
Random Oracles and Auxiliary Input

Dominique Unruh�

Saarland University, Saarbrücken, Germany
unruh@cs.uni-sb.de

Abstract. We introduce a variant of the random oracle model where
oracle-dependent auxiliary input is allowed. In this setting, the adversary
gets an auxiliary input that can contain information about the random
oracle. Using simple examples we show that this model should be pre-
ferred over the classical variant where the auxiliary input is independent
of the random oracle.

In the presence of oracle-dependent auxiliary input, the most impor-
tant proof technique in the random oracle model—lazy sampling—does
not apply directly. We present a theorem and a variant of the lazy sam-
pling technique that allows one to perform proofs in the new model
almost as easily as in the old one.

As an application of our approach and to illustrate how existing proofs
can be adapted, we prove that RSA-OAEP is IND-CCA2 secure in the
random oracle model with oracle-dependent auxiliary input.

Keywords: Random oracles, auxiliary input, proof techniques, founda-
tions.

1 Introduction

In [3] the following heuristic was advocated as a practical way to design cryp-
tographic protocols:1 To prove the security of a cryptographic scheme, one first
introduces a random oracle O, i.e., a randomly chosen function to which all
parties including the adversary have access. One then proves the security of the
scheme that uses the random oracle and subsequently replaces the random ora-
cle by a suitably chosen function (or family of functions) H . The random oracle
heuristic now states that if the scheme using O is secure, the scheme using H is
secure as well.

Unfortunately, a counter-example to this heuristic has been given in [6]. It
was shown that there exist public key encryption and signature schemes that are
secure in the random oracle model but lose their security when instantiated with
any function or family of functions. Nonetheless, the random oracle heuristic still
is an important design guideline for implementing cryptographic schemes.

Furthermore, [15] pointed out that zero-knowledge proofs in the random oracle
model can lose their deniability when instantiated with a fixed function. In contrast
� Part of this work was done while the author was at the IAKS, University of Karlsruhe,

Germany.
1 However, the basic idea seems to have already appeared earlier.

A. Menezes (Ed.): CRYPTO 2007, LNCS 4622, pp. 205–223, 2007.
c© International Association for Cryptologic Research 2007

206 D. Unruh

to the result of [6], this happens even for natural protocols. However, [15] was able
to give conditions under which this effect does not occur and gave a protocol that
fulfilled these conditions.

Although the heuristic is known not to be sound in general, no practical scheme
is known where it fails, and schemes that are proven to be secure using this heuris-
tic tend to be simpler and more efficient than schemes that are shown to be se-
cure in the standard model. As a consequence, schemes used in practise are often
based on the random oracle heuristic, e.g., the RSA-OAEP encryption scheme, in-
troduced in [2] and standardised in [17], is one of the most widely used public-key
encryption schemes, and its security is based on the random oracle heuristic.

In the light of the results of [6] and [15], and of the practical importance of
the random oracle heuristic, it is important to try and learn what the exact
limitations of the heuristic are, and, if possible, give criteria to distinguish those
protocols in the random oracle model that become insecure when instantiated
due to those limitations, and those protocols where we can at least hope—if not
prove—that their instantiations are secure. The augmented definition of zero-
knowledge by [15] is an example of such a criterion.

In this paper, we uncover another such limitation of the random oracle world.
We will see that there are natural schemes secure in the random oracle model
that become insecure with respect to auxiliary input (or equivalently, with respect
to nonuniform adversaries) when instantiated. As [15] did for the deniability, we
give augmented definitions for the random oracle model with auxiliary input
that allow one to distinguish protocols that fail upon instantiation from those
that do not (at least not due to the abovementioned limitation).

Although such a result does not imply the soundness of the random oracle
model, it helps to better understand which protocol can reasonably be expected
to be secure when instantiated with a fixed function.

We will now investigate the problem of auxiliary input in the random oracle
model in more detail. An important concept in cryptology is the auxiliary input.
The auxiliary input is a string that is given to the adversary at the beginning of the
execution of some cryptographic protocol. This string is usually chosen nonuni-
formly and depends on all protocol inputs. In other words, the auxiliary input
models the possibility that the adversary has some additional knowledge concern-
ing the situation at the beginning of the protocol. This additional knowledge may,
e.g., represent information acquired in prior protocol runs. It turns out that in
many cases the presence of an auxiliary input is an essential concept for proving se-
cure sequential composition. Therefore, most modern cryptographic schemes are
designed to be secure even in the presence of an auxiliary input (given that the
underlying complexity assumptions hold against nonuniform adversaries).

However, when we try to combine these two concepts, the random oracle
model and the auxiliary input, undesirable effects may occur. We will demon-
strate this by studying the definitions of two simple security notions: one-wayness
and collision-resistance. First, consider the notion of a one-way function. We
construct a function f := O in the random oracle model and ask whether it is
one-way. For this, we substitute O for f in the definition of one-wayness with

Random Oracles and Auxiliary Input 207

respect to auxiliary input, and get the following definition: The function f is
one-way if for any polynomial-time adversary A and any auxiliary input z, the
following probability is negligible in the security parameter k:

P
(
x

$← {0, 1}k, x′ ← AO(1k, z, O(x)) : O(x′) = O(x)
)
. (1)

Here O is a randomly chosen function (with some given domain and range), and
the adversary is given black-box access to O. It is now easy to see that f := O is
indeed secure in the above sense: The adversary can make at most a polynomial
number of queries, and each query except O(x) returns a uniformly random
image (exploiting this latter fact is later called the lazy sampling technique).
From this fact one can conclude that the adversary must make an exponential
number of queries to find a preimage of O(x), hence f is secure. The presence of
the auxiliary input does not have noticeable impact on the proof. The random
oracle heuristic now claims that f := H is oneway for a sufficiently unstructured
function H , even in the presence of auxiliary input. So far, nothing out of the
ordinary has happened.

