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Abstract. Automatic speaker recognition systems have a foundation
built on ideas and techniques from the areas of speech science for speaker
characterization, pattern recognition and engineering. In this chapter we
provide an overview of the features, models, and classifiers derived from
these areas that are the basis for modern automatic speaker recogni-
tion systems. We describe the components of state-of-the-art automatic
speaker recognition systems, discuss application considerations and pro-
vide a brief survey of accuracy for different tasks.

1 Introduction

The development of automatic speaker recognition systems is one example in
the field of speech processing that brings together the areas of speech science for
speaker characteristization, pattern recognition and engineering. From speech
science comes the insights into how humans produce and perceive speaker-
dependent information in the speech signal as well as signal processing tech-
niques for analyzing acoustic correlates conveying this information. The area of
pattern recognition provides algorithms for effectively modeling and comparing
speaker characteristics from salient features. Finally, engineering is used to both
realize working systems based on the above ideas and to handle real-world vari-
ability that arise in applications. In this chapter we provide an overview of the
features, models, and classifiers derived from these areas that are the basis for
modern automatic speaker recognition systems.

In Figure 1, we show the basic framework and components of speaker recogni-
tion systems. We are using the general term of speaker recognition to encompass
the underlying tasks of speaker identification (which one of a set of speakers is
talking?) and speaker detection or verification (is this particular speaker talk-
ing?). We will note throughout this chapter when particular comments refer
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Fig. 1. Structure of a speaker recognition system

to identification or detection. As with any pattern recognition system, speaker
recognition systems consist of two distinct phases: enrollment (also called train-
ing) and recognition (also called testing).

The first step, common to both enrollment and recognition phases, is the
extraction and conditioning of a set of features from the input signal believed
to convey information about the speaker. In Section 2, we review some of the
commonly used methods for feature extraction.

Features from speech samples by a speaker are used in the enrollment phase to
build or train parameters for a model which represents the specific characteristics
of that speaker. During the recognition phase, features from the test speech
sample are compared to one or more of the speaker models, depending on the
task, by the classifier to produce match scores. In Section 3, we review the most
successful models and classifiers found in automatic speaker recognition systems.

These scores are optionally normalized to add robustness or to map them to
a desired dynamic range (e.g., 0 to 1). This and other forms of normalization
and compensation are discussed in Section 3.6.

Finally, the decision component either compares the score to a threshold to
decide to accept or reject, in the case of speaker detection, or reports out the
highest scoring model, in the case of speaker identification. The decision could
also compare the score of the highest scoring model to a threshold and decide
to report “none-of-the-above.” This is a merger of speaker identification and
detection known as open-set identification.

2 Feature Extraction

Feature processing for speaker recognition systems consists of extracting speaker
dependent information in a form which can be effectively and efficiently used for
model building and recognition. Broadly speaking, features used for speaker
recognition can be categorized by three key attributes:
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– Temporal span
– Discrete vs. continuous values
– Information level

The attributes of features will impact the models and classifiers that are appro-
priate to use.

The information in speech signals occurs at several different time spans and
rates. Thus, features used to capture this information also occur with different
time spans and rates. Features that aim to capture information about a person’s
vocal tract information as seen through the frequency spectrum of speech, will
operate using short-time spans (∼20-30ms) so as to analyze quasi-stationary
snapshots of the vocal apparatus. Prosodic information, such as a person’s aver-
age pitch inflection per sentence, is an example of a feature derived by looking
at a longer time span (∼1-2 s). Further, the feature time span and rate may be
variable, for example, when examining aperiodic, variable duration events like
speech pathologies, phonemes, or words.

The value of the speech measurements used in the features can be discrete
or continuous. Features consisting of speech frequency spectrum samples are an
example of continuous valued measurements. Features counting the number of
occurrences of events in speech, such as word usage counts, are an example of
discrete values measurements. There is, of course, a continuum between contin-
uous and discrete measurements since one can quantize continuous values for
efficiency or use a probability of occurrence that is < 1.0 when counting events.

