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Abstract. This paper presents a two-step algorithm to perform auto-
matic extraction of vessel tree on angiogram. Firstly, the approximate
vessel centerline is modeled as marked point process with each point de-
noting a line segment. A Double Area prior model is proposed to incor-
porate the geometrical and topological constraints of segments through
potentials on the interaction and the type of segments. Data likelihood
allows for the vesselness of the points which the segment covers, which
is computed through the Hessian matrix of the image convolved with
2-D Gaussian filter at multiple scales. Optimization is realized by sim-
ulated annealing scheme using a Reversible Jump Markov Chain Monte
Carlo (RJMCMC) algorithm. Secondly, the extracted approximate vessel
centerline, containing global geometry shape as well as location informa-
tion of vessel, is used as important guide to explore the accurate vessel
edges by combination with local gradient information of angiogram. This
is implemented by morphological homotopy modification and watershed
transform on the original gradient image. Experimental results of clinical
digitized coronary angiogram are reported.

Keywords: Angiogram, Vascular tree, Segmentation, Stochastic geom-
etry, Marked point process, Markov Chain Monte Carlo.

1 Introduction

Vessel segmentation algorithm is critical component of circulatory blood ves-
sel analysis systems. It provides important information of quantitative analysis
about cardiac and cerebral disease. The difficulties of vessel segmentation mainly
come from the weak contrast between vascular trees and the background, an
advance unknown and easily deformable shapes of the vessel tree, sometimes
overlapping strong shadows of bones and so on.

Many techniques about the problem of coronary vessel extraction begin with
some local optimization process to character the vessel structure in the form of
different description, operator and model. They have been built upon the pixel
domain and different feature spaces of image. Region growing techniques mainly
discriminate the vessel part from angiogram by intensity similarity and spatial
proximity. Skeleton-based methods aim at extracting blood vessel centerlines,
from which the whole vessel tree is reconstructed [1]. The ridge-based methods
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make use of intensity ridges to approximate the skeleton of the tubular objects
while the grays image is treated as 3D elevation maps [2]. Ridge points can be
obtained by tracing the intensity map from arbitrary point, along the steepest
ascent direction of intensity. The Hessian matrix, containing the second-order
differential properties of image, are also been used to track the ridge point [3]
[4]. Matching filter approach convolves the image with multiple matched filters
for the extraction of vessel structure [5]. The essence of this method existing
in describes or approaches local lattices of image with the convolution kernel
used. This method compares to the mathematical morphology schemes, which
apply structuring elements to “match” the image with morphologic operators.
The combination of several operators has also been proposed to complement one
or more of them. For the incompleteness of these local descriptions for vessel
structure, they usually have a heuristic post-processing step.

The methods based on local process usually lack detailed description of the
geometry and topology of the global vessel structure, and might be very sensitive
to local minima. Thus, besides the local description of vessel structure, other
methods for vessel segmentation have also been proposed to character some
relation between the local feature and shape of the whole structure [6],[7]. These
methods usually are expressed with some model. Deformable models are such
techniques that find object contours using parametric curves that deform under
the influence of internal and external forces. It can either be parametric [8] or
geometric [9]. The curvature and the gradient, acting as description for shape and
intensity feature of vessel structure, are used to define an energy function. The
final contour fits the vessel boundaries following a differential equation whose
solution corresponds to a local minimum of the energy. In these methods, the
constraint for curvature can be treated as the prior information about the vessel
structure.

The prior information about vessel, however, can also be embedded into some
model for the region of vessel structure instead of the edges. Based on such con-
sideration, a two-step method, which combines the global geometry and local
operator, for vessel extraction is proposed to achieve both robustness and accu-
racy in this paper. The basic idea is to inference the global geometry information,
the approximate vessel centerline, and makes use of it to regularize a local edge
detection algorithm. Where the abstract geometry embodied in object acts as
important carrier of detailed quantities information of object.

The stochastic geometry model is explored to capture the geometry and topol-
ogy of vessel tree. Assume the vessel centerline consists of local linear segments
with certainly length and orientation, which is called approximate vessel center-
line. In the first step, approximate vessel centerline is modeled as marked point
process [10]. A Double Area model is proposed to incorporate the geometric
and topological knowledge of vessel structure. The connectivity of structure is
characterized by distance of extreme point of segments. The orientation consis-
tency of connected segment characters the alignment of vessel structure. The
optimization is done via simulated annealing using a Reversible Jump Markov
Chain Monte Carlo (RJMCMC) algorithm [11],[12]. We design well balanced
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Markov chains to explore the solution space. Moreover, Data-Driven techniques
are utilized to compute heuristic information in the cue space [13].