We now try to use the same approach for another security property: collision-
resistance. Again, we set f := O, and then collision-resistance of f means that
for any polynomial-time adversary A and any auxiliary input z, the following
probability is negligible:

P
(
(x1, x2) ← AO(1k, z) : x1 �= x2 and O(x′) = O(x)

)
. (2)

This can again easily be proven using the lazy sampling technique: the answers to
the adversary’s queries are independent random values, and finding a collision
requires two of these random values to be identical which happens only with
negligible probability. Again, the auxiliary input does not help the adversary,
since it does not contain any information on where a collision might be. We now
use the random oracle heuristic, replace O by some sufficiently unstructured
function H , so that f = H , and then claim that f is collision-resistant in the
presence of an auxiliary input. But this of course is impossible, since the auxiliary
input may simply contain a collision of H , since H is a fixed function.2

Hence, the random oracle heuristic should not be applied to collision-resistance.
On the other hand, we would like to prove the one-wayness of f := O in the random
oracle model. We hence need a stronger variant of the random oracle heuristic that
does not allow one to prove the collision-resistance of f , but still allows one to prove
its one-wayness. An inspection of our proof above reveals the mistake we made: In
the random oracle model, the auxiliary input was chosen before the random oracle,

2 If we replace O by a family of functions, i.e., some parameter i is chosen at the
beginning of the protocol, and then a funcion Hi is used, then the problem described
here does not occur. Unfortunately, one is not always free to use such a family of
functions. On one hand, the index has in some way to be chosen, and we do not
want to leave that choice to the corrupted parties. On the other hand, practical
applications usually instantiate the random oracle using a fixed function like SHA-1

or SHA-256 [8].

208 D. Unruh

so it could not contain a collision. After instantiation, the function H was fixed, so
the auxiliary input did depend on H and therefore could provide a collision. The
random oracle heuristic should hence be recast as follows in the case of auxiliary
input: When a scheme is secure in the random oracle model with oracle-dependent
auxiliary input, it is still secure after replacing the random oracle by a sufficiently
unstructured fixed function H , even in the presence of auxiliary input.

It remains to clarify the formal meaning of oracle-dependent auxiliary input.
Unfortunately, we cannot simply say: “for randomly chosen O and every z”. At
least, the semantics underlying constructions like (1) and (2) get highly nontrivial
in this case. Fortunately, there is another possibility. By an oracle function z we
mean a function that returns a string zO for each possible value of the random
oracle O. So formally, z is simply a function that maps functions to strings. Then
a scheme is called secure in the random oracle model with oracle-dependent aux-
iliary input if for any polynomial-time adversary A and for any oracle function z
into strings of polynomial length (that may depend on k, of course), the adversary
cannot break the scheme even when given zO as auxiliary input.

As with the traditional random oracle model, the exact form these defini-
tions take depends on the security notion under consideration. For example,
the one-wayness and the collision-resistance of f := O take the following form:
for any polynomial-time adversary A and any oracle function z into strings of
polynomial-length, we have

P
(
x

$← {0, 1}k, x′ ← AO(1k, zO, O(x)) : O(x′) = O(x)
)

(3)

or
P

(
(x1, x2) ← AO(1k, zO) : x1 �= x2 and O(x′) = O(x)

)
, (4)

respectively. However, we can give a simple guideline on how to transform a
security definition in the random oracle model with an oracle-independent aux-
iliary input z into a security definition with oracle-dependent auxiliary input.
First, one quantifies over oracle functions z instead of strings z. And then one
replaces all occurrences of the string z by zO.

It is now easy to see that (4) is not negligible: let zO encode a collision x1, x2,
and let the adversary output that collision. Since such a collision always exists
(assuming a length-reducing f), this breaks the collision-resistance of f in the
presence of oracle-dependent auxiliary input, as we would have expected.

On the other hand, we expect (3) to be negligible in the presence of oracle-
dependent auxiliary input. However, it is not so easy to see whether there may
not be some possibility to encode information about the random oracle in a string
of polynomial length that allows one to find a preimage with non-negligible
probability. Although one-wayness is one of the weakest conceivable security
notions, proving its security with respect to oracle-dependent auxiliary input is
quite difficult. (We encourage the reader to try and find an elementary proof
for the one-wayness of f .3) The reason for this difficulty lies in the fact that
it is not possible any more to apply the lazy sampling technique: given some
3 We give a proof using the techniques from this paper in Lemma 10.

Random Oracles and Auxiliary Input 209

information zO on the random oracle O, the images under the random oracle
are not independently nor uniformly distributed any more. We therefore need
new techniques if we want to be able to cope with oracle-dependent auxiliary
input and to prove more complex cryptographic schemes secure in this model.
Such techniques will be presented in this paper.

On Nonuniform and Uniform Auxiliary Input. In this work, we always
consider nonuniform auxiliary inputs, that is, the auxiliary input is not required
to be the result of an efficient computation. This is the most common modelling
of auxiliary input in the cryptographic community. However, it is also possible
to consider uniform auxiliary inputs: In this case, the auxiliary input is not an
arbitrary sequence of strings, but is instead the output of a uniform probabilistic
algorithm. The main motivation of the auxiliary input, namely to model informa-
tion gained from prior executions of cryptographic protocols on the same data,
and thus to allow for composability, is preserved by this uniform approach. (See
[11] for a detailed analysis.) The main disadvantage of the uniform approach is
that definitions and proofs get more complicated due to the presence of another
machine. This is why the nonuniform auxiliary input is more commonly used.

Applying the uniform approach to our setting, a uniform oracle-dependent
auxiliary input would be the output of a polynomial-time oracle Turing machine
Z with access to the random oracle. Since that Turing machine could only make
a polynomial number of queries, using the lazy sampling technique would be
easy: all positions of the random oracle that have not been queried by Z can be
considered random.

However, if we use the random oracle heuristic to motivate the security of a
protocol with respect to uniform auxiliary input, the result is incompatible with
existing theorems and definitions in the nonuniform auxiliary input model. So
to use the random oracle heuristic together with existing results, we either have
to reprove all existing results for the uniform case, or we have to use nonuniform
oracle-dependent auxiliary input. It is the latter approach we follow in this work.

Instantiating the Random Oracle with Keyed Families of Functions.
Above, we showed that the random oracle is (unsurprisingly) not collision-
resistant in the presence of auxiliary input. It follows that we may not instantiate
the random oracle with a fixed function if we need collision-resistance. On the
other hand, replacing the random-oracle by a keyed family of functions may be
secure, since the auxiliary input cannot encode a collision for each function. We
do not claim that it is necessary to use oracle-dependent auxiliary input when
instantiating with families of functions. Rather, oracle-dependent auxiliary input
provides a tool for distinguishing the cases where the use of a single function4

is sufficient (e.g., in the case where we require only one-wayness) and where a

4 Here, by a single function we mean that the function is not parametrised by a key
that has to be known by all parties. However, the function may depend on the
security parameter. Otherwise a property like collision-resistance trivially cannot be
fulfilled by a single function, even against uniform adversaries. See also [16] in this
context.