The third attribute is the information level features represent. Speech conveys
many levels of information, from semantic meaning, via the words spoken, to the
speaker’s physical vocal apparatus, via the acoustic sound of the speech (i.e.,
bass vs treble). Speaker recognition features can be focused to capture speaker
dependent characteristics from these different levels. Features aimed at low-level
information tend to extract measurements about the acoustic characteristics
related to vocal production, such as frequency spectrum or short time pitch
estimates. Features aimed at higher-level information, such as pronunciations
and word usage (idiolect), require the output of some other speech recognition
tool such as a phone or word recognition system.

We pictorially depict this feature attribute space in Figure 2. Typically, fea-
tures related to high-level speaker information consist of longer time span, vari-
able rate analysis of discrete events, such as phones or words. Features related
to low-level speaker information consist of short time span, fixed rate analysis
of continuous phenomenon, such as spectra. We next review some common fea-
tures used in automatic speaker recognition systems indicating their attributes.
Figure 3 shows where these features lie in the attribute space.

Mel Frequency Cepstral Coefficients (MFCCs) [1,2]: MFCCs are the most
commonly used features in modern speaker recognition systems[3]. MFCC tem-
poral processing uses a fixed analysis window on the order of ∼20 millisecond.
MFCCs are represented by a real valued N-dimensional vector. The coefficients
are a parameterization of the spectrum which have some dependency on the
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Fig. 2. Relation of attributes for features used in automatic speaker recognition systems

physical characteristics of the speaker. MFCCs are considered to be low-level
information.

Linear Prediction-based Cepstral Coefficients (LPCCs) [4,2]: LPCCs are
often used in speaker recognition systems, although their susceptibility to noisy
environments have made them more undesirable as speaker recognition systems
are applied to more challenging channels. Like MFCCs, the LPCC processing
uses a fixed analysis window (∼20 millisecond) and are of the continuous mea-
surement type. LPCCs are dependent on the spectral envelope and are considered
to be low-level information.

Codebook quantized spectral entries [5]: These features measure the ap-
proximate location of the spectrum in acoustic space. Rather than use the con-
tinuous representation of cepstral features, the features can be quantized either
using a VQ codebook or a Gaussian mixture model (GMM). The feature in this
case is the index in the corresponding VQ codebook or the mixture index in the
GMM.

Pitch and Energy [6]: The goal is to learn pitch and energy gestures by mod-
eling the joint slope dynamics of pitch and energy. When these features are
combined with a short phrases, the analysis window will be variable spanning
the duration of the short phrase.

Prosodic Statistics [7]: Are based on various measurements of energy, duration
and pitch derived over large speech segment. The goal is to capture the prosodic
idiosyncrasies of individual speakers. The feature type will be continuous since
the prosodic statistical measures are reported in continuous values. The level of
information is considered low-middle since these features are measuring prosodic
inflections and patterns.

Word and Phone Tokenization [8,9,10,11,12]: These are a more recent addi-
tion to feature sets used in speaker recognition systems. The analysis window is
variable, since it is based on the expected duration of the word or phone units.
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Fig. 3. Approximate location of common feature in the feature attribute space

Further counts of word pairs or triples cover longer time spans. Since counts of
discrete words and phone are often used as features, the value type would be dis-
crete. Word and phone models in speaker recognition both try to represent the
pronunciation differences of talkers and are considered high-level information.

3 Models and Classifiers

Speaker models and classifiers are tied not only to the features used, but also to
the task being addressed. The two tasks of speaker recognition are 1) speaker
identification and 2) speaker verification. The speaker identification task is
closed-set recognition, where all of the talkers that will be seen by the system are
pre-enrolled and known. Figure 4 shows the general structure of a speaker iden-
tification system. The applications of closed-set identification are limited since
most real-world scenarios must usually handle out-of-set speakers. Performance
is a function of the number of speaker in the identification set and the speech
used.

The speaker verification task, in contrast, is a binary decision of whether
the unknown speaker is the same as the hypothesized (or claimed) speaker.
While ostensibly an easier task than classifying among a set on N speakers,
verification must potentially be able to effectively reject the open-set of speakers
that could act as impostors. This open-set is usually dealt with by using some
general impostor model. The general structure of the speaker verification system
is presented in Figure 5. Speakers verification addresses a more general problem
and has wider application in the speaker recognition community, so it is a more
common focus for classifier design and evaluation.

