KΣ∗ × K[Σ∗] compatible
with some total wellfounded admissible ordering > is a prefix Gröbner basis. On
the other hand, the set R associated with F ⊆ K[Σ∗] and > can be effectively
transformed in a finite prefix Gröbner basis for F by normalizing the left-hand
sides.

Obviously, if in a set R ⊆ KΣ∗ × K[Σ∗] of rules, each rule (α ∗ t, r) (with
α ∈ K, t ∈ Σ∗) is replaced by (1 ∗ t, α−1 · r) then the resulting system is a monic
system that is equivalent to R. Therefore, we will assume in the following that
the rules of a set R ⊆ KΣ∗ ×K[Σ∗] are always monic ones.

Since for our complexity analysis we will not take into account the field op-
erations that have to be performed we define the size of a set of rules indepen-
dently of the coefficients occurring: The size of the empty word is defined by
size(ε) := 1, while the size of a nonempty word w is its length. Moreover, for a
non-zero polynomial p ∈ K[Σ∗], the size is defined by size(p) :=

∑
t∈T (p) size(t)

and for p = 0, size(p) := 1. Further, for a set R ⊆ KΣ∗ × K[Σ∗] of rules,
size(R) is defined as

∑
(l,r)∈R(size(l) + size(r)).

474 A. Sattler-Klein

3 Normalform Computation

It is a well known fact that for a given prefix Gröbner basis R ⊆ KΣ∗ ×K[Σ∗]
and a given polynomial p ∈ K[Σ∗], the number of reduction steps needed to
compute a normal form of p w.r.t. R can be exponential in the size of the input,
i.e. in the size size(R) + size(p). In particular, this phenomenon can occur
even in case R is compatible w.r.t. the length ordering on Σ∗. This shows the
following example from [8] which we will use in this paper to illustrate some
further phenomena.

Example 1. Let K be an arbitrary computable field, let Σ = { g, f, x, y } and
let >⊆ Σ∗ × Σ∗ be the length ordering on Σ∗. Moreover, for n ∈ IN0, let
Rn ⊆ KΣ∗ ×K[Σ∗] be defined as follows:

Rn = { g2f → x+ y } ∪ { g2i+2f → g2ifx+ g2ify | 1 ≤ i ≤ n}.
Then for all n ∈ IN0, Rn is compatible with > and left-normalized. Hence, it is
a prefix Gröbner basis. Moreover, for all n ∈ IN0 the following holds:

1. size(Rn) = 3n2 + 10n+ 5

2. NFRn(g2n+2f) =
∑
{x, y}n+1

3. D→Rn
(g2n+2f,

∑
{x, y}n+1) = 2n+1 − 1

Thus, the question that arises is whether there exist interesting subclasses of
terminating set of rules of KΣ∗ × K[Σ∗] where the computation of normal
forms can be done more efficiently.

The systems Rn (n ∈ IN0) given in Example 1 are left-normalized, but not
right-normalized. Thus, it is a natural question to ask whether or not this fact
is an essential one.

In the following we will answer this question by showing that for each right-
normalized set R ⊆ KΣ∗×K[Σ∗] that is compatible with some total admissible
wellfounded ordering > polynomially many reduction steps are in fact sufficient
for computing normal forms. To this end, we first consider the reduction strategy
↪→R which prefers large terms (w.r.t. >).

Definition 1. Let > be a total admissible wellfounded ordering on Σ∗ and let
R ⊆ KΣ∗ × K[Σ∗] be a set of rules compatible with >. Then the relation
↪→R⊆ K[Σ∗]×K[Σ∗] is defined as follows: If p, p′ ∈ K[Σ∗], then p ↪→R p′ iff
p −→α∗t R p′ where t = max>{s ∈ T (p) | s is →R-reducible} and α ∈ K.

In [8] it has been proved that for each left-normalized system R that is compat-
ible with some total admissible wellfounded ordering >, the reduction strategy
↪→R is optimal with regard to the lengths of the normalizing reduction sequences
in that it is possible to construct to each normalizing →R-sequence of length k
(k ∈ IN0) a corresponding normalizing ↪→R-sequence of length ≤ k. But, as illus-
trated above, the lengths of these sequences cannot be bounded by a polynomial
function in general.

Some Complexity Results for Prefix Gröbner Bases 475

On the other hand, it has turned out that the reduction strategy ↪→R is
not optimal in general: For a non-left-normalized set of rules R, the reduction
strategy ↪→R can be very inefficient even if R is a prefix Gröbner basis (see [8]).

However, in the following we will prove that for a given right-normalized
set R ⊆ KΣ∗ × K[Σ∗] compatible with a given total admissible wellfounded
ordering > and a given polynomial p ∈ K[Σ∗], the length of each ↪→R-sequence
starting with p is bounded above by |R| · size(p). To this end we first consider
the following property of the relation ↪→R (see [8]).

Lemma 1. Let > be a total admissible wellfounded ordering on Σ∗ and let R ⊆
KΣ∗ ×K[Σ∗] be a set of rules compatible with >. Moreover, let p0, p1, p̂1, p2 ∈
K[Σ∗] be polynomials and let α0 ∗ t0, α1 ∗ t1 be monomials.

If p0 ↪→α0∗t0 R p1 ↪→∗
R p̄1 ↪→α1∗t1 R p2 then t0 > t1 .

From this fact we can easily derive the following bound for the lengths of the
↪→R-sequences.

Corollary 1. Let > be a total admissible wellfounded ordering on Σ∗ and let
R ⊆ KΣ∗ × K[Σ∗] be a set of rules compatible with >. Moreover, let p, p′ ∈
K[Σ∗] be polynomials with p ↪→n

R p′ for some n ∈ IN0. Then the following holds:

n ≤ | { t ∈ T (q) | q ∈ K[Σ∗] with p→∗
R q and t is →R-reducible } |

Thus, the question that arises is how the set of reducible terms of the descendants
of a given polynomial p with respect to a given right-normalized terminating set
R can be characterized.

In order to derive an appropriate characterization we first consider the set of
all terms of a descendant q of p with respect to R. As the next lemma shows the
structure of the terms of q is rather simple.

Lemma 2. Let R ⊆ KΣ∗ × K[Σ∗] be a right-normalized terminating set of
rules and let p, q ∈ K[Σ∗] be polynomials with p →∗

R q. Then the following
holds:

T (q) ⊆ T (p) ∪ T (RHS(R)) ∪ (T (RHS(R)) ◦ PSUF (T (p)))

By using this result and the fact that the terms of T (RHS(R)) are →R-irre-
ducible since R is right-normalized we can derive the following characterization
for the reducible terms of a descendant q of p provided ε is not a head term
of R.

Corollary 2. Let R ⊆ KΣ∗ ×K[Σ∗] be a right-normalized terminating set of
rules and let p, q ∈ K[Σ∗] be polynomials with p→∗

R q. If ε /∈ HT (R) then:

{ t ∈ T (q) | t is →R-reducible } ⊆ HT (R) ∪ (HT (R) ◦ PSUF (T (p)))

This corollary together with Corollary 1 gives a polynomial upper bound for the
lengths of the ↪→R-sequences w.r.t. a right-normalized terminating set R for the
case when ε /∈ HT (R) holds:

476 A. Sattler-Klein

If p, p′ ∈ K[Σ∗] and n ∈ IN0 such that p ↪→n
R p′, then

n ≤ | { t ∈ T (q) | q ∈ K[Σ∗] with p→∗
R q and t is →R-reducible } |

≤ | HT (R) ∪ (HT (R) ◦ PSUF (T (p))) |
≤ | R | + | R | · (size(p)− 1) = | R | · size(p)

On the other hand, if ε ∈ HT (R), then each term can be reduced to 0 in one
↪→R-step. Thus, the derived polynomial bound is true in this case too.

By a more differentiated analysis of the situations that may arise when nor-
malizing a polynomial p with respect to a right-normalized terminating set R
using the reduction strategy ↪→R we can derive a little bit better upper bound
for n.

Theorem 1. Let > be a total admissible wellfounded ordering on Σ∗ and let
R ⊆ KΣ∗×K[Σ∗] be a non-empty right-normalized set of rules compatible with
>. Moreover, let p, p′ ∈ K[Σ∗] be polynomials with p �= 0 such that p ↪→n

R p′ for
some n ∈ IN0. Then the following holds:

n ≤ |R| · size(p)− |R|+ 1

We want to emphasize two aspects of this result: First of all, this result holds
for an arbitrary right-normalized set R ⊆ KΣ∗×K[Σ∗] compatible with some
total admissible wellfounded ordering and does not require that R is a prefix
Gröbner basis. Secondly, the bound shows that the sizes and forms of the rules
of R do not have an essential influence on the lengths of the reduction sequences
that can be performed: It is only the cardinality of R that plays an important
role in this context.

Of course, at a first sight one might wonder why Theorem 1 which is based on
a rather technical proof (see [9]) is presented here, although the corresponding
bound only is asymptotically equivalent to the other bound presented before.
However, the reason for doing this is the fact that it can be proved that the
second one of the derived bounds is a very sharp one.

Lemma 3. Let K be an arbitrary computable field. For all k, i ≥ 1 there exist
an alphabet Σ, an interreduced prefix Gröbner basis R ⊆ KΣ∗ × K[Σ∗] and a
polynomial p ∈ K[Σ∗] such that the following holds:

- |R| = k + 1
- size(p) = i

- |R| · size(p)− |R|+ 1 reduction steps are needed to reduce p to normal form

Proof
Let K be an arbitrary computable field and let k, i ≥ 1. Let Σ = {a, x1, x2, ..., xk,
x̄1, x̄2, ..., x̄k} and let >⊆ Σ∗×Σ∗ be the length-lexicographical ordering induced
by a > x1 > x2 > ... > xk > x̄1 > x̄2 > ... > x̄k. Moreover, let R ⊆ KΣ∗×K[Σ∗]
be defined as follows

R = { a → ε+Σk
j=1xj } ∪ { xja→ x̄ja | j ∈ {1, ..., k} }

Some Complexity Results for Prefix Gröbner Bases 477

and let p = ai. Then, as it is shown in the full version of the paper (see [9]), R
and p have the desired properties.

Note that the systems R constructed in the proof of the last lemma are not only
right-normalized, but also left-normalized, and hence they are prefix Gröbner
bases. Thus, the proof shows that even for interreduced prefix Gröbner bases
the bound given in Theorem 1 is sharp.

According to Theorem 1 for an arbitrary but fixed, right-normalized ter-
minating set R ⊆ KΣ∗ × K[Σ∗] compatible with some appropriate ordering,
the number of reduction steps needed for computing normal forms w.r.t. ↪→R
is linearly bounded. This shows that right-normalized sets of rules should be
preferred in practise when dealing with prefix Gröbner bases, since they allow
an efficient normal form algorithm. But, what is the time complexity of the
problem to normalize the right-hand sides of a terminating set R ⊆ KΣ∗ ×
K[Σ∗]?

Of course, the number of reduction steps that will be performed when nor-
malizing the right-hand sides of a terminating set R can depend essentially on
the reduction strategy used and on the order in which the rules are treated. To
see this, we consider Example 1 again: For each n ∈ IN0, the system Rn is a pre-
fix Gröbner basis and thus, each polynomial p ∈ K[Σ∗] has exactly one normal
form w.r.t. →Rn . Thus, normalizing the right-hand sides of the rules of Rn yields
a uniquely determined right-normalized set Tn independently of the strategies
used. The set Tn has the following form: Tn = { g2i+2f →

∑
{x, y}i+1 | 0 ≤

i ≤ n}. Hence, for n ∈ IN0, the size of Tn grows exponentially in n as well as in
size(Rn).

However, for the number of reduction steps needed to generate the set Tn the
order in which the right-hand sides of Rn are reduced is essential: If the rules of
Rn are treated in decreasing order with respect to the lengths of their left-hand
sides, then 2 ·

∑n
i=1(2i − 1) = 2 · (2n+1 − 2 − n) = 2n+2 − 2n − 4 reduction

steps are needed for computing Tn. In contrast to this, linearly many reduction
steps, namely

∑n
i=1 2 = 2n, will only be performed when the right-hand sides

of the rules of Rn are normalized in increasing order w.r.t. the lengths of the
corresponding left-hand sides.

Can this observation be generalized, i.e. is it always a good strategy to treat
the rules in such an order that the left-hand sides increase w.r.t. > when nor-
malizing the right-hand sides of a set R ⊆ KΣ∗ ×K[Σ∗]?