210 D. Unruh

keyed family of functions is necessary (e.g., in the case that we require collision-
resistance). Since instantiating with a single function is much simpler (e.g., we
do not have to worry about who chooses the key), and is the usual practice in
real-world protocols, examining random oracle based protocols with respect to
oracle-dependent auxiliary input may give additional insight into when instanti-
ation with single functions is permitted and when we have to use keyed families.
Another disadvantage of using a family of functions is that we have to ensure
that the key is honestly generated, which may introduce additional difficulties if
no trusted party is available for this task.

Designing Special Protocols. An alternative to the approach in this pa-
per would be to systematically construct or transform a protocol so that it is
secure with respect to oracle-dependent auxiliary input (instead of verifying a
given protocol). However, here the same arguments as in the previous paragraph
apply. First, we might not be interested in a new protocol, but might want to
examine the security of an existing protocol (that possibly even has already been
implemented). Further, efficiency considerations might prevent the use of more
elaborate constructions.

1.1 Our Results

We introduce and motivate the random oracle model with oracle-dependent aux-
iliary input (preceding section). In this model, the auxiliary input given to the
adversary may depend on the random oracle.

In order to be able to prove security in the new model, we introduce a new
variant of the lazy sampling technique that is applicable even in the presence
of oracle-dependent auxiliary input. We show that one can replace the random-
oracle O by a new random oracle P that is independent of the auxiliary input,
except for a presampling. That is, a small fraction of the total random oracle P
is fixed (and dependent on the auxiliary input), while all other images are chosen
independently and uniformly at random (and in particular are independent of
the auxiliary input). In this new setting, lazy sampling is possible again: an
oracle query that is not in the presampled set is given a random answer.

This also gives some insight into why some schemes are secure and some fail in
the presence of oracle-dependent auxiliary input: Intuitively the protocols that
fail are those for which you can have a “reason for a failure” (e.g., a collision)
contained in a few entries of the random oracle.

As a technical tool, we also formulate a security amplification technique: for
many security notions, security with respect to nonuniform polynomial-time ad-
versaries implies security with respect to nonuniform adversaries whose running
time is bounded by some suitable superpolynomial function f . This technique is
useful in the context of oracle-dependent auxiliary input, since some reduction
proofs with presampling tend to introduce superpolynomial adversaries.

As an application of our techniques, we show that RSA-OAEP is IND-CCA2
secure in the random oracle model with oracle-dependent auxiliary input. Our
proof closely follows the proof of [9] where the security of RSA-OAEP was shown

Random Oracles and Auxiliary Input 211

in the classical random oracle model. This allows the reader to better compare
the differences in the proof introduced by the oracle-dependent auxiliary input.
However, we believe that the result does not only exemplify our techniques but
is worthwhile in its own light: it gives the first evidence that RSA-OAEP as used
in practical application (i.e., with the random oracle instantiated with a fixed
function H), is secure even in the presence of an auxiliary input.

1.2 Related Work

In [19], the problem of composition of zero-knowledge proofs in the random-
oracle model is investigated. It is shown that to guarantee sequential compo-
sition, oracle-dependent auxiliary input is necessary. Their definition of oracle-
dependent auxiliary input is somewhat weaker than ours in that the machine z
generating the auxiliary input is allowed only a polynomial number of queries to
the random oracle (it is similar to uniform oracle-dependent auxiliary input in
that respect). They give protocols that are secure with respect to that notion.
It would be interesting to know whether the techniques developed here allow to
show their protocols to be secure even with respect to our stronger notion of
oracle-dependent auxiliary input.

In [10], it was shown that a random permutation is one-way with respect
to oracle-dependent auxiliary input. They showed that the advantage of the
adversary is in 2−Ω(k) which is essentially the same bound as we achieve for
random functions in Section 3. However, their proof is specific to the property
of one-wayness and does not generalise to our setting. According to [10], a similar
result was shown for random functions in [12]. However, their proofs apply only
to the one-wayness of the random oracle, while our results imply that many more
cryptographic properties of the random oracle are preserved in the presence of
oracle-dependent auxiliary input.

In [14,5,4,7], unconditional security proofs in the bounded-storage model were
investigated. In this model, one assumes that the adversary is computationally
unlimited, but that it may only store a limited amount of data. One assumes that
at the beginning of the protocol some large source of randomness (e.g., a random
oracle) is available to all parties. The security of the protocol then roughly hinges
on the following idea: The honest parties store some (small) random part of the
source. Since the adversary does not know which part has been chosen, and
since it may not store the whole source, with high probability the honest parties
will find some part of the random source they both have information about,
but that is unknown to the adversary. To prove the security in this model, it
is crucial to show that the adversary cannot compress the source in a manner
that contains enough information to break the protocol. This is very similar to
the scenario investigated here, since the oracle-dependent auxiliary input can
be seen as compressed information on the random oracle. Our results differ
from those in the bounded-storage model in two ways: first, our results cover a
more general case, since we consider the effect of auxiliary input on arbitrary
protocols, while in the bounded-storage model a single protocol is analysed that
is specially designed to extract information from the random source that cannot

212 D. Unruh

be extracted given only a part of the source. On the other hand, precisely due
to the specialised nature of the protocols, the bounds achieved in the bounded-
storage model are better than those presented here. In particular, there are
protocols in the bounded storage model that are secure given a random source
of polynomial size [7], while our results are—at least with the present bounds—
only useful if the domain of the random oracle has superpolynomial size (cf. the
exact bounds given by Theorem 2). It would be interesting to know whether
our techniques can be used in the context of the bounded-storage model, and
to what extent the techniques developed in the bounded-storage model can be
applied to improve our bounds.

1.3 Further Applications

Besides the application described above, namely to be able to use the random-
oracle heuristic in the case of auxiliary input, our main result (the lazy sampling
technique) may also be useful in other situations.

In [10] it was shown that a random permutation is one-way in the presence
of oracle-dependent auxiliary input. This was the main ingredient for several
lower bounds on black-box constructions using one-way permutations. Using
our techniques, we might find lower bounds on black-box constructions based on
other cryptographic primitives: namely, we would show that the random oracle
(or a protocol using the random oracle) has a given security property X even
in the presence of oracle-dependent auxiliary input. Then using techniques from
[10], lower bounds on black-box constructions based on cryptographic primitives
fulfilling X might be derived.

