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Abstract. Polygonal models have grown rapidly in complexity over recent 
years, yet most conventional simplification algorithms were designed to handle 
modest size datasets of a few tens of thousands of triangles. We present a 
parallel simplification method for large polygonal models. Our algorithm will 
partition the original model firstly, send each portion to a slave processor, 
simplify them concurrently, and merge them together lastly. We give an 
efficient method to deal with the problem of partition border and portion 
merging. With parallel implementation, the algorithm can handle extremely 
large data set, and speed up the execution time. Experiment shows that our 
algorithm can produce approximations of high quality.  
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1   Introduction 

Polygonal model simplification has been a hot topic of research over the recent years. 
It is the process of reducing the number of polygons in a polygonal model while 
preserving the shape or appearance of the original model. A number of model 
simplification algorithms have been proposed [1], each with their different strengths 
and weaknesses in terms of execution time and approximation quality. 

An algorithm based upon energy function was put forward by Hoppe [2]. The 
function synthetically examines the distance from the vertex set X of the original 
model to the simplified model and the number of the vertices of the simplified model. 
In order to make the function always find a minimum, a spring item is added. In this 
algorithm, three basic operations of edge collapse, edge split and edge swap are 
defined. The algorithm chooses one operation at a time. If the operation can reduce 
the value of the function, the algorithms adapt it, otherwise another operation will be 
tried. The new position after collapsing is obtained by an optimized method. This 
algorithm can produce approximations with high quality, but it is very slow. In 
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Garland’s algorithm, the collapse cost is defined as the sum of squares of the 
distances from the new point to the triangles adjacent to the two points of the collapse 
edge in the original model. The position of the new point is obtained by trying to find 
the point which can minimize the collapse cost [3]. To make the calculation of the 
collapse cost simple, this algorithm maintains an error matrix for every vertex. When 
the model gets larger, the consumption of memory can be very huge. There is 
considerable literature on surface simplification using error bounds. Cohen and 
Varsheny [4] have used envelopes to preserve the model topology and obtain tight 
error bounds for a simple simplification. An efficient function of collapse cost has 
been presented in [5], which is based on the length of contracting edge and the sum of 
the dihedral angles.  

As is common in most areas of computing, improvements in processor speed and 
memory capacity have served merely to promote the production of increasingly larger 
datasets, and a number of methods, particularly for out-of-core visualization, have 
been proposed for coping with models that are too large to fit in main memory, e.g. 
[6,7]. Following this trend, some of the more recent simplification algorithms have 
been designed to be memory efficient, and typically handle models with as many as 
several million triangles. In the last few years, however, there has been an explosion 
in model size, in part due to improvements in resolution and accuracy of data 
acquisition devices. These enormous datasets pose great challenges not only for mesh 
processing tools such as rendering, editing, compression, and surface analysis, but 
paradoxically also for simplification methods that seek to alleviate these problems. In 
addition to their large memory consumption, these algorithms also suffer from 
insufficient simplification speed to be practically useful for simplifying very large 
meshes.  

So, we present a parallel reduction algorithm for these very large models. With 
parallel implementation, our algorithm can handle extremely large data set, and speed 
up the execution time. The rest of the paper is organized as follows. We first introduce 
the basic sequentially simplification algorithm in Section2. Section 3 describes our 
parallel algorithm in detail. The implementation is discussed in Section 4. Section 5 
presents a discussion of results and performance analysis.  

2   Basic Simplification Algorithm 

We start by giving the basic sequentially simplification algorithm. In Our algorithm, 
we use half-edge collapse as the atomic decimation operator (see Fig. 1). This 
operator does not introduce new vertex position but rather sub-samples the original 
mesh. We prefer half-edge collapse since they make progressive transmission more 
efficient (no intermediate vertex coordinates) and enable the construction of nested 
hierarchies that can facilitate further applications. 

According to the characteristics of human vision system, observers are mainly 
sensitive with three attributes of the model: size, orientation and contrast. According 
to the first attribute, the length of the edge should be considered when calculating its’ 
collapse cost. With the last two attributes, the dihedral angles between the related 
triangles are also important guidance. Our cost function will focus on the edge length 
and the sum of the dihedral angles. 
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Fig. 1. Half-edge collapse. The (u, v) edge is contracted into point v. The t1 and t5 triangles 
become degenerate and are removed. 

We give every triangle a weight when calculating the dihedral angle. For edge(u,v) 
in Fig. 2, when calculating the dihedral angle between t1 and the other triangles, we 
think the one between t1 and t2 is most important , so the weight of t2 to t1 should be 
largest, and. While, when we calculate the dihedral angle between t5 and the other 
triangles, the weights of t4, t3, t2 and t1 should decrease clockwise.  
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Fig. 2. The calculation of the weight. The weights of t2, t3, t4 and t5 decreases counterclockwise. 