Of course, this might depend on the reduction strategy used. However, if we pro-
ceed in the way described then it suffices to normalize each right-hand side w.r.t. a
right-normalized subset of the current set. Hence then, as Theorem 1 shows, the
reduction strategy ↪→R leads to polynomially bounded reduction sequences.

These considerations suggest to use the following algorithm for transforming
a given set of rules R ⊆ KΣ∗×K[Σ∗] compatible with some given total admis-
sible wellfounded ordering > into a corresponding equivalent right-normalized
set T .

478 A. Sattler-Klein

Algorithm: NORMALIZE RHS

INPUT: A total admissible wellfounded ordering > on Σ∗ and
a set R = { li → ri | 1 ≤ i ≤ n } ⊆ KΣ∗ ×K[Σ∗] (n ∈ IN)
that is compatible with > .

OUTPUT: A set T = { li → r′i | 1 ≤ i ≤ n } where for all i ∈ { 1, .., n },
r′i is a R-normal form of ri .

begin
Sort the rules of R w.r.t. > such that l1 ≤ l2 ≤ ... ≤ ln ;
For i := 2 to n do

r′i :=NORMALIZE↪→(ri, { l1 → r′1, ..., li−1 → r′i−1 }) ;
T := { li → r′i | 1 ≤ i ≤ n }
end

Here, the subalgorithm NORMALIZE↪→ computes for a given polynomial p ∈
K[Σ∗] and a given terminating set of rules S ⊆ KΣ∗×K[Σ∗] a normal form of
p w.r.t. S using the reduction strategy ↪→S .

And indeed, analysis of the algorithm shows that the number of basic steps
performed by the algorithm NORMALIZE RHS on a given input is polynomially
bounded.

Theorem 2. Algorithm NORMALIZE RHS computes to a given input (>, R)
in O(|R|2 · size(R)) basic steps an equivalent right-normalized set T that is
compatible with >.

4 Prefix Gröbner Basis Check

A given terminating set R ⊆ KΣ∗ × K[Σ∗] is a prefix Gröbner Basis if and
only if R is confluent, i.e. if and only if all S-polynomials can be reduced to
0 w.r.t. →∗

R. The corresponding standard decision algorithm can be found for
instance in [5] and [10]. What is the time complexity of the algorithm?

Due to the fact that the number of reduction steps needed to compute a
normal form of a polynomial p w.r.t. a set R of prefix rules can be exponential
in the size of the input, it is not difficult to see that the number of reduction
steps needed by the standard decision procedure is not bounded above by a
polynomial function (cf. [10]). To illustrate this we consider Example 1 again:
If we add to the alphabet Σ the new symbol h and extend for n ∈ IN0, the set
Rn by the two rules h2n+4 → g2n+2f and h2n+4 → 0, then the resulting set
Sn contains two S-polynomials, namely g2n+2f and, for reasons of symmetry,
−g2n+2f . As shown in Example 1 for all n ∈ IN0 we have:

D→Rn
(g2n+2f,

∑
{x, y}n+1) = 2n+1 − 1 .

Since the two new rules are obviously not applicable during a reduction sequence
starting with g2n+2f we get:

D→Sn
(g2n+2f,

∑
{x, y}n+1) = D→Rn

(g2n+2f,
∑
{x, y}n+1) = 2n+1 − 1 .

Some Complexity Results for Prefix Gröbner Bases 479

Thus, the standard decision algorithm will perform ≥ 2 · (2n+1 − 1) reduction
steps when applied on input Sn. Of course, for reasons of symmetry it would
suffice to reduce one of the S-polynomials only. But even then, the number of
reduction steps performed by the algorithm will be exponential in the size of the
input.

In the following we will show how the results achieved in the previous section
can be used to derive a more efficient algorithm solving the described decision
problem. The main idea of the algorithm is to right-normalize the set R in a
first step since for a right-normalized prefix Gröbner basis, normal forms can be
computed using polynomially many basic steps (see Theorem 1).

As the next lemma shows the resulting right-normalized system T is confluent
if and only if R is so.

Lemma 4. Let n ∈ IN and let R = { li → ri | 1 ≤ i ≤ n } ⊆ KΣ∗ ×K[Σ∗] be
a terminating set of rules. Moreover, let r̄1 be an R-normal form of r1 and let
T = { l1 → r̄1} ∪ { li → ri | 2 ≤ i ≤ n }. Then the following holds:

1. ↔∗
R = ↔∗

T
2. R is confluent iff T is confluent

Thus, R is a prefix Gröbner basis if and only if all S-polynomials of T can
be reduced to 0 w.r.t. →∗

T . These observations lead to the following decision
algorithm.

Algorithm: IS PGB

INPUT: A total admissible wellfounded ordering > on Σ∗

and a non-empty set R ⊆ KΣ∗ ×K[Σ∗] compatible with >.
OUTPUT: answer = yes if R is a prefix Gröbner basis, answer = no otherwise.

begin
T := NORMALIZE RHS(>,R);
answer := yes;
C := SPOL(T);
while (answer = yes) and (C �= ∅) do

begin
Choose an element p of C;
C := C − { p };
p̄ :=NORMALIZE↪→(p, T);
if p̄ �= 0 then answer := no;
end;

end

What is the time complexity of this algorithm IS PGB? Using the complexity
results of the previous section the following result can be established.

Theorem 3. Algorithm IS PGB decides on input (>,R) in O(|R|3 · size(R))
basic steps whether or not the given set R compatible with > is a prefix Gröbner
basis.

480 A. Sattler-Klein

5 Concluding Remarks

Transforming a terminating set R ⊆ KΣ∗×K[Σ∗] into an equivalent left- and
right-normalized system T by interreduction may require exponentially many
reduction steps (see [8]). Moreover, normalizing the right-hand sides of R may
result in a right-normalized system whose size is exponential in the size of the
original system. However, as proved in Theorem 2, polynomially many basic
steps are sufficient to transform R into an equivalent right-normalized system.

In [10] Zeckzer has proved that O(m · l2 · |R|2) head reduction steps are
sufficient to compute a head normal form of a polynomial p with respect to
R (i.e. a descendant whose head term is irreducible w.r.t. R) in case R is an
interreduced prefix Gröbner basis. Here m is the length of the maximal term of
R ∪ {p} w.r.t > and l is the maximal number of terms in a polynomial of the
set { l − r | (l, r) ∈ R} ∪ {p}.

Our results show that this bound can be improved essentially in that |R| ·
size(p) reduction steps are sufficient to compute a head normal form of p and
even a normal form of p and that this even holds in case R is not left-normalized,
but only right-normalized.
An essential property of the new bound is that it does not depend on the sizes
of the rules in R, but only on the cardinality of R. Thus, if T is obtained from
a terminating set R ⊆ KΣ∗ × K[Σ∗] by normalizing the right-hand sides of
R, then the number of basic steps needed for computing a normal form of a
polynomial p w.r.t. T is bounded by |R| · size(p) although the size of T may be
exponential in the size of R.

These new complexity results for right-normalized systems are the basis for
the algorithm IS PGB which decides in polynomially many basic steps whether
or not a given set R ⊆ KΣ∗×K[Σ∗] is a prefix Gröbner basis. This shows that
the corresponding standard algorithm used in practise is very inefficient.

References

1. Ackermann, P., Kreuzer, M.: Gröbner Basis Cryptosystems. Journ. AAECC 17,
173–194 (2006)

2. Madlener, K., Reinert, B.: On Gröbner Bases in Monoid and Group Rings. In:
Proc. ISSAC’93, pp. 54–263. ACM Press, New York (1993)

3. Mora, T.: Gröbner Bases for Non-Commutative Polynomial Rings. In: Calmet,
J. (ed.) Algebraic Algorithms and Error-Correcting Codes. LNCS, vol. 229, pp.
353–362. Springer, Heidelberg (1986)

4. Mora, T.: An Introduction to Commutative and Noncommutative Gröbner Bases.
Theoretical Computer Science 134, 131–173 (1994)

5. Reinert, B.: On Gröbner Bases in Monoid and Group Rings. PhD thesis, Universität
Kaiserslautern (1995)

6. Reinert, B., Zeckzer, D.: MRC - A System for Computing Gröbner Bases in Monoid
and Group Rings. In: Presented at the 6th Rhine Workshop on Computer Algebra,
Sankt Augustin (1998)

7. Reinert, B., Zeckzer, D.: MRC - Data Structures and Algorithms for Computing
in Monoid and Group Rings. Journ. AAECC 10(1), 41–78 (1999)

Some Complexity Results for Prefix Gröbner Bases 481

8. Sattler-Klein, A.: An Exponential Lower Bound for Prefix Gröbner Bases in Free
Monoid Rings. In: Thomas, W., Weil, P. (eds.) STACS 2007. LNCS, vol. 4393, pp.
308–319. Springer, Heidelberg (2007)

9. Sattler-Klein, A.: Some Complexity Results for Prefix Gröbner Bases in Free
Monoid Rings. Internal Report, Universität Kaiserslautern (to appear)

10. Zeckzer, D.: Implementation, Applications, and Complexity of Prefix Gröbner
Bases in Monoid and Group Rings. PhD thesis, Universität Kaiserslautern (2000)

Fast Asymptotic FPTAS for Packing

Fragmentable Items with Costs

Hadas Shachnai and Omer Yehezkely

Department of Computer Science, The Technion, Haifa 32000, Israel
{hadas,omery}@cs.technion.ac.il

Abstract. Motivated from recent applications in community TV net-
works and VLSI circuit design, we study variants of the classic bin pack-
ing problem, in which a set of items needs to be packed in a minimum
number of unit-sized bins, allowing items to be fragmented. This can
potentially reduce the total number of bins used, however, item fragmen-
tation does not come for free. In bin packing with size preserving fragmen-
tation (BP-SPF), there is a bound on the total number of fragmented
items. In bin packing with size increasing fragmentation (BP-SIF), frag-
menting an item increases the input size (due to a header/footer of fixed
size that is added to each fragment). Both BP-SPF and BP-SIF do not
belong to the class of problems that admit a polynomial time approxi-
mation scheme (PTAS).

In this paper, we develop fast asymptotic fully polynomial time ap-
proximation schemes (AFPTAS) for both problems. The running times
of our schemes are linear in the input size. As special cases, our schemes
yield AFPTASs for classical bin packing and for variable-sized bin pack-
ing, whose running times improve the best known running times for these
problems.

1 Introduction

In the classical bin packing problem, n items (a1, . . . , an) of sizes s(a1), . . . , s(an)
∈ (0, 1] need to be packed in a minimal number of unit-sized bins. Bin packing is
well known to be NP-hard. We consider variants of bin packing in which items
may be fragmented (into two or more pieces). This can potentially reduce the
number of bins used; however, item fragmentation does not come for free. We
study the following two variants.

Size preserving fragmentation (BP-SPF): an item ai can be split into two
fragments: ai1 , ai2 , such that s (ai) = s (ai1) + s (ai2). The resulting fragments
can also split in the same way. Each split has a unit cost and the total cost
cannot exceed a given budget C ≥ 0. In the special case where C = 0 we get an
instance of classical bin packing.

Size increasing fragmentation (BP-SIF): a header (or a footer) of fixed
size, Δ > 0, is attached to each (whole or fragmented) item; thus, the capacity
required for packing an item of size s(ai) is s(ai) + Δ. Upon fragmenting an

E. Csuhaj-Varjú and Z. Ésik (Eds.): FCT 2007, LNCS 4639, pp. 482–493, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Fast Asymptotic FPTAS for Packing Fragmentable Items with Costs 483

item, each fragment gets a header; that is, if ai is replaced by two items such
that s(ai) = s(ai1) + s(ai2), then packing aij requires capacity s(aij) +Δ.

The above two variants of the bin packing problem capture many practical sce-
narios, including message transmission in community TV networks, VLSI circuit
design and preemptive scheduling on parallel machines with setup times/setup
costs. For more details on these applications see [25].

Both BP-SIF and BP-SPF are known to be NP-hard (see in [16] and [25]),
therefore, we focus on finding efficient approximate solutions.

1.1 Related Work

It is well known (see, e.g., [19]) that bin packing does not belong to the class of
NP-hard problems that admit a PTAS. In fact, bin packing cannot be approxi-
mated within factor 3

2 −ε, for any ε > 0, unless P=NP [9]. However, there exists
an asymptotic PTAS (APTAS) which uses, for any instance I, (1 + ε)OPT (I)+k
bins for some fixed k, where OPT (I) is the number of bins used in any optimal
solution. Fernandez de la Vega and Lueker [6] presented an APTAS with k = 1.
Alternatively, a dual PTAS, which uses OPT (I) bins of size (1 + ε) was given
by Hochbaum and Shmoys [12]. Such a dual PTAS can also be derived from the
work of Epstein and Sgall [5] on multiprocessor scheduling, since bin packing is
dual to the minimum makespan problem.