1.4 Organisation

In Section 1 we introduce and motivate the concept of oracle-dependent auxiliary
input. In Section 2 we present the main result of this paper: a theorem that allows
one to use the lazy sampling technique even in the presence of oracle-dependent
auxiliary input. In Section 3 we give a simple example to show how to use the lazy
sampling technique. In Section 4 we present the security amplification technique.
This technique allows one to use superpolynomial adversaries in reduction proofs,
which sometimes is needed when using the lazy sampling technique. In Section 5
we prove that RSA-OAEP is IND-CCA2 secure in the random oracle model with
oracle-dependent auxiliary input. Details and proofs left out in this paper are
given in the full version [18].

1.5 Notation

For random variables A and B, we denote the Shannon-entropy of A by H(A),
and the conditional entropy of A given B by H(A|B). The statistical distance
between A and B is denoted Δ(A; B). The operator log means the logarithm
base 2. The variable k always denotes the security parameter. In asymptotic

Random Oracles and Auxiliary Input 213

statements of theorems or definitions, some variables implicitly depend on the
security parameter k. These variables are then listed at the end of the theo-
rem/definition. We call a nonnegative function in k negligible, if it lies in k−ω(1).
We call a nonnegative function non-negligible if it is not negligible.

Let O always denote the random oracle. Let Domain be the domain and Range
the range of the random oracle, i.e., O is a uniformly random function from
Domain → Range. In an asymptotic setting, O, Domain and Range implicitly
depend on the security parameter k. In this case we always assume #Domain
and #Range to grow at least exponentially in k.

An oracle function g into X is a mapping from Domain → Range into X . We
write the image of some function O under g as gO.

An assignment S is a list S = (x1 → y1, . . . , xn → yn) with xi ∈ Domain and
yi ∈ Range and with xi �= xj for i �= j. The length of S is n. We call yi the
image of xi under S. We write x ∈ S if xi = x for some i. The image im S is
defined as imS = {y1, . . . , yn}.

2 Lazy Sampling with Auxiliary Input

The main result of this paper is the following theorem which guarantees that we
can replace a random oracle with oracle-dependent auxiliary input by a new ran-
dom oracle that is independent of the auxiliary input with the exception of some
fraction of its domain (which is presampled). In order to formulate the theorem,
we first need to state what exactly we mean by an oracle with presampling:

Definition 1 (Random oracle with presampling). Let S = (x1 → y1, . . . ,
xn → yn) be an assignment. Then the random oracle P with presampling S is
defined as follows:

When queried x ∈ Domain with x = xi for some i ∈ {1, . . . , n}, the ora-
cle returns yi. If x has already been queried, the same answer is given again.
Otherwise, a uniformly random element y is chosen from Range and returned.

We can now state the main theorem.

Theorem 2 (Lazy sampling with auxiliary input). Let f ≥ 1 and q ≥ 0
be integers. Let z be an oracle function with finite range Z and p := log #Z.

Then there is an oracle function S, such that SO is an assignment of length at
most f , so that the following holds: For any probabilistic oracle Turing machine A
that makes at most q queries to the random oracle, it is

Δ
(
AO(zO); AP(zO)

)
≤

√
pq

2f

where P is the random oracle with presampling SO.

Before presenting the actual proof, we give a short sketch that is intended to serve
as a guide through the rest of the proof. To ease comparison with the details given
later, we provide forward references to the lemmas of the actual proof.

214 D. Unruh

For any i, let Ji be the maximum amount of information that a sequence of i
queries to the random oracle O gives about the auxiliary input zO. Since |z| = p,
Ji ≤ p for all i. Let Fi be the sequence of i queries that achieves this bound,
that is, the mutual information between zO and the oracle’s answers to Fi is Ji.

Assume that the queries Fi have already been performed. Let G be a sequence
of q queries. Then the answers to the queries Fi and G together contain at most
Jq+i bits of information about z. Thus the answers to G contain at most Jq+i −Ji

bits of information about z beyond what is already known from the answers to Fi.
Consider the quantities J0, Jq, J2q, . . . , Jf+q (assuming that q divides f). Since

J0 ≥ 0 and Jf+q ≤ p, there must be some f ′ ≤ f such that the Jf ′+q −Jf ′ ≤ pq
f .

Thus, given the answers to F := Ff ′ , any sequence G of q queries reveals at
most pq

f bits about the auxiliary input z. In other words, the answers to G are
almost independent of z (assuming that pq

f is sufficiently small). Thus, if we
fix the oracle P to match the answers to F , but choose P independently of z
everywhere else, with q queries we cannot distinguish between P and the original
oracle O. This gives Theorem 2 (except for the concrete bound

√
pq/2f).

In reality, however, the queries performed by A are adaptive, i.e., they depend
on z and on the answer to prior queries. So we cannot talk about a fixed sequence
G of queries made by A. To overcome this problem, we introduce the concept of an
adaptive list (Definitions 3 and 4), which is a generalisation of a sequence of queries
where the queries are allowed to be adaptive. When considering adaptive lists, it
does not make immediate sense to speak about the mutual information between
the answers to an adaptive list G and the auxiliary input zO. In Definition 5 we
therefore introduce quantities J(G) and J(G|F) denoting the information that
the answers to the adaptive list G contains about zO (given the answers to the
adaptive list F in the case of J(G|F)). For this quantity, we show that J(F) ≤ p
(Lemma 7) and give a chain rule for the information contained in the concate-
nation of adaptive lists (Lemma 6). Then we can construct the sequence F as in
the proof sketch above (Lemma 8). However, F is now an adaptive list. Finally,
Theorem 2 is proven (page 216) by showing that the adversary A can be consid-
ered as an adaptive list G of length q, and therefore cannot distinguish the answers
to queries outside F from uniform randomness. For convenience, in Corollary 9 we
formulate an asymptotic version of Theorem 2.

