


Lecture Notes in Computer Science 4622

Commenced Publication in 1973

Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK

Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler

University of Surrey, Guildford, UK

Jon M. Kleinberg

Cornell University, Ithaca, NY, USA

Friedemann Mattern

ETH Zurich, Switzerland

John C. Mitchell

Stanford University, CA, USA

Moni Naor

Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz

University of Bern, Switzerland

C. Pandu Rangan

Indian Institute of Technology, Madras, India

Bernhard Steffen

University of Dortmund, Germany

Madhu Sudan

Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos

University of California, Los Angeles, CA, USA

Doug Tygar

University of California, Berkeley, CA, USA

Moshe Y. Vardi

Rice University, Houston, TX, USA

Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany



Alfred Menezes (Ed.)

Advances in Cryptology –
CRYPTO 2007

27th Annual International Cryptology Conference
Santa Barbara, CA, USA, August 19-23, 2007
Proceedings

13



Volume Editor

Alfred Menezes
University of Waterloo
Department of Combinatorics & Optimization
Waterloo, Ontario N2L 3G1, Canada
E-mail: ajmeneze@uwaterloo.ca

Library of Congress Control Number: 2007932207

CR Subject Classification (1998): E.3, G.2.1, F.2.1-2, D.4.6, K.6.5, C.2, J.1

LNCS Sublibrary: SL 4 – Security and Cryptology

ISSN 0302-9743

ISBN-10 3-540-74142-9 Springer Berlin Heidelberg New York

ISBN-13 978-3-540-74142-8 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© International Association for Cryptologic Research 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12104802 06/3180 5 4 3 2 1 0



Preface

CRYPTO 2007, the 27th Annual International Cryptology Conference, was spon-
sored by the International Association for Cryptologic Research (IACR) in co-
operation with the IEEE Computer Society Technical Committee on Security
and Privacy, and the Computer Science Department of the University of Cali-
fornia at Santa Barbara. The conference was held in Santa Barbara, California,
August 19-23 2007. CRYPTO 2007 was chaired by Markus Jakobsson, and I had
the privilege of serving as the Program Chair.

The conference received 186 submissions. Each paper was assigned at least
three reviewers, while submissions co-authored by Program Committee mem-
bers were reviewed by at least five people. After 11 weeks of discussion and
deliberation, the Program Committee, aided by reports from over 148 external
reviewers, selected 33 papers for presentation. The authors of accepted papers
had four weeks to prepare final versions for these proceedings. These revised pa-
pers were not subject to editorial review and the authors bear full responsibility
for their contents.

The Committee identified the following three papers as the best papers:
“Cryptography with Constant Input Locality” by Benny Applebaum, Yuval
Ishai and Eyal Kushilevitz; “Practical Cryptanalysis of SFLASH” by Vivien
Dubois, Pierre-Alain Fouque, Adi Shamir and Jacques Stern; and “Finding Small
Roots of Bivariate Integer Polynomial Equations: A Direct Approach” by Jean-
Sébastien Coron. The authors of these papers received invitations to submit full
versions to the Journal of Cryptology. After a close vote, the Committee se-
lected Benny Applebaum, Yuval Ishai and Eyal Kushilevitz, the authors of the
first paper, as recipients of the Best Paper Award.

The conference featured invited lectures by Ross Anderson and Paul Kocher.
Ross Anderson’s paper “Information Security Economics – And Beyond” has
been included in these proceedings.

There are many people who contributed to the success of CRYPTO 2007. I
would like the thank the many authors from around the world for submitting
their papers. I am deeply grateful to the Program Committee for their hard
work, enthusiasm, and conscientious efforts to ensure that each paper received
a thorough and fair review. Thanks also to the external reviewers, listed on
the following pages, for contributing their time and expertise. It was a pleasure
working with Markus Jakobsson and the staff at Springer. I am grateful to Andy
Clark, Cynthia Dwork, Arjen Lenstra and Bart Preneel for their advice. Finally,
I would like to thank Dan Bernstein for organizing a lively Rump Session, and
Shai Halevi for developing and maintaining his most useful Web Submission and
Review Software.

June 2007 Alfred Menezes



CRYPTO 2007
August 19-23, 2007, Santa Barbara, California, USA

Sponsored by the
International Association for Cryptologic Research (IACR)

in cooperation with
IEEE Computer Society Technical Committee on Security and Privacy,
Computer Science Department, University of California, Santa Barbara

General Chair
Markus Jakobsson, Indiana University, USA

Program Chair
Alfred Menezes, University of Waterloo, Canada

Program Committee

Amos Beimel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ben-Gurion University, Israel
Alex Biryukov . . . . . . . . . . . . . . . . . . . . . . . University of Luxembourg, Luxembourg
Xavier Boyen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Voltage Security, USA
Yevgeniy Dodis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .New York University, USA
Orr Dunkelman . . . . . . . . . . . . . . . . . . . . . .Katholieke Universiteit Leuven, Belgium
Matt Franklin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . UC Davis, USA
Steven Galbraith . . . . . . . . . . . . . . . . . . Royal Holloway, University of London, UK
Rosario Gennaro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IBM Research, USA
Martin Hirt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ETH Zurich, Switzerland
Nick Howgrave-Graham . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . NTRU, USA
Antoine Joux . . . . . . . . . . . . . . . . . . . . . . .DGA and Université de Versailles, France
John Kelsey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . NIST, USA
Neal Koblitz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .University of Washington, USA
Kaoru Kurosawa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ibaraki University, Japan
Tanja Lange . . . . . . . . . . . . . . . . . .Technische Universiteit Eindhoven, Netherlands
Kristin Lauter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Microsoft Research, USA
Kenny Paterson . . . . . . . . . . . . . . . . . . . Royal Holloway, University of London, UK
David Pointcheval . . . . . . . . . . . . . . . . . . . . . . . . . . École Normale Supérieure, France
Bart Preneel . . . . . . . . . . . . . . . . . . . . . . . . .Katholieke Universiteit Leuven, Belgium
Zulfikar Ramzan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Symantec, USA
Omer Reingold . . . . . . . . . . . . . . . . . . . . . . . . . .Weizmann Institute of Science, Israel
Rei Safavi-Naini . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . University of Calgary, Canada
Amit Sahai . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .UCLA, USA
Palash Sarkar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Indian Statistical Institute, India
Nigel Smart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .University of Bristol, UK
Adam Smith . . . . . . . . . . . . . . . . . . . . . . . . . .UCLA and Penn State University, USA
Rainer Steinwandt . . . . . . . . . . . . . . . . . . . . . . . . . . Florida Atlantic University, USA
Yiqun Lisa Yin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Independent Consultant, USA



VIII Organization

Advisory Members

Cynthia Dwork (CRYPTO 2006 Program Chair) . . . . . . . . . . . . . .Microsoft, USA
David Wagner (CRYPTO 2008 Program Chair) . . . . . . . . . . . .UC Berkeley, USA

External Reviewers

Michel Abdalla
Masayuki Abe
Joel Alwen
Elena Andreeva
Tomoyuki Asano
Nuttapong Attrapadung
Georges Baatz
Lejla Batina
Aurélie Bauer
Zuzana Beerliová
Josh Benaloh
Waldyr Benits Jr.
Daniel J. Bernstein
Jens-Matthias Bohli
Alexandra Boldyreva
Carl Bosley
Colin Boyd
Daniel R.L. Brown
Ran Canetti
David Cash
Dario Catalano
Denis Charles
Lily Chen
Benôıt Chevallier-Mames
Sherman Chow
Carlos Cid
Henry Cohn
Scott Contini
Jason Crampton
Joan Daemen
Quynh Dang
Cécile Delerablée
Alex Dent
Zeev Dvir
Morris Dworkin
Phil Eagle
Pooya Farshim
Marc Fischlin

Matthias Fitzi
Georg Fuschbauer
Nicolas Gama
Joachim von zur Gathen
Willi Geiselmann
Craig Gentry
Marc Girault
Mark Gondree
Jens Groth
Manabu Hagiwara
Iftach Haitner
Shai Halevi
Goichiro Hanaoka
Kristiyan Haralambiev
Danny Harnik
Swee-Huay Heng
Shoichi Hirose
Katrin Hoepper
Susan Hohenberger
Thomas Holenstein
Emeline Hufschmitt
Russell Impagliazzo
Yuval Ishai
Tetsu Iwata
Malika Izabachène
Shaoquan Jiang
Charanjit Jutla
Jonathan Katz
Aggelos Kiayias
Eike Kiltz
Darko Kirovski
Lars Knudsen
Yuichi Komano
Hugo Krawczyk
Sébastien Kunz-Jacques
Brian LaMacchia
Gaëtan Leurent
Yehuda Lindell

Joseph Liu
Stefan Lucks
Norbert Lütkenhaus
Philip MacKenzie
Tal Malkin
Keith Martin
Alexander Maximov
David Mireles
Ilya Mironov
Anton Mityagin
Payman Mohassel
David Molnar
Tal Moran
Moni Naor
Ashwin Nayak
Adam O’Neill
Gregory Neven
Phong Nguyen
Jesper Buus Nielsen
Kobbi Nissim
Wakaha Ogata
Rafail Ostrovsky
Elisabeth Oswald
Rafael Pass
Maura Paterson
Olivier Pereira
Giuseppe Persiano
Duong Hieu Phan
Benny Pinkas
Angela Piper
Alf van der Poorten
Manoj Prabhakaran
Bartosz Przydatek
Prashant Puniya
Tal Rabin
Dominik Raub
Oded Regev
Jean-René Reinhard



Organization IX

Renato Renner
Reza Reyhanitabar
Alon Rosen
Guy Rothblum
Jacob Schuldt
Gil Segev
Siamak Shahandashti
Jamshid Shokrollahi
Igor Shparlinski
Tom Shrimpton
Andrey Sidorenko
Johan Sjödin

Till Stegers
Christine Swart
Mike Szydlo
Stefano Tessaro
Jacques Traoré
José Villegas
Ivan Visconti
Shabsi Walfish
Huaxiong Wang
Bogdan Warinschi
Brent Waters
Enav Weinreb

Daniel Wichs
Douglas Wikström
Christopher Wolf
Stefan Wolf
Ronald de Wolf
David Woodruff
Hongjun Wu
Qianhong Wu
Jürg Wullschleger
Vassilis Zikas



Table of Contents

I Cryptanalysis I

Practical Cryptanalysis of SFLASH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Vivien Dubois, Pierre-Alain Fouque, Adi Shamir, and Jacques Stern

Full Key-Recovery Attacks on HMAC/NMAC-MD4 and
NMAC-MD5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Pierre-Alain Fouque, Gaëtan Leurent, and Phong Q. Nguyen

II Secure Searching

How Should We Solve Search Problems Privately? . . . . . . . . . . . . . . . . . . . 31
Amos Beimel, Tal Malkin, Kobbi Nissim, and Enav Weinreb

Public Key Encryption That Allows PIR Queries . . . . . . . . . . . . . . . . . . . . 50
Dan Boneh, Eyal Kushilevitz, Rafail Ostrovsky, and
William E. Skeith III

III Invited Talk

Information Security Economics – and Beyond . . . . . . . . . . . . . . . . . . . . . . . 68
Ross Anderson and Tyler Moore

IV Theory I

Cryptography with Constant Input Locality . . . . . . . . . . . . . . . . . . . . . . . . . 92
Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz

Universally-Composable Two-Party Computation in Two Rounds . . . . . 111
Omer Horvitz and Jonathan Katz

Indistinguishability Amplification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Ueli Maurer, Krzysztof Pietrzak, and Renato Renner

V Lattices

A Hybrid Lattice-Reduction and Meet-in-the-Middle Attack Against
NTRU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

Nick Howgrave-Graham



XII Table of Contents

Improved Analysis of Kannan’s Shortest Lattice Vector Algorithm
(Extended Abstract) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

Guillaume Hanrot and Damien Stehlé

VI Random Oracles

Domain Extension of Public Random Functions: Beyond the Birthday
Barrier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

Ueli Maurer and Stefano Tessaro

Random Oracles and Auxiliary Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
Dominique Unruh

VII Hash Functions

Security-Amplifying Combiners for Collision-Resistant Hash
Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

Marc Fischlin and Anja Lehmann

Hash Functions and the (Amplified) Boomerang Attack . . . . . . . . . . . . . . . 244
Antoine Joux and Thomas Peyrin

Amplifying Collision Resistance: A Complexity-Theoretic Treatment . . . 264
Ran Canetti, Ron Rivest, Madhu Sudan, Luca Trevisan,
Salil Vadhan, and Hoeteck Wee

VIII Theory II

How Many Oblivious Transfers Are Needed for Secure Multiparty
Computation? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

Danny Harnik, Yuval Ishai, and Eyal Kushilevitz

Simulatable VRFs with Applications to Multi-theorem NIZK . . . . . . . . . . 303
Melissa Chase and Anna Lysyanskaya

Cryptography in the Multi-string Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
Jens Groth and Rafail Ostrovsky

IX Quantum Cryptography

Secure Identification and QKD in the Bounded-Quantum-Storage
Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342

Ivan B. Damg̊ard, Serge Fehr, Louis Salvail, and Christian Schaffner



Table of Contents XIII

A Tight High-Order Entropic Quantum Uncertainty Relation with
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360

Ivan B. Damg̊ard, Serge Fehr, Renato Renner, Louis Salvail, and
Christian Schaffner

X Cryptanalysis II

Finding Small Roots of Bivariate Integer Polynomial Equations: A
Direct Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379

Jean-Sébastien Coron

A Polynomial Time Attack on RSA with Private CRT-Exponents
Smaller Than N0.073 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395

Ellen Jochemsz and Alexander May

XI Encryption

Invertible Universal Hashing and the TET Encryption Mode . . . . . . . . . . 412
Shai Halevi

Reducing Trust in the PKG in Identity Based Cryptosystems . . . . . . . . . . 430
Vipul Goyal

Pirate Evolution: How to Make the Most of Your Traitor Keys . . . . . . . . . 448
Aggelos Kiayias and Serdar Pehlivanoglu

XII Protocol Analysis

A Security Analysis of the NIST SP 800-90 Elliptic Curve Random
Number Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 466

Daniel R.L. Brown and Kristian Gjøsteen

A Generalization of DDH with Applications to Protocol Analysis and
Computational Soundness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482

Emmanuel Bresson, Yassine Lakhnech, Laurent Mazaré, and
Bogdan Warinschi

Chernoff-Type Direct Product Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500
Russell Impagliazzo, Ragesh Jaiswal, and Valentine Kabanets

XIII Public-Key Encryption

Rerandomizable RCCA Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 517
Manoj Prabhakaran and Mike Rosulek



XIV Table of Contents

Deterministic and Efficiently Searchable Encryption . . . . . . . . . . . . . . . . . . 535
Mihir Bellare, Alexandra Boldyreva, and Adam O’Neill

Secure Hybrid Encryption from Weakened Key Encapsulation . . . . . . . . . 553
Dennis Hofheinz and Eike Kiltz

XIV Multi-party Computation

Scalable and Unconditionally Secure Multiparty Computation . . . . . . . . . 572
Ivan Damg̊ard and Jesper Buus Nielsen

On Secure Multi-party Computation in Black-Box Groups . . . . . . . . . . . . 591
Yvo Desmedt, Josef Pieprzyk, Ron Steinfeld, and Huaxiong Wang

A Note on Secure Computation of the Moore-Penrose Pseudoinverse
and Its Application to Secure Linear Algebra . . . . . . . . . . . . . . . . . . . . . . . . 613

Ronald Cramer, Eike Kiltz, and Carles Padró

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 631



Practical Cryptanalysis of SFLASH

Vivien Dubois1, Pierre-Alain Fouque1, Adi Shamir1,2,
and Jacques Stern1

1 École normale supérieure
Département d’Informatique 45, rue d’Ulm

75230 Paris cedex 05, France
Vivien.Dubois@ens.fr,

Pierre-Alain.Fouque@ens.fr, Jacques.Stern@ens.fr
2 Weizmann Institute of Science
Adi.Shamir@weizmann.ac.il

Abstract. In this paper, we present a practical attack on the signature
scheme SFLASH proposed by Patarin, Goubin and Courtois in 2001 fol-
lowing a design they had introduced in 1998. The attack only needs the
public key and requires about one second to forge a signature for any
message, after a one-time computation of several minutes. It can be ap-
plied to both SFLASHv2 which was accepted by NESSIE, as well as to
SFLASHv3 which is a higher security version.

1 Introduction

In the last twenty years, multivariate cryptography has emerged as a potential
alternative to RSA or DLOG [12,2] schemes. Many schemes have been proposed
whose security appears somehow related to the problem of deciding whether
or not a quadratic system of equations is solvable, which is known to be NP-
complete [5]. An attractive feature of such schemes is that they have efficient
implementations on smart cards, although the public and secret keys are rather
large. Contrary to RSA or DLOG schemes, no polynomial quantum algorithm
is known to solve this problem.

The SFLASH Scheme. SFLASH is based on the Matsumoto-Imai scheme
(MI) [7], also called the C∗ scheme. It uses the exponentiation x �→ xqθ+1 in
a finite field Fqn of dimension n over a binary field Fq, and two affine maps
on the input and output variables. The MI scheme was broken by Patarin in
1995 [8]. However, based on an idea of Shamir [13], Patarin et al. proposed
at CT-RSA 2001 [10] to remove some equations from the MI public key and
called the resulting scheme C∗−. This completely avoids the previous attack
and, although not appropriate for an encryption scheme, it is well-suited for a
signature scheme. The scheme was selected in 2003 by the NESSIE European
Consortium as one of the three recommended public key signature schemes, and
as the best known solution for low cost smart cards.

A. Menezes (Ed.): CRYPTO 2007, LNCS 4622, pp. 1–12, 2007.
c© International Association for Cryptologic Research 2007



2 V. Dubois et al.

PreviousAttacksonSFLASH. ThefirstversionofSFLASH,calledSFLASHv1,
is a more efficient variant of C∗− using a small subfield. It has been attacked by
Gilbert and Minier in [6]. However, the later versions (SFLASHv2 and SFLASHv3)
were immune to this attack.

Recently, Dubois, Fouque and Stern in [1] proposed an attack on a special
class of SFLASH-like signatures. They show that when the kernel of the linear
map x �→ x+xqθ

is non-trivial, the C∗− scheme is not secure. The attack is very
efficient in this case, but relies on some specific properties which are not met by
the NESSIE proposals and which make the scheme look less secure.

Our Results. In this paper, we achieve a total break of the NESSIE standard
with the actual parameters suggested by the designers: given only the public
key, a signature for any message can be forged in about one second after a one
time computation of several minutes. The asymptotic running time of the attack
is O(log2(q)n6) since it only needs standard linear algebra algorithms on O(n2)
variables, and n is typically very small. As in [1], the basic strategy of the attack is
to recover additional independent equations in order to apply Patarin’s attack [8].
To this end, both attacks use the differential of the public key. However, the
attacks differ in the way the invariants related to the differential are found. The
differential of the public key, also called its polar form, is very important since
it transforms quadratic equations into linear ones. Hence, it can be used to find
some linear relations that involve the secret keys. Its cryptanalytic significance
had been demonstrated in [4].

Organization of the Paper. In section 2, we describe the SFLASH signa-
ture scheme and the practical parameters recommended by Patarin et al. and
approved by NESSIE. Then, in section 3 we present the multiplicative property
of the differential that we need. Next, in section 4 we describe how to recover
linear maps related to multiplications in the finite field from the public key. In
section 5, we show how to break the NESSIE proposal given only the public
key. In section 6, we extend the attack to cover the case when up to half of the
equations are removed, and finally in section 7, we compare our method with
the technique of [1] before we conclude.

2 Description of SFLASH

In 1988, Matsumoto and Imai [7] proposed the C∗ scheme for encryption and
signature. The basic idea is to hide a quadratic easily invertible mapping F in
some large finite field Fqn by two secret invertible linear (or affine) maps U and
T which mix together the n coordinates of F over the small field Fq :

P = T ◦ F ◦ U

where F (x) = xqθ+1 in Fqn . This particular form was chosen since its represen-
tation as a multivariate mapping over the small field is quadratic, and thus the
size of the public key is relatively small.



Practical Cryptanalysis of SFLASH 3

The secret key consists of the maps U and T ; the public key P is formed by
the n quadratic expressions, whose inputs and outputs are mixed by U and T ,
respectively. It can be seen that F and P are invertible whenever gcd(qθ +1, qn−
1) = 1, which implies that q has to be a power of 2 since q is a prime power.

This scheme was successfully attacked by Patarin [8] in 1996. To avoid this
attack and restore security Patarin et al. proposed in [11] to remove from the
public key the last r quadratic expressions (out of the initial n), and called this
variant of C∗ schemes, C∗−. Furthermore, if the value of r is chosen such that
qr ≥ 280, then the variant is termed C∗−−. If we denote by Π the projection of
n variables over Fq onto the first n − r coordinates, we can represent the public
key by the composition :

PΠ = Π ◦ T ◦ F ◦ U = TΠ ◦ F ◦ U.

In the sequel, P denotes the public key of a C∗ scheme whereas PΠ denotes a
C∗− or C∗−− public key. In both cases the secret key consists of the two linear
maps T and U .

To sign a message m, the last r coordinates are chosen at random, and the
signer recovers s such that PΠ(s) = m by inverting T , U and F . A signature
(m, s) can be checked by computing PΠ(s) with the public key, which is ex-
tremely fast since it only involves the evaluation of a small number of quadratic
expressions over the small finite field Fq.

For the NESSIE project and in [10], Patarin et al. proposed two particular
recommended choices for the parameters of C∗−− :

– for SFLASHv2 : q = 27, n = 37, θ = 11 and r = 11
– for SFLASHv3 : q = 27, n = 67, θ = 33 and r = 11

SFLASHv3 was actually proposed to provide an even more conservative level
of security than SFLASHv2 [10]. However, the designers made clear that they
viewed SFLASHv2 as providing adequate security, and no attack on these two
choices of parameters had been reported so far.

The important fact to notice here is that in both cases gcd(n, θ) = 1 and thus
the attack described in [1] on a modified version of SFLASH in which gcd(n, θ) >
1 cannot be applied. The attack described in this paper shares with [1] the basic
observation about the multiplicative property of C∗− schemes which is described
in section 3, but proceeds in a completely different way. More discussion about
the relationships between the two attacks can be found in section 7.

3 The Multiplicative Property of the Differential

The attack uses a specific multiplicative property of the differential of the public
key of a C∗− scheme.

The differential of the internal quadratic system F (x) = xqθ+1 is a symmetric
bilinear function in Fqn , called DF , and it is defined for all a, x ∈ Fqn by the
linear operator :

DF (a, x) = F (a + x) − F (a) − F (x) + F (0).



4 V. Dubois et al.

When F (x) = xqθ+1, we get for all a, x ∈ Fqn

DF (a, x) = axqθ

+ aqθ

x.

Note that this expression is bilinear since exponentiation by qθ is a linear oper-
ation. This map has a very specific multiplicative property: for all ξ ∈ Fqn

DF (ξ · a, x) + DF (a, ξ · x) = (ξ + ξqθ

) · DF (a, x) (1)

We now explain how this identity on the internal polynomial induces a similar
one on the differential of the public keys in C∗ and C∗−. Due to the linearity of
the DP operator, we can combine it with the linear maps T and U to get that
the differential of any C∗ public key P is DP (a, x) = T ◦DF (U(a), U(x)). Then,
equation (1) becomes for any ξ ∈ Fqn :

T ◦ DF (ξ · U(a), U(x)) + T ◦ DF (U(a), ξ · U(x))

= T ◦ (ξ + ξqθ

) · DF (U(a), U(x))

= T ◦ (ξ + ξqθ

) · T−1(DP (a, x)).

We denote by Mξ and ML(ξ) respectively the multiplications by ξ and by L(ξ) =
ξ + ξqθ

. Also, we let Nξ denote the linear map U−1 ◦ Mξ ◦ U which depends on
the secret key. We still use the word “multiplication” for Nξ, even though this
wording is not actually accurate since this is not the standard multiplication in
Fqn , due to the action of the input transformation U . With these notations :

DP (Nξ(a), x) + DP (a, Nξ(x)) = T ◦ ML(ξ) ◦ T−1(DP (a, x)).

Finally, if DPΠ is the differential of a C∗− public key PΠ , then :

DPΠ(Nξ(a), x) + DPΠ(a, Nξ(x)) = TΠ ◦ ML(ξ) ◦ T−1(DP (a, x)).

Let Λ(L(ξ)) denote the linear map TΠ ◦ ML(ξ) ◦ T−1, then

DPΠ(Nξ(a), x) + DPΠ(a, Nξ(x)) = Λ(L(ξ)) (DP (a, x)) . (2)

This last equation is interesting since each coordinate of the left hand side is
linear in the unknown coefficients of Nξ and each coordinate of the right hand side
is a linear combination by the unknown coefficients of Λ(L(ξ)) of the symmetric
bilinear coordinate forms of the original DP , which are partially known since
their first (n − r) coordinates are public.

The heart of the attack consists in identifying some Nξ, given the public
key and equation (2), and then using its mixing effect on the n coordinates to
recover the r missing quadratic forms from the (n− r) known quadratic forms of
the public key. In the next section, we will see how to recover some non-trivial
multiplication Nξ, in which ξ can be any value in Fqn \ Fq.



Practical Cryptanalysis of SFLASH 5

4 Recovering Multiplications from the Public Key

Any linear mapping can be represented by an n × n matrix with n2 entries from
Fq. Note that the multiplications Nξ form a tiny subspace of dimension n within
the space of all linear maps whose dimension is n2.

The coordinates of DPΠ are known symmetric bilinear forms that can be seen
as n(n−1)/2-dimensional vectors. They generate a (n−r)-dimensional subspace
VΠ which is contained in the n-dimensional space V , generated by the full set
of coordinates of DP in the original C∗ public key.

Consider now the expression :

SM (a, x) = DPΠ(M(a), x) + DPΠ(a, M(x))

where SM is defined for any linear mapping M as a (n − r)-tuple of symmetric
bilinear forms. Most choices of M do not correspond to any multiplication by a
large field element ξ, and thus we do not expect them to satisfy the multiplicative
property described in section 3. Due to relation (2), when M is a multiplication
Nξ, the (n − r) coordinates of SNξ

are in V . It is unlikely that they are all in
the subspace VΠ . However, there is a huge number of possible values for ξ, and
it can be expected that for some choices of ξ ∈ Fqn \ Fq, some of the bilinear
forms in SM (a, x) will be contained in the known subspace VΠ . Our goal now is
to detect such special multiplications.

Dimension of the Overall Linear Maps Space. Let us consider k of the
published expressions, for instance the first k, and let us study the vector space
E(1, . . . , k) of linear maps M such that the first k coordinates of SM (a, x) are
all contained in VΠ . Since membership in VΠ is expressed by the vanishing of
n(n − 1)/2 − (n − r) linear forms, the elements of this subspace satisfy a system
of k · (n(n − 1)/2 − (n − r)) linear equations in the n2 unknown coefficients of
M . If all these equations were independent, the dimension of E(1, . . . , k) would
be n2 − k · (n(n − 1)/2 − (n − r)) which is clearly impossible as soon as k ≥ 3.
Otherwise, we can only claim that it is lower-bounded by this number. On the
other hand, it can be seen that the space E(1, . . . , k) contains a subspace of
multiplications, whose dimension is now to be computed.

Dimension of the Multiplications Space. For a multiplication Nξ, thanks
to equation (2), the coordinates of SNξ

are guaranteed to be linear combinations
of the coordinates of DP , whose coefficients Λ(L(ξ)) are linear in ξ+ξqθ

. Setting
ζ = ξ + ξqθ

, the first k linear combinations are given by the k linear forms

Λi(ζ) = Πi ◦ T ◦ Mζ ◦ T−1

for i = 1, . . . , k where Πi is the projection on the ith coordinate. Note that
Λi : ζ �→ Λi(ζ) are linear bijections from Fqn to (Fn

q )∗, the vector space of linear
forms over F

n
q . Indeed, the kernel of Λi consists of the elements ζ such that the

ith row of T ◦ Mζ ◦ T−1 is zero. Since T ◦ Mζ ◦ T−1 is invertible for ζ �= 0, the
kernel of Λi must be trivial. This implies that Λi is a linear bijection, and we will



6 V. Dubois et al.

use this property. Note that this is the converse of the assumption underlying
the attack in [1], and in this sense, our new attack and the old attack can be
seen as complementary.

Let us consider the subspace L′ of (Fn
q )∗ generated by the first (n − r) coor-

dinate projections. In this case, the k conditions Πi ◦ SNξ
∈ VΠ become

Λi(L(ξ)) ∈ L′, ∀i = 1, . . . , k (3)

which means that Λi(L(ξ)) only depends on the (n − r) first rows of DP , i.e.
only on the known DPΠ .

Consequently, when searching for a multiplication by ξ for which equation (3)
holds, we get the following set of conditions on ζ = L(ξ) = ξ + ξqθ

:

(i) ζ ∈ Im(L)
(ii) Λi(ζ) ∈ L′ for i = 1, . . . , k

Since ζ = ξ+ξqθ

and gcd(n, θ) = 1, ζ is non-zero unless ξ = 0 or 1. This means
that the kernel of L has dimension 1, hence ζ ranges over a space of dimension
n − 1. Condition (i) corresponds to a single linear relation over the coordinates
of L(ξ), since dim Im(L) = n − 1. Also, since Λi is a linear bijection and L′

is of codimension r, each of the conditions in (ii) corresponds to r additional
linear relations. Altogether, this means that we have kr + 1 linear equations.
Furthermore, since we are interested in the space of Nξ’s and not in the space
of Mζ ’s, the dimension is n − kr − 1 + 1 = n − kr since the kernel of L is of
dimension 1. This implies that whenever we add a condition (i.e. increase k by
1), we add about n2/2 linear equations on the full space of linear maps, but
their effect on the subspace of multiplications is to reduce its dimension only by
r. Finally, the space of multiplications in E(1, . . . , k) includes at least one non-
trivial multiplication, i.e. a multiplication by an element outside Fq whenever

n ≥ kr + 2. (4)

Consequently, the dimension of E(1, . . . , k) is

max
{

n2 − k

(
n(n − 1)

2
− (n − r)

)
, n − kr, 1

}
.

Figure 1 describes the expected evolution of the dimension of the space of
all linear maps and of the dimension of the subspace of multiplications for two
different choices of r. The intuition behind our attack is that initially there are
many “useless maps” and few multiplications. However, the number of useless
maps drops rapidly as we add more equations, whereas the number of multi-
plications drops slowly (since many of the equations are linearly related on the
subspace of multiplications). This leads to an elimination race, and we hope to
get rid of all the “bad maps” before we inadvertantly kill off all the “good maps”
by imposing too many conditions.

Taking k = 3, it can be seen that the first expression of the max is not posi-
tive. This seems to indicate that E(1, . . . , k) consists entirely of multiplications.



Practical Cryptanalysis of SFLASH 7

n(n − 1)

� �� ��

�

.........
.........
........

.........
.........
........

.........
.........
........

.........
.........
........

.........
.........
........

.........
.........
........

�
�

��

.........................................�

����������������������������

��	

���� ���� ����

Third conditionSecond conditionFirst Condition

Space Dim

Multiplications

Overall linear maps

Number
of equations

n2

n

n − 2r

r
n(n − 1)/2
−(n − r) −2(n − r)

n − r
3n − 2r

n2 − 3n/2 − r




Multiplications

�
�

��

�

��������������������������
.........
.........
........

.........
.........
........

�� �� �




.........
.........
........

.........
.........
........

.........................................����� ��

Overall linear maps

3n − 2r

Third conditionSecond conditionFirst Condition

n2

1 Number
of equations

n

n − r

n2 − 3n/2 − r

Space Dim

��	

Fig. 1. Evolution of the dimensions of the overall linear maps and their subspace of
multiplications when r < n/3 (left figure) and when r ≥ n/3 (right figure), as we add
more linear equations

This is demonstrated in the left figure. This subspace contains non-trivial mul-
tiplications, whenever n − 3r > 1. Therefore, the attack is expected to work for
values of r up to (n− 2)/3. The right figure shows a case in which r is too large,
and thus the “good maps” are eliminated before the “bad maps”. We will see
in section 6 how to improve the attack and deal with values of r up to about
n/2. Note that even without this improvement, our technique is already suffi-
cient to recover non-trivial multiplications for the recommended parameters of
SFLASHv2 and SFLASHv3, since r = 11 is smaller than both 35/3 and 65/3.
Of course, the argument that was offered is only heuristic. However, it was con-
firmed by a large number of experiments, in which the attack always behaved as
expected by our heuristic analysis, and signatures were successfully forged.

5 Recovering a Full C∗ Public Key

The final part of the attack is to recover a set P ′Π of additional equations which
are independent of the first system PΠ . If the rank of the concatenation of the
original PΠ and the newly computed r equations of P ′Π is full, then Patarin’s
attack on MI [8] can be mounted, although we do not necessarily reconstruct the
r original equations of the full public key. This idea is the same as in [1].

Recovering a Full Rank System. To reconstruct a full rank system, we
note that the action of the final linear map T is to compute different linear
combinations of the full (i.e. non-truncated) internal quadratic polynomials F ◦
U . Consequently, if we were able to mix by some linear mapping the internal
quadratic coordinates F ◦ U before the action of TΠ , then we will be able to
create new quadratic polynomials which could replace the r missing ones.

When we compose the multiplication Nξ = U−1 ◦ Mξ ◦ U (which was found
in the previous part of the attack) with the truncated public key PΠ , the inputs
of the internal quadratic mapping F (x) = xqθ+1 are multiplied by ξ. Indeed,

PΠ ◦ Nξ = TΠ ◦ F ◦ Mξ ◦ U



8 V. Dubois et al.

since PΠ ◦ Nξ(x) = TΠ ◦ F ◦ U ◦ U−1 ◦ Mξ(U(x)) = TΠ(F (Mξ(U(x)))). Let us
denote this new system by P ′Π . We can show that the outputs of the internal
quadratic equations F ◦ U are multiplied by ξqθ+1. Indeed, TΠ ◦ F (ξ · U(x)) =
TΠ((ξ · U(x))qθ+1) = TΠ(ξqθ+1 · F (U(x))), and so :

P ′Π = PΠ ◦ Nξ = TΠ ◦ Mξqθ+1 ◦ F ◦ U

Let us consider the special case ξ ∈ Fqn \ Fq. In this situation, we say that
Nξ is non-trivial. Since F is a permutation and thus F (Fq) = Fq, ξqθ+1 is not in
Fq either. Thus, the multiplication by Mξqθ +1 is non-trivial, i.e. corresponds in
particular to a non-diagonal matrix.

Therefore, in the sets PΠ and P ′Π the internal quadratic coordinates of F ◦U
are mixed with two different linear combinations, TΠ and TΠ ◦Mξqθ +1. We hope
that for some value ξ ∈ Fqn \ Fq, r equations in the set P ′Π together with PΠ

will form a full rank system. This special case is not necessary since we could
use different values of ξ to add r different quadratic forms to the (n − r) public
ones. However, in our experiments it was always sufficient to use one ξ, and then
Patarin’s attack could be applied to forge actual signatures.

In practice, to determine if the new system of n equations is of full rank, we sim-
ply tested whether Patarin’s attack succeeded. If not, another set of r equations
was chosen amongst the (n − r) equations of P ′Π . For each choice of r equations,
the success probability was approximately 1 − 1/q, which is close to 1 for q = 27

If ξ ∈ Fq (i.e. the multiplication is trivial), P ′Π is simply PΠ where each
coordinate has been multiplied by the same element of Fq, since F (Fq) = Fq and
multiplication by an element of Fq is a diagonal matrix. Thus, such trivial ξ are
not interesting for our attack and this is the reason why they were discarded
from our search for appropriate Nξ in the previous section.

Practical Results. We carried our experiments on a 2GHz AMD Opteron PC
using different parameters. The following table provides the time to recover a
non-trivial multiplication and the time to recover an independent set of equations
which form a full rank system. This computation has to be done only once per

n 37 37 67 67 131
θ 11 11 33 33 33
q 2 128 2 128 2
r 11 11 11 11 11

Nξ Recovery 4s 70s 1m 50m 35m
C∗ Recovery 7.5s 22s 2m 10m 7m

Forgery 0.01s 0.5s 0.02s 2s 0.1s

public key. Then Patarin’s attack requires about one second to forge an ac-
tual signature for any given message. All these operations can be carried out by



Practical Cryptanalysis of SFLASH 9

solving various systems of linear equations with a relatively small number of
variables (O(n2) or O(n), depending on the operation).

The two columns in bold font represent the time to attack SFLASHv2 and
SFLASHv3. The notation ’s’ is for seconds and ’m’ is for minutes.

6 Breaking SFLASH When the Number of Deleted
Quadratic Equations r Is Up to n/2

In this section, we deal with this problem by a technique which we call distil-
lation, since it allows to gradually filter additional linear maps which are not
multiplications. When r ≤ (n − 2)/3, we can use three conditions to eliminate
all the useless linear maps, while retaining at least a two dimensional subspace
of multiplications (since we reduce the initial n coordinates three times by r).
When r > (n − 2)/3, this will usually kill all the multiplications along with the
useless linear maps.

Distillation is performed by relaxing the constraints, i.e. by forcing only two
coordinates of SM to be in VΠ . This will cancel a large fraction of useless linear
maps, but not all of them. To clarify the situation, we use in the rest of this
section angular brackets to demonstrate the stated number of dimensions for
the SFLASHv3 parameters of n = 67 and r = 11.

After forcing the two conditions, the dimension of the space of linear maps is
reduced to

n2 − 2(n(n − 1)/2 − (n − r)) = 3n − 2r 〈179〉

of the n2 〈4489〉 at the beginning, while the dimension of the good subspace
(i.e. the subspace of multipications) is n − 2r 〈45〉. Now, to find at least one
non-trivial multiplication, we need to eliminate all the remaining useless linear
maps. The new idea is that we can perform this process twice with different pairs
of coordinates, i.e. coordinates 1 and 2 for the first time and coordinates 3 and
4 for the second, and get two different sets of linear maps, say V S1 and V S2,
which contain both good and bad linear maps. Two random linear subspaces
of dimension m in a linear space of dimension t are likely to have a nonzero
intersection if and only if m > t/2, and then the dimension of the intersection
is expected to be 2m − t. We can apply this criterion separately to the space
of all linear maps (in which t = n2) and to the subspace of multiplications
(in which t = n). In our example V S1 ∩ V S2 is likely to contain non-trivial
multiplications since 〈45〉 > 〈67〉/2, but is not likely to contain other maps since
〈179〉 < 〈4489〉/2. More generally, we may have to replace each one of SV1

and SV2 by the sum of several such linear subspaces in order to build up the
dimension of the multiplications to more than n/2. For example, if each V Si

has only a 〈10〉-dimensional subspace of multiplications, we can replace it by the
sum of four such linear subspaces to get the expected dimension up to 〈40〉, and
the intersection of two such sums will have an expected dimension of 〈13〉, and
thus many non-trivial multiplications.



10 V. Dubois et al.

Asymptotic Analysis. We now show how to deal with any r < (1−ε)n/2 for a
fixed ε and large enough n. Note that our goal here is to simplify the description,
rather than to provide the most efficient construction or tightest analysis. Since
n − 2r > εn, we can impose pairs of conditions and create linear subspaces
V Si of total dimension O(n) which contain a subspace of multiplications of
dimension εn ≥ 2. If we add 1/ε such subspaces, the dimension of the subspace
of multiplications will increase to almost n, while the total dimension will remain
n/ε, which is much smaller than n2. Consequently, the intersection of two such
sums is likely to consist entirely of multiplications.

Experimentations. We get the following timing results when r is close to n/2
and ’s’, ’m’ and ’h’ respectively denotes seconds, minutes and hours.

n 37 37 67 67
θ 11 11 33 33
q 2 128 2 128
r 17 16 32 31

Nξ Recovery 8s 4m 3.5m 10h
C∗ Recovery 7.5s 22s 3m 10m

Forgery 0.01s 0.4s 0.02s 2s

7 Comparison with the Method of Dubois et al. [1]

In both attacks, the basic strategy is to recover additional independent equations
in order to apply Patarin’s attack [8]. They both use the differential of the public
key, but differ in the way the invariants of the differential are found. The method
of [1] can only deal with schemes where gcd(n, θ) > 1, which implies that the
kernel of L(ξ) = ξ + ξqθ

is of dimension strictly larger than 1.
To recover non-trivial multiplication in [1], skew-symmetric mappings with

respect to a bilinear form B are considered, i.e. linear maps M such that
B(M(a), x) = −B(a, M(x)). In fact, the authors show that skew-symmetric
mappings related to the symmetric bilinear forms of a C∗ public key are specific
multiplications in the extension Fqn by means of a suitable transformation de-
pending on the secret key, namely U−1 ◦Mξ ◦U where ξ ∈ KerL. For such maps,
we get DP (M(a), x) + DP (a, M(x)) = 0. Since DP can be computed from the
public key, this equation defines linear equations in the unknowns of M . How-
ever, in the case considered in this paper, i.e. when dim KerL = 1 or equivalently
when gcd(n, θ) = 1, the only skew-symmetric maps are the trivial multiplications
which are useless to recover new independent quadratic equations.

To recover non-trivial multiplications, we introduce here different and more
elaborate conditions related to the vector space generated by the various images
of the differential in public key coordinates. In this case, we are also able to
detect images of multiplications. However, the multiplications to be found are



Practical Cryptanalysis of SFLASH 11

not known in advance but are only shown to exist by counting arguments, and the
way we find them is by setting up an elimination race between the multiplications
and other linear maps.

8 Conclusion

Multivariate cryptographic schemes are very efficient but have a lot of exploitable
mathematical structure. Their security is not fully understood, and new attacks
against them are found on a regular basis. It would thus be prudent not to use
them in any security-critical applications.

One of the most interesting open problems is whether the new techniques
described in this paper can be applied to the HFE cryptosystem [9]. The main
attacks discovered so far against HFE are based on Gröbner bases [3], and are
very slow. So far, we could not find a way how to detect non-trivial multiplica-
tions in HFE, since it lacks the multiplicative property described in section 3,
but this is a very promising line of attack which should be pursued further.

Acknowledgements

Part of this work is supported by the Commission of the European Communities
through the IST program under contract IST-2002-507932 ECRYPT.

References

1. Dubois, V., Fouque, P.A., Stern, J.: Cryptanalysis of SFLASH with Slightly Mod-
ified Parameters. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp.
264–275. Springer, Heidelberg (2007)

2. El Gamal, T.: A Public Key Cryptosystem and a Signature Scheme Based on
Discrete Logarithms. IEEE Transactions on Information Theory IT–31(4), 469–
472 (1985)

3. Faugère, J.-C., Joux, A.: Algebraic Cryptanalysis of Hidden Field Equation (HFE)
Cryptosystems Using Gröbner Bases. In: Boneh, D. (ed.) CRYPTO 2003. LNCS,
vol. 2729, pp. 44–60. Springer, Heidelberg (2003)

4. Fouque, P.A., Granboulan, L., Stern, J.: Differential Cryptanalysis for Multivariate
Schemes. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 341–
353. Springer, Heidelberg (2005)

5. Garey, M.R., Johnson, D.S.: Computers and Intractability, A Guide to the Theory
of NP-Completeness. Freeman, New-York (1979)

6. Gilbert, H., Minier, M.: Cryptanalysis of SFLASH. In: Knudsen, L.R. (ed.) EU-
ROCRYPT 2002. LNCS, vol. 2332, pp. 288–298. Springer, Heidelberg (2002)

7. Matsumoto, T., Imai, H.: Public Quadratic Polynomial-tuples for Efficient
Signature-Verification and Message-Encryption. In: Günther, C.G. (ed.) EURO-
CRYPT 1988. LNCS, vol. 330, pp. 419–453. Springer, Heidelberg (1988)

8. Patarin, J.: Cryptanalysis of the Matsumoto and Imai Public Key Scheme of Euro-
crypt’88. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 248–261.
Springer, Heidelberg (1995)



12 V. Dubois et al.

9. Patarin, J.: Hidden field equations (HFE) and isomorphisms of polynomials (IP):
two new families of asymmetric algorithms. In: Maurer, U.M. (ed.) EUROCRYPT
1996. LNCS, vol. 1070, pp. 33–48. Springer, Heidelberg (1996)

10. Patarin, J., Courtois, N., Goubin, L.: FLASH, a Fast Multivariate Signature Al-
gorithm. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 297–307.
Springer, Heidelberg (2001)

11. Patarin, J., Goubin, L., Courtois, N.: C∗
−+ and HM : Variations Around Two

Sechemes of T. Matsumoto and H. Imai. In: Ohta, K., Pei, D. (eds.) ASIACRYPT
1998. LNCS, vol. 1514, pp. 35–49. Springer, Heidelberg (1998)

12. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures
and public-key cryptosystem. Communications of the ACM 21(2), 120–126 (1978)

13. Shamir, A.: Efficient Signature Schemes Based on Birational Permutations. In:
Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 1–12. Springer, Heidelberg
(1994)



Full Key-Recovery Attacks on
HMAC/NMAC-MD4 and NMAC-MD5

Pierre-Alain Fouque, Gaëtan Leurent, and Phong Q. Nguyen

École Normale Supérieure – Département d’Informatique,
45 rue d’Ulm, 75230 Paris Cedex 05, France

{Pierre-Alain.Fouque,Gaetan.Leurent,Phong.Nguyen}@ens.fr

Abstract. At Crypto ’06, Bellare presented new security proofs for
HMAC and NMAC, under the assumption that the underlying compres-
sion function is a pseudo-random function family. Conversely, at Asi-
acrypt ’06, Contini and Yin used collision techniques to obtain forgery
and partial key-recovery attacks on HMAC and NMAC instantiated with
MD4, MD5, SHA-0 and reduced SHA-1. In this paper, we present the
first full key-recovery attacks on NMAC and HMAC instantiated with
a real-life hash function, namely MD4. Our main result is an attack
on HMAC/NMAC-MD4 which recovers the full MAC secret key after
roughly 288 MAC queries and 295 MD4 computations. We also extend the
partial key-recovery Contini-Yin attack on NMAC-MD5 (in the related-
key setting) to a full key-recovery attack. The attacks are based on gener-
alizations of collision attacks to recover a secret IV, using new differential
paths for MD4.

Keywords: NMAC, HMAC, key-recovery, MD4, MD5, collisions, differ-
ential path.

1 Introduction

Hash functions are fundamental primitives used in many cryptographic schemes
and protocols. In a breakthrough work, Wang et al. discovered devastating col-
lision attacks [17,19,20,18] on the main hash functions from the MD4 family,
namely MD4 [17], RIPE-MD [17], MD5 [19], SHA-0 [20] and SHA-1 [18]. Such
attacks can find collisions in much less time than the birthday paradox. However,
their impact on the security of existing hash-based cryptographic schemes is un-
clear, for at least two reasons: the applications of hash functions rely on various
security properties which may be much weaker than collision resistance (such
as pseudorandomness); Wang et al.’s attacks are arguably still not completely
understood.

This paper deals with key-recovery attacks on HMAC and NMAC using col-
lision attacks. HMAC and NMAC are hash-based message authentication codes
proposed by Bellare, Canetti and Krawczyk [3], which are very interesting to
study for at least three reasons: HMAC is standardized (by ANSI, IETF, ISO
and NIST) and widely deployed (e.g. SSL, TLS, SSH, Ipsec); both HMAC and

A. Menezes (Ed.): CRYPTO 2007, LNCS 4622, pp. 13–30, 2007.
c© International Association for Cryptologic Research 2007



14 P.-A. Fouque, G. Leurent, and P.Q. Nguyen

NMAC have security proofs [2,3]; and both are rather simple constructions. Let
H be an iterated Merkle-Damg̊ard hash function. Its HMAC is defined by

HMACk(M) = H(k̄ ⊕ opad ||H(k̄ ⊕ ipad ||M)),

where M is the message, k is the secret key, k̄ its completion to a single block
of the hash function, opad and ipad are two fixed one-block values. The security
of HMAC is based on that of NMAC. Since H is assumed to be based on the
Merkle-Damg̊ard paradigm, denote by Hk the modification of H where the public
IV is replaced by the secret key k. Then NMAC with secret key (k1, k2) is defined
by:

NMACk1,k2(M) = Hk1(Hk2(M)).

Thus, HMACk is essentially equivalent to NMACH(k⊕opad),H(k⊕ipad)
1. Attacks

on NMAC can usually be adapted to HMAC (pending few modifications), except
in the related-key setting2.

HMAC/NMAC Security. The security of a MAC algorithm is usually mea-
sured by the difficulty for an attacker having access to a MAC oracle to forge
new valid MAC-message pairs. More precisely, we will consider two types of at-
tack: the existential forgery where the adversary must produce a valid MAC for
a message of its choice, and the universal forgery where the attacker must be
able to compute the MAC of any message.

The security of HMAC and NMAC was carefully analyzed by its designers.
It was first shown in [3] that NMAC is a pseudorandom function family (PRF)
under the two assumptions that (A1) the keyed compression function fk of the
hash function is a PRF, and (A2) the keyed hash function Hk is weakly collision
resistant. The proof for NMAC was then lifted to HMAC by further assuming
that (A3) the key derivation function in HMAC is a PRF. However, it was
noticed that recent collision attacks [17,19,20,18] invalidate (A2) in the case of
usual hash function like MD4 or MD5, because one can produce collisions for any
public IV. This led Bellare [2] to present new security proofs for NMAC under
(A1) only. As a result, the security of HMAC solely depends on (A1) and (A3).
The security of NMAC as a PRF holds only if the adversary makes less than
2n/2 NMAC queries (where n is the MAC size), since there is a generic forgery
attack using the birthday paradox with 2n/2 queries.

Since recent collision attacks cast a doubt on the validity of (A1), one may
wonder if it is possible to exploit collision search breakthroughs to attack HMAC
and NMAC instantiated with real-life hash functions. In particular, MD4 is a
very tempting target since it is by far the weakest real-life hash function with
respect to collision resistance. It is not too difficult to apply collision attacks
on MD4 [17,21], to obtain distinguishing and existential forgery attacks on

1 There is small difference in the padding: when we use H(k||·) instead of Hk, the
length of the input of the hash function (which is included in the padding) is different.

2 If we need an oracle NMACk1,k2+∆, we can not emulate it with an related-key HMAC
oracle.



Full Key-Recovery Attacks on HMAC/NMAC-MD4 and NMAC-MD5 15

HMAC/NMAC-MD4: for instance, this was done independently by Kim et al. [9]
and Contini and Yin [4]. The situation is more complex with MD5, because the
differential path found in the celebrated MD5 collision attack [19] is not well-
suited to HMAC/NMAC since it uses two blocks: Contini and Yin [4] turned
instead to the much older MD5 pseudo-collisions of de Boer and Bosselaers [7]
to obtain distinguishing and existential forgery attacks on NMAC-MD5 in the
related-key setting. It is the use of pseudo-collisions (rather than full collisions)
which weakens the attacks to the related-key setting.

Interestingly, universal forgery attacks on HMAC and NMAC seem much more
difficult to find. So far, there are only two works in that direction. In [4], Con-
tini and Yin extended the previous attacks to partial key-recovery attacks on
HMAC/NMAC instantiated with MD4, SHA-0, and a step-reduced SHA-1, and
related-key partial key-recovery attacks on NMAC-MD5. In [14], Rechberger and
Rijmen improved the data complexity of Kim et al. [9] attacks, and extended
them to a partial key recovery against NMAC-SHA-1. These attacks are only
partial in the sense that the NMAC attacks only recover the second key k2, which
is not sufficient to compute new MACs of arbitrary messages; and the HMAC
attacks only recover H(k ⊕ ipad) where k is the HMAC secret key, which again
is not sufficient to compute new MACs of arbitrary messages, since it does not
give the value of k nor H(k ⊕ opad). Note that recovering a single key of NMAC
does not significantly improve the generic full key-recovery attack which recovers
the keys one by one.

Very recently, Rechberger and Rijmen have proposed full key-recovery attacks
against NMAC in the related-key setting in [15]. They extended the attack of [4]
to a full key-recovery attack against NMAC-MD5, and introduced a full key-
recovery attack against NMAC when used with SHA-1 reduced to 34 rounds.

Our Results. We present what seems to be the first universal forgery attack,
without related keys, on HMAC and NMAC instantiated with a real-life hash
function, namely MD4. Our main result is an attack on HMAC/NMAC-MD4
which recovers the full NMAC-MD4 secret key after 288 MAC queries; for HMAC,
we do not recover the HMAC-MD4 secret key k, instead we recover both H(k ⊕
ipad) and H(k⊕opad), which is sufficient to compute any MAC. We also obtain a
full key-recovery attack on NMAC-MD5 in the related-key setting, by extending
the attack of Contini and Yin [4]. This improvement was independently proposed
in [14].

Our attacks have a complexity greater than the birthday paradox, so they are
not covered by Bellare’s proofs. Some MAC constructions have security proof
against PRF-attacks, but are vulnerable to key-recovery attacks. For instance,
the envelope method with a single key was proved to be secure, but a key-
recovery attack using 267 known text-MAC pairs, and 213 chosen texts was found
by Preneel and van Oorschot [12]. However, in the case of NMAC, we can prove
that the security against universal forgery cannot be less than the security of
the compression function against a PRF distinguisher (see the full version of
this paper for the proof). This shows that NMAC offers good resistance beyond
the birthday paradox: a universal forgery attack will have a time complexity of



16 P.-A. Fouque, G. Leurent, and P.Q. Nguyen

2n if there is no weakness in the compression function. Conversely, there is a
generic attack against any iterated stateless MAC using a collision in the inner
hash function to guess the two subkeys k1 and k2 independently, in the case of
NMAC it requires 2n/2 queries and 2n+1 hash computations [11,13].

Our attacks on MD4 and MD5 are rather different from each other, although
both are based on IV-recovery attacks, which allow to recover the IV when one
is given access to a hash function whose IV remains secret. Such IV-recovery
attacks can be exploited to attack HMAC and NMAC because the oracle can in
fact be very weak: we do not need the full output of the hash function; essentially,
we only need to detect if two related messages collide under the hash function.
The MD5 related-key attack closely follows the Contini-Yin attack [4]: the IV-
recovery attack is more or less based on message modification techniques. The
MD4 IV-recovery attack is based on a new technique: we use differential paths
which depend on a condition in the IV. The advantage of this technique is that
it can be used to recover the outer key quite efficiently, since we only need to
control the difference of the inputs and not the values themselves. This part of
the attack shares some similar ideas with [15]. To make this possible without
related keys, we need a differential path with a message difference only active in
the first input words. We found such IV-dependant paths using an automated
tool described in [8]. To make this attack more efficient, we also introduce a
method to construct cheaply lots of message pairs with a specific hash difference.

Our results are summarized in the following table, together with previous
attacks where “Data” means online queries and “Time” is offline computations:

Attacks Data Time Mem Remark

Generic
E-Forgery 2n/2 - - [13] Collision based

U-Forgery 2n/2 2n+1 - [13] Collision based
1 22n/3 22n/3 [1] TM tradeoff, 2n precomputation

NMAC-MD4
HMAC-MD4

E-Forgery 258 - - [4] Complexity is actually lower [8]
Partial-KR 263 240 - [4] Only for NMAC
U-Forgery 288 295 - New result

NMAC-MD5
Related keys

E-Forgery 247 - - [4]
Partial-KR 247 245 - [4]
U-Forgery 251 2100 - New result – Same as [15]

Like [4], we stress that our results on HMAC and NMAC do not contradict
any security proof; on the contrary they show that when the hypotheses over
the hash function are not met, an attack can be built.

Road Map. This paper is divided in five sections. In Section 2, we give back-
ground and notations on MD4, MD5 and collision attacks based on differential
cryptanalysis. In Section 3, we explain the framework of our key-recovery at-
tacks on HMAC and NMAC, by introducing IV-recovery attacks. In Section 4,
we present key-recovery attacks on HMAC/NMAC-MD4. Finally, in Section 5,
we present related-key key-recovery attacks on NMAC-MD5.



Full Key-Recovery Attacks on HMAC/NMAC-MD4 and NMAC-MD5 17

2 Background and Notation

Unfortunately, there does not seem to be any standard notation in the hash
function literature. Here, we will use a notation similar to that of Daum [6].

2.1 MD4 and MD5

MD4 and MD5 follow the Merkle-Damg̊ard construction. Their compression
function are designed to be very efficient using 32-bit words and operations
implemented in hardware in most processors:

– rotation ≪;
– addition mod 232 �;
– bitwise boolean operations Φi. For MD4 and MD5, they are:

• IF(x, y, z) = (x ∧ y) ∨ (¬x ∧ z)
• MAJ(x, y, z) = (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z)
• XOR(x, y, z) = x ⊕ y ⊕ z
• ONX(x, y, z) = (x ∨ ¬y) ⊕ z.

MD4 uses IF(x, y, z), MAJ(x, y, z) and XOR(x, y, z), while MD5 uses IF
(x, y, z), IF(z, x, y), XOR(x, y, z) and ONX(x, y, z).

The compression function cMD4 (resp. cMD5) of MD4 (resp. MD5) uses an
internal state of four words, and updates them one by one in 48 (resp. 64) steps.
Their input is 128 bits × 512 bits, and their output is 128 bits. Here, we will
assign a name to every different value of these registers, following [6]: the value
changed on step i is called Qi. Then the cMD4 compression function is defined by:

Step update: Qi = (Qi−4 � Φi(Qi−1, Qi−2, Qi−3) � mi � ki) ≪ si

Input: Q−4||Q−1||Q−2||Q−3

Output: Q−4 � Q44||Q−1 � Q47||Q−2 � Q46||Q−3 � Q45

And the cMD5 compression function is given by:

Step update: Qi = Qi−1 � (Qi−4 � Φi(Qi−1, Qi−2, Qi−3) � mi � ki) ≪ si

Input: Q−4||Q−1||Q−2||Q−3

Output: Q−4 � Q60||Q−1 � Q63||Q−2 � Q62||Q−3 � Q61

The security of the compression function was based on the fact that such
operations are not “compatible” and mix the properties of the input.

We will also use x[k] to represent the k + 1-th bit of x, that is x[k] = (x ≫
k) mod 2 (note that we count bits and steps starting from 0).

2.2 Collision Attacks Based on Differential Cryptanalysis

It is natural to apply differential cryptanalysis to find collisions on hash functions
based on block ciphers, like MD4 and MD5 (which both follow the Davies-Meyer
construction). The main idea is to follow the differences in the internal state Qi



18 P.-A. Fouque, G. Leurent, and P.Q. Nguyen

of the compression function, when the inputs (the IVs or the messages) have a
special difference.

Our attacks on NMAC-MD5 are based on the MD5 pseudo-collision of de
Boer and Bosselaers [7], like [4] (this is the only known attack against MD5
compression function’s pseudo-randomness). Let IV be a 128-bit value satisfying
the so-called dBB condition: the most significant bit of the last three 32-bit words
of IV are all equal. Clearly, a randomly chosen IV satisfies the dBB condition
with probability 1/4. It is shown in [7] that in such a case, a randomly chosen
512-bit message M satisfies with heuristic probability 2−46:

cMD5(IV, M) = cMD5(IV ′, M),

where IV ′ is the 128-bit value derived from IV by flipping the most significant
bit of each of the four 32-bit words of IV . The probability 2−46 is obtained
by studying the most likely differences for the internal state Qi, as is usual in
differential cryptanalysis.

Our attacks on HMAC/NMAC-MD4 are based on recent collision search tech-
niques for MD4 [17,21], which are organized as follows:

1. A precomputation phase:
– choose a message difference ∆
– find a differential path
– compute a set of sufficient conditions

2. Search for a message M satisfying all the conditions for a given IV; then
cMD4(IV, M) = cMD4(IV, M � ∆).

The differential path specifies how the computations of cMD4(IV, M � ∆) and
cMD4(IV, M) are related: it describes how the differences introduced in the
message will evolve in the internal state Qi. By choosing a special ∆ with a low
Hamming weight and extra properties, we can find differences in the Qi which
are very likely. Then we look at each step of the compression function, and we can
express a set of sufficient conditions that will make the Qi’s follow the path. The
conditions are on the Qi’s, and their values depends of the IV and the message
M . For a given message M , we will have cMD4(IV, M) = cMD4(IV, M � ∆) if
the conditions are satisfied; we expect this to happen with probability 2−c for a
random message if there are c conditions. Wang introduced some further ideas
to make the search for such message more efficient, but they can’t be used in the
context of NMAC because the IV is unknown.

3 Key-Recovery Attacks on HMAC and NMAC

In this section, we give a high-level overview of our key-recovery attacks on
HMAC and NMAC instantiated with MD4 and MD5. Detailed attacks will be
given in the next two sections: Section 4 for MD4 and Section 5 for MD5. We
will assume that the attacker can request the MAC of messages of its choice, for
a fixed secret key, and the goal is to recover that secret key. In the related-key



Full Key-Recovery Attacks on HMAC/NMAC-MD4 and NMAC-MD5 19

setting, we will assume like in [4] that the attacker can request the MAC of
messages of its choice, for the fixed secret key as well as for other related secret
keys (with a chosen relation). In fact, we will not even need the full output of
MAC requests: we will only need to know if the two MACs of messages of our
choice collide or not.

To simplify our exposition, we will concentrate on the NMAC case:

NMACk1,k2(M) = Hk1(Hk2(M)).

The NMAC-MD4 attack can easily be extended to HMAC-MD4, pending minor
modifications. Our NMAC attack will first recover k2, then k1. We will collect
NMAC collisions of a special shape, in order to disclose hash collisions with first
k2 then k1.

3.1 Extracting Hash Collisions from NMAC Collisions

We will extract hash collisions from NMAC collisions, that is, pairs (M1, M2) of
messages such that:

(C) M1 �= M2 and NMACk1,k2(M1) = NMACk1,k2(M2).

Our attacks are based on the elementary observation that H-collisions can leak
through NMAC. More precisely, two messages M1 and M2 satisfy (C) if and only
if they satisfy either (C1) or (C2):

(C2) M1 �= M2 and Hk2(M1) = Hk2(M2): we have a collision in the inner
hash function;

(C1) Hk2(M1) = N1 �= N2 = Hk2(M2) and Hk1(N1) = Hk1(N2): we have a
collision in the outer hash function .

If we select M1 and M2 uniformly at random, then (C) holds with probability
2−128 if NMAC is a random function. However, if we select many pairs (M1, M2)
in such a way that (C2) holds with a probability significantly higher than 2−128,
then whenever NMACk1,k2(M1) = NMACk1,k2(M2), it will be likely that we also
have (C2). More precisely, we have (since Ci ∩ C = Ci):

Pr(C2|C)
Pr(C1|C)

=
Pr(C2)
Pr(C1)

and we expect that Pr(C2) � Pr(C1) ≈ 2−128.
Note that the Merkle-Damg̊ard construction used in H leads to a simple

heuristic way to distinguish both cases (without knowing the secret keys k1

and k2) if M1 and M2 have the same length, and therefore the same padding
block P : if Hk2(M1) = Hk2(M2), then for any M , we have Hk2(M1||P ||M) =
Hk2(M2||P ||M). In other words, the condition (C2) is preserved if we append
P ||M to both M1 and M2 for a randomly chosen M , but that is unlikely for the
condition (C1).



20 P.-A. Fouque, G. Leurent, and P.Q. Nguyen

To illustrate our point, assume that we know a non-zero ∆ such that for all
keys k2, a randomly chosen one-block message M1 satisfies with probability 2−64

the condition Hk2(M1) = Hk2(M2) where M2 = M1 � ∆. If we select 264 one-
block messages M1 uniformly at random and call the NMAC oracle on each M1

and M1 � ∆, we are likely to find a pair (M1, M2 = M1 � ∆) satisfying (C). By
the previous reasoning, we expect that such a pair actually satisfies (C2).

Thus, the NMAC oracle allows us to detect collisions on Hk2 , if we are able
to select messages which have a non-negligible probability of satisfying (C2). To
detect collisions in Hk1 , we will use the values of k2 (recovered using collisions in
Hk2): then, we can compute Hk2 and directly check whether the NMAC collision
come from (C1). We now explain how to use such collision detections to recover
the secret keys k2 and k1.

3.2 IV-Recovery Attacks

The previous subsection suggests the following scenario. Assume that a fixed key
k is secret, but that one is given access to an oracle which on input M1 and M2,
answers whether Hk(M1) = Hk(M2) holds or not. Can one use such an oracle
to recover the secret key k? If so, we have what we call an IV-recovery attack.

An IV-recovery attack would clearly reveal the second key k2 of NMAC,
because of (C2). But it is not clear why this would be relevant to recover
the outer key k1. To recover k1 thanks to (C1), we would need the follow-
ing variant of the problem. Namely, one would like to retrieve a secret key k1

when given access to an oracle which on input M1 and M2, answers whether
Hk1(Hk2(M1)) = Hk1(Hk2(M2)) holds or not, where k2 is known. Since the
messages are first processed through a hash function, the attacker no longer
chooses the input messages of the keyed hash function, and this oracle is much
harder to exploit than the previous one. We call such attacks composite IV-
recovery attacks. In the attack on HMAC/NMAC-MD4, we will exploit the
Merkle-Damg̊ard structure of Hk2 to efficiently extend the basic IV-recovery
attacks into composite IV-recovery attacks.

We will present two types of IV-recovery attacks. The first type is due to
Contini and Yin [4] and uses related messages, while the second type is novel,
based on IV-dependent differential paths.

Using related messages. We present the first type of IV-recovery attacks.
Assume that we know a specific differential path corresponding to a message
difference ∆ and with total probability p much larger than 2−128. In other words,
a randomly chosen message M will satisfy with probability p:

Hk(M) = Hk(M � ∆).

By making approximately 2/p queries to the Hk-oracle, we will obtain a message
M such that Hk(M) = Hk(M �∆). Contini and Yin [4] then make the heuristic
assumption that the pair (M, M � ∆) must follow the whole differential path,
and not just the first and last steps. Since they do not justify that assumption,



Full Key-Recovery Attacks on HMAC/NMAC-MD4 and NMAC-MD5 21

let us say a few words about it. The assumption requires a strong property
on our specific differential path: that there are no other differential paths with
better (or comparable) probability. In some sense, differential cryptanalysis on
block ciphers use similar assumptions, and to see how realistic that is, one makes
experiments on reduced-round versions of the block cipher. However, one might
argue that there are intuitively more paths in hash functions than in block ciphers
because of the following facts:

– the message length of a compression function is much bigger than the length
of the round key in a block cipher.

– a step of the compression function is usually much simpler than a block-
cipher step.

Also, because the paths for hash functions have a different shape from those of
block ciphers, experiments on reduced-round versions may not be as conclusive.

The paper [4] shows that for usual differential paths (like those of MD4), if
(M, M � ∆) satisfies the whole path, then one can build plenty of messages M∗

closely related to M such that:

– If a specific internal register Qi (during the computation of Hk(M)) satisfies
certain conditions, then the pair (M∗, M∗ � ∆) follows the whole path with
probability p or larger, in which case Hk(M∗) = Hk(M∗ � ∆).

– Otherwise, the pair (M∗, M∗ � ∆) will drift away from the path at some
position, and the probability of Hk(M∗) = Hk(M∗�∆) is heuristically 2−128.

Thus, by sending to the oracle many well-chosen pairs (M ′, M ′�∆), one can learn
many bits of several internal register Qi’s during the computation of Hk(M).
Applying exhaustive search on the remaining bits of such Qi’s, one can guess
the whole contents of four consecutive Qi’s. By definition of cMD4 and cMD5,
it is then possible to reverse the computation of Hk(M), which discloses k =
(Q−4, Q−3, Q−2, Q−1).

Using IV-dependent differential paths. We now present a new type of IV-
recovery attacks, that we will apply against MD4. Assume again that we know a
specific differential path corresponding to a message difference ∆ and with total
probability p much larger than 2−128, but assume this time that the path is
IV-dependent: it holds only if the IV satisfies a specific condition (SC). In other
words, if k satisfies (SC), then a randomly chosen message M will satisfy with
probability p:

Hk(M) = Hk(M � ∆).

But if k does not satisfy (SC), the pair (M, M � ∆) will drift away from the
differential path from the first step, leading us to assume that Hk(M) = Hk(M �
∆) will hold with probability only 2−128.

This would lead to the following attack: we would submit approximately 2/p
pairs (M, M � ∆) to the Hk-oracle, and conclude that k satisfies (SC) if and
only if Hk(M) = Hk(M � ∆) for at least one M . When sufficient information



22 P.-A. Fouque, G. Leurent, and P.Q. Nguyen

on k has been gathered, the rest of k can be guessed by exhaustive search if we
have at least one collision of the form Hk(M) = Hk(M � ∆).

Notice that in some sense the differential path of the MD5 pseudo-collision [7]
is an example of IV-dependent path where (SC) is the dBB condition, but it
does not disclose much information about the IV. We would need to find many
IV-dependent paths. Our attack on HMAC/NMAC-MD4 will use 22 such paths,
which were found by an automated search.

We note that such attacks require an assumption similar to the previous IV-
recovery attack. Namely, we assume that for the same message difference ∆, there
is no differential paths with better (or comparable) probability, with or without
conditions on the IV. To justify this assumption for our HMAC/NMAC-MD4
attack, we have performed experiments which will be explained in Section 4.

3.3 Subtleties Between the Inner and Outer Keys

Although the recovery of the inner key k2 and the outer key k1 both require
IV-recovery attacks, we would like to point out subtle differences between the
two cases. As mentioned previously, the recovery of k2 only requires a basic IV-
recovery attack, while the recovery of k1 requires a composite IV-recovery attack.
The composite IV-recovery attacks will be explained in Section 4 for MD4, and
Section 5 for MD5.

When turning a basic IV-recovery attack into a composite IV-recovery, there
are two important restrictions to consider:

– We have no direct control over the input of the outer hash function, it is
the result of the inner hash function. So IV-recovery attacks using message
modifications will become much less efficient when turned into composite
IV-recovery. We will see this in Section 5 when extending the partial key-
recovery from [4] into a full key-recovery.

– Since the input of Hk1 is a hash, its length is only 128 bits. Any differential
path using a message difference ∆ with non-zero bits outside these 128 first
bits will be useless. This means that the partial key-recovery attacks from [4]
against MD4, SHA-0 and reduced SHA-1 can’t be extended into a full key-
recovery.
Using related keys one can use a differential path with a difference in the IV
and no message difference – such as the one from [7] – and try a given message
with both keys. However, if we want to get rid of related keys, we need a
differential path with no IV difference and a difference in the beginning of
the message.

3.4 Summary

To summarize, our attacks will have essentially the following structure (the MD5
attack will be slightly different because of the related-key setting):

1. Apply an IV-recovery attack to retrieve k2, repeating sufficiently many times:
(a) Select many one-block messages M uniformly at random.



Full Key-Recovery Attacks on HMAC/NMAC-MD4 and NMAC-MD5 23

(b) Observe if NMACk1,k2(M) = NMACk1,k2(M � ∆1) for some M and a
well-chosen ∆1.