Karmarkar and Karp [14] presented an AFPTAS for bin packing which uses
(1+ε)OPT (I)+O(1/ε2) bins. The scheme of [14] is based on rounding the (frac-
tional) solution of a linear programming (LP) relaxation of bin packing. To solve
this linear program in polynomial time, despite the fact that it has a vast number
of variables, the authors use a variant of the ellipsoid method due to Grötschel,
Lovász and Schrijver (GLS) [11]. The resulting running time is O(ε−8n logn). An
AFPTAS with substantially improved running time of O(n log ε−1+ε−6 log6 ε−1)
was proposed by Plotkin et al. [23].

In variable-sized bin packing, we have a set of items whose sizes are in (0, 1],
and a set of bin sizes in (0, 1] (including the size 1) available for packing the
items. We need to pack the items in a set of bins of the given sizes, such that the
total bin capacity used is minimized. The variable-sized bin packing problem
was first investigated by Friesen and Langston [8], who gave several approxi-
mation algorithms, the best of which has asymptotic worst case ratio of 4/3.
Murgolo [21] presented an AFPTAS, which solves a covering linear program us-
ing the techniques of [14], namely, the dual program is solved approximately
using the modified GLS algorithm. Comprehensive surveys on the bin packing
problem and its variants appear, e.g., in [2,27] (see also the recent work of Ep-
stein and Levin [4] on dynamic approximation schemes for the online bin packing
problem, and the references therein.)

Mandal et al. introduced in [16] the BP-SIF problem and showed that it is
NP-hard. Menakerman and Rom [18] and Naaman and Rom [22] were the first
to develop algorithms for bin packing with item fragmentation, however, the
problems studied in [18] and [22] are different from our problems. For a version
of BP-SPF in which the number of bins is given, and the objective is to minimize

484 H. Shachnai and O. Yehezkely

the total cost incurred by fragmentation, the paper [18] studies the performance
of simple algorithms such as First-Fit, Next-Fit and First-Fit-Decreasing, and
shows that for any instance which can be packed in N bins using f∗ splits of
items, each of these algorithms might end up using f∗ +N − 1 splits.

The paper [25] presents dual PTASs and APTASs for BP-SPF and BP-SIF.
The dual PTASs pack all the items in OPT (I) bins of size (1 + ε), and the
APTASs use at most (1 + ε)OPT (I) + 1 bins. All of these schemes have running
times that are polynomial in n and exponential in 1/ε. The paper also shows
that each of the problems admits a dual AFPTAS. The proposed schemes pack
the items in OPT (I) + O(1/ε2) bins of size (1 + ε). The schemes are based on
solving mixed packing and covering LP with negative entries, using the ellip-
soid method; this results in the running time of O(ε−12n logn), which renders
the schemes highly impractical. The question whether the two variants of bin
packing admitted (non-dual) AFPTASs remained open. In this paper, we resolve
this question by presenting for the two problems approximation schemes which
pack the items in (1 + ε)OPT (I) +O(ε−1 log ε−1) unit-sized bins. The proposed
schemes improve significantly the running times of the schemes in [25], to times
that are linear in the input size. Since these schemes are combinatorial, they are
also easier to implement.

There has been some related work in the area of preemptive scheduling on
parallel machines. The paper [24] presents a tight bound on the number of pre-
emptions required for a schedule of minimum makespan, and a PTAS for mini-
mizing the makespan of a schedule with job-wise or total bound on the number
of preemptions. For the special case of preemptive scheduling of jobs on identical
parallel machines, so as to minimize the makespan, the paper uses the property
of primitive optimal schedules for developing an approximation scheme; however,
the scheme is based on dynamic programming applied to a discretized instance.
Such discretization cannot be applied to our problems, since the resulting pack-
ing may exceed the bin capacities.

1.2 Our Results

In this paper we develop fast AFPTASs for BP-SPF and BP-SIF. Our schemes
pack the items in (1 + ε)OPT (I) + O(ε−1 log ε−1) bins, in time that is linear
in n, the number of items, and polynomial in 1/ε (see Theorem 1). As special
cases, our scheme for BP-SPF yields AFPTASs for classical bin packing and
for variable-sized bin packing, whose running times improve the best known
running times for these problems (see Theorems 2 and 3). We note that the
improvement for variable-sized bin packing is substantial, since the best known
running time for this problem is dominated by the running time of the modified
GLS algorithm, which is O(ε−8n logn) [21].

Techniques: A major difficulty in packing with item fragmentation is in defin-
ing the fragment sizes. One possible approach is to discretize these sizes (as
in [25]); however, this leads to a dual AFPTAS. Another approach is to guess
the bin configurations and to solve a linear program to find the fragment sizes,
but then the scheme cannot be fully polynomial, as the number of configurations

Fast Asymptotic FPTAS for Packing Fragmentable Items with Costs 485

that need to be considered is exponential in 1/ε. To get around this difficulty, we
initially transform the input I to one that can be packed with no fragmentation;
later, we transform the resulting packing to a valid packing of I. We use an
interesting structural property of the two variants of bin packing, namely, the
existence of optimal primitive packings (see Section 2.1), to establish a relation
between packing with item fragmentation and variable-sized bin packing. In par-
ticular, we model any feasible packing satisfying this property as an undirected
graph; each connected component is represented by an oversized bin, whose size
is equal to the number of bins in this component. The items are then packed in
bins of variable sizes, with no fragmentation. The scheme completes by gener-
ating from each oversized bin a set of ordinary (i.e., unit-sized) bins, allowing
some of the items to fragment, while maintaining the constraints on the number
of bins/fragmented items. We expect that our non-standard approach will find
more uses for other problems that involve splitting of input elements, such as
preemptive scheduling of jobs on parallel machines. Recently, Fishkin et al. [7]
studied this problem where preemptions incur delays, due to migrations of jobs
from one machine to another, and showed the existence of optimal primitive
schedules for certain subclasses of instances. More generally, our schemes may
be useful for other scheduling problems in which there exist optimal schedules
satisfying McNaughton’s rule [17].

Due to space constraints, some of the proofs are omitted. The detailed results
appear in [26].

2 An AFPTAS for BP-SPF

2.1 Preliminaries

At the heart of our schemes lies an interesting structural property of optimal
solutions for our problems. Define the bin packing graph of a given packing as
an undirected graph, where each bin i is represented by a vertex vi; there is
an edge (vi, vj) if bin i and bin j share fragments of the same item. Note that
a fragment-free packing induces a graph with no edges. A primitive packing is
a feasible packing in which (i) each bin has at most two fragments of items,
(ii) each item can be fragmented only once, and (iii) the respective bin packing
graph is a collection of paths. Note that the last condition implies that in any
connected component of the bin packing graph there are two bins including only
a single fragment. The following was shown in [25].

Lemma 1. Any instance of BP-SPF has an optimal primitive packing.

Consider a primitive solution for a BP-SPF instance. Suppose that some con-
nected component consists of c ≥ 1/ε bins, then we can partition this component
to εc components, each containing 1/ε bins. To avoid violating the budget of C
on the number of fragmented items, whenever we need to fragment an item, we
can add a new bin in which the item is packed with no fragmentation. Overall,
we may add at most εc new bins. Thus, we have shown.

486 H. Shachnai and O. Yehezkely

Lemma 2. Any primitive solution for BP-SPF which uses N bins can be re-
placed by a solution in which each connected component is of size at most 21/ε3,
and the number of bins used is at most N(1 + ε).

Recall that in BP-SPF we are given a set of n items I = (a1, a2, ..., an), where
ai has the size s(ai) ∈ (0, 1]. The number of fragmented items is bounded by C.
The goal is to pack all items using minimal number of bins and at most C splits.
The following is an outline of our scheme for BP-SPF. (i) Preprocess the input to
obtain a fixed number of item sizes. (ii) Guess OPT (I) = d, the number of bins
used by an optimal packing of I. (iii) Solve a linear programming relaxation
of the resulting instance of packing the items (with no fragmentations) into
ordinary and oversized bins. (iv) Round the (fractional) solution for the LP and
pack the large items according to the integral solution. (v) Pack the remaining
large items and the small items, one at a time (see below).

2.2 Preprocessing the Input

Initially, we partition the items into two groups by their sizes: the large items
have size at least ε; all other items are small. We then transform the instance I
to an instance I ′ in which the number of distinct items sizes is fixed. This can
be done by using the shifting technique (see, e.g., in [27]). Generally, the items
are sorted in non-decreasing order by sizes, then, the ordered list is partitioned
into at most 1/ε2 subsets, each containing H = 2nε23 items. The size of each
item is rounded up to the size of the largest item in its subset. This yields an
instance in which the number of distinct item sizes is m = n/H ≤ 1/ε2. Denote
by nj the number of items in size group j, 1 ≤ j ≤ m.

We proceed to define for the large items the configuration matrix, A, for bins
in which there are no fragmented items. In particular, for the shifted large items,
a bin configuration is a vector of size m ≤ 1/ε2, in which the j-th entry gives hj ,
the number of items of size group j packed in the bin. The configuration matrix
A consists of the set of all possible bin configurations, where each configuration
is a column in A; therefore, the number of columns in A is q ≤ (1/ε)1/ε

2
. Next,

we define a matrix B including as columns the configurations of oversized bins.
Each of these bins has a size in the range [2, C + 1]. An oversized bin represents
a connected component in some optimal primitive packing of the input. Each
configuration of an oversized bin gives the number of items of each size group in
this bin; thus, the number of columns in B is s = O((C/ε)1/ε

2
).

2.3 Solving the Linear Program

In the following we describe the linear program that we formulate for finding a
(fractional) packing of the items with no fragmentation. We number the oversized
bin configurations by 1, . . . , s. Note that the capacities of the oversized bins
used will determine the number of fragmented items in the solution output by
the scheme. Let fk be the minimum capacity of an oversized bin having the k-th
configuration, then the number of fragmented items in the connected component
corresponding to this bin is fk−1. Denote by x,y the variable vectors giving the

Fast Asymptotic FPTAS for Packing Fragmentable Items with Costs 487

number of ordinary and oversized bins having certain configuration, respectively.
We want to minimize the total bin capacity used for packing the input, such that
the number of fragmented items does not exceed the budget C.

Having guessed correctly the value of d, we need to find a feasible solution for
the following program.

(LP)
q∑

i=1

Ajixi +
s∑

k=1

Bjkyk ≥ nj for j = 1, . . . ,m

q∑
i=1

xi +
s∑

k=1

fkyk ≤ d

s∑
k=1

(fk − 1)yk ≤ C

xi ≥ 0 for i = 1, . . . , q
yk ≥ 0 for k = 1, . . . , s

The first set of constraints guarantees that we pack all the items in size group
j, for all 1 ≤ j ≤ m; the two last constraints guarantee that the total number
of bins used is at most d, and that the number of fragmented items does not
exceed the budget C.

A technique developed by Young [28], for obtaining fast approximately feasible
solutions for mixed linear programs, yields a solution which may violate the
packing constraints in the above program at most by factor of ε, namely,

∑
i xi+∑

k fkyk ≤ d(1+ε), and
∑

k(fk−1)yk ≤ C(1+ε) (see also in [13]).1 Generally, the
technique is based on repeated calls to an oracle, which solves in each iteration
(one or more) instances of the knapsack problem. Thus, the heart of the scheme
is in efficient implementation of the oracle. In solving the LP for our problem,
the oracle needs to solve a set of C+ 1 instances of the multiple choice knapsack
(MCK) problem. In the c-th instance, 1 ≤ c ≤ C + 1, we are given a bin of
capacity c and m items; the i-th item, ai, has the size ε ≤ s(ai) ≤ 1 and the
profit 0 < p(ai) ≤ 1. We need to find a feasible packing of the items in the bin,
by selecting any number of copies of each item, such that the overall profit is
maximized. The oracle should solve this problem within 1 + ε from the optimal,
for each bin size 1 ≤ c ≤ C+1. We call this set of instances of the MCK problem
all MCK.