We now give the details of the proof, broken down to several lemmas. First
we have to define the concept of an adaptive list. To capture the possibility of
adaptive queries, an adaptive list is formally just a deterministic oracle Turing
machine. An adaptive list of length n makes n queries to the oracle and outputs
an assignment containing the queries and the results of these queries. To be
able to talk about the concatenation of adaptive lists, we slightly extend this
idea. An adaptive list takes an auxiliary input z, but also an assignment X .
This assignment can be thought of as the queries made by an adaptive list
executed earlier. So in a concatenation of two adaptive lists, the queries of the
second adaptive list can depend on the results of the queries made by the first
adaptive list. For definitional convenience, an adaptive list does not only output
its queries, but also the queries received as input. An adaptive list expecting a

Random Oracles and Auxiliary Input 215

queries as input and then making b − a queries, we call an a → b adaptive list.
We require that an adaptive list never repeats a query. Note that an adaptive
list is indeed a generalisation of a non-adaptive sequence of queries: a sequence
(x1, . . . , xn) corresponds to the 0 → n adaptive list querying the positions x1 to
xn and returning the results.

Definition 3 (Adaptive list). Let #Domain ≥ b ≥ a ≥ 0. An a → b adaptive
list M is defined as a deterministic oracle Turing machine that takes an assign-
ment X = (x1 → y1, . . . , xa → ya) and a string z ∈ Σ∗ as input and satisfies
the following properties

– M = M(X, z) does not query the oracle at positions x1, . . . , xa.
– M never queries the oracle twice at the same position.
– M queries the oracle exactly b − a times.
– Let x′

1, . . . , x
′
b−a be the positions of the oracle calls made by M (in that

order). Let y′
i := O(x′

i) be the corresponding oracle answers.
– Then M outputs the assignment (x1 →y1, . . . , xa →ya, x′

1 → y′
1, . . . , x

′
b−a →

y′
b−a).

We can now define simple operations on adaptive lists. The length of an adaptive
list is the number of queries it makes, and the composition of two adaptive lists
is the adaptive list that first queries the first list, and then executes the second,
which gets the queries made by the first as input.

Definition 4 (Operations on adaptive lists). Let M be an a → b adaptive
list. Then the length |M | is defined as |M | := b − a.

Let N be an a → b adaptive list, and M some b → c adaptive list. Then the
composition M ◦ N is defined as the oracle Turing machine that upon input of
an assignment X and a string z ∈ Σ∗ outputs MO(NO(X, z), z).

Obviously, M ◦ N is an a → c adaptive list, and |M ◦ N | = |M | + |N |.
We can now define the quantity J(M |N) for adaptive lists M, N . Intuitively,

J(M |N) denotes the information that the queries made by M (when executed
after N) contain about the auxiliary input zO beyond what is already known
from the queries made by N . Since the results to the queries made by M should
be uniformly random if they are independent of zO, we define J(M |N) as the
quantity by which the conditional entropy of M ’s queries given N ’s queries and
zO is lower than the hypothetical value of |M | · log #Range.

Definition 5 (Information of an adaptive list). Let N be some 0 → b
adaptive list, and M some b → c adaptive list. Let further O be the random
oracle and z a random variable (where z does not need to be independent of O).

Then the information J(M |N) is defined by

J(M |N) := |M | · log #Range − H(M ◦ NO(z)|NO(z), z).

(Note that J(M |N) implicitly depends on the joint distribution of O and z.)
We write short J(M) for J(M |∅) where ∅ is the adaptive list making no queries.

216 D. Unruh

We now give two simple properties of the information J(M |N): a chain rule and
an upper bound in terms of the auxiliary input’s length.

Lemma 6 (Chain rule for the information). Let N be some 0 → b adaptive
list, M2 some b → c adaptive list, and M1 some c → d adaptive list. Then

J(M1 ◦ M2|N) ≥ J(M1|M2 ◦ N) + J(M2|N).

Lemma 7 (Bounds for the information). Let z be a random variable with
finite range Z and p := log #Z. Let F be some 0 → b adaptive list. Then
J(F) ≤ p.

The proofs of these lemmas as well as of the subsequent ones are given in the
full version [18].

Let Ji := maxF J(F) where F ranges over all adaptive lists of length |F | = i.
Choose Fi such that J(Fi) = Ji. Consider the quantities J0, Jq, J2q, . . . , Jf+q

(assuming that q divides f). Since J0 ≥ 0 and Jf+q ≤ p by Lemma 7, there
must be some f ′ ≤ f such that Jf ′+q − Jf ′ ≤ pq

f =: ε. Defining F := Ff ′ we get
J(G|F) ≤ J(G ◦ Ff ′) − J(Ff ′) ≤ Jq+f ′ − Jf ′ ≤ ε by Lemma 6.

By definition of J(G|F), this implies that the results of the queries made by
G are only ε away from the maximum possible entropy |G| · log #Range. This
implies using a result from [13] that the statistical distance between those query-
results and the uniform distribution is bounded by

√
ε/2, even when given the

results of the queries made by F and the auxiliary input zO. This is formally
captured by the following lemma which is the core of the proof of Theorem 2.

Lemma 8 (The adaptive list F). Let f, q ≥ 1 be integers. Let z be a ran-
dom variable with finite range Z (z may depend on the random oracle O) and
p := log #Z. Let Un denote the uniform distributions on n-tupels over #Range
(independent of z and O).

Then there is an adaptive list F with |F | ≤ f , such that for any |F | →
min{|F | + q, #Domain} adaptive list G, it is

Δ
(
∇G ◦ FO(z), FO(z), z; U|G|, FO(z), z

)
≤

√
pq

2f
.

Here ∇G ◦ F denotes the oracle Turing machine that behaves as G ◦ F but only
outputs the oracle answers that G got (instead of also outputting G’s input and
G’s queries). More formally, if G ◦ FO(z) = (x1 → y1, . . . , x|F |+|G| → y|F |+|G|),
we have ∇G ◦ FO(z) = (y|F |+1, . . . , y|F |+|G|).

Using Lemma 8, proving the main Theorem 2 is easy. For some adversary A let
μ := Δ

(
AO(zO); AP(zO)

)
. By fixing the worst-case random-tape, we can make

the adversary A deterministic. Then A’s output depends only on its input zO and
the answers to its oracle queries. So if we let A just output the queries it made,
the statistical distance μ does not diminish. Further, if we give the presampled
queries SO as an additional input to A, we can assume A to make exactly q dis-
tinct queries, and not to query any x ∈ SO. But then A fulfils the definition of an
adaptive list, so by Lemma 8 we have μ ≤

√
pq
2f , which proves Theorem 2.

We give the full details of the proof in the full version [18].