We define that S is the set of triangles that are adjacent to vertex u, the number of 
the triangles in it is n and si (i=1, 2 , , ,n) indicates the ith triangle. B is the set of 
triangles that are adjacent to both u and v, the number of the triangles in it is m. We 
define the weight of si to bj as follows: 

),(/(),( jiji bsDnnbsW +=  (1) 

where D(si, bj) in formula 1 denotes the number of triangles between si and bj. In Fig. 
2, if bj is t1, D(si, t1) denotes the number of triangles which will be visited when 
traversing counterclockwise from t1 to si. For example, D(t2, t1)=1, D(t4, t1)=3. If bj is 
t5, D(si, t5) denotes the number of triangles which will be visited when traversing 
clockwise from t5 to si. 

Define fi (i=1, 2,..., n) indicates the unit normal vector of the ith triangle of S, and ej 
(j=1, 2, , , m) indicates the unit normal vector of the jth triangle of B. We define the 
collapse cost of edge (u, v) is: 
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where ||u-v|| in formula 2 indicates the length of edge(u,v). 

θθ coscos|||| =××=• ijij fefe  (3) 

We use ej ⋅ fi in formula 3 to compare the value of the dihedral angleθ, so we can 
avoid the calculation of arccosine. 
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3   Parallel Simplification Algorithm  

3.1   Overview 

The approach for our parallelization is to partition the original high resolution mesh 
on a master processor and then to send each mesh partition to a slave processor. Each 
slave processor simplifies its associated mesh subset concurrently. Once this task is 
complete, each slave returns its simplified result to the master processor which now 
merges them together to create a single model for the entire mesh (see Fig.3). 

 

 

Fig. 3. The processing flow of parallel simplification on four PCs 

3.2   Data Partition 

The first step in parallelizing simplification is to partition the data. It is an important 
issue in parallelizing an algorithm. Smaller simplification tasks are created by 
partitioning the data, and then executing in parallel or serially on a system that is not 
able to fit the entire model into its core memory. How the data is partitioned greatly 
impacts the performance of the algorithm and the quality of the simplification. The 
surface can be subdivided in several ways. The easiest approach is to spatially 
subdivide the model and assign a portion to each processor. Another approach is to 
base the partition size on the number of polygons; that is, each processor gets the 
same number of polygons to simplify. The drawback of these two approaches is that 
they do not account for the complexity of the underlying surface. We can also initially 
analyze the surface, and then assign each task a portion of the model based on the 
complexity of the surface; surface area is part of the surface complexity metric. 

In our algorithm, we use a simple greedy method. The mesh is partitioned by 
accumulating vertices and faces in subsets when traveling through the mesh. A starting 
vertex is chosen and marked. The accumulation process is performed by selecting the 
neighbors of the starting vertex, then the neighbors of the neighbors and so on, until the 
subset has reached the required number of vertices. Then, other subsets are created  
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the same way until the p-way partition is complete (e.g. each vertex is part of one 
subset). In the general case, such a p-way partition is built from p partial Breadth-First-
Search traversals of the graph. The algorithm terminates when all vertices have been 
visited. This simple greedy heuristic will yield acceptable partitions in much less time 
than more complicated methods. Furthermore, the algorithm can be made probabilistic 
if necessary. It suffices to initialize it with a random vertex seed to generate different 
partitions for a same input graph. Fig.4 shows one 5-way partition example of this 
algorithm on a 3D mesh representing a cow. 

The subsets being built may get blocked in the process before they reach full size. 
Then, two versions of the algorithm are possible: allow subset size imbalance or 
subset multi-connectivity. The former produces uneven subset sizes (workload on 
processors) and the latter produces bigger edge-cuts (more communication between 
processors). We chose the latter for better load balancing. 

          

Fig. 4. One 5-way partition of teapot mesh, which has 21,459 polygons 

3.3   Partition Border 

How to handle the border points is an important problem for parallel reduction 
algorithm. There are two kinds of border points, one is the border of original model, and 
we call it original border. The other kind is inner border, which is generated by 
partitioning. The human eye is sensitive to the border change, so we should try to avoid 
changing the original border. As to the inner border points, they play an important role 
in merging the partitions. First of all, we should recognize these border points, and mark 
them. In the following process of simplification, they are treated specially.  

3.3.1 Marking the Border Points 
Since the partitioning process traverses the whole mesh, the algorithm can recognize 
all the border points in the traversing process. In the traversing, we will give every 
point an only ID, which is helpful to merging. The original border can be easily 
recognized by the characteristic of its adjacent edges, which is mentioned in many 
sequentially simplification algorithms. The inner border points can also be found 
easily. After a vertex is added into a partition, we will select all of its neighbors, and 
add them into the same partition. If the number of the vertices has already reached the 
threshold, we won’t add this vertex’ neighbors, and then we know this vertex is a 
border point for this partition. 
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3.3.2   Treatment of the Border Points 
As mentioned above, the original border points can’t be moved, otherwise the 
model’s border will be changed. For example, v is a border point, and u is a inner 
point adjacent to it. In order to keep the border unchanged, the vertex v can’t be 
collapsed into u. The inner border points also can’t be collapsed, because it will be 
used when merging the simplified results. If the inner border points are collapsed, we 
will have to track its path, and this will make merging job become more complex. 