For both the identification and verification structure, there are many types
of models and classifiers that have been used. We will mainly focus on those
aimed at solving the more general open-set verification task (although they are



Classification Methods for Speaker Recognition 283

Feature 
extraction

Speaker 1
Model

Detected Detected 
SpeakerSpeaker

Speaker 2
Model

Speaker 3
Model

Speaker N
Model

M
A

X

Fig. 4. General classifier structure for speaker identification system

Feature 
extraction

Speaker
Model

Detection Detection 
DecisionDecision

Background
Model

Score
Normalization

Fig. 5. General classifier structure for speaker verification system

often similarly used for identification). Early methods for speaker recognition in-
cluded non-parametric techniques (vector quantization and dynamic time warp-
ing). Classification methods for speaker recognition in recent years have centered
on statistical approaches. The structure and choice of a classifier depends on the
application and the features used. In this section we review a subset of classifiers
that have been successfully used in automatic speaker recognition systems.

3.1 Gaussian Mixture Modeling (GMM)

The Gaussian mixture modeling (GMM) approach has become one of the main-
stay modeling techniques in text-independent speaker recognition systems. Con-
sider the verification structure shown in Figure 5. In GMM speaker verification,
the impostor model is more commonly known as a background model. In addi-
tion, the detection decision or score is normalizated to refine detection decision.
The resulting structure is presented in Figure 5.

Figure 5 is realized in the framework of a likelihood ratio detector. In the
approach of [3,13,14], we can consider the two hypotheses for a given segment
of speech Y :

λhyp: Speech segment Y is from speaker S
λhyp: Speech segment Y is not from speaker S

To decide between these two hypotheses we form the following likelihood ratio
test:

Λ(Y ) =
p (Y |λhyp)

p
(
Y |λhyp

)
{

≥ Θ Accept hypothesisλhyp

≤ Θ Reject hypothesisλhyp

(1)
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where p (Y |λ) is the probability density function (pdf) of the observed speech
segment Y , given the hypothesis λ, or likelihood function. The decision threshold,
Θ, determines accepting or rejecting the hypotheses. Let X represent the set of
feature vectors generated from the front-end processing of the speech segment Y .
The set of features, X , usually MFCCs or LPCCs, are per frame speech-frame
vectors: {x1, · · · , xT }. The frame-based likelihood function can be written as
p (x|λ).

In the GMM approach, the choice of the likelihood function is a mixture of
M Gaussians:

p(x|λ) =
M∑
i=i

wipi(x) (2)

where pi(x) is the individual Gaussian density function,

pi(x) =
1

(2π)n/2 |Σi|1/2 × exp
{

−1
2

(x − μi)
′ Σ−1

i (x − μi)
}

. (3)

The parameters of the model are: wi, the mixture weight, μi, the N-dimensional
mean vector, and Σi, the N by N dimensional covariance matrix. The model
parameters can be succinctly written as: λ = (wi, μi, Σi) where i = [1 · · ·M ].
Equation (2) is just a linearly weighted sum of M individual Gaussians which
will be used the likelihood calculation for a detection decision. The weights also
satisfy the relation ΣM

i=1wi = 1. The general form of a Gaussian mixture allows
for a fully populated covariance matrix. It has been shown that the diagonal
covariance matrix is sufficient for text-independent speaker-verification model-
ing [3].

Once a model is trained then (2) can be used to evaluate the log-likelihood of
model λ for an input test set of feature vectors, X :

log p (X |λ) =
T∑

t=1

log p (xi|λ) (4)

Impostor modeling is crucial in producing good speaker recognition perfor-
mance. Current methods form an universal background model, p