As some abstract geometric descriptor of vessel structure, the approximate
centerline contains important shape and location information of vessel tree.
Thus, in the second step, the centerline is used as important guide to explore
the accurate vessel edges by combination with local gradient information of
angiogram. This is implemented by morphological homotopy modification and
watershed transform on the original gradient image.

Several contributions have been proposed for vessel extraction with point
process under the stochastic geometry framework. A Gaussian intensity model
developed by E.Thönnes et al. [14] is adopted and used as the observed data
under a Bayesian framework. Vascular image is modeled with random tree mod-
els(RTMs). A multi-scale approach based on marked point processes is proposed
in [15]. Compared with the existing object-orientated methods, the proposed
method in this paper model the shape or geometry rather than the vessel object
(region or edge) itself. It takes advantage of the point process in a mediate way
for vessel extraction. The approximate centerline explored acts as a hidden vari-
able [16], [17] in the sense of computing for vessel extraction. The robustness is
assumed by the geometry model and the accuracy is kept for the local operator
used.

This paper is organized as follows: In the next section, the Double Area model
is described and used for modeling the approximate vessel centerline. Next, the
RJMCMC dynamics is built to simulate the model. In section 3, experiments
on simulation of the point process with real clinic x-ray angiogram are reported.
Section 4 describes the process of watershed technology used to detect accuracy
vessel boundaries with the extracted vessel approximate centerline as marker.
Finally, some discussion is presented.

2 Model for Approximate Vessel Centerline Extraction

Among the stochastic methods widespread in image analysis, the marked point
process has the advantage of combing information “globally” to identify geo-
metrical shape and is acknowledged more appropriate prior model than discrete
Markov random fields [18] to use in object recognition and some other “high-
level” vision problem. It is adopted in order to solve image analysis problems
using an object-oriented rather than a pixel-oriented approach [16]. In this sec-
tion, we firstly turn the vessel segmentation into a shape recognition problem
and make use of marked point process to model approximate vessel centerline,
which contains the shape and topology information of vessel.

The approximate vessel centerline is described as a configuration of line seg-
ments set. A segment is given by si = (pi, mi), with pi = (xi, yi) ∈ ∧ ⊂ R2,
the coordinates of its center. The label of a segment mi = (li, θi) ∈ ΩM are
its length and orientation. ∧ is the lattices the image covers. ΩM is the marker
space [lmin, lmax] × [0, π]. The line segments set S = {si, i = 1, ..., n ∈ N} is
considered as a realization of a point process on ∧ × ΩM .
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The real vessel centerline is generally characterized by several strong con-
straints such as structure continuity and consistency of local orientation. These
constrains can be considered as interactions between segments of the point pro-
cess which can either penalize or favor some particular configuration through
potentials in the density of process. Two components constitute the probability
density of the point process. The first is the interaction model (Double Area
model), which is determined by the interaction between segments: attraction,
rejection, and the dimension of the segments set. The second term is the data
model, which gives the location in the image of the different segment with the
centerline.

Within the framework of a Gibbs point process [16], the probability density
of the proposed model is:

f(S) ∝ βn exp(−E(S)) = βnexp − (Ep(S) + Ed(S)) , (1)

where Ep(S) is the interaction energy, and Ed(S) is the data energy. The estimate
of the approximate centerline is obtained by minimizing the energy function
E(S):

S∗ = arg min{Ep(S) + Ed(S) − n log β} . (2)

The term −n logβ is the energy term corresponding to the Poisson process to
which the density of point process with respect, and may be interpreted as a
penalty on the total number of segments.

The global minimum of the energy function E(S) is found by a simulated
annealing technique. This algorithm iteratively simulates the law:

f(S, T ) = [f(S)]
1
T , (3)

while slowly decreasing the temperature T . When T → 0, the result of the
simulations converges in probability to the global minimum.

