
An Effective Multi-level Algorithm Based on
Simulated Annealing for Bisecting Graph

Lingyu Sun1 and Ming Leng2

1 Department of Computer Science,
Jinggangshan College, Ji’an, PR China 343009
2 School of Computer Engineering and Science,

Shanghai University, Shanghai, PR China 200072
sunlingyu@jgsu.edu.cn,lengming@shu.edu.cn

Abstract. Partitioning is a fundamental problem in diverse fields of
study such as knowledge discovery, data mining, image segmentation and
grouping. The min-cut bipartitioning problem is a fundamental graph
partitioning problem and is NP-Complete. In this paper, we present an
effective multi-level algorithm based on simulated annealing for bisect-
ing graph. The success of our algorithm relies on exploiting both the
simulated annealing procedure and the concept of the graph core. Our
experimental evaluations on 18 different graphs show that our algorithm
produces encouraging solutions compared with those produced by MeTiS
that is a state-of-the-art partitioner in the literature.

1 Introduction

Partitioning is a fundamental problem with extensive applications to many areas
using a graph model, including VLSI design [1], knowledge discovery [2], data
mining [3],[4], image segmentation and grouping [5],[6]. For example, inspired by
spectral graph theory, Shi and Malik [6] formulate visual grouping as a graph
partitioning problem. The nodes of the graph are image pixels. The edges be-
tween two nodes correspond to the strength with which these two nodes belong
to one group. In image segmentation, the weights on the edges of the graph
corresponds to how much two pixels agree in brightness, color, etc. Intuitively,
the criterion for partitioning the graph will be to minimize the sum of weights of
connections across the groups and maximize the sum of weights of connections
within the groups. The min-cut bipartitioning problem is a fundamental parti-
tioning problem and is NP-Complete [7]. The survey by Alpert and Kahng [1]
provides a detailed description and comparison of various such schemes which
can be classified as move-based approaches, geometric representations, combina-
torial formulations, and clustering approaches.

Most existing partitioning algorithms are heuristics in nature and they seek
to obtain reasonably good solutions in a reasonable amount of time. Kernighan
and Lin (KL) [8] proposed a heuristic algorithm for partitioning graphs. The
KL algorithm is an iterative improvement algorithm that consists of making
several improvement passes. It starts with an initial bipartitioning and tries to

A.L. Yuille et al. (Eds.): EMMCVPR 2007, LNCS 4679, pp. 1–12, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

2 L. Sun and M. Leng

improve it by every pass. A pass consists of the identification of two subsets of
vertices, one from each part such that can lead to an improved partitioning if
the vertices in the two subsets switch sides. Fiduccia and Mattheyses (FM) [9]
proposed a fast heuristic algorithm for bisecting a weighted graph by introducing
the concept of cell gain into the KL algorithm. These algorithms belong to the
class of move-based approaches in which the solution is built iteratively from an
initial solution by applying a move or transformation to the current solution.
Move-based approaches are the most frequently combined with stochastic hill-
descending algorithms such as those based on Tabu Search[10],[11], Genetic Algo-
rithms [12], Neural Networks [13], Ant Colony Optimization[14], Particle Swarm
Optimization[15], Swarm Intelligence[16] etc., which allow movements towards
solutions worse than the current one in order to escape from local minima.

As the problem sizes reach new levels of complexity, a new class of graph
partitioning algorithms have been developed that are based on the multi-level
paradigm. The multi-level graph partitioning schemes consist of three phases
[17],[18],[19]. The coarsening phase is to reduce the size of the graph by collaps-
ing vertex and edge until its size is smaller than a given threshold. The initial
partitioning phase is to compute initial partition of the coarsest graph. The un-
coarsening phase is to project successively the partition of the smaller graph back
to the next level finer graph while applying an iterative refinement algorithm.

In this paper, we present a multi-level algorithm which integrates a new sim-
ulated annealing-based refinement approach and an effective matching-based
coarsening scheme. Our work is motivated by the multi-level refined mixed sim-
ulated annealing and tabu search algorithm(MLrMSATS) of Gil which can be
considered as a hybrid heuristic with additional elements of a tabu search in a
simulated annealing algorithm for refining the partitioning in [20] and Karypis
who introduces the concept of the graph core for coarsening the graph in [19] and
supplies MeTiS [17], distributed as open source software package for partition-
ing unstructured graphs. We test our algorithm on 18 graphs that are converted
from the hypergraphs of the ISPD98 benchmark suite [21]. Our comparative ex-
periments show that our algorithm produces excellent partitions that are better
than those produced by MeTiS in a reasonable time.