(c) Deduce information on k2.
2. Apply a composite IV-recovery attack to retrieve k1, repeating sufficiently

many times:
(a) Construct carefully many pairs (M1, M2).
(b) Observe if NMACk1,k2(M1) = NMACk1,k2(M2) for some pair (M1, M2).
(c) Deduce information on k1.

4 Attacking HMAC/NMAC-MD4

4.1 Our IV-Recovery Attack Against MD4

In order to find differential paths which leak information about the key, we con-
sider differential paths with a message difference in the first word (eg. δm0 = 1).
Then in the first steps of the compression function, we have:

Q0 = (Q−4 � IF(Q−1, Q−2, Q−3) � m0) ≪ 3
Q′0 = (Q−4 � IF(Q−1, Q−2, Q−3) � m0 � 1) ≪ 3

So Q
[3]
0 �= Q

′[3]
0 . Then

Q1 = (Q−3 � IF(Q0, Q−1, Q−2) � m1) ≪ 7
Q′1 = (Q−3 � IF(Q′0, Q−1, Q−2) � m1) ≪ 7

Thus, if Q
[3]
−1 �= Q

[3]
−2, we will have IF(Q0, Q−1, Q−2) �= IF(Q′0, Q−1, Q−2) and

Q1 �= Q′1. On the other hand, if Q
[3]
−1 = Q

[3]
−2 and there is no carry when going

from Q0 to Q′0, then Q1 = Q′1. Therefore, collision paths where Q
[3]
−1 = Q

[3]
−2 will

be significantly different from collision paths where Q
[3]
−1 �= Q

[3]
−2. This suggests

that the collision probability will be correlated with the condition (SC) : Q
[3]
−1 =

Q
[3]
−2, and we expect to be able to detect the bias. More precisely we believe that

the case Q
[3]
−1 �= Q

[3]
−2 will give a much smaller collision probability, since it means

that an extra difference is introduced in step 1.
To check this intuition experimentally, we ran one cMD4 round (16 steps) with

a random IV on message pairs (M, M �1) where M was also picked at random,
and we looked for pseudo-collisions in Q12...Q15 with the following properties:

– The weight of the non-adjacent form of the difference is lower or equal to 4.
– There is no difference on Q

[12]
12 .

The second condition is required to eliminate the paths which simply keep the
difference introduced in Q

[3]
0 without modifying it. We ran this with 5 · 1011 ran-

dom messages and IVs and found 45624 collisions out of which 45515 respected
the condition: this gives a ratio of about 420. This does not prove that we will
have such a bias for collisions in the full MD4, but it is a strong evidence.

The same arguments apply when we introduce the message difference in an-
other bit k (ie. δm0 = 2k): we expect to find more collisions if Q

[k�s0]
−1 = Q

[k�s0]
−2 .



24 P.-A. Fouque, G. Leurent, and P.Q. Nguyen

We ran a differential path search algorithm to find such paths, and we did
find 22 paths for different values of k with Q

[k�s0]
−1 = Q

[k�s0]
−2 . The path for k = 0

is given in Appendix B, and the other paths are just a rotation of this one. The
corresponding set of sufficient conditions contains 79 conditions on the internal
variables Qi, so we expect that for a random message M :

Pr [MD4(M) = MD4(M + ∆)] = p ≥ 2−79 if Q
[k�s0]
−1 = Q

[k�s0]
−2

	 p if Q
[k�s0]
−1 �= Q

[k�s0]
−2

If we try 282 message pairs per path, we will find a collision for every path
whose condition is fulfilled with a probability3 of more than 99%. Then we know
22 bits of the IV (Q[k�s0]

−1 = Q
[k�s0]
−2 or Q

[k�s0]
−1 �= Q

[k�s0]
−2 ), which leaves only 2106

IV candidates. To check if a given IV is the correct one, we just check whether
it gives a collision on the pairs colliding with the real IV, so we expect to find
the IV after computing 2105 pairs of hashes in an offline phase.

We show in Appendix A.2 how to reduce the search space to 294 keys by
extracting more than one bit of information when a collision is found. This gives
an IV-recovery attack against MD4 with a data complexity of 288 MD4 oracle
queries, and a time complexity of 294 MD4 evaluations.

4.2 Deriving a Composite IV-Recovery Attack Against MD4

To turn this into a composite IV-recovery attack, we need to efficiently compute
message pairs M , M ′ such that Hk2(M) = Hk2(M ′) � ∆ (we will need 282 such
pairs). As we know k2 (in the HMAC attack, we first recover it using the basic
IV-recovery attack), we can compute Hk2(M) and find such pairs offline. If we
do this naively using the birthday paradox, we need to hash about 2106 random
messages to have all the pairs we need4. Then we can use the IV-recovery attack
to get k1.

Actually, we can do much better: we use the birthday paradox to find one
pair of one-block messages (R, R′) such that Hk2(R′) = Hk2(R) � ∆, and then
we extend it to a family of two-block message pairs such that Hk2(R′||Q′) =
Hk2(R||Q)�∆ with very little extra computation. In the end, the cost to generate
the messages with Hk2(M) = Hk2(M ′)� ∆ will be negligible and the composite
IV-recovery attack is as efficient as the basic one. This is the most important
part of our work: thanks to our new path, we only need a low level of control on
the input of the hash function to extract the IV.

Extending a Pair of Good Messages into a Family of Pairs. Figure 1
shows how we will create many message pairs with Hk2(M) = Hk2(M ′)�∆. We
use a pair of one-block message (R, R′) such that Hk2(R′) = Hk2(R)�∆. Then we

3 We have
�
1 −

�
1 − 2−79�282�22

> 0.992.
4 This gives 2210 pairs of messages, and each pair has a probability of 2−128 to have

the correct difference.



Full Key-Recovery Attacks on HMAC/NMAC-MD4 and NMAC-MD5 25

will generate a second block pair (Q, Q′) such that Hk2(R′||Q′)�Hk2(R||Q) = ∆.
Thanks to the Davies-Meyer construction of the compression function, all that
we need is a difference path which starts with a ∆ difference and ends with a zero
difference in the internal state; then the feed-forward of H will keep δH = ∆.
This path can be found by a differential path search algorithm, or created by
hand by slightly modifying a collision path.

δQ = ∆

δQ = ∆

δQ = 0
IV

R M

δH = ∆ δH = ∆

Fig. 1. Generating many pairs of message with a fixed hash difference

In this step, we also have to take care of the padding in MD4. Usually we
ignore it because a collision at the end of a block is still a collision after an extra
block of padding, but here we want a specific non-zero difference, and this will be
broken by an extra block. So we have to adapt our collision finding algorithm to
produce a block with a 55-byte message M and the last 9 bytes fixed by the MD4
padding. This can be done with nearly the same complexity as unconstrained
MD4 collisions (about 4 MD4 computations per collision) using the technique
of Leurent [10]. Thus, the cost of the message generation in the composite IV-
recovery attack drops from 2106 using the birthday paradox to 290 and becomes
negligible in the full attack.

4.3 MD4 Attack Summary

This attack uses the same IV-recovery attack for the inner key and the outer key,
with a complexity of 288 online queries and 294 offline computations. We manage
to keep the complexity of the composite IV-recovery as low as the basic IV-
recovery because we only need to control the hash differences, and we introduce
a trick to generate many messages with a fixed hash difference.

In Appendix A.1 we show how to reduce a little bit the query complexity
of the attack, and in the end the NMAC full key-recovery attack requires 288

requests to the oracle, and 2 × 294 offline computations.

5 Attacking NMAC-MD5

In this section, we will describe the attack of Contini and Yin [4], and we ex-
tend it to a full key recovery. This improved attack was independently found by
Rechberger and Rijmen in [15].

As for MD4, the IV-recovery attack is based on a specific differential path,
and assumes that when a collision is found with the given message difference,



26 P.-A. Fouque, G. Leurent, and P.Q. Nguyen

the Qi’s follow the path. This gives some bits of the internal state already, and a
kind of message modification technique to disclose more bits is proposed in [4].
We can learn bits of Qt using related messages where we fix the first t words.

5.1 The IV-Recovery Attack Against MD5

The IV-recovery attack on MD5 is the same as the one presented in [4]. It uses
the related-message technique with the pseudo-collision path of de Boer and
Bosselaers [7]. Since the differences are in the IV and not in the message, the
IV-recovery needs an oracle that answers whether MD5IV(M) = MD5IV′(M),
instead of the standard oracle that answers whether MD5IV(M) = MD5IV(M ′).
To apply this to an HMAC key-recovery, we will have to use the related-key
model: we need an oracle for NMACk1,k2 , NMACk′

1,k2 and NMACk1,k′
2
.

The IV-recovery attack in the related-key setting requires 247 queries and
245 hash computations, and this translates into a partial key-recovery (we will
recover k2) against NMAC-MD5 in the related-key model with the same com-
plexity.

5.2 Deriving a Composite IV-Recovery Against MD5

To extend this to a composite IV-recovery attack, we run into the problem
previously mentioned; to use this attack we need to create many inputs N∗ of
the hash function related to one input N , but these inputs are the outputs of a
first hash function, and we cannot choose them freely: N = MD5k2(M). However,
we know k2, so we can compute many NR = Hk2(R) for random messages R and
select those that are related to a particular N ; if we want to recover bits of Qt we
will have to choose 32(t + 1) bits of NR. We also run into the problem that any
NR is only 128 bits long; the last 384 bits will be fixed by the padding and there
are the same for all messages. Therefore, we can only use the related-message
technique to recover bits of the internal state of in the very first steps, whereas
in the simple IV-recovery it is more efficient to recover the internal state of later
steps (Contini and Yin used step 11 to 14). If we want to recover bits of Q0 (due
to the rotation we can only recover 25 bits of them), we need to produce 24×245

messages N∗ with the first 32 bits chosen; this will cost 24 × 245 × 232 ≈ 282

hash computations. Then, we know 25 bits of Q0, plus the most significant bit
of Q1, Q2, and Q3; we still have 100 bits to guess. Thus, we have a related-key
composite IV-recovery attack against MD5 with 2×24×245 ≈ 251 oracle queries
and 2100 MD5 evaluations.

If we try to guess bits in Q1, we have to select at least 244 hashes with 64
chosen bits; this costs about 2108 MD5, so it does not improve the attack.

5.3 MD5 Attack Summary

Thus, the Contini-Yin NMAC-MD5 attack can be extended into a full key-
recovery attack in the related-key setting, with a query complexity of 251, a



Full Key-Recovery Attacks on HMAC/NMAC-MD4 and NMAC-MD5 27

time complexity of 2100 MD5 operations, and success rate of 2−4 (due to the
dBB condition for k1 and k2).

It is a very simple extension of the attack from Contini and Yin: we apply
their technique to recover the outer key, but since we cannot choose the value of
Hk2(M), we compute it for many random messages until we find a good one. This
requires to change the step in which we extract internal bits, and the complexity
become much higher.

Acknowledgement

Part of this work is supported by the Commission of the European Communities
through the IST program under contract IST-2002-507932 ECRYPT, and by the
French government through the Saphir RNRT project.

References

1. Amirazizi, H.R., Hellman, M.E.: Time-memory-processor trade-offs. IEEE Trans-
actions on Information Theory 34(3), 505–512 (1988)

2. Bellare, M.: New Proofs for NMAC and HMAC: Security Without Collision Resis-
tance. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 602–619. Springer,
Heidelberg (2006)

3. Bellare, M., Canetti, R., Krawczyk, H.: Keying Hash Functions for Message Au-
thentication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1–15.
Springer, Heidelberg (1996)

4. Contini, S., Yin, Y.L.: Forgery and Partial Key-Recovery Attacks on HMAC and
NMAC Using Hash Collisions. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006.
LNCS, vol. 4284, Springer, Heidelberg (2006)

5. Cramer, R.: In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 22–26.
Springer, Heidelberg (2005)

6. Daum, M.: Cryptanalysis of Hash Functions of the MD4-Family. PhD thesis, Ruhr-
University of Bochum (2005)

7. den Boer, B., Bosselaers, A.: Collisions for the Compression Function of MD5. In:
Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 293–304. Springer,
Heidelberg (1994)

8. Fouque, P.A., Leurent, G., Nguyen, P.: Automatic Search of Differential Path in
MD4. ECRYPT Hash Worshop – Cryptology ePrint Archive, Report, 2007/206
(2007), http://eprint.iacr.org/

9. Kim, J., Biryukov, A., Preneel, B., Hong, S.: On the Security of HMAC and NMAC
Based on HAVAL, MD4, MD5, SHA-0 and SHA-1. In: De Prisco, R., Yung, M.
(eds.) SCN 2006. LNCS, vol. 4116, pp. 242–256. Springer, Heidelberg (2006)

10. Leurent, G.: Message Freedom in MD4 and MD5: Application to APOP Security.
In: Biryukov, A. (ed.) FSE. LNCS, Springer, Heidelberg (to appear)

11. Preneel, B., van Oorschot, P.C.: MDx-MAC and Building Fast MACs from Hash
Functions. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 1–14.
Springer, Heidelberg (1995)

12. Preneel, B., van Oorschot, P.C.: On the Security of Two MAC Algorithms. In:
Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 19–32. Springer,
Heidelberg (1993)

http://eprint.iacr.org/


28 P.-A. Fouque, G. Leurent, and P.Q. Nguyen

13. Preneel, B., van Oorschot, P.C.: On the Security of Iterated Message Authentica-
tion Codes. IEEE Transactions on Information Theory 45(1), 188–199 (1999)

14. Rechberger, C., Rijmen, V.: Note on Distinguishing, Forgery, and Second Preimage
Attacks on HMAC-SHA-1 and a Method to Reduce the Key Entropy of NMAC.
Cryptology ePrint Archive, Report, 2006/290 (2006), http://eprint.iacr.org/

15. Rechberger, C., Rijmen, V.: On Authentication with HMAC and Non-Random
Properties. In: Dietrich, S. (ed.) Financial Cryptography. LNCS, Springer, Heidel-
berg (to appear)

16. Shoup, V. (ed.): In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 14–18.
Springer, Heidelberg (2005)

17. Wang, X., Lai, X., Feng, D., Chen, H., Yu, X.: Cryptanalysis of the Hash Functions
MD4 and RIPEMD. [5] pp. 1–18

18. Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. [16] pp. 17–36
19. Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. [5] pp. 19–35
20. Wang, X., Yu, H., Yin, Y.L.: Efficient Collision Search Attacks on SHA-0. [16] pp.

1–16
21. Yu, H., Wang, G., Zhang, G., Wang, X.: The Second-Preimage Attack on MD4.

In: Desmedt, Y.G., Wang, H., Mu, Y., Li, Y. (eds.) CANS 2005. LNCS, vol. 3810,
pp. 1–12. Springer, Heidelberg (2005)

A Improving the MD4 IV-Recovery

A.1 Reducing the Online Cost

First, we can easily lower the number of calls to the NMAC-oracle in the first
phase of the IV-recovery. Instead of trying 22 × 282 random message pairs, we
will choose the messages more cleverly so that each message belongs to 22 pairs:
we first choose 490 bits of the message at random and then use every possibility
for the 22 remaining bits. Thus, we only need 283 calls to the oracle instead of
22 × 283.

Note that we cannot use this trick in the composite IV-recovery attack, so the
number of queries for the full key-recovery will only be halved (the queries for
the basic IV-recovery for k2 become negligible compared to the queries for the
composite IV-recovery that will reveal k2).

A.2 Reducing the Offline Cost

We may also lower the computational cost of the attack, by getting more than
one bit of the IV once a collision has been found. This will require the extra as-
sumption the colliding messages follow the differential path in step 1 (previously
we only needed step 0), but this seems quite reasonable, for the same reasons.
Out of the 22 paths used to learn IV bits, let p be the number of paths for which
the condition holds, and a collision is actually found. From each message that
collides following the differential path, we can also extract some conditions on
the internal states Q0 and Q1. These states are not part of the IV, but since we
know the message used, we can use these conditions to learn something on the
IV. If we have a message pair that collides with M ′� M = 2k, we will call them

http://eprint.iacr.org/


Full Key-Recovery Attacks on HMAC/NMAC-MD4 and NMAC-MD5 29

M (k) and M ′(k) and the condition gives us Q
[k�s0]
0 (M (k)) and Q

[k�s0]
1 (M (k)).

The idea is the following (the symbol ‘➤’ summarizes the number of bits to
guess at each step):

1. We guess Q−1. Let n = 32 − |Q−1| be the number of 0 bits in Q−1 (we use
|x| to denote the Hamming weight of x).

2. We compute 22 bits of Q−2 using the conditions on the IV, and we guess
the others ➤ 10 bits.

3. We guess the bits of Q−3 used to compute Q0. Since we have Q0 = (Q−4 �
IF(Q−1, Q−2, Q−3) � k0 � m0) 	 s0, we only need Q

[i]
−3 when Q

[i]
−1 = 0

➤ n bits.
4. We have Q−4 = (Q0 ≫ s0) � IF(Q−1, Q−2, Q−3) � m0 � k0. If we use it

with the message M (0) and take the equation modulo 2, it becomes: Q
[0]
−4 =

Q
[s0]
0 (M (0)) � (IF(Q−1, Q−2, Q−3) � m

(0)
0 � k0) mod 2, and it gives us Q

[0]
−4.

Then, if we write the equation with M (1) and take it modulo 2, we will
learn Q

[s0]
0 (M (1)) from Q

[0]
−4. Since we know (Q0(M (1)) ≪ s0) mod 4 from

Q
[s0]
0 (M (1)) and Q

[1�s0]
0 (M (1)), we can take the equation modulo 4 to learn

Q
[1]
−4.
By repeating this process, we learn the full Q−4, but we need to guess the

bit i when we don’t have a message pair M (i), M ′(i) ➤ 32 − p bits.
5. We apply the same process to compute the remaining bits of Q−3. We already

know n bits and we expect to be able to compute a ratio of p/32 of the missing
ones. ➤

(32−n)(32−p)
32 bits.

So, for each choice of Q−1 in step 1, we have to try a number of choices for
the other bits that depends on the Hamming weight 32 − n of Q−1. In the end,
the number of keys to try is:

∑
Q−1

210+n+32−p+(32−n)(32−p)/32 = 274−2p
(
1 + 2p/32

)32

With p = 11, this becomes a little less than 290, but the complexity depends on
the number of conditions fulfilled by the key. If we assume that every condition
has a probability of one half to hold, we can compute the average number of
trials depending on the keys, and we will have to try half of them:

1
#k

∑
k

274−2p
(
1 + 2p/32

)32

< 293.8

Hence, we have an IV-recovery attack requiring less than 288 queries to the
NMAC oracle, and less than 294 offline hash computations. See the full version
of this paper for a detailed complexity analysis.

B IV-Dependent Differential Path

Here is one of the 22 IV-dependent paths we found in MD4. The 22 paths can
be deduced from this one by rotating all the bit differences and bit conditions:



30 P.-A. Fouque, G. Leurent, and P.Q. Nguyen

it works on bit positions 0, 1, 3, 4, 6-8, 12-17, 19-24, 26, 27, and 29, and fails on
other positions due to carry expansions.

This path was found using an automated differential paths search algorithm
described in [8].

step si δmi ∂Φi ∂Qi Φ-conditions and ≪-conditions

0 3
˙
�[0]¸ �̇[3]¸

1 7 Q
[3]
−1 = Q

[3]
−2

2 11 Q
[3]
1 = 0

3 19 Q
[3]
2 = 1

4 3 �̇�[6,7]¸
5 7 Q

[6]
3 = Q

[6]
2 , Q

[7]
3 = Q

[7]
2

6 11 Q
[6]
5 = 0, Q

[7]
5 = 0

7 19 �̇[7]¸ �̇[26]¸ Q
[6]
6 = 1, Q

[7]
6 = 0

8 3 �̇[26]¸ �̇[9],�[29]¸ Q
[26]
5 = 1, Q

[26]
6 = 0

9 7 Q
[9]
7 = Q

[9]
6 , Q

[26]
8 = 0, Q

[29]
7 = Q

[29]
6

10 11 Q
[9]
9 = 0, Q

[26]
9 = 1, Q

[29]
9 = 0

11 19 �̇[13]¸ Q
[9]
10 = 1, Q

[29]
10 = 1

12 3 �̇[0],�[12]¸ Q
[13]
10 = Q

[13]
9

13 7 Q
[0]
11 = Q

[0]
10 , Q

[12]
11 = Q

[12]
10 , Q

[13]
12 = 0

14 11 �̇[0]¸ �̇��[11...13]¸ Q
[0]
13 = 1, Q

[12]
13 = 0, Q

[13]
13 = 1

15 19 �̇[13]¸ Q
[0]
14 = 1, Q

[11]
13 = Q

[11]
12 , Q

[12]
13 = 0, Q

[13]
13 = 1, Q

[13]
12 = 0

16 3
˙
�[0]¸ �̇�[12,13]¸ Q

[11]
15 = Q

[11]
13 , Q

[12]
15 �= Q

[12]
13 , Q

[13]
15 �= Q

[13]
13

17 5 Q
[11]
16 = Q

[11]
15 , Q

[12]
16 = Q

[12]
15 , Q

[13]
16 = Q

[13]
15

18 9
˙
����[20...23]¸

19 13 Q
[20]
17 = Q

[20]
16 , Q

[21]
17 = Q

[21]
16 , Q

[22]
17 = Q

[22]
16 , Q

[23]
17 = Q

[23]
16

20 3 �̇[23]¸ �̇[26]¸ Q
[20]
19 = Q

[20]
17 , Q

[21]
19 = Q

[21]
17 , Q

[22]
19 = Q

[22]
17 , Q

[23]
19 �= Q

[23]
17

21 5 Q
[20]
20 = Q

[20]
19 , Q

[21]
20 = Q

[21]
19 , Q

[22]
20 = Q

[22]
19 , Q

[23]
20 = Q

[23]
19 , Q

[26]
19 = Q

[26]
18

22 9 �̇[29]¸ Q
[26]
21 = Q

[26]
19

23 13 Q
[26]
22 = Q

[26]
21 , Q

[29]
21 = Q

[29]
20

24 3 �̇�[29,30]¸ Q
[29]
23 = Q

[29]
21

25 5 Q
[30]
23 = Q

[30]
22

26 9 �̇[29]¸ Q
[29]
25 �= Q

[29]
23 , Q

[30]
25 = Q

[30]
23

27 13 Q
[29]
26 = Q

[29]
25 , Q

[30]
26 = Q

[30]
25

28 3 �̇[0]¸
29 5 Q

[0]
27 = Q

[0]
26

30 9 Q
[0]
29 = Q

[0]
27

31 13 Q
[0]
30 = Q

[0]
29

32 3
˙
�[0]¸

Path 1. A path with the message difference on the first word



How Should We Solve Search Problems
Privately?

Amos Beimel1, Tal Malkin2,�, Kobbi Nissim1,��, and Enav Weinreb3

1 Dept. of Computer Science, Ben-Gurion University, Be’er Sheva, Israel
{beimel,kobbi}@cs.bgu.ac.il

2 Dept. of Computer Science, Columbia University, New York, NY
tal@cs.columbia.edu

3 Dept. of Computer Science, Technion, Haifa, Israel
weinreb@cs.technion.ac.il

Abstract. Secure multiparty computation allows a group of distrust-
ing parties to jointly compute a (possibly randomized) function of their
inputs. However, it is often the case that the parties executing a computa-
tion try to solve a search problem, where one input may have a multitude
of correct answers – such as when the parties compute a shortest path
in a graph or find a solution to a set of linear equations.

Picking one output arbitrarily from the solution set has significant im-
plications on the privacy of the algorithm. Beimel et al. [STOC 2006] gave
a minimal definition for private computation of search problems with fo-
cus on proving impossibility result. In this work we aim for stronger de-
finitions of privacy for search problems that provide reasonable privacy.
We give two alternative definitions and discuss their privacy guarantees.
We also supply algorithmic machinery for designing such protocols for a
broad selection of search problems.

1 Introduction

Secure multiparty computation addresses a setting where several distrusting
parties want to jointly compute a function f(x1, . . . , xn) of their private in-
puts x1, . . . , xn, while maintaining the privacy of their inputs. One of the most
fundamental, and by now well known, achievements in cryptography (initiated
by [19,14,8,3], and continued by a long line of research) shows that in fact for any
feasible function f , there exists a secure multiparty protocol for f (in a variety
of settings). However, in many cases, what the parties wish to compute is not a
function with just a single possible output for each input, and not even a ran-
domized function with a well defined output distribution. Rather, in many cases
the parties are solving a problem where several correct answers (or solutions)
may exist for a single instance x = (x1, . . . , xn). For example, the parties may
jointly hold a graph and wish to compute a shortest path between two of its

� Research partially supported by the NSF (grant No. CCF-0347839).
�� Research partially supported by the Israel Science Foundation (grant No. 860/06).

A. Menezes (Ed.): CRYPTO 2007, LNCS 4622, pp. 31–49, 2007.
c© International Association for Cryptologic Research 2007



32 A. Beimel et al.

vertices or to find a minimal vertex cover in it.1 We call such problems search
problems. In such cases, to apply known results of secure multiparty computa-
tion, one has first to decide upon a polynomial-time computable function that
solves the search problem.

An approach often taken by designers of secure multiparty protocols for such
applications is to arbitrarily choose one of the existing algorithms/heuristics for
the search problem, and implement a secure protocol for it. This amounts to
choosing an arbitrary (possibly randomized) function that provides a solution,
and implementing it securely. The privacy implications of such choices have not
been analyzed, and it is clear that if the computed function leaks unnecessary
information on the parties’ private inputs, any protocol realizing it, no matter
how secure, will also leak this information. Thus, some privacy requirements
should be imposed on the chosen input-output functionality.

To illustrate the necessity of a rigid discussion of secure computation of search
problems, consider the following setting. A server holds a database with valuable
information, and a client makes queries to this database such that there may be
many different answers to a single query. The server is interested in answering
the client’s queries in a way that reveals the least information possible on the
database. However, the strategy the server chooses to answer each query might
reveal information. For example, consider a case where the client queries for the
name of a person whose details are in the database and satisfies some condition.
An arbitrary solution such as answering with the details of the appropriate
person whose name is the lexicographically first in the database reveals the fact
that every person prior to that person in the lexicographic order does not satisfy
the given condition.

In this paper we study the privacy implications of how the output is chosen for
search problems, propose suitable privacy requirements, and provide construc-
tions achieving them for several problems (see details below). This generalizes
the approach of [1], who introduced the problem of private search algorithms in
the context of private approximations. Beimel et al. [1] have put forward what
seems to be a minimal requirement of privacy (first coined in the context of
private approximation of functions [10], and later extended to search problems):

If two instances x, y have an identical set of possible solutions, their outputs
should not be distinguished.

That is, in order for the algorithm to be private, the output must depend only
on the solution set, and not on the specific input. In spirit of this requirement,
we say that two inputs are equivalent if they have the same set of solutions.

This definition was reasonable in the context of [1] because they provide mostly
negative results (so a weaker definition corresponds to stronger infeasibility re-
sults), and because in the context of private approximations of functions2, this

1 Another example is when the parties compute an approximation to a function f()
as in [10,16,17]. Again, there is potentially more than one correct answer for an
instance.

2 And similarly for those instances of search problems for which a unique solution exists.



How Should We Solve Search Problems Privately? 33

turns out to be a significant privacy guarantee (as it implies that no information
beyond the original f(x) is leaked). However, in the context of search problems the
implication is potentially much weaker – that no information beyond the entire
solution set of x is leaked. Arguably, for most applications requiring privacy, leak-
ing information up to the entire solution set does not provide a sufficient privacy
guarantee. Furthermore, even with this minimal definition of privacy, the notion
of private search has so far proved to be very problematic. Search versions of many
NP-complete problems do not admit evenveryweakenednotion of private approxi-
mation algorithms [1,2], and private search is infeasible even to some problems that
do admit polynomial time search algorithms.

We are thus faced with a double challenge: first, strengthen the definition,
imposing further requirements on the function in order to provide reasonable
privacy guarantees. Second, provide protocols implementing the stronger defin-
ition for as wide as possible class of search problems. This is the goal we tackle
in this work.

1.1 This Work

As discussed above, the outcome of a private algorithm A when run on an
instance x should only depend on the set of possible solutions to x. Which
further requirements should be imposed on this outcome? While the answer
to this question may be application dependent, we identify two (incomparable)
requirements that are suitable in many situations, and study which problems
admit those requirements and which techniques can be used to achieve them.
Before elaborating on this, let us start with two näıve proposals that are used
to demonstrate essential privacy considerations arising for search problems, and
to facilitate our actual proposed definitions and algorithms.

Deterministic vs. Randomized Private Algorithms. Consider first requir-
ing any private algorithm A to be deterministic. As such, it consistently selects
one of the solutions, hence subsequent applications of the algorithm on the same
(or equivalent) inputs do not reveal further information. A possible choice is to
output the lexicographically first solution. This choice is computationally feasible
for several polynomially solvable search problems such as the problem of finding a
solution for a linear system, and stable marriage (using the stable marriage with
restrictions algorithm [9]).3 Deterministic algorithms, however, leak definite in-
formation, that (depending on the application) may turn to be crucial. E.g., the
lexicographically first solution rules out all solutions that are ordered below it.
Furthermore, deterministic algorithms would enable verifying that the instance x
is not equivalent to another instance y, even if x, y have similar solution sets, just
by checking the outcome of the algorithm on both instances.

Next, consider a randomized algorithm A, which on input x selects from the set
of solutions according to a specificdistribution (depending only on the solution set).

3 The recent protocols of [15,11] also output a deterministic solution – the outcome of
the Gale-Shapley algorithm [12]. However, this is not a private search algorithm.



34 A. Beimel et al.

A natural choice here is to pick a solution uniformly at random. Randomized
private algorithms may be advantageous to deterministic private algorithms,
as the information they leak is potentially “blurred”. For example, if instances
x, y have similar solution sets, then the resulting output distributions would be
close. On the other hand, when applied repeatedly on the same instance there is a
potential for an increased leakage. E.g., for the problem of finding a solution for a
linear system of equations, the number of revealed solutions grows exponentially
in the number of invocations, until the entire solution space is revealed.

We note that the benefits and disadvantages of deterministic and random-
ized algorithms are generally incomparable. Moreover, there exist problems for
which an algorithm outputting a uniformly selected solutions exist, but no deter-
ministic private algorithm exists (under standard assumptions), and vice versa
(see Appendix A).

Framework: Seeded Algorithms. In the following, we restrict our attention
to what we call seeded algorithms. The idea of seeded algorithms is not new –
these are deterministic algorithms that get as input a “random” seed s and an
instance x. If the seed s is selected at random the first time the seeded algorithm
is invoked, subsequent invocations on the same input may be answered consis-
tently. A seeded algorithm allows selecting a random solution for each instance
(separately), while preventing abuse of repeated queries. Arguably, seeded algo-
rithms are less desirable than algorithms that do not need to maintain any state
information.4 However, we note that the state information of seeded algorithms is
rather easy to maintain, as they do not need to keep a log of previously answered
queries, and hence their state does not grow with the number of queries. In that,
the usage of seeded algorithms is similar to that of pseudorandom functions.

Our Results. To focus on the choice of a function for solving a search problem,
we abstract out the implementation details of the underlying secure multiparty
setting (in analogy to [10,16,1,2]). Our results directly apply to a client-server
setup, where the server is willing to let the client learn a solution to a specific
search problem applied to its input. They (similarly) directly apply to the setup
of a distributed multiparty computation where the parties share an instance
x using a secret sharing scheme, as it can be reduced to a client-server setup
using secure function evaluation protocols [19,14,8,3]. In the general setup of
distributed multiparty computation, however, one may also consider definitions
that allow leakage to a party of any information implied by its individual input.

Equivalence Protecting Algorithms. Equivalence protecting algorithms are seed-
ed algorithms that choose a uniformly random answer for each class of equivalent
instances. Given the seed, the output is deterministic and respects equivalence of
instances – an access to an equivalence protecting algorithm AP for a problem

4 In secure multiparty computation, the parties should jointly generate a random seed,
and then work with this shared seed in subsequent executions of the algorithm. In
a client-server setup, the server should generate the seed the first time it is invoked,
and use it in future invocations.



How Should We Solve Search Problems Privately? 35

P simulates an access to a random oracle for P that answers consistently on
inputs with the same solutions.5

To some extent, equivalence protecting algorithms enjoy benefits of both the
näıve privacy notions discussed above, deterministic and randomized private al-
gorithms: (i) there is a potential for not giving “definite” information; and (ii)
leakage is not accumulated with repeated queries. However, equivalence protect-
ing algorithms do allow distinguishing instances even when their solution sets
are very close.

In Section 3 we reduce the problem of designing an equivalence protecting al-
gorithm for a search problem, to that of (i) designing a deterministic algorithm
for finding a canonical representative of the equivalence class; (ii) designing a
randomized private algorithm returning a uniformly chosen solution; and (iii) the
existence of pseudorandom functions. We then show how to use this to construct
an equivalence protecting algorithm for what we call “monotone search prob-
lems”, a wide class of functions including perfect matching in bipartite graphs
and shortest path in a directed graph. We further demonstrate the power of our
general construction by showing an equivalence protecting algorithm for solving
a system of linear equations over a finite field.

Resemblance Preserving Algorithms. Our second strengthening of the require-
ments on a private search algorithm addresses the problem of distinguishing
non-equivalent instances with similar solution sets. Similarly to equivalence pro-
tecting algorithms, resemblance preserving algorithms choose a random solution
for each set of equivalence instances. However, here the choices for non-equivalent
instances are highly correlated such that pairs of instances that have close output
sets are answered identically with high probability.

In Section 4 we present a generic construction of resemblance preserving al-
gorithms, for any search problem whose output space admits a pairwise inde-
pendent family of permutations, where the minimum of a permuted solution set
can be computed efficiently. Examples of such search problems include finding
roots or non-roots of a polynomial, solving a system of linear equations over a
finite field, finding a point in a union of rectangles in a fixed dimensional space,
and finding a satisfying assignment for a DNF formula. It is interesting to note
that for the last problem, finding an efficient equivalence protecting algorithm
implies P=NP.

To summarize, we present two definitions (suitable for different applications),
provide technical tools to achieve these definitions, and identify generic classes, as
well as specific examples, of search problems where our tools can be used to yield
private search algorithms with the desired properties. The main conceptual con-
tribution of the paper is in putting forward the need to study private computa-
tion of search problems (where a non-private solution is well known), analyzing
privacy considerations, and defining equivalence protecting and resemblance pre-
serving algorithms.The main technical contribution of the paper is in the tools and
algorithms presented in Section 4 for resemblance preserving algorithms.
5 Such a random oracle can be thought of as an ideal model solution to the problem,

which this definition requires to emulate.



36 A. Beimel et al.

2 Definitions

We define a search problem as a function assigning to an instance x ∈ {0, 1}n

a solution set Pn(x). Two instances of a search problem are equivalent if they
have exactly the same solution set. More formally:

Definition 1 (SearchProblem).Asearchproblem is an ensembleP = {Pn}n∈N

such that Pn : {0, 1}n → 2{0,1}q(n)
for some positive polynomial q(n).

Definition 2. For a search problem P the equivalence relation ≡P includes all
pairs of instances x, y ∈ {0, 1}n such that Pn(x) = Pn(y).

We recall the minimal definition of private search algorithms from [1]. All our
definitions will be stronger – an algorithm that satisfies Definition 7 or Defini-
tion 13 trivially satisfies Definition 3.

Definition 3 (Private Search Algorithms [1]). A probabilistic polynomial
time algorithm AP is a private search algorithm for P if (i) AP (x) ∈ Pn(x)
for all x ∈ {0, 1}n, n ∈ N; and (ii) for every polynomial-time algorithm D and
for every positive polynomial q(·), there exists some n0 ∈ N such that for every
x, y ∈ {0, 1}∗ such that x ≡P y and |x| = |y| ≥ n0∣∣∣ Pr[D(AP (x), x, y) = 1] − Pr[D(AP (y), x, y) = 1]

∣∣∣ ≤ 1
q(|x|) .

That is, when x ≡P y, every polynomial time algorithm D cannot distinguish if
the input of AP is x or y.

We proceed to a standard definition of pseudorandom functions from binary
strings of size n to binary strings of size �(n), where �(·) is some fixed polynomial.

Definition 4 (Pseudorandom Functions [13]). A function ensemble F =
{Fn}n∈N

of functions from {0, 1}n to {0, 1}�(n) is called pseudorandom if for
every probabilistic polynomial time oracle machine M , every polynomial p(·),
and all sufficiently large n’s,∣∣∣Pr[MFn(1n) = 1] − Pr[MHn(1n) = 1]

∣∣∣ <
1

p(n)

where �(·) is some fixed polynomial, and H = {Hn}n∈N
is the uniform function

ensemble over functions from {0, 1}n to {0, 1}�(n).

Finally, we define seeded algorithms, which are central to our constructions.

Definition 5 (Seeded Algorithms). A seeded algorithm A is a deterministic
polynomial time algorithm taking two inputs x, sn where |x| = n and |sn| = p(n)
for some polynomial p(). The distribution induced by a seeded algorithm on an
input x is the distribution on outcomes A(x, sn) where sn is chosen uniformly
at random from {0, 1}p(|x|).

Informally, a seeded algorithm is private if it is a deterministic private algorithm
for every choice of the seed sn, i.e., A(x, sn) = A(y, sn) for all sn ∈ {0, 1}p(|x|)

whenever x ≡P y.



How Should We Solve Search Problems Privately? 37

3 Equivalence Protecting Privacy Definition

In this section we suggest a definition of private algorithm for a search prob-
lem and supply efficient algorithms satisfying this definition for a broad class
of problems. The privacy guarantee we introduce enjoys the advantages of both
deterministic and random algorithms. Based on the existence of pseudorandom
functions, it provides solutions that look random but do not leak further in-
formation while executed repeatedly on inputs that are equivalent. In order to
suggest appropriate privacy definitions for secure computation of a search prob-
lem, we need to picture how such a computation would take place in an ideal
world. The following two definitions capture random sampling of an answer that
depends only on the solution set (and not on the specific input).

Definition 6 (Private Oracle). Let P = {Pn}n∈N be a search problem and p

be the polynomial such that Pn : {0, 1}n → 2{0,1}p(n)
. We say that for a given

n ∈ N an oracle On : {0, 1}n → {0, 1}p(n) is private with respect to Pn if

1. For every x ∈ {0, 1}n it holds that On(x) ∈ Pn(x). That is, On returns
correct answers.

2. For every x, x′ ∈ {0, 1}n it holds that x ≡P x′ implies On(x) = On(x′). That
is, On satisfies the privacy requirement of Definition 3.

An oracle that is private with respect to P represents one possible functionality
that solves the search problem and protects the equivalence relation. We define
an algorithm to be equivalence protecting if it cannot be efficiently distinguished
from a random oracle that is private with respect to P .

Definition 7 (Equivalence Protecting Algorithm). Let P = {Pn}n∈N be
a search problem. An algorithm A(·, ·) is private with respect to ≡P , if for every
polynomial time oracle machine D, for every polynomial p, and for all sufficiently
large n’s, ∣∣∣ Pr[DOn(1n) = 1] − Pr[DA(·,sn)(1n) = 1]

∣∣∣ <
1

p(n)
,

where the first probability is over the uniform distribution over oracles On that
are private with respect to P, and the second probability is uniform over the
choices of the seed sn for the algorithm A.

In the above definition we arbitrarily choose the uniform distribution over private
oracles.Wenote that, for some applications, other distributionsmight be preferred;
the definition can be easily adjusted to such scenarios. We note that using the uni-
form distribution is common in many sampling algorithms, e.g., [18].

The following two definitions will be helpful in constructing equivalence pro-
tecting algorithms for various search problems. The first definition discusses
algorithms that return a representative element for every equivalence class of
the search problem P . The second defines sampling an answer from the output
set of a given input.



38 A. Beimel et al.

Definition 8 (Canonical Representative Algorithm). Let P = {Pn}n∈N

be a search problem. An algorithm A is a canonical representative algorithm
for P if (i) for every x ∈ {0, 1}n it holds that x ≡P A(x); and (ii) for every
x, y ∈ {0, 1}n, it holds that A(x) = A(y) iff x ≡P y.

Definition 9 (Output Sampling Algorithm). Let P = {Pn}n∈N be a search
problem. A randomized algorithm A is called an output sampling algorithm for
P if for every x ∈ {0, 1}n the distribution A(x, r) is computationally indistin-
guishable from UnifP(x), the uniform distribution on the possible outputs on x.

We reduce the problem of designing an equivalence protecting algorithm for a
search problem into designing a canonical representative algorithm and an out-
put sampling algorithm for the problem. The construction is based on the exis-
tence of pseudorandom functions. Let F = {Fn}n∈N

be an ensemble of pseudo-
random functions from {0, 1}n to {0, 1}�(n), where �(·) is a polynomial that
bounds the number of random bits used by the output sampling algorithm. We
denote by fsn(x) the output of the function indexed by s on an input x ∈ {0, 1}n.
The proof of Theorem 1 is omitted here.

Algorithm General Equivalence Protecting

Input: An instance x ∈ {0, 1}n and a seed sn for a family of pseudorandom
functions F = {Fn}n∈N

.
Output: A solution sol ∈ Pn(x).

1. Compute y = Arep(x).
2. Compute r = Fsn(y).
3. Output sol = Arand(y, r).

Theorem 1. Let P be a search problem. Suppose P has (i) an efficient output
sampling algorithm Arand; and (ii) an efficient canonical representative algo-
rithm Arep. Then Algorithm General Equivalence Protecting is an efficient
equivalence protecting algorithm for P.

3.1 Private Algorithms for Monotone Search Problems

In view of Theorem 1, the construction of a private algorithm for a given search
problem is reduced to finding a canonical representative algorithm and an out-
put sampling algorithm.We focus on search problems in which an output is a
subset of the input satisfying some property. We reduce the design of a canonical
representative algorithm into deciding whether an input element is contained in
some possible output.

Definition 10 (Monotone Search Problem). Let P be a search problem
and view the inputs to Pn as subsets of [n]. We say that P is a monotone search
problem if there exists a set S⊆2[n] such that Pn(X) = 2X ∩ S for every input



How Should We Solve Search Problems Privately? 39

X⊆[n]. That is, there is a global set S of solutions and the outputs of X are the
solutions that are contained in X.

For example, the problem of finding a perfect matching in a bipartite graph is
monotone. The global set of solution consists of all the graphs whose edges form
exactly a perfect matching. For every bipartite graph G, the set of solutions on
G, is the set of perfect matching graphs whose edges are contained in G.

Definition 11 (Relevant Element). Let P be a subset search problem and X be
an input to Pn. We say that i∈X is relevant to X if there is an output Y ∈ Pn(X)
such that i ∈ Y . We denote by R(X) the set of elements relevant to X.

In the perfect matching example, an edge is relevant if it appears in some perfect
matching. The following claim shows that computing R(X) efficiently from X is
sufficient to get a representation algorithm.

Claim 1. Let P be a monotone search problem and X, Y ⊆[n] be inputs of Pn.
Then (i) X ≡P R(X); and (ii) X ≡P Y if and only if R(X) = R(Y ).

Proof. (i) We show that X and R(X) have the same sets of solutions. Let Y be a
solution to X . Every i ∈ Y is relevant to X and thus i ∈ R(X). Hence Y ⊆R(X)
and therefore Y is a solution to R(X). For the other direction let Y be a solution
to R(X). Obviously R(X)⊆X and thus Y ⊆X and therefore Y is a solution to
X . (ii) Assume X ≡P Y and let i ∈ R(X). Then i ∈ Z where Z is a solution to
X . As X ≡P Y , we get that Z is also a solution to Y and thus i ∈ R(Y ). The
other direction is immediate from (i) and the transitivity of ≡P . 	


3.2 Applications of the Construction

We introduce equivalence protecting algorithms for some well known search
problems.

Example 1 (Perfect Matching in Bipartite Graphs). Consider the problem of
finding a perfect matching in a bipartite graph G = 〈G, E〉. To decide whether
an input edge 〈u, v〉 is relevant we do the following: (i) Denote by G′ the graph
that results from deleting u, v and all the edges adjacent to them from G.
(ii) Check whether there is a perfect matching in G′. Evidently, 〈u, v〉 is rel-
evant to G if and only if G′ has a perfect matching. Hence, perfect matching has
an efficient canonical representative algorithm.

As an output sampling algorithm, we use the algorithm of Jerrum et al. [18].
The algorithm samples a perfect matching of a bipartite graph from a distrib-
ution that is statistically close to uniform. Therefore, we have both a canonical
representative and a output sampling algorithm for perfect matching, and thus
by Theorem 1, we get that perfect matching has an efficient equivalence protect-
ing algorithm.

Example 2 (Linear Algebra). Let n and m be positive integers, F be a finite
field, M be an n×m matrix over F, and v ∈ F

n. Consider the problem of solving



40 A. Beimel et al.

the system My = v. As this problem is not monotone, we need to design both
the canonical representative algorithm and the output sampling algorithm. As
a canonical representative algorithm simply perform the Gaussian elimination
procedure on the system. Elementary linear algebra argument shows that if two
systems have the same sets of solutions, then they have the same structure after
performing the Gaussian elimination procedure. We now show a simple output
sampling algorithm for the problem: Compute an arbitrary solution y0 ∈ F

m

satisfying My0 = v. Compute k = rank(M) and compute an m× (n− k) matrix
K representing the kernel of the matrix M . Randomly pick a vector r ∈ F

n−k

and output w = y0 +Kr. Again, elementary linear algebra argument shows that
w is a random solution to the system My = v.

Example 3 (Shortest Path). Consider the problem of finding a shortest path from
a vertex s to a vertex t in a directed graph G. In this case there is no global set
of solutions, since a path can be an appropriate solution for one graph, while in
another graph there may be shorter paths. However, the set of edges that appear
in any shortest path in G still form an appropriate solution for the canonical
representative algorithm. Checking whether an edge is relevant for G is an easy
tasks. To sample a random solution do: (i) Compute for every v ∈ V the number
of shortest paths from v to t. (ii) Starting from s, pick the vertices on the path
randomly, where the probabilities are weighted according to the number of paths
computed in (i). Hence, by Theorem 1, shortest path has an efficient equivalence
protecting algorithm.

Similar ideas are applicable for finding shortest path in a weighted directed
graph. Here, however, we do not apply Theorem 1 directly. The equivalence
protecting algorithm in this case does the following: (i) Compute the set of edges
that appear in at least one shortest path from s to t. (ii) Output a random path
from s to t in the non-weighted graph computed in (i) (not a shortest path!).
The randomness for step (ii) should be extracted like in Theorem 1, by applying
a pseudorandom function on the graph computed in stage (i). This example is
different in the fact that the canonical input we use in step (ii) is an instance to
a problem that is slightly different than the original problem.

4 Resemblance Preserving Algorithms

We now strengthen the requirement on private algorithm in an alternative man-
ner to the definition of equivalence protecting algorithms presented in Section 3.
The motivation for the definition in this section is that we want the output of
the algorithm will not distinguish between inputs with similar sets of solutions.
While this requirement is met by a randomized algorithm that outputs a uni-
form solution, it cannot be satisfied by a deterministic algorithm for non-trivial
search problems (the algorithm would have to output the same “solution” for all
inputs contradicting the correctness of the algorithm). As we want an algorithm
that does not leak more information on repeated executions, we put forward
a definition of resemblance preserving algorithms, which are seeded algorithms
that protect inputs with similar sets of outputs.



How Should We Solve Search Problems Privately? 41

To measure the similarity between the sets of outputs we use resemblance be-
tween sets, a notion used in [5,7,6] and seems to capture well the informal notion
of “roughly the same.” For example, in [5,7] resemblance between documents was
successfully used for clustering documents.

Definition 12 (Resemblance). Let U be a set, and A, B⊆U . Then the resem-
blance between A and B is defined to be

r(A, B) =
|A ∩ B|
|A ∪ B| .

For a search problem P we will consider the resemblance between solution sets
of Pn(x), Pn(y) of x, y ∈ {0, 1}n. Informally, a (perfect) resemblance preserving
algorithm is a seeded algorithm that returns the same output for x and y with
probability of at least the resemblance between Pn(x), Pn(y).

Definition 13 (Resemblance Preserving Algorithm). An algorithm A(·, ·)
is resemblance preserving with respect to P if:

1. For every polynomial-time algorithm D and every polynomial p(·) there exists
some n0 ∈ N such that for every x ∈ {0, 1}∗ satisfying |x| > n0

∣∣∣Pr[D(x, A(sn, x)) = 1] − Pr[D(x,Unif(Pn(x))) = 1]
∣∣∣ ≤ 1

p(|x|) .

The probability is taken over the random choice of the seed sn and the ran-
domness of D. Informally, taking the probability over the seed, the outputs
of AP on x is indistinguishable from the uniform distribution on Pn(x).

2. There exists a constant c > 0 such that for all x, y ∈ {0, 1}∗ such that
|x| = |y|

Pr[ A(sn, x) = A(sn, y) ] ≥ c · r(Pn(x), Pn(y)) .

The probability is taken over the random choice of sn. That is, the probability
that A returns the same output on two inputs is at least some constant times
the resemblance between Pn(x) and Pn(y).

3. If x ≡P y then A(sn, x) = A(sn, y) for all seeds sn. That is, if x and y are
equivalent then A always returns the same output on x and on y.

If c = 1 in the above Requirement 2, then A(·, ·) is perfect resemblance preserving
with respect to P.

Unlike Definition 9, in the definition of resemblance preserving algorithms we do
not know how to formulate this privacy using an “ideal world”. This difference
implies, in particular, that in designing resemblance preserving algorithms we
do not need cryptographic assumptions. In our constructions, for example, we
only use pairwise independent permutations. Furthermore, Definition 13 does not
prevent partial disclosure, or even full disclosure of the seed by the algorithm.
This should be considered when using a resemblance preserving algorithm.



42 A. Beimel et al.

Example 4 (Non Roots of a Polynomial). We give an example demonstrating
that perfect resemblance preserving algorithms exist. Consider the following
problem. The inputs are univariate polynomials of degree d(n) over F2n , where
d : N → N is some fixed increasing function (e.g., d(n) = n). The set of solutions
of a polynomial Q is the set of all points y which are not roots of Q, that is,
{y ∈ F2n : Q(y) �= 0} . This problem arises, e.g., when we want to find points in
which two polynomials disagree.

The seed sn in the algorithm we construct is a random string of length (d(n)+
1) · n considered as a list of d(n) + 1 elements in F2n . As Q has at most d(n)
roots, there is an element in the list sn that is not a root of Q. The algorithm
on input Q returns the first element in sn that is not a root of Q. We claim
that this algorithm is resemblance preserving. First, as the seed is chosen at
random, the first element in the list that is not a root is a random non-root of
Q. Second, consider two polynomials Q1 and Q2 with sets of non-roots Y1 and
Y2 respectively. The algorithm returns the same non-root on both Q1 and Q2 if
the first element in the list sn from Y1 is also the first element in the list sn from
Y2. In other words, the algorithm returns the same non-root if the first element
in the list sn which is from the set Y1 ∪ Y2 is from Y1 ∩ Y2. The probability of
this event is exactly r(Y1, Y2) = |Y1 ∩ Y2|/|Y1 ∪ Y2|.

4.1 Generic Constructions of Resemblance Preserving Algorithms

We present our main tool for constructing resemblance preserving algorithms –
min-wise independent permutations. We will first show a general construction,
that (depending on the search problem) may exhibit exponential time complex-
ity. Then, we will present the main contribution of this section – a polynomial-
time resemblance preserving algorithm that is applicable for problems for which
there is a pairwise independent family of permutations where we can compute
the minimum on any set of solutions.

Definition 14 (Family of Min-wise Independent Permutations [6]). Let
U be a set and F = {πs}s∈S be a collection of permutations πs : U → U .
The collection F is a collection of min-wise independent permutations if Pr[min
(πs(A)) = πs(a)] = 1/|A| for all A ⊆ U and all a ∈ A. The probability is taken
over the choice of the seed s at uniform from S.

We will use the following observation that relates min-wise permutations and
resemblance:

Observation 1 ([6]). Let F be a family of min-wise independent permutations
{πs}s∈S where πs : U → U . Then Pr[ min(πs(A)) = min(πs(B)) ] = r(A, B) for
every sets A, B ⊆ U . The probability is taken over the choice of the seed s at
uniform from S.

In Fig. 1, we describe Algorithm MinwiseP for a search problem P , where
Pn : {0, 1}n → {0, 1}q(n). Using Obseration 1 it is easy to see that Algo-
rithm MinwiseP is perfectly resemblance preserving.

However, Algorithm MinwiseP maybe inefficient in several aspects:



How Should We Solve Search Problems Privately? 43

1. Algorithm MinwiseP uses a family of min-wise independent permutations.
It was shown in [6] that such families are of size 2Ω(|U|) = 2Ω(2q(n)) (where
n is the input length), and hence the seed length |s| = Ω(2q(n)). However,
for most purposes, the seed length may be reduced to polynomial by using
pseudorandom permutations.6

2. Algorithm MinwiseP needs to compute the minimum element, according to
πs in the solution set Pn(x). This is feasible when it is possible to enumer-
ate in polynomial time the elements of Pn(x). However, to make MinwiseP
feasible in cases where, for example, Pn(x) is of super-polynomial size, one
needs to carefully use the structure of πs and the structure of the underlying
solution set space.

Algorithm MinwiseP

Input: An instance x ∈ {0, 1}∗, seed s for a family of min-wise independent
permutations {πs}s∈S where πs : {0, 1}q(|x|) → {0, 1}q(|x|).
Output: A solution sol ∈ Pn(x).

1. Let A = Pn(x).
2. Output sol ∈ A such that πs(sol) = min πs(A).

Fig. 1. Algorithm MinwiseP

Example 5 (Roots of a Polynomial). As an example for when Algorithm MinwiseP
canbe implemented efficiently we consider the problemof finding roots of a polyno-
mial. As in Example 4, the inputs are univariate polynomials of degree d(n) over
F2n , where d : N → N is some fixed increasing function (e.g., d(n) = n). The
set of solutions of a polynomial Q is the set of all points y which are roots of Q,
that is, {y ∈ F2n : Q(y) = 0} . Berlekamp [4] presented an efficient algorithm that
finds roots of a polynomial over F2n . We implement Algorithm MinwiseP , where
we use a family of pseudorandom permutations from F2n to F2n instead of the fam-
ily of min-wise independent permutations. Furthermore, as the number of roots of
a polynomial of degree d(n) is at most d(n), we can use Berlekamp’s algorithm to
explicitly find all roots of the polynomial, apply the pseudorandom permutation
to each roots, and find for which root πs(y) obtains a minimum. The above algo-
rithm can be generalized to any search problems whose entire set of solutions can
be generated efficiently.

Observation 2. If for a search problem P there is an algorithm that generates
the set of solutions of an input of P whose running time in polynomial in the
length of the input (and, in particular, the number of solutions in polynomial),
then Algorithm MinwiseP can be efficiently implemented for P .
6 We need the family of pseudorandom permutations to be secure against a non-

uniform adversary. Thus, for every long enough inputs x and y a pseudorandom
permutation must be min-wise. We omit further details as this is not the approach
taken in this study.



44 A. Beimel et al.

4.2 Resemblance Preserving Using Pairwise Independence

To get around the above mentioned problems of implementing MinwiseP for
search problems with super-polynomial number of solutions, we construct a non-
perfect resemblance preserving algorithm using pairwise independence permuta-
tions instead of min-wise independence.

Definition 15 (Family of Pairwise Independent Permutations). Let U
be a set and F = {πs}s∈S be a collection of permutations πs : U → U . The
collection F is a family of pairwise independent permutations if

Pr[ πs(a) = c ∧ πs(b) = d ] =
1

|U |(|U | − 1)
.

for all a, b ∈ U and c, d ∈ U . The probability is taken over the choice of the seed
s at uniform from S.

Theorem 2 ([6]). Let F be a family of pairwise independent permutations
{πs}s∈S where πs : U → U . Then for every set A ⊆ U and every a ∈ A

1
2(|A| − 1)

≤ Pr[min(πs(A)) = πs(a)] ≤ 2√
|A| − 1

.

The probability is taken over the choice of the seed s at uniform from S.

Lemma 1. Let F be a family of pairwise independent permutations {πs}s∈S

where πs : U → U . Then for every sets A, B ⊆ U

Pr[ min(πs(A)) = min(πs(B)) ] ≥ max

(
r(A, B)

2
, 1 − 2 · |AΔB|√

|A ∪ B| − 1

)
.

The probability is taken over the choice of the seed s at uniform from S.

We construct an algorithm PairwiseP that is almost identical to MinwiseP of
Fig. 1, where the family of min-wise permutations is replaced with a family of
pairwise independent permutations. The following corollary follows directly from
Lemma 1:

Corollary 1. Algorithm PairwiseP is resemblance preserving.

4.3 Applications of the Pairwise Independence Construction

We next show how to apply Algorithm PairwiseP to a few search problems.
Given a search problem, we need to choose the family of pairwise independent
permutations such that the solution minimizing πs(A) can computed efficiently.
In our examples we use the following well-known family of pairwise independent
permutations from F

n
q to F

n
q for some prime-power q:

Lq,n
def=

{
Hy + b : H is an invertible n × n matrix over Fq and b ∈ F

n
q

}
.



How Should We Solve Search Problems Privately? 45

Linear Algebra. We show how to construct a resemblance preserving algorithm
for finding a solution of a system of equations (as considered in Example 2 for
Equivalence Protecting Algorithms).

Linear Algebra over F2. We assume that the system is over F2.7 That is, the
input is an m × n matrix M over F2 and a vector v ∈ F

m
2 , and a solution is

a vector y ∈ F
n
2 such that My = v. We apply Algorithm PairwiseP for this

problem using the family L2,n. That is, we choose a permutation at random,
specified by H and b, and we need to find the lexicographically first z satisfying
z = Hy + b for y satisfying Ay = b. We view Ay = b and z = Hy + v as a
single system of linear equations with 2n unknowns, namely, y = 〈y1, . . . , yn〉
and z = 〈z1, . . . , zn〉. To find the value of z1 in the lexicographically first z,
we add the equation z1 = 0 to the system of equations. If the new system has
a solution, we keep the equation z1 = 0 in the system and continue to find
the value of z2. Otherwise, we understand that z1 = 1 in every solution of the
original system of equations, and, in particular, in the lexicographically first z.
In this case, we remove the equation z1 = 0 from the system of equations and
continue to find the value of z2. To conclude, we find the lexicographically first z
iteratively, where in iteration i we have already found the values of z1, . . . , zi−1

and we compute the value of zi in the lexicographically first z as we found z1.
We continue these iterations until we find the lexicographically first z. Recall
that Hy + b is a permutation. Thus, once we found z, the solution y is uniquely
defined and is easy to compute from the system of equations.

Union of Systems of Equations. We want to use the resemblance preserving
algorithm for finding a solution of a system of linear equations to construct
resemblance preserving algorithms for other problems. That is, we want to rep-
resent the set of solutions of an instance of some search problem as a set of
solutions to a system of linear equations. In our applications, we manage to
represent the set of solutions of an instance as a union of polynomially many
systems of linear equations over the same field. We next show how to construct
a resemblance preserving algorithm for such a union. That is, the input is a
sequence M1, v1, . . . , M�, v� and a solution is a vector y such that Miy = vi for
at least one i.

Algorithm LinearAlgebraUnion

Input: A a sequence M1, v1, . . . , M�, v� and a seed H, b.
Output: A vector y such that Miy = vi for at least one i.

1. Find for each system of equation a solution yi such that Hyi + b is mini-
mized amongst all vectors such that Miy = vi.

2. Output yj such that Hyj + b = min {Hyi + b : 1 ≤ i ≤ �}.

7 In the full version of this paper we generalize the result to every finite field.



46 A. Beimel et al.

Theorem 3. There is a resemblance preserving algorithm for finding a solution
in a union of polynomially many solution sets of systems of linear equations over
the same field.

Points in a Union of Discrete Rectangles. We show how to use the resem-
blance preserving algorithm for linear algebra to construct resemblance preserving
algorithms for finding a point in a union of discrete rectangles. We construct such
algorithms for two cases: (1) unions of rectangles in [2]n, that is, DNF formulae,
and (2) unions of rectangles in [N ]d when d is fixed (however, N is not fixed).

Satisfying Assignment for a DNF Formula. We show how to construct a re-
semblance preserving algorithm for finding a satisfying assignment of a DNF
formula. This follows Theorem 3 and the following observations. First, the set
of satisfying assignments of a single term is the set of solutions to a system of
linear equations over F2:

– For every variable xi that appears in the term without negation, add the
equation yi = 1.

– For every variable xi that appears in the term with negation, add the equa-
tion yi = 0.

Now, given a DNF formula with � terms, a satisfying assignment to the formula
is a assignment satisfying at least one of the terms in the formula, that is, it
belongs to the union of solutions of the � systems of linear equations constructed
for each of the terms of the formula. Thus, by Theorem 3, we get a resemblance
preserving algorithm for finding a satisfying assignment of a DNF formula.

It is interesting to note that, unless P=NP, there is no efficient equivalence
protecting algorithm for DNF as an equivalence protecting algorithm for DNF
can be used to check if two DNF formulae are equivalent, a problem that is
coNP-hard.

Points in a Union of Discrete Rectangles in a d-dimensional Space. We show how
to construct a resemblance preserving algorithm for finding a point in a discrete
rectangle. That is, for some fixed d ∈ N and for an integer N ∈ N, our inputs are
2d elements a1, . . . , ad, b1, . . . , bd ∈ [N ] which represents a rectangle as follows:
First, for two points a, b we define the segment Ia,b

def= {y ∈ N : a ≤ y ≤ b} .

Second, we define Ra1,...,ad,b1,...,bd
def= Ia1,b1 ×Ia2,b2 ×· · ·×Iad,bd . Let n

def= �log N�,
and we represent a number a ∈ [N ] by an n-bit string a1, . . . , an, where a =∑n

i=1 ai2n−i. Note that, in this section, ai is a string in {0, 1}n and ai is the ith
bit of a string a.

We solve the problem of finding a point in a rectangle by representing each
rectangle as a union of polynomially many systems of equations over F2, and
then use Theorem 3 to construct the resemblance preserving algorithm.

Let us start with the simple case where d = 1 and b1 = 〈1, . . . , 1〉 (in words,
b ∈ {0, 1}n is the all 1 string). That is, an input is a string a and a solution is a
string y ≥ a.

y ≥ a iff
(
∃i∈[n] (yi = 1 ∧ ai = 0) ∧ (∀1≤j<i yi = ai)

)
∨ (∀1≤j≤n (yi = ai)) . (1)



How Should We Solve Search Problems Privately? 47

For example, y = 〈y1, y2, y3〉 ≥ 〈0, 1, 0〉 either if (y1 = 1), or (y1 = 0 ∧ y2

= 1 ∧ y3 = 1), or (y1 = 0 ∧ y2 = 1 ∧ y3 = 0).

Note that, by (1), the set of points y ≥ a is a union of solutions of at most
n + 1 systems of equations. Similarly, the set of points a ≤ y ≤ b is a union
of solutions of at most 2(n + 1) systems of equations: Let a < b and i0 be the
minimal index such that ai = 0 and bi = 1 (in particular, aj = bj for every
1 ≤ j ≤ i0 − 1).

a ≤ y ≤ b iff (∀1≤j<i0yj = aj) ∧ ((yi0 = ai0 ∧ a ≤ y) ∨ (yi0 = bi0 ∧ y ≤ b)) .(2)

In other words, we partitioned the segment Ia,b to at most 2(n + 1) segments
such that the points in each segment are exactly the solutions of a system of
linear equations.

Given a rectangle in ({0, 1}n)d, we partition it to (O(n))d rectangles such
that the points in each rectangle correspond to solutions of a system of linear
equations, and use Theorem 3 to construct the resemblance preserving algorithm.
Notice that given a rectangle Ra1,...,ad,b1,...,bd , we can partition each segment
Iai,bi into O(n) segments Ii,1, . . . , Ii,O(n) as in (1) and (2). Thus,

Ra1,...,ad,b1,...,bd = Ia1,b1 × Ia2,b2 × · · · × Iad,bd

= (∪j1I1,j1) × (∪j2I2,j2) × · · · × (∪jd
Id,jd

)
= ∪j1,...,jd

I1,j1 × I2,j2 × · · · × Id,jd
.

Notice that for i1 �= i2, the variables of the equations representing Ii1,ji1
and

Ii2,ji2
are disjoint, and the points in each rectangle I1,j1 × I2,j2 × · · · × Id,jd

are
solutions to a system of linear equations.

Finally, if our input is a union of � rectangles, we can represent it as a union
of �(O(n))d systems of equations, hence:

Theorem 4. There exists an efficient resemblance preserving algorithm for find-
ing a point in a union of � rectangles in [N ]d. The running time of the algorithm
is poly((log N)d, �).

The above algorithm is polynomial in � and (log N)d while the size of the input
is O(�d log N), thus, it is polynomial when d is constant. It would be interesting
to construct an efficient algorithm for non-constant d. Notice that a union of �
rectangles in [2]d is equivalent to an �-term DNF formula with n variables. Thus,
there is a polynomial resemblance preserving algorithm for union of rectangles
in [2]d.

Acknowledgments. We thank the anonymous CYRPTO referees for their use-
ful comments. Part of this research was performed when the authors visited
IPAM at UCLA. We thank Rafi Ostrovsky and the IPAM staff for inviting us
to IPAM and making our stay pleasant and productive.



48 A. Beimel et al.

References

1. Beimel, A., Carmi, P., Nissim, K., Weinreb, E.: Private approximation of search
problems. In: Proc. of the 38th Symp. on the Theory of Comp. pp. 119–128 (2006)

2. Beimel, A., Hallak, R., Nissim, K.: Private approximation of clustering and vertex
cover. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 383–403. Springer,
Heidelberg (2007)

3. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for noncryp-
tographic fault-tolerant distributed computations. In: Proc. of the 20th Symp. on
the Theory of Comp. pp. 1–10 (1988)

4. Berlekamp, E.R: Factoring polynomials over large finite fields. Math. Comp. 24,
713–735 (1970)

5. Broder, A.Z.: On the resemblance and containment of documents. In: Compression
and Complexity of Sequences 1997, pp. 21–29 (1997)

6. Broder, A.Z., Charikar, M., Frieze, A.M., Mitzenmacher, M.: Min-wise independent
permutations. J. of Computer and System Sciences 60(3), 630–659 (2000)

7. Broder, A.Z., Glassman, S.C., Manasse, M.S., Zweig, G.: Syntactic clustering of
the web. In: Proc. of World Wide Web conference, pp. 1157–1166 (1997)

8. Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure protocols.
In: Proc. of the 20th Symp. on the Theory of Comp. pp. 11–19 (1988)

9. Dias, V.M.F., da Fonseca, G.D., de Figueiredo, C.M.H., Szwarcfiter, J.L.: The sta-
ble marriage problem with restricted pairs. Theoretical Computer Science 306(1–3),
391–405 (2003)

10. Feigenbaum, J., Ishai, Y., Malkin, T., Nissim, K., Strauss, M.J., Wright, R.N.:
Secure multiparty computation of approximations. In: Orejas, F., Spirakis, P.G.,
van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 927–938. Springer, Hei-
delberg (2001)

11. Franklin, M., Gondree, M., Mohassel, P.: Improved efficiency for private stable
matching. In: Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 163–177. Springer,
Heidelberg (2006)

12. Gale, D., Shapley, L.S.: College admissions and the stability of marriage. American
Mathematical Monthly 69, 9–15 (1962)

13. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J.
of the ACM 33(4), 792–807 (1986)

14. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: Proc.
of the 19th Symp. on the Theory of Comp. pp. 218–229 (1987)

15. Golle, P.: A private stable matching algorithm. In: Di Crescenzo, G., Rubin, A.
(eds.) FC 2006. LNCS, vol. 4107, pp. 65–80. Springer, Heidelberg (2006)

16. Halevi, S., Krauthgamer, R., Kushilevitz, E., Nissim, K.: Private approximation
of NP-hard functions. In: Proc. of the 33th Symp. on the Theory of Comp. pp.
550–559 (2001)

17. Indyk, P., Woodruff, D.: Polylogarithmic private approximations and efficient
matching. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 245–264.
Springer, Heidelberg (2006)

18. Jerrum, M., Sinclair, A., Vigoda, E.: A polynomial-time approximation algorithm
for the permanent of a matrix with nonnegative entries. J. of the ACM 51(4),
671–697 (2004)

19. Yao, A.C.: Protocols for secure computations. In: Proc. of the 23th IEEE Symp.
on Foundations of Computer Science, pp. 160–164. IEEE Computer Society Press,
Los Alamitos (1982)



How Should We Solve Search Problems Privately? 49

A Deterministic vs. Randomized Private Algorithms

We start with a search problem that admits a randomized private algorithm
(outputting a uniformly chosen solution on each instance), but no efficient de-
terministic one. For n = p · q and a ∈ Z∗n with Jacobi Symbol ( a

n ) = 1 define
QR(n, a) = {b ∈ Z∗n : ( b

n ) = 1 ∧ b ∈ QRn ⇔ a ∈ QRn} .

Claim 2. The problem QR admits a randomized polynomial time private algo-
rithm, but no efficient deterministic private algorithms, unless quadratic residu-
osity is decidable in deterministic polynomial time.

Our second example is of a search problem that admits a deterministic private
algorithm but no (non trivial) randomized one.

For a CNF formula φ over Boolean variables x1, . . . , xn define

ZERO − SAT (φ) = {a ∈ {0, 1}n : a = 0n ∨ φ(a)} .

If a randomized algorithm for ZERO − SAT assigns non-negligible probability
to some non-zero assignment whenever φ is satisfiable we say it is non-trivial.

Claim 3. The problem ZERO − SAT admits a deterministic polynomial time
private algorithm, but, unless NP ⊆ RP no non-trivial randomized private al-
gorithm for ZERO − SAT exists.



Public Key Encryption That Allows PIR Queries

Dan Boneh�, Eyal Kushilevitz��,
Rafail Ostrovsky� � �, and William E. Skeith III†

dabo@cs.stanford.edu,eyalk@cs.technion.ac.il,
rafail@cs.ucla.edu,wskeith@math.ucla.edu

Abstract. Consider the following problem: Alice wishes to maintain her
email using a storage-provider Bob (such as a Yahoo! or hotmail e-mail
account). This storage-provider should provide for Alice the ability to
collect, retrieve, search and delete emails but, at the same time, should
learn neither the content of messages sent from the senders to Alice (with
Bob as an intermediary), nor the search criteria used by Alice. A trivial
solution is that messages will be sent to Bob in encrypted form and Alice,
whenever she wants to search for some message, will ask Bob to send her
a copy of the entire database of encrypted emails. This however is highly
inefficient. We will be interested in solutions that are communication-
efficient and, at the same time, respect the privacy of Alice. In this
paper, we show how to create a public-key encryption scheme for Alice
that allows PIR searching over encrypted documents. Our solution is the
first to reveal no partial information regarding the user’s search (includ-
ing the access pattern) in the public-key setting and with non-trivially
small communication complexity. This provides a theoretical solution to
a problem posed by Boneh, DiCrescenzo, Ostrovsky and Persiano on
“Public-key Encryption with Keyword Search.” The main technique of
our solution also allows for Single-Database PIR writing with sub-linear
communication complexity, which we consider of independent interest.

keywords: Searching on encrypted data, Database security, Public-key
Encryption with special properties, Private Information Retrieval.