Random Oracles and Auxiliary Input 217

An interesting question is whether the bound
√

pq/2f on the statistical dis-
tance Δ achieved by Theorem 2 is tight. In particular, the bound falls only
sublinearly with f , while we were unable to find a counterexample where Δ did
not fall exponentially with f . So a tighter bound may be possible. However, this
would need to use new proof techniques, since the approach in this paper uses
an averaging argument that will at best give a bound that falls polynomially in
f (cf. the computation of Jf ′+q − Jf ′ below Lemma 7 above.)

Finally, for convenience we state an asymptotic version of Theorem 2 that
hides the exact bounds achieved there:

Corollary 9 (Lazy sampling with auxiliary input, asymptotic version).
For any superpolynomial function f and any polynomial q and oracle function
z into strings of polynomial length, there is an oracle function S, such that
SO is an assignment of length at most f , so that for any probabilistic oracle
Turing machine A making at most q queries, the following random variables are
statistically indistinguishable:

AO(1k, zO) and AP(1k, zO).

Here P is the random oracle with presampling SO.
(In this corollary, O, z, and S depend implicitly on the security parameter k.)

Proof. Immediate from Theorem 2.
�

3 Example: One-Wayness of the Random Oracle

To give a first impression on how the lazy sampling technique is used in the
random oracle model with oracle-dependent auxiliary input, we show a very
simple result: If we let f := O, then f is a one-way function.

In the full version [18], as a second example we show that f := O is given-
preimage collision-resistant.

Lemma 10 (The random oracle is one-way). Let g := O where O denotes
the random oracle. Then g is a one-way function in the random oracle model
with oracle-dependent auxiliary input.

More formally, for any probabilistic polynomial-time oracle Turing machine A
and any oracle function z into strings of polynomial length, the following prob-
ability is negligible (in k):

AdvA := P
(
x

$← Domain , x′ ← AO(1k, zO, O(x)) : O(x′) = O(x)
)

(In this lemma, O, Domain, f , and z depend implicitly on the security parameter
k.)

We present this proof in some detail, to illustrate how Theorem 2 or Corollary 9
can be used. Since these steps are almost identical in most situations, knowledge
of this proof facilitates understanding of the proofs given later on.

218 D. Unruh

Proof. Let f := min{
√

#Range,
√

#Domain}. Let Ã be the oracle Turing ma-
chine that chooses a random x from Domaink, then let A(1k, zO, O(x)) choose
x′, and outputs 1 if and only if O(x′) = O(x). Then AdvA = P

(
ÃO(1k, zO) = 1

)
.

Since A is polynomial-time, Ã makes only a polynomial number of queries,
so Corollary 9 applies to Ã, hence ÃO(1k, zO) and ÃP(1k, zO) are statistically
indistinguishable (where P is the random oracle with presampling SO, and S is
as in Corollary 9). Then consider the following game:

Game 1: x
$← Domain , x′ ← AP(1k, zO, P(x)) : P(x′) = P(x).

We call the probability that the last expression evaluates to true (i.e., that
P(x′) = P(x)) the advantage Adv1 of the game. Since Adv1 is the probability
that ÃP(1k, zO) outputs 1, |AdvA − Adv1| is negligible.

(This step probably occurs at the beginning of virtually all proofs that use
Theorem 2 or Corollary 9. We are now in the situation that with at most f
exceptions, the oracle query P(x) returns a fresh random value, and can use
standard techniques based on lazy sampling.)

We now modify A in the following way resulting in a machine A2: A2 expects
an assignment S as an additional argument. Whenever A would query the ran-
dom oracle P with a value x, A2 first checks if x ∈ S. If so, A returns the image
of x under S. Otherwise, A2 queries its oracle. Then consider the following game:

Game 2: x
$← Domain , y ← P(x), x′ ← AP

2 (1k, zO, y, SO) : y = P(x′)

Obviously, Adv1 = Adv2.
Since for somex /∈ SO (whichhappenswithprobability at least 1−f/#Domain),

the oracle P returns a random y ∈ #Range, the probability that y ∈ im SO is at
most f/#Domain + f/#Range. Furthermore, if x′ ∈ SO but y /∈ im SO, the
predicate y = P(x′) will be false.

So |Adv2 − Adv3| ≤ P (y ∈ im SO) is negligible for the following game 3:

Game 3: x
$← Domain , y ← P(x), x′ ← AP

2 (1k, zO, y, SO) :

if (x′ ∈ SO) then false else y = P(x′).

Note that in game 3, A2 never queries P at a position in SO. Furthermore, the
query P(x′) is only executed if x′ /∈ S. So P is only queried at a position in
SO, if x ∈ SO, which has probability at most f/#Domain. But when queried
at positions outside SO, P behaves like a normal random oracle (i.e., without
presampling). We can therefore replace the oracle P by a random oracle R
(independent of O):

Game 4: x
$← Domain, y ← R(x), x′ ← AR

2 (1k, zO, y, SO) :

if (x′ ∈ SO) then false else y = R(x′).

Then |Adv3 − Adv4| ≤ P (x ∈ SO) is negligible.

Random Oracles and Auxiliary Input 219

(We have now succeeded in completely separating the oracle from the auxiliary
input; R is independent from (zO, SO). From here on, the proof is a standard
proof of one-wayness of the random oracle. Note however, that SO has a length
that may be superpolynomial, so A2 is not polynomially bounded any more. In
our case, this does not pose a problem, since we only use the fact that A2 uses
a polynomial number of queries. In proof that additionally need computational
assumptions, one might need additional tools which we present in Section 4.)

Consider the following game:

Game 5: x
$← Domain , y

$← Range, x′ ← AR
2 (1k, zO, y, SO) :

if (x′ ∈ SO) then false else y = R(x′).

Since A was polynomially bounded, there is a polynomial q bounding the number
of oracle queries of A2. The probability that A2 queries R at position x is
therefore at most q/#Domain (since x is randomly chosen and never used).
Furthermore, game 4 and 5 only differ if A2 queries R at position x. So |Adv4 −
Adv5| ≤ q/#Domain is negligible.

Since A2 makes at most q queries, the probability that one of these returns y is
at most q/#Domain . If x′ returns a value x′ it has not queried before, the prob-
ability that y = R(x′) is at most 1/#Domain. So Adv5 ≤ (q − 1)/#Domain is
negligible.

Collecting the bounds shown so far, we see that AdvA is negligible.
�

In the preceding proof, we have only verified that the advantage of the adversary
is negligible. By using Theorem 2 instead of Corollary 9 and computing the exact
bounds, we even get AdvA ∈ 2−Ω(k) which is essentially the same bound as given
in [12] and [10].