2.1 Double Area Model

The Double Area model is based on the types of segments and two relations of
interaction between segments, Ra (attraction) and Rr (rejection). The energy of
this prior model is:

Ep(S) = λ0n+λ1nf +λ2ns+λa

∑

<si,sj>Ra

ga(si, sj)+λr

∑

<si,sj>Rr

gr(si, sj) . (4)

In the above prior energy, n, nf and ns are respectively the number of total
segments, free segments and single segments. λ0, λ1, and λ2 are the penalty
constant for the number of them. λ0 is − log β in formula (2). We follow the
definition of segment types in [19]; two segments are said to be connected if two
of their extremities are closer than a constant ε. This relation defines three types
of segments. Free segments are those which are not connected, single ones are
those with only one of their endpoints connected to other segments, and double
segments have their two endpoints connected.
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< si, sj > Ra is a pair of interacting segments of attraction, and ga(si, sj)
is the potential function with respect to Ra. The attractive interaction, Ra,
is defined to favor the connectivity of pairs of segments. A segment s has two
extremities to which another segment can be connected, Us and Vs (see Fig.1(a)).
An attractive region Wa is defined for each segment. This region is represented
by disks centered at two extremities of a segment: Wa(s) = Ca(Us, ra = ls/4) ∪
Ca(Vs, ra = ls/4). Fig.1(a) illustrates this definition. Two segments si = (pi, mi)
and sj = (pj , mj) have attractive interaction if the attractive region of the two
segments intersect, i.e. Wa(si) ∩ Wa(sj) �= ∅. The potential function between
< si, sj > Ra is intersection area of the two region to that of the minimal
one:

ga(si, sj) =
∑

K1=Usi
,Vsi

∑

K2=Usj
,Vsj

A(Ca(K1) ∩ Ca(K2))
min(A(Ca(K1)), A(Ca(K2)))

, (5)

where A(.) denotes the area of (.). This interaction describes the connectiv-
ity of segments and is assigned a negative weight λa to favor connectivity of
segments.

Fig.1(b) shows the attractive interactions between several segments. Two seg-
ments with the minimal energy state (ga = 1) defined by above potential function
may take on different orientation relation of them, or different curvature. The
real vessel structure will prefer < s1, s2 > Ra to < s1, s3 > Ra (see Fig.1(b)). We
define rejective interaction to distinguish the connected segments having differ-
ent orientation consistency. A rejective region Wr(s) is defined for each segment:
Wr(s) = Cr(Ps, rr = ls/2). Two segments si = (pi, mi) and sj = (pj , mj) have
rejective interaction if the rejective region of the two segments intersect, i.e.
Wr(si) ∩ Wr(sj) �= ∅. The potential function for rejection interaction between
< si, sj > Rr is:

gr(si, sj) =
A(Wr(si) ∩ Wr(sj))

min(A(Wr(si)), A(Wr(sj)))
, (6)

with A(.) being the area of (.) also. This definition is also applicable to the seg-
ments which are not connected. Fig.2(a) shows the rejective region of a segment
and (b) shows several examples of rejection configuration.

Similar segment process is devised and used to extract line network from
remotely sensed image in [20]. Except the slight difference of the property of
expected object, a distinct peculiarity of the proposed model in this paper is
that no threshold for orientation is used to forbid any unexpected configuration.

2.2 The Data Term

To check the fitness of a segment s to the data, we consider the set of pixels
Qs covered by s in the image. Data potential is defined with the vesselness of
Qs computed by a multiscale vessel enhancement measure, based on the work of
[4] on ridge filters. Having extracted the two eigenvalues of the Hessian matrix
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(a) (b)

Fig. 1. Attractive interaction of segments. (a) A segment s has two extremity Us and
Vs, and two disk attractive region centered at Us and Vs. (b) Three segments s1,s2,s3

share a common endpoint, and both ga(s1, s2) and ga(s1, s3) have the same attraction
potential, while the two point pairs have different consistency of orientation.

(a) (b)

Fig. 2. Rejective interaction of segments (a) A segment s has one disk rejective region
centered at Ps. (b) gr(s1, s2) and gr(s1, s3) have different potential values.

computed at scale σ, ordered |λ1| ≤ |λ2|, a vesselness function is defined at each
pixel:

ν(σ) =

{
0, ifλ2 ≥ 0
exp −R2

B

2β2 (1 − exp −S2

2c2 ), otherwise .
(7)

where RB = |λ1|
|λ2| , and S =

√
λ2

1 + λ2
2. A detailed explanation of each parameter

in this measure is in [4]. A vesselness image can be taken with the maximum of
the response of the filter across several selected scales. We expect that the pixels
in Qs have big vesselness, thus define the data energy of the point process S as

Ed(S) = λd

∑

s∈S

ψ(ν(Qs)) . (8)

ν(Qs) is the mean vesselness of all the pixels in Qs. ψ(x) = (1−x
1+x )k is a decreasing

function. This function casts a range (depending on k) of vesselness into energy
near zero.