(
x|λhyp

)
, from

a set of background model speakers [15]. The background speakers are chosen
from a similarly recorded channel/conditions that will be seen in detection. The
number of speakers used to train the background model should be large enough
to model the acoustic space of the impostors. There is also a dependency on the
number of Gaussians (M) used to model the space. A larger number of Gaussians
will require more data to realize the mixture model. The size of M , will depend
on channel, application, acoustic variation and amount of speech data seen at
each phase. M may range from 64 to 2048. In the telephone speaker-verification
task, with 2.5 minutes of enrollment speech and 30 second of verification speech,
we have seen good performance with the number of mixtures M = 512 and 1-2
hours of background model training speech from over one hundred talkers.
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Current state-of-the-art text-independent GMM speaker verification systems
obtain background model parameter estimates in an unsupervised manner by
using an expectation-maximization (EM) algorithm [16]. Feature vectors gener-
ated from a background speaker set provide the training data. The EM algorithm
iteratively refines model parameter estimates to maximize the likelihood that the
model matches the distribution of the training data. Model parameters converge
to a final solution in a few iterations (5-10)[3].

Speaker model training is accomplished by adapting the background model
to each enrollment speaker through Maximum A Posteriori (MAP) estima-
tion [17,18]. This approach couples the speaker model to the background model
and yields better results over the methods using unrelated models. Adapting
from the background model utilizes the well trained parameters, {wi, μi, Σi},
from the EM algorithm. The large amount of data used to train the background
model allows for a well modeled cepstral space. Speaker models are adapted in
turn from this richly populated space. Even though all the parameters of the
model can be adapted, it has been shown that best performance results when
only the means (μi) are adapted.

The speaker and background models can be applied to the likelihood ratio (1)
and (4) to get the likelihood-ratio score,

Λ(X) = log p (X |λhyp) − log p
(
X |λhyp

)
(5)

Equation 5 is sufficient to form a detection decision, however better perfor-
mance is achieved through refinement of the likelihood-ratio score with normal-
ization. We will discuss normalization techniques in Section 3.6.

It should be noted the similarities in the organization of the GMM and the
vector quantization (VQ) approach for speaker recognition. In the method of
[19,20], the VQ codebook is a partitioning of the cepstral space. The VQ code-
book can be weakly considered a quantized version of a Gaussian mixture model.

A support vector machine (SVM) is a versatile classifier that has gained con-
siderable popularity in recent years. An SVM is discriminative and models the
boundary between a speaker and a set of impostors. The typical method em-
ployed in SVM speaker recognition is based upon comparing speech utterances
using sequence kernels. Rather than characterize features from individual frames
of speech, these methods model entire sequences of feature vectors. Approaches
include the generalized linear discriminant sequence kernel [21], Fisher kernel
methods [22,23], n-gram kernels [24], MLLR transform kernels [25], and GMM
supervector kernels [26].

Basic SVM Theory. An SVM [27] models two classes using sums of a kernel
function K(·, ·),

f(x) =
N∑

i=1

αitiK(x,xi) + d, (6)

where the ti are the ideal outputs,
∑N

i=1 αiti = 0, and αi > 0. The vectors
xi are support vectors and obtained from the training set by an optimization
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process [28]. The ideal outputs are either 1 or -1, depending upon whether the
corresponding support vector is in class 0 or class 1, respectively. For verification,
a class decision is based upon whether the value, f(x), is above or below a
threshold.

The kernel K(·, ·) is typically constrained to have the Mercer condition, so
that K(·, ·) can be expressed as

K(x,y) = b(x)tb(y), (7)

where b(x) is a mapping from the input space (where x lives) to a possibly
infinite-dimensional expansion space. Optimization of an SVM relies upon a max-
imum margin concept. For separable data, the system places a hyperplane in a
high dimensional space so that the hyperplane has maximum margin. The data
points from the training set lying on the boundaries are the support vectors in
equation (6).

Application of Support Vector Machines to Speaker Recognition. Fig-
ure 6 indicates the basic training strategy for SVMs using sequence kernels.
We train a target model with target speaker utterances and a set of exam-
ple speakers’ utterances that have characteristics of the impostor population—a
background speaker set. Each utterance from a target or background speaker
becomes a point in the SVM expansion space. We implement a sequence kernel
module for comparing two utterances and producing a kernel value. The kernel
module is connected into a standard SVM training tool which then produces
a speaker model. We keep the background speaker set the same as we enroll
different target speakers.