The rest of the paper is organized as follows. Section 2 provides some defini-
tions and describes the notation used throughout the paper. Section 3 describes
the motivation behind our algorithm. Section 4 presents an effective multi-level
simulated annealing refinement algorithm. Section 5 experimentally evaluates
our algorithm and compares it with MeTiS. Finally, Section 6 provides some
concluding remarks and indicates the directions for further research.

2 Mathematical Description

A graph G=(V,E) consists of a set of vertices V and a set of edges E such that
each edge is a subset of two vertices in V. Throughout this paper, n and m denote
the number of vertices and edges respectively. The vertices are numbered from 1
to n and each vertex v ∈ V has an integer weight S (v). The edges are numbered

An Effective Multi-level Algorithm 3

from 1 to m and each edge e ∈ E has an integer weight W (e). A decomposition
of a graph V into two disjoint subsets V 1 and V 2, such that V 1 ∪ V 2=V and
V 1 ∩ V 2=∅, is called a bipartitioning of V. Let S (A)=

∑

v∈A
S(v) denotes the size

of a subset A ⊆ V. Let IDv be denoted as v ’s internal degree and is equal to
the sum of the edge-weights of the adjacent vertices of v that are in the same
side of the partitioning as v, and v ’s external degree denoted by EDv is equal to
the sum of edge-weights of the adjacent vertices of v that are in different sides.
The cut of a bipartitioning P={V 1,V 2} is the sum of weights of edges which
contain two vertices in V 1 and V 2 respectively. Naturally, vertex v belongs at
the boundary if and only if EDv > 0 and the cut of P is also equal to 0.5

∑

v∈V
EDv.

Given a balance constraint b, the min-cut bipartitioning problem seeks a solution
P={V 1,V 2} that minimizes cut(P) subject to (1 -b)S (V)/2 ≤ S(V 1),S(V 2) ≤
(1+b)S (V)/2. A bipartitioning is bisection if b is as small as possible. The task
of minimizing cut(P) can be considered as the objective and the requirement that
solution P will be of the same size can be considered as the constraint.

3 Motivation

Simulated annealing belongs to the probabilistic and iterative class of algorithms.
It is a combinatorial optimization technique that is analogous to the annealing
process used for metals [22]. The metal is heated to a very high temperature,
so the atoms gain enough energy to break chemical bonds and become free to
move. The metal is then carefully cooled down so that its atoms crystallize into
high ordered state. In simulated annealing, the combinatorial optimization cost
function is analogous to the energy E (s) of a system in state s which must be
minimized to achieve a stable system.

The main idea of simulated annealing is as follows: Starting from an initial
configuration, different configurations of the system states are generated at ran-
dom. A perturbation of a system state consists of reconfiguring the system from
its current state to a next state within a neighborhood of the solution space. The
change in energy cost between the two configurations is determined and used to
compute the probability p of the system moving from the present state to the
next. The probability p is given by exp(−�E

T), where �E is the increase in the
energy cost and T is the temperature of the system. If �E is negative, then
the change in state is always accepted. If not, then a random number r between
0 and 1 is generated and the new state of the system is accepted if r ≤ p, else
the system is returned to its original state. Initially, the temperature is high
meaning that a large number of perturbations are accepted. The temperature is
reduced gradually according to a cooling schedule, while allowing the system to
reach equilibrium at each temperature through the cooling process.

