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Preface

“As well as conveying a message in words and sounds, the speech signal
carries information about the speaker’s own anatomy, physiology, lin-
guistic experience and mental state. These speaker characteristics are
found in speech at all levels of description: from the spectral information
in the sounds to the choice of words and utterances themselves.”

The best way to introduce this textbook is by using the words Volker Dellwo and
his colleagues had chosen to begin their chapter “How Is Individuality Expressed
in Voice?” While they use this statement to motivate the introductory chapter
on speech production and the phonetic description of speech, it constitutes a
framework of the entire book as well: What characteristics of the speaker become
manifest in his or her voice and speaking behavior? Which of them can be
inferred from analyzing the acoustic realizations? What can this information be
used for? Which methods are the most suitable for diversified problems in this
area of research? How should the quality of the results be evaluated?

Within the scope of this book the term speaker classification is defined as as-
signing a given speech sample to a particular class of speakers. These classes
could be Women vs. Men, Children vs. Adults, Natives vs. Foreigners, etc.
Speaker recognition is considered as being a sub-field of speaker classification
in which the respective class has only one member (Speaker vs. Non-Speaker).
Since in the engineering community this sub-field is explored in more depth than
others covered by the book, many of the articles focus on speaker recognition.
Nevertheless, the findings are discussed in the context of the broader notion of
speaker classification where feasible.

The book is organized in two volumes. Volume I encompasses more general
and overview-like articles which contribute to answering a subset of the questions
above: Besides Dellwo and coworkers’ introductory chapter, the “Fundamentals”
part also includes a survey by David Hill, who addresses past and present speaker
classification issues and outlines a potential future progression of the field.

The subsequent part is concerned with the multitude of candidate speaker
“Characteristics.” Tanja Schulz describes “why it is desirable to automatically
derive particular speaker characteristics from speech” and focuses on language,
accent, dialect, ideolect, and sociolect. Ulrike Gut investigates “how speakers can
be classified into native and non-native speakers of a language on the basis of
acoustic and perceptually relevant features in their speech” and compiles a list of
the most salient acoustic properties of foreign accent. Susanne Schötz provides a
survey about speaker age, covering the effects of ageing on the speech production
mechanism, the human ability of perceiving speaker age, as well as its automatic
recognition. John Hansen and Sanjay Patil “consider a range of issues associated
with analysis, modeling, and recognition of speech under stress.” Anton Batliner
and Richard Huber address the problem of emotion classification focusing on the
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specific phenomenon of irregular phonation or laryngealization and thereby point
out the inherent problem of speaker-dependency, which relates the problems
of speaker identification and emotion recognition with each other. The juristic
implications of acquiring knowledge about the speaker on the basis of his or her
speech in the context of emotion recognition is addressed by Erik Eriksson and
his co-authors, discussing, “inter alia, assessment of emotion in others, witness
credibility, forensic investigation, and training of law enforcement officers.”

The “Applications” of speaker classification are addressed in the following
part: Felix Burckhardt et al. outline scenarios from the area of telephone-based
dialog systems. Michael Jessen provides an overview of practical tasks of speaker
classification in forensic phonetics and acoustics covering dialect, foreign accent,
sociolect, age, gender, and medical conditions. Joaquin Gonzalez-Rodriguez and
Daniel Ramos point out an upcoming paradigm shift in the forensic field where
the need for objective and standardized procedures is pushing forward the use of
automatic speaker recognition methods. Finally, Judith Markowitz sheds some
light on the role of speaker classification in the context of the deeper explored
sub-fields of speaker recognition and speaker verification.

The next part is concerned with “Methods and Features” for speaker clas-
sification beginning with an introduction of the use of frame-based features by
Stefan Schacht et al. Higher-level features, i.e., features that rely on either lin-
guistic or long-range prosodic information for characterizing individual speakers
are subsequently addressed by Liz Shriberg. Jacques Koreman and his co-authors
introduce an approach for enhancing the between-speaker differences at the fea-
ture level by projecting the original frame-based feature space into a new fea-
ture space using multilayer perceptron networks. An overview of “the features,
models, and classifiers derived from [...] the areas of speech science for speaker
characterization, pattern recognition and engineering” is provided by Douglas
Sturim et al., focusing on the example of modern automatic speaker recognition
systems. Izhak Shafran addresses the problem of fusing multiple sources of in-
formation, examining in particular how acoustic and lexical information can be
combined for affect recognition.

The final part of this volume covers contributions on the “Evaluation” of
speaker classification systems. Alvin Martin reports on the last 10 years of
speaker recognition evaluations organized by the National Institute for Stan-
dards and Technology (nist), discussing how this internationally recognized se-
ries of performance evaluations has developed over time as the technology itself
has been improved, thereby pointing out the “key factors that have been studied
for their effect on performance, including training and test durations, channel
variability, and speaker variability.” Finally, an evaluation measure which aver-
ages the detection performance over various application types is introduced by
David van Leeuwen and Niko Brümmer, focusing on its practical applications.

Volume II compiles a number of selected self-contained papers on research
projects in the field of speaker classification. The highlights include: Nobuaki
Minematsu and Kyoko Sakuraba’s report on applying a gender recognition sys-
tem to estimate the “feminity” of a client’s voice in the context of a voice
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therapy of a “gender identity disorder”; a paper about the effort of studying
emotion recognition on the basis of a “real-life” corpus from medical emergency
call centers by Laurence Devillers and Laurence Vidrascu; Charl van Heerden
and Etienne Barnard’s presentation of a text-dependent speaker verification us-
ing features based on the temporal duration of context-dependent phonemes;
Jerome Bellegarda’s description of his approach on speaker classification which
leverages the analysis of both speaker and verbal content information – as well as
studies on accent identification by Emmanuel Ferragne and François Pellegrino,
by Mark Huckvale and others.

February 2007 Christian Müller
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How Is Individuality Expressed in Voice?  
An Introduction to Speech Production  

and Description for Speaker Classification 

Volker Dellwo, Mark Huckvale, and Michael Ashby 

Department of Phonetics and Linguistics 
University College London 

Gower Street, London, WC1E 6BT 
United Kingdom 

v.dellwo@ucl.ac.uk, m.huckvale@ucl.ac.uk, m.ashby@ucl.ac.uk 

Abstract. As well as conveying a message in words and sounds, the speech 
signal carries information about the speaker's own anatomy, physiology, 
linguistic experience and mental state. These speaker characteristics are found 
in speech at all levels of description: from the spectral information in the sounds 
to the choice of words and utterances themselves. This chapter presents an 
introduction to speech production and to the phonetic description of speech to 
facilitate discussion of how speech can be a carrier for speaker characteristics as 
well as a carrier for messages. The chapter presents an overview of the physical 
structures of the human vocal tract used in speech, it introduces the standard 
phonetic classification system for the description of spoken gestures and it 
presents a catalogue of the different ways in which individuality can be 
expressed through speech. The chapter ends with a brief description of some 
applications which require access to information about speaker characteristics 
in speech. 

Keywords: Speech production, Phonetics, Taxonomy, IPA, Individuality, 
Speaker characteristics. 

1   Introduction 

Whenever someone speaks an utterance, they communicate not only a message made 
up of words and sentences which carry meaning, but also information about 
themselves as a person. Recordings of two people saying the same utterance will 
sound different because the process of speaking engages the neural, physiological, 
anatomical and physical systems of a specific individual in a particular circumstance. 
Since no two people are identical, differences in these systems lead to differences in 
their speech, even for the same message. The speaker-specific characteristics in the 
signal can provide information about the speaker's anatomy, physiology, linguistic 
experience and mental state.  This information can sometimes be exploited by 
listeners and technological applications to describe and classify speakers, possibly 
allowing speakers to be categorised by age, gender, accent, language, emotion or 
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health. In circumstances where the speaker is known to the listener, speaker 
characteristics may be sufficient to select or verify the speaker's identity. This leads to 
applications in security or forensics. The aim of this chapter is to provide a framework 
to facilitate discussion of these speaker characteristics: to describe ways in which the 
individuality of speakers can be expressed through their voices. 

Always in the discussion of speaker characteristics, it must be borne in mind that a 
spoken utterance exists primarily for its communicative value – as an expression of a 
desire in the mind of the speaker to make changes in the mind of the listener. The 
study of the communicative value of utterances is the domain of Linguistics, which 
we take to include knowledge of articulation, phonology, grammar, meaning and 
language use. The study of speaker characteristics is in a sense parallel to this, where 
we concentrate on what a particular implementation of an utterance within the 
linguistic system tells us about the person speaking. 

At first glance, it may appear that we should be able to separate speaker 
characteristics from message characteristics in a speech signal quite easily.  There is a 
view that speaker characteristics are predominantly low level – related to the 
implementation in a particular physical system of a given set of phonetic gestures, 
while message characteristics operate at a more abstract level – related to the choice 
of phonetic gestures: the syllables, words and phrases that are used to communicate 
the meaning of a message. However this is to oversimplify the situation. Speakers are 
actually different at all levels, because speakers also differ in the way in which they 
realise the phonetic gestures, they vary in the inventory of gestures used, in the way in 
which gestures are modified by context, and in their frequency of use of gestures, 
words and message structure. A speaker's preferred means of morning greeting may 
help identify them just as much as their preferred average pitch. 

To build a framework in which the many potential influences of an individual on 
his or her speech can be discussed, we have divided this chapter into three sections: 
section 2 provides an overview of vocal structures in humans, section 3 introduces the 
conventional principles of phonetic classification of speech sounds, while section 4 
provides a discussion on how and on what levels speaker characteristics find their 
way into the speech signal and briefly discusses possible applications of this 
knowledge. 

2   Vocal Apparatus 

In this section we will give an overview of the physical structures in the human that 
are used in the physical generation of speech sounds.  We will look at the anatomy of 
the structures, their movements and their function in speech.  The first three sections 
look at the structures below the larynx, above the larynx and the larynx itself.  The 
last section briefly introduces the standard signals and systems model of speech 
acoustics. 

2.1   Sub-laryngeal Vocal Tract 

Figure 1 shows the main anatomical structures that are involved in speaking. Looking 
below the larynx we see the lungs lying inside a sealed cavity inside the rib cage. The  
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Fig. 1. Schematic diagram of the human organs of speech (Adapted from [1]) 

volume of the air spaces in the lungs can be varied from about 2 litres to about 6 litres 
in adults. The volume of the chest cavity and hence the volume of the lungs 
themselves is increased by lowering the diaphragm or raising the rib cage; the volume 
is decreased by raising the diaphragm or lowering the rib cage.  The diaphragm is a 
dome of muscle, rising into the lower surface of the lungs, and tensing it causes it to 
flatten out and increase the size of the chest cavity; conversely relaxation of the 
diaphragm or action of the abdominal wall muscles makes the diaphragm more 
domed, reducing the size of the cavity.  The external intercostal muscles bring the ribs 
closer together, but since they are pivoted on the vertebrae and are floating at the 
lower end of the rib cage, contraction of these muscles raises the rib cage and 
increases the volume of the chest cavity.  The internal intercostal muscles can be used 
to depress the rib cage, and in combination with muscles of the abdominal wall, these 
can act to forcibly reduce the size of the chest cavity. 

Changes in the size of the chest cavity affect the size of the lungs and hence the 
pressure of the air in the lung cavities.  A reduction in pressure draws in air through 
the mouth or nose, through the pharynx, larynx and trachea into the lungs. A typical 
inspiratory breath for speech has a volume of about 1.5 litres, and is expended during 
speech at about 0.15 litres/sec [2].  One breath may be used to produce up to 30 
seconds of speech. An increase in the pressure of air in the lungs forces air out 
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through the trachea, larynx, pharynx, mouth and nose.  To produce phonation in the 
larynx, the lung pressure has to rise by at least 300Pa to achieve sufficient flow for 
vocal fold vibration.  A more typical value is 1000Pa, that is 1% of atmospheric 
pressure. 

Pressure is maintained during speech by a control mechanism that connects stretch 
receptors in the trachea, bronchioles and lung cavities to the muscles that control 
chest cavity volume. The stretch receptors provide information about the physical 
extension of the lung tissues which indirectly measures lung pressure. At large 
volumes the natural elasticity of the lungs would cause too high a pressure for 
speaking, so nerve activation on the diaphragm and external intercostal muscles is 
required to maintain a lower pressure, while at low volumes the elasticity is 
insufficient to maintain the pressure required for speaking, so nerve activation on the 
internal intercostal muscles and abdominal wall muscles is required to maintain a 
higher pressure. 

2.2   The Larynx 

The larynx is the major sound generation structure in speech.  It sits in the air pathway 
between lungs and mouth, and divides the trachea from the pharynx.  It is suspended 
from the hyoid bone which in turn is connected by muscles to the jaw, skull and 
sternum.  This arrangement allows the larynx to change in vertical position.  The 
larynx is structured around a number of cartilages: the cricoid cartilage is a ring that 
sits at the top of the trachea at the base of the larynx; the thyroid cartilage is a V shape 
with the rear legs articulating against the back of the cricoid cartilage and the pointed 
front sticking out at the front of the larynx and forming the "Adam's apple" in the 
neck; the two arytenoid cartilages sit on the cricoid cartilage at the back of the larynx. 

a

 

b

 

Fig. 2. Schematic diagrams of the larynx: (a) superior view, showing vocal folds, (b) vertical 
section, showing air passage 

The vocal folds are paired muscular structures that run horizontally across the 
larynx, attached close together on the thyroid cartilage at the front, but connected at 
the rear to the moveable arytenoid cartilages, and forming an adjustable valve. For 
breathing the folds are held apart (abducted) at their rear ends and form a triangular 
opening known as the glottis. Alternatively, the arytenoids can be brought together 
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(adducted), pressing the folds into contact along their length. This closes the glottis 
and prevents the flow of air. If the folds are gently adducted, air under pressure from 
the lungs can cause the folds to vibrate as it escapes between them in a regular series 
of pulses, producing the regular tone called "voice". Abduction movements of the 
vocal folds are controlled by contraction of the posterior cricoarytenoid muscles, 
which cause the arytenoids to tilt and hence draw the rear of the vocal folds apart.  
Adduction movements are controlled by the transverse interarytenoid muscles and the 
oblique interarytenoid muscles which draw the arytenoids together, also the lateral 
cricoarytenoid muscles which cause the arytenoids themselves to swivel in such a 
way as to draw the rear of the folds together. 

The open glottis position gives voiceless sounds, such as those symbolised [s] or 
[f]; closure produces a glottal stop, symbolised [ʔ], while voice is used for all 
ordinary vowels, and for many consonants. Commonly, consonants are in voiced-
voiceless pairs; for example, [z] is the voiced counterpart of [s], and [v] the voiced 
counterpart of [f].  

As well as adduction/abduction, the vocal folds can change in length and tension 
owing to movements of the thyroid and arytenoid cartilages and of changes to the 
muscles inside the vocal folds.  These changes primarily affect the rate of vocal fold 
vibration when air is forced through a closed glottis.  The cricothyroid muscles rock 
the thyroid cartilage down and hence stretch and lengthen the vocal folds.  Swivelling 
of the arytenoid cartilages with the posterior and lateral interarytenoid muscles also 
moves the rear of the folds relative to the thyroid, and changes their length.  Within 
the vocal folds themselves, the thyroarytenoid muscle can contract in opposition to 
the other muscles, and so increase the tension in the folds independently from their 
length. 

Generally, changes in length, tension and degree of adduction of the vocal folds in 
combination with changes in sub-glottal pressure cause changes in the loudness, pitch 
and quality of the sound generated by phonation. Normal (modal) voice produces a 
clear, regular tone and is the default in all languages. In breathy voice (also called 
murmur), vibration is accompanied by audible breath noise. Other glottal adjustments 
include narrowing without vibration, which produces whisper, and strong adduction 
but low tension which produces an irregular, creaky phonation. 

2.3   Supra-laryngeal Vocal Tract 

Immediately above the larynx is the pharynx, which is bounded at the front by the 
epiglottis and the root of the tongue. Above the pharynx, the vocal tract branches into 
the oral and nasal cavities, see Fig. 1. The entrance to the nasal cavity is controlled by 
the soft palate (or velum) which can either be raised, to form a closure against the rear 
wall of the pharynx, or lowered, allowing flow into the nasal cavity and thus out of 
the nostrils. The raising of the soft palate is controlled by two sets of muscles: the 
tensor veli palatini and the levator veli palatini which enter the soft palate from above.  
Lowering of the soft palate is controlled by another two sets of muscles: the 
palatopharyngeus muscle and the palatoglossus muscle which connect the palate to 
the pharynx and to the back of the tongue respectively. 
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Air flowing into the oral cavity can eventually leave via the lip orifice, though its 
path can be controlled or stopped by suitable manoeuvres of the tongue and lips. The 
main articulators which change the shape and configuration of the supra-laryngeal 
vocal tract are the soft palate, the tongue, lips and jaw. 

The upper surface of the oral cavity is formed by the hard palate, which is domed 
transversely and longitudinally, and is bordered by a ridge holding the teeth. In a mid-
sagittal view, the portion of this behind the upper incisors is seen in section, and 
generally referred to as the alveolar ridge.  The lower surface of the oral cavity 
consists of the tongue, a large muscular organ which fills most of the mouth volume 
when at rest. Various parts of the tongue can be made to approach or touch the upper 
surface of the mouth, and complete airtight closures are possible at a range of 
locations, the closure being made not only on the mid-line where it is usually 
visualised, but extending across the width of the cavity and back along the tongue 
rims. The position and shape of the tongue are controlled by two sets of muscles: the 
extrinsic muscle group lie outside the tongue itself and are involved in the protrusion 
of the tongue, the depression of the tip of the tongue, the forward-backward 
movement of the tongue and the raising and lowering of the lateral borders of the 
tongue. The intrinsic muscles lie within the body of the tongue and are involved in 
flattening and widening the tongue, lengthening and narrowing the tongue, and also 
raising and lowering the tongue tip.  Together the many sets of muscles can move the 
bulk of the tongue within the oral cavity and change the shape of the remaining 
cavity, which in turn affects its acoustic properties. 

The available space in the oral cavity and the distance between the upper and lower 
teeth can be altered by adjusting the jaw opening. Raising the jaw is performed 
mainly by the masseter muscle which connects the jaw to the skull, while lowering 
the jaw is performed by muscles that connect the jaw to the hyoid bone. 

At the exit of the oral cavity, the lips have many adjustments that can affect the 
shape of the oral opening and even perform a complete closure.  Lip movements fall 
into two broad categories: retrusive/protrusive movements largely performed by the 
orbicularis oris muscles that circle the lips, and lateral/vertical movements performed 
by a range of muscles in the cheeks that attach into the lips, called the muscles of 
facial expression. 

2.4   Sound Generation 

To a very good approximation, we can describe the generation of speech sounds in the 
vocal tract as consisting of two separate and independent processes.  In the first 
process, a constriction of some kind in the larynx or oral cavity causes vibration 
and/or turbulence which gives rise to rapid pressure variations which propagate 
rapidly through the air as sound.  In the second process, sound passing through the air 
cavities of the pharynx, nasal and oral cavities is modified in terms of its relative 
frequency content depending on the shape and size of those cavities.  Thus the sound 
radiated from the lips and nostrils has properties arising from both the sound source 
and the subsequent filtering by the vocal tract tube. This approach is called the 
source-filter model of speech production. 
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Fig. 3. Frequency domain diagram of the source-filter explanation of the acoustics of a voiced 
vowel (upper) and a voiceless fricative (lower).  Left: the source spectrum, middle: the vocal 
tract transfer function, right: the output spectrum. 

Phonation is periodic vibration in the larynx which starts when sub-glottal pressure 
rises sufficiently to push adducted folds apart.  The resulting flow through the glottis 
causes a fall in pressure between the folds due to the Bernoulli effect, which in turn 
draws the folds together and ultimately causes them to snap shut, cutting off the flow 
and creating a momentary pressure drop immediately above the glottis. The cycle then 
repeats in a quasi-periodic manner at frequencies between about 50 and 500Hz 
depending on larynx size and larynx settings. The spectrum of this sound is rich in 
harmonics, extending up to about 5000Hz, and falling off at about -12dB/octave. See 
Fig. 3. 

Apart from phonation, other sound sources are created by air-flow from the lungs 
becoming turbulent at constrictions in the larynx and oral cavity or at obstacles to the 
air-flow.  Noise sources caused by the turbulence have broad continuous spectra 
which vary in envelope depending on the exact place and shape of constriction.  
Typically, noise sources have a single broad frequency peak varying from about 2 to 
6kHz, rolling off at lower and high frequencies. 

The frequency response of an unobstructed vocal tract closed at the glottis and with 
a raised soft-palate can be well described by a series of poles (resonances) called the 
formants of the tract, see Fig. 3. The formant frequencies and bandwidths are 
commonly used to parameterise the vocal tract frequency response. However, when 
the soft-palate is lowered, when there are constrictions to the air-flow through the 
tract, or when the glottis is open, additional zeros (anti-resonances) are present. 
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When sound is radiated from the lips and nostrils, it undergoes another frequency 
shaping which effectively differentiates the signal, providing a gain of +6dB/octave to 
the speech signal. 

3   Phonetic Classification 

Phonetic classification is the system of categories and descriptive labels which 
underlies the Phonetic Alphabet of the International Phonetic Association [3]. It 
regards speech as a succession of sounds (segments), and characterises the production 
of each such segment by specifying a relatively static target configuration. This 
section introduces the standard principles used by phoneticians to categorise the 
phonetic gestures used in speech. 

3.1   Place and Manner of Articulation 

Vowels are sounds produced with a relatively open vocal tract through which air 
flows with little resistance, while consonants involve some degree of obstruction to 
the airflow. Place of articulation refers to the location along the vocal tract where a 
consonantal obstruction is formed. 

The terminology for place of articulation is summarised in Fig. 4, around a mid-
sagittal schematic of the vocal tract. Words shown without a leading or trailing hyphen 
are complete place terms. So alveolar refers to a type of articulation in which the tip 
and blade of the tongue approach the ridge behind the upper teeth, velar to one made 
by the back of the tongue against the velum, and so on. More precise terminology 
consists of hyphenated terms on the left, which refer to 'active' articulators, paired with 
terms from the shaded box (which refer to 'passive' articulators).  

 

Fig. 4. Schematic of vocal tract showing terminology used to indicate place of articulation 
(after [4]) 

Manner of articulation refers to the type of obstruction used in the production of a 
consonant – whether, for example, the airflow is blocked completely for a brief time 
(yielding the manner known as plosive) or simply obstructed so that noisy turbulent 
flow occurs (the manner known as fricative).  
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Table 1. Manners of articulation (after [4]) 

manner definition comments 

nasal complete oral closure, soft palate 
lowered to allow air to escape nasally 

 

plosive complete closure, soft palate closed  

affricate plosive released into fricative at the 
same place of articulation 

not always treated as a separate 
manner 

fricative close approximation of articulators, 
turbulent airflow 

sibilants, having turbulence at the 
teeth, are an important sub-
category 

lateral 
fricative 

complete closure on mid-line, 
turbulent flow at the side 

 

lateral   
approximant 

complete closure on the mid-line, 
open approximation at the side 

 

approximant open approximation, flow not 
turbulent 

approximants which are within the 
vowel space are also called 
semivowels 

trill flexible articulator vibrates in the 
air stream 

tap/flap a single brief closure made by the 
tongue hitting the alveolar ridge 

in trills and taps the brief closures 
do not raise intra-oral air pressure 
significantly 
 
flaps start with the tongue 
retroflexed 

Manners of articulation are summarised in Table 1. Manners differ chiefly in the 
degree of obstruction, but also involved are the nasal/oral distinction and the 
central/lateral distinction. The rate of an articulatory manoeuvre is also relevant: for 
instance, if the tongue tip and blade make one brief closure against the alveolar ridge 
the result is called a tap, symbolised [ɾ], but a similar closure made at a slower rate 
will be a plosive [d]. 

3.2   The IPA Chart 

Almost any sound may be voiceless or voiced regardless of its place or manner of 
production; and places and manners may be (with some restrictions) combined. The 
IPA chart takes the form of an array, with the columns being places of articulation, 
and the rows being manners. Voiceless and voiced symbols are put in that order in 
each cell. Blank cells on the IPA chart correspond to possible though unattested sound 
types, while shaded cells show impossible combinations 

3.3   Vowel Classification 

For vowels, the arched tongue body takes up various positions within the oral cavity. 
In the vowel [i] the tongue body is well forward in the mouth, beneath the hard palate, 
whereas in [u] it is pulled back. Both [i] and [u] have the tongue relatively high in the  
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oral cavity, while the vowel [a] requires it to be lowered (the jaw may open to assist). 
This provides a two-dimensional vowel "space" in the oral cavity, with the 
dimensions high-low (also called close-open) and front-back. The lips provide a third 
independent factor. They may form a spread orifice, as in [i], or be rounded and 
protruded into a small opening, as in [u]. Using tongue position for [i] but adding lip-
rounding in place of lip-spreading yields a vowel which the IPA symbolises [y] as 
heard in a French word such as rue [ry] "street".  

The IPA presents the vowel space as a quadrilateral of standardised proportions, 
based partly on X-ray studies of tongue position during sustained vowel production. 
Steady-state vowels can be represented as points within this space and symbolised 
appropriately. Diphthongs (such as those heard in English sound or noise) can be 
represented as a movement within the space. 

3.4   Further Aspects of Vowel Classification 

Certain languages use nasalization to differentiate otherwise similar vowels. A 
nasalised vowel is produced with a lowered velum, adding the acoustic resonances of 
the nasal cavity and giving a distinct auditory effect. For example, French [sɛ] sait 
"(he/she) knows" has a non-nasalised (oral) vowel, while [sɛ ̃] saint "saint" has the 
nasalized counterpart.  

Vowels may also have 'r-colouring' or rhotacisation, produced by a modification of 
tongue shape, typically by combining a curled-back tongue-tip gesture with an 
otherwise normal vowel. It is heard in North American English in such vowels as that 
in nurse, or the second syllable of letter. 

3.5   Multiple Articulation 

Languages may make use of pairs of segments which are alike in voice, place, and 
manner but distinct in sound because of an accompanying secondary adjustment. In 
the RP variety of English, for instance, a voiced alveolar lateral consonant which 
precedes a vowel (as in look) is different from one which occurs after a vowel (such 
as cool). The second one has a raising of the back of the tongue (the sound is said to 
be velarised). For English the difference is automatically conditioned and carries no 
meaning but in many languages (for example, Russian) this type of difference is 
applied to numerous pairs of consonants, and utilised to create linguistic contrasts. 
Apart from this velarization, other common types of secondary articulation found in 
languages are labialisation (the addition of a labial stricture, usually lip-rounding), 
and palatalisation (simultaneous raising of the front of the tongue towards the palate). 
Constriction of the pharynx gives pharyngealisation, which is used in the "emphatic" 
consonants of Arabic. 

If there are two simultaneous gestures of equal degree by independent articulators, 
the result is termed double articulation. For example the Yoruba word for "arm" (part 
of the body) is [akpá], where [kp] indicates a voiceless plosive formed and released at 
the bilabial and velar places simultaneously. This is termed a labial-velar plosive.  
The widespread approximant sound [w] is also a labial-velar double articulation. 
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3.6   Non-pulmonic Airstreams 

The egressive pulmonic airstream is the basis of speech in all languages, but certain 
languages supplement this with non-pulmonic airstreams – mechanisms which 
produce short-term compressions or rarefactions effected in the vocal tract itself, 
used for certain of their consonant sounds. Non-pulmonic sound types found in 
languages are ejectives, implosives and clicks. Ejectives, symbolised with an 
apostrophe [p’ t’ k’ tʃ’] are the commonest type. Their articulation resembles that of 
ordinary voiceless plosives and affricates, but they are produced with a closed 
glottis, which is moved upwards during the production, shortening the vocal tract 
and compressing the air trapped behind the articulatory constriction. Release of the 
articulatory closure takes place (generally with a characteristic auditory effect, which 
can be relatively powerful) and the glottal closure is then maintained for at least a 
further short interval. The speaker will then generally return to the pulmonic 
airstream for the following sound. This mechanism can be called the egressive 
glottalic mechanism. By definition, the vocal folds are closed, so all ejectives must 
lack vocal fold vibration. 

Implosives are made by moving the closed glottis down rather than up, giving the 
ingressive glottalic mechanism. The implosives commonly encountered in languages 
are voiced, rather than being simple reversals of the ejective type. In these, egressive 
lung air passes between the vibrating vocal folds at the same time as the larynx is in 
the process of lowering. They are symbolised with a rightwards hook attached to the 
symbol for a voiced plosive, as in [ɓ ɗ ɠ]. 

Clicks are widespread as paralinguistic noises (such as the "tut-tut" of disapproval) 
but found as linguistic sounds in relatively few languages. They are suction sounds 
formed by enclosing a volume of air in the mouth and then enlarging that volume by 
tongue movement, with a consequent reduction in pressure. The back of the enclosed 
volume is formed by the tongue in contact with the velum; the front closure may be 
completed by the lips, or by the tongue tip and blade. Clicks are categorised as 
bilabial, dental, (post)alveolar, palatoalveolar and alveolar lateral. The basic clicks 
mechanism is voiceless, but the remainder of the vocal tract may perform a wide 
range of click accompaniments, including voicing, aspiration, voice-plus-nasality, 
glottal closure and others 

3.7   Beyond the Segment 

Length, stress and pitch are classified as suprasegmental (or prosodic) features on the 
current version of the IPA chart, This means that that they do not apply to single 
segments, but to sequences of segments, or entire syllables. 

Languages often distinguish short and long vowels, and (less commonly) short and 
long consonants (the latter equivalently termed geminates). Vowels paired as "long" 
and "short" within a language do not necessarily differ only in duration. In English, 
for example, the "short " vowel of bit is typically lower, and centralised, compared 
with the "long" vowel of beat, and there are similar quality differences in the other 
pairs. 

Duration, loudness and pitch are all relevant to the marking of "stress", which is 
generally considered to be a property of a whole syllable. Languages which make use 
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of stress typically use it to render one syllable within a polysyllabic word more 
prominent. The position of this syllable may be fixed for a particular language (so in 
Czech, the initial syllable is stressed, whereas in Polish the penultimate syllable is 
stressed) or alternatively free to occupy various positions and thus differentiate words 
(so in English the noun import is stressed on the first syllable, but the verb is stressed 
on the second). Stresses are important to listeners in the task of parsing the incoming 
string into words. 

The IPA also provides a range of marks for indicating pitch levels and movements 
on syllables. In tone languages (such as the various kinds of Chinese), the pitch level 
or pitch movement applied to each syllable is fixed as part of the makeup of each 
word. In addition, all languages (whether or not they employ lexical tone) make use 
of intonation, which is pitch variation applied to utterances of phrase length. It 
typically shows the grouping of words into "chunks" of information, the relative 
importance of words within the phrase, and affects interpretation (for example by 
marking utterances as questions or statements). Intonation can be modelled by 
locating a small number of tone levels (or movements) at specific points in a phrase, 
from which the overall pitch contour can be derived by interpolation. It is very 
common for the endings of intonation patterns (terminal contours) to carry particular 
significance in interpretation. 

4   Expressions of Individuality 

The production of a spoken utterance can be described in terms of a sequence of 
processing stages in the speaker, starting from a desire to achieve a communicative 
goal, and ending with sound generation in the vocal system.  In this section we will 
build on the discussion of the human organs of speech given in section 2, and the 
discussion of how they are exploited to create different phonetic gestures given in 
section 3, to present a catalogue of the ways in which speaker-specific characteristics 
influence these generation stages. 

In section 4.1 we'll look at how a speaker uses language to achieve a particular 
communicative goal – here a speaker will show preferences for which language to 
use, which words to choose, which grammatical structures are most appropriate for 
the circumstances. In section 4.2 we'll look at the phonological stage of production - 
given an utterance, the speaker must plan which phonetic segments and which form of 
intonation and rhythm would be most appropriate. In section 4.3 we'll look at how the 
sequence of segments must in turn be realised as a continuous and dynamic series of 
phonetic gestures whereby the articulators move to realise the phonological form.  In 
section 4.4 we'll see how the movements of the articulators, particularly the jaw, lips, 
tongue, soft palate and larynx creates sounds which themselves carry speaker 
information as well as the spoken message.  In section 4.5 we'll see how all of these 
stages can be influenced by the mental and physiological state of the speaker, for 
example whether they are emotionally aroused, or whether they are intoxicated. In 
section 4.6 we'll describe ways in which speaker characteristics can be used to place 
an individual as a member of a number of groups. Finally, in section 4.7 we'll 
introduce two main application areas for information about speaker identity extracted 
from speech. 
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4.1   Individuality in Language and Language Use 

Since there are about 5000 different languages in the world (the number varies 
depending on the definition of 'language') the choice of language used by a speaker 
can already be considered a distinguishing characteristic. While a few languages have 
large populations of speakers, many are very small, and often geographically isolated.  
Icelandic for example, has only approximately 280 000 speakers in the world.  Many 
speakers also have competence in more than one language, so a speaker may be able 
to decide which language best suits a given circumstance. When a speaker uses a 
second language, it is also very common for their language use to be influenced by 
properties of their first language. 

Even within a language, there can be variations in dialect – relative differences in 
the frequency of use of words and grammatical forms as well as variations in the 
pronunciation of words.  For example, Scottish speakers of English might more 
frequently use the word wee to mean small, where other English speakers may use 
little. Or I don't know in British English, might be produced as Me no know in 
Jamaican English.  Dialects do not only vary in a geographical sense; since language 
changes with time, older speakers may use different forms to younger speakers.  
Similarly dialect use may be indicative of a social grouping, perhaps related to socio-
economic class, education or gender. Thus speaker A may tend to use that's right 
where speaker B prefers to say OK or speaker C says cool. Such words will then 
occur in the spoken discourse of a speaker with a higher frequency and are thus an 
individual feature of this particular speaker.  

Of course different speakers will also react differently in different situations, so the 
very way in which a speaker chooses to use language to communicate in a specific 
situation can also be indicative of their identity. 

4.2   Individuality in the Sound System 

After an utterance has been constructed as a sequence of words, it is mapped into a set 
of speech sounds spread out across time.  One component of this process deals with 
which phonetic segments are needed (this is called the segmental component), and the 
other is related to the stress pattern, timing and intonation of the sequence (this is 
called the supra-segmental component).  

On a segmental level, the sound inventory used in the mental lexicon to represent 
the pronunciation of words can vary from speaker to speaker even for one language. 
This is one part of what is called the 'accent' of the speaker. For example most British 
English accents differentiate the words Kahn, con and corn using three different back 
open vowel qualities; however many American English accents use only two vowels 
in the three words (e.g. Kahn and con become homophones). Similarly, older speakers 
of English may differentiate the word poor from the word paw through the use of a 
[ʊə] diphthong that is not used by younger speakers. 

As well as differences in the number and identity of segments in the sound 
inventory, accents may also differ in terms of the distribution of those segments 
across words in the lexicon.  Both Northern and Southern British English have the 
vowels of trap and palm, but for the word bath, the Northern speakers use the first 
vowel, while Southern speakers use the second. Another frequently observed 
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phonological variation across English accents is rhoticity – whether the accent 
expresses post-vocalic 'r' letters in the spelling of words as [r] sounds in their 
pronunciation. 

On the supra-segmental level, speakers can vary in the way in which they seek to 
use intonation to select sentence functions (e.g. questions versus statements) or in the 
way in which particular words and phrases are highlighted (e.g. putting a focus on 
particular elements).  For example, "uptalk" (the use of a rising terminal intonation on 
utterances that might otherwise be expected to have a simple fall) has recently 
become characteristic of younger speakers of English across a range of locations 
(Britain, America and Australia/New Zealand). 

4.3   Individuality in Controlling the Speech Production Process 

Given the phonological form of the utterance at the segmental and supra-segmental 
levels, the next stage in the process of speaking is the execution of the utterance 
through movements of the articulators.  This process involves a sophisticated neural 
control system for the co-ordination of the many muscles involved in moving the 
tongue, jaw, lips, soft palate and larynx through the utterance. The complexity of this 
task introduces many possibilities for the expression of speaker characteristics. 

A common way of modelling the motor control problem in speaking is to think of 
each phonological segment as specifying an articulatory gesture involving one or 
more articulators.  In this model, speaking is then executing phonetic gestures in 
sequence.  Fundamentally however, one gesture overlaps in time with the next, so that 
gestures can influence each other's form, a process called coarticulation.  Importantly, 
the degree of coarticulation depends on the degree of gestural overlap, which may in 
turn depend on the amount of time available for the gestures to complete.  Thus a 
speaker who speaks more quickly, or who decides to de-accent part of a particular 
utterance may show more coarticulatory behaviour than another.  The consequences 
of coarticulation may be that the articulators do not reach the intended target position 
for the segment, or even that the segment has no measurable physical effect on the 
final production. 

Speakers also vary in the particular form of gesture they use to implement a given 
underlying sound segment.  This is another aspect of accent and gives rise to a lot of 
variation across individuals.  Vowels are particularly variable: the exact gesture and 
hence the exact sound quality used to realise a particular vowel segment can vary 
widely.  So, for example, the trap vowel in American English accents can vary widely 
in height.  Consonants are affected too; for example, a recent innovation in English is 
the use by some speakers of a labio-dental approximant [ʋ] to implement phoneme /r/, 
more usually realized as a postalveolar approximant [ɹ]. 

The particular articulation used to realise a speech sound also varies according to 
context, and of course different speakers vary too in how much they are affected by 
the context.  For example, some Southern British English speakers realise the 
velarised or "dark" variety of phoneme /l/ as a back rounded vowel rather than as a 
velarized lateral consonant in words like [bɪod] build.  

Larynx settings are a rich source of speaker variation.  As we have seen, changes in 
the degree of adduction and tension of the vocal folds in combination with changes in 
sub-glottal pressure lead to variations in voice quality.  Speakers vary in their 
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preferred, or default voice quality – particularly the degree of breathiness in the voice.  
Speakers can also vary the voice quality they use depending on the context, so that a 
breathier voice may be used for intimate communication, while increased vocal effort 
may be required for a noisy environment.  Creaky voice can have discourse use, for 
example to mark the ends of topics or of dialogue turns. 

Variations in vocal fold tension are used to manipulate the pitch of voiced sounds, 
and are the main means of implementing intonational changes in speech.  Again the 
default pitch and pitch range used to realise particular intonation changes will vary 
from speaker to speaker. The mean pitch used by a speaker can vary according to the 
communicative context: people famously raise their pitch to talk to small children. 
The range used for an utterance can be quite small – giving a monotonous pitch – or 
quite large – giving a dramatic quality to the speech. 

Speaking rate also varies from speaker to speaker, and this not only has 
consequences for the duration of individual syllables: a faster rate may also increase 
the degree of coarticulation between adjacent gestures. 

4.4   Anatomical Influences on Individuality 

The physical size of the organs of speech is a significant source of inter-speaker 
variation in the speech signal. The length of the vocal tract affects its acoustic 
properties as a resonance chamber and hence how it functions in shaping sound 
sources (see section 2.4).  The length and mass of the vocal folds in the larynx 
influence the default pitch, pitch range and voice quality available to the speaker. 

The influence of vocal tract size can be seen by considering the frequency response 
of a simple tube, closed at one end as we change its length.  For a tube of length 
17.6cm – the typical length of an adult male vocal tract – the first three resonances of 
the tube are close to 500, 1500 and 2500Hz. These frequencies are similar to the 
formant frequencies for a central vowel quality. These resonant frequencies scale 
inversely with the length of the tube, so that a 10% increase in the length of the tube 
leads to a 10% decrease in the resonant frequencies. This explains why adult female 
formant frequencies are higher than men on average, since a typical adult female 
vocal tract is shorter than that of an adult male.  Of course there is considerable inter-
speaker variation in vocal tract length, and some women have longer vocal tracts than 
some men.  In addition, vocal tract length can be varied within a single speaker 
through adjustments to the height of the larynx and to the degree of lip protrusion. 

Vocal folds vary across individuals in both size and mass, and this impacts the 
range of frequencies for which they can vibrate.  Post-pubertal men have longer and 
thicker folds with a lower modal frequency compared to women and children. The 
range of frequencies available is indicated by the range used in singing, which for 
men is about 87-415Hz, while for women it is 184-880Hz.  While it is possible to 
achieve vibrational frequencies outside these ranges, this usually involves changes in 
the quality of vibration: irregular creaky voice at the lower end, and falsetto voice 
(made with tense, rigid folds) at the upper.  Individual speakers vary in both the range 
of frequencies they are capable of producing, and in the range of frequencies used in 
everyday speech.  More typically, speakers use a range of only about one octave of 
fundamental frequency in normal speaking. 
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Phonation builds on the capability of the respiratory system to provide a large 
volume of air at a suitable, steady sub-glottal pressure.  Respiratory volumes vary 
across individuals, and hence the quantity of speech that can be produced on one 
breath varies.  This is also strongly influenced by the efficiency of phonation, with 
weaker adduction causing greater air loss. 

The soft palate acts as a valve that isolates the nasal cavity from the oral cavity.  
Differences in the effectiveness of the valve and the way this is used in speaking can 
lead to changes in observed nasality of a speaker's voice. 

4.5   Other Influences on Individuality  

In the previous four sections we have considered how a speaker can impose his or her 
individuality on speech at different processing stages in speech production.  In this 
section we look at how changes in the state of the speaker can also affect his or her 
speech.  We'll look at changes over time, changes in emotion or changes in pathology. 

A speaker’s voice does not remain constant since the speaker's vocal anatomy and 
physiology is affected by age.  The larynx develops in children as they are growing, 
and its size and shape is particularly affected by hormonal changes at puberty, both 
for men and women.  For men, the vocal folds can grow in size and mass over a short 
period, leading to a period of phonation instability as the speaker learns to control the 
new system.  The vocal folds and their control are also affected by advancing age, and 
modal pitch, the degree of breathiness, and the degree of creakiness can all be 
affected. 

The vocal tract itself also changes in size as a child grows, and this of course 
changes the range of resonant frequencies available.  Control over the vocal tract, 
reflected in the degree of articulatory precision also develops in the first ten or so 
years of life.  While vocal tract size remains relatively stable with advancing age, 
there may be significant degeneration in muscles, in the control process, and indeed in 
the ability to use language, such that speech becomes slower and less well articulated.  
Similar changes in speech can be brought about by physiological changes, such as 
tiredness or intoxication. 

The emotional state of the speaker can have a great influence on the way in which 
speech is produced as well as on the content of the messages communicated. 
Increasing emotional arousal can raise the mean pitch and the pitch range as well as 
causing changes in loudness.  Different emotions can have differing effects, so that it 
may be possible to differentiate emotional states such as anger, fear, sadness, joy and 
disgust, although speakers vary in exactly how these affect speech [5]. 

The health of the speaker can also influence his or her speech.  Minor pathologies 
such as upper respiratory tract infections influence the larynx and the nasal cavities.  
Laryngitis is a swelling of the folds in response to infection which causes a lowering 
in pitch (due to the increase in mass of the folds), and can even prevent phonation 
occurring.  Blocked nasal cavities can create a hypo-nasal form of speech that 
listeners recognise in speakers with a cold. 

More serious pathological conditions, particularly stroke, can have effect on the 
parts of the brain responsible for speech planning and motor control – realised as 
aphasia and dysarthia.  Damage to the vocal folds, such as swelling and the growth of 
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nodules and polyps can also affect phonation and hence voice quality.  Smoking and 
alcohol consumption have both been shown to cause vocal fold pathology. 

4.6   From Individuality to Identity 

We have shown that individuality can be expressed in many ways in speaking, at all 
levels of the message generation process. But while an individual speaker may exhibit 
a combination of characteristics that may make his or her own speech unique, it is 
very likely that each one of the characteristics is also used by other speakers.  Thus 
another way of describing speaker characteristics is in terms of the groups of 
individuals which share a given feature.  And another way of defining a speaker is in 
terms of the groups that the speaker is a member of. 

We are used to grouping speakers on the basis of categories such as language, 
dialect and accent. However these may be much less well defined in practice than 
they are in theory.  What differentiates a language from a dialect is not always clear.  
Sometimes, geopolitical factors, like a country's borders, influence the definition of 
the language of a speaker.  Accents may be defined in both geographical and social 
terms; and people can be both geographically and socially mobile. A speaker might 
use a blend of languages or vary their accent according to circumstance. 

Even if the groups are well defined, it may not always be easy to assign a speaker 
to a group.  The very measurements we make of speech are prone to error, and the 
particular speech we measure may be unrepresentative of the speaker as a whole.  For 
example it is not always the case that we can determine the sex of a speaker from their 
speech; and the estimation of age or physique can be quite difficult. 

On the other hand, when the context is constrained, speaker characteristics can 
sometimes be used quite reliably to identify individuals.  So when a friend on the 
telephone says Hi, it’s me then the combination of the observable speaker 
characteristics and the limited number of speakers known to you that might introduce 
themselves to you in this way may mean that the speaker can be accurately identified.  
This is not to say however, that you wouldn't be fooled by an impostor. 

4.7   Applications 

Within the field of Speech Science, much more emphasis has been placed on the 
scientific investigation of the linguistic content of utterances than on the investigation 
of speaker characteristics.  To build an automatic speech recognition system that 
converts speech signals to text, for example, the speaker information must be 
discarded or ignored. Theories of production and perception focus on the strategies 
required to facilitate communication of words and meanings rather than on speaker 
identity.  However two application areas for speaker information have emerged and 
these have led to an increasing interest in the individuality of voices. One is the field 
of forensic phonetics that deals with speaker identification in legal cases, the other is 
the technological field of speaker verification for voice access systems.  

Forensic phonetics is a field in which phonetic knowledge is applied in legal cases 
where the identity of the speaker in a recording is disputed. Forensic phonetics 
distinguishes between two methodologies: identification of the speaker a) through the 
use of linguistically/phonetically naïve subjects, or b) through a trained expert witness 
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[6]. In method a) a witness of the crime (e.g. a person who has received sexually 
harassing phone calls) is asked to identify an alleged perpetrator by his/her voice by 
picking the speaker out from a 'line-up' of similar voices. In method b) a trained 
speech expert carries out an identification between the recorded voice and that of a 
specific suspect. This process is often done with a combination of auditory phonetic 
comparisons (the expert witness judges on the basis of his/her expert perception) or 
technical comparisons (analysis of fundamental frequency, formant frequencies, etc.). 
Speaker specific characteristics at all levels may be appropriate for forensic 
applications. The number of characteristics shared between recording and suspect 
increases the likelihood that the suspect made the recording, although it is much 
harder to estimate the likelihood that a person other than the suspect could have made 
the recording.  Thus expert evidence in forensic speaker identification is better at 
eliminating suspects than in confirming them. 

A second application that relies on speaker characteristic information is the field of 
speaker verification. Such systems can be used to secure access to a facility or 
resource, such as a building or a bank account. Typically a speaker is enrolled into the 
system using some known speech materials, and then the speaker is asked to verify 
his identity by producing a spoken utterance on demand.  The main difference to 
forensic applications is that the speaker hopes to be identified successfully and is 
therefore willing to co-operate. To ensure that recordings of the speaker cannot be 
used to fool the system, a speaker verification system will typically request novel 
phrases to be produced to gain access – random digit strings for example. Most 
systems exploit low-level, speaker-specific spectral information found in the signal – 
that relating to pitch, voice quality, vowel quality and vocal tract length. This is 
because it is harder to extract robust speaker-specific information at higher levels. The 
restriction to low-level features also enables the possibility of text-independent 
verification, where speaker identity is verified without knowledge of what they are 
saying. It is hard to make speaker verification systems particularly accurate: false 
acceptance rates and false rejection rates of 5% or more are common.  When a system 
is modified to accommodate the variability in production that occurs within the true 
speaker (when they have a cold or are tired, for example), this inevitably increases the 
success rate of impostors. The possibility that there is unused information present in 
the speech signal that would improve the performance of such systems is still open to 
investigation. 
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Abstract. Speaker classification requires a sufficiently accurate func-
tional description of speaker attributes and the resources used in speak-
ing, to be able to produce new utterances mimicking the speaker’s current
physical, emotional and cognitive state, with the correct dialect, social
class markers and speech habits. We lack adequate functional knowl-
edge of why and how speakers produce the utterances they do, as well
as adequate theoretical frameworks embodying the kinds of knowledge,
resources and intentions they use. Rhythm and intonation - intimately
linked in most language - provide a wealth of information relevant to
speaker classification. Functional - as opposed to descriptive - models are
needed. Segmental cues to speaker category, and markers for categories
like fear, uncertainty, urgency, and confidence are largely un-researched.
What Eckman and Friesen did for facial expression must be done for
verbal expression. The chapter examines some potentially profitable re-
search possibilities in context.

Keywords: voice morphing, impersonation, mimicry, socio-phonetics,
speech forensics, speech research tools, speaker classification, speech seg-
ments, speech prosody, intonation, rhythm, formant sensitivity analysis,
face recognition, emotional intelligence, dialogue dynamics, gnuspeech.

1 Introduction

Preamble. In an article in the Washington Post published February 1st 1999
science correspondent William Arkin reported on work at the Los Alamos Na-
tional Laboratory in the US that claimed success in allowing arbitrary voices
to be mimicked by computer [1]. One example was a recording purportedly by
General Carl Steiner, former Commander-in-chief, U.S. Special Operations Com-
mand, in which he said:

“Gentlemen! We have called you together to inform you that we are
going to overthrow the United States government.”

But it was not Steiner. Arkin reports it was the result of voice “morphing”
technology developed at the Los Alamos National Laboratory in New Mexico,
using just ten minutes of high quality digital recording of Steiner’s voice to
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“clone” the speech patterns followed by the generation of the required speech in
a research project led by George Papcun, one time member of the Computalker
team. Steiner was sufficiently impressed, apparently, that he asked for a copy.
Former Secretary of State, Colin Powell, was also mimicked saying something
alleged to be equally unlikely.

The process was “near real-time” in 1999, and processor speeds have increased
dramatically since then (say two orders of magnitude). This might suggest that
the problem of characterizing a speaker’s voice and using the characterization
to fake arbitrary utterances is so well understood that the speaker classification
problem is largely solved, and real-time mimicry no problem. This would be over-
optimistic. Of course, the Los Alamos project appears to be secret, and further
details are hard to obtain, but a recent job posting in the “foNETiks” newsletter
[2] - requiring US Secret security clearance - makes it clear that mimicking human
agents in all respects, including even things like eye movements, is an ongoing
military research project.

“Working as part of an interdisciplinary team, this research scientist will
help create language-enabled synthetic entities that closely match human
behavior. These synthetic entities will be integrated into training simu-
lations to enhance training while reducing resource requirements. These
synthetic entities are not gaming systems based on black-box AI tech-
niques. They are cognitively transparent entities that exhibit human-like
behavior at a fine-grained level of detail as supported by their implemen-
tation in the ACT-R cognitive architecture and validated via psycholog-
ical measures like eye movements, reaction times and error rates.” (From
the job description)

1.1 Reasons for Wanting Speaker Classification

In approaching the problem of speaker classification, the first question has to
be: “What is the purpose of the classification?” because the purpose sets the
criteria for the task - a necessary precursor to choosing the tools, techniques and
measures of success to be used.

Some of the reasons for attempting speaker classification in one form or an-
other include: (1) a clustering exercise to allow automatic indexing of audio
material; (2) identification or verification of individuals for ensuring secure ac-
cess, including text-dependent and text-independent approaches; (3) determina-
tion of speaker characteristics and acoustic environment to facilitate a speech
recognition task or tailor a machine dialogue to the needs and situation of the
user; (4) a general characterization of a speaker type to allow a synthetic voice
with similar characteristics (accent, gender, age...) to be generated - what we
might term “Pronunciation Modelling”; or (5) a very specific characterization
of a particular speaker to allow arbitrary speech to be generated that is in-
distinguishable from the speech expected from that speaker under a variety of
external (physical and acoustic environment) and affective (emotional) condi-
tions - or what we might term “Impersonation”. It is interesting to note that, if
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impersonation could be carried out in real time, it could form the basis of very
low bandwidth communication channels, along with other interesting military
and commercial applications, including PsyOps. There are other reasons, includ-
ing forensic analysis for purposes of law enforcement and categorizing speakers
as part of the methodology in research on dialects and language acquisition. It
is in such areas, particularly work by Paul Foulkes (York University, UK) and
his co-workers at various universities, that some of the more interesting new
directions have emerged in the field of what Foulkes calls sociophonetics [3].

Some reasons for speaker classification, such as identifying the language the
speaker is using, can fit into more than one of the categories listed above. The
same is true of modelling cognitive and emotional states. In any case, the list is
not exhaustive.

More recently, a rising demand for human-like response systems has led to an
increasing requirement for the ability to classify speakers in more general ways
to permit, for example, machine dialogues to be tailored to clients - allowing
shopping systems to recommend suitable goods appropriate to the age and sex
of the shopper, or systems that can recognize urgency, confusion or perhaps
language impairment. Such systems are reminiscent of the goals of the Air Force
Research Laboratory project noted above [2].

When user modeling is important, and interaction is by voice, speaker classifi-
cation becomes a very broad topic indeed, extending to the environment in which
a speaker is operating, as well as the speaker’s goals. Paralinguistic and context
cues must be extracted along with more traditional speech analysis information
and used in the procedures for categorizing speakers.

Recent papers providing an entry into the speaker recognition & speaker ver-
ification literature include [4], [5], [6], [7], [8], [9], [10], [11], [12] and [13]. Two
early papers - still highly relevant to speaker identification and verification as
well as offering insight into other speaker-dependent attributes of speech - are
[14] & [15]. Many of these approaches are reminiscent of those used to try and
solve the complementary problem of speech recognition, and typically involve:
(a) slicing the speech into consecutive samples of a few milliseconds (the “salami”
technique, involving slicing); and (b) carrying out some kind of automated sta-
tistical analysis (decision/pattern recognition strategy), on the data collected.
Whilst these perhaps pay attention to some knowledge of speech structure - such
as formant structure or underlying pitch - they have an unfortunate tendency
to take a low-level approach to the treatment of the resulting data rather than
an insightful approach (undoubtedly a result of pursuing goals of automating
the process whilst minimizing the algorithms and CPU cycles involved). The
tendency may also result from a necessary de-skilling of the classification task,
so that only computing and mathematical skills are needed, even if linguists are
consulted. It is tough to create teams, let alone find individuals, who possess
all the skills that should be applied to an integrated and informed approach.
Given the volumes of data involved, pressure to cast the problem into terms
that facilitate uniform machine procedures is considerable. In this book we are
concerned with speaker classification rather than verification and/or recognition.
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It is necessary to turn our attention to speech structures, as these must be dealt
with explicitly for more general classification tasks.

1.2 More Structured Approaches

If you are carrying out a statistical analysis of dinosaur bones when studying the
characteristics of those prehistoric creatures, your results will not relate to any
real dinosaur bones - let alone real dinosaurs- if you disregard the differences
between bones due to gender, variety, and so on. Equally, if you wish to gather
data relevant to classifying speakers, for whatever reason, you need to understand
the attributes of speakers relevant to your required classification, rather than
simply hoping that a genetic algorithm, neural net, Gaussian Mixture Model, or
whatever will do the job for you. It might, but then again, it very well might not
- at least, the classification will be nothing like as good as a properly informed
discrimination that takes account of what you know about the populations of
interest. This is why I am impressed by Paul Foulkes’ work at York. He is doing
for speaker classification what I have always regarded as the proper approach for
speech recognition, namely carrying out careful experiments to reveal relevant
speech structure.

By way of a very simple illustration of what I am talking about, consider what
is perhaps the earliest recorded example of a solution to, and application of, the
speaker classification problem - as recorded in the Bible:

The Gileadites seized the fords of the Jordan and held them against
Ephraim. When any Ephraimite who had escaped begged leave to cross,
the men of Gilead asked him, ‘Are you an Ephraimite?’, and if he said,
‘No’, they would retort, ‘Say Shibboleth’. He would say ‘Sibboleth’, and
because he could not pronounce the word properly, they seized him and
killed him at the fords of the Jordan. At that time forty-two thousand
men of Ephraim lost their lives. (Judges 12, verses 5-6 [16])

One has to wonder how the error rate in this classification task compared to
the error rate that might have been achieved with modern equipment doing
statistical analyses of spectral sections and using Gaussian Mixture Models or
similar techniques, but this early classification used very specific information
about the population of interest, however flawed the science.

It is essential to use tests that are better than what amount to arbitrary
statistical descriptions in order to begin improving our speaker classification,
verification and identification techniques and success rates. Much of what is
done these days seems little better than recognizing faces by comparing captured
and stored photographic images, with some kind of statistical analysis of pixel
groupings. Some success may be expected, but the approach is inherently limited
unless a knowledge of the structure of faces, and the way the substructures vary,
and relate to recognition/classification targets, is used.

This is the important step that Paul Foulkes has taken in the speech context,
and is the issue to be addressed - in a rather specialized context - in the rest of
this chapter. A full treatment is both impossible (as the research has yet to be
done), and is beyond any reasonable scope.
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2 Some Comments on Speaker Classification in the
Context of Verification/Identification

People vary widely in their ability to recognize speakers, even those speakers
they know well. Surprisingly, phoneticians seem no better than untrained lis-
teners in distinguishing between different speakers ([17], quoted by [18]) so it is
an open question as to just how the task is being performed. How do listeners
who perform well recognize an idiosynchratic accent and idiolect, as opposed
to making an accurate phonetic transcription of it? What other subtle cues do
listeners use when identifying and distinguishing speakers, and gauging their
affective and cognitive state, age and so on that are necessarily unrepresented
in our phonetic/phonological models? These are important questions that are
worth answering in order to make progress in improving machine procedures
and performance at this difficult task. If accurate dialogue models can be con-
structed to include the use of pauses in turn taking, rhythm, and changes in
pitch levels, intonation resources and the like, the give and take in dialogue may
offer important clues for speaker classification that are outside current descrip-
tive frameworks aimed at the phonological and semantic record. Research in such
areas has been ongoing, though with a view to understanding dialogue behavior
and revisiting meetings rather than classifying the participants - for example,
the M4 project [19], as well as [20] and [21].

It is not even clear what categories of speaker and speaker state we could ob-
serve, if we knew how to, let alone what characteristics relate to these categories.
We come back to the question of what categories are important, and how can we
distinguish them - and thence to the question: “Why do you want to categorize
the speakers, and what error rates are acceptable.” Presumably those wishing
to pass by the Gileadites would have had rather strong views on that topic -
especially if they had a lisp!

In their experiment on open set speaker identification by human listeners,
Foulkes & Barron [18] found that voices which were less well identified neverthe-
less contained phonetic cues which were not found in some or even any of the
other samples. This suggests that some cues, however salient they may appear
to phoneticians, are not particularly useful diagnostics in the process of “live”
speaker recognition. This suggests that if the “right” phonetic knowledge is used
in structuring the cue determination for automatic speaker recognition it could
be even more successful than recognition by listeners who know the speakers
well. In this experiment, even the apparently obvious and well documented clue
of “up talk” (high rising terminal intonation, or HRT) was not properly utilized
by the listeners attempting to identify their friends, even while they made com-
ments showing that they paid attention to pitch variation. It is interesting that,
in pursuing this, the authors carried out a statistical analysis of pitch variation
and tied the mean and standard deviation to the results as a basis for their in-
terpretation, rather than examining the intonation patterns in more detail. Part
of the reason for this is that we still do not have adequate models for the use of
intonational resources. This is one area with which our own research has been
concerned, but the research is based on a moving target. For example, Halliday’s
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model of British English intonation (and the associated underlying framework
for rhythm) does not include the use of HRT in modern terms, even though
the model includes it as a basic option for questions. This introduces some of
the questions that have plagued us as we attempted to create a high-quality
text-to-speech system - questions that lead naturally into some of the topics I
feel are worth addressing. For example, if we had a good functional description
of how people use intonational and rhythmic resources to achieve their goals,
and a good way of recognizing these goals (rather than a description of specific
patterns for a particular accent, such as British RP English), such information
could likely be used to compare the meaningful differences between different
speakers in different situations, and thereby effect a useful categorization. There
is a great deal more choice in the use of intonational and rhythmic resources -
at least for speakers without special training - than there is for voice quality,
long-term spectral features, vowel quality and the like. Such features, properly
extracted, and based on a well understood structure, would be valuable in some
forms of speaker categorization. What we don’t want to do is collect unstruc-
tured statistics in the hope that something will “pop out” of the data. That way
we would simply wind up with a pile of “mythical dinosaur bones”!

As noted above, this chapter is not intended as a survey of speaker classifica-
tion techniques, but as an outline of problems, possible solutions, and suggested
directions for new research.

2.1 Some Comments on the Foulkes & Barron [18] Experiment

In describing their experimental design, Foulkes & Barron write:

“Like McClelland [22], our study assesses SR by a group of people who
know each other very well. Our group, however, consists of a set of young
men who are university friends. This group was selected to investigate
SR in a situation where the social profile of all group members is very
similar in terms of age and gender (compare with McClelland’s study,
which involved men and women of various ages). ... “All were male, aged
twenty or twenty-one, and formed a close social network. During their
first year as students the ten had all lived together in shared student
accommodation. Some of the network members spent large proportions
of their academic time together, and they had all socialized with each
other on a regular basis.”

It is well known that one sure way to acquire the “right” accent in Britain is
to attend the “right” school. That is how I acquired my own archaic RP accent.
I was always amused when - on sabbatical - I crossed the Atlantic (both ways)
in the Polish ocean liner “Stefan Batory” in company of other varied academics,
diplomats and the like. I came across a family from the United States whose son,
after one year at a British public school (British “public schools” are actually
exclusive private boarding schools), had acquired an impeccable RP accent -
indistinguishable from my own. His parents were quite embarrassed and puzzled.
Peer group pressure - especially in a strange environment where the threats are
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unknown but often quite real - creates a tremendous and largely unconscious
pressure to conform in all possible ways, including manner of speech, as I know
from personal experience as well as observation. Note that all kinds of subtle
cues are assimilated by the newcomer who adapts, and these combine to create
a new accent which is acceptable to the group. This undoubtedly makes it more
difficult to distinguish individuals.

The Foulkes and Barron experiment was well and insightfully designed, as
experiments must be, to maximize the chance of revealing information relevant
to the prior hypotheses. If you wish to maximize the chances of confusion, and
eliminate the possibility that lack of familiarity contaminates the results with
unknown factors, choosing a tightly knit social group - the members of which
have actually lived together for a year in new surroundings and have acquired
similar speaking habits whilst learning to ignore many of the differences - is
exactly the right thing to do. You thereby gather useful information that might
otherwise have been lost amongst the many possible confounding factors. Note
that the chances of confusion were further increased by using telephone speech.
In the context of forensics, and psychophysical experimentation, this is entirely
appropriate. Working with a group of young people actually at a “public school”
might have been even better but perhaps less practical.

Under such circumstances, the perceptually obvious cues that might identify
individuals within the group will be considerably attenuated as the members
aim to keep a low profile and fit in with the group. The differences that persist,
however obvious to a linguist or a machine, are likely to be exactly those cues that
are less important for identifying the speakers as different amongst themselves.
At the same time, cues which are not so perceptually salient may well still be
useful in categorizing or recognizing speakers by existing machine strategies.
More than one approach is appropriate.

In speech recognition and synthesis, the arbiter of acceptable performance is
ultimately the human listener - necessarily subjective, which, in turn, means
that the perceptual consequences of any given speech determine whether the
synthesis or recognition procedures were effective. Consequently, psychophysical
studies of speech perception have provided a great deal of important information
for those working in both areas.

In speaker verification and recognition, as well as some classification tasks,
the ultimate arbiter of success is objective accuracy. Perceptual experiments
have received less attention most likely because the classification procedures
are amenable to objective measurement - for example, in the case of speaker
identification, including foil rejection, classification by age, and classification by
gender.

However, if the object is classification by some other criteria, such as accent,
emotional state, cognitive state, and environmental effects, the problem once
again becomes more subjective since objective measures of success are simply
unavailable and success, or lack of it, must once again be based on perceptual
judgments, whether by speaker or listener.
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The same consideration also applies to a question like: “Does the speaker be-
long to the group who lived and studied together at university” rather than which
particular individual is speaking - the kind of question that may be of consid-
erable forensic interest these days and the answer may not be readily obtained
by objective means until after the fact. Foulkes and Barron’s [18] experiment
shows this very clearly since there were quite salient differences between the
speakers in their experimental group that were apparently ignored by human
listeners who must therefore have categorized the different speakers using only
perceptually relevant cues that somehow had converged considerably towards a
uniform state that caused significant confusion even amongst the in-group itself.
The features needed to decide that a person was a member of the group were
clearly different from the features needed to identify the same person within the
group. Perceptual studies may help throw some light on the differences between
these features, in concert with other approaches.

Perceptual studies are of interest in their own right, simply as a way of ex-
ploring the cues that arise from various factors, such as age, sexual orientation,
or in-group membership.

3 Perceptual Studies

In research on recognition and synthesis, perceptual experiments have been pow-
erful tools in resolving the important issues concerned with speech structure.

It might seem, in light of the reports by Shirt [17] & [23] that, since people -
even trained linguists - have difficulty recognizing speakers, that the perceptual
(i.e. subjective) effects of differences between speakers are less important than
what might be termed the objective differences. This would be a misunderstand-
ing as argued in the previous section.

For example, why are some listeners able to hear differences that other lis-
teners cannot? Is there a continuous dimension for decision making or is it cat-
egorical? If the latter, how does the categorization threshold vary? Are listeners
able to hear differences in the dimensions of interest and, if so what are the
difference limens? When there are competing dimensions, which cues are the
more powerful? If differences that are theoretically perceptible exist, which are
ignored by listeners attempting to recognize speakers, what is the reason? It
would seem that conventional linguistic training is not necessarily the issue in
these and other investigative questions.

Field work is detailed, painstaking and demanding. Perceptual experiments
are no less demanding, even if different skills, methods and tools are required.
The work equally requires guidance from all the other sub-disciplines of lin-
guistics and psychology. This in itself is demanding but, perhaps, the biggest
stumbling block has been the absence of suitable instruments to pursue the
experimental work since the cues sought are subtle and not well-understood
which therefore demands a high-quality system to generate the experimental
material in a controlled, accurate manner, within a matrix that is as natural as
possible.
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The invention of the sound spectrograph [24] Pattern Playback [25], the Para-
metric Artificial Talker [26], OVE II [27] and their successors were seminal inven-
tions for our modern understanding of speech structure and speech perception
for purposes of speech recognition and speech synthesis.

When the sound spectrograph first appeared, many considered that the prob-
lem of speech recognition was close to solution, if not solved, and it was quite a
surprise that it took around two years to train observers well enough for them to
recognize the “obvious” patterns revealed by the machine. Machine recognition
remains a relatively unsolved problem, though programs like Dragon Naturally
Speaking do a reasonably useful job by using a well designed interactive dialogue
coupled with training to particular voices. Replicating human abilities is still a
dream (and will remain so until we have better ways of representing the real
world and using the information effectively - a core AI problem).

Pattern Playback could play back spectrograms of real speech and it wasn’t
long before Pierre Delattre, at the Haskins Labs in New York, hand-painted such
spectrograms based on his experience - with real speech versions and perceptual
experiments - to produce the first “real” [sic] synthetic speech. The rules “in his
head” were soon made explicit [28], but the speech could not be called natural.
It was not long before Holmes and his colleagues produced a completely auto-
mated text-to-segmental-level-speech synthesis system [29] to which Mattingly
then added automated prosody [30].

With the invention of synthesizers that modeled some of the constraints on
the human vocal tract, and Fant’s seminal book (based on his thesis presented
before the King of Sweden, with Walter Lawrence as the “third opponent”) [31],
progress in all speech areas accelerated and John Holmes, at the UK government
“Joint Speech Research Unit” showed that it was possible to mimic human
speech quite closely given enough care in preparing the input data [32]. But this
exercise did not formalize just what it was that characterized a particular voice
in any way that would be useful for carrying out general categorization tasks.

Many of the problems that plague solution of speech recognition and synthe-
sis arise from exactly those aspects of speech that reveal information about the
speaker. This provides one important reason for wishing to classify speakers, as
noted in the introduction. There is also the problem that speech is a contin-
uous acoustic recoding of articulatory gestures possessing no consistently clear
boundaries in the ongoing spectrum of sounds - likened in the early days to an
egg that has been scrambled. Both speech recognition and synthesis are still very
much influenced by the linguists’ phonetic analysis which determinedly inserts
segment boundaries - an exercise that can be performed fairly consistently by
those with suitable training, but an exercise that ignores the fact that many
segmental boundaries are determined more by convention than acoustic reality.
Those with a more phonological mind-set are much more concerned with the
interdependency of successive segments and the succession of unsynchronized
acoustic features. Where do you insert the boundary between, say, a stop and
a following vowel to separate the acoustic features of the vowel from those of
the stop, when important cues for the stop are embodied in the course of the
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formant transitions to the vowel, which don’t even begin and end at the same
time, and, as [33] showed, formant tracks are not consistent between different
contexts. Boundaries in glide, vowel and liquid sequences tend to be even more
arbitrary.

When Shearme and Holmes [33] examined the vowels in continuous speech
in the hope that clusters characterizing them would emerge, they found there
was a complete absence of such clustering. Thus speaker classification, to the
extent that it needs to use the formant structure of vowels in the classification
process, depends - at least to some extent - on speech recognition, so that the
underlying phonetic structure can be used to recover useful vowel data. This
puts both speech recognition and speaker classification into an interdependent
relationship. You can help recognition by using information about the speaker,
but speech recognition is needed to help classify the speaker.

It is possible that, in the cue-reduced environment of the telephone speech ex-
periments referenced above [18], that this mutual support is sufficiently reduced
that the listener’s attention becomes focused on the primary task of recognizing
what has been said, even though the ostensible task is to recognize who might be
the speaker. It is also possible that, within the “in-group”, listeners have learned
to pay attention to some cues at the expense of others, and the cues that are
used are simply absent from the band-limited telephone speech. Such questions
need to be answered.

Fant [27] pointed out that the sound spectrograph was limited to an upper
frequency of 3400 Hz whereas an upper limit of at least 8000 Hz was needed
for unambiguous comparative description of unvoiced continuants and stops -
a limitation with early research on recognition and synthesis. Voice quality -
important in speaker classification - may need an even higher upper bound on
the frequencies considered in assessing voice quality, because higher formant and
other spectral cues are likely to be important. The interest in telephone quality
speech arises because the telephone is ubiquitous, and forensic cases may have
nothing other than sample of telephone speech. Also, by increasing the difficulty
of the task in psychophysical experiments, there is a greater chance of producing
statistically measurable results. However, the down side is that, since we don’t
really know what we are looking for, we may eliminate, or at least attenuate,
the relative significance of the very factors we should actually be exploring.

Foulkes et al. [34] note:

“it has also been shown that children learning different languages display
subtle differences in the phonetic forms they use to realize a phonological
category. For example, American and Swedish children aged 2-6 differ in
place and manner of /t/ production, in accordance with differences found
in the speech of American and Swedish adults [35]. Similar differences
were found for vowel duration among the same children (page 2)” and
“The (t) variants therefore involve subtle and highly complex differences
in the coordination of oral and laryngeal gestures. (page 14)”

A useful additional tool for investigating and understanding the nature and
importance of such differences in the speech of different speakers would be an
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articulatory synthesizer, since experimenters could use artificial stimuli, system-
atically varying such subtle cues under controlled conditions, to determine their
perceptual effect. This author believes it is time to consider perceptual experi-
ments using artificial stimuli that can closely mimic real human speech with a
full spectral range.

A good quality articulatory synthesizer that is easily but appropriately con-
trolled, and which is inherently restricted to the potential acoustic output of a
real human vocal tract, with supporting models to provide a foundation for ma-
nipulating speech production from the lowest sub-phonetic articulatory level up
to the prosodic level of rhythm and intonation would go a long way to providing
the tool needed for such perceptual experiments. As Cooper et al. [25] pointed
out in connection with earlier speech research, there are “many questions about
the relation between acoustic stimulus and auditory perception which cannot be
answered merely by an inspection of of spectrograms, no matter how numerous
or varied these may be”

3.1 The Gnuspeech System

It has been the goal of building such an articulatory synthesizer and the necessary
supporting models that has formed the subject of ongoing research by the present
author and his colleagues [36]. The synthesis research has been ongoing for many
years, first in the author’s laboratory at the University of Calgary, then in 1990 it
became the subject of a technology transfer exercise (to the now-defunct Trillium
Sound Research - killed by the demise of NeXT Computer), and is now available
to all under a General Public License as Gnuspeech - an ongoing GNU project
[37]. Significant components of the complete, successful experimental system for
articulatory synthesis that was developed on the NeXT have been ported to
the Macintosh computer under OS/X and work is also under way to port it to
GNU/Linux.

The complete system has been described elsewhere [36], [38], [39], and the
source code is available for both the NeXT and the Macintosh (which is being
modified to compile under GNUStep for GNU/Linux - though this port is not
yet complete). Suffice it so say here that the approach builds on work carried
out by Fant and Pauli [40] and by Carré [41]. By applying formant sensitivity
analysis, and understanding the relationship of the resulting “Distinctive Re-
gions” (Carré’s term) to the articulatory possibilities inherent in the human
vocal apparatus, the control problem for an articulatory synthesizer has been
largely solved. In addition, the speed of modern computers allows the necessary
complex computations for artificial speech based on the waveguide acoustic tube
model to be carried out at a higher rate than is needed for real-time performance.
Thus a tool is now available that allows experiments with the timing and form
of articulatory events - with the caveat that the transformation between explicit
articulatory specifications (such as tongue and jaw movements) and the Distinc-
tive Region Model (DRM) equivalents has not yet been implemented, though
the transformations are considered to be relatively straightforward.
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3.2 Possibilities and Current Limitations of the Experimental
System

The articulatory synthesis tools that have been developed do enable significant
experiments on the effects of learned speech articulations to be performed. The
tools could be improved and extended in a number of ways to make such work
easier by enabling easier control of some of the characteristics to be investigated
(for example, by implementing the transformation between articulator move-
ments and the DRM equivalents). The tools and interfaces were only an initial
implementation of what was needed to develop databases for a complete English
text-to-speech system based on the articulatory synthesizer, rather than full a
psychophysical/linguistic laboratory tool-set. However, the system as it stands
allows experiments with the timing of articulatory events to be performed, based
on the observation that the DRM captures the essence of human articulatory
possibilities. It has been used already to look at geriatric articulation and the
timing of stops and stop bursts.

Perhaps most importantly, since the system provides a complete text-to-
speech system based on better, effective models of speech production, rhythm
and intonation, experiments on particular characteristics will be embedded in a
context that provides natural variation of all formants, with good rhythm and
intonation and with accurate records of what variations were used. Making all
variations, rules and data involved in any synthesis formally explicit and editable
was an important goal of the system development.

An important limitation of the system is the reality that it is actually still a
hybrid system. Though the acoustic tubes representing the oral and nasal cav-
ities give a true simulation of the acoustic behavior of the appropriate human
anatomy, with higher formants properly represented and variable, with inher-
ently correct energy balances, and with simulation of oral and nasal radiation
characteristics, the larynx waveform is injected directly - albeit from a wave-table
that can be dynamically varied - and the fricative, aspiration and other noises
(such as bursts) are also injected at appropriate places in the tube model. This
latter arrangement provides the basis for appropriate fricative formant transi-
tional behavior but the spectra of the injected noises are generic and approximate
rather than individual and detailed. A better model would emulate the vibrat-
ing vocal folds, and oral tract constrictions, to generate the glottal waveform
and noise spectra aerodynamically, based on accurate physiological models. The
properties of all these noise spectra are characteristic of individual speakers.

The rhythm and intonation components of the system are based on the work
of Jones [42], Pike [43], Jassem [44], Lehiste & Peterson [45], Abercrombie [46],
Halliday [47], Allen [48], Ladefoged [49], Pierrehumbert [50], and Willems et al.
[51], amongst many others as well as work in the author’s laboratory at the U
of Calgary. Wiktor Jassem spent a year in that lab and the results of the joint
rhythm studies carried out are reported in [52] and [53]. Some of the intonation
studies are reported in [54], [55] and [56]. Subsequent unpublished work on the
intonation patterns has achieved significant improvement by using smoothed
intonation contours, based on the timing events suggested by Allen [48]. Note
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that the original formant synthesizer used in our early research was replaced, in
1993-4, by the articulatory synthesizer described in [36], previously cited.

4 Face Recognition as an Analog of the Speaker
Recognition Problem

Zhao and his colleagues [57] have provided a good summary of the state of
the art in facial recognition. They conclude that face recognition is a dedicated
process that is separate from normal object recognition and that both holistic
and feature recognition strategies play a part, and facial expression seems to
be recognized by separate mechanisms (somewhat as identity and location of
objects are processed by different mechanisms in visual processing generally).
Hair, face outline, eyes and mouth are significant, while the nose appears to
play an insignificant role. Low spatial frequency components, bandpass compo-
nents, and high frequency components seem to play different roles, with low
frequency components permitting judgments concerning sex, but high frequency
components being needed for individual identification. Other factors play a role,
including lighting direction and being able to observe moving images rather than
still photographs. Such observations may contain clues concerning how to ap-
proach speaker recognition and classification, with the major observation that
the process is undoubtedly more complex than might be thought, and almost
certainly involves different specialized mechanisms performing different tasks.
Dynamic aspects are almost certainly important, and some kind of functional
feature analysis, in addition to holistic measures, is likely to help.

Simply taking statistical measures of energy variation in the spectrum, or
pitch values, and the like, is akin to trying to recognize faces from photographs
based on a statistical comparison of pixel characteristics (spatial frequencies,
distribution of pixel densities, and the like), without trying to identify features
such as hair, eyes, mouth and so on, as well as relevant dynamic clues. It is the
dinosaur bone problem. If you don’t take account of the underlying structure of
the data, your statistics become too unfocused to relate to reality in any precise
way. As the Zhao et al. [57] state, quite clearly, for face recognition:

“Feature extraction is the key to both face segmentation and recognition,
as it is to any pattern classification task. For a comprehensive review of
this subject see [58].”

It is also worth noting that the ability to observe a speaker’s face affects the
listener’s ability to understand what the speaker is saying - from the fused per-
ception of the McGurk effect [59] to the extreme form of lip-reading. Speech
recognition is clearly multi-modal which, if nothing else, helps to illustrate some
of the complexity of perception, and indicates that speaker classification is also
likely multi-modal to the extent that cues other than voice are available.

In achieving good mimicry of a speaker, whether by voice alone, or using
additional cues such as facial expression and body language, the speaker mimic
needs to do more than imitate voice quality, intonation, and accent. The mimic
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succeeds best if he or she captures the appropriate “persona” of the person being
mimicked - cool, excited, in control, sympathetic and so on - relating closely to
how the target would be expected to act in the same circumstances.

Perception is a complex, active, organizing process based on assumptions that
work, in the real world. It is not passive. We see the moon as increasing in size,
the nearer it is to the horizon, because we are increasingly compelled to see it as
increasingly far away. The fusion of the McGurk effect (hearing /b/, seeing /k/
and perceiving /d/, for example) arises because we have to reconcile the sound
we hear with the conflicting appearance of the speakers lips and jaw. Close the
eyes, and we perceive the sound that was actually produced. This is not the
place to become diverted into a treatise on perception, but its active, organizing
nature is well documented in the literature. There is no reason to suppose that
our approach to recognizing speakers is any different, whether the categorization
is broad or narrow. The extent we succeed or fail in the task is a measure of the
cues to which we learn to pay attention and those we learn to ignore, just as
with learning to recognize the sounds of our native language as infants [60].

5 Back to the Main Goal - Speaker Classification

In his survey of speaker recognition, Atal ([14] p 460) asks: “How do listeners
differentiate among speakers?” and states that a satisfactory answer is not easy.
In his review of automatic speaker verification in the same special issue of the
IEEE proceedings, Rosenberg ([15] p 480) says that, for foils, mimicking behavior
and learned characteristics is less successful than obtaining a strong physiological
correlation, but then quotes an experiment showing that even an identical twin
was unable to imitate the enrolled sibling well enough to get accepted by a
verification system when attempting to foil the system.

This tells us three things. First that, even in 1976, verification techniques
were amazingly effective; secondly that possessing identical physiology did not
give the advantage that might have been expected, given his earlier remarks;
and thirdly, that the verification methods used must have captured some as-
pects of the speaker twins other than physiologically determined characteristics
- somewhat refuting the notion that physiology was the core characteristic for
discrimination. It also tells us that we have to look at learned speaking behav-
ior and other factors even for speaker recognition and verification, let alone for
speaker classification.

Chollet and Homayounpour [7] carried out an extensive study to test the
ability of listeners to discriminate the voices of twins. Family members were
significantly better at the task than listeners not familiar with the twins, and the
latter did not perform significantly differently from the two automatic procedures
based on low-level acoustic features that were also tested. The authors conclude,
amongst other things, that a speaker verification system which takes account of
a speaker’s behavioral characteristics will be more robust against foiling by a
twin with a similar voice.
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How does the problem change if, instead of wishing to verify an enrolled
speaker, or identify a speaker from a group of speakers, the task is to determine
something about the speaker such as age, sex, emotional state, the speaker’s
feeling of confidence, and so on? The reasons for wanting such information can
be quite varied. Müller, in his thesis and recent papers, [61] and [62] describes
his AGENDER system, designed to obtain information about age and sex of
speakers to allow an automatic shopping assistant to help a customer more
effectively by tailoring its purchase recommendations based on the information
extracted. A more ambitious goal is to understand the cues and behavior in
speech for purposes of synthesis, to create more realistic artificial agents. The
German Research Center for Artificial Intelligence in Bremen has a project to
create a “Virtual Human” [63]:

“Creating a virtual figure as a conversation partner requires detailed,
anthropomorphic design of the character, realistic speech, and emotional
interactions, as well as, the exact simulation of movement in real time.”
(from the web site)

Such ambition goes beyond the scope of this chapter, but illustrates the direc-
tions of research of interest for both speaker classification and speech synthesis,
and ties together the synthesis of speech, facial expression and body language - a
topic that has also been of interest in this author’s lab [64] and [65]. It also par-
allels the work at the US Air Force Research Lab in Mesa, Arizona [2] previously
cited.