1 Introduction

Problem Overview. Consider the following problem: Alice wishes to maintain her
email using a storage-providerBob (such as Yahoo! or hotmail e-mail account). She

� Stanford Department of Computer Science. Supported by NSF and the Packard
foundation.

�� Department of Computer Science, Technion. Partially supported by BSF grant
2002-354 and by Israel Science Foundation grant 36/03.

� � � Computer Science Department and Department of Mathematics, University of
California, Los Angeles, CA 90095. Research partially done while visiting IPAM,
and supported in part by IBM Faculty Award, Xerox Innovation Group Award,
NSF Cybertrust grant no. 0430254, and U.C. MICRO grant.

† Department of Mathematics, University of California, Los Angeles. Research done
in part at IPAM, and supported in part by U.C. Chancellor’s Presidential Disser-
tation Fellowship 2006-2007.

A. Menezes (Ed.): CRYPTO 2007, LNCS 4622, pp. 50–67, 2007.
c© International Association for Cryptologic Research 2007



Public Key Encryption That Allows PIR Queries 51

publishes a public-key for a semantically-secure Public-Key Encryption scheme,
and asks all people to send their e-mails, encrypted under her public-key, to the in-
termediary Bob. Bob (the storage-provider) should allow Alice to collect, retrieve,
search and delete emails at her leisure. In known implementations of such services,
either the content of the emails is known to the storage-providerBob (and then the
privacy of both Alice and the senders is lost) or the senders can encrypt their mes-
sages to Alice, in which case privacy is maintained, but sophisticated services (such
as search by keyword) cannot be easily performed and, more importantly leak in-
formation, such as Alice’s access pattern, to Bob. Of course, Alice can always ask
Bob, the storage-provider, to send her a copy of the entire database of emails. This
however is highly inefficient in terms of communication, which will be a main focus
in this work. In all that follows, we will denote the number of encrypted documents
that Bob stores for Alice by the variable n.

We will be interested in solutions that are communication-efficient and, at the
same time, respect the complete privacy of Alice. A seemingly related concept
is that of Private Information Retrieval (PIR) (e.g., [13,23,10], or [27] for a sur-
vey). However, existing PIR solutions either allow only for retrieving a (plain
or encrypted) record of the database by address, or allow for search by key-
word [12,23,25] in a non-encrypted data. The challenge of creating a public-key
encryption that allows for keyword search, where keywords are encrypted in a
probabilistic manner, remained an open problem prior to this paper.

In our solution, Alice creates a public key that allows arbitrary senders to
send her encrypted e-mail messages. Each such message M is accompanied by
an “encoded” list of keywords in response to which M should be retrieved. These
email messages are collected for Alice by Bob, along with the “encoded” key-
words. When Alice wishes to search in the database maintained by Bob for e-mail
messages containing certain keywords, she is able to do so in a communication-
efficient way and does not allow Bob to learn anything about the messages that
she wishes to read, download or erase. In particular, Alice is not willing to re-
veal what particular messages she downloads from the mail database, from which
senders these emails are originating and/or what is the search criterion, including
the access pattern.

Furthermore, our solution allows the communication from any sender to Bob
to be non-interactive (i.e. just a single message from the sender to Bob), and
allow a single round of communication from Alice to Bob and back to Alice, with
total communication complexity sub-linear in n. Furthermore, we show a simple
extension that allows honest-but-curious Bob to tolerate malicious senders, who
try to corrupt messages that do not belong to them in Bob’s database, and reject
all such messages with overwhelming probability.

Comparison with Related Work. Recently, there was a lot of work on search-
ing on encrypted data (see [7,6] and references therein). However, all previous
solutions either revealed some partial information about the data or about the
search criterion, or work only in private-key settings. In such settings, only en-
tities who have access to the private key can do useful operations; thus, it is
inappropriate for our setting, where both the storage-provider and the senders



52 D. Boneh et al.

of e-mail messages for Alice have no information on her private key. We em-
phasize that, in settings that include only a user Alice and a storage-provider,
the problem is already solved; for example, one can apply results of [17,29,9,7].
However, the involvement of the senders who are also allowed to encrypt data for
Alice (but are not allowed to decrypt data encrypted by other senders) requires
using public-key encryption. In contrast to the above work, we show how to
search, in a communication-efficient manner, on encrypted data in a public-key
setting, where those who store data (encrypted with a public key of Alice) do
not need to know the private key under which this data is encrypted. The only
previous results for such a scenario in the public-key setting, is due to Boneh et
al. [6] and Abddalla et al. [1] who deal with the same storage-provider setting
we describe above; however, their solution reveals partial information; namely,
the particular keyword that Alice is searching for is given by her, in the clear,
to Bob (i.e., only the content of the email messages is kept private while the
information that Alice is after is revealed). This, in particular, reveals the access
pattern of the user. The biggest problem left was creating a scheme that hides
the access pattern as well. This is exactly what we achieve in this paper. That
is, we show how to hide all information in a semantically-secure way.

As mentioned, private information retrieval (PIR) is a related problem that
is concerned with communication-efficient retrieval of public (i.e., plain) data.
Extensions of the basic PIR primitive (such as [12,23], mentioned above, and,
more recently, [22,15,25]) allow more powerful keyword search un-encrypted data.
Therefore, none of those can directly be used to solve the current problem.

It should also be noted that our paper is in some ways only a partial solution
to the problem. Specifically, we put the following constraint in our model: the
number of total messages associated to each keyword is bounded by a constant.
It is an interesting question as to whether this condition can be relaxed, while
keeping communication non-trivially small and maintaining the strict notions of
security presented here.

Our Techniques. We give a short overview of some of the tools that we use. The
right combination of these tools is what allows for our protocol to work.

As a starting point, we examine Bloom filters (see Section 2.1 for a definition).
Bloom filters allow us to use space which is not proportional to the number of all
potential keywords (which is typically huge) but rather to the maximal number
of keywords which are in use at any given time (which is typically much smaller).
That is, the general approach of our protocols is that the senders will store in the
database of the storage-provider some extra information (in encrypted form) that
will later allow the efficient search by Alice. Bloom filters allow us to keep the space
that is used to store this extra information “small”. The approach is somewhat
similar to Goh’s use of Bloom filters [16]; the important difference is that in our
case we are looking for a public-key solution, whereas Goh [16] gives a private-key
solution. This makes our problem more challenging, and our use of Bloom filter is
somewhat different. Furthermore, we require the Bloom filters in our application
to encode significantly more information than just set membership. We modify the
standard definitions of Bloom filters to accommodate the additional functionality.



Public Key Encryption That Allows PIR Queries 53

Recall that the use of Bloom filters requires the ability to flip bits in the array
of extra information. However, the identity of the positions that are flipped
should be kept secret from the storage-provider (as they give information about
the keywords). This brings us to an important technical challenge: we need a way
to specify an encrypted length-n unit vector ei (i.e., a length n vector with 1 in
its i-th position and 0’s elsewhere) while keeping the value i secret, and having
a representation that is short enough to get communication-efficiency beyond
that of the trivial solution. We show that a recent public-key homomorphic-
encryption scheme, due to Boneh, Goh and Nissim [5], that supports additions
and one multiplication on ciphertexts, allows us to obtain just that. For example,
one can specify such a length-n unit vector using communication complexity
which is

√
n times a security parameter. Also, as shown in [26], this is optimal,

from an algebraic point of view.
Finally, for Alice to read information from the array of extra information,

she applies efficient PIR schemes, e.g. [23,10], that, again, allow keeping the
keywords that Alice is after secret.

We emphasize that the communication in the protocol is sub-linear in n.
This includes both the communication from the senders to the storage-provider
Bob (when sending email messages) and the communication from Alice to Bob
(when she retrieves/searches for messages). Furthermore, we allow Alice to delete
messages from Bob’s storage in a way that hides from Bob which messages have
been deleted. Our main theorem is as follows:

MAIN THEOREM (informal): There exists Public-Key Encryption schemes
that support sending, reading and writing into remote server (honest-but-curious
Bob) with the following communication complexity:

– O(
√

n log3 n) for sending a message from any honest-but-curious Sender
to Bob. In case the sender is malicious, the communication complexity for
sending a message becomes O(

√
n logn · polylog(n))

– O(polylog(n)) for reading by Alice from Bob’s (encrypted) memory.
– O(

√
n log3 n) for deleting messages by Alice from Bob’s memory.

Organization: In Section 2, we explain and develop the tools needed for our so-
lutions. Section 3 defines the properties we want our protocols to satisfy. Finally,
Section 4 gives the construction and its analysis.

1.1 Reference Table of Notation

For the reader’s convenience, we provide a table of the most frequently used
notation in this work.

– n – size of e-mail database
– s – a security parameter
– k – number of hash functions used in Bloom filter
– m – size of Bloom filter hash table
– {hi}k

i=1 – Bloom filter hash functions



54 D. Boneh et al.

– Hw – set of hash images for a word w ∈ {0, 1}∗, i.e. {hi(w) | i ∈ [k]}
– Bj – a buffer in a Bloom filter with storage (so, j ∈ [m])
– σ – size of fixed length buffers in a Bloom filter with storage
– l – size of the associated values in a Bloom filter with storage
– X – a message sender
– Y – message receiver (owner of public key)
– S – owner of remote storage (mail server)
– K – a set of keywords
– M – a message
– (K, E , D) – key generation, encryption and decryption, respectively
– c – a constant, greater than 1
– λ – maximum number of messages associated to a specific keyword
– θ – maximum size of a keyword set associated to a specific message

2 Ingredients

We will make use of several basic tools, some of which are being introduced for
the first time in this paper. In this section, we define (and create, if needed)
these tools, as well as outline their utility in our protocol.

2.1 Bloom Filters

Bloom filters [4] provide a way to probabilistically encode set membership using
a small amount of space, even when the universe set is large. The basic idea
is as follows. Choose an independent set of hash functions {hi}k

i=1, where each
function hi : {0, 1}∗ −→ [m]. Suppose S = {ai}l

i=1 ⊂ {0, 1}∗. We set an array
T = {ti}m

i=1 such that ti = 1 ⇐⇒ ∃j ∈ [k] and j′ ∈ [l] such that hj(aj′) = i.
Now to test the validity of a statement like “a ∈ S”, one simply verifies that
thi(a) = 1, ∀i ∈ [k]. If this does not hold, then certainly a 
∈ S. If the statement
does hold, then there is still some probability that a 
∈ S, however this can be
shown to be small. Optimal results are obtained by having m proportional to k;
in this case, it can be shown that the probability of an inaccurate positive result
is negligible as k increases, as will be thoroughly demonstrated in what follows.

This work will use a variation of a Bloom filter, as we require more function-
ality. We would like our Bloom filters to not just store whether or not a certain
element is in the set, but also to store some values v ∈ V which are associated
with the elements in the set (and to preserve those associations).

Definition 1. Let V be a finite set. A (k, m)-Bloom Filter with Storage is a
collection {hi}k

i=1 of functions, with hi : {0, 1}∗ −→ [m] for all i, together with
a collection of sets, {Bj}m

j=1, where Bj ⊆ V . To insert a pair (a, v) into this
structure, where a ∈ {0, 1}∗ and v ∈ V , v is added to Bhi(a) for all i ∈ [k].
Then, to determine whether or not a ∈ S, one examines all of the sets Bhi(a)

and returns true if all are non-empty. The set of values associated with a ∈ S is
simply

⋂
i∈[k] Bhi(a). (Note: every inserted value is assumed to have at least one

associated value.)



Public Key Encryption That Allows PIR Queries 55

Next, we analyze the total size of a (k, m)-Bloom filter with storage. For the
purpose of analysis, the functions hi will, as usual, be modeled as uniform,
independent randomness. For w ∈ {0, 1}∗, define Hw = {hi(w) | i ∈ [k]}.

Claim. Let ({hi}k
i=1, {Bj}m

j=1) be a (k, m)-Bloom filter with storage. Suppose
the filter has been initialized to store some set S of size n and associated values.
Suppose also that m = �cnk where c > 1 is a constant. Denote the (binary)
relation of element-value associations by R(·, ·). Then, for any a ∈ {0, 1}∗, the
following statements hold true with probability 1−neg(k), where the probability
is over the uniform randomness used to model the hi:

1. (a ∈ S) ⇐⇒ (Bhi(a) 
= ∅ ∀i ∈ [k])
2.

⋂
i∈[k] Bhi(a) = {v | R(a, v) = 1}

Proof. (1., ⇒) Certainly if Bhi(a) = ∅ for some i ∈ [k], then a was never inserted
into the filter, and a /∈ S. (1., ⇐) Suppose that Bhi(a) 
= ∅ for every i ∈ [k]. We’d
like to compute the probability that for an arbitrary a ∈ {0, 1}∗, a /∈ S, we have
Ha ⊂

⋃
w∈S Hw; i.e., that such an element will appear to be in S by our criteria.

Recall that we model each evaluation of the functions hi as independent and
uniform randomness. Therefore, a total of nk (not necessarily distinct) random
sets are modified to insert the n values of S into the filter. So, we only need to
compute the probability that all k functions place a in this subset of the Bj ’s.
By assumption, there are a total of m = �cnk sets where c > 1 is a constant.
Let Xk,k′ denote the random variable that models the experiment of throwing
k balls into m bins and counting the number that land in the first k′ bins. For a
fixed insertion of the elements of S into our filter and letting k′ be the number
of distinct bins occupied, Xk,k′ represents how close a random element appears
to being in S according to our Bloom filter. More precisely, Pr[Xk,k′ = k] is
the probability that a random element will appear to be in S for this specific
situation. Note that Xk,k′ is a sum of independent (by assumption) Bernoulli
trials, and hence is distributed as a binomial random variable with parameters,

(k, k′

cnk ), where k′ ≤ nk. Hence, Pr[Xk,k′ = k] =
(

k′

cnk

)k

≤
(

1
c

)k

. So, we’ve
obtained a bound that is negligible in k, independently of k′. Hence, if we let
Yk be the experiment of sampling k′ by throwing nk balls into �cnk bins and
counting the distinct number of bins, then taking a random sample from the
variable Xk,k′ and returning 1 if and only if Xk,k′ = k, then Yk is distributed
identically to the variable that describes whether or not a random a ∈ {0, 1}∗ will
appear to be in S according to our filter. Since we have Pr[Xk,k′ = k] < neg(k)
and the bound was independent of k′, it is easy to see that Pr[Yk = 1] < neg(k),
as needed.

(2.) The argument is quite similar to part 1. (⊇) If R(a, v) = 1, then the value
v has been inserted and associated with a and by definition, v ∈ Bhi(a) for every
i ∈ [k]. (⊆) Suppose a ∈ S and v ∈ Bhi(a) for every i ∈ [k]. The probability of this
event randomly happening independent of the relation R is maximized if every
other element in S is associated with the same value. In this case, the problem
reduces to a false positive for set membership with (n−1)k writes if a ∈ S, or the
usual nk if a /∈ S. This has already been shown to be negligible in part 1.



56 D. Boneh et al.

In practice, we will need some data structure to model the sets of our Bloom
filter with storage, e.g. a linked list. However, in this work we will be interested
in oblivious writing to the Bloom filter, in which case a linked list seems quite
inappropriate as the dynamic size of the structure would leak information about
the writing. So, we would like to briefly analyze the total space required for
a Bloom filter with storage if it is implemented with fixed-length buffers to
represent the sets. Making some needed assumptions about uniformity of value
associations, we can show that with overwhelming probability (exponentially
close to 1 as a function of the size of our structure) no buffer will overflow.

Claim. Let ({hi}k
i=1, {Bj}m

j=1) be a (k, m)-Bloom filter with storage. Suppose
the filter has been initialized to store some set S of size n and associated values.
Again, suppose that m = �cnk where c > 1 is a constant, and denote the
relation of element-value associations by R(·, ·). Let λ > 0 be any constant. If
for every a ∈ S we have |{v | R(a, v) = 1}| ≤ λ, then for σ ∈ N we have that as
σ increases, Pr

[
maxj∈[m]{|Bj |} > σ

]
< neg(σ). Again, the probability is over

the uniform randomness used to model the hi.

Proof. First, let us analyze the case λ = 1, so there will be a total of nk
values placed randomly into the �cnk buffers. Let Xj be a random variable
that counts the size of Bj after the nk values are randomly placed. Xj has
a binomial distribution with parameters (nk, 1

cnk ). Hence E[Xj ] = (1/c). If
(1 + δ) > 2e, we can apply a Chernoff bound to obtain the following esti-
mation: Pr[Xj > (1 + δ)/c] < 2−δ/c. Now, for a given σ we’d like to com-
pute Pr[Xj > σ]. So, set (1 + δ)/c = σ and hence δ/c = σ − 1/c. Then,
Pr[Xj > σ] < 2−σ+1/c = 2−σ2(1/c) = neg(σ). By the union bound, the probabil-
ity that any Xj is larger than σ is also negligible in σ.

Now, if λ > 1, what has changed? Our analysis above treated the functions
as uniform randomness, but to associate additional values to a specific element
of a ∈ S the same subset of buffers (Ha in our notation) will be written to
repeatedly- there is no more randomness to analyze. Each buffer will have at most
a factor of λ additional elements in it, so our above bound becomes neg(σ/λ)
which is still neg(σ) as λ is an independent constant.

So, we can implement a (k, m)-Bloom filter with storage using fixed-length
buffers. However, the needed length of such buffers depends on the maximum
number of values that could be associated to a specific a ∈ S. A priori, this
is bounded only by |V |, the size of the value universe: for it could be the case
that all values are associated to a particular a ∈ S, and hence the buffers of
Ha would need to be as large as this universe. But, since we want to fix the
buffers length ahead of time, we will enforce a “uniformity” constraint; namely,
that the number of values associated to each word is bounded by a constant. We
summarize with the following observation.

Observation 1. One can implement a (k, m)-Bloom filter with storage by using
fixed-length arrays to store the sets Bj, with the probability of losing an associated
value negligible in the length of the arrays. The total size of such a structure is



Public Key Encryption That Allows PIR Queries 57

linear in n, k, σ, l and c where n is the maximum number of elements that the
filter is designed to store, k is the number of functions (hi) used (which serves
as a correctness parameter), σ is the size of the buffer arrays (which serves as a
correctness parameter; note that σ should be chosen to exceed λ, the maximum
number of values associated to any single element of the set), l is the storage
size of an associated value, and c is any constant greater than 1.

So, for our application of public-key storage with keyword search, if we assume
that there are as many keywords as there are messages, then we have created a
structure of size O(n · l) = O(n log n) to hold the keyword set and the message
references. However, the correctness parameter σ has logarithmic dependence on
n, leaving us with O(n log2 n).

2.2 Oblivious Modification

For our application, we will need message senders to update the contents of a
Bloom filter with storage. However, all data is encrypted under a key which nei-
ther they, nor the storage provider have. So, they must write to the buffers in an
“oblivious” way- they will not (and cannot) know what areas of the buffer are
already occupied, as this will reveal information about the user’s data, and the
message-keyword associations. One model for such a writing protocol has been
explored by Ostrovsky and Skeith [25]. They provide a method for obliviously
writing to a buffer which, with overwhelming probability in independent cor-
rectness parameters, is completely correct: i.e., there is a method for extracting
documents from the buffer which outputs exactly the set of documents which
were put into it.

In [25], the method for oblivious buffer writing is simply to write messages at
uniformly random addresses in a buffer, except to ensure that data is recoverable
with very high probability, messages are written repeatedly to an appropriately
sized buffer, which has linear dependence on a correctness parameter. To ensure
that no additional documents arise from collisions, a “collision detection string”
is appended to each document from a special distribution which is designed to
not be closed under sums. We can apply the same methods here, which will allow
senders to update an encrypted Bloom filter with storage, without knowing any-
thing about what is already contained in the encrypted buffers. For more details
on this approach, see [25], or the full version of this work. Another approach to
this situation was presented by Bethencourt, Song, and Waters [3], who solve a
system of linear equations to recover buffer contents. These methods may also be
applicable, but require additional interaction to evaluate a pseudo-random func-
tion on appropriate input. So, with an added factor of a correctness parameter to
the buffer lengths, one can implement and obliviously update an encrypted Bloom
filter with storage, using the probabilistic methods of [25], or [3].

As a final note on our Bloom filters with storage, we mention that, in practice,
we can replace the functions hi with pseudo-random functions; in this case our
claims about correctness are still valid, only with a computational assumption



58 D. Boneh et al.

in place of the assumption about the hi being truly random, provided that the
participating parties are non-adaptive1.

By now, we have an amicable data structure to work with, but there is a
piece of the puzzle missing: this data structure will be held by a central storage
provider that we’d like to keep in the dark regarding all operations performed
on the data. Next, we give message senders a way to update this data structure
without revealing to the storage provider any information about the update, and
using small communication.

2.3 Modifying Encrypted Data in a Communication-Efficient Way

Our next tool is that of encrypted database modification. This will allow us to
privately manipulate our Bloom filters. The situation is as follows:

– A database owner Bob holds an array of ciphertexts {ci}n
i=1 where each

ci = E(xi) is encrypted using a public-key for which Bob does not have the
private key.

– A user would like to modify one plaintext value xi, without revealing to Bob
which value was modified, or how it was modified.

Furthermore, we would like to minimize the communication between the parties
beyond the trivial O(n) solution which could be based on any group homo-
morphic encryption. Using the cryptosystem of Boneh, Goh, and Nissim [5], we
can accomplish this with communication O(

√
n). The important property of the

cryptosystem of [5], for our purposes, is its additional homomorphic property;
specifically, in their system, one can compute multivariate polynomials of total
degree 2 on ciphertexts; i.e., if E is the encryption map (and D is the correspond-
ing decryption) and if F (X1, . . . , Xn) =

∑
1≤i≤j≤n aijXiXj , then there exists

some function F̃ on ciphertexts (which can be computed using public informa-
tion alone) such that, for any array of ciphertexts {cl = E(xl)}n

l=1, it holds that
D(F̃ (c1, ..., cn)) = F (x1, ..., xn).

Applying such a cryptosystem to encrypted database modification is simple.
Suppose {xij}

√
n

i,j=1 is our database (not encrypted). Then, to increment the
value of a particular element at position (i∗, j∗) by some value α, we proceed as

1 In the case of malicious senders, we cannot reveal the seeds for the random functions
and still guarantee correctness; however, we can entrust the storage provider (Bob)
with the seeds, and have the senders execute a secure two-party computation proto-
col with Bob to learn the value of the functions. This can be accomplished without
Bob learning anything, and with the sender learning only hi(w) and nothing else.
Examples of such a protocol can be found in the work of Katz and Ostrovsky [20],
if we disallow concurrency, and the work of Canetti et al. [11], to allow concurrency.
Here, the common reference string can be provided as part of the public key. These
solutions require additional rounds of communication between the senders and the
storage provider Bob, and additional communication. However, the size of the com-
munication is proportional to the security parameter and is independent of the size
of the database. We defer this and other extensions to the full version of the paper.



Public Key Encryption That Allows PIR Queries 59

follows: Create two vectors v, w of length
√

n where, vi = δii∗ and wj = αδjj∗

(here δk� = 1 when k = � and 0 otherwise). Thus, viwj = α if (i = i∗ ∧ j = j∗)
and 0 otherwise. Now, we wish to add the value viwj to the (i, j) position of the
database. Note that, for each i, j, we are just evaluating a simple polynomial
of total degree two on vi, wj and the data element xij . So, if we are given any
cryptosystem that allows us to compute multivariate polynomials of total degree
two on ciphertexts, then we can simply encrypt every input (the database, and
the vectors v, w) and perform the same computation which will give us a private
database modification protocol with communication complexity O(

√
n).

More formally, suppose (K, E , D) is a CPA-secure public-key encryption scheme
that allows polynomials of total degree two to be computed on ciphertexts, as de-
scribed above. Suppose also that an array of ciphertexts {cl = E(xl)}n

l=1 is held
by a party S, which have been encrypted under some public key, Apublic. Suppose
that n is a square (if not, it can always be padded by < 2

√
n+1 extra elements to

make it a square). Define F (X, Y, Z) = X + Y Z. Then by our assumption, there
exists some F̃ such that D(F̃ (E(x), E(y), E(z))) = F (x, y, z) for any plaintext val-
ues x, y, z. We define a two party protocol ModifyU ,S(l, α) by the following steps,
where l and α are private inputs to U :

1. U computes i∗, j∗ as the coordinates of l (i.e., i∗ and j∗ are the quotient and
remainder of l/n, respectively).

2. U sends {vi = E(δii∗)}
√

n
i=1, {wj = E(αδjj∗ )}

√
n

j=1 to S where all values are
encrypted under Apublic.

3. S computes F̃ (cij , vi, wj) for all i, j ∈ [
√

n], and replaces each cij with the
corresponding resulting ciphertext.

By our remarks above, this will be a correct database modification protocol.
It is also easy to see that it is private, in that it resists a chosen plaintext attack.
In a chosen plaintext attack, an adversary would ask many queries consisting
of requests for the challenger to execute the protocol to modify positions of the
adversary’s choice. But all that is exchanged during these protocols is arrays of
ciphertexts for which the plaintext is known to the adversary. Distinguishing two
different modifications is precisely the problem of distinguishing two finite arrays
of ciphertexts, which is easily seen to be infeasible assuming the CPA-security
of the underlying cryptosystem and then using a standard hybrid argument.

3 Definitions

In what follows, we will denote message sending parties by X , a message receiving
party will be denoted by Y, and a server/storage provider will be denoted by S.

Definition 2. A Public Key Storage with Keyword Search consists of the fol-
lowing probabilistic polynomial time algorithms and protocols:

– KeyGen(1s) outputs public and private keys, Apublic and Aprivate of length s.
– SendX ,S(M, K, Apublic) is (an interactive or non-interactive) two-party



60 D. Boneh et al.

protocol that allows X to send the message M to server S, encrypted under
Apublic, and also associates M with each keyword in the set K. The values
M, K are private inputs that only the message-sending party X holds.

– RetrieveY,S(w, Aprivate) is a two party protocol between the user Y and server
S that retrieves all messages associated with the keyword w for Y. The in-
puts w, Aprivate are held only by Y. This protocol also removes the retrieved
messages from the server and properly maintains the keyword references.

We now describe correctness and privacy for such a system.

Definition 3. Let Y be a user, X be a message sender and S be a server/storage
provider. Let Apublic, Aprivate ←− KeyGen(1s). Fix a finite sequence of messages
and keyword sets: {(Mi, Ki)}m

i=1 . Suppose that, for all i ∈ [m], the protocol
SendX ,S(Mi, Ki, Apublic) is executed by X and S. Denote by Rw the set of mes-
sages that Y receives after the execution of RetrieveY,S(w, Aprivate). Then, a
Public Key Storage with Keyword Search is said to be correct on the sequence
{(Mi, Ki)}m

i=1 if Pr
[
Rw = {Mi | w ∈ Ki}

]
> 1 − neg(1s), for every w, where

the probability is taken over all internal randomness used in the protocols Send
and Retrieve. A Public Key Storage with Keyword Search is said to be correct if
it is correct on all such finite sequences.

Definition 4. A Public Key Storage with Keyword Search is said to be (n, λ, θ)-
correct if whenever {(Mi, Ki)}m

i=1 is a sequence such that (1) m ≤ n, (2) |Ki| <
θ, for every i ∈ [m], and (3) for every w ∈

⋃
i∈[m] Ki, at most λ messages are

associated with w, then it is correct on {(Mi, Ki)}m
i=1 in the sense of Definition 3.

For privacy, there are several parties involved, and hence there will be several
definitional components.

Definition 5. For sender-privacy, consider the following game between an ad-
versary A and a challenger C. A will play the role of the storage provider and C
will play the role of a message sender. The game consists of the following steps:

1. KeyGen(1s) is executed by C who sends the output Apublic to A.
2. A asks queries of the form (M, K) where M is a message and K is a set of key-

words; C answers by executing the protocol Send(M, K, Apublic) with A.
3. A chooses two pairs (M0, K0), (M1, K1) and sends this to C, where both the mes-

sages and keyword sets are of equal size.
4. C picks a random bit b ∈R {0, 1} and executes Send(Mb, Kb, Apublic) with A.
5. A asks more queries of the form (M, K) and C responds by executing protocol

Send(M, K, Apublic) with A.
6. A outputs a bit b′ ∈ {0, 1}.

We define the adversary’s advantage as AdvA(1s) =
∣∣∣Pr[b = b′] − 1

2

∣∣∣. We say
that a Public-Key Storage with Keyword Search is CPA-sender-private if, for all
A ∈ PPT, we have that AdvA(1s) is a negligible function.2

2 “PPT” stands for Probabilistic Polynomial Time. We use the notation A ∈ PPT to
denote that A is a probabilistic polynomial-time algorithm.



Public Key Encryption That Allows PIR Queries 61

Definition 6. For receiver-privacy, consider the following game between an ad-
versary A and a challenger C. A again plays the role of the storage provider,
and C plays the role of a message receiver. The game proceeds as follows:

1. KeyGen(1s) is executed by C who sends the output Apublic to A.
2. A asks queries of the form w, where w is a keyword; C answers by executing the

protocol RetrieveC,A(w, Aprivate) with A.
3. A chooses two keywords w0, w1 and sends both to C.
4. C picks a random bit b ∈R {0, 1} and executes the protocol RetrieveC,A(wb, Aprivate)

with A.
5. A asks more keyword queries w and C responds by executing the protocol RetrieveC,A

(w, Aprivate) with A.
6. A outputs a bit b′ ∈ {0, 1}.

We define the adversary’s advantage as AdvA(1s) =
∣∣∣Pr[b = b′] − 1

2

∣∣∣. We say
that a Public Key Storage with Keyword Search is CPA-receiver-private if, for
all A ∈ PPT, we have that AdvA(1s) is a negligible function.

Remark: Note that we could have also included a separate protocol for erasing
items. At present, the implementation erases messages as they are retrieved.
These processes need not be tied together. We have done so to increase the
simplicity of our definitions and exposition.

3.1 Extensions

The reader may have noted that this protocol deviates from the usual view of
sending mail in that the process requires interaction between a message sender
and a server. For simplicity, this point is not addressed in the main portion of
the paper, however, it is quite easy to remedy. The source of the problem is
that the mail server must communicate the internal address of the new message
back to the sender so that the sender can update the Bloom filter with storage
to contain this address at the appropriate locations. However, once again, using
probabilistic methods from [25], we can solve this problem. As long as the address
space is known (which just requires knowledge of the database size, which could
be published) the mail sender can simply instruct the server to write the message
to a number of random locations, and simultaneously send modification data
which would update the Bloom filter accordingly. There are of course, prices to
pay for this, but they will not be so significant. The Bloom filter with storage
now has addresses of size log2(n), since there will be a logarithmic number
of addresses instead of just one and, furthermore, to ensure correctness, the
database must also grow by a logarithmic factor. A detailed analysis is given in
the full version of this work.

Another potential objection to our construction is that mail senders are some-
what free to access and modify the keyword-message associations. Hence, a ma-
licious message sender could invalidate the message-keyword associations, which
is another way that this protocol differs from what one may expect from a mail
system. (We stress, however, that a sender has no means of modifying other



62 D. Boneh et al.

senders’ mail data - only the keyword association data can be manipulated.)
However, this too can be solved by using ”off the shelf” protocols; namely, non-
interactive efficient zero knowledge proof systems of Groth, Ostrovksy and Sahai
[18]. In particular, the receiver publishes a common reference string as in [18]
(based on the same cryptographic assumption that we already use in this paper;
i.e., [5]). The sender is now required to include a NIZK proof that the data for
updating the Bloom filter is correct according to the protocol specification. The
main observation is that the theorem size is O(

√
n log n) and the circuit that

generates it (and its witness) are O(
√

n log n · polylog(n)). The [18] NIZK size
is proportional to the circuit size times the security parameter. Thus, assuming
poly-logarithmic security parameter, the result follows.

4 Main Construction

We present a construction of a public-key storage with keyword search that is
(n, λ, θ)-correct, where the maximum number of messages to store is n, and the
total number of distinct keywords that may be in use at a given time is also n
(however, the keyword universe consists of arbitrary strings of bounded length,
say proportional to the security parameter). Correctness will be proved under a
computational assumption in a “semi-honest” model, and privacy will be proved
based only on a computational assumption. In our context, the term “semi-
honest” refers to a party that correctly executes the protocol, but may collect
information during the protocol’s execution. We assume the existence of a se-
mantically secure public-key encryption scheme with homomorphic properties
that allow the computation of polynomials of total degree two on ciphertexts,
e.g., [5]. The key generation, encryption and decryption algorithms of the system
will be denoted by K, E , and D respectively. We define the required algorithms
and sub-protocols below. First, let us describe our assumptions about the parties
involved: X , Y and S. Recall that X will always denote a message sender. In gen-
eral, there could be many senders but, for the purposes of describing the protocol,
we need only to name one. Sender X is assumed to hold a message, keyword(s)
and the public key. Receiver Y holds the private key. S has a storage buffer
for n encrypted messages, and it also has a (k, m)-Bloom filter with storage,
as defined in Definition 1, implemented with fixed-length buffers and encrypted
under the public key distributed by Y. As before, m = �cnk, where c > 1 is
a constant; the functions and buffers are denoted by {hi}k

i=1 and {Bj}m
j=1. The

buffers {Bj} will be initialized to 0 in every location. S maintains in its stor-
age space encryptions of the buffers, and not the buffers themselves. We denote
these encryptions {B̂j}m

j=1. The functions hi are implemented by pseudo-random
functions, which can be published by Y. Recall that for w ∈ {0, 1}∗, we defined
Hw = {hi(w) | i ∈ [k]}.
KeyGen(k): Run K(1s), the key generation algorithm of the underlying cryptosys-
tem, to create public and private keys, Apublic and Aprivate respectively. Private
and public parameters for a PIR scheme are also generated by this algorithm.



Public Key Encryption That Allows PIR Queries 63

SendX ,S(M, K, Apublic): Sender X holds a message M , keywords K and Apublic

and wishes to send the message to Y via the server S. The protocol consists of
the following steps:

1. X modifies M to have K appended to it, and then sends E(M), an encryption of
the modified M to S .

2. S receives E(M), and stores it at an available address ρ in its message buffer. S
then sends ρ back to X .

3. For every j ∈
�

w∈K Hw, sender X writes γ copies of the address ρ to �Bj , using
the methods of [25]. However, the information of which buffers were written needs
to be hidden from S . For this, X repeatedly executes protocol ModifyX ,S(x, α)
for appropriate (x,α), in order to update the Bloom filter buffers. Writing a single
address may take several executions of Modify depending on the size of the plaintext
set in the underlying cryptosystem. Also, if |

�
w∈K Hw| < k|K|, then X executes

additional Modify(r, 0) invocations (for any random r) so that the total number of
times that Modify is invoked is uniform among all keyword sets of equal size.

RetrieveY,S(w, Aprivate): Y wishes to retrieve all messages associated with the
keyword w, and erase them from the server. The protocol proceeds as follows:

1. Y repeatedly executes an efficient PIR protocol (e.g., [23,10]) with S to retrieve the
encrypted buffers {�Bj}j∈Hw which are the Bloom filter contents corresponding to
w. If |Hw| < k, then Y executes additional PIR protocols for random locations and
discards the results so that the same number of executions are invoked regardless
of the keyword w. Recall that Y possesses the seeds used for the pseudo-random
functions hi, and hence can compute Hw without interacting with S .

2. Y decrypts the answers for the PIR queries to obtain {Bj}j∈Hw , using the key
Aprivate. Receiver Y then computes L =

�
j∈Hw

Bj , a list of addresses correspond-
ing to w, and then executes PIR protocols again with S to retrieve the encrypted
messages at each address in L. Recall that we have bounded the maximum number
of messages associated with a keyword. We refer to this value as λ. Receiver Y will,
as usual, invoke additional random PIR executions so that it appears as if every
word has λ messages associated to it. After decrypting the messages, Y will obtain
any other keywords associated to the message(s) (recall that the keywords were
appended to the message during the Send protocol). Denote this set of keywords
K.

3. Y first retrieves the additional buffers {�Bj}, for all j ∈
�

w′ �=w∈K Hw′ , using PIR
queries with S . The number of additional buffers is bounded by the constant θ · t.
Once again, Y invokes additional PIR executions with S so that the number of PIR
queries in this step of the protocol is uniform for every w. Next, Y modifies these
buffers, removing any occurrences of any address in L. This is accomplished via
repeated execution of ModifyY,S(x, α) for appropriate x and α. Additional Modify
protocols are invoked to correspond to the maximum θ · k buffers.

Remark: If one wishes to separate the processes of message retrieval and mes-
sage erasure, simply modify the retrieval protocol to skip the last step, and then
use the current retrieval protocol as the message erasure procedure.

Theorem 2. The Public-Key Storage with Keyword Search from the preceding
construction is (n, λ, θ)-correct according to Definition 4, under the assumption
that the functions hi are pseudo-random.



64 D. Boneh et al.

Proof sketch:This is a consequence of Claim 2.1, Claim 2.1, and Observation 1.
The preceding claims were all proved under the assumption that the functions hi

were uniformly random. In our protocol, they were replaced with pseudo-random
functions, but since we are dealing with non-adaptive adversaries, the keywords
are chosen before the seeds are generated. Hence they are independent, and if any
of the preceding claims failed to be true with pseudo-random functions in place
of the hi, our protocol could be used to distinguish the hi from the uniform
distribution without knowledge of the random seed, violating the assumption
of pseudo-randomness. As we mentioned before, we can easily handle adaptive
adversaries, by implementing hi using PRF’s, where the seeds are kept by the
service provider, and users executing secure two-party computation protocols to
get hi(w) for any w using [20] or, in the case of concurrent users, using [11]
and having the common random string required by [11] being part of the public
key. ��
We also note that in a model with potentially malicious parties, we can apply
additional machinery to force “malicious” behavior using [18] as discussed above.

Theorem 3. AssumingCPA-security of the underlying cryptosystem3 (and there-
fore the security of ourModifyprotocol aswell), thePublicKeyStoragewithKeyword
Search from the above construction is sender private, according to Definition 5.

Proof sketch:Suppose that there exists an adversary A ∈ PPT that can suc-
ceed in breaking the security game, from Definition 5, with some non-negligible
advantage. So, under those conditions, A can distinguish the distribution of
Send(M0, K0) from the distribution of Send(M1, K1), where the word “distri-
bution” refers to the distribution of the transcript of the interaction between
the parties. A transcript of Send(M, K) essentially consists of just E(M) and a
transcript of several Modify protocols that update locations of buffers based on
K. Label the sequence of Modify protocols used to update the buffer locations
for Ki by {Modify(xi,j , αi,j)}ν

j=1. Note that by our design, if |K0| = |K1|, then
it will take the same number of Modify protocols to update the buffers, so the
variable ν does not depend on i in this case. Now consider the following sequence
of distributions:

E(M0) Modify(x0,0, α0,0) · · · Modify(x0,ν , α0,ν )
E(M0) Modify(x0,0, α0,0) · · · Modify(x1,ν , α1,ν )

...
...

...
...

E(M0) Modify(x1,0, α1,0) · · · Modify(x1,ν , α1,ν )
E(M1) Modify(x1,0, α1,0) · · · Modify(x1,ν , α1,ν )

The first line of distributions in the sequence is the transcript distribution for
Send(M0, K0) and the last line of distributions is the transcript distribution for
Send(M1, K1). We assumed that there exists an adversary A that can distinguish

3 For concreteness, this may be implemented using the cryptosystem of [5], in which case
security relies on the subgroup decision problem (see [5]).



Public Key Encryption That Allows PIR Queries 65

these two distributions. Hence, not all of the adjacent intermediate distributions
can be computationally indistinguishable since computational indistinguishabil-
ity is transitive. So, there exists an adversary A′ ∈ PPT that can distinguish
between two adjacent rows in the sequence. If A′ distinguishes within the first
ν + 1 rows, then it has distinguished Modify(x0,j , α0,j) from Modify(x1,j , α1,j)
for some j ∈ [ν] which violates our assumption of the security of Modify. And if
A′ distinguishes the last two rows, then it has distinguished E(M0) from E(M1)
which violates our assumption on the security of the underlying cryptosystem.
Either way, a contradiction. So we conclude that no such A exists in the first
place, and hence the system is secure according to Definition 5. ��
Theorem 4. Assuming CPA-security of the underlying cryptosystem (and there-
fore the security of our Modify protocol as well), and assuming that our PIR protocol
is semantically secure, the Public Key Storage with Keyword Search from the above
construction is receiver private, according to Definition 6.

Proof sketch: Again, assume that there exists A ∈ PPT that can gain a non-
negligible advantage in Definition 6. Then, A can distinguish Retrieve(w0) from
Retrieve(w1) with non-negligible advantage. The transcript of a Retrieve protocol
consists a sequence of PIR protocols from steps 1, 2, and 3, followed by a num-
ber of Modify protocols. For a keyword wi, denote the sequence of PIR protocols
that occur in Retrieve(wi) by {PIR(zi,j)}ζ

j=1, and denote the sequence of Mod-
ify protocols by {Modify(xi,j , αi,j)}η

j=1. Note that by the design of the Retrieve
protocol, there will be equal numbers of these PIR queries and Modify protocols
regardless of the keyword w, and hence ζ and η are independent of i. Consider
the following sequence of distributions:

PIR(z0,0) · · · PIR(z0,ζ) Modify(x0,0, α0,0) · · · Modify(x0,η, α0,η)
PIR(z1,0) · · · PIR(z0,ζ) Modify(x0,0, α0,0) · · · Modify(x0,η, α0,η)

...
. . .

...
...

...
PIR(z1,0) · · · PIR(z1,ζ) Modify(x0,0, α0,0) · · · Modify(x0,η, α0,η)
PIR(z1,0) · · · PIR(z1,ζ) Modify(x1,0, α1,0) · · · Modify(x0,η, α0,η)

...
...

...
. . .

...
PIR(z1,0) · · · PIR(z1,ζ) Modify(x1,0, α1,0) · · · Modify(x1,η, α1,η)

The first line is the transcript distribution of Retrieve(w0) and the last line is
the transcript distribution of Retrieve(w1). Since there exists A ∈ PPT that
can distinguish the first distribution from the last, then there must exist an
adversary A′ ∈ PPT that can distinguish a pair of adjacent distributions in the
above sequence, due to the transitivity of computational indistinguishability.
Therefore, for some j ∈ [ζ] or j′ ∈ [η] we have that A′ can distinguish PIR(z0,j)
from PIR(z1,j) or Modify(x0,j′ , α0,j′) from Modify(x1,j′ , α1,j′). In both cases, a
contradiction of our initial assumption. Therefore, no such A ∈ PPT exists, and
hence our construction is secure according to Definition 6. ��
Theorem 5. (Communication Complexity) The Public-Key Storage with Key-
word Search from the preceding construction has sub-linear communication com-
plexity in n, the number of documents held by the storage provider S.



66 D. Boneh et al.

Proof. From Observation 1, a (k, m)-Bloom filter with storage that is designed
to store n different keywords is of linear size in n (the maximum number of
elements that the filter is designed to store), k (the number of functions hi used,
which serves as a correctness parameter), σ (the size of the buffer arrays, which
serves as a correctness parameter; note that σ should be chosen to exceed λ, the
maximum number of values associated to any single element of the set), l = log n
(the storage size of an associated value), and c (any constant greater than 1).

However, all the buffers in our construction have been encrypted, giving an
extra factor of s, the security parameter. Additionally, there is another correct-
ness parameter, γ coming from our use of the methods of [25], which writes a
constant number copies of each document into the buffer. Examining the proof
of Theorem 2.1, we see that the parameters k and c are indeed independent of
n. However, {s, l, γ} should have logarithmic dependence on n. So, the total size
of the encrypted Bloom filter with storage is O(n ·k ·σ · l · c · s · γ) = O(n log3 n),
as all other parameters are constants or correctness parameters independent of
n (i.e., their value in preserving correctness does not deteriorate as n grows).

Therefore the communication complexity of the protocol is O(
√

n log3 n) for
sending a message assuming honest-but-curious sender; O(

√
n log3 n·polylog(n))

for any malicious poly-time bounded sender; O(polylog(n)) for reading using any
polylog(n) PIR protocol, e.g. [8,10,24]; and O(

√
n log3 n) for deleting messages.

References

1. Abdalla, M., Bellare, M., Catalano, D., Kiltz, E., Kohno, T., Lange, T., Malone-
Lee, J., Neven, G., Paillier, P., Shi, H.: Searchable Encryption Revisited: Consis-
tency Properties, Relation to Anonymous IBE, and Extensions. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, pp. 205–222. Springer, Heidelberg (2005)

2. Barak, B., Goldreich, O.: Universal Arguments and their Applications. In: IEEE
Conference on Computational Complexity, pp. 194–203 (2002)

3. Bethencourt, J., Song, D., Waters, B.: New techniques for private stream searching.
Technical Report CMU-CS-06-106, Carnegie Mellon University (March 2006)

4. Bloom, B.: Space/time trade-offs in hash coding with allowable errors. Communi-
cations of the ACM 13(7), 422–426 (1970)

5. Boneh, D., Goh, E., Nissim, K.: Evaluating 2-DNF Formulas on Ciphertexts. In:
TCC, 325–341 (2005)

6. Boneh, D., Crescenzo, G., Ostrovsky, R., Persiano, G.: Public Key Encryption
with Keyword Search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004)

7. Curtmola, R., Garay, J., Kamara, S., Ostrovsky, R.: Searchable symmetric encryp-
tion: improved definitions and efficient constructions. In: Proc. of CCS-2006, pp.
79–88 (2006)

8. Chang, Y.C.: Single Database Private Information Retrieval with Logarithmic
Communication. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004.
LNCS, vol. 3108, Springer, Heidelberg (2004)

9. Chang, Y.C., Mitzenmacher, M.: Privacy Preserving Keyword Searches on Remote
Encrypted Data. In: Ioannidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS 2005.
LNCS, vol. 3531, pp. 442–455. Springer, Heidelberg (2005)



Public Key Encryption That Allows PIR Queries 67

10. Cachin, C., Micali, S., Stadler, M.: Computationally private information retrieval
with polylogarithmic communication. In: Stern, J. (ed.) EUROCRYPT 1999.
LNCS, vol. 1592, pp. 402–414. Springer, Heidelberg (1999)

11. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-
party and multi-party secure computation. In: Proc. of the thiry-fourth annual
ACM symposium on Theory of computing, pp. 494–503. ACM Press, New York
(2002)

12. Chor, B., Gilboa, N., Naor, M.: Private Information Retrieval by Keywords in
Technical Report TR CS0917, Department of Computer Science, Technion (1998)

13. Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private information retrieval.
In: Proc. of the 36th Annu. IEEE Symp. on Foundations of Computer Science, pp.
41–51 (1995). Journal version: J. of the ACM, 45 965–981 (1998)

14. Di Crescenzo, G., Malkin, T., Ostrovsky, R.: Single-database private informa-
tion retrieval implies oblivious transfer. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, Springer, Heidelberg (2000)

15. Freedman, M., Ishai, Y., Pinkas, B., Reingold, O.: Keyword Search and Oblivious
Pseudorandom Functions. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, Springer,
Heidelberg (2005)

16. Goh, E.J.: Secure indexes (2003), available at http://eprint.iacr.org/2003/216
17. Goldreich, O., Ostrovsky, R.: Software Protection and Simulation on Oblivious

RAMs. In J. ACM 43(3), 431–473 (1996)
18. Groth, J., Ostrovsky, R., Sahai, A.: Perfect Non-interactive Zero Knowledge for

NP. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 339–358.
Springer, Heidelberg (2006)

19. Goldwasser, S., Micali, S.: Probabilistic encryption. In J. Comp. Sys. Sci. 28(1),
270–299 (1984)

20. Katz, J., Ostrovsky, R.: Round-Optimal Secure Two-Party Computation. In:
Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 335–354. Springer, Hei-
delberg (2004)

21. Kilian, J.: A Note on Efficient Zero-Knowledge Proofs and Arguments (Extended
Abstract). In: Proc. of STOC 1992, pp. 723–732 (1992)

22. Kurosawa, K., Ogata, W.: Oblivious Keyword Search. Journal of Complexity (Spe-
cial issue on coding and cryptography) 20(2-3), 356–371 (2004)

23. Kushilevitz, E., Ostrovsky, R.: Replication is not needed: Single database,
computationally-private information retrieval. In: Proc. of the 38th Annu. IEEE
Symp. on Foundations of Computer Science, pp. 364–373. IEEE Computer Society
Press, Los Alamitos (1997)

24. Lipmaa, H.: An Oblivious Transfer Protocal with Log-Squared Communication.
IACR ePrint Cryptology Archive 2004/063

25. Ostrovsky, R., Skeith, W.: Private Searching on Streaming Data. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, Springer, Heidelberg (2005)

26. Ostrovsky, R., Skeith, W.: Algebraic Lower Bounds for Computing on Encrypted
Data. In: Electronic Colloquium on Computational Complexity, ECCC TR07-22

27. Ostrovsky, R., Skeith, W.: A Survey of Single Database PIR: Techniques and Ap-
plications. In: Proceedings of Public Key Cryptology (PKC-2007). LNCS, Springer-
Verlag/IACR, Heidelberg (2007)

28. Sander, T., Young, A., Yung, M.: Non-Interactive CryptoComputing For NC1. In:
FOCS 1999, pp. 554–567 (1999)

29. Song, D.X., Wagner, D., Perrig, A.: Practical Techniques for Searches on Encrypted
Data. In: Proc. of IEEE Symposium on Security and Privacy, pp. 44–55. IEEE
Computer Society Press, Los Alamitos (2000)

http://eprint.iacr.org/2003/216


Information Security Economics – and Beyond

Ross Anderson and Tyler Moore

Computer Laboratory, University of Cambridge
15 JJ Thomson Avenue, Cambridge CB3 0FD, United Kingdom

firstname.lastname@cl.cam.ac.uk

Abstract. The economics of information security has recently become a
thriving and fast-moving discipline. As distributed systems are assembled
from machines belonging to principals with divergent interests, incentives
are becoming as important to dependability as technical design. The
new field provides valuable insights not just into ‘security’ topics such as
privacy, bugs, spam, and phishing, but into more general areas such as
system dependability (the design of peer-to-peer systems and the optimal
balance of effort by programmers and testers), and policy (particularly
digital rights management). This research program has been starting to
spill over into more general security questions (such as law-enforcement
strategy), and into the interface between security and sociology. Most
recently it has started to interact with psychology, both through the
psychology-and-economics tradition and in response to phishing. The
promise of this research program is a novel framework for analyzing
information security problems – one that is both principled and effective.

1 Introduction

Over the last few years, people have realised that security failure is caused by
bad incentives at least as often as by bad design. Systems are particularly prone
to failure when the person guarding them does not suffer the full cost of failure.
Game theory and microeconomic theory are becoming important to the security
engineer, just as as the mathematics of cryptography did a quarter century
ago. The growing use of security mechanisms for purposes such as digital rights
management and accessory control – which exert power over system owners
rather than protecting them from outside enemies – introduces many strategic
issues. Where the system owner’s interests conflict with those of her machine’s
designer, economic analysis can shine light on policy options.

We survey recent results and live research challenges in the economics of infor-
mation security. Our goal is to present several promising applications of economic
theory and ideas to practical information security problems. In Section 2, we con-
sider foundational concepts: misaligned incentives in the design and deployment
of computer systems, and the impact of externalities. Section 3 discusses in-
formation security applications where economic analysis has yielded interesting
insights: software vulnerabilities, privacy, and the development of user-control
mechanisms to support new business models. Metrics present another challenge:

A. Menezes (Ed.): CRYPTO 2007, LNCS 4622, pp. 68–91, 2007.
c© International Association for Cryptologic Research 2007



Information Security Economics – and Beyond 69

risks cannot be managed better until they can be measured better. Most users
cannot tell good security from bad, so developers are not compensated for efforts
to strengthen their code. Some evaluation schemes are so badly managed that
‘approved’ products are less secure than random ones. Insurance is also problem-
atic; the local and global correlations exhibited by different attack types largely
determine what sort of insurance markets are feasible. Cyber-risk markets are
thus generally uncompetitive, underdeveloped or specialised.

Economic factors also explain many challenges to privacy. Price discrimina-
tion – which is economically efficient but socially controversial – is simultaneously
made more attractive to merchants, and easier to implement, by technological
advance. Privacy problems also create many externalities. For example, spam and
‘identity theft’ impose non-negligible social costs. Information security mecha-
nisms or failures can also create, destroy or distort other markets: digital rights
management in online music and software markets provides a topical example.
Finally, we look at government policy options for dealing with market failures
in Section 4, where we examine regulation and mechanism design.

We conclude by discussing several open research challenges: examining the
security impact of network structure on interactions, reliability and robustness.

2 Foundational Concepts

Economic thinkers used to be keenly aware of the interaction between economics
and security; wealthy nations could afford large armies and navies. But nowadays
a web search on ‘economics’ and ‘security’ turns up relatively few articles. The
main reason is that, after 1945, economists drifted apart from people working
on strategic studies; nuclear weapons were thought to decouple national survival
from economic power [1], and a secondary factor may have been that the USA
confronted the USSR over security, but Japan and the EU over trade. It has
been left to the information security world to re-establish the connection.

2.1 Misaligned Incentives

One of the observations that sparked interest in information security economics
came from banking. In the USA, banks are generally liable for the costs of card
fraud; when a customer disputes a transaction, the bank must either show she is
trying to cheat it, or refund her money. In the UK, the banks had a much easier
ride: they generally got away with claiming that their systems were ‘secure’, and
telling customers who complained that they must be mistaken or lying. “Lucky
bankers,” one might think; yet UK banks spent more on security and suffered
more fraud. This may have been what economists call a moral-hazard effect: UK
bank staff knew that customer complaints would not be taken seriously, so they
became lazy and careless, leading to an epidemic of fraud [2].

In 1997, Ayres and Levitt analysed the Lojack car-theft prevention system and
found that once a threshold of car owners in a city had installed it, auto theft
plummeted, as the stolen car trade became too hazardous [3]. This is a classic



70 R.J. Anderson and T. Moore

example of an externality, a side-effect of an economic transaction that may have
positive or negative effects on third parties. Camp and Wolfram built on this in
2000 to analyze information security vulnerabilities as negative externalities, like
air pollution: someone who connects an insecure PC to the Internet does not face
the full economic costs of that, any more than someone burning a coal fire. They
proposed trading vulnerability credits in the same way as carbon credits [4].

Also in 2000, Varian looked at the anti-virus software market. People did not
spend as much on protecting their computers as they logically should have. At
that time, a typical virus payload was a service-denial attack against the website
of Amazon or Microsoft. While a rational consumer might well spend $20 to stop
a virus trashing her hard disk, she will be less likely to do so just to protect a
wealthy corporation [5].

Legal theorists have long known that liability should be assigned to the party
that can best manage the risk. Yet everywhere we look, we see online risks allo-
cated poorly, resulting in privacy failures and protracted regulatory tussles. For
instance, medical record systems are bought by hospital directors and insurance
companies, whose interests in account management, cost control and research
are not well aligned with the patients’ interests in privacy; this mismatch of
incentives led in the USA to HIPAA, a law that sets standards for privacy in
health IT. Bohm et al. [6] documented how many banks used online banking
as a means of dumping on their customers many of the transaction risks that
they previously bore in the days of cheque-based banking; for a recent update
on liability in payment systems, see [7].

Asymmetric information plays a large role in information security. Moore
showed that we can classify many problems as hidden-information or hidden-
action problems [8]. The classic case of hidden information is the ‘market for
lemons’ [26]. Akerlof won a Nobel prize for the following simple yet profound in-
sight: suppose that there are 100 used cars for sale in a town: 50 well-maintained
cars worth $2000 each, and 50 ‘lemons’ worth $1000. The sellers know which
is which, but the buyers don’t. What is the market price of a used car? You
might think $1500; but at that price no good cars will be offered for sale. So the
market price will be close to $1000. Hidden information, about product quality,
is one reason poor security products predominate. When users can’t tell good
from bad, they might as well buy a cheap antivirus product for $10 as a better
one for $20, and we may expect a race to the bottom on price.

Hidden-action problems arise when two parties wish to transact, but one
party’s unobservable actions can impact the outcome. The classic example is
insurance, where a policyholder may behave recklessly without the insurance
company observing this. Network nodes can hide malicious or antisocial behav-
ior from their peers; routers can quietly drop selected packets or falsify responses
to routing requests; nodes can redirect network traffic to eavesdrop on conver-
sations; and players in file-sharing systems can hide whether they share with
others, so some may ‘free-ride’ rather than to help sustain the system. Once
the problem is seen in this light, designers can minimise the capacity for hidden
action, or to make it easy to enforce suitable contracts.



Information Security Economics – and Beyond 71

This helps explain the evolution of peer-to-peer systems. Early systems pro-
posed by academics, such as Eternity, Freenet, Chord, Pastry and OceanStore,
required users to serve a random selection of other users’ files [9]. These sys-
tems were never widely adopted. Later systems that did attract large numbers
of users, like Gnutella and Kazaa, instead allow peer nodes to serve only the
content they have downloaded for their own use, rather than burdening them
with others’ files. The comparison between these architectures originally focused
on purely technical aspects: the cost of search, retrieval, communications and
storage. However, analysing incentives turned out to be fruitful too.

First, a system structured as an association of clubs reduces the potential
for hidden action; club members are more able to assess which members are
contributing. Second, clubs might have quite divergent interests. Though peer-
to-peer systems are now seen as mechanisms for sharing music, early systems
were designed for censorship resistance. A system might serve a number of quite
different groups – maybe Chinese dissidents, critics of Scientology, or aficionados
of sado-masochistic imagery that is legal in California but banned in Tennessee.
Early peer-to-peer systems required such users to serve each other’s files, so
that they ended up protecting each others’ free speech. But might such groups
not fight harder to defend their own colleagues, rather than people involved in
struggles in which they have no interest?

Danezis and Anderson introduced the Red-Blue model to analyze this [10].
Each node has a preference among resource types, for instance left-leaning versus
right-leaning political texts, while a censor will try to impose his own preference.
His action will suit some nodes but not others. The model proceeds as a multi-
round game in which nodes set defense budgets that affect the probability that
they will defeat the censor or be overwhelmed by him. Under reasonable as-
sumptions, the authors show that diversity (with each node storing its preferred
resource mix) performs better under attack than solidarity (where each node
stores the same resource mix). Diversity makes nodes willing to allocate higher
defense budgets; the greater the diversity, the more quickly will solidarity crum-
ble in the face of attack. This model was an early venture on the boundary
between economics and sociology; it sheds light on the general problem of di-
versity versus solidarity, which has had a high profile recently because of the
question whether the growing diversity of modern societies is in tension with the
solidarity on which modern welfare systems are founded [11].

2.2 Security as an Externality

Information industries have many different types of externality. They tend to
have dominant firms for three reasons. First, there are often network external-
ities, whereby the value of a network grows more than linearly in the number
of users; for example, anyone wanting to auction some goods will usually go to
the largest auction house, as it will attract more bidders. Second, there is often
technical lock-in stemming from interoperability, and markets can be two-sided:
software firms develop for Windows to access more customers, and users buy
Windows machines to get access to more software. Third, information industries



72 R.J. Anderson and T. Moore

tend to combine high fixed and low marginal costs: the first copy of a software
program (or a music download ot even a DVD) may cost millions to produce,
while subsequent copies are almost free. These three features separately can lead
to industries with dominant firms; together, they are even more likely to.

This not only helps explain the rise and dominance of operating systems,
from System/360 through DOS and Windows to Symbian; it also helps explain
patterns of security flaws. While a platform vendor is building market dominance,
it has to appeal to vendors of software as well as to users, and security could
get in their way. So vendors start off with minimal protection; once they have
become dominant, they add security to lock their customers in more tightly [12].
We’ll discuss this in more detail later.

Further externalities affect security investment, as protection often depends
on the efforts of many principals. Hirshleifer told the story of Anarchia, an island
whose flood defences were constructed by individual families and whose defence
depends on the weakest link, that is, the laziest family; he compared this with
a city whose defences against ICBM attack depend on the single best defensive
shot [13]. Varian extended this to three cases of interest to the dependability of
information systems – where performance depends on the minimum effort, the
best effort, or the sum-of-efforts [14].

Program correctness can depend on minimum effort (the most careless pro-
grammer introducing a vulnerability) while software vulnerability testing may
depend on the sum of everyone’s efforts. Security may also depend on the best
effort – the actions taken by an individual champion such as a security architect.
When it depends on the sum of individual efforts, the burden will tend to be
shouldered by the agents with the highest benefit-cost ratio, while the others
free-ride. In the minimum-effort case, the agent with the lowest benefit-cost ra-
tio dominates. As more agents are added, systems become more reliable in the
total-effort case but less reliable in the weakest-link case. What are the implica-
tions? Well, software companies should hire more software testers and fewer but
more competent programmers. (Of course, measuring programmer competence
can be hard, which brings us back to hidden information.)

This work inspired other researchers to consider interdependent risk. A re-
cent influential model by Kunreuther and Heal notes that an individual taking
protective measures creates positive externalities for others that in turn may
discourage them from investment [15]. This insight has implications far beyond
information security. The decision by one apartment owner to install a sprinkler
system will decrease his neighbours’ fire risk and make them less likely to do the
same; airlines may decide not to screen luggage transferred from other carriers
who are believed to be careful with security; and people thinking of vaccinating
their children may choose to free-ride off the herd immunity instead. In each
case, several widely varying equilibria are possible, from complete adoption to
total refusal, depending on the levels of coordination between principals.

Katz and Shapiro famously analyzed how network externalities influenced
the adoption of technology: they lead to the classic S-shaped adoption curve in
which slow early adoption gives way to rapid deployment once the number of



Information Security Economics – and Beyond 73

users reaches some critical mass [16]. Network effects can also influence the initial
deployment of security technology, whose benefit may depend on the number of
users who adopt it. The cost may exceed the benefit until a minimum number
adopt; so everyone might wait for others to go first, and the technology never gets
deployed. Recently, Ozment and Schechter have analyzed different approaches
for overcoming such bootstrapping problems [17].

This challenge is particularly topical. A number of core Internet protocols,
such as DNS and routing, are considered insecure. Better protocols exist (e.g.,
DNSSEC, S-BGP); the challenge is to get them adopted. Two widely-deployed
security protocols, SSH and IPsec, both overcame the bootstrapping problem
by providing significant internal benefits to adopting firms, with the result that
they could be adopted one firm at a time, rather than needing everyone to move
at once. The deployment of fax machines was similar: many companies initially
bought fax machines to connect their own offices.

3 Applications

3.1 Economics of Vulnerabilities

There has been much debate about ‘open source security’, and more generally
whether actively seeking and disclosing vulnerabilities is socially desirable. An-
derson showed in 2002 that, under standard assumptions of reliability growth,
open systems and proprietary systems are just as secure as each other; opening up
a system helps the attackers and defenders equally [18]. Thus the open-security
question may be an empirical one, turning on the extent to which a given real
system follows the standard model.

Rescorla argued in 2004 that for software with many latent vulnerabilities,
removing one bug makes little difference to the likelihood of an attacker finding
another one later [19]. Since exploits are often based on vulnerabilities inferred
from patches, he argued against disclosure and frequent patching unless the
same vulnerabilities are likely to be rediscovered. This also raised the question
of whether software follows the standard dependability model, of independent
vulnerabilities. Ozment found that for FreeBSD, vulnerabilities are correlated in
that they are likely to be rediscovered [20]. Ozment and Schechter also found
that the rate at which unique vulnerabilities were disclosed for the core and
unchanged FreeBSD operating system has decreased over a six-year period [21].
These findings suggest that vulnerability disclosure can improve system security
over the long term. Vulnerability disclosure also helps motivate vendors to fix
bugs [22]. Arora et al. showed that public disclosure made vendors respond with
fixes more quickly; attacks increased to begin with, but reported vulnerabilities
declined over time [23].

This discussion begs a deeper question: why do so many vulnerabilities exist
in the first place? A useful analogy might come from considering large software
project failures: it has been known for years that perhaps 30% of large development
projects fail [24], and this figure does not seem to change despite improvements in



74 R.J. Anderson and T. Moore

tools and training: people just built much bigger disasters nowadays than they
did in the 1970s. This suggests that project failure is not fundamentally about
technical risk but about the surrounding socio-economic factors (a point to which
we will return later). Similarly, when considering security, software writers have
better tools and training than ten years ago, and are capable of creating more
secure software, yet the economics of the software industry provide them with
little incentive to do so.

In many markets, the attitude of ‘ship it Tuesday and get it right by ver-
sion 3’ is perfectly rational behaviour. Many software markets have dominant
firms thanks to the combination of high fixed and low marginal costs, network
externalities and client lock-in noted above [25], so winning market races is all-
important. In such races, competitors must appeal to complementers, such as
application developers, for whom security gets in the way; and security tends to
be a lemons market anyway. So platform vendors start off with too little security,
and such as they provide tends to be designed so that the compliance costs are
dumped on the end users [12]. Once a dominant position has been established,
the vendor may add more security than is needed, but engineered in such a way
as to maximise customer lock-in [27].

In some cases, security is even worse than a lemons market: even the vendor
does not know how secure its software is. So buyers have no reason to pay more
for protection, and vendors are disinclined to invest in it.

How can this be tackled? Economics has suggested two novel approaches to
software security metrics: vulnerability markets and insurance.

Vulnerability markets help buyers and sellers establish the actual cost of find-
ing a vulnerability in software. To begin with, some standards specified a min-
imum cost of various kinds of technical compromise; one example is banking
standards for point-of-sale terminals [28]. Camp and Wolfram suggested in 2000
that markets might work better here than central planning [4]. Schechter devel-
oped this into a proposal for open markets in reports of previously undiscovered
vulnerabilities [29]. Two firms, iDefense and Tipping Point, are now openly buy-
ing vulnerabilities, so the market actually exists (unfortunately, the prices are
not published). Their business model is to provide vulnerability data simulta-
neously to their customers and to the affected vendor, so that their customers
can update their firewalls before anyone else. However, the incentives here are
suboptimal: bug-market organisations might increase the value of their product
by leaking vulnerability information to harm non-subscribers [30].

Several variations on vulnerability markets have been proposed. Böhme has
argued that software derivatives might be better [31]. Contracts for software
would be issued in pairs: the first pays a fixed value if no vulnerability is found
in a program by a specific date, and the second pays another value if one is found.
If these contracts can be traded, then their price should reflect the consensus on
software quality. Software vendors, software company investors, and insurance
companies could use such derivatives to hedge risks. A third possibility, due to
Ozment, is to design a vulnerability market as an auction [32].



Information Security Economics – and Beyond 75

One criticism of all market-based approaches is that they might increase the
number of identified vulnerabilities by motivating more people to search flaws.
Thus some care must be exercised in designing them.

An alternative approach is insurance. Underwriters often use expert assessors
to look at a client firm’s IT infrastructure and management; this provides data to
both the insured and the insurer. Over the long run, insurers learn to value risks
more accurately. Right now, however, the cyber-insurance market is both under-
developed and underutilised. One reason, according to Böhme and Kataria [33], is
the interdependence of risk, which takes both local and global forms. Firms’ IT in-
frastructure is connected to other entities – so their efforts may be undermined by
failures elsewhere. Cyber-attacks often exploit a vulnerability in a program used
by many firms. Interdependence can make some cyber-risks unattractive to insur-
ers – particularly those risks that are globally rather than locally correlated, such
as worm and virus attacks, and systemic risks such as Y2K.

Many writers have called for software risks to be transferred to the vendors;
but if this were the law, it is unlikely that Microsoft would be able to buy
insurance. So far, vendors have succeeded in dumping most software risks; but
this outcome is also far from being socially optimal. Even at the level of customer
firms, correlated risk makes firms under-invest in both security technology and
cyber-insurance [34]. Cyber-insurance markets may in any case lack the volume
and liquidity to become efficient.

3.2 Economics of Privacy

The persistent erosion of personal privacy has frustrated policy makers and prac-
titioners alike. People say that they value privacy, yet act otherwise. Privacy-
enhancing technologies have been offered for sale, yet most have failed in the
marketplace. Why should this be?

Privacy is one aspect of information security that interested economists before
2000. In 1978, Posner defined privacy in terms of secrecy [35], and the follow-
ing year extended this to seclusion [36]. In 1980, Hirshleifer published a seminal
paper in which he argued that rather than being about withdrawing from soci-
ety, privacy was a means of organising society, arising from evolved territorial
behaviour; internalised respect for property is what allows autonomy to persist
in society. These privacy debates in the 1970s led in Europe to generic data-
protection laws, while the USA limited itself to a few sector-specific laws such
as HIPAA. Economists’ appetite for work on privacy was further whetted re-
cently by the Internet, the dotcom boom, and the exploding trade in personal
information about online shoppers.

An early modern view of privacy can be found in a 1996 paper by Varian
who analysed privacy in terms of information markets [38]. Consumers want to
not be annoyed by irrelevant marketing calls while marketers do not want to
waste effort. Yet both are frustrated, because of search costs, externalities and
other factors. Varian suggested giving consumers rights in information about
themselves, and letting them lease it to marketers with the proviso that it not
be resold without permission.



76 R.J. Anderson and T. Moore

The recent proliferation of complex, information-intensive business models
demand a broader approach. Odlyzko argued in 2003 that privacy erosion is a
consequence of the desire to charge different prices for similar services [39]. Tech-
nology is simultaneously increasing both the incentives and the opportunities for
price discrimination. Companies can mine online purchases and interactions for
data revealing individuals’ willingness to pay. From airline yield-management
systems to complex and ever-changing software and telecommunications prices,
differential pricing is economically efficient – but increasingly resented. Acquisti
and Varian analyzed the market conditions under which personalised price dis-
crimination is profitable [40]: it may thrive in industries with wide variation
in consumer valuation for services, where services can be personalised at low
marginal cost, and where repeated purchases are likely.

Acquisti and Grossklags tackled the specific problem of why people express a
high preference for privacy when interviewed but reveal a much lower preference
through their behaviour both online and offline [41]. They find that people mostly
lack sufficient information to make informed choices, and even when they do they
often trade long-term privacy for short-term benefits. Vila et al. characterised
privacy economics as a lemons market [42], arguing that consumers disregard
future price discrimination when giving information to merchants.