2.3 Optimization by Data-Driven MCMC

A solution for the point process is represented by a point set

S = (N, {(xi, yi), li, Θi}; i = 1, 2...N) , (9)
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where the number of point N is unknown and the solution space is a union of
many subspaces ΩN of varying dimensions:

Ω = ∪ ∞
N=0ΩN , ΩN = ∧ × ΩM , (10)

where ΩN is the subspace with exactly N point. It is further decomposed into
location and marker space.

Designing Ergodic Markov Chain Dynamics. The search algorithm should
make the markov chain can visit any state in the solution in finite time steps. It
requires both jump dynamics which move between subspace of varying dimen-
sions and diffusion dynamics which move within a subspace of a fixed dimension.
That the Markov chain have f(S) as its invariant probability at equilibrium is
assured by detailed balance at every move and the reversibility of each move.

We use the Reversible Jump Markov Chain Monte Carlo (RJMCMC) algo-
rithm with a Metroplis-Hasting-Green dynamics [11],[12] to simulate the process
distribution f(S, T ) specified by the density [f(S)]

1
T . At any state of the Markov

chain, a propose kernel is proposed and the transition is accepted with a prob-
ability given by the Green’s ratio. This accepted rate is computed so that the
detailed balance condition is verified, condition under which this algorithm con-
verge to f(S, T ).

We adopt three types of dynamics in the evolution of Markov chain, which
are used randomly with probabilities qb, qd, qm respectively.

Dynamics 1: Birth of a point. It is a process of jump between spaces of different
size. Suppose at a certain time step, we propose to birth a point, thus move
the Markov chain from current state S to S ∪ {s′}. By the classic Metropolis-
Hastings method [21], we need two proposal probabilities p(S → S ∪ {s′}) for
the move and p(S ∪{s′} → S) for moving back. Then the proposal move is then
accepted with probability

α(S → S ∪ {s′}) = min(1,
p(S ∪ {s′} → S)f

1
T (S ∪ {s′})

p(S → S ∪ {s′})f
1
T (S)

) . (11)

Dynamics 2: Death of a point. It is the reversible jump of Dynamics 1. In this
case of death of a segment s′, the probability to accept is

α(S → S \ s′) = min(1,
p(S \ s′ → S)f

1
T (S \ s′)

p(S → S \ s′)f
1
T (S)

) . (12)

Dynamics 3: Diffusion of the length and orientation of a point. It is the modifi-
cation of a randomly chosen object according to a symmetrical transformation.
The transformation can be stretching of length or changing the orientation of
the considered segment:

S → (S \ s(ps, ls, θs)) ∪ {s′(ps, (ls + dl)[lmin, lmax], θs + dθ[0, π])} , (13)
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where [.] denotes the module function. d(.) is a small step of (.). The acceptance
probability for this dynamic is

α(S → (S \ s) ∪ {s′}) = min(1,
f

1
T ((S \ s) ∪ {s′})

f
1
T (S)

) . (14)

Computing Important Proposal Probabilities in Cue Space. The effec-
tiveness of MCMC depends critically on the design of the proposal probability.
The important proposal probability can be computed using Data-Driven meth-
ods [13]. We use the computation of vesselness, presented in section 2.2 for data
term, to define a birth kernel.

To compute p(S → S ∪ {s′} in formula (11), the route first chooses a birth
move with probability qb, then chooses a point pi from the pixel domain ∧; this
probability is denoted by q(pi). Given pi, it chooses a length li and an orientation
θi with probabilities q(li|pi) and q(θi|pi) respectively. Thus,

p(S → S ∪ {s′}) = qbq(pi)q(li|pi)q(θi|pi) . (15)

q(pi) is often decided by the goodness of fit on a point. A point with good fit has
a higher chance to birth. From the vesselness computed in section 2.2 of each
point, we can define an inhomogeneous birth kernel for the midpoint coordinate
of a segment

q(pi) =
ν(pi)∑

pj∈∧ ν(pj)
, (16)

where ν(pi) is the vesselness of point pi. Similarly, we can also define an inhomo-
geneous kernel for the orientation given the segment midpoint. It is computed
by the mean vesselness of a segment under all the possible orientation with a
fixed length. Lastly, q(li|pi) is the uniform distribution in the length space.