In [23], Gil proposed the refinement of mixed simulated annealing and tabu
search algorithm(RMSATS) that allows the search process to escape from local
minima by the simulated annealing procedure, while simultaneously the occur-
rence of cycles is prevented by a simple tabu search strategy. At each iteration of

4 L. Sun and M. Leng

RMSATS, the hybrid heuristic strategy is used to obtain a new partitioning s in
the neighbourhood, N (s), of the current partitioning s through moving vertex
v to the other side of the partitioning s. Every feasible partitioning, s ∈ N(s),
is evaluated according to the cost function c(s) to be optimized, thus deter-
mining a change in the value of the cost function, c(s) − c(s). The problem
with local search techniques and hill climbing is that the searching may stop
at local optimum. In order to overcome this drawback and reach the global op-
timum, RMSATS must sometimes accept the worse partitioning to jump out
from a local optimum. Therefore, admissible moves are applied to the current
partitioning allowing transitions that increase the cost function as in simulated
annealing. When a move increasing the cost function is accepted, the reverse
move should be forbidden during some iterations in order to avoid cycling, as in
tabu search. In [20], Gil presents the MLrMSATS approach that is enhancement
of the RMSATS algorithm with the multi-level paradigm and uses the RMSATS
algorithm during the uncoarsening and refinement phase to improve the quality
of the finer graph Gl(Vl,El) partitioning PGl

={V1
l ,V

2
l } which is projected from

the partitioning PGl+1={V1
l+1,V

2
l+1}of the coarser graph Gl+1(Vl+1,El+1).

In this paper, we present a new multi-level simulated annealing refinement
algorithm(MLSAR) that combines the simulated annealing procedure with a
boundary refinement policy. It has distinguishing features which are different
from the MLrMSATS algorithm. First, MLSAR introduces the conception of
move-direction to maintain the balance constraint of a new partitioning s. Sec-
ond, MLSAR defines c(s)=cut(s) and exploits the concept of gain to fast the
computation of c(s) − c(s) that is computed by ED(v)-ID(v), where the vertex
v is chosen to move to the other side of the partitioning s. MLSAR also uses two
buckets with the last-in first-out (LIFO) scheme to fast storage and update the
gains of boundary vertices of two sides and facilitate retrieval the highest-gain
vertex. Finally, MLSAR doesn’t select vertex v to move at random in boundary
vertices as in MLrMSATS, but always chooses to move a highest-gain vertex v
from the larger side of the partitioning. It is important for simulated annealing
to strengthen its effectiveness and achieve significant speedups for high quality
solutions with well-designed heuristics and properly move generation strategy.

In [17], Karypis presents the sorted heavy-edge matching (SHEM) algorithm
that identifies and collapses together groups of vertices that are highly connected.
Firstly, SHEM sorts the vertices of the graph ascendingly based on the degree
of the vertices. Next, the vertices are visited in this order and SHEM matches
the vertex v with unmatched vertex u such that the weight of the edge W (v,u)
is maximum over all incident edges. In [19], Amine and Karypis introduce the
concept of the graph core for coarsening the power-law graphs. In [11], Leng
and Yu present the core-sorted heavy-edge matching (CSHEM) algorithm that
combines the concept of the graph core with the SHEM scheme. Firstly, CSHEM
sorts the vertices of the graph descendingly based on the core number of the
vertices by the algorithm in [24]. Next, the vertices are visited in this order and
CSHEM matches the vertex v with its unmatched neighboring vertex whose
edge-weight is maximum.

An Effective Multi-level Algorithm 5

In our multi-level algorithm, we adopt the MLSAR algorithm during the re-
finement phase and an effective matching-based coarsening scheme during the
coarsening phase that uses the CSHEM algorithm on the original graph and
the SHEM algorithm on the coarser graphs. The pseudocode of our multi-level
algorithm is shown in Algorithm 1.

Algorithm 1 (our multi-level algorithm)

INPUT: original graph G(V,E)
OUTPUT: the partitioning PG of graph G
/*coarsening phase*/
l = 0
Gl(Vl,El)=G(V,E)
Gl+1(Vl+1,El+1)=CSHEM(Gl(Vl,El))
While (|Vl+1| > 20) do

l = l + 1
Gl+1(Vl+1,El+1)=SHEM(Gl(Vl,El))