Swire argued that we should measure the costs of privacy intrusion more
broadly [43]. If a telesales operator calls 100 prospects, sells three of them insur-
ance, and annoys 80, then the conventional analysis considers only the benefit
to the three and to the insurer. However, persistent annoyance causes millions
of people to go ex-directory, to not answer the phone during dinner, or to screen
calls through an answering machine. The long-run societal harm can be con-
siderable. Several empirical studies have backed this up by examining people’s
privacy valuations.

So much for the factors that make privacy intrusions more likely. What factors
make them less so? Campbell et al. found that the stock price of companies
reporting a security breach is more likely to fall if the breach leaked confidential
information [44]. Acquisti, Friedman and Telang conducted a similar analysis for
privacy breaches [45]. Their initial results are less conclusive but still point to a
negative impact on stock price followed by an eventual recovery.

Regulatory responses (pioneered in Europe) have largely centred on requiring
companies to allow consumers to either ‘opt-in’ or ‘opt-out’ of data collection.
While privacy advocates typically support opt-in policies as they result in lower
rates of data collection, Bouckaert and Degryse argue for opt-out on competition
grounds [46]: the availability of information about the buying habits of most
customers, rather than a few customers, may help competitors to enter a market.

Empirically, there is wide variation in ‘opt-out’ rates between different types
of consumer, but their motives are not always clear. Varian et al. analyzed the
FCC’s telephone-sales blacklist by district [47]. They found that educated people
are more likely to sign up: but is that because rich households get more calls,
because they value their time more, or because they understand the risks better?



Information Security Economics – and Beyond 77

Incentives also affect the design of privacy technology. Builders of anonymity
systems know they depend on network externalities: more users mean more cover
traffic to hide activities from the enemy [48]. An interesting case is Tor [49], which
anonymises web traffic and emphasises usability to increase adoption rates. It
developed from a US Navy communications system, but eventually all internet
users were invited to participate in order to build network size, and it is now the
largest anonymous communication system known.

3.3 Incentives and the Deployment of Security Mechanisms

Insurance is not the only market affected by information security. Some very
high-profile debates have centred on DRM; record companies have pushed for
years for DRM to be incorporated into computers and consumer electronics,
while digital-rights activists have opposed them. What light can security eco-
nomics shed on this debate?

Many researchers have set the debate in a much wider context than just
record companies versus downloaders. Varian pointed out in 2002 that DRM
and similar mechanisms were also about tying, bundling and price discrimina-
tion; and that their unfettered use could damage competition [50]. A paper by
Samuelson and Scotchmer studied what might go wrong if technical and legal
restraints were to undermine the right to reverse engineer software products for
compatibility. It provided the scholarly underpinnings for much of the work on
the anti-competitive effects of the DMCA, copyright control mechanisms, and
information security mechanisms applied to new business models.

‘Trusted Computing’ (TC) mechanisms have come in for significant analy-
sis and criticism. Von Hippel showed how most of the innovations that spur
economic growth are not anticipated by the manufacturers of the platforms on
which they are based; the PC, for example, was conceived as an engine for run-
ning spreadsheets, and if IBM had been able to limit it to doing that, a huge
opportunity would have been lost. Furthermore, technological change in IT mar-
kets is usually cumulative. If security technology can be abused by incumbent
firms to make life harder for innovators, this will create all sorts of traps and per-
verse incentives [52]. Anderson pointed out the potential for competitive abuse
of the TC mechanisms; for example, by transferring control of user data from
the owner of the machine on which it is stored to the creator of the file in which
it is stored, the potential for lock-in is hugely increased [27]. Lookabaugh and
Sicker discussed an existing case history of an industry crippled by security-
related technical lock-in [53]. US cable industry operators are locked in to their
set-top-box vendors; and although they largely negotiated away the direct costs
of this when choosing a suppler, the indirect costs were large and unmanageable.
Innovation suffered and cable fell behind other platforms, such as the Internet,
as the two platform vendors did not individually have the incentive to invest in
improving their platforms.

Economic research has been applied to the record industry itself, with results it
found disturbing. In 2004,Oberholzer and Strumpf published a now-famouspaper,
in which they examined howmusic downloads and record saleswere correlated [54].



78 R.J. Anderson and T. Moore

They showed that downloads do not do significant harm to the music industry.
Even in the most pessimistic interpretation, five thousand downloads are needed
to displace a single album sale, while high-selling albums actually benefit from
file sharing.

In January 2005, Varian presented a surprising result [55]: that stronger DRM
would help system vendors more than the music industry, because the computer
industry is more concentrated (with only three serious suppliers of DRM plat-
forms – Microsoft, Sony, and the dominant firm, Apple). The content industry
scoffed, but by the end of that year music publishers were protesting that Apple
was getting too large a share of the cash from online music sales. As power in the
supply chain moved from the music majors to the platform vendors, so power
in the music industry appears to be shifting from the majors to the indepen-
dents, just as airline deregulation favoured aircraft makers and low-cost airlines.
This is a striking demonstration of the predictive power of economic analysis.
By fighting a non-existent threat, the record industry had helped the computer
industry forge a weapon that may be its undoing.

3.4 Protecting Computer Systems from Rational Adversaries

Information security practitioners traditionally assumed two types of user: hon-
est ones who always behave as directed, and malicious ones intent on wreak-
ing havoc at any cost. But systems are often undermined by what economists
call strategic users: users who act out of self-interest rather than malice. Many
file-sharing systems suffer from ‘free-riding’, where users download files with-
out uploading their own. This is perfectly rational behaviour, given that upload
bandwidth is typically more scarce and file uploaders are at higher risk of getting
sued. The cumulative effect is degraded performance.

Another nuisance caused by selfish users is spam. The cost per transmission
to the spammer is so low that a tiny success rate is acceptable [56]. Further-
more, while spam imposes significant costs on recipients, these costs are not felt
by the spammers. Böhme and Holz examined stock spam and identified statisti-
cally significant increases in the price of touted stocks [57]. Frieder and Zittrain
independently find a similar effect [58].

Several network protocols may be exploited by selfish users at the expense of
system-wide performance. In TCP, the protocol used to transmit most Internet
data, Akella et al. find that selfish provision of congestion control mechanisms
can lead to suboptimal performance [59].

Researchers have used game theory to study the negative effects of selfish be-
haviour on systems more generally. Koutsoupias and Papadimitriou termed the
‘price of anarchy’ as the ratio of the utilities of the worst-case Nash equilibrium
to the social optimum [60]. The price of anarchy has become a standard measure-
ment of the inefficiency of selfish behaviour in computer networks. Roughgarden
and Tardos studied selfish routing in a congested network, comparing congestion
levels in a network where users choose the shortest path available to congestion
when a network planner chooses paths to maximise flow [61]. They established
an upper bound of 4

3 for the price of anarchy when congestion costs are linear;



Information Security Economics – and Beyond 79

furthermore, in general, the total latency of a selfish network is at most the same
as an optimal flow routing twice as much traffic.

Other topics hindered by selfish activity include network creation, where users
decide whether to create costly links to shorten paths or free-ride over longer, in-
direct connections [62,63,64]; wireless spectrum sharing, where service providers
compete to acquire channels from access points [65]; and computer virus inocu-
lation, where users incur a high cost for inoculating themselves and the benefits
accrue to unprotected nodes [66].

To account for user self-interest, computer scientists have proposed several
mechanisms with an informal notion of ‘fairness’ in mind. To address spam,
Dwork and Naor propose attaching to emails a ‘proof-of-work’ that is easy to
do for a few emails but impractical for a flood [67]. Laurie and Clayton criti-
cise ‘proof-of-work’ schemes, demonstrating that the additional burden may be
cumbersome for many legitimate users while spam senders could use botnets
to perform the computations [68]. Furthermore, ISPs may not be prepared to
block traffic from these compromised machines. Serjantov and Clayton analyse
the incentives on ISPs to block traffic from other ISPs with many infected ma-
chines, and back this up with data [69]. They also show how a number of existing
spam-blocking strategies are irrational and counterproductive.

Reputation systems have been widely proposed to overcome free-riding in
peer-to-peer networks. The best-known fielded example may be feedback on
eBay’s online auctions. Dellarocas argues that leniency in the feedback mech-
anism (only 1% of ratings are negative) encourages stability in the market-
place [71]. Serjantov and Anderson use social choice theory to recommend im-
provements to reputation system proposals [72]. Feldman et al model such sys-
tems as an iterated prisoner’s dilemma game, where users in each round alternate
between roles as client and server [70]. Recently, researchers have begun to con-
sider more formally how to construct fair systems using mechanism design. We
discuss these developments in Section 5.1.

4 The Role of Governments

The information security world has been regulated from the beginning, although
initially government concerns had nothing to do with competition policy. The
first driver was a non-proliferation concern. Governments used export licenses
and manipulated research funding to restrict access to cryptography for as long
as possible. This effort was largely abandoned in 2000. The second driver was
the difficulty that even the US government had over many years in procuring
systems for its own use, once information security came to encompass software
security too. Thus, during the 80s and 90s, it was policy to promote research in
security while hindering research in cryptography.

Landwehr describes the efforts of the US government from the mid-1980s to
tackle a the lemons problem in the security software business [73]. The first
attempted fix was a government evaluation scheme – the Orange Book – but
that brought its own problems. Managers’ desire for the latest software eased



80 R.J. Anderson and T. Moore

certification requirements: vendors had to simply show that they had initiated
the certification process, which often was never completed. Evaluations were also
conducted at government expense by NSA civil servants, who being risk-averse
took their time; evaluated products were often unusably out of date. There were
also problems interworking with allies’ systems, as countries such as the UK and
Germany had their own incompatible schemes.

This led the NATO governments to establish the ‘Common Criteria’ as a
successor to the Orange Book. Most evaluations are carried out by commercial
laboratories and are paid for by the vendor who is supposed to be motivated by
the cachet of a successful evaluation. The Common Criteria suffer from different
problems, most notably adverse selection: vendors shop around for the evaluator
who will give them the easiest ride, and the national agencies who certify the
evaluation labs are very reluctant to revoke a license, even following scandal,
because of fears that confidence in the scheme will be undermined [74].

Regulation is increasingly justified by perceived market failures in the infor-
mation security industry. The European Union has proposed a Network Security
Policy that sets out a common European response to attacks on information sys-
tems [75]. This starts using economic arguments about market failure to justify
government action in this sector. The proposed solutions are familiar, involving
everything from consciousness raising to more Common Criteria evaluations.

Another explicit use of security economics in policymaking was the German
government’s comments on Trusted Computing [76]. These set out concerns
about issues from certification and trapdoors through data protection to eco-
nomic policy matters. They were hugely influential in persuading the Trusted
Computing Group to incorporate and adopt membership rules that mitigated
the risk of its program discriminating against small-to-medium sized enterprises.
Recently the European Commission’s DG Competition has been considering the
economic implications of the security mechanisms of Vista.

Among academic scholars of regulation, Barnes studies the incentives facing
the virus writers, software vendors and computer users [77], and contemplates
various policy initiatives to make computers less liable to infection, from re-
warding those who discover vulnerabilities to penalising users who do not adopt
minimal security standards. Garcia and Horowitz observe that the gap between
the social value of internet service providers, and the revenue at stake associated
with their insecurity, is continuing to increase [78]. If this continues, they argue,
mandatory security standards may become likely.

Moore presents an interesting regulatory question from forensics. While PCs
use standard disc formats, mobile phones use proprietary interfaces, which make
data recovery from handsets difficult; recovery tools exist only for the most
common models. So criminals should buy unfashionable phones, while the police
should push for open standards [79].

Heavy-handed regulation can introduce high costs – whether directly, or as
a result of agency issues and other secondary factors. Ghose and Rajan discuss
how three US laws – Sarbanes-Oxley, Gramm-Leach-Bliley and HIPAA – place a
disproportionate burden on small and medium sized businesses, largely through a



Information Security Economics – and Beyond 81

one-model-fits-all approach to compliance by the big accounting firms [80]. They
show how mandatory investment in security compliance can create unintended
consequences from distorting security markets to reducing competition.

Given the high costs and doubtful effectiveness of regulation, self-regulation
has been tried in a number of contexts, but some attempts failed spectacularly.
For example, a number of organisations have set up certification services to
vouch for the quality of software products or web sites. Their aim was twofold:
to overcome public wariness about electronic commerce, and to forestall more
expensive regulation by the government. But (as with the Common Criteria)
certification markets can easily be ruined by a race to the bottom; dubious
companies are more likely to buy certificates than reputable ones, and even
ordinary companies may shop around for the easiest deal. In the absence of a
capable motivated regulator, ruin can arrive quickly.

Edelman analysed this ‘adverse selection’ in the case of website approvals and
online advertising [81]: while about 3% of websites are malicious, some 8% of
websites with certification from one large vendor are malicious. He also compared
ordinary web search results and those from paid advertising, finding that while
2.73% of companies ranked top in a web search were bad, 4.44% of companies
who had bought ads from the search engine were bad. His conclusion – ‘Don’t
click on ads’ – could be bad news for the search industry.

Self-regulation has fared somewhat better for patch management. Analysis by
Arora et al. shows that competition in software markets hastens patch release
even more than the threat of vulnerability disclosure in two out of three studied
strategies [83]. Beattie et al. found that pioneers who apply patches quickly
end up discovering problems that break their systems, but laggards are more
vulnerable to attack [82].

Governments also facilitate the sharing of security information between pri-
vate companies. Two papers analyse the incentives that firms have to share
information on security breaches within the Information Sharing and Analysis
Centers (ISACs) set up after 9/11 by the US government [84,85]. Theoretical
tools developed to model trade associations and research joint ventures can be
applied to work out optimal membership fees and other incentives.

5 Open Problems

There are many active areas of security-economics research. Here we highlight
just four live problems. Each lies not just at the boundary between security
and economics, but also at the boundary between economics and some other
discipline – respectively algorithmic mechanism design, network science, organ-
isational theory and psychology.

5.1 Algorithmic Mechanism Design

Given the largely unsatisfactory impact of information security regulation, a
complementary approach based on mechanism design is emerging. Researchers



82 R.J. Anderson and T. Moore

are beginning to design network protocols and interfaces that are ‘strategy-
proof’: that is, designed so that no-one can gain by cheating [86]. Designing
bad behavior out of systems may be cheaper than policing it afterwards.

One key challenge is to allocate scare digital resources fairly. Nisan and Segal
show that although one can solve the allocation problem using strategy-proof
mechanisms, the number of bits that must be communicated grows exponen-
tially; thus in many cases the best practical mechanism will be a simple bundled
auction [87]. They also suggest that if arbitrary valuations are allowed, players
can submit bids that will cause communications complexity problems for all but
the smallest auctions.

Some promising initial results look at mechanism design and protocols. Feigen-
baum et al. show how combinatorial auction techniques can be used to provide
distributed strategy-proof routing mechanisms [88]. Schneidman et al. compare
the incentive mechanisms in BitTorrent, a popular peer-to-peer file-sharing ap-
plication, to theoretical guarantees of faithfulness [89].

5.2 Network Topology and Information Security

There has been an interesting collaboration recently between physicists and so-
ciologists in analyzing the topology of complex networks and its effect on social
interactions. Computer networks, like social networks, are complex but emerge
from ad-hoc interactions of many entities using simple ground rules. The new dis-
cipline of network analysis takes ideas from sociology, condensed-matter physics
and graph theory, and in turn provides tools for modelling and investigating such
networks (see [90] for a recent survey). Some economists have also recognised the
impact of network structure on a range of activities, from crime [91,92] to the
diffusion of new technologies [93]. Other researchers have focused on why net-
works are formed, where the individual costs of establishing links between agents
is weighed against the overall benefit of improved connectivity [94]. Economic
models are well-suited to comparing the social efficiency of different network
types and predicting which structures are likely to emerge when agents act self-
ishly. See [95] for a collection of recent work.

Network topology can strongly influence conflict dynamics. Often an attacker
tries to disconnect a network or increase its diameter by destroying nodes or
edges, while the defender counters using various resilience mechanisms. Examples
include a music industry body attempting to close down a peer-to-peer file-
sharing network; a police force trying to decapitate a terrorist organisation; and
a totalitarian government harrassing political activists. Police forces have been
curious for some years about whether network science might be of practical use
in covert conflicts – whether to insurgents or to counterinsurgency forces.

Different topologies have different robustness properties. Albert, Jeong and
Barabási showed that certain real world networks with scale-free degree distribu-
tions resist random attacks much better than targeted attacks [96]. This is because
scale-free networks – likemany real-world networks – getmuchof their connectivity
from a few nodes with high vertex order. This resilience makes them highly robust
against randomupsets; but remove the ‘kingpin’ nodes, and connectivity collapses.



Information Security Economics – and Beyond 83

This is the static case – for example, when a police force becomes aware of a
criminal or terrorist network, and sets out to disrupt it by finding and arresting
its key people. Nagaraja and Anderson extend this to the dynamic case. In
their model, the attacker can remove a certain number of nodes at each round,
after which the defenders recruit other nodes to replace them [97]. They studied
how attack and defence interact using multi-round simulations, and found that
forming localised clique structures at key network points works reasonably well
while defences based on rings did not work well at all. This helps explain why
peer-to-peer systems with ring architectures turned out to be rather fragile –
and why revolutionaries have tended to organise themselves in cells.

An open challenge is how to reconcile the differences between generated net-
work models and computer networks. Degree distribution is only one factor in
the structure of a network. Li et al. closely examined the topology of computer
networks [98] and found that degree-centrality attacks on the Internet do not
work well since edge routers that connect to homes have much higher degree
than backbone routers at major IPSs. For attacks on privacy, however, topolog-
ical analysis has proven quite effective. When Danezis and Wittneben applied
these network analysis ideas to privacy [99], they found that doing traffic analy-
sis against just a few well-connected organisers can draw a surprising number of
members of a dissident organisation into the surveillance net.

5.3 Large Project Management

As well as extending into system design, crime, and covert conflict, security
economics may help the student of information systems management. Perhaps
the largest issue here is the risk of large software project failures, which can cost
billions and threaten the survival of organisations.

We noted above that perhaps 30% of large development projects fail [24],
and this figure seems impervious to technological progress: better tools help
engineers make larger systems, the same proportion of which still fail as before.
This suggests that project failure is not technical but down to socio-economic
factors such as the way decisions are taken in firms. There is thus a temptation
to place what we now know about the economics of dependability alongside
institutional economics and perform a gap analysis.

One interesting question is whether public-sector organisations are particu-
larly prone to large software project failure. The CIO of the UK’s Department of
Work and Pensions recently admitted that only 30% of government IT projects
succeed [100]. There are many possible reasons. The dependability literature
teaches that large software project failures are mostly due to overambitious,
vague or changing specifications, coupled with poor communications and an in-
ability to acknowledge the signs of failure early enough to take corrective action.
Good industrial project managers try to close down options fast, and get the
customer to take the hard decisions upfront. Elected politicians, on the other
hand, are in the business of mediating conflicts between different interests and
groups in society, and as many of these conflicts are transient, avoiding or delay-
ing hard choices is a virtue. Furthermore, at equilibrium, systems have too many



84 R.J. Anderson and T. Moore

features because the marginal benefit of the typical feature accrues to a small
vocal group, while the cost is distributed across a large user base as a slightly
increased risk of failure. This equilibrium may be even further from the optimum
when design decisions are taken by elected officials: the well-known incentives
to dump liability, to discount consequences that will arrive after the next elec-
tion or reshuffle, and to avoid ever admitting error, surely add their share. The
economics of dependability may thus be an interesting topic for researchers in
schools of government.

5.4 Psychology and Security

Security engineers have so far had at least three points of contact with psychol-
ogy. First, three famous experiments in social psychology showed the ease with
which people could be bullied by authority figures, or persuaded by peers, to
behave inappropriately. In 1951, Solomon Asch showed that most people could
be induced to deny the evidence of their own eyes in order to conform to a
group [101]; in 1961, Milgram showed that most people would administer severe
electric shocks to an actor playing the role of a ‘learner’ at the behest of an ex-
perimenter playing the role of the ‘teacher’ – even when the ‘learner’ appeared to
be in severe pain and begged the subject to stop [102]; and in 1971, the Stanford
Prisoner Experiment showed that normal people can egg each other on to be-
have wickedly even in the absence of orders. There, students playing the role of
warders so brutalised students playing the role of prisoners that the experiment
had to be stopped [103].

Inappropriate obedience is a live problem: card thieves call up cardholders,
pretend to be from the bank, and demand the PIN [2,74]. Worse, in 1995-2005, a
hoaxer calling himself ‘Officer Scott’ ordered the managers of dozens of US stores
and restaurants to detain some young employee on suspicion of theft and strip-
search her or him. Various other degradations were ordered, including beatings
and sexual assaults. At least 13 people who obeyed the caller and did searches
were charged with crimes, and seven were convicted [104].

The second point of contact has been security usability, which has become
a growth area recently; early results are collected in [105]. The third has been
the study of deception – a somewhat less well-defined field, but which extends
from conjuring to camouflage to the study of fraud, and which is interesting the
security usability community more as phishing becomes a serious problem.

There is a potentially valuable interface with economics here too. Economic
analysis traditionally assumed that the principals are rational and act out of pure
self-interest. Real people depart in a number of ways from this ideal, and there has
arisen in recent years a vigorous school of economic psychology or behavioural eco-
nomics, which studies the effects that human social and cognitive biases have on
economic decision-making. The Nobel prize was recently awarded to Kahnemann
and Tversky for their seminal role in establishing this field, and particularly in
decision-making under risk and uncertainty. Our mental accounting rules are not
really rational; for example, most people are disproportionately reluctant to risk
money they already have, and to write off money that they have wasted.



Information Security Economics – and Beyond 85

Schneier has discussed cognitive biases as the root cause of our societies’
vulnerability to terrorism [106]. The psychologist Daniel Gilbert, in an article
provocatively entitled ‘If only gay sex caused global warming’, also discusses
why we are much more afraid of terrorism than of climate change [107]. We have
many built-in biases that made perfect evolutionary sense on the plains of Africa
half a million years ago, but may now be maladaptive. For example, we are more
sensitive to risks involving intentionality, whether of a person or animal, as the
common causes of violent death back then included hungry lions and enemies
with sharp sticks. We are also more afraid of uncertainty; of rare or unfamiliar
risks; of risks controlled by others, particularly ‘outsiders’ or other people we
don’t trust or find morally offensive. A number of these biases tie in with defects
in our mental accounting.

The study of cognitive biases may also help illuminate fraud and phishing.
The fundamental attribution error – that people often err by trying to explain
things by intentionality when their causes are in fact impersonal – undermines
efforts to curb phishing by teaching users about the gory design details of the
Internet – for example, by telling them to parse URLs in emails that seem to
come from a bank. As soon as users get confused, they will revent to judging a
website by its ‘look and feel’.

One potential area of research is gender. Recently people have realised that
software can create barriers to females, and this has led to research work on
‘gender HCI’ – on how software should be designed so that women as well as
men can use it effectively. The psychologist Simon Baron-Cohen classifies human
brains into type S (systematizers) and type E (empathizers) [108]. Type S people
are better at geometry and some kinds of symbolic reasoning, while type Es are
better at language and multiprocessing. Most men are type S, while most women
are type E. Of course, innate abilities can be modulated by many developmental
and social factors. Yet, even at a casual reading, this material raises a suspicion
that many security mechanisms are far from gender-neutral. Is it unlawful sex
discrimination for a bank to expect its customers to detect phishing attacks by
parsing URLs?

Another interesting insight from Baron-Cohen’s work is that humans are most
distinct from other primates in that we have a theory of mind; our brains are wired
so that we can imagine others as being like ourselves, to empathise with them bet-
ter. A side-effect is that we are much better at deception. Chimps learn to ‘hack’
each other, and learn defences against such exploits, more or less at random; hu-
mans can plan and execute complex deceptions. We are also equipped to detect
detection by others, and no doubt our capabilities co-evolved over many gener-
ations of lies, social manipulation, sexual infidelities and revenge. The hominids
who left the most descendants were those who were best at cheating, at detecting
cheating by others, or both. So we finish this section with the following provoca-
tive thought: if we are really not ‘homo sapiens sapiens’ so much as ‘homo sapiens
deceptor’, then perhaps the design and analysis of system security mechanisms
can be seen as one of the culminations of human intellectual development.



86 R.J. Anderson and T. Moore

6 Conclusions

Over the last few years, a research program on the economics of security has
built many cross-disciplinary links and has produced many useful (and indeed
delightful) insights from unexpected places. Many perverse things, long known
to security practitioners but just dismissed as ‘bad weather’, turn out to be quite
explicable in terms of the incentives facing individuals and organisations, and in
terms of different kinds of market failure.

As for the future, the work of the hundred or so researchers active in this field
has started to spill over into at least four new domains. The first is the technical
question of how we can design better systems by making protocols strategy-proof
so that the incentives for strategic or malicious behaviour are removed a priori.

The second is the economics of security generally, where there is convergence
with economists studying topics such as crime and warfare. The causes of insur-
gency, and tools for understanding and dealing with insurgent networks, are an
obvious attractor.

The third is the economics of dependability. Large system failures cost indus-
try billions, and the problems seem even more intractable in the public sector.
We need a better understanding of what sort of institutions can best evolve and
manage large complex interconnected systems.

Finally, the border between economics and psychology seems particularly
fruitful, both as a source of practical ideas for designing more usable secure
systems, and as a source of deeper insights into foundational issues.

Acknowledgments. Tyler Moore is supported by the UK Marshall Aid Commem-
oration Commission and the US National Science Foundation.

References

1. Mastanduno, M.: Economics and Security in Statecraft and Scholarship. Interna-
tional Organization 52(4) (1998)

2. Anderson, R.J.: Why Cryptosystems Fail. Communications of the ACM 37(11),
32–40 (1994)

3. Ayres, I., Levitt, S.: Measuring Positive Externalities from Unobservable Victim
Precaution: An Empirical Analysis of Lojack, NBER Working Paper no W5928;
also in The Quarterly Journal of Economics. 113, 43–77

4. Camp, J., Wolfram, C.: Pricing Security. In: Proceedings of the CERT Information
Survivability Workshop, October 24-26, 2000, pp. 31–39 (2000)

5. Varian, H.: Managing Online Security Risks, Economic Science Column, The New
York Times (June 1, 2000)

6. Bohm, N., Brown, I., Gladman, B.: Electronic Commerce: Who Carries the Risk
of Fraud? Journal of Information, Law and Technology 3 (2000)

7. Anderson, R.J.: Closing the Phishing Hole – Fraud, Risk and Nonbanks. In: Non-
banks in the Payment System, Santa Fe (May 2007)

8. Moore, T.: Countering Hidden-Action Attacks on Networked Systems. In: Fourth
Workshop on the Economics of Information Security, Harvard (2005)

9. Anderson, R.J.: The Eternity Service. In: Pragocrypt 96 (1996)



Information Security Economics – and Beyond 87

10. Danezis, G., Anderson, R.J.: The Economics of Resisting Censorship. IEEE Se-
curity & Privacy 3(1), 45–50 (2005)

11. Goodhart, D.: Too Diverse? In: Prospect (February 2004) at
http://www.guardian.co.uk/race/story/0,11374,1154684,00.html

12. Anderson, R.J.: Why Information Security is Hard – An Economic Perspective. In:
17th Annual Computer Security Applications Conference, December 2001 (2001),
and at http://www.cl.cam.ac.uk/users/rja14/Papers/econ.pdf

13. Hirshleifer, J.: From weakest-link to best-shot: the voluntary provision of public
goods. Public Choice 41, 371–386 (1983)

14. Varian, H.: System Reliability and Free Riding. In: Economics of Information
Security, pp. 1–15. Kluwer, Dordrecht (2004)

15. Kunreuther, H., Heal, G.: Interdependent Security. Journal of Risk and Uncer-
tainty 26(2–3), 231–249 (2003)

16. Katz, M., Shapiro, C.: Network Externalities, Competition, and Compatibility.
The American Economic Review 75(3), 424–440 (1985)

17. Ozment, J.A., Schechter, S.E.: Bootstrapping the Adoption of Internet Security
Protocols. In: Fifth Workshop on the Economics of Information Security, Cam-
bridge, UK, June 26–28,

18. Anderson, R.J.: Open and Closed Systems are Equivalent (that is, in an ideal
world. In: Perspectives on Free and Open Source Software, pp. 127–142. MIT
Press, Cambridge (2005)

19. Rescorla, E.: Is Finding Security Holes a Good Idea? In: Third Workshop on the
Economics of Information Security (2004)

20. Ozment, J.A.: The Likelihood of Vulnerability Rediscovery and the Social Utility
of Vulnerability Hunting. In: Fourth Workshop on the Economics of Information
Security (2005)

21. Ozment, J.A., Schechter, S.E.: Milk or Wine: Does Software Security Improve
with Age? In: 15th Usenix Security Symposium (2006)

22. Arora, A., Telang, R., Xu, H.: Optimal Policy for Software Vulnerability Disclo-
sure. In: Third Workshop on the Economics of Information Security, Minneapolis,
MN, May 2004 (2004)

23. Arora, A., Krishnan, R., Nandkumar, A., Telang, R., Yang, Y.: Impact of Vul-
nerability Disclosure and Patch Availability – An Empirical Analysis. In: Third
Workshop on the Economics of Information Security (2004)

24. Curtis, B., Krasner, H., Iscoe, N.: A Field Study of the Software Design Process
for Large Systems. Communications of the ACM 31(11), 1268–1287 (1988)

25. Shapiro, C., Varian, H.: Information Rules. Harvard Business School Press (1998)
26. Akerlof, G.: The Market for ‘Lemons: Quality Uncertainty and the Market Mech-

anism. The Quarterly Journal of Economics 84(3), 488–500 (1970)
27. Anderson, R.J.: Cryptography and Competition Policy – Issues with Trusted

Computing. In: Second Workshop on Economics and Information Security (2003)
28. VISA, PIN Management Requirements: PIN Entry Device Security Requirements

Manual (2004)
29. Schechter, S.E.: Computer Security Strength & Risk: A Quantitative Approach.

Harvard University (May 2004)
30. Kannan, K., Telang, R.: Economic Analysis of Market for Software Vulnerabilities.

In: Third Workshop on the Economics of Information Security (2004)
31. Böhme, R.: A Comparison of Market Approaches to Software Vulnerability Disclo-

sure. In: Müller, G. (ed.) ETRICS 2006. LNCS, vol. 3995, pp. 298–311. Springer,
Heidelberg (2006)

http://www.guardian.co.uk/race/story/0,11374,1154684,00.html
http://www.cl.cam.ac.uk/users/rja14/Papers/econ.pdf


88 R.J. Anderson and T. Moore

32. Ozment, J.A.: Bug Auctions: Vulnerability Markets Reconsidered. In: Third
Workshop on the Economics of Information Security (2004)

33. Böhme, R., Kataria, G.: Models and Measures for Correlation in Cyber-Insurance.
In: Fifth Workshop on the Economics of Information Security (2006)

34. Ogut, H., Menon, N., Raghunathan, S.: Cyber Insurance and IT Security Invest-
ment: Impact of Interdependent Risk. In: Fourth Workshop on the Economics of
Information Security (2005)

35. Posner, R.: An Economic Theory of Privacy. Regulation, 19–26 (1978)
36. Posner, R.: Privacy, Secrecy and Reputation. Buffalo Law Review 28(1) (1979)
37. Hirshleifer, J.: Privacy: its Origin, Function and Future. Journal of Legal Stud-

ies 9, 649–664 (1980)
38. Varian, H.: Economic Apects of Personal Privacy. In: Privacy and Self-Regulation

in the Information Age, National Telecommunications and Information Adminis-
tration report (1996)

39. Odlyzko, A.M.: Privacy, economics, and price discrimination on the Internet. In:
ICEC ’03: Proceedings of the 5th international conference on Electronic com-
merce, pp. 355–366

40. Acquisti, A., Varian, H.: Conditioning Prices on Purchase History. Marketing
Science 24(3) (2005)

41. Acquisti, A., Grossklags, J.: Privacy and Rationality: Preliminary Evidence from
Pilot Data. In: Third Workshop on the Economics of Information Security, Min-
neapolis, Mn (2004)

42. Vila, T., Greenstadt, R., Molnar, D.: Why we can’t be bothered to read privacy
policies. In: Economics of Information Security, pp. 143–154. Kluwer, Dordrecht
(2004)

43. Swire, P.: Efficient Confidentiality for Privacy, Security, and Confidential Business
Information. Brookings-Wharton Papers on Financial Services Brookings (2003)

44. Campbell, K., Gordon, L.A., Loeb, M., Zhou, L.: The economic cost of publicly
announced information security breaches: empirical evidence from the stock mar-
ket. Journal of Computer Security 11(3), 431–448 (2003)

45. Acquisti, A., Friedman, A., Telang, R.: Is There a Cost to Privacy Breaches? In:
Fifth Workshop on the Economics of Information Security (2006)

46. Bouckaert, J., Degryse, H.: Opt In Versus Opt Out: A Free-Entry Analysis of
Privacy Policies. In: Fifth Workshop on the Economics of Information Security
(2006)

47. Varian, H., Wallenberg, F., Woroch, G.: The Demographics of the Do-Not-Call
List. IEEE Security & Privacy 3(1), 34–39 (2005)

48. Dingledine, R., Matthewson, N.: Anonymity Loves Company: Usability and the
Network Effect. In: Workshop on Usable Privacy and Security Software (2004)

49. http://tor.eff.org
50. Varian, H.: New chips and keep a tight rein on consumers, even after they buy a

product. New York Times (July 4, 2002)
51. Samuelson, P., Scotchmer, S.: The Law and Economics of Reverse Engineering.

Yale Law Journal (2002)
52. von Hippel, E.: Open Source Software Projects as User Innovation Networks.

Open Source Software Economics (Toulouse) (2002)
53. Lookabaugh, T., Sicker, D.: Security and Lock-In: The Case of the U.S. Cable

Industry. In: Workshop on the Economics of Information Security, also in Eco-
nomics of Information Security. Advances in Information Security, vol. 12, pp.
225–246. Kluwer, Dordrecht (2003)

http://tor.eff.org


Information Security Economics – and Beyond 89

54. Oberholzer, F., Strumpf, K.: The Effect of File Sharing on Record Sales – An
Empirical Analysis. Cambridge, Ma (2004)

55. Varian, H.: Keynote address to the Third Digital Rights Management Conference,
Berlin, Germany (January 13, 2005)

56. Cobb, S.: The Economics of Spam. ePrivacy Group (2003),
http://www.spamhelp.org/articles/economics of spam.pdf

57. Böhme, R., Holz, T.: The Effect of Stock Spam on Financial Markets. In: Work-
shop on the Economics of Information Security (2006)

58. Frieder, L., Zittrain, J.: Spam Works: Evidence from Stock Touts and Correspond-
ing Market Activity. Berkman Center Research Publication No. 2006-11 (2006)

59. Akella, A., Seshan, S., Karp, R., Shenker, S., Papadimitriou, C.: Selfish Behavior
and Stability of the Internet: A Game-Theoretic Analysis of TCP. ACM SIG-
COMM, 117–130

60. Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. In: Meinel, C., Tison,
S. (eds.) STACS 99. LNCS, vol. 1563, pp. 387–396. Springer, Heidelberg (1999)

61. Roughgarden, T., Tardos, É.: How bad is selfish routing? Journal of the
ACM 49(2), 236–259 (2002)

62. Fabrikant, A., Luthra, A., Maneva, E., Papadimitriou, C., Shenker, S.: On a
network creation game. In: 22nd PODC, pp. 347–351 (2003)

63. Anshelevich, E., Dasgupta, A., Tardos, É., Wexler, T.: Near-optimal network
design with selfish agents. In: 35th STOC, pp. 511–520 (2003)

64. Anshelevich, E., Dasgupta, A., Kleinberg, J., Tardos, É., Wexler, T., Roughgar-
den, T.: The price of stability for network design with fair cost allocation. In: 45th
FOCS, pp. 295–304 (2004)

65. Halldórsson, M.M., Halpern, J., Li, L., Mirrokni, V.: On spectrum sharing games.
In: 23rd PODC, pp. 107–114 (2004)

66. Aspnes, J., Chang, K., Yampolskiy, A.: Inoculation strategies for victims of viruses
and the sum-of-squares partition problem. In: 16th ACM-SIAM Symposium on
Discrete Algorithms, pp. 43–52 (2005)

67. Dwork, C., Naor, M.: Pricing via processing or combatting junk mail. In: Crypto
92, pp. 139–147.

68. Laurie, B., Clayton, R.: Proof-of-Work’ Proves Not to Work. In: Third Workshop
on the Economics of Information Security (2004)

69. Serjantov, A., Clayton, R.: Modeling Incentives for Email Blocking Strategies. In:
Fourth Workshop on the Economics of Information Security (2005)

70. Feldman, M., Lai, K., Stoica, I., Chuang, J.: Robust Incentive Techniques for Peer-
to-Peer Networks. In: Fifth ACM Conference on Electronic Commerce (2004)

71. Dellarocas, C.: Analyzing the economic efficiency of eBay-like online reputation
mechanisms. In: Third ACM Conference on Electronic Commerce (2001)

72. Serjantov, A., Anderson, R.J.: On dealing with adversaries fairly. In: Third Work-
shop on the Economics of Information Security (2004)

73. Landwehr, C.: Improving Information Flow in the Information Security Market.
In: Economics of Information Security, pp. 155–164. Kluwer, Dordrecht (2004)

74. Anderson, R.J.: Security Engineering. Wiley, Chichester (2001)
75. European Commission proposal for a Council framework decision on attacks

against information systems (April 2002)
76. German Federal Government’s Comments on the TCG and NGSCB in the Field of

Trusted Computing (2004), at http://www.bsi.bund.de/sichere plattformen/
index.htm

77. Barnes, D.: Deworming the Internet. Texas Law Journal 83(279), 279–329 (2004)

http://www.spamhelp.org/articles/economics_of_spam.pdf
http://www.bsi.bund.de/sichere_plattformen/index.htm
http://www.bsi.bund.de/sichere_plattformen/index.htm


90 R.J. Anderson and T. Moore

78. Garcia, A., Horowitz, B.: The Potential for Underinvestment in Internet Secu-
rity: Implications for Regulatory Policy. In: Fifth Workshop on the Economics of
Information Security (2006)

79. Moore, T.: The Economics of Digital Forensics. In: Fifth Workshop on the Eco-
nomics of Information Security (2006)

80. Ghose, A., Rajan, U.: The Economic Impact of Regulatory Information Disclosure
on Information Security Investments, Competition, and Social Welfare. In: Fifth
Workshop on the Economics of Information Security (2006)

81. Edelman, B.: Adverse Selection in Online ‘Trust’ Certificates. In: Fifth Workshop
on the Economics of Information Security (2006)

82. Beattie, S., Arnold, S., Cowan, C., Wagle, P., Wright, C., Shostack, A.: Timing the
Application of Security Patches for Optimal Uptime. In: LISA 2002, pp. 233–242
(2002)

83. Arora, A., Forman, C., Nandkumar, A., Telang, R.: Competitive and Strategic
Effects in the Timing of Patch Release. In: Fifth Workshop on the Economics of
Information Security (2006)

84. Gal-Or, E., Ghose, A.: Economic Consequences of Sharing Security Information.
In: Information System Research, pp. 186–208 (2005)

85. Gordon, L.A., Loeb, M., Lucyshyn, W.: An Economics Perspective on the Sharing
of Information Related to Security Breaches. In: First Workshop on the Economics
of Information Security, Berkeley, CA, May 16-17 2002, pp. 16–17 (2002)

86. Nisan, N., Ronen, A.: Algorithmic mechanism design (extended abstract). In:
STOC ’99, pp. 129–140 (1999)

87. Nisan, N., Segal, I.: The communication complexity of efficient allocation prob-
lems. Draft. Second version (March 5, 2002)

88. Feigenbaum, J., Papadimitriou, C., Sami, R., Shenker, S.: A BGP-based mecha-
nism for lowest-cost routing. In: PODC ’02, pp. 173–182 (2002)

89. Shneidman, J., Parkes, D.C., Massouli, L.: Faithfulness in internet algorithms. In:
PINS ’04: Proceedings of the ACM SIGCOMM workshop on Practice and theory
of Incentives in Networked Systems (2004)

90. Newman, M.: The structure and function of complex networks. SIAM Review 45,
167–256

91. Sah, R.: Social osmosis and patterns of crime. Journal of Political Economy 99(6),
1272–1295 (1991)

92. Ballester, C., Calvó-Armengol, A., Zenou, Y.: ‘Who’s, who in crime networks?
Wanted – The Key Player, No 617, Working Paper Series from Research Institute
of Industrial Economics

93. Bramoulle, Y., Kranton, R.: Strategic experimentation in networks. NajEcon
Working Paper no. 784828000000000417 from http://www.najecon.org

94. Jackson, M.: The economics of social networks. CalTech Division of the Human-
ities and Social Sciences Working Paper 1237. In: Proceedings of the 9th World
Congress of the Econometric Society CUP (2006)

95. Demange, G., Wooders, M.: Group formation in economics: networks, clubs and
coalitions. Cambridge University Press, Cambridge (2005)

96. Albert, R., Jeong, H., Barabsi, A.-L.: Error and attack tolerance of complex net-
works. Nature 406(1), 387–482 (2000)

97. Nagaraja, S., Anderson, R.J.: The Topology of Covert Conflict. In: Fifth Work-
shop on the Economics of Information Security, UK (2006)

98. Li, L., Alderson, D., Willinger, W., Doyle, J.: A first-principles approach to un-
derstanding the internet’s router-level topology. In: SIGCOMM 2004, pp. 3–14
(2004)

http://www.najecon.org


Information Security Economics – and Beyond 91

99. Danezis, G., Wittneben, B.: The Economics of Mass Surveillance. In: Fifth Work-
shop on the Economics of Information Security (2006)

100. Harley, J.: keynote talk, Government UK IT Summit, (May 2007)
101. Asch, S.E.: ’Social Psychology’, OUP (1952)
102. Milgram, S.: ‘Obedience to Authority: An Experimental View’, HarperCollins

(1974, reprinted 2004)
103. Zimbardo, P.: ‘The Lucifer Effect’, Random House (2007)
104. Wolfson, A.: A hoax most cruel. The Courier-Journal (2005)
105. Cranor, L.: ‘Security Usability’, O’Reilly (2005)
106. Schneier, B.: The Psychology of Security. In: RSA (2007), at

http://www.schneier.com
107. Gilbert, D.: If only gay sex caused global warming, LA Times (July 2, 2006)
108. Baron-Cohen, S.: The Essential Difference: Men, Women, and the Extreme Male

Brain, Penguin (2003)

http://www.schneier.com


Cryptography with Constant Input Locality�

(Extended Abstract)

Benny Applebaum, Yuval Ishai��, and Eyal Kushilevitz� � �

Computer Science Department, Technion, Haifa 32000, Israel
{abenny,yuvali,eyalk}@cs.technion.ac.il

Abstract. We study the following natural question: Which
cryptographic primitives (if any) can be realized by functions with con-
stant input locality, namely functions in which every bit of the input
influences only a constant number of bits of the output? This contin-
ues the study of cryptography in low complexity classes. It was recently
shown (Applebaum et al., FOCS 2004) that, under standard crypto-
graphic assumptions, most cryptographic primitives can be realized by
functions with constant output locality, namely ones in which every bit
of the output is influenced by a constant number of bits from the input.

We (almost) characterize what cryptographic tasks can be performed
with constant input locality. On the negative side, we show that prim-
itives which require some form of non-malleability (such as digital sig-
natures, message authentication, or non-malleable encryption) cannot
be realized with constant input locality. On the positive side, assum-
ing the intractability of certain problems from the domain of error cor-
recting codes (namely, hardness of decoding a random linear code or
the security of the McEliece cryptosystem), we obtain new construc-
tions of one-way functions, pseudorandom generators, commitments, and
semantically-secure public-key encryption schemes whose input locality
is constant. Moreover, these constructions also enjoy constant output
locality. Therefore, they give rise to cryptographic hardware that has
constant-depth, constant fan-in and constant fan-out. As a byproduct,
we obtain a pseudorandom generator whose output and input locality
are both optimal (namely, 3).

1 Introduction

The question of minimizing the complexity of cryptographic primitives has been
the subject of an extensive body of research (see [23,3] and references therein).
On one extreme, it is natural to ask whether one can implement cryptographic
primitives in NC0, i.e., by functions in which each output bit depends on a

� Research supported by grant 1310/06 from the Israel Science Foundation.
�� Supported by grant 2004361 from the U.S.-Israel Binational Science Foundation.

� � � Supported by grant 2002354 from the U.S.-Israel Binational Science Foundation.

A. Menezes (Ed.): CRYPTO 2007, LNCS 4622, pp. 92–110, 2007.
c© International Association for Cryptologic Research 2007



Cryptography with Constant Input Locality 93

constant number of input bits.1 Few primitives, including pseudorandom func-
tions [12], cannot even be realized in AC0 [20]; no similar negative results are
known for other primitives. However, it was shown recently [3,2] that, under
standard assumptions, most cryptographic primitives can be realized by func-
tions with output locality 4, namely by NC0 functions in which each bit of the
output depends on at most 4 bits of the input.

Another possible extreme is the complementary question of implementing
cryptographic primitives by functions in which each input bit affects only a
constant number of output bits. This was not settled by [3], and was suggested
as an open problem. This natural question can be motivated from several distinct
perspectives:

– (Theoretical examination of a common practice) A well known design princi-
ple for practical cryptosystems asserts that each input bit must affect many
output bits. This principle is sometimes referred to as Confusion/Diffusion
or Avalanche property. It is easy to justify this principle in the context of
block-ciphers (which are theoretically modeled as pseudorandom functions
or permutations), but is it also necessary in other cryptographic applications
(e.g., stream ciphers)?

– (Hardware perspective) Unlike NC0 functions, functions with both constant
input locality and constant output locality can be computed by constant
depth circuits with bounded fan-in and bounded fan-out. Hence, the parallel
time complexity of such functions is constant in a wider class of implemen-
tation scenarios.

– (Complexity theoretic perspective) One can state the existence of cryptog-
raphy in NC0 in terms of average-case hardness of Constraint Satisfaction
Problems in which each constraint involves a constant number of variables
(k-CSPs). The new question can therefore be formulated in terms of k-CSPs
with bounded occurrences of each variable. It is known that NP hardness
and inapproximability results can be carried from the CSP setting to this
setting [24,6], hence it is interesting to ask whether the same phenomenon
occurs with respect to cryptographic hardness as well.

Motivated by the above, we would like to understand which cryptographic
tasks (if any) can be realized with constant input and output locality, or even
with constant input locality alone.

Another question considered in this work, which was also posed in [3], is
that of closing the (small) gap between positive results for cryptography with
locality 4 and the impossibility of cryptography with locality 2. It was shown
in [3] that the existence of a OWF with locality 3 follows from the intractability
of decoding a random linear code. The possibility of closing this gap for other
primitives remained open.

1 Equivalently, NC0 is the class of functions computed by boolean circuits of polyno-
mial size, constant depth, and bounded fan-in gates. We will also mention the classes
AC0 and NC1 which extend this class. Specifically, in AC0 we allow unbounded fan-in
AND and OR gates, and in NC1 the circuit depth is logarithmic.



94 B. Applebaum, Y. Ishai, and E. Kushilevitz

1.1 Our Results

We provide an almost full characterization of the cryptographic tasks that can be
realized by functions with constant input locality. On the negative side, we show
that primitives which require some form of non-malleability (e.g., signatures,
MACs, non-malleable encryption schemes) cannot be realized with constant (or,
in some cases, even logarithmic) input locality.

On the positive side, assuming the intractability of some problems from the
domain of error correcting codes, we obtain constructions of pseudorandom gen-
erators, commitments, and semantically-secure public-key encryption schemes
with constant input locality and constant output locality. In particular, we ob-
tain the following results:

– For PRGs, we answer simultaneously both of the above questions. Namely,
we construct a collection2 of PRGs whose output locality and input locality
are both 3. We show that this is optimal in both output locality and input
locality. Our construction is based on the intractability of decoding a random
linear code. Previous constructions of PRGs (or even OWFs) [4,9] which
enjoyed constant input locality and constant output locality at the same
time, were based on non-standard intractability assumptions.

– We construct a non-interactive commitment scheme, in the common refer-
ence string model, in which the output locality of the commitment function
is 4, and its input locality is 3. The security of this scheme also follows
from the intractability of decoding a random linear code. (We can also get
a non-interactive commitment scheme in the standard model under the as-
sumption that there exists an explicit binary linear code that has a large
minimal distance but is hard to decode.)

– We construct a semantically secure public-key encryption scheme whose en-
cryption algorithm has input locality 3. This scheme is based on the security
of the McEliece cryptosystem [21], an assumption which is related to the
intractability of decoding a random linear code, but is seemingly stronger.
Our encryption function also has constant output locality, if the security
of the McEliece cryptosystem holds when it is instantiated with some error
correcting code whose relative distance is constant.

– We show that MACs, signatures and non-malleable symmetric or public-key
encryption schemes cannot be realized by functions whose input locality is
constant or, in some cases, even logarithmic in the input length. In fact,
we prove that even the weakest versions of these primitives (e.g., one-time
secure MACs) cannot be constructed in this model.

1.2 Our Techniques

Our constructions rely on the machinery of randomized encoding, which was
was explicitly introduced in [16] (under the algebraic framework of randomizing
2 All of our collections are indexed by a public random key. That is, {Gz}z∈{0,1}∗ is

a collection of PRGs if for every z the function Gz expands its input and the pair
(z, Gz(x)) is pseudorandom for random x and z.



Cryptography with Constant Input Locality 95

polynomials) and was implicitly used, in weaker forms, in the context of secure
multiparty computation (e.g., [19,8]). A randomized encoding of a function f(x)
is a randomized mapping f̂(x, r) whose output distribution depends only on the
output of f . Specifically, it is required that: (1) there exists a decoder algorithm
that recovers f(x) from f̂(x, r), and (2) there exists a simulator algorithm that
given f(x) samples from the distribution f̂(x, r) induced by a uniform choice of
r. That is, the distribution f̂(x, r) hides all the information about x except for
the value f(x).

In [3] it was shown that the security of most cryptographic primitives is inher-
ited by their randomized encoding. Suppose that we want to construct some cryp-
tographic primitive P in some low complexity class WEAK. Then, we can try to en-
code functions from a higher complexity class STRONG by functions from WEAK.
Now, if we have an implementation f of the primitive P in STRONG, we can re-
place f by its encoding f̂ ∈ WEAK and obtain a low-complexity implementation
of P . This paradigm was used in [3,2]. For example, it was shown that STRONG
can be NC1 and WEAK can be the class of functions whose output locality is 4.

However, it seems hard to adapt this approach to the current setting, since it
is not clear whether there are non-trivial functions that can be encoded by func-
tions with constant input locality. (In fact, we show that some very simple NC0

functions cannot be encoded in this class.) We solve this problem by introducing
a new construction of randomized encodings. Our construction shows that there
exists a complexity class C of simple (but non-trivial) functions that can be en-
coded by functions with constant input locality. Roughly speaking, a function f
is in C if each of its output bits can be written as a sum of terms over F2 such
that each input variable of f participates in a constant number of distinct terms,
ranging over all outputs of f . Moreover, if the algebraic degree of theses terms
is constant, then f can be encoded by a function with constant input locality as
well as constant output locality. (In particular, all linear functions over F2 admit
such an encoding.)

By relying on thenice algebraic structure of intractability assumptions related to
decoding random linear codes, and using techniques from [4], we construct PRGs,
commitments and public-key encryption schemes in C whose algebraic degree is
constant.Then, weuse the new construction to encode these primitives, and obtain
implementations whose input locality and output locality are both constant.

Interestingly, unlike previous constructions of randomized encodings, the new
encoding does not have a universal simulator nor a universal decoder; that is, one
should use different decoders and simulators for different functions in C. This
phenomenon is inherent to the setting of constant input locality and is closely
related to the fact that MACs cannot be realized in this model. See Section 6.2
for a discussion.

1.3 Previous Work

The existence of cryptographic primitives in NC0 has been recently studied in
[7,22,3]. Goldreich observed that a function whose output locality is 2 cannot
even be one-way [9]. Cryan and Miltersen [7] proved that a PRG whose output



96 B. Applebaum, Y. Ishai, and E. Kushilevitz

locality is 3 cannot achieve a superlinear stretch; namely, it can only stretch n
bits to n + O(n) bits. Mossel et al. [22] extended this impossibility to functions
whose output locality is 4.

On the positive side, Goldreich [9] suggested an approach for constructing
OWFs based on expander graphs, an approach whose conjectured security does
not follow from any well-known assumption. This general construction can be
instantiated by functions with constant output locality and constant input local-
ity. Mossel et al. [22] constructed (non-cryptographic) ε-biased generators with
(non-optimal) constant input and output locality. Applebaum et al. [3,2] subse-
quently showed that: (1) the existence of many cryptographic primitives (includ-
ing OWFs, PRGs, encryptions, signatures and hash functions) in NC1 implies
their existence with output locality 4; and (2) the existence of these primitives
in NC1 is implied by most standard cryptographic assumptions such as the in-
tractability of factoring, discrete logarithms and lattice problems. They also con-
structed a OWF with (optimal) output locality 3 based on the intractability of
decoding a random linear code. However, all these constructions did not achieve
constant input locality. The constructions in [3] were also limited to PRGs with
small (sub-linear) stretch, namely, one that stretches a seed of length n to a
pseudorandom string of length n+o(n). This problem was addressed by [4], who
gave a construction of a linear-stretch PRG with (large) constant output locality
under a non-standard assumption taken from [1]. In fact, the construction of [4]
can also give an NC0 PRG with (large) constant input locality (under the same
non-standard assumption).

2 Preliminaries

Notation. All logarithms in this paper are to the base 2. We use Un to denote
a random variable uniformly distributed over {0, 1}n. We let H2(·) denote the
binary entropy function, i.e., for 0 < p < 1, H2(p) def= −p log(p)−(1−p) log(1−p).
The statistical distance between discrete probability distributions Y and Y ′,
denoted SD(Y, Y ′), is defined as the maximum, over all functions A, of the
distinguishing advantage | Pr[A(Y ) = 1] − Pr[A(Y ′) = 1]|.

A function ε(·) is said to be negligible if ε(n) < n−c for any constant c > 0 and
sufficiently large n. We will sometimes use neg(·) to denote an unspecified negli-
gible function. For two distribution ensembles {Xn}n∈N and {Yn}n∈N, we write
Xn ≡ Yn if Xn and Yn are identically distributed, and Xn

s≡ Yn if the two ensem-
bles are statistically indistinguishable; namely, SD(Xn, Yn) is negligible in n. A
weaker notion of closeness between distributions is that of computational indistin-
guishability: We write Xn

c≡ Yn if for every (non-uniform) polynomial-size circuit
family {An}, the distinguishing advantage | Pr[An(Xn) = 1] − Pr[An(Yn) = 1]|
is negligible. A distribution ensemble {Xn}n∈N is said to be pseudorandom if
Xn

c≡ Um(n) where m(n) is the length of strings over which Xn is distributed.

Locality. Let f : {0, 1}n → {0, 1}s be a function. The output locality of f
is c if each of its output bits depends on at most c input bits. The locality



Cryptography with Constant Input Locality 97

of an input variable xi in f is c if at most c output bits depend on xi. The
input locality of f is c if the input locality of all the input variables of f is
bounded by c. The output locality (resp. input locality) of a function family
f : {0, 1}∗ → {0, 1}∗ is c if for every n the restriction of f to n-bit inputs has
output locality (resp. input locality) c. We envision circuits as having their inputs
at the bottom and their outputs at the top. Hence, for functions l(n), m(n), we
let Localm(n)

l(n) (resp. Locall(n), Localm(n)) denote the non-uniform class which
includes all functions f : {0, 1}∗ → {0, 1}∗ whose input locality is l(n) and
output locality is m(n) (resp. whose input locality is l(n), whose output locality
is m(n)). The uniform versions of these classes contain only functions that can
be computed in polynomial time. (All of our positive results are indeed uniform.)
Note that LocalO(1) is equivalent to the class NC0 which is the class of functions
that can be computed by constant depth circuits with bounded fan-in. Also, the
class LocalO(1)

O(1) is equivalent to the class of functions that can be computed by
constant depth circuits with bounded fan-in and bounded fan-out.

2.1 Randomized Encoding

We review the notions of randomized encoding and randomizing polynomials
from [16,17,3].

Definition 1. (Perfect randomized encoding [3]) Let f : {0, 1}n → {0, 1}l

be a function. We say that a function f̂ : {0, 1}n ×{0, 1}m → {0, 1}s is a perfect
randomized encoding of f , if there exist an algorithm B, called a decoder, and
a randomized algorithm S, called a simulator, for which the following hold:

– perfect correctness. B(f̂(x, r)) = f(x) for any input x ∈ {0, 1}n, r ∈
{0, 1}m.

– perfect privacy. S(f(x)) ≡ f̂(x, Um) for any x ∈ {0, 1}n.
– balance. S(Ul) ≡ Us.
– stretch preservation. s − (n + m) = l − n, or equivalently m = s − l.

We refer to the second input of f̂ as its random input, and to m and s as the
randomness complexity and the output complexity of f̂ , respectively. The overall
complexity (or complexity) of f̂ is defined to be m + s.

Definition 1 naturally extends to infinite functions f : {0, 1}∗ → {0, 1}∗. In
this case, the parameters l, m, s are all viewed as functions of the input length
n, and the algorithms B, S receive 1n as an additional input. By default, we
require f̂ to be computable in poly(n) time whenever f is. In particular, both
m(n) and s(n) are polynomially bounded. We also require both the decoder and
the simulator to be efficient.

We will rely on the following composition property of randomized encodings.

Lemma 1 (Lemma 4.6 in [3]). (Composition) Let g(x, rg) be a perfect en-
coding of f(x) and h((x, rg), rh) be a perfect encoding of g((x, rg)) (viewed as a
single-argument function). Then, the function f̂(x, (rg , rh)) def= h((x, rg), rh) is a
perfect encoding of f .



98 B. Applebaum, Y. Ishai, and E. Kushilevitz

3 Randomized Encoding with Constant Input Locality

In this section we will show that functions with a “simple” algebraic structure (and
in particular linear functions over F2) can be encoded by functions with constant
input locality. We begin with the following construction that shows how to reduce
the input locality of a function which is represented as a sum of functions.

Construction 1. (Basic input locality construction) Let

f(x) = (a(x) + b1(x), a(x) + b2(x), . . . , a(x) + bk(x), c1(x), . . . , cl(x)),

where f : F
n
2 → F

k+l
2 and a, b1, . . . , bk, c1, . . . , cl : F

n
2 → F2. The encoding f̂ :

F
n+k
2 → F

2k+l
2 is defined by:

f̂(x, (r1, . . . , rk)) def= (r1 + b1(x), r2 + b2(x), . . . , rk + bk(x),

a(x) − r1, r1 − r2, . . . , rk−1 − rk, c1(x), . . . , cl(x)) .

Note that after the transformation the function a(x) appears only once and
therefore the locality of the input variables that appear in a is reduced. In
addition, the locality of all the other original input variables does not increase.

Lemma 2. (Input locality lemma) Let f and f̂ be as in Construction 1.
Then, f̂ is a perfect randomized encoding of f .

Proof. The encoding f̂ is stretch-preserving since the number of random inputs
equals the number of additional outputs (i.e., k). Moreover, given a string ŷ =
f̂(x, r) we can decode the value of f(x) as follows: To recover a(x) + bi(x),
compute the sum yi + yk+1 + yk+2 + . . . + yk+i; To compute ci(x), simply take
y2k+i. This decoder never errs.

Fix some x ∈ {0, 1}n. Let y = f(x) and let ŷ denote the distribution f̂(x, Uk).
To prove perfect privacy, note that: (1) the last l bits of ŷ are fixed and equal
to y[k+1...k+l]; (2) the first k bits of ŷ are independently uniformly distributed;
(3) the remaining bits of ŷ are uniquely determined by y and ŷ1, . . . , ŷk. To see
(3), observe that, by the definition of f̂ , we have ŷk+1 = y1 − ŷ1; and for every
1 < i ≤ k, we also have ŷk+i = yi − ŷi −

∑i−1
j=1 ŷk+j .

Hence, define a perfect simulator as follows. Given y ∈ {0, 1}k+l, the simulator
S chooses a random string r of length k, and outputs (r, s, y[k+1...k+l]), where
s1 = y1 − r1 and si = yi − ri −

∑i−1
j=0 sj for 1 < i ≤ k. This simulator is also

balanced as each of its outputs is a linear function that contains a fresh random
bit. (Namely, the output bit S(y; r)i depends on: (1) ri if 1 ≤ i ≤ k; or (2) yi−k

if k + 1 ≤ i ≤ 2k + l.) ��

An additive representation of a function f : F
n
2 → F

l
2 is a representation in

which each output bit is written as as a sum (over F2) of functions of the input
x. That is, each output bit fi can be written as fi(x) =

∑
a∈Ti

a(x), where
Ti is a set of boolean functions over n variables. We specify such an additive
representation by an l-tuple (T1, . . . , Tl) where Ti is a set of boolean functions



Cryptography with Constant Input Locality 99

a : F
n
2 → F2. We assume, without loss of generality, that none of the Ti’s

contains the constant functions 0 or 1. The following measures are defined with
respect to a given additive representation of f . For a function a : F

n
2 → F2,

define the multiplicity of a to be the number of Ti’s in which a appears, i.e.,
#a = |{Ti | a ∈ Ti}|. For a variable xj , we define the rank of xj to be the
number of different boolean functions a which depend on xj and appear in some
Ti. That is, rank(xj) = |{a : F

n
2 → F2 | a depends on xj , a ∈ T1

⋃
. . .

⋃
Tl}|.

Theorem 2. Let f : F
n
2 → F

l
2 be a function, and fix some additive repre-

sentation (T1, . . . , Tl) for f . Then f can be perfectly encoded by a function
f̂ : F

n
2 × F

m
2 → F

s
2 such that the following hold:

1. The input locality of every xj in f̂ is at most rank(xj), and the input locality
of the random inputs ri of f̂ is at most 3.

2. If the output locality of f is i, then the output locality of f̂ is max(i, 2).
3. The randomness complexity of f̂ is m =

∑
a∈T #a, where T =

⋃l
i=1 Ti.

Proof. We will use the following convention. The additive representation of a
function ĝ resulting from applying Construction 1 to a function g is the (natural)
representation induced by the original additive representation of g. We construct
f̂ iteratively via the following process. (1) Let f (0) = f, i = 0. (2) For j = 1, . . . , n
do the following: (2a) while there exists a function a in f (i) that depends on xj ,
whose multiplicity is greater than 1, apply Construction 1 to f (i), let f (i+1) be
the resulting encoding and let i = i + 1. (3) Let f̂ = f (i). By Lemma 2, the
function f (i) perfectly encodes the function f (i−1), hence by the composition
property of randomized encodings (Lemma 1), the final function f̂ perfectly
encodes f . The first item of the theorem follows from the following observations:
(1) In each iteration the input locality and the rank of each original variable
xj do not increase. (2) The multiplicity in f̂ of every function a that depends
on some original input variable xj is 1. (3) The input locality of the random
inputs which are introduced by the locality construction is at most 3. The last
two items of the theorem follow directly from the definition of Construction 1
and the construction of f̂ . ��

Remarks on Theorem 2.

1. By Theorem 2, every linear function admits an encoding of constant input
locality, since each output bit can be written as a sum of degree 1 monomials.
More generally, every function f whose canonic representation as a sum of
monomials (i.e., each output bit is written as a sum of monomials) includes
a constant number of monomials per input bit can be encoded by a function
of constant input locality.

2. Interestingly, Construction 1 does not provide a universal encoding for any
natural class of functions (e.g., the class of linear functions mapping n bits
into l bits). This is contrasted with previous constructions of randomized
encoding with constant output locality (cf. [16,17,3]). In fact, in Section 6.1
we prove that there is no universal encoding with constant input locality for
the class of linear function L : F

n
2 → F2.



100 B. Applebaum, Y. Ishai, and E. Kushilevitz

3. When Theorem 2 is applied to a function family fn : {0, 1}n → {0, 1}l(n)

then the resulting encoding is uniform whenever the additive representation
(T1, . . . , Tl) is polynomial-time computable.

4. In Section 6.1, we show that Theorem 2 is tight in the sense that for each
integer i we can construct a function f in which the rank of x1 is i, and in
every encoding f̂ of f the input locality of x1 is at least i.

In some cases we can combine Theorem 2 and the output-locality construction
from [3, Construction 4.11] to derive an encoding which enjoys low input locality
and output locality at the same time. In particular, we will use the following
lemma which is implicit in [3].

Lemma 3 (implicit in [3]). Let f : F
n
2 → F

l
2 be a function such that each of

its output bits can be written as sum of monomials of degree d. Then, we can
perfectly encode f by a function f̂ such that: (1) The output locality of f̂ is d+1;
(2) The rank of every original variable xi in f̂ is equal to the rank of xi in f ; (3)
The new variables introduced by f̂ appear only in monomials of degree 1; hence
their rank is 1.

By combining Lemma 3 with Theorem 2 we get:

Corollary 1. Let f : F
n
2 → F

l
2 be a function. Fix some additive representation

for f in which each output bit is written as a sum of monomials of degree (at
most) d and the rank of each variable is at most ρ. Then, f can be perfectly
encoded by a function f̂ of input locality max(ρ, 3) and output locality d + 1.
Moreover, the resulting encoding is uniform whenever the additive representation
is polynomial-time computable.

Proof. First, by Lemma 3, we can perfectly encode f by a function f ′ ∈ Locald+1

without increasing the rank of the input variables of f . Next, we apply Theorem 2
and perfectly encode f ′ by a function f̂ ∈ Locald+1

max(ρ,3). By the composition

property of randomized encodings (Lemma 1), the resulting function f̂ perfectly
encodes f . Finally, the proofs of Theorem 2 and Lemma 3 both allow to efficiently
transform an additive representation of the function f into an encoding f̂ in
Locald+1

max(ρ,3). Hence, the uniformity of f is inherited by f̂ . ��

We remark that Theorem 2 as well as Lemma 3 generalize to any finite field F.
Hence, so does Corollary 1.

4 Primitives with Constant Input Locality and Output
Locality

4.1 Main Assumption: Intractability of Decoding Random Linear
Code

Our positive results are based on the intractability of decoding a random linear
code. In the following we introduce and formalize this assumption.



Cryptography with Constant Input Locality 101

An (m, n, δ) binary linear code is a n-dimensional linear subspace of F
m
2 in

which the Hamming distance between each two distinct vectors (codewords)
is at least δm. We refer to the ratio n/m as the rate of the code and to δ
as its (relative) distance. Such a code can be defined by an m × n generator
matrix whose columns span the space of codewords. It follows from the Gilbert–
Varshamov bound that whenever n/m < 1−H2(δ)−ε, almost all m×n generator
matrices form (m, n, δ)-linear codes. Formally,

Fact 3 ([26]). Let 0 < δ < 1/2 and ε > 0. Let n/m ≤ 1 − H2(δ) − ε. Then,
a randomly chosen m × n generator matrix generates an (m, n, δ) code with
probability 1 − 2−(ε/2)m.

A proof of the above version of the Gilbert–Varshamov bound can be found
in [25, Lecture 5].

Definition 2. Let m(n) ≤ poly(n) be a code length parameter, and 0 < μ(n) <
1/2 be a noise parameter. We say that CODE(m, μ) is intractable if for every
polynomial-time adversary A,

Pr[A(C, Cx + e) = x] ≤ neg(n),

where C is an m(n) × n random binary generator matrix, x ← Un, and e ∈
{0, 1}m is a random error vector in which each entry is chosen to be 1 with
probability μ (independently of other entries), and arithmetic is over F2.

Typically, we let m(n) = O(n) and μ be a constant such that n/m(n) < 1 −
H2(μ + ε) where ε > 0 is a constant. Hence, by Fact 3, the random code C is,
with overwhelming probability, an (m, n, μ + ε) code. Note that, except with
negligible probability, the noise vector flips less than μ + ε of the bits of y. In
this case, the fact that the noise is random (rather than adversarial) guarantees,
by Shannon’s coding theorem (for random linear codes), that x will be unique
with overwhelming probability. That is, roughly speaking, we assume that it
is intractable to correct μn random errors in a random linear code of relative
distance μ + ε > μ. The plausibility of such an assumption is supported by the
fact that a successful adversary would imply a major breakthrough in coding
theory. Similar assumptions were put forward in [13,5,10].

We will rely on the following Lemma of [5].

Lemma 4. Let m(n) be a code length parameter, and μ(n) be a noise parameter.
If CODE(m, μ) is intractable then the distribution (C, Cx+e) is pseudorandom,
where C, x and e are as in Definition 2.

4.2 Pseudorandom Generator in Local33

A pseudorandom generator (PRG) is an efficiently computable function G which
expands its input and its output distribution G(Un) is pseudorandom. An effi-
ciently computable collection of functions {Gz}z∈{0,1}∗ is a PRG collection if for



102 B. Applebaum, Y. Ishai, and E. Kushilevitz

every z, the function Gz expands its input and the pair (z, Gz(x)) is pseudoran-
dom for random x and z. We show that pseudorandom generators (and therefore
also one-way functions and one-time symmetric encryption schemes) can be re-
alized by LocalO(1)

O(1) functions. Specifically, we get a PRG in Local33. In the full
version we also show that such a PRG has optimal output locality and optimal
input locality. We rely on the following assumption.

Assumption 4. The problem CODE(13n, 1/4) is intractable.

Note that the code considered here is of rate n/m = 1/13 which is strictly smaller
than 1−H2(1

3 ). Therefore, except with negligible probability, its relative distance
is at least 1

3 . Hence the above assumption roughly says that it is intractable to
correct n/4 random errors in a random linear code of relative distance 1

3 . (We
did not attempt to optimize the constant 13 in the above.)

Let m(n) = 13n. Let C ← Um(n)×n, x ← Un and e ∈ {0, 1}m be a random
error vector of rate 1/4, that is, each of the entries of e is 1 with probability 1/4
(independently of the other entries). By Lemma 4, the distribution (C, Cx + e)
is pseudorandom under the above assumption. Since the noise rate is 1/4, it is
natural to sample the noise distribution e by using 2m random bits r1, . . . , r2m

and letting the i-th bit of e be the product of two fresh random bits, i.e., ei =
r2i−1 · r2i. We can now define the mapping f(C, x, r) = (C, Cx + e(r)) where
e(r) = (r2i−1 ·r2i)m

i=1. The output distribution of f is pseudorandom, however, f
is not a PRG since it does not expand its input. In [4], it was shown how to bypass
this problem by applying a randomness extractor. Namely, the following function
was shown to be a PRG: G(C, x, r, s) = (C, Cx + e(r), Ext(r, s)). Although the
setting of parameters in [4] is different than ours, a similar solution works here as
well. We rely on the leftover hashing lemma of [15] and base our extractor on a
family of pairwise independent hash functions (which is realized by the mapping
x 	→ Ax + b where A is a random matrix and b is a random vector).3

Construction 5. Let m = 13n and let t = 
1.1 · m�. Define the function

G(x, C, r, A, b) def= (C, Cx + e(r), Ar + b, A, b),

where x ∈ {0, 1}n, C ∈ {0, 1}m×n, r ∈ {0, 1}2m, A ∈ {0, 1}t×2m, and b ∈ {0, 1}t.