Understanding the basis for adapting to speakers, according to their condi-
tion, type and situation, and responding appropriately, are increasingly impor-
tant as machines become more involved in significant dialogues with people. The
many reasons that people detest current voice response systems comprise their
one-size-fits-all approach to dialogue, coupled with painfully slow exploration
of many possible choices, most of which are irrelevant to the caller, together
with their total lack of natural dialogue and empathy, including their inabil-
ity to assess urgency, puzzlement, or other dialogue conditions, as well as their
stereotypical and mechanical approach to even the lowest levels of social nicety.
Machines currently exhibit low emotional intelligence [66] - at least partly be-
cause they have little basis for performing appropriate speaker classification at
present.

Although there has been considerable success in using multidimensional clas-
sification methods on “feature vectors” derived from various kinds of speech
analysis, less work has been done on approaches to classification involving the
explicit extraction of features known to be associated with the distinctions that
the classifier is expected to make. In order to extend this work more informa-
tion concerning such features and their relevance is needed. Given that - unlike
identification, verification, sex or age determination - the judgments are less
objective, it is necessary to understand the subjective aspects of speaker classi-
fication, at least as a precursor to or test for the development of more objective
measures.
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5.1 Intonation and Rhythm

Pitch has been successfully used in speaker identification and verification, but
only at a statistical level, without a lot of attention to its functional patterning
- where “functional” includes involuntary effects (such as the effects of fear on
larynx performance) that would be important for more general classification
tasks. It would be hard to get ethics approval for an experiment in which people
were made so afraid that it affected their voice, and perhaps just as hard to
make people that afraid in an experimental setting. This is an example where
a good synthetic speech emulation of relevant factors could produce output for
judgment by listeners as a means of exploring the markers for fear. Of course, this
raises the question of what listeners are able to perceive versus what changes
occur when the speaker is afraid. Given the reports already cited concerning
speaker identification, it would seem that even trained listeners do not hear
differences in speech characteristics that are measurable. At the same time, not
all measurable differences are necessarily relevant to either speech recognition or
speaker classification.

It is worth reiterating that picking up clues relevant to speaker classification
may be made easier if the speech can be recognized, just as recognizing speech
may be made easier if there has been at least some degree of speaker classifica-
tion. For example, recognizing an accent is likely to be enhanced by a procedure
that identifies vocalic segments, or recognizes words that often contain glottal
stops substituted for other stops in particular accents/dialects. Reductionism is
no longer the best approach.

The larynx, which creates pitch pulses, functions at both segmental and
suprasegmental levels, and both levels are relevant to various aspects of speaker
classification. At the segmental level, for example, relative variation in voice on-
set time (VOT) in the transition from voiceless stops to voiced segments or for
initial voiced stops can provide information relevant to linguistic background,
sex and age [67]. Much of the work to date has focused on the relevance of VOT
at the segmental level, rather than as a cue for speaker classification. Such a
measurement depends on identification of the segments concerned - that is, on
speech recognition.

At the suprasegmental level, the frequency and amplitude of pitch pulses vary,
and give information about intonation pattern and rhythm. These represent some
of the dynamic features of speech in which we need to take an interest for speaker
classification. By far the most important determinant of rhythm is the relative
duration of the underlying segments - particularly nuclear vowels - which are also
associated with significant features of pitch change. The precise timing of the
pitch changes relative to the segmental structure is almost certainly a useful clue
to speakers and their characteristics (see also [48]). Again, speech recognition and
speaker classification characteristics are mutually supportive and greater success
in either is likely to be achieved if both are done in concert.

It is not clear to what extent the same is true of jitter (short-term pitch pe-
riod variation) and shimmer (short-term pitch amplitude variation) nor how are
these might be affected by rage, nervousness, age, illness, and so on. If they have
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relevance, is the effect more pronounced at semantically significant or phonetically
significant places in the utterance. We simply don’t know.

Modelling rhythm and intonation, even in general, have proved to be con-
tentious topics for decades, and there is a plethora of different approaches to
characterizing intonation patterns and describing rhythm. One of the more ob-
vious splits on rhythmic description is between those who consider English to
have a tendency towards isochrony (equal durations between “beats” [46] and
[47]), and those who say such a phenomenon is a fiction - an artifact of percep-
tion and the phonetic structure of words. Though I have not seen anyone say
this explicitly, it could be that this is a difference between American English
and British English. Certainly we found that “a tendency towards isochrony”
accounted for 10% of the variance in segment duration in the body of British
RP English that we examined in detail [52], [53], and our results have more
recently been supported by work at the Centre for Speech Technology Research
in Edinburgh [68]. The degree of “tendency towards isochrony” is another po-
tential characteristic that may help categories speakers. There are other aspects
of rhythmic patterning and rate of speech that provide cues to the speaker class
and condition such as pause patterns (think of Churchill, the wartime UK prime
minister, and the way he spoke).

Intonation patterns provide a varied and shifting target since there seem to be
many varieties of English intonation, and new forms arise before the old models
have been evaluated and tested - a case in point being the arrival of “up talk”
in which a pattern with rising pitch at the end of utterances seems to have
become very popular, and supposedly derives from the “valley talk” which had
its genesis in the 1960s in California. Other intonational patterns, if recognized
and described, would provide valuable information concerning speaker class and
condition. Again, think of Churchill’s intonation as well as his rhythm when
indulging in his famous oratory.

The question is not so much: “What is a good model of British or American
English intonation?”; as “What resources are available to speakers, and how
can these be clearly characterized in order to detect similar patterns in differ-
ent groups of speakers, or determine their emotional and other psychological
states?”. What Eckman and Friesen [69], [70], did for the face we must do for
speech, at least for intonation and rhythm, which seems the obvious place to
start. Prosody (rhythm and intonation) probably plays an auditory role akin to
that played by facial expression and body language in the visual domain. Hu-
mans have a peculiar sensitivity to facial expression - which is what prompted
Levine [71] to use facial caricatures developed by Chernoff [72] to present mul-
tidimensional statistical data, as illustrated in Figure 1.

The choice of correspondence was done so insightfully that not only are the
expressions produced very appropriate to the data being illustrated, but the
editors felt compelled to disclaim any suggestion that the expressions indicated
the mood of people in the cities from which the data were drawn. Prosody may
offer similar possibilities in the auditory domain but we simply don’t know. We
do know that if analogous correspondences were found, we should have found a
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Fig. 1. Chernoff faces showing the pace of life and heart disease

powerful possibility for characterizing speaker state from prosody. Many readers
will be familiar with the voice of Marvin “the metal man” in Douglas Adams’
Hitch-hikers Guide to the Galaxy which provided an excellent auditory caricature
of depression.

It would be interesting to perform experiments to characterize, and determine
human sensitivity to, “tone of voice” - which would include both rhythm and
intonation, as well as voice quality and facial expression. Understanding “tone
of voice” in a formal sense would be an important step in dealing with a range
of speaker classification tasks.

People with hearing impairments have identifiable differences in their rhythm
and intonation - in fact, people with total hearing loss must undergo regular
speech therapy to keep their voices in a reasonably normal state.

Abberton was one of the pioneers of speaker identification using solely in-
formation concerning intonation patterns [73]. She pointed out that intonation
not only contains useful information for speaker identification, but also con-
tains considerable information relevant to speaker classification. She included
synthetic stimuli in the listening trials of her experiment to control for poten-
tial confounding factors. She quotes earlier experiments by Brown, Strong and
Rencher [74] who also conducted listening experiments with synthetic speech to
investigate the relationship between perceived “benevolence” and “competence”
speaker characteristics. It is reasonable to suppose that clues may be obtained
that relate to many factors such as: anger, enthusiasm, ethnicity/native language,
fear, urgency, uncertainty, lying, submission, puzzlement, frustration, aggression,
dominance and confidence. Both analytical and synthetic experiments would be
appropriate. The ability to caricature any of these factors in synthetic speech
would, as noted, be dramatic and informative. To the extent that subjective
evaluation is important, hypotheses derived on the basis of analysis are best
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tested and validated by perceptual experiments using synthesis, provided the
parameters of interest can be controlled in a reasonable way.

5.2 Lower Level Cues: Segmental Level and Below

Suitable speaker verification/identification techniques undoubtedly extract mea-
sures closely related to the shapes and rates of formant transitions. These are
characteristic of individual speakers who have learned speech habits. However,
although this ability may serve its purpose, it does not contribute to knowing
how to categories speakers as opposed to how to recognize or verify them, partly
because the nature of the features extracted are hidden inside the complexities
of the automatic decision procedures that are the norm for such tasks these
days; and partly because even if they were not hidden, or could be discovered,
the information is not structured by, nor related to any knowledge of particular
classification categories being sought. Determining that a particular speaker is
who he or she claims to be, or identifying which individual in a group is the
one speaking is not the same as assigning such a speaker to any one of the large
variety of possible categories listed at the end of the previous section (5.1), which
is not exhaustive.

The question, as for higher level features, is not how do individuals differ in
their acoustic characteristics when speaking, but in what ways are the mem-
bers of some category of interest similar. This is a very different problem. To
solve the problem requires that we examine the speech of ingroup and out-group
speakers, formulate hypotheses about similarities and differences, and then test
these in various ways, including by synthesizing speech with and without the
characteristics that seem to identify in-group versus out-group individuals. Sys-
tematic psychophysical experiments can also be used directly as a way of finding
of what affects perception that the voice belongs to a particular group, just as
perceptual tests in the early days allowed researchers to find out what acoustic
characteristics were essential for the perception of particular categories of speech
sound.

Some characteristics at the segmental level that may be of interest for catego-
rizing speakers include: relative formant amplitudes; rates and shapes of formant
change; rates and shapes of articulatory movements (closely related to the pre-
vious item, but wider); formant ratios and values in known vowels; quality of
vowels in known words (degree of reduction, actual formant values ...); segment
durations & statistics; segment ellipsis & substitution; use of markers such as
glottal stops versus other stops; rate of speech; relative event timing at the
segmental level (Voice Onset Time and stop durations are examples); spectral
manifestations of sinuses and other physiological structures; nasalization; and
nasal spectrum. Again, note that speech recognition is an essential adjunct to
extracting the features relevant to speaker classification.

In their paper on vowel clustering, already cited [33], Shearme and Holmes
identified three generalizations concerning vowel formants, apart from the lack of
signs of clustering. One was that plotting the formant tracks for a given speaker
for each vowel produced could be used to draw relatively small areas containing
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at least a small portion of every track. The second was that these areas were
significantly different for each speaker. The third was that each speaker’s derived
vowel-track F1-F2 areas were considerably displaced from the F1-F2 areas for
the same vowels they produced in isolated monosyllables.

In a related but different experiment, using Lawrence’s Parametric Artifi-
cial Talker - PAT [26], Broadbent & Ladefoged [75] synthesized sentences with
different mean formant frequencies, all saying: “Please say what this word is”.
They also synthesized single-word stimuli “bit”, “bet”, and “bat”. The single-
word stimuli were presented to listeners, accompanied by different versions of the
sentence, in an experimental design that provided an hour’s intelligence-testing
between two presentations of a test sentence and a stimulus word. There were
seven different groups of subjects in which the details of the sentence/stimulus-
word presentation varied - especially the delay between each sentence and the
stimulus word. Most groups heard the sentence, followed - after a delay (depend-
ing on the group) - by the stimulus word. In one group, the stimulus word was
presented first. The latter group showed little effect of the sentence on percep-
tion. A second group that counted during a 10 second delay also showed little
effect.

Except for the conditions noted, it was found overall that the way speakers
categorized the stimulus words as “bit”, “bet” or “bat” was related in a sim-
ple way suggestive of a typical perceptual adaptation effect to variation in the
mean formant frequencies of the preceding sentence. The same stimulus would
be perceived as a different word by the same listener, depending on the formant
frequencies of the preceding sentence. There were some unexplained anomalies.

These experiments suggest: first, the actual spectral quality of the vowels
is less important than the dynamics of the formant transitions from point of
view of recognition; and secondly, if the appropriate small areas containing at
least part of all a speaker’s vowel formant tracks could be determined, these
could be powerful clues to speaker classification - or at least speaker verifica-
tion/identification.

5.3 Dynamics and Longer Term Effects

Adami et al. [76] comment that: “Most current state-of-the-art automatic
speaker recognition systems extract speaker-dependent features by looking at
short-term spectral information. This approach ignores long-term information
that can convey supra-segmental information, such as prosodics and speaking
style.” Their system, which uses Gaussian Mixture Modeling claims 3.7% error
rates in speaker recognition (presented as a 77% relative improvement over other
approaches), and they plan work on formants. This represents a small departure
from the common obsession with “feature” selection, as opposed to looking at
function and underlying mechanisms, even though their goal is only speaker
recognition rather than classification.

Part of recognizing a speaker is the dynamic interactive aspect - how they
react in dialog, what choice of words and argument structure they use, how they
signal how they are feeling, and so on. Similar characteristics are likely relevant
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to classifying speakers into groups but we need to understand how all these
potential markers relate to the groups in which we are interested.

5.4 Recognizing Speakers Gender and Age, and Sexual Orientation

Carlson et al. [77] noted that “Special effort is invested in the creation of a
female voice. Transformations by global rules of male parameters are not judged
to be sufficient. Changes in definitions and rules are made according to data
from a natural female voice.” Such differences arise at both the segmental [67]
and suprasegmental levels.

In producing convincing female speech from the Gnuspeech synthesizer, we
found similar problems. Early in the development, Leonard Manzara produced
three versions of the utterance: “Hello”. By adding “breathiness” to the glottal
excitation (one of the available utterance rate parameters) and by judiciously
crafting the intonation and rhythm, a reasonably convincing female voice version
was produced, using the standard rules for the segmental level synthesis. The
male and child voices were less trouble, though the child voice is probably more
like a boy than a girl. All the voices could probably be improved if we under-
stood the markers better, and this would provide a better basis for making these
important categorizations is speaker classification. The relevant speech synthesis
examples are provided for listening in connection with [36] which is available on-
line. A great deal more understanding of the differences between male, female,
and child voices, as well as more general markers for age, is required - research
that is likely best carried out using an articulatory synthesizer similar to the
Gnuspeech system in concert with careful study of relevant spectrographic data
and previous research.

It seems probable that the markers involved in these kinds of distinction also
play a part in the voice quality and intonation often associated with speakers
with specific sexual orientation - for example, some gay men. By casting the
research net wider to encompass such speaker categorization, even more should
be learned about the resources all speakers use to project their identity through
speech, and assist with speaker classification.

6 Conclusions

A major conclusion is that speaker classification requires the isolation of fea-
tures relevant to specific kinds of categorization task, and that many of these
features can only be extracted on the basis of a reasonable capability for recog-
nizing what has been said - that is, by speech recognition - and by using other
knowledge about the structure of speech, with better ways of characterizing the
resources used for such speech attributes as rhythm and intonation. Without
such informed structuring of the data, and identification of the linguistic and
paralinguistic structure, any statistics that are derived may allow reasonable
success at identifying or verifying particular speakers (on the same principle
that photographic comparisons may allow people to be identified or verified on
the basis of pixel images), but the “bones” that have been identified will be very
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hard to classify into meaningful groups of the different kinds needed for useful
speaker classification.

A second conclusion is that, for any speech or speaker recognition task, much
greater explicit attention should be paid to dynamic properties of the speech sig-
nal, at both the segmental and the suprasegmental level. Additionally, dialogue
structure information - also dynamic - can provide important information.

A thirdmajor conclusion is thatonlybypaying attention to theunderlying struc-
ture of speech, explicitly, shall we continue to make progress in both speech recog-
nition and speaker classification. Ignoring the dinosaurs whose bones we are exam-
ining will only take us so far. Most modern pattern classification approaches delib-
erately hide this underlying structure inside automatic methods, if it is used at all.
We need to expand our approaches and stop focussing on reductionist solutions.

Hollien [78] opens the section on speaker identification in his book by saying:

“Almost anyone who has normal hearing, and who has lived long enough
to read these words, has had the experience of recognizing some unseen
speaker (usually someone familiar) solely from listening to his or her
voice. It was from this everyday experience that the concept (or is it a
myth?) of speaker identification was born.”

Very similar remarks could be made about the everyday experience of judging
mood, ethnicity, intent, and a host of other factors relevant to speaker classi-
fication just from hearing someone speak - whether seen or unseen. Campbell
[5, p 1446] refers to “the curse of dimensionality” referring to the problem that
automatic feature extraction (as in the speaker identification task) soon causes
resources to be overwhelmed unless some kind of statistical model is used to
manage and structure the plethora of data. This paper points out some of the
avenues and directions towards which research for relevant structure in speaker
classification may usefully be directed, and reminds the reader of the importance
of experiments with synthetic speech in this quest.
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Abstract. In this chapter, we give a brief introduction to speech-driven
applications in order to motivate why it is desirable to automatically rec-
ognize particular speaker characteristics from speech. Starting from these
applications, we derive what kind of characteristics might be useful. After
categorizing relevant speaker characteristics, we describe in more detail
language, accent, dialect, idiolect, and sociolect. Next, we briefly summa-
rize classification approaches to illustrate how these characteristics can
be recognized automatically, and conclude with a practical example of a
system implementation that performs well on the classification of various
speaker characteristics.
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speaker classification, real-world applications,multilingual phonetic recog-
nition.

1 Introduction

When we talk to someone face-to-face, we can immediately tell if we met this
person before or not. We are extremely fast and accurate when in comes to rec-
ognizing and memorizing people, even when they are less familiar or we did not
see them for a long time. However, we can do much more than just discriminat-
ing familiar from unfamiliar people. Pretty quickly we assess a person’s gender,
age, native language, emotional or attentional state, and educational or cultural
background. This is not too surprising when we consider our heritage, where our
survival depends on distinguishing tribe members from enemies, liars from trust-
worthy people, prey from predators. In modern society we will not outright die
from misjudging people, but our social behavior, and often our career and suc-
cess relies on assessing people and their behavior. We are so accustomed to these
skills that human beings who do not have this ability draw a lot of attention [1].

To size up a person, we use visual cues such as general appearance, health
conditions, and clothing. The importance of the latter was expressed by the
Roman rhetorician Quintilian, who said ”vestis virum reddit -clothes make the
man”. However, humans also heavily rely on auditory cues when characterizing
people. When we speak to a person over the phone, we identify a familiar voice. If
we do not know the speaker, we still form an impression from the speaker’s voice.
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With surprising accuracy we can judge height, sex, and age from a speaker’s voice
[2], but we also sort speakers along categories, such as idiolect, language, dialect,
credibility, confidence, educational background, and much more. Apparently, we
classify people based on various characteristics and many of those can be derived
from speech alone.

In this issue we classify speakers according to characteristics that are derived
solely from their speech, as expressed in the definition of speaker classification
to be ”the process of assigning a vector of speech features to a discrete speaker
class”. This definition discriminates speaker classification from other biometrical
classification techniques, in which intrinsic characteristics of a person are derived
for example from fingerprints, retinal pattern, facial features, or DNA structure.
It also differentiates speaker classification from techniques based on artifacts
such as badges, business cards, or clothing. As mentioned above, humans are
pretty good in this assignment process, however the objective of this chapter
focus on an automatic assignment process performed by machines. While we
see from the above argumentation that speaker characterization is crucial to
our social life, it is not immediately clear which benefits we get from automatic
speaker characterization performed by machines.

In the remainder of this chapter we will discuss why the classification of
speaker characteristics is useful. This will be motivated by examples of real-
world applications, which rely on the knowledge of characteristics of its users.
We will highlight the most important speaker characteristics, categorize them
according to some proposed schemes, and explain how these characteristics can
be automatically derived by machines. The chapter concludes with a practical
implementation example of a particular classification algorithm and its results.

2 Why? - Applications to Speaker Characteristics

Humans are ”wired for speech”. This term was coined by Clifford Nass and
colleagues [3] and refers to the fact that even though people know that they are
dealing with an automated system, if it takes speech as input and delivers speech
as output, they treat machines as if they were people - with the same beliefs and
prejudices. People behave and speak to the machine as if it were a person, they
raise their voice to make the machine better understand, yell at it when they
get angry, and say good-bye at the end of a ”conversation”. At the same time,
people infer a certain personality from the way the machine talks and the words
it uses although it is absurd to assume that the machine has a personality (see
also [4]). Nass showed for example that it is crucial for a speech-driven interface
to match the emotion in the output to the (expected) emotional state of the
user [5], and that users regard a computer voice as more attractive, credible and
informative if it matched their own personality [6].

Despite this need for personalized and customized system output, the body
of research is rather small. This fact has recently been addressed in a special
session on Speech Communication [7], and we expect that personalized output
will get more attention in the future. In contrast, a large body of work has been
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dedicated to adapting speech-based systems to better match the expected user
input. The aspect of personalization and customization has been proven to be
highly effective in the context of real-world applications. In the following we will
briefly introduce some of the research and highlight those speaker characteris-
tics that turned out to be relevant to the process of adapting applications to
the users’ spoken input. Furthermore, we will describe applications that rely on
the recognition of speaker identity. This brief overview is divided into work on
classical human-computer interaction systems and human-centered or computer
mediated human-human communication systems.

2.1 Human-Computer Interaction Systems

Human-Computer Interaction refers to the interaction between people (users)
and computers taking place at the speech-driven user interface. Examples of
applications are telephone-based services using dialog interfaces, authentication
systems that assess the user’s identity to perform (remote) banking or business
transactions, and access control systems to allow physical entry to facilities or
virtual rooms such as a computer network.

Today, many banking and other business transactions are done remotely over
the phone or via internet. To avoid misuse it is critical to ensure that the user is
who s/he claims to be. Authentication is the process of assessing the identity
of a speaker and checking if it corresponds to the claimed identity. Only if the
speaker’s identity is verified, access is granted. Most of current authentication
systems still use textual information provided by users such as passwords, So-
cial Security Numbers, PINs and TANs. However, as the number of phone- and
internet-based services increases, juggling numerous accounts and passwords be-
comes complicated and cumbersome for the user and the risks of fraud escalate.
Performing identity verification based on the user’s voice appears to be a possi-
ble alternative and therefore, service companies heavily investigate the potential
of speaker verification. Different from authentication, the task in Access Con-
trol is to assess the identity of a speaker and to check if this particular speaker
belongs to a group of people that get access to for example physical facilities or
virtual rooms such as computer networks and websites. Both system types are
based on the speaker characteristic identity. An early example of a real-world ap-
plication was the voice verification system at Texas Instruments that controlled
the physical entry into its main computer center [8].

Spoken Dialogs Systems play a major role in modern life, become increas-
ingly pervasive, and provide services in a growing number of domains such as
finance [9], travel [10], scheduling [11], tutoring [12], or weather [13]. In order
to provide timely and relevant service, the systems need to collect information
from the user. Therefore, a service dialog will be faster and more satisfying when
such information can be gathered automatically. Hazen and colleagues [14] for
example included automatic recognition of speaker identity to personalize the
system according to pre-collected information from registered users and to pre-
vent unauthorized access to sensitive information.
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Most telephone-based services in the U.S. today use some sort of spoken di-
alog systems to either route calls to the appropriate agent or even handle the
complete service by an automatic system. Muthusamy [15] developed a front-
end system to the 911 emergency phone line, which automatically assessed the
language of the speaker to route the call to a native agent. One of the early and
successful dialog systems, with wide exposure in the U.S. was the AT&T cus-
tomer care system ”How May I Help You?” developed by Gorin and colleagues
[16]. Their studies of vast amounts of recording, logs, and transcriptions, pro-
pelled research on dialog systems but also showed that automatic systems fail
to predict dialog problems. Batliner and colleagues [17] looked at emotion as in-
dicator of ”trouble in communication” and developed a call routing system that
automatically passes over to human operators when users get angry. Polzin [18]
argued that human-computer interfaces should in general be sensitive to users’
emotion. He created an interface that first detects emotion expressed by the user
and then adjusts the prompting, feedback, and dialog flow of the system accord-
ingly. The system prompts sound more apologetic when a user seemed annoyed,
and feedback is more explicit when the user’s voice indicates frustration. Raux
[19] used speaker characteristics such as agegroup and nativeness to tailor the
system output to elderly and non-native users with limited abilities in English
to make the speech output more understandable. Nass [3] found that people
infer a certain personality from the way the machine talks and have prejudices
about gender, regional dialects or foreign accents, geographical background, and
race. It is expected that these human factors will be taken into account in future
systems.

Computer-aided Learning and Assessment tools are another example
of human-computer interaction applications. Speech input functionality is par-
ticularly desirable in the context of language learning [20]. Advanced systems
provide interactive recording and playback of user’s input speech, feedback re-
garding acoustic speech features, recognizing the input, and interpreting interac-
tion to act as a conversation partner. Especially the latter three functionalities
are very challenging due to the naturally broad range of accent and fluency of
its users. Learning systems are usually customized to the native language L1 of
the language learner to overcome robustness issues [21], but may have to be tai-
lored towards particular dialects, especially in countries of diglossia. Automatic
assessment of proficiency level is deemed important, particularly in the light of
strong imbalance between number of learners and number of teachers, see for ex-
ample the E-Language Learning System program between the U.S. Department
of Education and the Chinese Ministry of Education [20].

New challenges arise when applications are brought to the developing world
to users with limited access, exposure, and with a different cultural basis for un-
derstanding. Barnard and colleagues built a telephone-based service in rural
South-Africa [22]. Some of their findings are surprising and not foreseen, such as
the request for louder prompts (due to collectivsm bystanders who share the con-
versation) and the fact that silence after prompt does not elicit an answer due to
uncertainty avoidance in this cultural background. The last example emphasizes
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that many aspects of speech-driven systems have not been fully understood or
investigated. We expect that with the increasing application of these systems, the
research on automatic classification of speaker characteristics will be intensified
to make systems more useful for a large population of users.

2.2 Human-Centered Systems

Human-Centered Systems refer to computer services that are delivered in an im-
plicit, indirect, and unobstrusive way to people whose primary goal is to interact
with other people. Computers stay in the background - like electronic butlers -
attempting to anticipate and serve people’s needs. Thus, computers are intro-
duced into a loop of humans interacting with humans, rather than condemning a
human to operate in a loop of computers (see CHIL - Computers in the Human
Interaction Loop [23]).

Emerging computer services are Smart Room Environments [24], in which
computers watch and interpret people’s actions and interactions in order to sup-
port communication goals. One implementation example is an automatic meet-
ing support system, which tracks what was said, who said it, to whom, and how
it was said [25]. By annotating speech recognition output with the speakers’
identity, attentional state, and emotional state, the meeting notes can be prop-
erly indexed, skimmed, searched, and retrieved. Infrastructures such as socially-
supportive workspaces [23] or augmented multiparty interactions [26] foster co-
operation among meeting participants, including multimodal interface to enter
and manipulate participants’ contributions, and facilitator functionalities that
monitor group activities. Other services implemented within the framework of
CHIL [23] include better ways of connecting people and supporting human mem-
ory. For all of these services, computers need to automatically gather context-
and content-aware information such as topic, meeting type, or environmental
conditions, and participant characteristics such as attentional state.

An example of computer-mediated applications that support human-to-
human communication is Speech Translation [27,28,29]. The task of speech
translation is to recognize incoming speech from the source language, to trans-
late the text of the recognizer output into text of the target language, and then
synthesize the translated text to audible speech in the target language. Most
applications are designed as two parallel one-directional systems, some systems
perform automatic language identification to route the speech into the corre-
sponding system [30]. Ideally, the translation should not only preserve the orig-
inal meaning of the spoken input, but also reflect other aspects of the message
such as level of politeness, respect, directness, or wittiness. Some of these aspects
might be directly derived from speaker characteristics, such as the generation
of appropriate synthesized output based on the speaker’s gender, or based on
the identification of the emotional state of a speaker in order to interpret emo-
tional cues and wittiness. Beyond this, some aspects require knowledge about the
relationship between the speaker and the listener. In some languages, the word
usage changes significantly depending on the hierarchy between sender and re-
ceiver, and using the wrong form may offend the receiver. Japanese is such an
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example, where Dr. Sadaoki Tomuko would be addresses as Tomuko-san if he is
a close friend or Tomuko-sensei if he is the boss of the sender. To address this
problem, the English-Japanese JANUS translation system [31] was designed to
switch between politeness levels.

2.3 Adaptation of System Components

As described above, the classification of speaker characteristics plays a crucial
role in customization and personalization of applications. Beyond that, speaker
characteristics need to be assessed in order to adapt system components, partic-
ularly the speech recognition front-end to the specific voice characteristics of the
speaker and the content of what was spoken. This adaptation process has been
proven to dramatically improve the recognition accuracy, which usually carries
over favorably to the performance of the overall system.

Adaptation of speech recognition is traditionally mostly concerned with the
adaptation of the acoustic and language model. In early days the acoustic model
adaptation was performed by an enrollment procedure that asked the user to
reading text prompts. This method might be quite helpful to power users of
the system and allows to store and pre-load speaker-specific acoustic models.
However, this enrollment procedure is time consuming. Therefore, more recent
systems rely on speaker adaptive training methods, which first determine the
speaker’s identity and then apply acoustic model adaptation based on the as-
sumed identity. Some applications rely on broader speaker classes such as gender
or agegroup to load pre-trained models [32]. For the purpose of dictionary and
language model adaptation, the topic or the content of the spoken input is an-
alyzed and used for adaptation [33]. Beside the speech recognition front-end,
other dialog components may benefit from this technique as well, by modeling
various dialog states, or detecting keywords to trigger state switches.

Code switching, i.e. switching the language between utterances, can not be
handled by monolingual speech recognition systems. Efforts have been made to
develop multilingual speech recognition system [34], but so far it looks favorable
to design dedicated language identification modules that direct the speech input
to the appropriate monolingual recognition system [30]. Idiolect has shown to
have a significant influence on speaker recognition [35] and accent is particularly
known to have a detrimental effect on speech recognition performance. Conse-
quently, much effort has been put into the classification of these characteristics
and the appropriate adaptation of system components. For an overview, we refer
the reader to [36].

2.4 Summary

We conclude this section with a table that summarizes those speaker character-
istics, which are most relevant to human-computer and human-centered appli-
cations. In addition, it gives references to implementation examples, or studies
thereof. Some of the referenced applications are not covered in this section,
as they are described in large detail elsewhere in this issue. Among those are
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Forensic applications, where the characteristics gender, age, medical conditions,
dialect, accent, and sociolect play a pivotal role. An overview of forensic appli-
cations is provided by Jessen in this issue [37]. Furthermore, we did not discuss
emerging applications for home parole, detection of deception, or fraud in the
context of Law Enforcement, which are concerned with speaker’s identity or
emotion. An introduction to this field concerning the latter characteristic is given
by Eriksson in this issue [38].

Table 1. Speaker Characteristics and Applications

Characteristic Applications, Reference

identity Transaction Authentication [39]; Access Control [8]
Dialog Systems [14]; Meeting Browser [25]

gender Dialog Systems [32]; Speech Synthesis [3]
Forensics [37]

age Dialog Systems [32]; Forensics [37]
Speech Synthesis [19]

health Forensics [37]

language Call Routing [15]; Speech Translation [30]
dialect Forensics [37]
accent Language Learning [21]; Dialog Systems

Speech Synthesis [19]; Forensics [37]
Assessment Systems [20]

sociolect Forensics [37]
idiolect Speaker Recognition [35]; Forensics [37]

emotional state Speech Translation [40]; Meeting Browser [25]
Law Enforcement [38]; Dialog Systems [18,17]

attentional state Human-Robot Interaction [41]; Smart Workspaces [26,23,24]

relationship/role Speech Translation [31]
cultural background Dialog Systems [22]

3 What? A Taxonomy of Speaker Characteristics

The discrete speaker classes, to which vectors of speech features are assigned,
characterize a speaker. We impose here a hierarchical structure on those char-
acteristics, which we consider to be relevant to speech-based applications as
described above.

Figure 1 shows the propose taxonomy, distinguishing first and foremost be-
tween physiological and psychological aspects of speaker characteristics. The
latter ones are further divided into aspects which concern the individual speaker
versus those that concern a speaker in a particular community or collective. For
example, a speaker may be in the role of a professor for the students at univer-
sity, a wife to her husband at home, or a mother to her child. The authority of a
speaker may vary with the context he or she is talking about, the hierarchy de-
pends on whom s/he talks to, the credibility may depend on whom s/he is doing
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Fig. 1. Taxonomy of Speaker Characteristics

business with, and so on. That is, the category ”collective” requires a definition
of a relation between sender and receiver.

This taxonomy is not without limitations, for example it does not cover all
aspects of an individual (e.g. weight, height, smoking or drinking habits, demo-
graphics such as race, income, mobility, employment status) or special aspects
such as speech pathologies, but rather focus on those characteristics we consider
to be relevant (and assessable) in the context of typical speech applications.

Furthermore, the taxonomy does not indicate, which level of linguistic in-
formation are necessary to discriminate between characteristics. For example,
low level acoustic features are usually sufficient to discriminate gender; phonetic,
phonologic, and lexical knowledge might be required to discriminate idiolects,
while it needs semantic and syntactic information to differentiate sociolects.
Even pragmatics might be necessary to derive the role of speakers and their
relationship to a collective. While low level physical aspects are relatively easy
to automatically extract, high level cues are difficult to assess. As a consequence
most automatic systems for speaker recognition still concentrate on the low-level
cues.

Another aspect, which is not reflected in the taxonomy is the discrimination
between stable versus transient characteristics. Examples for stable charac-
teristics are speaker identity and gender. Transient characteristics change over
time. This aspect may play an important role for practical applications, espe-
cially if a characteristic underlies dynamic changes over the duration of a single
audio recording session. While locally stable characteristics such as age, health,
language, accent, dialect, and idiolect may change very slowly compared to the
duration of a recording session, characteristics such as attentional and emotional
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state of a speaker, as well as the context or topic change dynamically. Also, the
relationship of a speaker to the listener may change over the course of an in-
teraction. Other characteristics such as sociolect may depend on the collective.
Idiolect, accent and dialect are functions of the spoken language, but are usually
rather stable within the same language. Therefore, if a speaker switches lan-
guages within one recording session, the class assignments for idiolect, accent
and dialect usually switch along.

3.1 Language-Dependent Speaker Characteristics

In the following we subsume the five characteristics language, accent, dialect,
idiolect, and sociolect under the term language-dependent speaker character-
istics as they are somewhat dependent on the actual language spoken by the
speaker.

Drawing the line between genuinely different languages and dialects of the
same language is a subject of various disputes. We define a dialect as a regional
variant of a language that involves modifications at the lexical and grammat-
ical level. In contrast accent is a regional variant affecting only the pronun-
ciation, mostly phonetic realizations but also prosody, allophonic distribution,
and fluency. British Received Pronunciation for example is an accent of English,
whereas Scottish English would be considered a dialect since it often exhibits
grammatical differences, such as ”Are ye no going?” for ”Aren’t you going?”
(see [42]). Dialects of the same language are assumed to be mutually intelligible,
while different languages are not, i.e. languages need to be explicitly learned
by speakers of other languages. In addition, languages have a distinct literary
tradition, while dialects are primarily spoken varieties without literary tradition.

These definitions are greatly simplified. Many languages lack a writing sys-
tem and thus do not have any literary tradition. Also, the distinction between
languages and dialects is a continuum rather than a binary decision, and of-
ten motivated by sociopolitical rather than linguistic considerations. Chinese
languages, for example are unified by a common writing system but have a
large number of mutually unintelligible varieties that differ substantially in pro-
nunciation, vocabulary, and grammar. While most linguists would argue that
these variations are different languages, they are officially labeled as dialects to
promote the concept of Chinese national unity (see [42]). The exact opposite
happened for Serbo-Croatian, the official language of former Yugoslavia. After
the breakup, the languages Croatian and Serbian became to be described as
separate languages to emphasize national independence.

Apart from regional variations, languages exhibit idiolectal and sociolectal
variation. The term idiolect describes consistent speech patterns in pronunci-
ation, lexical choice, or grammar that are specific to a particular speaker. Idi-
olectal patterns may include speaker-specific recurrent phrases (e.g. a tendency
to start sentences with Well, to be honest...), characteristic intonation patterns,
or divergent pronunciations (e.g. nucular instead of nuclear) (see [42]). A soci-
olect is a set of variations that are characteristic of a group of speakers defined
not by regional cohesion but by social parameters, such as economic status, age,
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profession, etc. Since dialects often have a particular social status, some vari-
ants may be considered simultaneously a dialect and a sociolect. For example,
standard German has close similarities to dialects spoken in Hannover and the
state of Saxony-Anhalt, the latter being the origin of Martin Luther whose bible
translation formed the basis for the development of standard German. Thus,
while being a dialect in these particular areas, standard German is also a so-
ciolect in that it carries a certain prestige from being the national language of
Germany, used throughout the country in broadcast, press, and by people of
higher education.

Despite significant efforts to make speech recognition systems robust for real-
world applications, the problem of regional variations remains to be a significant
challenge. Word error rates increase significantly in the presence of non-native
[43,44] and dialectal speech [45]. One of the main reasons for this performance
degradation is that acoustic models and pronunciation dictionaries are tailored
toward native speakers and lack the variety resulting from non-native pronuncia-
tions. In addition, the lexicon and language model lack the dialectal variety. The
straight-forward solution of deploying dialect- or accent-specific speech recogniz-
ers is prohibited by two practical limitations: lack of platform resources and lack
of data. Particularly embedded environments such as mobile or automotive ap-
plications limit the integration of multiple recognizers within one system. Even if
resources permit the deployment of dialect or accent specific systems, the variety
usually leads to very limited data resources. As a consequence real-world appli-
cations require cross-dialect or non-native recognition. The reader is referred to
[36] for a comprehensive introduction into this area. Idiolectal features can be
used for tailoring a speech application to a specific user, for instance in training
a speech-based automated office assistant. In addition, idiolectal features have
been shown to be helpful in automatic speaker identification [35]. Similarly, so-
ciolectal features can be taken into account when developing an application for
an entire user group.

Individual

accent

Phonetic
Lexical

Grammar

idiolect

dialect

Collective

sociolect

language

Fig. 2. Language-dependent Characteristics
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Multilingual settings may impact idiolectal and sociolectal variations, for ex-
ample [46] found evidence that bilingual speakers change their L1 speech after
spending time in L2-speaking environment. Several techniques to improve speech
recognition performance in the presence of code-switching have been investi-
gated [47,48]. Code-switching refers to the act of using words or phrases from
different languages in one sentence, a typical behavior of multilingual speakers
engaged in informal conversations.

Figure 2 summarizes the similarities and differences among the language-
dependent characteristics language, dialect, accent, idiolect, and sociolect. Main
discriminating factors are the effects on linguistic aspects and whether these
characteristics apply to individuals or a collective.

4 How? - Automatic Classification of Speaker
Characteristics

Probably the most extensively studied and prominent tasks that investigate the
”assignment of speech features to discrete speaker classes” are speaker recognition
(who is speaking, class=identity) and language identification (which language is
spoken, class=language). Speech recognition (what is said, class=content) tackles
a much broader problem but could be viewed as part of ”Speaker Classification”
when high-level characteristics, such as content, topic, or role are investigated. Re-
cently, the three tasks grow closer together, as it becomes evident that solutions to
one task may benefit the performance of the other, and that all of them need to be
studied in order to improve speech-based real-world applications. In the following
we will briefly survey language identification and speaker recognition. This section
it not meant to give a comprehensive introduction, for more details the reader is
referred to in-depth overviews, such as [49] for language identification and [39,50]
for speaker recognition. A good introduction into speech recognition can be found
in [51].

4.1 Speaker Recognition

Classification approaches can be discriminated by the level of linguistic knowl-
edge applied to the solution of the classification task. Reynolds defines a hierar-
chy of perceptual cues that humans apply for the purpose of recognizing speakers
[39]. On the highest level, people use semantics, diction, idiolect, pronunciation
and ideosynchrasies, which emerge from the socio-economic status, education,
and place of birth of a speaker. On the second level are features such as prosodic,
rhythm, speed, intonation, and volume of modulation, which discriminate per-
sonality and parental influence of a speaker. On the lowest linguistic level people
use acoustic aspects of sounds, such as nasality, breathiness or roughness, which
allow to draw conclusions about the anatomical structure of the speaker’s vocal
apparatus. While low level physical aspects are relatively easy to extract auto-
matically, high level cues are difficult to assess. As a consequence most automatic
systems for speaker recognition still concentrate on the low-level cues.
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Conventional systems apply Gaussian Mixture Models (GMM) to capture
frame-level characteristics [52]. Since the speech frames are assumed to be inde-
pendent from each other, GMMs often fail to discriminate speaker-specific in-
formation that evolves over more than one frame. Therefore, GMMs are poorly
suited for discriminating speakers based on higher-level differences, such as idi-
olect. Furthermore, GMMs are found to be challenged by mismatching acoustic
conditions as they solely rely on low-level speech-signal features. To overcome
these problems, speaker recognition recently focus on including higher-level lin-
guistic features, such as phonetic information emerging from speaker ideosyn-
chrasies [35]. This area is called phonetic speaker recognition and applies relative
frequencies from phone n-grams [53]. This approach is currently intensively stud-
ied [39] and extended by different modeling strategies, variations of statistical
n-gram models [54], variations of classifiers like Support Vector Machines [55],
and modeling of cross-stream dimensions to discover underlying phone depen-
dencies across multiple languages [54,56].

4.2 Language Identification

Similar to speaker recognition, language identification approaches can be catego-
rized by the level of linguistic information, which is applied to the classification
task. [49] discriminates the signal processing level, the unit level (e.g. phones), the
word level, and the sentence level. According to these levels, he distinguishes be-
tween acoustic approaches to language identification that apply spectral features
derived from speech segments [57], phonotactic approaches, which use the con-
traints of relative frequencies of sound units [58], along with various derivatives
using multilingual phone recognizers as tokenizer [59], extended n-grams [60],
cross-stream modeling [61], and combinations of GMMs and phonotactic mod-
els [62]. Furthermore, Navrátil [49] lists prosodic approaches, which use tone,
intonation, and prominence [63], and those approaches that apply full speech
recognizers to language identification [64].

5 A Classification System for Speaker Characteristics

In this section we present a general classification system, which applies one com-
mon framework to the classification of various speaker characteristics, namely
identity, gender, language, accent, proficiency level, and attentional state of a
speaker. The framework uses high-level phonetic information to capture speak-
ers’ ideosynchrasies, as initially proposed by [58] in the context of language
identification and [35] in the context of speaker recognition. The basic idea is to
decode speech by various phone recognizers and to use the relative frequencies of
phone n-grams as features for training speaker characteristic models and for their
classification. We enrich existing algorithms by applying the approach to vari-
ous speaker characteristics, by using a larger number of language independent
phone recognizers, and by modeling dependencies across multiple phone streams
[54]. Furthermore, we investigate different decision rules, study the impact of
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the number of languages involved, and examine multilingual versus multi-engine
approaches with respect to classification performance.

5.1 Multilingual Phone Sequences

Our experiments were conducted using phone recognizers of the GlobalPhone
project [65] available in 12 languages Arabic (AR), Mandarin Chinese (CH),
Croatian (KR), German (DE), French (FR), Japanese (JA), Korean (KO), Por-
tuguese (PO), Russian (RU), Spanish (SP), Swedish (SW), and Turkish (TU).
These phone recognizers were trained using the Janus Speech Recognition
Toolkit. The acoustic model consists of a context-independent 3-state HMM
system with 16 Gaussians per state. The Gaussians are based on 13 Mel-scale
cepstral coefficients and power, with first and second order derivatives. Following
cepstral mean subtraction, linear discriminant analysis reduces the input vector
to 16 dimensions. Training includes vocal tract length normalization (VTLN)
for speaker normalization. Decoding applies unsupervised MLLR to find the
best matching warp factor for the test speaker. Decoding is performed with
Viterbi search using a fully connected null-grammar network of mono-phones,
i.e. no prior knowledge about phone statistics is used for the recognition process.
Figure 3 shows the correlation between number of phone units and phone error
rates for ten languages.

To train a model for a particular speaker characteristic, a language depen-
dent phonetic n-gram model is generated based on the available training data.
In our experiments we train phonetic bigram models created from the CMU-
Cambridge Statistical Language Model Toolkit [19]. All phonetic bigram mod-
els are directly estimated from the data, rather than applying universal back-
ground models or adaptation with background models. No transcriptions of
speech data are required at any step of model training. Figure 4 shows the
procedure of training for a speaker identity model for speaker k. Each of the m
phone recognizers (PR1, . . . , PRm) decode the training data of speaker k to pro-
duce m phone strings. Based on these phone strings m phonetic bigram models
(PM1,k, . . . , PMm,k) are estimated for speaker k. Therefore, if an audio segment
needs to be classified into one of an n-class speaker characteristic, the m phone
recognizers will produce m × n phonetic bigram models.

During classification, each of the m phone recognizers PRi, as used for pho-
netic bigram model training, decodes the test audio segment. Each of the re-
sulting m phone strings is scored against each of n bigram models PMi,j . This
results in a perplexity matrix PP , whose PPi,j element is the perplexity pro-
duced by phonetic bigram model PMi,j on the phone string output of phone
recognizer PRi. While we will explore some alternatives in later experiments,
our default decision algorithm is to propose a class estimate C∗

j by selecting the
lowest

∑
i(PP )i,j . Figure 5 depicts this procedure, which we refer to as MPM-pp.

In the following we apply the described MPM-pp classification approach to
a variety of classification tasks in the context of speaker characteristics, namely
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Fig. 3. Error rate vs number of phones for ten GlobalPhone languages

Fig. 4. Training of feature-specific phonetic models for 2 phone recognizers and a 3–
class problem

to the classification of identity, gender, accent, proficiency level, language, and
attentional state of a speaker.

5.2 Classification of Speaker Identity

In order to investigate robust speaker identification (SID) under far-field con-
ditions, a distant-microphone database containing speech recorded from various
microphone distances had been collected at the Interactive Systems Laboratory.
The database contains 30 native English speakers reading different articles. Each
of the five sessions per speaker are recorded using eight microphones in parallel:
one close-speaking microphone (Dis 0), one lapel microphone (Dis L) worn by
the speaker, and six other lapel microphones at distances of 1, 2, 4, 5, 6, and 8
feet from the speaker. About 7 minutes of spoken speech (approximately 5000
phones) is used for training phonetic bigram models.

Table 2 lists the identification results of each phone recognizer and the com-
bination results for eight language phone recognizers for Dis 0 under matching



Speaker Characteristics 61

Fig. 5. MPM-pp classification block diagram

conditions. It shows that multiple languages compensate for poor performance
on single engines, an effect which becomes even more prominent for short test
utterances.

Table 3 compares the identification results for all distances on different test ut-
terance lengths under matched and mismatched conditions, respectively. Under
matched conditions, training and testing data are from the same distance. Under
mismatched conditions, we do not know the test segment distance; we make use
of all p = 8 sets of PMi,j phonetic bigram models, where p is the number of dis-
tances, and modify our decision rule to estimate C∗

j = minj (mink

∑
i PMi,j,k),

where i is the index over phone recognizers, j is the index over speaker phonetic
models, and 1 ≤ k ≤ p. The results indicate that MPM-pp performs similar un-
der matched and mismatched conditions. This compares quite favorable to the
traditional Gaussian Mixture Model approach, which significantly degrades un-
der mismatching conditions [66]. By applying higher-level information derived
from phonetics rather than solely from acoustics, we believe to better cover
speaker idiosyncrasies and accent-specific pronunciations. Since this informa-
tion is provided from complementary phone recognizers, we anticipate greater
robustness, which is confirmed by our results.

Table 2. MPM-pp SID rate on varying test lengths at Dis 0

Language 60 sec 40 sec 10 sec 5 sec 3 sec

CH 100 100 56.7 40.0 26.7
DE 80.0 76.7 50.0 33.3 26.7
FR 70.0 56.7 46.7 16.7 13.3
JA 30.0 30.0 36.7 26.7 16.7
KR 40.0 33.3 30.0 26.7 36.7
PO 76.7 66.7 33.3 20.0 10.0
SP 70.0 56.7 30.0 20.0 16.7
TU 53.3 50.0 30.0 16.7 20.0

Fusion 96.7 96.7 96.7 93.3 80.0
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Table 3. MPM-pp classification accuracy on varying test lengths under matched (left-
hand) and mismatched (right-hand) conditions

Matched Conditions Mismatched Conditions

Test Length 60s 40s 10s 5s 60s 40s 10s 5s

Dis 0 96.7 96.7 96.7 93.3 96.7 96.7 96.7 90.0
Dis L 96.7 96.7 86.7 70.0 96.7 100 90.0 66.7
Dis 1 90.0 90.0 76.6 70.0 93.3 93.3 80.0 70.0
Dis 2 96.7 96.7 93.3 83.3 96.7 96.7 86.7 80.0
Dis 4 96.7 93.3 80.0 76.7 96.7 96.7 93.3 80.0
Dis 5 93.3 93.3 90.0 76.7 93.3 93.3 86.7 70.0
Dis 6 83.3 86.7 83.3 80.0 93.3 86.7 83.3 60.0
Dis 8 93.3 93.3 86.7 66.7 93.3 93.3 86.7 70.0

5.3 Classification of Gender

The NIST 1999 speaker recognition evaluation set [67] with a total of 309 female
and 230 male speakers was applied to gender identification experiments [56]. For
each speaker, two minutes of telephone speech were used for training and one
minute of unknown channel type for testing. Experiments were conducted on
the MPM-pp approach. In addition, a different decision rule, MPM-ds was in-
vestigated. For the MPM-ds approach the perplexity was replaced by a decoding
score, i.e. the negative log probability distance score. For decoding, the equal-
probability phonetic bigram models were replaced by language-specific models,
resulting from training bigram phonetic models for each of the phone recognizers
and each gender category. For classification, each phone recognizer applied the
language-specific model. While the MPM-pp approach requires to only decode
with m recognizers, the MPM-ds approach requires to run m×n recognition pro-
cesses, where m refers to the number of phone recognizers and n to the number
of classes to be discriminated. Furthermore, the MPM-ds approach heavily de-
pends on reliable probability estimates from the phonetic models. However, the
amount of data available for gender classification was assumed to be sufficient
for this task. For testing, 200 test trials from 100 men and 100 women were ran-
domly chosen. Table 4 compares the results of the MPM-pp with the MPM-ds
decision rule. Both approaches achieved a 94.0% gender classification accuracy,
which indicates that comparable results can be achieved when enough data for
training is available. Earlier experiments on speaker identification showed that
MPM-pp clearly outperforms MPM-ds, most likely due to the lack of training
data for a reliable estimate of phonetic models [56].

5.4 Classification of Accent

In the following experiments we used the MPM-pp approach to differentiate be-
tween native and non-native speakers of English. Native speakers of Japanese
with varying English proficiency levels make up the non-native speaker set. Each
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Table 4. Comparison between MPM-pp and MPM-ds on gender classification

CH DE FR JA KR PO SP TU ALL

MPM-pp 88.5 89.5 89.0 86.5 87.5 89.0 92.0 90.0 94.0
MPM-ds 89.5 88.5 91.0 89.0 88.0 91.5 92.0 89.0 94.0

Table 5. Number of speakers, utterances, and audio length for native and non-native
classes

nspk nutt τutt

native non-native native non-native native non-native

training 3 7 318 680 23.1 min 83.9 min
testing 2 5 93 210 7.1 min 33.8 min

speaker read several news articles, training and testing sets are disjoint with
respect to articles as well as speakers. The acquisition of the database is de-
scribed in detail in [68]. The data used for the experiments are summarized in
Table 5.

In two sets of experiments, we first employ 6 of the above described Global-
Phone phone recognizers PRi ∈ {DE, FR, JA, KR, PO, SP} [69] and then aug-
ment these by a seventh language {CH} to study differences resulting from the
added language [70]. During classification of non-native versus native speak-
ers, the 7 × 2 phonetic bigram models produce a perplexity matrix for the test
utterance to which we apply the lowest average perplexity decision rule. On
our evaluation set of 303 utterances for 2–way classification between native and
non–native utterances, the classification accuracy improves from 93.7% using
models in 6 languages to 97.7% using models in 7 languages. An examination
of the average perplexity of each class of phonetic bigram models over all test
utterances reveals the improved separability of the classes, as shown in Table
6. The average perplexity of non-native models on non-native data is lower
than the perplexity of native models on that data, and the discrepancy be-
tween these numbers grows after adding training data decoded in an additional
language.

Table 6. Average perplexities for native and non-native classes using 6 versus 7 phone
recognizers

Phonetic 6 languages 7 languages
model

non- native native non-native native

non-native 29.1 31.7 28.9 34.1
native 32.5 28.5 32.8 31.1
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5.5 Classification of Proficiency Level

We apply the MPM-pp approach to classify utterances from non-native speakers
according to assigned speaker proficiency classes using the same data as in the
accent classification task. The original non-native data had been labeled with the
proficiency of each speaker on the basis of a standardized evaluation procedure
conducted by trained proficiency raters [68]. All speakers received a floating
point grade between 0 and 4, with a grade of 4 reserved for native speakers. The
distribution of non-native training speaker proficiencies showed that they fall into
roughly three groups. We created three corresponding classes for the attempt to
classify non-native speakers according to their proficiency. Class 1 represents the
lowest proficiency speakers, class 2 contains intermediate speakers, and class 3
contains the high proficiency speakers. The phonetic bigram models are trained
as before, with models in 7 languages and 3 proficiency classes. Profiles of the
testing and training data for these experiments are shown in Table 7.

Table 7. Number of speakers, utterances, audio length, and average speaker proficiency
score per proficiency class (C-1 to C-3)

nspk nutt τutt (min) ave. prof
C-1 C-2 C-3 C-1 C-2 C-3 C-1 C-2 C-3 C-1 C-2 C-3

training 3 12 4 146 564 373 23.9 82.5 40.4 1.33 2.00 2.89
testing 1 5 1 78 477 124 13.8 59.0 13.5 1.33 2.00 2.89

Similar to the experiments in accent identification, we compared the applica-
tion of 6 versus 7 phone recognizers. As the confusion matrix in Table 8 indicates,
the addition of one language leaves to small improvement over our results using
models in 6 languages. It reveals that the phonetic bigram models trained in
Chinese cause the system to correctly identify more of the class 2 utterances at
the expense of some class 3 utterances, which are identified as class 2 by the
new system. Our results indicate that discriminating among proficiency levels
is a more difficult problem than discriminating between native and non-native
speakers. The 2–way classification between class 1 and class 3 gives 84% accu-
racy, but classification accuracy in the 3–way proficiency classification approach
achieves 59% in the 6-language experiment and 61% using the additional seventh
phone recognizer.

5.6 Classification of Language

In this section, we apply the MPM-pp framework to the problem of multi-
classification of four languages: Japanese (JA), Russian (RU), Spanish (SP)
and Turkish (TU). We elected to use a small number of phone recognizers in
languages other than the four classification languages in order to duplicate the
circumstances common to our identification experiments, and to demonstrate a
degree of language independence which holds even in the language identification
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Table 8. Confusion matrix for 3-way proficiency classification using 6 versus 7 phone
recognizers

Phonetic 6 languages 7 languages
model

C-1 C-2 C-3 C-1 C-2 C-3

C-1 8 3 19 8 5 17
C-2 8 41 61 6 53 51
C-3 2 12 99 1 20 92

domain. Phone recognizers in Chinese (CH), German (DE) and French (FR),
with phone vocabulary sizes of 145, 47 and 42, respectively, were borrowed from
the GlobalPhone project. The data for this classification experiment, were also
borrowed from the GlobalPhone project but not used in training the phone rec-
ognizers. It was divided up as shown in Table 9. Data set 1 was used for training
the phonetic models, while data set 4 was completely held-out during training
and used to evaluate the end-to-end performance of the complete classifier. Data
sets 2 and 3 were used as development sets while experimenting with different
decision strategies.

Table 9. Number of speakers, utterances, and audio length per language

Set JA RU SP TU

nspk 1 20 20 20 20
2 5 10 9 10
3 3 5 5 5
4 3 5 4 5

∑
nutt all 2294 4923 2724 2924∑
τutt all 6 hrs 9 hrs 8 hrs 7 hrs

For training the phonetic bigram models, utterances from set 1 in each Lj ∈
{JA, RU, SP, TU} were decoded using each of the three phone recognizers PRi ∈
{CH, DE, FR}. 12 separate trigram models were constructed with Kneser/Ney
backoff and no explicit cut-off. The training corpora ranged in size from 140K to
250K tokens. Trigram coverage for all 12 models fell between 73% to 95%, with
unigram coverage below 1%.

We first benchmarked accuracy using our lowest average perplexity decision
rule. For comparison, we constructed a separate 4-class multi-classifier, using
data set 2, for each of the four durations τk ∈ {5s, 10s, 20s, 30s}; data set 3 was
used for cross-validation.

Our multi-classifier combined the output of multiple binary classifiers using
error-correcting output coding (ECOC). A class space of 4 language classes in-
duces 7 unique binary partitions. For each of these, we trained an independent
multilayer perceptron (MLP) with 12 input units and 1 output unit using scaled
conjugate gradients on data set 2 and early stopping using the cross-validation
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data set 3. In preliminary tests, we found that 25 hidden units provide adequate
performance and generalization when used with early stopping. The output of
all 7 binary classifiers was concatenated together to form a 7-bit code, which
in the flavor of ECOC, was compared to our four class codewords to yield a
best class estimate. Based on total error using the best training set weights and
cross-validation set weights on the cross-validation data, we additionally dis-
carded those binary classifiers which contributed to total error; these classifiers
represent difficult partitions of the data.

With phone recognizers drawn from the baseline set, classification accuracy
using lowest average perplexity led to 94.01%, 97.57%, 98.96% and 99.31% ac-
curacy on 5s, 10s, 20s and 30s data respectively, while with ECOC/MLP classi-
fication accuracy improved to 95.41%, 98.33%, 99.36% and 99.89% respectively.

5.7 Classification of Attentional State

The following experiments investigate the power of the MPM-pp approach to
identify the attentional state of a speaker. More particularly, we aim to discrim-
inate the interaction of two human beings from the interaction of one human
with a robot. The data collection took place at the Interactive Systems Labs
and mimics the interaction between two humans and one robot. One person,
acting as the host, introduces the other person, acting as a guest, to the new
household robot. Parallel recordings of audio and video focus on the host to
determine if the host addresses the guest or the robot. In order to provoke a
challenging scenario, the speakers were given instructions to imagine that they
introduce the new household robot to the guest by explaining the various skills
of the robot, for example to bring drinks, adjust the light, vacuum the house,
and so on. 18 recording sessions of roughly 10 min length each were collected and
manually transcribed. All utterances were tagged as command, when the robot
was addressed or as conversation, when the guest was addressed. 8 sessions were
used for training, 5 for development, and the remaining 5 for evaluation [41].

We compare the MPM-pp approach to a speech-based approach that applies
a combination of higher-level speech features, such as sentence length (assum-
ing that commands to a robot are shorter than conversations with another hu-
man), topic occurrence (assuming that commands are more likely to contain
the word ”robot”), number of imperatives (assuming that commands are rather
formulated in imperative form), and perplexity calculation based on a ”com-
mand” language model and a ”conversation” language model (assuming that
commands give lower perplexity on the former language model and conversations
give lower on the latter). The results from this selection are labeled as ”Feature
Combi”. The MPM-pp approach features the above described 12 GlobalPhone
recognizers.

The results in Table 10 shows F-measure and classification accuracy. The
calculation of the F-measure is based on the assumption that it is more important
to detect when the robot was addressed. The results indicate that the MPM-pp
approach slightly outperforms the combination of higher-level speech features,
which is somewhat surprising given the amount of information that is available
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to the speech-feature combination. Also note, that the MPM-pp approach does
not require any manually transcribed or tagged data. However, both speech-
based methods are significantly outperformed by the visual estimation of the
speaker’s head orientation. The combination of audio and visual information
leads to additional small gains [41].

Table 10. Attentional state classification with audio and visual estimation

Estimation Precision Recall F-Measure Classification

Feature Combi FC 0.19 0.91 0.31 49
MPM-pp 0.21 0.79 0.33 53.5
Head Pose (HP) 0.57 0.81 0.67 90
FC + HP 0.65 0.81 0.72 92

5.8 Language Dependencies

Implicit in our classification methodology is the assumption that phone strings
originating from phone recognizers trained on different languages yield comple-
mentary information. In the following experiments we explore the influence of
the variation of the phone recognizers, and investigate to what extend the per-
formance varies with the number of languages covered.

We conducted one set of experiments to investigate whether the reason for the
success of the multilingual phone string approach is related to the fact that the
different languages contribute useful classification information or that it simply
lies in the fact that different recognizers provide complementary information.
If the latter were the case, a multi-engine approach in which phone recognizers
trained on the same language but on different channel or speaking style condi-
tions might do a comparably good job. To test this hypothesis, we had trained
three different phone recognizers solely on a single language, namely English but
on various different channel conditions (telephone, channel-mix, clean) and dif-
ferent speaking styles (highly conversational, spontaneous, planned) using data
from Switchboard, Broadcast News, and Verbmobil. The experiments were car-
ried out on matched conditions on all distances for 60 second chunks for the
speaker identification task. To compare the three single-language engines to the
multiple-language engines, we generated all possible language triples out of the
set of 12 languages ((12

3 ) = 220 triples) and calculated the average, minimum
and maximum performance over all triples. The results are given in Table 11.

The results show that the multiple-engine approach lies in all but one case
within the range of the multiple-language approach. However, the average per-
formance of the multiple-language approach always outperforms the multiple-
engine approach. This indicates that most of the language triples achieve better
results than the single language multiple-engines. From these results we draw the
conclusion that multiple English language recognizers provide less useful infor-
mation for the classification task than do multiple language phone recognizers.
This is at least true for the given choice of multiple engines in the context
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Table 11. Multiple languages versus single-language multiple engines [SIDrates %]

Dis Multiple Languages Multiple Engines

Dis 0 94.6 (80.0-100) 93.3
Dis L 93.1 (80.0-96.7) 86.7
Dis 1 89.5 (76.7-96.7) 86.7
Dis 2 93.6 (86.7-96.7) 76.7
Dis 4 90.8 (73.3-96.7) 86.7
Dis 5 92.0 (73.3-96.7) 83.3
Dis 6 89.5 (60.0-96.7) 63.3
Dis 8 87.2 (63.3-96.7) 63.3

of speaker identification. We also conducted experiments, in which the multi-
engine recognizers were combined with the multilingual recognizers, but did not
see further improvements [56]. The fact that the multiple engines were trained
on English, i.e. the same language which is spoken in the speaker identification
task, whereas the multiple languages were trained on 12 languages but English,
makes the multiple-language approach even more appealing as it indicates a
great potential for portability to speaker characteristic classification tasks in
any language.

Fig. 6. Classification rate over number of phone recognizers

In the final set of experiments, we investigated the impact of the number of
languages, i.e. the number of phone recognizers on speaker identification per-
formance. Figure 6 plots the speaker identification rate over the number k of
languages used in the identification process on matched conditions on 60 seconds
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data. The performance is given in average over the k out of 12 language k-tupel
for all distances. The results indicate that the average speaker identification rate
increases for all distances with the number of involved phone recognizers. For
some distances a saturation effect takes place after 6 languages involved (dis-
tance 0 and 1), for others distances even adding the 12th language has a positive
effect on the average performance (distance 4, 6, L). Figure 6 shows that the
maximum performance of 96.7% can already be achieved using two languages.
Among the total of (12

2 ) = 66 language pairs, CH-KO and CH-SP gave the best
results. We were not able to derive an appropriate strategy to predict the best
language tupels. Therefore, it is comforting that the increasing average indi-
cates that the chances of finding suitable language tupels get better with the
number of applied languages. While only 4.5% of all 2-tupels achieved highest
performance, 35% of 4-tupels, 60% of all 6-tupels, and 88% of all 10-tupels gave
optimal performance. We furthermore analyzed if the performance is related to
the total number of phones used for the classification process rather than the
number of different engines, but did not find evidence for such a correlation.

6 Conclusion

This chapter briefly outlined existing speech-driven applications in order to mo-
tivate why the automatic recognition of speaker characteristics is desirable. After
categorizing relevant characteristics, we proposed a taxonomy, which differenti-
ates between physiological and psychological aspects, and furthermore considers
the individual speaker as well as the collective. The language-dependent charac-
teristics language, accent, dialect, idiolect, and sociolect were described in more
detail. The brief overview of classification approaches was complemented by a
practical example of our implementation of a speaker characteristics identifi-
cation system. This implementation applies a joint framework of multilingual
phone sequences to classify various speaker characteristics from speech, such as
identity, gender, language, accent and language proficiency, as well as atten-
tional state. In this system the classification decisions were based on phonetic
n-gram models trained from phone strings, performing a simple minimum per-
plexity rule. The good classification results validated this concept, indicating
that multilingual phone strings can be successfully applied to the classification
of various speaker characteristics. The evaluation on a far-field speaker identifi-
cation task proved the robustness of the approach, achieving 96.7% identification
rate under mismatching conditions. Gender identification gave 94% classification
accuracy. We obtained 97.7% discrimination accuracy between native and non-
native English speakers and 95.5% language identification rate on 5 sec chunks
discriminating 4 languages. In the classification of the attentional state, the
MPM-pp approach performs slightly better than a combination of higher-level
speech features, achieving 53.5% classification rate. Furthermore, we compared
the performances between multi-lingual and multi-engine systems and examined
the impact of the number of involved languages on classification results. Our
findings confirm the usefulness of language variety and indicate a language in-
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dependent nature of our experiments. These encouraging results suggest that
the classification of speaker characteristics using multilingual phone sequences
could be ported to any language. In conclusion, we believe that the classification
of speaker characteristics has advanced to a point where it can be successfully
deployed into real-world applications. This would allow for more personalization,
customization, and adaptation to the user and thus meet our desire for a more
human-like behavior of speech-driven automated systems.

Acknowledgments. The author wishes to thank Qin Jin for providing all re-
sults on speaker and gender identification, Kornel Laskowski for his work on
language identification, Alicia Tribble for performing the experiments on accent
and proficiency levels, and Michael Katzenmaier for his contributions to the
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Abstract. This paper investigates how speakers can be classified into native and
non-native speakers of a language on the basis of acoustic and perceptually rele-
vant features in their speech. It describes some of the most salient acoustic prop-
erties of foreign accent, based on a comparative corpus analysis of native and
non-native German and English. These properties include the durational features
vowel reduction, consonant cluster reduction and overall speech rate as well as the
intonational variables pitch range and pitch movement. The paper further presents
an experiment demonstrating that perceptual judgments of foreign accent corre-
late primarily with the speakers’ speech rate.

Keywords: foreign accent, acoustic properties, perceptual judgments and acous-
tic correlates.

1 Introduction

Speakers are traditionally classified into native and non-native speakers of a language
although, at closer inspection, the division line between the two classes is far from
clear-cut. “Native” speakers of a language are usually exposed to the language from
birth on, acquire it fully and use it throughout their lives. “Non-native” speakers of a
language usually come into contact with it at a later stage, for example in formal class-
room teaching or by immigration to a foreign country. They often do not acquire the
language fully and continue to use other languages in their daily lives. Speech produced
by the latter group typically shows properties of a “foreign accent”. As yet, among
linguists, no exact, comprehensive and universally accepted definition of foreign accent
exists. However, there is a broad consensus that the term refers to the deviations in
pronunciation of non-native speech compared to the norms of native speech (e.g. Scovel
1969:38). Foreign accent can be measured in two ways: by eliciting global judgments
and quality ratings of samples of non-native speech from judges or by carrying out
instrumental-acoustic measurements of various phonetic aspects of non-native speech
and by comparing them to native speech.

This article examines both the acoustic and perceptual correlates of foreign-accented
German and English. In the first part, instrumental-phonetic analyses of the acoustic
correlates of foreign accent will be presented and the various segmental and prosodic
features of non-native speech that may contribute to a foreign accent are discussed. The
second part of the article is concerned with the perceptual correlates of foreign accent.
The results of an experiment investigating the correlation between perceptual accent
ratings and acoustic properties of non-native speech will be presented.

C. Müller (Ed.): Speaker Classification I, LNAI 4343, pp. 75–87, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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2 Acoustic Correlates of Foreign Accent

Foreign accent has been divided into phonological and phonetic accent, the former com-
prising phonological deviations such as phoneme substitutions, as for example in the
pronunciation of the as [d@], and the latter referring to incorrect pronunciations of oth-
erwise correct phonological representations (Markham 1997). In addition, foreign ac-
cent can be divided into segmental deviations, i.e. phoneme substitutions or incorrect
pronunciations of individual vowels and consonants, and prosodic deviations such as
deviant speech rhythm, intonation and stress patterns. The majority of descriptions of
the correlates of foreign accent are based on auditory analyses and manual transcrip-
tions of deviations and often lack in systematization and representativeness. Systematic
instrumental analyses of the phonetic properties of non-native speech have shown a
number of acoustic deviations in foreign-accented speech. For example, it was found
that non-native English produced by Japanese, Spanish-speaking, Jordanian and Brazil-
ian learners differs from native speech in terms of the voice onset time (VOT) of plo-
sives (Riney & Takagi 1999, Flege & Munro 1994, Flege, Frieda, Wally & Randazza
1998, Port & Mitleb 1983, Major 1987a). Likewise, the realization of consonant clus-
ters by Brazilian learners of English is suggested to contribute to their foreign accent
(Major 1987b). English produced by native speakers of Polish, French, Tunisian Ara-
bic and Spanish is characterized by a lack of vowel reduction and the non-realization of
weak vowels in unstressed syllables (Scheuer 2002, Wenk 1985, Ghazali & Bouchhioua
2003, Mairs 1989, Flege & Bohn 1989). Furthermore, German learners of English pro-
duce different vowel qualities for the phonemes /e/ and /æ/ than English native speakers
do (Barry 1989), English learners of Thai produce deviant tones (Wayland 1997) and
Austrian learners of English show differences from native speakers in the realization of
falling pitch movements (Grosser 1997).

The majority of studies concerned with the phonetic correlates of foreign accent car-
ried out so far are restricted to the investigation of a particular combination of native
language and target language such as Japanese-accented English. The purpose of the
present study, in contrast, is to determine the general properties of foreign accent. The
following questions are raised: Is it possible to classify speakers into native and non-
native on the basis of some acoustic features of their speech? Which acoustic features
distinguish non-native speech from native speech irrespective of the speakers’ first lan-
guage? Which of these acoustic features correlate with human auditory judgments of
the strength of foreign accent? The focus of the present study lies on the acoustic char-
acteristics of a foreign accent in both German and English. In particular, three acoustic
features of non-native speech will be investigated: general durational features such as
speech rate, reduction processes in both vowels and consonant clusters and features of
pitch including pitch range and pitch movement.

For this, a large-scale corpus-based study of the acoustic properties of non-native
speech was carried out. It is based on the LeaP corpus, which consists of 359 record-
ings of non-native and native speech in both German and English comprising 73.941
words and a total amount of recording time of more than 12 hours (Milde & Gut 2002,
Pitsch, Gut & Milde 2003). It contains four different speaking styles: free speech in an
interview situation (length between 10 and 30 minutes), reading of a passage (length
of about two minutes), retellings of a story (length between two and 10 minutes) and
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the reading of nonsense word lists (30 to 32 words). During the collection of the corpus
data it was aimed to record a representative range of non-native speakers in terms of
age, sex, native language/s, level of competence, length of exposure to the target lan-
guage, age at first exposure to the target language and non-linguistic factors such as
motivation to learn the language, musicality and so forth. The non-native English in the
corpus was produced by 46 speakers with 17 different native languages, whose age at
the time of the recording ranges from 21 to 60. 32 of them are female and 14 are male.
Their average age at first contact with English is 12.1 years, ranging from one year to
20 years of age. The age of the 55 non-native speakers of German at the time of record-
ing ranges from 18 to 54 years. 35 of them are female and 20 are male. Altogether,
they have 24 different native languages. The average age at first contact with German
is 16.68 years, ranging from three years to 33 years of age. The corpus further contains
eight recordings with native speakers of (British) English and 10 recordings with native
speakers of Standard German.

2.1 Durational Features of Foreign Accent: Speech Rate

The object of the first set of acoustic analyses was to explore differences between native
and non-native speech in terms of general durational features. These features include
the overall articulation rate as well as the duration of various linguistically meaning-
ful units such as utterances and syllables. Utterances were defined as sequences of
words between two pauses of a minimum length; the division of syllables was based
on standard phonological criteria (e.g. Giegerich 1992). Syllables were further divided
into stressed and unstressed since the difference between these two types of syllables
is correlated with significant differences in duration in both native English and native
German (e.g. Hoequist 1983, Campbell 1989, Gut 2003). The story retellings and the
reading passages in the LeaP corpus were analyzed with the following quantitative mea-
surements:

• artrate: articulation rate (total number of syllables divided by total duration of
speech)

• mlu: mean length of utterance (in syllables)
• mls: mean length of stressed syllables
• mlr: mean length of reduced syllables (unstressed syllables with reduced or deleted

vowel)

A total of 40.274 syllables produced by the non-native speakers of German, 3.261
syllables produced by the native speakers of German, 30.871 syllables produced by
the non-native speakers of English and 2.492 syllables produced by the English native
speakers were analyzed.

Table 1 shows that non-native English differs significantly from native English in
all aspects of general speech rate. Non-native retellings, on average, show a slower ar-
ticulation rate and a shorter mean length of utterance than story retellings by native
speakers. Moreover, the mean length of syllables, both stressed and unstressed, is sig-
nificantly longer in non-native speech. When reading the story, the non-native speakers
produce a slower articulation rate as well as a shorter mean length of utterance and
longer syllables of both types.
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Table 1. Mean values of artrate, mlu, mls and mlr for the non-native and the native speakers of
English in the retellings and reading passage style. (*** equals significance at p<0.001, ** equals
significance at p<0.01, * equals significance at p<0.05).

artrate mlu mls mlr

retellings
non-native English 2.3 3.8 280.7 155.4

native English 4.1 7.5 209.3 90.2

*** *** *** ***

reading passage style
non-native English 3.25 5.9 258.6 140.4

native English 4.1 8.9 212.25 101.3

* ** * *

A comparison of non-native German with native German gives similar results (Table
2). On average, native story retellings have a longer mean length of utterance, shorter
stressed syllables and a higher articulation rate than their non-native counterparts. The
readings of the story by the non-native speakers differ from the native readings in three
acoustic variables: non-native readings have a slower articulation rate and have, on av-
erage, longer syllables. No significant difference was found between the non-native and
native mean length of utterance in reading passage style.

2.2 Durational Features of Foreign Accent: Reduction

The second line of investigation was concerned with reduction processes in native and
non-native speech. In both German and English, vowel reduction and vowel deletion
occur regularly in specific contexts. Reduced vowels in German and English are shorter
than full vowels and change their quality (e.g. Delattre 1981, Gut 2006). For exam-
ple, reduction is illustrated in the production of the schwa /@/ as the first vowel in the

Table 2. Mean values of artrate, mlu, mls and mlr for the non-native and the native speakers of
German in the retellings and reading passage style. (**=significant at p<0.01, *=significant at
p<0.05).

artrate mlu mls mlr

retellings
non-native German 2.4 4.4 254.9 189.2

native German 3.3 7.2 212.7 159.7

* ** * n.s.

reading passage style
non-native German 3.3 6.5 232.7 178.4

native German 4.1 7.9 198.7 137.2

* n.s. ** **
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English word alike [@laIk] or the second vowel in the German word diesem [diz@m].
Vowel deletion often occurs in the realization of the second syllable in the German
word laufen as [fn] and in the second syllable of the English word nation [neISn]. Like-
wise, in both languages word-final consonant clusters, i.e. sequences of two or more
consonants, are regularly reduced in connected speech. This means that for example in
the words jumped and hast one or more consonants of the cluster are deleted so that
they are realized as [j2mt] and [has] (e.g. Neu 1980, Kohler 1995). In the LeaP corpus,
the following measurements of reduction processes were taken:

• percentage reduced/deleted vowels (prv): percentage of all syllables with re-
duced or deleted vowel of all syllables

• ratio full/red: mean durational ratio of all syllable pairs in which a syllable with a
full vowel is followed by a syllable with a reduced or a deleted vowel

• 2consclus: retention rate (i.e. no deletion) of all word-final consonant clusters in
words with phonologically underlying two-consonant clusters

• 3consclus: retention rate of all word-final three-consonant clusters and four-
consonant clusters

• content words: retention rate of all word-final two-, three- and four-consonant
clusters in content words (nouns, verbs, adjectives and adverbs)

• function words: retention rate of all word-final two-, three- and four-consonant
clusters in function words (prepositions, conjunctions and auxiliary verbs)

A total of 40.274 syllables produced by the non-native speakers of German, 3.261
syllables produced by the native speakers of German, 30.871 syllables produced by
the non-native speakers of English and 2.492 syllables produced by the English native
speakers were analyzed in terms of vowel reduction. In addition, a total of 3.965 words
with underlying word-final clusters produced by the non-native speakers of English
and a total of 229 such words produced by the native English speakers were analyzed.
4.045 potential word-final coda clusters were analyzed in the speech of the non-native
speakers of German. The native German speakers produced a total of 232 words with
underlying word-final consonant clusters.

Table 3 illustrates various significant differences in vowel reduction and consonant-
cluster reduction between the non-native and the native speakers of English. The non-
native speakers produce, on average, fewer syllables with reduced and deleted vowels
and a smaller durational difference between neighboring syllables with a full vowel
and a reduced or deleted vowel. Non-native and native speakers of English do not dif-
fer in the retention rate of two-consonant clusters. Conversely, the native speakers re-
duce three-consonant clusters significantly more frequently than the non-native speak-
ers. Word-final clusters in content words are retained more often than in function words
in both types of speech, but the retention rate of clusters in function words is signifi-
cantly higher in non-native English than in native English.

Table 4 illustrates the that there are fewer differences in vowel and consonant clus-
ter reduction between non-native German and native German. The overall percentage
of syllables with reduced and deleted vowels does not differ between non-native Ger-
man and native German. In contrast, in non-native German, the durational difference
between adjacent syllables with full vowels on the one hand and reduced or deleted
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Table 3. Percentage of syllables with reduced and deleted vowel of all syllables, mean durational
ratio of adjacent syllable pairs with the first syllable containing a full and the second a reduced
or deleted vowel (ratio full/red), overall retention rate of word-final two-consonant and three-
consonant clusters and retention rate of word-final clusters in content words and function words
produced by the non-native and the native speakers of English. (***=significant at p<0.001;
**=significant at p<0.01).

prv ratio
full/red

2consclus 3consclus content
wors

function
words

non-native
English

24.01 1.98:1 80.2 37.12 70.8 44.2

native
English

30.65 2.45:1 82.5 4.77 73.3 20.5

** ** n.s. *** n.s. ***

vowels on the other is lower. For word-final consonant clusters in German, the overall
retention rate is not significantly different between the two speaker groups, neither in
two- or three-consonant clusters nor in content words and function words.

Table 4. Percentage of syllables with reduced and deleted vowel of all syllables, mean durational
ratio of adjacent syllable pairs with the first syllable containing a full and the second a reduced
or deleted vowel (ratio full/red), overall retention rate of word-final two-consonant and three-
consonant clusters and retention rate of word-final clusters in content words and function words
produced by the non-native and the native speakers of German. (***=significant at p<0.001).

prv ratio
full/red

2consclus 3consclus content
wors

function
words

non-native
German

28.66 1.49:1 65.1 41.4 65.9 59.5

native
German

29.2 1.76:1 74.8 70 82.8 66.6

n.s. *** n.s. n.s. n.s. n.s.

2.3 Pitch Range and Pitch Movement in Foreign-Accented Speech

The third acoustic feature investigated as a possible correlate of foreign accent was
pitch. The height of pitch changes continuously across an utterance, but the linguisti-
cally most important pitch movement is the utterance-final pitch movement, often re-
ferred to as the nucleus. In both English and German, nuclear pitch movements can
have the form of falls or rises or combinations of the two (e.g. Grabe 1998). Another
linguistically relevant aspect of pitch is the pitch range, which expresses the difference
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between the maximum and the minimum pitch height in an utterance or sequence of ut-
terances (e.g. Patterson 2000). Two different measurements were taken for the retellings
and story readings in the LeaP corpus:

• pitch range: average difference between the highest and lowest pitch in the entire
recording (in semitones)

• falls: average extent of pitch movement in falling nuclear tones in semitones
• rise: average extent of pitch movement in rising nuclear tones in semitones

In total, 910 falling and 803 rising nuclear tones were produced by the non-native
speakers of English and 86 falls and 30 rises were produced by the native English speak-
ers. The non-native speakers of German produced a total of 1.208 falling and 1.379
rising pitch movements, however, many of them were realized as steps up or down and
not as continuous pitch movements. The native speakers produced 112 falling and 61
rising pitch movements, also including steps up and down.

Distinct differences in pitch range exist between native and non-native speakers in
both languages. Table 5 illustrates that, although for both speaker groups the average
pitch range is smaller in the retellings than in the readings, the average pitch range in
native English is greater than that in non-native English in both speaking styles.

Table 5. Mean pitch range in the reading passages and the retellings and average extent of
falling and rising nuclear pitch movements in non-native and native English. (***=significant
at p<0.001; **=significant at p<0.01).

pitch range
reading

pitch range
retelling

fall rise

non-native English 12 10.3 3.64 4.129

native English 17 12.7 7.81 3.8

** *** ** n.s.

Table 5 further illustrates that the nuclear falls in non-native English, on average,
are significantly smaller than the nuclear falls produced by the native speakers of En-
glish. On average, native speakers’ falling pitch movements extend over 7.81 semi-
tones, which is more than twice as much as in the falls produced by the non-native
speakers. In contrast to non-native English, in native English, nuclear rises, on average,
are much smaller than falling nuclear pitch movements.

Native German also has a wider average pitch range than non-native German in both
reading passage style and the retellings. Similarly, in native German, falls have a more
pronounced slope than in non-native German. They extend over an average of 5.67
semitones in native German, but only 3.8 semitones in non-native German. The slope
of rises in native German is, on average, smaller than that of falls, which is a further
difference from non-native German.
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Table 6. Mean pitch range in the reading passages and the retellings and average extent of falling
and rising nuclear pitch movements in non-native and native German. (*=significant at p<0.05).

pitch range
reading

pitch range
retelling

fall rise

non-native German 12.7 13.12 3.8 4.98

native German 15.3 16.7 5.67 4.19

* * * n.s.