4 Security Amplification

When using a random oracle with presampling, reduction proofs sometimes run
into situations where the adversary gets the presampling SO as an input. Un-
fortunately, this presampling is usually of superpolynomial size, so the resulting
adversary is not polynomial-time any more and a reduction to complexity as-
sumptions relative to polynomial-time adversaries is bound to fail. (E.g., in the
proof of Lemma 10 the adversary A2 was not polynomial-time in the security
parameter any more. In that case however, this did not matter since we only
used the polynomial bound on the number of queries made by A2.) An example
of a situation where superpolynomial adversaries occur, and do pose a problem,
is the proof that RSA-OAEP is secure with respect to oracle-dependent auxiliary
input, cf. Section 5. One possibility is simply to assume a stronger security no-
tion; in the case of RSA-OAEP one could use, e.g., the RSA-assumption against
quasi-polynomial adversaries.

Fortunately, there is another way which allows to use standard assumptions
(i.e., with respect to polynomial-time adversaries) in many cases. We show that
for some kinds of security notions, security against polynomial-time adversaries

220 D. Unruh

implies security against adversaries with f -bounded runtime, where f is a suit-
ably chosen superpolynomial function. Using this fact we can finish our reduction
proof: Corollary 9 guarantees that for any superpolynomial function f ′, we can
replace the random oracle by a random oracle with presampling of length f ′. We
then choose f ′ to be the largest function such that all adversaries constructed in
our proof are still f -bounded. Such an f ′ is still superpolynomial, so Corollary 9
applies. On the other hand, the resulting adversaries are efficient enough for the
reduction to go through. This proof method is applied in Section 5 to show the
security of RSA-OAEP.

Instead of giving a general proof of our security amplification technique, we
give here a proof for the security notion of partial-domain one-wayness (Defini-
tion 11). The proof can easily be adapted to other security notions (in particular,
our proof does not exploit how the advantage Adv is defined for this particular
notion). In the full version [18] we give a more general characterisation of the
security notions for which security amplification is possible.5

Definition 11 (Partial-domain one-way). A family of 1-1 functions fpk :
B × C → D is partial-domain one-way, if for any nonuniform polynomial-time
adversary A, the following advantage is negligible:

AdvA,k := P
(
pk ←K(1k), (s, t) $← B ×C, y←fpk (s, t), s′←A(1k, y) : s = s′

)
.

Here K denotes the index generation algorithm for the family fpk of functions.
Partial-domain one-way against f -bounded adversaries for some function f is
defined analogously.

(In this definition,B,C, andD depend implicitly on the security parameter k.)

Lemma 12 (Security amplification for partial-domain one-wayness).
Let the family fpk be partial-domain one-way (against polynomial-time nonuni-
form adversaries). Then there exists a superpolynomial function f such that fpk

is partial-domain one-way against f -bounded nonuniform adversaries.

Proof. For n ∈ � let μn(k) := max|A|≤n(AdvA,k) where A goes over all circuits
of size at most n. Assume there was a polynomial p with integer coefficients (an
integer polynomial for short) such that μp(k)(k) is not negligible in k. Then there
is a nonuniform adversary A consisting of circuits Ak with |Ak| ≤ p(k) such that
AdvA,k ≥ μp(k)(k) is non-negligible. Since A is polynomial-time, this contradicts
the assumption that the fpk are partial-domain one-way. Hence μp := μp(k)(k)
is negligible for all integer polynomials p.

We say that a function μ asymptotically dominates a function ν if for all
sufficiently large k we have μ(k) ≥ ν(k). [1] proves that for any countable set
S of negligible functions, there is a negligible function μ∗ that asymptotically
dominates all μ ∈ S.
5 This includes one-wayness, partial-domain one-wayness, IND-CPA, IND-CCA2, black-

box stand-alone security of function evaluations, UC (where the amplification con-
cerns the running time of the environment), black-box zero-knowledge, arguments,
black-box arguments of knowledge.

Random Oracles and Auxiliary Input 221

Therefore, there is a negligible function μ∗, that asymptotically dominates μp

for every integer polynomial p.
Let f(k) := max{p ∈ � : μp(k) ≤ μ∗(k)}. Then μfX(k)(k) ≤ μ∗(k) is negli-

gible. So for any nonuniform f -bounded adversary A the advantage AdvA,k is
negligible. Furthermore, we can show that f is superpolynomial. Assume this
is not the case. Then there an integer polynomial p such that p > f infinitely
often. But then μp > μ∗ holds infinitely often, in contradiction to the choice of
μ∗ (by definition of f). Thus f is superpolynomial.
�

5 OAEP Encryption

In [9] it was shown that RSA-OAEP (introduced by [2]) is secure in the random or-
acle model under the RSA-assumption. However, their proof only covers the case
that no auxiliary input is given (or at least that the auxiliary input is not oracle-
dependent). In this section, we extend this result to encompass the case of oracle-
dependent auxiliary input. On one hand, this gives a nontrivial example of the
application of the lazy sampling technique in combination with the security am-
plification technique. On the other hand, this result is important in its own light,
since it gives evidence that RSA-OAEP may be secure with respect to an auxiliary
input, even when the random oracle has been instantiated with a fixed function.

To read this section, it is helpful to have at least basic knowledge of the OAEP
construction and its proof from [9]. We recommend [9] as an introduction.

Theorem 13 (OAEP is secure with respect to oracle-dependent auxil-
iary input). Let fpk be a family of partial-domain one-way trapdoor 1-1 func-
tions (with the property, that the elements of the domain of fpk consist of two
components each of superlogarithmic length).

Then the OAEP encryption scheme based on fpk is IND-CCA2 secure in the
random oracle model with oracle-dependent auxiliary input.

This theorem implies that RSA-OAEP is IND-CCA2 secure under the RSA-assum-
ption with respect to oracle-dependent auxiliary input, since in [9] it is shown
that the RSA family of functions is partial-domain one-way.

At this point, we only describe on a high level, in what points our proof differs
from the proof in [9]. In the full version [18], we reproduce the full proof of [9]
and highlight our changes for comparison.

In [9], the proof has roughly the following outer form: First, the IND-CCA2
game is formulated for the special case of the OAEP encryption scheme. Then
the game is rewritten in a series of small changes, to finally yield a plaintext
extractor. If the first game had a non-negligible success probability (i.e., the
OAEP encryption scheme was not IND-CCA2 secure), the plaintext extractor had,
for some random ciphertext fpk (s, t), a non-negligible probability of outputting
s. This breaks the assumption that fpk is partial-domain one-way.