Theorem 6. Under Assumption 4, the function G defined in Construction 5 is
a PRG.

The proof of the above theorem is deferred to the full version of this paper. From
now on, we fix the parameters m, t according to Construction 5. We can redefine
the above construction as a collection of PRGs by letting C, A, b be the keys of
the collection. Namely,

GC,A,b(x, r) = (Cx + e(r), Ar + b).

We can now prove the main theorem of this section.
3 We remark that in [4] one had to rely on a specially made extractor in order to

maintain the large stretch of the PRG. In particular, the leftover hashing lemma
could not be used there.



Cryptography with Constant Input Locality 103

Theorem 7. Under Assumption 4, there exists a collection of pseudorandom
generators {Gz}z∈{0,1}p(n) in Local33. Namely, for every z ∈ {0, 1}p(n), it holds
that Gz ∈ Local33.

Proof. Fix C, A, b and write each output bit of GC,A,b(x, r) as a sum of monomi-
als. Note that in this case, each variable xi appears only in degree 1 monomials,
and each variable ri appears only in the monomial r2i−1r2i and also in degree 1
monomials. Hence, the rank of each variable is at most 2. Moreover, the (alge-
braic) degree of each output bit of GC,A,b is at most 2. Therefore, by Corollary 1,
we can perfectly encode the function GC,A,b by a function ĜC,A,b in Local33. In [3,
Lemma 6.1] it was shown that a uniform perfect encoding of a PRG is also a
PRG. Thus, we get a collection of PRGs in Local33. ��

We can rely on Theorem 7 to obtain a one-time semantically-secure symmetric
encryption scheme (E, D) whose encryption algorithm is in Local33 (see [2, Con-
struction 4.3]). (This scheme allows to encrypt an arbitrary polynomially long
message with a short key.) A similar approach can be also used to give mul-
tiple message security, at the price of requiring the encryption and decryption
algorithms to maintain a synchronized state. The results of Section 4.4 give a
direct construction of public-key encryption (hence also symmetric encryption)
with constant input locality under the stronger assumption that the McEliece
cryptosystem is one-way secure.

4.3 Commitment in Local43

We will consider a non-interactive commitment scheme in the common reference
string (CRS) model. In such a scheme, the sender and the receiver share a com-
mon public random key k (that can be selected once and be used in many invoca-
tions of the scheme). To commit to a bit b, the sender computes the commitment
function Comk(b, r) that outputs a commitment c using the randomness r, and
sends the output to the receiver. To open the commitment, the sender sends the
randomness r and the committed bit b to the receiver who checks whether the
opening is valid by computing the function Reck(c, b, r). The scheme should be
both (computationally) hiding and (statistically) binding. Hiding requires that
c = Comk(b, r) keep b computationally secret. Binding means that, except with
negligible probability over the choice of the random public key, it is impossible
for the sender to open its commitment in two different ways.

We construct a commitment scheme in Local43, i.e., a commitment of input
locality 3 and output locality 4. Let c be a constant that satisfies c > 1

1−H2(1/4) .
Let m = m(n) = 
cn�. Then, by Fact 3, a random m × n generator matrix
generates, except with negligible probability (i.e., 2−Ω(m) = 2−Ω(n)), a code
whose relative distance is 1/4 + ε, for some constant ε > 0. The public key of
our scheme will be a random m(n) × n generator matrix C. To commit to a
bit b, we first choose a random information word x ∈ {0, 1}n and hide it by
computing Cx + e, where e ∈ {0, 1}m is a noise vector of rate 1/8, and then
take the exclusive-or of b with a hardcore bit β(x) of the above function. That



104 B. Applebaum, Y. Ishai, and E. Kushilevitz

is, we send the receiver the value (Cx + e, b + β(x)). In particular, we can use
the Goldreich-Levin [14] hardcore bit and get

ComC(b, (x, r, s)) = (Cx + e(r), s, b + 〈x, s〉),

where r is a random 3m-bit string, e(r) = (r1r2r3, r4r5r6, . . . , r3m−2r3m−1r3m), s
is a random n-bit string and 〈·, ·〉 denotes inner product (over F2). Assuming that
CODE(m, 1/8) is intractable, this commitment hides the committed bit b. (This
is so because 〈x, s〉 is unpredictable given (C, Cx + e, s), cf. [10, Construction
4.4.2].) Suppose that the relative distance of C is indeed 1/4 + ε. Then, if e
contains no more than 1/8 + ε/2 ones, x is uniquely determined by Cx + e. Of
course, the sender might try to cheat and open the commitment ambiguously
by claiming that the weight of the error vector is larger than 1/8 + ε/2. Hence,
we let the receiver verify that the Hamming weight of the noise vector e given
to him by the sender in the opening phase is indeed smaller than 1/8 + ε/2.
This way, the receiver will always catch a cheating sender (assuming that C
is indeed a good code). Note that an honest sender will be rejected only if its
randomly chosen noise vector is heavier than 1/8 + ε/2, which, by a Chernoff
bound, happens with negligible probability (i.e., e−Ω(m) = e−Ω(n)) as the noise
rate is 1/8. Hence, the pair (Com,Rec) defined above is indeed a commitment
scheme. When C is fixed, the rank and algebraic degree of the function ComC

are 2 and 3 (with respect to the natural representation as a sum of monomials).
Hence, by Corollary 1, we can encode ComC by a function ˆComC ∈ Local43.
By [3], this encoding is also a commitment scheme. Summarizing, we have:

Theorem 8. Let c be a constant that satisfies c > 1
1−H2(1/4) , and m = m(n) =


cn�. If CODE(m, 1/8) is intractable, then there exists a commitment scheme
(Com,Rec) in Local43; i.e., for every public key C, we have ComC ∈ Local43.

We remark that we can eliminate the use of the CRS by letting C be a generator
matrix of some fixed error correcting error whose relative distance is large (i.e.,
1/4 or any other constant) in which decoding is intractable. For example, one
might use the dual of a BCH code.

4.4 Semantically Secure Public-Key Encryption in LocalO(1)
3

We construct a semantically-secure public-key encryption scheme (PKE) whose
encryption algorithm is in LocalO(1)

O(1). Our scheme is based on the McEliece cryp-
tosystem [21]. We begin by reviewing the general scheme proposed by McEliece.

– System parameters: Let m(n) : IN → IN, where m(n) > n, and μ(n) :
IN → (0, 1). For every n ∈ IN, let Cn be a set of generating matrices of
(m(n), n, 2(μ(n) + ε)) codes that have a (universal) efficient decoding al-
gorithm D that, given a generating matrix from Cn, can correct up to
(μ(n) + ε) · m(n) errors, where ε > 0 is some constant. We also assume
that there exists an efficient sampling algorithm that samples a generator
matrix of a random code from Cn.



Cryptography with Constant Input Locality 105

– Key Generation: Given a security parameter 1n, use the sampling algo-
rithm to choose a random code from Cn and let C be its generating matrix.
Let m = m(n) and μ = μ(n). Choose a random n × n non-singular matrix
S over F2, and a random m × m permutation matrix P . Let C′ = P · C · S
be the public key and P, S, DC be the private key where DC is the efficient
decoding algorithm of C.

– Encryption: To encrypt x ∈ {0, 1}n compute c = C′x+e where e ∈ {0, 1}m

is an error vector of noise rate μ.
– Decryption: To decrypt a ciphertext c, compute P−1y = P−1(C′x + e) =

CSx + P−1e = CSx + e′ where e′ is a vector whose weight equals to the
weight of e (since P−1 is also a permutation matrix). Now, use the decoding
algorithm D to recover the information word Sx (i.e., D(C, CSx + P−1e) =
Sx). Finally, to get x multiply Sx on the left by S−1.

By Chernoff bound, the weight of the error vector e is, except with negligible
probability, smaller than (μ+ε)·m and so the decryption algorithm almost never
errs.4 As for the security of the scheme, it is not hard to see that the scheme is
not semantically secure. (For example, it is easy to verify that a ciphertext c is
an encryption of a given plaintext x by checking whether the weight of c − Cx
is approximately μn.)

However, the scheme is conjectured to be a one-way cryptosystem; namely, it
is widely believed that, for proper choice of parameters, any efficient adversary
fails with probability 1 − neg(n) to recover x from (c = C′x + e, C′) where x is
a random n-bit string.

Suppose that the scheme is indeed one-way with respect to the parameters
m(n), μ(n) and Cn. Then, we can convert it into a semantically secure public-key
encryption scheme by extracting a hardcore predicate and xoring it with a 1-bit
plaintext b (this transformation is similar to the one used for commitments in
the previous section). That is, we encrypt the bit b by the ciphertext (C′x +
e, s, 〈s, x〉+ b) where x, s are random n-bit strings, and e is a noise vector of rate
μ. (Again, we use the Goldreich-Levin hardcore predicate [14].) To decrypt the
message, we first compute x, by invoking the McEliece decryption algorithm,
and then compute 〈s, x〉 and xor it with the last entry of the ciphertext. We
refer to this scheme as the modified McEliece public-key encryption scheme. If
the McEliece cryptosystem is indeed one-way, then 〈s, x〉 is pseudorandom given
(C′, C′x+e, s), and thus the modified McEliece public-key is semantically secure.
Formally,

Lemma 5. If the McEliece cryptosystem is one-way with respect to the parame-
ters m(n), μ(n) and Cn, then the modified McEliece PKE is semantically secure
with respect to the same parameters.

The proof of this lemma is essentially the same as the proof of [11, Prop. 5.3.14].
4 In fact, we may allow ε to decrease with n. In such case, we might get a non-negligible

decryption error. This can be fixed (without increasing the rank or the degree of the
encryption function) by repeating the encryption with independent fresh randomness.
Details omitted.



106 B. Applebaum, Y. Ishai, and E. Kushilevitz

Let μ(n) = 2−t(n). Then, we can sample the noise vector e by using the

function e(r) =
(∏t

j=1 rt·(i−1)+j

)m(n)

i=1
where r is a t(n) · m(n) bit string. In

this case, we can write the encryption function of the modified McEliece as
EC′(b, x, r, s) = (C′x + e(r), s, 〈x, s〉 + b).

The rank of each variable of this function is at most 2, and its algebraic
degree is at most t(n). Hence, by Corollary 1, we can encode it by a function
Ê ∈ Localt(n)+1

3 , i.e., the output locality of Ê is t(n)+ 1 and its input locality is
3. In [3, Lem. 7.5] it was shown that randomized encoding preserves the security
of PKE. Namely, if (G, E, D) is a semantically secure PKE then (G, Ê, D̂) is also
an encryption scheme where Ê is an encoding of E, D̂(c) = D(B(c)) and B is
the decoder of the encoding. Hence we have,

Theorem 9. If the McEliece cryptosystem is one-way with respect to to the
parameters m(n), μ(n) = 2−t(n) and Cn, then there exists a semantically secure
PKE whose encryption algorithm is in Localt(n)

3 .

The scheme we construct encrypts a single bit, however we can use concatenation
to derive a PKE for messages of arbitrary (polynomial) length without increas-
ing the input and output locality. Theorem 9 gives a PKE with constant output
locality whenever the noise rate μ is constant. Unfortunately, the binary classi-
cal Goppa Codes, which are commonly used with the McEliece scheme [21], are
known to have an efficient decoding only for subconstant noise rate. Hence, we
cannot use them for the purpose of achieving constant output locality and con-
stant input locality simultaneously. Instead, we suggest using algebraic-geometric
(AG) codes which generalize the classical Goppa Codes and enjoy an efficient
decoding algorithm for constant noise rate. It seems that the use of such codes
does not decrease the security of the McEliece cryptosystem [18].

5 Negative Results for Cryptographic Primitives

In this section we show that cryptographic tasks which require some form of
“non-malleability” cannot be performed by functions with low input locality.
This includes MACs, signatures and non-malleable encryption schemes (e.g.,
CCA2 secure encryptions). We prove our results in the private-key setting (i.e.,
for MAC and symmetric encryption). This makes them stronger as any construc-
tion that gains security in the public-key setting is also secure in the private-key
setting.

We will use the following simple observation.

Lemma 6. Let f : {0, 1}n → {0, 1}s(n) be a function in Locall(n). Then, there
exist a (probabilistic) polynomial-size circuit family {An} such that for every
x ∈ {0, 1}n and i ∈ [n], the output of An on (y = f(x), i, 1n) equals, with
probability 2−l(n), to the string y′ = f(x′) where x′ differs from x only in the
i-th bit. In particular, when l(n) = O(log(n)), the success probability of An is
1/poly(n).



Cryptography with Constant Input Locality 107

Proof. Since f is in Locall(n), the input variable xi affects at most l(n) output
bits. Hence, y and y′ differ in at most l(n) bits. Thus, we can randomly choose
y′ from a set of strings whose size is at most 2l(n). (We assume that the set of
output bits which are affected by the i-th input bit is hardwired into An.) ��

In the full version we show how to get rid of the non-uniformity when f is
polynomial-time computable. We now sketch the impossibility results.

5.1 MACs and Signatures

Let (S, V ) be a MAC scheme, where the randomized signing function S(k, α, r)
computes a signature β on the document α using the (random and secret) key k
and randomness r, and the verification algorithm V (k, α, β) verifies that β is a
valid signature on α using the key k. The scheme is secure (unforgeable) if it is
infeasible to forge a signature in a chosen message attack. Namely, any efficient
adversary that gets an oracle access to the signing process S(s, ·) fails to produce
a valid signature β on a document α (with respect to the corresponding key k) for
which it has not requested a signature from the oracle.5 The scheme is one-time
secure if the adversary is allowed to query the signing oracle only once.

Suppose that the signature function S(k, α, r) has logarithmic input locality
(i.e., S(k, α, r) ∈ LocalO(log(|k|))). Then, by Lemma 6, we can break the scheme
by transforming, with noticeable probability, a valid pair (α, β) of document and
signature into a valid pair (α′, β′) for which α′ and α differ in, say, their first bit.
Since we used a single oracle call, such a scheme cannot be even one-time secure.

Now, suppose that for each fixed key k the signature function Sk(α, r) =
S(k, α, r) has input locality �(n). In this case we cannot use Lemma 6 directly
as we do not know which output bits are affected by the i-th input bit. When
�(n) = c is constant, we can easily overcome this problem. We guess which bits
are affected by, say, the first input bit and then guess their value as in Lemma 6.
This attack succeeds with probability 1/(mc · 2c) = 1/poly(n) where m is the
length of the message (and so is polynomial in n). Again, this shows that the
scheme is not even one-time secure. To summarize:

Theorem 10. Let (S, V ) be a MAC scheme. If S(k, α, r) ∈ LocalO(log(|k|)) or
Sk(α, r) ∈ LocalO(1) for every k, then the scheme is not one-time secure.

5.2 Non-malleable Encryption

Let (E, D) be a private-key encryption scheme, where the encryption function
E(k, m, r) computes a ciphertext c encrypting the message m using the (random
and secret) key k and randomness r, and the decryption algorithm D(k, c, r)
decrypts the ciphertext c that was encrypted under the key k. Roughly speak-
ing, non-malleability of an encryption scheme guarantees that it is infeasible to
modify a ciphertext c into a ciphertext c′ of a message related to the decryption
of c. In the full version we prove the following theorem:
5 When querying the signing oracle, the adversary chooses only the message and is not

allowed to choose the randomness which the oracle uses to produce the signature.



108 B. Applebaum, Y. Ishai, and E. Kushilevitz

Theorem 11. Let (E, D) be a private-key encryption scheme. If E(k, m, r) ∈
LocalO(log(|k|)) or Ek(m, r) ∈ LocalO(1) for every k, then the scheme is malleable
with respect to an adversary that has no access to neither the encryption oracle
nor the decryption oracle. If (G, E, D) is a public-key encryption scheme and
Ek(m, r) ∈ LocalO(log(|k|)) for every k, then the scheme is malleable.

6 Negative Results for Randomized Encodings

In the following, we prove some negative results regarding randomized encoding
with low input locality. In Section 6.1, we provide a necessary condition for a
function to have such an encoding. We use this condition to prove that some
simple (NC0) functions cannot be encoded by functions having sub-linear input
locality (regardless of the complexity of the encoding). This is contrasted with
the case of constant output locality, where it is known [17,3] that every function
f can be encoded by a function f̂ whose output locality is 4 (and whose com-
plexity is polynomial in the size of the branching program that computes f). In
Section 6.2 we show that, although linear functions do admit efficient constant-
input encoding, they do not admit an efficient universal constant-input encoding.
That is, one should use different decoders and simulators for each linear function.

6.1 A Necessary Condition for Encoding with Low Input Locality

Let f : {0, 1}n → {0, 1}l be a function. For a string x ∈ {0, 1}n, let x⊕i denote
the string x with the i-th bit flipped. Define an undirected graph Gi over Im(f)
such that there is an edge between the strings y and y′ if there exists x ∈ {0, 1}n

such that f(x) = y and f(x⊕i) = y′. Let f̂ : {0, 1}n × {0, 1}m → {0, 1}s be a
(perfectly correct and private) randomized encoding of f with decoder B and
simulator S. Let ti be the number of output bits in f̂ which are affected by the
input variable xi. We rely on the following lemma whose proof is omitted and
deferred to the full version of this paper.

Lemma 7. The size of each connected component of Gi is at most 2ti .

We conclude that a function f : {0, 1}n → {0, 1}l can be perfectly encoded by a
function f̂ : {0, 1}n × {0, 1}m → {0, 1}s in Localt only if for every 1 ≤ i ≤ n the
size of the connected components of Gi is at most 2t. This shows that even some
very simple functions do not admit an encoding with constant input locality.
Consider, for example, the function

f(x1, . . . , xn) = x1 · (x2, . . . , xn) = (x1 · x2, x1 · x3, . . . , x1 · xn).

For every y ∈ Im(f) = {0, 1}n−1 it holds that f(1, y) = y and f(0, y) = 0n−1.
Hence, every vertex in G1 is a neighbor of 0n−1 and the size of the connected
component of G1 is 2n−1. Thus, the input locality of x1 in any perfect encoding
of this function is n − 1. (Note that this matches the results of Section 3 since
rank(x1) = n − 1.)



Cryptography with Constant Input Locality 109

6.2 Impossibility of Universal Encoding for Linear Functions

For a class C of functions that map n-bits into l-bits, we say that C has a
universal encoding in the class Ĉ if there exists a universal simulator S and a
universal decoder B such that, for every function fz ∈ C, there is an encoding
f̂z ∈ Ĉ which is private and correct with respect to the simulator S and the
decoder B.

We show that, although linear functions do admit encodings with constant in-
put locality, they do not admit such a universal encoding. Suppose that the class
of linear (equivalently affine) functions had a universal encoding with constant
input locality. Then, by the results of [3], we would have a one-time secure MACs
(S, V ) whose signing algorithm has constant input locality for every fixed key;
i.e., Sk(α, r) ∈ LocalO(1) for every fixed key k. However, the results of Section 5.1
rule out the existence of such a scheme. In the full version of this paper, we give
a more direct proof to the impossibility of obtaining a universal constant-input
encoding for linear functions. This proof is based on the notions presented in
Section 6.1.

Acknowledgments. We thank Ronny Roth for helpful discussions.

References

1. Alekhnovich, M.: More on average case vs approximation complexity. In: Proc.
44th FOCS, pp. 298–307 (2003)

2. Applebaum, B., Ishai, Y., Kushilevitz, E.: Computationally private randomizing
polynomials and their applications. Computional Complexity 15(2), 115–162 (2006)

3. Applebaum, B., Ishai, Y., Kushilevitz, E.: Cryptography in NC0. SIAM J. Com-
put. 36(4), 845–888 (2006)

4. Applebaum, B., Ishai, Y., Kushilevitz, E.: On pseudorandom generators with linear
stretch in NC0. In: Proc. 10th Random (2006)

5. Blum, A., Furst, M., Kearns, M., Lipton, R.J.: Cryptographic primitives based on
hard learning problems. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773,
pp. 278–291. Springer, Heidelberg (1994)

6. Cook, S.A.: The complexity of theorem-proving procedures. In: STOC ’71: Proceed-
ings of the third annual ACM symposium on Theory of computing, pp. 151–158.
ACM Press, New York (1971)

7. Cryan, M., Miltersen, P.B.: On pseudorandom generators in NC0. In: Sgall, J.,
Pultr, A., Kolman, P. (eds.) MFCS 2001. LNCS, vol. 2136, pp. 272–284. Springer,
Heidelberg (2001)

8. Feige, U., Killian, J., Naor, M.: A minimal model for secure computation (extended
abstract). In: Proc. of the 26th STOC, pp. 554–563 (1994)

9. Goldreich, O.: Candidate one-way functions based on expander graphs. Electronic
Colloquium on Computational Complexity (ECCC), 7(090) (2000)

10. Goldreich, O.: Foundations of Cryptography: Basic Tools. Cambridge University
Press, Cambridge (2001)

11. Goldreich, O.: Foundations of Cryptography: Basic Applications. Cambridge Uni-
versity Press, Cambridge (2004)

12. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J.
of the ACM. 33, 792–807 (1986)



110 B. Applebaum, Y. Ishai, and E. Kushilevitz

13. Goldreich, O., Krawczyk, H., Luby, M.: On the existence of pseudorandom gener-
ators. SIAM J. Comput. 22(6), 1163–1175 (1993)

14. Goldreich, O., Levin, L.: A hard-core predicate for all one-way functions. In: Proc.
21st STOC, pp. 25–32 (1989)

15. Impagliazzo, R., Levin, L.A., Luby, M.: Pseudorandom generation from one-way
functions. In: Proc. 21st STOC, pp. 12–24 (1989)

16. Ishai, Y., Kushilevitz, E.: Randomizing polynomials: A new representation with
applications to round-efficient secure computation. In: Proc. 41st FOCS, pp. 294–
304 (2000)

17. Ishai, Y., Kushilevitz, E.: Perfect constant-round secure computation via perfect
randomizing polynomials. In: Widmayer, P., Triguero, F., Morales, R., Hennessy,
M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 244–256.
Springer, Heidelberg (2002)

18. Janwa, H., Moreno, O.: Mceliece public key cryptosystems using algebraic-
geometric codes. Des. Codes Cryptography 8(3), 293–307 (1996)

19. Kilian, J.: Founding cryptography on oblivious transfer. In: Proc. 20th STOC, pp.
20–31 (1988)

20. Linial, N., Mansour, Y., Nisan, N.: Constant depth circuits, fourier transform, and
learnability. J. ACM 40(3), 607–620 (1993)

21. McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. Tech-
nical Report DSN PR 42-44, Jet Prop. Lab (1978)

22. Mossel, E., Shpilka, A., Trevisan, L.: On ε-biased generators in NC0. In: Proc. 44th
FOCS, pp. 136–145 (2003)

23. Naor, M., Reingold, O.: Synthesizers and their application to the parallel con-
struction of pseudo-random functions. J. of Computer and Systems Sciences 58(2),
336–375 (1999)

24. Papadimitriou, C., Yannakakis, M.: Optimization, approximation, and complexity
classes. J. of Computer and Systems Sciences 43, 425–440 (1991)

25. Sudan, M.: Algorithmic introduction to coding theory - lecture notes (2002),
http://theory.csail.mit.edu/∼madhu/FT01/

26. Varshamov, R.: Estimate of the number of signals in error correcting codes. Dok-
lady Akademii Nauk SSSR 117, 739–741 (1957)

http://theory.csail.mit.edu/~madhu/FT01/ 


Universally-Composable Two-Party
Computation in Two Rounds

Omer Horvitz� and Jonathan Katz��

Dept. of Computer Science, University of Maryland
{horvitz,jkatz}@cs.umd.edu

Abstract. Round complexity is a central measure of efficiency, and
characterizing the round complexity of various cryptographic tasks is of
both theoretical and practical importance. We show here a universally-
composable (UC) protocol (in the common reference string model) for
two-party computation of any functionality, where both parties receive
output, using only two rounds. (This assumes honest parties are allowed
to transmit messages simultaneously in any given round; we obtain a
three-round protocol when parties are required to alternate messages.)
Our results match the obvious lower bounds for the round complexity of
secure two-party computation under any reasonable definition of security,
regardless of what setup is used. Thus, our results establish that secure
two-party computation can be obtained under a commonly-used setup
assumption with maximal security (i.e., security under general composi-
tion) in a minimal number of rounds.

To give but one example of the power of our general result, we observe
that as an almost immediate corollary we obtain a two-round UC blind
signature scheme, matching a result by Fischlin at Crypto 2006 (though,
in contrast to Fischlin, we use specific number-theoretic assumptions).

1 Introduction

Round complexity is an important measure of efficiency for cryptographic proto-
cols, and much research has focused on trying to characterize the round complex-
ity of various tasks such as zero knowledge [GK96a,GK96b], Byzantine agreement
[PSL80, FL82, FM97, GM98], Verifiable Secret-Sharing [GIKR01, FGG+06], and
secure two-party/multi-party computation [Yao86,BMR90,IK00,Lin01,GIKR02,
KOS03,KO04]. (Needless to say, this list is not exhaustive.) Here, we focus on the
goal of secure two-party computation. Feasibility results in this case are clearly
of theoretical importance, both in their own right and because two-party compu-
tation may be viewed as the “base case” for secure computation without honest
majority. Results in this case are also of potential practical importance since many
interesting cryptographic problems (zero knowledge, commitment, and — as we
� Research supported by the U.S. Army Research Laboratory and the U.K. Ministry

of Defence under agreement #W911NF-06-3-0001.
�� Research supported by NSF CAREER award #0447075 and U.S.-Israel Binational

Science Foundation grant #2004240. A portion of this work was done at IPAM.

A. Menezes (Ed.): CRYPTO 2007, LNCS 4622, pp. 111–129, 2007.
c© International Association for Cryptologic Research 2007



112 O. Horvitz and J. Katz

will see — blind signatures) can be solved by casting them as specific instances of
secure two-party computation.

The round complexity of secure two-party computation in the stand-alone
setting has been studied extensively. Yao [Yao86] gave a constant-round pro-
tocol for the case when parties are honest-but-curious. Goldreich, Micali, and
Wigderson [GMW87, Gol04] showed how to obtain a protocol tolerating mali-
cious adversaries; however, their protocol does not run in a constant number
of rounds. Lindell [Lin01] gave the first constant-round protocol for secure two-
party computation in the presence of malicious adversaries. Katz and Ostro-
vsky [KO04] showed a five-round protocol for malicious adversaries, and proved
a lower bound showing that five rounds are necessary (for black-box proofs of
security) when no setup is assumed. (Both the upper and lower bound assume
parties talk in alternating rounds.) Two-round protocols for secure two-party
computation, where only a single player receives output, have been studied in,
e.g., [SYY99,CCKM00]; in particular, Cachin et al. [CCKM00] show a two-round
protocol for computing arbitrary functionalities in this case assuming a common
reference string (CRS) available to all participating parties.

It is by now well known that protocols secure when run in a stand-alone
setting may no longer be secure when many copies of the protocol are run con-
currently in an arbitrary manner (possibly among different parties), or when run
alongside other protocols in a larger network. To address this issue, researchers
have proposed models and definitions that would guarantee security in exactly
such settings [PW00, Can01]. In this work, we adopt the model of universal
composability (UC) introduced by Canetti [Can01].

The initial work of Canetti showed broad feasibility results for UC multi-
party computation in the presence of a strict majority of honest players. Un-
fortunately, subsequent work of Canetti and Fischlin [CF01] showed that even
for the case of two parties, one of whom may be malicious, there exist func-
tionalities that cannot be securely computed within the UC framework. Further
characterization of all such “impossible-to-realize” two-party functionalities is
given by [CKL06]. These impossibility results hold for the “plain” model; in
contrast, it is known that these negative results can be bypassed if one is willing
to assume some sort of “trusted setup”. Various forms of trusted setup have
been explored [CF01,BCNP04,HMU05,CDPW07,Katz07], the most common of
which is the availability of a CRS to all parties in the network. Under this as-
sumption, universally composable multi-party computation of any (well-formed)
functionality is possible for any number of corrupted parties [CLOS02].

The round complexity of UC two-party computation has not been explored
in detail. The two-party protocol given in [CLOS02] does not run in a constant
number of rounds, though this may be due at least in part to the fact that the goal
of their work was security under adaptive corruptions (where corruptions may
happen at any point during the execution of the protocol, and not necessarily at
its outset, as is the case with passive corruptions). Indeed, it is a long-standing
open question to construct a constant-round protocol for adaptively-secure two-
party computation even in the stand-alone setting. Jarecki and Shmatikov [JS07]



Universally-Composable Two-Party Computation in Two Rounds 113

recently showed a four-round protocol, assuming a CRS, for functionalities that
generate output for only one of the parties; they also show a two-round protocol
in the random oracle model. Using a standard transformation [Gol04], their
protocols can be used to compute two-output functionalities at the cost of an
additional round.

Our Results. We show a protocol for securely realizing any (well-formed) two-
party functionality in the UC framework using only two rounds of communi-
cation; we stress that both parties may receive output. In our work, we allow
both parties to simultaneously send a message in any given round (i.e., when
both parties are honest), but prove security against a rushing adversary who
may observe the other party’s message in a given round before sending his own.
Although this communication model is non-standard in the two-party setting,
it matches the convention used in the study of multi-party protocols and allows
for a more accurate characterization of the round complexity. Our result holds
under any one of various standard number-theoretic assumptions, and does not
rely on random oracles. We assume a CRS but, as we have seen, some form of
setup is necessary for two-party computation to be possible. We consider sta-
tic corruptions only; again, recall that even in the stand-alone setting it is not
known how to achieve adaptive security in constant rounds.

We achieve our result via the following steps:

– We first show a two-round protocol (where only one party speaks in each
round) for secure computation of any single-output functionality. This proto-
col is similar to that of Cachin et al. [CCKM00], though our protocol is secure
in the UC framework. The protocol relies on Yao’s “garbled circuit” tech-
nique [Yao86], the two-round oblivious transfer protocol of Tauman [Tau05],
and the non-interactive zero-knowledge proofs of De Santis et al. [DDO+01].
Using standard techniques [Gol04, Propositions 7.2.11 and 7.4.4], this imme-
diately implies a three-round protocol (where only one party speaks in each
round) for any two-output functionality.

– As our main result, we show how two instances of our initial protocol can
be run “in parallel” so as to obtain a two-round protocol (where now both
parties speak1 in each round) even if both parties are to receive output. The
challenging aspect here is to “bind” the two executions so that each party
uses the same input in each of the two protocol instances.

It is not hard to see that one-round secure computation, even if both parties
are allowed to speak simultaneously, is impossible under any reasonable defin-
ition of security and regardless of any global setup assumption; a similar ob-
servation holds for two-round protocols when parties speak in alternate rounds.
(It may be possible, however, to obtain such protocols given some preprocessing
phase run by the two parties.) Thus, interestingly, the round complexity of our
protocols is optimal for any setting of secure computation and not “just” for the
setting of universal composability with a CRS.

1 We stress again that our security analysis takes into account a rushing adversary.



114 O. Horvitz and J. Katz

The low round complexity of our protocol implies round-efficient solutions
for various cryptographic tasks. To give an example, we show that blind signa-
tures [Cha82] can be reduced to secure computation of a particular functionality
(here, we simplify the prior result of [JL97] to the same effect); thus, as almost an
immediate corollary of our result we obtain a two-round blind signature proto-
col, matching a recent result by Fischlin [Fis06]. Our result has certain technical
advantages as compared to Fischlin’s work: our scheme can be applied to any
underlying signature scheme and achieves strong unforgeability “for free” (as
long as the underlying signature scheme does); in contrast, Fischlin’s result ap-
plies to a specific signature scheme and achieves strong unforgeability only with
significant additional complications. On the other hand, Fishlin’s result holds
under more general assumptions.

As a second example, we observe that the evaluation of a trust policy, held
by a server, on a set of credentials, held by a client, can be cast as an instance
of two-party computation. Applying our protocol yields a solution that provides
input privacy to both the client and the server in a minimal number of rounds
while preserving security under general composition, a combination of traits not
present in current solutions (see [BHS04, LDB03, NT05, LL06, BMC06, FAL06]
and references therein). The full version of this work contains a more detailed
discussion [Hor07].

2 Framework, Tools, and Assumptions

Preliminaries. Let X = {X(k, z)}k∈N,z∈{0,1}∗ denote an ensemble of binary
distributions, where X(k, z) represents the output of a probabilistic, polynomial
time (PPT) algorithm on a security parameter k and advice z (the ensemble may
be parameterized by additional variables, and the algorithm may take additional
inputs). We say that ensembles X, Y are computationally indistinguishable, and
write X

c≈ Y , if for any a ∈ N there exists ka ∈ N such that for all k > ka, for all
z (and for all values any additional variables parameterizing the ensemble may
take), we have |Pr[X(k, z) = 1] − Pr[Y (k, z) = 1]| < k−a.

Universally Composable Security. We work in the Universal Composability
(UC) framework of [Can01]. Our focus is on the two-party, static corruption
setting. We highlight a few features of the definition we use that are standard
but not universal: (1) The real model offers authenticated communication and
universal access to a common reference string. Formally, this corresponds to the
(FAUTH, FCRS)-hybrid model of [Can01]. (2) Message delivery in both the real
and ideal models is carried out by the adversary (contrast with [Can01], where
messages between the dummy parties and the ideal functionality in the ideal
model are delivered immediately). (3) The ideal functionality is not informed of
party corruption by the ideal adversary. We make this choice purely to simplify
the exposition; our results extend to the more general setting by the same means
employed in [CLOS02] (see section 3.3 there).



Universally-Composable Two-Party Computation in Two Rounds 115

Universally Composable Zero Knowledge. We use a standard definition of
the ideal zero-knowledge functionality FZK, following the treatment of [CLOS02].
The functionality, parameterized by a relation R, accepts a statement x to be
proven, along with a witness w, from a prover ; it then forwards x to a verifier
if and only if R(x, w) = 1 (i.e., if and only if it is a correct statement). Looking
ahead, our constructions will be presented in the FZK-hybrid model.

For the case of static adversaries, De Santis et. al. [DDO+01] give a non-
interactive protocol (i.e., consists of a single message from the prover to the ver-
ifier) that UC realizes FZK for any NP relation (see also a discussion in [CLOS02,
Section 6]); the protocol is given in the CRS model and assumes the existence
of enhanced trapdoor-permutations (see [Gol04, Appendix C.1] for a discussion
of this assumption).

The Decisional Diffie-Hellman (DDH) Assumption. We use a two-round
oblivious transfer (OT) protocol as a building block in our constructions; any
OT protocol based on smooth projective hashing for hard subset-membership
problems per Tauman’s framework [Tau05] will do. To simplify the exposition,
we describe our constructions in terms of a protocol based on the Decisional
Diffie-Hellman (DDH) assumption [DH76] which we recall here.

A group generator GroupGen is a PPT which on input k ∈ N outputs a descrip-
tion of a cyclic group G of prime order q, the order q with |q| ≥ k, and a generator
g ∈ G. Looking ahead, we will want to associate messages of length k with group
elements; for simplicity we thus assume that |q| ≥ k (alternatively, we could use
hashing). We say that the DDH problem is hard for GroupGen if for any PPT
algorithm A, the following ensembles are computationally indistinguishable:

(1)
{

(G, q, g) R← GroupGen(k); a, b
R← Zq : A(k, z,G, q, g, ga, gb, gab)

}
k∈N,z∈{0,1}∗

(2)
{

(G, q, g) R← GroupGen(k); a, b, c
R← Zq : A(k, z,G, q, g, ga, gb, gc)

}
k∈N,z∈{0,1}∗

.

Yao’s “Garbled Circuit” Technique. Our protocols use the “garbled-circuit”
technique of Yao [Yao86,LP04]; we follow [KO04] in abstracting the technique,
and refer the reader to [LP04] for a full account. Let Fk be a description of a
two-input/single-output circuit whose inputs and output are of length k (the
technique easily extends to lengths polynomial in k). Yao’s results provide two
PPT algorithms:

1. Yao1 is a randomized algorithm which takes as input a security parameter
k ∈ N, a circuit Fk, and a string y ∈ {0, 1}k. It outputs a garbled circuit
Circuit and input-wire labels {Zi,σ}i∈{1,...,k},σ∈{0,1}.

2. Yao2 is a deterministic algorithm which takes as input a security para-
meter k ∈ N, a “garbled-circuit” Circuit and values {Zi}i∈{1,...,k} where

Zi ∈ {0, 1}k. It outputs either an invalid symbol ⊥, or a value v ∈ {0, 1}k.

We informally describe how the above algorithms may be used for secure com-
putation when the participating parties are honest-but-curious. Let P1 hold input



116 O. Horvitz and J. Katz

x = x1 . . . xk ∈ {0, 1}k, P2 hold input y ∈ {0, 1}k, and assume P1 is to obtain
the output Fk(x, y). First, P2 computes (Circuit, {Zi,σ}i,σ) R← Yao1(k, Fk, y) and
sends Circuit to P1. Then the players engage in k instances of Oblivious Transfer :
in the ith instance, P1 enters with input xi, P2 enters with input (Zi,0, Zi,1), and P1

obtains Zi
def= Zi,xi (P2 learns “nothing” about xi, and P1 learns “nothing” about

Zi,1−xi). P1 then computes v ← Yao2(Circuit, {Zi}i), and outputs v.
With the above in mind, we describe the properties required of Yao1, Yao2.

We first require correctness : for any Fk, y, any output (Circuit, {Zi,σ}i,σ) of
Yao1(k, Fk, y) and any x, we have Fk(x, y) = Yao2(k, Circuit, {Zi,xi}i). The algo-
rithms also satisfy the following notion of security: there exists a PPT simulator
Yao-Sim which takes k, Fk, x, v as inputs, and outputs Circuit and a set of k input-
wire labels {Zi}i; furthermore, for any PPT A, the following two ensembles are
computationally indistinguishable:

(1)
{

(Circuit, {Zi,σ}i,σ) R← Yao1(k, Fk, y) : A(k, z, x, y,Circuit, {Zi,xi}i)
}

k∈N,z∈{0,1}∗

x,y∈{0,1}k

(2)
{

v = Fk(x, y) : A(k, z, x, y,Yao-Sim(k, Fk, x, v))
}

k∈N,z∈{0,1}∗

x,y∈{0,1}k

.

3 Round-Efficient UC Two-Party Computation

We begin by describing a two-round (where parties take turns in speaking), UC
protocol for computing functionalities that provide output for only one of the
parties. The protocol may be compiled into one that UC computes functional-
ities providing output to both parties at the cost of an additional round, using
standard tools. We then show how to bind two instances of the initial protocol
so as to obtain a two-round (where both parties may speak at any given round),
UC protocol for computing functionalities that provide output to both parties.
We conclude by showing that two rounds are necessary.

Our constructions use UC zero-knowledge, Yao’s garbled circuit technique, and
two-message oblivious transfer (OT) as building blocks. As mentioned earlier, any
OTprotocol based on smooth projective hashing for a hard subset-membership prob-
lem perTauman’s framework [Tau05]will do.We stress that suchOTprotocols sat-
isfy a weaker notion of security than the one needed here; we use zero-knowledge
to lift the security guarantees to the level we need. To simplify the exposition, we
use a protocol from the framework based on the DDH assumption, simplifying
a construction due to Naor and Pinkas [NP01]. We remark that other protocols
conforming to Tauman’s framework are known to exist under the DDH assump-
tion [AIR01], under the Nth-residuosity assumption and under both the Quadratic-
Residuosity assumption and the Extended Riemann hypothesis [Tau05].

3.1 A Two-Round Protocol for Single-Output Functionalities

Let F = {Fk}k∈N
be a non-reactive, polynomial-sized, two-party functionality

that provides output to a single party, say P1. To simplify matters, we assume



Universally-Composable Two-Party Computation in Two Rounds 117

that F is deterministic; randomized functionalities can be handled using stan-
dard tools [Gol04, Prop. 7.4.4]. Without loss of generality, assume that Fk takes
two k-bit inputs and produces a k-bit output (the protocol easily extends to
input/output lengths polynomial in k). Let GroupGen be a group generator as
in Sect. 2.

Informally, the first round of our protocol is used to set up k instances of
oblivious transfer. The second round is used to communicate a “garbled circuit”
per Yao’s construction, and for completing the oblivious-transfer of circuit input-
wire labels that correspond to P1’s input (cf. Sect. 2). To gain more intuition,
we sketch a single oblivious transfer instance, assuming both parties are honest
(the actual construction accounts for possibly malicious behavior by the parties
with the aid of zero-knowledge). Let G be a group and g a generator, provided by
GroupGen. To obtain the label corresponding to an input xi for wire i, P1 picks
elements a, b uniformly at random from G and sends P2 a tuple (u = ga, v =
gb, w = gc), where c is set to ab if xi = 0, to (ab − 1) otherwise. Note that if the
DDH problem is hard for GroupGen, P2 will not be able to tell a tuple generated
for xi = 0 from one generated for xi = 1, preserving P1’s privacy. Let Zi,σ be the
label corresponding to input bit σ for wire i. P2 selects r0, s0, r1, s1 uniformly at
random from G, and sends P1 two pairs as follows:

(K0 = ur0 · gs0 , C0 = wr0 · vs0 · Zi,0) ; and
(K1 = ur1 · gs1 , C1 = (g · w)r1 · vs1 · Zi,1).

It is easy to verify that P1 can obtain Zi,xi by computing K−b
xi

· Cxi . More-
over, it can be shown that the tuple (K1−xi , C1−xi) is uniformly distributed
(over the choice of r1−xi , s1−xi), and therefore P1 “learns nothing” (information-
theoretically) about the label corresponding to input (1−xi) for wire i, preserving
P2’s privacy.

In the following, we describe our two-round protocol πF for UC realizing F
in the FZK-hybrid model. In our description, we always let i range from 1 to k
and σ range from 0 to 1.

CommonReferenceString:Onsecurityparameterk ∈ N, theCRSis(G, q, g) R←
GroupGen(k).

First Round: P1 on inputs k ∈ N, x = x1 . . . xk ∈ {0, 1}k and sid, proceeds as
follows:

1. For every i, chooses ai, bi uniformly at random from Zq, sets:

ci =
{

aibi xi = 0
aibi − 1 otherwise,

and lets ui = gai , vi = gbi , wi = gci .
2. P1 sends

(ZK-prover, sid ◦ 1, ({ui, vi, wi}i , (G, q, g), k), (x, {ai, bi}i))



118 O. Horvitz and J. Katz

to F1
ZK, where F1

ZK is parameterized by the relation:

R1 =

��
�(({ui, vi, wi}i , (G, q, g), k), (x, {ai, bi}i))

������
∀i, ui = gai , vi = gbi , wi = gci ,

where ci =
�

aibi xi = 0
aibi − 1 otherwise

��
�

and is set up such that P1 is the prover and P2 is the verifier.

Second Round: P2, on inputs k ∈ N, y = y1 . . . yk ∈ {0, 1}k and sid, and upon
receiving

(ZK-proof, sid ◦ 1, ({ui, vi, wi}i , (G′, q′, g′), k′))
from F1

ZK, first verifies that G′ = G, q′ = q, g′ = g and k′ = k. If any of these
conditions fail, P2 ignores the message. Otherwise, it proceeds as follows:

1. Generates a “garbled circuit” (cf. Sect. 2) for Fk, based on its own input y.
This involves choosing random coins Ω and computing (Circuit, {Zi,σ}i,σ) ←
Yao1(k, Fk, y; Ω).

2. For every i and σ, chooses ri,σ , si,σ uniformly at random from Zq, and sets:

Ki,0 = u
ri,0
i · gsi,0 , Ci,0 = w

ri,0
i · vsi,0

i · Zi,0;
Ki,1 = u

ri,1
i · gsi,1 , Ci,1 = (g · wi)ri,1 · v

si,1
i · Zi,1.

3. Sends(
ZK-prover, sid ◦ 2,

(
Circuit, {Ki,σ, Ci,σ}i,σ

(G, q, g), k, {ui, vi, wi}i

)
,

(
y, Ω, {Zi,σ}i,σ

{ri,σ, si,σ}i,σ

))

to F2
ZK, where F2

ZK is parameterized by the relation:

R2 =

8>><
>>:

0
BB@

Circuit
{Ki,σ, Ci,σ}i,σ

(G, q, g), k
{ui, vi, wi}i

,

y, Ω
{Zi,σ}i,σ

{ri,σ, si,σ}i,σ

1
CCA

˛̨
˛̨
˛̨
˛̨

(Circuit, {Zi,σ}i,σ) = Yao1(k, Fk, y; Ω)
∧∀i,

Ki,0 = u
ri,0
i · gsi,0 , Ci,0 = w

ri,0
i · v

si,0
i · Zi,0;

Ki,1 = u
ri,1
i · gsi,1 , Ci,1 = (g · wi)ri,1 · v

si,1
i · Zi,1

9>>=
>>;

and is set up such that P2 is the prover and P1 is the verifier.

Output Computation: P1, upon receipt of message

(ZK-proof, sid ◦ 2, (Circuit, {Ki,σ, Ci,σ}i,σ , (G′, q′, g′), k′, {u′i, v′i, w′i}i))

from F2
ZK, first verifies that G′ = G, q′ = q, g′ = g, k′ = k and {u′i, v

′
i, w
′
i}i =

{ui, vi, wi}i. If any of these conditions fail, P1 ignores the message. Otherwise,

it completes the protocol by computing Zi
def= K−bi

i,xi
· Ci,xi , computing v ←

Yao2(k, Circuit, {Zi}i) and reporting v as output if v �= ⊥.

Concrete Round Complexity. When composed with the non-interactive pro-
tocol of De Santis et al. [DDO+01] UC-realizing FZK, our protocol takes two



Universally-Composable Two-Party Computation in Two Rounds 119

communication rounds. Its security now additionally rests on the existence of
enhanced trapdoor permutations.

Security. The protocol may be viewed as a degenerate version of the construc-
tion we present next, and its security follows in a straightforward manner from
security of the latter.

3.2 A Two-Round Protocol for Two-Output Functionalities

Let F =
{

Fk
def= (F 1

k , F 2
k )

}
k∈N

be a non-reactive, polynomial-sized, two-party

functionality such that P1 wishes to obtain F 1
k (x, y) and P2 wishes to obtain

F 2
k (x, y) when P1 holds x and P2 holds y. Without loss of generality, assume

once more that F is deterministic; that x, y and the outputs of F 1
k , F 2

k are k-bit
strings; and that GroupGen is as in Sect. 2.

The protocol of the preceding section provides means to securely compute
a functionality that provides output to one of the parties, in two rounds. To
securely-compute our two-output functionality Fk = (F 1

k , F 2
k ), we run one in-

stance of that protocol such that P1 receives F 1
k (with a first-round message

originating from P1 and a second-round message from P2), and a second in-
stance such that P2 receives F 2

k (with a first-round message originating from
P2 and a second-round message from P1); if we allow the parties to transmit
messages simultaneously in any given round, this yields a two-round protocol.
All that’s left to ensure is that each party enters both instances of the protocol
with the same input. Here, we have the relation parameterizing the second round
zero-knowledge functionality enforce this condition2.

Below, we describe our two-round protocol πF for UC realizing F in the FZK-
hybrid model when parties are allowed to send messages simultaneously in any
given round. We describe our protocol from the perspective of P1; P2 behaves
analogously (i.e., the protocol is symmetric). In the description, we always let i
range from 1 to k and σ range from 0 to 1.

CommonReferenceString:Onsecurityparameterk ∈ N, theCRSis(G, q, g) R←
GroupGen(k).

First Round: P1 on inputs k ∈ N, x = x1 . . . xk ∈ {0, 1}k and sid, proceeds as
follows:

1. For every i, chooses ai, bi uniformly at random from Zq, sets:

ci =
{

aibi xi = 0
aibi − 1 otherwise,

2 Alternatively, we can make the following modifications to the initial protocol: each
party will add a commitment to its input to its original protocol message, and modify
its zero-knowledge assertion to reflect that it has constructed its initial message with
an input that is consistent with the commitment. Two instances of this protocol
can now be run in parallel as above without further modifications (note that the
second-round commitments become redundant). We omit the details here.



120 O. Horvitz and J. Katz

and lets ui = gai , vi = gbi , wi = gci .
2. Sends

(ZK-prover, sid ◦ 1 ◦ P1, ({ui, vi, wi}i , (G, q, g), k), (x, {ai, bi}i))

to F1,P1→P2
ZK , where F1,P1→P2

ZK is parameterized by the relation:

R1 =

⎧⎪⎨
⎪⎩(({ui, vi, wi}i , (G, q, g), k), (x, {ai, bi}i))

∣∣∣∣∣∣∣
∀i, ui = gai , vi = gbi , wi = gci ,

where ci =

{
aibi xi = 0
aibi − 1 otherwise

⎫⎪⎬
⎪⎭

and is set up such that P1 is the prover and P2 is the verifier.

Second Round: Upon receiving the symmetric first-round message

(ZK-proof, sid ◦ 1 ◦ P2, ({ūi, v̄i, w̄i}i , (G′, q′, g′), k′))

from F1,P2→P1
ZK (defined analogously to F1,P1→P2

ZK using the relation R1, but set
up such that P2 is the prover and P1 is the verifier), P1 verifies that G′ = G, q′ =
q, g′ = g and k′ = k. If any of these conditions fail, P1 ignores the message.
Otherwise, it proceeds as follows:

1. Generates a “garbled circuit” (cf. Sect. 2) for F 2
k , based on its own input x.

This involves choosing random coins Ω and computing (Circuit, {Zi,σ}i,σ) ←
Yao1(k, F 2

k , x; Ω).
2. For every i and σ, chooses ri,σ , si,σ uniformly at random from Zq, and sets:

Ki,0 = ū
ri,0
i · gsi,0 , Ci,0 = w̄

ri,0
i · v̄si,0

i · Zi,0;
Ki,1 = ū

ri,1
i · gsi,1 , Ci,1 = (g · w̄i)ri,1 · v̄

si,1
i · Zi,1.

3. Sends	

ZK-prover, sid ◦ 2 ◦ P1,

	

 Circuit, {Ki,σ, Ci,σ}i,σ

(G, q, g), k, {ūi, v̄i, w̄i}i

{ui, vi, wi}i

�
� ,

	

x, Ω, {Zi,σ}i,σ

{ri,σ, si,σ}i,σ

{ai, bi}i

�
�
�
�

to F2,P1→P2
ZK , where F2,P1→P2

ZK is parameterized by the relation:

R2 =

8>>>>>>>><
>>>>>>>>:

0
BBBB@

Circuit
{Ki,σ, Ci,σ}i,σ

(G, q, g), k
{ūi, v̄i, w̄i}i

{ui, vi, wi}i

,

x, Ω
{Zi,σ}i,σ

{ri,σ, si,σ}i,σ

{ai, bi}i

1
CCCCA

˛̨
˛̨
˛̨
˛̨
˛̨
˛̨
˛̨

(Circuit, {Zi,σ}i,σ) = Yao1(k, F 2
k , x; Ω)

∧ ∀i,
Ki,0 = ū

ri,0
i · gsi,0 , Ci,0 = w̄

ri,0
i · v̄

si,0
i · Zi,0

Ki,1 = ū
ri,1
i · gsi,1 , Ci,1 = (g · w̄i)ri,1 · v̄

si,1
i · Zi,1

∧ ∀i, ui = gai , vi = gbi , wi = gci ,

where ci =
j

aibi xi = 0
aibi − 1 otherwise

9>>>>>>>>=
>>>>>>>>;

and is set up such that P1 is the prover and P2 is the verifier.



Universally-Composable Two-Party Computation in Two Rounds 121

Output Computation: Upon receiving the symmetric second-round message

(ZK-proof, sid◦2◦P2, (Circuit,

K̄i,σ, C̄i,σ

�
i,σ

, (G′, q′, g′), k′,

u′

i, v
′
i, w

′
i

�
i
,

ū′

i, v̄
′
i, w̄

′
i

�
i
))

from F2,P2→P1
ZK (defined analogously to F2,P1→P2

ZK using the relation R2, but set
up such that P2 is the prover and P1 is the verifier), P1 verifies that G′ =
G, q′ = q, g′ = g, k′ = k, that {u′i, v

′
i, w
′
i}i = {ui, vi, wi}i and that {ū′i, v̄

′
i, w̄
′
i}i =

{ūi, v̄i, w̄i}i. If any of these conditions fail, P1 ignores the message. Otherwise,

it completes the protocol by computing Z̄i
def= K̄−bi

i,xi
· C̄i,xi , computing v ←

Yao2(k, Circuit,
{
Z̄i

}
i
) and reporting v as output if v �= ⊥.

Concrete Round Complexity. As in our first protocol, this takes two rounds
when composed with the protocol of De Santis et al. [DDO+01] realizing FZK;
the security of our protocols now additionally relies on the existence of enhanced
trapdoor permutations.

Theorem 1. Assuming that the DDH problem is hard for GroupGen, the above
protocol UC-realizes F in the FZK-hybrid model (in the presence of static adver-
saries).

Let A be a (static) adversary operating against πF in the FZK-hybrid model. To
prove the theorem, we construct a simulator S such that no environment Z can
tell with a non-negligible probability whether it is interacting with A and P1, P2

running πF in the FZK-hybrid model or with S and P̃1, P̃2 in the ideal process
for F . S will internally run a copy of A, “simulating” for it an execution of
πF in the FZK-hybrid model (by simulating an environment, a CRS, ideal FZK

functionalities and parties P1, P2) that matches S’s view of the ideal process;
S will use A’s actions to guide its own in the ideal process. We refer to an
event as occurring in the internal simulation if it happens within the execution
environment that S simulates for A. We refer to an event as occurring in the
external process if it happens within the ideal process, in which S is participating.
S proceeds as follows:

Initial Activation. S sets the (simulated) CRS to be (G, q, g) R← GroupGen(k).
It copies the input value written by Z on its own input tape onto A’s input
tape and activates A. If A corrupts party Pi (in the internal simulation), S
corrupts P̃i (in the external process). When A completes its activation, S copies
the output value written by A on its output tape to S’s own output tape, and
ends its activation.

P2 Only is Corrupted. Upon activation, S copies the input value written
by Z on its own input tape onto A’s input tape. In addition, if P̃1 has added
a message (F -input1, sid, ·) for F to its outgoing communication tape (in the
external process; recall that S can only read the public headers of messages on
the outgoing communication tapes of uncorrupted dummy parties), S, for every
i, chooses ai, bi uniformly at random from Zq, sets ui = gai , vi = gbi , wi = gaibi

for future use, and adds a message (ZK-prover, sid ◦ 1 ◦ P1, ⊥, ⊥) for F1,P1→P2
ZK



122 O. Horvitz and J. Katz

to P1’s outgoing communication tape (in the internal simulation; recall that A
will only be able to read the public header of a message intended for FZK on
the outgoing communication tape of an uncorrupted party in the FZK-hybrid
model). S then activates A.

Upon completion of A’s activation, S acts as follows:

1. If A delivered the message (ZK-prover, sid◦1◦P1, ⊥, ⊥) from P1 to F1,P1→P2
ZK

(in the internal simulation), S adds the message

(ZK-proof, sid ◦ 1 ◦ P1, ({ui, vi, wi}i , (G, q, g), k))

for P2 and A to F1,P1→P2
ZK ’s outgoing communication tape (in the internal

simulation). Informally, S constructs the message from F1,P1→P2
ZK to P2 and

A (in the internal simulation) in accordance with πF , except that it always
lets wi be gaibi .

2. If A delivered a message

(ZK-prover, sid ◦ 1 ◦ P2, ({ūi, v̄i, w̄i}i , (G′, q′, g′), k′), (y,
{
āi, b̄i

}
i
))

from P2 to F1,P2→P1
ZK (in the internal simulation), S verifies that

(({ūi, v̄i, w̄i}i , (G′, q′, g′), k′), (y,
{
āi, b̄i

}
i
)) ∈ R1.

If the verification fails, S does nothing. Otherwise, S adds the message

(ZK-proof, sid ◦ 1 ◦ P2, ({ūi, v̄i, w̄i}i , (G′, q′, g′), k′))

for P1 and A to F1,P2→P1
ZK ’s outgoing communication tape (in the internal

simulation), and delivers the message (F -input2, sid, y) from (the corrupted)
P̃2 to F (in the external simulation). S records the values y and {ūi, v̄i, w̄i}i.

3. If A delivered the message

(ZK-proof, sid ◦ 1 ◦ P2, ({ūi, v̄i, w̄i}i , (G′, q′, g′), k′))

from F1,P2→P1
ZK to P1 (in the internal simulation), S first verifies that P̃1 has

a message (F -input1, sid, ·) for F on its outgoing communication tape (in
the external process) and that G′ = G, q′ = q, g′ = g and k′ = k. If any of
these fail, S does nothing. Otherwise, it adds the message (ZK-prover, sid◦2◦
P1, ⊥, ⊥) for F2,P1→P2

ZK to P1’s outgoing communication tape (in the internal
simulation), delivers (F -input1, sid, ·) from P̃1 to F (in the external process),
and notes to itself that the Round-1 message from F1,P2→P1

ZK to P1 (in the
internal simulation) has been delivered. Note that once the activation of
S will be complete, F will be in possession of both its inputs and will be
activated next (in the external process).

4. If A delivered the message (ZK-prover, sid◦2◦P1, ⊥, ⊥) from P1 to F2,P1→P2
ZK ,

S proceeds as follows. First note that at this point, we are guaranteed
that two inputs were delivered to F and that F has been activated sub-
sequently (in the external process); therefore, F has written a message



Universally-Composable Two-Party Computation in Two Rounds 123

(F -output2, sid, v) for P̃2 on its outgoing communication tape (in the ex-
ternal process; note that S may read the contents of a message from F
to a corrupted party). Also note that at this point, S has recorded val-
ues y and {ūi, v̄i, w̄i}i sent by (the corrupted) P2 in its first-round mes-
sage to F1,P2→P1

ZK . S produces a simulated “garbled circuit” and input-
wire labels using F 2

k , y and v (cf. Sect. 2) by computing (Circuit, {Zi}i)
R←

Yao-Sim(k, F 2
k , y, v). For every i, it chooses ri,yi , si,yi uniformly at random

from Zq, sets:

Ki,yi = ū
ri,yi

i · gsi,yi

Ci,yi =
{

w̄
ri,yi

i · v̄si,yi

i · Zi if yi = 0
(g · w̄i)ri,yi · v̄

si,yi

i · Zi otherwise,

and sets Ki,1−yi , Ci,1−yi to be elements selected uniformly at random from
G. It then adds the message⎛

⎝ZK-proof, sid ◦ 2 ◦ P1,

Circuit, {Ki,σ, Ci,σ}i,σ

(G, q, g), k, {ūi, v̄i, w̄i}i

{ui, vi, wi}i

⎞
⎠

for P2 and A to the outgoing communication tape of F2,P1→P2
ZK . Informally,

S constructs the message in accordance with πF , except that it uses simu-
lated circuit and input wire labels, and sets {Ki,1−yi, Ci,1−yi}i to be uniform
elements in G.

5. If A delivered a message⎛
⎝ZK-prover, sid ◦ 2 ◦ P2 ,

Circuit,
{
K̄i,σ, C̄i,σ

}
i,σ

(G′, q′, g′), k′, {u′i, v
′
i, w
′
i}i

{ū′i, v̄
′
i, w̄
′
i}i

,

y′, Ω̄,
{
Z̄i,σ

}
i,σ

{r̄i,σ, s̄i,σ}i,σ{
ā′i, b̄

′
i

}
i

⎞
⎠

from A to F2,P2→P1
ZK (in the internal simulation), S verifies that

⎛
⎝ Circuit,

{
K̄i,σ, C̄i,σ

}
i,σ

(G′, q′, g′), k′, {u′i, v′i, w′i}i

{ū′i, v̄
′
i, w̄
′
i}i

,

y′, Ω̄,
{
Z̄i,σ

}
i,σ

{r̄i,σ, s̄i,σ}i,σ{
ā′i, b̄

′
i

}
i

⎞
⎠ ∈ R2.

If the verification fails, S does nothing. Otherwise, S adds the message⎛
⎝ZK-proof, sid ◦ 2 ◦ P2,

Circuit,
{
K̄i,σ, C̄i,σ

}
i,σ

(G′, q′, g′), k′, {u′i, v′i, w′i}i

{ū′i, v̄′i, w̄′i}i

⎞
⎠

for P1 and A to F2,P2→P1
ZK ’s outgoing communication tape (in the internal

simulation).
6. If A delivered the message⎛

⎝ZK-proof, sid ◦ 2 ◦ P2,

Circuit,
{
K̄i,σ, C̄i,σ

}
i,σ

(G′, q′, g′), k′, {u′i, v′i, w′i}i

{ū′i, v̄′i, w̄′i}i

⎞
⎠



124 O. Horvitz and J. Katz

from F2,P2→P1
ZK to P1 (in the internal simulation), S first checks whether

a Round-1 message from F1,P2→P1
ZK to P1 (in the internal simulation) has

been delivered, per Item 3 above; if not, S does nothing. Otherwise, we
are guaranteed that two inputs were delivered to F , and that F has subse-
quently been activated and written a message (F -output1, sid, ·) for P̃1 on
its outgoing communication tape (in the external process). S verifies that
G′ = G, q′ = q, g′ = g, k′ = k, that {u′i, v′i, w′i}i = {ui, vi, wi}i and that
{ū′i, v̄

′
i, w̄
′
i}i = {ūi, v̄i, w̄i}i (intuitively, the checks, along those performed by

S on behalf of F2,P2→P1
ZK per Item 5 above, guarantee that (the corrupted)

P2 has used the same input consistently in both rounds, i.e., that y′ = y); if
so, S delivers the message (F -output1, sid, ·) from F to P̃1 (in the external
process).

After performing one of the above (if any), S copies the output value written by
A on its output tape to S’s own output tape, and ends its activation.

Other Corruption Scenarios. S’s actions for the case where P1 is corrupted
are symmetric to the above; its actions for the case where both parties are
corrupted and for the case where neither is, are straightforward.

This concludes the description of S. We claim that for any Z:

EXECFZK
πF ,A,Z

c≈ IDEALF ,S,Z , (1)

We prove the above in cases corresponding to the parties A corrupts. We give
here an informal description of the case where P2 only is corrupted (the case where
P1 only is corrupted is symmetric, and the cases where either or neither parties
are corrupted are straightforward); refer to [Hor07] for the complete proof.

Loosely speaking, when P2 only is corrupted, the following differences between
a real-life execution of πF among P1, P2 in the FZK-hybrid model and the ideal
process for F among P̃1, P̃2 may be noted: (1) in the former, P1 computes its
output based on a “garbled circuit” and obliviously-transferred input-wire labels
corresponding to its input, received in the second round of the protocol, while in
the latter, P̃1 receives its output from F based on the value y that S obtained
while simulating F1,P2→P1

ZK for the first round of the protocol; (2) in the former,
the first round message from F 1,P1→P2

ZK to P2 contains values wi = gci where
ci = aibi when xi = 0, ci = aibi −1 when xi = 1, while in the latter, the message
(in the internal simulation) contains wi = gaibi for all i; (3) in the former, the
second-round message from F2,P1→P2

ZK to P2 contains values Ki,(1−yi), Ci,(1−yi)

computed as in the specification of the protocol, while in the latter, those values
(in the internal simulation) are chosen uniformly at random from G; and (4) in
the former, Yao1 is used to compute the “garbled circuit” and input-wire labels
for the second-round message from F2,P1→P2

ZK to P2, while in the latter, Yao-Sim is
used for that purpose, based on P2’s output from F(x, y), where y was obtained
by S while simulating F 1,P2→P1

ZK for the first round of the protocol.
Nevertheless, we claim that Eq. 1 holds, based on (1) the correctness of Yao’s

“garbled circuit” technique, the correctness of the oblivious transfer protocol and



Universally-Composable Two-Party Computation in Two Rounds 125

the enforcement of parties entering the two rounds of the protocol with a consis-
tent input; (2) the hardness of the DDH assumption for GroupGen; (3) the unifor-
mity of Ki,(1−yi), Ci,(1−yi) per πF in G; and (4) the security Yao’s construction.

3.3 Two Rounds Are Necessary

It is almost immediate that two rounds are necessary for two-party computation
under any reasonable definition of security. Loosely speaking, consider a candi-
date single-round protocol for a functionality that provides output to one of the
parties, say P2. Since (an honest) P1 sends its message independently of P2’s
input, P2 can (honestly) run its output-computation side of the protocol on the
incoming message multiple times using inputs of its choice, and learn the output
of the functionality on each. This clearly violates security except for functions
that do not depend on P2’s input.

More formally and in the context of UC security, consider the functionality
F=, which on input a pair of two-bit strings x, y ∈ {0, 1}2, provides P2 with
output 1 if x = y, 0 otherwise. Assume π UC realizes F= in a single round. Let
πP1 be the procedure in π that takes P1’s input x and a security parameter k and
outputs P1’s outgoing message m; let πP2 be the procedure in π that takes P2’s
input y, an incoming message m and a security parameter k, and computes P2’s
output value v. As π UC realizes F=, it must be the case that for any x, y and
with all but negligible probability in k, if m

R← πP1 (x, k) and v
R← πP2(y, m, k),

then v = F=(x, y) (by considering a benign adversary that does not corrupt any
party and delivers all messages as prescribed by π).

Consider an environment Z which picks x uniformly at random from {0, 1}2

and provides x as input to P1. Consider an adversary A, participating in a
real-life execution of π, that acts as follows. A corrupts P2 on the onset of the
execution. On an incoming message m from P1, A computes πP2 (y, m, k) on all
four strings y ∈ {0, 1}2, and outputs (the lexicographically first) y on which
the computation produces 1. Note that by the above, with all but negligible
probability, A outputs x. We claim that for any ideal-process adversary S, Z may
distinguish a real-life execution of π in the presence of A from the ideal process
involving S and F=. To see this, observe that S’s probability of outputting x is
at most 1/4, as its view in the ideal process is independent of x.

4 Two-Round Universally-Composable Blind Signatures

In this section, we briefly discuss how our work can be used to construct a round-
optimal (i.e., two-round) UC-secure blind signature scheme in the CRS model.
We begin with a quick recap of the definitions. Roughly speaking, a blind sig-
nature scheme should guarantee unforgeability and blindness. The first requires
that if a malicious user interacts with the honest signer for a total of � executions
of the protocol (in an arbitrarily-interleaved fashion), then the user should be
unable to output valid signatures on �+1 distinct messages. (A stronger require-
ment called strong unforgeability requires that the user cannot even output �+1



126 O. Horvitz and J. Katz

distinct signatures on �+1 possibly-repeating messages.) Blindness requires, very
informally, that a malicious signer cannot “link” a particular execution of the
protocol to a particular user even after observing the signature obtained by the
user. This is formalized (see, e.g., [Fis06]) by a game in which the signer interacts
with two users in an order determined by a randomly-chosen selector bit b, and
should be unable to guess the value of b (with probability significantly better
than 1/2) even after being given the signatures computed by these two users.
This definition also allows the malicious signer to generate its public key in any
manner (and not necessarily following the legitimate key-generation algorithm).

The above represent the “classical” definitions of security for blind signa-
tures. Fischlin [Fis06] formally defines a blind signature functionality in the UC
framework. He also gives a two-round protocol realizing this functionality. In-
terestingly, one of the motivations cited in [Fis06] for not relying on the generic
results of [CLOS02] is the desire to obtain a round-optimal protocol.

Assume we have a (standard) signature scheme (Gen, Sign, Vrfy), and consider
the (randomized) functionality fsign(SK, m) = SignSK(m). Contrary to what
might be a naive first impression, secure computation of this functionality does
not (in general) yield a secure blind signature scheme! (See also [JL97].) Specif-
ically, the problem is that the signer may use different secret keys SK, SK ′ in
different executions of the protocol. Furthermore, the public key may be set up
in such a way that each secret key yields a valid signature. Then, upon observing
the signatures computed by the users, the signer may be able to tell which key
was used to generate each signature, thereby violating the users’ anonymity.

Juels, Luby, and Ostrovsky [JL97] suggest a relatively complex method for
handling this issue. We observe that a much simpler solution is possible by simply
forcing the signer to use a fixed signing key in every execution of the protocol.
This is done in the following way: To generate a public/secret key, the signer
first computes (PK, SK) ← Gen(1k). It then computes a (perfectly-binding)
commitment com = Com(SK; ω) to SK using randomness ω. The public key is
PK, com and the secret key contains SK and ω.

Define functionality f∗sign ((SK, ω), (com, m)) as follows: if Com(SK; ω) = com,
then the second party receives output SignSK(m) (when Sign is randomized,
the functionality chooses a uniform random tape for computing this signature).
Otherwise, the second party receives output ⊥. The first party receives no output
in either case.

It is not hard to see that a protocol for secure computation of f∗sign yields a
secure blind signature scheme (a proof is omitted); using a UC two-party com-
putation protocol for f∗sign gives a UC blind signature scheme. Using the simple
two-round protocol constructed in Sect. 3.1, and noticing that only one party
receives output here, we thus obtain a two-round UC blind signature scheme.

Acknowledgments

We are extremely grateful to the anonymous reviewers from Eurocrypt 2007
who suggested a way to recast our result in the setting where both parties
communicate in a given round.