3 Perceptual Correlates of Foreign Accent

Studies in which the degree of foreign accent is rated by judges differ greatly in terms of
the procedures used to elicit and evaluate non-native speech. For example, raters are pre-
sented with different scales comprising a varying number of equal-appearing intervals,
often labeled as ranging from “very strong foreign accent” to “no accent, native-like”
and the type of non-native speech judged by the raters varies from readings of single
sentences to samples of spontaneous speech. In addition, the number and professional
background of judges in foreign accent rating tasks varies considerably. Nevertheless,
a number of studies have shown that native speakers as raters of foreign accent agree
to an acceptable degree in their judgments (Cunningham-Andersson & Engstrand 1989,
Thompson 1991, Munro & Derwing 1999, Piske, MacKay & Flege 2001, Moyer 1999).

A small number of studies has been concerned with the relationship between for-
eign accent ratings and specific linguistic parameters of non-native speech. Consonan-
tal features that have been identified to correlate with perceived foreign accent are the
voice onset time (VOT) of plosives in non-native English produced by Japanese and by
Brazilian speakers (Riney & Takagi 1999, Major 1987a) and the realization of conso-
nant clusters by Brazilian speakers of English (Major 1987b). Scheuer (2002) reports
that the non-realization of reduced vowels in unstressed syllables and other vocalic er-
rors correlate most strongly with negative evaluations of Polish speakers’ foreign accent
ratings. Cunningham-Andersson & Engstrand (1989) list 25 different phonological and
phonetic errors that contribute to the impression of a foreign accent in Swedish. Tajima,
Port & Dalby (1997) report that the intelligibility of Chinese-accented English sen-
tences was improved by changing the durational patterns of segments to native values.
Finally, Anderson-Hsieh, Johnson & Koehler (1992) found that accent ratings correlate
with syllable-errors and phoneme substitutions as well as the rated quality of the overall
prosody.

The present paper investigates the relationship between foreign accent ratings and
those acoustic properties of non-native speech identified as relevant for speaker clas-
sification in the previous section. For each speaker in the LeaP corpus, an accent rat-
ing was obtained. Seven native speakers of German, four female and three male, with
a mean age of 23.8 years and without a professional background in language teach-
ing or assessment rated speech samples by the 55 non-native speakers in the German
sub-corpus. The material consisted of an extract from the interview of about 30 seconds’
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length. The raters were informed that they were to rate the quality of the foreign accent
without reference to the speaker’s morphosyntactic abilities or possible idiosyncrasies
in the use of vocabulary. Prior to the experiment, the raters were provided with three an-
chor recordings representing a speaker with a very strong accent, a native-like speaker
and one with an average foreign accent each. The raters were given a 9-point scale
ranging from “very strong accent” to “native-like”. The experiment was web-based and
gave the raters the opportunity to listen to each of the recordings as often and as long as
they wanted.

For the English sub-corpus, only recordings with those non-native speakers aiming
at a British English pronunciation, as established in the interviews, were included. They
were rated by four male native speakers of British English (mean age 34.5 years) with-
out a professional background in language teaching or assessment, following the same
procedure as for the German experiment.

The following acoustic correlates of foreign accent were selected in the free speech
recordings and correlated with the foreign accent ratings:

• mls: mean length of stressed syllables
• mlr: mean length of reduced syllables (unstressed syllables with reduced or deleted

vowel)
• ratio full/red: mean durational ratio of all syllable pairs in which a syllable with a

full vowel is followed by a syllable with a reduced or a deleted vowel
• 3consclus: retention rate of all word-final three-consonant clusters and four-

consonant clusters
• artrate: articulation rate (total number of syllables divided by total duration of

speech)
• pitch range: average difference between the highest and lowest pitch in the entire

recording (in semitones)

Table 7 illustrates which of the acoustic properties of non-native speech correlate
with the mean accent ratings. It can be seen that only those properties of non-native
speech that have to do with speed of delivery correlate with the mean accent ratings
for the non-native speakers of German: the mean length of stressed syllables, the mean
length of reduced syllables and the articulation rate. Pitch range, cluster reduction and
vowel reduction measured in the ratio between adjacent full-vowelled and reduced syl-
lables do not correlate significantly with ratings of foreign accent. None of the acoustic

Table 7. Correlation of acoustic features with the mean accent rating for the non-native speakers
of German and the non-native speakers of English

mls mlr ratio
full/red

3consclus artrate pitch
range

German .46** .38* -.12 -.15 .-38* -.18

English .31 .27 -.3 .32 -.28 -.18
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measurements listed in Table 7 correlate with the accent ratings received by the non-
native speakers of English. It seems that raters base their judgments on other acoustic
cues than those listed in Table 7, although these were found to constitute areas of sys-
tematic divergence between native and non-native speech.

4 Summary and Conclusion

The objectives of the present paper were to examine whether and how speakers can be
classified into native and non-native speakers on the basis of the acoustic features of
their speech. In particular, it was investigated which acoustic features distinguish non-
native from native speech irrespective of the speakers’ first language and which of these
acoustic features correlate with human auditory judgments of the strength of foreign
accent. A comparative corpus analysis of native and non-native English and German
was carried out that focused on the acoustic properties of the general durational features
in speech rate, vowel reduction and consonant cluster reduction and on the intonational
parameters pitch range and pitch movement.

The results show that non-native speech varies systematically from native speech
with respect to general durational properties. In both English and German, native speak-
ers produce a significantly higher articulation rate and longer mean length of utterance
than non-native speakers. Overall, both stressed and unstressed syllables are longer in
non-native speech, which makes it slower than native speech. It was further found that
the non-native speakers’ speech rate varies with speaking style. In reading passage style
articulation rate is significantly faster than in the story retellings and the mean length
of utterance is longer. This constitutes another area of difference between non-native
and native speech, as differences in speech rate between speaking styles are far less
pronounced in native speech.

The second prominent difference between native and non-native speech lies in the
realization of vowel reduction and deletion. In particular, this concerns the lack of du-
rational difference between syllable pairs in which a syllable with a full vowel precedes
a syllable with a reduced or deleted vowel. Only in about a third of the recordings con-
tained in the LeaP corpus, the durational difference between those two types of syllables
equals that of native speech. Lack of vowel reduction is especially evident in non-native
English. Whereas the non-native speakers of German produce the same overall amount
of reduced or deleted vowels than the German native speakers, non-native speakers of
English do not succeed in a relatively sufficient reduction or deletion of vowels.

The third line of research concerned the reduction of consonant clusters in non-native
speech. On the whole, word-final consonant clusters in non-native English are likelier
to be retained, i.e. to be produced faithfully, than to be simplified by reduction. The
greatest difference between word-final cluster reduction in native and non-native En-
glish lies in the reduction of three-consonant clusters, which are nearly always reduced
in native speech but produced faithfully in about a third of all cases by the non-native
speakers. Furthermore, in native English, the reduction rate of consonant clusters in
function words is much greater than in non-native English. Non-native German does
not differ from native German in terms of word-final cluster reduction.
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The fourth acoustic feature analyzed in non-native speech was pitch range. Pitch
range in non-native speech is, on the whole, narrower than in native speech. However,
the analysis of native pitch range in the LeaP corpus showed distinct differences with
speaking style in English. Reading passage style is characterized by a pitch range that
is on average five semitones wider than that of the retellings. This is mirrored in non-
native English where pitch range, on average, is also wider in reading passage style
than in the semi-spontaneous speech in the retellings. No such variation of pitch range
with speaking style was found for either native or non-native German. Another signifi-
cant difference between native and non-native speech lies in the phonetic realization of
utterance-final falling tones, which are shorter in non-native speech. A comparison of
nuclear falls and rises shows that the non-native speakers’ falls tend to be shorter than
their rises, that is the pitch movement stretches over fewer semitones. In native speech,
in contrast, the pitch movement of falls is distinctly greater than that of rises.

The second aim of the present paper was to find acoustic correlates of human foreign
accent ratings. Of those acoustic features of non-native speech that had proven to vary
systematically between native and non-native speakers in the previous analyses, how-
ever, only the general durational properties such as articulation rate and mean length of
syllables correlated with native speaker ratings of the degree of foreign accent. Vowel
reduction, consonant cluster reduction and pitch range did not seem to influence the
accent ratings given by native speaker judges. This finding replicates results described
by Neumeyer, Franco, Weintraub & Price (1996). They investigated a number of acous-
tic properties such as segmental accuracy and timing scores of non-native French and
their correlation with native speakers’ pronunciation ratings and found the only reliable
relationship between durational properties and accent ratings. Yet, the present paper did
not include an analysis of segmental deviances in non-native speech. It is likely that
apart from durational values other acoustic cues guide the decision of native judges
of foreign accent, for example phonemic substitutions and other segmental processes.
This was shown by Cunningham-Andersson & Engstrand (1989), who isolated various
phonetic and phonological features in Swedish that were reliably identified as “foreign
accented” by native speaker judges and by Moyer (2004), whose native speaker judges
listed a number of phoneme substitution errors as criteria for their ratings of accent in
German.

In conclusion, the present paper showed that there are a number of general acoustic
features of non-native speech that differ significantly from native speech. The most valid
of them are features of speech rate as demonstrated in the correlation with human judg-
ments of foreign accent. However, before these findings can be applied directly for an
(automatic) speaker classification one needs to consider that the method of a quantita-
tive corpus analysis has the drawback that it cannot do justice to the speech of individual
non-native speakers. Not every non-native speaker has a foreign accent as many studies
have shown: some speakers who acquire a language as late as in their twenties are indis-
tinguishable from native speakers even in strict experimental conditions (e.g. Bongaerts
et al. 1997, Moyer 1999). Qualitative analyses of individual speakers’ speech properties
thus need to complement quantitative corpus analyses. The group values presented here,
for example, disguise that of the 46 non-native speakers of English, 12 produce a pitch
range similar to that of the native speakers and 14 produce falls and rises with a slope
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equal to that of the native speakers. Likewise, 12 of the German non-native speakers
produce falls and rises that are phonetically identical to those of the native speakers.
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Abstract. Information about the age of the speaker is always present in
speech. It is used as perceptual cues to age by human listeners, and can
be measured acoustically and used by automatic age estimators. This
chapter offers an introduction to the phonetic study of speaker age, with
focus on what is known about the acoustic features which vary with age.
The age-related acoustic variation in temporal as well as in laryngeally
and supralaryngeally conditioned aspects of speech has been well doc-
umented. For example, features related to speech rate, sound pressure
level (SPL) and fundamental frequency (F0) have been studied exten-
sively, and appear to be important correlates of speaker age. However,
the relationships among the correlates appear to be rather complex, and
are influenced by several factors. For instance, differences have been re-
ported between correlates of female and male age, between speakers of
good and poor physiological condition, between chronological age and
perceived age, and also between different speech sample types (e.g. sus-
tained vowels, read or spontaneous speech). More research is thus needed
in order to build reliable automatic classifiers of speaker age.

Keywords: Speaker age, Phonetics, Acoustic analysis, Acoustic corre-
lates.

1 Introduction

Every human being goes through the process of ageing. This is a very com-
plex process, which affects us in numerous ways, including the way we speak.
Our voices and speech patterns change from early childhood to old age. Al-
though most changes occur in childhood and puberty, age-related variation can
be observed throughout our adult lives into old age. Consequently, our age is
reflected in our speech, and speaker age can be – and has been – studied us-
ing several methodological approaches, mainly acoustic analysis and perception
experiments.

This chapter offers an introduction to the phonetic study of speaker age, with
focus on acoustic variation. First, a summary is given of the age-related changes
in the speech production mechanism, followed by short reviews of the study of
speaker age from a perceptual and machine recognition perspective. The main
part of the chapter comprises an overview of several known acoustic correlates of
adult speaker age, including an overview of factors influencing these correlates.

C. Müller (Ed.): Speaker Classification I, LNAI 4343, pp. 88–107, 2007.
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2 Ageing of the Speech Production Mechanism

From young adulthood to old age, the speech production mechanism undergoes
numerous anatomical and physiological changes, which have not all been fully
explored. For instance, there are substantial gender differences in the extent
and timing of the ageing process [1,2]. Moreover, the physiological differences
between individuals seem to grow with advancing age [3]. It is also important,
but sometimes difficult, to distinguish among age-related, disease-related and
environment-related changes in speech. Linville [4,2,5] has provided excellent
reviews of the numerous changes occurring in speech as we grow older. This
section is mainly based on her work.

2.1 Respiratory System

Changes in the respiratory system affect speech breathing as well as the voice.
The respiratory system reaches its full size after puberty but continues to change
throughout adulthood to old age. Changes include decreased lung capacity
(mainly due to loss of elasticity in lung tissue), stiffening of the thorax and
weakening of respiratory muscles.

2.2 Larynx

The age-related changes of the larynx after it has reached its full size in puberty
are numerous, and they affect mainly fundamental frequency and voice quality.
Ossification of cartilages occurs later and is less extensive in females (fourth
decade) than in males (third decade), while calcification probably occurs later
than ossification in both females and males (cf. [6,7,8,9]).

Muscle atrophy occurs in all intrinsic laryngeal muscles. As research has fo-
cused on the vocal folds, we do not know to which extent other intrinsic muscles
are affected. Whether there are any gender differences is also still unclear. The
changes in the complex structure of the vocal folds with increased speaker age
are substantial. Besides general degeneration and atrophy, the folds shorten in
males (particularly after age 70). Also, the epithelium (the thin outer protective
layer of tissue) thickens progressively in females, especially after age 70, while
it thickens in males up to age 70 but then grows thinner again. The mucous
glands reduce their secretions, leading to less hydrated vocal folds, particularly
in males. There also seems to be some evidence of laryngeal nerve degeneration,
as well as some changes in the blood supply to the laryngeal muscles.

2.3 Supralaryngeal System

Changes in the supralaryngeal system may also affect speech. The craniofacial
skeleton grows continuously by about 3–5% from young adulthood to old age.
Muscle atrophy occurs in the facial, mastication and pharyngeal muscles. A
slight lowering of the larynx in the neck increases the length of the vocal tract.
Extensive degenerative changes occur in the temporomandibular joint, including
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a gradual reduction in size and reductions in blood supply. In the oral cavity,
the mucosa grow thinner and lose elasticity, which is most apparent after age
70, and the mucosal surface roughens. Changes in the pharynx and soft palate
include thinning of the epithelium, muscle atrophy and decreased sensation. The
tongue surface becomes thinner and fissured, while the tongue muscles suffer
from atrophy and fatty infiltration, beginning in the second or third decade.

2.4 Neuromuscular Control

The effects of ageing on motor function can be observed in both the peripheral
and the central nervous system. They may affect speech rate, co-ordination of ar-
ticulators and breath support as well as the regulation of fundamental frequency
(F0). Peripheral changes include a type of “dying back” neuropathy, where the
distal ends of the nerve fibres are affected earlier. Also, the number of motor
units declines and conduction velocity slows down slightly.

Central changes include a decline in brain weight from age 20 to 90 by about
10% as well as a decrease in brain size. There are reports of decreases in the
number of nerve cells in the cortex as well as age-related changes in these cells,
which may slow down motor movements. In addition, dopamine levels in the
brain may decline by up to 50%, leading to slower sensorimotor processes.

2.5 Female and Male Ageing

In addition to what has already been mentioned, a few more words deserve to
be said about the differences between female and male ageing. These are often
related to the timing and extent of age-related changes throughout life. One ob-
vious difference is the dramatic changes occurring in males at puberty; another
is that females experience greater changes around menopause. Nevertheless, the
age-related changes in adults are generally greater in men than in women as
regards (1) the extent of laryngeal structure change, (2) fine-motor control of
laryngeal abductory and adductory movements, (3) tongue movements and (4)
speech rate. It has also been noted that the mucous membranes in the larynx
are more sensitive in females than in males and that females may thus be more
vulnerable to age-related changes in this respect (P. Kitzing, personal commu-
nication, 31 January 2006). On the other hand, men and women display similar
age-related changes in speech breathing.

3 Perception and Automatic Recognition of Speaker Age

Human listeners are able to judge speaker age at levels considerably better than
chance. A large number of perception tests have been carried out with a various
types of subjects, speech material and testing conditions. In recent years, a few
studies on machine perception (or automatic recognition) of speaker age have
emerged as well. This section briefly summarises human perception of age, and
also describes a number of experiments on automatic recognition of speaker age.
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3.1 Human Perception of Speaker Age

Most people are able to estimate an individual’s age from speech samples alone
at accuracy levels significantly better than chance [10,11,12,2], perhaps because
of constant confrontation with this task throughout our lives, e.g. when listening
to someone on the telephone or radio [13]. However, we are still unable to tell
exactly how well listeners are able to judge speaker age. The numerous perception
studies of speaker age have varied considerably in method and speech material, as
well as in speaker and listener characteristics, and the results are often difficult to
compare. Listeners’ choice of cues and the accuracy obtained seem to depend on
the type and length of the speech samples [14]. Moreover, the relationship of the
perceptual cues used by listeners in age estimation with the acoustic correlates
of chronological as well as perceived age has still not been fully established. In
fact, the cues used by listeners to estimate speaker age do not always correspond
to age-related changes which can be measured acoustically [4].

From a large number of studies concerning perception of speaker age, we
have learned that human listeners are fairly good at estimating the age of an
unknown (and unseen) speaker. Perceptual cues to speaker age include variation
in pitch, speech rate, voice quality, articulation and phrasing. Moreover, it is
likely that listeners use different acoustic cues and listening strategies when
estimating the age of female and male speakers. For instance, F0 seems somewhat
more important for the age perception of female speakers than of male ones [15].
In addition, stimulus duration (i.e. longer speech samples, regardless of speech
type) seems to be important when judging female speakers, while stimulus type
(i.e. spontaneous speech, regardless of duration) seems to be more important in
the case of male speakers [15].

Human perception of age is influenced by numerous phonetic as well as non-
phonetic factors, e.g. the physiological state of the speaker, the age of the listener
and the speech sample type. These factors have to be regarded in machine per-
ception of age as well.

3.2 Automatic Recognition of Speaker Age

Automatic recognition of age can be used to improve human–machine commu-
nication. If user age could be identified automatically, spoken dialogue systems
could adapt their communication behaviour. For instance, the system could use
more youthful language when talking to a teenager. It could also suggest age-
adapted information, such as tourist attractions or directions.

As the number of children and elderly people who use computers in their daily
lives increases, age-adapted speech recognition is becoming more important. Still,
research on automatic age recognition is relatively scarce [16]. One explanation
is that it certainly is not an easy task. Age cues are present in every phonetic
dimension, and they are hard to separate from other speaker variation charac-
teristics, such as physiological condition and dialect. This section summarises
the relatively few attempts to build automatic age estimators.
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Minematsu et al. [17,18] built automatic classifiers of perceived age (PA,
judged by 12 students) using linear discriminant analysis (LDA) and artifi-
cial neural networks (ANN) with mel frequency cepstral coefficients (MFCC),
ΔMFCC and amplitude derivatives (ΔPower) as features. Eighty-six speakers
(43 judged as elderly and 43 as non-elderly) were modelled using Gaussian mix-
ture models (GMM) and normal distribution (ND). Elderly speakers were cor-
rectly identified in 90.9% of cases using LDA. The classifier was then improved by
adding the features speech rate and local perturbation of power. This increased
the identification rate to 95.3%.

Shafran et al. [16] used hidden Markov model (HMM) based classifiers with
cepstral and F0 features to recognise gender, age, dialect and emotion from
a corpus consisting of 1,854 phone calls (65% female, 35% male callers) to a
customer care system. The corpus contained a total of 5,147 utterances with an
average length of 15 words divided into five age groups: (< 25, ≈ 25, 26–50,
≈ 50 and > 50). A trivial classifier assigning the most probable class label to
all test points (33.3%) served as baseline. Results for age were 68.4% correct
classifications using only cepstral features, and 70.2% correct using cepstral as
well as F0 features.

Minematsu et al. [19] conducted a study with male spekers (123 aged 6–12,
141 aged 20–60 and 143 aged 60–90). Thirty students in their early twenties esti-
mated direct speaker age from single sentences. Each speaker was then modelled
with GMM using MFCC, ΔMFCC and ΔPower as features. The two methods
used for the machine estimations showed almost the same correlation between
human judgements and machine estimation: the first method modelled PA as dis-
crete labels (0.89), while the second one was based on the normal distributions
of PA (0.88).

Müller et al. [20] compared six of the most common machine learning ap-
proaches for classification tasks – decision trees1 (DT), ANN, k-nearest neigh-
bour (kNN), näıve Bayes (NB) and support vector machines (SVM) – in a study
of automatic classification of age group using jitter and shimmer as features. 393
speakers (about 10,000 utterances from 347 speakers over 60 years, about 5,000
utterances from 46 speakers under 60 years; gender distribution: 162 females,
231 males), were used in the study. All six methods performed significantly bet-
ter than the baselines, which were simple classifiers always predicting the more
frequently occurring class (elderly: 88%, male: 59%). ANN performed best with
96.57% correct age group estimations.

Müller et al. also used Bayesian networks (BN) to integrate a gender classifier
with two age classifiers by first separately calculating the probability of a given
speaker being female or male as well as being elderly or non-elderly, and then
combining the results to obtain the most probable age and gender classification.
This approach reduced errors likely to occur in a sequential classifier (gender
first, then age), where failure to determine the correct gender strongly affects
the performance of a gender-specific age classifier.

1 C4.5 decision tree induction [21].
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Müller [22,23] further developed his approach for age and gender classifica-
tion under the name Agender, with target applications such as mobile shopping
and pedestrian navigation systems. Classification models were trained using the
same five machine learning techniques as in [20], i.e. DT, ANN, kNN, NB and
SVM, as well as an additional method: GMM. Features were extended to include
jitter, shimmer, F0, HNR (harmonics-to-noise ratio), speech rate (syllables per
second), and pause duration and frequency. The number of speakers was in-
creased to a total of 507 female and 657 male speakers, divided into four age
classes for each gender. The majority of the speakers were children and seniors.
The best accuracy for the four age classes was obtained with ANN (63.5%)

The author [15] carried out two studies with classification and regression
trees (CART) to learn more about which acoustic-phonetic features are impor-
tant in automatic age recognition. The first study used 50 features (e.g. measures
of F0, duration and formant frequencies) from the phoneme segments of 2,048
versions of one Swedish word (rasa ["KÀ:sa], ‘collapse’), produced by 214 females
and 214 males. The best CART for age group was 72% correct judgements, and
the best correlation between direct chronological and estimated age was 0.45.
Estimation accuracy was compared with that of human listeners. Although hu-
mans and CARTs used similar cues, the human listeners (mean error ± 8.89
years) were better judges of age than the CART estimators (± 14.45 years).

The second study used 748 speakers and 78 features to construct separate
estimators of direct age for female, male and all speakers. CARTs were built for
390 single features, 13 feature groups (consisting of all features for one phonetic
quality, e.g. F1, B1 and L1) and five larger feature groups of all prosodic, all
resonance, all inverse filtered, all spectral and all features. Results showed that
F0 and duration were the most important single features. Of 13 feature groups,
F0 and duration performed best for female speakers, while the formant groups
of F2 and F3 were best for the male speakers. For the larger groups, the CART
using all features was the best for female speakers, while the group with all
prosodic features performed better for the male speakers. The best estimator of
the second experiment (mean error ± 14.07 years) performed only marginally
better than the one from the first study.

To sum up this section, automatic age estimation attempts have used MFCC
as well as acoustic-phonetic features. The number and age range of speakers have
varied among studies, as has the type of speech samples, the method used and
the accuracy desired. In order to build reliable automatic age estimators, more
knowledge is needed about how different acoustic features vary with speaker age
for both genders as well as for different speech sample types and lengths.

4 Acoustic Correlates of Adult Speaker Age

A large number of acoustic features vary with speaker age. This variation is most
clearly observable in children, but information about adult speaker age can also
be – and has been studied from an acoustic-phonetic perspective. Acoustic vari-
ation has been found in temporal as well as in laryngeally and supralaryngeally
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conditioned aspects of speech. Moreover, the relationships among the numerous
acoustic correlates of speaker age appear to be rather complex, and are influ-
enced by several factors, of which several are further described in Section 5.

There are several comprehensive overviews of acoustic correlates of age. For
instance, [24] has summarised research up till 1987, and [4,2] has provided ex-
cellent reviews of known acoustic aspects of the ageing voice. Based on these
sources as well as on several other studies, this section gives an overview of the
acoustic features usually related to speaker age. Furthermore, in an attempt to
clarify which features have been found to be important age correlates, some of
the reported acoustic variation with increased age is summarised in Table 1.
Variation with chronological age (CA) as well as with perceived age (PA) in
women and men is described.

4.1 General Variation

Old women and men alike demonstrate a general higher intra-subject as well as
inter-subject variation of acoustic features when compared with young speakers.
For example, increased variation has been found in some F0 measures, as well
as in speech rate (e.g. phoneme duration and VOT), vocal sound pressure level
(SPL), jitter, shimmer and HNR [25,26,2]. More age-related differences have been
found for male than female speakers [27], and higher correlations of acoustic
features with PA than with CA have generally been observed [28]. Moreover,
correlations seem to vary with speech sample type [28].

4.2 Speech Rate

Temporal – static as well as dynamic – aspects of speech are strongly affected by
the age of the speaker. The speech rate is linked to segment (syllable, phoneme,
sub-phoneme, etc.) duration, to the number of speech segments per time unit
and also to pause duration and frequency. A large number of studies have found
a 20–25% decrease with older CA in speaking and reading rates. Increases have
been found in consonant, vowel and sub-phonemic (prevoicing, plosive closure
and release, vowel transition) durations as well as in pause duration and fre-
quency [29,30,24,31,32,33,34,35,2,28,15,36]. Women often demonstrate a smaller
decrease in speech rate with older CA than men, or none at all [15,37]. This
feature also appears to show a larger inter-speaker variation for female speakers
[15]. Slower speech rates, a larger number of breaths and longer pause durations
have been related to old male and female PA [28].

The results for the sub-phonemic segment voice onset time (VOT) are rather
confusing. Some studies have found elderly (CA) women and men to exhibit
shorter overall VOTs than younger people [29,31,38]. However, increased VOT
with older male CA has also been observed [26]. Other researchers have reported
only subtle differences and increased variation with advancing age [39,2,15]. It
has also been suggested that age-related differences in VOT is related to phonetic
context and perhaps even languages [40,15].
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Table 1. Some reported acoustic variation with increased chronological age (CA) and
perceptual age (PA) in female and male adult speakers (decr.: decrease, dur.: dura-
tion, flat.: flatter, freq.: frequency, incr.: increase, no: no change, sp.: spectral, steep.:
steeper). Please refer to the text for details (adapted from [15]).

Group Feature Variation with increasing adult age
Female Male

CA PA CA PA
variation incr. incr.

general
overall changes few more many more

syllables/second decr. or no decr. decr.
utterance dur. incr. incr. incr. incr.
phoneme dur. incr. incr.

speech rate
VOT incr., decr. or no incr., decr. or no

pause freq.&dur. incr. incr. incr. incr.

sound mean SPL no incr. or decr.
pressure max. SPL range decr. decr.

level (SPL) amplitude SD incr. or no incr. or no incr. or no incr.

first no or decr.,
mean F0 then decr., decr.

first decr., first decr.,

incr. or no
then incr. then incr.

F0 first incr., incr. or no first incr., then
F0 range

then decr. decr. or no
F0 SD incr. or no incr. or no incr., decr. or no incr.

tremor vocal tremor incr. or no incr. no

jitter & jitter incr. or no incr. or no incr. or no
shimmer shimmer incr. or no incr. or no incr. or decr.

HNR decr. or no varying or no
sp. noise

NHR incr. or no incr. or no incr. or varying

sp. tilt flat. or no steep., flat. or no
sp. energy sp. tilt (LTAS) steep. or varying flat. or varying
distribution sp. emphasis no or varying no or varying

sp. balance no no

F1 decr. or no decr. decr. or no decr.
F2 incr., decr. or no decr. incr., decr. or no decr.

resonance
F3–F4 decr. or no. decr. or no

F1–F3(LTAS) decr. no decr. decr.

4.3 Sound Pressure Level (SPL)

Conversational speech SPL (also called intensity level) appears to remain stable
or decrease slightly with increased CA, but has also been reported to increase
for men after age 70, even for speakers without hearing loss [41,24,42,2,15]. The
habitual SPL range in vowels is likely to increase with advancing female and
male CA, and may be an important correlate of speaker age [43,15,36]. However,
the maximum vowel SPL range seems to decrease in both women and men, while
minimum SPL levels increase for women (to the author’s knowledge, no studies
have been made concerning men) with advancing CA [31,2].
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Fig. 1. Speaking F0 and its standard deviation as a function of speaker age (1–90
years) for female and male speakers (source: [44])

4.4 Fundamental Frequency (F0)

F0 patterns in speech related to CA are different for women and men, as shown
in Figure 1. Female F0 has been found to remain fairly constant until menopause,
when a drop (of about 10–15 Hz) usually occurs. F0 then remains stable into
old age, but may also rise or lower slightly [45,46,27,47,4,43]. Observations of
decreasing F0 from age 20 to 50 in females have also reported [15,36]. A lower
F0 is also associated with older female PA [2,28]. In males, F0 lowers slightly (by
about 10 Hz) from young adulthood to middle CA, but then rises considerably
(about 35 Hz) with old CA [48,46,2,15,36]. Higher F0 has been reported to be
a cue to old male PA [33,2]. However, there are also studies which have failed
to find correlations between mean F0 and CA in men [3]. Moreover, the way
changes in F0 relate to perceptual cues is not in line with the above findings.
For instance, listeners have reported lower male F0 to be a cue to older age [2].
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Maximum phonational frequency range – i.e. the complete range of frequencies
which a speaker can produce, from the lowest (without creak) to the highest tone
(including falsetto) – expands in the lower end following menopause in females,
but is restricted in both the upper and lower ends later in life [49,2]. Contra-
dictory findings suggest that men either undergo similar changes in F0 range
as women [50,2], or that old and young males do not differ in F0 range unless
physiological condition and state of health are taken into account [3,51]. A larger
habitual F0 range has been observed for the vowel /a/ in both women and men
of old CA [43]. Relatively stable habitual F0 range values for both genders until
about the age of 60, followed by an increase (females) or decrease (males) have
also been observed [15].

4.5 Variation in F0 and Amplitude

Fundamental frequency and amplitude instability and variation are related to
various voice qualities. Jitter and shimmer (see p. 97) are often connected with
harshness, hoarseness or vocal roughness, while increases in the more gross
F0 variation, as measured in standard deviation (F0 SD), may cause vocal tremor
or a “wobbling” voice quality [24,52,2].

Higher F0 SD (with greater variation for females) has been found in both men
and women with advancing CA and PA [24,49,33,2,43], but sometimes only a mi-
nor correlation has been reported, or none at all [3,28,15]. Substantial increases in
fundamental amplitude standard deviation (Amp SD) have been demonstrated
in older men and women, and have been associated with both CA and PA [53,43].
However, relatively stable Amp SD values with advancing age have been reported
as well [15], and Brückl and Sendlmeier [28] found a strong positive correlation
with female CA and PA only in spontaneous speech but almost none in sustained
vowels or read speech.

Jitter and shimmer are defined as period-to-period fluctuations in vocal fold
frequency and amplitude, as shown in Figure 2, and they are considered to
be correlates of rough or hoarse voice quality. These features have often been
analysed in acoustic studies of age using a number of measures with varying
results. Although sometimes no correlation with age has been found for jit-
ter [51,32,54,55,15,36], other researchers have reported increased jitter levels for
older female and male CA (but not PA) [49,53,26,43,22]. However, higher and
more variable jitter values seem to be more related to physiological health than
to age [3,53,2,28].

Higher shimmer levels have been found for older female CA and PA as well
as for older male CA (independently of health) [3,51,53,26,43,22]. However, sta-
ble (females) or decreasing shimmer levels after age 40 (males) have also been
observed [15,36]. Other studies have found shimmer to correlate strongly with
CA and PA only in spontaneous speech samples (but not in read speech or in
prolonged vowels) [28]. Other studies have observed correlations of shimmer and
CA in sustained vowels, but only when 80-year-olds were compared with younger
age groups [55].
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gleichmäßige Frequenz

unregelmäßige Amplitude

gleichmäßige Amplitude

unregelmäßige Frequenz

shimmer

jitter

shimmer

jitter

irregular amplitude

regular amplitude

regular frequency

irregular frequency

Fig. 2. Irregularities (microvariations) in vocal fold movements can be measured as
shimmer (variation in amplitude) and jitter (variation in frequency) (after [22])

Linville [2] concludes that it is impossible to draw any firm conclusions as to
the effect of ageing on jitter and shimmer since several factors, including sound
pressure level, mean F0, analysis system differences and individual health and
fitness variables, appear to have a strong effect on these measures, especially in
women. Moreover, the large number of measures used for these features and the
differences in speech material used in various studies also appear to contribute
to the problem with comparison of results.

4.6 Other Voice Measures

Spectral tilt (ST), spectral emphasis (SE) and spectral balance (SB) are all
measures of the relative energy levels in different frequency bands of the spectrum
[56,57]. ST usually represents the slope – i.e. the difference between the energy
levels of two different frequency bands – of the source (inverse filtered) spectrum
in dB per octave. SE is a measure of the relative energy levels in the higher
frequency bands, while SB is often measured in four contiguous frequency bands.
The three measures have sometimes been defined differently [58,59,57,60].

ST has been observed either to flatten (i.e. the energy in the frequency band
4–5 kHz increased with female and male CA) in some vowels, or to remain
relatively stable until age 60 (females) or 80 (males), where an increase follows
[15]. A longitudinal study found a steeper spectral tilt in old men compared with
the same men when young [61]. SE and SB have been found not to correlate
significantly with CA [59,15].

The age-related variation of the energy distribution in long-term average spec-
tra (LTAS) has also been studied to some extent. An LTAS is an averaged spec-
trum of all voiced sounds across a relatively long speech sample. Elderly women
have been observed to have higher spectral levels at 320, 6080, 6240, 6400, 6560
and 6720 Hz but lower levels at 3040 and 3200 Hz than young women, and
a tendency for older women to have higher levels at 160 Hz has been found as
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well [62]. Somewhat higher female LTAS levels with advancing age have been
observed for 160 (but only from age group 40 to 70), 320 and 2240–2560 Hz,
while slightly lower levels with increased age were found at about 5920–7200 Hz
[15]. Differences in spectral amplitude have been found between old and young
men, too. Old males have demonstrated higher LTAS levels at 160 Hz and lower
levels at 1600 Hz than young males [62]. Moderately higher LTAS amplitudes
with advancing male age have also been found at 160 (but only for age group
40 to 70), 320 and 1760–2080 Hz [15]. A strong spectral attenuation of high
frequencies has also been observed in LTAS at older CA and PA in males, but
not in females [63].

Spectral noise is defined as the unmodulated aperiodic energy in vowel spectra
[2]. It is considered an acoustic correlate of breathy and harsh or hoarse voice
quality [64,65], and has been analysed using various methods. Visual analysis of
spectral noise in spectrograms has shown that this feature is much more strongly
correlated with physiological condition than with CA [66].

The harmonics-to-noise ratio (HNR) is a measure that quantifies the amount
of additive noise in the voice signal, and it can be calculated in several ways
[67,68]. The ratio reflects the dominance of the periodic level over the aperiodic
one, as quantified in dB. HNR has sometimes been reported to decrease with
older female CA [54], or to increase with younger male CA [69], while other
researchers have failed to find strong correlations with CA in females [69] or
both genders [70,15,36]. No studies exist (to the author’s knowledge) of HNR in
relation to PA.

Other measures of spectral noise used in acoustic studies of speaker age in-
clude the parameters VTI, SPI and NHR of the commercial voice quality analysis
software Multi-Dimensional Voice Program (MDVP, see e.g. [71]). Voice turbu-
lence index (VTI) is a measure of the relative energy level in high-frequency
noise. It is calculated as the average ratio of the inharmonic spectral energy in
the 2.85.8 kHz range to the harmonic spectral energy in the 0.074.5 kHz range.
Soft phonation index (SPI) measures the relative energy in low-frequency noise,
calculated as the average ratio of the lower (0.071.6 kHz) to the higher (1.64.5
kHz) frequency harmonic energy. The noise-to-harmonics ratio (NHR) is the av-
erage ratio between noise in the frequency band 1.5–4.5 kHz and the harmonic
energy in the frequency band 0.07–4.5 kHz; it is sometimes referred to as a low-
frequency harmonics-to-noise ratio [72]. Increased values for all three features in
women and men of older CA have been reported [43]. Other researchers have
failed to find strong correlations of these features with female and male CA
[73,15], though weak (NHR but not VTI) and strong (SPI) positive correlations
with female PA [28] or have also been observed.

Vocal tremor can be measured using the MDVP parameters FTRI (intensity
of the strongest frequency modulation) and ATRI (intensity of the strongest
amplitude modulation). FTRI (but not ATRI) has been found to increase
with both female CA and PA in vowels, but not in read or spontaneous
speech [28].
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4.7 Resonance Measures

Research has revealed that age-related changes in the supralaryngeal structures
provide acoustic cues to adult speaker age [10,13,74]. However, there are rela-
tively few studies of the age-related changes in the vocal tract resonance features.

Formant frequencies in vowels have been reported to lower with female and
male CA and PA owing to increased vocal tract length [75,76]. There also seems
to be a trend towards vowel centralisation (or reduction) for old CA [77,78].
It appears that some old speakers centralise more than others, suggesting an
increase in formant frequency variation across speakers of old CA [2]. Moreover,
different results have been observed for different vowels. F1 has been found to
decrease with older female age in [y:], and to drop substantially with age for
both genders at about age 40 in [E:], while other vowels ([a], [A:] and [u:]) did not
vary much with age in either gender [15,36]. In the same study, F2 was found
to increase with advancing age in [A:] and [E:] for both genders. In [a] and [u:],
F2 tended to decrease slightly, interrupted by increases and peaks at age group
40 in both genders. A fairly stable F2 was observed in [y:]. F3, F4 and F5 have
been found to show somewhat different patterns depending on gender and vowel
quality. Often (but far from always) decreases were observed from age class 20
to 30, followed by little change or a very slight increase, with an occasional rise
or fall after age 80 for one or both genders [15]. For PA, formant information
seems to lose its significance when F0 information is present [52].

Energy peaks in long-term average spectra (LTAS), corresponding to the av-
erage formant frequencies across all vowels in a speech sample, have been studied
by Linville and Rens [79]. They found a significant lowering of peaks 1, 2 and 3
(corresponding to F1–F3) with old female CA, and a significantly lower peak 1
(F1) in old male CA. Moreover, the age-related lowering of peaks was greater in
females than in males.

To sum up this section, previous research has found numerous acoustic corre-
lates of chronological and perceptual speaker age. Some features, such as mea-
sures of F0 and speech rate, have been found to be more important than others
and have thus been investigated to a larger extent. In addition, there are also
a number of factors which may also influence acoustic analysis of speaker age.
Some of these factors are described in the following section.

5 Factors Which May Influence Acoustic Analysis of
Speaker Age

Several factors (besides age) may affect the analysis outcome in acoustic studies
of speaker age. These are often related to the material and the methods used,
and may contribute to the divergent and sometimes even contradictory results
found in different studies. Differences have been reported between correlates of
female and male age, between speakers of good and poor physiological condi-
tion, between chronological age (the age of a speaker as measured in time from
birth) and perceived age (the mean age of a speaker as estimated by a group of
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listeners), and also between different speech sample types (e.g. sustained vowels
and read or spontaneous speech). This section offers a brief overview of some of
the factors which may influence analysis results.

5.1 Speaker-Related Factors

Speaker-related factors include physical (anatomical and physiological) attributes
such as gender, race, weight, health and physiological condition. Women and men
differ in several vocal characteristics. Some can be explained by anatomical differ-
ences while others, such as the paralinguistic use of breathy voice quality, appear
to be learned behaviours [80]. Differences in body physiology, vocal training and
medical condition may also affect the age-related variation in speech [3,81,82,83],
including effects of medication [61] and cigarette smoking [84]. For instance, smok-
ers generally exhibit lower F0 than non-smokers [85], while professional sopranos
and tenors have a higher F0 than age-matched non-singers [44]. Furthermore, age-
related differences in habitual F0 seem less prominent or even absent in singers and
other voice professionals [82].

Cultural, social and psychological factors, including speaker language, dialect,
sociolect, emotional state and attitude, may influence and even mask age-related
acoustic variation. For instance, there are language-related, dialectal and atti-
tudinal differences in habitual F0, HNR and shimmer levels [47,86]. Moreover,
consideration must also be given to the fact that voice settings are more or less
subject to swings in fashion [7], and that the pronunciation of a language is con-
stantly changing. Young individuals often wish to speak differently from their
parents [87]. One example is the increased use of the more open allophones [æ:]
and [œ:] of the /E/ and /ø/ phonemes in Swedish [88]. Another example is the
growing use of the glottal stop in British English [87].

5.2 Speech-Material-Related Factors

Speech-material-related factors include the number and age distribution of the
speakers and the duration and speech type (and number of speech types) of the
speech samples analysed. Fewer speakers will yield less reliable results, as will
an unbalanced (for age) speech corpus. Valid measurements of some features are
obviously obtained more easily from certain speech types. For instance, formant
frequencies are more reliably measured in sustained vowels than in connected
speech, and calculations of the average number of syllables per second are more
reliable in longer speech samples. Moreover, studies which have used more than
one speech type have sometimes found contradictory results for different speech
types. One example is Brückl and Sendlmeier [28], who found that vocal tremor
correlated with age in sustained vowels, but not in read or spontaneous speech.

5.3 Methodological Factors

Methodological factors, such as differences in recording and analysis equipment
and techniques, may strongly influence the outcome of acoustic analyses. One



102 S. Schötz

example concerns the vocal effort made by speakers to adapt to the distance to
a listener or a microphone, which may affect speech rate, voice quality, measures
of F0 and even some formant frequencies [89]. Different measurement techniques
could also be one reason why, for instance, it has not yet been possible to draw
any firm conclusions as to the effect of ageing on jitter and shimmer [2].

Another major methodological factor in acoustic studies of speaker age is
whether the findings are related to chronological or perceived age. In automatic
age recognition applications, the goal is in many cases to identify speakers’ ac-
tual CA, and not the mean PA as estimated by a group of listeners. However,
if only CA is considered in an acoustic study, no knowledge about the rela-
tive importance of the correlates to listeners will be gained [11]. On the other
hand, when the acoustic correlates of PA are examined, the age judgements
of a group of listeners – often quite small – will have to be trusted. Since PA
is a subjective measure, results may not be reliable, as listener characteristics
(gender, age, etc.) affect the age estimates. Thus, the purpose of each study or
application will have to determine whether CA or PA is chosen as the frame of
reference.

A connected question is whether we should use archival recordings in com-
bination with recent ones of the same speakers (longitudinal studies) or speech
samples from different speakers recorded close in time (cross-sectional studies).
Although it may be tempting to use longitudinal data because of the invariant
speaker-specific parameters, several aspects which may affect the results should
be regarded. Differences in recording equipment and technical sound quality may
yield unreliable results. Moreover, voice communication habits may change over
time, one example being that Australian women aged 18–25 years recorded in
1993 had significantly lower F0 levels than women of the same age recorded in
1945 [90]. Another example concerns VOT and F0 SD. Several cross-sectional
studies have reported that VOT decreased and F0 SD increased in males with
advancing age. However, in a longitudinal study of male speakers recorded twice
over a period of 30 years, [91] found the opposite results.

In spite of the numerous factors which may affect acoustic analysis, differ-
ent studies have agreed on several acoustic correlates of speaker age. However,
many experiments have varied in the number and choice of speakers and acous-
tic features, as well as in speech material and method. Some studies have re-
duced the effect of certain factors by controlling variables or by using a large
material.

In summary, speaker age is a very complex characteristic of speech. It leaves
traces in all acoustic-phonetic dimensions and it is influenced by numerous other
factors, such as physiological condition. Studying it is by no means a trivial task.
The studies carried out so far have varied greatly in the type of speech material
used (read, spontaneous, prolonged vowels etc.) as well as in analysis method
(number and kind of of features investigated). More research is needed with a
larger and more systematically varied material and methods to fully explore the
age-related acoustic variation in speech and to identify optimal combinations of
features for automatic recognition of speaker age.
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64. McAllister, A., Sundberg, J., Hibi, S.: Acoustic measurements and perceptual eval-
uation of hoarseness in children’s voices. Logopedics Phoniatrics Vocology 23, 27–38
(1998)

65. Kreiman, J., Gerratt, B.R.: Perception of aperiodicity in pathological voice. Journal
of the Acoustical Society of America 117, 2201–2211 (2005)

66. Ramig, L.A.: Effects of physiological aging on vowel spectral noise. Journal of
Gerontology 38, 223–225 (1983)

67. Krom, G.d.: A cepstrum-based technique for determining a harmonics-to-noise
ratio in speech signals. Journal of Speech and Hearing Research 36, 224–266 (1993)

68. Boersma, P.: Accurate short-term analysis of the fundamental frequency and the
harmonics-to-noise ratio of a sampled sound. In: Proc. of the Institute of Phonetic
Sciences, vol. 17, pp. 97–110 (1993)

69. Wang, C.C., Huang, H.T.: Voice acoustic analysis of normal Taiwanese adults. J.
Chin. Med. Assoc. 67, 179–184 (2004)
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Abstract. In this chapter, we consider a range of issues associated with
analysis, modeling, and recognition of speech under stress. We start by
defining stress, what could be perceived as stress, and how it affects the
speech production system. In the discussion that follows, we explore how
individuals differ in their perception of stress, and hence understand the
cues associated with perceiving stress. Having considered the domains of
stress, areas for speech analysis under stress, we shift to the development
of algorithms to estimate, classify or distinguish different stress condi-
tions. We will then conclude with revealing what might be in store for
understanding stress, and the development of techniques to overcome the
effects of stress for speech recognition and human-computer interactive
systems.

Keywords: stress classification, pitch contours, Teager energy operator,
robustness in speech recognition, Lombard effect, hidden Markov models,
speech technology.

1 Introduction

Speech production involves a sequence of complex coordinated articulator move-
ments, airflow from the respiratory system, and timing of the vocal system phys-
iology. While speech is produced by changes in the articulator positioning, some
utterances produced will not be similar in all respects for a speaker. This is
because in many situations, the subject is under some type of emotional stress
which will impact the utterance causing a deviation in the articulator move-
ments. In human communications, listeners can handle or process these sub-
tle changes far better than the automatic human-machine interface. We have
yet to fully comprehend the aspects associated with stress and its effect on hu-
man speech production, perception and its impact on automatic speech systems.
Thus, speech is a complex signal in a way that encodes information about the
speaker, his/her state, acoustic environment, the person’s intention, their lan-
guage background, accent and dialect aspects, and further para-linguistic knowl-
edge.

The main focus of this chapter is to define stress and then move on to show its
impact on the speech production system, and thus on the speech systems used
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for speech recognition and speaker recognition. Specifically when considering
robustness in speech recognition systems, the disparity between the training
and test utterance significantly impacts performance. An attempt to understand
the effect of stress on the human production system will certainly improve the
performance of speech recognition systems as well as help in synthesizing speech
to simulate emotions.

Before considering analysis and system development, it would be useful to
define the “stress” elements of speech. Defining “stress” is a difficult problem
because it represents a continuum and is not necessarily a binary decision. In
general, a single definition cannot encompass all circumstances. Most definitions
might be considered somewhat vague for practical uses. In spite of this, our
definition will emphasize aspects from the science of linguistics – emphasis given
to a syllable. Hence, we use the phrase, “speech under stress” to imply that the
subject is speaking under some form of pressure which results in an alteration of
the speech production process. The speech occurring under a condition which is
devoid of stress, devoid of pressure is termed as “speech under neutral condition”.
Hence, stress is a psychological state that is a response to a perceived threat
or task demand and is normally accompanied by specific emotions (e.g., fear,
anger, anxiety, etc). These changes can affect speech behavior, even against
an individual’s will. Thus, any deviation in speech with respect to the neutral
style, whether it is speaking style, word selection, word usage, sentence duration
is termed as speech under stress. Therefore, speech under stressful conditions
refers to speech spoken under some environmental factor or emotional state
which perturbs speech production from a natural, conversational framework.
There are many situations where the physical and mental conditions of a speaker
can change. Some would include police/fire/ambulance personnel responding to
emergency situations, military personnel in either peacekeeping or other military
operations. Air traffic controllers represent another group who rely on voice
communications in time sensitive stressful conditions. Stress is induced by high
cognitive workload, sleep deprivation, frustration over contradictory information,
emotion such as fear, pain, psychological tension, and other modern day multi-
tasking conditions. Other areas with greater levels of emotions occur include:

1. Forensics – deception detection systems, analysis of 911 phone calls that can
include threats [1,2].

2. Safety and Security – air traffic controllers and pilots in noisy high stress
environments, deep sea divers, NASA-space explorations, power system op-
erators, [1,3,4,5], military persons facing examination panel [6,7], law en-
forcement training [8].

3. Psychology – emotional state of patients [9,10].

There have been a number of studies on workload or cognitive task stress and
efficiency in noisy environments [3,11].

As shown in Figure 1, speech production and the speaker are affected by
various components which include stress caused by cognitive load or physical
load, Lombard effect due to the noisy environment, accent change and language
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Fig. 1. Effect of stress and other components on speech and speech system

variability. These diverse factors or conditions degrade automatic speech sys-
tem performance as well as human speech perception. We note that in adverse
noisy, stressful situations where speech technology such as speech recognition,
speaker verification, or dialog systems are used, addressing noise is not sufficient
to overcome performance losses. In noisy stressful scenarios, even if noise could
be completely eliminated, the production variability brought on by stress, in-
cluding Lombard effect has a much more pronounced impact on speech system
performance (as will be shown in this chapter).

As voice technology continues to mature, it becomes increasingly important
to understand how stress and emotion influence speech production in actual
environments. From a communications standpoint, it is clear that there are three
distinct domains of speech under stress that include:

(i) physical speech production
(ii) hearing and human perception, including assessing if a subject is under

stress, and,
(iii) speech system and technology – feature variation from the acoustic signal

for speech and speaker recognition.

2 Domains of Speech Under Stress

2.1 Domain A: Production

Stress is a psychological state that is a response to a perceived threat or task
demand and is accompanied by specific emotions (e.g., fear, anxiety, anger).
The verbal indicators of stress could be identifying speech markers of stress
(e.g., stuttering, repetition, and tongue-slip). Verbal markers of stress range
from highly visible to invisible markers as perceived by the listener and that
these markers are continuously monitored both consciously and subconsciously
by the speaker and thus prone to correction [9].

Respiration is frequently a sensitive indicator in certain emotional situations.
When an individual experiences a stressful situation, his respiration rate in-
creases. This presumably will increase subglottal pressure during speech, which
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is known to increase fundamental frequency (or pitch) during voiced section [8].
An increased respiration rate also leads to shorter duration of speech between
breaths which would affect the temporal pattern (articulation rate). The dry-
ness of the mouth found during situations of excitement, fear, anger, etc., can
also effect speech production (e.g., muscle activity of larynx and condition of
vocal cords). Muscle activity of the larynx and vibrating vocal cords directly
affect the volume velocity through the glottis, which in turn affects fundamental
frequency. Other muscles (for example those controlling the tongue, lips, jaw,
etc.) shape the resonant cavities of the vocal system and therefore do not have a
direct influence on fundamental frequency, though they do contribute to changes
in speech production under stress.

It is logical to postulate that if an individual is in a situation where the speed
of task completion is critical (e.g., pilot flying an aircraft, air traffic controller),
overall duration of utterances would also change under stressed conditions. It has
also been suggested that under noisy conditions (Lombard effect), speakers vary
their speech characteristics so that portions rich in information are emphasized,
and those less important to intelligibility de-emphasized [3,12,13,14,15]. The
control of vocal intensity is based on adjustments of laryngeal and subglottal
variables. Speakers usually vary their intensity in typical speech production to
affect suitable speech intelligibility for human communication [16].

Table 1. Quantifiable / Subjective cues in speech under stress. * The connection
between the “observation/feature” and whether it is measurable implies that the stress
component can be easily relayed by the speaker and perceived by the listener

OBSERVATION / FEATURE MEASURABLE

Stuttering, repetition, tongue-slip, pauses between
utterances, speed of word production

Quantifiable*

Energy, intensity, pitch (fundamental frequency) Both quantifiable and sub-
jective

Formant locations / structure (vocal tract), glottal
structure (spectral slope), duration

Mostly subjective, but can
be measured

Stress has a continuum of observability from the standpoint of the speaker
and listener [19]. Changes in speech production which are clearly observable from
the speaker, such as a dramatic increase in pitch, are equally observable to the
listener. If a speaker wishes to conceal his/her stress, other production changes
which are less observable may be altered instead (e.g., on roller coaster rides it
is socially acceptable to scream, while in formal speech a speaker may try to
maintain pitch and intensity, but adjust less observable markers such as glot-
tal spectral slope). From a communication standpoint, stress could impact the
physiological properties of production (i.e., a pilot or person on a roller coaster
in high-G force physical movement), environmental factors such as background



112 J.H.L. Hansen and S. Patil

Fig. 2. Effect of stressors on speech production process [17,18]

noise (e.g., Lombard effect), or cognitive factors (e.g., person on the witness
stand in a court trial) which could impact word selection.

Therefore, the speech production system can be affected by different stressors
which play different roles in the formulation of speech production from word
selection, grammar and sentence structure, and physical phoneme/word pro-
duction. Figure 2 highlights the levels where speech communication/production
occurs and their corresponding stress order [17,18]:

1. physical stressors – changes in the vocal apparatus caused due to vibration,
movement or G-force, such that it directly affects the articulators.

2. Unconscious physiological stressors – stress causing changes in breathing rate
or muscle tension. This might be caused by chemical effects, sleep deprivation
or fatigue.
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3. Conscious physiological stressors – stress causing increase in vocal effort,
increase in voice so as to make oneself heard. This might be due to a noisy
environment, experience, or emotion.

4. Internal stress feedback stressors – stress causing changes in vocal effort,
mostly caused under the situation which might be interpreted as a threat to
one’s existence or some perceived conflict/threat.

2.2 Domain B: Perception

Research in speech quality and intelligibility has shown that consonant presence
plays a major factor in a listener’s ability to perceive the speaker’s information
content. Therefore, under stressed conditions, a speaker presumably may adjust
consonant structure including increasing duration or intensity to give/emphasize
additional acoustic cues to the listener. The most important part is that while
lexical stress clearly influences duration, the listener will perceive the same ut-
terance with different prosodic content across different stress conditions.

Listeners can identify the “stress markers” in the speaker’s message even if
these are not obvious. The listener will perceive the signal not merely based on
the acoustic signal but using para-linguistics obtained in the context of the con-
versation, as well as based on his experiences [20]. Therefore, it is important that
the speech is perceived in an appropriate manner and that a speaker should in-
sert the appropriate cues within the signal as well as having the listener perceive
the utterance in the proper way.

2.3 Domain C: Speech Systems

Speech systems including automatic speech recognition, automatic speaker
recognition, speech synthesis, and speech coding / communication systems are
all impacted by speech under stress [3,21,22,23]. In the presence of background
noise, the speaker will alter his speech in order to communicate more effectively
across a noisy environment (this is the Lombard effect). The effect of ambient
noise has been suggested to be different for a male speaker versus female speaker
[14,15]. In some cases, the situational stress or workload task stress will alter the
speech, such as the case if a speaker is experiencing anger, fear, or a pilot flying
an aircraft.

As described in Figure 1, the speech signal will be altered by cognitive stress,
environmental noise, microphone mismatch which include the speaker, environ-
ment, and speech technology employed. These factors all impact the training
conditions and therefore will deteriorate the speech systems’ performance. If the
system is trained with speech from one domain and another one is used for
testing, the difference in frequency response causes degradation in the speech
system performance. This frequency mismatch can be due to speech production
changes caused by stress, microphone mismatch, or communication channel mis-
match. Generally speaking, microphone or channel mismatch can reasonably be
addressed with a static frequency compensation. Speech under stress however,
will require a more intricate compensation scheme over the phoneme sequence.
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As part of this chapter, we will focus on speech under stress which also includes
the effect of the noisy environment on speech. If we consider a task such as
speech recognition, speech under stress will impact robustness. However, for a
speech synthesis system, the primary focus is to produce human-like speech,
although the ability to impact stress or emotions associated with speech for
the synthetic voice can be helpful for some applications. For speech coding, the
coding system may not preserve the stress content of the speaker and make
this part of communication less effective. For the task of speaker recognition,
changes in speaker traits will be difficult to identify and address if the system
is trained on neutral data. Hence, a hard binary decision on the type of and
extent of stress associated with the speech signal can be helpful in developing
more effective speech technology that can be employed in situations where stress
/ cognitive load / multi-tasking / physical stress / emotion is common place.

3 Analysis

If we consider the range of potential speech characteristics, which could be ana-
lyzed for speech under stress, fundamental frequency (or pitch) has historically
been the most widely studied. Probably the most extensive early study that fo-
cused on analysis was Williams and Stevens [24], while an extensive number of
studies have followed since that landmark contribution (see Table 2).

Over the last twenty years, CRSS and earlier variations of our group have
performed an extensive level of research on the analysis of speech under stress,
algorithm development for detection of stress, speech recognition under stress,
and human perception of speech under stress. These studies have concentrated
on the SUSAS corpus for the majority of the research [25]. More recently, we have
considered other realistic conversational corpora including CU-Move (in-vehicle
route navigation dialog), FLETC corpus (police/military training scenario), and
UT-SCOPE (speech under cognitive and physical stress conditions) [20,23,26].
The comprehensive feature domains focus on speech production including: funda-
mental frequency, intensity, duration, formant locations, spectral slope, including
an extensive range of features such as traditional MFCCs features and nonlinear
TEO-based features.

3.1 Analysis of Fundamental Frequency

Characteristics of fundamental frequency (f0) include contours, mean, variabil-
ity, and distribution. A subjective evaluation of more than 400 f0 contours was
conducted across all stress conditions from SUSAS [21,27]. Although f0 contours
indicate excitation differences between styles, they do not reveal significance for
particular variations. Moment analysis results, shown in Table 3 include a com-
parison in mean, variance, standard deviation, average deviation, skewness, and
kurtosis. The Student t-test results applied to a pairwise comparison with f0

data from above show that mean values deviate significantly from neutral as
well as most other styles. Speaking styles such as loud and angry showed the
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Table 2. Previous studies performed on Speech under Stress

Parameter studied Analysis

Fundamental frequency contours and
its variability

Stress conditions: anger, sorrow,
fear [1,2,24]

Mean articulation rate in syllables Anger, sorrow, fear [1,2,24]
Lombard effect speech [14,15]
Vibration space shift rate (VSSR) from
speech spectrograms

Fundamental frequency [3]

Monitoring heart rate and spectral cen-
troid of first formant

Need for further research [20]

Pitch, amplitude, timing measurements Elevated pitch and amplitude, and
increased variation [5]

Fig. 3. Fundamental frequency (pitch) distributions across different speaking styles
and stress conditions

widest deviation from neutral. Mean fundamental frequency is a good indicator
over a wide variety of stress conditions. Loud, angry, and Lombard mean funda-
mental frequency are all significantly different from neutral as well as all other
styles considered.

From Table 3 and Figure 3 and F-test statistical analysis, we can concur for
most cases, fo variance is shown to be significantly different from neutral as well
as many other styles, and therefore is a good differentiating stress parameter.
Pitch variance is not reliable for moderate versus high computer workload task
(COND50 vs. COND70) conditions, and for slow and fast stress speaking con-
ditions. Though the pitch distributions from Figure 3 are generally bimodal,
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Table 3. Analysis of Fundamental frequency over various speaking styles and stress
conditions

Stress
Condition

Mean
Value

Max.
Value

Min.
Value

Ave.
Dev.

Stand.
Dev.

Var. Skew. Kurt.

Neutral 142 182 116 13.4 15.4 239 0.22 -0.98
Slow 140 174 114 12.7 14.6 212 0.27 -1.10
Fast 149 186 121 11.9 14.0 195 0.19 -0.80
Soft 135 267 114 5.2 9.7 93 7.02 86.5
Loud 209 276 113 37.9 44.1 1944 -0.54 -0.97
Anger 283 400 96 44.3 56.3 3166 -0.38 0.44
Clear 150 211 103 19.1 22.1 489 0.23 -0.94
Cond50 140 205 111 13.7 16.2 263 0.41 -0.25
Cond70 143 216 111 13.7 16.3 266 0.34 0.01
Lombard 163 229 109 21.6 24.8 614 -0.25 -1.05

in certain stress styles (angry, question, soft, loud) the shape does deviate sig-
nificantly from neutral (as measured by Kolmogorov-Smirnov pairwise test for
distribution). We should note that contour shape of course plays a major role
for question style. We therefore conclude that while a range of f0 factors change
in stress speaking styles, mean and variance can be effective traits for stress
classification.

3.2 Analysis of Duration

In a previous study, it is shown that for stress conditions where time is of the
essence, word duration, as well as subword durations such as changes in vowels
versus consonants, and consonant presence, plays a major factor in a listeners’
ability to perceive the speaker’s information content [3,21].

As seen in Table 4, mean word duration as expected, increases for slow and
decreases for fast spoken speech. The duration of consonants, semivowels, and
diphthongs (to a lesser degree) remain constant in soft versus loud conditions,
vowel duration decreases slightly for soft speech, and increases significantly for
loud speech (as well as angry speech).

Upon more fine analysis, we observe significant changes in mean word du-
ration for several stress conditions and proposed that it could be possible that
overall word duration remains constant with shifts between consonant and vowel
sections. Mean vowel and consonant duration possess similar discriminating abil-
ities. Similarly, for variance, vowel and consonant classes continue to have reliable
stress discriminating power.

Since vowels and consonants show major changes across all stress styles, sev-
eral proposed discriminating features were proposed. The derived features are
consonant versus vowel duration ratio (CVDR), consonant versus semivowel du-
ration ratio (CSVDR), and vowel versus semivowel duration ratio (VSVDR)
for all the stress styles. Table 5 summarizes the results which illustrates shifts
in overall word duration, as well as movement between vowel, semi-vowel, and
consonant classes [3,21].
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Table 4. Word and Speech Class Duration over various speaking styles and stress
conditions

Stress
Condition

Mean Duration (msec)

N Sl F So L A C C50 C70 Lom

Word 478 827 353 509 650 662 666 482 501 572

Vowel 160 294 115 147 253 271 202 148 147 198

Consonant 71 107 52 87 73 62 128 79 86 73

Semivowel 60 126 57 71 76 85 83 71 68 97

Diphthong 192 374 147 210 294 315 199 176 178 249

Stress
Condition

Duration Variance (msec)

N Sl F So L A C C50 C70 Lom

Word 18 49 12 16 28 41 40 16 14 24.0

Vowel 7.9 21 3.6 6.2 19 23 17 7.6 7.6 13.0

Consonant 1.8 7.1 1.1 2.9 3.7 3.3 10 2.5 3.3 2.6

Semivowel 0.7 7.1 1.0 1.3 2.9 7.8 3.2 1.7 1.4 4.3

Diphthong 3.3 14 1.0 1.1 5.6 7.0 3.3 2.4 3.4 3.5

Stress Style Key:

N – Neutral, Sl – Slow, F – Fast, So – Soft, L – Loud, A – Angry, C – Clear, C50
– computer task Cond50, C70 – computer task Cond70, Lom – Lombard effect

CVDR and CSVDR suggest that there is a shift in the percentage of time
spent in vowels and semivowels towards consonants for soft, clear, and to a lesser
degree the two computer task conditions (COND50 and COND70). These results
indicate that the presence of stress influences word and individual phoneme
duration characteristics.

3.3 Analysis of Intensity

Next, we consider analysis of intensity over stress speaking styles at the word
level and phoneme levels. To focus the intensity analysis on the core portion of
each phoneme, the phoneme boundary was reduced by 10% from both directions
towards the phoneme mid-point, with RMS energy found for each phoneme and
overall word. As expected, a marked increase resulted for loud and angry con-
ditions, while soft, clear, and speech under the two computer task workloads
had reduced word intensity. Vowel intensity remained constant for slow, clear
and Lombard conditions, while consonant intensity increased for soft, angry,
question, and speech under two computer task workloads (see Table 6). Word
intensity possessed a good level of stress discriminating ability. However, exper-
iments show that for several stress styles, such as angry, duration and intensity
are interrelated. For detection of stress, mean RMS intensity is as successful
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Table 5. Analysis of Duration over various speaking styles and stress conditions

Stress
Condition

Analysis of Mean Duration (msec) and Ratios

Word Vowel Semivowel Consonant CVDR CSVDR VSVDR

Neutral 478 166 59.6 70.6 0.426 1.184 2.777

Slow 827 308 126 107 0.349 0.850 2.437

Fast 353 964 57.4 51.8 0.429 0.901 2.100

Soft 508 158 70.9 87.3 0.552 1.231 2.230

Loud 650 260 75.5 72.6 0.279 0.962 3.444

Anger 662 279 84.6 62.1 0.223 0.734 3.294

Clear 666 201 82.9 128 0.634 1.539 2.429

Cond-50 482 153 71.4 78.8 0.516 1.103 2.136

Cond-70 501 152 67.9 86.0 0.566 1.267 2.239

Lombard 572 207 97.3 73.1 0.353 0.750 2.214

as mean duration. Intensity variance across words or phoneme classes were not
consistently successful for stress detection.

3.4 Glottal Pulse Shaping

The spectral based characteristics from the glottal source and vocal tract re-
sponse are also impacted during speech production under stress. In this subsec-
tion, we focus on glottal source changes and in the subsequent section on vocal
tract response characteristics. Glottal spectral source factors which include spec-
tral slope, center of mass, and mean spectral level were analyzed as potential
acoustic correlates of speech under stress [21].

For glottal flow spectra under all the ten stress conditions, the shape of glottal
flow spectra are similar but differentiating features include spectral slope and
amplitude [12]. Typically, for Lombard and angry styles, variability in spectral
amplitude was observed in the 2 to 4KHz band. This generally implies a change
in the shape of the glottal pulses under these conditions.

Using linear regression, the spectral tilt information was extracted across the
glottal spectrum. Figure 4 summarizes that all speaking styles have a spectral
tilt significantly different from neutral. Based on spectral characteristics, under
certain stress conditions (loud, angry, and Lombard), glottal pulses will have
steeper slopes with sharper glottal pulse corners (or irregular shapes) caused
by a combination of changes in sub-glottal air pressure, vocal-fold tension, and
uneven or sudden closure of the vocal folds during phonation. Alternatively, for
slow and soft styles, glottal pulse shape will have gradual rise and fall times and
overall smooth shapes, resulting in reduced energy in high frequency content and
a steep spectral slope (-15dB/octave).

The analysis of glottal source spectrum revealed that parameters such as
spectral slope and the distribution of energy to be important for relaying stress.
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Table 6. Mean and Variance for Word and Speech Class Intensity over different speak-
ing styles and stress conditions

Stress
Condition

Mean Intensity (RMS)

N Sl F So L A C C50 C70 Lom

Word 7663 7982 7812 7277 10561 11307 7067 7075 6934 8286

Vowel 9610 9692 9404 9326 12002 12700 9786 8857 8996 9699

Consonant 1394 1481 1425 1866 1164 1562 1287 1592 1715 1401

Semivowel 10032 9323 9983 10072 9443 11629 8272 8498 8353 8322

Diphthong 10125 9989 10460 9393 14800 14724 10394 9807 9742 10913

Stress
Condition

Variance of Intensity (RMS)

N Sl F So L A C C50 C70 Lom

Word 12.3 8.5 10.1 16.0 31.2 50.7 6.5 9.2 8.3 16.8

Vowel 93.3 76.5 93.4 63.6 116 193 109 92.2 101 80.4

Consonant 21.8 32.1 20.1 35.8 26.0 33.6 24.9 24.1 33.1 23.9

Semivowel 128 106 136 102 231 571 75.7 162 187 152

Diphthong 38.7 14.6 29.0 22.1 17.3 19.5 23.6 23.2 30.8 8.4

3.5 Vocal Tract Spectrum

To study the effect of speech under stress on the vocal tract spectrum, the mean,
variance, and distribution of formant location and bandwidth across extracted
phonemes were analyzed [21].

The previous research found shifts in frequency content for subjects perform-
ing a timed arithmetic task [12,28]. The results were more pronounced for front
vowels than back vowels, with weaker third and fourth formants (reduced am-
plitudes) for the stress versus control conditions. We have found that when a
speaker is under stress, typical vocal tract movement is effected, suggesting a
quantifiable perturbation in articulator position.

Slow, loud, angry, and clear speaking styles show the widest shift in F1 for-
mant locations. F2 formant frequencies generally increase among most condi-
tions. Only slight changes occur for F3 and F4 locations across all styles. Formant
bandwidth show large variations in mean for the first two formant frequencies
with some changes for F3 and F4. The variance of formant location and band-
width also showed shifts, with especially large changes in variance for loud,
angry, and clear styles for F1. The changes in formant structure (location and
bandwidth) are seen in Figure 5 and Figure 6 for Lombard, angry and neutral
styles.

A series of Student T-tests were performed assuming both equal and unequal
variance. Mean shifts in formant location (F1, F2, and F3) for loud, angry, and
clear were significantly different from neutral. It was seen that styles which vary
in formant location, will also increase formant variability in conveying that stress
condition.
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Fig. 4. Special Tilt (Glottal Pulse Shaping) Left Axis: spectral slope in dB/Octave,
Right Axis: average spectral content in dB

Average formant location, average formant bandwidth and the variance of
these all display varying degree of stress relayer information.

4 Applications

As discussed in the previous sections, many environmental and situational factors
contribute to variation in speech production. Studies have shown that speech pro-
duced under stress causes significant loss in performance for traditional speech
recognition algorithms. Stress and emotional characteristics must also be cap-
tured and modeled in order to produce more natural sounding speech coding
and text-to-speech synthesis techniques. The importance in understanding how
speakers vary their production systems to convey emotional or task induced
stress has been shown in the previous section.

In the past, limited research has been conducted on the effect of stress on
speech systems. Based on our investigations, the speech aspect that appears to
provide the clearest indication of emotion or stress is fundamental frequency
over time. Although important for the analysis of speech under stress, variation
in pitch may not be a critical factor in attempting to reduce errors in traditional
speech recognition algorithms. However, if the analysis of such parameters were
to show statistically reliable indicators, it may be possible to formulate front
end analysis procedures to identify periods of high stress. Recent studies demon-
strate the potential for reliable stress classification via nonlinear, articulatory,
and speech production features [9,24,29,30,31]. Once a period of speech under
stress has been identified, a recognition system incorporating a compensation
procedure specific to that form of stress could be used [32,33,34,35].

Although some variation in duration may not seriously affect speech systems,
if the phonemes used for discrimination decreases in length, the probability of
word misclassification can increase. Similar problems could arise for an increase
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Fig. 5. Vocal tract spectrum for /IY/ phoneme

in duration in HMM modeling due to the finite number of states and numerical
accuracy available in computing state transition probabilities.

Today, commercial based speech recognition systems can achieve more than
95% recognition rates for large vocabularies in restricted paradigms with rela-
tively noise-free environments.

The issue of robustness in speech recognition can take on a broad range of
problems. A speech recognizer may be robust in one environment and inappro-
priate for another. The main reason for this is that the performance of existing
recognition systems which assume a noise-free tranquil environment (or train-
test matched conditions), degrade rapidly in the presence of noise, distortion,
and stress.

It is suggested that algorithms that are capable of detecting and classifying
stress could be beneficial in improving automatic recognition system performance
under stressful conditions. Furthermore, there are other applications for stress
detection and classification. For example, a stress detector could be used to
detect the physical and/or mental state of a pilot and that detection could put
special procedures in place such as rerouting of communications, redirection of
action, or the initiation of an emergency plan. To be able to detect and classify
stress, it is necessary to understand the effect of stress on acoustical features.

There are two processing stages in a stress detection system. In the first stage,
acoustical features are extracted from an input speech waveform. The second
stage is focused on detection of stressed speech from neutral using one or more
available methods.

A variety of methods exist for stress detection which include, but not limited
to, detection-theory based methods, methods based on distance measures, and
statistical modeling based techniques. A representative sample are presented in
this section. These methods include:
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Fig. 6. Formant Frequency Location and Bandwidth value and distribution

(i) Neural Networks with linear speech model-features,
(ii) Optimum Bayesian detection used for stress classification,
(iii) TEO-based nonlinear speech features for both stress classification and stress

assessment.

In the next section, we first focus on speech recognition in section 4.1 followed
by stress detection methods in section 4.2.

4.1 Speech Recognition

To improve the performance of speech recognition systems in stress and noise,
a number of methods have been considered including multi-style training, sim-
ulated stress token generation, training and testing in the same noise. While
these methods help in matched conditions, the results degrade as test conditions
drift from the base train condition. Some methods which address this drawback
focus on estimation of speech features in noise, adapting speech enhancement
techniques, and / or incorporating stress equalization [13,32,36]. The concept of
stress equalization is based on a processing scheme which operates on a param-
eter sequence that is extracted from the input speech under stress. The stress
equalization algorithm attempts to normalize the variation of the parameter
sequence due to the presence of stress on the input speech signal.

Stress equalization techniques are a front-end processing approach to improve
speech recognition under stress. The techniques can rely on maximum likelihood
compensation factors to project the input stress modified features into a neutral-
like space, where a neutral trained automatic speech recognition system is used.
Figure 7 illustrates the impact of stress and noise on speech recognition perfor-
mance [3,25]. We see that a basic speech recognition task in neutral, noise-free
conditions is significantly impacted by the presence of stress (e.g., an average
31% reduction in recognition accuracy), and stress and noise combined (e.g., an
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average 58% reduction in recognition accuracy). Lombard, loud and angry stress
styles in noise are significantly impacted. To address stress and noise, a combi-
nation two-tier approach was considered based on maximum likelihood stress
compensation algorithm directly on the speech features, combined with noise
suppression using Auto-LSP constrained iterative speech enhancement [3,37].
This combination scheme provided measurable levels of speech recognition im-
provement over noisy stressful conditions (see Figure 9, average accuracy im-
provement of 27%). A more rigorous stress compensation scheme developed for
MFCC cepstral parameters was shown to have an even greater performance im-
provement in noisy Lombard effect speech [33].

Due to the extensive level of research activity in robustness for automatic
speech recognition in stress and noise, it is not possible to consider even most of
the advances over the past 15 years. The overview study [25] provides an effective
and comprehensive step, and the interested reader is encouraged to consider the
extensive bibliography at the end of this chapter. Our intension here is to provide
a brief overview of the research topic in automatic speech recognition.

Another way to compensate for stress is to use a front-end artificial neural
network. Figure 8 illustrates the use of an artificial neural network (ANN) for im-
proving the performance under noisy stressful speech conditions. With a feature
enhancement ANN (FE-ANN), a unique FE-ANN is created for each keyword
model and further evaluated using a semi-continuous HMM recognizer followed
by a likelihood ratio test for keyword detection [12,25,38]. The results show that
a front-end ANN can provide consistent improvement for keyword recognition
under Lombard effect.

A more rigorous method to address stress was based on morphological con-
strained feature enhancement with an adaptive cepstral stress compensation
technique would be a third alternative studied for speech recognition systems
[33]. Figure 10 shows the improvement achieved with MCE with adaptive mel-
Cepstral Compensation. It should be noted that some features which are robust
for speech recognition in noise, may not be as successful in stress and those
successful in stress may not be as successful in noise. For example, linear pre-
dictive (LP) based MFCC features are more effective for speech recognition
under stress versus FFT based MFCC, FFT based MFCCs are more success-
ful for speech recognition in noise but performance decreases for speech under
high stress conditions (angry, loud, etc.) [36]. The studies here suggested that
effective speech features, compensation methods, and alternative training meth-
ods, can all lead to improved speech recognition performance in speech under
stress.

4.2 Stress Detection

Since the range of speech under stress can include several broad types, the do-
mains for stress detection in partitioned into the following four categories:

1. Speech under deception
2. Lombard effect detection
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Fig. 7. Application of stress equalization for ASR - VQ-HMM ASR system

Fig. 8. FE-ANN for robustness of Speech Recognition Systems

3. Cognitive Stress detection
4. Physical Stress detection

Certain systems use voice stress analyzers based on microtremors, which have
been shown to not be good indicators of stress [39,40].

4.3 Detection-Theory-Based Framework for Stress Classification

A Flexible framework for stress detection can be easily established using detec-
tion theory. For such a scheme, there are two hypotheses termed H0 and H1.
Under H0, the speech is neutral; while under H1, the speech is stressed. Given
an input speech feature vector, x, two conditional probability density functions
(PDF), p(x|H0) and p(x|H1), must be estimated. With these PDFs, the likeli-
hood ratio, λ, is defined as follows,
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Fig. 9. Robust Recognition under noisy and stressful speech [3,27]

λ =
p(x|H1)
p(x|H0)

(1)

The decision of whether the input speech is neutral or stressed is made by
comparing the likelihood or log likelihood ratio with a predefined threshold, β. If
the ratio is larger than β, the input speech is detected as stressed; otherwise the
input speech is classified as neutral. The value of β depends on the particular
criterion used for detection.

4.4 A Distance Measure for Stress Classification

The detection of stress versus neutral speech can also be achieved using a dis-
tance measure. For a given input observation speech feature vector and two prior
feature distributions (one for neutral, and one for stress), two distance measure-
ments can be obtained: the distance between the given vector and neutral speech
distribution, along with the distance to the stressed speech distribution adjusted
for variance. This distance measure reflects the proximity of the input sequence
to the distribution of general neutral or stressed speech feature data.

Previous CRSS studies have concluded that using individual speech features
for stress detection show a range in detection performance as summarized in
Table 7. Acoustical features such as duration, intensity, pitch, glottal source
information, and formant locations for vowels were studied for stress detection
performance using isolated words from the SUSAS corpus. The two methods for
detection include a traditional binary hypothesis detection-theory method, and a
dual PDF distance based method. Table 8 shows the results for stress detection
performance as the number of feature observations for detection is increased
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Fig. 10. MCE-HMM based Robust Speech Recognition system for stressful speech
under noisy conditions

from 1 to 10 [41]. In general, given the error rate levels for the three stress
classes tested, extensive experimental evaluation of stress detection at CRSS, we
conclude the following:

1. Vowel duration is not a good feature for stress detection.
2. For intensity, increasing the input vector length does improve performance,

especially for detecting angry and loud speech based on a detection-theory
algorithm. As for the distance measure approach, increasing the input vector
length does not always improve performance. The open-set test results also
show that both methods perform better for detecting angry and loud speech
versus detection for Lombard effect speech.

3. Compared to duration and intensity, pitch has much better performance for
stress detection. Either of the methods perform similar with pitch feature.

4. The open-set results from the detection-theory-based method show that
spectral slope (indicator of glottal source) is more suitable for detecting an-
gry speech than for detecting loud speech with Lombard effect from neutral
speech.

5. The features representing the vocal tract spectrum – formant location, are
not suitable for stress detection.
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Table 7. Stress Detection Studies using Traditional Features (Stress Conditions: Lom-
bard, loud, angry)

Feature set Stress/ Neutral Error Rates

Pitch 6-21 % variation
Glottal Spectral Slop 18-36 %
Intensity 18-36 %
Phone Duration 28-46 %
Formant Location

1st Formant 38-46 %
2nd Formant 50-58 %

Feature Fusion
Duration + Intensity + Mean Pitch 0-17 %

Table 8. Error Rates (%) of Open-set Pairwise Stress Classification using the combi-
nation of mean pitch, duration, and intensity as the feature

Vector
Length

Speaking Style of Submitted Test Speech Overall Error Rates

Neutral Angry Neural Loud Neutral Lom. Mean Std. Dev.

1 17.68 17.03 11.67 11.97 19.85 21.21 16.5 % 3.97

5 6.15 5.00 4.62 4.62 13.08 13.08 7.76 % 4.16

10 1.67 0.00 3.03 3.03 13.64 16.67 6.34 % 6.98

The results from this section provide a representative perspective on the use
of traditional speech production features for stress detection. Further studies
have focused on the fusion of multiple features, and the interested reader is
encouraged to explore the following references [6,7,8,9,17,30,31,41,42,43].

4.5 Neural Network Based Systems

Neural Network classifiers can also be employed for stress classification. A neu-
ral network based classification algorithm was considered for stress classification
using cepstral-based features which have traditionally been employed for recogni-
tion [30]. Mel-cepstral parameters represent the spectral variations of the acous-
tic signal. It is suggested that such parameters are useful for stress classification
since vocal tract and spectral structure vary due to stress.

Frame-based and word-level features performed in the ranged from 11-17 %
for a 35 word test set which is greater than chance (9 % for eleven stress types
in the SUSAS corpus). Most importantly, some stress conditions had reasonably
good classification performance [30].

Another study considered the most effective feature subset for each targeted
stress condition determined during a training phase emphasizing the most dis-
criminating features (out of 27 studied) for classification of each stress style
[30]. It has also been shown that a multi-dimensional HMM based system can
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be formulated which combined stress classification along with automatic speech
recognition [44]. The resulting N-Dimensional HMM system resulted in a 73.8 %
reduction in error rate as compared to the single channel stress dependent iso-
lated word recognition system.

4.6 Stress Classification Using Nonlinear Speech Features

Next, stress classification can be considered from an alternative speech produc-
tion modeling perspective. The assumption that airflow propagates as a plane
wave in the vocal tract may not be the most accurate airflow model of speech pro-
duction, since the flow is actually separated with concomitant vortices that are
distributed throughout the vocal tract. Teager pioneered alternative approaches
to speech modeling and also suggested that hearing could be viewed as the pro-
cess of detecting the energy [45,46,47,48,49]. Over the past ten years, a number
of studies have suggested that the so called Teager Energy Operator (TEO) can
be employed to formulate new features for stress classification [6,7,8,41,42,43,50].