Sequence Kernels for Speaker Recognition—General Structure. To
apply an SVM, f(X), in a speaker recognition application, we need a method
for calculating kernel values from sequences of features (e.g., MFCC feature
vectors). Two general methods have emerged—linearized train/test kernels and
adapted model comparison.

The idea of a train/test sequence kernel is shown in Figure 7. The basic
approach is to compare two speech utterances, utt 1 and utt 2 by training a model
on one utterance and then scoring the resulting model on another utterance.
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This process produces a value that measures the similarity between the two
utterances. Although in general this comparison is not a kernel, it doesn’t satisfy
the Mercer condition, in many cases linearization will produce a kernel—see the
next section.

The second basic method for constructing sequence kernels is shown in Fig-
ure 8. In this setup, we adapt a base model to obtain probability distributions
which represent the utterances. We then apply a model comparison algorithm
to get a measure of similarity. This approach has the useful property that it is
naturally symmetric as long as the comparison calculation is symmetric.

3.2 Sequence Kernels for Speaker Recognition—Specific Examples

For the train/test kernel shown in Figure 7, a typical approach is the generalized
linear discriminant sequence (GLDS) kernel [21]. In this method, the classifier is
taken to be a polynomial discriminant function. Suppose we have two sequences
of feature vectors, X = {xi} and Y = {yj}. If we train a polynomial discriminant
using mean-squared error, then the resulting kernel is given by

K(X,Y) = b̄xR̄−1b̄y. (8)

In (8),

b̄x =
1

Nx

∑
i

b(xi); (9)

i.e., b̄x is the average expansion over all frames. A similar expansion is used for
Y. The matrix, R̄ is the correlation matrix of a background data set; typically, it
is approximated with only diagonal terms. For details on the derivation of these
equations, we refer to [21]. An interesting generalization of the GLDS kernel
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is to replace the polynomial expansion by a general kernel using the kernel
trick [29,30].

For the generative model sequence kernel, several methods have been pro-
posed. Current methods are based upon adapting from a GMM or HMM base
model. In [25], adaptation of an HMM from a speech-to-text system is performed
using maximum-likelihood linear regression (MLLR). The MLLR adaptation pa-
rameters are then compared with a weighted linear inner product. In [26], the
adaptation is performed via MAP adaptation of a GMM. The GMMs are com-
pared using either an approximation to the KL divergence or an integral inner
product.

SVMs can also be applied to high-level features [11,24]. A token-sequence
comparison kernel can be derived by using the train/test kernel framework in
Figure 7. In this case, the classifier in the figure is taken to be the standard
language model likelihood ratio using n-gram probabilities. The resulting kernel
is of the form

K(T1, T2) =
∑

k

D2
kp(dk|T1)p(dk|T2) (10)

where the Tj are token sequences, Dk is a weighting function, p(dk|Tj) is the
probability of a particular n-gram, dk, occuring in token sequence Tj . A typical
choice is something of the form

Dk = min
(

Ck, gk

(
1

p(dk|background)

))
(11)

where gk(·) is a function which squashes the dynamic range, and Ck is a
constant [24]. The probability p(dk|background) in (11) is calculated from a
large population of speakers. Typical choices for gk are gk(x) =

√
x and

gk(x) = log(x) + 1. The kernel (10) is closely related to methods in informa-
tion retrieval; we refer to [24] for details.

3.3 Support Vector Machine (SVM)

3.4 Hidden Markov Modeling (HMM)

The GMM-UBM system described in Section 3.1 models the entire acoustic
space. However, in text-dependent applications the system has prior knowledge
of what will be said and template-matching techniques become advantageous.
The first template matching methods were dynamic time warping (DTW) al-
gorithms [31]. However DTW methods proved to be inefficient and methods
gave way to a stochastic modeling of each talker’s speech where the underlying
stochastic processes is not observable of hidden (Hidden Markov Model). Early
approaches in applying Hidden Markov Models (HMMs) to text-dependent and
text-independent speaker recognition were developed by [15,32,10] and have been
continued [33,34,35].