The proposal probability for a death move is

p(S ∪ {s′} → S) = qd
1

n(S) + 1
, (17)

where n(S) is the number of segments in S. It means choosing a point in the
current configuration randomly under uniform distribution for a death move.

3 Experiments on Simulation of the Point Process

The proposed method is implemented on the clinical coronary and some of the
results are reported in this section. Fig.3(a) is a part of original angiogram. The
minimal and maximal diameter of vessel tree is about 5 and 17 pixels respectively.
We use three scale, σ being 2, 4, 8, respectively, to compute the vesselness image
by formula (7). Fig.3(b) shows the result of this vesselness filter. The normalized
vesselness image is treated as a distribution for the proposal probability for birth
a segment, which is expressed by formula (16). The proposal probability of the
orientation given a point also is computed from the vesselness image. Fig.3(c)
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is the result of simulation of the point process. The interaction parameters were
fixed to λ0 = 1, λ1 = 0.7, λ2 = 0.4, λa = 1.75, λr = 5.5, λd = 0.9.

Other results are shown in Fig.4; (a) and (d) are the original angiogram; (b)
and (e) are the extracted approximate centerline by the point process; (c) and
(f) are the results of segmentation by watershed, which will be presented in next
section. It can be seen that some small branching of vessel is missed by the
point process in (e). It shows that there is need for more consideration for the
parameter to balance the prior and data term.

4 Extraction of Coronary Artery Edge with Marker
Watershed

The centerline extracted above provides important clues of form as well as lo-
cations of vessel and many local operators can be used to detect the accurate
vessel boundary based on it. Though the gray intensity of background varies on
the angiogram, there exists gray level different between the vessel and the back-
ground everywhere. The implementation of morphological watershed transform
on gradient image of original angiogram can extract the watershed lines (vessel
boundary) which separate the homogeneous gray region [22]. Oversegmentation
is prevented by only using the regional minima defined by the centerline.

The edge extraction process is implemented on each branching of centerline
respectively. Fig.5(a) is a branching of centerline, which acts as the vessel marker.
Then dilating of it produces the marker of background. See the blank region in
Fig.5(b). Then obtained marker of vessel and background is lastly used to mod-
ify gradient image of original angiogram, and the edge of vessel is achieved by
watershed on the modified gradient image. Fig.5(c) is the morphological gradient
image of part region in original image of Fig.3(a). Fig.5(d) is the gradient image
with the region of vessel marker and background marker being zero. The suppres-
sion of the minima not related to the markers is achieves by applying geodesic
reconstruction techniques [23] [24]. Fig.5(e) shows the modified gradient image
with such operator. Taking watershed operator on Fig.5(e) get the edge of vessel
shown in Fig.5(f). Union of the result of each branching produces the last ves-
sel segmentation result shown in Fig.3(d) imposed on original angiogram. The
results of the other two angiogram are shown in Fig.4(c) and (f).

(a) (b) (c) (d)

Fig. 3. Approximate centerline extraction. (a) Original angiogram. (b) Vesselness im-
age. (c) Approximate centerline. (d) Edges imposed on original image.
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(a) (b) (c)

(d) (e) (f)

Fig. 4. (a),(d) Original angiogram. (b),(e) Extracted approximate centerline. (c),(f)
Segmentation result.

(a) (b) (c)

(d) (e) (f)

Fig. 5. (a) Centerline as vessel marker. (b) Dilation of (a) as background marker. (c)
Gradient image of Fig.1(a). (d) Gradient image with vessel and background marker
region being zero. (e) Gradient image with local minimum modified. (f) Extracted
vessel edge by watershed.



Marked Point Process for Vascular Tree Extraction on Angiogram 477

5 Discussion

In this paper, we show a method to obtain the important information of the
shape and the location of the coronary artery tree by the marked point process.
The accurate edge is obtained with local operator guided by the shape and
location information.

The properties of the proposed prior model need to be more deeply investi-
gated. Relevant moves require to be defined to accelerate the convergence of the
Markov chain. We use a simple measure for the data likelihood in this paper.
However, many existed methods for vessel extraction may be used to compute
important probabilities and data energy term. When the vessel structure takes
on vessel very complex curvature relation, the ability of the proposed point pro-
cess will be restricted by the length space of the segment. A possible method
solving this problem is to generalize the segment process into the pure curve
process, which is nearer to the real vessel structure than line segment.
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