By Lemma 2, we may assume that the maximum bin size in our all MCK
problem is 21/ε3 + 1. Since each item ai, has a size s(ai) ≥ ε, we can pack at
most (1/ε)2 copies of each item. Therefore, for each bin size 1 ≤ c ≤ 21/ε3, we
can solve the knapsack problem with n = m/ε2 items. Using a fast FPTAS of
Kellerer and Pferscy [15], this can be done in O(ε−3m log ε−1) steps.

Alternatively, we can solve each MCK instance exactly, by formulating the
problem, with a bin of size c, as the following integer program (IP).

1 We show below that such a solution can be fixed to maintain the budget constraint
in our BP-SPF instance.

488 H. Shachnai and O. Yehezkely

{maximize
m∑
i=1

p(ai)zi subject to :
m∑
i=1

s(ai)zi ≤ c, zi ≥ 0 1 ≤ i ≤ m}

where zi is the number of copies selected from the i-th item. As shown in [3],
such IP in fixed dimension can be optimally solved in O(mM) steps, where M
is the longest binary representation of any input element.2 We repeat this for
c = 1, 2, . . . , C + 1. Thus, we have shown

Lemma 3. For any ε > 0, the above all MCK problem can be solved within
factor of (1+ε) from the optimal in O(mε ·min{ε−2 log ε−1,M}) steps, where M
is the longest binary representation of any input element.

Finally, given a feasible (1+ε)-approximate solution for LP, we apply a technique
of Beling and Megiddo [1] for transforming a given solution for a system of linear
equations to a basic solution.

2.4 Packing the Items

Given the (fractional) solution for LP, we obtain integral vectors x′ and y′, by
rounding down the entries in the vectors x and y, respectively; that is, x′ = (x),
and y′ = (y). Note that since we have a basic solution, at most m+ 2 variables
can be assigned non-zero values. We start by packing the items according to the
rounded solution (defined by x′ and y′), using the respective bin configurations.
Next, for each non-integral variable yk, we add a bin of size ((yk − y′k) · fk).
Denote this set of new bins by R. We proceed by packing the remaining large
items into R, using the First Fit algorithm. Note that the number of (unit-sized)
bins used so far does not exceed the number of bins in the solution defined by
x and y. If any large item remains unpacked, we add unit-sized bins in which
these items are packed using First Fit. We then add the small items in arbitrary
order, using Next Fit.3

Our scheme completes by dividing each of the oversized bins into a set of
ordinary bins. In the following we show that we can pack all items efficiently.

Lemma 4. Using the rounded solution for the LP, we can pack all items in the
instance in O(n +m logm) steps.

3 Analysis of the Scheme

We first show that, although (i) we obtain only approximately feasible solution
for LP, and (ii) rounding the solution for LP may result in adding oversized
bins, the packing output by our scheme maintains the budget constraint.

Lemma 5. The total number of fragmented items is at most C.
2 An instance solved by the oracle consists of a set of rationals that give s(ai), p(ai)

for 1 ≤ i ≤ m. The size of the binary representation of each rational is the sum of
the sizes of its numerator and denominator.

3 Detailed descriptions of First Fit and Next Fit can be found, e.g., in [2].

Fast Asymptotic FPTAS for Packing Fragmentable Items with Costs 489

Proof. Recall that the technique in [28] yields an approximately feasible solution,
in which the packing constraints may be violated by factor of ε. Thus, given
an approximately feasible solution for LP, either the number of bins or the
number of fragmented items may be increased by factor of ε. We note that any
extra fragmentation can be replaced by an extra bin, namely, we can pack the
fragmented item in a new bin with no fragmentation. This will result in at most
ε ·OPT (I) new bins. Therefore we may assume that in our solution for the LP
at most C items are fragmented.

We now show that while packing the items by the (rounded) integral solution,
we do not exceed the bound of C. In particular, we need to show that the number
of items fragmented due to the usage of extra bins while packing the large
items, is at most C. Consider the variable yk, and let 0 < gk = yk − (yk) < 1.
Recall that fk is the capacity of the oversized bin having the k-th configuration,
1 ≤ fk ≤ C + 1. We define a new oversized bin whose capacity is (fkgk). The
number of fragmented items due to this new bin is (fkgk) − 1 ≤ (fk − 1) · gk.
Since the right hand side in the last inequality is the number of items fragmented
due to the fractional part of yk (in the solution for LP), we have not increased
the total number of fragmented items. This holds for any 1 ≤ k ≤ s.

The proof of the next lemma is given in [26].

Lemma 6. The input is packed in at most (1 + ε)2(1 + 2ε)OPT (I) + 4(m+ 2)
bins.

We now analyze the running time of the scheme.

Lemma 7. The above scheme can be implemented in linear time.

Proof. The running time of the scheme is determined by the following steps. (i)
Preprocess the input: we first partition the items to ‘large’ and ‘small’; then, we
apply shifting to the large items to obtain m = O(1/ε2) distinct items sizes.
This can be implemented in O(n logm) steps (see, e.g., in [23]). (ii) Applying the
technique of Young [28] for solving the LP, we get that the number of calls to
the oracle is O(m logmε−2). By Lemma 3, overall, this requires O(m logmε−2 ·
m
ε · min{ε−2 log ε−1,M}) steps for solving the LP. Applying a technique of Bel-

ing and Megiddo [1], which transforms the solution for LP into a basic one, re-
quires O(m2.62 logm · ε−2) steps. Since we need to ‘guess’ d, the optimal number
of bins, we solve the LP O(log n) times. (iii) Finally, we pack the items and divide
each oversized bin into a set of ordinary bins. By Lemma 4, this can be done in
O(n+m logm) steps. Hence, we get that the total running time of the scheme is

O(n logm+ logn ·m2 logm · ε−2 · (m0.62 + ε−1 ·min{ε−2 log ε−1,M})), (1)

and since m, the number of distinct item sizes, is fixed, we get the statement of
the lemma.

3.1 Combining Shifting with Geometric Grouping

In the following we show that the linear grouping technique used for shifting
the item sizes can be replaced by geometric grouping [14], while maintaining

490 H. Shachnai and O. Yehezkely

the bound on the total number of fragmented items. Recall that, in geomet-
ric grouping, the interval (0, 1] is partitioned to sub-intervals of geometrically
decreasing sizes, such that the smallest interval is (0, δ], for some 0 < δ ≤ ε.
This results in a set of sub-intervals (0, δ], (δ, 2δ], . . . , (1/4, 1/2], (1/2, 1]. Let k =
size(I) · ε/ log2 ε

−1, where size(I) is the total size of the items in the instance
I. We partition the set of items whose sizes are in (1/2, 1] to groups of k items.
We then proceed to the sub-interval (1/4, 1/2] and use groups of 2k items, and
continue sequentially to the other sub-intervals; in each sub-interval, the number
of items per group increases by factor of 2. Now, we apply shifting to the items
in each sub-interval as follows. The sizes of the items in each group are rounded
up to the smallest size of an item in the next size group in this sub-interval. This
results in H = O(ε−1 log ε−1) size groups.

Lemma 8. Applying shifting combined with geometric grouping, the items can
be packed in the bins using at most C fragmentations.

To obtain the overall running time of the scheme, we take in (1) m = O
(ε−1 log ε−1), and use the next technical lemma.

Lemma 9. For any x, y, z ≥ 1 O(n log ε−1+logx n·ε−y logz ε−1) can be bounded
by O(n log ε−1 + ε−y logx+z ε−1).

Theorem 1. There is an AFPTAS for BP-SPF which packs the items in (1 +
ε)OPT (I) + O(ε−1 log ε−1) bins, and whose running time is O(n log ε−1 + ε−5

log4 ε−1 ·min{ε−2 log ε−1,M}), where M is the longest binary representation of
any input element.

In [26], we show that our scheme for BP-SPF can be modified to apply for
BP-SIF.

4 Application to Bin Packing and Variable-Sized Bin
Packing

As special cases, our scheme for BP-SPF can be applied to classical bin packing
and variable-sized bin packing, improving the best known running times for these
problems.

Theorem 2. There is an AFPTAS for bin packing which packs the items in at
most (1 + ε)OPT (I) + O(ε−1 log ε−1) bins in time O(n log ε−1 + ε−4 log3 ε−1 ·
min{ε−2,m0.62M}), where M is the longest binary representation of any input
element.

Proof. We can solve bin packing as a special case of BP-SPF in which C = 0. We
use the scheme as given in Section 2. Initially, we omit from the input items of
size smaller than ε, and apply the scheme for the remaining items. The running
time of the scheme is determined by the following steps. (i) Preprocessing the
input. We apply as before geometric grouping, which can be done in O(n logm)
steps. (ii) Solving approximately the linear program for bin packing. In applying

Fast Asymptotic FPTAS for Packing Fragmentable Items with Costs 491

the technique of Young [28], we can model the LP as a fractional covering prob-
lem with a simplex as a block {(xC)|

∑
xC = r} with guessed objective value r.

Thus, using a result of [13] (see also [10]) the number of iterations, and the num-
ber of non-zero variables in the solution can be bounded by O(m(logm+ ε−2)).
In each call, the oracle needs to find a (1 + ε)-approximate solution for the fol-
lowing instance of MCK. Given is a set of m items, such that each item ai has
a size ε ≤ s(ai) ≤ 1 and profit 0 < p(ai) ≤ 1. We may select from each item
unbounded number of copies. We want to pack a set of item copies in a unit-sized
bin such that the total profit is maximized. Since the total number of items in
any feasible packing is at most 1/ε, we can solve the problem as an instance of
the knapsack problem, with n = m/ε items. Using the scheme of [15], this can be
done in O((mε + ε−3) log ε−1) steps. Alternatively, we can solve the IP for MCK
in O(mM) steps, where M is the longest binary representation of any input ele-
ment. Thus, we solve the LP in O(m(logm+ε−2)·min{(mε +ε−3) log ε−1,mM}))
steps. Now, we use the technique of [1] to convert the solution for the LP to a ba-
sic solution. This is done in O(m2.62(logm+ε−2)) steps. Since we need to ‘guess’
d, the optimal number of bins, we solve the LP O(log n) times. (iii) The items are
packed in O(n+m logm) steps. Summarizing, we get that the running time of the
scheme is O(n logm+ logn ·m(logm+ ε−2) ·min{ε−3 log ε−1,m1.62M})). Since
m = O(ε−1 log ε−1), we get the running time O(n log ε−1 + logn · ε−4 log2 ε−1 ·
min{ε−2,m0.62M}). Applying Lemma 9, we get the statement of the theorem.
Finally, the small items are added in linear time, using Next-Fit.

We now show how our scheme for BP can be modified to solve variable-sized bin
packing. Given an instance of variable-sized bin packing, with the set of bin sizes
B1, . . . , BN , such that 0 < Bj ≤ 1, and there exists j such that Bj = 1, we omit
bins of sizes smaller than ε. also, we partition the items by their sizes: the large
items have size at least ε2; all other items are small. Initially, we find a packing
of the large items. In the preprocessing step of the scheme, we use geometric
grouping to reduce the number of distinct item sizes to O(ε−2 log ε−1). Let x
denote the number of bins of each possible configuration (see in Section 2.2), and
f is the vector of bin sizes. Then, having guessed correctly d, the total capacity of
an optimal solution, we need to solve the linear program {LP ′ : Bx ≥ n, f ·x ≤
d}, where n is the vector giving the number of items of each size. We can apply
our scheme for BP with LP ′ replacing LP. The oracle needs to solve in each
iteration an all MCK instance, for all possible bin sizes in [ε, 1]. To implement
the oracle efficiently, we use the next lemma (proof omitted).

Lemma 10. Given a feasible packing of a variable-sized bin packing instance in
bins of possible sizes Bj ∈ [ε, 1], 1 ≤ j ≤ N , using the total bin capacity D, there
exists a packing that uses O(log ε−1/ε) distinct bin sizes, such that the total bin
capacity used is at most D(1 + ε).

Since each large item has the size at least ε2, in solving MCK for each bin size, we
can use the fast scheme of [15] for the knapsack problem with n = m/ε2 items.
As before, we can solve the problem exactly in O(mM) steps. The oracle needs
to solve this problem repeatedly, for O(ε−1 log ε−1) bin sizes. Then the solution

492 H. Shachnai and O. Yehezkely

for LP ′ can be converted to a basic one in O(m2.62(logm+ε−2)) steps [1]. Since
we need to guess the value of d, the total capacity used by an optimal solution,
we solve LP ′ O(log n) times. Finally, we note that preprocessing the input, i.e.,
reducing the number of distinct item sizes and the number of distinct bin sizes,
requires O((N+n) logm) steps. Also, the items are packed in O(n+m) steps. To
get the total running time of the scheme, we summarize the above steps, taking
m = O(ε−2 log ε−1), and apply Lemma 9.4

Theorem 3. There is an AFPTAS for variable-sized bin packing which packs
the items using a total bin capacity of at most (1 + ε)OPT (I) +O(ε−2 log ε−1),
where OPT (I) is the optimal capacity, and whose running time is O((N +
n) log ε−1 + ε−8 log3 ε−1 · min{ε−2 log ε−1, ε−0.24M}), where M is the longest
binary representation of any input element.