HMMs can efficiently model statistical variations in spectral features. Rather
then modeling the entire acoustic space the HMM only models a progression of
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limited regions of acoustic space. These limited acoustic regions can be defined
as states of finite time. These states can be described with a PDF, p(xt|s) is
the probability of per-frame feature vector, xt, given you are in state, s. Tran-
sitioning between states, (e.g.: from t − 1 to t) is defined with a state transition
probability, p(st|st−1).

The likelihood of T frames of speech occurred given a hypothesis, λ, is:

p(X |λ) =
∑

all
states

T∏
t=1

p(st|st−1)p(xt|st) (12)

Which is the Baum-Welch decoding [36,37,38]. Equation (12) can be employed
in a similar manner as (5). The likelihood ratio can be constructed from a target
likelihood p(X |λhyp)over the an impostor/background likelihood p(X |λhyp) as
in (1).

The first step in HMM modeling is to form a representation of the impostors.
Here the concept of the background model is to form a model of the world of
all possible speakers. HMM background models can then be trained through the
use of a full large vocabulary continuous speech recognition (LVCSR) system
as in [35,39]. There are also approaches that use segmental K-means clustering
procedure [33] or limited vocabulary phoneme-based methods were implemented
in [40].

The speaker model, p(X |λhyp), can be formed by Baum-Welch adaptation
from the background model [35]. [33] relies on segmental K-means clustering for
training of the target model, but utilizes the speaker independent background
model for the segmentation. This can be considered a general form of the GMM
approach presented in Section 3.1. The GMM can be thought of as a single state
hidden Markov model.

The HMM implementation of [35,39] can either be applied in text-independent
or text-dependent applications. For text-independent applications, the language
model of the LVCSR system has to be broad enough to span the speech that
may be seen by the system.

The actual structure of a text-dependent system will depend greatly on the
application. Speaker recognition accuracy is dependent on the performance of the
system, but can also be controlled by limiting the vocabulary of the domain. Lim-
iting the talkers to alpha-digits is a common domain. System accuracy may also
be influenced by gathering more speech from cooperative speaker by prompting
them with a series of random phrases.

3.5 Artificial Neural Networks

Artificial neural networks (ANNs) model continuous features using nonlinear
modeling inspired by biological neural networks. A typical artificial neural net-
work is a two-layer perceptron, m(x), of the form

m(x) = g̃
(
wtg(Ax + c) + d)

)
(13)
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where x is the input, g(·) and g̃ are squashing functions, A is a matrix, w is a
vector, and b and c are bias terms. Artificial neural networks were one of the
first methods to be successfully used in discriminative speaker recognition [41].

ANNs, when trained with mean-squared or cross-entropy criteria [42], model
the posterior probability, p(spk|xi). Here, xi is typically a continuous feature
vector such as MFCCs. A typical scoring criterion is to take the average weighted
posterior (or log posterior) across all frames of an input utterance.

Because an ANN models a posterior rather than a likelihood, typically cohort
normalization or background normalization is not needed to achieve good perfro-
mance. This property is expected since the ANN is a discriminative technique.
But, as with most speaker recognition methods, techniques such as TNorm can
stabilize thresholds.

Training for an ANN is accomplished in a similar manner to the SVM setup
shown in Figure 6 except it is performed with frame level features. Feature
vectors for the target speaker are extracted and placed in one class (with ideal
output 1). Feature vectors for a background speaker set are placed in another
class (with ideal output 0). Then, training with a backpropagation algorithm
algorithm is performed.

Note that prior balancing is a critical part of ANN training. Because the target
speaker training set size is typically significantly smaller than the background
training set, the prior of the target is usually small. Since the output of the ANN
approximates a posterior, the target prior is a factor in the ANN output. Com-
pensation for this prior can be performed in training via, e.g. random sampling
with prior equalization, or in testing by scaling the output by the target prior.

A successful extension of ANNs is the neural tree network [41] (NTN). NTNs
are a combination of tree methods (such as CART) and neural networks. At each
node in the tree, a neural network is used to determine which branch is taken.
Scoring and training are an extension of standard ANN and tree methods. NTNs
were successfully used for many years in a commercial system for text dependent
speaker recognition.