Fig. 11. Flow Diagram of TEO-CB-AutoEnv based feature

One of the effective nonlinear TEO-based feature developed by Zhou, Hansen
and Kaiser [41,42,43,51] is the TEO operator, partitioned across a critical fre-
quency band with an autocorrelation envelope analysis performed. The flow
diagram for the TEO-CB-AutoEnv is shown in Figure 11. The theory is that
the autocorrelation envelope is able to track the variability / regularity of the
fine energy structure reflected in the TEO critical band partition, a trait which
occurs in speech production for high stress conditions. Results from an evalua-
tion using speech material from the SUSAS corpus is shown in Figure 12. Stress
classification performance is significantly better than traditional MFCC based
spectral features, or excitation based f0 (pitch) information [41]. The perfor-
mance is consistent for neutral versus emotion, speaking style, Lombard effect,
and actual roller coaster ride speech under stress. The feature therefore is effec-
tive in both simulated and actual stress speech scenarios [41,42,43,51].

The same TEO-CB-AutoEnv feature has also been employed for stress detec-
tion in other scenarios. Figure 13 shows results for stress detection using data
from a military examination task (SOM – Soldier of the Month Training). The
results show as significant reduction over an MFCC feature based HMM base-
line classifier using the new TEO-CB-AutoEnv feature [6] based on single word
“no” decisions. Further experiments on this same SOM corpus have explored
the impact of increased test token duration. The results from Figure 14 show
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Fig. 12. Results comparing performance of TEO-based system with traditional features

that if 0-40 % of the vowel duration is removed, stress detection performance is
maintained.

More recent studies employing real-life speech corpora such as US Army SOM
(Soldier of the Month) or FLETC (law enforcement training scenario involv-
ing hostage rescue with weapons) have shown that TEO based features can be
used for stress detection, as well as stress assessment over defined time periods
[6,7,8,52,53].

4.7 Synthesis and Conversion of Speech Under Stress

As seen in our studies and elsewhere as well, the measured features that can re-
flect stress include changes in pitch and other excitation features, word/phoneme
duration intensity, and spectral content. To activate the desired stress intona-
tion for synthesized speech requires that the necessary variations in the actual
stressed speech be represented in voice quality, pitch and duration of individual
phonemes within the utterance [17,32,36,54,55,56,57,58,59]. This helps improve
the naturalness of the synthetic speech. Previous approaches directed at inte-
grating emotion in text-to-speech synthesis systems have concentrated on for-
mulating a set of fixed rules to represent each emotion [58,59]. To represent a
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range of variations for continuous speech, a fixed set of rules is not sufficient in
general if we wish to have natural sounding speech.

It is possible to impart stress onto existing speech. One proposed method
focused on converting CELP based excitation and vocal tract spectral structure
from neutral to produce stress speech (Lombard, loud, angry speech styles) [32].
A subsequent study focused on HMM based modeling for voice conversion of
neutral to stressed speech. The model showed it was possible to model stress
perturbation techniques from one set of speakers and successfully impart these
changes onto new neutral speakers [55].

Further studies have also explored the ability to impart emotion onto synthetic
speech for text-to-speech applications [1,5,6,26,60,61,62,63]. These methods can
be viewed as imparting a caricature or exaggerated version of the emotion/stress
in order to make the emotion obvious to the listeners, and therefore generally do
not always reflect true speech production changes that are more subtle. Further
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research is necessary to better understand speech under stress for synthesis, as
well as perception of stress for synthetic speech applications.

4.8 Speech Coding System

As for speech coding, preserving the naturalness of the speech on the receiver
side would help convey the emotional or stress state of the speaker. The stress
perturbation algorithm for CELP coding system modified the pitch, gain, and
the formant locations to convey the emotional state of the speaker [32]. The
method along with hidden Markov model demonstrated conservation of speaking
styles for isolated words under neutral, loud, angry and Lombard effect speaking
conditions [32,55]. Future development of speech coding algorithms need to ef-
fectively capture the changes in speech production under stress. New advances in
alternative excitation modeling based on GEMS or p-mike could offer improved
techniques to encode speaker stress state for voice coding applications.

5 Discussions and Future Directions

As speech and language technology continues to mature, the need to effectively
analyze, model, encode, detect, and classify speech under stress will increase
significantly. Voice interactive systems including dialog and human-machine sys-
tems can benefit from knowledge of the speaker state. This information can
help improve technology for speaker and speech recognition providing systems
that are more effective in actual multi-task scenarios. The challenge, however,
is to employ a framework which can provide effective analysis and modeling for
improving such speech technology.

The source generator framework (SGF) proposed in [27,29,33] offers an effec-
tive means of modeling deviations from neutral to stress, and has been employed
for a variety of stress equalization methods [17,25,29,33]. The basic structure is
represented as:

(speech)stress[Xdegree](feature set) = Ψ [(speech)neutral(feature set)] (2)

where Ψ [] is the transfer operator function which transforms neutral to stressed
speech which has a certain degree of stress, say X. The above problem is two
fold,

1. To define (in quantifiable sense) the degree of stress, X.
2. To define the speech production transfer operator Ψ [].

We model the transformation Ψ [] of the speech features in the neutral domain
to an output stress domain. Prior formulation considered Ψ [] operators in the
pitch, duration, intensity, glottal source, and vocal tract spectrum domains. It is
important to recognize that if the transfer operator function is dependent only
on the stress and phoneme, and generally independent of the speakers, it can
be applied in more scenarios. An inverse transformation is therefore developed
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using this structure to compensate for the presence of stress. It is suggested
that future advances in stressed speech processing could be realized using the
Source Generator Framework, resulting in more effective speech and language
technology with sustained performance in adverse speech/noise/environmental
conditions.
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Abstract. In this paper, we address the — interrelated — problems
of speaker characteristics (personalization) and suboptimal performance
of emotion classification in state-of-the-art modules from two different
points of view: first, we focus on a specific phenomenon (irregular phona-
tion or laryngealization) and argue that its inherent multi-functionality
and speaker-dependency makes its use as feature in emotion classifica-
tion less promising than one might expect. Second, we focus on a spe-
cific application of emotion recognition in a voice portal and argue that
constraints on time and budget often prevent the implementation of an
optimal emotion recognition module.

Keywords: emotion, automatic classification, acoustic features, speaker
dependency, laryngealization, voice application, system architecture.

1 Introduction

The modelling, generation, and recognition of emotion has attracted more and
more attention during the last years. Most of the time, researchers have typically
dealt with prototypical, ‘full-blown’ emotions and with elicited, prompted, acted
speech [1]. Normally, some of the ‘big’, full-blown emotions have been modelled
and classified such as anger, joy, despair, sadness. Recognition rates reported
are fairly high; [2] for instance report for seven emotions classification rates of up
to 71.0% for speaker-independent and 92.7% for speaker-dependent modelling.
Nowadays, the voice business is more and more attracted by the possibilities
the recognition of user states offers for commercial systems. One main focus of
interest is telephony based dialogue systems with spoken input in the broad area
of customer care and customer service applications.

One of the general problems is that real life data differ, however, considerably
from acted speech. It is way more difficult to collect the data, cf. Labov’s well-
known observer’s paradox [3]: for recording, the subjects have to be observed
but if they are aware of that, they are no longer fully spontaneous. Moreover,
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ethical issues have to be taken into account. To act does not mean the same
as to behave: acting refers to a shared concept of emotion expressions — how
you imagine someone should behave if they are angry, sad, etc. But in real
life, neither the reference is fully clear — is the subject really angry even if we
wanted to make them angry with our experimental design — nor the means of
expressing specific emotions. In addition, the full range of pure emotions cannot
be observed in real life encounters; instead, most of the data are not marked,
i.e., neutral, and the non-neutral states are rather emotion-prone/affective in a
broader meaning. Last but not least, speaker characteristics can superimpose
emotion expressions or interfere with them. Specific applications need specific
emotion modelling: for instance, in call center scenarios, we either look for a
chance in the user’s emotional state or or for a difference in the emotional state
of one certain user in contrast to an average application caller.

For the time being, the speaker-independent automatic recognition of emo-
tional user states in realistic, spontaneous speech seems to be ‘fossilized’ at
approx. 80% class-wise computed recognition rate for a 2-class problem, and
at approx. 60% for a 4-class problem, cf. [4]. Of course, higher classification
performance can be obtained by fine-tuning, for instance, by pre-selection of
prototypical cases, cf. [5]. We don’t know of any speaker-dependent classifica-
tions for realistic, emotional spontaneous speech yet. The reason for that might
simply be that it is difficult to collect enough data for one and the same sub-
ject because normally, subjects are ‘burned’ when they have participated in an
experiment. And the reason for the low speaker-independent classification per-
formance might be that individual speakers employ different acoustic features
in a different way; moreover, features can be multi-functional, and interlabeller
agreement is — for spontaneous speech — not very high.

Note that the figures given above are for carefully designed experiments,
manually annotated, realistic (real-life, spontaneous) data, speaker-independent
modelling, and rather good acoustic conditions. Depending on signal-to-noise
ratio and degree of spontaneity, much higher or lower classification rates can be
imagined: in a personalized setting (speaker-dependent modelling) with a close-
talk microphone in a quiet office surrounding, if the speaker only has to produce
a limited amount of commands, and if it is clear when and that they are get-
ting angry, recognition rates well above 90% for two or even more classes can be
imagined. On the other hand, in a public, noisy setting with a room microphone,
free speech, and speaker-independent modelling, classification performance could
drop almost to chance level. This also can happen if you switch to telephony ap-
plications where the communication channel is of restricted bandwidth; here the
input quality is sometimes rather poor — just think of mobile phone calls. On
the other hand, emotion recognition might not be that prone to noise as other
speech processing tasks [6].

In this paper, we start with discussing automatic recognition of emotion and
user states on a conceptual level. We address some basic challenges and possible
reasons why the approaches until now have not been fully successful. Then we re-
port on experiences made in a project where emotion recognition was integrated
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and applied in a real business environment; constraints in time and budget made
it impossible, however, to implement an optimal emotion recognition module.

2 Setting the Scene

2.1 Concepts: Emotion and Speaker Characteristics

In this paper, we use the term ‘emotion’ in a broad sense, encompassing emo-
tional (affective) user states such as bored, interested, stressed, despaired, per-
plexed as well. Other terms used for such additional states is ‘interpersonal
stances’ [7] or ‘social emotions’ [8]. As for speaker characteristics, we want to
focus on acoustic features because this field has been more investigated than
linguistic features. We do not know of any study dealing with spontaneous, real-
life speech, emotions, and in-depth description of speaker-specific traits. Thus we
decided to demonstrate the possible impact of speaker-specific characteristics on
emotion classification with a sort of ‘gedanken experiment’: how a specific phe-
nomenon (irregular phonation, ‘laryngealization’, cf. below) can affect emotion
recognition.

2.2 Two Different Worlds: Generation and Analysis

Synthesis of emotion uses controlled data based on acted speech, and models
normally one speaker and/or the same segmental structure, focussing on forced
choices in listening experiments for evaluation. Realistic emotion recognition
deals with uncontrolled, i.e. spontaneous data based on many speakers, uncon-
trolled segmental structure and wording; as computation of features, esp. for
large databases, is done automatically, extraction errors have to be accepted
whose extent can only be estimated roughly.

2.3 Personalization and Data Acquisition: A Problem

Although it had been desirable to develop speaker-independent automatic
dictation systems, they have been more or less speaker-dependent (speaker-
adaptive) for the last decades. Only the latest versions claim to be really speaker-
independent, i.e. a training phase should no longer be necessary. It might be
astonishing that for such a complicated problem as emotion recognition, almost
all of the studies on emotion recognition in spontaneous speech used speaker-
independent modelling. We believe that two factors have been responsible for
that: first, the whole speech processing community is oriented towards speaker-
independence. Second — and maybe most important in our context — it is
difficult to collect enough emotional data from one and the same person, cf.
above. We are thus faced with a dilemma: personalization seems to be the only
way out towards higher classification performance, but it is way more difficult
to obtain than in the case of automatic dictation systems where only subjects
are needed with enough patience to read longer stretches of text.
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2.4 A Tentative Relevance Hierarchy for Speaker-Independent
Emotion Recognition in Spontaneous Speech

In this subsection, we want to set up a tentative hierarchy of relevance in speaker-
independent emotion recognition in spontaneous speech — as a sort of null hy-
pothesis to be tested in further experiments. This hierarchy is based on own ex-
perimental results and on some other studies. Several caveats have to be made:
most of the studies on relevant features used acted data; these are not taken
into account. The next point is trivial but important: statements on relevant
features can only be made on those features that were computed for the respec-
tive databases. In some studies, only few features or only features of a certain
type are computed; as for other types, no statement can be made. On the other
hand, if too many features are computed — nowadays, a set of basic features
is often multiplied via different normalization and transformation procedures —
it is often not easy to tell apart important from spurious information. And last
but not least, it depends of course on the type of data — and by that, on the
emotion classes annotated — the features are computed for. Hopefully, results
will converge in the future.

Most relevant so far seem to be duration and Mel Frequency Cepstral Coef-
ficient (MFCC) features, then energy and pitch variation (jitter, mean square
error of regression). ‘Genuine’ pitch features such as F0 maximum and minimum
— and by that, range — are not that important. MFCC features are ‘implicit’
spectral features which, however, encode linguistic information as well: they are
standard features in word recognition. It is thus difficult to disentangle spectral
information itself from word information. Linguistic information depends heav-
ily on the type of data: for uniform speech such as commands, it should not be
relevant. On the other hand, it is easy to imagine a full encoding with word in-
formation (this makes me happy/sad/angry/...). ‘Explicit spectral’ information
on formant band-width or voice quality and/or phonation type can sometimes
tell apart specific user states but are, on the whole, less relevant than one should
suppose on the basis of acted speech or perception experiments with synthetic
speech.

Note that all this is tentative and based only on some few real-life, spontaneous
databases. Anyway, if it proves to be true then two points are more puzzling
than the other ones in the above given hierarchy, namely that F0 is not that
relevant, and that voice quality and/or phonation type is not that relevant,
either. We can imagine two different reasons why: first, dimensionality, second,
multi-functionality. Duration and energy are one-dimensional : duration on the
x- (time-) axis — longer or shorter — and energy on the y- (loudness/decibel)
axis — higher or lower. Even if, under certain circumstances, short duration
and low energy can encode prominence, at the very most, it is the other way
round. (Note that we are speaking here of ‘prominence’ in a broad meaning,
not only of prominence denoting stress/accentuation.) Therefore, we will call
these two parameters one-dimensional. F0, however, behaves differently: it is
not only high vs. low pitch, it is the whole configuration, i.e. specific tunes,
which are prominent. And it might be the same problem for emotion encoding
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as for accent encoding: in the tone sequence terminology, accents can be marked
by L*H or H*L, i.e. by two ‘opposite’ configurations, whereas almost never,
accents are marked by short duration or low energy. Therefore, we will call F0
features bi-dimensional. In the next chapter, we will give an example for the
multi-functionality of voice quality and phonation type features.

Normally, for emotion classification, acoustic features are extracted automat-
ically by, for instance, doing forced alignment on the spoken word chain. Thus,
segmentation is not perfect, and automatic extraction is error prone. Under
real-life conditions, if the spoken word chain is not known, there might be more
and/or different types of segmentation errors. We do not know much yet about
the extent of such extraction errors; as for F0, the ‘technical’ errors amount at
least to some few percent points, even under optimal conditions. Often, error
rates are higher. (In the emotional database described and processed in [4], oc-
tave errors amount to some 6 % of all voiced parts in the words.) In addition, it is
not clear yet whether extraction should be close to the signal or close to percep-
tion, esp. in the case of irregular phonation, cf. below. The impact of erroneous
extraction on emotion recognition is even less clear. It might be the case that
MFCCs are that good even at emotion recognition because they are a coarse but
robust measure, whereas ‘explicit’ spectral and voice quality measurements are
more error prone.

3 An Example: Laryngealizations

The normal speech register ‘modal voice’ comprises an F0 range from about 60
to 250 Hz for male speakers and an F0 range from about 120 to 550 Hz for female
speakers. Below this register there is a special phonation type whose mechanisms
of production are not totally understood yet and whose linguistic functions are
not much investigated until now. There is a variety of different terms for this
phenomenon which are used more or less synonymously: irregular phonation,
creak, vocal fry, creaky voice, pulse register, laryngealization, etc. We use laryn-
gealization (henceforth LA) as a cover term for all these phenomena that show
up as irregular voiced stretches of speech. Normally LAs do not disturb pitch
perception but are perceived as suprasegmental irritations modulated onto the
pitch curve. Although LAs can be found not only in pathological speech but also
in normal conversational speech, most of the time they were not objects of inves-
tigation but considered to be an irritating phenomenon that has to be discarded.
In [9], five different types of LAs have been established: glottalization, damping,
diplophonia, sub-harmonic, and aperiodicity. Voice quality and phonation types
such as LAs are known to be utilized in the generation of emotions. We have to
keep in mind, however, that the bulk of evidence so far has been obtained from
acted speech or from perception experiments with synthesized speech.

Table 1 displays different functions of LAs which can be linguistic or par-
alinguistic. They can be caused either by higher effort or by relaxation; in the
first case, they go together with accentuation (prominence) which is, of course,
a local phenomenon. A typical place for relaxation is the end of an utterance;
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Table 1. Different Functions of Laryngealizations

phenomenon time domain

linguistic functions: phonotactics, grammar, ...
accentuation local
vowels local
word boundaries local
native language local
the end of an utterance, i.e., turn-taking local

paralinguistic functions: speaker characteristics
speaker idiosyncrasies local - global
speaker pathology global
too many drinks / cigarettes temporary
competence / power global / temporary
social class membership local / global / temporary

emotional states such as boredom, sadness, etc. short-term or temporary

by that, turn-taking can be signalled to the dialogue partner; this is again a
local phenomenon: [10] report that different types of LAs are used in (British
and American) English conversations for holding the floor (filled pauses with
glottal closure, no evidence of creaky phonation) and for yielding the floor (filled
pauses with lax creaky phonation, no glottal closure). Word boundaries in the
hiatus, i.e. word final vowel followed by word initial vowel, can be marked by
LAs. Boundary marking which is, of course, local, with such irregular phonation
is dealt with in [11] and [12]. It is well known that back vowels such as [a] tend
to be more laryngealized than front vowels such as [i] (local phenomenon). A
language-specific use of LAs can be either due to phonotactics, as in German,
where every vowel in word-initial position is ‘glottalized’, or phonemes can be
creaky, cf. [13]; this is a local phenomenon, denoting the native language. Nor-
mally, specific segments which are laryngealized characterize languages, cf. for
vowels [14]; the Danish glottal catch (stød) [15] can be found in vowels and
consonants.

[16] p. 194ff. lists different uses and functions of ‘creak’ phonation, amongst
them the paralinguistic function ‘bored resignation’ in English RP, ‘commisera-
tion and complaint’ in Tzeltal, and ‘apology or supplication’ in an Otomanguean
language of Central America. Extra- and paralinguistically, LAs can be a marker
of personal identity and/or social class; normally, LAs are a marker of higher class
speech. [17] quote evidence that not only for human voices but for mammals in gen-
eral, ‘non-linear phenomena’ (i.e. irregular phonation/LA) can denote individual-
ity and status (pitch as an indicator of a large body size and/or social dominance;
“... subharmonic components might be used to mimic a low-sounding voice”).

Note that all these characteristics which per se are not characteristics of
single speakers can — maybe apart from the language-specific phonemes —
be used more or less distinctly by different speakers. As for the paralinguistic
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function of LAs, speakers can simply use them throughout to a higher extent;
such speaker idiosyncrasies are local - global. ‘Creaky superstars’ like Tom Waits
are well-known. The reason might be unknown, or due to one or more of the
following factors: speaker pathology (global), too many drinks/cigarettes (tempo-
rary), competence/power (global / temporary), or social class membership (lo-
cal/global/temporary).

Emotional states such as despair, boredom, sadness, etc. are temporary. Bad
news are communicated with breathy and creaky voice [18], boredom with lax
creaky voice, and to a smaller extent, sadness with creaky voice [19]. [20] report
for perception experiments with synthesized stimuli that disgust is conveyed with
creaky voice. To display boredom or to display upper-class behaviour might co-
incide; the same can happen if someone who permanently uses LAs as speaker-
specific trait, speaks about a sad story. On the other hand, at first sight, speakers
who exhibit LAs as an idiosyncratic trait can make a sad impression without
actually being sad.

The caveat has to be made that we are speaking of a sort of ‘cover phe-
nomenon’ covering different sub-phenomena and different temporal traits: some
are very short and might rather be perceived as segmental features, i.e. not as
supra-segmental, prosodic features that are sort of modulated onto the speech
wave. Of course, there are prototypical cases — no LA at all and laryngealized
throughout — which easily can be told apart. But we simply do not know yet
when people will produce which amount of LA and how an automatic classifier
can model it.

It might be safer to find out non-existing/low correlations such as high pitch
and fast speech with sadness. Further functions of LAs are reported in [21].
There are only a few studies dealing with the automatic detection of LAs, cf.
[22,23]. We have manually corrected automatically extracted F0 values for one
third of the database described in [4,5] (51 children giving commands to Sony’s
pet robot Aibo). For some 6% of all voiced frames of all words, we found gross
F0 errors denoting LAs; this amounts to some 14.7% words with laryngealized
passages. The percentage of laryngealized words per speaker ranges from 0% to
35%; this illustrates a strong speaker dependency. At first sight, the distribution
across emotional user states denotes more LAs in emotions with negative valence
(angry, touchy (i.e. irritated), and reprimanding) than with neutral or positive
valence. This could be a plausible result if we equate indicating negative valence
with indicating some kind of superiority. This difference, however, disappears
if we compute the distribution separately for words with the initial diphthongs
[aU] and [aI] which are prone to be laryngealized more often than other vowels
and diphthongs. The reason why is that in our database, some of these words
– e.g. the vocative [’?aIbo] – are relatively frequent in the negative valence do-
main. Note that by that, we did of course not prove that LAs do not signal
some emotional states, especially because in our data, emotions such as sadness
(cf. the database processed in [24]) or boredom were not found. We can illus-
trate, however, the multi-functionality and speaker-dependency of LAs; thus it
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might be less likely that they are very useful as a generic feature within emotion
classification. This might of course be different in a personalized setting.

4 Another Example: Pitch

Pitch is multi-functional, maybe up to the same extent as laryngealizations are.
People can speak with flat F0 or with marked ups and downs — this is a per-
sonality trait. In the high days of intonation models, pitch was held responsible
for the marking of word- and sentence accents, of salience, etc. During the last
years, however, it has been shown that F0 is of minor importance, in relation to
other parameters such as energy and duration, cf. [25,26,27] and [28]. The same
might be true for emotion recognition; again, we do not know yet whether this
might be due to pitch simply being less important, or to a combination of ex-
traction errors, speaker specific traits and its bi-dimensionality which is difficult
to model, esp. with sparse data.

The manual correction of the database mentioned at the end of section 3 re-
sulted in some 6% gross F0 errors; first experiments on emotion classification
with manual corrected F0 values yielded for a four-class problem some 3.5% bet-
ter classification performance than with automatically extracted – i.e. sometimes
erroneous – F0 values. Such a difference which is not very pronounced at first
sight might, however, denote a difference between ‘somehow relevant’ and ‘most
relevant’ feature types.

5 Implications from Applications

As nowadays the automatic recognition of emotion is getting more important
for the voice business, several new questions are coming up. Since this single
recognition process must become part of a business solution providing voice ac-
tivated services to customers, we have to deal with integration and performance
aspects, we have to figure out how the emotion recognition module can access
data, and where the result is needed in which format; i.e. we have to care about
interfaces. However, most important is that we have to know about the overall
goal of the voice application in general, and we have to get an idea how this
goal can be supported using emotion recognition. Last but not least do we have
to find a compromise between technical and scientifical implementations on the
one hand and budget and time restrictions on the other hand.

Here we will report on experiences we made in a project where emotion recog-
nition was integrated as a component in a voice portal. A detailed description
of the system, its capabilities and the results can be found in [29], [30] and [31].
Note that here we do not give details on recognition results, data sets, etc. since
we want to concentrate on the fact that in integrated applications, a lot of con-
straints play a role and influence the emotion recognition, one would not think
of in advance.
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5.1 Voice Application Setup

Applying emotion recognition for business applications in the first step generates
questions miles away from technological and functional aspects concerning the
internals of the classifier. These questions concentrate on the business process
the emotion recognition should be applied to, the other components working to-
gether, and performance and interface issues. For example, if you apply emotion
recognition in a telephone based speech dialogue system, you have to care about
the performance of the complete system since it has to be avoided that the caller
has to wait too long for the system reaction. Thus all the processing has to be
performed very fast, so that the system’s response is generated within a period
of at most 200 milliseconds after the caller stopped speaking.

But let us discuss these problems by means of the concrete project mentioned
above. The voice application setup looks like the following: People ring up the
voice application which is an information system. In addition to the usual techni-
cal components necessary for such an application – speech recognition, dialogue
management and speech synthesis – new components for emotion recognition
have to be deployed and integrated; constraints based on the specific architec-
ture will be discussed below. In a first step we have to decide what we are really
looking for: is it ‘general anger’ we want to classify in the speech signal or are we
simply looking for a situation where the caller’s emotional state changes for the
worse? Actually, the second situation is the one we are interested in. Then, the
speech dialogue system can react in a predefined manner, e.g. try to calm down
the caller, transfer her to an agent or, if all agents are currently talking, give
her a higher priority in the queue so that she will be transferred earlier than her
position in the line would suggest. In this context the assumption usually is that
the user behaves neutrally — at least in the first phase of the dialogue. Later
on, either if the system makes recognition errors or gives displeasing information
(e.g. a high telephone bill, a negative account balance), the caller might loose
his good temper and thus change the communication style. Therefore, it is not
highly important for the emotion recognition system to detect anger ‘per se’
in the speech signal but to be able to find those points in the spoken dialogue
where the caller’s emotional state changes to the worse. Thus the basic setup
of the voice application has important implications for the classification task.
If the task of the speech dialogue systems is different from the one presented
above, it is perhaps very important to classify right from the beginning of the
conversation whether the caller is angry or not.

In our example the task clearly is to detect changes in the emotional state of
the user so that in case of a change for the worse, the system can apply different
strategies to de-escalate. This already points towards a classification algorithm
where features are used that characterize the changes in the acoustics between
the current utterance and a reference utterance. This reference could either be
the first user utterance in the dialogue, the preceeding utterance in the dialogue,
or even perhaps an ‘average’ utterance computed from previous dialogues. The
last procedure requires that the system is able to identify the caller, e.g. by means
of analysing the calling telephone number, and to have access to a database
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where these references are stored. We applied such a kind of differential feature
extraction algorithm for the project and compared these so called delta features
with a classification algorithm using absolute features. The results reported in
[29], [30] and [31] show that the delta features clearly outperform the absolute
features on a data set from the described setup. The features used are prosodic
features based on energy and F0 values, and duration features based on the
segmentation of the speech signal into voiced and unvoiced regions. Actually,
this should not be taken as proof that differential features based on prosody are
generally more appropriate for emotion recognition; however, in the given case
and under the constraints described above, they perform better and are the right
choice for this task.

These results encourage to have a more detailed look on personalization and
on those features dealt with in sections 2.4, 3 and 4; due to restrictions in time
and budget, this has, however, not been possible for this specific project.

5.2 System Architecture

In this section we will have a detailed look at the constraints imposed by the
chosen system architecture, the applied modules and the existing interfaces, and,
especially, the features employed: as sketched above, we have a regular telephony
based speech application using a speech recognizer, a dialogue management com-
ponent, and a synthesis module; these three elements are standard modules also
employed in other voice application environments. In our case we have to add the
following components: two emotion recognition modules, one working exclusively
on the recognized word chain (e.g. looking for swearwords) and the other one
using only the speech signal as data source to compute its decision. Additionally,
there is a decision module which takes the results of the two emotion recognizers
and merges them into one classification result which is handed over to plan the
necessary reaction. The speech recognition module is a standard product from
the market with a predefined set of different interfaces and functions. Unfortu-
nately, with these interfaces it is not possible to access all necessary (desired)
information. It is for instance not possible to get the time alignment for the best
word chain from the recognition engine, we do not have access to the features
computed from the speech signal, and it is even not possible to get the incoming
speech signal incrementally. Thus we have to wait until the end of the user’s
input before the waveform is accessible by other modules.

Looking at this system architecture, some interesting questions arise:

– Why do we use an ‘off-the-shelf’ recognizer engine with that many unwanted
side effects?

– Why are there two separate emotion recognition modules, one using only
acoustic, the other one only linguistic information?

– What would be a more appropriate system architecture and processing?

The application was planned to be installed and to go online either with or
without emotion recognition. Basically, the operator of this information hotline
wanted to have this specific automatic speech dialogue system. After in-depth



148 A. Batliner and R. Huber

discussion, they agreed with emotion recognition as additional component, be-
cause of the possible benefits. Nevertheless, they required that the resulting sys-
tem should also work properly without emotion recognition and that it has to
meet their internal administrative requirements. There were already other speech
applications running based on the VoiceXML standard (cf. www.w3c.org/voice
or www.voicexml.org for detailed information), using specific components and
system architectures. Hence, the new system had to be based on this standard ar-
chitecture, with the modules already in use in this company. The use of our own
speech recognition module which would allow to have access to time alignment
and spectral (MFCC) features was thus not possible.

If we look at the system architecture, the imposed restrictions, and the de-
mand that the dialogue system has to react immediately after the user stopped
speaking, it is obvious that the feature extraction for the emotion recognition
does not have that much time. Additionally, at that time point when the emo-
tion recognizer can start working, a recognized word chain is almost already
available from the standard recognizer. Therefore it makes sense to separate the
linguistic emotion classification from the acoustic processing; this is one of the
reason why there are two emotion modules in the resulting system. Actually, the
linguistic component is more or less ‘integrated’ in the recognition engine since
the used grammars have to model also utterances containing swearwords and
other phrases expressing emotion.

As for the acoustic emotion recognition, time constraints made it necessary to
look for features and classification procedures which operate rather fast. Budget
restriction made it impossible to spend additional time on the implementation of
new types of features. Thus, we decided in favour of an already existing feature
set based on energy, F0 values, and duration features based on the segmentation
of the speech signal in voiced and unvoiced regions; as for details, cf. [31]. From
the speech signal we computed one feature vector of defined length, usually a
mixture of absolute and delta features. We decided to apply a rather simple
Gaussian mixture model (GMM) approach for classification. For the training of
the individual components of this GMM, five students manually annotated the
utterances; for each utterance, a majority voting was applied. All this resulted
not in an optimal but in a very good solution — given the constraints addressed
above — for this specific application.

6 Concluding Remarks

In this paper, we dealt with those factors that are, in our opinion, most relevant
for the — suboptimal — state of the art in emotion recognition: results obtained
using acted speech and/or perception experiments with synthesized speech can-
not be transferred onto real-life data; the sparse data problem prevents us from
having enough training data both for speaker-independent and esp. for speaker-
dependent modelling of spontaneous, real-life data; even if in theory, applications
as described above could provide us with optimal classifiers and enough data for
training, constraints imposed by time and budget prevent this. Of course, there
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are many other possible applications for emotion recognition [32,33], not only
the call center scenario dealt with in this paper, which might impose other (types
of) constraints on the implementation of an emotion recognition module.

A possible marking of one specific type of emotional state can be superim-
posed or hampered by at least these factors: several linguistic and paralinguistic
functions such as given in Table 1, and by some extraction errors. Emotions are
temporary phenomena and should be signalled not only locally at some specific
(phonotactic) positions (cf. the linguistic functions in Table 1), and not globally
as in the case of some paralinguistic functions. It might be possible to disentangle
these functions on the time domain — but only with a personalized, speaker-
dependent modelling. As is, the normal strategy in emotion recognition to clas-
sify speaker-independently short stretches of speech (at least syllables, some-
times words, most of the time phrases or turns/utterances) is possibly severely
impaired because it is, at the time of the classification, not clear whether the
marker is due to linguistic/paralinguistic factors, or to the signalling of emotions.

For many of the statements given above, there are no hard facts yet to prove or
to invalidate them. Single studies will not do, converging results are the only way.
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Abstract. This chapter focuses on the detection of emotion in speech
and the impact that using technology to automate emotion detection
would have within the legal system. The current states of the art for
studies of perception and acoustics are described, and a number of im-
plications for legal contexts are provided. We discuss, inter alia, assess-
ment of emotion in others, witness credibility, forensic investigation, and
training of law enforcement officers.
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1 Introduction

Current natural language computational systems are able to infer much infor-
mation from a person’s spoken input based both on gross acoustic features and
on lexical, syntactic, and semantic analyses. Information that can be inferred
includes meaning, style, and certain speaker characteristics (Cole, et al., 1997
[1] Frank, et al., 2002 [2]). However, current systems are only able to draw infer-
ences from a subset of features in the acoustic signal including intonational and
stress patterns, overall loudness, peculiarities of phonation, and other distinctive
properties of speech. Human listeners, on the other hand, have access to a full set
of features and are able to integrate them in such a way as to acquire a wealth
of information from them and apply this knowledge to identifying and classify-
ing speakers, apprehending subtle shades of meaning, inferring implicatures and
other pragmatic factors and, most relevant to the present work, perceiving affect
and interpreting the speaker’s emotional state.

Automated detection of emotion in speech holds considerable promise in many
areas, including deception detection during interviews (Fuller, et al., 2006 [3]),
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separating cognitive from affective experiences in a clinical setting (Susca, 2006
[4]), and call center applications (Yacoub, et al., 2003 [5]). Here, we focus on
legal settings. The entirety of legal actors (Maroney, 2006 [6]) – attorneys, defen-
dants, executive officials, expert witnesses, judges, jurors (grand and otherwise),
law enforcement officers, legislators, plaintiffs, prosecutors, regulators, suspects,
victims, and witnesses - experience emotion and may display those emotions,
the knowledge of which may have far-reaching ramifications for other actors.
We first identify several areas where emotions in speech can affect legal judg-
ment and decision making. Broadly, these areas involve assessment of emotion
in others, emotions and memory (concerning witness credibility), emotions and
culture (including effects on forensic investigation), and emotions in legal schol-
arship. Later, we describe some implications of emotion detection on the training
and assessment of law enforcement officers, attorneys, and other actors in juris-
tic processes. We also describe perceptual and acoustic studies supporting an
optimistic outlook for the automated detection of emotion in speech.

2 Effects in Legal Contexts

2.1 Assessment of Emotion in Others

Detection of a particular emotion and the degree to which it is felt based on
measurable acoustic parameters of speech could prove useful to many actors in
the juristic system. Knowledge of emotional state would surely have powerful
implications in the following situations and many more similar to them:

– Law enforcement officers would benefit by knowing what emotions a suspect
is experiencing during interrogations, perhaps to gauge credibility or extent
of knowledge.

– Attorneys could gauge credibility of a client or the client’s level of knowledge
or understanding by discerning the client’s emotional state or state changes
during discussions of the client’s past behavior.

– Prosecution attorneys could profit by knowing what emotions potential ju-
rors are experiencing during jury selection questioning so as to gauge their
likely reactions to evidence.

– Defense attorneys could benefit by knowing what emotions the prosecution
attorneys are experiencing as they present a case, perhaps to gauge the
effects of alternate defense strategies.

– Jurors could benefit by knowing what emotions a witness is experiencing
during testimony, to gauge credibility and remorse.

– Defendants could benefit by knowing what emotions a judge is experiencing
when handing down a decision, perhaps to gauge the possibility of suspension
of the sentence or parole.

In all these situations, the legal actors naturally exhibit emotion through
their behaviors, including their gestures, facial expressions, body language, and,
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in particular, their speech. A device of some sort with the capability of detecting
vocal patterns influenced by emotion could augment information gained through
lexical, syntactic, and semantic analyses. The device need not be hidden or un-
obtrusive; the point would be to gather additional potentially useful information
in a noninvasive manner.

To gather such information, automated emotion detection relies on exposure
to a database of speech segments tagged with their emotional category (neutral,
sad, angry, etc.). Each segment is also classified in accordance with its acoustic
properties.

Cowie, et al. (2005) [7] present a number of such databases, generic in the sense
that a general model, applicable to all speakers of the particular language, is to
be constructed. Such databases may be thought to underlie speaker independent
emotion detection. (Further detail is provided in the appendix.)

Speaker specificity of feature sets in emotion encoding was shown by Hoz-
jan and Kačič (2006) [8]. Speaker dependent emotion detection may turn out to
be far more effective, since one is modeling a single individual for the purpose
of predicting that individual’s emotional state, but it is formidable from the
data collection point of view. This option is open only to experimenters who
work with the same participants over a prolonged period and therefore have
sufficient time to collect the amount of data needed for the modeling process.
One such environment occurs in the context of vocal computer aided instruc-
tion (CAI). After some weeks of interacting with the same students, an au-
tomated CAI system, working in parallel with an intelligent tutoring system,
would observe their frustrations, anxieties, achievements, and glowing successes,
and from these observations build individualized databases (Burns & Capps,
1988 [9]). With such a database, a model of vocal affect/emotion individualized
to the student could be produced. From that point forward, whenever the tu-
toring system would identify emotion in the student’s voice, it could respond
appropriately.

In most forensic and other legal settings, one would use a generic model. For
instance, during jury selection, there are scarcely any data available regarding
individual members in a jury pool. Similarly, most interrogations are relatively
short, hardly enough to enable the speaker-specific learning that would need to
occur for overcoming a generic model. However, in situations where witnesses
testify at great length (e.g., Slobodan Miloševic at his trial in The Hague), there
may be ample time to assemble and put to use a speaker dependent emotion
detection system.

Finally, it remains to find conclusive results as to whether emotion detection
is language dependent or independent. That is, if, say, the lowering of pitch is a
mark of sadness in an English-speaking environment, would it be so in a Serbian-
speaking environment, or a Zulu-speaking environment? Would the situation
differ between tonal languages such as Mandarin Chinese, and the mostly non-
tonal languages of Europe? These and other interesting questions are open to
basic research, hence their effects on legal processes are yet unknown.
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2.2 Emotions and Memory

Perception studies have shown that humans correctly recognize emotions only
60 to 70 percent of the time (Picard, 1997 [10]; Scherer, 2003 [11]). Courts of-
ten mistakenly put too much trust in eye and ear witnesses (Solan & Tiersma,
2003 [12]). Solan and Tiersma argue that courts might look further into mathe-
matical and/or computer aided analysis of witnesses’ testimonies to gauge their
reliability, and this may include an assessment of the emotional state of the
witness.

Witness credibility is so important that judgment of credibility of witnesses
is included in the jury instructions, since eyewitness testimony is viewed as
direct evidence and adds to the prosecution’s circumstantial evidence. But aside
from being able to accurately assess the emotions that a witness is experiencing
during testimony, emotions play a crucial role in memory that needs to be better
understood.

Cognitive psychologists commonly distinguish among memory formation or
encoding, association, and reconstruction. All of these processes can be affected
by emotion (Forgas, 2001 [13]). For instance, emotional events are thought to re-
ceive some preferential processing (Christianson, 1992 [14]; Taylor & Fragopana-
gos, 2005 [15]) and thus, like all stimuli that receive attentive processing, lead
to more stable and perhaps more accurate memory traces. By the same token,
surrounding stimuli associated with the event that are not attended to are not
encoded, hence are not retrievable later. Similarly, when events are reconstructed
during eyewitness testimony, salient stimuli are better recalled than less salient
stimuli. Salience can be related to three factors: first, to the witness’s prevailing
emotion (the closer to the emotional stress of the experience, the more accu-
rate the memory is considered to be) (Jackson, 1995 [16]; see also the encoding
specificity principle in Tulving & Thomson, 1973 [17]); second, to the witness’s
confidence (which, however, is largely uncorrelated with the accuracy in mem-
ory of an event; Olsson, 2000 [18]); and third, to suggestions provided by others
(Loftus & Ketcham, 1991 [19]; Loftus, 2003 [20]). Emotionally encoded stimuli
can also alter attention; such stimuli can divert attention to themselves and away
from lesser emotionally laden stimuli and thus render the emotionally encoded
stimuli more salient in the context (Taylor & Fragopanagos, 2005 [15]).

There is some concern, though, that emotion or stress adversely affects eyewit-
ness memory (Deffenbacher, et al., 2004 [21]). Understanding a witness’s emo-
tion may have interview and courtroom implications. For instance, during an
interview, a defense attorney may note how an adversarial witness is becom-
ing agitated or aroused and may justifiably claim bias in the witness’s recall of
events. Similarly, during questioning of a witness in the courtroom, a judge may
notice the witness becoming stressed or emotionally involved by the questioning
and may call for a different line of questioning or a recess to calm the witness.
As stated, the credibility of a witness depends in large part on the witness’s level
of emotion.
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2.3 Emotions and Culture

Cultural differences in emotions might impose serious problems in a forensic in-
vestigation. For instance, foreign language interpretations in police interviews
have been shown to generate problems, especially if the interpreter is not prop-
erly trained, or if a police officer acts as the interpreter (Berk-Seligson, 2002
[22]). Russell (2002) [23] argued that even highly trained interpreters who are
not serving dual positions such as interpreter and police officer during inter-
views (see Berk-Seligson, 2002 [22]), may affect interview outcomes or even
verdicts in court proceedings. Russell argued that literal and correct transla-
tions of foreign languages should be emphasized. However, this might not be
possible as there are numerous translation difficulties and ambiguities between
languages (Wierzbicka, 1999 [24]) and between cultures (Semin, et al., 2002 [25]).
Wierzbicka reported, as an example of problematic translations, the word marah,
which is the closest translation of angry in Malaysian. However, the Malaysian
word is incompatible with aggression and is closer in meaning to resentful than
angry. So if a translator interprets the word marah as angry for a person under
investigation for a crime involving aggressive behavior, the person could very
well appear aggressive, even though the exact meaning of the word does not
imply aggression.

Similarly, cultural differences can play a role in the expression of emotion
during an investigation or during courtroom proceedings. Jackson’s (1995) [16]
descriptions of emotional expression, for instance, are based on the Anglo-Saxon
culture which encourages hiding of emotions (Tsai & Chentsova-Dutton, 2003
[26]; Wierzbicka, 1999 [24]), a norm that is not as true in other cultures. A
number of studies (e.g., Ekman, et al., 1987 [27]; Ekman & Keltner, 1997 [28];
Markus & Kitayama, 1991 [29]; Mesquita & Markus, 2004 [30]) have investi-
gated cultural similarities and differences in facial expression and interpretation
of facial expression, finding that a number of expressions represent universal
emotional displays, but that cultural influences on the context of the expression
or on self-concept can affect judgments of expression.

Further, during courtroom proceedings, as well as other negotiations, emotions
provide means to conclude a positive result (Kopelman, et al., 2006 [31]). Kopel-
man, et al. showed that participants in negotiations of varying kinds (immediate
outcomes, time limited ultimatum, and prolonged negotiations) displaying posi-
tive emotions throughout the discussion were more likely to arrive at a subjective
interest-based agreement (e.g., a win). By making the legal actors aware of their
own display of emotions, as well as letting a mediating judge be aware of these,
a more neutral, and even perhaps less biased, ruling might be achieved.

2.4 Emotions in Legal Scholarship

The judicial system already acknowledges emotions as an integral component.
The system itself is based on social morality norms which, in turn, are based
on emotional values and views of the society (Karstedt, 2002 [32]). For instance,
hate crimes are described by the culprit’s attitude towards the victim and the
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punishment of such a crime is controlled, partly, by the culprit’s emotions sur-
rounding the event, the impact of the event on the victim(s), and the judge’s
perception of the social implications of the event (i.e., the need for statutory
ruling) (Karstedt, 2002 [32]). Thus, emotions are inherently intertwined with
the law (Vidmar, 2002 [33]).

Maroney (2006) [6], therefore, points out that emotions can and should be
studied owing to their undisputed relevance to the law. A six-pronged approach
is recommended for study within the law-and-emotion rubric:

1. Focus on a particular emotion such as disgust, fear, or shame, and pertinent
legal considerations. For example, in the legal defense of battered women
who strike back, legal recognition of the experience of the fear emotion, and
the behaviors it may engender, could and should be taken into account in
the course of legal proceedings.

2. Focus on causes of emotional states, or “affective forecasting”. For example,
a litigant who imagines winning a certain level of damages in a civil case
may experience projected happiness, and that experience may induce the
litigant to make important legal decisions such as rejecting a low, but perhaps
appropriate, offer of settlement because it doesn’t produce the projected
level of happiness. The reverse, projecting sadness in the event of losing,
may persuade a litigant to accept an inappropriately low offer of settlement.

3. Focus on theories of emotion - both methodological and within disciplinary
categories - and how current law reflects any one particular theory, and
whether current law favors one theory over another.

4. Focus on legal doctrine. Whereas the first three items focus initially on emo-
tion, this item examines how a particular area of the law - most obviously
criminal law - is subject to understanding emotion. Indeed, emotions such
as passion are encoded in the legal system wherein a crime committed “in
the heat of passion” may be regarded differently than a crime committed
“in cold blood”. But needless to say the entire panoply of legal taxonomy
may be affected by the emotional state of the legal actors that are involved.

5. Focus on the theory of law, as contrasted with focusing on the theory of
emotion. Here, the starting point is a particular theoretical approach to law
followed by an analysis of theories of emotion from that particular point of
view. For example, one might examine the emotional dimensions of “restora-
tive justice”.

6. Focus on how a particular legal actor’s behavior is influenced by his or her
emotions, and the emotional state of those with whom he or she interacts.
This, in fact, is the primary focus of the present chapter and of most research
in this area, the first five foci being as yet relatively unexplored.

Clearly, then, knowledge of emotions can be useful for the judicial system.
However, means of collecting signals that carry emotional content are needed.
One apparent source of such signals is the voice. It is readily available and can
be collected non-invasively. Key here is to separate salient features for emotion
recognition. The next section presents means of collecting, classifying, and ana-
lyzing emotion in speech.
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3 Emotions in Speech

In interactions between individuals the voice is a major tool and often (e.g.,
during telephone conversations) the only tool of communication. Individuals
not only convey the explicit meaning of their utterance via vocal quality when
they are interacting with other humans, but they also present the receiver with
information of a more complex nature through vocal affect, which is one of the
surface manifestations of the emotions that the speaker is experiencing.

Studies of emotions in speech can be divided into two major fields, perceptual
and acoustic. Perceptual studies use human listeners to assess the emotional
content in a speech segment. These studies are often used for cross-culture com-
parisons, or to test the relation of specific acoustic cues to particular emotions
(Yang & Campbell, 2001 [34]) (For example, when a change in pitch is heard,
how frequently will a human listener perceive anger, or confusion, or finality?).

The other type, acoustic studies, uses speech data to extract salient features
that are linked to specific emotions. Often the emotional content of speech is first
perceptually evaluated and tagged before acoustic feature extraction is employed.
(For example, when a human listener perceives anger, how frequently is, say, a
rise in overall pitch detected acoustically?)

A more detailed description of how emotions and acoustic features are inves-
tigated may be found in the Appendix. The following sections present findings
from studies in perceptual analysis and acoustic analysis. Legal implications are
also presented.

3.1 Perceptual Studies

A number of perception studies have been undertaken (e.g., Breitenstein, van
Lancker, & Daum, 2001 [35]; Cowie, et al., 2000 [36]; Douglas-Cowie, et al., 2000
[37]; Laukka, et al., 2005 [38]; Mullennix, et al., 2002 [39]; Scherer, et al., 2001
[40]; Thompson & Balkwill, 2006 [41]; Wurm, et al., 2001 [42]). Human classifi-
cation rates have been found to lie near 70% for unknown voices (Picard, 1997
[10]; Polzin & Waibel, 2000 [43]). However, human listeners have been shown
to use other effects, such as cultural or linguistic influences on the processing
of emotions (Scherer, et al., 2001 [40]; Thompson & Balkwill,2006 [41]; Tickle,
2000 [45]), to assist in deriving additional information from speech.

At least four forms of speech have been used as emotional stimuli to present to
human listeners. One form, speech collected from actors or amateurs, achieves its
emotional content from emotions elicited by either instruction or by self-induced
emoting. That is, the actors are asked to try to feel the emotion while recording
speech. A second form, speech collected from actors or amateurs who are unaware
of the purpose of the recording, comes from emotion elicited by a mood induction
technique. That is, the emotion is induced by the nature or content of what is
recorded. A third form is speech collected from real life television or radio shows.
A fourth form is synthetic speech constructed by altering one or several acoustic
features to (purportedly) reflect a particular emotion (Iida, et al., 2003 [46]).
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Westermann, et al. (1996) [47] conducted a meta-analysis, investigating some
250 studies and comparing eleven methods of emotion induction. They found
that pictorial and movie elicitation caused the strongest effect on listeners. They
further found that the effect is shifted in favor of negative emotions, particularly
in self-imposed methods. Finally, they found that the elicitation effect is raised
if the listener is aware of the purpose of the experiment. One implication is that
emotion-inducing images (e.g., a bloody stairwell) presented, say, as evidence in
a courtroom may have strong effects on observers such as jurors, particularly for
negative emotions (of possible benefit to the prosecution), while making jurors
aware of the strong effects may help them understand their reactions (of possible
benefit to the defense).

It has been argued that by recording actors eliciting emotions, full-blown and
unambiguous emotions can be collected (Liscombe, et al., 2003 [48]; Scherer, et
al., 2001 [40]). However, it has also been argued that acted speech is different
from genuine emotions (Bachorowski & Owren, 2003 [49]; Batliner, et al., 2003
[50]) but may contain a core of truth as it often is reliably decoded by listen-
ers (Scherer, 2003 [11]). Actors are thought to over-characterize emotions when
producing them and tend to elicit emotions primarily via pitch and prosody
(Batliner, et al., 2003 [50]). In fact, it has been argued that the material used in
emotion research always should be collected in the real world (e.g., Cowie, et al.,
2000 [36]; Cowie & Cornelius, 2003 [51]; Douglas-Cowie, et al., 2000 [37]; Picard,
et al., 2001 [52]) and thus be authentic and genuine. However, this generally
means that the emotions elicited will be less strong (Batliner, et al., 2003 [50];
Cowie & Cornelius, 2003 [51]; Douglas-Cowie, et al., 2000 [37]). Douglas-Cowie,
et al. also point out that in using real-life material the emotions may be hidden
by social or other factors or can be expressed in a degraded or mixed version.
This implies that when the effects of emotional stimuli need to be made explicit
to observers or recipients, particularly for real-world stimuli, the social or en-
vironmental context in which the stimuli occur should be recreated as best as
possible. Witness memory and credibility may depend on these ideas.

During perceptual evaluations (also applicable to acoustic analysis), the emo-
tional content of the utterance is related to a specific class of emotion. Cowie
and Cornelius (2003) [51] argued that the size of the chosen set of emotions
to identify would impact the level of categorization. That is, the more emo-
tion classes to distinguish between, the more insecure the categorization will be.
Hence, Cowie, et al. (2000) [36] and Douglas-Cowie, et al. (2000) [37] argued
that the use of two (or three) continuous dimensions was a more succinct way
of representing emotions. The dimensions here were valence and arousal (and
power). Cowie, et al. (2000) [36] showed low inter-subject variation in mapping
emotional content onto these dimensions. Laukka, et al. (2005) [38], however,
argued that three dimensions are insufficient to represent differences between
certain emotion classes, but increasing the number of dimensions to represent
the emotional space not only makes data analysis difficult (hard to train lis-
teners, etc.), it also limits the amount of explanation each dimension can give
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(Cowie, et al., 2005 [7]; Scherer, 2003 [11]). Further, listeners often agree on the
emotional content of stimuli in sets of limited number of categories (Scherer,
2003 [11]) promoting the more “classical” emotion categories (anger, happi-
ness, etc.). The implication for legal actors, then, may be to limit their in-
terpretations of vocal affect to these classical or universal (Ekman, et al., 1987
[27]) emotions, on the basis that other actors will tend to agree with those
interpretations.

These perceptual evaluations can be done using either experts (e.g., Banse &
Scherer, 1996 [53]) or laymen (e.g., Cowie, et al., 2000 [36]; Douglas-Cowie, et
al., 2000 [37]; Tickle, 2000 [45]). However, a pre-processing by experts to filter
out poor examples has been argued to be inappropriate as emotional elicitation
may differ greatly between participants and any elicitation is an exhibition of the
emotions, regardless of whether it is strong or not (Bachorowski & Owren, 2003
[49]). Hence, the expertise or experience of the observer or recipient may affect
how emotional stimuli are interpreted. For example, judgments or responses
to different cultural emotional stimuli may depend on knowledge of the other
culture.

Indeed, perceptual studies have been undertaken to investigate effects such as
cross-cultural similarities in emotion decoding (Scherer, et al., 2001 [40]; Thomp-
son & Balkwill, 2006 [41]) or both emotion encoding and decoding (Tickle, 2000
[45]). The results of these studies suggest that there are similarities in both
encoding and decoding, but differences also exist. Scherer, et al. found that in-
dividuals from nonwestern cultures, specifically Asian, were less successful in
decoding the emotional content encoded by German actors, than were, for in-
stance, Germans, French, and Americans. Note that Scherer, et al. used carefully
constructed nonsense stimuli to lower the impact of language, though that may
actually adversely affect individuals from cultures that demand larger contexts
in which to assess emotional display (Mesquita & Markus, 2004 [30]). Tickle
(2000) [45] found similar effects using English and Japanese encoders and de-
coders. Thompson and Balkwill suggested that there are both universal cues and
culture-specific ones. They found in-group advantages to the extent of signifi-
cance, suggesting that there are cultural-specific cues that other cultures over-
look during decoding. The results were based on English listeners’ judgments of
English, German, Chinese, Tagalog, and Japanese utterances with prosodically
encoded emotions.

Perceptual investigations are needed to test the salience of acoustic features to
specific emotions, or to find unambiguous emotional content in speech samples.
That is, either a hypothesized feature (e.g., pitch or fundamental frequency) is
tested for emotional salience, in which case the feature is manipulated synthet-
ically (Mozziconacci, 2002 [54]), or collected material needs to be emotionally
labeled and confirmed (Batliner, et al., 2003 [50]; Douglas-Cowie, et al., 2000
[37]). Most of the studies presented in the next section used data perceptually
evaluated before extraction of features.

Further details regarding emotion categories may be found in the Appendix.
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3.2 Acoustic Studies

The main goal of acoustic studies has been to link any particular acoustic feature
(or set of features) in a speech sample to the emotional state expressed (given
by perceptual investigations) in that sample. Further, mathematical algorithms
for classification have been used to correlate acoustic features with emotion ex-
emplars, and therefore support a method of classification of emotions based on
acoustic features.

There are two ways of investigating the emotional salience of acoustic features
in speech. Mozziconacci (2002) [54] argued that the best way of finding acoustic
correlates to specific emotions was to employ an analysis / re-synthesis method.
A specific acoustic feature is determined a priori to be correlated with some
emotion(s). The feature is then manipulated by voice synthesis while keeping
other features constant. If listeners to the synthetic voice perceive the emotion
in the presence of the feature, the feature can be said to correlate to some degree
with the emotion(s).

The other way of investigating the emotional salience of acoustic features in
speech is to use collected material and use data driven methods of extracting
multitudes of features and measure the emotional salience for each of these fea-
tures.

Numerous acoustic features have been investigated over the years. In one
of the most inclusive studies (Batliner, et al., 2003 [50]), the task was to find
acoustic correlates of user frustration. Features such as fundamental frequency
(F0) and statistics for F0 (mean, standard deviation, overall range, minimum and
maximum), temporal durations (length of pauses, etc.) with various reference
points, speech rates, and spectral energy and tilt were all examined.

Oudeyer (2003) [55] included a plethora of features, but reduced the original
number (exceeding 200) to a succinct few using a feature selection algorithm.
Based on that algorithm, Oudeyer found the most salient content to be local-
ized in the first part of the spectrum (0 - 250 Hz). However, only three of the
commonly used features (mean, minimum, and maximum) for F0 were found to
be among Oudeyer’s top 20 features.

Features based on models of the spectrum have also been used, focusing on
the first ten (Oudeyer, 2003 [55]) or sixteen (Polzin & Waibel, 2000 [43]) coef-
ficients of a mel-frequency cepstrum and a twelve feature log frequency power
coefficient vector (Nwe, et al., 2003 [56]). In sum, it appears that pitch (funda-
mental frequency) (e.g., Banse & Scherer, 1996 [53]; Bänziger & Scherer, 2005
[57]; Batliner, et al., 2003 [50]; Mozziconacci, 2002 [54]) or spectral information
below 250 Hz (McGilloway, et al., 2000 [58]; Oudeyer, 2003 [55]) have high im-
pact for emotion classification purposes. This is in accordance with findings by,
inter alia, Williams and Stevens (1972) [59]. However, Toivanen, et al. (2004)
[60] found, in conjunction with Oudeyer, that the commonly used measurements
of pitch (fundamental frequency) such as mean and median did not show great
significance for emotion classification. Toivanen, et al. used spoken Finnish as
their language of choice and Oudeyer used French, whereas many of those that
found fundamental frequency mean and median to have an impact used English
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as a language of choice. Therefore it can be argued that mean and median of
fundamental frequency might be language specific cues.

Batliner, et al. (2003) [50] also followed McGilloway, et al. (2000) [58] in that
they divided the speech into sections of interest. McGilloway, et al. called these
sections “tunes” and defined them to be sections of arbitrary length between
specified events (such as pauses of approximately 180 milliseconds). Hence, both
Batliner, et al. and McGilloway, et al. could specify prosodic events based on
the fundamental frequency curve during any particular tune and thus use these
as features.

Prosodic events have also been used to separate emotional events into cate-
gories (e.g., Mozziconacci, 2002 [54]; Paeschke, et al., 1999 [61]; Polzin & Waibel,
2000 [43]; Schröder, et al., 2001 [44]). Batliner, et al. (2003) [50] found that
prosodic cues alone were insufficient to achieve high classification rates, however
Bänziger and Scherer (2005) [57] found successful discrimination between four
emotions using “. . . simple F0 contours - such as F0 mean or F0 range . . . ”
(p.265). Mozziconacci and Hermes (1999) [62] successfully correlated some in-
tonational patterns to a subset of emotions, but found only partial correlation
during a perceptual evaluation functioning as validation of the findings. Other
studies have used fundamental frequency data to separate emotional content
(Burkhardt & Sendlmeier, 2000 [63]; Dellaert, et al., 1996 [64]; Lee, et al., 2001
[65]; McGilloway, et al., 2000 [58]; Oudeyer, 2003 [55]; Paeschke, et al., 1999 [61];
Polzin & Waibel, 2000 [43]; Roy & Pentland, 1996 [66]). These studies are rele-
vant because they imply that observers will rely on not just one acoustic feature
of an emotion-inducing stimulus to categorize the effects. Legal actors ranging
from law enforcement officers to interviewers need to learn to assess the breadth
of behaviors exhibited by a subject, including the variety of vocal characteristics,
before determining his or her emotional or psychological state (see Hubal, et al.,
2004 [67]; Link, et al., 2006 [68]).

Voice quality (e.g., formant distributions of particular vowels, or phonation
types such as creaky voice) has been studied by a few researchers (e.g., Burkhardt
& Sendlmeier, 2000 [63]; Gobl & Chasaide, 2003 [69]). Burkhardt and Sendlmeier
found some correlation to emotion involving voice qualities but this was not the
case for Gobl and Chasaide (see also Janniro & Cestaro, 1996 [70]) who argued
that the correlation between voice quality and expressed emotion is uncertain.
Clearly, further research is needed in this area.

In order both to assess the multivariate description of emotions by a set of
features and to use features to classify new utterances, multivariate tools and
classification algorithms are needed. Oudeyer (2002, 2003) [71] [55] performed
a comparison between several classification algorithms. These included several
different types of neural networks, decision trees, k -star, kernel density, linear
regression, several support vector machines, and AdaBoost. Oudeyer found that
the most successful algorithm for his data was the AdaBoostM1/C4.5 method,
which applies a machine learning technique to refine and stabilize the output of a
decision tree method. This produced results as high as 96.1% classification rates
with speaker dependent data and optimal feature sets. Other popular classifica-
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tion algorithms include a maximum likelihood Bayes classifier (Dellaert, et al.,
1996 [64]; Polzin & Waibel, 2000 [43]), kernel regression (Dellaert, et al., 1996
[64]), k-nearest neighbor (Dellaert, et al., 1996 [64]; Toivanen, et al., 2004 [60])
and hidden Markov models (Nwe, et al., 2003 [56]).

Cues in which emotion is conveyed can also be found in higher linguistic levels.
Batliner, et al. (2003) [50] used conversational artifacts, syntactic structure, and
dialogue acts to find trouble in communication. They found that repetitions of
statements, especially when an utterance is repeated word for word, are cues to
severe problems and therefore annoyance in the observer or recipient.

Similarly, Hozjan & Kačič (2006) [8] used various durations (e.g., sentence,
syllable, specific sounds) in conjunction with fundamental frequency and ampli-
tude measurements. They found that the mean energy of segmented speech (i.e.,
energy means taken over segments of speech) had the highest significance for
emotion classification. This measurement was closely followed by the durations
of affricates, plosives, sonorants, and fricatives in that order. (See also Petrushin
& Makarova, 2006 [72], for this effect in Russian.) They also found that any cue
on its own was insufficient to separate any emotion pair, but combinations of
different cues did. However, the combinations differed for each emotion pair and
each speaker and they suggested that speakers might have personal preferences
when selecting available cues to depict a specific emotion. It should be noted
that their speakers had a mixed language background, which could indicate cul-
tural or language dependent differences, although speakers of the same language
showed no more similarities in cue setup than mixed-background speakers.

Schröder (2000) [73] investigated the impact of acted German affect bursts on
perceived emotion. Affect bursts are short utterances produced appropriately for
a specific emotion. For example, growling was used to convey threat. Schröder
had actors choose whichever burst they saw fit for a specific emotion and found
correlations between emotion and choice of sound. However, in a follow-up lis-
tening experiment the correlation was much weaker and confusion rates were
greater.

4 Implications for Training and Assessment of Legal
Actors

As was suggested, detection of emotion in others has implications for witness
credibility and forensic investigation. Looking forward, automated detection of
emotion using tools based on the research just described may have further im-
plications for legal training and assessment.

4.1 Interaction Skills Training

Law enforcement officers and others in the legal system who regularly encounter
suspects and witnesses need training on learning to assess those persons’ emo-
tions. As an example, there is a need for training law enforcement officers in
managing encounters with the mentally ill (Engel & Silver, 2002 [74]). Frank, et
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al. (2002) [2] describe a system for that form of training, where law enforcement
officers encounter a synthetic character (i.e., a computerized agent) and the offi-
cers must learn, using interaction skills alone, to de-escalate the situation. Along
with gestural and facial expressions given by the character, emotion expressed
in speech is critical and informative for these officers.

De-escalation is just one procedure that persons in the legal system perform.
Other procedures include interrogation, negotiation, and crowd control, and emo-
tion comes into play for all of these procedures. For instance, law enforcement
interrogations done incorrectly can be suggestive and can lead witnesses to con-
fident, emotionally laden, detailed mistaken memories (Loftus, 2003 [20]). All
of these procedures also require, at some point, assessment of emotion as part
of determination of intent. Training systems using technology similar to that
of Frank, et al. that incorporate emotional characters offer great advantages in
reliability, safety, and ultimately success in performance on the job.

4.2 Situated Assessment

Not only must the emotional state of individuals sometimes be assessed by an ob-
server, but also the individual’s responses to emotional stimuli must sometimes
be assessed. This might be true, for instance, to gauge a defendant’s behav-
ior when emotional evidence is introduced. The closer the social and environ-
mental context is to that which is on trial, the more realistic the response can
be expected to be. That is, whereas practitioners of situated learning strive to
have learners gain knowledge and acquire skills in the contexts that reflect how
knowledge and skills are applied in everyday situations (e.g., Anderson, Reder,
& Simon, 1996 [75]), a new line of research aims to place the individual within a
simulated environment that closely mirrors the real environment, and measures
the individual’s assessment of the situation (e.g., Paschall, et al., 2005 [76]). The
situation might measure physical behavior, but also verbal behavior (i.e., speech)
exhibited by the individual. Paschall, et al. showed that a simulation is capable
of differentiating between groups of participants, such as individuals diagnosed
or not diagnosed with conduct disorder. The ability to detect a person’s state
through behavior exhibited in response to emotional stimuli holds promise for
interrogation, for identifying remorse or feelings of guilt, for judging the effects
of culture, and for judging credibility.

4.3 Admissibility of Machine-Detected Emotion as Evidence

Like all new technologies (e.g., fingerprints or DNA testing, at different times),
admissibility as evidence may depend on the court’s perception of the technol-
ogy’s reliability as well as its appropriateness in the particular kind of juristic
process (e.g., criminal vs. civil) in question. As a precursor to the chain of judi-
cial rulings that will undoubtedly come about in the future, a widely accepted
principle of the admissibility of novel scientific evidence, called the “Frye Test”
(from Frye v. The United States in 1923 ), is likely to be invoked. The criteria
are that the technology would be first subjected to rigorous analysis by the sci-
entific community during its experimental stage, and only after this community
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arrived at a consensus that the technique was valid would evidence of its use be
admissible in court.

5 Summary

Automated detection of emotion in speech may improve legal decision making
in areas that involve assessment of emotion in others, emotions and memory,
emotions and culture, and training of participants in the legal process. Though
current natural language systems are not yet fully able to interpret a person’s
emotion, ongoing perceptual and acoustic studies paint a promising picture for
automated detection of the wealth of information available in the acoustic signal
of speech. The advent of this technology will spur research into its effect on all
aspects of the juristic system.
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60. Toivanen, J., Väyrynen, E., Seppänen, T.: Automatic Discrimination of Emotion
from Spoken Finnish. Language and Speech 47(4), 383–412 (2004)

61. Paeschke, A., Kienast, M., Sendlmeier, W.F.: F0-Contours in Emotional Speech.
In: Proceedings of ICPhS, pp. 929–931. Linguistics Department, San Francisco,
USA, University of California, Berkeley (1999)

62. Mozziconacci, S., Hermes, D.J.: Role of Intonation Patterns in Conveying Emotion
in Speech. In: Proceedings of ICPhS, pp. 2001–2004. Linguistics Department, San
Francisco, USA, University of California, Berkeley (1999)

63. Burkhardt, F., Sendlmeier, W.F.: Verification of Acoustical Correlates of Emotional
Speech Using Formant-Synthesis. In: Proceedings of the ISCAWorkshop on Speech
and Emotion, pp. 151–156. ISCA, Belfast, Ireland (2000)

64. Dellaert, F., Polzin, T., Waibel, A.: Recognizing Emotion in Speech. In: Proceed-
ings of the ICSLP, pp. 896–900. ICSA, Philadelphia (1996)

65. Lee, C.M., Narayanan, S.S., Pieraccini, R.: Recognition of Negative Emotions from
the Speech Signal. In: Proceedings of Automatic Speech Recognition and Under-
standing, pp. 240–243 (2001)

66. Roy, D., Pentland, A.: Automatic Spoken Affect Analysis and Classification. In:
Proceedings of the International Conference on Automatic Face and Gesture Recog-
nition, pp. 363–367. IEEE Computer Society Press, Los Alamitos (1996)



Emotions in Speech: Juristic Implications 169

67. Hubal, R., Frank, G., Guinn, C., Dupont, R.: Integrating a Crisis Stages Model
into a Simulation for Training Law Enforcement Officers to Manage Encounters
with the Mentally Ill. In: Proceedings of the Workshop on Architectures for Model-
ing Emotion: Cross-Disciplinary Foundations, American Association for Artificial
Intelligence Spring Symposium Series, pp. 68–69. ACM Press, New York (2004)

68. Link, M.W., Armsby, P.P., Hubal, R.C., Guinn, C.I.: Accessibility and Acceptance
of Responsive Virtual Human Technology as a Survey Interviewer Training Tool.
Computers in Human Behavior 22(3), 412–426 (2006)

69. Gobl, C., Chasaide, A.N.: The Role of Voice Quality in Communicating Emotion,
Mood and Attitude. Speech Communication 14, 189–212 (2003)

70. Janniro, M.J., Cestaro, V.L.: Effectiveness of Detection of Deception Examina-
tions using the Computer Voice Stress Analyzer. Report No. DoDPI96-R-0005.
Department of Defense Polygraph Institute, Fort McClellan (1996)

71. Oudeyer, P.Y.: Novel Useful Features and Algorithms for the Recognition of
Emotions in Human Speech. Sony Computer Science Lab, Paris, France (2002)
Available at Internet website: Downloaded on (2004)-03-17,
http://www3.isrl.uiuc.edu/ junwang4/langev/localcopy/pdf/
oudeyerprosody2002a.pdf

72. Petrushin, V.A., Makarova, V.: Parameters and Fricatives and Affricates in Russian
Emotional Speech. In: Proceedings of Speech and Communciation (SPECOM),
June 25-29, pp. 423–428, St. Petersburg (2006)
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A Appendix

Research in emotion detection from speech acoustics is a four-pronged investiga-
tion. The questions surround emotional categories, acoustic parameters, classi-
fiers, and databases. In this Appendix we dig deeper into the emotion detection
literature to illustrate these points.

A.1 Emotional Categories

Hundreds of emotion categories have been identified and discussed in the lit-
erature. From a practical stance, one needs to choose a small subset of these
that suit a particular application. In an instructional context, for example, one
might focus on the emotions of confidence, confusion, and frustration. In a judi-
cial context, anxiety, hostility, or uncertainty may be the emotions of interest.
In contexts where detecting and distinguishing as few as three emotions may
be overly difficult, merely attempting to identify negative emotions from non-
negative ones may have to suffice (Lee, et al., 2001, 2002, 2005 [65] [77] [78]).

To give an idea of how wide ranging researchers’ views on categories of emo-
tions are, we offer in Table 1 a non-comprehensive, alphabetized list of emotions
that have appeared in the literature. One difficulty in compiling this list is that
emotions are discussed in terms of both nouns (“happiness”) and adjectives
(“happy”). Adjectival descriptions have been translated into nominal ones for
consistency. We believe the description should be consistent, but feel that the
difference between whether one is experiencing the emotion of happiness versus
experiencing a happy emotion, in describing a pervading feeling of joy, is of less
concern as it relates to juristic implications.

The list in Table 1 is not only incomplete, but also the items are not mutually
exclusive, in that the emotions overlap, several emotions may be experienced
at the same time, and the emotions are “fuzzy” in the sense that one imagines
them to be experienced to a greater or lesser degree, and not to be merely present
or absent in all cases. The latter situation is addressed in Gobl and Chasaide
(2003) [69] , who present eight sliding scales of emotions (shown in Table 2 in
their original, adjectival format). (Potapova & Potapova, 2003 [79], present a
similar scheme with their “scaleable subtypes” of emotions, e.g., fear is replaced
by consternation - dread - terror.)

Emotions have also been represented on planes of varying dimensionality. For
instance, Cowie, et al. (2000) [36] and Douglas-Cowie, et al. (2000) [37] presented
their work with two or three dimensions (activation, valence, and power). Lis-
teners were asked to rate stimuli along these scales. (A similar scheme is to plot
Plutchik’s (1994) [80] circle, as is discussed in Jovicic, et al., 2006 [81]). Laukka,
et al. (2005) [38] extended Cowie’s set of dimensions with a fourth, intensity, to
accommodate further separation of emotions.

Correlating these dimensions with acoustic features, however, can be difficult.
One approach is described by Jovičic, et al. (2006) [81], who suggest a three-
level hierarchy of emotions within their multidimensional framework: primary,
secondary, and tertiary. Primary emotions are fundamental and easiest to detect
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Table 1. List of Emotions

anger, anxiety, bemusement, bliss, boredom, certainty, complacency, confi-
dence, confusion, contempt, contentedness, delight, depression, despair, dis-
gust, excitement, exhilaration, fear, friendship, frustration, fury, happiness,
hostility, impatience, interest, neutrality, outrage, pleasure, politeness, relax-
ation, sadness, serenity, shame, stressfulness, surprise, terror, timidity, volatil-
ity.

Table 2. Sliding Scale of Emotions (from Gobl & Chasaide, 2003 [69])

relaxed-stressed, content-angry, friendly-hostile, sad-happy, bored-interested,
intimate-formal, timid-confident, afraid-unafraid.

acoustically, for example fear. A secondary fear emotion would further subdivide
into, say, anxiety, terror, phobic, distinctions that are more difficult to detect re-
liably from the speech signal. A tertiary fear emotion would presumably identify
even finer distinctions, say mildly anxious to severely anxious, and these would
be detected by “micro prosodic features” (p. 413).

A.2 Acoustic Parameters

There are many acoustic properties of the speech signal discussed in the liter-
ature, which reflect the panoply of vocal affects to be linked to the emotional
states. We show a non-exhaustive list in Table 3, again noting that the prop-
erties are not always independent (orthogonal) amongst themselves, and that
some properties may be manifested to a greater or lesser degree. Kaiser, 1990
[83] and Slyh, et al., 1999 [84] are two of a raft of papers on calculating certain
acoustic properties.

A.3 Classifiers

The third consideration in determining emotion from voice has to do with the
kinds of classifiers, or statistical tools, used to build models of speakers in which
the acoustic parameters of vocal affect are statistically related to the perceived
emotions. The underlying assumption is that there is a database of speech that
is tagged with the names of the emotion or emotions purportedly evident from
the various segments that comprise the speech. Associated with the tags are any
acoustic parameters of interest. The classifier is used to build a speaker model
from known speech samples, after which the model can be used to determine the
emotions portrayed in future speech samples.

A variety of classifiers has been used by researchers, of which seven are: hid-
den Markov models, kernel regression, k-nearest neighbors, linear discrimination,
maximum likelihood Bayes classifier, neural nets, and vector quantization. The
list is hardly complete but it gives a sense of the eclectic tastes of the various
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Table 3. List of Acoustic Properties

pitch mean, pitch median, pitch standard deviation, pitch extrema, median
duration of falls or rises in pitch, speech rate, mean tune duration(segments
separated by more than 180 milliseconds of silence),long term average spectrum
by frequency, spectral tilt (a measure of the raising or lowering of the voice),
distribution of energy within various spectral ranges such as below 250Hz, jitter
(variation in pitch period), shimmer (variation in amplitude), per-phoneme
first formant mean, per-phoneme second formant mean.

researchers. Pared down to essentials, given an emotion E and an acoustic pa-
rameter A, the model is intended to yield two probabilities: the probability of
observing A when E is evident, and the probability of observing A when E is
not evident. Mathematically, the former is written as P(A|E) and the latter as
P(A|∼E). The ratio of these probabilities – P(A|E)/P(A|∼E) – gives the likeli-
hood, or odds, that when A is detected in the speech, the emotion E is being
experienced.

A simple arithmetic example makes this clear. Suppose that in 100 exemplars
of speech wherein the speaker is said to experience sadness, the pitch falls 20%
or more in 80 of the exemplars. Moreover, suppose that in 1000 exemplars of
speech wherein the speaker is said not to experience sadness, the pitch falls 20%
or more in 100 of those exemplars. Then the probability of the pitch falling
when the speaker is sad is 80/100, i.e., P(A|E)=0.8, while the probability of the
pitch falling when the speaker is not said is 100/1000, i.e., P(A|∼E)=0.1. The
likelihood that the speaker is sad when the pitch falls 20% is therefore 0.8/0.1
= 8/1. Thus when the speaker’s pitch drops 20% the odds are eight to one that
the speaker is feeling – and expressing – sadness.

If other acoustic parameters are associated with the sadness emotion, their
likelihoods may be computed similarly. If the parameters are known or assumed
to be independent, then multiplying the likelihoods gives an overall likelihood
ratio for the emotion given the acoustic parameters. (See Rose, 2002, [82] for an
excellent, lucid explication of likelihood ratios.)

A.4 Databases

A fourth thrust of emotion detection research is the development of databases
of speech tagged with emotions. The model building and likelihoods discussed
above depend on having such a database.

Certainly one way to assemble such a database is to hire actors to exhibit
the emotions of interest, and record their speech as they do so. This may be
done directly by instructing the actor to speak a given sentence with a feeling
of sadness, or it may be done by giving the actor a role to play and lines to read
in which sadness is called for. This is a common source of data but one open
to much question, perhaps best summed up in Douglas-Cowie, et al. (2000) [37]
where the authors write, “At the very least, acted emotion cannot be a sufficient
basis for conclusions about the expression of emotion”.
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Other recourses remain. One is to find “real” people and immerse them in
emotion invoking situations while recording their speech. One would presumably
not go so far as, say, to threaten to throw people from the top of the Roman
Coliseum in order to collect fearful speech, though this suggests that Nero may
have had the means to be an effective researcher. Rather, participants might
be asked to recall and describe a particularly emotional event in their lives, or
perhaps asked to read emotion-invoking passages aloud, either composed for the
purpose, or drawn from the literature. Another approach, as taken by Douglas-
Cowie, et al. (2000) [37], involves collecting data from media shows, either radio
or television, featuring non-actors in verbal interactions that evoke emotions.
(In general, negative emotions often come out in chat shows whereas positive
emotions derive from religious programs.) For summaries of numerous human-
based databases see Cowie, et al. (2005) [7].

A final possibility is to develop a database of emotionally charged synthetic
speech (Iida, et al., 2003 [46]). Such a database would be useful for studies in
human perception of emotions in the presence of particular acoustic features
that could be tightly controlled. But a synthetic database should not be used to
identify the acoustic correlates of a particular emotion as perceived by a human
as that would clearly be circular, except in the framework of evaluating the
efficacy of the database.
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Abstract. This chapter deals with the application of automatic speaker
classification in human machine dialog systems based on telephone op-
eration. In a first step we introduce a taxonomy based on three features
that such systems might have. We explain the features, namely online,
mirroring, critical and their respective counterparts get explicated and
are than used to characterize a part of the exemplary applications that
illustrate the benefit of that approach. Furthermore prototypical appli-
cation scenarios are described that shall illustrate the vast possibilities
to utilize automated speaker classification in dialog applications.
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1 Contents and Motivation

In human-human communication speaker classification takes place at all times
and is very valuable for the communication process, as people constantly adapt
their manner of speaking based on the assessment they have of their coun-
terpart’s age, gender, mood or mother tongue. Incorporating such strategies
into (semi-)automated voice services can be very helpful to extend their benefit.
On the other hand, the possibility of automated speaker classification based on
telephone-calls makes new applications possible based on this feature in itself.

This chapter shall envisage some application that utilize speaker classification
in a telecommunication scenario. We will propose a taxonomy of such applica-
tions based on features like online/offline or mirroring/non-mirroring. Further we
will introduce a set of application scenarios and discuss in parts their place in the
taxonomy. Further ideas for applications shall illustrate the many possibilities
to utilize speaker classification with automated dialog systems.
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2 A Taxonomy for Speaker Classification Applications

In [1] we introduced a taxonomy to distinguish between applications that utilize
emotional awareness. Because emotion recognition can be seen simply as a subset
of speaker classification, this approach is extensible with respect to other speaker
classifications based on age, gender or accent.

Fig. 1. A possible taxonomy of speaker classification applications

Such a taxonomy can be very useful to think up possible applications that
utilize speaker classification by playing around with the inclusion or exclusion
of certain features. In figure 1 a possible taxonomy is depicted as a tree. Now if
we have an application that resides in one leaf of that tree, moving it to another
place might give us ideas to think up a different application. Examples are given
below. In the following paragraphs we introduce three binary features that could
be used for such a taxonomy.

Online vs. Offline: With an online system the classification is made immediately
while interacting with user, while with an offline system the classification takes
place delayed, after the actual interaction, based on logged audio data. Take as an
example an ad sponsored telephone service that presents target group optimized
advertising based on user classification. In an online version the system would
decide with each call which target specific advertisement to display whereas
an offline version of the same application would simply analyze the main user
groups, perhaps analyzed for certain time-intervals or branches of the dialog,
and present user-targeted advertising based on that decision.

Mirroring vs. Not Mirroring: This distinction is based on whether the user gets
a direct feedback based on the classification or whether he/she is not directly
aware of it. Take as an example a system that analyzes the perception of accent.
In a mirroring version such a system could help a language student to improve
the pronunciation1 while a non-mirroring variant might be used to offer the caller
a dialog in his/her mother tongue.
1 Although we admit that it is not straightforward to imagine this as a service offered
via telephone.
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Critical / Not Critical: If we talk about a critical application we mean that
the feature “speaker classification” is indispensable for the success of the ap-
plication’s purpose. Of course all applications whose main feature consists of
the speaker classification, like the example of the language-student that gets
supported by accent detection, fall into that category.

A further differentiation of applications can be based on the speaker features
that are classified. An application that classifies callers with respect to their age
might make sense also with other features like accent, gender or emotion. E.g.
the obvious idea to offer callers an optimized dialog design according to their
age group can be mapped to emotion recognition in the anger-detecting voice
portal scenario.

3 Application Scenarios

In the following we will introduce a set of applications that utilize speaker clas-
sification. Some of them were repeatedly envisaged in scientific literature, others
have been mentioned already in the public media and few are even deployed
as real-world applications. Many applications based on emotion recognition are
further discussed in [2] or [1]. As such they can be taken as prototypical ap-
plications that stand for a family of related ideas. By applying the taxonomy
mentioned in Section 2 the set can be enlarged by thinking up applications that
differ with respect to a certain feature or utilize the classification based on a
different speaker feature.

Dispatching callers to trained agents. This describes in a generic way the idea to
classify the customers of a call center and forward them to an agent whose profile
matches the caller’s class. One obvious example would be the language of the
caller in a multilingual call-center, e.g. a credit-card hotline. Another famous
application foresees the measurement of anger in the caller’s voice (e.g. for a
complaint hotline), so that very angry customers can get handled by specially
trained agents [3]. But generally spoken, the idea to let a specially talented agent
take care of certain speaker classes can be generalized to classes like men, women,
elderly, kids, strangers, or people coming from a specific part of country.