Universally-Composable Two-Party Computation in Two Rounds 127

References

[AIR01] Aiello, W., Ishai, Y., Reingold, O.: Priced Oblivious Transfer: How to
Sell Digital Goods. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS,
vol. 2045, pp. 119–135. Springer, Heidelberg (2001)

[BCNP04] Barak, B., Canetti, R., Nielsen, J.B., Pass, R.: Universally Composable
Protocols with Relaxed Set-Up Assumptions. In: Proceedings of the 45th
IEEE Symposium on Foundations of Computer Science FOCS, pp. 186–
195. IEEE, Los Alamitos (2004)

[BHS04] Bradshaw, R., Holt, J., Seamons, K.: Concealing complex policies with
hidden credentials. In: Proceedings of the 11th ACM Conference on Com-
puter and Communications Security (CCS), pp. 146–157. ACM Press,
New York (2004)

[BMC06] Bagga, W., Molva, R., Crosta, S.: Policy-Based Encryption Schemes from
Bilinear Pairings. In: Proceedings of the ACM Symposium on Information,
Computer and Communications Security (ASIACCS), p. 368 (2006)

[BMR90] Beaver, D., Micali, S., Rogaway, P.: The Round Complexity of Secure
Protocols. In: Procedings of the 22nd ACM Symposium on Theory of
Computing (STOC), pp. 503–513. ACM, New York (1990)

[Can01] Canetti, R.: Universally Composable Security: A New Paradigm for Cryp-
tographic Protocols. In: Proceedings of the 42nd IEEE Symposium on
foundations of computer Science (FOCS), pp. 136–145. IEEE, Los Alami-
tos (2001), http://eprint.iacr.org/2000/067

[Cha82] Chaum, D.: Blind Signatures for Untraceable Payments. In: McCurley,
K.S., Ziegler, C.D. (eds.) Advances in Cryptology 1981 - 1997. LNCS,
vol. 1440, pp. 199–203. Springer, Heidelberg (1982)

[CCKM00] Cachin, C., Camenisch, J., Kilian, J., Müller, J.: One-Round Secure Com-
putation and Secure Autonomous Mobile Agents. In: Welzl, E., Monta-
nari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 512–523.
Springer, Heidelberg (2000)

[CDPW07] Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally Composable Secu-
rity with Global Setup. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392,
pp. 61–85. Springer, Heidelberg (2007)

[CF01] Canetti, R., Fischlin, M.: Universally Composable Commitments. In: Kil-
ian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Hei-
delberg (2001)

[CKL06] Canetti, R., Kushilevitz, E., Lindell, Y.: On the Limitations of Univer-
sally Composable Two-Party Computation Without Set-Up Assumptions.
Journal of Cryptology 19(2), 135–167 (2006)

[CLOS02] Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally Composable
Two-Party and Multi-Party Secure Computation. In: Proceedings of the
34th ACM Symposium on Theory of Computing (STOC), pp. 494–503.
ACM, New York (2002), http://eprint.iacr.org/2002/140

[DDO+01] De Santis, A., Di Crescenzo, G., Ostrovsky, R., Persiano, G., Sahai, A.:
Robust Non-Interactive Zero-Knowledge. In: Kilian, J. (ed.) CRYPTO
2001. LNCS, vol. 2139, pp. 566–598. Springer, Heidelberg (2001)

[DH76] Diffie, W., Hellman, M.: New Directions in Cryptography. IEEE Transac-
tions on Information Theory 22(6), 644–654 (1976)

[Fis06] Fischlin, M.: Round-Optimal Composable Blind Signatures in the Com-
mon Reference String Model. In: Dwork, C. (ed.) CRYPTO 2006. LNCS,
vol. 4117, pp. 60–77. Springer, Heidelberg (2006)

http://eprint.iacr.org/2000/067
http://eprint.iacr.org/2002/140


128 O. Horvitz and J. Katz

[FAL06] Frikken, K.B., Atallah, M.J., Li, J.: Attribute-Based Access Control with
Hidden Policies and Hidden Credentials. IEEE Transactions on Comput-
ers 55(10), 1259–1270 (2006)

[FGG+06] Fitzi, M., Garay, J., Gollakota, S., Rangan, C.P., Srinathan, K.: Round-
Optimal and Efficient Verifiable Secret Sharing. In: Halevi, S., Rabin,
T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 329–342. Springer, Heidelberg
(2006)

[FL82] Fischer, M.J., Lynch, N.A.: A Lower Bound for the Time to Assure Inter-
active Consistency. Information Processing Letters 14(4), 183–186 (1982)

[FM97] Feldman, P., Micali, S.: An Optimal Probabilistic Protocol for Synchro-
nous Byzantine Agreement. SIAM Journal of Computing 26(4), 873–933
(1997)

[Gol01] Goldreich, O.: Foundations of Cryptography: – Basic Tools, vol. 1. Cam-
bridge University Press, Cambridge (2001)

[Gol04] Goldreich, O.: Foundations of Cryptography: – Basic Applications, vol. 2.
Cambridge University Press, Cambridge (2004)

[GIKR01] Gennaro, R., Ishai, Y., Kushilevitz, E., Rabin, T.: The Round Complexity
of Verifiable Secret Sharing and Secure Multicast. In: Proceedings of the
33rd ACM Symposium on Theory of Computing STOC, pp. 580–589.
ACM, New York (2001)

[GIKR02] Gennaro, R., Ishai, Y., Kushilevitz, E., Rabin, T.: On 2-Round Secure
Multiparty Computation. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 178–193. Springer, Heidelberg (2002)

[GK96a] Goldreich, O., Kahan, A.: How to Construct Constant-Round Zero-
Knowledge Proof Systems for NP. Journal of Cryptology 9(3), 167–190
(1996)

[GK96b] Goldreich, O., Krawczyk, H.: On the Composition of Zero-Knowledge
Proof Systems. SIAM Journal of Computing 25(1), 169–192 (1996)

[GM98] Garay, J., Moses, Y.: Fully Polynomial Byzantine Agreement for n > 3t
Processors in t + 1 Rounds. SIAM Journal of Computing 27(1), 247–290
(1998)

[GMR89] Goldwasser, S., Micali, S., Rackoff, C.: The Knowledge Complexity of
Interactive Proof Systems. SIAM J. of Computing 18(1), 186–208 (1989)

[GMW87] Goldreich, O., Micali, S., Wigderson, A.: How to Play any Mental Game,
or A Completeness Theorem for Protocols with Honest Majority. In: Pro-
ceedings of the 19th ACM Symposium on Theory Computing (STOC),
pp. 218–229. ACM, New York (1987)

[Hor07] Horvitz, O.: Expressiveness of Definitions and Efficiency of Constructions
in Computational Cryptography. Ph.D. thesis, University of Maryland
(2007)

[HMU05] Hofheinz, D., Müller-Quade, J., Unruh, D.: Universally Composable Zero-
Knowledge Arguments and Commitments from Signature Cards. In: Pro-
ceedings of the 5th Central European Conference on Cryptology —
MoraviaCrypt (2005)

[IK00] Ishai, Y., Kushilevitz, E.: Randomizing Polynomials: A New Representa-
tion with Applications to Round-Efficient Secure Computation. In: Pro-
ceedings of the 41st IEEE Symposium on Foundations of Computer Sci-
ence (FOCS), pp. 294–304. IEEE, Los Alamitos (2000)

[JL97] Juels, A., Luby, M., Ostrovsky, R.: Security of Blind Digital Signatures.
In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 150–164.
Springer, Heidelberg (1997)



Universally-Composable Two-Party Computation in Two Rounds 129

[JS07] Jarecki, S., Shmatikov, V.: Efficient Two-Party Secure Computation on
Committed Inputs. In: Naor, M. (ed.) EUROCRYPT 2007, vol. 4515,
Springer, Heidelberg (2007)

[Katz07] Katz, J.: Universally Composable Multi-Party Computation using
Tamper-Proof Hardware. In: Naor, M. (ed.) EUROCRYPT 2007,
vol. 4515, Springer, Heidelberg (2007)

[KO04] Katz, J., Ostrovsky, R.: Round-Optimal Secure Two-Party Computation.
In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, Springer, Heidel-
berg (2004)

[KOS03] Katz, J., Ostrovsky, R., Smith, A.: Round Efficiency of Multi-Party Com-
putation with a Dishonest Majority. In: Biham, E. (ed.) EUROCRPYT
2003. LNCS, vol. 2656, Springer, Heidelberg (2003)

[Lin01] Lindell, Y.: Parallel Coin-Tossing and Constant-Round Secure Two-Party
Computation. Journal of Crypto 16(3), 143–184 (2003)

[LDB03] Li, N., Du, W., Boneh, D.: Oblivious Signature-Based Envelope. In: Pro-
ceedings of the 22nd ACM Symposium on Principles of Distributed Com-
puting (PODC), pp. 182–189. ACM Press, New York (2003)

[LL06] Li, J., Li., N.: A Construction for General and Efficient Oblivious Com-
mitment Based Envelope Protocols. In: Ning, P., Qing, S., Li, N. (eds.)
ICICS 2006. LNCS, vol. 4307, pp. 122–138. Springer, Heidelberg (2006)

[LP04] Lindell, Y., Pinkas, B.: A Proof of Yao’s Protocol for Secure Two-
Party Computation. Journal of Cryptology, Full version available at
http://eprint.iacr.org/,/175 (toappear)

[NP01] Naor, M., Pinkas, B.: Efficient Oblivious Transfer Protocols. In: Proceed-
ings of the 12th Symposium on Discrete Algorithms (SODA), pp. 448–457
(2001)

[NT05] Nasserian, S., Tsudik, G.: Revisiting Oblivious Signature-Based Envelopes
Available at, http://eprint.iacr.org/2005/283

[PSL80] Pease, M., Shostak, R., Lamport, L.: Reaching Agreement in the Presence
of Faults. Journal of the ACM 27(2), 228–234 (1980)

[PW00] Pfitzmann, B., Waidner, M.: Composition and Integrity Preservation of
Secure Reactive Systems. In: Proceedings of the 7th ACM Conference
on Computer and Communications Security (CCS), pp. 245–254. ACM
Press, New York (2000)

[SYY99] Sander, T., Young, A., Yung, M.: Non-Interactive CryptoComputing For
NC1. In: Proceedings of the 40th IEEE Symposium on Foundations of
Computer Science (FOCS), pp. 554–567. IEEE, Los Alamitos (1999)

[Tau05] Tauman Kalai, Y.: Smooth Projective Hashing and Two-Message Obliv-
ious Transfer. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS,
vol. 3494, pp. 78–95. Springer, Heidelberg (2005)

[Yao86] Yao, A.C.-C.: How to Generate and Exchange secrets. In: Proceedings of
the 27 th IEEE Symposium on Foundations of Computer Science (FOCS),
pp. 162–167. IEEE, Los Alamitos (1986)

http://eprint.iacr.org/, /175
http://eprint.iacr.org/2005/283


Indistinguishability Amplification

Ueli Maurer1, Krzysztof Pietrzak2, and Renato Renner3

1 Department of Computer Science, ETH Zurich
maurer@inf.ethz.ch
2 CWI Amsterdam
pietrzak@cwi.nl

3 University of Cambridge
r.renner@damtp.cam.ac.uk

Abstract. Many aspects of cryptographic security proofs can be seen as
the proof that a certain system (e.g. a block cipher) is indistinguishable
from an ideal system (e.g. a random permutation), for different types of
distinguishers.

This paper presents a new generic approach to proving upper bounds
on the information-theoretic distinguishing advantage (from an ideal sys-
tem) for a combined system, assuming upper bounds of certain types for
the component systems. For a general type of combination operation of
systems, including the XOR of functions or the cascade of permutations,
we prove two amplification theorems. The first is a product theorem,
in the spirit of XOR-lemmas: The distinguishing advantage of the com-
bination of two systems is at most twice the product of the individual
distinguishing advantages. This bound is optimal. The second theorem
states that the combination of systems is secure against some strong class
of distinguishers, assuming only that the components are secure against
some weaker class of distinguishers.

A key technical tool of the paper is the proof of a tight two-way corre-
spondence, previously only known to hold in one direction, between the
distinguishing advantage of two systems and the probability of winning
an appropriately defined game.

1 Introduction

1.1 Indistinguishability Amplification for Random Variables

This paper is concerned with the indistinguishability of systems that interact
with their environment. As a motivation for this paper, we consider an indistin-
guishability amplification result for random variables. A random variable can be
understood as the special case of a system, which is non-interactive. Lemma 1
below states that the distance from uniform, of random variables, can be am-
plified by combining two or more (independent) moderately uniform random
variables.

To state the lemma, we recall the following definitions.

Definition 1. The statistical distance of two random variables X and X ′ over
X is defined as

A. Menezes (Ed.): CRYPTO 2007, LNCS 4622, pp. 130–149, 2007.
c© International Association for Cryptologic Research 2007



Indistinguishability Amplification 131

δ(X, X ′) := ‖PX − PX′‖ = 1
2

∑
x∈X |PX(x) − PX′(x)| .

The distance of a random variable X from uniform is d(X) := δ(X, U), where
U is a uniform random variable on X .

The advantage of the best distinguisher for X and X ′ is δ(X, X ′).

Lemma 1. For any two independent random variables X and Y over a finite
domain X and any quasi-group operation1 � on X ,

d(X � Y ) ≤ 2 d(X) d(Y ).

This bound is tight, as the following example illustrates.

Example 1. Consider two independent biased bits, X with a 40/60-bias and
Y with a 30/70-bias. Then d(X) = 0.1, d(Y ) = 0.2, and d(X ⊕ Y ) = 0.04
(= 2 · 0.1 · 0.2), since X ⊕ Y is 54/46-biased.

Corollary 2 of this paper can be seen as a natural generalization of Lemma 1.
It states (for example) that if F and G are systems, for each of which the best
distinguisher’s advantage in distinguishing it from a uniform random function is
bounded by ε and ε′, respectively, then the system F � G obtained by using F
and G in parallel and combining their outputs with �, can be distinguished with
advantage at most 2εε′ from a uniform random function (for the same number of
queries issued by the distinguisher). Actually, the proof of Corollary 2, restricted
to random variables, appears to be a natural proof for Lemma 1.

As the abstraction underlying the quasi-group operation we introduce the
concept of a neutralizing combination of two systems, which means that if any
one (or both) of the systems is an ideal system (e.g. a uniform random function),
then the combined system is also ideal. This is for example true for X � Y : If
either X or Y is uniform, then so is X � Y .

1.2 Contributions of This Paper

The amplification of security properties is an important theme in cryptography.
Examples of amplification results are XOR-lemmas, Vaudenay’s product theorem
for random permutations [Vau99], and the theorems proving adaptive security
from non-adaptive security assumptions of [MP04] and [MOPS06].

This paper generalizes, strengthens, and unifies these results and provides a
framework for proving such amplification results. We explore the general prob-
lem of proving various indistinguishability amplification results for systems. In
contrast to earlier works, we do not restrict ourselves to stateless systems. The
term “amplification” is used with two different meanings:

1 A quasi-group operation � on a set X is a function X 2 → X : (a, b) �→ c = a � b such
given a and c (b and c), b (a) is uniquely determined. An important example is the
bit-wise XOR of bit-strings. Any group operation is also a quasi-group operation.



132 U. Maurer, K. Pietrzak, and R. Renner

– Reduction of the distinguishing advantage. We prove a general the-
orem (Theorem 1), in the spirit of Lemma 1, which states that the distin-
guishing advantage of a neutralizing combination of two systems is at most
twice the product of the individual distinguishing advantages.

– Attack strengthening. We prove a general theorem (Theorem 2), which
states that the adaptive distinguishing advantage of a neutralizing combina-
tion of two systems is bounded by the sum of the individual distinguishing
advantages for a weaker distinguisher class (e.g. non-adaptive, or for permu-
tations, one-sided instead of two-sided queries).

Our results are stated in the random systems framework of [Mau02] (see Sec-
tion 2). They hold in the information-theoretic setting, with computationally
unbounded distinguishers. In practice one is often interested in computational
indistinguishability. Although the results from this paper do not directly trans-
late to the computational setting2, they have implications in the computational
setting as well.

A main technical tool of this paper is a tight relation between the distin-
guishing advantage and the game-winning probability, discussed in the following
section.

1.3 Discrete Systems, Indistinguishability, and Game-Winning

Many cryptographic systems (e.g. a block cipher, the CBC-MAC construction,
or more complex games) can be modeled as discrete systems. A discrete system
interacts with its environment by taking a sequence of inputs and producing,
for each new input, an output (for a single, a fixed, or an unbounded number of
such interactions).

Two major paradigms for cryptographic security definitions are:

– Indistinguishability: An ideal-world system is indistinguishable from a
real-world system. For example, a secure encryption scheme can be seen as
realizing a secure channel (ideal world) from an authenticated channel (real
world).

– Game-winning: Breaking a system means that the adversary must achieve
a certain goal, i.e., win a certain game. For example, a MAC is secure if the
adversary cannot generate a fresh message together with the correct MAC,
even if he can query the system arbitrarily.

The first type of security definition requires to prove that the distinguishing
advantage of a certain class of distinguishers for two systems is very small. The
second type of security definition requires to prove that no adversary of a certain
type can win the game, except with very small probability.

In this paper we establish a tight relation between the above two problems in
the information-theoretic setting. More precisely, game-winning can be modeled
as an internal monotone condition in a system. Indeed, an important paradigm
2 Actually, some results from this paper are known to be false in the computational

case under standard assumptions [Pie05].



Indistinguishability Amplification 133

in indistinguishability proofs is the definition of such an internal monotone con-
dition in a system (sometimes also called a “bad event”) such that for any dis-
tinguisher D the distinguishing advantage can be shown to be upper bounded by
the probability that D provokes this condition. A key technical tool of the paper
(Lemma 5) is to show that this holds also in the other direction: For two systems
S and T one can always define new systems Ŝ and T̂, which are equivalent to
S and T, respectively, but have an additional monotone binary output (MBO),
such that

(i) for any distinguisher D the distinguishing advantage for F and G is equal
to the probability that D sets the MBO to 1 in Ŝ (or T̂), and

(ii) the systems Ŝ and T̂ are equivalent as long as the respective MBOs are 0.

1.4 Related Work and Applications

This section is perhaps best read after reading the technical part of the paper.
Lemma 5 from this paper improves on Lemma 9 of [MP04] where a relation

between distinguishing advantage and monotone binary outputs (there called
conditions) was introduced, but which was not tight by a logarithmic factor and
whose proof was quite technical, based on martingales. This paper settles a main
open problem from [MP04], as Lemma 5 is tight.

The product theorem for sequential composition of stateless permutations,
implied by Corollary 3, was proved earlier by Vaudenay within his decorrelation
framework (see [Vau98] for the non-adaptive and [Vau99] for the adaptive case).
Vaudenay’s proofs, which use matrix norms, are tailored to the construction and
attack at hand (i.e. sequential composition and stateless permutations), and do
not extend to our general setting. While Vaudenay’s decorrelation theory [Vau03]
is purely information-theoretic, its application is for the design of actual (compu-
tationally secure) block-ciphers. In the same sense, our results have applications
in the computational setting, where one considers computationally bounded ad-
versaries.

In the computational setting, a product theorem for the sequential composi-
tion of permutations was proved by Luby and Rackoff [LR86]. Myers [Mye03]
proved a product theorem3 for a construction which is basically the parallel
composition but with some extra random values XOR-ed to the inputs.

Our stronger results (compared to [MP04]) on adaptive security by compo-
sition, namely Corollaries 4 and 5, immediately apply to all results that made
use of the bounds of [MP04]. For example, the construction of Kaplan, Naor
and Reingold [KNR05] of randomness-efficient constructions of almost k-wise
independent permutations, achieve a priori only non-adaptive security, but the
authors observe that one can apply the results from [MP04] in order to obtain
adaptive security. This paper allows to improve the bound of [KNR05]. An-
other application of Corollary 5 is in the already mentioned decorrelation theory

3 Which in some sense is stronger than the amplification from [LR86], see [Mye03] for
a discussion.



134 U. Maurer, K. Pietrzak, and R. Renner

where it implies better security against adaptive attacks, even if the considered
block-cipher only satisfies a non-adaptive notion of decorrelation.

The question whether composition implies adaptive security also in the com-
putational setting (i.e. for pseudorandom systems) has been investigated in
[Mye04, Pie05]. Unlike for the product amplification results, these attack-
strengthening results do not hold for pseudorandom systems in general, though
some positive results have also been achieved in this setting [Pie06].

Theorem 2 can be used to prove the adaptive security of more complicated
constructions than the sequential and parallel composition considered in this
paper. In [MOPS06], (a generalization of) Theorem 2 is used to prove that
the four-round Feistel network with non-adaptively secure round functions is
adaptively secure. That paper also shows that in the computational setting this
is no longer true.

A result using Lemma 5 of a completely different vain than the problems consid-
ered in this paper is given in [PS07], where the security of some constructions for
range extension of weak random functions is proven in the information theoretic
setting (again, in the computational setting those results no longer hold).

2 Random Systems

This section follows and extends [Mau02], in slightly different notation.

2.1 Random Systems

Essentially every kind of discrete system (say S), in particular a cryptographic
system, can be described as follows. It takes inputs X1, X2, . . . (from some al-
phabet4 X ) and generates, for each new input Xi, an output Yi (from some
alphabet Y). The output Yi depends (possibly probabilistically) on the current
input Xi and on the internal state. Such a system is called an (X , Y)-system.

In most contexts, only the observable input-output behavior, but not the in-
ternal state representation, is of interest. For example, if one considers the dis-
tinguishing advantage of a certain distinguisher D for two systems S and T,
then all that matters is the input-output behavior of the systems D, S and
T. Hence the input-output behavior is the abstraction of a system that needs
to be captured. This is analogous, for example, to a memoryless channel C in
communication theory whose abstraction is captured by a conditional probabil-
ity distribution pC

Y |X of the output Y , given the input X , independently of the
physical description of the channel. A system is more complex than a channel;
what is the abstraction of a (discrete) system?

A system is described exactly by the conditional probability distributions of
the ith output Yi, given X1, . . . , Xi and Y1, . . . , Yi−1, for all i. We use the short-
hand notation X i := [X1, . . . , Xi]. This is captured by the following definition
from [Mau02].
4 It is not a restriction to consider fixed input and output alphabets. This allows

to model also systems where inputs and outputs come from different alphabets for
different i.



Indistinguishability Amplification 135

Definition 2. An (X , Y)-random5 system S is a (generally infinite) sequence of
conditional probability distributions6 pS

Yi|XiY i−1 for i ≥ 1.7

This description of a system is exact and minimal in the sense that two sys-
tems with different input-output behavior correspond to two different random
systems, and two different random systems have different input-output behavior.

Note that the name S is used interchangeably for a system S (which can be
described arbitrarily, for example by its internal workings) and the corresponding
random system. This should cause no confusion. It is therefore also meaningful
to say that two systems are equivalent if they have the same behavior, even
though their internal structure may be different.

Definition 3. Two systems S and T are equivalent, denoted S ≡ T, if they
correspond to the same random system, i.e., if for all i ≥ 18

pS
Yi|XiY i−1 = pT

Yi|XiY i−1 .

The results of this paper are stated for random systems, but we emphasize that
they hold for arbitrary systems, as the only property of a system that is relevant
here is the input-output behavior. When several random systems appear in the
same random experiment, they are (tacitly) assumed to be independent. In a
more general theory, random systems could be dependent.

A random system S can be characterized equivalently by the sequence pS
Y i|Xi ,

for i ≥ 1, of conditional probability distributions. This description is often con-
venient, but is not minimal.9 The conversion between the two forms is given by

pS
Y i|Xi =

i∏
j=1

pS
Yj |XjY j−1 and pS

Yi|XiY i−1 =
pS

Y i|Xi

pS
Y i−1|Xi−1

. (1)

S and T are equivalent if and only if pS
Y i|Xi = pT

Y i|Xi for i ≥ 1.

2.2 Special Random Systems

Definition 4. A random function X → Y is a random system which answers
consistently in the sense that Xi = Xj =⇒ Yi = Yj . A random function is
stateless if it corresponds to a random variable taking on as values function
tables X → Y. A random permutation on X is a random function X → X
mapping distinct inputs to distinct outputs: Xi 	= Xj =⇒ Yi 	= Yj .
5 Throughout the paper, the term “random” is used in the same sense as it is used in

the term “random variable”, without implying uniformity of a distribution.
6 We use a lower-case p to stress the fact that these conditional distributions by

themselves do not define a random experiment in which probabilities are defined.
7 For arguments xi−1 and yi−1 such that pS

Y i−1|Xi−1(yi−1, xi−1) = 0, pS
Yi|XiY i−1 need

not be defined.
8 This equality is an equality of (partial) functions, where two conditional probability

distributions are considered to be equal if they are equal for all arguments for which
both are defined.

9 The distributions pS
Y i|Xi must satisfy a consistency condition for the different i.



136 U. Maurer, K. Pietrzak, and R. Renner

Note that in general a random function is not stateless. For example, a system
defined by Yi = X1 for all i is not stateless.

We discuss a few examples of random systems.

Example 2. A Y-beacon, usually denoted as B, is a random system which out-
puts a new independent uniformly (over Y) output Yi for every new input Xi:
pB

Yi|XiY i−1 = 1/|Y| for all choices of the arguments.

Example 3. A uniform random function, usually denoted as R, from some do-
main X to some finite range Y. Typically X = {0, 1}m for some m or X = {0, 1}∗,
and Y = {0, 1}n for some n. If X is finite, then this corresponds to a randomly
selected function table. We have

pR
Yi|XiY i−1(yi, x

i, yi−1) =

⎧⎨
⎩

1 if xi = xj for some j < i and yi = yj

0 if xi = xj for some j < i and yi 	= yj

1/|Y| else.

pR
Yi|XiY i−1(yi, x

i, yi−1) is undefined if xj = xk and yj 	= yk for j < k < i.

We point out that when analyzing constructions involving uniform random func-
tions (or other random systems), there is no need to resort to this apparently
complex description. Any complete description is fine. Using the concept of ran-
dom systems buys precision and simplicity, without requiring technical complex-
ity of the arguments.

Example 4. A uniform random permutation, usually denoted as P, for domain
and range X , is a function randomly selected from all bijective functions X → X .

2.3 Distinguishing Random Systems

We are interested in distinguishing two systems S and T by means of a distin-
guisher D. In the sequel, we will usually tacitly assume that the two systems are
compatible, i.e., have the same input and output alphabets.

A distinguisher D for distinguishing two (X , Y)-systems generates X1 as an
input, receives the output Y1, then generates X2, receives Y2, etc. Finally, after
receiving Yk, it outputs a binary decision bit, say W . More formally:

Definition 5. A distinguisher D for (X , Y)-random systems is a (Y, X )-random
system, which is one query ahead, meaning that it is defined by pD

Xi|Y i−1Xi−1

(instead of pD
Xi|Y iXi−1) for all i.10 D outputs a bit W after a certain number k

of queries, based on the transcript (Xk, Y k).

When a distinguisher D is connected to a system S, which we denote simply as
DS, this defines a random experiment. The probabilities of an event E in this

10 In particular the first output pD
X1 is defined before D is fed with any input.



Indistinguishability Amplification 137

experiment will be denoted as PDS(E). We note that the probability distribution
PDS

XkY k can be expressed by

PDS
XkY k(xk, yk) =

k∏
i=1

pD
Xi|Xi−1Y i−1(xi, x

i−1, yi−1) pS
Yi|XiY i−1(yi, x

i, yi−1)

= pD
Xk|Y k−1(xk, yk−1) pS

Y k|Xk(yk, xk) , (2)

where the last equality follows from (1).
The performance of a distinguisher, called the advantage, can be defined in

two equivalent ways, both of which will be useful for us. We first state the
standard definition.

Definition 6. The advantage of distinguisher D for random systems S and T,
for k queries, denoted ΔD

k (S,T), is defined as

ΔD
k (S,T) :=

∣∣PDS(W = 1) − PDT(W = 1)
∣∣ .

For a class D of distinguishers, the advantage of the best D in D, asking at most
k queries, is denoted as

ΔDk (S,T) := max
D∈D

ΔD
k (S,T).

For the class of all distinguishers we simply write Δk(S,T).

To state an equivalent definition of the advantage we need the following definition.

Definition 7. For two compatible systems S and T, 〈S/T〉 denotes the random
system which is equal to system S or T with probability 1

2 each. To make the
independent unbiased binary random variable, say Z, selecting between S (for
Z = 0) and T (for Z = 1) explicit, we write 〈S/T〉Z .11

The advantage ΔD
k (S,T) can be defined equivalently in terms of the probability

that D, interacting with the mixed system 〈S/T〉Z , guesses Z correctly:

Lemma 2. For every distinguisher D,12

ΔD
k (S,T) = 2

∣∣∣PD〈S/T〉Z (W = Z) − 1
2

∣∣∣ .

Proof. Let pz for z ∈ {0, 1} denote the probability that W = 1 if Z = z.
Then ΔD

k (S,T) = |p0 − p1| and PD〈S/T〉Z (W = Z) = 1
2 (1 − p0 + p1), hence

2
∣∣PD〈S/T〉Z (W = Z) − 1

2

∣∣ = |p0 − p1|. �
The following distinguisher classes are usually of special interest:

Definition 8. By NA we denote the class of computationally unbounded non-
adaptive distinguishers which select all queries X1, . . . , Xk in advance (i.e.,
11 It is helpful to think of Z as the position of a switch selecting between the systems

S and T.
12 The normalization factor 2 assures that the advantage is between 0 and 1. The

absolute value in |PD〈S/T〉Z (W = Z) − 1
2 | takes into account the fact that one can

always invert the output of a distinguisher whose success probability is below 1
2 .



138 U. Maurer, K. Pietrzak, and R. Renner

independent of the outputs Yi).13 By RI we denote the class of computation-
ally unbounded distinguishers which (cannot select the queries but) are given
uniformly random values X1, . . . , Xk (and the corresponding outputs Y1, . . . , Yk).

Clearly, RI ⊆ NA. The class NA is sometimes called nCPA (non-adaptive chosen-
plaintext attack) in the literature and the class RI is sometimes called KPA
(known-plaintext attack).

The following lemma captures the simple fact that if one has to distinguish
the systems S and 〈S/T〉Z , then the advantage is only half of the advantage
when distinguishing S and T. In a sense, 〈S/T〉Z is half-way between S and T.

Lemma 3. For every D, ΔD
k (S, 〈S/T〉Z) = 1

2ΔD
k (S,T).

Proof. This follows from the linearity of the probability of D outputting a 1: we
have PD〈S/T〉Z (W = 1) = 1

2 (PDS(W = 1) + PDT(W = 1)).

2.4 Game-Winning and Monotone Binary Outputs

An important paradigm in certain security definitions is the notion of winning a
game. Without loss of generality, a game with one player (e.g. the adversary) can
be described by an (X , Y)-system which interacts with its environment by taking
inputs X1, X2, . . . (considered as moves) and answering with outputs Y1, Y2, . . ..
In addition, after every input it also outputs a bit indicating whether the game
has been won. This bit is monotone in the sense that it is initially set to 0 and
that, once it has turned to 1 (the game is won), it can not turn back to 0. This
motivates the following definition, which captures the notion of game-winning.

Definition 9. For a (X , Y × {0, 1})-system S the binary component Ai of the
output (Yi, Ai) is called a monotone binary output (MBO) if Ai = 1 implies
Aj = 1 for j ≥ i. For such a system S with MBO we define two derived systems:

(i) S− is the (X , Y)-system resulting from S by ignoring the MBO.
(ii) S� is the (X , Y × {0, 1})-system which masks the Y-output to a dummy

symbol (⊥) as soon as the MBO turns to 1. More precisely, the following
function is applied to the outputs of S:

(y, a) �→ (y′, a) where y′ =
{

y if a = 0
⊥ if a = 1.

Definition 10. Two systems S and T with MBOs are called restricted equiva-
lent if S� ≡ T�, i.e., if they are equivalent as long as the MBO is 0.

A system (or player) D interacting with S, trying to win the game defined by S,
is like a distinguisher, except that it need not have a binary output W . Whether
or not D “sees” the MBO is irrelevant; one can think of D interacting with S−

instead of S. One could call such a D a “player” or a “provoker”, as it tries to
provoke the MBO to become 1, but for consistency we will continue to call D a
distinguisher.
13 One can view such a distinguisher as making a single (compound) query (x1, . . . , xk).



Indistinguishability Amplification 139

Definition 11. For a (X , Y × {0, 1})-random system S with an MBO (called
Ai) and for a distinguisher D, we denote with νD

k (S) the probability that D
wins the game within k queries:

νD
k (S) := PDS(Ak = 1).

For a class D of distinguishers, the winning probability of the best D in D within
k queries is denoted as

νDk (S) := max
D∈D

νD
k (S).

For the class of all distinguishers we simply write νk(S).

3 Relating Indistinguishability and Game-Winning

3.1 From Game-Winning to Indistinguishability

The following lemma was proved in [Mau02]. Versions of this lemma for special
types of systems appeared subsequently.

Lemma 4. Let S and T be two (X , Y × {0, 1})-random systems with MBOs. If
S� ≡ T�, then

ΔD
k (S−,T−) ≤ νD

k (S) = νD
k (T)

for all distinguishers D for (X , Y)-random systems.14 In particular, for any dis-
tinguisher class D, ΔDk (S−,T−) ≤ νDk (S), hence Δk(S−,T−) ≤ νk(S) and
ΔNA

k (S−,T−) ≤ νNA
k (S).

Proof. According to Lemma 2, ΔD
k (S,T) can be computed in terms of the prob-

ability that D guesses the switch Z in 〈S/T〉Z correctly. The condition S� ≡ T�

implies that if the MBO of 〈S/T〉Z is 0, then the output of 〈S/T〉Z is independent
of Z, and therefore in this case D cannot do better than guess randomly. (If the
MBO is 1, the success probability is bounded by 1.) Hence, if we denote by p the
probability that D sets the MBO to 1, the probability that D guesses Z correctly
is bounded by 1

2 (1−p)+p = 1
2 + 1

2p, where p = νD
k (〈S/T〉Z) = νD

k (S) = νD
k (T).

Applying Lemma 2 completes the proof. �

3.2 From Indistinguishability to Game-Winning

The following lemma states, in a certain sense, a converse to Lemma 4, and is
a key tool for the proofs of the main results. While Lemma 4 holds for every
distinguisher, whether computationally bounded or not, and whether or not its
binary output is determined optimally based on the transcript, the converse only
holds in the information-theoretic setting and if we assume that the decision bit
is computed optimally. More precisely, it is a statement about the statistical
distance of transcripts.
14 Recall that it is well-defined what it means for such a distinguisher to play the game

for S which is defined with an MBO.



140 U. Maurer, K. Pietrzak, and R. Renner

Definition 12. Let

δD
k (S,T) := ‖PDS

XkY k − PDT
XkY k‖

be the statistical distance of the transcripts (XkY k) when D interacts with S
and T, respectively. For a class D of distinguishers we define15

δDk (S,T) := max
D∈D

δD
k (S,T).

Note that in general we have ΔD
k (S,T) ≤ δD

k (S,T), but for a computation-
ally unbounded distinguisher D that chooses the output bit optimally, we have
ΔD

k (S,T) = δD
k (S,T). In particular,

Δk(S,T) = δk(S,T) and ΔNA
k (S,T) = δNA

k (S,T).

Lemma 5. For any two (X , Y)-systems S and T there exist (X , Y × {0, 1})-
random systems Ŝ and T̂ with MBOs such that

(i) Ŝ− ≡ S,
(ii) T̂− ≡ T,
(iii) Ŝ� ≡ T̂�, and
(iv) δD

k (S,T) = νD
k (Ŝ) = νD

k (T̂) for all D.16

To illustrate the idea of the proof of Lemma 5, we consider an analogous state-
ment (in fact, a special case) where probability distributions PX and QX (over
some alphabet X ) take the place of the random systems Ŝ and T̂. In this case,
the systems with MBO can be replaced by joint distributions P̂XA and Q̂XA,
where A is binary. Indeed, if we define these distributions by

P̂XA(x, 0) = Q̂XA(x, 0) = min(PX(x), QX(x))

P̂XA(x, 1) = PX(x) − min(PX(x), QX(x))

Q̂XA(x, 1) = QX(x) − min(PX(x), QX(x))

(for any x ∈ X ) it is easy to verify that P̂X = PX and Q̂X = QX , which
corresponds to (i) and (ii), respectively. Furthermore, and trivially, P̂XA(·, 0) =
Q̂XA(·, 0), which is (iii). Finally, because the statistical distance can be written
as

δ(PX , QX) = 1 −
∑

x

min(PX(x), QX(x)) , (3)

the equivalent of (iv) follows from the fact that the right-hand side of (3) equals
P̂A(1) = Q̂A(1).

15 For the class of all distinguishers we simply write δk(S,T).
16 This also implies, for example, Δk(S,T) = νk(Ŝ) and ΔNA

k (S,T) = νNA
k (Ŝ).



Indistinguishability Amplification 141

Proof (of Lemma 5). The idea is to define the system Ŝ with MBO Ai (and,
likewise, T̂) such that, for all i ≥ 1,

pŜ
Y iAi|Xi(yi, 0, xi) := mxi,yi

pŜ
Y iAi|Xi(yi, 1, xi) := pS

Y i|Xi(yi, xi) − mxi,yi ,
(4)

where
mxi,yi := min(pS

Y i|Xi(yi, xi), pT
Y i|Xi(yi, xi)) .

We will verify below that this can always be done consistently.
Note that properties (i), (ii), and (iii) follow immediately from these equations

(similarly to the above argument for random variables). To verify (iv), we recall
that the probabilities of PDS

XkY k (and, likewise, PDT
XkY k) can be expressed by

equation (2). Using formula (3) for the statistical distance we find

δD
k (S,T) = ‖PDS

XkY k − PDT
XkY k‖

= 1 −
∑

xk,yk

min
(
PDS

XkY k(xk, yk), PDT
XkY k(xk, yk)

)

= 1 −
∑

xk,yk

pD
Xk|Y k−1(xk, yk−1)min

(
pS

Y k|Xk(yk, xk), pT
Y k|Xk(yk, xk)

)
.

Property (iv) then follows because the probability that the MBO Ak of Ŝ (and,
likewise, T̂) equals 1 after k steps is given by

νD
k (Ŝ) = 1 −

∑
xk,yk

PDŜ
XkY kAk(xk,yk,0)

= 1 −
∑

xk,yk

pD
Xk|Y k−1(xk, yk−1)pŜ

Y kAk|Xk(yk, 0, xk) ,

which equals the above expression for δD
k (S,T).

It remains to verify that there exists a system Ŝ satisfying (4) (the argument
for T̂ follows by symmetry).

Note that (4) only determines the interrelation between the system’s output
Yi and the value Ai of the MBO at the same step, but it does not specify
the dependency on previous values Ai−1. In fact, there are various degrees of
freedom in the definition of Ŝ, for instance in the choice of the probabilities
rxi,yi := pŜ

Y iAi−1|Xi(yi, 0i−1, xi). Most generally, the probabilities defining Ŝ,
conditioned on the event that the previous MBO equals 0, can be written as17

pŜ
YiAi|XiY i−1Ai−1(yi, ai, x

i, yi−1, 0i−1) :=

⎧⎨
⎩

mxi,yi

mxi−1,yi−1
if ai = 0

rxi,yi−mxi,yi

mxi−1,yi−1
if ai = 1,

17 We use the convention pS
Y 0|X0 ≡ 1 and, in particular, mx0,y0 = 1.



142 U. Maurer, K. Pietrzak, and R. Renner

for any i ≥ 1, where rxi,yi ∈ [mxi,yi , pS
Y i|Xi(yi, xi)] are parameters. To make

sure that the conditional probabilities sum up to 1, we require
∑
yi

rxi,yi = mxi−1,yi−1 , (5)

for any fixed xi and yi−1. Note that such a choice of rxi,yi always exists because
the right side of (5) lies in the interval

mxi−1,yi−1 ∈
[∑

yi

mxi,yi ,
∑
yi

pS
Y i|Xi(yi, xi)

]
.

To complete the definition of Ŝ, we set, for any i > 1 and ai−1 	= 0,

pŜ
YiAi|XiY i−1Ai−1(yi, 1, xi, yi−1, ai−1) :=

pS
Y i|Xi(yi, xi) − rxi,yi

pS
Y i−1|Xi−1(yi−1, xi−1) − mxi−1,yi−1

.

Again, the conditional probabilities are well-defined because all values are non-
negative and, by (5), sum up to 1. Furthermore, it is easy to see that the outputs
Ai of Ŝ are indeed monotone. Finally, by induction over i, it is straightforward
to verify that Ŝ satisfies (4), which concludes the proof. �

We give another interpretation of Lemma 5. If two probability distributions
PX and QX have statistical distance δ then there exists a (common) random
experiment with two random variables X ′ and X ′′, distributed according to PX

and QX , respectively, such that X ′ = X ′′ with probability 1 − δ. Lemma 5 can
be interpreted as the generalization of this statement to random systems. For
any distinguisher D, two random systems S and T are equal with probability
1 − δ, where δ is D’s distinguishing advantage.

4 Amplification of the Distinguishing Advantage

4.1 Neutralizing Constructions

Throughout the rest of the paper we let C(·, ·) be a construction invoking two
systems. For example C(F,G) denotes the system obtained when C(·, ·) invokes
the two systems F and G.

Definition 13. A construction C(·, ·) is called neutralizing for the pairs (F, I)
and (G,J) of (independent) systems if

C(F,J) ≡ C(I,G) ≡ C(I,J) ≡ Q (6)

(for some Q). Moreover, we denote by k′ and k′′ the maximal number of queries
made to the first and the second subsystem, respectively, when the number of
queries to C(·, ·) is k.



Indistinguishability Amplification 143

D

SSS

TTT

D′
k

D′′
k

D′
0

D′′
0

Fig. 1. Illustration for the proof of Lemma 6. D can be seen as a pair (D′
k,D′′

k) of
distinguishers which can exchange up to k = 2k′′ messages (simply set D′

k ≡ D and
D′′

k to be the trivial system which only passes messages). The gray arrows indicate the
MBOs.

4.2 Winning Independent Games

The following lemma states that the best combined strategy for winning two
independent games is not better than applying the individually best strategies
separately. We note that this is (of course) also true for real games, like playing
black jack, but we phrase the result at an abstract (and hence very general)
level.

We need some new notation: For two systems S and T with MBOs let [S‖T]∧

be the system consisting of S and T being accessible independently, with an MBO
which is 1 if and only if the MBOs of S and T are both 1. Let νDk′,k′′ ([S ‖T]∧)
denote the advantage of the best distinguisher in D, making k′ and k′′ (arbitrarily
scheduled) queries to S and T, respectively, in setting the MBO to 1 (we simply
write νk′,k′′ ([S‖T]∧) if D is the class of all distinguishers).

Lemma 6. For any random systems S and T with MBOs, and any k′ and k′′,

νk′,k′′([S‖T]∧) = νk′ (S) νk′′ (T), (7)

and
νNA

k′,k′′ ([S‖T]∧) = νNA
k′ (S) νNA

k′′ (T). (8)

Proof. The non-adaptive case (8) follows from the adaptive case (7) by viewing
the non-adaptive queries as a single adaptive query. To prove (7), let D be an
optimal distinguisher for the task considered, i.e.

νk′,k′′([S‖T]∧) = νD
k′,k′′ ([S‖T]∧).

Let A1, . . . , Ak′ and B1, . . . , Bk′′ denote the MBOs of S and T, respectively.
We can interpret D as a pair (D′k,D′′k) of distinguishers which can exchange up
to k = 2k′′ messages with each other, as shown in Figure 1. As this is just a
conceptual change, the advantage of setting both MBOs to 1 is exactly the same
for D as for the pair (D′k,D′′k).

Now assume that there is a pair of distinguishers D′� and D′′� which can
exchange up to � messages and have advantage ε to provoke (Ak′ = 1) ∧ (Bk′′ =
1) when querying S and T, respectively. We claim that then there also exist



144 U. Maurer, K. Pietrzak, and R. Renner

distinguishers D′�−1 and D′′�−1 which exchange one message less but still have
advantage at least ε to provoke (Ak = 1)∧ (Bk = 1). Before we prove this claim,
note that it implies the lemma as, by induction, there now exist D′0 and D′′0
(which do not communicate at all) where

νk′,k′′ ([S‖T]∧) ≤ ν
D′

0
k′ (S) · ν

D′′
0

k′′ (T) ≤ νk′(S) · νk′′ (T).

We actually have equality above as the other direction (≥) is trivial. To prove
the claim, assume that the (last) �-th message is sent from D′� to D′′� . Let the
random variable M denote this last message, and let V be the “view” of D′′�
just before receiving the message. Let E denote this random experiment where
D′� and D′′� are querying S and T respectively. The probability that we have
Ak′ = 1 ∧ Bk′′ = 1 is

∑
m,v

PE [Ak′ = 1 ∧ M = m ∧ V = v] · PE [Bk′′ = 1|M = m ∧ V = v]. (9)

We used PE [Bk′′ = 1|Ak′ = 1∧ M = m ∧V = v] = PE [Bk′′ = 1|M = m ∧V = v]
which holds as S is independent of T and the whole interaction between these
systems is captured by M and V . Now consider a new system D′′�−1 which
simulates D′′� but does not expect the (last) �-th message M and instead replaces
it with a message m′ which maximizes the probability of Bk′′ = 1 (given the view
V ). Also, let D′�−1 be the system D′�, but where the last message is not sent (note
that this change does not affect the probability of Ak′ = 1 or the distribution of
V ). The probability that the pair (D′�−1,D

′′
�−1) can provoke Ak′ = 1 ∧ Bk′′ = 1

is thus
∑
m,v

PE [Ak′ = 1 ∧ M = m ∧ V = v] · max
m′

PE [Bk′′ = 1|M = m′ ∧ V = v]

which is at least equal to (9). �

4.3 The Product Theorem

We can now state the first main result of the paper. Recall Definition 13.

Theorem 1. If C(·, ·) is neutralizing for the pairs (F, I) and (G,J) of systems,
then, for all k,

Δk(C(F,G),C(I,J)) ≤ 2 Δk′ (F, I) Δk′′ (G,J).

Proof. We consider the systems HZ,Z′ := C(〈I/F〉Z , 〈J/G〉Z′), indexed by Z
and Z ′, where Z and Z ′ are independent unbiased bits. Due to (6) we have
H11 ≡ C(F,G) and H00 ≡ H01 ≡ H10 ≡ Q ≡ C(I,J). One can hence easily
verify that

HZ,Z′ ≡ 〈〈Q/C(F,G)〉Z′/Q〉Z⊕Z′ ,

by checking the equivalence for all four values of the pair (Z, Z ′).



Indistinguishability Amplification 145

Lemma 3 implies that Δk(C(F,G),Q) = 2 · Δk(〈Q/C(F,G)〉Z′ ,Q), where,
according to Lemma 2, Δk(〈Q/C(F,G)〉Z′ ,Q) is equal to the optimal advantage
in guessing Z ⊕Z ′ with k queries to HZ,Z′ , since Z ′ and Z ⊕Z ′ are independent
unbiased bits. For the analysis of this advantage we consider the form HZ,Z′ =
C(〈I/F〉Z , 〈J/G〉Z′).

Let F̂ and Î be defined as guaranteed by Lemma 5, where F̂− ≡ F, Î− ≡ I,
F̂� ≡ Î�, and δk′(F, I) = Δk′ (F, I) = νk′ (F̂). Similarly, let Ĝ and Ĵ be defined
such that Ĝ− ≡ G, Ĵ− ≡ J, Ĝ� ≡ Ĵ�, and δk′′(G,J) = Δk′′ (G,J) = νk′′ (Ĝ).
We define the system

ĤZ,Z′ := C(〈Î/F̂〉Z , 〈Ĵ/Ĝ〉Z′)

with two MBOs. If we define Ĥ−Z,Z′ as ĤZ,Z′ with both MBOs ignored, then
Ĥ−Z,Z′ ≡ HZ,Z′ .

Since the MBOs can always be ignored, guessing Z ⊕ Z ′ can only become
easier in ĤZ,Z′ (compared to HZ,Z′ .) If we assume further that whenever an
MBO turns to 1, the corresponding bit (Z or Z ′) is also output (i.e., given to
the distinguisher for free), this can only improve the advantage further.

If either MBO is 0, the advantage in guessing that bit (Z or Z ′) is 0, and
hence also the advantage in guessing Z ⊕ Z ′ is 0. Thus the optimal strategy
for guessing Z ⊕ Z ′ is to provoke both MBOs (i.e., win both games), and the
probability that this succeeds is the advantage in guessing Z ⊕ Z ′.

We can now consider making the distinguisher’s task even easier. Instead of
having to provoke the two MBOs in the system ĤZ,Z′ , we give the distinguisher
direct access to the systems 〈Î/F̂〉Z and 〈Ĵ/Ĝ〉Z′ , allowing k′ and k′′ queries, re-
spectively. Lemma 6 implies that in this setting, using individual optimal strate-
gies is optimal. The probabilities of provoking the MBOs by individually optimal
strategies are νk′ (F̂) = Δk′(F, I) and νk′′ (Ĝ) = Δk′′ (G,J), respectively, hence
the advantage in guessing Z ⊕Z ′ is Δk′ (F, I)Δk′′ (G,J). Taking into account the
factor 2 from above (due to Lemma 3) this completes the proof. �

We say that a construction C(·, ·) is feed-forward if, within the evaluation of a
single query to C(F,G), no input to F (or G) depends on a previous output of
F (or G) of the same evaluation of C(F,G). We will only consider constructions
C(·, ·) that make a single call to the invoked systems per invocation of C(·, ·),
and such constructions are always feed-forward. The proof of the following result
is omitted.

Corollary 1. Consider the setting of Theorem 1. If C(·, ·) is a feed-forward
construction, then the inequality also holds for non-adaptive strategies:

ΔNA
k (C(F,G),C(I,J)) ≤ 2 ΔNA

k′ (F, I) ΔNA
k′′ (G,J).

4.4 Implications of the Product Theorem

Recall that R (P) denotes a uniform random function (permutation).



146 U. Maurer, K. Pietrzak, and R. Renner

Definition 14. For two (X , Y)-systems F and G and a quasi-group operation
� on Y, we define F � G as the system obtained by feeding each input to both
systems and combining the outputs using �.

Corollary 2. For any random functions F and G, any quasi-group operation �,
and for all k,

Δk(F � G,R) ≤ 2 Δk(F,R) Δk(G,R)

and
ΔNA

k (F � G,R) ≤ 2 ΔNA
k (F,R) ΔNA

k (G,R).

The same statements hold for general random systems F and G when R is
replaced by (a beacon) B.

Proof. Let I := R and J := R in Theorem 1 and C(F,G) := F�G. Condition (6)
is satisfied since F � R ≡ R, R � G ≡ R, and R � R ≡ R. This proves the first
inequality. The second inequality follows from Corollary 1 since F � G is clearly
a feed-forward construction. The proof of the last statement is analogous. �

Definition 15. For two (X , X )-random permutations F and G we define F�G
as the system obtained by cascading F and G, i.e., the input to F � G is fed to
F, its output is fed to G, and G’s output is the output of F � G. Moreover, for
a random permutation F, we denote by 〈F〉 the random permutation which can
be queried from “both sides”, i.e., one can also provide an output and receive
the corresponding input.18

Corollary 3. For any compatible random permutations F and G, where G is
stateless, for all k,

Δk(F � G,P) ≤ 2 Δk(F,P) Δk(G,P)

and
ΔNA

k (F � G,P) ≤ 2 ΔNA
k (F,P) ΔNA

k (G,P).

If also F is stateless, then the corresponding two inequalities also hold when
bi-directional permutations are considered.19

Proof. Let I := P and J := P in Theorem 1 and C(F,G) := F�G. Condition (6)
is satisfied since F�P ≡ P, P�G ≡ P, and P�P ≡ P. Note that P�G ≡ P is only
guaranteed to hold if G is stateless.20 No restriction applies to F. This proves
the first inequality. The second inequality follows from Corollary 1 since the
cascade construction is feed-forward. The proof of the last statement is similar
but omitted. �
18 This definition is motivated by considering chosen-plaintext and chosen-ciphertext

attacks against a block-cipher. One-sided and two-sided attacks are sometimes also
called CCA and nCCA, for the adaptive and the non-adaptive version.

19 E.g., Δk(〈F〉 � 〈G〉, 〈P〉) ≤ 2 Δk(〈F〉, 〈P〉) Δk(〈G〉, 〈P〉).
20 As an example, consider a stateful random permutation G which internally builds

a permutation function table by always taking the least unused element.



Indistinguishability Amplification 147

5 Amplification of the Distinguisher Class

The second main result of this paper states that if subsystems of a neutralizing
construction are only indistinguishable from ideal systems by a weak distin-
guisher class, then the construction is indistinguishable for a stronger distin-
guisher class. Recall Definition 13.

Theorem 2. If C(·, ·) is neutralizing for the pairs (F, I) and (G,J) of systems,
then, for all k and all distinguishers D,21

δD
k (C(F,G),C(I,J)) ≤ δ

DC(·,J)
k′ (F, I) + δ

DC(I,·)
k′′ (G,J).

Proof. As in the proof of Theorem 1, let F̂ and Î be defined as guaranteed by
Lemma 5, where F̂− ≡ F, Î− ≡ I, F̂� ≡ Î�, and δD

k (F, I) = νD
k (F̂) = νD

k (Î)
for all D. (Note that this D is different from that in the theorem.) Similarly, let
Ĝ and Ĵ be defined such that Ĝ− ≡ G, Ĵ− ≡ J, Ĝ� ≡ Ĵ�, and δD

k (G,J) =
νD

k (Ĝ) = νD
k (Ĵ) for all D.

We can consider the following two systems with MBO: Ĥ00 := C(Î, Ĵ) and
Ĥ11 := C(F̂, Ĝ), where for each system the MBO is defined as the OR of the two
internal MBOs. We have Ĥ�00 ≡ Ĥ�11 because F̂� ≡ Î� and Ĝ� ≡ Ĵ�. Therefore,
since Ĥ−00 ≡ C(I,J) and Ĥ−11 ≡ C(F,G), Lemma 4 implies that

δD
k (C(F,G),C(I,J)) ≤ νD

k (Ĥ00).

It remains to determine a bound on νD
k (Ĥ00). The MBO in Ĥ00 (i.e., in

C(Î, Ĵ)) is provoked if either of the two internal MBOs is provoked. We can
apply the union bound and consider the provocation of each MBO separately.
More precisely, we consider the following systems with MBO: C(Î,J) and C(I, Ĵ).
Then νD

k (Ĥ00) is bounded by the sum of the probabilities that D provokes the
MBO in each of these systems, i.e.,

νD
k (Ĥ00) ≤ νD

k (C(Î,J)) + νD
k (C(I, Ĵ)).

The proof is completed, using Lemma 5, by noting that νD
k (C(Î,J))=ν

DC(·,J)
k′ (Î)

= δ
DC(·,J)
k′ (F, I) and νD

k (C(I, Ĵ)) = ν
DC(I,·)
k′′ (Ĵ) = δ

DC(I,·)
k′′ (G,J). �

Note that since Theorem 2 applies to every distinguisher, it also applies to any
distinguisher class D, for instance the class of all distinguishers. Recalling that
Δk(S,T) = δk(S,T) and ΔNA

k (S,T) = δNA
k (S,T), we obtain:

Corollary 4. For any compatible random functions F and G and any quasi-
group operation �, and all k,

Δk(F � G,R) ≤ ΔNA
k (F,R) + ΔNA

k (G,R).
21 Here, for example, DC(·,J) denotes the distinguisher consisting of D connected to

C(·, ·) where the second subsystem is simulated as J and the system to be distin-
guished is placed as the first subsystem.



148 U. Maurer, K. Pietrzak, and R. Renner

Proof. We recall that the �-combination is neutralizing: F�R ≡ R�G ≡ R�R ≡
R. It remains to show that the distinguisher classes correspond to the class of
non-adaptive distinguishers.

For any D, the distinguisher DC(·,J) (i.e., the distinguisher D(· �R)) for pro-
voking the MBO in F̂ obtains only random outputs, independently of F̂. A distin-
guisher could simulate these random outputs itself, ignoring the output of F � R,
and hence corresponds to a non-adaptive distinguisher. The same argument also
applies to the distinguisher DC(I, ·) for provoking the MBO in Ĝ. �
Corollary 5. For any compatible random permutations F and G, where G is
stateless, for all k,

Δk(F � G,P) ≤ ΔNA
k (F,P) + ΔRI

k (G,P).

If also F is stateless, then22

Δk(〈F � G−1〉, 〈P〉) ≤ ΔNA
k (F,P) + ΔNA

k (G,P).

The last statement means that 〈F � G−1〉 is adaptively indistinguishable (from
both sides) if F and G are only non-adaptively indistinguishable (from one side).

Proof. We recall that the �-combination is neutralizing: F�P ≡ P�G ≡ P�P ≡
P. It remains to show that the distinguisher classes correspond to the class NA
of non-adaptive distinguishers and the class RI of random-input distinguishers,
respectively.

For any D, the distinguisher DC(·,J), i.e., the distinguisher D(·�P), obtains
only random outputs, independently of F. A distinguisher could simulate these
random outputs itself, ignoring the output of F �P, and hence corresponds to a
non-adaptive distinguisher.

Similarly, the distinguisher DC(I, ·), i.e., the distinguisher D(P � ·), can only
produce random inputs to G, with the possibility of repeating a previous input.
Because G is stateless, repeating an input does not help in provoking the MBO
in G.

The proof of the second statement is omitted. �

Acknowledgments

It is a pleasure to thank Yevgeniy Dodis, Ghislain Fourny, Thomas Holenstein,
Dominik Raub, Johan Sjödin, and Stefano Tessaro for discussions about random
systems.

References

[KNR05] Kaplan, E., Naor, M., Reingold, O.: Derandomized constructions of k-wise
(almost) independent permutations. In: Chekuri, C., Jansen, K., Rolim,
J.D.P., Trevisan, L. (eds.) APPROX 2005 and RANDOM 2005. LNCS,
vol. 3624, pp. 354–365. Springer, Heidelberg (2005)

22 Here G−1 is the inverse of G, which is well defined as G is a stateless random
permutation.



Indistinguishability Amplification 149

[LR86] Luby, M., Rackoff, C.: Pseudo-random permutation generators and cryp-
tographic composition. In: Proc, 18th ACM Symposium on the Theory of
Computing (STOC), pp. 356–363 (1986)

[Mau02] Maurer, U.: Indistinguishability of random systems. In: Knudsen, L.R.
(ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 110–132. Springer, Hei-
delberg (2002)

[MOPS06] Maurer, U., Oswald, Y.A., Pietrzak, K., Sjödin, J.: Luby-Rackoff ciphers
with weak round functions. In: Vaudenay, S. (ed.) EUROCRYPT 2006.
LNCS, vol. 4004, pp. 391–408. Springer, Heidelberg (2006)

[MP04] Maurer, U., Pietrzak, K.: Composition of random systems: When two weak
make one strong. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 410–
427. Springer, Heidelberg (2004)

[Mye03] Myers, S.: Efficient amplification of the security of weak pseudo-random
function generators. Journal of Cryptology 16(1), 1–24 (2003)

[Mye04] Myers, S.: Black-box composition does not imply adaptive security. In:
Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027,
pp. 189–206. Springer, Heidelberg (2004)

[Pie05] Pietrzak, K.: Composition does not imply adaptive security. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 55–65. Springer, Heidelberg
(2005)

[Pie06] Pietrzak, K.: Composition implies adaptive security in minicrypt. In:
Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 328–338.
Springer, Heidelberg (2006)

[PS07] Pietrzak, K., Sjödin, J.: Domain extension for weak PRFs; the good, the
bad, and the ugly. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442,
pp. 517–533. Springer, Heidelberg (2002)

[Vau98] Vaudenay, S.: Provable security for block ciphers by decorrelation. In:
Meinel, C., Morvan, M. (eds.) STACS 98. LNCS, vol. 1373, pp. 249–275.
Springer, Heidelberg (1998)

[Vau99] Vaudenay, S.: Adaptive-attack norm for decorrelation and super-
pseudorandomness. In: Heys, H.M., Adams, C.M. (eds.) SAC 1999. LNCS,
vol. 1758, pp. 49–61. Springer, Heidelberg (2000)

[Vau03] Vaudenay, S.: Decorrelation: A theory for block cipher security. J. Cryp-
tology 16(4), 249–286 (2003)



A Hybrid Lattice-Reduction and
Meet-in-the-Middle Attack Against NTRU

Nick Howgrave-Graham

NTRU Cryptosystems, Inc.
nhowgravegraham@ntru.com

Abstract. To date the NTRUEncrypt security parameters have been
based on the existence of two types of attack: a meet-in-the-middle attack
due to Odlyzko, and a conservative extrapolation of the running times of
the best (known) lattice reduction schemes to recover the private key. We
show that there is in fact a continuum of more efficient attacks between
these two attacks. We show that by combining lattice reduction and a
meet-in-the-middle strategy one can reduce the number of loops in at-
tacking the NTRUEncrypt private key from 284.2 to 260.3, for the k = 80
parameter set. In practice the attack is still expensive (dependent on
ones choice of cost-metric), although there are certain space/time trade-
offs that can be applied. Asymptotically our attack remains exponential
in the security parameter k, but it dictates that NTRUEncrypt parame-
ters must be chosen so that the meet-in-the-middle attack has complexity
2k even after an initial lattice basis reduction of complexity 2k.

1 Introduction

It is well known that the closest vector problem (CVP) can be solved efficiently
in the case that the given point in space is very close to a lattice vector [7,18]. If
this CVP algorithm takes time t and a set S has the property that it includes at
least one point v0 ∈ S which is very close to a lattice vector, then clearly v0 can
be found in time O(|S|t) by exhaustively enumerating the set S. We show that
if the points of S can be represented as S = S′⊕S′, i.e. for every (v, v′) ∈ S ×S′

there exists an v′′ ∈ S′ such that v = v′ + v′′, then there are conditions under
which there is actually an efficient meet-in-the-middle algorithm on this space
to find the point v0 in time O(|S|1/2t).

We can translate this CVP result to a result about lattice basis reduction by
defining the set S to be some linear combinations of the last n−m rows of a given
basis {b1 . . . , bn}, and then using the CVP algorithm on the elements of S and the
basis {b1, . . . , bm}. We note that a similar approach is taken by Schnorr in [21]
for reducing generic lattices with the SHORT algorithm. Schnorr also suggests
that “birthday” improvements might be possible for his method (generalizing
results from [24]) but concludes that, in general, storage requirements may be
prohibitive.

In this paper we show that, in the case of searching for the NTRUEncrypt
private key, meet-in-the-middle techniques are indeed possible. We show that

A. Menezes (Ed.): CRYPTO 2007, LNCS 4622, pp. 150–169, 2007.
c© International Association for Cryptologic Research 2007



A Hybrid Lattice-Reduction and Meet-in-the-Middle Attack Against NTRU 151

Odlyzko’s storage ideas may be generalized to remain efficient even when used
after lattice reduction, and we optimize the set S for the structure of the NTRU-
Encrypt private key.

1.1 Roadmap

In section 2 we describe the key recovery problem behind NTRUEncrypt, and
we explain the best known attacks against it. We introduce the following ques-
tion regarding its parameters: “for a given N and q and security parameter k,
how low can df be?”: this is the fundamental mathematical question that our
paper addresses, and it ultimately shows that df cannot be as low as previously
thought. This is important because df is one of the factors that govern the ef-
ficiency of NTRUEncrypt, and so from a parameter generation point of view
there is a practical desire to keep it as low as possible.

In section 3 we give a brief summary of the theory lattices including the
usefulness of triangularization of lattice bases. In section 3.1 we discuss the
practical consequences of running lattice reduction schemes on the NTRU public
basis.

In section 4 we explain the mathematics behind the new hybrid technique,
and in section 5 we analyze the cost of the technique in theory and in practice.

As with many meet-in-the-middle techniques the storage requirements of our
technique are considerable. In section 6 we discuss methods to lessen these re-
quirements at the cost of increasing the running time.

In section 7 we discuss possible generalizations of our work in more generic
lattice situations, and give conclusions in section 8.

2 The NTRU Cryptosystem

NTRUEncrypt was invented in 1996, and was first published in [10]. It is based
in the ring R = Z[X ]/(XN − 1, q) whose elements can be represented by vectors
of length N with integer entries modulo q. To aid exposition we will differentiate
between a vector representation a ∈ VN (Z) and a ring representation a ∈ R by
the use of the LATEX fonts shown. The NTRUEncrypt private key is two “binary”
vectors f, g ∈ VN ({0, 1}) with df and dg ones respectively, and the remaining
entries zero1. The NTRUEncrypt public key is h = g/f in the ring R, where h
is typically viewed as h, a vector of length N with integer entries modulo q.

There are many good descriptions of how the NTRU cryptosystem works
[9,10,11,14], but in this paper we directly take on the problem of recovering
the private key from the public information, so we do not need to delve into
details of encryption and decryption. Out of interest we note that the encryption
and decryption algorithms are both very efficient operations (both encryption
and decryption are O(k2) in the security parameter k), and all known attacks
against NTRUEncrypt are exponential in the security parameter k (including
1 Other sets of small vectors are possible for the set of NTRUEncrypt private keys,

but this is the one we will initially concentrate on.



152 N. Howgrave-Graham

the one demonstrated in this paper). Another potential upside of NTRUEncrypt
is its apparent resistance to attack by quantum computers. The downsides to
NTRUEncrypt are that the public key-size and ciphertext size are both slightly
large, and that there is expansion in encryption (a raw N -bit plaintext (after
padding) is encrypted to a (N log2 q)-bit ciphertext) so NTRUEncrypt lacks
some of the nice properties that an encryption-permutation allows.

The parameter choices for N, q, df , dg have undergone several changes since
the invention of NTRUEncrypt due to both progress in cryptanalysis [11], and
fine tuning of the parameters for efficiency reasons [14]. The currently recom-
mended choices for k = 80 bit security are N = 251, q = 197, df = 48, dg = 125.
This parameter set is known as ees251ep6 in the IEEE P1363.1 draft stan-
dard [16].

The attack demonstrated in this paper is applicable, to some degree, to all
the NTRUEncrypt parameter sets since its invention. Unfortunately it is most
effective on the currently recommended parameter sets because df has been
lowered considerably for efficiency reasons.

2.1 Lattice Attacks Against NTRU

The recovery of the NTRUEncrypt private key from public information can be
posed as a lattice problem. This was known by the inventors of NTRU [10], and
further explored in [5].

From the definition of h = g/f, it is clear that there is an length-(2N) integer
vector (k, f) such that

(k, f)
(

qI 0
H I

)
= (g, f), (1)

where H is a circulant matrix generated from h, i.e. Hi,j = hi+j mod N . Note
that the vector/matrix multiplication fH respects the multiplication fh in the
ring Z[X ]/(XN − 1), and the k part of the vector corresponds to the reduction
of each coefficient modulo q. The (2N) × (2N) basis ((qI, 0), (H, I)) is referred
to as the NTRU public lattice basis.

The discriminant of the NTRU public lattice basis is clearly qN , whilst the
(g, f) vector has size (df +dg)1/2. The Gaussian heuristic therefore suggests that
there are no smaller vectors in the lattice than (g, f) and so lattice reduction
might be used to find it. We note that the NTRU public lattice basis does not
contain just one small vector (g, f) but all N “rotations” (g(i), f (i)) where g(i),
f (i) correspond to f(i) = fX i and g(i) = gX i respectively, for i = 0, . . . , N − 1,
since (fX i)h = gX i in the ring R.

Although the rotations of the (g, f) vectors are the smallest vectors in the
NTRU lattice, the best (known) direct lattice reduction techniques find it hard
to recover any of these vectors in practice. Indeed typically lattice reduction
methods appear to be fully exponential in the security parameter k. For the lat-
tice family to which the ees251ep6 parameter set belongs, it is stated in [14,16]
that lattice reduction has a complexity of at least

R = 20.4245N−3.44 (2)



A Hybrid Lattice-Reduction and Meet-in-the-Middle Attack Against NTRU 153

for N > 120, to find any vector smaller that a q-vector. For N = 251 this corre-
sponds to time of 2103.1 to directly find a (g, f) rotation from the public basis.

2.2 Odlyzko’s Meet-in-the-Middle Attack on NTRU

NTRU parameter sets have always been secure against a meet-in-the-middle
attack discovered by Odlyzko, which is described in [15].

The idea is that if f1 and f2 are such that f = f1+f2 then the entries of x1 = f1h
and x2 = −f2h differ only by 0 or 1 mod q, since (f1 + f2)h = g and g is binary.

Assuming f has df ones and df is even, then the attack progresses by sampling
a binary ring element f1 with df/2 ones, and computing x1 = f1h.

The vector x1 corresponding to x1 is of length N with entries satisfying −q/2 <
(x1)i ≤ q/2. For each index i of x1 we determine a bit βi, where βi = 1 if
(x1)i > 0 and 0 otherwise. We can therefore determine an N -bit string from
x1, namely a1 = β1 : β2 : . . . : βN , which we call an “address” or “label’. Let
β = 1−β denote the complement of a bit β, and let a denote the component-wise
complement of a bit-string a. The element f1 is stored in two “boxes”: one with
address a1, and one with address a1.

The meet-in-the-middle technique carries on sampling f1 as above, and storing
them in boxes dependent on the x1. If two binary elements f1 and f2 are sampled
such that f1 + f2 = f then one can hope that the a1 corresponding to x1 = f1h is
the same as the a2 corresponding to x2 = f2h, since x1 = −x2 + g. This will only
be the case if the entries of g do not cause af the entries of x1 to “change sign”,
but this technicality can be dealt with by either simply accepting the probability
of the occurrence, or by storing the f1 in more boxes if the x1 have coefficients
that may change sign. These approaches are discussed further in [15] and later
in this report.

In this introduction we will assume that whenever f1 + f2 = f then with
certainty a1 = a2, i.e. sampling f1, f2 such that f1 + f2 = f can be detected by a
collision in a box. For any collisions we can retrieve the f1, f2 stored in the box,
and check if (f1 + f2)h is binary: if so we have found a very small vector in the
NTRU public basis; undoubtedly2 one of the rotations of (g, f).

To estimate the complexity of this attack, let V denote the set of f1 which
are actually a subset of the ones of some rotation of f. Assuming the rotations
have a small number of intersections we see that |V | ≈ N

( df

df /2

)
, and we can

expect a collision in the set of such f1 after O(|V |1/2) samples. The probability
of sampling from this set is |V |/

(
N

df /2

)
, so the expected number of loops of the

algorithm before a collision is

L =
1√
N

(
N

df/2

)(
df

df/2

)−1/2

. (3)

For the ees251ep6 parameter set this turns out to be 284.2.
2 It will almost certainly be a (g, f) rotation because of the way we performed the

search, although it is worth noting that discovering any short enough vector is tan-
tamount to breaking NTRUEncrypt, as observed in [5].



154 N. Howgrave-Graham

2.3 Choosing NTRUEncrypt Parameters

NTRU are typically conservative when choosing parameters, so the true lattice
security (when considering BKZ attacks only) is probably significantly higher
than equation 2 suggests, due to the upward concavity of the observed running
times. Similarly, ensuring that the number of loops, L, given by equation 3 is
greater than 280 is conservative for two reasons:

– There are hidden computational costs per loop, e.g. Odlyzko’s attack requires
summing together df/2 vectors of length N and reducing their coefficients
modulo q. If we count “one addition modulo q” as an “intrinsic operation”
then this cost could arguably add log2(Ndf/2) bits of security.

– The storage requirements of Odlyzko’s attack is slightly greater than the
number loops given by equation 2, since we may need to store the f1’s
in several boxes per loop (on average 8, say). Also the f1’s take at least
log2

(
N

df /2

)
bits to store.

Thus one might conclude that, in practice, Odlyzko’s attack on the ees251ep6
parameter set will require too many operations (295.8 modular additions) and/or
too much storage (294 bits) to be feasible, and hence the parameter set is more
than adequate for a k = 80 security level. Of these two constraints the storage
requirement is by far the larger obstacle given today’s hardware.

Although NTRU have been conservative in their parameter choices, this is
with respect to the best known attacks. In this paper we demonstrate a new class
of attack that may cause NTRU to re-evaluate their parameter sets. Indeed, as
a piece of mathematics, the contribution of this paper can be summed up as an
improved answer to the question “for a fixed N and q and a security level k,
how low can df go?”: we show that df cannot be as low as previously thought.