References

1. Beling, P., Megiddo, N.: Using fast matrix multiplication to find basic solutions.
Theoretical Computer Science 205, 307–316 (1993)

2. Coffman Jr, E.G., Garey, M.R., Johnson, D.S.: Approximation algorithms for bin
packing: a survey. In: Hochbaum, D.S. (ed.) Approximation Algorithms for NP-
Hard Problems, pp. 46–93. PWS Publishing, Boston, MA (1997)

3. Eisenbrand, F.: Fast integer programming in fixed dimension. In: Proc. of ESA
(2003)

4. Epstein, L., Levin, A.: A Robust APTAS for the Classical Bin Packing Problem.
In: Proc. of ICALP (2006)

5. Epstein, L., Sgall, J.: Approximation schemes for scheduling on uniformly related
and identical parallel machines. In: Proc. of ESA (1999)

6. de la Vega, W.F., Lueker, G.S.: Bin packing can be solved within 1 + ε in linear
time. Combinatorica 1, 349–355 (1981)

7. Fishkin, A.V., Jansen, K., Sevastianov, S., Sitters, R.: Preemptive Scheduling of
Independent Jobs on Identical Parallel Machines Subject to Migration Delay. In:
Proc. of ESA (2005)

8. Friesen, D.K., Langston, M.A.: Variable sized bin packing. SIAM J. on Comput-
ing 15, 222–230 (1986)

9. Garey, M.R., Johnson, D.S.: Computers and Intractability: A guide to the theory
of NP-completeness. W. H. Freeman and Company, San Francisco (1979)

10. Grigoriadis, M.D., Khachiyan, L.G., Porkolab, L., Villavicencio, J.: Approximate
Max-Min Resource Sharing for Structured Concave Optimization. SIAM J. on
Optimization 11(4), 1081–1091 (2000)

11. Grötschel, M., Lovász, L., Schrijver, A.: The ellipsoid method and its consequences
in combinatorial optimization. Combinatorica 1, 169–197 (1981)

12. Hochbaum, D.S., Shmoys, D.B.: Using dual approximation algorithms for schedul-
ing problems: Practical and theoretical results. J. of the ACM 34(1), 144–162 (1987)

13. Jansen, K., Porkolab, L.: On Preemptive Resource Constrained Scheduling:
Polynomial-time Approximation Schemes. In: Proc. of IPCO, pp. 329–349 (2002)

14. Karmarkar, N., Karp, R.M.: An efficient approximation scheme for the one dimen-
sional bin packing problem. In: Proc. of FOCS (1982)

4 We give the detailed scheme in the full version of the paper.

Fast Asymptotic FPTAS for Packing Fragmentable Items with Costs 493

15. Kellerer, H., Pferschy, U.: A New Fully Polynomial Approximation Scheme for the
Knapsack Problem. J. of Combinatorial Optimization 3, 59–71 (1999)

16. Mandal, C.A., Chakrabarti, P.P, Ghose, S.: Complexity of fragmentable object bin
packing and an application. Computers and Mathematics with Applications 35(11),
91–97 (1998)

17. McNaughton, R.: Scheduling with deadlines and loss functions. Manage. Sci. 6,
1–12 (1959)

18. Menakerman, N., Rom, R.: Bin Packing Problems with Item Fragmentations. In:
Proc. of WADS (2001)

19. Motwani, R.: Lecture notes on approximation algorithms. Technical report, Dept.
of Computer Science, Stanford Univ., CA (1992)

20. Multimedia Cable Network System Ltd.: Data-Over-Cable Service Interface Spec-
ification (2000), http://www.cablelabs.com

21. Murgolo, F.D.: An Efficient Approximation Scheme for Variable-Sized Bin Packing.
SIAM J. Comput. 16(1), 149–161 (1987)

22. Naaman, N., Rom, R.: Packet Scheduling with Fragmentation. In: Proc. of INFO-
COM’02, pp. 824–831 (2002)

23. Plotkin, S.A., Shmoys, D.B., Tardos, É.: Fast Approximation Algorithms for Frac-
tional Packing and Covering Problems. In: Proc. of FOCS (1995)

24. Shachnai, H., Tamir, T., Woeginger, G.J.: Minimizing Makespan and Preemption
Costs on a System of Uniform Machines. Algorithmica 42, 309–334 (2005)

25. Shachnai, H., Tamir, T., Yehezkely, O.: Approximation Schemes for Packing with
Item Fragmentation. Theory of Computing Systems (to appear)

26. Shachnai, H., Yehezkely, O.: Fast Asymptotic FPTAS for Packing Fragmentable
Items with Costs. full version
http://www.cs.technion.ac.il/∼hadas/PUB/frag afptas.pdf

27. Vazirani, V.V.: Bin Packing. In: Approximation Algorithms, pp. 74–78. Springer,
Heidelberg (2001)

28. Young, N.E.: Sequential and Parallel Algorithms for Mixed Packing and Covering.
In: Proc. of FOCS, pp. 538–546 (2001)

http://www.cablelabs.com
http://www.cs.technion.ac.il/~hadas/PUB/frag_afptas.pdf

An O(1.787n)-Time Algorithm for Detecting a

Singleton Attractor in a Boolean Network
Consisting of AND/OR Nodes

Takeyuki Tamura� and Tatsuya Akutsu�

Bioinformatics Center, Institute for Chemical Research, Kyoto University,
Gokasho, Uji, Kyoto, Japan, 611-0011

{tamura,takutsu}@kuicr.kyoto-u.ac.jp
http://sunflower.kuicr.kyoto-u.ac.jp/member.html.en

Abstract. The Boolean network (BN) is a mathematical model of ge-
netic networks. It is known that detecting a singleton attractor, which is
also called a fixed point, is NP-hard even for AND/OR BNs (i.e., BNs
consisting of AND/OR nodes), where singleton attractors correspond to
steady states. Though a naive algorithm can detect a singleton attractor
for an AND/OR BN in O(n2n) time, no O((2 − ε)n) (ε > 0) time algo-
rithm was known even for an AND/OR BN with non-restricted indegree,
where n is the number of nodes in a BN. In this paper, we present an
O(1.787n) time algorithm for detecting a singleton attractor of a given
AND/OR BN, along with related results.

1 Introduction

Computational analysis of biological networks is becoming an important topic in
various areas such as bioinformatics, computational biology and systems biology.
For that purpose, various kinds of mathematical models of biological networks
have been proposed. Among them, the Boolean network (BN, in short), which
is a model of genetic networks, has received much attention [3,4,6,10,11]. It is a
very simple model: each node (e.g., gene) takes either 0 (inactive) or 1 (active)
and the states of nodes change synchronously according to regulation rules given
as Boolean functions [8,18].

Attractors in a BN have also received much attention since an attractor cor-
responds to a stable state, and stable states play an important role in biological
systems. In particular, extensive studies have been done for analyzing the number
and length of attractors [5,11,16]. Most of existing studies on attractors focus on
average case features of random BNs with low indegree (connectivity). However,
not much attention has been paid on analysis of attractors in a specific BN. In
particular, to our knowledge, only several studies have been done on algorithms
for detecting attractors in a given BN.
� Research is supported by “Education and Research Organization for Genome Infor-

mation Science” with support from MEXT (Ministry of Education, Culture, Sports,
Science and Technology).

E. Csuhaj-Varjú and Z. Ésik (Eds.): FCT 2007, LNCS 4639, pp. 494–505, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

An O(1.787n)-Time Algorithm for Detecting a Singleton Attractor 495

Akutsu et al. proved that detecting a singleton attractor (i.e., an attractor
with period 1) is NP-hard by a polynomial time reduction from SAT (the sat-
isfiability problem of Boolean formulas in conjunctive normal form) [2]. Milano
and Roli independently proposed a similar reduction [14]. Akutsu further im-
proved these hardness results and showed that detection of a singleton attractor
remains NP-hard even for BNs with maximum indegree two [1]. Zhang et al.
developed algorithms with guaranteed average case time complexity [20]. For
example, it is shown that in the average case, one of the algorithms identifies all
singleton attractors in O(1.19n) time for a random BN with maximum indegree
two. However, these algorithms may take O(2n) or more time in the worst case
even if there exist only a small number of singleton attractors. Recently, Leone
et al. applied SAT algorithms to identify singleton attractors in a BN [13]. How-
ever, they did not focus on the time complexity issue. Akutsu studied the time
complexity of that approach and showed that detection of a singleton attractor
for a BN with maximum indegree k can be reduced to (k + 1)-SAT [1].

As mentioned above, there is a close relationship between the attractor de-
tection problem and the SAT problem. SAT is a well-known NP-complete prob-
lem and extensive studies have been done for developing O(cn) time algorithms
with smaller c for k-SAT, where n is the number of variables and each clause
in k-SAT consists of at most k literals. To our knowledge, the fastest algo-
rithms for 3-SAT and 4-SAT developed by Iwama and Tamaki run in O(1.324n)
time and in O(1.474n) time, respectively [9]. However, no O((2 − ε)n) (ε > 0)
time algorithms are known for general SAT. On the other hand, Hirsh devel-
oped an Õ(1.239m) time algorithm for SAT with m-clauses [7], which was fur-
ther improved to Õ(1.234m) time by Yamamoto [19], where Õ(f(m)) means
O(f(m)poly(m,n)). However, these algorithms cannot be directly applied to
our problem although we utilize the algorithm in [19] as a subroutine.

In this paper, we present an O(1.787n) time algorithm for detecting a single-
ton attractor of a given AND/OR BN, in which a Boolean function assigned to
each node is restricted to be a conjunction or disjunction of literals as shown in
Fig.1 (a). Since we consider BNs with non-restricted indegree, it is reasonable to
assume some restriction on Boolean functions (otherwise, it would take Θ(2n)
bits to represent a Boolean function). It seems that many Boolean functions
corresponding to gene regulation rules are expressed as conjunctions or disjunc-
tions of literals (if these can be regarded as Boolean functions). Furthermore,
as mentioned in subsection 5.1, every Boolean function can be represented as
a combination of “AND”, “OR” and “NOT”. Therefore, an AND/OR BN is
considered to be a simpler good model although the larger computation time
may be needed for general BNs if such combinations are used.

The organization of this paper is as follows. In Section 2, we briefly review a
Boolean network and the attractor detection problem along with basic facts. We
then present the main algorithm and its analysis in Section 3, where an improved
analysis is performed in Section 4. In Section 5, we discuss an extension for a
general BN and give an algorithm for a special case. Finally, we conclude with
future work.

496 T. Tamura and T. Akutsu

V

V

V

1

2

3

111

010

011

100

000

001

110

101

(a) (b)

V (t) V (t) V (t) V (t+1) V (t+1) V (t+1)1 2 3 1 2 3

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0 1 0

0 0 0

1 1 0

0 1 0

0 1 1

0 1 1

1 1 0

0 1 0

(c)

Fig. 1. (a) An example of AND/OR BN where v1(t + 1) = v2(t) ∧ v3(t), v2(t + 1) =
v1(t) ∨ v2(t) ∨ v3(t) and v3(t + 1) = v1(t) ∧ v2(t) are satisfied. “∧”, “∨” and “•” mean
“AND”, “OR” and “NOT” respectively. (b) The state transition of [v1, v2, v3]. (c) The
corresponding truth table. [1, 1, 0] is a singleton attractor since it has a self-loop.