Adapted Dialog Design. If we take automated voice portals into account, dialog
design becomes an important issue. State of the art technology in language
understanding and artificial intelligence does not yet allow for totally free and
open dialogs in human computer interaction (HCI). Dialog design comprises
the way how the dialog flow is designed, i.e. which grammars are activated,
which prompts will be played, which choices can be made by the user and which
feedback strategies are implemented. In the case of static speaker classification
like age or gender one possible application in this context would be to implement
several designs and activate the one that fits best to the current user profile.
This might consist of very subtle changes, for example elderly customers might
prefer a slower speech rate in the system’s prompts. A misclassification would
then not lead to a perceptible difficulty for callers, resulting in a non-critical
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application with respect to the above mentioned taxonomy. On the other hand
a dynamic speaker classification like e.g. emotion or language could be used
to adapt the dialog dynamically to a change in the user’s state. One of the
most famous examples for such an application consists of the emotion-aware
voice portal that detects user’s anger and tries to soothe him/her by comforting
dialog strategies as described in [3]. With this example a misclassification might
lead to serious problems as callers that were not angry will probably get angry
if accused unjustly. In that sense the application can be seen as critical.

Target-group specific advertising. Analogous to the development of Internet ser-
vices it is foreseeable that a rising number of telephone services will by financed
by advertising. Knowledge of the user group can help a great deal with respect to
product choice and way of marketing. According to the taxonomy this could be
used as an online application if the users get classified in the beginning of their
conversation and tailored advertisement is presented to them in the course of
further interaction, e.g. while waiting for a connection. As an offline application
on the other hand the main user groups of a specific voice-portal or branch of
a voice portal could be identified during a data collecting phase and then later
advertisement targeted for the major user group be chosen. This is not a critical
application as the main target of the interaction (a user gaining information)
would not be endangered by the choice of an inappropriate advertisement. It is
also not mirroring as the user is not directly aware of being classified.

Adapted Persona Design. With “persona design” we describe an automated
voice-portal’s character as a virtual persona. The character is represented by the
wording of the prompts, the sound of the systems voice2 and the expressions the
grammar consist of. The design of such a “persona” can be enhanced to a great
deal by background music or other sound-effects. Encountering an inconsistent
persona design can be very confusing in an interaction, just like speaking to a
person with multiple personalities. Usually the persona design is influenced by
the topic the voice-portal application is all about, e.g. a banking application
will prefer a serious persona, perhaps an elderly gentleman whereas a ring tone
download application might use a trendy younger girl character. But speaker
classification makes it possible to design one and the same application with
different personas and activate them based on a prior application. Analogous to
the target-group specific advertising application this would be conceivable in an
online version and an offline version, where the major user groups are identified
in a preliminary data collection phase.

Market analysis of target groups. Even if the system’s reactions are not influ-
enced by the speaker classification, a knowledge of which group called when
or was interested in which product can be invaluable for marketing strategists.
Because it’s not important to gain such a knowledge during the course of in-
teraction, this could be realized as an offline application, thereby allowing the
2 Irrespective of the fact whether it’s playback of prerecorded prompts or speech syn-
thesis.
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use of more sophisticated classification algorithms that don’t need to follow real
time requirements.

Call Center Quality Management. Call center managers have a strong interest in
monitoring and optimizing the quality of the services provided by their agents.
Speaker classification can be employed for this purpose in a variety of ways. For
example, a classifier for the emotional state of the agents and/or the caller can be
used to calculate numerical values that act as an indicator for the average quality
of service provided over a certain period of time. Based on a large number of
calls, even a classifier with a rather poor recognition rate on the utterance level
is suitable to reliably detect relevant changes, such as an increasing number
of angry callers or an increasing average stress level of the call center agents.
Speaker classification can also be employed to identify individual calls in a corpus
of recorded call center conversations. For example, calls with angry users can be
selected for the purpose of training agents to cope with this situation.

Telephone surveillance. Clearly, speaker classification methods offer the poten-
tial for increasing the effectiveness of telephone surveillance measures by gov-
ernment authorities, e.g. by preselecting calls conducted by certain subgroups of
the population.

Influence on staff planning. There are studies showing that the success of a call
center is higher (this could be measured in customer satisfaction or sometimes
even in revenue) when the characteristics of the caller and the agent matches,
i.e. they are in the same age range, equal social level, etc. So if it is possible
to create a profile of the caller groups over time (in the morning young male
high professionals call and in the afternoon elderly housewives from middle class
families) it makes sense to try to match the structure of the call center agent
groups in that time to the caller structure.

Cross- and Up selling. Imagine an automated ordering hotline where people call
in and place their orders. What usually should be done in such an application
is that the system gives the callers some proposals what should be ordered in
addition (this sometimes is also done by human agents). If the system in that case
could not only use the already ordered product as the base of the decision what to
propose as up selling item but also the gender of the caller and the age and other
speaker characteristics, the chance that the proposed additional item is ordered
can be maximized. Just as an example: if someone orders a digital camera in an
voice application, the up selling item for younger callers perhaps should be some
software product like Photoshop for manipulating taken photographs whereas
for elderly people an additional suitcase is proposed.

Quiz Games/Prize Competitions. In automatic prize competitions over the tele-
phone the set of questions can be matched against the callers characteristic.
Usually, the idea behind those quiz games is that callers have a quite good
chance to get the right answers so that there is the chance for the company
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to establish a relation to the caller. If the systems is aware of teens calling in
perhaps questions on currently successful pop bands is the right choice so that
the callers have a quite good chance to know the right answers whereas for the
older generation questions on classic music are more preferable.

Gaming, Fun. A related field of applications is given by applications in the
gaming or entertainment sector. For example the love detector by Nemesysco
Ltd. attempts to classify speech samples based on how much “love” they convey.
Other entertainment application ideas comprise online-telephone role games or
horoscope applications that variegate their prognoses based on some automati-
cally detected speaker characteristic.

4 Conclusion

Generally spoken, the use of automated speaker classification is of high poten-
tial when it comes to the design of more natural interfaces in human machine
communication. We introduced a taxonomy that might be helpful to think up
possibilities for the integration of speaker classification in various application
fields. Furthermore we see from the large list of prototypical scenarios that can
benefit from speaker classification strategies that this technology is indeed an
important basis for enhancement in all kinds of application fields.
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1   Introduction 

Within the field that is commonly referred to as “Forensic Speech and Audio 
Analysis” (e.g. by the European Network of Forensic Science Institutes, ENFSI) or 
“Forensic Phonetics and Acoustics” (from the name of the International Association 
for Forensic Phonetics and Acoustics) speaker classification is a regular and important 
task. The classification characteristics that are most commonly used in forensic 
phonetics and acoustics are gender, age, dialect, foreign accent, sociolect, and speech 
pathology. Speaker classification in forensic phonetics is primarily performed within 
two different practical tasks. At the German Bundeskriminalamt (German Federal 
Police Office, BKA) these two tasks are named Stimmenanalyse and 
Stimmenvergleich. The most direct translations of these terms are “voice analysis” 
and “voice comparison”, respectively, and these are the terms that will be used during 
this paper. 

The difference between voice analysis, voice comparison, as well as further tasks 
under the more general heading of forensic speaker identification, is defined in 
practical terms and is based on the availability or non-availability of recorded speech 
material and the availability or non-availability of a suspect in a criminal case. From 
these two factors four possible combinations arise.  

In the first combination of situations there is recorded material from an unknown 
speaker who is connected to a crime (e.g. the voice of a kidnapper making ransom 
demands over the telephone), but no suspect is present and hence no recording of a 
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suspect can be made available which could be compared with the recording of the 
unknown speaker. Such a situation often arises in the early stages of a police 
investigation. In such a case the police asks an expert in forensic speech analysis for 
any characteristics of the unknown speaker that can be inferred from his recorded 
voice and that can be of help in finding a suspect. The task carried out by the forensic 
expert in response to this request is called voice analysis. Sometimes also the term 
“voice profiling” is used for the same activity. Voice analysis is almost exclusively a 
speaker classification task.1 Depending on the circumstances of the case voice 
analysis often has to be carried out very quickly and sometimes with limited resources 
(when it has to be performed outside the speech laboratory), but voice analyses can be 
– and often have been in the past – of crucial help for the police in finding a suspect. 
Alternatively or in addition to carrying out a voice analysis it is possible to present the 
recorded speech sample to a wide public, using radio, television or related means.  

In the second type of situation a suspect has been found and there is recorded 
material available not only from the unknown speaker but also from the suspect. 
(Presence of a suspect does not necessarily imply availability of recorded material 
from that suspect; sometimes the suspect refuses to provide a speech sample and there 
might be no other means of obtaining speech material from that person.) In such a 
case the two speech samples can be compared with respect to a wide variety of speech 
properties and a statement will be made as to whether or not the two speech samples 
were produced by the same person (depending on the expert or expert group, such a 
statement is usually expressed in probabilistic terms). This activity is called voice 
comparison. Speaker classification is part of the work involved in voice comparisons. 
But unlike voice analyses, which are almost entirely a speaker classification task, 
voice comparisons also involve (other) aspects of speaker identification such as the 
auditory assessment of voice quality or the measurement of average fundamental 
frequency, with no inference on speaker class. 

In the combinations of situations addressed so far, recorded material was available. 
If no such material is available, an alternative is the presence of at least one witness 
who has heard the voice of the unknown speaker in association with the crime (often 
the witness is also the victim of the crime). Again one has to distinguish between the 
presence and the absence of a suspect. And if a suspect is present one has to 
distinguish between the case where the witness knew the speaker before and 
recognized him during the crime (which might be the very reason a suspect exists) 
and the situation where the witness did not know the speaker and hence could not 
recognize him during the crime. In the former situation the forensic specialist has to 
assess the reliability of the witness’ recognition of the speaker during the crime. In the 
latter case a so called voice lineup (also called “voice parade”) is designed and carried 
out. This is a complicated process involving many steps and precautions ([1] for 
guidelines that are agreed upon by most practitioners in forensic phonetics and 
acoustics). Speaker classification is one aspect in the preparation of voice lineups. 
The witness is asked by the expert which gender, age, dialect etc. the unknown 
                                                           
1 “Almost”, because some speaker characteristics potentially reported in voice analyses – such 

as an unusually high pitch level – are not speaker class characteristics in a strict sense but can 
still be useful in an investigation if police and laypersons understand what is meant by the 
particular speaker characteristic and can, for example, compare it with their memory of person 
they know or have encountered. 
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speaker had. Subsequently, the expert has to select foil speakers in the lineup that 
match the classification characteristics of the offender described by the witness and/or 
the classification characteristics that the suspect has according to an analysis by the 
expert ([2] for more in-depth discussion of this point). Finally, all the speakers in the 
lineup have essentially the same speaker classification and the witness has to 
concentrate on differences between speakers that go beyond speaker classification. 
For each speaker in the lineup the witness is asked whether the voice of that speaker 
corresponds to her/his memory of the speaker at the time of the crime. In this manner 
a pure speaker identification task is performed by the witness, because speaker 
classification had already been performed with the foil selection process. Speaker 
classification performed by witnesses (in collaboration with experts) is a different 
matter than speaker classification performed by experts that are trained in phonetics 
or linguistics. It is an interesting topic in its own right, though, and of interest beyond 
forensics: how do phonetically untrained laypersons classify speakers? But in the 
interest of space the paper will focus on speaker classification by experts and on 
situations where recorded material from at least the unknown speaker is available. 

The fourth possibility in the taxonomy of situations shall not be left unmentioned 
although it is only rarely relevant in current practice. This would be the case where a 
witness has heard the speaker in association with the crime and does not know him, 
where no recordings exist, and where no suspects exist that would make a voice 
lineup possible. In such a case the expert can try to make a voice analysis in 
collaboration with the witness, arriving at a speaker classification plus some very 
salient speaker characteristics such as increased pitch level, if these occurred. This 
task could be aided by the use of speech databases containing multiple speaker 
classification combinations, so that the speaker classification task becomes a more 
illustrative and less abstract matter for the witness and so that terminological 
misunderstandings between witness and expert can be clarified. A more challenging 
way of responding to this situation would be to use a speech synthesizer in order to 
create some form of acoustic phantom picture. Although sketched as early as in [3], it 
is not apparent from published sources since then that anybody has approached such a 
forensic task yet. Given the good quality of current speech synthesis systems – 
including ways of changing speakers and voice qualities either with formant synthesis 
or concatenative synthesis plus signal manipulation – such a method of creating 
acoustic phantom pictures is not completely unrealistic any more. 

This paper proceeds as follows. In the next section the classification characteristics 
most commonly used in forensic phonetics and acoustics are presented one at a time 
and elaborated upon as far as some of the most important aspects of forensic analysis 
are concerned. In the subsequent section one current issue in forensic speaker 
classification – the use of acoustic methods – is addressed, and finally a conclusion is 
presented.  

In several locations during the paper it is mentioned how speaker classification is 
performed at the BKA. When in these cases the term “we” is used it refers to the 
members of the forensic phonetics and acoustics group of the BKA (the official name 
is Fachbereich für Sprechererkennung und Tonträgeranalyse, best translated as 
Department of Speaker Identification and Audio Analysis). Despite this usage of the 
first person plural the responsibility for the statements and suggestions made here 
rests with the author of this paper alone. Laying particular emphasis on the speaker 
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classification procedures as used at the BKA is justified only insofar as we know from 
regular participation in the Annual Conference of the International Association for 
Forensic Phonetics and Acoustics and related national and international events that 
similar procedures are used by other institutes and individuals involved in forensic 
phonetics and acoustics.  

For other overviews of speaker classification along with many other aspects of 
forensic phonetics and acoustics which cannot be addressed in this paper the reader is 
referred to textbooks and tutorials such as [3–13]. The reader is also recommended to 
consult the International Journal of Speech, Language and the Law (formerly: 
Forensic Linguistics) for many articles on forensic phonetics and acoustics. 

2   Speaker Classification Characteristics in Current Forensic 
Practice2 

2.1   Gender  

Gender determination is usually a simple task. By far the most prominent phonetic 
correlate of gender is the average pitch level of the speaker, which among adult 
speakers (especially before the onset of old age) is on average much higher for female 
than male speakers ([5, 14] for German speaker data based on 100 men and 50 
women; cf. also [15] for multi-stylistic data on 100 German-speaking men). This 
pitch difference can be explained by male-female differences in the length of the 
vocal folds [16]. Pitch level could be measured in terms of average fundamental 
frequency (f0), but usually the male-female pitch level differences are salient enough 
that measurement is not necessary. In practice, however, we encounter cases where 
pitch level cannot be determined or where pitch level is not informative for the gender 
determination task. Situations of this kind occur when whisper or unusual phonation 
types such as falsetto or creak are used as a voice disguise strategy or for other 
reasons.3 Another difficulty of this sort arises when the pitch level of the speaker is 
                                                           
2 The focus of this review is on speaker classification features with complete or strong stability 

over time. For example, acquired dialectal patterns remain permanent in adulthood or change 
only very slowly. What is not addressed here are classifications that can change rapidly. Not 
discussed, for example, is the detection of alcohol consumption or the identification and 
classification of stress or emotion. One way these transitional classifications are relevant in 
forensic phonetics and acoustic is when in voice comparisons there are indications of a 
mismatch in the occurrence or intensity of transitional classifications between the questioned 
and the reference material. In such a case it is necessary to know about the impact that these 
transitional classifications can have on the speaker identification parameters that are 
investigated in a voice comparison. 

3 Some disguise methods lead only to partial neutralisation of gender differences in pitch level 
(thanks to Stefan Gfroerer for emphasizing this point). According to [17], when women 
produce falsetto voice they tend to have higher average f0 than when men produce falsetto 
voice. However, women more rarely used falsetto voice when they were asked to increase 
pitch as a voice disguise than men, so that if male falsetto voice is compared to female high-
pitched (by disguise) but still modal voice the pitch difference between men and women is 
usually very small. If male falsetto voice is compared to normal female voice, the males tend 
to have higher f0 (see Figs. 5, 6 in conjunction with Table 2 in [17]). 
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unusually high for a man and unusually low for a women, i.e. is located the 
ambiguous area between the Gaussian distributions of male and female f0 levels in 
the population. Furthermore, all different kinds of “gender bender” scenarios are 
possible (e.g. influence of added hormones or pathological hormone levels, some 
cases of homosexuality and transsexualism) that can make the task difficult (which 
are situations that might not only affect pitch).  

In cases where pitch level fails, other indices of gender have to be relied upon and 
the conclusion on gender classification has to be stated in more probabilistic terms. 
One correlate of gender that will be addressed separately in section 3.2 are the 
formant frequencies. These are on average higher in female than male speech due to 
differences in vocal tract length. Although differences in pitch/fundamental frequency 
and formant frequencies between men and women have a strong foundation in 
anatomical differences, the anatomical effects can be enhanced or reduced by 
behavioural factors. For example, it has been found that male-female formant 
differences are not the same in every language; e.g. they are much larger among 
speakers of Russian than among speakers of Danish. Cultural factors could be 
responsible for these differences [18]. 

Aside from these more prosodic and paralinguistic phonetic correlates, cues to 
gender have also been found for more segmental and grammatically motivated 
phonetic properties. As one generalisation in this domain, segmental-phonetic 
evidence has been reported that female talkers tend to speak “more clearly” than male 
talkers. For example, based on an analysis of the TIMIT database, [19] found that 
females produce fewer instances of flapping or final stop deletion than males and that 
they speak more slowly than males. As a related tendency it has been found in many 
sociolinguistic studies that women use more standard-like and more “correct” 
pronunciations ([20] for overview). However, this tendency in female speech towards 
the linguistic standard of a language is not exceptionless, and it has been argued that 
this tendency is not a direct marker of gender but one that is mediated by differences 
in social variables such as class, prestige, or status, which can but need not cooccur 
with gender differences [20, 21].  

It is possible that biological effects and sociological effects interact, whereby the 
tendency for clarity is more biologically motivated (see Note 6 for a perceptual 
explanation of clear speech) whereas “correctness” is sociologically motivated. Both 
clarity and correctness seem to be consistent and could be mutually enhancing. 

Finally, it needs to be pointed out that cues to gender can also be found in domains 
of linguistics such as morphology, syntax, lexicon, and pragmatics. Some languages 
have strongly culturalised “genderlects” for male vs. female speech (for example, 
when certain lexical items are only tolerated among one gender group), whereas in 
many (most) others the gender differences are less categorical and more subtle.  

2.2   Age 

Age classification is a much more difficult task, not only because it involves more 
than a binary decision but also because there is not the kind of single dominant 
phonetic cue available that exists in gender determination. Due to the criminal 
statistics, age classification is most relevant within the range of about 20 to 50 years – 
most importantly among men. Consequently, the phonetic age correlates of 
adolescents or the elderly are only of limited importance in forensics. In our age 
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classifications we distinguish between “chronological age” and “biological age”. 
Chronological age is the calendar age as determined by a person’s date of birth. 
Biological age refers to the aging level of the relevant organs and physiological 
mechanisms that are relevant in speech production. Biological aging in this sense can 
be accelerated, for example, due to abuse or overuse of the vocal folds through factors 
such as smoking, alcohol consumption, psychological stress/tension, or frequent 
loud/shouted speech production without vocal training ([22] for a comprehensive 
overview of vocal aging). As a rule of thumb, biological and chronological aging is 
patterned like a pair of scissors (thanks to Angelika Braun for this rule and metaphor): 
at an earlier chronological age (around 20 to 25) chronological and biological age are 
very similar, that is, a person of that age group usually sounds as old as s/he really is. 
With progressing age chronological and biological age can diverge. There are those 
speakers who take good care of their voices, and biological aging proceeds consistent 
with chronological aging, but there are also those who are abusive to their voices and 
therefore show more rapid biological than chronological aging. In our Gutachten 
(expert witness reports) we report the biological age, and if we find any indications 
why biological age could differ from chronological age in the case at hand we 
mention this in our report. 

Age classification in forensic phonetics and acoustics is most commonly based on 
the overall auditory impression of the speaker, without performing any further 
phonetic analysis. Research has shown that listeners are to a certain degree able to 
estimate the age of the speaker ([22, 23] for overviews). [23] has investigated whether 
experts in forensic phonetics and acoustics are more accurate in estimating speaker 
age than listeners with no training in phonetics and no forensic experience. Among 
experts, the difference between perceived age and chronological age was 5.9 years on 
average, whereas among non-experts the average difference was 6.5 years. According 
to these results the experts performed better in age estimation, but not by much. When 
subdividing the data according to whether the speakers were smokers or non-smokers, 
experts showed the same performance as non-experts for the voices of smokers (both 
with 4.7 years deviation) but were better for non-smokers (8.4 years deviation for 
non-experts, 7.1 for experts). These data show that auditory age estimation is 
informative, but that it is not very accurate. Being aware of this situation, we report 
our age estimations in terms of ranges between about 10 or 20 years, that is we say, 
for example, that a particular speaker is between about 25 and 40 years old. In 
addition to this form of holistic age estimation it would be desirable to use phonetic 
and acoustic analysis to supplement the auditory impressions. In some cases age 
correlates might also be found in domains such as lexicon and stylistics. Clearly, the 
need for more research on the phonetics and acoustics of vocal aging is indicated. 

2.3   Dialect 

Dialect classification in forensic phonetics and acoustics involves the task of 
estimating – as much as possible given the available evidence – the region in which 
the relevant speaker has spent most of his life before the onset of adulthood. This goal 
is based on the assumption that after that time (we call it Sprachprägephase ‘language 
acquisition period’) speakers will not change their dialectal patterns by much, even if 
they move to a different region (although there are exceptions to this generalisation).  

In German dialectology two major layers of dialect can be distinguished – deep 
and shallow. Deep dialect is spoken when individuals from local and mostly rural 
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communities – especially those of the older generation – talk to each other, 
particularly on local issues. This form of deep dialect is the subject matter of by far 
most of the published dialectological studies ([24] for overview). However, deep 
dialect is only of very limited importance in forensic phonetics and acoustics, 
especially in institutes like the BKA, where due to high case load we have to 
concentrate on high crime, and cases with deep dialect often do not satisfy this 
criterion. More relevant forensically are shallower layers of dialect. One of these 
shallow layers is referred to as regionale Umgangssprache ‘regional colloquial 
speech’. This roughly corresponds to the form of regional dialect that occurs when 
individuals speak to others from outside the local community but do not attempt to 
approach Standard German (even if they could), perhaps because the situation is 
considered too casual for that, or when they communicate among members of larger 
urban dialect areas without detailed dialectal subdifferentiation. The other type of 
shallow dialect is called dialektal gefärbte Standardsprache ‘dialectally coloured 
standard German’, which occurs when someone with a dialectal background attempts 
to speak standard German but is unable to achieve it fully. Much less literature is 
available on these shallow layers of regional differentiation. In order to compensate 
for this lack of documentation and in order to have the advantages of a database, 
DRUGS (Dialektdatenbank Regionaler Umgangssprachen ‘database of regional 
colloquial speech’) was created during the 1990s at the BKA [25]. More recently, 
another dialect database project has been initiated by the BKA in collaboration with 
the institute Deutscher Sprachatlas at University of Marburg, Germany. This system, 
which is called DIGS (Dialektdatenbank gefärbter Standardsprache ‘database of 
(dialectally) coloured standard German’), contains data from conversations in 
emergency calls, where speech of the local emergency agents was recorded (in 
addition, read speech of a standard text will be elicited). This new database will 
reflect a more current state of regional German (DRUGS was mostly based on 
recordings from the 1950s and early 1960s) and has a tighter network of locations. 

Phonetics and phonology are the most important disciplines in differentiating 
regional colloquial or dialectally coloured speech patterns. This differs from the 
analysis of deep dialects where linguistic domains such as morphology and lexicon 
are about equally important. In our laboratory and probably most other comparable 
institutes phonetic analysis for the purpose of dialect classification is primarily based 
on auditory analysis. One common method is to take the standard pronunciation, as 
documented in the pronouncing dictionaries, as a baseline and transcribe and analyse 
any deviations from that baseline.4 Acoustic-phonetic analysis can be a useful 

                                                           
4 Establishing such a baseline upon which dialectal deviation can be documented is complicated 

by the fact that the pronouncing dictionaries (e.g. [26] for German) usually provide 
transcriptions only for words as they are spoken in isolation. Connected speech phenomena on 
a sentence and discourse level are usually only explained briefly (and they could never be 
treated as explicitly as word-level phonetics given the infinite number of possible syntagmatic 
combinations). Yet it is clear that connected speech can contain numerous violations of word-
level phonetic standards ([27] for many such connected speech phenomena in German) and it 
is equally clear that these violations are not necessarily dialectally motivated nor in any other 
ways “unusual”. Therefore it depends on the experience and phonetic education of the expert 
to be able to establish a baseline upon which phonetic deviations are noteworthy for speaker 
classification and speaker identification purposes. 
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addition to auditory methods. One topic where acoustic analysis has proven useful in 
practice is monophthongisation in German dialects. Here formant structure has 
revealed monophthong status in situations where auditorily the situation was less 
clear. 

2.4   Foreign Accent 

As is well known, the term “accent” has multiple readings and can lead to confusion 
(even when disregarding the meaning of word- or sentence-level prominence). Accent 
could be used to address characteristics of (shallow) dialect on a phonetic-
phonological level. Alternatively, the term can be restricted to foreign accent, which 
is the option that will be taken here. When talking about foreign accent we refer to 
L1-influenced deviations from L2 on all linguistic levels, not just phonetics and 
phonology. Foreign-accented speech has become much more important in our 
casework over time because in the cases we receive the number of criminal offenders 
with native languages other than German has increased considerably. 

It is usually easy to determine that phonetic-phonological or other deviations from 
the target language (in our case Standard German) do not have a dialectal origin but 
must be due to foreign accent. It is much more difficult to infer the actual native 
language of the speaker that has caused the observable interferences with German. 
Often only broader characterisations of the native language can be given, for example 
by narrowing down the range of probable native languages to those of Slavic origin. 
One reason for these limitations in the accurate estimation of a native language can be 
the short duration of the available speech material. In case of short material, many 
distinctive properties of a certain foreign accent might not be determinable because 
lexical items or syntactic patterns with the relevant “diagnostic” structural 
configuration might not be present. It should be noted that not only negative transfer 
but also positive transfer can be informative. If for example – as has occurred in a 
case – the speaker has no problems producing the front rounded vowels of German, 
which are relatively rare cross-linguistically, it is probable that the native language of 
the speaker also contains front rounded vowels (such as Turkish). 

The task of accent location is more complicated if the speaker has a multilingual 
background where more than the target language German and one native language are 
involved. Another complication that is becoming increasingly more severe in 
Germany is the use of “ethnolect” among fully native speakers of German. This is a 
form of foreign accent consisting of elements from mainly Turkish, which is featured 
in the media as “Kanak Sprak” and is popular among the younger generation of native 
and nonnative German speakers, especially from lower social classes [28]. As has 
become relevant in some casework recently, due to the increasing popularity of 
ethnolect it is not always possible to be certain about the presence of genuine foreign 
accent. Furthermore, ethnolect might blur the differences between real foreign accents 
among younger speakers with different L1 background. 

Two other types of information beside accent location that can be useful in a police 
investigation are the competence level that a non-native speaker has in the target  
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language and how long s/he is likely to have lived in the country where the target 
language is spoken. The competence level can be captured as the amount of deviation 
from the standard target language on different linguistic levels (small deviations 
indicating high competence). Duration of presence in the target country can be 
estimated from a high degree of fluency, e.g. a fast speaking tempo or the absence of 
dysfluencies and speech errors (as opposed to language errors). Fluent speech among 
non-native speakers does not imply that the level of competence in the target language 
must be high. As is well known from research on bilingualism, speakers can 
“fossilize” their language competence at a certain level that they consider sufficient 
for their everyday communication needs and in that case fluency may be high but 
competence low. 

2.5   Sociolect 

Of the different classifications relevant to sociolinguists some have turned out to be of 
particular interest in forensic work.5 One of these sociolinguistic variables is the 
education level. Many clues to the level of education come from linguistic domains 
such as lexicon, syntax, and stylistics. For example, a high proportion of loanwords, a 
complex syntax, including subordination constructions, or a generally eloquent speech 
style are more likely to be found with higher than lower education levels. 
Pronunciation might also offer clues, for example if someone from an area where 
dialect is pervasive throughout the population (like in the Swabian or Bavarian area of 
Germany) speaks with little or no dialectal influence, this might be an index of higher 
education (however conversely, presence of dialect in these areas needs not imply low 
education because these dialects have high prestige). 

Another sociolinguistic variable is the profession of the speaker. Some professions 
use specific terminology (cf. also the notion of Fachsprache ‘language of specific 
purposes’[30]). Such terminology might slip into conversations that are unrelated to 
professional discourse. [7] mentions a case of blackmail where the anonymous caller 
used the German word Langsamfahrstrecke ‘low-speed railway section’. This turned 
out to be specialized railway terminology, which let the suspicion arise that the caller 
was professionally involved in the railway system. Another example from our recent 
work was the use by a non-native speaker of the word Qualitätskontrolle ‘quality 
control’ in a case where a company was blackmailed. 

                                                           
5 The field of sociolinguistics and the notion of sociolect can be defined in narrower and 

broader terms (for recent overview with special emphasis on phonetics and an 
acknowledgement of the importance of sociophonetics to forensic phonetics see [29]). If 
defined in broader terms categories such as age and gender can be included in the range of 
sociolinguistic variation. Sociolect can also be defined to include regional variation. In our 
casework a narrow definition of sociolect is assumed and categories such as gender, age, and 
dialect are treated separately. It is also possible to divide the categories age and gender into a 
biological component and a sociolinguistic component. In that case the latter category can be 
terminologically divided into “gender” (sociolinguistic) and “sex” (biological). In practical 
terms we do not make this distinction although we are aware that clues to age and gender in 
speech can be found both in biologically motivated and sociolinguistically motivated 
patterns.  
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The two variables education level and profession can also interact. This is the case 
when the level of eloquence is high enough that it can be inferred that the person is a 
“professional speaker” (e.g. business consultant, teacher, lawyer) or if the level of 
vocabulary and syntax is high enough that one can infer an influence from written 
language that points to a “professional writer”. Conversely, particularly low levels on 
these dimensions might indicate that the speaker is not used to professional discourse 
or to writing (such as a construction worker or a farmer). 

2.6   Medical Conditions 

Indications of speech pathology – used here as a cover term for disorders of language, 
speech, and voice – can be extremely helpful for voice comparisons and voice 
analyses because they can narrow down the number of speakers considerably. Some 
speech pathological characteristics are a priori more informative forensically than 
others.  

First, speech pathological characteristics that are more or less stable over time are 
more useful than those that are very short lived. One example of the latter type is 
(acute) laryngitis, which can result in voice source changes such as rough or breathy 
voice and a reduction of average pitch, but also changes in resonance [31]. Through 
medical treatment, voice rest, or abstinence from smoking the laryngitis can decay 
over a relative short time period. If for example – as has occurred in a recent case – no 
symptoms of laryngitis are present in the unknown recording but such symptoms turn 
out to be present when the voice sample of the suspect was taken, the voice 
comparison can become difficult and any voice characteristics related to laryngitis 
have to be dismissed because they are transitional and not characteristic of the 
speaker. To the extent that transitional voice disorders like laryngitis are difficult to 
distinguish from more permanent voice disorders based on auditory and acoustic 
evidence alone, voice disorders are generally of limited use in speaker classification. 

Second, for speech pathological characteristics to be useful forensically they must not 
have a strong negative impact on general cognitive or communicative abilities. Some 
disorders of language, speech, and voice might affect other cognitive and physical 
capacities to a point that it is very unlikely that a person inhibited in this manner could 
commit the types of crimes that are relevant in our casework. Many brain disorders fall 
under this category. The speech pathological disorders might also by themselves be so 
severe that the sort of communications that are relevant forensically cannot be carried 
out. To take a drastic example, a person who suffers from anything more than the 
mildest forms of aphasia will not be able to conduct a negotiation about drug trafficking 
or the placement of ransom money. Related to this point, speech pathological conditions 
that occur only or predominantly at young or at old age will usually not be relevant 
forensically for obvious legal or criminological reasons. 

Forensically useful speech pathological conditions that remain when these two 
criteria are applied are those that are very stable over time (for example due to 
resistance against therapeutic and other treatment) and do not strongly inhibit 
communication nor are associated with severe cognitive or physical deficits. One 
condition with this profile is stuttering – as long as the degree of stuttering is still 
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relatively mild. According to studies quoted by [32] in a review paper, stuttering 
occurs in about 1% of the world’s population. If this number included stronger forms 
of stuttering which would strongly inhibit communication (and hence violate one of 
the two mentioned criteria), the percentage of mild stutterers, that are relevant 
forensically, would be even smaller than 1%. Due to this rare occurrence of stuttering, 
finding stuttering in a speech sample can be a very informative characteristic towards 
finding a suspect. It can also be of high evidential value in voice comparisons – both 
towards identity, if stuttering is found in the sample of the unknown speaker and the 
sample of the suspect, and towards non-identity, if stuttering is found only in one of 
the samples. However, in order to determine the presence of stuttering the forensic 
specialist must be aware of other medical and non-medical conditions that can be 
confused with stuttering. If in doubt, a physician or speech-language pathologist 
should be consulted. The ability to detect stuttering also depends on the duration and 
quality of the material. In a case processed by the author the technical quality of the 
material was so low that intelligibility was reduced in the relevant passages. Due to 
this loss in intelligibility, passages that seemed to contain frequent syllable repetitions 
also allowed alternative interpretations where the spoken material was unmarked. Due 
to these difficulties no statement about whether or not stutter was present could be 
made. In addition to sufficient quality, the quantity of the material also has to be 
sufficient. With very short recordings it usually cannot be determined whether non-
fluencies are within the range of normal behaviour, where such non-fluencies are 
possible as well, or whether they approach the quality and quantity of speech 
pathological behaviour. 

Another type of speech pathological characteristic that has become relevant in 
forensic casework is the presence of articulation problems that are caused by 
disorders or delays in the acquisition of the sound system. Different sounds have 
different probabilities of being affected, and one of the most frequent cases are 
mispronunciations of the sound [s], often referred to as “sigmatism” [31]. In cases 
where this phenomenon might be involved it has to be ensured that the frequency 
range of the recording is sufficient in order to be able to distinguish a normal from a 
deviant [s]. One way of estimating the impact of frequency range and other technical 
conditions would be to select normal and deviant s-sounds from a medical reference 
recording and filter them in a way that simulates the frequency range and other 
conditions of the recording in the specific case. It can then be tested auditorily or 
acoustically if the pathological s-sound can still be identified and distinguished from 
the normal one. 

Deviations from expected non-pathological speech patterns might also be caused 
by conditions that require medical attention but that are not classified as disorders of 
language, speech, or voice (hence the cover term “medical conditions”). One such 
case are breathing sounds that indicate pulmonary problems or are due to obstructions 
in the passage of air that occur at the level of the larynx or above. Deviant breathing 
sounds can be very distinctive auditorily and acoustically ([5] for spectrographic 
illustration). However, it needs to be considered that these breathing problems might 
be transitional, similarly to what was said about laryngitis above. 
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3   Current Issues in Forensic Speaker Classification: Auditory vs. 
Acoustic-Phonetic Analysis 

3.1   Introduction  

There is a tradition in forensic phonetics that speaker classification is based on 
auditory rather than acoustic methods – especially when carried out for the purpose of 
voice analysis. Among the reasons for this preference there are three practical aspects 
that have been of importance in our lab. First, voice analyses often have to be carried 
out very rapidly because they are required as important information in an ongoing 
investigation where lives can be at stake. Usually at least a preliminary speaker 
profile is expected within one day. In line with this requirement, auditory analysis 
allows a fast access to the speech material, whereas acoustic analysis might be much 
more time consuming. Secondly, there have been situations where the speaker 
identification team was required to perform a voice analysis outside the lab and at the 
particular location where an urgent investigation was directed. In such a case it would 
have been unrealistic to carry along the entire equipment necessary for acoustic 
analysis. This point was more urgent about ten or more years ago, where good speech 
analysis systems were not as portable and where electronic communication and data 
transfer was not as widespread and easy as it is now, but the argument still carries 
some weight. Thirdly, the quality of the material on which voice analyses have to be 
carried out can be very poor at times. Sometimes these quality reductions are so 
profound that the material cannot be used for a voice comparison. One example of 
these quality reductions is overlap between voices, where the task has been to profile 
the speaker in the background, not the one in the foreground. In cases like that it is 
possible that speaker classification information can still be extracted auditorily where 
acoustic measurements would be unreliable. 

In spite of this well-founded tradition of preferring auditory over acoustic methods 
in forensic speaker classification it is important to keep an open mind considering 
arguments that emphasize the theoretical and practical value of acoustic methods as 
well. 

3.2   New Information on Established Speaker Classification Characteristics: 
Gender 

For some speaker classification characteristics acoustic analysis might add accuracy 
and objectivity but does not necessarily advance the task. Consider gender 
classification. As was mentioned in 2.1 the most powerful parameter to identify the 
gender is the average pitch level of the speaker. In most cases the pitch level 
difference is sufficiently large that auditory examination will enable a male and a 
female speaker to be accurately distinguished. Furthermore, there is a very transparent 
relation between the perception of pitch (and the description of this perception by the 
expert) and the measurement of fundamental frequency, to the effect that 
measurement of average f0 can add detail but is still concerned with the same 
phenomenon of pitch level differences between the sexes. Consider now the situation 
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where pitch is not accessible or informative, perhaps because as a voice disguise the 
speech sample was whispered or produced in falsetto voice or creak, or perhaps there 
is reason to believe that the speaker under analysis has an unusually high or low voice 
compared to his gender group and that confusion with the opposite sex based on pitch 
level is very likely. In such a situation acoustic analysis can make an important 
contribution by providing formant frequency measurements. As is well known, 
women on average have higher formant frequencies than men [33, 34], due to the fact 
that the vocal tracts of women are on average shorter than those of men [35].6 With 
formant data from a large number of male and female adult speakers the expert could 
make a scientifically motivated statement as to whether the formant values measured 
in one of these difficult cases are more likely to belong to a man or to a woman. 
(Gender determination in non-adults is still another story but only of limited 
importance forensically.)  

From the auditory perspective it could be objected that gender perception is 
possible to a certain degree even without reliable pitch information and that in this 
perception process formant structure makes some contribution [39–41], so that 
acoustic measurement is not necessary. However, despite this ability of gender 
perception in the absence of reliable pitch information and the contribution of formant 
structure to this perception process there is still the following difference to the domain 
of average pitch. As mentioned above, measured f0 and perceived pitch stand in a 
very direct and transparent relationship, so that for the purpose of gender 
classification one source of information is largely redundant. For vocal tract 
characteristics of men vs. women, on the other hand, it is unclear what the perceptual 
correlate of formant frequency is and how it should be described. In contrast to pitch, 
where a voice with a high f0 can be described as “high” or “high-pitched” it is not 
clear how a voice with high formant positions should be described by the expert. One 
possibility would be to call such a voice “light” (or “bright”) and, conversely, to call a 
voice with low formant frequencies “dark” (see also [16] with reference to singing). 

                                                           
6 It has been found that female vowel spaces are not just uniformly upshifted in frequency 

relative to male ones, but that female vowel spaces also tend to be larger. This is mainly due 
to the fact that the difference between male and female formants is larger for /i/ and /a/ than 
for /u/. [36] present a review of non-uniform scaling of female and male formant frequencies 
and discuss previous anatomical explanations related to the fact that in adult males the 
pharynx takes up a greater proportion of the entire length of the vocal tract than in females. 
They conclude that this anatomical explanation cannot capture all the observable male-female 
differences in vowel spacing and that behavioural aspects must be at work at well. They 
formulate and provide support for the “sufficient contrast” hypothesis. According to this 
hypothesis female speakers need to produce more peripheral vowel targets (and in this sense 
need to speak more clearly than men) in order to compensate for the reduction of 
intelligibility that results from the fact that the high average f0 values in their speech implies 
an increase of harmonic spacing which leads to reduced accuracy in capturing the peaks of 
the vocal tract transfer function (i.e. the formants). [37, 38] makes the point that due to the 
anatomically given smaller cross-sectional distances that have to be covered in the 
articulation of female compared to male speech, it is easier for females to produce those more 
peripheral vowel targets compared to males. In this sense anatomical and behavioural factors 
interact in interesting ways.  



 Speaker Classification in Forensic Phonetics and Acoustics 193 

More technically, one could also use the auditory feature terminology of [42] and call 
a light voice “acute” or “sharp” and a dark voice “grave” or “flat”.7 Interestingly, they 
use “tonality features” as a cover term for the features (or feature values) grave, acute, 
sharp and plain, which underlines that some form of perceptual supralaryngeal tonal 
property is at work. However, terminology for supralaryngeal tonality is not as 
widespread in phonetic research and teaching as high vs. low laryngeal pitch. For 
example, the IPA provides symbols for intonational and tonal pitch features, but has 
no symbol or diacritic for light vs. dark voices due to vocal tract length.8 This does 
not mean that the difference between light vs. dark voices due to vocal tract length 
differences is not perceivable. That it is perceivable can clearly be shown, for 
example by some speech and music processing programs, where the user can set 
different formant values appropriate for vocal tracts of different length and where a 
clear perceptual difference is obtained that many listeners could agree upon to call 
light vs. dark. The point is that auditory impressions that arise from differences in 
vocal tract length (which are usually strong between men and women and more subtle 
within the sexes; cf. following section) and that might be labelled on a light-dark 
dimension are not well enough captured in phonetics so that it is possible that two 
phoneticians would make very different assessments along this dimension because 
they are not trained in its use. Formant measurements, on the other hand, promise 
much greater consistency across specialists and are also more precise than auditory 
judgments. These are reasons why acoustic analysis in terms of formant 

                                                           
7 Flat/sharp is probably better suited for present purposes than grave/acute, since, as far as 

vowels are concerned, the correlates of grave/acute are more concentrated on the second 
formant (high with acute vowels, low with grave vowels) whereas flat/sharp in principle 
affects all formants (low formant frequencies with flat vowels, high formant frequencies with 
sharp vowels). In vowel systems, grave/acute corresponds to the back/front distinction, 
respectively, whereas flat/sharp most commonly corresponds to the rounded/unrounded 
distinction. The fact that lip rounding in conjunction with lip protrusion leads to an effective 
increase in vocal tract length suggests that auditory flatness is the most appropriate way of 
capturing vocal tract length differences that result from other sources as well, viz. those from 
differences in gender, speaker height, and speaker identity (see also [43] on the feature [flat]). 
On the other hand, terminologically “light/dark” is most closely associated with 
“grave/acute” (see [44] who trace the use of this terminology back to the work of the 
psychologist Wolfgang Köhler in the early 20th century). [44] also point out that grave/acute 
is relevant in sound symbolism, where front vowels tend to occur in words denoting small 
size and back vowels in words denoting large size (likewise, see [45]), and that it is relevant 
in synesthesia, where an association has been found between front vowels and light colours as 
well as between back vowels and dark colours.  

8 It might be argued that different formant values are captured by the IPA in the form of 
different vowel symbols and their diacritics. However, these vowel symbols can be used by 
phoneticians only because phoneticians, just like any other language user, have performed an 
unconscious process of vocal tract or talker normalisation [18]. This includes normalisation 
against differences between male and female vocal tracts, which themselves are not captured 
by the IPA. Probably the closest thing to the perceptual characterisation of vocal tract length 
consistent with an IPA framework is the “longitudinal setting” [46], comprising larynx 
lowering/raising and labial protrusion/labiodentalisation (cf. the “VoQS chart”, addressed in 
[47]). However, these settings refer more to behavioural modifications of vocal tract length 
than to organically different vocal tracts [48]. 
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measurements promises additional information at least in those cases of gender 
classification where pitch cues are absent or unreliable.9 

One could go farther and recommend acoustic, rather than merely auditory analysis 
even for pitch if pitch is present and reliable. This would be particularly informative 
when background statistics are available containing average f0 values of large 
numbers of men and women [5, 14]. If, in addition, formant frequencies are measured 
as well there would be the opportunity of testing whether the gender classification that 
is obtained on the basis of f0 information is consistent with the one obtained on the 
basis of formant information. In terms of measurement methodology, formant 
frequencies are fairly independent of f0 characteristics, although in practice there are 
certain limitations due to the fact that the transfer function peaks of the vocal tract 
might lie at different locations with respect to the harmonics of the source spectrum; 
this is also a reason why formant measurements with very high-pitched voices (which 
could also arise because of loud or shouted speech) are difficult. 

Whether such high degree of independence in the detection of source and filter 
characteristics also obtains on the perceptual level is not so certain. It is possible that 
listeners have difficulties separating “high-tonality” at the source level (i.e. high vs. 
low voices) from high-tonality at the filter level (i.e. light vs. dark voices) and that to 
a certain extent they integrate the two into a single general pitch percept. [51] has 
shown that the perception of differences between vowels, which where synthesized 
using variations in formant frequencies, was not independent from the perception of 
synthetically generated differences in f0. Analogous results for the integration of 
vocalic (and consonantal) differences on the filter level and f0 – as a source variable – 
have been reported by [52]. It is possible that such a perceptual integration is 
enhanced if the two relevant properties commonly exhibit covariation and the listener 
has knowledge about this association (either innately or by learning). This would be 
the case for gender perception, where low/high pitch usually goes hand in hand with 
low/high formant values. Evidence for perceptual integration between formant 
frequencies and f0 in gender perception has been found by [53] using a selective 
adaptation paradigm. Perceptual integration has also been found in other aspects of 
source-filter interactions. [54] found that perceptual integration occurs between 
advanced tongue root – cued by low F1 (filter) – and lax/breathy voice quality – cued 
by increased spectral tilt and open quotient (source). 

The point of this discussion is that when untrained or even phonetically trained 
listeners make an assessment of the speakers’ gender by attending to the speech 
material in a holistic fashion it is likely that they take into account both information 

                                                           
9 When measuring formant frequencies in non-modal voice sources such as whisper and creak 

one has to keep in mind that those voice sources might change the formant frequencies to 
different values compared to modal voice. As for creaky voice, [49] has shown that this voice 
quality can change formant frequencies, though not by very much. Probably even less 
influential is whisper. Although because of tracheal coupling, which occurs in whisper due to 
glottal opening, there can be a change in the amplitudes and frequencies of formants (and the 
addition of “tracheal” formants) the only formant strongly affected is F1, and that formant is 
affected more in its amplitude than its frequency [50]. Falsetto voice can be more detrimental 
to formant measurements, mainly because of wide harmonic spacing that occurs with very 
high-pitched voices. It also needs to be considered that falsetto might change formant 
patterns, e.g. due to larynx raising. 
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about the source and about the vocal tract. Even when phonetically trained listeners 
proceed analytically by attending separately to the tonal contribution coming from the 
voice source and the tonal information coming from vocal tract length differences 
they might not be fully able to “fight” the perceptual integration forces between the 
two types of tonality. Under normal circumstances there is nothing wrong with such a 
perceptual integration because usually men have both lower laryngeal and lower 
supralaryngeal tonality than women. In that case the perceptual integration of 
laryngeal and supralaryngeal contributions can actually enhance the perceptual 
recognition of masculinity vs. femininity. However there can be situations where it is 
advisable to examine the two contributions separately. Voice disguise or one of the 
“gender bender” scenarios mentioned in 2.1 can result in the fact that laryngeal and 
supralaryngeal correlates of gender are no longer correlated. For example, the tonality 
of the voice source might be unusually high for a transsexual man who has undergone 
hormone treatment and surgical reduction of the vocal folds, but vocal tract length 
cannot be modified in the same fashion and its acoustic correlates reveal his original 
masculinity. Likewise, inconsistencies found by careful separate examination of 
supralaryngeal and laryngeal characteristics might reveal a form of voice disguise 
where the person tries to sound like somebody from the opposite gender by changing 
laryngeal tonality, but does not know about the importance of the supralaryngeal 
contribution to gender perception. That the opposite situation can be found as well has 
been shown in a recent case involving a bomb threat at an airport. As was revealed 
after the fact, the woman making the bomb threat produced lip rounding (and perhaps 
larynx lowering) in order to sound more masculine. 

In general, to the extent that it is advisable to perform gender classification 
analytically by separate examination of laryngeal and supralaryngeal tonality, 
acoustic analysis is probably better suited for this task because the source information 
can be separated better from the filter information with acoustic methods than with 
auditory methods.10 

Having concentrated on average f0 and formant structure, as well as their 
perceptual correlates, and on gender classification, the possible importance of using 
acoustic in addition to auditory information can also be examined with other 
parameters and classification domains (e.g. age). Let us briefly consider voice source 

                                                           
10 Commenting on this paper, Olaf Köster mentioned the possibility that another difference 

between male and female speech lies in vocal loudness (vocal effort), whereby men tend to 
speak more loudly than women. Such a difference would be consistent with an ethological 
framework [55, 56] where louder speech would signal larger size and strength, for example 
in terms of larger lung volume and pulmonic force. As supporting evidence for this view it 
has been found by [57] that among various voice quality parameters the strongest gender 
difference was in terms of H1*-A3*: men had smaller values of this parameter and hence a 
less-steep spectral tilt than women. Although they attribute this difference to more glottal 
leakage in female than male speech (which is another, partially independent male-female 
difference, especially if turbulence is involved), the evidence could also be interpreted – at 
least on the perceptual level, where the ethological explanation is most relevant – as a 
difference in vocal loudness, whereby men speak more loudly than women. Unfortunately, 
such a spectral tilt difference is hard to measure under forensic conditions, as will be 
addressed separately towards the end of this section. 
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characteristics such as roughness (also called harsh voice) on the perceptual level and 
jitter on the acoustic level. As has been found in many studies, there is a certain 
correlation between jitter and roughness, but this correlation is by no means perfect or 
in a one-to-one fashion. Auditory roughness is also correlated with other acoustic 
parameters such as harmonics to noise ratio (negative correlation), and jitter also cues 
other auditory voice qualities such as breathy voice [58] (see also [59] within a 
forensic framework). In such a case, providing both auditory and acoustic data for the 
same general voice quality is not redundant but provides additional information. The 
idea would be that providing both roughness ratings and jitter measurements can 
provide more accurate speaker classification information than if only one of them is 
used. Furthermore, reference information on speaker classification characteristics in 
the literature might be expressed in acoustic rather than auditory terms (e.g., jitter 
values for different ages, reported by [60]). This is a more general argument for the 
inclusion of acoustic methods that also holds for average fundamental frequency. As 
far as voice source characteristics are concerned it has to be pointed out, however, 
that due to the common quality limitations of forensic material – especially in terms 
of bandpass filtering due to telephone transmission and the presence of technical or 
environmental noise – certain voice quality parameters cannot be measured at all (e.g. 
“H1”, the amplitude of the first harmonic, especially in men) or their measurement 
and interpretation has to proceed with great caution (e.g. spectral tilt, breathiness 
turbulence) (cf. [48]). What is still largely unknown is the way and extent to which 
measurements of jitter (or shimmer) are affected by the types of adverse conditions 
found in forensic work. [61] presents relevant results but also points out the need for 
more research. 

3.3   New Speaker Classification Characteristics: Speaker Height 

Some speaker classification characteristics might be inaccessible or unreliable 
auditorily but accessible and more reliable by acoustic methods. Consequently, 
without acoustic analysis such a speaker classification characteristic could not be used 
at all. In this subsection it will be discussed whether such a situation obtains for the 
classification of speaker height.11  

Research by Lass, including [62], presented an optimistic picture about the ability 
of listeners (including phonetically untrained ones) to estimate the body height of a 
speaker. However, [63]) showed that this result was mainly due to the fact that results 
for female and male speakers had been analysed together rather than separately, hence 
conflating height perception with aspects of gender perception. When he reanalysed 
the raw data of [62], calculating correlations between perceived and real body height 
separately for male and female speech, the correlations dropped below the level of 
statistical significance.  

In [64] a new empirical study on the issue was reported where height 
measurements and read-speech recordings were made of 15 male and 15 female 
                                                           
11 Some studies address not only speaker height but also speaker weight and usually find 

similar acoustic and perceptual effects with weight as with height. For reasons of space the 
influence of speaker weight will not be discussed here but the reader will find further 
information in the cited literature. 
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Norwegian-speaking students. Height (and weight) was estimated by 10 male and 10 
female student listeners (most likely phonetically untrained) and acoustic 
measurement were made. With this design the researchers were able to determine 
correlations between each pair of the three types of evidence: actual height, perceived 
height, and acoustic measurements. Significant correlations between perceived and 
actual height were essentially limited to those situations where males listened to male 
speech. Female speech caused no significant effects – whether perceived by males or 
females – and female listeners showed only very limited ability to estimate males’ 
body height. Despite this restricted pattern of correlations between perceived and 
actual height, correlations between perceived height and acoustic parameters were 
generally stronger and more uniform across male and female speakers and listeners. 
Every existing significant correlation showed that large perceived body height is 
associated with low average f0 and long vocal tract (acoustically derived using the F2 
value of the neutral vowel schwa) and small height with high f0 and short vocal tracts. 
The fact that the correlations between perceived height and acoustics were greater and 
more uniform than the ones between perceived and actual height indicates that the 
listeners were sometimes mislead by the probably unconscious expectation that 
low/high f0 and long/short acoustic vocal tract is an index of large/small body height, 
respectively.12 Such an expectation is a problem for the perceptual estimation of body 
height: it introduces some form of stereotype about the relations between body height 
and vocal characteristics that can guide the estimation of height into the wrong 
direction. A similar pattern of stereotype-guided perception is shown by [66], who 
had females listen to male speech and found high correlations between low f0 and 
perceived maleness attributes such as being muscular and having chest hair. She also 
found a significant correlation between low f0 and large perceived height although the 
correlation between f0 and actual height was not significant. 

Having shown that the ability of human listeners to estimate body height is very 
limited and subject to bias the question arises whether acoustic phonetics offers a 
better access to this speaker classification characteristic. Previous studies – including 
[14] as well as [66], just mentioned – have shown that average f0 is not a reliable 
correlate of speaker height at all. This result has been confirmed again in [64], who 
reported that correlations between body height and average f0 were non-significant. 
On the other hand, vocal tract size, as indicated by formant patterns, offers a more 
promising correlate of speaker height and deserves closer attention.  

[64] found generally no significant correlations between formant-based vocal tract 
length and body size but report one exception where a significant correlation (with 

                                                           
12 [64] suggest that evolutionary factors might be responsible for this expectation bias. 

Referring to [55] they mention that in the communication systems of many animals low 
frequency sounds (like in this case: low f0 and low formant positions) signal large, 
potentially threatening, vocalizers (see also [56]). As far as the relation between vocal tract 
size, body size, and formant structure is concerned, the ethological foundations and 
implications of this pattern have been worked out in detail by [65]. [64] suggest that 
evolutionary factors could also explain their result that only when males listen to male 
voices the height estimation is reasonably accurate. This pattern would be consistent with a 
scenario where male hominids (and many other animals) had to have a realistic estimate of 
the body size and hence degree of threat of male rivals, and that in some situations acoustic 
cues were the only ones available. 
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longer vocal tracts indicating larger bodies) was obtained among female speakers as 
they were reading one of two text paragraphs. They note, however, that not too much 
emphasis should be given to this exception. [67] does not agree with the assessment 
of [64] that the significant correlation between height and vocal tract length among 
females is accidental. He claims that the total number of 15 speakers per gender was 
too small to detect significant correlations between height and vocal tract length, 
where such correlations could have been shown to exist with a larger speaker corpus. 
He also criticises that the range of the population height was too small and that vocal 
tract calculations were solely based on F2 while disregarding other formants.  

[67] carried out a speaker height study of his own based on 48 female and 43 male 
speakers (mostly students) who produced the vowels of German in isolation. Instead 
of inferring vocal tract length from formants he worked with the formants F1 to F4 
directly, as well as with various combinations of formants, and made formant 
measurement separately for each vowel. Except for F1, he found negative correlations 
between formant frequency and body height (which is the expected pattern since 
formants decrease with an increase in tube length). For the vowel [ø:] he reports that 
he could establish a regression line and that the correlation was statistically 
significant. (He mentioned that the correlation was strongest for this vowel, but does 
not address systematically which other vowels achieved significance with which 
formants.) Discussing why the strength of the correlation differs between vowels, he 
mentions that with [ø:] the formants are well-spaced. A similar beneficial formant 
spacing could occur with schwa, which was used by [64] but was not included in the 
stimuli of [67] (perhaps because schwa can hardly be spoken in isolation by 
phonetically untrained subjects without changing its character). If it were the case that 
only the vowel [ø:] offered significant correlations between formant frequency and 
body height the practical implications would be limited because the token frequency 
of this vowel in German running speech is quite low. But it would be interesting to 
find out whether significant correlations also apply to at least those other vowels that 
have a clear formant spacing, such as schwa or the “äh”-type vowels used in filled 
pauses. Another interesting issue is the existence of differences between male and 
female speakers. From the correlation coefficients [67] reports (for the vowel [ø:], as 
shown in his Table 3) it can be seen that for each individual formant and for all 
combinations of formants where a negative correlation between formant and height 
are found (hence excluding F1) the correlation is slightly higher in female than male 
speech.  

In his conclusion [67] makes a very useful comment when he says that although 
the generally weak correlations between formant frequency and body height prevent 
any precise prediction of the latter from the former, it can be said at least that “low 
formant frequencies make it very unlikely that a short person is responsible for their 
production, and high formant frequencies make it equally unlikely that a tall person is 
involved” (p. 276). A statement like this would be quite useful in a police 
investigation, where it could help to narrow down the range of possible suspects. 

The relation between body height and formant frequencies was addressed again by 
[68] in two experiments. In the first experiment 22 male and 55 female Spanish-
speaking students produced sustained versions of each Spanish vowel. In the second 
experiment running speech from a read text was elicited from 29 male and 62 female 
Spanish-speaking students, of which 60 were not included in the first experiment. In 
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the first experiment F1 to F4 were measured for each vowel, in the second experiment 
the same formants were measured based on Long Term Average Spectra, in which the 
information for all vowels (as well as other speech sounds) was combined. Body 
height (and weight) was measured for each individual and the analysis of the results 
was performed separately for male and female speakers. In the first experiment, 
significant negative correlations between body height and formant frequencies were 
found for several combinations of formant, vowel, and gender. Most significant 
correlations were found for F2, followed by F3, significant correlations were only 
found for /i/, /e/, and /a/, not for /o/ and /u/ and females showed more significant 
correlations than males. Specifically, for female speech significant negative 
correlations between body height and formant frequencies were found with F2 in /a, e, 
i/ and with F3 in /e, i/. For male speech the only significant correlation was with F2 
measured in the vowel /e/. In the second experiment significant negative correlations 
between body height and formant frequencies were found only for females. With 
them it was the formants F3 and F4 that yielded the strongest effects. Based on these 
results the correlation between formant structure and body height is much stronger for 
women than for men. The same effect was also found in [64] and [67], only that in 
those studies this gender effect was more subtle. 

Opposite results as far as the gender effect on the influence of body height on 
formant frequencies is concerned were obtained by [69]. They recorded lists of 
isolated vowels, words, and sentences spoken in Canadian English by 34 male and 34 
female students. Body measurements including height were performed. Formants F1 
to F4 as well as f0 were measured of each of the English vowels. From the formant 
measurements “formant dispersion” (FD) was calculated as the mean frequency 
difference between successive formants (FD is predicted to increase with a decrease 
in vocal tract length), but the frequencies of the four formants were also analysed by 
themselves. Separate analysis was performed on the neutral vowel schwa. For the 
female subjects no significant correlations between height and f0, FD, or the 
frequency of any individual formant were found. For the male subjects, on the other 
hand, significant negative correlations were found for FD, both when all vowels were 
analysed together and when tokens of schwa were analysed separately (together with 
a non-significant contribution from f0). Consistent with earlier studies, f0 did not 
significantly depend on height. In a second multiple regression test where the values 
of individual formants were used instead of the overall FD parameter, the only 
parameter that was significantly (negatively) correlated with height was F4 when all 
vowels were considered. When separate analysis of schwa was performed a 
significant effect was obtained in which all four formants and f0 were involved, but 
where the strongest effect was for F4. These results contradict those of [68], where it 
was (almost always) the female and not the male population that showed significant 
correlations between formant frequencies and body height. From a practical point of 
view it needs to be mentioned that the success of F4 as a certain predictor of body 
height is of only limited use in forensic speech analysis since in telephone-transmitted 
speech that formant is so close to the upper frequency boundary of the telephone pass 
band (which usually lies at around 3500 Hz) that this formant cannot be detected at all 
or not be measured with sufficient reliability. 

This literature survey has shown that body height is to a certain extent correlated 
with the length of the vocal tract as it can be predicted from the formant frequencies 



200 M. Jessen 

or the frequency distance between the formants (cf. also [35] for correlations with 
direct, MRI-based, measurements of vocal tract length and [69] for comments on that 
study). The size of this correlation depends on various factors, one of them being the 
gender of the population for which the height-formant correlations are obtained. 
According to one study [68] the correlation is reasonably strong for women but quite 
weak for men. If this were the result of all studies the practical value for forensic 
work would be limited due to the much higher number of males than females in the 
population of criminal offenders. However, another study [69] showed the opposite 
result and in two further studies [64, 67] the advantage of females was only slight. 
This gender issue and other open questions, as well as the important practical 
implications in forensic work, show that the association of acoustically inferable 
vocal tract characteristics with body height (as well as other body measures) should 
be investigated further. One line of research could be to investigate correlations 
between body height and anatomical properties other than vocal tract length. For 
example, if it turned out that the cross-section of the vocal tract correlates with body 
height, acoustic-phonetic correlates and consequences of individual differences in 
vocal tract cross-section could be investigated as indices of body height (cf. [37, 38] 
mentioned in Note 6). 

3.4   Conclusion 

In this section some arguments have been advanced for why forensic speaker 
classification can benefit from the inclusion of acoustic methods to supplement the 
auditory methods that are currently in practice. Focussing on gender and body height 
classification, where both pitch and vocal tract information are important, the 
essential arguments are as follows.  

First, there is no well-recognized terminology for the perceptual effects of organic 
variations in vocal tract length. Without phonetic standards and training in the 
perceptual classification of vocal tract length this cue to gender and height 
classification cannot be accessed reliably if it were entirely approached with auditory 
methods. Formant frequency measurements, on the other hand, are a more reliable 
way of capturing vocal tract length. 

Secondly, it cannot be assumed that the perception of the source property pitch and 
the perception of the filter property that results from variations in vocal tract length 
are fully independent. From the literature there is evidence that at least some form of 
perceptual integration occurs between these and other source and filter characteristics. 
Such a perceptual integration would entail that listeners have some difficulties 
distinguishing tonality that is caused by vocal fold vibrations from tonality that is 
caused by vocal tract filtering. Although there are aspects where source-filter 
separation is also difficult to achieve acoustically, it is likely that acoustic 
measurements of f0 and formant structure allow for a better source-filter separation 
than auditory methods. 

Thirdly, the perception of gender and body height can be biased by the expectation 
that low/high f0 and low/high formant positions are cues of male/female gender and 
large/small body size, respectively. For the normal cases of gender perception these 
expectations are realistic. However in the more marginal areas of gender perception 
and in the presence of voice disguise such an expectation can be misleading. And as 
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far as height classification is concerned, the evidence has shown that despite the 
presence of a certain correlation between vocal tract length and body height there is a 
large amount of decoupling between those two anatomical properties. A decoupling 
between (low) f0 and (large) body height is even much stronger. [65] argues that the 
expectation that large individuals have low f0 and low formants (which he also 
demonstrated based on a perception experiment with synthetic stimuli) might go back 
to an old and persistent trait in the evolution of communication (see also [55, 56]). 
The same is likely to be the case with gender perception. Listeners, even those who 
are phonetically trained, might not be fully able to fight such a phylogenetically 
founded perceptual bias. Acoustic measurements, on the other hand, are free from 
such a bias. 

4   General Conclusion 

This contribution has provided an overview of the role of speaker classification in 
forensic phonetics and acoustics. In an introduction it has been shown that forensic 
speaker identification essentially divides into the subdisciplines voice analysis, voice 
comparison, and voice lineup, and that speaker classification is relevant to all three of 
these. In the second section six different speaker classification characteristics that are 
commonly used in forensic work were addressed. Some of these characteristics have a 
stronger foundation in biological and organic factors (age, gender, medical 
conditions) and some have a stronger linguistic foundation (dialect, foreign accent, 
sociolect). The remaining part of the paper was dedicated to a discussion of current 
issues in forensic speaker classification, focussing on the question of whether acoustic 
methods can supplement the auditory methods that are currently in use. It was argued 
that there are situations and areas in forensic speaker classification – including the 
largely uncharted one of body height estimation – where the inclusion of acoustic 
methods can be very informative. 
 
Acknowledgments. Many thanks to Kirsty McDougall, Olaf Köster, Stefan Gfroerer, 
and Nadja Tschäpe for comments on this paper. 
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Abstract. A new paradigm for forensic science has been encouraged in
the last years, motivated by the recently reopened debate about the in-
fallibility of some classical forensic disciplines and the controversy about
the admissibility of evidence in courts. Standardization of procedures,
proficiency testing, transparency in the scientific evaluation of the evi-
dence and testability of the system and protocols are emphasized in order
to guarantee the scientific objectivity of the procedures. In this chapter
those ideas and their relationship to automatic forensic speaker classifica-
tion will be analyzed in order to define where automatic speaker classifi-
cation is and which direction should it take under this context. Following
the DNA methodology, which is being regarded as the scientific “golden”
standard for evidence evaluation, the Bayesian approach has been pro-
posed as a scientific and logical methodology. Likelihood ratios (LR) are
computed based on the similarity-typicality pair, which facilitates the
transparency in the process. The speaker classification is performed by
the fact finder, who defines the possible hypotheses involved in the clas-
sification process. Thus, the prior probability of the hypotheses and the
LR computed by the forensic system are used to assign a class to each
suspected speaker depending on the defined hypotheses. The definition
of this hypotheses typically refer to the speaker identity, thus leading to
a speaker recognition task, but they can be defined in a more general
context of speaker classification. The concept of calibration as a way of
reporting reliable and accurate opinions is also addressed. Application-
independent evaluation techniques (Cllr and APE curves) are addressed
as a proper way for presenting results of proficiency testing in courts, as
these evaluation metrics clearly show the influence of calibration errors
in the accuracy of the inferential decision process. In order to illustrate
the effects of calibration, we conclude with new experimental examples
used as blind proficiency test following the NIST SRE 2006 evaluation
protocol.

Keywords: forensic, calibration, likelihood ratio, paradigm shift,Daubert
rules, speaker classification, DNA.

1 Introduction

In the recent years, the interest in the classical debate about the presentation of
the forensic evidence in a court of law has significantly increased [1,2,3]. Some
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reasons for that are found in the establishment of the American Daubert rules
for the admissibility of the scientific evidence in trials [4]. These rules claim that
scientific techniques presenting standard procedures and demonstrating their
testability, accuracy and acceptance in the scientific community are likely to be
accepted in a U.S. federal court of law. On the other hand, non-scientific state-
ments, such as expert testimonies lacking of scientific foundations, are likely to
be rejected. The implications of these rules are in accordance to many opinions
of forensic experts worldwide [1,5,2,3]. The debate also considers that existing
techniques which have been assumed by the court as error-free are starting to be
questioned. This has been partly due to some critical errors in positive identifi-
cation reports, highlighted by the mass media (like the Mayfield case in Madrid
terrorist attacks in 11 March 2004 [6]).

In order to cope with this emerging requirements, the speaker recognition
community has been investigating ways of converging to this new paradigm in
forensic science in the last years [7,8]. Standardization and proficiency testing
should be key points in this convergence process, as a way of presenting the
accuracy of the systems in a clear and standard way. In order to converge in
the evidence evaluation process, the Bayesian approach for evidence analysis [9]
has been proposed as a common framework for forensic interpretation of the evi-
dence, following the DNA standard. This approach has been successfully applied
to forensic speaker classification, using automatic [10,11], phonetic-acoustic [7,12]
or semi-automatic approaches [7]. In this Bayesian framework, speaker classifi-
cation is performed by the fact finder, who also defines the hypotheses in the
case. Then, classification is achieved by considering the prior probabilities of the
hypotheses and the LR computed by the forensic scientist or system. In a foren-
sic case the fact finder will be typically interested in the identity of the speaker,
leading to a speaker recognition task. However, the hypotheses may be defined
as more general classes of speakers, and therefore it will be speaker classification.

One of the main advantages of Bayesian methods is their testability. Opin-
ions about the hypotheses are expressed in the form of posterior probabilities.
Therefore, there is a need of measuring not only the discrimination capabilities
of the system, but the reliability of such confidences. Highly discriminant (or
refined [13]) systems may lead to wrong posterior probabilities if they do not
elicit reliable (or calibrated) confidences [13,14,15].

In this chapter, we define a framework for the use of automatic speaker clas-
sification following the criteria needed by the coming paradigm shift in forensic
science [1]. The chapter is organized as follows. Section 2 describes the motivation
and main differential characteristics of the “coming paradigm shift” [1], includ-
ing the use of the Bayesian framework for evidence analysis following the DNA
standard. The concepts of calibration and refinement are introduced in Section
3 and a methodology for the assessment of miscalibration effects is presented.
An experimental example is shown in Section 4, where the effect of calibration
is highlighted by simulating a comparative proficiency testing of several robust
approaches proposed in the literature for Bayesian forensic speaker classification
for the two-class problem. Finally, conclusions are drawn in Section 5.
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2 The Coming Paradigm Shift and Forensic Speaker
Recognition

In 1993, the United States Supreme Court stated that [4] in order for scientific
evidence to be accepted in a U.S. federal court of law, any technique must
satisfy the following conditions: i) it has been or can be tested. ii) it has been
subjected to peer review or publication, iii) there exist standards controlling
its use, iv) it is generally accepted in the scientific community, and v) it has a
known or potential (and acceptable) error rate. These so-called Daubert rules,
added to the evidence of errors in some well-established forensic areas, have
lead to reconsider the procedures used for forensic interpretation and reporting
[1,2]. Transparent and standard methodologies and proficiency testing are being
highlighted as essential for a proper use of scientific evidence. Moreover, it has
been pointed out that no forensic discipline is really error-free, even considering
some well established disciplines which were viewed as error-free in the past (e.
g., fingerprints [16]). These demonstrations have come maily due to important
mistakes in real trials [16,6], but there also is an important part of the scientific
community who supports those ideas [3,2]. In this sense, positive identification
as a result of forensic analysis constitutes an arbitrary decision adopted by the
experts in a subjective way, usually justified by their experience in the field [2,3].
This obscurity and arbitrariness in positive identification statements leads not
only to usurp the judge’s role in the decision making process [17], but also to a
hardly testable framework.

In [1], DNA analysis is proposed as a model in order to avoid these difficulties.
The main characteristics of forensic DNA analysis, highlighted in [1,2] may be
summarized in: i) it is scientifically based, avoiding expert opinions based on
experience [2]; ii) it is clear and standard in their procedures, allowing scru-
tinizing and inspection by fact finders and forensic scientists [1]; and iii) it is
probabilistic, avoiding hard match or non-match statements [1,3]. This forensic
discipline, much newer than fingerprint analysis, has been characterized by the
use of a Bayesian methodology, which has been addressed as a logical and scien-
tific framework for evidence analysis [9,5]. Under this framework, DNA experts
have computed a degree of support for the prosecutor or defense hypothesis in
the form of a likelihood ratio. This value is obtained in a data-driven way by
computing: i) a similarity factor which supports that the questioned sample was
left by a given suspect, and ii) a typicality factor which supports that the ques-
tioned sample was left by anyone else in a relevant population. In order to adopt
this methodology for forensic speaker classification, during the last years several
works have demonstrated that any score-based speaker classification system can
be adapted to work following the Bayesian methodology [18,10,11].

2.1 The Bayesian Methodology

The Bayesian framework for interpretation of the evidence represents a math-
ematical an logical tool for the evidence analysis process. This Bayesian frame-
work presents many advantages in the forensic context. First, it allows the forensic
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scientists to estimate and report a meaningful value to the court [17]. Second, the
role of the scientist is clearly defined, leaving to the court the task of using prior
judgements or costs in the decision process [19]. Third, probabilities can be inter-
preted as degrees of belief, allowing the incorporation of subjective opinions as
probabilities in the inference process in a clear and scientific way [20].

Classically, Bayesian interpretation of the forensic evidence using automatic
systems has been performed by generative statistical models [21,9,18,11], whereas
discriminative techniques have been also recently applied to this task [10]. In
both cases, the objective is to compute the likelihood ratio (LR) as a degree of
support of one hypothesis versus its opposite. This LR can be estimated from
similarity scores computed by an automatic system [10,11]. We assume that the
evidence E is the comparison of a questioned mark recovered from a scene of
crime (e. g., a wire-tapping) with some material from a known source, which
can be a suspect (e. g., a recording from the suspect in controlled situations).
Typically, using automatic systems this E will be a similarity score between the
mark and the suspect material. However, other kind of meta-information (such
as signal to noise ratio, transmission channels, subjective quality of the speech
signal, etc.) may be also used in order to compute this LR value [10]. Bayes’
theorem states that:

P (Hp |E, I)
P (Hd | E, I)

= LR · P (Hp | I)
P (Hd | I)

(1)

LR =
f (E| Hp, I)
f (E| Hd, I)

(2)

where Hp (a given suspect is the author of the questioned recording involved in
the crime) and Hd (another individual is the author of the questioned recording
involved in the crime) are typically the relevant hypothesis and I is the back-
ground information available in the case. The hypotheses are defined in the court
from I, the prosecutor and defense propositions and often because of the adver-
sarial nature of the criminal system. We will use the hypotheses defined above
through all the chapter, as the typical definition at trial will be realted to the
identity of the speaker, and thus we can talk about sepaker recognition. How-
ever, they can be defined in a wider context, leading to a more general speaker
classification task. For instance, the judge may be interested in knowing if the
speaker was a smoker or not.

As it can be seen in Equation 2, the LR is the ratio of two magnitudes. The
likelihood f (e|Hp, I) in the numerator in Equation 2 is known as the within-
source distribution, and models the variability of the speaker between sessions.
The evaluation of this function in e = E gives a measure of the similarity be-
tween the questioned material and the suspect. On the other hand, the likelihood
f (e|Hd, I) in the denominator is known as the between-source distribution, and
its evaluation in e = E can be seen as a measure of the typicality or rarity of
the suspect in a relevant population of individuals. Both values, similarity and
typicality, are computed in a transparent way by the speaker recognition system
or expert, and it is the duty of the forensic scientist, following the background
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information of the case (I), to select the population of individuals which will be
proper for the case at hand. This approach for LR computation can be easily
documented by the forensic scientist and understood by fact finders [9,2].

2.2 Proficiency Testing in Automatic Forensic Speaker Classification

As it has been mentioned above, proficiency testing is addressed as a key issue for
the admissibility of forensic systems in courts [1]. According to Daubert, in order
to improve the clarity in the presentation of the performance of the technique in
use, we will need unified protocols for system evaluation. We identify two main
factors as critical for the achievement of this goal in forensic speaker recogni-
tion and classification. First, there should be standard and accessible speech
databases and protocols in order to perform the test in comparable conditions.
In this sense, the work by NIST and NFI/TNO in their respective SREs has
been fundamental in the last years [22], and such databases and protocols are a
reference for any scientific evaluation of performance of speaker recognition sys-
tems. Second, the use of a common methodology for presenting results in court
will measure and clarify the reliability of the system to be used for forensic anal-
ysis. In Section 3.1 we propose a method for the common evaluation of forensic
speaker classification systems.

3 Calibration in Bayesian Forensic Speaker Classification

The concept of calibration was introduced in [13] in the context of weather
forecasting. There, posterior probabilities (also known as confidences) were used
as degrees of belief about a given hypothesis (tomorrow it will rain) against its
opposite (tomorrow it will not rain). The accuracy of the forecaster was then
assessed by means of strictly proper scoring rules, which may be viewed as cost
functions which assign a penalty to a given confidence depending on: i) the
probabilistic value of the forecast, and ii) the true hypothesis which actually
occurred (see [14,15] for details). For example, if a probabilistic forecast gives a
high probability of rain for tomorrow (value of the forecast) and tomorrow it does
not rain (true hypothesis), a proper scoring rule will assign a high penalty to the
forecast, and vice-versa. Strictly proper scoring rules have interesting properties.
First, if we know the true value of the hypotheses for each trial and use that
knowledge for building a perfect system, the only posterior probability value
which optimize a strictly proper scoring rule with respect to that perfect system
is the posterior probability which would be given by the perfect system itself
[13]. Thus, any opinion expressed by the forecaster which deviates from the one
elicited with knowledge of the true answer will lead to a higher penalty. Second, in
[13] it is demonstrated that any proper scoring rule can be split into a refinement
component, measuring the discrimination capabilities of the confidence values
elicited, and a calibration component, which measures the deviation of such
confidence values from those elicited by the perfect system.
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The use of proper scoring rules in order to assess speaker classification and
recognition systems delivering LR values has been recently proposed in the liter-
ature [14,10,15]. In a speaker classification context, each forecast is represented
with the confidence on the hypothesis “the speaker is the author of the test utter-
ance” or its opposite or opposites, which may be inferred from the LR computed
by the speaker recognition system and the prior probabilities (not necessarily es-
timated by the system). This assessment framework is perfectly suited for the
methodology proposed in Section 2.1 for forensic speaker recognition consider-
ing: i) the hypotheses used are Hp and Hd as defined in Section 2.1, ii) the
prior judgements are province of the court, and iii) the LR is computed by the
forensic speaker recognition system.

3.1 Assessing Calibration in Forensic Speaker Classification

The common assessment methods widely used among the speaker recognition
community for assessing the performance of systems have been mainly proposed
in NIST SREs. There, DET plots have been used to measure the discrimination
performance of speaker detection technology. However, LR values are not only
used as a discrimination score, but as a measure of the degree of support to a
hypothesis against its opposite. Using the LR and the prior odds (province of
the court [17]) we obtain a posterior probability for each hypothesis. Thus, the
accuracy of the LR values does not only depend on their discrimination power
for trials where Hp or Hd is true (measured by the refinement of the LR values),
but in their actual values (calibrated LR values will lead to reliable confidences).

In order to assess the actual values of the LR, in Bayesian analysis of forensic
evidences Tippett plots have been classically used for performance evaluation
[11]. In this representation, the distribution of the LR values being Hp or Hd

respectively true are plotted together. Important values shown by these curves
(and not by DET plots) are the distributions of the computed LR values and the
rates of misleading evidence. The rate of misleading evidence is defined as the
proportion of LR values giving support to the wrong hypotheses (LR > 1 when
Hd is true and LR < 1 when Hp is true). In Figure 1 an example of Tippett
plots is shown.

Recent approaches for speaker classification evaluation have proposed the use
of application-independent metrics such as Cllr [14], where application, as defined
in [14,15], is the set of prior probabilities and decision costs involved in the
inferential process [19]. Cllr is a single scalar value defined as:

Cllr =
1

NHp

∑

iforHp=true

log2

(

1 +
1

LRi

)

+
1

NHd

∑

jforHd=true

log2(1 + LRj) (3)

where NHp and NHd
are respectively the number of LR values in the evaluation

set for Hp or Hd true. As it can be seen in Equation 3, hypothesis-dependent
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Fig. 1. Example of Tippett plots showing the actual LR distributions (with its mean-
ingful values) and the rates of misleading evidence when Hp and Hd are respectively
true

logarithmic cost functions are applied to the LR values being evaluated, and
thus they are assessed depending on their numerical value: highly misleading
LR values will have a strong penalty (high Cllr) and viceversa.

Cllr presents several interesting properties. First, the LR values are evaluated
in an application-independent way, which in forensics means case-independent,
where different costs and priors may be involved in the decision process of each
different case [19]. Second, as a single scalar value, Cllr is very useful in order
to easily compare and rank systems. Third, it can be demonstrated that Cllr

is a strictly proper scoring rule [14], and it can be split into discrimination
loss (Cmin

llr ) and calibration loss (Cllr − Cmin
llr ). The Cmin

llr value is obtained by
optimal calibration via a monotonic transformation of the LR values, knowing
the actual hypothesis occurred for each LR value. The Pool Adjacent Violators
(PAV) algorithm is used for obtaining such monotinic transformation. Details
may be found in [14,15].

Related to this Cllr value, the APE-curve (Applied Probability of Error) [14]
has been also proposed as a way of measuring the probability of error of the LR
values computed by the forensic system in a wide range of applications (different
costs and priors). This probability of error is represented for the actual LR values
computed by the speaker recognition system and also for optimally calibrated LR
values obtained as cited above for Cmin

llr . Therefore, this representation clearly
illustrates the effects of a lack of calibration: highly discriminant LR values
may lead to a high probability of erroneous decisions if they are not properly
calibrated. Because of their interesting properties, APE curves and Cllr has been
used as an evaluation metric in NIST 2006 SRE [23]. In this article, we have used
the evaluation tools for Cllr and APE curve computation included in the toolkit
FoCal [24].
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Fig. 2. DET curves (a), Tippett plots (b) and APE curves (c) for three simulated
systems (System 1, System 2 and System 3). LR values have been randomly generated
in order to plot these curves.

3.2 Calibration Example

The effects of calibration in forensic speaker classification are illustrated in this
section with an example using synthetic data. Here, an uncalibrated set of LR
values have been synthetically generated for each of the Hp and Hd hypotheses.
This system is then transformed by two different monotonic mappings: i) a linear
scaling by a 0.5 factor and ii) the PAV algorithm trained with the same syntethic
data (a-posteriori training). Figure 2 shows the performance of these synthetic
systems, which we will call Uncalibrated system, 1/2 Uncalibrated system and
Calibrated system. Results are presented in terms of DET curves, Tippett plots,
Cllr values and APE curves. DET curve in Figure 2(a) shows that the discrimi-
nation performance of all systems is the same. This is due because a monotonic
transformation does not change the ordering of the scores. However, Tippett
plots in Figure 2(b) show that confidences inferred from LR values computed by
the Uncalibrated system will lead to important errors because of the high pro-
portion of misleading LR values. However, the rates of misleading evidence are
dramatically reduced for system 1/2 Uncalibrated because of the linear scaling.
Thus, LR values will be more moderate after the scaling, but less misleading.
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The same effects in LR values are observed for system Calibrated, but in this
case the mapping is non-linear.