To gauge the practicality of our attack, we examine how it changes the running
time and storage requirements of Odlyzko’s attack in section 5, and discuss
methods to make the storage requirements more feasible (at the cost of extra
computation) in section 6.

This paper is not about suggesting new parameter sets which would require a
large amount of analysis to justify well, however we do mention techniques that
can mitigate our attack in section 8. When it does come to choosing new NTRU
parameters we advocate the methodology outlined in [19], i.e. for a fixed PC
architecture working out how much time it takes to break a symmetric key algo-
rithm (e.g. DES), and how much time it takes to break a small NTRUEncrypt
example, and then extrapolating the two to work out when NTRUEncrypt will
require the same amount of work as an 80-bit symmetric algorithm (and similarly
for higher k-bit security levels).

The above methodology (of comparison with an exhaustive search on a DES
symmetric key) essentially benchmarks the PC in a standard way, and for exam-
ple, allows one to argue how much security 295.8 modular additions truly gives
(it is certainly less than a bit security level of k = 95.8).



A Hybrid Lattice-Reduction and Meet-in-the-Middle Attack Against NTRU 155

3 Lattice Basis Representation and Lattice Reduction

We take a row-oriented view of matrices and allow some flexibility between basis
representations and matrix representations, e.g. we call a matrix BKZ-reduced
if the rows of the matrix form a BKZ-reduced basis [22].

For a thorough grounding on lattices see [3,4], however for our purposes the
following will suffice: for a given basis B = {b1, . . . , bn} of R

n a lattice is defined
to be the set of points

L =

{
y ∈ R

n

∣∣∣∣∣ y =
n∑

i=1

aibi, ai ∈ Z

}

Clearly many bases will generate the same set of lattice points; indeed if we
represent a basis B by a matrix B with rows {b1, . . . , bn} then it is exactly the
rows of UB for any U ∈ GLn(Z) that generate these points.

However it is often convenient to give ourselves even more freedom with matrix
representations of bases in that one can consider bases of isomorphic lattices too3.

Definition 1. Two lattices L, L′ are called isomorphic if there is a length-
preserving bijection φ : L → L′ satisfying φ(x + y) = φ(x) + φ(y).

In terms of matrix representations this means that if the rows of B form a
basis for a lattice L then the rows of B′ = UBY where U ∈ GLn(Z) and Y is
orthonormal, form a basis for an isomorphic lattice L′, even though the rows of
B′ do not necessarily generate the same points of L.

The point of allowing the extra freedom of post-multiplying by an orthonormal
matrix is that if (for some reason) one can find an integer vector u such that uB′

is small, then uU−1B is also small, i.e. solving lattice problems in an isomorphic
lattice can help solve them in the original lattice. It is worth noting that this
freedom also allows one to always consider lower triangular lattice bases by
forming Y from the Gram-Schmidt procedure4. Explicitly Ti,j = μi,j |b∗j | where
μi,j = 〈bi, b

∗
j 〉/|b∗j |2 for 1 ≤ j < i ≤ n and μi,i = 1.

Given that there are many bases of the same lattice L, there is a significant
amount of research around defining which bases are “more reduced” than others,
and generating efficient algorithms to produce such bases [22,8,21]. The most
commonly used reduction scheme in cryptography is BKZ [22] and its efficient
implementation in the number theory library NTL [23].

Lattice reduction typically transforms a basis {b1, . . . , bn} so that the size of
the Gram-Schmidt vectors b∗i do not decrease “too quickly”. This allows one to
3 This phenomenon is usually explained through the language of quadratic forms, but

such a presentation typically misses the concreteness of the isomorphic lattice bases,
which we prefer in this report.

4 It is worth saying that mathematicians do not always apply this transformation
because some non-lower triangular lattice bases naturally have integer entries (as
opposed to general real entries), and putting a lattice in lower triangular form can
force the use of square roots of rational numbers (or real approximations) in this
case.



156 N. Howgrave-Graham

prove an approximation factor between the size of the first vector b1 and the size
of the smallest vector in the lattice λ1 (which is normally bounded by the size
of b∗n). Thus lattice reduction can be used to solve the (approximate) shortest
vector problem (SVP).

Another well-studied lattice problem is the (approximate) closest vector prob-
lem (CVP): one is given an arbitrary point in space y ∈ R

n and the problem
is to find the closest lattice point to this point (or more generally a lattice
point within a radius of a multiple of λ1). We make use of the following simple
CVP-algorithm when the lattice basis is given by the rows of a lower triangular
(n) × (n) matrix T (as explained above a basis can always be represented this
way, and this avoids explicit use of b∗i ). We remark that this algorithm has a
long history; it is sometimes called “weak reduction” or “size reduction” of the
vector y against the basis T and is an essential component of lattice reduction
techniques, however is usually referred to as Babai’s nearest plane algorithm
from the analysis in [2].

Algorithm 1. weakly reducing y against T
1: x ← y
2: for i = n down to 1 do
3: let ui to be the nearest integer to xi/Ti,i

4: x ← x − uiTi

5: end for
6: return the reduced vector x

The following lemma (first shown in [7]) shows that if a point in space is
“particularly close” to a lattice vector then it can be recovered by algorithm 1.

Lemma 1 (Furst, Kannan). Assume y = uT + x for some u ∈ Vn(Z), x ∈
Vn(R) and a lower triangular T ∈ Mn(R). If the entries of x satisfy

− Ti,i/2 < xi ≤ Ti,i/2 (4)

for 1 ≤ i ≤ n, then x can be recovered by algorithm 1.

Proof. It is simple to confirm that the “error” vector x does not change any of
the “rounding” computations of ui in step 3 of algorithm 1.

3.1 Reducing the NTRU Public Basis

The NTRU public basis is given5 in equation 1. The state of a partially-reduced
NTRU lattice can be expressed well by plotting the logq |b∗i | for i = 1, . . . , 2N ,
as done in [9]. Figure 1 shows the various states of reduction of an NTRU public
basis with the ees251ep6 parameter set.
5 We note that this basis description is slightly different from the original description

in [10], but we prefer putting the small q-vectors first.



A Hybrid Lattice-Reduction and Meet-in-the-Middle Attack Against NTRU 157

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  100  200  300  400  500

’prof_pub.txt’

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  100  200  300  400  500

’prof_red15.txt’

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  100  200  300  400  500

’prof_priv.txt’

Fig. 1. A representation of lattice reduction on NTRU lattices via plotting logq |b∗
i |.

The left figure is the public basis, the middle figure is after reduction with BKZ with
blocksize 15, the right is the fully reduced private basis.

As can be seen from the middle graph of figure 1, the first few b∗i vectors of
a partially-reduced NTRU basis typically remain q-vectors, whilst the last b∗i
vectors typically satisfy |b∗i | = 1. We note the (approximate) symmetry of these
graphs can be made exact by using the symplectic lattice reduction techniques
of [9]. Notice the central region of a partially-reduced NTRU basis is approxi-
mately linear in the log scale, i.e. it obeys the geometric series assumption (GSA)
as defined in [21].

Given that the first and last vectors are untouched, reducing an NTRU basis
can be speeded up by extracting a suitable lower triangular submatrix B′, re-
ducing this, and putting the basis back in a lower triangular form6. If the public
basis is represented by B, then this transformation can be written UBY = T ,
where the structure of U , B, Y and T are shown below:

⎛
⎝ Ir 0 0

0 U ′ 0
0 0 Ir′

⎞
⎠

⎛
⎝ qIr 0 0

∗ B′ 0
∗ ∗ Ir′

⎞
⎠

⎛
⎝ Ir 0 0

0 Y ′ 0
0 0 Ir′

⎞
⎠ =

⎛
⎝ qIr 0 0

∗ T ′ 0
∗ ∗ Ir′

⎞
⎠ . (5)

The (partially-reduced) matrix T also has N small vectors given by (g(i), f (i))
Y , where (g(i), f (i)) are the original small vectors corresponding to f = fX i,
g = gX i for i = 1, . . . , N . From the structure of Y we see that these small
vectors have binary entries for the first r entries and the last r′ entries, and only
the middle entries are affected by Y ′.

Let m = 2N−r′ denote the number of vectors in the first two “blocks”, and let
{b′1, . . . , b′m−r} denote the rows of B′. Our strategy to recover the NTRUEncrypt
private key is to pick a submatrix B′ such that (b′m−r)

∗ can be made reasonably
large (so that lemma 1 may be usefully employed), whilst at the same time
making m reasonably large so that the last r′ entries of (g(i), f (i))Y can either
be guessed, or (less-restrictively) have a meet-in-the-middle attack mounted on
them.

We remark that the standard way to ensure (b′m−r)
∗ is large, is to try to

minimize the first vector in the dual matrix of B′, as described in [6,12,13,20].

6 This is completely akin to the treatment of blocks in a block reduction scheme.



158 N. Howgrave-Graham

4 The Hybrid Lattice-Reduction and Meet-in-the-Middle
Method

Let T be as defined in equation 5, and let u, v, s be such that

(u|v)T = (s|v) = (g(i), f (i))Y,

for some i = 1, . . . , 2N and where u, s are of length m, and v is of length
r′ = 2N − m.

We start by showing that an algorithm that enumerates all possible v is enough
to recover (u|v), and then show that there is actually a meet-in-the-middle al-
gorithm to recover the same information. We note that knowledge of (u|v) is
clearly equivalent to knowledge of (s|v) and (g, f).

Lemma 2. The vector (0|v)T − (0|v) is a distance of |s| away from a lattice
point of T .

Proof. We know

(0|v)T − (0|v) = (u|v)T − (u|0)T − (0|v)
= (s|0) − (u|0)T.

Corollary 1. If s if “small enough” to satisfy the conditions of lemma 1 then
it can be found by algorithm 1.

In our analysis we always ensure that s satisfies the conditions of lemma 1 for a
large proportion7 of the rotations (g(i), f (i)). In principle this condition could be
slightly relaxed by using the methods of [18,21], at the cost of doing some extra
“searching”.

We use the output of algorithm 1 to determine a number of “addresses” for
“boxes” to store meet-in-the-middle data in to. As mentioned in section 2.2 there
are slight complications in working out which boxes to store information in to
increase the probability of good collisions. In our analysis we always ensure that
r (the number of initial q-vectors untouched) is large enough so that the storage
requirements of the meet-in-the-middle attack is less that 2r. This way we can
use Odlyzko’s storage strategy directly without having to consider i for which
Ti,i < q. We note that the following definition could be generalized to handle
the case when |xi| ≤ Ti,i/2 and the error on the xi is non-constant, unknown
but small (rather than the fixed value 1), but this is presently unnecessary.

Definition 2. For a fixed integer r, and any vector (x|0) with entries satisfying
−q/2 < xi ≤ q/2 for 1 ≤ i ≤ r we define an associated set, A(r)

x , of r-bit
integer “addresses” where A(r)

x contains every r-bit integer a satisfying both of
the following properties:

7 This probability depends on the form of T and the effect of Y so can be checked
easily.



A Hybrid Lattice-Reduction and Meet-in-the-Middle Attack Against NTRU 159

– bit ai = 1 for all indices i, 1 ≤ i ≤ r, such that xi > 1, and
– bit ai = 0 for all indices i, 1 ≤ i ≤ r, such that xi ≤ 0.

Example 1. To help explain definition 2 we do a simple example with r = 10,
q = 11, and

x = (2, 3, −4, −1, 1, 5, −3, −2, 0, 1).

In this case there are 2 entries satisfying xi = 1, so

A(r)
x = {11000100002, 11000100012

11001100002, 11001100012}.

Lemma 3. When the first r entries of (x|0) are random integers modulo q and
independent of each other, then the expected size of A(r)

x is 2z where

z =
r∑

j=0

j

(
r

j

)
(q − 1)r−j

qr
.

Proof. Each xi = 1 doubles the entries of A(r)
x (one with bit ai = 0 and the

other with bit ai = 1), so the number of expected entries in A(r)
x is 2z where z

is the number of expected 1’s in the first r entries of x.
Assuming the entries of x are random modulo q and independent of each

other, the probability that x has j ones in its first r entries is

pj =
(

r

j

)
(q − 1)r−j

qr
,

and the expected value is therefore given by z =
∑r

j=0 jpj .

Example 2. In the case r = 159 and q = 197 then p0 ≈ 0.45, p1 ≈ 0.36, p2 ≈
0.14, p3 ≈ 0.04, so z ≈ 0.36 + 2(0.14) + 3(0.04) ≈ 0.76, and the probability that
z > 3 is very low (so in practice we discard such x since they are costly to store).

Lemma 4. If the first r entries of a vector s are binary, and −q/2 < xi − si ≤
q/2 for 1 ≤ i ≤ r, then the set A(r)

x ∩ A(r)
x−s is non-empty.

Proof. If the first r entries of a vector s are binary then the sign of the first r
entries of x− s are unchanged whenever xi > 1 or xi ≤ 0. If 0 < xi ≤ 1 then the
sign does change but in that case A(r)

x contained addresses with both choices of
bit ai.

The meet-in-the-middle attack is described in algorithm 2. To analyze its prop-
erties we create the following definition.

Definition 3. A vector v1 of length r′ = 2N − m is called s-admissible if the
x1, u1 gotten from algorithm 1 satisfy:

(0|v1)T − (0|v1) = (x1|0) − (u1|0)T, and (6)
(0|v1)T − (s|v1) = (x1 − s|0) − (u1|0)T,

i.e. the subtraction of (s|0) does not affect the multiple of T taken away during
algorithm 1.



160 N. Howgrave-Graham

Algorithm 2. meet-in-the-middle on v

1: loop
2: guess a binary vector v1 of length r′ = 2N − m with c ones
3: use algorithm 1 to calculate x1, u1 such that (0|v1)T − (0|v1) = (x1|0) − (u1|0)T

4: store v1 in the boxes addressed by a, for every a ∈ A(r)
x1 ∪ A(r)

−x1
5: if there is already a value v2 stored in any of the above boxes then
6: let v = v1 +v2 and use algorithm 1 to calculate x, u such that (0|v)T − (0|v) =

(x|0) − (u|0)T
7: if (g|f) = (x|v)Y −1 is binary then
8: return f, g
9: end if

10: end if
11: end loop

Lemma 5. If a vector v1 is s-admissible, then the vector v2 = v − v1 is also
s-admissible.

Proof. We have

(0|v − v1)T − (0|v − v1) = (0|v)T − (0|v) − (0|v1)T + (0|v1)
= (s|0) − (u|0)T − (x1|0) + (u1|0)T
= (s − x1|0) − (u − u1|0)T

and

(0|v − v1)T − (s|v − v1) = (−x1|0) − (u − u1|0)T.

Theorem 1. Let v1, v2 be two s-admissible vectors such that v1 + v2 = v. If
xi, ui are gotten from applying algorithm 1 to (0|vi)T − (0|vi) for i = 1, 2, then
x1 + x2 = s.

Proof. We know

(0|v1)T − (s|v1) = (x1 − s|0) − (u1|0)T
(0|v2)T − (0|v2) = (x2|0) − (u2|0)T,

where −Ti,i/2 < (x1)i − si ≤ Ti,i/2, −Ti,i/2 < (x2)i ≤ Ti,i/2, so summing these
equations yields

(0|v)T − (s|v) = (x1 + x2 − s|0) − (u1 + u2|0)T
(u|0)T = (x1 + x2 − s|0) − (u1 + u2|0)T

(u − u1 − u2|0)T = (x1 + x2 − s|0).

Thus (x1)m + (x2)m − sm = 0 modulo Tm,m, but in fact we can deduce (x1)m +
(x2)m − sm = 0 over the integers because of the size restrictions on (x1)m and
(x2)m − sm (two real numbers modulo Tm,m cannot be as large as 2Tm,m). This
implies um = (u1)m + (u2)m, and given that one can then re-apply a similar
argument to coefficients (m − 1), . . . , 1 to realize x1 + x2 = s, and u1 + u2 = u.



A Hybrid Lattice-Reduction and Meet-in-the-Middle Attack Against NTRU 161

Theorem 2. If v1, v2 are s-admissible such that v1+v2 = v and they are chosen
in separate loops of algorithm 2 then there exists a box which contains both v1

and v2.

Proof. Since v1 and v2 are both admissible and v = v1 + v2 then by theorem 1
we know x1 + x2 = s. We know v2 is contained in all the boxes addressed by
a ∈ A(r)

−x2
= A(r)

x1−s. But v1 is stored in all the boxes addressed by a ∈ A(r)
x1 so

by lemma 4 there is at least one box which contains both v1 and v2.

Remark 1. The problem of estimating the probability that a vector v1 chosen
in step 2 of algorithm 2 is s-admissible can be modelled by the problem of
calculating the probability distribution of a coordinate ε of a point obtained
by multiplying a binary vector times an orthonormal matrix8. In particular, the
square of a coordinate of the image of a binary vector with d 1’s and m−r−d 0’s
after multiplication by an orthonormal matrix will have |ε| <

√
d and expected

value E(ε2) = d/(m−r). Denote by pd(δ, δ′) the probability that δ ≤ |ε| < δ′ and
choose 0 = δ1 < δ2 < · · · < δK =

√
d. Let Tm,m = qα and assume that the GSA

holds and that the density function associated to pd is decreasing for δ ≥ δ2.
When i > r, the ith coefficient of v1 is xi+si where xi is uniformly distributed in
[−Ti,i/2, Ti,i/2], where Ti,i = qei . Let’s approximate the density function of si by
a step function on intervals [δk, δk+1]. In practice, the probabilities pd(δk, δk+1)
are obtained experimentally, for the choices of the partition by δk, but the precise
values aren’t relevant for the validity of the formula below. More precisely, for
each i, i ≥ r + 1 the factors on the right hand side below represent lower and
upper approximations to an integral which involves the convolution of the density
functions of xi and si.The factor (1 − 1/q)r/2 is present because for i ≤ r, xi is
a uniform random variable in [−q/2, q/2) and si takes on the values {0, 1} each
with probability 1/2. Under these assumptions, and given these approximations,
the following “theoretical” computation provides a reality check for a probability
determined experimentally. This is the probability ps that a vector v1 chosen in
step 2 of algorithm 2 is s-admissible. In particular, we have

ps >

(
1 − 1

q

)r/2 m∏
i=r+1

(
K−1∑
k=1

(
1 − δk+1

qei

)
pd(δk, δk+1)

)

ps <

(
1 − 1

q

)r/2 m∏
i=r+1

(
K∑

k=1

(
1 − δk

qei

)
pd(δk, δk+1)

)

Here ei = ((α − 1)i + (m − αr))/(m − r).

Remark 2. The interval for ps given by the above inequality comes reasonably
close to calculations of ps obtained by direct sampling and testing (given T and
Y ). For example, taking the parameters of the N = 251 example in the table,
8 That is, we are modelling Y ′ as a random orthonormal matrix, which can be approx-

imated by applying the Gram-Schmidt procedure (with normalization) to a random
matrix.



162 N. Howgrave-Graham

with α = 0.3, computations show that 2−5.95 < ps < 2−6.82, while sampling
directly gave ps = 2−6.7.

Lemma 6. The probability that a vector v1 sampled in step 2 of algorithm 2 is
such that v = v1 + v2, for some v2 with c ones, is given by

ph = w

(
2c

c

)(
2N − m

c

)−1

,

where w is the number of rotations of (g|f) resulting in 2c distinct ones in v.

Proof. This is just the ratio of the sizes of the respective sets, assuming no
intersections of the rotations.

Theorem 3. The expected number of loops of algorithm 2 before (f, g) is re-
turned is estimated by

L∗ =
(

2N − m

c

) (
psw

(
2c

c

))−1/2

,

where w is the number of rotations of (g|f) resulting in 2c ones in v.

Proof. Let V denote the set of s-admissible vectors v1 with c ones, such that
v − v1 also has c ones. Assuming independence the probability of choosing an
element of V in step 2 of algorithm 2 is psph so we can expect to draw from
V about 1 in every (psph)−1 samples. Again assuming independence the size of
the set V is |V | = psw

(
2c
c

)
, and after about |V |1/2 samples of the set V we can

expect to have sampled a v1 and a v2 such that v1 + v2 = v.

Remark 3. Although the number L∗ seems the most natural measure of the cost
of the hybrid method, it does ignore the change in the cost per loop in going from
Odlyzko’s attack to the hybrid attack. We previously estimated the inner-loop
cost of Odlyzko’s attack as Ndf/2, whereas the corresponding cost of the hybrid
scheme is m2c/2 modular additions.

5 Results

To determine the practicality of our attack we have implemented it fully on a
small example, and have done a thorough analysis for the ees251ep6 parameter
set, namely: examples with m = 302 and m = 325 based on actual lattice
reduction data, and an example with m = 344 based on extrapolated data.

5.1 A Small Example

Algorithm 2 has been fully implemented for a small example with N = 53,
q = 37, df = dg = 16. In this example Odlyzko’s meet-in-the-middle attack
should have taken 220.1 loops whereas algorithm 2 has 213.1 loops.



A Hybrid Lattice-Reduction and Meet-in-the-Middle Attack Against NTRU 163

With such a small example lattice reduction can often recover the NTRU-
Encrypt private key, so care was taken to avoid this. We extracted the lower
triangular submatrix from rows/columns 24 to 76 inclusive, and LLL-reduced
this basis (it took a few seconds using NTL on a 2GHz laptop with 1GB of
RAM running Cygwin on a Windows XP platform).

This left the last r′ = 30 to launch the meet-in-the-middle attack on. We
assumed there were 8 ones in these last 30 entries, which was true for 11 of the
57 rotations of (g, f).

We chose many combinations of c = 4 ones from these last r′ = 30, storing
the choices in boxes dependent on the output of algorithm 1. After 213.1 loops
we successfully found a rotation of the (g, f) vector.

On average we stored information in roughly 4 boxes per loop, so the storage
complexity was 215.1.

5.2 ees251ep6 with m = 302

In the first of the experiments of the ees251ep6 parameter set we extracted the
lower triangular submatrix from rows/columns 160 to 300 inclusive, and BKZ-
reduced this basis with blocksize 15. The form of the matrix T is shown in the
left side of figure 2.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  100  200  300  400  500

’prof502.txt’

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  100  200  300  400  500

’prof502b.txt’

Fig. 2. log197 |b∗
i | for i = 1, . . . , 502. Left: m = 302, Right: m = 325.

This left the last r′ = 200 to launch the meet-in-the-middle attack on. We
assumed there were 34 ones in these last 200 entries, which was true for 2 of the
251 rotations of (g, f).

We chose many combinations of c = 17 ones from these last r′ = 200, stor-
ing the choices in boxes dependent on the output of algorithm 1. Our analysis
predicts algorithm 2 will find the NTRUEncrypt private key after 266.9 loops.

5.3 A Table of Results with an Extrapolation

From an initial analysis of BKZ lattice running times, the connection between
running time and number of q-vectors removed appears to be

y = 2378.28 − 132.652x + 23.7371x logx (7)



164 N. Howgrave-Graham

where it takes 2y time to remove x q-vectors, and we assume x > 98. Out of
interest we note that the accuracy of this equation would imply that equation 2
is a severe underestimate of the lattice security of the ees251ep6 parameter set
against BKZ attacks.

Given equation 7 it seems reasonable to assume that in less time than it
takes to do 276.2 modular additions, one can hope to perform lattice reduction
with r = 136 and m = 344. If this is indeed the case then the security of the
ees251ep6 parameter set is at most that given by 276.2 modular additions and a
storage requirement of 265.6. A stronger initial lattice reduction would improve
both of these figures.

N q df m β t (secs) r c α ps w L L∗ #adds #store
53 37 16 76 2 5 23 4 0.35 2−6.3 11 220.1 213.1 226.6 219

107 67 32 151 15 360 36 7 0.235 2−8.6 2 244.0 228.3 244.6 236.2

251 197 48 302 15 780 159 17 0.287 2−6.8 9 284.2 266.9 286.4 276.2

251 197 48 325 22 48727 144 14 0.182 2−13 4 284.2 260.3 279.8 269.4

251 197 48 344 ∗ ∗ 136 12 0.106 2−20.4 4 284.2 256.7 276.2 265.6

The extrapolation was done assuming the GSA [21], which gives the relation

α =
2N − m − r

m − r
,

where α is as defined in remark 1 and corresponds to the “height of the cliffs”
in figure 2, and we modelled Y ′ as an (m − r) × (m − r) random orthonormal
matrix (these assumptions fit very well with the data from real examples).

We remark that, for a given m, the parameter c was chosen to be minimal such
that a randomly chosen f has probability ≥ 0.4 of having at least one rotation
with 2c ones in the last 2N − m entries. The parameter w holds the expected
number of such rotations, given that f has at least one such rotation.

The storage complexity “#store” is measured in bits and was assumed to be
8L∗ log2

(
2N−m

c

)
, i.e. that an average of 8 boxes per loop were used to store the

v1’s. β denotes the blocksize used in BKZ.
Note that “#adds” count the number of modular additions and does not corre-

spond to bit-security (see section 2.3 for a further discussion on this distinction).
The usefulness of this measure is that it shows the factor of improvement over
existing attacks.

6 Lessening Storage Requirements

The storage requirements of the extrapolated data point for the ees251ep6 pa-
rameter set corresponds to a total of 265.6 bits. Although this is significantly
better than the storage requirements for Odlyzko’s attack (294 bits), it is still
very expensive given today’s hardware. In this section we discuss how to reduce
this requirement to a more manageable figure, e.g. a total of 253.6 bits of storage9.
9 At the time of writing a 1TB hard drive costs about $400, so this amount of storage

can be had for approximately $500,000.



A Hybrid Lattice-Reduction and Meet-in-the-Middle Attack Against NTRU 165

The idea is to perform the attack as before, but now we assume we know more
about the structure of f . For example in the ees251ep6 parameter set after
reducing the first m = 344 rows, we assume there is a rotation of f satisfying:

← 93 → ← 108 → ← D = 50 →
22 ones 2c′ = 20 ones c′′ = 6 ones

When f is randomly chosen with 48 ones, there is a probability of 0.4 that there
will be a rotation of f satisfying this pattern (if f is not of this structure the
method will end in failure, and another common form should be chosen). Given
that there is at least one rotation of f of this form, the expected number of
rotations of this form is w = 3.

The attacker10 chooses a fixed vector v0 of length r′ = 2N − m with c′′ of the
last D entries set to 1, and the remaining entries 0.

We now explain how to slightly modify algorithm 2 to solve CVP with the
point (0|v0)T rather than SVP. In step 2 the algorithm should guess a vector v′1
of length r′ = 2N − m such that v1 = v′1 + v0 has c ones (so v′1 has c′ = 11 ones
in the first r′ − D entries, assuming the above form of f).

In step 3 we then calculate the x1, u1, and x′1, u′1 corresponding to both v1

and v′1 respectively. In step 4 we store v′1 in the boxes addressed by a for every
a ∈ A(r)

x1 ∪ A(r)
−x1

∪ A(r)
x′
1

∪ A(r)
−x′

1
.

In step 6 we let v = v′1 + v′2 + v0 and apply algorithm 1 as before. It is easy to
confirm that theorem 2 still holds where we now have v1 = v′1 + v0 and v2 = v′2,
so if these are s-admissible then there will be a collision in a box and v can be
recovered.

The cost per loop of the modified algorithm is roughly twice the running time
and storage of algorithm 2.

The number of loops of the modified algorithm is

L# =
(

2N − m − D

c′

) (
psw

(
2c′

c′

))−1/2

,

and the cost per loop is m2c′ modular additions, and there are
(

D
c′′

)
choices for

v0. Thus the total work done is 289.2 modular additions, which is still better
than Odlyzko’s attack (295.8) but now we have brought the storage down to
8L# log2

(
2N−m−D

c′

)
= 253.6 bits, which is a factor of 240.4 less than Odlyzko’s

attack.

7 Generalizations

As mentioned in the introduction, the idea of this paper is really about achieving
a meet-in-the-middle technique when one has a set S = S′ ⊕ S′ which contains
a vector v0 which is close to a lattice point of a well-reduced lattice basis. We

10 Or multiple attackers, since this part is totally parallelizable.



166 N. Howgrave-Graham

have seen how the idea can be applied to NTRUEncrypt, but there is also hope
it can be applied in more generic lattice situations.

To place the approximate-SVP problem on a basis B = {b1, . . . , bn} in to the
above framework one can split the basis in to two parts: B1 = {b1, . . . , bm} and
B2 = {bm+1 . . . , bn}. The set S′ can then be generated by linear combinations
of B2 which are small in the space orthogonal to B1. In [21] Schnorr proposes
that B2 be sampled with the SHORT algorithm11, but many other approaches are
possible12, and indeed other approaches may result in shorter vectors (in the
space orthogonal to B1).

There are several competing criteria dictating what value of m, 1 ≤ m ≤ n
one should use: m should be small enough to ensure:

– S′ is large enough: An important criteria for the technique to work is that
there should be some vector v0 ∈ S = S′ ⊕ S′ which, when projected in
to the space generated by B1, is close to a lattice point of B1. In the case
of NTRUEncrypt the structure of the private key guarantees this, but in a
more generic lattice situation one must ensure that S′ is large enough for
there to be a reasonable probability of this being true.

– b∗m is large enough: For the technique to work m must be chosen such that
lattice reduction is likely to b∗m large enough (with respect to the closeness
of v0 to a lattice point of B1) for the s-admissible probability to be non-
negligible.

However there are also reasons for making m large:

– There need to be enough boxes to store the multiple of B2 in to: If m is
too low there will be too many collisions and the technique will not work.
Interestingly this means that lattices resulting from subset sum problems do
not seem good candidates for this approach (they typically only contain one
non-trivial column).

– Sampling from B2 should not take too long.

There is hope that the parameter m, and the amount of initial lattice reduction
can be fine tuned to optimize this meet-in-the-middle approach, and possibly
improve on Kannan’s exhaustive search algorithm [17]. Asymptotically we know
that Kannan’s algorithm will be beaten by sieving techniques [1], but in relatively
low dimensions there may be a space for a hybrid algorithm out-performing both
existing techniques. We leave the investigation of this idea to future research.

As a final generalization we also note that algorithm 1 is not essential to the
method, indeed the s-admissible probability can be improved by using a better
CVP algorithm than Babai’s closest plane algorithm (e.g. mixing Babai’s CVP
(which is essentially blocksize 1) with searching in higher blocksizes 2, 3, . . .), but
this means a more costly CVP approach has to be performed for each loop, so
11 This can be seen as a slightly modified version of Babai’s nearest plane algorithm

which takes a binary auxiliary “error” vector as input, and makes a slight error in
rounding wherever this vector has a non-zero entry.

12 For example an exhaustive search of small vectors within some bound.



A Hybrid Lattice-Reduction and Meet-in-the-Middle Attack Against NTRU 167

care should be taken to keep it relatively efficient13. When using such a higher
blocksize CVP approach it is possible to calculate the addresses for the boxes
from the multiple of the rows take away in the CVP process rather than the sign
of the xi.

8 Conclusions

We have demonstrated a new class of attack on the NTRU cryptosystem: one
where there is an initial amount of lattice reduction, followed by a generalized
meet-in-the-middle procedure.

One way this result can be viewed is as a large strengthening of the result
in [5]. In that paper it was shown that lattice reduction sufficient to retrieve a
vector of size less that q could be used to break NTRUEncrypt; in this paper we
show that far less lattice reduction is needed to mount a successful attack.

With regards to the ees251ep6 parameter set, we have performed lattice
reduction to a sufficient degree to make our method 216 times quicker than
Odlyzko’s attack, whilst at the same time requiring a factor of 224.6 less storage.
However, due to the original conservative choice of NTRUEncrypt parameters
there still remains a substantially hard problem to recover the NTRUEncrypt
private key (primarily due to the storage requirements).

We extrapolated lattice running times to make our method 219.6 times quicker
than Odlyzko’s attack, and requiring a factor of 228.4 less storage, but the storage
requirements were still substantial.

We have thus modified the attack to require a factor of 240.4 less memory, and
take time about one hundredth of that of Odlyzko’s attack. This is therefore the
most practical attack on NTRUEncrypt since its inception in 1996. Progress in
lattice reduction will improve our results (both the running time and storage
requirements), and so should be factored in if choosing new parameters.

Our attack is still exponential in the security parameter k, so it does not
“break” NTRUEncrypt in an asymptotic sense. However to avoid this attack
it is imperative to chose parameters so that the meet-in-the-middle attack has
complexity 2k even after an initial lattice basis reduction of complexity 2k. We
also note that when choosing parameters it seems overly-cautious to allow the
attacker up to 2k storage, especially for security levels k > 80, but some realistic
model of the attackers’ storage capabilities should be made.

We observe that in order to defend against this attack it is probably a good idea
to “thicken” the NTRUEncrypt private vector (g, f), i.e. to set df = dg ≈ N/2,
or preferably to use a “trinary” vector (g, f) with −1’s, 0’s, and 1’s, to make meet-
in-the-middle attacks substantially harder without increasing N considerably.

Acknowledgements. The author would very much like to thank Jeff Hoffstein
and Phil Hirschhorn for verifying the analysis in this paper, and Jill Pipher and
William Whyte for several useful and stimulating conversations. Jeff and Jill also
gave great help with remark 1.
13 For example, it could be only used where the b∗

i are small.



168 N. Howgrave-Graham

References

1. Ajtai, M., Kumar, R., Sivakumar, D.: A sieve algorithm for the shortest lattice
vector problem. In: Proc. of 29th STOC, pp. 284–293. ACM Press, New York
(1997)

2. Babai, L.: On Lovász lattice reduction and the nearest lattice point problem. Com-
binatorica 6, 1–13 (1986)

3. Cassels, J.W.S.: An introduction to the geometry of numbers, Springer-Verlag,
Reprint of the 1st ed. Berlin Heidelberg New York, Corr. 2nd printing 1971, 1997,
VIII (1959)

4. Conway, J.H., Sloane, N.J.A.: Sphere Packings, Lattices and Groups. Grundlehren
der mathematischen Wissenschaften, 290 (1993)

5. Coppersmith, D., Shamir, A.: Lattice Attacks on NTRU. In: Fumy, W. (ed.) EU-
ROCRYPT 1997. LNCS, vol. 1233, pp. 52–61. Springer, Heidelberg (1997)

6. Fincke, U., Pohst, M.: Improved methods for calculating vectors of short length in
a lattice, including a complexity analysis. Math. Comp. 44, 463–471 (1985)

7. Furst, M.L., Kannan, R.: Succinct certificates for almost all subset sum problems.
SIAM Journal on Computing 1989, 550–558

8. Gama, N., Howgrave-Graham, N., Nguyen, P.Q.: Rankin’s Constant and Blockwise
Lattice Reduction. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 112–
130. Springer, Heidelberg (2006)

9. Gama, N., Howgrave-Graham, N., Nguyen, P.Q.: Symplectic Lattice Reduction and
NTRU. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 233–253.
Springer, Heidelberg (2006)

10. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: A Ring-Based Public Key Cryp-
tosystem. In: Buhler, J.P. (ed.) Algorithmic Number Theory. LNCS, vol. 1423, pp.
267–288. Springer, Heidelberg (1998)

11. Howgrave-Graham, N., Nguyen, P.Q., Pointcheval, D., Proos, J., Silverman, J.H.,
Singer, A., Whyte, W.: The Impact of Decryption Failures on the Security of NTRU
Encryption. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 226–246.
Springer, Heidelberg (2003)

12. Howgrave-Graham, N.: Computational Mathematics Inspired by RSA, PhD. The-
sis, University of Bath (1998)

13. Howgrave-Graham, N.: Finding Small Roots of Univariate Modular Equations Re-
visited. IMA Int. Conf. pp. 131–142 (1997)

14. Howgrave-Graham, N., Silverman, J.H., Whyte, W.: Choosing Parameter Sets for
NTRUEncrypt with NAEP and SVES-3. In: Menezes, A.J. (ed.) CT-RSA 2005.
LNCS, vol. 3376, pp. 118–135. Springer, Heidelberg (2005), http://www.ntru.com/
cryptolab/articles.htm#2005 1

15. Howgrave-Graham, N., Silverman, J.H., Whyte, W.: A Meet-In-The-Middle Attack
onanNTRUPrivateKey,http://www.ntru.com/cryptolab/tech notes.htm#004!

16. W. Whyte, (ed.) IEEE P1363, 1/D9 Draft Standard for Public-Key Cryptographic
Techniques Based on Hard Problems over Lattices

17. Kannan, R.: Improved algorithms for integer programming and related lattice prob-
lems. In: Proc. of the 15th Symposium on the Theory of Computing (STOC 1983),
pp. 99–108. ACM Press, New York (1983)

18. Philip, N.: Finding the closest lattice vector when it’s unusually close. In: Proceed-
ings, ACM-SIAM Symposium on Discrete Algorithms, pp. 937–941. ACM, New
York (2000)

http://www.ntru.com/cryptolab/articles.htm#2005_1
http://www.ntru.com/cryptolab/articles.htm#2005_1
http://www.ntru.com/cryptolab/tech_notes.htm#004!


A Hybrid Lattice-Reduction and Meet-in-the-Middle Attack Against NTRU 169

19. Lenstra, A., Verheul, E.: Selecting Cryptographic Key Sizes. Journal of Cryptol-
ogy 14(4), 255–293 (2001)

20. Pohst, M.: On the computation of lattice vectors of minimal length, successive
minima and reduced bases with applications. ACM SIGSAM Bull. 15, 37–44 (1981)

21. Schnorr, C.P.: Lattice Reduction by Random Sampling and Birthday Methods. In:
Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 145–156. Springer,
Heidelberg (2003)

22. Schnorr, C.P., Euchner, M.: Lattice Basis Reduction: Improved Practical Algo-
rithms and Solving Subset Sum Problems. Mathematical Programming 66, 181–191
(1994)

23. Shoup, V.: NTL: A Library for doing Number Theory, Version 5.4,
http://www.shoup.net/ntl

24. Wagner, D.: A Generalized Birthday Problem. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 288–303. Springer, Heidelberg (2002),
http://www.cs.berkeley.edu/daw/papers

http://www.shoup.net/ntl
http://www.cs.berkeley.edu/daw/papers


Improved Analysis of Kannan’s Shortest
Lattice Vector Algorithm

(Extended Abstract)

Guillaume Hanrot1,� and Damien Stehlé2

1 LORIA/INRIA Lorraine, Technopôle de Nancy-Brabois,
615 rue du jardin botanique, F-54602 Villers-lès-Nancy Cedex, France

hanrot@loria.fr
http://www.loria.fr/~hanrot

2 CNRS and ÉNS Lyon/ LIP, 46 allée d’Italie, 69364 Lyon Cedex 07, France
damien.stehle@ens-lyon.fr

http://perso.ens-lyon.fr/damien.stehle

Abstract. The security of lattice-based cryptosystems such as NTRU,
GGH and Ajtai-Dwork essentially relies upon the intractability of com-
puting a shortest non-zero lattice vector and a closest lattice vector to
a given target vector in high dimensions. The best algorithms for these
tasks are due to Kannan, and, though remarkably simple, their complex-
ity estimates have not been improved since over twenty years. Kannan’s
algorithm for solving the shortest vector problem (SVP) is in particu-
lar crucial in Schnorr’s celebrated block reduction algorithm, on which
rely the best known generic attacks against the lattice-based encryp-
tion schemes mentioned above. In this paper we improve the complexity
upper-bounds of Kannan’s algorithms. The analysis provides new insight
on the practical cost of solving SVP, and helps progressing towards pro-
viding meaningful key-sizes.

1 Introduction

A lattice L is a discrete subgroup of some R
n. Such an object can always be rep-

resented as the set of integer linear combinations of at most n vectors b1, . . . , bd.
These vectors can be chosen linearly independent, and in that case, we say that
they are a basis of the lattice L. The most famous algorithmic problem associated
with lattices is the so-called shortest vector problem (SVP). Its computational
variant is to find a non-zero lattice vector of smallest Euclidean length — this
length being the minimum λ(L) of the lattice — given a basis of the lattice. Its
decisional variant is known to be NP-hard under randomised reductions [2], even
if one only asks for a vector whose length is no more than 2(log d)1−ε

times the
length of a shortest vector [12] (for any ε > 0).

SVP is of prime importance in cryptography since a now quite large family of
public-key cryptosystems relies more or less on it. The Ajtai-Dwork cryptosys-
tem [4] relies on dc-SVP for some c > 0, where f(d)-SVP is the problem of finding
� Work partially supported by CNRS GDR 2251 “Réseau de théorie des nombres”.

A. Menezes (Ed.): CRYPTO 2007, LNCS 4622, pp. 170–186, 2007.
c© International Association for Cryptologic Research 2007

http://www.loria.fr/~hanrot
http://perso.ens-lyon.fr/damien.stehle


Improved Analysis of Kannan’s Shortest Lattice Vector Algorithm 171

the shortest non-zero vector in the lattice L, under the promise that any vector
of length less than f(d) · λ(L) is parallel to it. The GGH cryptosystem [11] re-
lies on special instances of the Closest Vector Problem (CVP), a non-homogeneous
version of SVP. Both the Ajtai-Dwork and GGH cryptosystems have been shown
impractical for real-life parameters [25,23] (the initialGGHcontaining amajor the-
oretical flaw as well). Finally, one strongly suspects that in NTRU [15] the private
key can be read on the coordinates of a shortest vector of the Coppersmith-Shamir
lattice [8]. The best known generic attacks against these encryption schemes are
based on solving SVP. It is therefore highly important to know precisely what com-
plexity is achievable, both in theory and practice, in particular to selectmeaningful
key-sizes. Most often, for cryptanalysing lattice-based cryptosystems, one consid-
ers Schnorr’s block-based algorithms [28, 30], such as BKZ. These algorithms in-
ternally solve instances of SVP in much lower dimensions (related to the size of the
block). They help solving relaxed variants of SVP in high dimensions. Increasing
the dimensions up to which one can solve SVP helps decreasing the relaxation fac-
tors that are achievable in higher dimensions. Solving the instances of SVP is the
computationally expensive part of the block-based reduction algorithms.

Two main algorithms are known for solving SVP. The first one is based on
the deterministic exhaustive enumeration of lattice points within a small convex
body. It is known as Fincke-Pohst’s enumeration algorithm [9] in the algorithmic
number theory community. Cryptographers know it as Kannan’s algorithm [16].
There are two main differences between both: firstly, in Kannan’s algorithm, a
long pre-computation on the basis is performed before starting the enumeration
process; secondly, Kannan enumerates integer points in a hyper-parallelepiped
whereas Fincke and Pohst consider an hyper-ellipsoid which is strictly contained
in Kannan’s hyper-parallelepiped – though Kannan may have chosen the hyper-
parallelepiped in order to simplify the complexity analysis. Kannan obtained
a dd+o(d) complexity bound (in the complexity bounds mentioned in the intro-
duction, there is an implicit factor that is polynomial in the bit-size of the input).
In 1985, Helfrich [13] refined Kannan’s analysis, and obtained a dd/2+o(d) com-
plexity bound. On the other hand, Ajtai, Kumar and Sivakumar [5] designed a
probabilistic algorithm of complexity 2O(d). The best exponent constant is likely
to be small, as suggested by some recent progress [26]. A major drawback of this
algorithm is that it requires an exponential space, whereas Kannan’s requires a
polynomial space.

Our main result is to lower Helfrich’s complexity bound on Kannan’s algo-
rithm, from d

d
2 +o(d) ≈ d0.5·d to d

d
2e +o(d) ≈ d0.184·d+o(d). This may explain why

Kannan’s algorithm is tractable even in moderate dimensions. Our analysis can
also be adapted to Kannan’s algorithm for CVP: it decreases Helfrich’s com-
plexity bound from dd+o(d) to dd/2+o(d). The complexity improvement for SVP
provides better worst-case efficiency/quality trade-offs for Schnorr’s block-based
algorithms [28, 30, 10].

It must be noted that if one follows our analysis step by step, the derived o(d)
may be large when evaluated for some practical d. The hidden constants can be
improved (for some of them it may be easy, for others it is probably much harder).



172 G. Hanrot and D. Stehlé

No attempt was made to improve them and we believe that it would have com-
plicated the proof with irrelevant details. In fact, most of our analysis consists in
estimating the number of lattice points within convex bodies and showing that the
approximations by the volumes are almost valid. By replacing this discretisation
by heuristic volume estimates, one obtains very small hidden constants.

Our complexity improvement is based on a fairly simple idea. It is equivalent
to generate all lattice points within a ball and to generate all integer points
within an ellipsoid (consider the ellipsoid defined by the quadratic form natu-
rally associated with the given lattice basis). Fincke and Pohst noticed that it
was more efficient to work with the ellipsoid than to consider a parallelepiped
containing it: indeed, when the dimension increases, the ratio between the two
volumes tends to 0 very quickly. In his analysis, instead of considering the el-
lipsoid, Kannan bounds the volume of the parallelepiped. Using rather involved
technicalities, we bound the number of points within related ellipsoids. Some
parts of our proof could be of independent interest. For example, we show that
for any Hermite-Korkine-Zolotarev-reduced (HKZ-reduced for short) lattice ba-
sis (b1, . . . , bd), and any subset I of {1, . . . , d}, we have:

‖b1‖|I|∏
i∈I ‖b∗i ‖

≤
√

d
|I|(1+log d

|I| ),

where (b∗i )i≤d is the Gram-Schmidt orthogonalisation of the bi’s. This generalises
the results of [28] on the quality of HKZ-reduced bases.

Practical Implications. We do not change Kannan’s algorithm, but only
improve its complexity upper-bound. As a consequence, the running-time of
Kannan’s algorithm remains the same. Nevertheless, our work may still have
some important practical impact. First of all, it revives the interest on Kannan’s
algorithm. Surprisingly, although it has the best complexity upper-bound, it is
not the one implemented in the usual number theory libraries (e.g., NTL [32]
and Magma [18] implement Schnorr-Euchner’s variant [30]): we show that by
using Kannan’s principle (i.e., pre-processing the basis before starting the enu-
meration), one can solve SVP in larger dimensions. This might point a prob-
lem in NTRU’s security estimates, since they are derived from experimentations
with NTL. Secondly, our analysis helps providing a heuristic measure of the
(practical) cost of solving SVP for a particular instance, which is both efficiently
computable and reliable: given a lattice basis, it provides very quickly a heuristic
upper bound on the cost of finding a shortest vector.

Road-Map of the Paper. In Section 2, we recall some basic definitions and
properties on lattice reduction. Section 3 is devoted to the description of Kan-
nan’s algorithm and Section 4 to its complexity analysis. In Section 5, we give
without much detail our sibling result on CVP, as well as direct consequences
of our result for block-based algorithms. In Section 6, we discuss the practical
implications of our work.

Notation. All logarithms are natural logarithms, i.e., log(e) = 1. Let ‖·‖ and 〈·, ·〉
be the Euclidean norm and inner product of R

n. Bold variables are vectors. We



Improved Analysis of Kannan’s Shortest Lattice Vector Algorithm 173

use the bit complexity model. The notation P(n1, . . . , ni) means (n1 · . . . ·ni)c for
some constant c > 0. If x is real, we denote by �x	 a closest integer to it (with any
convention for making it unique) and we define the centred fractional part {x}
as x − �x	. Finally, for any integers a and b, we define �a, b� as [a, b] ∩ Z.

2 Background on Lattice Reduction

We assume that the reader is familiar with the geometry of numbers and its
algorithmic aspects. Introductions may be found in [21] and [27].

Lattice Invariants. Let b1, . . . , bd be linearly independent vectors. Their Gram-
Schmidt orthogonalisation (GSO) b∗1, . . . , b

∗
d is the orthogonal family defined

recursively as follows: the vector b∗i is the component of bi which is orthog-
onal to the span of the vectors b1, . . . , bi−1. We have b∗i = bi −

∑i−1
j=1 μi,jb

∗
j

where μi,j = 〈bi,b
∗
j 〉

‖b∗
j ‖2 . For i ≤ d we let μi,i = 1. Notice that the GSO family

depends on the order of the vectors. If the bi’s are integer vectors, the b∗i ’s and
the μi,j ’s are rational. The volume of a lattice L is defined as det(L) =

∏d
i=1 ‖b∗i ‖,

where the bi’s are any basis of L. It does not depend on the choice of the basis
of L and can be interpreted as the geometric volume of the parallelepiped nat-
urally spanned by the basis vectors. Another important lattice invariant is the
minimum. The minimum λ(L) is the length of a shortest non-zero lattice vector.

The most famous lattice problem is the shortest vector problem (SVP). Here is
its computational variant: given a basis of a lattice L, find a lattice vector whose
norm is exactly λ(L). The closest vector problem (CVP) is a non-homogeneous
variant of SVP. We give here its computational variant: given a basis of a lattice L
and a target vector in the real span of L, find a vector of L which is closest to
the target vector.

The volume and the minimum of a lattice cannot behave independently. Her-
mite [14] was the first to bound the ratio λ(L)

(detL)1/d as a function of the di-
mension only. His bound was later on greatly improved by Minkowski in his
Geometrie der Zahlen [22]. Hermite’s constant γd is defined as the supremum
over d-dimensional lattices L of λ(L)2

(detL)2/d . We have γd ≤ d+4
4 (see [19]), which

we will refer to as Minkowski’s theorem.

Lattice Reduction. In order to solve lattice problems, a classical strategy
consists in considering a lattice basis and trying to improve its quality (e.g.,
the slow decrease of the ‖b∗i ‖’s). This is called lattice reduction. The most usual
notions of reduction are probably L3 and HKZ. HKZ-reduction is very strong,
but expensive to compute. On the contrary, L3-reduction is fairly cheap, but an
L3-reduced basis is of much lower quality.

A basis (b1, . . . , bd) is size-reduced if its GSO family satisfies |μi,j | ≤ 1/2 for
all 1 ≤ j < i ≤ d. A basis (b1, . . . , bd) is said to be Hermite-Korkine-Zolotarev-
reduced if it is size-reduced, the vector b1 reaches the lattice minimum, and the pro-
jections of the (bi)i≥2’s orthogonally to the vector b1 are themselves an



174 G. Hanrot and D. Stehlé

HKZ-reduced basis. Lemma 1 immediately follows from this definition and
Minkowski’s theorem. It is the sole property on HKZ-reduced bases that we will
use.

Lemma 1. If (b1, . . . , bd) is HKZ-reduced, then for any i ≤ d, we have:

‖b∗i ‖ ≤
√

d − i + 5
4

·

⎛
⎝∏

j≥i

‖b∗j‖

⎞
⎠

1
d−i+1

.

A basis (b1, . . . , bd) is L3-reduced [17] if it is size-reduced and if its GSO satisfies
the (d − 1) Lovász conditions: 3

4 ·
∥∥b∗κ−1

∥∥2 ≤
∥∥b∗κ + μκ,κ−1b

∗
κ−1

∥∥2. The L3-
reduction implies that the norms of the GSO vectors never drop too fast: in-
tuitively, the vectors are not far from being orthogonal. Such bases have useful
properties, like providing exponential approximations to SVP and CVP. In par-
ticular, their first vector is relatively short.

Theorem 1 ( [17]). Let (b1, . . . , bd) be an L3-reduced basis of a lattice L. Then
we have ‖b1‖ ≤ 2

d−1
4 · (det L)1/d. Moreover, there exists an algorithm that takes

as input any set of integer vectors and outputs in deterministic polynomial time
an L3-reduced basis of the lattice they span.

In the following, we will also need the fact that if the set of vectors given as
input to the L3 algorithm starts with a shortest non-zero lattice vector, then
this vector is not changed during the execution of the algorithm: the output
basis starts with the same vector.

3 Kannan’s SVP Algorithm

Kannan’s SVP algorithm [16] relies on multiple calls to the so-called short lattice
points enumeration procedure. The latter finds all vectors of a given lattice that
are in the sphere centred in 0 and of some prescribed radius. Variants of the
enumeration procedure are described in [1].

3.1 Short Lattice Points Enumeration

Let (b1, . . . , bd) be a basis of a lattice L ⊂ Z
n and let A ∈ Z. Our goal is to find

all lattice vectors
∑d

i=1 xibi of squared Euclidean norm ≤ A. The enumeration
works as follows. Suppose that ‖

∑
i xibi‖2 ≤ A for some integers xi’s. Then, by

considering the components of the vector
∑

i xibi on each of the b∗i ’s, we obtain d
equations:

(xd)
2 · ‖b∗d‖2 ≤ A,

(xd−1 + μd,d−1xd)
2 · ‖b∗d−1‖2 ≤ A − (xd)

2 · ‖b∗d‖2,

. . .



Improved Analysis of Kannan’s Shortest Lattice Vector Algorithm 175

⎛
⎝xi +

d∑
j=i+1

μj,ixj

⎞
⎠

2

· ‖b∗i ‖2 ≤ A −
d∑

j=i+1

lj ,

. . .

where li = (xi +
∑

j>i xjμj,i)2 · ‖b∗i ‖2. The algorithm of Figure 1 mimics the
equations above. It can be shown that the bit-cost of this algorithm is bounded
by the number of loop iterations times a polynomial in the bit-size of the input.
We will prove that if the input basis (b1, . . . , bd) is sufficiently reduced and
if A = ‖b1‖2, there are ≤ d

d
2e +o(d) loop iterations.

Input: An integer lattice basis (b1, . . . , bd), a bound A ∈ Z.
Output: All vectors in L(b1, . . . , bd) that are of squared norm ≤ A.
1. Compute the rational μi,j ’s and ‖b∗

i ‖2’s.
2. x:=0, l:=0, S:=∅.
3. i:=1. While i ≤ d, do
4. li:=(xi +

�
j>i xjμj,i)2‖b∗

i ‖2.
5. If i = 1 and

�d
j=1 lj ≤ A, then S:=S ∪ {

�d
j=1 xjbj}, x1:=x1 + 1.

6. If i �= 1 and
�

j≥i lj ≤ A, then

7. i:=i − 1, xi:=
�
−
�

j>i(xjμj,i) −
�

A−
�

j>i lj

‖b∗
i ‖2

�
.

8. If
�

j≥i lj > A, then i:=i + 1, xi:=xi + 1.
9. Return S.

Fig. 1. The enumeration algorithm

3.2 Solving SVP

To solve SVP, Kannan provides an algorithm that computes HKZ-reduced bases,
see Figure 2. The cost of the enumeration procedure dominates the overall cost
and mostly depends on the quality of the input basis. The main idea of Kannan’s
algorithm is to spend a lot of time pre-computing a basis of excellent quality
before calling the enumeration procedure. More precisely, it pre-computes a so-
called quasi-HKZ-reduced basis.

Definition 1 (Quasi-HKZ-reduction). A basis (b1, . . . , bd) is quasi-HKZ-
reduced if it is size-reduced, if ‖b∗2‖ ≥ ‖b∗1‖/2 and if once projected orthogonally
to b1, the other bi’s are HKZ-reduced.

A few comments need to be made on the algorithm of Figure 2. Steps 3 and 9 are
recursive calls. However, the b′i’s may be rational vectors, whereas the input of
the algorithm must be integral. These vectors may be scaled by a common factor.
Steps 4 and 10 may be performed by expressing the reduced basis vectors as
integer linear combinations of the initial ones, using these coefficients to recover
lattice vectors and subtracting a correct multiple of the vector b1. In Step 6, it
is possible to choose such a vector b0, since this enumeration always provides
non-zero solutions (the vector b1 is one of them).



176 G. Hanrot and D. Stehlé

Input: An integer lattice basis (b1, . . . , bd).
Output: An HKZ-reduced basis of the same lattice.
1. L3-reduce the basis (b1, . . . , bd).
2. Compute the projections (b′

i)i≥2 of the bi’s orthogonally to b1.
3. HKZ-reduce the (d − 1)-dimensional basis (b′

2, . . . , b
′
d).

4. Extend the obtained (b′
i)i≥2’s into vectors of L by adding to them rational

multiples of b1, in such a way that we have |μi,1| ≤ 1/2 for any i > 1.
5. If (b1, . . . , bd) is not quasi-HKZ-reduced, swap b1 and b2 and go to Step 2.
6. Call the enumeration procedure to find all lattice vectors of length ≤ ‖b1‖.
Let b0 be a shortest non-zero vector among them.
7. (b1, . . . , bd):=L3(b0, . . . , bd).
8. Compute the projections (b′

i)i≥2’s of the bi’s orthogonally to the vector b1.
9. HKZ-reduce the (d − 1)-dimensional basis (b′

2, . . . , b
′
d).

10. Extend the obtained (b′
i)i≥2’s into vectors of L by adding to them rational

multiples of b1, in such a way that we have |μi,1| ≤ 1/2 for any i > 1.

Fig. 2. Kannan’s SVP algorithm

3.3 Cost of Kannan’s SVP Solver

We recall briefly Helfrich’s analysis [13] of Kannan’s algorithm and explain our
complexity improvement. Let C(d, n, B) be the worst-case complexity of the al-
gorithm of Figure 2 when given as input a d-dimensional basis which is embedded
in Z

n and whose coefficients are smaller than B in absolute value. The following
properties hold:

– Kannan’s algorithm computes an HKZ-reduced basis of the lattice spanned
by the input vectors.

– All arithmetic operations performed during the execution are of cost P(d, n,
log B). This implies that C(d, n, B) can be bounded by C(d) ·P(log B, n) for
some function C(d).

– There are fewer than O(1) + log d iterations of the loop of Steps 2–5.
– The cost of the call to the enumeration procedure at Step 6 is bounded

by P(log B, n) · dd/2+o(d).

From these properties and those of the L3 algorithm as recalled in the previous
section, it is easy to obtain the following equation:

C(d) ≤ (O(1) + log d)(C(d − 1) + P(d)) + P(d) + d
d
2 +o(d).

One can then derive the bound C(d, B, n) ≤ P(log B, n) · d d
2 +o(d).

The main result of the present paper is to improve this complexity upper
bound to P(log B, n) · d

d
2e +o(d). In fact, we show the following:

Theorem 2. Given as inputs a quasi-HKZ-reduced basis (b1, . . . , bd) and A =
‖b1‖2, there are 2O(d)·d d

2e loop iterations during the execution of the enumeration



Improved Analysis of Kannan’s Shortest Lattice Vector Algorithm 177

algorithm as described in Figure 1. As a consequence, given a d-dimensional basis
of n-dimensional vectors whose entries are integers with absolute values ≤ B,
one can compute an HKZ-reduced basis of the spanned lattice in deterministic
time P(log B, n) · d d

2e +o(d).

4 Complexity of the Enumeration Procedure

This section is devoted to proving Theorem 2. The previous section has shown
that the cost of Kannan’s algorithm is dominated by the time for enumerating
the integer points in the hyper-ellipsoids (Ei)1≤i≤d defined by Ei ={
(yi, . . . , yd) ∈ R

d−i+1, ‖
∑

j≥i yjb
(i)
j ‖ ≤ ‖b1‖

}
, where b

(i)
j = bj −

∑
k<i μj,kb∗k is

the vector bj once projected orthogonally to b∗1, . . . , b
∗
i−1. Classically, the num-

ber of integer points in a body of some R
n is heuristically estimated by the n-

dimensional volume of the body. This yields the following heuristic complexity
upper-bound for Kannan’s algorithm:

max
i≤d

Vi‖b1‖i∏
j≥d−i+1 ‖b∗j‖

<∼ max
i≤d

‖b1‖i

(
√

i)i ·
∏

j≥d−i+1 ‖b∗j‖
, (1)

where Vi is the volume of the i-dimensional unit ball.
Here, such an estimate may be too optimistic since the hyper-ellipsoids might

be too flat for the approximation by the volume to be valid. The first step of
our analysis is to prove a slight modification of this heuristic estimate. This
is essentially an adaptation of a method due to Mazo and Odlyzko [20] to
bound the number of integer points in hyper-spheres. We prove the weaker upper
bound maxI⊂�1,d�

‖b1‖|I|
√

d
|I|�

i∈I ‖b∗
i ‖

, for quasi-HKZ-reduced bases (Subsections 4.1

and 4.2).
In the second step of our analysis (Subsection 4.3), we bound the above quan-

tity. This involves a rather precise study of the geometry of HKZ-reduced bases.
The only available tool is Minkowski’s inequality, which is used numerous times.
For the intuition, the reader should consider the typical case where (bi)1≤i≤d is
an HKZ-reduced basis for which (‖b∗i ‖)i is a non-increasing sequence. In that
case, the first part of the analysis shows that one has to consider a set I of
much simpler shape: it is an interval �i, d� starting at some index i. Lemmata 2
and 3 (which should thus be considered as the core of the proof) and the fact
that x log x ≥ −1/e for x ∈ [0, 1] are sufficient to deal with such sets.

Non-connex sets I are harder to handle. We split the HKZ-reduced basis into
blocks (defined by the expression of I as a union of intervals), i.e., groups of
consecutive vectors bi, . . . , bj−1 such that i, . . . , k − 1 �∈ I and k, . . . , j − 1 ∈ I.
The former vectors will be the “large ones” and the latter the “small ones”. Over
each block, Lemma 3 relates the average size of the small vectors to the average
size of the whole block. We consider the blocks by decreasing indices and use an
amortised analysis to combine the local behaviours on blocks to obtain a global
bound (Lemma 4). A final convexity argument gives the result (Lemma 5).



178 G. Hanrot and D. Stehlé

4.1 Integer Points in Hyper-Ellipsoids

In this subsection, we do not assume anything on the input basis vectors b1, . . . , bd

and on the input bound A. Up to some polynomial in d and log B, the complex-
ity of the enumeration procedure of Figure 1 is the number of loop iterations.
This number of iterations is itself bounded by 3

∑d
i=1 |Ei|. Indeed, the truncated

coordinate (xi, . . . , xd) is either a valid one, i.e., we have ‖
∑d

j=i xjb
(i)
j ‖2 ≤

A, or (xi − 1, . . . , xd) is a valid one, or (xi+1, . . . , xd) is a valid one. In fact,
if (xi, . . . , xd) is a valid truncated coordinate, at most two non-valid ones re-
lated to that one may be considered during the execution of the algorithm:
(xi + 1, . . . , xd) and (xi−1, xi . . . , xd) for at most one integer xi−1. We now fix
some i ≤ d. By applying the change of variable xj ← xj −

⌊∑
k>j μk,jxk

⌉
, we

obtain:

|Ed−i+1| ≤

∣∣∣∣∣∣

⎧⎨
⎩(xj)i≤j≤d ∈ Z

d−i+1,
∑
j≥i

(xj +
∑
k>j

μk,jxk)2 · ‖b∗j‖2 ≤ A

⎫⎬
⎭
∣∣∣∣∣∣

≤

∣∣∣∣∣∣

⎧⎨
⎩(xj)i≤j≤d ∈ Z

d−i+1,
∑
j≥i

(xj + {
∑
k>j

μk,jxk})2 · ‖b∗j‖2 ≤ A

⎫⎬
⎭
∣∣∣∣∣∣ .

If x is an integer and ε ∈ [−1/2, 1/2], then we have (x + ε)2 ≥ x2/4 (it
suffices to use the inequality |ε| ≤ 1/2 ≤ |x|/2, which is valid for a non-
zero x). As a consequence, up to a polynomial factor, the complexity of the
enumeration is bounded by

∑
i≤d Ni, where Ni =

∣∣E ′i ∩ Z
d−i+1

∣∣ and E ′i ={
(yi, . . . , yd) ∈ R

d−i+1,
∑

j≥i y2
j ‖b∗j‖2 ≤ 4A

}
, for any i ≤ d.

We again fix some index i. The following sequence of relations is inspired
from [20, Lemma 1].

Ni =
∑

(xi,...,xd)∈Zd−i+1

1E′
i
(xi, . . . , xd) ≤ exp

⎛
⎝d

⎛
⎝1 −

∑
j≥i

x2
j

‖b∗j‖2

4A

⎞
⎠
⎞
⎠

≤ ed ·
∏
j≥i

∑
x∈Z

exp

(
−x2

d‖b∗j‖2

4A

)
= ed ·

∏
j≥i

Θ

(
d‖b∗j‖2

4A

)
,

where Θ(t) =
∑

x∈Z
exp(−tx2) is defined for t > 0. Notice that Θ(t) = 1 +

2
∑

x≥1 exp(−tx2) ≤ 1 + 2
∫∞
0

exp(−tx2)dx = 1 +
√

π
t . Hence Θ(t) ≤ 1+

√
π√

t
for

t ≤ 1 and Θ(t) ≤ 1 +
√

π for t ≥ 1. As a consequence, we have:

Ni ≤ (4e(1 +
√

π))d ·
∏
j≥i

max

(
1,

√
A√

d‖b∗j‖

)
. (2)

One thus concludes that the cost of the enumeration is bounded by:

P(n, log A, log B) · 2O(d) · max
I⊂�1,d�

(
(
√

A)|I|

(
√

d)|I|
∏

i∈I ‖b∗i ‖

)
.



Improved Analysis of Kannan’s Shortest Lattice Vector Algorithm 179

4.2 The Case of Quasi-HKZ-Reduced Bases

We now suppose that A = ‖b1‖2 and that the input basis (b1, . . . , bd) is quasi-
HKZ-reduced. We are to strengthen the quasi-HKZ-reducedness hypothesis into
an HKZ-reducedness hypothesis. Let I ⊂ �1, d�. If 1 /∈ I, then, because of the
quasi-HKZ-reducedness assumption:

‖b1‖|I|

(
√

d)|I|
∏

i∈I ‖b∗i ‖
≤ 2d ‖b∗2‖|I|

(
√

d)|I|
∏

i∈I ‖b∗i ‖
.

If 1 ∈ I, we have, by removing ‖b∗1‖ from the product
∏

i∈I−{1} ‖b∗i ‖:

‖b1‖|I|

(
√

d)|I|
∏

i∈I ‖b∗i ‖
≤ 2d ‖b∗2‖|I|−1

(
√

d)|I|−1
∏

i∈I−{1} ‖b∗i ‖
.

As a consequence, Theorem 2 follows from the following:

Theorem 3. Let (b1, . . . , bd) be HKZ-reduced and I ⊂ �1, d�. Then

‖b1‖|I|∏
i∈I ‖b∗i ‖

≤ (
√

d)|I|(1+log d
|I| ) ≤ (

√
d)

d
e +|I|.

By applying Theorem 3 the HKZ-reduced basis (b1, . . . , bi) and I = {i}, we
recover the result of [28]: ‖b∗i ‖ ≥ (

√
i)− log i−1 · ‖b1‖.

4.3 A Property on the Geometry of HKZ-Reduced Bases

In this section, we prove Theorem 3, which is the last missing part to obtain
the claimed result. The proofs of the following lemmata will be contained in the
full version of this paper. In the sequel, (bi)i≤d is an HKZ-reduced basis of a
lattice L of dimension d ≥ 2.

Definition 2. For any I ⊂ �1, d�, we define πI =
(∏

i∈I ‖b∗i ‖
) 1

|I| . Moreover,

if k ∈ �1, d − 1�, we define Γd(k) =
∏d−1

i=d−k (γi+1)
1
2i .

We need upper bounds on Γd(k) and a technical lemma allowing us to finely
recombine such bounds. Intuitively, the following lemma is a rigorous version of
the identity:

log Γd(k) ≈
∫ d

x=d−k

1
2x

log xdx ≈ log2(d) − log2(d − k)
4

<∼
log d

2
log

d

d − k
.

Lemma 2. For all 1 ≤ k < d, we have Γd(k) ≤
√

d
log d

d−k .

We now give an “averaged” version of [28, Lemma 4], deriving from Lemma 2.
This provides the result claimed in Theorem 3 for any set I of the shape �i, j�,
for any i ≤ j ≤ d.



180 G. Hanrot and D. Stehlé

Lemma 3. For all k ∈ �0, d − 1�, we have π�1,k� ≤ (Γd(k))d/k · π�k+1,d� and

π�k+1,d� ≥ (Γd(k))−1 · (det L)1/d ≥
√

d
log d−k

d (detL)1/d.

We prove Theorem 3 by induction on the number of intervals occurring in the
expression of the set I as a union of intervals. The following lemma is the in-
duction step. This is a recombination step, where we join one block (between
the indices 1 and v, the “small vectors” being those between u + 1 and v) to one
or more already considered blocks on its right. An important point is to ensure
that the densities δi defined below actually decrease when their indices increase.
Its proof is based on Lemma 3.

Lemma 4. Let (b1, . . . , bd) be an HKZ-reduced basis. Let v ∈ �2, d�, I ⊂ �v + 1, d�
and u ∈ �1, v�. Assume that:

π
|I|
I ≥

∏
i<t

(
π
|Ii|
�αi+1,αi+1� ·

√
d
|Ii| log δi

)
,

where Ii =I∩�αi+1, αi+1� , δi =
|Ii|

αi+1−αi
is the density of the set I in �αi + 1, αi+1�,

and the integers t and αi’s, and the densities δi’s satisfy t ≥ 1, v = α1 < . . . <
αt ≤ d and 1 ≥ δ1 > . . . > δt−1 > 0. Then, we have

π
|I′|
I′ ≥

∏
i<t′

(
π
|I′

i|
�α′

i+1,α′
i+1�

·
√

d
|I′

i| log δ′
i

)
,

where I ′ = �u + 1, v�∪I, I ′i = I ′∩
�
α′i + 1, α′i+1

�
, δ′i = |I′

i|
α′

i+1−α′
i

and the integers t′

and α′i’s, and the densities δ′i satisfy t′ ≥ 1, 0 = α′1 < . . . < α′t′ ≤ d and 1 ≥
δ′1 > . . . > δ′t′−1 > 0.

The last ingredient to the proof of Theorem 3 is the following, which derives
from the convexity of the function x �→ x log x.

Lemma 5. Let Δ ≥ 1, and define FΔ(k, d) = Δ−k log k
d . We have, for any t ∈ Z,

for any k1, . . . , kt ∈ Z and d1, . . . , dt ∈ Z such that 1 ≤ ki < di for all i ≤ t,

∏
i≤t

FΔ(ki, di) ≤ FΔ

⎛
⎝∑

i≤t

ki,
∑
i≤t

di

⎞
⎠ .

Finally, Theorem 3 follows from Lemmata 4 and 5.

Proof of Theorem 3. Lemma 4 gives us, by induction on the size of the
considered set I, that for all I ⊂ �1, d�:

π
|I|
I ≥

∏
i<t

(
π
|Ii|
�αi+1,αi+1� ·

√
d
|Ii| log δi

)
,

where Ii = I ∩ �αi + 1, αi+1�, and t, the αi’s, and the densities δi = |Ii|
αi+1−αi

satisfy t ≥ 1, 0 = α1 < . . . < αt ≤ d and 1 ≥ δ1 > . . . > δt−1 > 0. By using



Improved Analysis of Kannan’s Shortest Lattice Vector Algorithm 181

Lemma 5 with Δ:=
√

d, ki:= |Ii| and di:=αi+1 − αi, we obtain:

π
|I|
I ≥

(√
d
|I| log |I|

αt−α1

)
·
(∏

i<t

π
|Ii|
�αi+1,αi+1�

)
.