End While
/*initial partitioning phase*/
PGl

=GGGP(Gl)
/*refinement phase*/
While (l ≥ 1) do

P
′

Gl
=MLSAR(Gl,PGl

)
Project P

′

Gl
to PGl−1 ;

l = l − 1
End While
PG=MLSAR(Gl,PGl

)
Return PG

4 An Effective Multi-level Simulated Annealing
Refinement Algorithm

Informally, the MLSAR algorithm works as follows: At cycle zero, an initializa-
tion phase takes place during which the initial partitioning Q is projected from
the partitioning PGl+1 of the coarser graph Gl+1, the Markov chain length L
is set to be the number of vertices of the current level graph Gl, the internal
and external degrees of all vertices are computed and etc. The main structure of
MLSAR consists of a nested loop. The outer loop detects the frozen condition by
an appropriate termination criterion whether the current temperature Tk is less
than final temperature; the inner loop determines whether a thermal equilibrium
at temperature Tk is reached by using the following criterions: The number of
attempted moves exceeds L, or the bucket of the start side of the move-direction
is empty. In the inner loop of the MLSAR algorithm, a neighbor of the current
partitioning P is generated by selecting the vertex v with the highest gain from
the larger side of the partitioning P and performing the move according to the

6 L. Sun and M. Leng

following rule: The move is certainly accepted if it improves cut(P), or proba-
bilistically accepted according to a random number uniformly distributed on the
interval [0,1]. In the latter case, if the acceptance test is negative then no move
is performed, and the current partitioning P is left unchanged. The pseudocode
of MLSAR is shown in Algorithm 2. The cycles counter is denoted by k and
L represents the Markov chain length. Let Best be the best partitioning seen
so far and P be the current partitioning. At cycle k, Tk represents the current
temperature and the counter of neighbors sampled is denoted by Lk.

Algorithm 2 (MLSAR)

INPUT: initial bipartitioning Q,balance constraint b,attenuation rate α
initial temperature Ti,final temperature Tf

OUTPUT: the best partitioning Best, cut of the best partitioning cut(Best)
MLSAR(
/*Initialization*/
k = 0
Tk = Ti

Set current parition P = Q;
Set the best parition Best = Q;
Set Markov chain length L=|V |;
For every vertex v in G = (V, E) do

IDv =
∑

(v,u)∈E∧P [v]=P [u]
W (v,u)

EDv =
∑

(v,u)∈E∧P [v] �=P [u]
W (v,u)

Store v in boundary hash-table if and only if EDv > 0;
End For
/*Main loop*/
While Tk ≥ Tf do
Lk=1
Compute the gains of boundary vertices of two sides;
Insert the gains of boundary vertices of two sides in buckets respectively;
While Lk ≤ L do
Decide the move-direction of the current move;
If (the bucket of the start side of the move-direction is empty) then
Break;

Else
Select the vertex v with the highest gain in the bucket;
Designate the vertex v as tabu status by inserting v in tabu list;
If (random(0, 1) ≤ min(1, exp((EDv−IDv)×|boundary hash-table|

2×cut(Q)×Tk
))) then

Lk=Lk+1
Update P by moving the vertex v to the other side;
original cut Minus its original gain as the cut of new partition P;
Update the internal and external degrees of its neighboring vertices;
Update the gains of its neighboring vertices in two buckets;
Update boundary status of its neighboring vertices in boundary hash-table;

An Effective Multi-level Algorithm 7

If (the cut is minimum and satisfies balance constraint b) then
Best=P
Record roll back point;
Record new cut minumum;

End If /* cut is minimum*/
End If /* r ≤ p*/

End If /* the bucket is empty*/
End While /* thermal equilibrium Lk ≤ L*/
Roll back to minumum cut point by undoing all moves and updating the

internal and external degrees and boundary hash-table;
Empty the tabu list and two buckets;
T(k+1) = α × Tk

k = k + 1
End While /* frozen criterion Tk ≥ Tf*/
Return Best and cut(Best)

The MLSAR algorithm uses a tabu list, which is a short-term memory of
moves that are forbidden to execute, to avoid cycling near local optimum and
to enable moves towards worse solutions, as in the MLrMSATS algorithm. In
the terminology of tabu search [25], the MLSAR strategy is a simple form of
tabu restriction without aspiration criterion whose prohibition period is fixed
at |Vl|. Because the MLSAR algorithm aggressively selects the best admissible
vertex based on the tabu restriction, it must examine and compare a number of
boundary vertices by the bucket that allows to storage, retrieval and update the
gains of vertices very quickly. It is important to obtain the efficiency of MLSAR
by using the bucket with the LIFO scheme, as tabu search memory structure.
The internal and external degrees of all vertices, as complementary tabu search
memory structures, help MLSAR to facilitate computation of vertex gain and
judgement of boundary vertex. We also use a boundary hash-table, as another
complementary tabu search memory structure, to store the boundary vertices
whose external degree is greater than zero.