These results are clearly observed in Figure 2(c), which presents the same re-
sults in the form of Cllr values and APE curves. Overall performance is given by
Cllr , split into discrimination loss (Cmin

llr ) and calibration loss (Cllr −Cmin
llr ). It is

observed that all systems present the same discrimination performance (discrim-
ination loss). However, Cllr values for the Uncalibrated system are much higher
than for the rest, mainly because the effects of misleading evidence observed in
Figure 2(b). On the other hand, the calibration performance of the Calibrated
LR values is the best for all systems.

In order to complete the analysis, APE curves in Figure 2(c) show the prob-
ability of error for all possible values of prior probabilities and decision costs
(horizontal axis). The dashed line shows the performance of optimally calibrated
LR values obtained by monotonic transformation from LR values given by the
system [14,15]. The solid line shows the actual probability of error of the LR val-
ues computed. It is observed that the probability of error dramatically increases
when the system is not properly calibrated. Due to this lack of calibration,
posteriors inferred using the Uncalibrated LR values will have a much higher
probability of error, even when it has the same discrimination performance as
the rest of systems.

4 Experiments

In order to confirm the effects presented in Section 3 using automatic speaker
classification systems, we present an experimental example using different LR
computation techniques.

The scores needed for LR computation have been obtained using the ATVS
GMM-SVM-NAP system, which is based on the classification of GMM mean-
supervectors using support vector machines. Details may be found in [25]. The
comparative results presented here consider two techniques for the evaluation of
the forensic evidence found in the literature, namely: i) suspect-independent LR
computation [26] and ii) suspect-adapted Maximum A Posteriori (MAP) LR
computation. We briefly describe each interpretation technique below.

In suspect-independent within-source estimation a framework is proposed as-
suming that an accurate model of the within-source distribution for a given sus-
pect can be obtained using target scores from different individuals in the same
conditions, namely XG = {xG1, . . . , xGN}. On the other hand, suspect-adapted
MAP estimation of within-source distributions adapts the global distribution
fG (e) = N (μG, σG) to the suspect distribution fS (e) = N (μS , σS), estimated
from a set of M suspect target scores XS = {xS1, . . . , xSM} obtained from the
suspect speech involved in the trial. Therefore, an adapted within-source pdf
f (e|Hp, I) ≡ fA (e) = N (μA, σA) is obtained. See [27] for details.

Experiments have been performed using the evaluation protocol proposed in
NIST 2006 SRE for the 1 conversation side training and 1 conversation side
testing task (1c-1c, see [23] for details). Suspect target scores set XS consists of
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Fig. 3. DET curves (a), Tippett plots (b) and APE curves (c) comparing suspect-
independent, WDP and suspect-adapted within-source computation with scarce sus-
pect data (M=2) in the selected subset from 8c-1c in NIST 2005 SRE

all the target scores for each speaker from the whole score set in the evaluation,
except the score used as evidence in each LR computation. More than 50.000
trials have been performed in this condition. Background data, including global
target score set XG, have been extracted form NIST 2004 SRE database and
protocol [22].

4.1 Results

In Figure 3 we compare the performance of the different evaluated techniques.
Results are presented in DET curves, Tippett plots, Cllr values and APE curves.
In Figure 3(a) we can see the DET plots showing the discrimination performance
of the different evaluated LR computation techniques using the GMM-SVM-
NAP speaker recognition system. It can be observed that the discrimination
performance is better for the suspect-adapted case. Thus, suspect-adapted LR
computation exploits suspect-specificities in order to lead to a more efficient
extraction of information about the speaker identity.

Figure 3(b) shows the distribution of LR values in the form of Tippett plots for
each LR computation technique. It is shown that the magnitude of the strength
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of misleading evidence (LR values supporting the wrong hypothesis) is quite
limited for both cases. This is a good result, because the LR values obtained
using these two different LR computation techniques are homogeneous. However,
the observation of the Tippett plots does not allow us to easily conclude which
technique is better. Moreover, the calibration of the techniques is not explicitly
measured.

Figure 3(c) shows the proposed methodology for presenting forensic system
testing results. It is observed that the discrimination performance (dashed curve)
is better for the suspect-adapted case, as it was shown in 3(a). The calibration
performance is very similar for both LR computation techniques, significantly
outperforming the scores. On the other hand, Cllr values, represented under
the APE curves, give an overall performance metric which allows the ranking
of the different techniques. In this case, suspect-adapted technique outperforms
suspect-indpendent LR computation.

5 Conclusions

In this chapter we have discussed the current state and future directions that
forensic speaker classification should take in order to cope with the rising needs
being debated in the forensic science community. Questioning the infallibility of
any forensic technique and demanding scientifically-sound methods for the ad-
missibility of forensic evidence in the court are the main reasons for these new
requirements. Some main guidelines for the use of forensic speaker recognition in
courts may be drawn from this debate, such as the need of transparency, accu-
racy and testability for any technique to be admissible. This work has presented
a methodology which copes with these interrelated requirements and therefore
fulfills these needs. The transparency of the reasoning process under uncertainty
is guaranteed by the use of the scientific and logical Bayesian framework for
evidence analysis, as it happens in forensic DNA profiling. Under such Bayesian
framework, the roles of the fact finder and the forensic system are perfectly
defined. It is the role of the forensic system to output a LR value about the
hypotheses involved in the case. On the other hand, the fact finder defines the
hypotheses, gives value to the prior odds and performs the final speaker classifi-
cation step. The hypotheses are typically related to the identity of the speaker
(speaker recognition) but they may be defined in a wider context, leading to
a more general speaker classification task. The discussion about the effects of
a lack of calibration in automatic forensic speaker classification systems has
been supported by heuristic examples and experimental results. The conclusions
from such discussion can be extended to any other forensic speaker classifica-
tion approaches (semi-automatic, phonetic-acoustic, etc.) based on the Bayesian
framework and reporting LR values. Moreover, several methods for the evalu-
ation of forensic systems have been addressed, from classical techniques based
on DET curves and Tippett plots to more recent application-independent ap-
proaches based on Cllr and APE curves. These two last metrics have been em-
phasized as a proper way of presenting results, as they show and highlight the
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calibration performance as a measure of reliability of the LR values computed
by the forensic system. All these evaluation techniques, added to a clear and
standard protocol such as those developed by NIST in their yearly SREs, give a
method to perform proficiency tests in a controlled and transparent way. There-
fore, the proposed methodology looks forward to fulfilling the needs of testability
and standardization stated by the Daubert rules and demanded from forensic
experts worldwide.
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Abstract. Speaker classification is a fundamental component of speaker
identification and verification (SIV) technologies. This paper provides
and overview of the many guises that classification takes within SIV
systems.
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1 Introduction

One of the most widely-deployed application domains of speaker classification is
within systems that perform automated speaker identification and verification
(SIV). The purpose of a speaker-verification (SV) system is to determine whether
the speaker is making a true or a false claim of identity. The object of speaker
identification (SI) is to attach a speaker identity to a sample of speech from a
previously unknown speaker. The use of both technologies is growing for security,
forensics, and intelligence (Markowitz, 2000 [1], 2006 [2]).

The aim of both SV and SI is to link a speech sample to a specific individual,
which is not classification. Yet, SI and SV systems (and other biometric veri-
fication and identification systems) perform a number of classification tasks in
order to accomplish their goals.

2 Variability

The reason classification is used is that the data in SIV/biometric samples are
variable. In fact, spoken utterances are like unique creations produced by simi-
larities and differences arising from both external sources and the speaker. Vari-
ability is such an inherent part of SIV and other biometrics that if a sample
is found to be a perfect or near-perfect match with the enrollment data from
the claimed identity the system sounds a “replay” or “spoofing” attack alarm
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c© Springer-Verlag Berlin Heidelberg 2007



The Many Roles of Speaker Classification 219

(Markowitz, 2005 [3]). In replay/spoofing attacks an imposter attempts to fool
the biometric security system by re-using a sample taken from the claimed iden-
tity. Replay/spoofing in SV generally employs a tape recording (called a “tape
attack”)1.

Resolution of variability involves classification of the speakers acoustic pat-
terns as well as classification operations related to the communication environ-
ment (noise, device/handset type, and channel). Intra-speaker variability can be
produced by speaking at different speeds, by stress, illness, fatigue, whispering;
or simply by positioning the articulators (lips, teeth, or tongue) differently.

SIV systems capture and encode some intra-speaker variability during en-
rollment by asking for several utterances or by having the enrollee talk for
up to thirty seconds while the system captures and analyzes the speech. The
enrollment data are clustered into a “codebook” that describes the enrollee’s
voice. This information is stored as the enrollee’s voice model (sometimes called
“voiceprint”). It is, essentially, a delineation of the class of vocal behaviors of
the enrollee.

When a new utterance is submitted to an SIV system by someone claiming to
be the enrollee, the system compares the codebook for that utterance with the
codebook(s) for one or more stored voice models. This process is often called the
“classification” step of SIV. SV, for example, evaluates whether and how well
the new sample fits into the class of acoustic patterns defined by the voice model
of the person the speaker claims to be.

The most widely-used approaches for accomplishing this classification task
are nearest neighbor, vector quantization, neural networks, and binary trees.
Each of these techniques calculates the similarities and differences between the
new sample and other voice models for each of the features utilized by the
system. This process is consolidated into an overall similarity score. SV uses
the score determine whether the speaker’s claim of identity will be accepted or
rejected; SI uses the score to rank speaker candidates for the speech sample
under analysis.

Philips Speech Recognition Systems employs a variant of this technique in its
speech-recognition (SR) dictation product for physicians. SR dictation systems
create a separate user model for each speaker and continually update that model
as the person speaks. Philips noticed that physicians often hand dictation off to
assistants who use the physicians user model to do their work. If the acoustic
patterns of the assistants were incorporated into the model it would degrade
accuracy. The classification metric determines whether or not the current speaker
is the enrolled physician. If not, it will not update the user model.

SV systems also employ a set of techniques for enhancing the accuracy of the
classification called anti-speaker modeling.

1 A human mimic could also be used to spoof an SV system but this is rare and much
trickier. SIV systems employ features that reflect the size and shape of the vocal
apparatus (throat, mouth, and nose) In order to mount a viable attack, the mimic
must have physiology that is similar to the claimed identity or the system will detect
differences.
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3 Anti-speaker Modeling

Virtually all commercial and research SV systems employ some form of anti-
speaker modeling. Anti-speaker modeling is designed to enhance the accuracy
of an SV system by comparing the claimant’s speech with voice models from
speakers other than the model for the claimed identity. These additional evalu-
ations allow the SV system to perform better in “adverse” environments, such
as those with a great deal of background or channel noise, or when there is a
mismatch between the handset or channel used for enrollment and that used by
the claimant.

One kind of anti-speaker modeling, discriminant training, entails categoriza-
tion of a newly-enrolled voice model based on comparison with all the other
voices in the system. This approach is an inherent part of how neural networks
and, to some extent, binary trees operate.

Another widely-used type of anti-speaker modeling is the “world model” (also
called “background model”). It is a class model that is derived from the speech of
a diverse population of speakers. Well-designed world models contain a balance
of voices that would be representative of the voices of potential imposters.

In the world-model approach, the claimant’s speech is compared with the
voice model of the claimed identity and with the world model. The score is
computed as a ratio of the divergence of the claimant’s speech from the model of
the claimed identity over the divergence of the claimant’s speech from the world
model (Equation 1).

score =
claimed identity

world model
(1)

A high score indicates that the claimant’s speech is more akin to the voice
of the claimed identity than it is to the world model and that there is a high
probability that the claimant is who she/he claims to be. A low score suggests
that the claimant is likely an impostor.

From the perspective of speaker classification, the most interesting variant of
anti-speaker modeling is cohort normalization (Higgins et al, 1991 [4]). Cohort
normalization is performed when an individual enrolls in an SV system. After
creating the codebook for the enrollee, the system examines its database for voice
models that are similar to the newly-created model. The cohort class differs for
each enrollee.

When a claimant supplies speech data to an SV system with cohort normal-
ization the system retrieves the voice model for the claimed identity and the
voice model for each of its cohorts. The claimant’s speech is compared to all of
those models with the expectation that, if the claimant is making a valid claim,
the score for the claimed identity model will be higher than the scores for anyone
in the cohort class.

The IDIAP (Dalle Molle Institute for Perceptual Artificial Intelligence), a
research institute in Switzerland, employed a combination of a world model
of English speakers, Arabic-speaking cohort models, and numerous examples of
Osama bin Laden’s speech to determine whether the 2002 recording attributed to
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bin Laden was faked. Figure 1 shows that what this procedure does is determine
whether or not a given sample can be categorized as being within the bin Laden
class.

IDIAP [5] concluded that, “While this study does not permit us to draw any
definite (statistically significant) conclusions, it nonetheless shows that there is
serious room for doubt” about whether the voice on the tape could be categorized
as that of Osama bin Laden.

Fig. 1. 2002 IDIAP analysis of bin Laden tape [5]

4 Disguised Voices

The identification, analysis, and reversal of voice disguise are promising areas
of investigation for speaker classification that are applicable to forensics and
intelligence. The most systematic study of voice disguise was done by Robert
Rodman (Rodman, 1998 [6]) who positioned his research on this subject within
speaker classification. Rodman partitioned disguised voices into the four cate-
gories shown in Table 1 and has been since creating a database of samples for
use in the development and testing of systems for identifying, categorizing, and
reversing the effects of voice disguise.

The ability to detect and reverse intentional electronic disguise will be essen-
tial for the viability of SIV in the future because sophisticated voice disguise
could easily merge with the work on voice forgery (usually called “voice conver-
sion” or “voice morphing”). Voice conversion is simply the intentional electronic
alteration of vocal features and patterns into the voice of a specific individual.
Perrot, et al [7] assessed the threat of voice conversion to SIV systems using data
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Table 1. Kinds of voice disguise [6]

Broad taxonomy of
voice disguise:

Deliberate Nondeliberate

Electronic Electronic scrambling, etc. Channel distortions, etc.

Nonelectronic Speaking in falsetto, etc. Hoarseness, intoxication, etc.

from the NIST speaker recognition evaluation of 2004 and found that it could
pose a serious threat to existing commercial SIV technology.

5 Stress and Lie Detection

The ability to detect stress is valuable for a broad spectrum of situations in
both the pubic and private sectors. It would be critical to know, for example,
whether the stress levels of key employees working in nuclear weapons facilities
or as international peacekeepers are too high for them to perform their jobs. A
similar metric could also apply to police officers, corporate executives, and child-
care workers. Being able to determine whether a suspect, informant, or witness
is telling the truth would be invaluable for law enforcement and intelligence. It
is equally important for business transactions and personal relationships.

Speech is an almost universal human ability. It is, therefore, fortunate that
research has shown that stress affects speech in well-defined ways (Hansen and
Clements, 1987 [8]; Jameson, et al, 2005 [9]; Scherer, et al. 2002 [10]). This
means that stressed and unstressed speech constitute different classes of spoken
behavior and that the manifestation(s) of stress in speech could be applied to
the uses enumerated above.

The dominant technique for identifying stressed speech is based on “mi-
crotremor” research done in the mid-twentieth century (Lippold, 1971 [11]).
Microtremors are involuntary muscular contractions that generate low-frequency
oscillations (8-12 Hz) that appear to reflect the tension within muscles and seem
to be part of the communication between the muscles and the nervous system.
Virtually all commercial voice stress analysis and lie-detection systems utilize
this approach and subsequent testing by the Air Force Research Laboratory
found that these systems can distinguish stressed from unstressed speech (Had-
dad, et al, 2002 [12]).

Recent research reveals that stress manifests itself in a variety of ways in a per-
son’s speech (Müller et al, 2001 [13]) and that different kinds and levels of stress
affect speech in different ways (Hansen, et al 2000, [14]) which indicates that
stressed speech consists of a set of classes. The NATO Research Study Group
(Hansen, et al, 2000 [14]) postulated four basic stressed-speech categories based
on its research with military personnel. Their categories are tied to the source of
the stress: physical (e.g., vibration, pressure, acceleration, equipment/physical
load), physiological (e.g., alcohol, medicines, narcotics, fatigue, illness), percep-
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tual (e.g., noise, poor communication channel, a listener who is having problems
understanding), and psychological (e.g., emotion, lying, workload, anxiety) and
produce unique constellations of effects on speech. Within and between their cat-
egories, unique constellations of effects on speech are produced. Lombard speech,
for example, is a well-documented response to noise (perceptual stress) that has
the following characteristics: increased vocal effort, greater duration of words
due to increased vowel length, shifts in formant locations for vowels, increased
formant amplitudes, and deletion of some word-final consonants (Markowitz,
1996, [15]).

The ability to go beyond microtremors is of particular interest to develop-
ers of speech recognition and SIV products because the acoustic manifestations
of stress are known to cause the performance of these systems to deteriorate
(Hansen, et al, 2000 [14]; Müller et al, 2001 [13]). Work by the NATO Research
Study Group on Speech (Hansen, et al, 2000 [14]), the European Union Esprit
VeriVox project (Karlsson, et al, 2000 [16]), and others on developing methods
for transforming knowledge about stressed speech into tools for enhancing speech
recognition and SIV products is still in its infancy.

6 Speaker Segmentation and Clustering

Speaker segmentation and clustering apply to the analysis of multispeaker en-
vironments. Those environments range from two-wire telecommunications chan-
nels that encode both (or all) speakers on the same channel to transcription
and/or indexing of meetings and news broadcasts. In most cases, the number
and identities of speakers is generally not known beforehand.

The goal of speaker segmentation is to identify all the boundaries between
the speech of different speakers in the audio signal. In order to segment, the
system must first determine whether the current speaker has changed. The most
primitive method of detecting that a speaker has changed is to look for silence.
This is useful as an alert to the system that the speaker may change but, used
by itself, it is unreliable because speakers often pause in their speech (no speaker
change) or talk over each other. The most common techniques for detecting that
the speaker has changed are log likelihood ratio, Bayesian information criterion,
and similar distance metrics (Ajmera, et al, 2004 [17]). They measure similar-
ity/dissimilarity between the features extracted from consecutive slices (called
“windows”) of the signal. These approaches may be supplemented by higher-level
change detectors, such as gender, language, dialect, and even topic. Boundaries
are set at points where the distance measure is sufficiently large.

The next stage, speaker clustering, aims to identify, group all of the segments
uttered by the same speaker, and assign a unique label to them (e.g., male No.
10, female No. 5) which are really speaker classes. Clustering employs variants
of some of the same distance measures employed for establishing boundaries
between speakers (Gish, et al, 1991 [18]; Reynolds, et al, 1998 [19]).

These techniques have been incorporated into automated indexing of broad-
cast news (Maybury, 2000 [20]), films, speeches, meetings, telephone conver-
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sations, and other multi-speaker audio sources. These systems still represent
emerging technology but their utility has already been demonstrated in index-
ing of broadcast news transmissions and intelligence gathering.

Some of these systems offer semi-automated assistance to forensics and intelli-
gence operations. Typically, such systems identify one or more classes of speakers
that match a set of criteria. One commercially-available example is the Loquendo
Voice Investigation System which can be used to monitor cellular call traffic
looking for speakers classifications of special interest to its law-enforcement or
intelligence agency clients.

7 Conclusion

This paper has demonstrated that speaker classification is a core component of
SIV applications in the real world. The “classification” step within an SIV system
represents the application of speaker classification in the core SIV engine. Anti-
speaker technologies extend classification to enhancements to SIV systems based
on comparison of spoke data with classes of speakers. Voice disguise is an area
of research for forensics and intelligence that has already been partitioned into
several major classes of disguise that are currently the object of research. Systems
that detect stressed speech due to emotion, cognitive load, illness, and even lying
are already being used commercially. At the same time, more refined analysis
of the effects of different kinds of stressors is an active area of research that is
designed to make SIV more robust to intra-speaker variability caused by stress.
Classification is also a critical element of systems charged with transcribing,
indexing, and otherwise analyzing multi-speaker communications.
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Abstract. In this chapter we will discuss feature extraction methods
for speaker classification. We introduce linear predictive coding, mel fre-
quency cepstral coefficients and wavelets and perform experimental stud-
ies on AURORA and TIMIT data. For the speaker identification task,
we can show that wavelets are beneficial.
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1 Introduction

In pattern classification problems feature extraction is very often one of the most
important steps for a successful system. Surprisingly, in speaker classification,
very little work has been done on task specific features. Instead, the standard
feature extraction techniques, developed for speech recognition are also used
for speaker classification: linear predictive coding and mel frequency cepstral
coefficients. In this article, those two standard techniques will be described. In
addition we will give an introduction to a wavelet feature extraction. In the final
section we will describe experiments comparing wavelets to MFCCs. Unlike in
speech recognition, wavelets seem to be able to outperform MFCCs on the task
of speaker identification under special conditions.

2 Linear Prediction Coding

Experiments with linear prediction analysis of speech started during the 1960’s
mainly in search of an efficient method for coding of speech [1], [2]. Later LPC
was also used for other speech related tasks as speech recognition and speaker
recognition. The derivation of mel cepstrum based features reduced the relevance
of LPC features, especially for speech recognition. Linear prediction is still in
use in many speech coding systems, because the coefficients can be calculated
efficiently and it is possible to code speech with a few kBit/s without compro-
mising understandability. A popular example for the use of LPC is the GSM
standard for mobile communication[3].

C. Müller (Ed.): Speaker Classification I, LNAI 4343, pp. 226–240, 2007.
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2.1 A Simple Model of Speech Tract

Linear Prediction Coding(LPC) is based on a simple model of speech produc-
tion. The vocal tract is modeled as a set of connected tubes with equal length
and piecewise constant diameter, see Figure 1. It is assumed, that the glottis
produces buzzing sounds(voiced speech) or noise(unvoiced speech). Under cer-
tain assumptions (no energy loss inside the vocal tract, no nonlinear effects ...)
it can be shown that the transfer function of this model is an all-pole Filter with
the z-transform

A(z) =
1

1 −
∑P

i=1 aiz−i
(1)

where P is the number of tube segments. The coefficients a1 . . . aP are directly
related to the resonance frequencies of the vocal tract, called formants, and bear
information about the shape of the vocal tract. The coefficients of the transfer
function can be directly calculated from the signal through minimizing the linear
prediction error:

e(n) = sn −
P∑

i=1

aisn−i (2)

A detailed presentation of the tube model and its connection to linear prediction
can be found in [4].

Fig. 1. A simple tube model of speech tract

2.2 Yule-Walker-Equations

There are different criteria for minimizing the linear prediction error (2). If we
choose the squared expectation value we use the so called autocorrelation method.
Other methods like the covariance method lead to slightly different equations. In
either case it is assumed that the configuration of vocal tract and the signal don’t
change during a speech frame. So the following function has to be minimized:

J(a) = E(e(n)2)

= E

⎛

⎝

(

sn −
P∑

i=1

aisn−i

)2
⎞

⎠ (3)
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Using the linearity of the expectation value we get

J(a) = E(s2
n) − 2

P∑

i=1

aiE(snsn−1) +
P∑

i=1

P∑

j=1

aiajE(sn−isn−i) (4)

The signal is assumed to be stationary, so the expectation values in this equa-
tion are independent of n and depend only on the absolute value of i − j. These
are in fact the values of the autocorrelation function of the signal. We denote
them with Rss(|i − j|). In practice these values have to be estimated from the
signal frame. This can be done in a fast way using the Wiener-Kinchin theorem
and the Fast Fourier Transform(FFT).

To find the minimum error solution, we calculate the gradient of the J(a) and
set it to Zero:

∇aJ(a) = 0 (5)

A short calculation leads to the following set of linear equations:

P∑

i=1

Rss(|i − j|) ai = Rss(j) j = 1 . . . P (6)

These are the Yule-Walker equations, which are well known in the theory of
signal processing.

The usual way solve a set of linear equation is the Gauss algorithm, or in case
of a symmetric matrix the Cholesky algorithm. These methods need O(P 3) oper-
ations and don’t really exploit the special structure of the Yule-Walker equations.
A faster way is the so called levinson durbin recursion, which was first proposed
by Levinson in 1947 [5] and later improved by Durbin. It needs approximately
P 2 + 2P operations.

We use the following notations:

a(n) =

⎛

⎜
⎜
⎝

a
(n)
1
...

a
(n)
n

⎞

⎟
⎟
⎠ , ã(n) =

⎛

⎜
⎜
⎝

a
(n)
n

...
a
(n)
1

⎞

⎟
⎟
⎠

r(n) =

⎛

⎜
⎝

Rss(1)
...

Rss(n)

⎞

⎟
⎠

T

, r̃(n) =

⎛

⎜
⎝

Rss(n)
...

Rss(1)

⎞

⎟
⎠

T

initialization

a
(1)
1 =

Rss(1)
Rss(0)

step 1

a(n)
n =

Rss(n) − r̃(n−1) · a(n−1)

Rss(0) − r̃(n−1) · ã(n−1)
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step 2 ⎛

⎜
⎜
⎝

a
(n)
1
...

a
(n)
n−1

⎞

⎟
⎟
⎠ = a(n−1) − a(n−1)

n ã(n)

step 3 repeat step 1 and step 2 until n = P

The vector a(P ) is the solution of (6) we searched for.

3 Mel-Frequency Cepstrum Coefficients

Since their derivation approximately 30 years ago [6] mel frequency cepstrum
coefficients(MFCC) became the standard feature set for various speech applica-
tions. Although originally developed for speech recognition many state-of-the-art
systems for speaker classification use MFCC’s as features,see [7][8][9].

3.1 Derivation

After discretization and quantization the signal gets filtered by simple high pass.
This step tries to compensate the effect of the lips, which act as a low pass. This
high pass has the form

s′n = sn − αsn−1 (7)

with values for α around 0.95.
The signal is split up into overlapping frames and the spectrum of each frame

gets calculated with the windowed discrete Fourier transformation:

Fk =
N−1∑

n=0

wnsne−
2πink

N k = 0 . . .N − 1 (8)

where N is the number of samples in each frame. The wn are the coefficients
of a window function. The multiplication with the window function is necessary
to minimize distortions of the spectrum resulting from the finite length of the
frame. A typical choice is the Hamming window:

wn = 0.53836 − 0.46164 cos
(

2πn

N − 1

)

n = 0..N − 1 (9)

We take the absolute value of each Fk because we are not interested in phase
information. |Fk| represents the energy of the signal at the frequency

k

T

where T is the duration of the frame. Since the signal is real valued the equation
|Fk| = |FN−k| holds. The first coefficient F0 is just the sum of the signal values
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of the frames, which bears no useful information for our purposes. So we get N
2

unique features from the discrete Fourier Transform.
A naive calculation of (8) needs N2 complex multiplications. Using the Fast

Fourier Transform it is possible to reduce the number of multiplications to
O(n log n). Further reductions are possible if we use fact that the signal has
only real values.

The ability of the human ear to discriminate signal frequencies decreases with
higher frequencies. To model this a set of overlapping band pass filter is applied
to the |Fk|. The center frequencies of these band pass filters are equally spaced
on the mel scale

melf = 1127.01048 · ln
(

1 +
f

700

)

(10)

which was first proposed in [10]. A common choice in speech recognition are
24 triangle shaped filters which start and end at the center frequencies of its
neighbors, see figure 2.

In the next step the logarithm is taken from the output of the filter bank. This
serves two purposes. First these values are can be easier modeled by Gaussian
distributions or Gaussian Mixture Models(GMM). This allows the application
of well established classification methods. The second aspect is even more im-
portant:

We model speech generation as an LTI system with impulse response h(n)
and input signal e(n)

s(n) = h(n) ∗ e(n) . (11)
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Fig. 2. Mel scale filterbank
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A short calculation shows that the signal processing steps so far lead to a sepa-
ration of the input signal and the impulse response:

log |F {h(n) ∗ e(n)}| = log |F {h(n)} · F {e(n)}| (12)
= log (|F {h(n)}| · |F {e(n)}|)
= log |F {h(n)}| + log |F {e(n)}|

This can be used to remove the effects of the transmission channel, for instance
a telephone line. By subtracting the mean feature vector over a certain period of
time from each feature vector the distortions from a linear transmission channel
can be removed. This procedure is known as Cepstral Mean Subtraction (CMS).
It is very popular in speech recognition, because it leads to major improvements
in recognition results under severe conditions. Unfortunately CMS also removes
speaker dependent information about the configuration of the vocal tract. So it
actually decreases the performance in speaker recognition tasks.

As a last step a Discrete Cosine Transform(DCT) is applied to the logarith-
mized output values mj of the filter bank:

ci =

√
2
N

N∑

j=1

mj cos
(

πi

N
(j − 0.5)

)

(13)

It serves as an easier to calculate approximation of the Principal Component
Analysis, see [11] . The output values ci are nearly uncorrelated. So if Gaussian
Mixture Models are used for classification, see [12] [13], diagonal covariance ma-
trices are sufficient. That means fewer parameters have to be estimated. Usually
only the first 12 output values of the DCT are taken as feature values.

3.2 Dynamic Features

The features derived so far only contain informations about a single speech
frame. To capture informations about the changes of the signal in time the vector
can be supplemented with approximations of the first and second derivation of
the vector components. A simple method to calculate these approximations are
difference quotients.

Δc
(m)
k = c

(m+τ)
k − c

(m−τ)
k

Δ2c
(m)
k = Δc

(m+τ)
k − Δc

(m−τ)
k

But more common is the use of linear regression, first suggested in [14]. The
slope of the regression line yields a more robust estimate of the first derivation
and can be easily calculated

δc
(m)
k =

∑τ
i=−τ ic

(m+i)
k∑τ

i=−τ i2
(14)

Then the same formula can be used to calculate estimates for the second deriva-
tion from the δc

(m)
k . A common choice for the window size is τ = 2, see figure 3.
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Fig. 3. Estimation of the first derivation using linear regression

4 Wavelet Based Features

A disadvantage of the Fourier transform, used in the mel cepstrum coefficients,
is the missing ability to resolve the temporal characteristics of the signal. For
this reason, the assumption of a stationary signal within the analyzed frame has
to be made.

A method to capture temporal and frequency properties of the signal is the
wavelet transform. It is currently very popular for task of image compression,
see [15] [16], but it was also tried in audio applications like speech enhancement,
speech recognition or speaker recognition. Despite its theoretical advantages, the
wavelet transform has not yet been used in the majority of speech processing
systems.

The wavelet transform is based, like the Fourier transform, on an approxima-
tion of the signal with a set of orthogonal functions. Starting with a so called
”mother wavelet” ψ(t) the set of orthogonal functions

ψm,k(t) = 2m/2ψ(2mt − k) k, m ∈ Z (15)

is generated trough translation and dilatation. Nearly all wavelets that are used
in practice posses a compact support, that means only a limited part of the
wavelet is different from zero. So each approximation coefficient, calculated
through

am,k =
∫ ∞

−∞
ψm,k(t)s(t) dt (16)

captures only informations from a limited part of the signal s(t). A detailed
description of the wavelet transform and its derivation can be found in [17].

The discrete version of the wavelet transform can be implemented as a set of
finite impulse response filters. Starting with the sampled signal (s0, s1, . . . , sN−1

with sampling frequency fs a high pass and a low pass are applied simultaneously
to the signal. The output of the high pass represents the details of the signal in
the frequency band fs

4 . . . fs

2 . The output of the low pass gets down sampled by
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a factor of two and the same set of filters will be applied to the down sampled
output. Through repeating these steps a multi resolution decomposition of the
signal is generated.

A generalization of the discrete wavelet transform is the wavelet packet trans-
form, see [18]. Here the set of filters is also selectively applied to the high pass
branch of the signal decomposition. Sarikaya et al. used this transform to gen-
erate an a approximation of the mel scale filter bank, see [19]. They report an
improvement for speaker recognition compared to the standard MFCC coeffi-
cients. Other groups simply calculated the energies of the sub-bands generated
by the wavelet decomposition and used these numbers as features for speech
recognition, see [20] [21]. But with both methods the localization informations
which the wavelet coefficients provide get lost.

5 Comparison of MFCCs and Wavelets for Speaker
Recognition and Speech Recognition

We compare the performance of MFCC features and wavelet packet features, as
suggested by Sarikaya , for speaker and speech recognition under noisy
conditions.

5.1 Data Sets

We used the AURORA data base for the speech recognition experiments. The
AURORA database was created to evaluate the robustness of speech recognition
in real-life, noisy conditions. The database is described in [22] and is based on the
TIDigits database, which contains connected English digit sequences recorded in
a quiet room using a high-quality microphone [23]. The original sound recordings
were filtered with impulse responses typical for telecommunication equipment
and different noises(suburban train, babble, car, exhibition hall , restaurant,
street, airport and train station noise) were added at different signal to noise
ratios. The training set of the data base consists of clean speech and noisy speech
with a signal to noise ratio from 20dB to 0dB. The test set has three different
parts: set A for additive matched noise, set B with additive mismatched noise
and set C with additive noise and convolutional noise.

For the speaker recognition tests we used the TIMIT data base, which is
described in [24]. As in [19] the original 16 kHz data was down sampled to 8 kHz,
partly to simulate telephone speech and partly because speaker identification
with the original data is too easy (near 100% correct). This also permits a
better comparison with the speech recognition results on the 8 kHz AURORA
database. Since TIMIT was recorded for speech, not speaker recognition, the
standard division into training and test sets is not well suited for work on speaker
identification. We therefore created our own division into training, development
and evaluation data. All sentences of type SA1−2, SI1−2 and SX1−2 were used
for training, SX3 and SI3 for development and SX4 and SX5 for evaluation.
For testing under noisy conditions we processed the speech data in same way
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as in the AURORA data base and added different ambient noises. These noises
were taken, as in the development of the AURORA data base, from the NOISEX
data base [25].

5.2 Feature Derivation

For both experiments we used the Hidden Markov Modeling Toolkit HTK [26]
to compute the mel cepstrum based features. For speech recognition we used 12
MFCCs plus energy, as well as the corresponding first and second time difference
parameters fitted over a 5 frame window, as in the reference set-up described in
[22]. Although the noises in all our tests were additive only, as cepstral mean
subtraction (CMS) is easy to apply with MFCCs, CMS was performed for noise
cancellation.

The MFCCs for speaker recognition were derived with 24ms window and a
10ms shift, a pre-emphasis factor of 0.97, a Hamming window and 20 Mel scaled
feature bands. As in [19] and contrary to the speech recognition features all
20 MFCC coefficients were used except c0. Because neither silence removal nor
dynamic features enhanced performance, these were not used. Cepstral mean
subtraction was also tested, as for the Aurora data.

Wavelet based features for both experiments were extracted as in [19]. After
using the same setup for window size, skip rate and pre-emphasis as in the
derivation of the MFCCs, a wavelet packet tree were applied to the speech frame.
The tree used 32nd order daubechies wavelet filter coefficients and represents
a roughly Mel-scaled distribution of the subbands across frequency. The log
energy in the 24 subbands was decorrelated by DCT, the same as for MFCCs,
resulting in subband based cepstral parameter (SBCs). As an alternative to the
DCT analysis we also used a second wavelet transform (level 3 transform using
Daubechies 4 tap filters) to orthogonalize the data. Since the results for these
features(WPPs) were very similar to the SBC features, they are not reported
here.

Because there is no convolution theorem for the wavelet transform, cepstral
mean subtraction isn’t possible for SBCs. So we used another method for noise
removal, called Super soft thresholding. The method is described in [27]. The
assumption behind this procedure is that noise is more evenly distributed over
all coefficients than speech, and by performing thresholding on the wavelet coef-
ficients only the noise is suppressed. The continuous transfer function of Super
soft thresholding is given by

y =
{

x − sign(x)(1 − α)t if |x| ≥ t
αx if |x| < t

and was chosen because it is assumed to lead to less distortion in the speech
signal then simple thresholding. For our experiments we choose α = 0.5 and
t = 2.5.
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Fig. 4. Super soft thresholding transfer function for α = 0.5 and t = 2.5

5.3 The Speech Recognition System

The speech recognition system used is the standard HTK hidden Markov model
(HMM) reference recognizer for AURORA [22], but uses 20 Gaussians per state
as in the Microsoft complex baseline system. This leads to an improvement in
word accuracy compared to the three Gaussians used in the standard AURORA
speech recognizer. All HMMs were trained on multi-condition Aurora data.

5.4 The Speaker Recognition System

For speaker identification a Gaussian mixture model (GMM) consisting of 32
Gaussians is trained for each speaker. As in [19] [28] , GMMs were trained by
k-means clustering, followed by EM iteration. This was performed by the Torch
machine learning toolkit [29] . The training and testing were always performed
on matched noise conditions. We used a variance threshold factor of 0.01 and
minimum Gaussian weight of 0.05 (performance falling sharply if either were
halved or doubled).This simple model gives state-of-the-art speaker recognition
performance. With TIMIT (though not with other databases, such as the CSLU
speaker recognition database) no gain was found in training speaker models by
adaptation from a world model, so no world model was used.

5.5 Results

Speech Recognition. For speech recognition on Aurora the SBC features gen-
erally lead to lower word accuracies than the MFCCs, with the exception of test
B when no noise cancellation is used. In all cases, noise cancellation (either CMS
or thresholding) improves word accuracy. The effect is strongest for CMS on the
MFCC features, particularly for test C (for which CMS is clearly better suited).
The full results are given in Table 1.

Table 2 focuses on a subset of the data. It shows the average word accuracy
across all noises, but only for very low SNRs (5, 0 and -5 dB). The overall
tendencies are the same as in Table 1, but the effect of CMS is much greater,
while the effect of thresholding in the wavelet domain does not change so strongly
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Table 1. Speech recognition word accuracy for different feature types with multi-
condition trained HMMs (best results in bold type)

TEST MFCC MFCC+CMS SBC SBC+T

A 92.29 93.22 91.50 92.07
B 90.03 92.63 90.20 90.62
C 87.44 91.87 86.67 87.82

(and even has a negative effect for test B). As for the overall data in Table 2,
the effect of CMS is greatest for test C.

Table 2 also shows that SBCs with thresholding consistently leads to a higher
word accuracy at low SNRs. The tendency for SBCs with thresholding to outper-
form MFCCs (without CMS) can also be observed in Table 1, except for test A.

When we compare car noise and babble (AURORA noise conditions A2 and
A3) to clean speech, we again find that MFCCs with CMS give the best perfor-
mance (except for clean speech, where there is no change in word accuracy). A
large effect of noise cancellation, both for CMS and thresholding, can be observed
for car noise, but not babble, at SNR=0 , see table 3.

Note that the advantage of SBC features with thresholding over MFCCs
(without CMS), which was observed for the overall results in Tables 1 and 2,
disappears.

Speaker Recognition. For the clean TIMIT data, speaker identification re-
sults for SBC wavelet features are consistently higher than for the MFCC fea-
tures, both with and without noise cancellation. Noise cancellation, both wavelet
thresholding and especially cepstral mean subtraction) has a negative effect on
the speaker identification accuracy, as should be expected for clean speech. For
babble, wavelets perform better than MFCC features for two of the three noise
conditions. With noise cancellation, the wavelets perform better than MFCC
features, but in all cases the speaker identification accuracy without noise can-
cellation is higher. The car noise results are better for MFCC features than for
wavelets in all cases. With CMS, though, the results for MFCCs are worse than
for wavelets, except at SNR=0 dB. The results are summarized in Table 4.

5.6 Discussion

In the speech recognition experiments for the AURORA database, the MFCC
features with CMS consistently lead to the best performance. MFCCs with CMS

Table 2. Speech recognition word accuracy for different feature types with multi-
condition trained HMMs, but only SNRs from 5 to -5 dB (best results in bold type)

TEST MFCC MFCC+CMS SBC SBC+T

A 62.83 66.97 60.96 63.67
B 59.07 65.49 59.74 59.29
C 51.43 64.55 49.47 52.88
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Table 3. Speech recognition word accuracy for different feature types with clean and
noisy data (best results in bold type)

NOISE SNR MFCC MFCC+CMS SBC SBC+T

clean - 99.53 99.53 99.25 99.18
babble 20 98.91 98.97 98.85 98.67
babble 10 96.77 97.25 96.83 96.28
babble 0 68.68 69.62 67.87 68.62
car 20 99.19 99.28 98.87 98.63
car 10 97.38 97.70 96.39 96.45
car 0 62.54 70.27 54.88 60.66

Table 4. Speaker identification accuracy for different feature types with clean and
noisy data (best results in bold type)

NOISE SNR MFCC MFCC+CMS SBC SBC+T

clean - 91.11 78.81 94.05 92.62
babble 20 76.19 62.54 76.43 75.79
babble 10 50.63 39.21 46.83 45.00
babble 0 6.75 4.37 9.44 8.65
car 20 83.73 70.08 81.75 81.19
car 10 71.11 60.40 66.51 65.79
car 0 46.43 41.35 38.76 36.90

are clearly more viable than SBC features, with or without thresholding, for the
AURORA speech recognition tasks. CMS is useful to deal with the varying noises
in the training data, and enhances the signal match with the test conditions.

In a comparison between MFCCs and wavelet based features in noisy tele-
phone speech (WPP features, which lead to similar results as SBCs in our ex-
periments, as noted in section 5.2) for the Slovenian and English SpeechDat2
data, WPPs without thresholding were found to even outperform MFCCs (with-
out CMS), especially for the noisier English data [30]. Instead our experiments
with the AURORA data showed only a slight advantage for wavelet based fea-
tures when we used thresholding.

But MFCC features with CMS do not always outperform wavelet-based fea-
tures, as was the case for the Aurora speech recognition experiments. In the
speaker identification experiments on TIMIT, the two noise cancellation tech-
niques always cause a deterioration in performance, see table 4. This is partic-
ularly true for CMS. Since CMS was developed to deal with differences in the
convolutive noise in the data, it is not very surprising that it does not enhance
speaker identification in the additive noise conditions, where the noise was more-
over identical in the training and test conditions (unlike for the AURORA ex-
periments, as noted above). CMS removes speaker characteristics together with
any residual convolutive noise. But if CMS only works for convolutive noise,
this does not explain why CMS works in speech recognition tests A and B, see
tables 1 and 2, since the same filter is used for the training and test conditions.
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Obviously, CMS also homogenizes the data for the different noise conditions used
in the AURORA training and testing.

The negative effect of noise cancellation by thresholding in the wavelet do-
main is much smaller for the TIMIT speaker recognition experiments, probably
because only small scale spectral details are discarded even if these details rep-
resent speaker properties instead of noise.

In the TIMIT speaker identification task we find that SBCs outperform
MFCCs for clean speech, see table 4 as well as for 2 out of 3 babble conditions.

There are several possible reasons for the better performance of SBCs com-
pared to MFCCs in these conditions. Of course, the task was different for the
AURORA and the TIMIT data (speech versus speaker recognition). But as was
pointed out above, another possible reason is that the match between the train-
ing and test data is better for TIMIT than for AURORA data, since for the latter
the training data always includes several noise conditions, while the testing is
only for a subset of them. Further speech and speaker recognition experiments on
the two databases may help us to better understand the reasons for the different
results.

Lastly, the wavelet processing used in this article (and many others) does not
exploit the advantages of the optimal time-frequency resolution that wavelets of-
fer. This is because a standard HMM/GMM decoder is not able to deal with data
streams which have different data rates. However, decoders which allow asyn-
chronous stream combination which have recently been developed and applied
to multi-modal feature combination [31,32] could be used for this purpose. The
analysis at multiple scales in time and frequency which wavelets can give would
also provide complementary data streams whose combination by such methods
may add to noise robustness.
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Abstract. Higher-level features based on linguistic or long-range information
have attracted significant attention in automatic speaker recognition. This article
briefly summarizes approaches to using higher-level features for text-independent
speaker verification over the last decade. To clarify how each approach uses
higher-level information, features are described in terms of their type, tempo-
ral span, and reliance on automatic speech recognition for both feature extrac-
tion and feature conditioning. A subsequent analysis of higher-level features in
a state-of-the-art system illustrates that (1) a higher-level cepstral system out-
performs standard systems, (2) a prosodic system shows excellent performance
individually and in combination, (3) other higher-level systems provide further
gains, and (4) higher-level systems provide increasing relative gains as train-
ing data increases. Implications for the general field of speaker classification are
discussed.

Keywords: Speaker recognition, speaker verification, higher-level features,
high-level features, long-range features, prosodic features, stylistic features, auto-
matic speech recognition, prosody, phonetic speaker recognition, speaker
idiosyncrasies.

1 Introduction

The broad field of speaker classification makes use of a wide range of properties of
spoken language—from lower-level features reflecting voice parameters to higher-level
features that capture phonetic, prosodic, and lexical information. In subfields such as
emotion, language, and dialect classification, among others, higher-level features play
an important role in both human-based and automatic classification. In forensic phonet-
ics, for example, it is common practice for human experts to use not only voice char-
acteristics but also speaker characteristics based on pronunciation, prosody, and lexical
information to assess the match between a suspect’s speech and speech in a recording
of interest.

In contrast, in automatic speaker recognition, the dominant approach in both com-
mercial and research systems has been the use of Gaussian mixture models (GMMs)
to model distributions of spectral information from short time frames of speech [1,2,3].
This approach, which reflects information about a speaker’s vocal physiology, is highly
successful, is simple, and has the further advantage of applicability to text-independent
recognition since it does not rely on phonetic content. Nevertheless, it fails to capture
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a wealth of longer-range and linguistic information that also resides in the signal. As
we will see, such higher-level information can significantly improve performance when
combined with lower-level cepstral information. Higher-level information also offers
the possibility of increased robustness to channel variation, since features such as lexi-
cal usage or temporal patterns do not change with changes in acoustic conditions. And
finally, higher-level features can provide useful metadata about a speaker, such as what
topic is being discussed, how a speaker is interacting with another talker, whether the
speaker is emotional or disfluent, and so on.

The last decade has seen increased interest in exploring such higher-level features in
automatic speaker recognition. One facilitating factor in this regard has been the greater
availability of high-performance automatic speech recognition (ASR) systems. A sec-
ond is the development of data resources and task definitions that encourage the study
of higher-level features, which typically operate at longer ranges and thus require longer
train and test samples. An influential task has been the “Extended Data” task in speaker
recognition evaluations (SREs) conducted by the National Institute of Standards and
Technology (NIST) [4]. Since its introduction in 2001, the task has provided speaker
training and test data consisting of whole conversation sides, with multiple sides avail-
able in training.

The goals of this chapter are (1) to provide a brief overview of work on higher-
level features, and (2) to demonstrate how higher-level features can contribute to per-
formance in a state-of-the-art system. Since the term “higher-level” (as well as a host
of similar terms) has had different meanings in the literature, a working definition is
certainly in order. We will take a broad view and include as higher-level any features
that involve either linguistic information or information at longer time spans than used
in frame-based systems. As discussed in more detail in the section to follow, linguis-
tic information will refer to information that requires an automatic speech recognition
system. Linguistic information is further specified according to its use for either fea-
ture extraction or feature conditioning. Longer-time-span information refers to features
that are either extracted over regions longer than a frame or to approaches that model
frame sequence dynamics. As will be shown, approaches using linguistic information
are typically longer-range, but this is not always the case. And conversely, approaches
using longer-range information often, but not always, use linguistic information. An
example of approaches that fall outside the scope of this review (i.e., that are not con-
sidered higher-level) are those based on distributions of frame-level pitch or energy
[5,6,7,8], which, although often called “prosodic,” involve neither linguistic nor
long-range information.

Section 2 provides a summary of approaches to using higher-level features for text-
independent speaker verification over the last decade. To clarify how each approach uses
higher-level information, features are described in terms of a classification framework
that specifies their type, time span, and reliance on automatic speech recognition for
feature extraction and feature conditioning. Section 3 presents an analysis of higher-
level features in a state-of-the-art system that includes multiple low-level and higher-
level subsystems. Section 4 concludes with general implications for speaker recognition
and the wider field of speaker classification.
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2 Overview and Classification of Approaches

Although not exhaustive, the overview in this section aims to illustrate the wide array of
methods and techniques used in higher-level feature modeling. A summary is presented
in Table 1. In the first column of the table, and in the text to follow, features are grouped
according to their feature type—progressing from lower-level cepstral features and fea-
tures that essentially tokenize the acoustic space, to prosodic and finally to word-based
features. The description of the feature is meant to convey its nature and contrast it to
other features in the table; it may not match the original term used by the researcher(s).

To further specify just how each approach uses high-level information, and to con-
trast it with other approaches, three additional dimensions are introduced:

1. The temporal span of the feature
2. The level of ASR used for feature extraction
3. The level of ASR used for region conditioning

A feature’s time span refers to the temporal region over which the feature is defined.
We make a contrast here between frame-level and longer regions; this, of course, is
a continuum. Note that a longer time span can be the result either of using a longer
feature extraction region (e.g., a region based on lexical information) or of modeling
sequential information based on frame-level features (e.g., pitch or energy dynamics
over a sequence of many frames).

ASR used for feature extraction will refer to the highest level of ASR information
needed to define and extract the feature. Features that require the output of an auto-
matic speech recognition system necessarily involve some amount of linguistic infor-
mation, but ASR systems can utilize varying degrees of linguistic constraints. At one
end of the continuum are “open loop” phone recognizers, which decode using acoustic
phone models but no phonotactic, lexical, or syntactic constraints. These systems essen-
tially provide a means of tokenizing the acoustic space according to recognizer phone
models. They often produce unusual (even unpronounceable) phone sequences that dif-
fer from those associated with the possible dictionary pronunciations for the words a
speaker actually says. It is precisely because of these mismatches that such systems
are useful in speaker recognition: the mismatches can reveal acoustic tendencies cor-
related with particular speakers. A step further in the direction of linguistic constraints
involves imposing phonotactic constraints obtained from an N-phone language model.
This approach restricts output to phone sequences that are observed in the language.
At the extreme, the recognizer uses pronunciation dictionaries and word-level N-gram
language models to hypothesize phones and words that make sense as part of com-
plete sentence hypotheses. Higher-level features based on such output aim to capture
information associated with specific words or word sequences, including not only their
frequency of occurrence but also their acoustic realization, pronunciation, and prosodic
rendering.

Finally, ASR used for region conditioning will be used to refer to the highest level
of ASR required for filtering the output stream of features. If chosen appropriately,
conditioning can improve speaker recognition in two ways: by reducing variability or
by shifting means. Conditioning can reduce the variance of feature distributions by
collecting data over more constrained (and thus more homogeneous) regions. And it
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can focus on regions that exhibit greater inherent between-speaker variation, i.e., that
move the means of one speaker’s feature distribution farther away from those of other
speakers. Both effects result in improved speaker discrimination.

While in principle any features can restrict comparison regions to subspans of speech,
region conditioning fragments the data. Thus, there is typically some linguistic moti-
vation that the cost of data fragmentation will be more than offset by the reduction in
variability and/or shift in means brought about by the conditioning. A simple example is
that of text-constrained cepstral features. The features themselves are neither long-range
nor ASR-dependent. The only sense in which they are higher-level is in their region
conditioning, which compares cepstral features of specific words or subword units to
reduce within-speaker spectral variability associated with phonetic content. A second
example is the maximum likelihood linear regression (MLLR) approach (see below),
which factors out phonetic content both at the level of features (by using transforms
derived from ASR phone information) and at the level of conditioning (by comparing
transforms for specific phones individually).

Region conditioning is not restricted to variability reduction for phonetic content. For
example, as described further below, the constrained prosody sequence approach condi-
tions on sets of words that behave similarly prosodically. Although in principle region
conditioning includes any means of reducing within-speaker variability on the feature
of interest, in practice it has typically involved information from ASR. An exception,
however, is the conditioned syllable-based prosody sequence model (see below), which
in addition to conditioning on words makes significant use of pause contexts (obtain-
able without ASR). One can imagine other contexts (e.g., regions of high energy) that
could also prove useful in constraining regions of interest.

A description of the approaches in Table 1 follows. Because studies differ in terms
of data sets, amount of training data, ASR systems, combination of the approach with
other systems, and other factors, it is not possible to compare performance directly.
Nevertheless, we can look at performance in two ways. First, we can look at the relative
error reduction that higher-level features contribute when combined with a baseline
cepstral GMM system. Such information is provided at the end of the discussion of
each feature type. Second, a within-site study allowing for direct comparisons of the
performance of high-level systems is provided in Section 3. The analysis includes only
a subset of feature types but uses state-of-the-art systems and recent NIST evaluation
data.

2.1 Cepstral and Cepstral-Derived Features

Several approaches use the output of a word or phone recognizer to condition the extrac-
tion of cepstral features, thereby reducing variability associated with phonetic content.
A review of some of these approaches is provided in [9]. Note that constraining the fea-
tures to specific words essentially confers on text-independent speaker models some of
the advantages of text-dependent speaker verification. The approach in [10] conditions
a cepstral GMM on the identities of frequent words, based on recognizer word align-
ments. A variant conditions on syllables rather than words [11]. Another approach is to
use multi-state HMMs as used in ASR as speaker models, thereby conditioning at the
phone level but also capitalizing on a more detailed model of the sequential aspects of
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speech, in contrast to the bag-of-frames model used in GMM-based approaches. HMM
speaker modeling can be based on phone recognition [12] or word recognition [13]. A
more recent variant [14] uses whole-word HMMs, thereby enabling even more detailed
modeling; the HMMs represent not only words but frequent bigrams and trigrams as
well. Whole words and phrases are also modeled by [15], but in a nonparametric fash-
ion. The cepstra for a given phrase are aligned by using dynamic time warping to fit a
standard length, after which the stacked cepstral feature vectors can be compared di-
rectly and a match score computed. In [16], dynamic time warping is used both to find
frequent words and to score them against the speaker model of the word.

The MLLR approach [17] uses speaker-specific model adaptation transforms from a
speech recognizer (either phone or word level) as features, modeled by a support vector
machine (SVM). Instead of cepstral features, it uses the difference between speaker-
adapted Gaussian means and corresponding speaker-independent means as features.
This difference is expressed as the coefficients of an affine transform that rotates and
shifts the speaker-independent model to obtain a speaker-dependent model, computed
with maximum likelihood linear regression. Furthermore, the Gaussian models used
in this approach are not unstructured GMMs but the detailed context-dependent phone
models used in a speech recognizer, making the resulting features text independent.
This has the advantage that features are text independent while being shared among
all instances of a given phone, thus avoiding the data fragmentation implied by the
conditioning on words. Transforms specific to different phone classes are combined for
greater representational detail.

Cepstral models are usually the most accurate speaker recognition models when used
on their own. State-of-the-art cepstral systems give about 4% to 5% equal error rate
(EER) on the most recent NIST SRE test set when trained on 1 conversation side per
speaker, and roughly 2% to 3% EER with 8 sides of training data, after intersession
variability compensation. Small gains (about 10% to 15%) can be achieved by com-
bining more than one state-of-the-art cepstral system. Systems using phone- or word-
conditioned cepstral models typically are not much better than standard (unconditioned)
cepstral models when used on their own. But they can provide substantial gains when
combined with the latter, with reported improvements of up to 50% for 8-side training
[10,14]. It is not yet known how such systems combine when multiple cepstral systems
are available.

2.2 Acoustic Tokenization (“Phonetic”) Features

A large body of work, often referred to as “phonetic” recognition or modeling,
employs unconstrained phone recognition essentially as a means by which to discretize
the acoustic space and enable acoustic sequence modeling. (An alternative acoustic
tokenization approach using GMM-generated events is described in [37].)
Unconstrained-phone-based speaker models capture an assortment of speaker-
dependent factors—including spectral characteristics, pronunciation idiosyncrasies, and
lexical preferences—and can therefore be difficult to interpret. The basic approach ob-
tains the top phone decoding hypothesis and then evaluates likelihood ratios of speaker-
specific and generic (background) phone N-gram models [18]. Results can be improved
by running several language-dependent or gender-dependent phone recognizers. The
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phone N-gram distributions are modeled by bigram or trigram language models; refine-
ments of this approach include the use of decision tree models for better smoothing [21]
and the modeling of phone N-grams representing simultaneous outputs from multiple
phone recognizers [22].

An important advance was the use of SVMs instead of likelihood models to model
phone N-gram frequencies [19]. Improvements can also be obtained by modeling not
just the top hypothesized phone sequence from the recognizer, but rather the expected
phone N-gram frequencies extracted from phone recognition lattices [20]. In [23], lattice-
based phone N-gram frequency modeling is combined with word conditioning. This
approach is thus analogous to that used for the word-conditioned cepstral models dis-
cussed earlier. The phone N-grams occurring in specific words and frequent phrases are
tallied and assembled into a more detailed feature vector that is modeled by SVMs.

A unique combination of phone- and word-based modeling is described in [24,38].
The output of an unconstrained phone recognizer is time-aligned with the phone se-
quence from a word recognizer, and the conditional probabilities of the former given the
latter are modeled. Thus, this model captures phone-specific pronunciation realizations,
albeit averaged over all words. An interesting variant aligns hypothesized articulatory
features with the unconstrained phone recognition sequence [25].

Approaches based on unconstrained phone recognition show about 2 to 3 times the
EER of the best cepstral systems, but can provide substantial gains when combined with
them. Reported results show EER reductions of about 25% for 1-side and 44% for 8-
side training [20]. Recent experiments with word-constrained phone N-gram methods
also give promising results [23] for 8-side training. How systems such as [20] combine
when multiple cepstral systems are available is less clear, since preliminary work did
not find large gains, but further research is warranted.

2.3 Prosodic Features

Prosodic approaches attempt to capture speaker-specific variation in intonation, tim-
ing, and loudness. Because such features are suprasegmental (are not properties of sin-
gle speech segments but extend over syllables and longer regions), they can provide
complementary information to systems based on frame-level or phonetic features. One
of the most studied features is speech fundamental frequency (or as perceived, pitch),
which reflects vocal fold vibration rate and is affected by various physical properties of
the speaker’s vocal folds, including their size, mass, and stiffness [39]. Distributions of
frame-level pitch values have been used in a number of studies [5,6,7,8]. Although they
convey useful information about a speaker’s distribution of pitch values, such statistics
do not capture dynamic information about pitch contours and are thus not viewed as
high-level here.

Dynamic variation in pitch operates at longer temporal spans and is used to convey
not only message content (e.g., syntactic units, semantic focus) but also paralinguis-
tic information. Modeling of prosody dynamics (which captures longer-range informa-
tion and is thus included as higher-level) was used in early work on text-dependent
speaker recognition [40]. In [26], a method is described for contour modeling for text-
independent recognition. The speaker’s pitch movements are modeled by fitting a piece-
wise linear model to the pitch track to obtain a stylized pitch contour. Parameters of the
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stylized model are then used as statistical features for speaker verification. Variants are
described in [27], which looks at rises and falls of the fitted pitch and energy values
based on [26] and models the symbol sequence as a simple bigram. Additional inte-
grated information includes rise and fall durations and phone context. Related work
looks at piecewise linear fitting of pitch to help recover from performance degradations
in speaker recognition for low-bit-rate coded speech [41]. Two interesting alternatives
to using piecewise linear approximations of prosodic contours are proposed in [42],
which uses wavelet analysis, and [43], which models sequences of quantized prosody
symbols using latent semantic indexing.

An approach to prosodic modeling that is loosely analogous to the whole-word and
DTW word modeling methods described for cepstral features is also explored in [27].
In this case, frequent words are matched for F0 contour, rather than for cepstral fea-
tures. Thus, like its cepstral counterpart, this approach uses no linguistic information
for feature extraction but conditions on word-level information from ASR.

A small number of studies have looked at linguistically conditioned duration, pitch,
and energy statistics in longer spans of speech. In [28], prosody statistics are computed
for units between pauses. The interpause unit is but one example of a larger world of
features that could be defined at different temporal spans; the focus is on modeling ap-
proaches and modifying GMMs to cope with undefined or inherently missing features
(such as pitch, which is missing during unvoiced regions). In [29,38], statistics are com-
puted over an entire conversation side, and distances of each conversation-level feature
vector from vectors for target versus impostor speakers are compared using log likeli-
hood ratios. Earlier work on conversation-level statistics [44] includes lexical features
such as disfluency rates. Finally, [29,38] explore sequential modeling of “turn”-level
prosodic feature statistics. Because turns were automatically inferred from pause and
speaker change information, they bear some similarity to the interpause extraction units
used in [28], although features and models differ.

Two approaches that use ASR for conditioning (as opposed to merely for extrac-
tion) are described in [30]. One method, the phone-in-word-duration GMM, models the
durations of phones within specific words. Unlike the previous prosodic approaches,
it employs ASR for conditioning because it compares durations on a per-word basis.
A second method, the state-in-phone-duration GMM, uses the durations (numbers of
frames) of the three states in phone HMMs as features, and phones are used for condi-
tioning. In each case, the durations for different positions form a feature vector and are
modeled in the adapted-GMM framework used for standard cepstral GMM systems.

A recent method models syllable-based prosodic feature sequences [31,32]. In con-
trast to interpause-based and conversation-level prosody statistics, this approach uses
smaller time units (resulting in more features) and models sequential information. Syl-
lables are automatically inferred from ASR output, and a variety of F0, duration, and
energy values are extracted from each syllable. In the unconstrained model, features are
extracted for all syllable N-grams in a conversation side. To turn the variable-length se-
quences of feature vectors into a single conversation-level vector, a set of GMM models
is created for each feature sequence (sequence of syllables and pauses). Given a sample,
the posterior probabilities of each Gaussian in each GMM are computed and concate-
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nated into the final conversation-level feature vector. These features are provided to an
SVM to perform regression on the class labels.

A further refinement is a conditioned version of the syllable-based prosodic feature
sequence SVM just described. In this approach, detailed in [33], lexical, part-of-speech,
and pause information is used to condition extraction of the same features to specific
locations believed to behave similarly prosodically. The goal of the conditioning is thus
conceptually similar to that for word-constrained cepstral features [10], but for prosodic
rather than phonetic similarity. Note that in the case of prosodic features, phonetic con-
tent can be normalized out, allowing multiple words (such as lists of backchannels) per
wordlist, increasing robustness. Interestingly, although the unconditioned and condi-
tioned systems use the same features and differ only in conditioning, there is a consid-
erable gain by combining them at the feature level in a single SVM.

Prosodic systems comprise a wide range of approaches and results, making it diffi-
cult to summarize performance. The best-performing individual system appears to be a
feature-level combination of the unconditioned and conditioned syllable-based prosodic
sequence model. Combination of this prosodic system with a cepstral system reduces
EER by about 20% and 40% for 1- and 8-side training, respectively. An advantage of
this system is that it offers significant complementary information when multiple cep-
stral systems are present (see Section 3).

2.4 Lexical Features

A speaker’s distribution of word sequences is historically one of the earliest types of
higher-level features explored for speaker recognition, with roots in the analogous task
of author attribution in the text classification domain. Early work using lexical N-gram
statistics to discriminate speakers is described in [45]. The approach did not produce a
significant gain at the time, presumably because of the brief training and test samples
used in task definitions at the time. With the advent of the extended data condition, how-
ever, it was found that rates of idiosyncratic word N-grams (for example, “how shall”)
could be used to help discriminate speakers [34]. The study in [34] used likelihood ra-
tios; in [35], the relative frequencies of frequent word unigrams, bigrams, and trigrams
are obtained and assembled into a feature vector that is modeled by SVMs.

More recently, the approach has been extended to encode the duration (slow/fast) of
frequent word types as part of the N-gram frequencies [36]. This technique represents
a true hybrid model of lexical and prosodic features, since it explicitly models both N-
gram frequencies and word durations. It thereby simultaneously captures lexical, pro-
nunciation, and prosodic characteristics of the speaker. An interesting further line of
research in this area is to postprocess lexical features with latent semantic analysis, so
that by grouping words similar in semantic space, one may increase the robustness of
estimates for less-frequent words [46].

In terms of performance results, word N-gram modeling yields about 25% EER on
1-side and 10% EER on 8-side training for recent NIST SRE data. Despite the poor per-
formance when used individually, combination with a state-of-the-art cepstral system
on recent SRE data improves the overall system by about 15-20% for 8-side training.
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Table 2. Data Sets Used in Experiments

Test set SRE-06 Common Condition

Training 1-side 8-sides

Conversation sides 3,209 6,556

Models 517 483

Trials 24,013 17,547

3 Performance in a Recent System

The preceding section provided an overview of higher-level features, with minimal dis-
cussion of performance because of difficulties in comparing across studies. It also did
not address the important question of how systems combine with others, beyond sim-
ple comparisons with a baseline cepstral system. To this end, it is useful to look at
performance on a recent corpus and task. A set of useful results is available from SRI
International, which has in-house efforts to develop both systems based on frame-level
cepstra and systems using high-level features.

3.1 Task and Data

We will look at the task of speaker verification on the 2006 NIST SRE evaluation data
[4,47]. Results are for the primary subset (the “Common Condition”), which consists of
English-only conversations. Test data consist of 1 conversation side. Because high-level
features are defined at a longer time scale than are frame-level features, it is interesting
to ask how high-level systems perform as a function of the amount of training data per
speaker. We will thus look at two training conditions: one with 1 conversation side per
speaker, the other with 8 conversation sides per speaker (each with a different conver-
sational partner). Data set statistics are provided in Table 2.

Background training data consisted of 1,553 conversation sides from separate data
collections (Switchboard-II and Fisher). Background data did not share any speakers
with the data in the test set.

3.2 ASR system

All speech was processed by SRI’s speech recognition system. None of the test or back-
ground data were used in training or tuning of the recognition system. The system is
a fast, two-stage version of SRI’s conversational telephone speech (CTS) system, as
originally developed for the 2003 DARPA Rich Transcription evaluation [48] and later
modified for the NIST 2004 speaker recognition evaluation [35]. It performs a first de-
coding using Mel frequency cepstral coefficient (MFCC) acoustic models and a bigram
language model (LM), generating lattices that are then rescored with a higher-order LM.
The resulting hypotheses are used to adapt a second set of models based on perceptual
linear prediction (PLP) acoustic features. The adapted models are used in a second de-
coding pass that is constrained by trigram lattices, which generates N-best lists. These



Higher-Level Features in Speaker Recognition 251

are then rescored by a 4-gram LM and by prosodic models to arrive at the final word
hypotheses.

3.3 Session Variability Compensation and TNORM

The SRI system employs techniques for reducing the effect of within-speaker variabil-
ity associated with the speaking context or environment, rather than the speaker. In
the speaker verification community, techniques are often referred to as “session vari-
ability” compensation techniques, because they were applied to handle the variability
found when the same talker speaks in different conversations. As such, the techniques
may capture differences in handsets, background noise, topic of conversation, emotion,
speaker health, and so on. The idea is to estimate from data the feature space directions
along which intersession variability lies, and then project the features onto the remain-
ing directions. The techniques used are factor analysis for GMM-based models [49] and
nuisance attribute projection (NAP) for SVM-based models [50]. An interesting aspect
of these approaches is that although they were developed for systems based on cepstral
features, they also significantly benefit the SRI prosodic SVM system, with error reduc-
tions of over 20% for the 8-side condition. Various systems also make use of TNORM
[51], a score normalization technique.

3.4 Systems

While the set of SRI systems does not cover all system types reviewed in Section 2, it
has the advantage of including five higher-level and three lower-level systems based on
frame-level cepstral features. Where applied, systems used the same ASR output and
similar methods for session variability compensation [49,50] and score normalization
(TNORM [51]). Systems are roughly, albeit not directly, comparable.1

Higher-level systems. The higher-level systems represent five approaches from Table
1: (1) the MLLR system based on word recognition (Section 2.1), (2) a combination
of constrained and unconstrained syllable-based prosodic feature sequences in a sin-
gle SVM (Section 2.3), (3) the word-constrained phone duration system (Section 2.3),
(4) the phone-constrained state duration system (Section 2.3), and (5) the duration-
conditioned word N-gram (Section 2.4). No phonetic system is represented, because
earlier work showed little gain from combining such systems with multiple frame-level
cepstral systems. This issue should certainly be revisited, however, given the many
updates to various approaches since that time. Another missing feature type is text-
conditioned cepstral systems, which is obviously important to explore as well.

Frame-level cepstral systems. In addition to the MLLR system, three other systems
model frame-level cepstral features: a cepstral GMM, a cepstral SVM, and a Gaussian

1 For practical reasons, TNORM was applied for the cepstral SVM, duration, and word N-gram
systems, and session variability compensation was applied for the cepstral GMM, MLLR,
Gaussian supervector, and prosodic sequence systems. Although the latter technique generally
produces larger gains, direct comparisons of systems without normalizations indicate that the
ordering of systems by individual performance does not depend on normalization.
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supervector SVM. The cepstral GMM system is a generative model of the cepstral
feature distribution in the form of a mixture of Gaussian densities [1]. It is trained on
a large background set of speakers to cover the entire observed distribution of cepstral
features. Frames are treated as unordered, independent samples, discarding longer-term
sequence information. Given target speaker training data, the GMM is then adapted
by reestimating the Gaussian means on the target speaker data (with a mixture of the
background data for smoothing). This results in the target speaker GMM. The system
computes the likelihood ratio that the test sample was generated by the target speaker
model versus the background model, and accepts the sample if the score exceeds an
empirically set threshold.

The cepstral SVM system computes polynomials of the cepstral features and av-
erages them over the entire conversation [52]. For example, one feature might be the
average product of the first cepstral coefficient times the square of the second. A fea-
ture vector consisting of a large number of these polynomial features characterizes the
joint distribution of cepstral features. These feature vectors are then modeled by SVMs.
SVMs are trained using a large population of diverse (background) speakers as nega-
tive samples and a small set of target speaker instances as positive samples. In testing,
a feature vector extracted from the test data is classified by the SVM, and the signed
distance from the decision hyperplace is used as a score to be thresholded.

The Gaussian supervector SVM is based on the adapted target speaker GMM men-
tioned above [53]. Instead of modeling the cepstral features directly, it uses the adapted
Gaussian means as features, stringing them together into a long “supervector.” The su-
pervector is then modeled as an SVM classifier input, similar to the cepstral SVM.

3.5 Results

Performance results for individual systems are summarized in Table 3. As expected
from the review in the previous section, systems based on frame-level cepstral or cepstral-
derived features show higher accuracy than longer-range systems. Within the set of
cepstral-based systems, the MLLR system has best performance, presumably because
it takes advantage of linguistic information from ASR. Of the longer-range systems, the
conditioned syllable-based prosody sequence system is the most successful, with less
than half the error rate of other longer-range systems for the 8-side condition.

As noted earlier, however, the importance of higher-level systems for such tasks is
not individual performance but how well they complement standard systems. To answer
that question, we examine results for various system combinations. Individual system
scores are combined using an SVM with a linear inner product kernel; the combiner is
trained using scores for separate data (from the NIST 2005 evaluation). We first look
at how well each system combines with the cepstral GMM system. Results for 1- and
8-side training are shown in Figure 1, respectively. For reference, the cepstral GMM
system alone and the MLLR system (best single system) alone are also indicated.

As shown, all combinations (triangle and square symbols) improve performance over
the baseline cepstral GMM alone, in most cases by a significant degree. For both train-
ing conditions, combinations with other frame-level cepstral systems (squares) are bet-
ter than combinations with some higher-level systems (triangles) and worse than others.
The MLLR system alone performs better than the combination of the cepstral GMM
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Table 3. Individual System Results for Eight Systems. “(H)” denotes higher-level systems. Per-
formance is given as both equal error rate (EER) and the detection cost function (DCF) used by
NIST [4].

System Time ASR EER/DCFx10 EER/DCFx10

(Feature Type and Model) Range 1-side 8-side

Cepstral GMM frame no 4.75 / 0.216 2.79 / 0.107

Cepstral SVM frame no 5.07 / 0.242 2.33 / 0.093

Gaussian supervector SVM frame no 4.15 / 0.198 3.24 / 0.164

(H) MLLR SVM frame yes 4.00 / 0.197 2.14 / 0.073

(H) State-in-phone-duration GMM longer yes 16.02 / 0.705 8.07 / 0.423

(H) Phone-in-word-duration GMM longer yes 22.22 / 0.874 9.30 / 0.420

(H) Syllable-based prosody sequence SVM longer yes 10.41 / 0.461 3.74 / 0.162

(H) Duration-conditioned word N-gram SVM longer yes 23.46 / 0.815 9.95 / 0.446

with either the cepstral SVM or the supervector system with 8 sides of training data,
but this is not the case for the 1-side training condition—demonstrating that higher-
level systems add more value as training data increases. For the 8-side condition, the
best two combinations with the cepstral GMM are clearly the MLLR system and the
prosodic feature sequence system, both higher-level systems. In this condition even the
word N-gram system, which performs poorly on its own, combines about as well with
the baseline as does the cepstral SVM system.

To understand how more than two systems combine, we can look to Figure 2. This
figure shows which systems are selected when one optimizes an N-way system combi-
nation for best performance (in DCF terms). Since there are 8 SRI systems, N ranges
from 1 to 8. If the selection pattern is monotonic—i.e., if the list of systems for N+1
includes all systems from the list for N—then the order in which systems are progres-
sively added can be construed as reflecting system importance in the combination. As
shown in Figure 2, with one exception, the selection order is monotonic, thus providing
information about which systems make the most contribution to the overall result.

We can extract a number of useful observations by comparing Table 3 and Figure 2.
As already mentioned, by themselves noncepstral systems perform less well than cep-
stral systems. Among the systems using higher-level information, the more acoustic
information a system models, the better it tends to perform on its own (MLLR-SVM >
prosody sequence model > duration > word-duration N-grams), which is not surpris-
ing. The MLLR-SVM system, which takes advantage of both high-level constraints and
frame-level acoustic information, is also the best single system overall.

What is striking is the finding that of the four systems using frame-level cepstral
features (MLLR, cepstral GMM, cepstral SVM, and supervector SVM), only two are
actually useful for a particular training condition (1 or 8 sides). Within each condition,
only two such systems appear at the left side of the figures; the other two appear at the
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Fig. 1. Two-way combination results (system + cepstral GMM) by type of system. CepGMM =
cepstral GMM, CepSVM = cepstral SVM, CepSupvec = Gaussian supervector SVM, MLLR =
MLLR SVM, ProsSeq = syllable-based prosodic feature sequence SVM, PhDur = phone-in-word
duration GMM, StDur = state-in-phone duration GMM, Ngram = duration-conditioned word N-
gram SVM.

right and do not add any real performance improvements. In fact, they can even de-
grade performance (as can any system added late in the combination) because of over-
fitting in combiner training. Note that different cepstral systems are useful for differ-
ent amounts of training data. Complementary information comes from higher-level
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Fig. 2. Results for the best N-way combination of systems for the 1-side (top) and 8-side (bot-
tom) training conditions. Filled boxes indicate which systems were selected; corresponding per-
formance is given in both equal error rate (EER) and detection cost function (DCF).

systems, including systems that perform modestly when used alone. Such systems be-
come increasingly useful as training data increases from 1 to 8 sides. It would thus
be interesting to look at even larger amounts of speaker training data (more than 20
minutes), to see at which point the higher-level models begin to level off in their perfor-
mance. Overall, these findings point to a nonobvious strategy for future overall system
development. Because systems based on cepstral features tend to be highly correlated,
the exploration of complementary systems based on higher-level features should be-
come only more important as lower-level systems continue to improve.
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4 Conclusions and Implications for Speaker Classification

Despite the dominance of GMM systems based on frame-level cepstral features, we
have seen that higher-level features provide significant complementary information for
speaker identification. Higher-level features are increasingly useful as training data in-
creases, and we have not yet witnessed the point at which they level off in relative
contribution to performance. Furthermore, because certain higher-level features are in-
herently more invariant to channel and noise characteristics than are spectral features,
they offer the possibility of additional robustness for speaker recognition under de-
graded acoustic conditions.

For the wider area of speaker classification, higher-level features in speech provide
far more information about a talker than only his or her identity. For example, research
in [54] reveals that speaker age is reflected not only in acoustic features but also in
temporal features such as phone durations. Features based on phone-level, lexical, or
prosodic information are correlated with language and dialect classification [55], emo-
tion classification [56], deception detection [57], and perceived charisma [58], as well
as a host of other health-related, cognitive, and sociolinguistic factors. Given sufficient
data labeled for such characteristics, one might apply some of the features and tech-
niques described here, substituting the new class of interest for speaker identity. Since
we know that higher-level features are quite successful at classifying individual speak-
ers, an additional interesting research area in classifying speaker characteristics, rather
than individual speakers, would be to apply nuisance attribute projection [59] to project
out the variability that is speaker-related. In this way, one might achieve sharper models
that can assist speaker classification in other domains.
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54. Schötz, S., Müller, C.: A Study of Acoustic Correlates of Speaker Age. In: Müller, C. (ed.)
Speaker Classification II. LNCS(LNAI), vol. 4441, Springer, Heidelberg (2007)

55. Schultz, T.: Speaker Characteristics. In: Müller, C. (ed.) Speaker Classification I.
LNCS(LNAI), vol. 4343, Springer, Heidelberg (2007)

56. Devillers, L., Vidrascu, L.: Real-life Emotion Recognition in Speech. In: Müller, C. (ed.)
Speaker Classification II. LNCS(LNAI), vol. 4441, Springer, Heidelberg (2007)

57. Graciarena, M., Shriberg, E., Stolcke, A., Enos, F., Hirschberg, J., Kajarekar, S.: Combining
Prosodic, Lexical and Cepstral Systems for Deceptive Speech Detection. In: Proc. ICASSP,
vol. 1, pp. 1033–1036 (2006)

58. Rosenberg, A., Hirschberg, J.: Acoustic/Prosodic Correlates of Charismatic Speech. In: Pro-
ceedings of the 9th European Conference on Speech Communication and Technology (Eu-
rospeech ’05 – Interspeech), Lisbon, Portugal (2005)

59. Solomonoff, A., Quillen, C., Boardman, I.: Channel Compensation for SVM Speaker Recog-
nition. In: Proceedings Odyssey-04 Speaker and Language Recognition Workshop, Toledo,
Spain (2004)

http://www.clsp.jhu.edu/ws2002/groups/supersid/


C. Müller (Ed.): Speaker Classification I, LNAI 4343, pp. 260–277, 2007. 
© Springer-Verlag Berlin Heidelberg 2007 

Enhancing Speaker Discrimination at the Feature Level 

Jacques Koreman1, Dalei Wu1, and Andrew C. Morris2 

1 Department of Language and Communication Studies 
Norwegian University of Science and Technology 

NO-7491 Trondheim Norway 
jacques.koreman@hf.ntnu.no, daleiwu@gmail.com 

2 SpinVox Ltd. 
Wethered House, Pound Lane 

Marlow, Bucks, SL7 2AF 
United Kingdom 

andrew.morris@spinvox.com  

Abstract. This chapter describes a method for enhancing the differences 
between speaker classes at the feature level (feature enhancement) in an 
automatic speaker recognition system. The original Mel-frequency cepstral 
coefficient (MFCC) space is projected onto a new feature space by a neural 
network trained on a subset of speakers which is representative for the whole 
target population. The new feature space better discriminates between the target 
classes (speakers) than the original feature space. The chapter focuses on the 
method for selecting a representative subset of speakers, comparing several 
approaches to speaker selection. The effect of feature enhancement is tested 
both for clean and various noisy speech types to evaluate its applicability under 
practical conditions. It is shown that the proposed method leads to a substantial 
improvement in speaker recognition performance. The method can also be 
applied to other automatic speaker classification tasks. 

Keywords: Feature enhancement, Speaker basis, Kullback-Leibler distance, 
GMM, Speech in noise. 

1   Introduction 

In accordance with the aim of this book, we shall present results from experiments on 
automatic speaker classification. The experiments investigate the possibility of 
enhancing the discrimination between target classes by appropriate pre-processing. 
The target classes in our experiments are the speakers themselves, but the approach is 
also suitable for automatic classification tasks in which speakers are grouped 
according to more general characteristics, for instance age classes, gender, language 
or dialect, among others (cf. several other contributions to this issue).  

The spectral variation observed in speech is naturally mainly determined by its 
linguistic content (message), the communication of which is the main function of 
speech. The different phones (in context) therefore mainly determine the distribution 
of the speech in the acoustic space. Nevertheless, the specific distributions observed 
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for individual speakers are not the same. This is due to anatomical and physiological 
differences between speakers, which set a bound to their acoustic possibilities, but 
also to differences in learnt behaviour, for instance caused by the speaker’s 
articulatory setting [1] or his/her dialect, which determine the habitual use of the 
vocal apparatus [2]. The distribution of linguistic and speaker variation in the acoustic 
space is presented very schematically in Figure 1, where different fill colours 
represent different phones and the colours of the circle borders represent different 
speakers (only two speakers are shown for clarity). The figure shows that, despite 
their variation, the phones (fill colours) are separated fairly well, despite overlap for 
instance due to the different contexts in which they occur, while there is substantial 
overlap between different speakers’ realisations (border colours) of the same phone 
despite inter-speaker differences in voice quality. 

In speech recognition the variation due to different speakers is not relevant to the 
aim, and can be dealt with by speaker normalisation techniques such as vocal tract 
length normalisation. But for speaker recognition, it is exactly these variations in the 
production of phones which must be relied on to distinguish between speakers – in 
addition, of course, to prosodic differences, which are not taken into consideration 
here. It is all the more surprising that the same features are normally used in both 
speech and speaker recognition. In this chapter, we shall use Mel-frequency cepstral 
coefficients (MFCCs) to recognize speakers. Instead of normalising for speaker 
differences as is necessary for speech recognition, we shall enhance the differences 
between speakers, in accordance with the aim of speaker recognition. From Figure 1 it 
is clear that a non-linear mapping is required to obtain a better separation of the target 
classes. A multi-layer perceptron (MLP) is optimally suited for this task. 

 

Fig. 1. Schematic representation of the distribution of phones (fill colours) and speakers (border 
colours) in the acoustic space 

The speaker identification problem addressed here is that of large speaker sets. We 
shall show that better speaker discrimination can be obtained even if only a subset of 
the speakers is used for feature enhancement. It is important to note that the feature 
enhancement method proposed here does not need retraining when new speakers are 
added. This makes it useful for speaker verification, too, where the aim is not to select 
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the most likely speaker from a given set (as in speaker identification or classification), 
but to evaluate an identity claim, deciding whether the speech signal stems from the 
claimed client or from an impostor, as for instance used in access systems for 
buildings or computers. We expect, therefore, that the method can also be applied to 
verification problems. 