2 Preliminaries

A BN N(V, F) consists of a set of n nodes V and a set of n Boolean functions
F , where V = {v1, v2, . . . , vn} and F = {f1, f2, . . . , fn}. In general, V and F
correspond to a set of genes and a set of gene regulatory rules respectively. Let
vi(t) represent the state of vi at time t. The overall expression level of all the genes
in the network at time t is given by the vector v(t) = [v1(t), v2(t), . . . , vn(t)]. This
vector is referred as the Gene Activity Profile (GAP) of the network at time t,
where vi(t) = 1 means that the i-th gene is expressed and vi(t) = 0 means that
the i-th gene is not expressed. Since v(t) ranges from [0, 0, . . . , 0] (all entries are
0) to [1, 1, . . . , 1] (all entries are 1), there are 2n possible states. The regulatory
rules among the genes are given as vi(t + 1) = fi(v(t)) for i = 1, 2, . . . , n.
When the state of gene vi at time t + 1 depends on the states of ki genes

An O(1.787n)-Time Algorithm for Detecting a Singleton Attractor 497

at time t, the indegree of gene vi is ki and denoted by id(vi). The number of
genes that are directly influenced by gene vi is called the outdegree of gene
vi and denoted by od(vi). The states of all genes are updated simultaneously
according to the corresponding Boolean functions. A consecutive sequence of
GAPs v(t), v(t + 1), . . . , v(t + p) is called an attractor with period p if v(t) =
v(t + p). When p = 1, an attractor is called a singleton attractor. When p > 1,
it is called a cyclic attractor.

For example, a BN where v1(t+1) = v2(t)∧v3(t), v2(t+1) = v1(t)∨v2(t)∨v3(t)
and v3(t+ 1) = v1(t)∧ v2(t) is given in Fig. 1 (a). Note that “•” means “NOT”.
The state transition of [v1, v2, v3] is as shown in Fig. 1 (b). The corresponding
truth table is shown in Fig. 1 (c). [1, 1, 0] is a singleton attractor since v(t+1) =
[1, 1, 0] when v(t) = [1, 1, 0].

In this paper, we treat Boolean functions which can be represented by either
(vi1

a1 ∧ vi2a2 ∧ · · · ∧ viki

aki)b or (vi1
a1 ∨ vi2a2 ∨ · · · ∨ viki

aki)b where va = (v + a)
mod 2. Note that vij , aj and b are assigned only either 0 or 1. If every Boolean
function of a BN satisfies the above condition, we call it AND/OR Boolean net-
work. The number of nodes in AND/OR BN is obtained by counting “AND” and
“OR”. For example, in Fig. 1 (a), the AND/OR BN has 3 nodes. If no confusion
arises, we treat a AND/OR BN as a directed graph as shown in Fig. 1 (a) and
denote N(V,E) where V is a set of nodes and E is a set of directed edges.

If a BN is acyclic and does not have self-loops, there is a polynomial time
algorithm to detect an attractor [2,20]. In such a case, the number of attractors
is only one and it is a singleton attractor. On the other hand, if a BN is acyclic
and has self-loops, detection of an attractor is NP-hard [2]. In this paper, we
allow that a BN has self-loops.

In our main algorithm for detecting a singleton attractor, there are steps,
which we call consistency checks, to determine whether or not 0-1 assignments
for nodes contradict 0-1 assignments for their parent nodes. For example, in Fig.
1 (a), if v1(t) = 1 and v2(t) = 0 are assigned, the consistency check detects
a contradiction since v1(t + 1) = 0 �= v1(t). The following lemma shows that
consistency checks can be done in ignorable time since our main algorithm takes
an exponential time of n and O(nkan) : O((a + ε)n) holds for any a > 1 and
ε > 0, where k is a small positive integer.

Lemma 1. A consistency check for a GAP or a partial GAP can be done in
O(n2) time.

Proof. Since a proof for a GAP can be applied to a partial GAP, it suffices to
prove for a GAP. Suppose that a GAP is assigned at time t. Let vi1 , vi2 , . . . , viki

be the parent nodes of vi. A consistency check can be done by determining whether
or not the 0-1 assignment contradicts vi(t) = fi(vi1(t), vi2 (t), . . . , viki

(t)) for all i
(1 ≤ i ≤ n). Since indegrees are at most n, it takesO(n) time for every node. Note
that multi-edges are not allowed from the definition. Then, the lemma holds. ��

In this paper, we treat only singleton attractors. Since v(t) = v(t+ 1) must hold
for a singleton attractor, it suffices to consider only time step t. Thus, we omit
t from here on.

498 T. Tamura and T. Akutsu

3 O(1.792n) Time Algorithm

In this section, we present an O(1.792n) time algorithm which detects a singleton
attractor of a given AND/OR BN. The O(1.787n) time algorithm, which is to
be shown in the next section, can be obtained by improving the analysis of
this algorithm. Although the detection of a singleton attractor for a BN with
maximum indegree k can be reduced to (k + 1)-SAT [1], it cannot be directly
applied to our problem since no O((2 − ε)n) (ε > 0) time algorithms are known
for SAT with general k.

Let (V,E) denote the structure of a given BN. An edge (u, v) ∈ E is called a
non-assigned edge if no assignment has been done on any of u and v. It should
be noted there exist at most 3 consistent assignments (among 4 possible assign-
ments) on (u, v) even if there exist self-loops since either a conjunction of literals
or a disjunction of literals is assigned to v. We show below the algorithm, which
is to be later explained using an example.

1. Let all the nodes be non-assigned.
2. While there exists a non-assigned edge (u, v), examine all possible 3 assign-

ments on (u, v) recursively.
3. Let U be the set of nodes whose values were already determined. Let W =

V − U .
4. If |U | > αn, examine all possible assignments on W and then perform con-

sistency check.
Otherwise, compute an appropriate assignment on W by using Yamamoto’s
algorithm and then perform consistency check.

It is to be noted that the subgraph induced by W is a set of isolated nodes (with
self-loops). Therefore, each node v in W is classified into the following types:

type I: the value of v is directly determined from assignment on U ,
type II: the value of v is not directly determined from assignment on U ,

where type I nodes consists of the following:

– The value of v is determined from the values of the input nodes to v,
– v is an input of AND node u and 1 is assigned to u,
– v is an input of OR node u and 0 is assigned to u.

Based on this fact, we can use Õ(1.234m) time SAT algorithm for m-clauses to
compute an appropriate assignment on W in the following way, where Õ(f(m))
means O(f(m)poly(m)). Suppose that vi1 , · · · , vip in W are type II input nodes
to node u ∈ U . We assume w.l.o.g. that u is an AND node to which 0 is already
assigned (we can treat analogously the case where u is an OR node). Further-
more, we can assume w.l.o.g. that u is defined as u = li1 ∧ li2 ∧ · · · ∧ lip where lij
is either vij or vij . Then, the constraint of li1 ∧ li2 ∧· · ·∧ lip = 0 can be rewritten
as a SAT clause li1 ∨ li2 ∨ · · · ∨ lip . Therefore, we can use the SAT algorithm to
find an assignment on W that leads to a singleton attractor.

An O(1.787n)-Time Algorithm for Detecting a Singleton Attractor 499

From the above, it is straight-forward to see the correctness of the algorithm.
Thus, we analyze the time complexity. Let K = |U | just after STEP 2.

Lemma 2. Recursive execution of STEP 2 generates O(1.733K) assignments.

Proof. Since 3 assignments are examined per two nodes, the number of possible
assignments generated at STEP 2 is bounded by f(K) where f(K) is defined
by

f(2) = 3,
f(k) = 3 · f(k − 2).

Then, f(K) is O(3K/2), which is at most O(1.733K). ��

Lemma 3. If the former part of STEP 4 is executed, the total number of exam-
ined assignments is O(2n−K · 1.733K).

Theorem 1. Detection of a singleton attractor can be done in O(1.792n) time
for AND/OR BNs.

Proof. If the former part of STEP 4 is executed, the computation time isO(2n−K ·
1.733K). Otherwise, it is O(1.234K · 1.733K) since SAT problems with O(K)
clauses should be solved in STEP 4. By solving 1.234K = 2n−K , we obtain K =
0.767n. Therefore, we set α = 0.767 and have the following;

1.2340.767n · 1.7330.767n < 1.792n,
2n−0.767n · 1.7330.767n < 1.792n. ��

Example 1. In an example shown in Fig. 2, suppose (b, d) and (f, h) are selected
at STEP 2. Then, four clauses may be constructed by (a, g), (a, c), (c, g, i), and
(g, i). If d =“∧” and d = 0, (ā ∨ c̄) is constructed and both a and c become
type II nodes. Note that b is not included in the clause since the value of b
has already been assigned at STEP 2. On the other hand, if d = 1, 1 is as-
signed to a and c and then both a and c become type I nodes. If the former
part of STEP 4 is executed, all possible assignments for a, c, e, g, i, which has
25 cases, are examined. Otherwise the SAT problem is solved by Yamamoto’s
algorithm [19].

4 Improved Analysis

In this section, we present an O(1.787n) time algorithm which detects a singleton
attractor of a given AND/OR BN. This algorithm can be obtained by improving
the analysis of the O(1.792n) time algorithm of the previous section. We estimate
the number of SAT clauses produced by STEP 2 of the previous algorithm more
accurately.

500 T. Tamura and T. Akutsu

a

c

b

d

g

f
e

hi

Fig. 2.

For example, in Fig. 3 (a), v4 is a parent of v8. Since v4 is “∨” and v8 is “∧”,
the possible assignments for [v4, v8] are [0, 0], [1, 0], [1, 1]. Note that [0, 1] does not
satisfy the condition of a singleton attractor since v8 must be 0 when v4 is 0. When
v4 = 0, the assignment for [v1, v2, v3] is determined as [0, 0, 1] as shown in Fig. 3
(b). Similarly, when v8 = 1, the assignment for [v4, v5, v6, v7] must be [1, 0, 1, 1] as
shown in Fig. 3 (c). However, when v4 = 1, the assignment for [v1, v2, v3] is not
determined uniquely but (v1 ∨ v2 ∨ v3) = 1 must hold as shown in Fig. 3 (d) in
order to satisfy the condition of a singleton attractor. In such a case, we say that
v4 adds a SAT clause of (v1 ∨ v2 ∨ v3). Similarly, when v8 = 0, a SAT clause of
(v5 ∨ v6 ∨ v7) is added as shown in Fig. 3 (e). Note that v4 is not included in the
SAT clause since the value of v4 has already been assigned in STEP 2. Thus, the
numbers of SAT clauses which are added in the cases of [v4, v8]=[0, 0], [1, 0], [1, 1]
are 1, 2 and 1 respectively as shown in Fig. 3 (f).

By applying the above discussion to any two neighboring nodes, the numbers
of added SAT clauses can be bounded for each case. For example, suppose that
both of v4 and v8 are “∧”. In such a case, the numbers of SAT clauses which are
added by [v4, v8]=[0, 0], [1, 0], [1, 1] are 2, 1 and 0 respectively. By examining all
cases, it is seen that the computation time in the case where the latter part of
STEP 4 is executed is bounded by

K
2∑

k=0

1.234(K
2 +k) · 2(K

2 −k) · K
2
Ck

where k is the number of cases (i.e., node pairs) in which 2 clauses are added.

Theorem 2. Detection of a singleton attractor can be done in O(1.787n) time
for AND/OR BNs.

An O(1.787n)-Time Algorithm for Detecting a Singleton Attractor 501

V

V

4

8

(a)

Possible assignments

V 0 1 1

V 0 0 1

the number of
added SAT clauses

1 2 1

(f)

4

8

V1 V2 V3

V5
V6

V7

V =0

V

4

8

(b)

V =01
V =02 V =13

V5
V6

V7

V =1

V =1

4

8

(c)

V1 V2 V3

V =05
V =16

V =17

V =1

V

4

8

(d)

V 1 V 2 V 3

V5
V6

V7

(V V V)1 2 3
is added.

V

V =0

4

8

(e)

V 1 V 2 V 3

V5
V6

V7

 (V V V)5 6
is added.