During each iteration of MLSAR, the internal and external degrees and gains
of all vertices are kept consistent with respect to the current partitioning P.
This can be done by updating the degrees and gains of the vertex v ’s neigh-
boring vertices. Of course, the boundary hash-table might change as the current
partitioning P changes. For example, due to a move in an other boundary vertex,
a boundary vertex would no longer be such a boundary vertex and should be
removed from the boundary hash-table. Furthermore, a no-boundary vertex can
become such a vertex if it is connected to a boundary vertex which is moved to
the other side and should be inserted in the boundary hash-table.

5 Experimental Results

We use the 18 graphs in our experiments that are converted from the hypergraphs
of the ISPD98 benchmark suite [21] and range from 12,752 to 210,613 vertices.

8 L. Sun and M. Leng

Table 1. The characteristics of 18 graphs to evaluate our algorithm

benchmark vertices hyperedges edges
ibm01 12752 14111 109183
ibm02 19601 19584 343409
ibm03 23136 27401 206069
ibm04 27507 31970 220423
ibm05 29347 28446 349676
ibm06 32498 34826 321308
ibm07 45926 48117 373328
ibm08 51309 50513 732550
ibm09 53395 60902 478777
ibm10 69429 75196 707969
ibm11 70558 81454 508442
ibm12 71076 77240 748371
ibm13 84199 99666 744500
ibm14 147605 152772 1125147
ibm15 161570 186608 1751474
ibm16 183484 190048 1923995
ibm17 185495 189581 2235716
ibm18 210613 201920 2221860

Each benchmark comes with 3 files, a .net file, a .are file and a .netD file. Each
hyperedge is a subset of two or more vertices in hypergraph and is stored in
.net file. We convert hyperedges into edges by the rule that every subset of two
vertices in hyperedge can be seemed as edge. We create the edge with unit weight
if the edge that connects two vertices doesn’t exist, else add unit weight to the
weight of the edge. Next, we get the weights of vertices from .are file. Finally,
we store 18 edge-weighted and vertex-weighted graphs in format of MeTiS [17].
The characteristics of these graphs are shown in Table 1.

We implement the MLSAR algorithm in ANSI C and integrate it with the
leading edge partitioner MeTiS. In the evaluation of our multi-level algorithm,
we must make sure that the results produced by our algorithm can be easily
compared against those produced by MeTiS. We use the same balance con-
straint b and random seed in every comparison. In the scheme choices of three
phases offered by MeTiS, we use the SHEM algorithm during the coarsening
phase, the greedy graph growing partition algorithm during the initial partition-
ing phase that consistently finds smaller edge-cuts than other algorithms, the
boundary KL (BKL) refinement algorithm during the uncoarsening and refine-
ment phase because BKL can produce smaller edge-cuts when coupled with the
SHEM algorithm. These measures are sufficient to guarantee that our experi-
mental evaluations are not biased in any way.

The quality of partitions is evaluated by looking at two different quality mea-
sures, which are the minimum cut (MinCut) and the average cut (AveCut). To
ensure the statistical significance of our experimental results, two measures are
obtained in twenty runs whose random seed is different to each other. For all

An Effective Multi-level Algorithm 9

Table 2. Min-cut bipartitioning results with up to 2% deviation from exact bisection

benchmark vertices edges Metis(α) our algorithm(β) ratio(β:α)
MinCut AveCut MinCut AveCut MinCut AveCut