The method proposed here is based on that of [3,4]. They showed that by deriving 
features from a multi-layer perceptron (MLP) trained on 31 speakers in the NIST 
database who had all used multiple handsets, speaker verification could be improved, 
in some cases on the basis of the new, enhanced features on their own, in other cases 
only when these were combined (feature-level fusion) with the original MFCC 
features. While the aim in this previous work was to deal with variability caused by 
the use of different handsets by normalisation, the aim of this chapter is to obtain a 
better discrimination between speakers per se (Section 4). The method will also be 
applied to noisy data to see whether it can still enhance speaker discrimination when 
different kinds of background noise (Section 5) or channel characteristics (Section 6) 
affect the speech signals, as is often the case in normal conditions. The chapter 
finishes with a discussion in Section 7 and conclusions in Section 8. But before we go 
into feature enhancement we shall describe the data used in the experiments (Section 
2) and the baseline speaker identification system (Section 3). 

2   Data 

Because the primary aim of our experiments is to investigate whether feature 
enhancement can increase the discrimination between speakers per se in the acoustic 
space, rather than to evaluate its ability to deal with noisy data (which is the 
secondary aim), we selected a clean-speech database for our speaker identification 
experiments. The TIMIT speech database, which was collected under optimal 
conditions in a recording studio [5], is particularly suitable for our aims, although we 
were forced to downsample the database from 16 to 8 kHz (TIMIT-8k), because 
speaker identification in our baseline system is 100% correct on the original, 16 kHz 
data, and therefore not suitable for investigating improvements due to other methods. 
Using 8 kHz signals is also more suitable for comparison to the effects of channel 
noise using the NTIMIT database (below). 

For many practical applications, however, noisy data are the norm. To allow for 
generalisation to such conditions we also add different noise types to the database to 
evaluate its effect on feature enhancement. The noise types added to the speech signal 
consist of (stationary) car as well as (non-stationary) factory-1 noise and babble from 
the NOISEX-92 database [6]. They were added to the TIMIT-8k database at SNRs of 
20, 10 and 0 dB, using the ITU software [7] to determine SNRs. These noises are also 
used in the Aurora evaluations for speech recognition in noise. Of course, considering 
only the effect of specific, single noises – although this is a widespread convention – 
is a relatively simplistic approach, and not really comparable to an actual noisy 
environment, in which many noises can be present simultaneously and can vary 
during a recording. Furthermore, the simple addition of noise leaves the speech 
unchanged, whereas in real noisy conditions the Lombard effect causes the speaker to 
adapt his/her speech to the noisy environment. Nevertheless, the experiments with 
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noisy speech can show whether the feature enhancement method proposed here stands 
up to noisy data. 

To investigate the effect of channel noise on feature enhancement, experiments are 
also carried out on the NTIMIT database [8]. NTIMIT was collected by transmitting 
the original TIMIT recordings through a telephone handset and over various 
telephone channels, half of them using long-distance carriers, and then redigitizing 
them. As with the noisy speech data, the aim of the NTIMIT experiments is to see 
whether our feature enhancement approach can be useful for practical speech signals 
like telephone speech. 

Since the standard TIMIT division does not include a development set, we created 
our own division into speaker-disjoint training, development and evaluation data, with 
300, 168 and 162 speakers, respectively. The three sets are selected such that gender 
and the eight dialect regions represented in TIMIT have an equal proportional 
representation in the three sets. TIMIT consists of three sentence types: two SA 
sentences intended to expose dialectal differences between speakers (spoken by all 
speakers); 450 phonetically compact SX sentences, intended to give good coverage of 
all pairs of phones (five sentences per speaker); and 1890 phonetically diverse SI 
sentences with phones in varying allophonic contexts (three sentences per speaker).  
To make the speaker identification system text-independent, we used all sentences of 
type SA1-2, SI1-2 and SX1-2 for training, sentences of type SX3 and SI3 for development 
and sentences of type SX4 and SX5 for evaluation. Whereas SA1 and SA2 sentences are 
always the same for different speakers, SIn sentences are always different ones and the 
index n only indicates the order in which the sentences were spoken by each speaker 
as indicated by the numbers in the TIMIT database; each SXn sentence is spoken by 
seven speakers. This strict division optimises text-independence of the speaker 
recognition system. 

Using 20-ms frames and a 10-ms step size, 20 Mel-scaled filterbank log power 
features were extracted from the speech signals, using a Hamming window and a pre-
emphasis factor of 0.97. A discreet cosine transform (DCT) was then applied to obtain 
Mel-frequency cepstral coefficients (MFCCs), from which the c0 energy coefficient 
was dropped. Time difference features were not appended, because these did not 
improve performance with TIMIT-8k. Neither silence removal nor cepstral mean 
subtraction were used, since none of these led to any performance improvement with 
TIMIT-8k. The probable reason for this is that for clean speech silence removal may 
also lead to the deselection of low-energy speech sounds which can help to 
distinguish speakers, while cepstral mean subtraction not only subtracts noise, but 
also the average speaker characteristics, making the speakers more similar. Unlike for 
more noisy speech conditions, the advantages of these methods do not weigh up to the 
disadvantages in the case of clean speech. 

3   Baseline Speaker Identification System 

The baseline speaker identification system only differs from that used in later sections 
in the features it uses as input. Whereas the systems used in later sections are trained 
with features derived from the MFCCs to enhance speaker discrimination, the 
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baseline system uses the MFCCs directly. (For a general description of the features 
and statistical models which can be used for speaker recognition, see [9].)  

The MFCCs for the six training utterances from each speaker are used as input to 
Gaussian mixture modelling (GMM) of the diagonal covariances using 32 Gaussians 
[10,11]. With TIMIT-8k (though not with other databases, such as the CSLU speaker 
recognition database) no gain is found in training speaker models by maximum a-
posteriori (MAP) adaptation from a universal background model (UBM) for all 300 
training speakers, so that each speaker model was trained from scratch with data for 
that speaker only. 

As in [11], GMMs are trained by k-means clustering, followed by expectation 
maximisation (EM) iteration. This is performed by the Torch machine learning API 
[12], using a variance threshold factor of 0.01 and minimum Gaussian weight of 0.05 
(performance falling sharply if either was halved or doubled). These parameter 
choices were determined on the basis of the development sentences of the 168 
development speakers. 

Test results are obtained for 162 test speakers (for two test sentences per speaker, 
cf. Section 2). Speaker identification for utterance feature data X is performed by 
selecting the speaker Sj with the largest posterior probability, P(Sj|X) (which 
corresponds here to the largest data likelihood p(X| Sj), as all speaker priors P(Sj) are 
equal). With a speaker identification accuracy of 96.60%, the baseline model trained 
with MFCCs of the six training utterances gives state-of-the-art speaker recognition 
performance. 

4   Feature Enhancement 

For feature enhancement, a multi-layer perceptron (MLP) is used with the aim of 
obtaining better speaker discrimination. An MLP is suitable for this because its 
training objective is to optimize separation between the target classes. It is important 
to note explicitly that the MLP is not used for classification itself (as it often is), but 
only for feature enhancement in the preprocessing stage, before the features are fed 
into the speaker classifier, which is based on GMM (as explained in the previous 
section). 

For speech recognition, the target classes are usually phones. The feature 
projection is obtained from the pre-squashed outputs of the MLP, which is trained to 
output a posterior probability for each phone. For speech recognition, a simple MLP 
with just one hidden layer can provide a feature projection which gives an 
improvement of the speech recognizer’s performance [13].  

 It is not possible to apply an MLP in the same way to speaker recognition. One 
reason is that in speaker recognition there are no fixed target classes like phonemes in 
ASR. Particularly for speaker recognition tasks where a large number of speakers 
must be identified (or verified), the large number of target classes makes training 
(convergence) of the MLP difficult, particularly when − as is often the case − there is 
relatively little training data for each speaker. To counteract this effect, the MLP is 
trained with a representative subset of speakers (speaker basis) as its target classes, 
comparable to phones as target classes for ASR. It will be shown that the 
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transformation which the MLP learns for the speaker basis is also beneficial for other, 
unseen speakers from the same population for clean speech. 

But an MLP with only a single hidden layer is not able to make the complex 
mapping (cf. Figure 1) from the speech signal (MFFCs) to speakers. Unlike for ASR, 
therefore, a one-layer MLP applied to speaker recognition with clean-speech TIMIT-
8k data does not lead to an increase in the percentage of correct speaker 
identifications (as demonstrated in [14]). This may be because speaker data, being 
clustered around every phoneme, is less easy to partition than speech data. But the 
separating power of an MLP can be increased by using more hidden layers. In [3,4], 
an MLP with three hidden layers was trained to recognise 31 speakers, and the 
internal representation in the outputs from the central, linear bottleneck hidden layer 
(also called compression layer) were used as discriminative features. The 31 speakers 
were selected because they had been recorded over multiple handsets. It was found 
that the features obtained from the MLP’s bottleneck layer provide a performance 
enhancement, although not consistently across all training and test conditions [4] and 
sometimes only when the feature vector was concatenated with the original MFCC 
features which were used as input to the MLP [3]. The good results may be due to a 
better compensation for the different handsets that were used or to a better separation 
of the speakers in the acoustic space, even if the speakers were not selected with this 
aim − or a combination of the two.  

The same MLP as in [3] was used here. Its structure is shown in Figure 2. Each 
node in the MLP has a two-stage function. The first stage, the net input function, is a 
many-to-one linear combination of the neuron’s inputs. The second stage is a one-to-
one non-linear sigmoid function which squashes the net-input to a value between zero 
and one.  

Speaker data, Sx

Y Error
B P

Target data Classifier MLP 

X

Sx Sy

Preprocessing MLP  

Fig. 2. Feature enhancement procedure 



266 J. Koreman, D. Wu, and A.C. Morris 

From the point of view of using the MLP-internal feature representation to provide 
discriminative features, the squashed outputs are not very suitable because they tend 
to be close to zero or one, thereby not complying with the GMM assumption that all 
features have an approximately Gaussian distribution. Therefore the net input to the 
second hidden layer was used as input to GMM modelling. 

The MLP was implemented in Torch [12]. Each single frame of the standard 
MFCC features is preprocessed by a 5-layer MLP. This MLP was found to 
outperform MLPs consisting of fewer layers [14,15]. Training the MLP with single 
frames instead of the usual input vector of 9 concatenated frames gives the best 
results for this particular database. The MLP is trained, by gradient descent, to 
maximise the cross-entropy objective (i.e. the mutual information between the actual 
and target outputs). Training was performed in batch mode, with a fixed learning rate 
of 0.01. The data in each utterance was first normalised to have zero mean and unit 
variance (z-scores). The MLP was trained with a fixed number of iterations (35), after 
which the error reduction on the training and development data in the MLP frame-
based recognition was very small. Of the 3 hidden layers, the first and last hidden 
layer, which are both non-linear, have 100 units and the middle, linear hidden layer 
has 19 (bottleneck or compression layer). The features obtained from the compression 
layer were used as input to the GMM system described in Section 3. The assumption 
behind this is that this simple representation, which consists of vectors of the same 
size as the original MFCC vectors, is an internal representation of the acoustic signal 
which enhances discrimination between the target speakers and can be generalized to 
the speakers in the entire population.  

In the two following subsections, we shall first investigate the effect of the size of 
the speaker basis and then present different methods for selecting the speaker basis. 

4.1   Size of the Speaker Basis 

The feature enhancement proposed here does not only work for fixed sets, but also for 
incremental sets, i.e. when speakers are added to the speaker identification system. 
For practical reasons, the MLP and the models for already enrolled speakers should 
not have to be changed when a new speaker is added. To be able to deal effectively 
with incremental speaker sets, it is therefore important that the small speaker basis 
used to train the MLP provides a feature projection which also leads to a better 
separation of other, unseen speakers. Here, we make random selections of speaker 
bases with different sizes from the 300 training speakers to train the MLP. The 
selections are obtained for basis sizes of 30, 50, 60, 70, 100 and 150 speakers. Each 
speaker basis set of a given size is randomly selected from the same group of 300 
training speakers with replacement, i.e. every time a speaker basis is extracted from 
the training set, they are put back for the second independent random selection. The 
enhanced features are then used as input to the GMM speaker identification system, 
as described above. The speaker identification results for three different random 
selections at each speaker basis size are reported in Table 1, together with the mean 
and standard deviation across the three randomisations. 
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Table 1. Speaker identification accuracy (%) for three different random speaker basis 
selections of sizes varying from 30-150 speakers, with means and standard deviations across 
the three selections 

speaker basis 
selection 

30 50 60 75 100 150 

1 96.60 96.91 97.53 98.15 97.22 99.07 

2 97.53 96.60 95.99 98.15 97.53 98.15 

3 97.22 96.91 98.15 96.91 95.99 98.46 

mean 97.12 96.81 97.22 97.74 96.91 98.56 

sd 0.47 0.18 1.11 0.72 0.81 0.47 

Generally a modest improvement in speaker accuracy can be observed for 
enhanced features compared to the baseline of 96.60% − only for the second random 
selection of 60 speakers and the third random selection of 100 speakers is speaker 
identification accuracy lower than the baseline. Even feature enhancement based on a 
very small speaker basis of 30 speakers can improve identification of 162 “unseen” 
test speakers for clean speech. Similar results were found for a larger number of 
disjunct random selections of the speaker basis from the training speakers for a 
slightly different division of the TIMIT speakers into training, development and test 
sets [14]. 

As in [14], the results here show that the effect of feature enhancement depends on 
the particular speaker set selected for training the MLP. The variance for the different 
speaker bases at each given size is quite large compared to the change in accuracy, so 
that the particular random selection of the speaker basis substantially influences 
system performance. This indicates how important it is to find a reliable method for 
speaker basis selection. Two methods will be discussed in the following section, the 
first one knowledge-based and the second automatic. 

4.2   Improving Speaker Basis Selection 

Since the results for MLP feature enhancement can vary depending on the selected 
speakers, as shown in the previous section, we investigate two different approaches to 
optimize the speaker basis selection. The first approach is knowledge-constrained 
speaker selection, the second is deterministic.  

4.2.1   Knowledge-Constrained Random Speaker Basis Selection  
For the TIMIT database on which the experiments reported here are carried out, 
several speaker properties are known beforehand. Age, height, race, education level, 
gender and dialect region of the training speakers are known. Some of these 
properties can be expected to affect the speaker’s voice. Since gender and dialect 
region are recognisable from the filenames and are likely to cause a large part of the  
 



268 J. Koreman, D. Wu, and A.C. Morris 

speaker variation, this prior knowledge can be exploited for speaker basis selection. 
The division of gender and dialect region is not entirely balanced in the database. 
TIMIT contains speech from 438 male and 192 female speakers. Of the eight dialect 
regions, speakers from dialect regions 2 (Northern), 3 (North Midland), 4 (South 
Midland), 5 (Southern) and 7 (Western) are overrepresented compared to the other 
regions (1=New England, 6=New York City, 8=Army Brat). We therefore selected 
several speaker basis sets for training the MLP by proportionally balancing gender 
and dialect region. Speakers within each gender/dialect region group were selected 
randomly. The aim of this method of speaker basis selection is to use prior knowledge 
as much as possible. Table 2 shows the results for different non-overlapping speaker 
bases. This shows that on average the knowledge-constrained selection gives very 
similar results to random selection. 

Table 2. Speaker identification accuracy (%) for non-overlapping, proportionally balanced 
knowledge-based speaker basis selections of sizes varying from 30-150 speakers, with mean 
and standard deviation across the selections 

speaker basis 
 selection 

30 50 60 75 100 150 

1 96.91 97.12 98.15 97.53 97.84 98.77 

2 96.30 97.84 97.84 95.99 97.53 97.53 

3 95.68 97.53 96.91 98.77 97.53  

4 95.68 97.53 95.68 96.60   

5 96.60 96.91 95.68    

6 96.30 96.30     

7 96.60      

8 94.14      

9 95.68      

10 96.60      

mean 96.05 97.12 96.85 97.12 97.63 98.15 

sd 0.80 0.55 1.16 1.21 1.18 0.88 

For small speaker basis sets (30 speakers), the speaker identification accuracy is 
mostly lower than for the baseline GMM system (96.60%). When we compare this 
with the random selection results in Table 1, this is somewhat surprising, since there 
the speaker identification accuracy is mostly higher than or the same as the baseline. 
For larger speaker basis sets, the identification accuracy is generally higher than the 
baseline. 

Of course, knowledge-constrained speaker basis selection is only possible if the 
database is labelled with the relevant properties related to the main sources of  
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variation in the speech signals. Despite the controlled representation of speakers in 
each of the speaker basis sets, there is still considerable variation in the test results. 
We are forced to conclude, therefore, that gender and dialect region still leave a lot of 
the variation in the speech signal unaccounted for. Other variables play an important 
role for the discrimination between speakers. 

Furthermore, test results on the evaluation set (not shown here) show that there is 
also very little correlation between development and evaluation scores when the 
random or knowledge-constrained speaker basis selection is used. This means that 
even if we train an MLP for feature enhancement which gives optimal results for the 
development speaker set, there is no guarantee that that MLP will also lead to optimal 
results for a set of unseen test speakers. A method is therefore required which will 
guarantee improved performance with speakers unknown to the MLP. 

4.2.2   Deterministic Speaker Basis Selection 
For many databases no speaker information is available which can be used to deal 
with speaker variation, and it would normally be impracticable to label the speakers 
with this information (but note that some of this information can be obtained 
automatically fairly reliably). In any case, as the results in Table 2 show, different 
speaker bases using knowledge-constrained speaker basis selection can still lead to 
quite variable speaker identification results. Furthermore, as noted above, evaluation 
performance cannot be predicted from performance on the development set. 

All the above reasons call for an automatic approach to speaker basis selection. In 
this section, we present such a method. It selects those speakers who differ most from 
all other speakers. The speaker selection is based on the confusion matrix for the 
baseline GMM speaker identification task, which shows the log likelihoods for each 
of the 2 development sentences for the training speakers (300 speakers). Several other 
methods are described in [16]. 

Before the automatic speaker basis selection is carried out, the log likelihoods 
matrix is converted into a matrix of probabilities by first converting log likelihoods to 
likelihoods and then dividing each row by the row sum. For any test utterance X={xt}, 
t=1…n, the likelihood for speaker Sj is 
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where M is the number of Gaussians in the speaker GMM. The posterior probability 
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where N is the number of speakers. If we assume the prior probabilities )P(Sj
 are the 

same for any speaker model, then we obtain the posterior probability given any test 
utterance: 
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The table of posterior probabilities, with one probability )( tj XSP  for each speaker 

jS  and test utterance
tX , can now be used to select basis speakers. 

This method selects those speakers whose pdf’s are as far apart as possible from 
the pdf’s of every other speaker. Let ),( kj SSKL  denote the symmetric Kullback-

Leibler distance [17] between two pdfs. 
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When p(X|S) is modelled by a GMM, (4) cannot be evaluated in closed form. 
However, using the fact that speaker priors are equal in our test set and applying 
Bayes’ rule to (4) we can proceed as follows. 
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We can rewrite (5) as 
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We can obtain an approximation to the expected value in (6) (the distance between 
any two speaker models) by summing ),( tjj XSSK  over all utterances in the 

development test set. 
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where S is the number of utterances in the test data. The distance matrix AK is 
symmetric, with 0),( =jj SSK . Further, define the sum of the distances from 

speaker 
jS  to every other speaker as )( jSSK : 
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where N is the number of speakers. Speakers are then selected in order of decreasing 
)( jSSK , i.e. decreasing average approximated Kullback-Leibler distance from all 

other speakers. 
The speaker identification accuracies of GMM experiments using a feature 

projection obtained from an MLP trained with the deterministically selected, 
maximally variable speaker basis using the approach just described are shown in 
Table 3. 
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Table 3. Speaker identification accuracy (%) for TIMIT data, using KL speaker basis selection, 
against speaker basis selections of sizes varying from 30-150 speakers 

speaker basis 
selection 

30 50 60 75 100 150 

KL 97.12 98.15 97.84 97.84 97.84 98.15 

The results in Table 3 show that deterministic speaker basis selection consistently 
leads to an improvement over the baseline performance (baseline identification 
accuracy: 96.60%). The size of the improvement is not very different from the average 
result for the random or knowledge-based speaker basis selections. Random and 
knowledge-based speaker basis selections, however, do not always improve speaker 
identification accuracy on the test speaker set. Deterministic speaker selection has the 
important advantage that it guarantees an optimal selection of the speaker basis. 

Best results use only 50 speakers to train the MLP. Of course, with 96.60% even 
the baseline results are very high for the TIMIT-8k data. A speaker identification 
accuracy of 98.15% is equal to an error reduction of 1.55% points, or a relative error 
reduction1 of 46%. But looking at the differences in terms of the number of utterances 
for which the speaker was not correctly identified, we must realize that the difference 
is fairly small: the system trained with MLP-enhanced features (for an MLP trained 
with 50 speakers selected from the training speakers on the basis of the KL distance) 
misidentifies the speaker in only 6 out the 324 test utterances. Compared to 11 errors 
in the baseline system, this shows that the margins are minimal. We shall take this 
issue up again in the discussion. 

5   Feature Enhancement for Channel Noise 

For many practical applications of speaker recognition it is of interest to evaluate our 
automatic feature enhancement method for telephone speech, in which channel noise 
disturbs the speech signal. In [3,4], the MLP which we use for feature enhancement 
was used to enhance speaker differences for 31 NIST speakers who used different 
telephone handsets, and in which channel noise was therefore also present. The 
experiments carried out here concentrate on the speaker discrimination improvement 
when the handsets are unknown, and show whether feature enhancement can alleviate 
the effect of channel noise on speaker identification. Comparing the results for feature 
enhancement using the KL distance on clean-speech, but downsampled TIMIT data 
(Section 4.2) to those from identical experiments using telephone speech from 
NTIMIT, we find that the performance of the baseline system using MFCC features 
drops from 96.60% to 58.95%.  

                                                           
1  Although the general results in the Tables are shown as percentage of accurate speaker 

identification, the improvement of one system over another in terms of the change in error is 
more indicative of the aim of the special preprocessing (with the optimal improvement being 
a 100% relative error reduction). The relative error is computed as the absolute improvement 
(or error reduction) divided by the error percentage of the baseline system (which is 100% –
percentage accuracy). 
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Table 4. Speaker identification accuracy (%) for NTIMIT data, using KL speaker basis 
selection, against speaker basis selections of sizes varying from 30-150 speakers 

speaker basis 
selection 

30 50 60 75 100 150 

KL 55.56 58.02 57.10 59.88 63.89 59.57 

Given a sufficiently large speaker basis, MLP feature-enhancement can improve 
speaker identification. As Table 4 shows, performance is higher than the baseline for 
speaker basis sizes of 75 and larger. It may be concluded from this that small speaker 
bases cannot represent the distributional characteristics of the speech with varying 
channel characteristics. Best performance is found for a speaker basis size of 100 
speakers selected using the KL distance measure. Possibly the selection of a larger 
subset is not optimal because it includes speakers which are more “average”, so that 
they do not help to make the features more discriminative. The absolute error 
reduction for a speaker basis of 100 speakers is 4.94% points, which is equal to a drop 
in relative error of 12%. 

6   Feature Enhancement for Added Noise 

Gaussian mixture models (GMMs) for speaker recognition can achieve very good 
performance in clean speech, but performance normally degrades strongly in the 
presence of noise [18]. The effect of different types and levels of added noise is 
investigated in this section, using the same GMM system architecture as before. 

Since MLPs have been shown to be able to deal well with noisy speech in ASR 
[13], we expect they may also enhance speaker recognition in the presence of additive 
noise. The same MLP architecture used for feature enhancement in the previous 
sections is now applied to enhance speaker discrimination in noise – but note that the 
confusion matrix for the training speakers is always determined for the noisy data, so 
that the basis speakers selected are representative of the particular training condition, 
and may be different in each noise condition. To limit the number of experiments, a 
fixed speaker basis size of 150 speakers was chosen. The reason for choosing a 
relatively large speaker basis is that the speech signal are more variable in the 
different noise conditions, so that a larger speaker basis may be needed to effectively 
reflect this variation. The speaker identification results can be compared for the 
matched noise conditions with and without feature enhancement (Section 6.1). But in 
many practical applications, there will be a mismatch between training and test 
conditions. The reason for this is that it is often practically impossible for speakers to 
enrol under the same variety of conditions that must be dealt with when the system is 
operative, if only because the test conditions often cannot be anticipated – but also 
because there is a pressure to keep the enrolment sessions short for the sake of user-
friendliness. In this case, enrolment may take place in fairly clean speech conditions, 
while the test conditions may vary, causing a mismatch between training and test data 
(Section 6.2). We not only investigate the effect of a mismatch, where the training 



 Enhancing Speaker Discrimination at the Feature Level 273 

data is clean and the test data contain noise, we also evaluate the effect of simply 
adding several additive noise types to the training data (multi-condition training) to 
deal with the presence of different possible noise types in the test data (Section 6.3). 

6.1   Matched Noise Conditions 

In this section, speaker identification results are compared for different noise types 
and at different SNRs. The MLP-enhanced features are compared with the baseline 
system in which the MFCCs are not preprocessed by the MLP and used as input to 
GMM directly. Table 5 shows the results for clean data, and for car, factory and 
babble noise at SNRs of 20, 10 and 0 dB. The results shown in Table 5 are for 
matched noise conditions, in which the speakers’ test data were compared with 
speaker models trained on data of the same noise type and at the same SNR. This 
condition represents the results that can be obtained when a perfect noise condition 
detector can be used to select appropriate noise models during the recognition stage. 

Table 5. Speaker identification accuracy (%) for training on matched noise type and level 

car factory babble 

 
clean

20 dB 10 dB 0 dB 20 dB 10 dB 0 dB 20 dB 10 dB 0 dB 
mean 

MFCC 96.60 88.58 81.79 61.11 81.17 56.17 12.65 82.10 63.89 12.35 63.64 

MLP 98.15 93.52 87.04 73.15 84.26 59.57 17.28 89.20 75.00 18.83 69.60 

Conform expectations, the best speaker identification results in Table 5 are found 
for clean speech. Also as expected, the results show a strong drop in speaker 
recognition accuracy with decreasing SNR. The absolute reduction is greatest for the 
stationary car noise, particularly at SNR=0 dB (absolute error reduction: 12.04% 
points; relative error reduction: 31%), as well as for babble at higher SNRs, especially 
10 dB (absolute error reduction: 11.11% points; relative error reduction: 31%). The 
positive effect, though present in all conditions, is smaller for factory noise, although 
speaker identification is still well above chance level. Notice that no cepstral mean 
subtraction (CMS) was performed, even for the noisy data. In unpublished 
experiments on the same TIMIT data with added noise, in which speaker 
identification performance for MFCCs with and without CMS was compared with 
performance on the basis of wavelets for the same noise conditions as presented here 
(matched noise conditions), the use of CMS always led to a decrease in speaker 
identification performance. The only reasonable explanation for this finding is that 
subtraction of the spectral mean across an utterance also filters out part of the speaker 
characteristics. 

Overall we can conclude that preprocessing of the MFCCs by an MLP to enhance 
speaker discrimination always reduces the speaker identification error. The average 
reduction of the speaker identification error is 5.96% points, which equals a relative 
error reduction of 16%. 
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6.2   Mismatched Noise Conditions 

In many applications, noise conditions may vary, but the condition in which the 
speaker must be recognized is not known beforehand or cannot be detected reliably. 
Two scenarios are possible. In the first scenario, the speaker enrolled in the system in 
a quiet environment, so that the speaker model (and the MLP) is trained on clean 
speech. But the actual conditions in which the system is subsequently used may vary 
from one occasion to the next. In order to evaluate the performance of our system 
under these mismatched conditions, the test data from all previously used noise 
conditions were scored with the GMM speaker models (and MLP) trained with clean 
speech only. (The data for clean speech are the same as in Table 5 and does not 
represent a mismatch. The speaker identification performance is only included in 
Table 6, because it is used to compare the mean percentage error for correct speaker 
identification across all possible test conditions, in the right-hand column, to the 
results in Tables 5 and 7.) 

Table 6. Speaker identification accuracy (%) for training on clean speech and testing in various 
clean and noisy conditions 

car factory babble 
 clean

20 dB 10 dB 0 dB 20 dB 10 dB 0 dB 20 dB 10 dB 0 dB 
mean 

MFCC 96.60 48.77 27.78 6.48 16.05 1.85 0.93 25.62 11.11 2.47 23.77 

MLP 98.15 20.37 11.73 3.40 4.63 1.54 0.62 8.95 5.56 2.16 15.71 

As the results in Table 6 show, the mismatch between the noisy test data and the 
clean training data causes a severe deterioration of the performance of the speaker 
recognition system. For some of the conditions, recognition accuracy is only just 
above chance level (p=100/162=0.62%). The effect, which is present for the MFCC 
features (comparison of first data rows in Tables 1 and 2), is even greater after MLP 
enhancement, with only chance level speaker identification accuracy for factory noise 
at 0 dB SNR. The average effect of feature enhancement for mismatched data is an 
increase in the speaker identification error of 8.06% points, or an 11% increase in 
relative error. 

6.3   Multi-condition Training 

In the case of known, but variable additive noise, the noises can easily be used to 
create “virtual” data containing this noise before the speaker model is trained. By 
training speaker models across a variety of noise conditions in the training phase, the 
system is expected to better cope with the variability in real operation conditions. As 
the results in Table 7 show, the performance in all noisy conditions is substantially 
better than when the GMM speaker models (and the MLP) are trained on clean speech 
only (cf. Table 6).  
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Table 7. Speaker identification accuracy (%) for training and testing across all noise conditions 

car factory babble 
 clean

20 dB 10 dB 0 dB 20 dB 10 dB 0 dB 20 dB 10 dB 0 dB 
mean 

MFCC 85.80 87.04 80.25 43.52 80.25 63.89 14.81 82.10 74.38 25.31 63.73 

MLP 85.49 87.65 88.89 66.98 87.35 66.98 16.98 85.49 81.48 29.63 69.69 

In some cases, the speaker identification accuracy is even higher than in the 
matched noise condition in Table 5, e.g. for factory noise at 10 dB SNR and for 
babble at 10 and 0 dB SNR, thus showing the advantageous effect of multi-condition 
training. In all conditions except for clean speech is the speaker identification 
accuracy higher when MLP-enhanced features are used compared to the baseline 
system using MFCCs. The average error drop is 5.94% points, which is equal to a 
relative error drop of 16%. The greatest improvement is found for car noise at an SNR 
of 0 dB, where the absolute error drop is 23.46% points or 42%. 

7   Conclusions and Discussion 

The aim of this chapter was to show how differences between speakers can be 
enhanced, given the strong natural overlap between them in the acoustic space. A 
multi-layer perceptron can be trained to transform the MFCC features derived directly 
from the speech signals into a feature representation in a space in which the speakers 
can be better discriminated. In order for the MLP to successfully learn to discriminate 
the strongly overlapping MFCC speaker spaces, it is important that an MLP with 
sufficient layers is used [14]. If the number of target classes is too large to train an 
MLP with (as is the case when speakers are the target classes), the new features can 
be obtained by learning the space transformation on the basis of a subset of the 
training speaker called the speaker basis. In Section 4 it was shown that automatic 
speaker basis selection based on the Kullback-Leibler distance between speakers in 
the confusion matrix for the speakers leads to the selection of a speaker basis which is 
representative for the population. The feature enhancement leads to a relative 
reduction of the error of 46%. 

In Section 5 it was shown that, for the same data, the method leads to a 12% error 
reduction for telephone speech. In Section 6, it was shown that feature enhancement 
leads to an average error reduction of 16%, or maximum 31%, for added noise, when 
the noise in the test condition is the same as during training. Because in many 
practical applications this cannot be guaranteed, tests were also carried out for 
mismatched training-test conditions, in which case the MLP feature transformation 
leads to an increase in the error rate. It is clear why this should be so: the feature 
enhancement learnt for clean speech is not appropriate for the noisy feature space. To 
better deal with varying test conditions, it is possible to train multi-condition models. 
In this case the average error rate reduction is 16%, with a maximum of 42% in the 
tested conditions. Only for clean-speech test data do we find a small increase in the 
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error rate compared to the un-enhanced MFCC features when multi-condition speaker 
models are used. It is noteworthy that in some cases the performance for the test data 
is better when multi-condition training is used even compared to matched training 
conditions. What cannot be concluded from the experiments presented is how suitable 
multi-condition speaker models are for unseen noise conditions, and thus how robust 
the feature enhancement is in real applications. 

The improvement in speaker discrimination due to feature enhancement varies for 
different speech conditions. Comparing the mean log likelihoods of the correct 
speakers in the confusion matrix for downsampled clean speech (Section 4.2.2), a 
one-sided t-test for matched pairs shows that there is no significant difference 
between MLP-enhanced features (using a speaker basis of 150 speakers) and MFCCs. 
For speech containing channel noise (Section 5), a significant difference is obtained 
(p << 0.01). The t-tests for matched pairs, however, only show whether the enhanced 
features obtained from the MLP have higher log likelihoods than those obtained on 
the basis of MFCCs. This does not automatically translate into a higher system 
performance, which is measured in terms of correct speaker identifications. For this, 
MacNemars tests [19] were carried out. These tests showed a non-significant 
difference in the number of correct speaker identifications for TIMIT, but note that 
for this data, the correct speaker identification accuracy for the baseline system using 
MFCC’s as input to the GMM was already very high (96.60%). For NTIMIT, on the 
other hand, a significant improvement was found when MLP-enhanced features are 
used instead of MFCCs (p < 0.05). This test shows that the actual performance for 
NTIMIT is better when MLP-enhanced features are used than when speakers are 
identified using the original MFCC feature space. Although we did not carry out these 
tests for all conditions, we expect most of the improvements for speaker identification 
in added noise in Tables 5 and 7 to also be very significant, given that the absolute 
error reduction is mostly much larger than that for the tested NTIMIT data (0.62%, cf. 
Table 3 and text). 

Feature enhancement on the basis of an MLP has been shown to improve 
automatic speaker identification. It is expected that the method is also useful for 
enhanced discrimination between speaker classes, such as gender or age groups, or 
language and dialect. When the number of target classes is large, as it is in speaker 
identification, the Kullback-Leibler distance can be used to select an optimal subset of 
the speakers (representative of the classes) to train the MLP. The applicability of the 
method is therefore wider than to speaker identification alone. It can also be applied 
to speaker verification, i.e. to accept or reject the claimed identity of a speaker. 
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Abstract. Automatic speaker recognition systems have a foundation
built on ideas and techniques from the areas of speech science for speaker
characterization, pattern recognition and engineering. In this chapter we
provide an overview of the features, models, and classifiers derived from
these areas that are the basis for modern automatic speaker recogni-
tion systems. We describe the components of state-of-the-art automatic
speaker recognition systems, discuss application considerations and pro-
vide a brief survey of accuracy for different tasks.

1 Introduction

The development of automatic speaker recognition systems is one example in
the field of speech processing that brings together the areas of speech science for
speaker characteristization, pattern recognition and engineering. From speech
science comes the insights into how humans produce and perceive speaker-
dependent information in the speech signal as well as signal processing tech-
niques for analyzing acoustic correlates conveying this information. The area of
pattern recognition provides algorithms for effectively modeling and comparing
speaker characteristics from salient features. Finally, engineering is used to both
realize working systems based on the above ideas and to handle real-world vari-
ability that arise in applications. In this chapter we provide an overview of the
features, models, and classifiers derived from these areas that are the basis for
modern automatic speaker recognition systems.

In Figure 1, we show the basic framework and components of speaker recogni-
tion systems. We are using the general term of speaker recognition to encompass
the underlying tasks of speaker identification (which one of a set of speakers is
talking?) and speaker detection or verification (is this particular speaker talk-
ing?). We will note throughout this chapter when particular comments refer
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Fig. 1. Structure of a speaker recognition system

to identification or detection. As with any pattern recognition system, speaker
recognition systems consist of two distinct phases: enrollment (also called train-
ing) and recognition (also called testing).

The first step, common to both enrollment and recognition phases, is the
extraction and conditioning of a set of features from the input signal believed
to convey information about the speaker. In Section 2, we review some of the
commonly used methods for feature extraction.

Features from speech samples by a speaker are used in the enrollment phase to
build or train parameters for a model which represents the specific characteristics
of that speaker. During the recognition phase, features from the test speech
sample are compared to one or more of the speaker models, depending on the
task, by the classifier to produce match scores. In Section 3, we review the most
successful models and classifiers found in automatic speaker recognition systems.

These scores are optionally normalized to add robustness or to map them to
a desired dynamic range (e.g., 0 to 1). This and other forms of normalization
and compensation are discussed in Section 3.6.

Finally, the decision component either compares the score to a threshold to
decide to accept or reject, in the case of speaker detection, or reports out the
highest scoring model, in the case of speaker identification. The decision could
also compare the score of the highest scoring model to a threshold and decide
to report “none-of-the-above.” This is a merger of speaker identification and
detection known as open-set identification.

2 Feature Extraction

Feature processing for speaker recognition systems consists of extracting speaker
dependent information in a form which can be effectively and efficiently used for
model building and recognition. Broadly speaking, features used for speaker
recognition can be categorized by three key attributes:
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– Temporal span
– Discrete vs. continuous values
– Information level

The attributes of features will impact the models and classifiers that are appro-
priate to use.

The information in speech signals occurs at several different time spans and
rates. Thus, features used to capture this information also occur with different
time spans and rates. Features that aim to capture information about a person’s
vocal tract information as seen through the frequency spectrum of speech, will
operate using short-time spans (∼20-30ms) so as to analyze quasi-stationary
snapshots of the vocal apparatus. Prosodic information, such as a person’s aver-
age pitch inflection per sentence, is an example of a feature derived by looking
at a longer time span (∼1-2 s). Further, the feature time span and rate may be
variable, for example, when examining aperiodic, variable duration events like
speech pathologies, phonemes, or words.

The value of the speech measurements used in the features can be discrete
or continuous. Features consisting of speech frequency spectrum samples are an
example of continuous valued measurements. Features counting the number of
occurrences of events in speech, such as word usage counts, are an example of
discrete values measurements. There is, of course, a continuum between contin-
uous and discrete measurements since one can quantize continuous values for
efficiency or use a probability of occurrence that is < 1.0 when counting events.

The third attribute is the information level features represent. Speech conveys
many levels of information, from semantic meaning, via the words spoken, to the
speaker’s physical vocal apparatus, via the acoustic sound of the speech (i.e.,
bass vs treble). Speaker recognition features can be focused to capture speaker
dependent characteristics from these different levels. Features aimed at low-level
information tend to extract measurements about the acoustic characteristics
related to vocal production, such as frequency spectrum or short time pitch
estimates. Features aimed at higher-level information, such as pronunciations
and word usage (idiolect), require the output of some other speech recognition
tool such as a phone or word recognition system.

We pictorially depict this feature attribute space in Figure 2. Typically, fea-
tures related to high-level speaker information consist of longer time span, vari-
able rate analysis of discrete events, such as phones or words. Features related
to low-level speaker information consist of short time span, fixed rate analysis
of continuous phenomenon, such as spectra. We next review some common fea-
tures used in automatic speaker recognition systems indicating their attributes.
Figure 3 shows where these features lie in the attribute space.

Mel Frequency Cepstral Coefficients (MFCCs) [1,2]: MFCCs are the most
commonly used features in modern speaker recognition systems[3]. MFCC tem-
poral processing uses a fixed analysis window on the order of ∼20 millisecond.
MFCCs are represented by a real valued N-dimensional vector. The coefficients
are a parameterization of the spectrum which have some dependency on the
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Fig. 2. Relation of attributes for features used in automatic speaker recognition systems

physical characteristics of the speaker. MFCCs are considered to be low-level
information.

Linear Prediction-based Cepstral Coefficients (LPCCs) [4,2]: LPCCs are
often used in speaker recognition systems, although their susceptibility to noisy
environments have made them more undesirable as speaker recognition systems
are applied to more challenging channels. Like MFCCs, the LPCC processing
uses a fixed analysis window (∼20 millisecond) and are of the continuous mea-
surement type. LPCCs are dependent on the spectral envelope and are considered
to be low-level information.

Codebook quantized spectral entries [5]: These features measure the ap-
proximate location of the spectrum in acoustic space. Rather than use the con-
tinuous representation of cepstral features, the features can be quantized either
using a VQ codebook or a Gaussian mixture model (GMM). The feature in this
case is the index in the corresponding VQ codebook or the mixture index in the
GMM.

Pitch and Energy [6]: The goal is to learn pitch and energy gestures by mod-
eling the joint slope dynamics of pitch and energy. When these features are
combined with a short phrases, the analysis window will be variable spanning
the duration of the short phrase.

Prosodic Statistics [7]: Are based on various measurements of energy, duration
and pitch derived over large speech segment. The goal is to capture the prosodic
idiosyncrasies of individual speakers. The feature type will be continuous since
the prosodic statistical measures are reported in continuous values. The level of
information is considered low-middle since these features are measuring prosodic
inflections and patterns.

Word and Phone Tokenization [8,9,10,11,12]: These are a more recent addi-
tion to feature sets used in speaker recognition systems. The analysis window is
variable, since it is based on the expected duration of the word or phone units.
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Further counts of word pairs or triples cover longer time spans. Since counts of
discrete words and phone are often used as features, the value type would be dis-
crete. Word and phone models in speaker recognition both try to represent the
pronunciation differences of talkers and are considered high-level information.

3 Models and Classifiers

Speaker models and classifiers are tied not only to the features used, but also to
the task being addressed. The two tasks of speaker recognition are 1) speaker
identification and 2) speaker verification. The speaker identification task is
closed-set recognition, where all of the talkers that will be seen by the system are
pre-enrolled and known. Figure 4 shows the general structure of a speaker iden-
tification system. The applications of closed-set identification are limited since
most real-world scenarios must usually handle out-of-set speakers. Performance
is a function of the number of speaker in the identification set and the speech
used.

The speaker verification task, in contrast, is a binary decision of whether
the unknown speaker is the same as the hypothesized (or claimed) speaker.
While ostensibly an easier task than classifying among a set on N speakers,
verification must potentially be able to effectively reject the open-set of speakers
that could act as impostors. This open-set is usually dealt with by using some
general impostor model. The general structure of the speaker verification system
is presented in Figure 5. Speakers verification addresses a more general problem
and has wider application in the speaker recognition community, so it is a more
common focus for classifier design and evaluation.

For both the identification and verification structure, there are many types
of models and classifiers that have been used. We will mainly focus on those
aimed at solving the more general open-set verification task (although they are
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often similarly used for identification). Early methods for speaker recognition in-
cluded non-parametric techniques (vector quantization and dynamic time warp-
ing). Classification methods for speaker recognition in recent years have centered
on statistical approaches. The structure and choice of a classifier depends on the
application and the features used. In this section we review a subset of classifiers
that have been successfully used in automatic speaker recognition systems.

3.1 Gaussian Mixture Modeling (GMM)

The Gaussian mixture modeling (GMM) approach has become one of the main-
stay modeling techniques in text-independent speaker recognition systems. Con-
sider the verification structure shown in Figure 5. In GMM speaker verification,
the impostor model is more commonly known as a background model. In addi-
tion, the detection decision or score is normalizated to refine detection decision.
The resulting structure is presented in Figure 5.

Figure 5 is realized in the framework of a likelihood ratio detector. In the
approach of [3,13,14], we can consider the two hypotheses for a given segment
of speech Y :

λhyp: Speech segment Y is from speaker S
λhyp: Speech segment Y is not from speaker S

To decide between these two hypotheses we form the following likelihood ratio
test:

Λ(Y ) =
p (Y |λhyp)

p
(
Y |λhyp

)

{
≥ Θ Accept hypothesisλhyp

≤ Θ Reject hypothesisλhyp

(1)
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where p (Y |λ) is the probability density function (pdf) of the observed speech
segment Y , given the hypothesis λ, or likelihood function. The decision threshold,
Θ, determines accepting or rejecting the hypotheses. Let X represent the set of
feature vectors generated from the front-end processing of the speech segment Y .
The set of features, X , usually MFCCs or LPCCs, are per frame speech-frame
vectors: {x1, · · · , xT }. The frame-based likelihood function can be written as
p (x|λ).

In the GMM approach, the choice of the likelihood function is a mixture of
M Gaussians:

p(x|λ) =
M∑

i=i

wipi(x) (2)

where pi(x) is the individual Gaussian density function,

pi(x) =
1

(2π)n/2 |Σi|1/2
× exp

{

−1
2

(x − μi)
′ Σ−1

i (x − μi)
}

. (3)

The parameters of the model are: wi, the mixture weight, μi, the N-dimensional
mean vector, and Σi, the N by N dimensional covariance matrix. The model
parameters can be succinctly written as: λ = (wi, μi, Σi) where i = [1 · · ·M ].
Equation (2) is just a linearly weighted sum of M individual Gaussians which
will be used the likelihood calculation for a detection decision. The weights also
satisfy the relation ΣM

i=1wi = 1. The general form of a Gaussian mixture allows
for a fully populated covariance matrix. It has been shown that the diagonal
covariance matrix is sufficient for text-independent speaker-verification model-
ing [3].

Once a model is trained then (2) can be used to evaluate the log-likelihood of
model λ for an input test set of feature vectors, X :

log p (X |λ) =
T∑

t=1

log p (xi|λ) (4)

Impostor modeling is crucial in producing good speaker recognition perfor-
mance. Current methods form an universal background model, p

(
x|λhyp

)
, from

a set of background model speakers [15]. The background speakers are chosen
from a similarly recorded channel/conditions that will be seen in detection. The
number of speakers used to train the background model should be large enough
to model the acoustic space of the impostors. There is also a dependency on the
number of Gaussians (M) used to model the space. A larger number of Gaussians
will require more data to realize the mixture model. The size of M , will depend
on channel, application, acoustic variation and amount of speech data seen at
each phase. M may range from 64 to 2048. In the telephone speaker-verification
task, with 2.5 minutes of enrollment speech and 30 second of verification speech,
we have seen good performance with the number of mixtures M = 512 and 1-2
hours of background model training speech from over one hundred talkers.
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Current state-of-the-art text-independent GMM speaker verification systems
obtain background model parameter estimates in an unsupervised manner by
using an expectation-maximization (EM) algorithm [16]. Feature vectors gener-
ated from a background speaker set provide the training data. The EM algorithm
iteratively refines model parameter estimates to maximize the likelihood that the
model matches the distribution of the training data. Model parameters converge
to a final solution in a few iterations (5-10)[3].

Speaker model training is accomplished by adapting the background model
to each enrollment speaker through Maximum A Posteriori (MAP) estima-
tion [17,18]. This approach couples the speaker model to the background model
and yields better results over the methods using unrelated models. Adapting
from the background model utilizes the well trained parameters, {wi, μi, Σi},
from the EM algorithm. The large amount of data used to train the background
model allows for a well modeled cepstral space. Speaker models are adapted in
turn from this richly populated space. Even though all the parameters of the
model can be adapted, it has been shown that best performance results when
only the means (μi) are adapted.

The speaker and background models can be applied to the likelihood ratio (1)
and (4) to get the likelihood-ratio score,

Λ(X) = log p (X |λhyp) − log p
(
X |λhyp

)
(5)

Equation 5 is sufficient to form a detection decision, however better perfor-
mance is achieved through refinement of the likelihood-ratio score with normal-
ization. We will discuss normalization techniques in Section 3.6.

It should be noted the similarities in the organization of the GMM and the
vector quantization (VQ) approach for speaker recognition. In the method of
[19,20], the VQ codebook is a partitioning of the cepstral space. The VQ code-
book can be weakly considered a quantized version of a Gaussian mixture model.

A support vector machine (SVM) is a versatile classifier that has gained con-
siderable popularity in recent years. An SVM is discriminative and models the
boundary between a speaker and a set of impostors. The typical method em-
ployed in SVM speaker recognition is based upon comparing speech utterances
using sequence kernels. Rather than characterize features from individual frames
of speech, these methods model entire sequences of feature vectors. Approaches
include the generalized linear discriminant sequence kernel [21], Fisher kernel
methods [22,23], n-gram kernels [24], MLLR transform kernels [25], and GMM
supervector kernels [26].

Basic SVM Theory. An SVM [27] models two classes using sums of a kernel
function K(·, ·),

f(x) =
N∑

i=1

αitiK(x,xi) + d, (6)

where the ti are the ideal outputs,
∑N

i=1 αiti = 0, and αi > 0. The vectors
xi are support vectors and obtained from the training set by an optimization
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Fig. 6. Setup for training an SVM classifier for speaker verification

process [28]. The ideal outputs are either 1 or -1, depending upon whether the
corresponding support vector is in class 0 or class 1, respectively. For verification,
a class decision is based upon whether the value, f(x), is above or below a
threshold.

The kernel K(·, ·) is typically constrained to have the Mercer condition, so
that K(·, ·) can be expressed as

K(x,y) = b(x)tb(y), (7)

where b(x) is a mapping from the input space (where x lives) to a possibly
infinite-dimensional expansion space. Optimization of an SVM relies upon a max-
imum margin concept. For separable data, the system places a hyperplane in a
high dimensional space so that the hyperplane has maximum margin. The data
points from the training set lying on the boundaries are the support vectors in
equation (6).

Application of Support Vector Machines to Speaker Recognition. Fig-
ure 6 indicates the basic training strategy for SVMs using sequence kernels.
We train a target model with target speaker utterances and a set of exam-
ple speakers’ utterances that have characteristics of the impostor population—a
background speaker set. Each utterance from a target or background speaker
becomes a point in the SVM expansion space. We implement a sequence kernel
module for comparing two utterances and producing a kernel value. The kernel
module is connected into a standard SVM training tool which then produces
a speaker model. We keep the background speaker set the same as we enroll
different target speakers.

Sequence Kernels for Speaker Recognition—General Structure. To
apply an SVM, f(X), in a speaker recognition application, we need a method
for calculating kernel values from sequences of features (e.g., MFCC feature
vectors). Two general methods have emerged—linearized train/test kernels and
adapted model comparison.

The idea of a train/test sequence kernel is shown in Figure 7. The basic
approach is to compare two speech utterances, utt 1 and utt 2 by training a model
on one utterance and then scoring the resulting model on another utterance.
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Fig. 8. Constructing a kernel using a base generative model

This process produces a value that measures the similarity between the two
utterances. Although in general this comparison is not a kernel, it doesn’t satisfy
the Mercer condition, in many cases linearization will produce a kernel—see the
next section.

The second basic method for constructing sequence kernels is shown in Fig-
ure 8. In this setup, we adapt a base model to obtain probability distributions
which represent the utterances. We then apply a model comparison algorithm
to get a measure of similarity. This approach has the useful property that it is
naturally symmetric as long as the comparison calculation is symmetric.

3.2 Sequence Kernels for Speaker Recognition—Specific Examples

For the train/test kernel shown in Figure 7, a typical approach is the generalized
linear discriminant sequence (GLDS) kernel [21]. In this method, the classifier is
taken to be a polynomial discriminant function. Suppose we have two sequences
of feature vectors, X = {xi} and Y = {yj}. If we train a polynomial discriminant
using mean-squared error, then the resulting kernel is given by

K(X,Y) = b̄xR̄−1b̄y. (8)

In (8),

b̄x =
1

Nx

∑

i

b(xi); (9)

i.e., b̄x is the average expansion over all frames. A similar expansion is used for
Y. The matrix, R̄ is the correlation matrix of a background data set; typically, it
is approximated with only diagonal terms. For details on the derivation of these
equations, we refer to [21]. An interesting generalization of the GLDS kernel
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is to replace the polynomial expansion by a general kernel using the kernel
trick [29,30].

For the generative model sequence kernel, several methods have been pro-
posed. Current methods are based upon adapting from a GMM or HMM base
model. In [25], adaptation of an HMM from a speech-to-text system is performed
using maximum-likelihood linear regression (MLLR). The MLLR adaptation pa-
rameters are then compared with a weighted linear inner product. In [26], the
adaptation is performed via MAP adaptation of a GMM. The GMMs are com-
pared using either an approximation to the KL divergence or an integral inner
product.

SVMs can also be applied to high-level features [11,24]. A token-sequence
comparison kernel can be derived by using the train/test kernel framework in
Figure 7. In this case, the classifier in the figure is taken to be the standard
language model likelihood ratio using n-gram probabilities. The resulting kernel
is of the form

K(T1, T2) =
∑

k

D2
kp(dk|T1)p(dk|T2) (10)

where the Tj are token sequences, Dk is a weighting function, p(dk|Tj) is the
probability of a particular n-gram, dk, occuring in token sequence Tj . A typical
choice is something of the form

Dk = min
(

Ck, gk

(
1

p(dk|background)

))

(11)

where gk(·) is a function which squashes the dynamic range, and Ck is a
constant [24]. The probability p(dk|background) in (11) is calculated from a
large population of speakers. Typical choices for gk are gk(x) =

√
x and

gk(x) = log(x) + 1. The kernel (10) is closely related to methods in informa-
tion retrieval; we refer to [24] for details.

3.3 Support Vector Machine (SVM)

3.4 Hidden Markov Modeling (HMM)

The GMM-UBM system described in Section 3.1 models the entire acoustic
space. However, in text-dependent applications the system has prior knowledge
of what will be said and template-matching techniques become advantageous.
The first template matching methods were dynamic time warping (DTW) al-
gorithms [31]. However DTW methods proved to be inefficient and methods
gave way to a stochastic modeling of each talker’s speech where the underlying
stochastic processes is not observable of hidden (Hidden Markov Model). Early
approaches in applying Hidden Markov Models (HMMs) to text-dependent and
text-independent speaker recognition were developed by [15,32,10] and have been
continued [33,34,35].

HMMs can efficiently model statistical variations in spectral features. Rather
then modeling the entire acoustic space the HMM only models a progression of
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limited regions of acoustic space. These limited acoustic regions can be defined
as states of finite time. These states can be described with a PDF, p(xt|s) is
the probability of per-frame feature vector, xt, given you are in state, s. Tran-
sitioning between states, (e.g.: from t − 1 to t) is defined with a state transition
probability, p(st|st−1).

The likelihood of T frames of speech occurred given a hypothesis, λ, is:

p(X |λ) =
∑

all
states

T∏

t=1

p(st|st−1)p(xt|st) (12)

Which is the Baum-Welch decoding [36,37,38]. Equation (12) can be employed
in a similar manner as (5). The likelihood ratio can be constructed from a target
likelihood p(X |λhyp)over the an impostor/background likelihood p(X |λhyp) as
in (1).

The first step in HMM modeling is to form a representation of the impostors.
Here the concept of the background model is to form a model of the world of
all possible speakers. HMM background models can then be trained through the
use of a full large vocabulary continuous speech recognition (LVCSR) system
as in [35,39]. There are also approaches that use segmental K-means clustering
procedure [33] or limited vocabulary phoneme-based methods were implemented
in [40].

The speaker model, p(X |λhyp), can be formed by Baum-Welch adaptation
from the background model [35]. [33] relies on segmental K-means clustering for
training of the target model, but utilizes the speaker independent background
model for the segmentation. This can be considered a general form of the GMM
approach presented in Section 3.1. The GMM can be thought of as a single state
hidden Markov model.

The HMM implementation of [35,39] can either be applied in text-independent
or text-dependent applications. For text-independent applications, the language
model of the LVCSR system has to be broad enough to span the speech that
may be seen by the system.

The actual structure of a text-dependent system will depend greatly on the
application. Speaker recognition accuracy is dependent on the performance of the
system, but can also be controlled by limiting the vocabulary of the domain. Lim-
iting the talkers to alpha-digits is a common domain. System accuracy may also
be influenced by gathering more speech from cooperative speaker by prompting
them with a series of random phrases.

3.5 Artificial Neural Networks

Artificial neural networks (ANNs) model continuous features using nonlinear
modeling inspired by biological neural networks. A typical artificial neural net-
work is a two-layer perceptron, m(x), of the form

m(x) = g̃
(
wtg(Ax + c) + d)

)
(13)
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where x is the input, g(·) and g̃ are squashing functions, A is a matrix, w is a
vector, and b and c are bias terms. Artificial neural networks were one of the
first methods to be successfully used in discriminative speaker recognition [41].

ANNs, when trained with mean-squared or cross-entropy criteria [42], model
the posterior probability, p(spk|xi). Here, xi is typically a continuous feature
vector such as MFCCs. A typical scoring criterion is to take the average weighted
posterior (or log posterior) across all frames of an input utterance.

Because an ANN models a posterior rather than a likelihood, typically cohort
normalization or background normalization is not needed to achieve good perfro-
mance. This property is expected since the ANN is a discriminative technique.
But, as with most speaker recognition methods, techniques such as TNorm can
stabilize thresholds.

Training for an ANN is accomplished in a similar manner to the SVM setup
shown in Figure 6 except it is performed with frame level features. Feature
vectors for the target speaker are extracted and placed in one class (with ideal
output 1). Feature vectors for a background speaker set are placed in another
class (with ideal output 0). Then, training with a backpropagation algorithm
algorithm is performed.

Note that prior balancing is a critical part of ANN training. Because the target
speaker training set size is typically significantly smaller than the background
training set, the prior of the target is usually small. Since the output of the ANN
approximates a posterior, the target prior is a factor in the ANN output. Com-
pensation for this prior can be performed in training via, e.g. random sampling
with prior equalization, or in testing by scaling the output by the target prior.

A successful extension of ANNs is the neural tree network [41] (NTN). NTNs
are a combination of tree methods (such as CART) and neural networks. At each
node in the tree, a neural network is used to determine which branch is taken.
Scoring and training are an extension of standard ANN and tree methods. NTNs
were successfully used for many years in a commercial system for text dependent
speaker recognition.

Other connectionist methods for speaker recognition include radial basis func-
tions (RBF) and elliptical basis functions (EBF), e.g. [43]. These approaches were
only moderately successful and are subsumed by the more general training and
modeling approach of GMMs.

3.6 Normalization Techniques

Ideally, score variability should only depend on speaker differences. Other factors
may contribute to score variability such as transmission channel, environmental
background effects, linguistic variation and session variation. There are many
methods to stabilize score variation to make the threshold setting, Θ, more ro-
bust. Compensation methods have been developed in the feature domain, model
domain, and score domain.

Feature Domain Normalization. Feature domain normalization transforms
a base set of features, such as MFCCs, to a new set of features that are more
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robust to channel and noise effects. Typically, these methods have been based
on signal processing and data-driven techniques.

Common feature transformations used to remove channel effects are
RASTA [44] and cepstral mean subtraction (CMS) [45]. These methods rely on
homomorphic signal processing techniques—filtering a signal in the time domain
induces an additive bias in the cepstral domain.

Feature transformations that compensate for noise or other nonlinear distor-
tions include cepstral variance normalization (CVN) and feature warping. CVN,
in part, is based upon the fact that additive noise reduces the variance of cep-
stral coefficients [46]; compensation is realized by renormalizing the cepstral
coefficients to unit variance. Feature warping [47] further extends this technique
by remapping features to fit some predefined distribution.

More recent feature compensation methods have used supervised data-driven
methods. For example, feature mapping [48], uses knowledge of channel types to
remap features to a channel neutral model.

Model Domain Normalization–GMM. For GMM based classifiers, tech-
niques that treat the undesired variability as a bias to the mean vectors have
been successful. If we stack the means from a GMM into a supervector this can
be written as

mj(s) = m(s) + c(s) (14)

where mj(s) is the supervector from speaker s’s j-th enrollment session, m(s)
is the desired compensated supervector for speaker s and c(s) is the undesired
variability supervector.

The main difference in the compensation techniques is in how they estimate
and remove the variability vector c(s). In Speaker Model Synthesis (SMS) [49],
the difference between bias vectors from a set of pre-defined channel types is used
to synthetically generate a library of channel-dependent speaker models so as to
allow matched-channel likelihood ratio scoring during recognition. More recent
latent factor analysis (LFA) based techniques [50,51], model the supervector bias
as a low-dimensional normally distributed bias,

c(s) = Un(s) (15)

where U is the low-rank session loading matrix. The LFA techniques are aimed
specifically at compensation of session variability and do not require prior chan-
nel detectors or parameters.

Model Domain Normalization–SVM. As with the GMM, compensations
with SVM classifiers can also be applied directly in the model domain. The SVM
nuisance attribute projection (NAP) method [52] works by removing subspaces
that cause variability in the kernel. NAP constructs a new kernel,

K({xi}, {yj}) =
[
Pb̄x

]t [
Pb̄y

]

= b̄t
xPb̄y

= b̄t
x(I − vvt)b̄y

(16)
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where P is a projection (P2 = P), v is the direction being removed from the
SVM expansion space, b(·) is the SVM expansion, and ‖v‖2 = 1. NAP can be
applied to both low-level and high-level features.

Score Normalization. Typically, score normalization techniques remap tar-
get speaker scores based on some reference set of models, utterances, or chan-
nels. One of the most effective score normalization techniques, TNorm (test-
normalization) was introduced in [53]. TNorm transforms a target model score,
s, to

s − μ

σ
(17)

where μ and σ are the mean and standard deviation of scores from a set of refer-
ence speakers’ models scored on the input utterance. Other score normalization
techniques include Z-Norm [54] (based on normalizing to a reference set of ut-
terances) and H-Norm (based on normalizing to a reference set of channels) [55].

4 Classifier Choice

The choice of classifier to be used is greatly dependent on the application. Ex-
amples of application constraints that influence the classifier choice and config-
uration include the following.

– Level of user cooperation
– Required recognition/detection accuracy
– Expected channels
– Amount of speech available for enrollment and detection
– Available compute and memory resources
– How the output is used

User cooperation will determine whether or not you can field an active or
passive system. If the user is cooperative the system can actually prompt the user
for additional input speech. The additional input speech will boost performance
while at the same time verify that the incoming user is “live“. However if the
users are uncooperative the system has take to more of a passive role. In these
applications the systems have no control over the data they process.

High recognition/detection accuracy may be a requirement in areas such as
banking account access. Here, it is desirable to be very accurate in who gets
access to a user’s account. A text-dependent system is applicable in this case
since it offers higher performance then text-independent techniques.

The channel consists of, the type of microphone used to record the speech,
the way the speech is encoded/transmitted, as well has ambient noises. If the
application has to deal with a wide variety of channel conditions the classifier
could employ some form of channel compensation to boost performance.

The amount of speech data available for enrollment and detection will also
help determine the classifier. If more data is available then classifiers that key
off of high level information become feasible.



Classification Methods for Speaker Recognition 293

Applications may also be limited in computation and memory resources. Em-
bedded devices have limited amounts of processing power and available memory.
A cell phone will have very limited capabilities that will uniquely constrain the
speaker recognizer.

The consumer of the output of the system will determine what information
is presented to the end user. Certain forensic applications require that systems
return word usage and phonotactic information. In this application a word or
phone based recognition systems, as described in Section 3.3, may be required
to generate the information needed by the user. Further the type of output may
need to be a hard decision, a human interpretable score, or a relative score to
used by another automatic process.

It is quite difficult to characterize the accuracy of speaker verification sys-
tems in all applications due to the complexities and differences in the enroll-
ment/detection scenarios. Figure 9 attempts to provide a range of performance
for some of the cases mentioned above. These numbers are not meant to indi-
cate the best performance that can be obtained, but rather a relative ranking of
some different scenarios. In Figure 9, we depict a detection error trade-off (DET)
plot, which shows the trade-off between false-rejects, fr, and false-accepts, fa,
as the decision threshold changes in a verification system. On this DET we show
four equal error rate points (EER is a summary performance indicator where
fr = fa) for four different verification application scenarios. One thing to note
is that system performance improves as more constraints are placed on the ap-
plication conditions (e.g., text-dependent vs. test-independent, increased speech
for enrollment and verification, more benign channels).
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Fig. 9. Range of speaker verification performance
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To examine some differences in classifiers, Figure 10 shows EER perfor-
mance for a few of the text-independent systems described in section 3 for two
conditions of enrollment data [56,57]. In the first condition about 2.5 minutes
of speech is available for both enrollment and detection. In the other condition
about 20 minutes of speech is available for enrollment and 2.5 minutes is avail-
able for detection. As expected, the trend is for performance to get better when
more enrollment data is available. Further we see that spectral systems (GMM-
LFA and SVM-GSV) perform better than high-level feature systems (SVM
Word), but fusion of high and low level systems can produce some performance
gains.

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.1

0.11
0.12

GMM LFA SVM GSV SVM Word Fusion

2.5 m enrollment 20 m enrollment

E
E

R

Systems

2.5 min test

23
.4

%

Fig. 10. The performance measure equal error rate for text-independent speaker veri-
fication systems

5 Conclusions

In this chapter, we have provided a brief overview of the classification methods
used in speaker recognition. In Section 2, we presented some of the common fea-
ture extraction techniques that are currently being used in speaker recognition
systems. In Section 3, we described classification methods that are representa-
tive of those currently being studied in research and used in application. We
introduced common approaches for text-dependent and text-independent appli-
cations, as well as offering some historical evolution of how these classifiers came
to be used.

Future work in speaker recognition will continue to exploit advances in speech
science, classification, and engineering. Speech science continues to give insight
into feature that characterize speakers—speaker idiolect, speaker dialect, as well
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as vocal characteristics (roughness, breathiness, etc.). More precise measure-
ments and techniques for extracting these features will lead to more diverse and
accurate speaker recognition systems.

Classification continues to be a strong component of the speaker recognition
problem. Specialization of classification techniques to deal with speaker recog-
nition challenges will no doubt lead to significant improvements. Current trends
are methods that deal with channel variability, the continuum of feature types,
and general mismatch.

Finally, engineering provides a feedback to all of the design techniques. Imple-
menting and deploying technologies to different application domains—forensic,
security, etc.—gives insight into robustness, computation, and fusion of speaker
characterization techniques.
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Abstract. Accurate detection of speaker traits has clear benefits in
improving speech interfaces, finding useful information in multi-media
archives, and in medical applications. Humans infer a variety of traits,
robustly and effortlessly, from available sources of information, which
may include vision and gestures in addition to voice. This paper exam-
ines techniques for integrating information from multiple sources, which
may be broadly categorized into those in feature space, model space,
score space and kernel space. Integration in feature space and model
space has been extensively studied in the context of audio-visual liter-
ature, and here we focus on score space and kernel space. There are
large number of potential schemes for integration in kernel space, and
here we examine a particular instance which can integrate both acoustic
and lexical information for affect recognition. The example is taken from
a widely-deployed real-world application. We compare the kernel-based
classifier with other competing techniques and demonstrate how it can
provide a general and flexible framework for detecting speaker charac-
teristics.

Keywords: Mutli-stream Fusion, Rational Kernels, Affect Recognition,
Speaker Recognition, Language Recognition, Score Combination.

1 Introduction

Humans infer a number of important traits about a speaker from his or her
voice, apparently without any effort and as a matter of routine. These features
may include gender, age, dialect, ethnicity, affect, level of education, and even
state of intoxication. Automation of this ability to infer traits can provide clear
benefits in the design of more natural human-machine speech interfaces, the
extraction of useful information from large quantities of speech data and in
medical applications related to speech and cognitive skills.

Given the widespread deployment of automated speech interfaces, the knowl-
edge of these traits could be exploited to increase their acceptability in society.
For example, an analysis of the performance of automatic speech recognition
(ASR) with respect to age, gender, affect and dialect or accent of the speaker re-
vealed that dialect or accent was the most influential trait in predicting the word

C. Müller (Ed.): Speaker Classification I, LNAI 4343, pp. 298–312, 2007.
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Fig. 1. The decision tree obtained by automatic clustering of utterances to predict
WER using age, gender, affect and accent/dialect. Accent or dialect categories were
derived from TIMIT and were marked as Mid-Western(MW), Western (W), North-
Eastern (NE), New York City (NYC), Southern (So), African-American (AfAm), His-
panic or Latino (HispLat) and other non-natives (NonNat). Age was grouped into three
categories and affect into two categories as described in [28].

error rate (WER) of AT&T’s “How May I Help You” spoken-dialog system [1].
Figure 1 shows the decision tree obtained by automatic clustering of utterances
with respect to WER, where the splits were evaluated using multi-fold cross-
validation. The WER varies from 28.5% for a person with a weak mid-western
accent to 68.5% for someone with a strong Hispanic or Latino accent. This means
that the spoken-dialog system at a call center failed to recognize two in three
words from an entire segment of the population, rendering it practically useless
to them. Equipped with the knowledge of speaker traits, systems can be designed
to tackle a wider range of scenarios.

For the most part, speaker characteristics are static, or they vary slowly over
the course of an utterance. Thus, the problem of detecting speaker characteristics
can be formulated as that of assigning a class label to each utterance. For traits
that remain constant, certain applications may permit sufficient latency to utilize
multiple utterances for inference. The actual classification may be performed by
maximum aposteriori (MAP) decision rule, support vector machines (SVM), or
even generalized linear models (GLM).
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In addition to cues from voice, we humans seamlessly exploit other modalities
such as facial features or expressions and body language or gesture, whenever
they are available. Researchers have examined a variety of models for integrating
different modalities. The modalities may be audio and visual (multi-modal), or
even different streams of features from audio (intra-modal), such as in language
recognition. The maximum aposteriori decision rule for speaker classification is
similar to audio-visual speech recognition, and equivalent to recognizing isolated
words or digits. As a result the generative models, such as the variants of HMMs,
developed for audio-visual speech recognition are applicable in speaker classifica-
tion. The parameters of these models can be learned by maximizing likelihood,
accuracy or even equal error rate (EER), a metric that is popular in biometric
evaluation.

This chapter will focus on techniques for integrating multiple streams. They
can be broadly categorized into integration in feature space or early integration,
in score space or late integration, in model space using variants of HMMs, and
in kernel space. The integration in feature space and in model space have been
investigated extensively in the context of audio-visual speech recognition. Here
we include a brief review of both for completeness.

2 Feature Space

When streams have the same data rate, the observations can be concatanated.
This increases the dimension of the feature space, requiring more parameters
to model them. The redundancies in feature space can be removed either by
projecting them into a lower dimension or by selecting only the components
or dimensions that are relevant for classification or recognition. In this con-
text, the most popular scheme for linear projection is the linear discriminant
analysis (LDA), which this has been used in several published results for affect
recognition (e.g. [2]). LDA inherently assumes that within-class covariances are
equal, and this assumption is not necessary. By casting LDA as a problem of con-
straint maximum likelihood estimation, it has been generalized to heteroscedastic
LDA (HLDA) [3]. A variant of HLDA, using diagonalizing linear transformation
(MLLT), has been shown to be effective in automatic speech recognition [4], as
well as in integrating streams for audio-visual speech recognition [5]. Alterna-
tive linear projections such as latent semantic analysis and canonical correlation
analysis have also been investigated for feature integration [6]. Feature selection
of components using greedy search has also been employed to discard redundant
dimensions [7].

3 Score Space

Speaker and language recognition often employ late integration, where the in-
tegration of information from intra-modal streams is delayed till the last stage.
Scores are computed for each class, C, and each stream, Xi, and then summed
to decide the output class, S(X, C) =

∑
i=1 S(Xi, C).
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Empirical studies have shown that score normalization has a significant impact
on EER [8]. The two popular schemes for normalization are: T-norm and Z-norm.
The Z-norm operates on the score distribution using target-specific statistics:

Sz−norm(Xi, C) =
S(Xi, C) − μC

σC
(1)

where μC and σC are the mean and the standard deviation of the scores, S(Xi, C)
of the target class (e.g. a speaker). Alternatively, the normalization can be per-
formed over the test input, Xi. Thus, the T-norm computes the normalization
based on statistics of the competing classes (e.g. cohort speakers) for a given
input:

St−norm(Xi, C) =
S(Xi, C) − μXi

σXi

(2)

T-norm and Z-norm can be regarded as variants of a unified scheme for score
normalization [9].

The normalized scores may be fused with order statistics such as maximum,
minimum and median, logic operators such as AND and OR, simple summation,
neural networks or support vector machines [10, 11, 12, 13]. The resulting EER
performance depends on the diversity and correlation between different streams.
Often a higher degree of correlation can be expected between intra-modal experts
than between extra-modal experts, while different degrees of performance can
occur in both. Thus, four scenarios come into play.

1. Combining uncorrelated experts with very different performance
2. Combining highly correlated experts with very different performance
3. Combining uncorrelated experts with very similar performance
4. Combining highly correlated experts with very similar performance

The common intuition that best performance will be obtained in the third case
has also been observed empirically. This intuition can be quantified with a the-
oretical analysis.

A theoretical analysis can be performed by modeling the score from each
stream, i, for a target class, k, as a sum of two terms – a bias term, μk

i , and a
Gaussian random noise component, wk

i ∼ N (0, σk
i ) [14]. Consider a two class

problem, say C ∈ {c, i}. Equal error rate (EER), a popular evaluation measure
for speaker characteristics, is the error rate when false alarm is equal to miss.
For a fusion operation such as summation, the combined score will be Gaussian
for each target. Therefore, the EER is given by the error function [15], which
can be parameterized in terms of a certain Fratio:

EER =
1
2

− 1
2
erf(

Fratio√
2

) (3)

Fratio =
μk=c − μk=i

σk=c + σk=i
(4)
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where μk and σk are the means and variances for each class respectively. The
scores from the base-experts for each stream can be rescaled so that the numer-
ators are the same and this scales the variances σk accordingly. In most experts
the variance of the two classes are proportional and so for the sake of simplifying
the illustration, let σk=c

1 = σk=i
1 , a reasonable assumption that allows the class

subscript,k, to be dropped. Thus, the EER has a nonlinear inverse-dependency
on the Fratio which in turn inversely depends on the variance of the combined
score. The variance of the combined score can be written in terms of the variance
of base-experts and their correlation coefficient, ρ.

σ2 = σ2
1 + σ2

2 + 2ρσ1σ2 (5)

Now, the EER for the four cases can be analyzed in terms of the impact on the
combined score, σ. Without loss of generality, let one base-expert be better than
the other, σ1 ≤ σ2. Substituting Eqn. 5, an improvement over base-experts can
be observed only if σ < σ2

1 . In other words, the requirement for the combined
system to perform better than the best base-expert is:

σ2
2 < 3σ2

1 − 2ρσ1σ2 (6)

This provides a minimum requirement on variance of the base-experts when
they are uncorrelated. When the base-experts are uncorrelated, ρ → 0, the fu-
sion will improve performance only when the variance in the scores of the poorer
system, σ2

2 , is strictly less than three times that of the better system, σ2
1 . In the

third case, σ2
1 ≈ σ2

2 and Eqn. 6 reduces to ρσ2
2 < σ2

1 , which is always true and
hence such a combination will always improve performance. Positive correlation
usually reduces performance, while negative correlation helps. Negative correla-
tion, however, is not a sufficient condition to improve performance; additional
constraints on variance are important as well, as explained in [14]. In a battery
of empirical tests, these theoretical predictions were shown to hold even when
the Gaussian assumptions were not satisfied [14].

4 Model Space

Standard HMMs can be written in terms of composite states and two streams,
which will be instructive in understanding the different trade-offs involved in
integrating streams.

π(i, j) = P (q1
0 = i, q2

0 = j) (7)
ai,j|k,l = P (q1

t = i, q2
t = j|q0

t−1 = k, q1
t−1 = l) (8)

bt(i, j) = P (O1
t , O2

t |q1
t = i, q2

t = j) (9)

where (i, j) denotes the composite tuple. Following the usual notation for HMMs,
π, a, b, O, and q stand for probability of initial state configuration, the transition
matrix, the observation probability, the observations from the streams and the
hidden states respectively. The number of parameters involved are O(π) = NM ,
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O(a) = N2M2, and O(b) = NMAB, where N and M are the size of the state
space of the two streams and A and B are the feature dimensions. Such a detailed
model comes at the cost of an explosion in the number of parameters. Conse-
quently, parameters estimated from limited training data may be unreliable.

The number of parameters in the model can be reduced by applying condi-
tional independence assumptions between the streams on hidden or observed
variables. Viewed from this perspective, there are two broad scenarios for inte-
gration – factorial HMMs and coupled HMMs.

4.1 Factorial HMMs

In factorial HMMs, the hidden transitions of one stream, q1
t , are not directly

dependent on the hidden states of the other, q2
t . However, the interaction between

the two streams occurs through a joint observation distribution, bt(i, j) [16].

πc(i) = P (q0 = i) (10)
ac

i|j = P (qc
t = i|qc

t−1 = j) (11)

bt(i, j) = P (O1
t , O2

t |q1
t = i, q2

t = j) (12)

Multi-stream HMMs. Multi-stream HMMs were formulated in the context
of multi-stream speech recognition and can be regarded as a variant of factorial
HMMs [17, 18]. The joint observation is factored into two components, which
are weighted with exponents,λc. The exponents are often chosen empirically to
avoid the dynamic range of one stream overwhelming the others, similar to the
exponential deweighting of acoustic scores in ASR.

πc(i) = P (qc
0 = i) (13)

ac
i|j = P (qc

t = i|qc
t−1 = j) (14)

bt(i) =
C∏

c=1

P (Oc
t |qc

t = i)λc (15)

The exponent also provides a mechanism to change the reliance on a feature
stream based on other measurements such as voicing or signal-to-noise ratio [19,
20]. It can be estimated to minimize classification error (MCE) or maximize
entropy of the resulting model [5].

Asynchronous HMMs. Asynchronous HMMs allows the two observation
streams to have different lengths [21]. As in factored HMMs, the two streams are
observed jointly, but the shorter stream is skipped (or marginalized over) with
certain state dependent probabilities, ηt(i). The identity of the shorter stream
is assumed to be known and constant across training and testing conditions.
This formulation allows the model to operate with only one hidden state se-
quence. As a result, the extra stream does not change the search space and the
computational complexity significantly.
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π(i) = P (q0 = i) (16)
ai|j = P (qt = i|qt−1 = j) (17)

ηt(i) = P (τt = s|τt−1 = s − 1, qt = i, O1
1:t, O

2
1:s) (18)

Additional care needs to be exercised while decoding with this model. The
consumption of observations from the two streams should be consistent with
the path constraints. Thus, the partial accumulators for Viterbi and forward-
backward algorithms can be written as follows.

Vt,s(i) = max
τ1:t−1,q1:t−1

P (qt = i, τt = s, O1
1:t, O

2
1:s) (19)

= max
{

ηt(i)P (O1
t , O2

s |qt = i)maxj P (qt = i|qt−1 = j)Vt−1,s−1(j)
(1 − ηt(i))P (O1

t |qt = i)maxj P (qt = i|qt−1 = j)Vt−1,s(j)
(20)

α(i, t, s) = ηt(i)P (O1
t , O2

s |qt = i)
∑

j

P (qt = i|qt−1 = j)Vt−1,s−1(j)

+ (1 − ηt(i))P (O1
t |qt = i)

∑

j

P (qt = i|qt−1 = j)Vt−1,s(j) (21)

4.2 Coupled HMMs

In contrast to factorial HMMs, coupled HMMs encode direct dependence of
hidden states across streams. The observations of a stream are conditionally
independent given the hidden states of that stream [22].

πc(i) = P (qc
0 = i) (22)

ac
i|j,k = P (qc

t = i|q0
t−1 = j, q1

t−1 = k) (23)
bc
t(i) = P (Oc

t |qc
t = i) (24)

Coupled HMMs can be generalized to dynamic Bayesian network such as [23],
where there may be additional hidden states between the two streams.

Multi-rate HMMs. Multi-rate HMMs can be regarded as a variant of coupled
HMMs that also allow streams with different lengths or rates. This is achieved
by mapping a state of one stream to two or more states in the other stream. The
rate factor may be fixed or variable [24,25].

πc(i) = P (qc
0 = i) (25)

a1
i|j = P (q1

t = i|q1
t−1 = j) (26)

a2
i|j,k = P (q2

t = i|q2
t−1 = j, q1

�t/L� = k) (27)
bc
t(i) = P (Oc

t |qc
t = i) (28)

The hidden states of the second stream, q2
t , is dependent on that of the first,

q1
t , and not directly dependent in the reverse direction. In the above equations,

a fixed decimation ratio, L, is maintained between the two streams. Multi-tape
finite state transducers can be designed to efficiently implement this model [26].
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5 Kernel Space

An alternative viewpoint decouples the task of integrating different modalities
into stream-specific distance measures and a general classifier. The task of design-
ing a classifier can be considerably eased when stream-specific distance measures
are kernels, i.e., they obey Mercer conditions [27]. The Mercer conditions require
that the distance measure be positive definite symmetric (PDS) and can be writ-
ten as an inner product in some space. In other words, kernels are functions, K,
that return the inner product of the images of the operands in some space, Φ.
That is, K(X, Y ) =< Φ(X)Φ(Y ) >. Choosing K is equivalent to choosing Φ, but
provides considerable computational savings when Φ(X) has a larger dimension
than X .

Kernels can be defined on general data types, provided they obey Mercer con-
dition. This allows them to embed sequences, trees, graphs and general struc-
tures which may provide natural distance measures for each stream. Additionally,
kernels can be easily combined by operations such as sum, product and Kleene
closure, and the resultant function is guaranteed to be a kernel. Once the kernels
are defined, they can be utilized in any algorithms that operate on inner prod-
ucts such as ridge regression, Fisher discriminant, principal component analysis,
canonical correlation analysis, spectral clustering and support vector machines.
For further discussion on the properties and utilities of kernels, see [27]. The
decoupling of the distance from the classifier allows the exploration of a large
number of combinations of the two.

5.1 Affect Recognition

For spoken utterances, we illustrate a general framework for integrating different
modalities by exploiting kernels. The example is drawn from the task of recog-
nizing affect from speech, which can be viewed as a classification task, consisting
of assigning, out of a fixed set, an affect category (e.g., joviality, anger, fear, or
satisfaction) to a speech utterance.