Our proof starts with the same game, except that the adversary now has
access to an oracle-dependent auxiliary input zO. Then we can use Corollary 9 to

222 D. Unruh

replace the random oracle O by a random oracle P with presampling SO of a yet
to determine superpolynomial subexponential length f (similar to the first step in
the proof of Lemma 10).6 In this new situation, for randomly chosen x ∈ Domain ,
with overwhelming probability, the oracle response P(x) is uniformly distributed.
Using this fact, most of the rewriting steps in the sequence of games are the same
as in [9], sometimes with slightly larger errors to account for the possibility of
randomly choosing an x ∈ SO. Only in the construction of the plaintext extractor
additional care has to be taken. Here the original argument uses that the answer
to an oracle query can be assumed to be random if the adversary has not yet
queried it. From this they conclude any ciphertext the decryption oracle would
accept can also be decrypted by encrypting and comparing all oracles queries
that have been made by the adversary so far. This does not hold any more since
the auxiliary input zO can supply additional information on the presampled
queries SO. We thus have to change the plaintext extractor not only to encrypt
all oracle queries but also all presampled queries SO. Therefore the plaintext
extractor is not polynomial-time anymore, but instead a nonuniform machine
with running time p(f) for some polynomial p. We consequently do not directly
obtain a contradiction to the partial-domain one-wayness, since therefore the
plaintext extractor would have to be polynomial-time.

However, we can use the security amplification technique. By Lemma 12, there
is a superpolynomial function f ′ such that fpk is partial-domain one-way even
against nonuniform f ′-bounded adversaries. By choosing f small enough (but
still superpolynomial), it is p(f) ≤ f ′, so the plaintext extractor is f ′-bounded,
and the fact that the plaintext extractor returns s for some fpk (s, t) with non-
negligible probability is a contradiction.

6 Open Questions

We have shown how to apply the lazy sampling technique to the case of oracle-
dependent auxiliary input. Going further, the following open problems come to
mind:

– Polynomial presampling: In Corollary 9, we require the length f of the pre-
sampling to be superpolynomial. This makes reduction proofs more difficult,
in particular it necessitates the use of the security amplification technique.
It would be preferable to be able to use a polynomial length f (in this case,
the length would of course have to depend on the length of auxiliary input
and the number of queries made by the adversary).

– The random oracle as considered here is only a specific example of the class
of random objects that are given as oracle to the parties. Other examples
include random permutations (with or without access to the inverse), the
generic group model, ideal ciphers, or just random oracles with a skewed
distribution. When using these to motivate security results, the same argu-
ments apply as in the case of random oracles, and oracle-dependent auxiliary

6 The actual proof uses Theorem 2, but the asymptotic version is sufficient.

Random Oracles and Auxiliary Input 223

input should be considered. It is then necessary to extend the lazy sampling
technique to these constructions as well.

In the full version [18], we discuss these open questions in slightly more detail.

Acknowledgements. We thank Michael Backes, Dennis Hofheinz, Yuval Ishai,
Jörn Müller-Quade, Hoeteck Wee, and Jürg Wullschleger for valuable discus-
sions. We further thank the anonymous referees for helpful comments.

References

1. Bellare, M.: A note on negligible functions. Journal of Cryptology 15(4), 271–284
(2002)

2. Bellare, M., Rogaway, P.: Optimal asymmetric encryption—how to encrypt with
RSA. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 92–111.
Springer, Heidelberg (1995)

3. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: Proceedings of CCS 1993, pp. 62–73 (1993)

4. Cachin, C., Crépeau, C., Marcil, J.: Oblivious transfer with a memory-bounded
receiver. In: Proceedings of STOC 2002, pp. 493–502.

5. Cachin, C., Maurer, U.: Unconditional security against memory-bounded adver-
saries. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 292–306.
Springer, Heidelberg (1997)

6. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited.
In: Proceedings of STOC 1998, pp. 209–218 (1998)

7. Dziembowski, S., Maurer, U.: Tight security proofs for the bounded-storage model.
In: Proceedings of STOC 2002, pp. 341–350 (2002)

8. Federal Information Processing Standards Publications. FIBS PUB 180-2: Secure
Hash Standard (SHS) (August 2002)

9. Fujisaki, E., Okamoto, T., Pointcheval, D., Stern, J.: RSA-OAEP is secure under
the RSA assumption. Journal of Cryptology 17(2), 81–104 (2004)

10. Gennaro, R., Gertner, Y., Katz, J., Trevisan, L.: Bounds on the efficiency of generic
cryptographic constructions. SIAM J Computing 35(1), 217–246 (2005)

11. Goldreich, O.: A uniform-complexity treatment of encryption and zero-knowledge.
Journal of Cryptology 6(1), 21–53 (1993)

12. Impagliazzo, R.: Very strong one-way functions and pseudo-random generators
exist relative to a random oracle. Manuscript (1996)

13. Kullback, S.: A lower bound for discrimination information in terms of variation
(corresp.). IEEE Transactions on Information Theory 13(1), 126–127 (1967)

14. Maurer, U.: Conditionally-perfect secrecy and a provably-secure randomized ci-
pher. Journal of Cryptology 5(1), 53–66 (1992)

15. Pass, R.: On deniability in the common reference string and random oracle model.
In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 316–337. Springer, Hei-
delberg (2003)

16. Rogaway, P.: Formalizing human ignorance: Collision-resistant hashing without the
keys. In: Nguyen, P.Q. (ed.) VIETCRYPT 2006. LNCS, vol. 4341, pp. 221–228.
Springer, Heidelberg (2006)

17. RSA Laboratories. PKCS #1: RSA Cryptography Standard, Version 2.1, 2002.
18. Unruh, D.: Random oracles and auxiliary input. IACR ePrint, 2007/168. Full ver-

sion of this paper
19. Wee, H.: Zero knowledge in the random oracle model, revisited. Manuscript (2006)

	Random Oracles and Auxiliary Input
	Introduction
	Our Results
	Related Work
	Further Applications
	Organisation
	Notation

	Lazy Sampling with Auxiliary Input
	Example: One-Wayness of the Random Oracle
	Security Amplification
	OAEP Encryption
	Open Questions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Europe ISO Coated FOGRA27)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