Though all the border points can’t be shifted, the adjacent inner points can be 
collapsed into them if necessary (see Fig.5). We have achieved this by adjusting the 
collapse cost of half edge. When computing the collapse cost of half-edge(u,v), we 
just calculate it according the cost function. While, we will give a very large value for 
the collapse cost of half-edge(v,u). 

 

Fig. 5.  The border point v can’t be shifted to u, but u can be collapsed into v 

3.3.3   Merging the Reduced Subset 
When partitioning the original model, the inner border points are added at least twice 
to different portion. According to the treatment to inner border points described 
above, these points are left unchanged in the simplification process. So we will merge 
the simplified portion together according the inner border points. 

4   Implementation 

The reducing process is a master/slave configuration although the amount of extra 
work the master performs is minimal. The following is the basic outline of our 
implementation: 

ParallelReduction(Mesh M, PartitionSize p) 
if (ProcID == 0) //Master 

(M1, ..., Mp) = Partition(M, p) 
for i=1..p 
send Mi to Proci 
for i=1..p 
receive PMi from Proci 
merge PMi into PM 
return PM 

else //Slave section 
receive MProcID from Proc0 
PMProcID = Simplify(MProcID) 
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The code was written in C, using an MPI package for communication. The master 
processor partitions the mesh into p subsets. The partitioner will return a size |V| 
integer array. Each array cell corresponds to a mesh vertex and contains a subset ID 
[1..p] indicating the processor to which the vertex is assigned. The vertex data 
structure is as follows: 

struct  vertex { 
 double  coordinate[3]; 
 double  normal[3]; 
 unsigned int  *vertex_list; 
 unsigned int  *face_list; 
 unsigned int  vert_num; 
 unsigned int  face_num; 
} 

The next step is to send that partition array to the slave processors. Then, all 
processors read the same mesh file into a Mesh object exactly as in the sequential 
version. With the partition array at hand, the slave processors build a working mesh 
structure of edges and faces which are either part of their partition subset or adjacent 
to it. Next, the slave processors begin to simplify the sub-mesh concurrently. After 
simplification, the slave processors must transmit their sub-results to the master 
processor for merging.  

5   Results and Discussion 

To evaluate the quality and performance of our implementation, we performed a 
series of tests on a non dedicated cluster of 2,4,8 Pentium IV 2.4GHz PCs, each with 
256MB ram and connected by a 100 Mb/s Ethernet. P0 was the master processor. We 
ran these tests when most of the machines were idle. The performance results are 
shown in table1. The data is the execution time of reducing the model to the size of 
10% of original model. For each input model and number of processors, we 
performed five test runs, the number in table1 are averaged values. 

The acceleration a is computed as follows: 

nTime

Time
a 1=  (4) 

where n=1..8 is a number of processors used and Timen is the time obtained if n 
processors  are used, and Time1 is the time of sequential algorithm. Fig. 6 shows the  
acceleration of Bunny model and Dragon model. As expected, speedups are 
slightly lower for smaller data sets and it should be improved for larger data sets. 
But these models are too big to be simplified by a sequential algorithm, so we 
can’t get the acceleration. 

To test the quality of approximation produced by our algorithm, we use Merto[8] 
to measure the error between the simplified model and the original. The mean error 
for dragon model is summarized in Table 2. The output size in table2 is the number of 
vertices in simplified model. 
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Fig. 6. The acceleration of Bunny model and Dragon model. As expected, speedups are slightly 
lower for smaller data sets and it should be improved for larger data sets. 

Table 1. Execution time (in second) of various models, with different numbers of processors 

Processors 
Model Triangles 

1 2 3 4 
Bunny 69,451 12.185 10.987 10.417 10.016 

Dragon 871,306 132.476 101.019 83.715 73.369 

Buddha 1,087,474 overflow 95.367 78.527 69.068 

 

                           
       (a) Original Buddha, 1,087,716 triangles                            (b) 60,000triangles       

Fig. 7. Some pictures of the models before and after reduction 
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         (c) Original Dragon, 871,306 triangles                                  (d) 20,000triangles 

      

            (e) Original Bunny, 69,451 triangles                                   (f) 5,000triangles 

Fig. 7. (continued) 

Table 2.  Approximation error of Dragon model, with diffierent output size and diffierent 
numbers of processors 

Processors 
Output Size 

1 2 3 4 
5,000 0.341 0.352 0.345 0.348 

10,000 0.185 0.188 0.187 0.187 

20,000 0.132 0.132 0.133 0.130 

For the larger models, we can’t use Metro to measure the error. We also show 
some pictures of the models before and after reduction in Fig. 7. The experiments 
show that the number of processors doesn’t significantly affect the quality of the 
simplified model. Naturally, the ratio between the size of the input and the output 
model is a key factor to the size of the error. 



 Simplification Algorithm for Large Polygonal Model 969 

In this paper, we present a new parallel reduction algorithm for massive 
models. We have succeeded in simplifying some very large polygonal models in 
parallel which can’t be simplified by a sequential algorithm. In addition, to 
simplifying very large models, we have also achieved good speed by doing the 
simplification in parallel. 
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