ibm01 12752 109183 517 1091 354 575 0.685 0.527
ibm02 19601 343409 4268 11076 4208 6858 0.986 0.619
ibm03 23136 206069 10190 12353 6941 8650 0.681 0.700
ibm04 27507 220423 2273 5716 2075 3542 0.913 0.620
ibm05 29347 349676 12093 15058 8300 10222 0.686 0.679
ibm06 32498 321308 7408 13586 3525 8667 0.476 0.638
ibm07 45926 373328 3219 4140 2599 3403 0.807 0.822
ibm08 51309 732550 11980 38180 11226 16788 0.937 0.440
ibm09 53395 478777 2888 4772 2890 3375 1.001 0.707
ibm10 69429 707969 10066 17747 5717 8917 0.568 0.502
ibm11 70558 508442 2452 5095 2376 3446 0.969 0.676
ibm12 71076 748371 12911 27691 11638 16132 0.901 0.583
ibm13 84199 744500 6395 13469 4768 7670 0.746 0.569
ibm14 147605 1125147 8142 12903 8203 9950 1.007 0.771
ibm15 161570 1751474 22525 46187 14505 32700 0.644 0.708
ibm16 183484 1923995 11534 22156 9939 17172 0.862 0.775
ibm17 185495 2235716 16146 26202 14251 17126 0.883 0.654
ibm18 210613 2221860 15470 20018 15430 18248 0.997 0.912

average 0.819 0.661

Fig. 1. The MinCut and AveCut comparisons of two algorithms on 18 graphs

10 L. Sun and M. Leng

experiments, we use a 49-51 bipartitioning balance constraint by setting b to 0.02.
Furthermore, we adopt the experimentally determined optimal set of parameters
values for MLSAR, α=0.9, Ti=10.0, Tf=0.01.

Table 2 presents min-cut bipartitioning results allowing up to 2% deviation
from exact bisection and Fig. 1 illustrates the MinCut and AveCut comparisons
of two algorithms on 18 graphs. As expected, our algorithm reduces the AveCut
by 8.8% to 56.0% and reaches 33.9% average AveCut improvement. Although our
algorithm produces partitioning whose MinCut is up to 0.7% worse than that of
MeTiS on two benchmarks, we still obtain 18.1% average MinCut improvement
and between -0.7% and 52.4% improvement in MinCut. All evaluations that
twenty runs of two algorithms on 18 graphs are run on an 1800MHz AMD
Athlon2200 with 512M memory and can be done in four hours.

6 Conclusions

In this paper, we have presented an effective multi-level algorithm based on
simulated annealing. The success of our algorithm relies on exploiting both the
simulated annealing procedure and the concept of the graph core. We obtain
excellent bipartitioning results compared with those produced by MeTiS. Al-
though it has the ability to find cuts that are lower than the result of MeTiS
in a reasonable time, there are several ways in which this algorithm can be im-
proved. For example, we note that adopting the CSHEM algorithm alone leads
to poorer experimental results than the combination of CSHEM with SHEM. We
need to find the reason behind it and develop a better matching-based coarsening
scheme coupled with MLSAR. In the MinCut evaluation of benchmark ibm09
and ibm14, our algorithm is 0.7% worse than MeTiS. Therefore, the second
question is to guarantee find good approximate solutions by setting optimal set
of parameters values for MLSAR.

Acknowledgments

This work was supported by the international cooperation project of Ministry
of Science and Technology of PR China, grant No. CB 7-2-01, and by “SEC
E-Institute: Shanghai High Institutions Grid” project. Meanwhile, the authors
would like to thank professor Karypis of university of Minnesota for supplying
source code of MeTiS. The authors also would like to thank Alpert of IBM
Austin research laboratory for supplying the ISPD98 benchmark suite.

References

1. Alpert, C.J., Kahng, A.B.: Recent directions in netlist partitioning. Integration,
the VLSI Journal 19, 1–81 (1995)

2. Hsu, W.H., Anvil, L.S.: Self-organizing systems for knowledge discovery in large
databases. In: International Joint Conference on Neural Networks, pp. 2480–2485
(1999)

An Effective Multi-level Algorithm 11

3. Zha, H., He, X., Ding, C., Simon, H., Gu, M.: Bipartite graph partitioning and
data clustering. In: Proc. ACM Conf. Information and Knowledge Management,
pp. 25–32 (2001)

4. Ding, C., He, X., Zha, H., Gu, M., Simon, H.: A Min-Max cut algorithm for graph
partitioning and data clustering. In: Proc. IEEE Conf. Data Mining, pp. 107–114
(2001)

5. Shi, J., Malik, J.: Normalized cuts and image segmentation. In: Proc. IEEE Conf.
Computer Vision and Pattern Recognition, pp. 731–737 (1997)

6. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern
Anal. Mach. Intell, 888–905 (2000)