7

Fig. 3. Relationships between assignments and the number of added SAT clauses

502 T. Tamura and T. Akutsu

Proof. The computation time of the algorithm where the latter part of STEP 4
is executed is bounded by the following;

K
2∑

k=0

1.234(K
2 +k) · 2(K

2 −k) · K
2
Ck

= (2 · 1.234)
K
2

K
2∑

k=0

(1.234
2

)k
· K

2
Ck

= (2 · 1.234)
K
2

{
βK∑
k=0

0.617k · K
2
Ck +

K
2∑

k=βK+1

0.617k · K
2
Ck

}
(0 ≤ β <

1
4

)

= (2 · 1.234)
K
2

{
βK∑
k=0

0.617k · K
2
CβK +

K
2∑

k=βK+1

0.617k · K
2
C K

4

}
= g(k)

By Stirling’s formula, n! is Õ(nn · e−n). Then, g(k) is Õ(h(k)) where

h(k) = (2 · 1.234)
K
2

{
βK∑
k=0

0.617k ·
(K2)

K
2

(βK)βK · (K2 − βK)(
K
2 −βK)

+

K
2∑

k=βK+1

0.617k ·
(K2)

K
2

(K4)
K
4 · (K4)

K
4

}

= (2 · 1.234)
K
2

{
βK∑
k=0

0.617k ·
(1
2)

K
2

(β2β)
K
2 · {(1

2 − β)(1−2β)}K
2

+

K
2∑

k=βK+1

0.617k · 2 K
2

}

< poly(K) · (2 · 1.234)
K
2

{
(1
2)

K
2

(β2β)
K
2 · {(1

2 − β)(1−2β)}K
2

+ 0.617βK · 2 K
2

}

= poly(K) · (2 · 1.234)
K
2

{{ 0.5
(β2β) · {(1

2 − β)(1−2β)}

}K
2

+ (0.6172β · 2)
K
2

}
(1)

When β = 0.12823,

0.5
(β2β) · {(1

2 − β)(1−2β)}
< 1.768

An O(1.787n)-Time Algorithm for Detecting a Singleton Attractor 503

and

0.6172β · 2 < 1.768

hold. Thus, (1) is bounded by

< O((1.234 · 2 · 1.768)
K
2) < O(2.089K).

If the former part of STEP 4 is executed, the computation time is O(2n−K ·
1.733K). Otherwise, it is O(2.089K). By solving 2n−K · 1.733K = 2.089K, we
have K = 0.7877. Therefore, we set α = 0.7877 and have the following;

2n−0.7877n · 1.7330.7877n < 1.7866n.

2.0890.7877n < 1.7866n. ��

5 Extension and Special Case

5.1 Extension to a General BN

We have considered AND/OR BNs so far. That restriction is reasonable because
there are 22n

types of Boolean functions for a general BN, and thus it would take
more than O(2n) time to identify a Boolean function if such complicated Boolean
functions are allowed. However, it may be required to handle non-AND/OR
Boolean functions. Thus, we briefly consider how to cope with BNs with general
Boolean functions.

For the singleton attractor detection problem, every BN can be transformed
into an AND/OR BN although additional nodes are needed. If the number of
additional nodes is less than 0.193n, the computation time of our algorithm is
bounded by O(1.7871.193n) for a general BN. It is still O((2− ε)n) (ε > 0). Since
canalizing functions and nested canalizing functions are known to be good models
for regulatory rules of eukaryotic genes [12,17], the number of such additional
nodes are considered to be not large for real biological networks.

5.2 A Linear Time Algorithm for a Tree-Like BN

In this subsection, we present a linear time algorithm to detect a singleton attrac-
tor of a given AND/OR BN with a rooted tree-architecture including self-loops.
Although we did not use this algorithm for those of Sections 3 and 4, it may be
useful as a subroutine for designing faster algorithms.

Let T (vi) (1 ≤ i ≤ n) be the subtree whose root is vi. Let vij (1 ≤ j ≤ id(vi))
be a parent node of vi where vij = vi can hold for some j (if vi has a self-loop).

Theorem 3. Detection of a singleton attractor can be done in O(n) time for
an AND/OR BN with a rooted tree-architecture including self-loops.

504 T. Tamura and T. Akutsu

Proof. Suppose that directions of edges are root-leaf order. Assign both 0 and
1 to the root node. The detection can be done by examining nodes in root-leaf
order in O(n) time. Then, we can assume that directions of edges are leaf-root
order. The algorithm is by dynamic programming. If there are no “NOT”s, the
following procedure is applied.

– When vi is “AND”,
• D(vi, 1) = 1 iff D(vij , 1) = 1 for all vij .
• D(vi, 1) = 0 iff D(vij , 0) = 1 for some vij .

– When vi is “OR”,
• D(vi, 1) = 0 iff D(vij , 0) = 1 for all vij .
• D(vi, 1) = 1 iff D(vij , 1) = 1 for some vij ,

where

– D(vi, 1) = 1 if there exists a singleton attractor for T (vi) such that vi = 1.
– D(vi, 1) = 0 otherwise.

and

– D(vi, 0) = 1 if there exists a singleton attractor for T (vi) such that vi = 0.
– D(vi, 0) = 0 otherwise.

Note that the discussion can be applied to the case where there are “NOT”s by
changing 0/1 appropriately. It is clear that the computation time is O(n). ��

6 Conclusion and Future Works

We performed a worst case analysis of the problem of detecting a singleton
attractor of a given AND/OR BN. Even for AND/OR BNs, O((2− ε)n) (ε > 0)
time exact algorithms are known only for cases where the maximum indegree is
limited. In this paper, we proposed an O(1.787n) worst-case-time algorithm for
a given AND/OR BN. For the singleton attractor detection problem, every BN
can be transformed into an AND/OR BN although additional nodes are needed.
If the number of additional nodes is less than 0.193n, the computation time of
our algorithm is still O((2 − ε)n) (ε > 0) for general BNs. The number of such
additional nodes are considered to be not large for real biological networks since
canalizing functions and nested canalizing functions are known to be good models
for regulatory rules of eukaryotic genes [12,17]. An experimental comparison of
proposed algorithms is one of our future works.

This paper focused on the Boolean network as a of biological network model.
However, the proposed techniques may be useful for designing algorithms which
find steady states in other models and for theoretical analysis of such algorithms.
For example, Mochizuki performed theoretical analysis on the number of steady
states in some continuous biological networks based on nonlinear differential
equations [15]. However, the central part of the analysis is done in a combinatorial
manner and is very similar to that for Boolean networks. Therefore, it may be
possible to develop fast algorithms for finding steady states in such continuous
network models. Application and extension of the proposed techniques to other
types of biological networks are important future works.

An O(1.787n)-Time Algorithm for Detecting a Singleton Attractor 505

References

1. Akutsu, T.: On finding attractors in Boolean Networks using SAT algorithms.
(manuscript)

2. Akutsu, T., Kuhara, S., Maruyama, O., Miyano, S.: A system for identifying ge-
netic networks from gene expression patterns produced by gene disruptions and
overexpressions. Genome Informatics 9, 151–160 (1998)

3. Akutsu, T., Miyano, S., Kuhara, S.: Inferring qualitative relations in genetic net-
works and metabolic pathways. Bioinformatics 16, 727–734 (2000)

4. Albert, R., Barabasi, A.-L.: Dynamics of complex systems: Scaling laws for the
period of Boolean networks. Physical Review Letters 84, 5660–5663 (2000)

5. Drossel, B., Mihaljev, T., Greil, F.: Number and length of attractors in a critical
Kauffman model with connectivity one. Physical Review Letters 94, 088701 (2005)

6. Glass, L., Kauffman, S.A.: The logical analysis of continuous, nonlinear biochemical
control networks. Journal of Theoretical Biology 39, 103–129 (1973)

7. Hirsch, E.A.: New worst-case upper bounds for SAT. Journal of Automated Rea-
soning 24, 397–420 (2000)

8. Huang, S.: Gene expression profiling, genetic networks, and cellular states: an
integrating concept for tumorigenesis and drug discovery. Journal of Molecular
Medicine 77(6), 469–480 (1999)

9. Iwama, K., Tamaki, S.: Improved upper bounds for 3-SAT. In: Proc. 15th ACM-
SIAM Symposium on Discrete Algorithms, p. 328 (2004)

10. Kauffman, S.: Metabolic stability and epigenesis in randomly connected genetic
nets. Journal of Theoretical Biology 22, 437–467 (1968)

11. Kauffman, S.: The Origin of Order: Self-organization and selection in evolution.
Oxford Univ. Press, New York (1993)

12. Kauffman, S., Peterson, C., Samuelsson, B., Troein, C.: Random Boolean net-
work models and the yeast transcriptional network. Proceedings of the National
Academy of Sciences 100(25), 14796–14799 (2003)

13. Leone, M., Pagnani, A., Parisi, G., Zagordi, O.: Finite size corrections to random
Boolean networks, cond-mat/0611088 (2006)

14. Milano, M., Roli, A.: Solving the satisfiability problem through Boolean networks.
In: Lamma, E., Mello, P. (eds.) AI*IA 99: Advances in Artificial Intelligence. LNCS
(LNAI), vol. 1792, pp. 72–93. Springer, Heidelberg (2000)

15. Mochizuki, A.: An analytical study of the number of steady states in gene regula-
tory networks. J. Theoret. Biol. 236, 291–310 (2005)

16. Samuelsson, B., Troein, C.: Superpolynomial growth in the number of attractors
in Kauffman networks. Physical Review Letters 90, 098701 (2003)

17. Shmulevich, I., Kauffman, S.: Activities and sensitivities in Boolean network mod-
els. Physical Review Letters 93(4), 048701 (2004)

18. Somogyi, R., Sniegoski, C.A.: Modeling the complexity of genetic networks: Un-
derstanding multigenic and pleitropic regulation. Complexity 1(6), 45–63 (1996)

19. Yamamoto, M.: An improved Õ(1.234m)-time deterministic algorithm for SAT.
In: Proc. International Symposium on Algorithms and Computation, pp. 644–653
(2005)

20. Zhang, S., Hayashida, M., Akutsu, T., Ching, W., Ng, M.K.: Algorithms for finding
small attractors in Boolean networks, EURASIP Journal on Bioinformatics and
Systems Biology (in press)

Author Index

Akutsu, Tatsuya 494
Arslan, Abdullah N. 40
Athanassopoulos, Stavros 52

Bach, Eric 64
Bhateja, Puneet 76
Björklund, Henrik 88
Bono, Viviana 100
Bordihn, Henning 113
Bouajjani, Ahmed 1
Breunig, Hans-Georg 125
Brevier, Gaëlle 137
Brijder, Robert 149, 161
Busi, Nadia 173

Cai, Jin-Yi 64, 187
Caragiannis, Ioannis 52
Caucal, Didier 199
Ćirić, Miroslav 213
Colcombet, Thomas 226

De Felice, Clelia 238
Dinh, Trong Hieu 199
Dörn, Sebastian 250
Duparc, Jacques 261

Endrullis, Jörg 274
Epstein, Leah 288
Erdélyi, Gábor 300

Fellows, Michael 312
Fici, Gabriele 238

Gastin, Paul 76
Grabmayer, Clemens 274
Győr, Gyula 322

Habermehl, Peter 1
Hemaspaandra, Edith 328
Hemaspaandra, Lane A. 300, 328
Hendriks, Dimitri 274
Hoffmann, Michael 341
Hoogeboom, Hendrik Jan 149

Ibarra, Oscar H. 23
Ignjatović, Jelena 213
Ionescu, Mihai 353
Isihara, Ariya 274

Jurski, Yan 1

Kaklamanis, Christos 52
Klop, Jan Willem 274
Kumar, K. Narayan 76
Kunc, Michal 365
Kuśmierek, Jaros�law D.M. 100
Kutrib, Martin 376
Kwisthout, Johan 388

Langille, Miika 161
Langston, Michael 312
Levin, Asaf 288
Lovász, László 38
Lu, Chi-Jen 400
Lu, Pinyan 187

Malcher, Andreas 376
Meduna, Alexander 412
Messerschmidt, H. 424
Mittal, Rajat 435
Mukund, Madhavan 76
Murlak, Filip 261

Okhotin, Alexander 446
Otto, F. 424

Petković, Tatjana 213
Petre, Ion 161

Rizzi, Romeo 137
Rosamond, Frances 312
Rothe, Jörg 300
Rozenberg, Grzegorz 149

Samuelides, Mathias 458
Sattler-Klein, Andrea 470
Sburlan, Dragoş 353
Schwentick, Thomas 88
Scott, Philip J. 39
Segoufin, Luc 458
Shachnai, Hadas 482

508 Author Index

Shaw, Peter 312
Sighireanu, Mihaela 1
Spakowski, Holger 300
Stamenković, Aleksandar 213
Szegedy, Mario 435

Tamura, Takeyuki 494
Tantau, Till 328
Techet, Jǐŕı 412
Thierauf, Thomas 250
Thomas, Richard M. 341
Tsai, Shi-Chun 400

van Stee, Rob 288
Vaszil, György 113
Vialette, Stéphane 137

Watanabe, Osamu 328
Woodworth, Sara 23
Wu, Hsin-Lung 400

Yehezkely, Omer 482

Zandron, Claudio 173
Zizza, Rosalba 238

	Title
	Preface
	Organization
	Table of Contents
	Rewriting Systems with Data
	Introduction
	A Logic for Reasoning About Words over Data Domains
	Preliminaries
	A First-Order Logic over Data Words
	Quantifier Alternation Hierarchy
	Data Independent Formulas