Other connectionist methods for speaker recognition include radial basis func-
tions (RBF) and elliptical basis functions (EBF), e.g. [43]. These approaches were
only moderately successful and are subsumed by the more general training and
modeling approach of GMMs.

3.6 Normalization Techniques

Ideally, score variability should only depend on speaker differences. Other factors
may contribute to score variability such as transmission channel, environmental
background effects, linguistic variation and session variation. There are many
methods to stabilize score variation to make the threshold setting, Θ, more ro-
bust. Compensation methods have been developed in the feature domain, model
domain, and score domain.

Feature Domain Normalization. Feature domain normalization transforms
a base set of features, such as MFCCs, to a new set of features that are more
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robust to channel and noise effects. Typically, these methods have been based
on signal processing and data-driven techniques.

Common feature transformations used to remove channel effects are
RASTA [44] and cepstral mean subtraction (CMS) [45]. These methods rely on
homomorphic signal processing techniques—filtering a signal in the time domain
induces an additive bias in the cepstral domain.

Feature transformations that compensate for noise or other nonlinear distor-
tions include cepstral variance normalization (CVN) and feature warping. CVN,
in part, is based upon the fact that additive noise reduces the variance of cep-
stral coefficients [46]; compensation is realized by renormalizing the cepstral
coefficients to unit variance. Feature warping [47] further extends this technique
by remapping features to fit some predefined distribution.

More recent feature compensation methods have used supervised data-driven
methods. For example, feature mapping [48], uses knowledge of channel types to
remap features to a channel neutral model.

Model Domain Normalization–GMM. For GMM based classifiers, tech-
niques that treat the undesired variability as a bias to the mean vectors have
been successful. If we stack the means from a GMM into a supervector this can
be written as

mj(s) = m(s) + c(s) (14)

where mj(s) is the supervector from speaker s’s j-th enrollment session, m(s)
is the desired compensated supervector for speaker s and c(s) is the undesired
variability supervector.

The main difference in the compensation techniques is in how they estimate
and remove the variability vector c(s). In Speaker Model Synthesis (SMS) [49],
the difference between bias vectors from a set of pre-defined channel types is used
to synthetically generate a library of channel-dependent speaker models so as to
allow matched-channel likelihood ratio scoring during recognition. More recent
latent factor analysis (LFA) based techniques [50,51], model the supervector bias
as a low-dimensional normally distributed bias,

c(s) = Un(s) (15)

where U is the low-rank session loading matrix. The LFA techniques are aimed
specifically at compensation of session variability and do not require prior chan-
nel detectors or parameters.

Model Domain Normalization–SVM. As with the GMM, compensations
with SVM classifiers can also be applied directly in the model domain. The SVM
nuisance attribute projection (NAP) method [52] works by removing subspaces
that cause variability in the kernel. NAP constructs a new kernel,

K({xi}, {yj}) =
[
Pb̄x

]t [
Pb̄y

]

= b̄t
xPb̄y

= b̄t
x(I − vvt)b̄y

(16)



292 D.E. Sturim, W.M. Campbell, and D.A. Reynolds

where P is a projection (P2 = P), v is the direction being removed from the
SVM expansion space, b(·) is the SVM expansion, and ‖v‖2 = 1. NAP can be
applied to both low-level and high-level features.

Score Normalization. Typically, score normalization techniques remap tar-
get speaker scores based on some reference set of models, utterances, or chan-
nels. One of the most effective score normalization techniques, TNorm (test-
normalization) was introduced in [53]. TNorm transforms a target model score,
s, to

s − μ

σ
(17)

where μ and σ are the mean and standard deviation of scores from a set of refer-
ence speakers’ models scored on the input utterance. Other score normalization
techniques include Z-Norm [54] (based on normalizing to a reference set of ut-
terances) and H-Norm (based on normalizing to a reference set of channels) [55].

4 Classifier Choice

The choice of classifier to be used is greatly dependent on the application. Ex-
amples of application constraints that influence the classifier choice and config-
uration include the following.