7. Garey, M.R., Johnson, D.S.: Computers and intractability: A guide to the theory
of NP-completeness. WH Freeman, New York (1979)

8. Kernighan, B.W., Lin, S.: An efficient heuristic procedure for partitioning graphs.
Bell System Technical Journal 49, 291–307 (1970)

9. Fiduccia, C., Mattheyses, R.: A linear-time heuristics for improving network par-
titions. In: Proc. 19th Design Automation Conf. pp. 175–181 (1982)

10. Leng, M., Yu, S., Chen, Y.: An effective refinement algorithm based on multi-level
paradigm for graph bipartitioning. In: The IFIP TC5 International Conference on
Knowledge Enterprise. IFIP Series, pp. 294–303. Springer (2006)

11. Leng, M., Yu, S.: An effective multi-level algorithm for bisecting graph. In:
The 2nd International Conference on Advanced Data Mining and Applications.
LNCS/LNAI, pp. 493–500. Springer, Heidelberg (2006)

12. Żola, J., Wyrzykowski, R.: Application of genetic algorithm for mesh partitioning.
In: Proc. Workshop on Parallel Numerics, pp. 209–217 (2000)

13. Bahreininejad, A., Topping, B.H.V., Khan, A.I.: Finite element mesh partitioning
using neural networks. Advances in Engineering Software, 103–115 (1996)

14. Leng, M., Yu, S.: An effective multi-level algorithm based on ant colony optimiza-
tion for bisecting graph. In: The 11th PacificAsia Conference on Knowledge Dis-
covery and Data Mining. LNCS/LNAI, pp. 138–149. Springer, Heidelberg (2007)

15. Sun, L., Leng, M., Yu, S.: A new multi-level algorithm based on particle swarm
optimization for bisecting graph. In: The 3rd International Conference on Advanced
Data Mining and Applications. LNCS/LNAI, Springer, Heidelberg (2007)

16. Sun, L., Leng, M.: An effective refinement algorithm based on swarm intelligence
for graph bipartitioning. In: The International symposium on combinatorics, al-
gorithms, probabilistic and experimental methodologies. LNCS/LNAI, Springer,
Heidelberg (2007)

17. Karypis, G., Kumar, V.: MeTiS 4.0: Unstructured graphs partitioning and sparse
matrix ordering system. Technical Report, Department of Computer Science, Uni-
versity of Minnesota (1998)

18. Selvakkumaran, N., Karypis, G.: Multi-objective hypergraph partitioning algo-
rithms for cut and maximum subdomain degree minimization. IEEE Trans. Com-
puter Aided Design 25, 504–517 (2006)

19. Amine, A.B., Karypis, G.: Multi-level algorithms for partitioning power-law
Graphs. Technical Report, Department of Computer Science, University of Min-
nesota (2005), Available on the WWW at URL http://www.cs.umn.edu/∼metis

20. Gil, C., Ortega, J., Montoya, M.G.: Parallel heuristic search in multilevel graph
partitioning. In: Proc. 12th Euromicro Conference on Parallel, Distributed and
Network-Based Processing, pp. 88–95 (2004)

http://www.cs.umn.edu/~metis

12 L. Sun and M. Leng

21. Alpert, C.J.: The ISPD98 circuit benchmark suite. In: Proc. Intel Symposium of
Physical Design, pp. 80–85 (1998)

22. Aarts, E., Korst, J.: Simulated annealing and boltzmann machines. A Stochastic
Approach to Combinatorial Optimization and Neural Computing. John Wiley and
Sons, New York (1990)

23. Gil, C., Ortega, J., Montoya, M.G., Basnos, R.: A mixed heuristic for circuit par-
titioning. Computational Optimization and Applications 23, 321–340 (2002)

24. Batagelj, V., Zaversnik, M.: Generalized cores. Journal of the ACM, 1–8 (2002)
25. Glover, F., Manuel, L.: Tabu search: Modern heuristic techniques for combinatorial

problems, pp. 70–150. Blackwell Scientific Publications, Oxford (1993)

	An Effective Multi-level Algorithm Based onSimulated Annealing for Bisecting Graph
	Introduction
	Mathematical Description
	Motivation
	An Effective Multi-level Simulated Annealing Refinement Algorithm
	Experimental Results
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