	The Satisfiability Problem
	Rewriting Systems over Data Words
	Rewriting Rules
	Rewriting Semantics

	Models of Infinite-State Systems
	Recursive Programs with Data
	Dynamic/Parametrized Networks of Processes

	Post and Pre Condition Reasoning
	post and pre Operators
	Computing post and pre Images
	Application in Verification

	Reachability Analysis for Integer Context-Free Systems
	Conclusion
	References

	Spiking Neural P Systems: Some Characterizations
	Introduction
	Asynchronous General SN P Systems
	Asynchnronous Unbounded SN P Systems with Extended Rules
	Systems Without Delays
	Systems with Delays

	Asynchronous Bounded SN P Systems
	Sequential SN P Systems
	SN P Systems as Language Generators
	Regular Languages
	Another Way of Generating Languages

	Conclusion
	References

	Approximating Graphs by Graphs and Functions
	Traces, Feedback, and the Geometry of Computation
	A Largest Common d-Dimensional Subsequence of Two d-Dimensional Strings
	Introduction
	Previous Related Work
	Definitions
	Complexity of Computing A Largest Common Two-Dimensional Subsequence of Given Two Two-Dimensional Strings
	Computing A Largest Weak Common Subsequence
	Remarks
	Conclusion
	References

	Analysis of Approximation Algorithms for k-Set Cover Using Factor-Revealing Linear Programs
	Introduction
	Algorithm Description
	Analysis Through Factor-Revealing LPs
	Proofs of Main Theorems
	Extensions
	References

	A Novel Information Transmission Problem and Its Optimal Solution
	Introduction
	The Formalized Problem and a Guide to Its Solution
	Two Convergence Theorems
	Notation
	A Pointwise Convergence Theorem
	Convergence for the Optimal Transformation

	Deriving the Optimal Transformation
	Modeling Prior Information and Non-uniform Penalties
	Open Problems
	References

	Local Testing of Message Sequence Charts Is Difficult
	Introduction
	Preliminaries
	Message Sequence Charts
	Message Sequence Graphs

	Locally Testable MSC Languages
	Undecidability
	Undecidability of 1-Testability for 2 Processes

	Decidability
	Discussion
	References

	On Notions of Regularity for Data Languages
	Introduction
	Preliminaries
	Data and Class-Memory Automata
	Expressiveness
	Algorithmic Properties
	Closure Properties
	CMA with Synchronization and Reset
	References

	FJMIP: A Calculus for a Modular Object Initialization
	Introduction
	FJMIP Syntax
	Auxiliary Functions
	Operational Semantics
	Type Checking
	Conclusion and Related Work
	References

	Top-Down Deterministic Parsing of Languages Generated by CD Grammar Systems
	Introduction
	Definitions
	Properties of Languages Generated by LL(k) CDGrammar Systems
	Using Lookup Tables
	References

	The Complexity of Membership Problems for Circuits over Sets of Positive Numbers
	Introduction
	Preliminaries
	Definitions
	(\O,U)-Circuits

	General Considerations
	Upper Bounds
	Using Known Upper Bounds
	An Upper Bound for $\boldsymbol{{\hbox{\textbf{MC}}_{\mathbb{N}^+}}(\union,\intersection,\complement,+,\times)}$
	Circuits with Intersection as the Only Set Operation

	Lower Bounds
	NP- and PSPACE-hard Problems
	\NP- and \PSPACE-hard Problems

	Conclusion and Open Problems
	References

	Pattern Matching in Protein-Protein Interaction Graphs
	Introduction
	Preliminaries
	Exact Colorful Instances
	Hardness Results
	Approximation Algorithms
	Bounded Degree Graphs
	A Randomized Algorithm
	Linear Forests

	Conclusion
	References

	From Micro to Macro: How the Overlap Graph Determines the Reduction Graph in Ciliates
	Introduction
	Gene Assembly in Ciliates
	The Reduction Graph
	The Reduction Graph of Realistic Strings
	Compressing the Reduction Graph
	From Overlap Graph to Reduction Graph
	Consequences
	Discussion
	References

	A String-Based Model for Simple Gene Assembly
	Introduction
	Mathematical Preliminaries
	Permutations and Strings
	Signed Permutations
	Legal Strings
	Simple Operations on Signed Strings
	Confluent Strategies on Legal Strings

	References

	On the Computational Power of Genetic Gates with Interleaving Semantics: The Power of Inhibition and Degradation
	Introduction
	Basic Definitions
	Genetic Systems
	Configurations, Reaction Relation and Interleaving Computational Step
	Expressiveness of Genetic Systems with Interleaving Semantics

	Genetic Systems Without Decaying Objects
	Contextual P/T Nets
	Mapping Genetic Systems Without Degradation on Safe Contextual P/T Systems

	Genetic Systems Without Inhibitors
	Well-Structured Transition Systems
	Decidability of Universal Termination for Genetic Systems Without Inhibition

	Conclusion
	References

	On Block-Wise Symmetric Signatures for Matchgates
	Introduction
	Background
	Decomposition Theory for Block-Wise Symmetric Signatures
	Characterization of Block-Wise Symmetric Signature with Block Size 2
	References

	Path Algorithms on Regular Graphs
	Introduction
	Computations with Graph Grammars
	Computation Algorithms
	Computations on Regular Graphs
	References

	Factorization of Fuzzy Automata
	Introduction
	Preliminaries
	Fuzzy Automata
	Factor Fuzzy Automata and Fuzzy Relation Equations
	Right Invariant Fuzzy Equivalences
	References

	Factorisation Forests for Infinite Words
	Introduction
	Definitions
	Linear Orderings
	Words, Languages
	Semigroups and Additive Labellings

	Factorisation Forest Theorems
	Factorisation Forest Theorem
	A Variant Via Ramseyan Splits
	Ramseyan Splits for Complete Linear Orderings

	Application to Countable Scattered Linear Orderings
	Automata over Countable Scattered Linear Orderings
	Semigroup Structure
	Complementation

	Conclusion and Future Work
	References

	Marked Systems and Circular Splicing
	Introduction
	Basics
	Circular Words and Languages
	Circular Splicing
	Circular Semi-simple Splicing Systems

	Marked Systems Without Self-splicing
	Marked Systems
	Transitive Marked Systems
	Distance and Diameter
	Forbidden Chains

	A Classification of Marked Systems
	Marked Systems with Self-splicing
	References

	The Quantum Query Complexity of Algebraic Properties
	Introduction
	Preliminaries
	Quantum Query Model
	Tools for Quantum Algorithms
	Tool for Quantum Query Lower Bounds

	The Semigroup Problem
	Group Problems
	Lower Bounds
	Conclusion and Open Problems
	References

	On the Topological Complexity of Weakly Recognizable Tree Languages
	Introduction
	Weak Alternating Automata
	Games, Hierarchies, and Topology
	Up and Down the Hierarchy
	Weak Index Vs. Borel Rank
	Three Simple Constructions
	A Lower Bound
	References

	Productivity of Stream Definitions
	Introduction
	Recursive Stream Specifications
	Modelling with Nets
	Nets
	A Rewrite System for Pebbleflow
	Translating Pure Stream Specifications

	Deciding Productivity
	Examples
	Conclusion and Ongoing Research
	References

	Multi-dimensional Packing with Conflicts
	Introduction
	Bipartite Graphs
	NFD and FFD
	Algorithm SixEleven
	The Algorithm for OPT = 1 and OPT = 2
	The Algorithm for OPT = 3
	The Algorithm for OPT = $k>3$
	The Algorithm for Large OPT

	An Algorithm for Perfect Graphs
	An Algorithm for Independent Sets
	The General Algorithm

	References

	On Approximating Optimal Weighted Lobbying, and Frequency of Correctness Versus Average-Case Polynomial Time
	Introduction
	Approximating Optimal Weighted Lobbying
	Optimal Lobbying and Its Weighted Version
	A Greedy Algorithm for Optimal Weighted Lobbying

	Frequency of Correctness Versus Average-Case Polynomial Time
	A Motivation: How to Find Dodgson Winners Frequently
	On AvgP and Frequently Self-knowingly Correct Algorithms
	A Basic Junta Distribution for SAT

	Conclusions
	References

	Efficient Parameterized Preprocessing for Cluster Editing
	Introduction
	Previous Work
	Our Results

	A Crown Reduction Rule
	A Linear Kernelization Bound
	Soundness of the Reduction Rule
	Efficiently Applying the Reduction Rule
	Discussion and Open Problems
	References

	Representing the Boolean OR Function by Quadratic Polynomials Modulo 6
	Introduction
	The Testing Algorithm
	Permutation Filtering
	The Result
	References

	On the Complexity of Kings
	Introduction
	Basic Definitions and Tools
	The Complexity of the Diameter Problem
	The Complexity of P-k-King Languages
	The Complexity of the Radius Problem
	Conclusion
	References

	Notions of Hyperbolicity in Monoids
	Introduction
	Synchronously Regular Languages
	Types of Context-Free Languages
	Hyperbolic Structures
	Word Problem of T_i-Hyperbolic Monoids
	Connections with Biautomaticity
	References

	P Systems with Adjoining Controlled Communication Rules
	Introduction
	Preliminaries and Definitions
	The Model
	Defining the Model
	An Example
	The Results

	Conclusions and Further Research
	References

	The Simplest Language Where Equivalence of Finite Substitutions Is Undecidable
	Introduction
	MainResult
	Proof of the Result
	References

	Real-Time Reversible Iterative Arrays
	Introduction
	Real-Time Reversible Iterative Arrays
	Reversible Simulation of Data Structures
	Decidability Questions
	References

	The Computational Complexity of Monotonicity in Probabilistic Networks
	Introduction
	Preliminaries
	Monotonicity Variants and Their Complexity
	Weak Global Monotonicity
	Global E-Monotonicity
	Conclusion
	References

	Impossibility Results on Weakly Black-Box Hardness Amplification
	Introduction
	Preliminaries
	Impossibility of Hardness Amplification in $\TIME(t)$
	Impossibility Results in \mathsf{\Sigma_{#1}P}
	References

	Maximal and Minimal Scattered Context Rewriting
	Introduction
	Preliminaries
	Definitions
	Results
	References

	Strictly Deterministic CD-Systems of Restarting Automata
	Introduction
	Definitions
	Various Notions of Determinism
	Strictly Deterministic CD-Systems
	Concluding Remarks
	References

	Product Rules in Semidefinite Programming
	Introduction
	Affine Semidefinite Program Instances
	Product Instance
	Product Solution
	The Missing Condition
	Positivity of Matrix J
	All $A^{(k)}$ Are Block Diagonal, and J Is Block Anti-diagonal
	A Necessary Condition for the Feasibility of $y_{1}\otimes y_{2}$
	Maximum Eigenvalue of a Matrix

	The Weak Product
	SomeOpenProblems
	Conclusions
	References

	Expressive Power of LL(k) Boolean Grammars
	Introduction
	Boolean Grammars and Their Non-left-Recursive Subset
	Boolean Recursive Descent Parser
	Simple Formal Properties
	Boolean LL(k) Grammars over a Unary Alphabet
	Nonrepresentability Results for Subsets of $\Sigma^* a^*$
	Linear Conjunctive LL Grammars
	LL Linear Boolean Grammars
	Hierarchy
	References

	Complexity of Pebble Tree-Walking Automata
	Introduction
	Definitions
	From Pebble Automaton to Bottom-Up Automaton
	Lower Bounds
	Discussion
	References

	Some Complexity Results for Prefix Gr\"obner Bases in Free Monoid Rings
	Introduction
	Preliminaries
	Normalform Computation
	Prefix Gr\"obner Basis Check
	Concluding Remarks
	References

	Fast Asymptotic FPTAS for Packing Fragmentable Items with Costs
	Introduction
	Related Work
	Our Results

	An AFPTAS for BP-SPF
	Preliminaries
	Preprocessing the Input
	Solving the Linear Program
	Packing the Items

	Analysis of the Scheme
	Combining Shifting with Geometric Grouping

	Application to Bin Packing and Variable-Sized Bin Packing
	References

	An $O(1.787^n)$-Time Algorithm for Detecting a Singleton Attractor in a Boolean Network Consisting of AND/OR Nodes
	Introduction
	Preliminaries
	$O(1.792^n)$ Time Algorithm
	Improved Analysis
	Extension and Special Case
	Extension to a General BN
	A Linear Time Algorithm for a Tree-Like BN

	Conclusion and Future Works
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