– Level of user cooperation
– Required recognition/detection accuracy
– Expected channels
– Amount of speech available for enrollment and detection
– Available compute and memory resources
– How the output is used

User cooperation will determine whether or not you can field an active or
passive system. If the user is cooperative the system can actually prompt the user
for additional input speech. The additional input speech will boost performance
while at the same time verify that the incoming user is “live“. However if the
users are uncooperative the system has take to more of a passive role. In these
applications the systems have no control over the data they process.

High recognition/detection accuracy may be a requirement in areas such as
banking account access. Here, it is desirable to be very accurate in who gets
access to a user’s account. A text-dependent system is applicable in this case
since it offers higher performance then text-independent techniques.

The channel consists of, the type of microphone used to record the speech,
the way the speech is encoded/transmitted, as well has ambient noises. If the
application has to deal with a wide variety of channel conditions the classifier
could employ some form of channel compensation to boost performance.

The amount of speech data available for enrollment and detection will also
help determine the classifier. If more data is available then classifiers that key
off of high level information become feasible.
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Applications may also be limited in computation and memory resources. Em-
bedded devices have limited amounts of processing power and available memory.
A cell phone will have very limited capabilities that will uniquely constrain the
speaker recognizer.

The consumer of the output of the system will determine what information
is presented to the end user. Certain forensic applications require that systems
return word usage and phonotactic information. In this application a word or
phone based recognition systems, as described in Section 3.3, may be required
to generate the information needed by the user. Further the type of output may
need to be a hard decision, a human interpretable score, or a relative score to
used by another automatic process.

It is quite difficult to characterize the accuracy of speaker verification sys-
tems in all applications due to the complexities and differences in the enroll-
ment/detection scenarios. Figure 9 attempts to provide a range of performance
for some of the cases mentioned above. These numbers are not meant to indi-
cate the best performance that can be obtained, but rather a relative ranking of
some different scenarios. In Figure 9, we depict a detection error trade-off (DET)
plot, which shows the trade-off between false-rejects, fr, and false-accepts, fa,
as the decision threshold changes in a verification system. On this DET we show
four equal error rate points (EER is a summary performance indicator where
fr = fa) for four different verification application scenarios. One thing to note
is that system performance improves as more constraints are placed on the ap-
plication conditions (e.g., text-dependent vs. test-independent, increased speech
for enrollment and verification, more benign channels).
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Fig. 9. Range of speaker verification performance
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To examine some differences in classifiers, Figure 10 shows EER perfor-
mance for a few of the text-independent systems described in section 3 for two
conditions of enrollment data [56,57]. In the first condition about 2.5 minutes
of speech is available for both enrollment and detection. In the other condition
about 20 minutes of speech is available for enrollment and 2.5 minutes is avail-
able for detection. As expected, the trend is for performance to get better when
more enrollment data is available. Further we see that spectral systems (GMM-
LFA and SVM-GSV) perform better than high-level feature systems (SVM
Word), but fusion of high and low level systems can produce some performance
gains.
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Fig. 10. The performance measure equal error rate for text-independent speaker veri-
fication systems

5 Conclusions

In this chapter, we have provided a brief overview of the classification methods
used in speaker recognition. In Section 2, we presented some of the common fea-
ture extraction techniques that are currently being used in speaker recognition
systems. In Section 3, we described classification methods that are representa-
tive of those currently being studied in research and used in application. We
introduced common approaches for text-dependent and text-independent appli-
cations, as well as offering some historical evolution of how these classifiers came
to be used.

Future work in speaker recognition will continue to exploit advances in speech
science, classification, and engineering. Speech science continues to give insight
into feature that characterize speakers—speaker idiolect, speaker dialect, as well
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as vocal characteristics (roughness, breathiness, etc.). More precise measure-
ments and techniques for extracting these features will lead to more diverse and
accurate speaker recognition systems.

Classification continues to be a strong component of the speaker recognition
problem. Specialization of classification techniques to deal with speaker recog-
nition challenges will no doubt lead to significant improvements. Current trends
are methods that deal with channel variability, the continuum of feature types,
and general mismatch.

Finally, engineering provides a feedback to all of the design techniques. Imple-
menting and deploying technologies to different application domains—forensic,
security, etc.—gives insight into robustness, computation, and fusion of speaker
characterization techniques.
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