Affect detection classifiers can use diverse information sources. Specifically,
in this example, we show the integration of two streams of information – “what
was said” and “how it was said” [28, 29]. While the former is represented by
discrete lexical items, the latter is encoded through a variety of continuous fea-
tures. Acoustic and prosodic features are comprised of standard Mel frequency
cepstral coefficient (MFCC) features, as in automatic speech recognition (ASR),
augmented with pitch measurements, as normalized in [30]. When the training
data is limited, a simple model for the manner of speaking consists of speech/non-
speech HMMs, where the speech portions are tagged with the label of affect. The
observation densities in both HMMs are Gaussian-mixture distributions.

A baseline acoustic-only classifier can be designed using the MAP decision
rule. The MAP rule can be implemented as a Viterbi search over a weighted
finite-state transducer representing the state space constraints of the HMM [31].
The state space constraints are shown in Figure 2. The finite-state transducer
representing the constrained state space allows insertion of non-speech states.
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Fig. 2. Search space constrained to allow only paths that contain one type of tagged
speech state (M or F), optionally, with non-speech (p) states

The time-synchronous search is pruned using beam widths as in ASR decod-
ing. For experiments with unbalanced test sets, the priors are incorporated as
unigram weights in the weighted finite-state transducers (WFSTs).

This baseline classifier can easily be turned into a tokenizer, whose output
is a weighted finite-state automata. The labels of the resulting output lattice
are tags for affect and weights are the corresponding posterior probabilities.
Similary, the lexical information can also be represented as weighted finite-state
automata, where the labels correspond to words, hypothesized by an ASR, and
the cost encodes their posterior probabilities. Thus, the representation encodes
the uncertainty in the ASR hypotheses. After making sure the acoustic and
lexical automata do not have overlapping symbols, the two can be combined
using a union operation to provide an integrated input for the classifier.

Now, we need a kernel that measures similarity between two weighted finite-
state transducers. Extending the notion that two graphs are similar when they
share many common n-gram subsequences, a rational kernel can be defined over
weighted automata [32]. A word lattice L can be viewed as a probability distri-
bution PL over all strings s ∈ Σ∗ with alphabet Σ. Let |s|x denote the number
of occurrences of a sequence x in the string s. The expected count or number of
occurrences of an n-gram sequence x in s for the probability distribution PL is:

CL(x) =
∑

s

PL(s)|s|x (29)

Two lattices output by a speech recognizer can then be viewed as similar when
the sum of the product of the expected counts they assign to their common
n-gram sequences is sufficiently high. Thus, an n-gram kernel K can be defined
for two lattices L1 and L2 by:

K(L1, L2) =
∑

|x|=n

CL1(x)CL2 (x) (30)

K is a rational kernel and it can be computed efficiently. There exists a sim-
ple weighted transducer T that can be used to compute CL1(x) for all n-gram
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Fig. 3. Weighted transducer T defining a 4-gram kernel

sequences x ∈ Σ∗. Figure 3 shows that transducer in the case of 4-gram sequences
(n = 4) and for the alphabet Σ = {a, b}.

The general definition of T is:

T = (Σ × {ε})∗ (
∑

a∈Σ

{a} × {a})n (Σ × {ε})∗ (31)

The kernel K can thus be written in terms of the weighted transducer T as:

K(L1, L2) = w[(L1 ◦ (T ◦ T−1) ◦ L2)] (32)

where w[T ] represents the sum of the weights of all paths of T . This shows that K
is a rational kernel whose associated weighted transducer is T ◦T−1 and thus that
it is positive definite symmetric (PDS), or equivalently that it satisfies Mercer’s
condition [32]. This condition guarantees the convergence to a global optimum
of discriminant classification algorithms such as SVMs. K can be further used
to construct other families of PDS kernels, e.g., polynomial kernels of degree p
defined by (K +a)p. Thus, for a given n, an n-gram kernel can be defined as the
sum of the k-gram kernels, k = 1, . . . , n.

5.2 Empirical Results

On a binary affect classification task, the performance of n-gram kernels has
been compared with several popular classifiers. The comparison was carried out
on real-world data extracted from a deployed customer-care system, the AT&T
“How May I Help You” system (HMIHY 0300) [28,29].

The corpus consisted of 5147 utterances from 1854 speakers, with an average
utterance length of 15 words. The affect for each utterance was grouped into two
categories – negative and non-negative, in a manner similar to [2]. While creating
the reference utterances, the human annotators had the advantage of knowing
the context beyond the utterance being labeled. A subset of 448 utterance was
used for testing on which two human labelers were in full agreement. For further
details on the corpus and the consistency of annotations, see [28]. The automatic
transcripts or lattices were generated by an ASR system, whose word error rate
on the corpus was 37.8%.

Classifiers using acoustic and lexical features were compared, including the
baseline acoustic-only classifier, described earlier. A MAP classifier based on
an interpolated language model (LM) was trained, using only lexical features,
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Table 1. Comparison of classifiers on the task of binary affect classification

Classifier Accuracy

(a) MAP w/ acoustic HMMs 76.8
(b) MAP w/ interpolated LM (λ = 0.8) 70.1
(c) MAP w/ MI-filtered LM 78.8
(d) SVM w/ n-gram kernels

on ASR one-best hypothesis 79.9
(e) SVM w/ n-gram kernels

on ASR word lattices 80.6
(f) SVM w/ n-gram kernels

on ASR word lattices and
acoustic lattices from (a) 81.7

as in [33]. The interpolation was performed to smooth the class-specific LM.
A similar language model-based classifier was also evaluated, where the lexical
features were selected using mutual information (MI) and the model was not
smoothed [2]. These three classifiers from the literature, specifically designed for
affect detection task, were compared with an n-gram kernel-based classifier. The
n-gram kernels made it possible to exploit both acoustic and lexical features
seamlessly using a support vector machine.

Table 1 summarizes the results of the comparison. The MI-based feature-
selection classifier yielded significantly better results than the interpolated lan-
guage model classifier: an improvement of the classification accuracy by 7.7%
absolute. This suggests that feature selection plays a crucial role for affect de-
tection with a classifier based on an n-gram model since that is the key dif-
ference between the interpolated language model classifier and the MI-based
feature-selection classifier. This result was obtained when infrequent words be-
low 8 occurrences were ignored in computing mutual information, and when
the size of the selected vocabulary was 350 words. While selected vocabulary
included words such as disconnect, good, yes, correct and cancel that could be
viewed by humans as indicative of an affect category for the corpus used, it also
contained a number of seemingly uninformative words such as hi, couple, see and
name.

The classifier based on rational kernels combined with SVMs outperformed
the previous two classifiers with an accuracy gain of 1.1% absolute over the best
one of them. This was further improved by using the full word lattices generated
by the speech recognition system (80.6% accuracy), which is only about 1% short
of the accuracy that can be attained with reference transcripts (81.7%). The best
result was obtained with an n-gram kernel of order four (n=4). Applying the n-
gram kernel to the combined acoustic and lexical weighted finite-state automata
improves the accuracy further to 81.7%.

The design of the kernel-based classifier does not rely on the definition of
a specific subset of words since that can introduce a bias. Moreover, the gen-
eralization bounds for SVMs do not depend on the dimension of the feature
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space. The n-gram kernels have also been found to be useful in other utterance
classification tasks such as call classification and language identification [34,13].
Other candidates that operate on discrete sequences include convolution kernels
and spectrum kernels [35, 36]. Similarly, Fisher kernels and continuous rational
kernels provide alternatives for measuring distances in acoustic space [37, 38].
Although it is possible, heterogenous sources of information, such as the state of
the dialog in a spoken-dialog system, can not be easily incorporated in traditional
HMM-based classifiers [39]. Such information can easily be incorporated in a
large-margin classifier based on kernels.

So far, research on integration has been limited to combining kernels using
simple operators such as sum, product and Kleene closure. More complex para-
metric combinations of kernels with learned weights have been formulated in
the context of genomic data fusion and they are applicable for detecting speaker
characteristics as well [40].

6 Discussion

Information from multiple sources can be integrated in feature space, model
space, score space or in kernel space. The benefit of integrating multiple sources
depends on how closely the streams are correlated. When the observation rates
are comparable, the integration can be performed effectively in feature space
without incurring too much additional computation cost per stream. A number
of HMM variants can model mutliple streams effectively and they include coupled
HMMs, factorial HMMs, and dynamic Bayesian networks. The optimal choice
depends on factors such as the need to model asynchrony, the hidden relation
between the streams,and the available amount of training data. The scores from
base-experts can improve performace when they are uncorrelated and have com-
parable performances. Theoretical analysis demonstrates the trade-offs when the
scores are correlated or the performances differ significantly. Emiprical evalaua-
tion in several studies have shown the importance of score-normalization such as
T-norm before fusion. Kernels decouple the task of measuring distances between
objects in a stream from the classifier. This makes it easy to integrating streams
containing diverse structures. Using an example from affect recognition, we show
how acoustic and lexical features can be easily integrated to provide performance
superior to other popular algorithms developed specifically for the task. This
framework is general enough to be applicable for detecting other speaker traits
and has already been shown to be effective in language identification [13].
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Abstract. The annual NIST Speaker Recognition Evaluations (SREs)
from 1996 to 2006 have been internationally recognized as the leading
source or performance evaluation of research systems in the speaker clas-
sification field. We discuss how these evaluations have developed and
been conducted and the performance measures used. We consider the key
factors that have been studied for their effect on performance, including
training and test durations, channel variability, and speaker variability.
We examine the extent to which progress has been observed in state-of-
the-art performance. We also consider how the technology has changed
over the past decade, other evaluations that have been conducted or
planned, and where the field may be headed in the future.
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1 The Challenge

We consider the challenge of developing effective procedures for testing and
evaluation of automatic speaker classification systems. This is a developing field
of technology, and one with significant commercial potential. Such a field does
not readily lend itself to objective technical evaluation, particularly in its early
development.

Speaker recognition has developed somewhat in the shadow of the field of
automatic speech recognition, where the objective is to transcribe the words
(and perhaps understand their meaning as well) of a particular, or preferably of
any, speaker. The development of evaluation in this area may be instructive.

In the 1970’s and 1980’s a number of speech recognition companies were of-
fering products and anticipating a growing market for their offerings. And how
good were their products. Each company recognized the need to quantify their
performance and, invariably, each reported a correct word recognition rate in the
range of 95–100 %. Yet potential users of the technology soon came to realize
that in real world application scenarios of interest to them, they were likely to
find far lower word recognition rates.

C. Müller (Ed.): Speaker Classification I, LNAI 4343, pp. 313–329, 2007.
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Aside from telling outright lies about their performance, which may have
occurred, each vendor would collect test data under ideal conditions for the
speech recognition application of interest to them. And each would make very
sure that a high recognition rate was achieved with this data; they couldn’t hope
to compete if they reported otherwise.

Potential users of the technology were in a difficult position. Each vendor
claimed superior performance, and presumably had achieved it for its own pro-
prietary data. But since the data was not shared, the performance of the different
vendors’ systems could not be meaningfully compared. Insightful users would rec-
ognize that with their own data and their own application scenarios they would
not achieve the kind of results being reported, but until they acquired systems
and used them in-house, they would not know which system was likely to be
best for them, and how well it might do. This made it difficult to decide if the
new technology would be cost effective compared with existing procedures or
competing technologies.

George Doddington perhaps made the first efforts to test the performance
of then existing speech recognizers on a common database [1]. He collected a
database of spoken digits at Texas Instruments and invited vendors to supply a
version of their systems to be used in in-house testing.

Soon after that, interest in such evaluation of speech recognition technol-
ogy was taken up at the National Institute of Standards, which later became
the National Institute of Standards and Technology (NIST), in Gaithersburg,
Maryland. NIST has conducted a series of evaluations of speech recognition on
different types of speech data, concentrating in recent years on broadcast news
and conversational telephone speech. These evaluations have typically initially
reported rather high word error rates, which have been reduced as a particular
type of evaluation has been continued over several years. Indeed, when such error
rates have been reduced below 10 % or so, NIST has shifted its evaluation focus
to more difficult types of speech.

Speaker recognition lacked such independent evaluation into the 1990’s. Each
research site would choose its own data to use. This sometimes involved the use
of proprietary corpora not available to other systems. But at least a few common
speech corpora were becoming available, and a popular choice was the TIMIT
Corpus [2]. This was a corpus of high quality phonetically transcribed speech
including multiple sessions from a number of speakers (as needed for speaker
recognition) that had been collected at Texas Instruments.

In 1994 the first of series of international workshop on speaker recognition was
held in Martigny, Switzerland. It was followed by a similar workshop in Avignon,
France in 1998. The third such workshop, in Crete in 2001 was dubbed “2001: A
Speaker Odyssey”. The subsequent workshops, in Toledo Spain in 2004 and San
Juan, Puerto Rico in 2006 have continued the Speaker Odyssey name. The first
two pre-Odyssey workshops, however, were dominated by researchers reporting
results, generally very good results, on proprietary data sets or on the TIMIT
data. This was viewed as frustrating by those who wanted to see meaningful
performance comparisons on more real-world type data.
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It was in this context that in 1996 NIST initiated its series of annual speaker
recognition evaluations. These have concentrated on the use of conversational
telephone data from corpora collected by the Linguistic Data Consortium (LDC)
[20]. The central speaker detection task has remained the same throughout the
evaluations. A system is given speech data (training data) known to be from
a given target speaker, and given a separate test segment of speech data. It
must then determine whether the test data was spoken by the target speaker.
An evaluation test consists of a (long) sequence of trials of this type. For each
trial, the given target speaker, defined by the training data, is the only speaker
“known” to the system.

The NIST speaker recognition evaluations are described in greater detail in
further sections of this chapter. Their history encapsulates the progress and prob-
lems encountered in this area over the past decade. They document the level of
performance of state-of-the-art systems for speaker detection involving text inde-
pendent conversational speech transmitted over public telephone channels and
the degree of performance improvement over the period. But the evaluations
have changed over the years, with the variety of test conditions increased, and
the problems addressed sometimes made harder due to changes in general tele-
phone technology and to greater interest in more challenging conditions as the
technology has improved.

2 The NIST Evaluations

As noted, the basic task in all of the NIST speaker recognition evaluation has
been speaker detection. This means that each test consists of a sequence of trials,
where each trial is defined by a target speaker and a test segment of speech. The
target speakers are defined by training data provided for each such speaker.
This training data may consist of one or several speech segments guaranteed to
contain speech of the speaker. The test segment contains unknown speech. The
system must determine if in fact this speech was spoken by the target.

For each trial the system must supply both a hard decision (’T’ or ’F’) in
answer to this question. In addition a likelihood score is required that quanti-
fies the decision. Higher scores should indicate greater probability that the test
speech is by the target.

Trials where the target is speaking, those for which the correct decision is
’T’, are target trials. Trials where the target is not speaking are non-target
(or impostor) trials. System errors in target trials are misses, while those in
non-target trials are false alarms. Thus a system has two basic error rates, the
percentage of target trials that are misses (miss rate) and the percentage of
non-target trials that are false alarms (false alarm rate).

The basic error metric in the NIST evaluations has been a linear combination
of these two rates that has been denoted CDET . It is defined as

CDET = NormF act ∗ ((CMiss ∗ PMiss|Target ∗ PTarget) + (CF A ∗ PF A|NonTarget)) (1)
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Table 1. The cost function that has served as the primary metric in the NIST eval-
uations is based on assigned relative costs for each miss and each false alarm and an
assumed target richness chosen for possible applications of interest

Cost of a miss CMiss = 10

Cost of a false alarm CF A = 1

Probability of a target PTarget = 0.01

Probability of a non-target PNon−Target = 1 − PTarget = 0.99

Normalization factor (NormF act) is defined to make 1.0 the score of a
knowledge-free system that always decides “False”

It detection cost Cdefault = 10 ∗ 100 % ∗ 0.01 + 1 ∗ 0.99 = 0.1

So NormF act = 10

CDET can be viewed as a cost function based on assigned costs for misses and
false alarms and an assumed target richness. But the assigned cost and assumed
target richness are essentially arbitrarily chosen parameters. (Note that PTarget
need not, and does not, correspond to the actual percentage of target trials in
the evaluation test sets.) The values selected are believed to be reasonable ones
for some applications of interest. The low target richness may be particularly
applicable to text-independent applications. For some other applications a higher
value may be appropriate, but so may a higher relative cost for false alarms, so
these may cancel each other out to some extent.

There has, however, been recent work on developing a more application inde-
pendent type of metric that allows after evaluation examination of performance
for any specific parameters of interest. This requires that the confidence scores
provided be actual probabilities, or better, actual log likelihood ratios. The met-
ric Cllr, and the ways it may be utilized, are discussed in [3]. Such scores, and
the use of this metric, was an option for participants in the 2006 evaluation and
will probably receive attention in future evaluations.

3 Evaluation Parameters

Having defined the evaluation task, choices need to be made about the data to
be collected and utilized. Evaluations are heavily dependent upon the collection
of appropriate and sufficient data. Each evaluation test is defined by a sequence
of trials, and time and cost for collection is likely to be the limiting factor
determining the number of trials to be included.

The most basic evaluation parameters defining the trials are the duration of
the training and test speech segments, and the timing of their collection. The
training data for each target speaker may be collected in one or more different
sessions. The amount of training data (duration of training speech) is typically
the same or greater than the amount of test speech used in a given trial. (At
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least for single session training, the training and test speech used in each trial
may be viewed as playing symmetric roles.)

NIST has used a speech activity detector to determine the approximate dura-
tions of speech in training and test segments. In earlier evaluations considerable
effort was made to be fairly precise about the speech durations in each trial. In
later evaluations interest shifted in large part to using longer speech durations
(in particular whole conversation sides) with less precision. Also in earlier eval-
uations the training and test segments consisted of concatenated segments of
speech (as determined by the speech activity detector) with non-speech portions
of the signal excised. In later evaluations continuous segments without excision
were used, though estimates were still made of actual speech duration.

Fig. 1. Effect of test segment duration on
performance, fixed durations

Fig. 2. Effect of match or non-match of
training and test handsets, and of multi-
ple training sessions with same or different
handsets

Figures 1 and 3 show the effects of test segment duration on performance
for a typical system in three different NIST evaluations. In all cases, we see
the expected result of better performance with longer durations. In the early
evaluations (Figure 1) the test segments had fixed approximate speech durations
of 3, 10, or 30 seconds each. Later variable durations of up to a minute were used
(Figure 3). Here it may be noted that the only strong effect on performance is
seen for durations of less than 15 seconds.

With respect to training data, early NIST evaluations examined the effect of
the number of training sessions, their diversity with respect to the telephone
handsets used, and their relationship to the test segment handset for target tri-
als. Figure 2 shows results for a system both where the test handset was the same
as (one of) the training handsets and where it was not. (The duration of training
speech is approximately the same for all six DET curves.) Most notable is the
better performance when the same handset in used in training and test. (This
is for target trials only; nontarget trials invariably involve different handsets.)
Subsequent evaluations have emphasized different handsets, at least for landline
transmission data. Examining the three curves where the test handset is differ-
ent, it may be seen that having two training sessions yields better performance
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Fig. 3. Effect of test segment duration on
performance, variable durations

Fig. 4. Effects of varying amounts of train-
ing data on performance, all using the
same handset

than one, and having these two sessions use different handsets further improves
performance.

More recent evaluations have concentrated the effects of offering much larger
amounts of training data. In figure 4 the curves show results when training con-
sisted of 1, 3, or 8 whole conversation sides (each averaging about 2.5 minutes
of speech). Also included is a 10-second training condition, which certainly re-
mains of interest, particularly for some commercial applications. (In all cases the
test segments consist of one conversation side of speech data.) The advantage of
increased training data, where applications will support this is seen. It may also
be seen that there is still a long way to go to achieve equivalent performance
with very short segments of training data.

4 Channel Variability

Speaker recognition performance may be greatly enhanced by using a constant
high-quality wideband channel, but the primary application interest of the tech-
nology is in its use over telephone channels, and perhaps over various types of
differing and varying quality microphone channels. Thus the handling of channel
variability is one of the key challenges to be overcome by the system designer
and a key factor to be considered by the system evaluator.

The NIST evaluations, as noted previously, have until the last few years con-
centrated on telephone channels. But the nature of public telephone channels in
the United States has changed considerably in recent years. The quality of tra-
ditional landline channels has improved. A decade or so ago carbon-button and
electret microphones were both common in telephone handsets, and the early
NIST evaluations considered the effects of handset microphone type on perfor-
mance. Carbon-button microphones have become less common in recent years,
but a bigger change has been the widespread use of cellular phones in the U.S. in
recent years. Thus the recent evaluations have examined the performance effects
of cellular as opposed to landline transmission.
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Fig. 5. Effect of same or different phone line (and presumably handset) in training and
test

Figure 5, involving one system from an early evaluation, shows the effect of
using a fixed or a variable telephone line, and presumably handset, in target
trials. Clearly, having the same handset used in each speaker’s training and test
segments makes the problem far easier. But the use of caller id is simpler and
more effective. (Note that non-target trials invariably involve the use of different
phone lines and handsets unless special arrangements are made to do otherwise.)
The situation of practical interest is where training and test phone lines differ,
and later evaluations focused only on such cases, as least for landline trials.

Figure 6 shows the effects of microphone handset types for five different sys-
tems in an early evaluation. Two different effects are convolved to different overall
effect in the different systems. In general performance is better with electret than
with carbon-button handsets (the fourth system is something of an exception).
But performance is also generally superior when the training and test handset
types are the same. So the black curves generally show relatively good perfor-
mance, and the red and blue curves relatively poor performance, while the green
curves (all carbon-button) show variable performance.

Figure 7, from a recent evaluation, presents a similar type of plot for one
system showing the effect of cellular or landline transmission in training and
test. Perhaps not surprisingly, performance appears to be considerably better
for landline data.

The most recent NIST evaluations have included some telephone conversa-
tions where the speech of one of the conversants was simultaneously recorded
over a (cellular) telephone channel and over eight different microphone channels.
Figure 8 shows performance results for one system involving the nine differ-
ent representations of the same test conversations. (The training is fixed and
recorded over a telephone channel.) The main point to be noted is that the tele-
phone results are far superior to those of all the microphones. It should be noted
that this was the first such NIST evaluation, and that cross-channel performance
may be expected to improve in future evaluations.
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Fig. 6. Effect of using different combinations of handsets with carbon-button or electret
microphones in training and test. These effects vary for the five different systems shown.

Fig. 7. Effects of using cellular or landline
data in training and test on performance

Fig. 8. Effect on performance of using any
of eight different microphone channels or
telephone data in the test segment, with
training always on telephone data
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Fig. 9. Performance by whether non-
target trials involve speakers of same or
opposite sex for two durations

Fig. 10. Performance by language (En-
glish or non-English) in the training and
test data for all trials

5 Speaker Variability

Variability between different speakers, a key problem for speaker independent
word recognition, is the characteristic that makes speaker classification technol-
ogy possible. A major division of speakers into two classes is by sex. Figure 9,
from the first NIST evaluation, shows performance (for both 30-second and 3-
second test segments) when the non-target trials involve speakers of same sex or
of opposite sex. Since gender recognition tends to be highly accurate, the results
are as might be expected. Including cross-sex trials in evaluations is one way to
show better results. Subsequent NIST evaluations have excluded such trials.

The variability of individual speakers, on the other hand, is a major challenge
to speaker classification technology. Speaker consistency is a highly desirable
attribute for successful recognition, but in the real world speakers often do not
maintain consistency for a variety of reasons. Voices change because of health
problems (such as colds) and because of stress and emotional conditions. And
in the long run they change as people age.

Measuring speaker variability in evaluation is not easy to do, as people cannot
readily be instructed to demonstrate variability in their voices on demand. Cre-
ating stress conditions is not something that committees on the use of human
subjects look fondly upon. And data collection sessions far enough apart in time
to reveal the effects of aging are not readily arranged.

Figure 11 explores one way of examining the effect of speaker variation. For
one system in a particular evaluation, we estimated the speaker’s average pitch
in the training and in the test data. The figure shows the large performance
difference between the quarter of the target trials where the speaker was most
consistent in average pitch between training and test and the quarter of the trials
(perhaps involving one session with a cold) where the speaker had the greatest
relative pitch differences.
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Fig. 11. Performance by relative closeness
of training and test average pitch differ-
ences in target (same-speaker) trials

Fig. 12. Best-system performance history
for landline trials 1996-2005. Prior to 2004
training generally consisted of two minutes
of speech, and test of 30 seconds (an aver-
age of 30 seconds) of speech.

Another, more controllable way in which a speaker may vary, is in language. In
recent NIST evaluations a number of bilingual speakers (of English and another
language) were included. Figure 10 show performance results based on whether
the training and the test speech were in English (E) or a non-English language
(N). Clearly language consistency matters, at least for this system and others
tested in this evaluation.

6 Measuring Progress

The primary purpose of evaluation of research systems in a developing field of
technology such as speaker recognition is to encourage progress in the field. It is
therefore of key concern to determine the degree of progress that has occurred
over a period of years.

But there are difficulties in doing this. It can be hard to ensure that different
test sets present equal task difficulty, even if they are chosen in substantially
the same way. But evaluations do not remain constant from year to year. They
change to reflect the changing interests and priorities of those who are sponsoring
and organizing the evaluations. Improving system performance may be a reason
to choose to make the task harder, thus appearing to suppress further perfor-
mance improvement. And in the case of speaker recognition over telephone lines,
changes in the public phone system affect the evaluation results. In particular,
the increasing use of cellular telephones, which we have seen have an adverse
effect on performance, has made comparisons more difficult.
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Fig. 13. Best-system performance history
for cellular trials 2001-2004

Fig. 14. Best-system performance history
for eight conversation training (extended
training data) 2004-2006

The NIST evaluations may be divided into three phases. From 1996 to 2001
the data was primarily landline, selected from the conversations of the several
Switchboard corpora collected by the LDC. The primary test condition involved
two minutes of training and thirty second test segments (variable averaging
thirty seconds in 2001). For 2001 to 2003 testing similar but on the Switchboard
cellular corpora (both landline and cellular were used in 2001). Since 2004 the
LDC Mixer Corpus [16,17] has been used, with a different collection protocol, a
mix of landline and cellular data, and some calls in languages other than English.
Table 2 summarizes these three phases in the data used in the evaluations.

For each evaluation an effort is made to assess the overall level of performance
improvement (or the lack thereof) between the best performing systems of the
current and preceding years, matching test conditions of interest to the extent
possible, and NIST has regularly sought to do this. Figures 12 – 15 attempt to
suggest the degrees of progress that have been observed over the course of the
NIST evaluations.

Figure 12 presents best system results on trials involving landline data be-
tween 1996 and 2005. (2002 and 2003 are omitted because the great majority
of trials those years involved cellular data.) The results tend to divide between
those for years prior to 2002 and those for years after 2003. For the earlier years,
there was clear progress from 1996 to 1998, and then somewhat of a plateau
until 2001. The Mixer data used starting in 2004 resulted in an apparent ad-
verse performance effect, even with increased training and test durations. Two
different test conditions in 2004 show better performance with longer duration
test data, as expected. The number of all landline trials was limited in 2005, but
a considerable performance improvement is observed.
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Fig. 15. Best-system performance history
for short duration (10-second) training and
test data trials 2005-2006

Fig. 16. Best-system performance history
for two-speaker training and test trials
1999-2004

Figure 13 gives a similar history plot of best performing systems on cellular
data from 2001 to 2004. There is general progress from 2001 to 2003. For 2004
there are two different test conditions, both of which are different from the
conditions of the preceding years, and the number of cellular trials was smaller
than before, making the curves less smooth. Moreover, 2004 was the first year
in which Mixer data was used, adapting to which may have been a challenge for
systems. In any case, the best 2004 performance did not match the best of 2003.

Since 2001, when George Doddington demonstrated the potential gains from
exploiting high level idiolectal type information for speaker recognition from
longer durations of speech [4,5], a major focus of the evaluations has been on
the level of performance that may be achieved by the use of “extended duration”
speech, particularly for training. Recent evaluations have included a condition
on training on eight different conversation sides of each target (averaging about
2.5 minutes of speech each, while testing on single whole conversation sides.
The previous discussion on duration has noted the effect of extended training on
performance. Figure 14 shows results for the best performing system for the past
three years. Results for earlier years are not comparable, because only with the
Mixer data of these recent years was it possible to assure that the test handsets
were distinct from those used in training. There was a considerable improvement
in 2005 over 2004, and a more mixed result in 2006 compared with 2005. It is
believed that the shape of the 2006 DET curve may be due to the presence of
more trials involving non-English speech in 2006 than in 2005. This is another
confounding factor in judging performance improvement.

Short duration training and test has been included in the NIST evaluations
largely by popular demand. While performance is much inferior when training
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Table 2. Corpora used and primary tests in three phases of the NIST SREs

1996-2001 Switchboard-1, Switchboard-2
Phases I, II, III

2-minute training (1 or 2 ses-
sions), 3, 10, 30 second test
segments, variable duration test
segments in 2001 (averaging 30
sec.)

2001-2003 Switchboard Cellular Parts 1, 2 2-minute single session training,
variable (15-45 sec.) duration
test segments

2004-2006 Mixer (including some non-
English conversations and
multi-channel microphone data
in 2005-2006

8, 3, or 1 conversation side train-
ing, 1 conversation side test seg-
ments (also 10 sec. training and
test)

and test are limited to ten second speech durations, there is considerable com-
mercial potential in being able to achieve good results in this case. Figure 15
shows that considerable improvement was seen in the best evaluation systems
between 2005 and 2006, but that there remains a long way to go to achieve
performance acceptable for most applications.

7 Multi-speaker

Speaker recognition in a multi-speaker environment, a subject perhaps outside
the mainstream of work in speaker classification, has been a part of the recent
NIST evaluations. They have focused on the summed channel situation where
the input consists of the combined two channels of a phone conversation be-
tween two persons. The target speaker training data may be single channel,
but the recent NIST evaluations have included a training condition consisting
of three conversations involving the target speaker with three different peo-
ple, requiring systems to find and segment the target speech in the training
conversations.

Figure 16 shows a history plot of best systems for the two-speaker condition
involving both landline and cellular data from 1999 to 2004. It shows a rather
satisfying record of improvement for each type, with the best results occurring
in 2004 on data involving both landline and cellular calls.

Earlier NIST evaluations also had tasks specifically for speaker segmentation
and tracking within multiple speaker speech [23]. This kind of task has since been
pursued in other in other evaluations, including the speaker diarization task of
the NIST Rich Transcription Meeting Room evaluations [6,7,8] and the interna-
tionally (U.S. and Europe) based CLEAR (Classification of Events, Activities,
and Relationships) [9] evaluations.
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8 Other Evaluations

The author’s perspective is oriented toward the NIST evaluations, and these
have certainly assumed the leading role in the field to date, but there have been
other evaluations, and there will undoubtedly be further ones.

In 2003 TNO, a Dutch applied scientific research organization, sponsored an
evaluation of forensic speaker recognition. They were able to obtain, for limited
evaluation use, appropriate audio data from actual police investigations. There
were a variety of test conditions, involving different durations and types of data,
and participant were asked for decisions in a sequence of trials using a format
based on that used in the NIST evaluations. Some of its results are described
in [10].

Another, if somewhat less successful evaluation, was held in conjunction with
the Odyssey 2001 workshop in Crete. A couple of evaluation tracks were offered
to participants in connection with the workshop. One involved a subset of the
previous year’s NIST evaluation. NIST analyzed submitted results much as in its
regular evaluations. See [11,12]. The other track involved text-dependent speaker
verification, where the enrollment and verification data consisted of speakers say-
ing one of 17 specified passwords. This track is discussed in [13,14]. Participation
was limited and, with respect to the second track involving spoken passwords,
this perhaps may show the difficulty of creating text-dependent evaluations of
general interest that can attract participants from commercial companies.

The use of speaker recognition as a biometric that may be used for secure
verification of people’s identities in light of recent word events is attracting in-
creasing interest on both sides of the Atlantic. In Europe, however, there has
been greater interest in using multiple biometrics, including speech, in combi-
nation to achieve increased performance. A major project denoted BioSecure,
a part of the 6th Framework Programme of the European Community, is coor-
dinating a multi-year interdisciplinary research program in support of this. It
includes a “2007 BioSecure Evaluation Campaign” involving the use of voice,
face, signature, fingerprint, hand, and iris data in a multi-faceted effort that is
to launch in March, 2007 [15].

9 Future of Speaker Evaluation

After annual NIST evaluations from 1996 to 2006 it was decided, for a vari-
ety of reasons not to hold an evaluation in 2007. The evaluations have become
larger over the years, both in test set size and number of participants, and more
complicated in terms of the variety of tests included. The hiatus will provide
additional time for data collection, always the key limiting factor in evaluation
planning. This will allow the next evaluation to include considerably more data
corresponding to cross-channel evaluation conditions. The hiatus is also intended
to allow time to recruit an additional person to support the evaluation, but it
remains to be seen whether continuing annual evaluations will be seen as feasible.

But speaker detection is an area of growing interest, and future evaluations,
coordinated by NIST and perhaps other organizations appears quite certain.
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There is a likelihood of growing government funding to support research in the
area both in the United States and the European Union. This is expected to
result in expanded evaluations in the United States while, as noted previously,
there are plans in Europe for expanded evaluation of the fusion of biometric
technologies including speaker.

The development of the technology may also produce increased demand for
more product oriented evaluation. Very high performance, as noted, can be
achieved for somewhat limited conditions, and systems to support these will
become more visible in the commercial marketplace. But for the more challeng-
ing aspects of the task, with full text-independence and the use of the public
telephone network or across multiple channels, there remain considerable per-
formance limitations and a continuing need for ongoing evaluation of research
systems.
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Abstract. In the evaluation of speaker recognition systems—an im-
portant part of speaker classification [1], the trade-off between missed
speakers and false alarms has always been an important diagnostic tool.
NIST has defined the task of speaker detection with the associated De-
tection Cost Function (DCF) to evaluate performance, and introduced
the DET-plot [2] as a diagnostic tool. Since the first evaluation in 1996,
these evaluation tools have been embraced by the research community.
Although it is an excellent measure, the DCF has the limitation that it
has parameters that imply a particular application of the speaker detec-
tion technology.

In this chapter we introduce an evaluation measure that instead av-
erages detection performance over application types. This metric, Cllr,
was first introduced in 2004 by one of the authors [3]. Here we introduce
the subject with a minimum of mathematical detail, concentrating on
the various interpretations of Cllr and its practical application.

We will emphasize the difference between discrimination abilities of
a speaker detector (‘the position/shape of the DET-curve’), and the cal-
ibration of the detector (‘how well was the threshold set’). If speaker de-
tectors can be built to output well-calibrated log-likelihood-ratio scores,
such detectors can be said to have an application-independent calibra-
tion. The proposed metric Cllr can properly evaluate the discrimination
abilities of the log-likelihood-ratio scores, as well as the quality of the
calibration.

Keywords: speaker recognition, speaker detection, speaker evaluation,
speaker calibration, log-likelihood-ratio, Cllr, DET-curve, APE-curve.

1 Introduction

Formal evaluations have played a major role in the development of speech tech-
nology in the past decades. The paradigm of formal evaluation was established in
speech technology by the National Institute of Standards and Technology (NIST)
in the USA. By providing the research community with a number of essential in-
gredients, such as new speech data, tasks and rules, and a concluding workshop,
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these regular evaluations have led to significant improvements in all these eval-
uated technologies. It is therefore not strange that the evaluation paradigm has
been adopted by other research and standards organizations around the world
in various technology areas.

One of the most regularly held evaluations in the area of speech research
is that of text-independent speaker recognition [1]. This Speaker Recognition
Evaluation (SRE) series has been organized yearly since 1996 by NIST [1], and
has had its 11th edition in the first quarter of 2006. Despite the many factors
that have varied along the various editions, a few key aspects have remained
essentially constant. One of these is the primary evaluation measure, namely the
detection cost function (DCF). It is specified in terms of the cost of misses and
the cost of false alarms, as well as the prior probability for the target speaker
hypothesis. In addition to the DCF, NIST compares the discrimination abilities
of systems in Detection Error Trade-off 1 (DET)-curves [2], which researchers
have embraced almost emotionally. In retrospect it can be concluded that it was
quite an important insight of NIST to define DCF and the presentation of the
error trade-off curves as they did, for it has become the standard in speaker
recognition and is also gradually finding its way into other areas of research.

In the workshop concluding the most recent (2006) NIST SRE, an exciting
new development became apparent. It was announced that NIST would in future
employ a new primary evaluation measure. This measure, which we call Cllr, is
the subject of this chapter. It was proposed in a conference paper in 2004 [3] and
followed in 2006 by an extended journal paper [4]. The purpose of this chapter is
to be a more accessible tutorial introduction to the topic. (Apart from the two
above references, interested readers may want to see various other papers which
have since appeared on the same or closely related topics [5,6,7,8,9])

In the following, we will first review the problem of speaker detection and the
traditional evaluation techniques. This will be followed by motivation for and
introduction to some aspects of the new Cllr evaluation methodology and the
analysis thereof.

1.1 Recognition, Verification, Detection, Identification

In the past, researchers have studied various forms of speaker recognition prob-
lems. Most notably, the problem of speaker identification has been studied ex-
tensively. It seems quite intuitive to see speaker recognition as an identification
task, because that appears the way humans perceive the problem. When you hear
the voice of somebody familiar, you might immediately recognize the identity
of the speaker. However, if we try to measure the performance of an automatic
speaker identification system, we find a number of questions hard to answer.
How many speakers should we consider in my evaluation? What is the distri-
bution of speakers in the test? If we think about it deeper, we can see that
performance measures such as identification accuracy will depend on the choice
of these numbers in the evaluation. What if a speaker identification system is

1 Originally termed PROC in the 1996 evaluation plan.
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exposed to an ‘unknown’ speaker in the test? People have introduced ‘open set
identification’ as alternative to ‘closed set identification,’ but really the latter is
quite an unrealistic situation.

The solution to these undesirable questions lies in the proper statement of the
speaker recognition task: in terms of speaker detection. Formally, the question is:
Given two recordings of speech, each uttered by a single speaker, do both speech
excerpts originate from the same speaker or not?2 By developing technology
that can answer this question for a broad range of speakers, many different
applications are possible. Speaker verification is a direct implementation of the
detection task, while open or closed set identification problems can be formulated
as repeated application of the detection task.

The succinct statement of the speaker recognition problem in terms of detec-
tion has several advantages. The analysis of the evaluation can be performed in
a standard way, which is the subject of Sect. 2. The evaluation measures do not
intrinsically depend on the number of speakers or the distribution of so-called
target and non-target trials. The true answer of the detection task can, if the
evaluation data collection is carefully supervised, be known by the evaluator
with very high confidence. Patrick Kenny summarized these positive aspects of
the detection approach by saying: “I’ve never come across a cleaner problem [in
speech research]”.3

2 The Traditional Approach of the Evaluation of Speaker
Recognition Systems

2.1 The Errors in Detection

In order to evaluate a speaker detection system, we can subject the system to
two different kinds of trial. In each trial, the system is given two recordings of
speech, originating either from the same speaker or from two different speakers.
The former situation is called a target trial and the latter a non-target trial.
The evaluator has a truth reference to tell the two types of trial apart, but the
system under evaluation has only the speech recordings as input. It is therefore
the purpose of the speaker detector to distinguish target trials from non-target
trials. In classifying the trials, there are two possible errors a system can make,
namely

– false positives, or false alarms, classifying a non-target trial as a target trial,
and

– false negatives, or misses, classifying a target trial as a non-target trial.

2 One might call this a one-speaker open set identification task.
3 This is how the statement is recalled as perceived by the authors in a salsa-bar
during the week of the 2006 Speaker Odyssey Workshop. However, the extremely
high noise levels made proper human perception very hard, which is indicative of the
fact that Automatic Speech Recognition cannot be stated as such a clean problem.
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We observe that the speaker detection problem gives rise to two types of error,
the rates of occurrence of which are to be measured in an evaluation. Having two
different error-rates complicates things because it makes it hard to compare the
performance of one system with another, or to observe an improvement in one
system when it is adjusted. Since comparison is the essential goal of evaluation,
it is important to find a way to do this. It is therefore the purpose of this chapter
to examine the question: how do we combine these two error-rates into a single
performance measure that is representative of a wide range of applications?

2.2 The DET-Plot: A Measure of Discrimination

In order to continue, we need to introduce some of the basic concepts of how
speaker detectors work. There are many sources of variability in speech signals
and therefore a speaker detection system cannot be based on exact matching of
two patterns. Instead, it works with (statistical) models, and it calculates some
form of score4 which represents the degree of support for the target speaker
hypothesis rather than the non-target hypothesis. The higher (more positive)
the score, the more the target hypothesis is supported and the lower (more
negative) the score, the more the non-target hypothesis is supported. It can be
shown that all the information which is relevant to making decisions between
the two hypotheses and which can be extracted from the two speech inputs of
a trial, can be distilled into a single real-valued score. Decisions as to which
hypothesis is true can now be based on whether or not the score exceeds a well
chosen threshold. Setting this threshold (a process known as calibration) is the
next challenge.

If we now look at the scores that a speaker detector typically yields for the
two types of trials, target and non-target trials, we may plot score distributions
as in Fig. 1. These score distributions, obtained from a real speaker detector
evaluated on NIST SRE 2006 data [1], has typical behaviour: the distributions
overlap, the target scores having higher values on average than non-target scores,
and the variance of the distributions is different. The threshold-based decision
leads to the error-rates PFA and Pmiss, that can be read from the figure as the
proportion of the non-target scores exceeding the threshold and the proportion
of target scores below the threshold. From the figure you may also appreciate
the fact that if the threshold were chosen differently, the values of PFA and Pmiss

would change. More specifically, they would change in opposite directions. Thus,
there is an inherent trade-off between lowering PFA against lowering Pmiss.

This trade-off is most spectacularly shown in a graph that is known as the
Detection Error Trade-off or DET-plot [2], where a parametric plot of Pmiss

versus PFA is made, an example is shown in Fig. 2. The axes of a DET-plot are
warped according to the quantile function of the normal distribution, or using
another name, the probit function,

Q(p) = probit(p) =
√

2 erf−1(2p − 1). (1)
4 Often called a likelihood ratio, but we will not use this term for reasons that will
become clear later.
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Fig. 1. The score distributions for non-target (left) and target (right) trials. The grey
areas left and right of the threshold represent Pmiss and PFA, respectively.

where p is PFA or Pmiss, and ‘erf−1’ is the inverse of the error function. There
are several effects of the warping of axes. Firstly, if the target and non-target
score are distributed normally, the detection error trade-off will be a straight
line,5 with a slope −σnon/σtar, where σtar,non are the standard deviations of the
target and non-target distributions, respectively [10,11]. Secondly, the warping
has the advantage that several curves plotted in the same graph gives rise to
less clutter than if the probability axes were linear, as in ROC-curves (Receiver
Operating Characteristic, which is the traditional way of plotting false alarms
versus misses, or hits).

The DET-plot shows what happens as the decision threshold is swept across
its whole range, but on the curve one can also indicate a fixed operating point as
obtained when making decisions at a fixed threshold. It has been customary in
NIST evaluations to require not only scores, but also hard decisions. The Pmiss

and PFA measured for these hard decisions correspond to such an operating point
on the curve.6 It is good practice to draw a box around this point, indicating
the 95% confidence intervals of PFA and Pmiss, assuming trial independence and
binomial statistics [12].

5 The reverse is not true, however. Note, that even though the underlying distributions
deviate noticeably from normal distributions (see Fig. 1), the DET-curve is straight
over a reasonably large range of probabilities.

6 Provided these hard decisions were indeed made by thresholding the same score that
was used to generate the DET-plot.
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Fig. 2. A DET-plot, obtained from Fig. 1. The line shows the trade-off of false alarm
against miss probability as the threshold increases from the lower-right to upper-left
corner. The rectangle indicates the operating point of the decisions made, corresponding
to the surface of the grey areas in Fig. 1. Further, the Equal Error Rate (EER) and
the operating point the ‘minimum DCF’ (see Sect. 2.3) are indicated. For d′, see the
text.

The DET-plot very clearly shows how the two error types can be traded off
against each other. For a given DET-performance the false alarm rate can be
reduced to an almost arbitrary low level by setting the detection threshold high
enough, if one is prepared to accept a high miss rate. And vice versa; it all
depends on the application of the system: if the costs of a false alarm are very
high, or the prior probability of a target event is very low, we set the threshold
high and we ‘operate’ in the upper-left corner of the plot. If the application
sets different demands, we can operate at the opposite end. This trade-off is not
new, a theory of signal detection was developed for radar signals midway the
20th century, and later used by psychophysicists to model human perception of
stimuli in the sixties [13,14]. We experience the same trade-off in everyday life,
such as in trying to separate spam e-mails from serious messages, and in trying to
create laws in society that can convict criminals while guaranteeing freedom for
citizens. In fact, in understanding the DET or ROC curves it becomes apparent
that striving for ‘zero tolerance’ or any other form of perfect filtering will backfire
immediately by resulting in unreasonable high costs at the flip side of the coin.

Returning now to speaker recognition, researchers have grown very fond of
DET-curves because they indicate the discrimination potential of their system at
a glance. DET-curves more towards the lower-left indicate better discrimination
ability between the target and non-target trials, and hence better algorithms.
Tiny improvements in the detector will show noticeable displacement in the
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DET-curve, which stimulates the researcher to think of even more clever things.
A DET-plot is a great diagnostic tool: if the curve deviates far from a straight
line, or shows unexpected cusps or bends, this is usually an indication that there
is something wrong in the detector or in the evaluation data or its truth reference.
As a final goody, plotting a DET-curve does not require setting a threshold.

The Equal Error Rate. We went from decisions and PFA and Pmiss to no
decisions and a whole curve that characterizes our detector. Can we somehow
summarize the DET-curve as a single value? Yes, we can, in several ways.

Firstly, noticing PFA and Pmiss move in opposite directions if the threshold is
changed, there always is a point where PFA = Pmiss. This joint value of the error
rates is called the Equal Error Rate or EER. In the DET-plot it can be found
as the intersection of the DET-curve and the diagonal. The EER is a concise
summary of the discrimination capability of the detector.7 As such it is a very
powerful indicator of the discrimination ability of the detector, across a wide
range of applications. However, it does not measure calibration, the ability to
set good decision thresholds.

It may be interesting to compare the EER to a related measure from signal
detection theory. Here the task is to detect a signal in Gaussian noise, and hence
the two distributions to be separated are normal and have equal variance. In
this case, the DET-curve is completely characterized by the single parameter ‘d-
prime,’ the distance between the means of the distributions measured in units of
the standard deviation: d′ = (μtar − μnon)/σ. In Table 1 the relation between d′

and the EER is shown, in order to give an idea what the separation of the target
and non-target distributions means in terms of EER. Another way of seeing d′ is
in the DET-plot (see Fig. 2), where it represents straight lines of slope −1. The
value of d′ determines where the diagonal is crossed, starting at the upper-right
corner for d′ = 0 moving down linearly to the lower-left corner where d′ ≈ 6.

Table 1. Relation between d′, the separation of distribution in terms of standard
deviations, and the EER

d′ 0 1 2 3 4 5
EER (%) 50.0 30.9 15.8 6.7 2.27 0.62

2.3 The Detection Cost Function: Simultaneous Measure of
Discrimination and Calibration

In calculating the DET-plot and EER, the evaluator effectively chooses optimal
decision thresholds, with reference to the truth. These evaluation procedures
therefore do not measure the actual decision-making ability of the detector on

7 It can be shown [15,4] that if decision thresholds are always set optimally, then the
EER is the upper bound of the average error-rate of the detector as Ptar is varied.
By average error-rate, we mean PtarPmiss + (1 − Ptar)PFA, where Ptar is the prior
probability of a target event.
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unseen data. The canonical solution is a direct one—simply require the detector
to make decisions and then count the errors. Now how do we now combine
these error counts (of two types of error) into a scalar measure of goodness of
decision-making ability?

At a first glance, one could simply use the total number of errors as a per-
formance measure. Indeed, this solution is routinely practised by the machine
learning research community. However, reflecting on real applications there are
at least two important complications:

– The proportion of targets and non-targets may be different from the propor-
tions in the evaluation database.

– The two types of errors may not have equally grave consequences. For ex-
ample, for a fraud detection application the costs of a missed target (cross
customers) can be higher than the cost of a false alarm (a fraudulent action
not observed), while for access control the cost of a false alarm (security
breach) may outweigh the cost of a miss (annoyed personnel).

It therefore makes sense to weight the two normalized error-rates with (i) the
prior probability of targets in the envisaged application and (ii) the estimated
costs of the two error types. Applying these weightings, one then arrives at a
scalar performance measure, namely the expected cost of detection errors,

Cdet(Pmiss, PFA) = CmissPmissPtar + CFAPFA(1 − Ptar). (2)

This function has become known as the detection cost function. Here the nor-
malized error-rates Pmiss and PFA are determined by the evaluator by counting
errors. The application dependent cost parameters Cmiss and CFA are discussed
above, and the parameter Ptar is the prior probability that a target speaker
event occurs in the application. This prior must be assigned to correspond to
some envisaged application of the speaker detector.

Given prescribed values for the parameters of Cdet, the onus now rests on
the designer of a speaker recognition system under evaluation, to choose a score
decision threshold that minimizes Cdet. For this purpose the evaluee may use a
quantity of development data with a known truth reference. Minimizing Cdet on
the development data may or may not give a Cdet that is close to optimal on
new unseen evaluation data. This is an important part of the art of designing a
speaker detector: to calculate scores that are well-normalized so that thresholds
set on development data still work well on unseen data.

In summary, the three application-dependent parameters Cmiss, CFA and Ptar,
form the detection cost function Cdet(Pmiss, PFA), which gives a single scalar
performance measure of a speaker detection system.

The detection cost function is a simultaneous measure of discrimination and
calibration. This error measure of a detector will have a low value provided that
both (i) EER is low and (ii) the threshold has been set well.

Cdet has been used since the first NIST speaker recognition evaluation in 1996
as the primary evaluation measure, and with it, the three application-dependent
cost parameters have been assigned values Cmiss = 10, CFA = 1 and Ptar = 1 %.
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These values have never changed in the evaluations, and occasionally a researcher
wonders how these values were chosen. The long tradition and fixed research
goals have caused these choices to fade from our collective memory, but in a
recent publication [12] an example of an application with these cost parameters
is given.

‘Minimum Detection Cost.’ Minimum Cdet is similar, but not identical to
EER. It is a measure of discrimination, but not of calibration. It is defined as
the optimal value of Cdet obtained by adjustment of the detection threshold,
given access to the truth reference. Unlike EER it is dependent on the particular
application-dependent parameters of Cdet.

In the context of the NIST SRE, it is customary to indicate Cmin
det on DET-

curves, as is shown by the circle in Fig. 2. Note that this circle does not show the
numerical value of Cmin

det , rather it shows the values of Pmiss and PFA at which
Cdet is minimized. This is in contrast to the APE-curve, which we introduce
below, which does directly show the numerical value of Cmin

det .

Discussion. So we’ve found two more performance metrics, EER and Cmin
det ,

that each summarize the DET-plot in their own way. Both are used extensively
in literature, the former in a ‘general application’ context and the latter in a
‘NIST evaluation’ context. They are very important performance metrics, but
they circumvent one major issue: setting the threshold. In fact, EER and Cmin

det

are after the fact error measures. They imply that the threshold can not be set
until all trials have been processed and, moreover, the truth about the trials is
known. Summarizing, EER and Cmin

det are great for indicating the discrimination
potential, but they do not fully measure the capability of making hard decisions.

Is this really a problem? For many researchers it is not. Setting the thresh-
old, as is necessary for submitting results to a NIST evaluation, is simply based
on last year’s evaluation data, for which the truth reference has been released.8

This usually results in a Cdet that is not too much above Cmin
det , and everything

is fine. Sometimes, the evaluation data collection paradigm has changed or the
recruitment of new speakers has been carried out in a different way, and the cal-
ibration turns out wrong. A real shame, but usually most participating systems
‘get hurt’ in the same way, and there is always a next year to do better.

So let us recapitulate our quest for a single, application independent perfor-
mance measure for speaker recognition systems. We started with a clear and
unambiguous statement of the task of a speaker recognition system. This lead
to two types of error which are interrelated by means of a trade-off. By using a
cost function Cdet, we could reduce the two error measures to a single metric,
at the cost of having to define application-dependent parameters. Postponing
the setting of a threshold gave us a beautiful DET-plot and a powerful EER
summary, at the cost of not measuring calibration.

In the previous section we have introduced several measures characterizing
the performance of a speaker recognition system. Although they each have their
8 Often, the calibration happens just before the results are due. The present authors
are in this respect not different from other researchers.
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merits and their use is quite widespread, we will show in this section that we
can demand more information from a speaker detector than just a score and a
decision, and that there exists a metric that says how good this information is.
It combines the concept of expected costs, like Cdet does, with soft decisions and
application-independence, like the DET-curve suggests. Before we introduce it,
we are going to have a closer look at the interpretation of scores.

2.4 The Log-Likelihood-Ratio

So far, we have learnt that a speaker detection system produces a score for every
trial. The only thing we have required of the score is that a higher score means
that the speech segments are more alike. A set of scores is sufficient to produce
a DET-curve, and with an additional threshold we can also calculate Cdet. But
there is a lot of freedom in the values of the scores. First, there is an arbitrary
offset that can be added to all scores (and the threshold) and nothing in the
evaluation will change. Or the score can be scaled; in fact, the whole score-axis
can be warped by any monotonic rising function, and everything in the DET-
plot will stay exactly the same. There is no meaning in the scores, other than
an ordering.

We can use this freedom in score values to fix the problem of application
dependence. To see how this works, we examine how a score s for a given trial
can be used to make an optimal decision for that trial. The expected cost of
making an accept decision is (1 − P (target trial|s))CFA, while the expected cost
of making a reject decision is P (target trial|s)Cmiss. Here P (target trial|s) is the
posterior probability for a target trial, given the score s. The minimum-expected-
cost decision is known as a Bayes decision.9 To make a Bayes decision, we need
the posterior, which may be expressed, via Bayes’ rule, as

logitP (target trial|s) = L(s) + logit(Ptar) (3)

where10

L(s) = log
P (s|target trial)

P (s|non-target trial)
(4)

is known as the log-likelihood-ratio of the score. Putting this all together, we get
a concise decision rule:

decision(s, θ) =
{

accept if L(s) ≥ −θ,
reject if L(s) < −θ, (5)

where the decision threshold θ is a function of the application-dependent cost
and prior parameters,

θ = log
(

Ptar

1 − Ptar

Cmiss

CFA

)

(6)

9 It is easily shown that if one makes a Bayes decision for every trial, this will also
optimize the expected error-rate over all the trials, which is just our evaluation
objective Cdet.

10 We use the function: logit p = log p
1−p

, which re-parametrizes probabilities as log
odds, because for binary hypotheses, it transforms Bayes’ rule to the elegant additive
form of (3).
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Equation (5) forms a neat separation between L(s) and θ. The purpose of the
score, s, is to extract relevant information from the given speech data of the
trial. The purpose of L(s) is to shape, or calibrate, this information into a form
that can be used in a standard way to make good decisions. The information,
L(s), extracted from the speech data is application-independent, because all the
application-dependent parameters have been separated and encapsulated into
the single application parameter θ.

Notice that L(s) may also be called a score. It has the same look and feel11

as s, where more negative scores favour the non-target hypothesis and more
positive scores favour the target hypothesis. The difference is that L(s) is cali-
brated so that minimum-expected-cost decisions may be made with the standard
threshold θ.

In fact L(s) may be interpreted as expressing the degree of support that the
raw score s gives to one or the other hypothesis. When L(s) is close to zero, the
score does not strongly support either hypothesis, but as the absolute value of
L(s) grows there is more support for one or the other hypothesis. The hypothesis
that is favoured is indicated by the sign of L(s).

If a speaker detector can produce L(s) instead of the raw s, this has obvious
advantages for users. The same system can now be used by different users having
different applications (i.e., different θ), and still the calibration is right. The user
does not have to ask the system developer: “My application parameters have
changed. Could you please re-calibrate your detector?” Now the user can easily
calculate the threshold θ and indeed change it at will as circumstances dictate.

So what is new here? Nothing in fact. The theory of making Bayes decisions
has been known for a long time. The catch is that even if your DET-curve is
good it may also be difficult to calculate well-calibrated soft decisions in log-
likelihood-ratio form, just like it used to be difficult to set good hard decision
thresholds for Cdet. The key to this problem is that until quite recently it has not
been known in the speaker recognition community how to evaluate the quality
of detection log-likelihood-ratios. The purpose of this chapter is therefore to
introduce the reader to how this may be done. Once we know how to measure,
half the battle towards improving performance has been won.

2.5 Log-Likelihood-Ratio Cost Function

At a first glance, evaluation of log-likelihood-ratio scores may be accomplished
by a small adjustment of the NIST SRE protocol:

Instead of having evaluees submit hard decisions for evaluation via Cdet,
they are now required to submit soft decisions in log-likelihood-ratio
form. Then instead, the evaluator makes the decisions by setting the
threshold at −θ. These decisions may then be plugged into Cdet as before,
to get a final evaluation result.

11 This is why we prefer to work with a log-likelihood-ratio, rather than a likelihood-
ratio. The (non-negative) likelihood-ratio has the uncomfortable asymmetry where
smaller scores are compressed against 0.
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In principle this is a very good plan, but it has the flaw of not really changing any-
thing. If the value of θ is known to participants, then they may calibrate their scores
to work well only at the specific point on the log-likelihood-ratio axis that is ‘sam-
pled’ by evaluation at θ. Intuitively, sampling the log-likelihood-ratio at a single
point can show that scores have been shifted to have log-likelihood-ratio interpre-
tation, but it still leaves the scale of the evaluated scores completely arbitrary.

Once we have realized that a single sampling point is the problem, it is concep-
tually easy to fix: just sample the decision-making ability of the log-likelihood-
ratio scores under evaluation at more than one value of θ. The evaluator may
now calculate a Cdet at each of these operating points. This leaves the questions
of (i) how many points do we need to sample, (ii) which points do we choose
and (iii) how do we combine the different Cdet results over these points in order
to get a single metric?

Of course there are many good answers to these questions. Here we discuss
the particular solution which has been motivated in detail in [4]. This solution
proposes to sample Cdet over an infinite ‘spectrum’ of operating points and to
then simply integrate over them, thus:

Cllr = C0

∫ ∞

−∞
Cdet

(
Pmiss(θ), PFA(θ), θ

)
dθ (7)

where Cllr is the new metric, which we call the log-likelihood-ratio cost function
and where C0 > 0 is a normalization constant. Some notes are in order:

– The error-rates Pmiss and PFA are now functions of θ, because −θ is just
the decision threshold. By sweeping the decision threshold, the evaluator is
effectively sweeping the whole DET-curve of the system under evaluation.
This effectively turns Cllr into a summary of discrimination ability over the
whole DET-curve, somewhat similar to EER.

– Equally important is the fact we have now also made Cdet dependent on
θ. Since Cdet implies making actual decisions, we are also incorporating
the evaluation of calibration into our metric. Moreover, since Cdet varies
with θ, we are also measuring calibration over the whole θ-spectrum. Re-
call from (2) that Cdet is parameterized by the triplet (Ptar, Cmiss, CFA). We
may parametrize Cdet equivalently12 by (P̃tar, C̃miss = 1, C̃FA = 1), where
P̃tar ‘incorporates’ the cost parameters. This single parameter P̃tar can be
expressed in terms of θ,

P̃tar =
PtarCmiss

PtarCmiss + (1 − Ptar)CFA

=
1

1 + e−θ
= logit−1 θ (8)

If we parameterize like this, then θ = logit(P̃tar) has the interpretation of
prior log-odds. The interested reader may consult [4] for further motivation of

12 By equivalent, we mean that identical decisions, DET-curves and comparisons be-
tween systems are made. The DCF itself is scaled down by a factor PtarCmiss +(1−
Ptar)CFA, which is 1.09 for the NIST parameters.
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this parametrization. In short, although specifying cost and prior are neces-
sary when making decisions in real applications, having both costs and prior
as evaluation parameters is redundant. Since the cost and prior multiply to
form the parameter θ, we may arbitrarily assign fixed costs and parametrize
the entire spectrum of applications by the single parameter P̃tar, or equiva-
lently by θ. By assigning unity costs we gain the advantage that now Cllr may
be interpreted as an integral over error-rates. Finally, since we are making
actual decisions and evaluating them via Cdet, we are not only measuring
discrimination, but we are also at the same time measuring calibration.

Realizing that the new measure Cllr is a measure of both discrimination and
calibration, we see that Cllr for a detector will be good provided that both (i)
EER is low and (ii) L(s) is reasonably well calibrated over all operating points
of the θ-spectrum.

To recapitulate, Cdet is a measure of discrimination and calibration suitable for
evaluating hard (application dependent) detection decisions, while Cllr is a mea-
sure of discrimination and calibration suitable for evaluating soft (application-
independent) detection decisions in log-likelihood-ratio form.

Practical Calculation. Equation (7) is a derivation and an interpretation of
our new metric Cllr but how do we practically calculate this integral? The good
news is that it has an analytical closed-form solution:

Cllr

(
{L′

t}
)

=
1

2 log 2

(
1

Ntar

∑

t∈tar

log(1 + e−L′
t) +

1
Nnon

∑

t∈non

log(1 + eL
′
t)

)

. (9)

where L′
t is the attempt of the system under evaluation to calculate the log-

likelihood-ratio (of (4)) for trial t; and where ‘tar’ is a set of Ntar target trials
and ‘non’ is a set of Nnon non-target trials. The two normalized summation terms
respectively represent expectations of ‘log costs’ for target trials (left-hand term)
and for non-target trials (right-hand term).

Let us look more closely at these log costs. For a target trial the cost is
Ctar = log(1 + e−L′

t). If the detector correctly gives a high degree of support for
the target hypothesis, L′

t � 1, then the cost is low: Ctar ≈ 0; but if it incorrectly
gives a high degree of support for the non-target hypothesis, L′

t � −1, then
the cost is high13: Ctar ≈ |L′

t|. Conversely, the cost for non-target trials, Cnon =
log(1 + eL

′
t), behaves the other way round.

13 When degree of support is expressed as log-likelihood-ratio, then the behaviour of
the log-cost is intuitively pleasing: if the detector output has the wrong sign, there
is a cost which increases with the magnitude of the error. But if degree of support is
instead expressed as a posterior probability, then a posterior of exactly 0 corresponds
to L′

t = −∞ and then Ctar = ∞ (likewise, for a non-target trial, a posterior of 1 gives
Cnon = ∞). This is not a flaw of the Cllr metric. Rather it shows that a posterior of 0
or 1 is an unreasonable output to give in a pattern recognition problem where there
can never be complete certainty about the answer. Working with system outputs (of
moderate magnitude) in log-likelihood-ratio form, rather than likelihood-ratio form
or posterior probability form naturally guards against this problem.
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We have seen that extremely strong support for either hypothesis can have
high cost, but what is the cost of a neutral log-likelihood-ratio? When L′

t = 0,
then Ctar = Cnon = log 2. This means that the reference detector, which does not
process speech and which just outputs L′

t = 0 for every trial, will earn itself a
reference value of Cllr = 1. This is of course no coincidence, but is a consequence
of the normalization factor in (9).

2.6 Discrimination/Calibration Decomposition: The PAV
Algorithm

So far we have shown how the new cost measure Cllr generalizes Cdet—but can
we also find an analogy for Cmin

det , the minimum achievable Cdet if calibration
were right? Again, the answer is affirmative. Just like a miscalibrated threshold
can be fixed, post hoc, by choosing a different threshold that minimizes Cdet, it
is possible to find a monotonic rising warping function w, which, when applied
applied to L′

t for every trial t, will minimize Cllr as measured on the warped
log-likelihood-ratios L′′

t = w
(
L′

t

)
. As before the minimization is performed given

the truth reference for the evaluation, but note that it involves finding the whole
warping function w rather than just a single threshold value. The warping func-
tion is constrained to be monotonic rising for several reasons:

– It is consistent with applying a single decision threshold to both L′
t and L′′

t .
– A monotonic rising function is invertible and therefore information-

preserving. The warping function should correct only the form (calibration)
of the output, but not the content (discriminative ability) of the score.

– The DET-curve (and therefore also the EER) is invariant under monotonic
rising warping.

– If there were no constraint, Cllr would trivially be optimized to zero, which
is a useless result.

How do we find w? Note first that since monotonicity is the only constraint,
every value of w can be optimized independently for every trial, in a non-
parametric way. There is a remarkable algorithm known as the Pool Adjacent
Violators (PAV) algorithm14 which can be employed to do this constrained non-
parametric optimization. The input is the system-supplied log-likelihood-ratio
scores for every trial as well as the truth reference. The output is a set of op-
timized log-likelihood-ratio values for these trials, where the sorted ordering of
input and output scores remains the same, because of the monotonicity. With
these optimally calibrated log-likelihood-ratios w(L′

t) we can apply (9) to find
the minimum Cllr

Cmin
llr = Cllr

(
{w(L′

t)}
)
. (10)

It is beyond the scope of this chapter to go into the details of the PAV algorithm
(details are available in [4] and references therein), but it may be instructive to
see what the warping function w(L) typically looks like. Let us take the system

14 It is also known as isotonic regression.
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that produced the score distributions in Fig. 1 and the DET-curve shown in
Fig. 2. We plot the warping function w(L) for this system, as found by the
PAV algorithm, in Fig. 3. The PAV warping function has a stepped nature,
which is a consequence of the ‘pooling’ of monotonicity violators. This system
shows an average slope of 1 over a reasonable range of L, but there is an offset.
The log-likelihood-ratios given by this system are too optimistic towards target
speakers. One can further observe a non-linear flattening of the curve at the
extremes, indicating that the system-supplied log-likelihood-ratio tended to be
over-optimistic in those regions.
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Fig. 3. The result of the PAV algorithm applied to the log-likelihood-ratio scores for
which the score distributions were shown in Fig. 1

Note that the PAV algorithm can also be used as the basis for calibration.
Just like a detector can be calibrated for a single application-type by choosing
a threshold that minimizes Cdet on some development test data, it is possible
to calibrate log-likelihood-ratio scores by applying the PAV algorithm to devel-
opment test data scores s, to minimize Cllr for that data. The warping function
w(s) can then be interpreted as a score to log-likelihood-ratio function L(s). Hav-
ing said this, we leave the subject of calibration methods, since it is not a topic
of this chapter. Rather, this is the story how to measure calibration.

Recall that Cllr is a measure of both discrimination and calibration. But since
Cmin

llr has any calibration mismatch optimized away, it is a now pure measure
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of discrimination. This now allows us to decompose15 Cllr to also obtain a pure
measure of calibration. Because of the logarithmic nature of Cllr, it turns out
that it is appropriate to form an additive decomposition: Our measure of cali-
bration now becomes just Cllr −Cmin

llr . This difference is non-negative, is close to
zero for well-calibrated systems, and grows without bounds as the system un-
der calibration becomes increasingly miscalibrated. In summary, this PAV-based
procedure forms the application-independent generalization of the traditional
measures Cmin

det and Cdet − Cmin
det .

As we shall further demonstrate with APE-curves below, the ability to do
this discrimination/calibration decomposition is an important feature of the Cllr

methodology. The ability to separate these aspects of detector performance em-
powers the designer of speaker detection systems to follow a divide-and-conquer
strategy: First concentrate on building a detector with good discriminative abil-
ity, without having to worry about calibration issues. Then when you want to
move on to practical applications, concentrate on also getting the calibration
sorted out.

2.7 The APE-Curve: Graph of the Cllr Integral

The Cllr-integral, (7), is the integral of Cdet(θ) over the application parameter θ.
We will now show that this integral can be visualized in a powerful graph. The
essential part of the integrand of (7) is the error probability

Pe(θ) = P̃tar(θ)Pmiss(θ) + (1 − P̃tar(θ))PFA(θ). (11)

Note that all of Pe, P̃tar, Pmiss and PFA are functions of θ. The graph of Pe

against θ forms the basis of the Applied Probability of Error (APE)-plot.
In Fig. 4 we show the APE-plot for our example system. Along the horizontal

axis we have θ, which as explained before can be called the ‘prior log odds’.
Note that the horizontal axis of the APE-plot is the whole real line, but that
we plot16 only the interesting interval close to θ = 0. The vertical axis is the
error-rate axis, which takes values between 0 and 1. On these axes, we plot three
curves: solid, dashed and dotted, which are respectively error-rates of the actual,
PAV-optimized and reference systems. From these plots we can read a wealth of
information:

The solid curve. is Pe(θ) of (11). It shows the error-rate obtained (at each
θ) when minimum-expected cost decisions are made with the log-likelihood-
ratio scores L′

t as output by the system under evaluation. Note:

15 In this chapter, we use the term discrimination/calibration decomposition. This is
similar in spirit, but not in form, to the refinement/calibration decomposition which
was introduced by De Groot two decades ago [16] and again recently examined for
speaker detection in ref. [7]

16 Recall that both of the axes in DET-curves are also infinite and that there too, we
plot only a selected region.
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– The area17 under the solid curve is proportional to Cllr, which can be
interpreted as the total actual error over the spectrum of applications.

– The vertical dashed line at θ = − log 9.9 represents the traditional NIST
DCF parameters, so that the solid curve at this point gives18 the tradi-
tional actual Cdet.

– The error-rate goes to zero for large |θ|, in such a way that the Cllr

integral exists (has a finite value).19
The dashed curve. shows Pe(θ), but with scores L′

t replaced by w(L′
t) as

found by the PAV algorithm.
– The area under the dashed line is proportional to Cmin

llr , which can be
interpreted as the total discrimination error over the whole spectrum of
applications.

– The area between the solid and dashed curves represents the total cali-
bration error.

– At the vertical line representing the NIST DCF parameter settings, Cmin
det

can be read20 from the dashed curve.
– The dashed curve has a unique global maximum, which is the equal-

error-rate (EER). This maximum is typically located close to θ = 0.
The dotted curve. represents the probability of error for the reference detec-

tor, which does not use the speech input, basing its decisions only on the prior
P̃tar. As noted above, the reference detector outputs L′

t = 0 for every trial.
The error-rate of the reference detector is Pe(θ) = min(P̃tar(θ), 1 − P̃tar(θ)).
Note here:
– The APE-plot scale does not show the maximum at Pe = 0.5.
– The area under the dotted curve is proportional to one (with the same

scale factor as the areas under the other curves), and therefore represents
the Cllr-value of the reference system.

– For |θ| � 1, Pe goes to zero rapidly.
– For large negative θ we can observe that our example system performs

worse than the reference detector!

The APE-curve is complementary to the traditional DET-curve. There is
information, like the EER, that is duplicated in both curves, while some infor-
mation displays better on the DET-curve, and other information better on the
APE-curve. As a general rule, the DET-curve is a good tool for examining details
of discriminative ability, while the APE-curve a a good tool for examining de-
tails of calibration. In addition, both curves have value as educational resources:
As we know, the DET-curve demonstrates the error-tradeoff. The APE-curve
demonstrates:
17 The area is the analytically derived definite integral over the whole infinite θ-axis

and not just the area under the visible part of the curve.
18 The value of the solid curve is an error-rate, which is a scaled version of the cost,

Cdet, where the scaling factor is 1.09, as derived in footnote 12.
19 This holds, provided that |L′

t| < ∞, for every trial t. If however the system does
output even a single log-likelihood-ratio of infinite magnitude having the wrong sign,
then the Cllr integral will evaluate to infinity.

20 Again subject to the scaling factor of 1.09.
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Fig. 4. APE-plot for our example system. Indicated are: Pe(θ) for observed L (solid
curve), optimally calibrated w(L) (dashed curve) and a reference detector (dotted
curve).

– The derivation of Cllr as an integral of error-rate over the spectrum of ap-
plications.

– The importance of the EER as an application-independent indicator of dis-
criminative ability.

– As discussed in more detail below, Cllr has the information-theoretic in-
terpretation of being the amount of information that is lost between the
input speech and the final decisions. The APE-curve is therefore a graphical
demonstration of a relationship between information and error-rates—the
more information you extract from the speech, the lower the error-rates
will be.

Discussion. There is something interesting going on in the APE-curve around
θ = 0. On the one hand we see that Pe gives the biggest contribution to Cllr

in this region. That would suggest that the task of the detector is hardest for
θ ≈ 0, including the task of calibration. On the other hand, the benefit with
respect to the reference detector is also the biggest in this region. Another way
of phrasing this is that it seems that the information can be extracted from the
speech signal most effectively when P̃tar ≈ 0.5. For |θ| � 1 there is already a
lot of information in the prior, and it is difficult to add something useful by
analyzing the speech signal, even though the probability of error is lower.



348 D.A. van Leeuwen and N. Brümmer

There is a further concern: it is also more difficult to accurately estimate
error-rates when |θ| � 1, because the absolute number of errors in these regions
becomes small and eventually vanishes. So it seems the extreme regions of the
APE-curve are regions where our detectors probably won’t work so well, but
also where we cannot estimate their performance accurately. In our APE-plots,
we ignore these regions by not plotting them. This is just the same as is done
with DET-curves. The horizontal and vertical axes of the DET-plot are infinite,
but we always plot just a finite interesting region of this plot. Outside of this
plot, the DET-curve becomes increasingly jagged, which is an indication of poor
error-rate estimates.

The saving grace is that there are real-life effects that force reasonable ap-
plications to lie close to θ = 0. There may certainly be applications where the
prior Ptar becomes very small. But when things become scarce, their value gen-
erally increases. This means the cost of missing scarce events increases as the
prior becomes smaller. Now recall (6) and note that a decrease in Ptar will be
compensated for by an increase in Cmiss, leaving θ approximately unchanged.
Conversely, a similar argument shows that when 1 − Ptar becomes small, then
CFA would increase to compensate, again tending to keep θ roughly constant.
It does therefore seem to make sense to concentrate our efforts to the benign
central region of the APE-curve (or the corresponding region of the DET-curve).

2.8 Information-Theoretic Interpretation of Cllr

We have introduced Cllr as an integral of Cdet over the spectrum of applications,
but as hinted above, Cllr can be also be interpreted as a measure of loss of
information [4].

Again, we will not do a rigorous information-theoretic derivation, but rather
show informally how 1 − Cllr can be interpreted as the average information per
trial (in bits of Shannon’s entropy) that is gained by applying the detector.
The information extracted by the detector from the speech is dependent on
what is already known before considering the speech. This prior knowledge is
encapsulated in the prior, Ptar. When Ptar = 0, or Ptar = 1, then there is
already certainty about the speaker hypothesis and the detector cannot change
this—the posterior will also be 0 or 1. However, values of Ptar between these
extremes leaves a degree of prior uncertainty, up to a maximum of 1 bit where
Ptar = 0.5. This maximum prior uncertainty is the reference level against which
Cllr measures the information that the detector can extract from the speech.
The information extracted from the speech by the detector, namely 1− Cllr bits
per trial, behaves in the following way:

– A (theoretically) perfect detector has Cllr = 0 and therefore 1 − Cllr =
1, so it extracts all the information for every trial, transforming the prior
uncertainty to posterior certainty in every case.

– A good, well-calibrated, real-life detector has 0 < Cllr < 1, extracting an
amount of information somewhere between 0 and 1 bit per trial.

– The reference detector which does not process the input speech has Cllr = 1
and therefore extracts 0 bits of information from every trial.
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– A very badly calibrated21 detector can do worse than this, having Cllr > 1,
therefore extracting a negative amount of information. The negative sign
indicates that on average over the APE-curve, the detector under evaluation
has a higher error-rate than the reference detector. In this case it is therefore
detrimental to use the detector and it is obviously better not to use (or at
least to go and re-calibrate) the detector, because one could do better by
just using the reference detector.

2.9 Comparison of Systems: DETs and APEs

Let us end this chapter with an example of the use of Cllr and APE-plots for
comparing systems or conditions. This, in the end, is one of the key reasons
to perform evaluations. To this purpose we use the data of two systems under
evaluation of NIST SRE 2006 [5] which both may be called state of the art. The
first system (which we have seen in earlier figures) consists of a single detector,
the second system consists of the fusion of 10 separate detectors, of which the
first system is one.

We further compare two evaluation conditions. The first condition includes
trials with speech spoken in several languages, while the second condition has
the subset of the trials where both speech segments are English.

We first look qualitatively at the DET-plot of three system/conditions in
Fig. 5. Note how the DET warping of axes separates the three curves comfortably
in the plot22.

If we now inspect the curves more closely, we see that in terms of discrim-
ination ability, the fused system performs favourably compared to the single
system. Similarly we can conclude that, for the fused system, the English only
trials were easier to discriminate than the whole collection of trials including
several languages. (It does not really make sense to compare the upper and the
lower curve, since both system and condition are different.) As for calibration,
we can only conclude that for the NIST DCF the calibration was reasonable,
and possibly better for the English only condition. We can finally observe that
the lowest curve gets a bit noisy because a relatively low number of errors are
made. For the English-only condition we have less than 30 target trial errors
around Pmiss < 1.4 %, so that if we apply George Doddington’s ‘rule of 30’ [17]
we find that for these low miss probabilities we are less than 90% confident that
the true Pmiss is within 30% of the observed Pmiss.

We next look at the same systems evaluated on the same data, but depicted
in APE-plots in Fig. 6. Here we have included a bar-graph of the Cllr and its
21 It is only calibration problems that can cause Cllr > 1. If we remove calibration

effects, considering only the discriminative ability of the detector, we find 0 ≤ Cmin
llr ≤

1.
22 With many different systems or conditions, the number of curves in a DET-plot

is more often than not limited by the number of colours and/or line types. Also
notice that the legend in the plot enumerates the curves in the same top-to-bottom
order as the curves appear in the plot, i.e., according to the EER. (This practice is
unfortunately not followed by all authors.)
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Fig. 5. A DET-plot for three system/conditions. From top to bottom: Single system,
all trials; Fused system, all trials; and fused system, English trials. Notice that the
upper and lower curve should not be compared with each other.

decomposition into discrimination and calibration loss, expressed in bits. The
scales of the figures are the same, so that values can be compared visually.
We can observe that although the fused system has much better discrimination
power than the single system, the calibration error is roughly the same. Similarly,
restricting trials to only English has a bigger effect on the discrimination than
on the calibration. From the APE-curves we can learn that there is still quite
some calibration performance to be gained for the fused system, especially at
θ = 0. All systems/conditions seem to suffer from being ‘worse than the reference
system’ at very low θ.

One difference between DET and APE is the way that inaccuracies due to
the limited number of trials show up. The curve in a DET-plot usually becomes
ragged at the ends due to the low number of errors involved, showing that at
each end, respectively Pmiss or PFA is poorly estimated. The fact that this effect
is visible on the plot is a consequence of the magnification of small probabilities
by the probit scale used in the DET-curve. In the APE-curve we do not see
these effects, because when either Pmiss or PFA is poorly estimated, their value
on the vertical axis is also small. Since Cllr is the area under the APE-curve,
we see that fortunately these inaccuracies contribute relatively little to the to-
tal Cllr integral. Having said this, we must also remark that the proportions of
the numbers of target and non-target trials in a NIST evaluation typically is
1:10, which leads to almost optimum accuracy at the operating point defined by
Cdet—this may be observed from the roughly equal 95%-confidence intervals in
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Fig. 6. APE-plots of the systems shown in Fig. 5. Note, that the graphs left and middle
compare two systems, while the graphs middle and right compare two conditions.

the DET-plot around Cdet. This 1:10 ratio has the effect that the left-hand side
of the APE-plot is somewhat less noisy than the right-hand side.

3 Conclusion

We reviewed and appreciated the traditional measures that the speaker recog-
nition community uses to assess the quality of automatic speaker recognition
systems. The detection cost function Cdet measures the application-readiness
of a system for a particular application-type as defined by the parameters Ptar,
Cmiss and CFA. NIST deserves credit for defining the task and evaluation measure
and the progress that this has stimulated in the field. In particular, concentrat-
ing on detection rather than identification; and using expected cost, rather than
error-rate for evaluation have had far-reaching effects. Moreover, the DET-curve,
with its warped axes, show very well the trade-off between PFA and Pmiss, and
allow for direct comparison of discrimination ability of many different systems
or conditions in a single graph. Again, NIST deserves credit for introducing this
type of analysis in the community—indeed, gradually DET-plots are being ap-
plied in other disciplines. Finally, when calibration is not an issue, the traditional
EER remains a good single-valued summary of the discriminative capability of
a detector. The utility of the EER as summary of discriminative ability can be
appreciated in different ways in the DET and APE-plots.

We have further shown the limitations of Cdet and Cmin
det , in the sense that al-

though they do measure calibration, they do so only in an application-dependent
way. Of course, the DET-plot and the EER do not measure calibration.



352 D.A. van Leeuwen and N. Brümmer

Next, we reviewed the advantages of working with log-likelihood-ratios instead
of merely with scores. Perhaps the most important advantage is that users can
then set their own decision thresholds, where the thresholds are dependent only
on properties of the application and not on the properties of the speaker detector.
Despite these obvious and well-known advantages, the use of log-likelihood-ratio
outputs in speaker recognition has not been common, presumably because such
likelihood-ratio outputs are in practice subject to calibration problems, and with-
out being able to measure these calibration problems, researchers had no good
way to even start tackling this problem.

Our most important contribution in this chapter is therefore the introduc-
tion of a methodology to measure the quality of log-likelihood-ratios via Cllr.
Moreover, we paid special attention to the issue of calibration, by forming a dis-
crimination/calibration decomposition of Cllr. The practical calculation of Cllr

via (9) is no more complex23 than the traditional Pmiss and PFA calculations.
The calculation of Cmin

llr is somewhat more complex, because it involves the
PAV algorithm, but fortunately implementations are available to researchers,
see e.g. [4].

Finally, we showed that the new metric Cllr has the interpretation not only
as an integral of error-rates over the spectrum of applications, but also as the
average information loss between speech input and decisions. This relationship
is graphically demonstrated by the APE-plot, which indeed, for analysis of cali-
bration, forms a useful complement to traditional DET-plots.

In conclusion, looking towards the future, it was announced at the June 2006
workshop of the NIST Speaker Recognition Evaluation that NIST intended to
include the new measure Cllr as the primary evaluation measure in future evalu-
ations. We hope this will stimulate more research on the subject of calibration,
which is an important factor of the design of speaker recognition systems.
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