We define δt = 0. Because of the definition of the αi’s, we have:
∏
i<t

π
|Ii|
�αi+1,αi+1� =

∏
i<t

(
π

αi+1−αi

�αi+1,αi+1�

)δi

=
∏
i<t

∏
i≤j<t

(
π

αi+1−αi

�αi+1,αi+1�

)δj−δj+1

=
∏
j<t

⎛
⎝∏

i≤j

π
αi+1−αi

�αi+1,αi+1�

⎞
⎠

δj−δj+1

=
∏
j<t

(
π

αj+1

�1,αj+1�

)δj−δj+1

.

By using t − 1 times Minkowski’s theorem, we obtain that:

π
|I|
I

√
d
|I| log |I|

d

≥
(

‖b1‖√
d

)�
j<t αj+1(δj−δj+1)

≥
(

‖b1‖√
d

)|I|
.

The final inequality of the theorem comes from the fact that the function x �→
x log(d/x) is maximal for x = d/e. �

5 CVP and Other Related Problems

Our improved analysis of Kannan’s algorithm can be adapted to the Closest
Vector Problem and other problems related to strong lattice reduction.

In CVP, we are given a basis (b1, . . . , bd) and a target vector t, and we look
for a lattice vector that is closest to t. Kannan’s CVP algorithm starts by HKZ-
reducing the bi’s. Then it runs a slight modification of the enumeration algorithm
of Figure 1. For the sake of simplicity, we assume that ‖b∗1‖ is the largest of
the ‖b∗i ‖’s (we refer to Kannan’s proof [16] for the general case). By using Babai’s
nearest hyperplane strategy [6], we see that there is a lattice vector b at distance
less than

√
d·‖b1‖ of the target vector t. As a consequence, if we take A = d·‖b1‖2

in the modified enumeration procedure, we will find all solutions. The analysis
then reduces (at the level of Equation (2)) to bound the ratio ‖b1‖d

�
i≤d ‖b∗

i ‖ , which
can be done with Minkowski’s theorem.

Theorem 4. Given a basis (b1, . . . , bd) and a target vector t, all of them in Z
n

and with coordinates whose absolute values are smaller than some B, one can
compute all vectors in the lattice spanned by the bi’s that are closest to t in
deterministic time P(log B, n) · dd/2+o(d).

The best deterministic complexity upper bound previously known for this prob-
lem was P(log B, n) · dd+o(d) (see [13, 7]).

Our result can also be adapted to the enumeration of all vectors of a given
lattice that are of length below a prescribed bound, which is in particular use-
ful in the context of computing lattice theta series. Another important conse-
quence of our analysis is a significant worst-case bound improvement of Schnorr’s



182 G. Hanrot and D. Stehlé

block-based strategy [28] to compute relatively short vectors in high-dimensional
lattices. More precisely, if we take the bounds given in [10] for the quality of
Schnorr’s semi-2k reduction and for the transference reduction, we obtain the
table of Figure 3. Each entry of the table gives the upper bound of the quan-
tity ‖b1‖

(det L)1/d which is reachable for a computational effort of 2t, for t growing
to infinity. To sum up, the exponent constant is divided by e ≈ 2.7. The table
upper bounds may be adapted to the quantity ‖b1‖

λ1(L) by squaring them.

Semi-2k reduction Transference reduction

Using [13] <∼ 2
log 2

2
d log2 t

t ≈ 20.347 d log2 t
t <∼ 2

1
4

d log2 t
t ≈ 20.250 d log2 t

t

Using Theorem 2 <∼ 2
log 2
2e

d log2 t
t ≈ 20.128 d log2 t

t <∼ 2
1
4e

d log2 t
t ≈ 20.092 d log2 t

t

Fig. 3. Worst-case bounds for block-based reduction algorithms

6 Practical Implications

As mentioned in the introduction, the main contribution of the present paper is
to improve the worst-case complexity analysis of an already known algorithm,
namely, Kannan’s HKZ-reduction algorithm. Our improvement has no direct
impact on the practical capabilities of lattice reduction algorithms. However,
our work may have two indirect consequences: popularising Kannan’s principle
and providing easily computable cost estimates for SVP instances.

6.1 Pre-processing Before Enumerating

In the main libraries containing lattice reduction routines, the shortest vector
problem is solved with the enumeration routine, but starting from only L3-
reduced bases. This is the case for the BKZ routines of Victor Shoup’s NTL [32],
which, depending on a parameter k, compute strongly reduced bases in high
dimensions (the quality being quantified by k). This is also the case in Magma’s
ShortestVectors routine [18], which computes the shortest vectors of a given
lattice. Both rely on the enumeration of Schnorr and Euchner [30]. On the theo-
retical side, this strategy is worse than using Kannan’s algorithm, the worst-case
complexity being 2O(d2) instead of dO(d). To justify this choice, one might argue
that L3 computes much better bases in practice than guaranteed by the worst-
case bounds, in particular in low dimensions (see [24] for more details), and that
the asymptotically superior algorithm of Kannan may overtake the L3-based
enumeration only for large dimensions (in particular too large to be tractable).

It may be that the genuine Kannan algorithm is expensive. However, the
general principle of enumerating from a more than L3-reduced basis works, as
the following experiments tend to show. For a given dimension d, we consider
the lattice spanned by the columns of the following matrix:



Improved Analysis of Kannan’s Shortest Lattice Vector Algorithm 183

⎛
⎜⎜⎜⎜⎜⎝

x1 x2 . . . xd

1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

⎞
⎟⎟⎟⎟⎟⎠

,

where the xi’s are chosen uniformly and independently in
�
0, 2100·d�. The basis

is then L3-reduced with a close to optimal parameter (δ = 0.99). For the same
lattice, we compute more reduced bases, namely BKZk-reduced for different
parameters k, using NTL’s BKZ_FP routine without pruning and close to optimal
factor (δ = 0.99). We run the same enumeration routine starting from these
different bases and compare the timings. The results of the experiments are
given in Figure 4. The enumeration is a non-optimised C-code, which updates
the norm upper bound during the enumeration [30]. All timings are given in
seconds and include the BKZ-reduction (unless we start from the L3-reduced
basis). Each point corresponds to the average over at least 10 samples. The
experiments were performed on 2.4 GHz AMD Opterons. The enumeration from
an L3-reduced basis is clearly outperformed. BKZ-reducing the basis with larger
block-sizes becomes more interesting when the dimension increases: it seems that
in moderate dimension, a BKZk reduced basis is close to being HKZ-reduced,
even when k is small with respect to the dimension.

pre-processing d = 40 d = 43 d = 46 d = 49 d = 52 d = 55 d = 58
L3 1.8 15 110 990 5.0 · 103 − −

BKZ10 0.36 1.6 6.7 36 160 − −
BKZ20 0.40 1.3 4.7 21 96 800 2.5 · 103

BKZ30 0.57 1.7 5.2 19 68 660 1.6 · 103

Fig. 4. Comparison between various pre-processings

6.2 Estimating the Cost of Solving SVP

The cost of solving SVP on a particular instance with the enumeration routine
is essentially dominated by the cost of the highest-dimensional enumeration. Up
to a polynomial factor, the cost of the enumeration as described in Figure 1 can
be estimated with Equation (1):

E(b1, . . . , bd):= max
i≤d

πi/2 · ‖b1‖i

Γ (i/2 + 1) ·
∏

j≥d−i+1 ‖b∗j‖
.

This estimate is simply the application of the Gaussian heuristic, stating that the
number of integer points within a body is essentially the volume of the body. It
can be computed in polynomial time from the basis from which the enumeration
will be started. We computed E(b1, . . . , bd) for random bases generated as above



184 G. Hanrot and D. Stehlé

pre-processing d = 40 d = 45 d = 50 d = 55 d = 60 d = 65 d = 70 d = 75
L3 1.0 · 108 4.4 · 109 1.5 · 1014 9.6 · 1016 3.0 · 1018 6.1 · 1021 2.8 · 1027 1.6 · 1030

BKZ10 4.6 · 105 1.2 · 107 1.1 · 108 1.3 · 1010 7.6 · 1011 1.7 · 1014 4.3 · 1016 1.9 · 1019

BKZ20 2.4 · 105 2.7 · 106 3.1 · 107 1.3 · 109 4.1 · 1010 3.7 · 1012 6.4 · 1013 2.1 · 1016

BKZ30 1.9 · 105 1.6 · 106 1.8 · 107 3.0 · 108 4.3 · 109 1.1 · 1011 3.7 · 1012 1.9 · 1014

Fig. 5. Value of E(b1, . . . , bd) for randomly generated (b1, . . . , bd)

and obtained the table of Figure 5. It confirms that a strong pre-processing should
help increasing the dimension up to which SVP may be solved completely.

If one is looking for vectors smaller than some prescribed B (for example if the
existence of an unusually short vector is promised), then ‖b1‖ may be replaced
by B in the estimate. Overall, these estimates are rather crude since factors that
are polynomial in the dimension should be considered as well. Furthermore, it
does not take into account more elaborate techniques such as updating the norm
during the enumeration, pruning [30, 31] and random sampling [29].

Open problem. One may wonder if the complexity upper bound for Kannan’s
SVP algorithm can be decreased further. Work under progress seems to show, by
using a technique due to Ajtai [3], that it is sharp, in the sense that for all ε > 0,
we can build HKZ-reduced bases for which the number of steps of Kannan’s
algorithm would be at least dd( 1

2e−ε).

Acknowledgements. We thank Frederik Vercauteren for helpful discussions, as
well as John Cannon and the University of Sydney for having hosted the second
author while a large part of this work was completed.

References

1. Agrell, E., Eriksson, T., Vardy, A., Zeger, K.: Closest point search in lattices. IEEE
Trans. Inform. Theory 48(8), 2201–2214 (2002)

2. Ajtai, M.: The shortest vector problem in l2 is NP-hard for randomized reductions
(extended abstract). In: Proc. of STOC 1998, pp. 284–293. ACM Press, New York
(1998)

3. Ajtai, M.: The worst-case behavior of Schnorr’s algorithm approximating the short-
est nonzero vector in a lattice. In: Proc. of STOC 2003, pp. 396–406. ACM Press,
New York (2003)

4. Ajtai, M., Dwork, C.: A public-key cryptosystem with worst-case/average-case
equivalence. In: Proc. of STOC 1997, pp. 284–293. ACM Press, New York (1997)

5. Ajtai, M., Kumar, R., Sivakumar, D.: A sieve algorithm for the shortest lattice
vector problem. In: Proc of STOC 2001, pp. 601–610. ACM Press, New York (2001)

6. Babai, L.: On Lovász lattice reduction and the nearest lattice point problem. Com-
binatorica 6, 1–13 (1986)

7. Blömer, J.: Closest vectors, successive minima and dual-HKZ bases of lattices. In:
Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, pp.
248–259. Springer, Heidelberg (2000)



Improved Analysis of Kannan’s Shortest Lattice Vector Algorithm 185

8. Coppersmith, D., Shamir, A.: Lattice attacks on NTRU. In: Fumy, W. (ed.) EU-
ROCRYPT 1997. LNCS, vol. 1233, pp. 52–61. Springer, Heidelberg (1997)

9. Fincke, U., Pohst, M.: A procedure for determining algebraic integers of given norm.
In: van Hulzen, J.A. (ed.) ISSAC 1983 and EUROCAL 1983. LNCS, vol. 162, pp.
194–202. Springer, Heidelberg (1983)

10. Gama, N., Howgrave-Graham, N., Koy, H., Nguyen, P.: Rankin’s constant and
blockwise lattice reduction. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117,
pp. 112–130. Springer, Heidelberg (2006)

11. Goldreich, O., Goldwasser, S., Halevi, S.: Public-key cryptosystems from lattice
reduction problems. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294,
pp. 112–131. Springer, Heidelberg (1997)

12. Haviv, I., Regev, O.: Tensor-based hardness of the shortest vector problem to within
almost polynomial factors. In: Proc. of STOC 2007 (2007)

13. Helfrich, B.: Algorithms to construct Minkowski reduced and Hermite reduced
lattice bases. Theoret. Comput. Sci. 41, 125–139 (1985)

14. Hermite, C.: Extraits de lettres de M. Hermite à M. Jacobi sur différents objets de
la théorie des nombres, deuxième lettre. J. Reine Angew. Math. 40, 279–290 (1850)

15. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU : a ring based public key cryp-
tosystem. In: Buhler, J.P. (ed.) Algorithmic Number Theory. LNCS, vol. 1423, pp.
267–288. Springer, Heidelberg (1998)

16. Kannan, R.: Improved algorithms for integer programming and related lattice prob-
lems. In: Proc. of STOC 1983, pp. 99–108. ACM Press, New York (1983)

17. Lenstra, A.K., Lenstra Jr., H.W., Lovász, L.: Factoring polynomials with rational
coefficients. Math. Ann. 261, 513–534 (1982)

18. Magma. The Magma computational algebra system for algebra, number theory
and geometry. Available at http://magma.maths.usyd.edu.au/magma/

19. Martinet, J.: Perfect Lattices in Euclidean Spaces. Springer, Heidelberg (2002)
20. Mazo, J., Odlyzko, A.: Lattice points in high-dimensional spheres. Monatsh.

Math. 110, 47–61 (1990)
21. Micciancio, D., Goldwasser, S.: Complexity of lattice problems : a cryptographic

perspective. Kluwer Academic Publishers, Dordrecht (2002)
22. Minkowski, H.: Geometrie der Zahlen. Teubner-V (1896)
23. Nguyen, P.: Cryptanalysis of the Goldreich-Goldwasser-Halevi cryptosystem from

Crypto’97. In: Wiener, M.J. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 288–304.
Springer, Heidelberg (1999)

24. Nguyen, P., Stehlé, D.: LLL on the average. In: Hess, F., Pauli, S., Pohst, M. (eds.)
ANTSVII. LNCS, vol. 4076, pp. 238–256. Springer, Heidelberg (2006)

25. Nguyen, P., Stern, J.: Cryptanalysis of the Ajtai-Dwork cryptosystem. In: Kraw-
czyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 223–242. Springer, Heidelberg
(1998)

26. Nguyen, P., Vidick, T.: Assessing sieve algorithms for the shortest vector problem.
Draft (2007)

27. Regev, O.: Lecture notes of lattices in computer science, taught at the Computer
Science Tel Aviv University. Available at http://www.cs.tau.il/~odedr

28. Schnorr, C.P.: A hierarchy of polynomial lattice basis reduction algorithms. Theo-
ret. Comput. Sci. 53, 201–224 (1987)

http://magma.maths.usyd.edu.au/magma/
http://www.cs.tau.il/~odedr


186 G. Hanrot and D. Stehlé

29. Schnorr, C.P.: Lattice reduction by random sampling and birthday methods. In:
Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 145–156. Springer,
Heidelberg (2003)

30. Schnorr, C.P., Euchner, M.: Lattice basis reduction : improved practical algorithms
and solving subset sum problems. Math. Programming 66, 181–199 (1994)

31. Schnorr, C.P., Hörner, H.H.: Attacking the Chor-Rivest cryptosystem by improved
lattice reduction. In: Guillou, L.C., Quisquater, J.-J. (eds.) EUROCRYPT 1995.
LNCS, vol. 921, pp. 1–12. Springer, Heidelberg (1995)

32. Shoup,V.:NTL,NumberTheoryLibrary.Available, athttp://www.shoup.net/ntl/

http://www.shoup.net/ntl/


Domain Extension of Public Random Functions:
Beyond the Birthday Barrier�

Ueli Maurer and Stefano Tessaro

Department of Computer Science, ETH Zurich, 8092 Zurich, Switzerland
{maurer,tessaros}@inf.ethz.ch

Abstract. A public random function is a random function that is ac-
cessible by all parties, including the adversary. For example, a (public)
random oracle is a public random function {0, 1}∗ → {0, 1}n. The natural
problem of constructing a public random oracle from a public random
function {0, 1}m → {0, 1}n (for some m > n) was first considered at
Crypto 2005 by Coron et al. who proved the security of variants of the
Merkle-Damg̊ard construction against adversaries issuing up to O(2n/2)
queries to the construction and to the underlying compression function.
This bound is less than the square root of n2m, the number of random
bits contained in the underlying random function.

In this paper, we investigate domain extenders for public random func-
tions approaching optimal security. In particular, for all ε ∈ (0, 1) and all
functions m and � (polynomial in n), we provide a construction Cε,m,�(·)
which extends a public random function R : {0, 1}n → {0, 1}n to a
function Cε,m,�(R) : {0, 1}m(n) → {0, 1}�(n) with time-complexity poly-
nomial in n and 1/ε and which is secure against adversaries which make
up to Θ(2n(1−ε)) queries. A central tool for achieving high security are
special classes of unbalanced bipartite expander graphs with small de-
gree. The achievability of practical (as opposed to complexity-theoretic)
efficiency is proved by a non-constructive existence proof.

Combined with the iterated constructions of Coron et al., our re-
sult leads to the first iterated construction of a hash function {0, 1}∗ →
{0, 1}n from a component function {0, 1}n → {0, 1}n that withstands
all recently proposed generic attacks against iterated hash functions, like
Joux’s multi-collision attack, Kelsey and Schneier’s second-preimage at-
tack, and Kelsey and Kohno’s herding attacks.

1 Introduction

1.1 Secret vs. Public Random Functions

Primitives that provide some form of randomness are of central importance in
cryptography, both as a primitive assumed to be given (e.g. a secret key), and
as a primitive constructed from a weaker one to “behave like” a certain ideal
random primitive (e.g. a random function), according to some security notion.
� This research was partially supported by the Swiss National Science Foundation

(SNF), project no. 200020-113700/1.

A. Menezes (Ed.): CRYPTO 2007, LNCS 4622, pp. 187–204, 2007.
c© International Association for Cryptologic Research 2007



188 U. Maurer and S. Tessaro

An adversary may have different types of access to a random primitive. The
two extreme cases are that the adversary has no access and that he has complete
access1 to it. For example, the adversary is assumed to have no access to a
secret key, and a pseudo-random function (PRF) is a (computationally-secure)
realization from such a secret key of a secret random function to which the
adversary has no access. In contrast, a (public) random oracle, as used in the
so-called random-oracle model [7], is a function {0, 1}∗ → {0, 1}n to which the
adversary has complete access, like the legitimate parties. Similarly, a public
parameter (e.g. the parameter selecting a hash function from a class) is a finite
random string to which the adversary has complete access. It is natural to also
consider finite-domain public random functions.

In this paper we are interested in such public random primitives and reduc-
tions among them. The question whether (and how) a certain primitive can be
securely realized from another primitive is substantially more complex in the
public setting, compared to the secret setting, and even the security notion is
more involved. For example, while the CBC-construction can be seen as the
secure realization of a secret random function {0, 1}∗ → {0, 1}n from a secret
random function {0, 1}n → {0, 1}n [5,19], the same statement is false if public
functions (accessible to the adversary) are considered. Another famous exam-
ple of a reduction problem for public primitives is the realization of a (public)
random oracle from a public parameter. This was shown to be impossible [8,21].

1.2 Domain Extension and the Birthday Barrier

A random primitive (both secret or public) can be characterized by the number
of random bits it contains. An �-bit key is a string (or table) containing � random
bits, a random function {0, 1}m → {0, 1}n corresponds to a table of n2m random
bits which can be accessed efficiently, and a random oracle {0, 1}∗ → {0, 1}n

corresponds to a countably infinite table of random bits.2 Of course, a random
table of N bits can be interpreted as a random function {0, 1}m → {0, 1}n for
any m and n with n2m ≤ N . For example, n can be doubled at the apparently
minor expense of reducing m by 1.

An important topic in cryptography is the secure expansion of such a table,
considered as an ideal system. This is referred to as domain extension, say from
{0, 1}m to {0, 1}2m (or to {0, 1}∗), which corresponds to an exponential (or even
infinite) blow-up of the table size. (In contrast, increasing the range, say from
{0, 1}n to {0, 1}2n, corresponds to merely a doubling of the table size.)

1 Side-channel attack analyses, where part of the secret key is assumed to leak, are
examples of intermediate scenarios.

2 Each bit can be accessed in time logarithmic in its position in the table, which is
optimal since the specification of the position requires logarithmically many bits. In
this paper we only consider such random primitives where the bits can be accessed
efficiently, but there are also more complicated primitives, like an ideal cipher, which
on one hand has a special permutation structure and also allows on the other hand
a special additional type of access, namely inverse queries.



Domain Extension of Public Random Functions 189

In [21] a generalization of indistinguishability to systems with public access,
called indifferentiability, was proposed. Like for indistinguishability, there is a
computational and a stronger, information-theoretic, version of indifferentiabil-
ity. This general notion allows to discuss the secure realization of a public random
primitive from another public random primitive. In [21] also a simple general
framework was proposed, based on entropy arguments, for proving impossibility
results like that of [8]. One can easily show that not even a single-bit extension of
a public parameter, from � to �+1 bits, is possible, let alone to an exponentially
large table (corresponding to a public random function {0, 1}m → {0, 1}n) or
even to an infinite table (corresponding to the impossibility of realizing a random
oracle [8,21]).

However, the situation is different if one starts from a public random function
(as opposed to just a public random string). Coron et al. [11] considered the
problem of constructing a random oracle {0, 1}∗ → {0, 1}n from a public random
function {0, 1}m → {0, 1}n (where m > n) and showed that a modified Merkle-
Damg̊ard construction [24,12] works, with information-theoretic security (i.e.,
indifferentiability) up to about O(2n/2) queries. This bound, only the square
root of O(2n), is usually called the “birthday barrier”. The term “birthday” is
used because the birthday paradox applies (as soon as two different inputs to
the function occur which produce the same output, security is lost) and the term
“barrier” is used because breaking it is non-trivial if at all possible.

For secret random functions, many constructions in the literature, also those
based on universal hashing [9,26] and the CBC-construction [5,19], suffer from
the birthday problem, and hence several researchers [1,4,19] considered the prob-
lem of achieving security beyond the birthday barrier. The goal of this paper is to
solve the corresponding problem for public random functions. Namely, we want
to achieve essentially maximal security, i.e., up to Θ(2n(1−ε)) queries for any
ε > 0 (where the construction may depend on ε). Like for other problems (see
e.g. [13]), going from the “secret case” to the “public case” appears to involve
substantial new construction elements and analysis techniques.

1.3 Significance of Domain Extension for Public Random Functions

The domain extension problem for public random functions has important impli-
cations for the design of cryptographic functions, in addition to being of general
theoretical interest. We also refer to [11] for a discussion of the significance of
this problem.

Cryptographic functions with arbitrary input-length are of crucial importance
in cryptography. Desirable properties for such functions are collision-resistance,
second-preimage resistance, multi-collision resistance, being pseudo-random, or
being a secure MAC, etc. A general paradigm for constructing a cryptographic
function {0, 1}∗ → {0, 1}n, both in the secret and the public case, is to make use
of a component function F : {0, 1}m → {0, 1}n and to embed it into an iterated
construction C(·) (e.g. the CBC or the Merkle-Damg̊ard construction), resulting
in the overall function C(F) : {0, 1}∗ → {0, 1}n.



190 U. Maurer and S. Tessaro

It is important to be able to separate the reasoning about the component
function F and about the construction C(·). Typically, F is simply assumed to
have some property, like being collision-resistant, second-preimage resistant, a
secure MAC, etc. In contrast, the construction C(·) is (or should be!) designed
in a way that one can prove certain properties.

There are two types of such proofs for C(·). The first type is a complexity-
theoretic reduction proof showing that if there exists an adversary breaking a
certain property of C(F), then there exists a comparably efficient adversary
breaking a property (the same or a different one) of F. For example, using such
an argument one can prove that the Merkle-Damg̊ard [24,12] construction is
collision-resistant if the component function is. Similarly, one can prove that the
CBC construction is a PRF if the component function is [5], or that certain
constructions [2,22] are secure MACs if the component function is.

A second type of proof, which is the subject of [11] and of this paper, is the
proof that if F is a public random function, then so is C(F), up to a certain num-
ber B of queries. Such a proof implies the absence of a generic (black-box) attack
against C(F), i.e., an attack which does not exploit specific properties of F, but
uses it merely as a black-box.3 Such a generic proof is not an ultimate security
proof for C(F), but it proves that the construction C(·) itself has no weakness.
A main advantage of such a proof is that it applies to every cryptographic prop-
erty of interest (which a random function has), not just to specific properties like
collision-resistance.

The number B of queries up to which security is guaranteed is a crucial para-
meter of such a proof, especially in view of several surprises of the past years re-
garding weaknesses of iterated constructions. Joux [15] showed that the security
of the Merkle-Damg̊ard construction (with compression function with n-bit out-
put) against finding multi-collisions is not much higher than the security against
normal collision attacks, namely the birthday barrier O(2n/2), which is surpris-
ing because for a random function, finding an r-multi-collision requires Θ(2

r−1
r n)

queries. Joux’s attack has been generalized to a wider class of constructions [14].
Other attacks in a similar spirit against iterated constructions are the second-
preimage attack by Kelsey and Schneier [17], and herding attacks [16]. One
possibility to overcome these issues is to rely on a compression function with
input domain much larger than the size of the output of the construction (cf.
for example the constructions in [18] and the double block-length construction
of [10]), but this does not seem to be the best possible approach, both from a
theoretical and from a practical viewpoint, as explained below.

A proof, like that of [11], for a construction C(·) of a public random function,
implies that C(·) is secure against all possible attacks, up to the bound B on
the number of queries stated in the proof. Since the bound in [11] is the birth-
day barrier, this implies nothing (beyond the birthday barrier) for attacks that
require more queries, like the attacks of [15,17,10] mentioned above, and indeed
the constructions of [11] also suffer from the same attacks.

3 This is analogous to security proofs in the generic group model [27,20] which show that
no attack exists that does not exploit the particular representation of group elements.



Domain Extension of Public Random Functions 191

The bound B is also of importance since it determines the input and output
sizes of F. For example, because collision-resistance is a property that can hold
only up to 2n/2 queries (due to the birthday paradox), n must be chosen twice as
large as one might expect to be feasible in a näıve security analysis. Moreover,
since the function must be compressing to be useful in a construction C(·),
the input size m must be larger than the output size n. However, if collision-
resistance is not required, but instead for example second-preimage resistance,
then the input size m of F can potentially be smaller or, turning the argument
around, security for a given m can be much higher.

The input size m of F is relevant for two more reasons. First, if one considers
the (perhaps not very realistic) possibility of finding a random function in Nature
(say, by scanning the surface of the moon or by appropriately accessing the
WWW), then m is a crucial parameter since the table size n2m is exponential in
m. Second, for a given maximal computing time for F, the difficulty of designing
a concrete cryptographic function F : {0, 1}m → {0, 1}n that is supposed to
“look random” increases significantly if m is large. This can be seen as follows.
Such a function F for large m could be modified in many different ways to reduce
m to m′ < m (e.g. set m − m′ input bits to 0 or to any fixed value, or repeat
an input of size m′ until a block of length m is filled, etc.), and for each of these
modifications it would still have to be secure.4 Hence simply designing a new
function with doubled m is not a very reasonable solution for the birthday barrier
problem. Rather, one should find a construction that doubles (or multiplies) the
input size but at the same time preserves the security almost optimally.

1.4 Contributions and Outline of This Paper

The main contribution of this paper is a construction paradigm for breaking the
birthday barrier for domain extension of public random functions. More precisely,
in Section 3 we prove that for every ε ∈ (0, 1), m and �, there exists an efficient
construction Cε,m,�(·) which extends a public random function {0, 1}n → {0, 1}n

to a public random function {0, 1}m → {0, 1}�, and which guarantees security
for up to Θ(2n(1−ε)) queries.

A central tool in our approach is a new combinatorial object, which we call an
input-restricting function family. Section 4 discusses constructions of such fami-
lies from highly-unbalanced bipartite expander graphs. While current expander
constructions only allow our paradigm to be efficient in a complexity-theoretic
sense (i.e. polynomial-time), an existence proof shows that very efficient con-
structions exist which would be of real practical interest if such graphs could be
made explicit. We hope this paper provides additional motivation to investigate
explicit constructions of unbalanced bipartite expanders for parameters ranges
which have not received much attention so far.

Finally, our techniques allow to use a public random function {0, 1}n →
{0, 1}n to construct a compression function with sufficiently large domain and

4 This argument applies even though we know that a public random function is not
securely realizable from a public random parameter.



192 U. Maurer and S. Tessaro

range and to plug it into the construction of [11] to achieve the first iterated
construction of a public random oracle {0, 1}∗ → {0, 1}n from a public random
function {0, 1}n → {0, 1}n with security above the birthday barrier. We discuss
this in Section 5.

2 Preliminaries

2.1 Notation and Probabilities

Throughout this paper, calligraphic letters (e.g. U) denote sets. A k-tuple is de-
noted as uk = [u1, . . . , uk], and the set of k-tuples of elements of U is denoted
as Uk. We use capital letters (e.g. U) to name random variables, whereas their
concrete values are often denoted by the corresponding lower-case letters (e.g.
u). Also, we write PU for the probability distribution of U , and we use the short-
hand PU (u) for P(U = u). Given random variables U and V , as well as events A
and B, PUA|V B denotes the corresponding conditional probability distribution,
which is interpreted as a function U × V → R≥0, where the value PUA|V B(u, v)
is well-defined for all u ∈ U and v ∈ V such that PV B(v) > 0 (and undefined
otherwise). Two probability distributions PU and PU ′ on the same set U are
equal, denoted PU = PU ′ , if PU (u) = PU ′(u) for all u ∈ U . Also, for condi-
tional probability distributions, equality holds if it holds for all inputs for which
both are defined. We often need to deal with distinct random experiments where
equally-named random variables and/or events appear. To avoid confusion, we
add superscripts to probability distributions (e.g. PEU|V (u, v)) to make the ran-
dom experiment explicit. Finally, we denote by s‖s′ the concatenation of two
binary strings s, s′ ∈ {0, 1}∗.

2.2 Indistinguishability of Random Systems

In this section, we review basic definitions and facts from the framework of
random systems of [19]. A random system is the abstraction of the input-output
behavior of any discrete system.

Definition 1. An (X , Y)-random system F is a (generally infinite) sequence
of conditional probability distributions5 pF

Yi|XiY i−1 for all i ≥ 1. Two random
systems F and G are equivalent, denoted F ≡ G, if pF

Yi|XiY i−1 = pG
Yi|XiY i−1 for

all i ≥ 1.

The system is described by the conditional probabilities pF
Yi|XiY i−1(yi, x

i, yi−1)
(for i ≥ 1) of obtaining the output yi ∈ Y on query xi ∈ X given the previ-
ous i − 1 queries xi−1 = [x1, . . . , xi−1] ∈ X i−1 and their corresponding out-
puts yi−1 = [y1, . . . , yi−1] ∈ Yi−1. An example of a random system that we
consider in the following is a random function R : {0, 1}m → {0, 1}n, which

5 We use a lower-case p to stress the fact that these conditional distributions by them-
selves do not define a random experiment.



Domain Extension of Public Random Functions 193

returns for every distinct input value x ∈ {0, 1}m an independent and uniformly-
distributed n-bit value. Moreover, a random oracle O : {0, 1}∗ → {0, 1}n is a
random function taking inputs of arbitrary length.

A distinguisher D for an (X , Y)-random system is a (Y, X )-random system
which is one query ahead, i.e. it is defined by the conditional probability distribu-
tions pD

Xi|Xi−1Y i−1 for all i ≥ 1. In particular, pD
X1

is the probability distribution
of the first value queried by D. Finally, the distinguisher outputs a bit after
a certain number (say k) of queries depending on the transcript (Xk, Y k). For
an (X , Y)-random system F and a distinguisher D, we denote by D ◦ F the
random experiment6 where D interacts with F. Furthermore, given an addi-
tional (X , Y)-random system G, the distinguishing advantage of D in distin-
guishing systems F and G is defined as ΔD(F,G) :=

∣∣PD◦F(1) − PD◦G(1)
∣∣,

where PD◦F(1) and PD◦G(1) denote the probabilities that D outputs 1 after
its k queries when interacting with F and G, respectively.

We are interested in considering an internal monotone condition defined on a
random system F. Such a condition is initially true, and once it fails, it cannot
become true any more. In particular, a system FA with a monotone condition A
is an (X , Y × {0, 1})-random system, where the additional output bit indicates
whether the condition A holds after the i’th query has been answered. In gen-
eral, we characterize such a condition by a sequence of events A = A0, A1, . . .,
where A0 always holds, and Ai holds if the condition holds after query i. The
condition fails at query i if Ai−1 ∧ Ai occurs. For a system with a monotone
condition FA, we write F for the system where the additional output bit is
ignored. Generally, we are interested in considering the behavior of systems
only as long as a certain monotone condition holds: Given two systems FA

and GB with monotone conditions A and B, respectively, they are equivalent,
denoted FA ≡ GB, if pF

AiYi|XiY i−1Ai−1
= pG

BiYi|XiY i−1Bi−1
holds for all i ≥ 1.

The probability that a distinguisher D issuing k queries makes a monotone
condition A fail in the random experiment D◦F is defined as νD(FA) := PD◦F

Ak
.

The following lemma from [19] relates this probability with the distinguishing
advantage.

Lemma 1. If FA ≡ GB holds, then ΔD(F,G) ≤ νD(FA) = νD(GB) for all
distinguishers D.

One can use a random system F as a component of a larger system: In par-
ticular, we are interested in constructions C(·) such that the resulting random
system C(F) invokes F as a subsystem. (Note that C(·) itself is not a random
system, while C(F) is a random system.)

Finally, we remark that in general when we mention that a construction (or
a distinguisher) is efficient we mean that there exists a probabilistic interactive
Turing machine implementing the same input-output behavior and with poly-
nomial running time (in the understood security parameter).

6 In particular, in this random experiment, the joint distribution PD◦F
XkY k is well-defined

as
�k

i=1 pD
Xi|Xi−1Y i−1 · pF

Yi|XiY i−1 .



194 U. Maurer and S. Tessaro

2.3 Indifferentiability, Reductions, and Public Random Primitives

The notion of indifferentiability [21] naturally extends the concept of indis-
tinguishability to systems with a public and a private interface7 adopting a
simulation-based approach. The public interface can be used by all parties,
including the adversary, whereas the legitimate parties have exclusive access
to the private interface. Generally, we denote such a system as an ordered
pair F = [Fpub,Fpriv]. Furthermore, given constructions S(·) and C(·) leav-
ing, respectively, private and public queries unmodified, we simply write S(F) =
[S(Fpub),Fpriv] and C(F) = [Fpub,C(Fpriv)].

Public random primitives are a special case of such systems. A public random
function (puRF) R : {0, 1}m → {0, 1}n is a system with a public and a private
interface which behaves as the same random function at both interfaces.8 In
particular, both interfaces answer consistently. Furthermore, a public random
oracle (puRO) O : {0, 1}∗ → {0, 1}n is a public random function which takes
inputs of arbitrary bit-length.

The following definition refines the notion of (information-theoretic) indiffer-
entiability from [21] to deal with concrete parameters.

Definition 2. Let α : N → R≥0 and σ : N → N be functions. A system F is

(α, σ)-indifferentiable from G, denoted F
α,σ
� G, if there exists a simulator S such

that ΔD([Fpub,Fpriv], [S(Gpub),Gpriv]) ≤ α(k) for all distinguishers D making at
most k queries, and S makes at most σ(k) queries to Gpub when interacting with D.

The purpose of the simulator is to mimic Fpub by querying Gpub, but without
seeing the queries made to Gpriv. Indifferentiability directly implies a notion of
reducibility.

Definition 3. A system G is (α, σ)-reducible to a system F if there exists an
efficient, deterministic, and stateless construction C(·) such that [Fpub,C(Fpriv)]
α,σ
� G. The construction C(·) is called an (α, σ)-reduction.

Note that if a random primitive is (α, σ)-reducible to a further random primitive
with an N -bit table, then α(k) ≥ 1

2 for all k > N , and hence security can only
be achieved with respect to distinguishers issuing at most N queries. (We refer
the reader to the full version [23] for a proof.) The following lemma states that
reducibility is transitive. We omit its simple proof.

Lemma 2. Let E,F, and G be systems. If C(·) is a (α, σ)-reduction of F to E,
and C′(·) is an (α′, σ′) reduction of G to F that makes at most kC′(k) queries
to Fpriv when queried k times, then C′(C(·)) is an (α, σ)-reduction of G to E,
where α(k) = α(k + kC′(k)) + α′(k + σ(k)) and σ(k) = σ′(σ(k)).

7 Formally, this can be seen as a random system with a single interface and two types
of queries.

8 For this reason, we generally write both Rpub and Rpriv as R.



Domain Extension of Public Random Functions 195

The computational variant of indifferentiability is obtained by requiring S to be
efficient and the advantage ΔD([Fpub,Fpriv], [S(Gpub),Gpriv]) to be negligible
for all efficient distinguishers D. A computational reduction is defined accord-
ingly. In the information theoretic case, it is sometimes desirable to prove that
the simulator is efficient when queried by an efficient distinguisher, as this then
implies the corresponding complexity-theoretic statement. We refer the reader
to [21,11] for the implications of computational indifferentiability.

In contrast, as long as we are only interested in excluding generic attacks
against security properties of a random function, the running time of the simula-
tor is irrelevant. If C(·) is an (α, σ)-reduction of a puRO O : {0, 1}∗ → {0, 1}n (or
of a puRF R′ : {0, 1}m → {0, 1}�) to a puRF R : {0, 1}n → {0, 1}n, then C(R)
inherits all the security properties of the truly-random oracle O (or of R′), as long
as the number of queries keeps α(k) small: Any adversary A making k queries (to
both R and C(R)) and breaking some property of C(R) with probability π(k)
can be transformed (combining it with the simulator) into an adversary A′ mak-
ing at most k + σ(k) queries to O and breaking the same property for O with
probability at least π(k) − α(k), and if no such A′ can exist, then also no ad-
versary A exists. The actual running time of A′ is irrelevant, as the security of
a random function (or oracle) with respect to a certain property is determined
by the number of queries of the adversary, and not by its running time. For ex-
ample, if σ(k) = Θ(k), then, given a random element s ∈ {0, 1}m, no adversary
can find a second preimage s′ ∈ {0, 1}m with s′ 
= s and C(R)(s) = C(R)(s′)
with probability higher than Θ(k · 2−n) + α(k).

3 Beyond-Birthday Domain Extension for Public
Random Functions

3.1 The Construction

We first discuss at an abstract level the main construction of this paper (repre-
sented in Figure 1), which implements a function mapping m-bit strings to �-
bit strings from r + t independent puRF’s F1, . . . ,Fr : {0, 1}n → {0, 1}tρn

and G1, . . . ,Gt : {0, 1}n → {0, 1}� (for given parameters r, t, and ρ). Let E1, . . . ,
Er : {0, 1}m → {0, 1}n be efficiently-computable functions (to be instantiated
below). On input s ∈ {0, 1}m, the construction operates in three stages:

1. The values Fp(Ep(s)) = F(1)
p (Ep(s))‖ · · · ‖F(t)

p (Ep(s)) ∈ {0, 1}tρn are com-
puted for all p = 1, . . . , r, where F(q)

p (Ep(s)) ∈ {0, 1}ρn for all q = 1, . . . , t;
2. The value w(s) = w(1)(s)‖ · · · ‖w(t)(s) is computed, where w(q)(s) equals

(for all q = 1, . . . , t) the first n bits of the product
⊙r

p=1 F(q)
p (Ep(s)), and �

denotes multiplication in GF (2ρn) with ρn-bit strings interpreted as elements
of the finite field GF (2ρn);

3. Finally, the value
⊕t

q=1 Gq(w(q)(s)) is output.

Our approach relies on the observation that if for each new query to the con-
struction with input s ∈ {0, 1}m there exists an index q ∈ {1, . . . , t} for which Gq



196 U. Maurer and S. Tessaro

�� �� ��

�� �� ��

� � �

�� �� ��

�

�

� � �

��� ��� ���

�� �� ��

� � �

Fig. 1. Main construction, where F1, . . . , Fr and G1, . . . ,Gt are independent puRF’s
and E1, . . . , Er : {0, 1}m → {0, 1}n are efficiently-computable functions

has not been queried yet at the value w(q)(s), either directly at its public inter-
face or by the construction at the private interface, the resulting output value
is uniformly distributed and independent from all previously-returned values.
This resembles the approach taken to extend the domain of (secret) random
functions [1,4,19]. However, we stress that the role of the first two stages (in-
cluding the functions E1, . . . , Er) is crucial here: Not only they have to guarantee
that such an index q always exists, but they must also permit simulation of the
puRF’s F1, . . . ,Fr and G1, . . . ,Gt given only access to the public interface of
an (ideal) puRF R : {0, 1}m → {0, 1}�, without seeing the queries made to the
private interface of R. Also, the probability that the simulation fails must be
small enough to allow security beyond the birthday barrier.

3.2 Input-Restricting Functions

For every s ∈ {0, 1}m one can always learn the value w(s) by querying the pub-
lic interfaces of F1, . . . ,Fr with appropriate inputs E1(s), . . . , Ep(s), respectively.
For every such s, the sum

⊕t
q=1 Gq(w(q)(s)) equals the output of the construction

on input s. The simulator must ensure that its answers for queries to the func-
tions G1, . . . ,Gt are consistent with these constraints. However, if E1, . . . , Er al-
low a relatively small number of queries to the functions F1, . . . ,Ft to reveal a
too large number of values w(s), then the simulator possibly fails to satisfy all
constraints. For example, the Benes construction [1] adopts an approach similar
to the one of our construction, but suffers from this problem and its security in
the setting of puRF’s is inherently bounded by the birthday barrier. (We provide
a concrete attack in the full version [23].) To overcome this problem, we introduce
the following combinatorial notion.



Domain Extension of Public Random Functions 197

Definition 4. Let ε ∈ (0, 1) , and let m > n. A family E of functions E1, . . . , Er :
{0, 1}m → {0, 1}n is called (m, δ, ε)-input restricting if it satisfies the following
two properties:

Injective. For all s 
= s′ ∈ {0, 1}m, there exists p ∈ {1, . . . , r} such that Ep(s) 
=
Ep(s′).

Input-Restricting. For all subsets U1, . . . , Ur ⊆ {0, 1}n such that |U1| + · · · +
|Ur| ≤ 2n(1−ε), we have∣∣∣{s ∈ {0, 1}m | Ep(s) ∈ Up for all p = 1, . . . , r}

∣∣∣ ≤ δ · (|U1| + · · · + |Ur|) .

It is easy to see that δ ≥ 1/r must hold. Furthermore, we need r · n ≥ m for the
family to be injective. When talking about efficiency, we can naturally extend
the notion to asymptotic families E = {En}n∈N of function families by letting m,
δ, ε, and r be functions of n, and En = {En

1 , . . . , En
r(n)}, with En

p : {0, 1}m(n) →
{0, 1}n. In particular, note that we allow the size of the family to grow with the
security parameter. The family En is called explicit if r = r(n) is polynomial
in n and if there exists a (uniform) polynomial-time (in n) algorithm E that
outputs En

p (s) ∈ {0, 1}n on input n ∈ N, s ∈ {0, 1}m(n), and p ∈ {1, . . . , r(n)}.
The family is additionally called invertible if there exists an algorithm which on
input the sets U1, . . . , Ur ⊆ {0, 1}n and n returns the set of all s ∈ {0, 1}m for
which Ep(s) ∈ Up for all p = 1, . . . , r in time polynomial in |U1| + · · · + |Ur| and
in n. We will not, however, stress the asymptotic point of view in the following,
as long as it is clear from the context that the statements can be also formalized
in this sense.

We postpone the discussion of the existence of explicit function families to
Section 4, where we construct (for all constants ε) explicit families of (m, δ, ε)-
input-restricting functions for all polynomials m and sufficiently-small δ using
highly unbalanced expander graphs with polynomial-degree.

3.3 Main Result

Let ε ∈ (0, 1). The concrete construction CEε,m,�(·) is obtained from the de-
scription in Section 3.1 by instantiating the functions E1, . . . , Er with an ex-
plicit family E = {E1, . . . , Er} of (m, δ, ε)-input restricting functions with n-bit
output. Also, we let ρ :=

⌈
m
n + 2 − ε

⌉
and t := 2/ε − 1�. Note that underly-

ing r + t puRF’s can be seen as a single puRF R′ : {0, 1}n+φ(n) → {0, 1}n,
where φ(n) = log(r · tρ + t�/n)�. If m, �, and 1/ε are polynomial in n, then in
particular φ(n) = O(log n). Also, it is easy to see that CEε,m,�(·) is efficient, as
long as the function family E is explicit. The following is the main theorem of
this paper and it is proved in the next section.

Theorem 1. The construction CEε,m,�(·) is an (α, σ)-reduction of the puRF R :
{0, 1}m → {0, 1}� to the puRF’sF1, . . . ,Fr : {0, 1}n → {0, 1}t·ρn andG1, . . . ,Gt :
{0, 1}n → {0, 1}�, where for all k ≤ 2n(1−ε) − r,

α(k) ≤ 2rt(δ + 1)t+1 · kt+2 · 2−nt +
1
2
t(δ + 1) · k · (k + 2r + 1) · 2m−ρn



198 U. Maurer and S. Tessaro

and σ(k) ≤ δ(n) ·k. If the family E is invertible, the simulator runs in time poly-
nomial in k and n, and in particular CEε,m,�(·) is also a computational reduction.

We remark the following two important consequences of Theorem 1. First, if ε is
constant and r, δ polynomial in n, the above advantage α(k) is negligible for all
parameters k up to k = 2n(1−ε) − r. In particular, choosing ε < 1

2 leads to secu-
rity beyond the birthday barrier,9 and we are going to provide input-restricting
families of functions with appropriate parameters in Section 4. Second, the re-
sult can be used to extend the domain of a puRF R′ : {0, 1}n → {0, 1}n with
security up to 2n(1−μ) queries: One chooses any ε < μ and n′ maximal such
that n′ + φ(n′) ≤ n, and interprets the function R′ as a puRF {0, 1}n′+φ(n′) →
{0, 1}n′

by dropping approximately φ(n′) bits of the output. The above advan-
tage is still negligible for all k ≤ 2n′(1−ε) − r, and hence for all k ≤ 2n(1−μ) for n
large enough, since n − n′ = o(n).

3.4 Proof of Theorem 1

We prove that there exists a simulator S such that ΔD(H1,H2) is bounded by
the above expression for all distinguishers D making at most k ≤ 2n(1−ε) − r
queries, where for notational convenience H1 and H2 are defined as

H1 := [F1, . . . ,Fr,G1, . . . ,Gt,CEε,m,�(F1, . . . ,Fr,G1, . . . ,Gt)]

H2 := [S(R),R].

There are three types of queries to the systems H1 and H2: The first two types
are F-queries, denoted (F, p, u) for p ∈ {1, . . . , r} and u ∈ {0, 1}n, and G-queries,
denoted (G, q, v), for v ∈ {0, 1}n and q ∈ {1, . . . , t}. In H1, a query (F, p, u)
returns the value Fp(u) and a query (G, q, v) returns the value Gq(v), while
in H2 both query-types are answered by the simulator S. The third type of
queries, called R-queries, are denoted (R, s) for s ∈ {0, 1}m and are answered
by the construction CEε,m,�(·) in H1, and by the private interface of the ran-
dom function R in H2. Given the first i queries xi = [x1, . . . , xi], where xj ∈
{(F, p, u), (G, q, v), (R, s)} for all j = 1, . . . , i, we define for all indices p and q
the sets Fp,i and Gq,i that contain, respectively, all values u ∈ {0, 1}n for which a
query (F, p, u) and all v ∈ {0, 1}n for which a query (G, q, v) appears in xi. Also,
we let Ri be the set of values s ∈ {0, 1}m for which a query (R, s) appears in xi,
and we let Si consist of all the values s ∈ {0, 1}m such that Ep(s) ∈ Fp,i for
all p = 1, . . . , r. Furthermore, let ΔSi := Si\Si−1. Notice that the set Si contains
all inputs for which the values returned by the first i queries allow to compute
the value w(s). Clearly, |Si| =

∑i
j=1 |ΔSj | ≤ δ · i for all i ≤ 2n(1−ε), since the

family E is input-restricting. For s ∈ Si, we define w(s) = w(1)(s)‖ · · · ‖w(t)(s)
as in the description of CEε,m,�(·) according to the answers of the first queries,
and for a set S ⊆ Si we use the shorthand w(q)(S) := {w(q)(s) | s ∈ S}.

9 Note that ε could even be some function going (slowly) towards zero, even though
this may require setting t differently.



Domain Extension of Public Random Functions 199

The simulator S defines the function tables of F1, . . . ,Fr and of G1, . . . ,Gt

dynamically. That is, all values Fp(u) and Gq(v) are initially undefined for
all u, v ∈ {0, 1}n and indices p and q. Upon processing a new F-query xi =
(F, p, u), the simulator sets the value Fp(u) to a fresh random value and com-
putes the set ΔSi: The simulator knows this set, as it processes all F-queries.
For each s ∈ ΔSi, the equality

⊕t
q=1 Gq(w(q)(s)) = R(s) must be satisfied,

and hence S tries to satisfy these constraints by appropriately setting the values
of the functions G1, . . . ,Gt. More precisely, it looks for an ordering of ΔSi =
{s1, . . . , s|ΔSi|} with the property that for all j = 1, . . . , |ΔSi| there exists qj ∈
{1, . . . , t} such that w(qj)(sj) /∈ {w(qj)(s1), . . . , w(qj)(sj−1)} ∪ Gq,i−1, and sets
Gqj (w(qj)(sj)) := R(sj) ⊕

⊕
q �=qj

Gq(w(q)(sj)) for j = 1, . . . , |ΔSi|, where each
undefined value in the sums is set to an independent random value. A query
to the public interface of R is issued in order to learn R(sj). If no such or-
dering exists, then the simulator aborts.10 Finally, the value Fp(u) is returned.
For a query xi = (G, q, v), the simulator returns Gq(v), defining it to a random
value if undefined. In the full version of this paper [23], we provide a detailed
pseudo-code description of the simulator S. The number of R-queries made by
the simulator after i ≤ 2n(1−ε) queries is |Si| ≤ δ · i. Also, as long as the family E
is invertible and an appropriate ordering can be efficiently found, its running
time is efficient in k and n. In fact, we show that with very high probability any
ordering can be used.

Without loss of generality, it is convenient to advance the generation of the
random functions F1, . . . ,Fr to the initialization phase, that is, their entire
function tables are generated once uniformly at random in both H1 and H2.
Subsequently, all queries (F, p, u) are answered according to the initial choice. In
particular, this means that in H2 the simulator S uses the value Fp(u) already
defined instead of generating a new fresh random value. It is clear that the behav-
ior of both systems is unchanged. This also allows us to define the value w(s) =
w(1)(s)‖ · · · ‖w(t)(s) for all s ∈ {0, 1}m and each such value induces a constraint,
namely the answer of an R-query (R, s) must equal

⊕t
q=1 Gq(w(q)(s)). Such a

constraint remains hidden until s ∈ ΔSi from some i, and in this case the sim-
ulator attempts to fill the function tables of G1, . . . ,Gt consistently. To avoid
possible problems, we have to account for two things captured by the two fol-
lowing monotone conditions which we define on both H1 and H2:

(a) The monotone condition A = A0, A1, . . . fails at query i if there exists an s ∈
ΔSi such that w(q)(s) ∈ w(q)(Si \ {s}) ∪ Gq,i−1 for all q = 1, . . . , t.

(b) The monotone condition B = B0, B1, . . . fails at query i if there exists s ∈
Ri \ Si such that w(q)(s) ∈ w(q)(Si ∪ Ri \ {s}) ∪ Gq,i for all q = 1, . . . , t.

As long as A does not fail, the simulator never aborts. This in particular implies
that R-queries (R, s) for s ∈ Si in H2 are consistent with G-queries answered
by the simulator. However, all R-queries (R, s) for s /∈ Si are answered indepen-
dently and uniformly at random in H2, and B ensures that this happens in H1

10 Note that there is no need to formalize the exact meaning of abortion, since whenever
the simulator fails to find such an ordering, then the distinguisher is assumed to win.



200 U. Maurer and S. Tessaro

as well. In the full version [23], we prove the following lemma, which formalizes
this argument and states that as long as neither A nor B fail, then H1 and H2

behave identically.

Lemma 3. HA∧B1 ≡ HA∧B2 .

To provide some intuition as to why the probability that a distinguisher D
makes A ∧ B fail is small, let us assume first that for any two distinct s, s′ ∈
{0, 1}m (such that at least one of them is not in Si) and for all q = 1, . . . , t, the
probability (conditioned on the answers to the previous queries) that w(q)(s) =
w(q)(s′) is bounded by some small value ϕ (say ϕ ≈ 2−n). In order to upper
bound the probability of A failing after query i, combining the union bound
with the above assumption we see that P(w(q)(s) ∈ w(q)(Si \ {s}) ∪ Gq,i−1) ≤
|w(q)(Si \ {s}) ∪ Gq,i−1| · ϕ ≤ (δ + 1) · i · ϕ for all s ∈ ΔSi, since E is input-
restricting. Furthermore, for all distinct q, q′ ∈ {1, . . . , t} and s, s′ ∈ {0, 1}n

(possibly s = s′), the structure of the first two stages of CEε,m,�(·) ensures that
the values w(q)(s) and w(q′)(s′) are statistically independent, and hence

P(∀q : w(q)(s) ∈ w(q)(Si \ {s}) ∪ Gq,i−1) ≤ (δ + 1)t · it · ϕt.

Therefore, the probability pH1

Ai|XiY i−1Ai−1
(xi, yi−1) = pH2

Ai|XiY i−1Ai−1
(xi, yi−1)

that there exists an s ∈ ΔSi making A fail after query i is bounded by |ΔSi| ·
(δ + 1)t · it · ϕt, where |ΔSi| is small for all i ≤ 2n(1−ε).

Nevertheless, turning this intuition into a formal proof (and extending it to
the monotone condition B) requires additional care. The probability that w(q)(s)
equals w(q)(s′) happens to be small only with overwhelming probability (taken
over the answers to the previous queries): This fact follows from the use of
multiplication in GF (2ρn) and the choice of a sufficiently large parameter ρ.

In particular, a complete proof of the following lemma appears in the full
version of this paper [23].

Lemma 4. For all distinguishers D making at most k ≤ 2n(1−ε) − r queries we
have νD(HA∧B1 ) = νD(HA∧B2 ) ≤ 2rt(δ + 1)t+1 · kt+2 · 2−nt + 1

2 t(δ + 1) · k · (k +
2r + 1) · 2m−ρn.

By combining Lemmas 3 and 4, Theorem 1 follows making use of Lemma 1.

4 Existence of Input-Restricting Function Families

In this section, we prove the existence of input-restricting function families ac-
cording to Definition 4, and we study their relationship to highly unbalanced
bipartite expander graphs. First, we recall the following definition.

Definition 5. A bipartite graph G = (V1, V2, E) is (K, γ)-expanding if |Γ (X)| ≥
γ · |X | for all subsets X ⊂ V1 such that |X | ≤ K, where Γ (X) ⊆ V2 is the set
of neighbors of X. Furthermore, such a graph has left-degree D if the degree of
all v ∈ V1 is bounded by D.



Domain Extension of Public Random Functions 201

A family of graphs G = (V1, V2, E) with V1 := {0, 1}m(n), V2 := {0, 1}n (pa-
rameterized by the security parameter n) with left-degree D = D(n) is called
explicit if there exists a (uniform) algorithm which, on input 1n, v ∈ {0, 1}m(n)

and i ∈ {1, . . . , D(n)} outputs the i’th neighbor of v in time polynomial in n.
(The ordering of the neighbors is arbitrary.)

Given a bipartite graph G = (V1, V2, E) with V1 = {0, 1}m, V2 = {0, 1}n,
and left-degree D, we construct the family of functions E = {E1, . . . , Er},
where r = D + m/n�, and the functions E1, . . . , ED : {0, 1}m → {0, 1}n

are such that Ep(s) is the p’th neighbor of s in G for all p = 1, . . . , D. Fur-
thermore, the functions ED+1, . . . , ED+
m/n� are defined as ED+p(s) := s(p)

for p = 1, . . . , m/n�, where extra zeros are appended to s to make its length
a multiple of n. Clearly, this family is injective. Furthermore, it turns out that
good expanding properties for G imply that the family E is input-restricting. We
refer the reader to the full version [23] for a proof of the following lemma.

Lemma 5. Let m ≥ n. Assume that there exists an explicit family of bipartite
(K, γ)-expander graphs G = (V1, V2, E) with polynomially-bounded left-degree D

where V1 = {0, 1}m and V2 = {0, 1}n. Then, for all ε > 0 such that ε > 1− log(Kγ)
n

for n large enough, there exists an explicit (m, δ, ε)-input-restricting family of
functions with δ = γ−1 and cardinality r := D + m/n�. Furthermore, if m/n�
is constant, then the family is invertible.

For example, if a family exists with K = 2n(1−η) and constant expansion fac-
tor γ > 1, then 1 − log Kγ

n = η − o(1), and hence the family is (m, γ−1, η)-input
restricting. It remains to be shown that an explicit family of unbalanced ex-
pander graphs with sufficiently small (i.e. polynomially-bounded) left-degree ex-
ists. Much work in this area has been devoted to lossless unbalanced expanders,
i.e., with γ ≈ D, but the best known constructions (cf. e.g. [28,25]) for this
case lead to either super-polynomial degree or a much too small bound K for
our choice of parameters. However, we are satisfied even if the expansion factor
is much smaller than the left-degree, as long as the latter stays small, and it is
possible to obtain such graphs by appropriately composing known constructions.
We discuss the following result in the full version of this paper [23].11

Theorem 2. For all polynomials γ and constants η ∈ (0, 1), and all func-
tions m (polynomially-bounded in n), there exists an explicit family of expander
graphs G = (V1, V2, E) with V1 = {0, 1}m, V2 = {0, 1}n which is (2n(1−η), γ)-
expanding and has left-degree polynomially-bounded in n.

Note that these techniques even allow to obtain slightly stronger results, for in-
stance allowing η to be a moderately vanishing function. Combining this with
Lemma 5 we see that for all constants ε ∈ (0, 1) there exist explicit (m, δ, ε)-
input-restricting families with δ−1 polynomial in n. However, by dropping the
explicitness requirement, families with much better parameters exist. In partic-
ular, the following result is a simple application of the probabilistic method.

11 Also note that a very similar result appears in unpublished work by Baltz et al.[3].



202 U. Maurer and S. Tessaro

Lemma 6. Let K and γ be arbitrary such that K · γ ≤ 2n, and let m be such
that m ≥ n. There exists a graph G = (V1, V2, E) where V1 = {0, 1}m and V2 =
{0, 1}n which is (K, γ)-expanding and with left-degree D =

⌈
1+γ log e+m
n−log(Kγ) + γ

⌉
.

For example, setting m = � = 2n , γ = 1 and K = 2n(1−ε), we obtain left-
degree D = 1+ 2

ε +(log e+1)/(ε ·n). For ε = 1
4 and n = 128, this leads to a family

of size 12 by Lemma 5. Furthermore in this case t = 7 and ρ = 4, and all these
values do not grow with n. (And a similar reasoning applies to all constants ε > 0.)
With these parameters, the construction is of practical interest, as it only relies on
the design of a secure component function {0, 1}n → {0, 1}n which may be very
efficient. We hope this motivates further research on de-randomizing families of
unbalanced expander graphs for a wider range of parameters.

5 Constructing Public Random Oracles

We first review a slightly generalized version of the prefix-free Merkle-Damg̊ard
construction [11]. Let n be the given output size, and let � ≥ n. We are given
both a compression function f : {0, 1}b+� → {0, 1}� and a prefix-free padding
scheme, that is, a mapping pad : {0, 1}∗ →

(
{0, 1}b

)+ such that pad(s) is not a
prefix of pad(s′) for all distinct s, s′ ∈ {0, 1}∗. The prefix-free Merkle-Damg̊ard
construction pfMDb,�,n(f) proceeds as follows. On input s ∈ {0, 1}∗, it com-
putes s1‖ · · · ‖sl = pad(s) (with si ∈ {0, 1}b) and the chaining values vi :=
f(si, vi−1) for all 1 ≤ i ≤ l, where v0 is set to some initialization vector IV ∈
{0, 1}�. Finally, the construction outputs the first n bits of vl. The following
theorem easily12 follows from Theorem 2 in [11].

Theorem 3. Let F : {0, 1}�+b → {0, 1}� be a puRF and let O : {0, 1}∗ →
{0, 1}n be a puRO. The construction pfMDb,�,n(·) is an (α′, σ′)-reduction of O
to F with α′(k) = O((lmax · k)2 · 2−�) and σ′(k) = k, where lmax is the maximal
length (of the padding) of a message input to the construction.

We note that there exists a trade-off between the number of queries and the length
of the queries to the construction.13 This issue is inevitable in all iterated con-
structions. We take now �, b > 0 as in the above explanation, and some ε > 0. We
set m := �+b, and we let E be an explicit (m, δ, ε)-input restricting family of func-
tions. If given only a compression function R′ : {0, 1}n+φ(n) → {0, 1}n (for φ(n)
defined as in Section 3.3), we obtain a construction pfMDb,�,n(CEε,m,�(·)) which
replaces calls to the compression functions by calls to the construction CEε,m,�(·).
We obtain the following theorem using Lemma 2.

12 The only difference with respect to the original result is that we allow the chaining
value to be larger than the output value, i.e. � > n.

13 A possible distinguishing strategy would consist of doing few very long queries, in-
stead of many queries, and security is guaranteed only as long as lmax · k < 2�/2.



Domain Extension of Public Random Functions 203

Theorem 4. The construction pfMDb,�,n(CEε,m,�(·)) is an (α, σ)-reduction of a
puRO O : {0, 1}∗ → {0, 1}n to R′, where α(k) = α((lmax + 1)k) + α′((δ + 1)k)
and σ(k) = δ · k, with α and α′ as in Theorems 1 and 3, respectively.

Setting � > 2n(1 − ε) leads to security for all distinguishers such that lmax · k ≤
Θ(2n(1−ε)). We finally note that our approach also works with all other known
constructions of a public random oracle from a public compression function, as
for example the constructions of [6,10], or other constructions discussed in [11].

Setting ε small enough provides high levels of security for properties like preim-
age resistance, second preimage resistance, multicollision resistance, or CTFP
preimage resistance [16], and also excludes the existence of attacks for these
properties (up to the obtained bound), that is, even with respect to adver-
saries which perform enough queries to find collisions for the component func-
tion f : {0, 1}n → {0, 1}n.

References

1. Aiello, W., Venkatesan, R.: Foiling birthday attacks in length-doubling transforma-
tions. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 307–320.
Springer, Heidelberg (1996)

2. An, J.H., Bellare, M.: Constructing VIL-MACs from FIL-MACs: Message authenti-
cation under weakened assumptions. In: Wiener, M.J. (ed.) CRYPTO 1999. LNCS,
vol. 1666, pp. 252–269. Springer, Heidelberg (1999)

3. Baltz, A., Jäger, G., Srivastav, A., Ta-Shma, A.: An explicit construction of sparse
asymmetric connectors. Manuscript (2003)

4. Bellare, M., Goldreich, O., Krawczyk, H.: Stateless evaluation of pseudorandom
functions: Security beyond the birthday barrier. In: Wiener, M.J. (ed.) CRYPTO
1999. LNCS, vol. 1666, pp. 270–287. Springer, Heidelberg (1999)

5. Bellare, M., Kilian, J., Rogaway, P.: The security of the cipher block chaining
message authentication code. Journal of Computer and System Sciences 61(3),
362–399 (2000)

6. Bellare, M., Ristenpart, T.: Multi-property-preserving hash domain extension and
the EMD transform. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS,
vol. 4284, pp. 299–314. Springer, Heidelberg (2006)

7. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for design-
ing efficient protocols. In: CCS ’93: Proceedings of the 1st ACM conference on
Computer and Communications Security, pp. 62–73. ACM Press, New York (1993)

8. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited.
Journal of the ACM 51(4), 557–594 (2004)

9. Carter, J.L., Wegman, M.N.: Universal classes of hash functions. Journal of Com-
puter and System Sciences 18(2), 143–154 (1979)

10. Chang, D., Lee, S., Nandi, M., Yung, M.: Indifferentiable security analysis of pop-
ular hash functions with prefix-free padding. In: Lai, X., Chen, K. (eds.) ASI-
ACRYPT 2006. LNCS, vol. 4284, pp. 283–298. Springer, Heidelberg (2006)

11. Coron, J.-S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle–Damg̊ard revisited: How
to construct a hash function. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621,
pp. 430–448. Springer, Heidelberg (2005)

12. Damg̊ard, I.B.: A design principle for hash functions. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 416–427. Springer, Heidelberg (1989)



204 U. Maurer and S. Tessaro

13. Dodis, Y., Puniya, P.: On the relation between the ideal cipher and the random
oracle models. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp.
184–206. Springer, Heidelberg (2006)

14. Hoch, J.J., Shamir, A.: Breaking the ICE — finding multicollisions in iterated
concatenated and expanded (ICE) hash functions. In: Robshaw, M. (ed.) FSE
2006. LNCS, vol. 4047, pp. 179–194. Springer, Heidelberg (2006)

15. Joux, A.: Multicollisions in iterated hash functions. Application to cascaded con-
structions. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 306–316.
Springer, Heidelberg (2004)

16. Kelsey, J., Kohno, T.: Herding hash functions and the Nostradamus attack. In:
Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 183–200. Springer,
Heidelberg (2006)

17. Kelsey, J., Schneier, B.: Second preimages on n-bit hash functions for much less
than 2n work. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp.
474–490. Springer, Heidelberg (2005)

18. Lucks, S.: A failure-friendly design principle for hash functions. In: Roy, B. (ed.)
ASIACRYPT 2005. LNCS, vol. 3788, pp. 474–494. Springer, Heidelberg (2005)

19. Maurer, U.: Indistinguishability of random systems. In: Knudsen, L.R. (ed.) EU-
ROCRYPT 2002. LNCS, vol. 2332, pp. 110–132. Springer, Heidelberg (2002)

20. Maurer, U.: Abstract models of computation in cryptography. In: Smart, N.P. (ed.)
Cryptography and Coding. LNCS, vol. 3796, pp. 1–12. Springer, Heidelberg (2005)

21. Maurer, U., Renner, R., Holenstein, C.: Indifferentiability, impossibility results on
reductions, and applications to the random oracle methodology. In: Kilian, J. (ed.)
TCC 2005. LNCS, vol. 3378, pp. 21–39. Springer, Heidelberg (2005)

22. Maurer, U., Sjödin, J.: Single-key AIL-MACs from any FIL-MAC. In: Caires, L.,
Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS,
vol. 3580, pp. 472–484. Springer, Heidelberg (2005)

23. Maurer, U., Tessaro, S.: Full version of this paper. Cryptology ePrint Archive,
Report 2007/229, http://eprint.iacr.org/

24. Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989.
LNCS, vol. 435, pp. 218–238. Springer, Heidelberg (1989)

25. Moran, T., Shaltiel, R., Ta-Shma, A.: Non-interactive timestamping in the bounded
storage model. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 460–476.
Springer, Heidelberg (2004)

26. Shoup, V.: On fast and provably secure message authentication based on univer-
sal hashing. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 313–328.
Springer, Heidelberg (1996)

27. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997)

28. Ta-Shma, A., Umans, C., Zuckerman, D.: Lossless condensers, unbalanced ex-
panders, and extractors. In: STOC ’01: Proceedings of the 33rd Annual ACM
Symposium on Theory of Computing, pp. 143–152. ACM Press, New York (2001)

http://eprint.iacr.org/


Random Oracles and Auxiliary Input

Dominique Unruh�

Saarland University, Saarbrücken, Germany
unruh@cs.uni-sb.de

Abstract. We introduce a variant of the random oracle model where
oracle-dependent auxiliary input is allowed. In this setting, the adversary
gets an auxiliary input that can contain information about the random
oracle. Using simple examples we show that this model should be pre-
ferred over the classical variant where the auxiliary input is independent
of the random oracle.

In the presence of oracle-dependent auxiliary input, the most impor-
tant proof technique in the random oracle model—lazy sampling—does
not apply directly. We present a theorem and a variant of the lazy sam-
pling technique that allows one to perform proofs in the new model
almost as easily as in the old one.

As an application of our approach and to illustrate how existing proofs
can be adapted, we prove that RSA-OAEP is IND-CCA2 secure in the
random oracle model with oracle-dependent auxiliary input.

Keywords: Random oracles, auxiliary input, proof techniques, founda-
tions.

1 Introduction

In [3] the following heuristic was advocated as a practical way to design cryp-
tographic protocols:1 To prove the security of a cryptographic scheme, one first
introduces a random oracle O, i.e., a randomly chosen function to which all
parties including the adversary have access. One then proves the security of the
scheme that uses the random oracle and subsequently replaces the random ora-
cle by a suitably chosen function (or family of functions) H . The random oracle
heuristic now states that if the scheme using O is secure, the scheme using H is
secure as well.

Unfortunately, a counter-example to this heuristic has been given in [6]. It
was shown that there exist public key encryption and signature schemes that are
secure in the random oracle model but lose their security when instantiated with
any function or family of functions. Nonetheless, the random oracle heuristic still
is an important design guideline for implementing cryptographic schemes.

Furthermore, [15] pointed out that zero-knowledge proofs in the random oracle
model can lose their deniability when instantiated with a fixed function. In contrast
� Part of this work was done while the author was at the IAKS, University of Karlsruhe,

Germany.
1 However, the basic idea seems to have already appeared earlier.

A. Menezes (Ed.): CRYPTO 2007, LNCS 4622, pp. 205–223, 2007.
c© International Association for Cryptologic Research 2007



206 D. Unruh

to the result of [6], this happens even for natural protocols. However, [15] was able
to give conditions under which this effect does not occur and gave a protocol that
fulfilled these conditions.

Although the heuristic is known not to be sound in general, no practical scheme
is known where it fails, and schemes that are proven to be secure using this heuris-
tic tend to be simpler and more efficient than schemes that are shown to be se-
cure in the standard model. As a consequence, schemes used in practise are often
based on the random oracle heuristic, e.g., the RSA-OAEP encryption scheme, in-
troduced in [2] and standardised in [17], is one of the most widely used public-key
encryption schemes, and its security is based on the random oracle heuristic.

In the light of the results of [6] and [15], and of the practical importance of
the random oracle heuristic, it is important to try and learn what the exact
limitations of the heuristic are, and, if possible, give criteria to distinguish those
protocols in the random oracle model that become insecure when instantiated
due to those limitations, and those protocols where we can at least hope—if not
prove—that their instantiations are secure. The augmented definition of zero-
knowledge by [15] is an example of such a criterion.

In this paper, we uncover another such limitation of the random oracle world.
We will see that there are natural schemes secure in the random oracle model
that become insecure with respect to auxiliary input (or equivalently, with respect
to nonuniform adversaries) when instantiated. As [15] did for the deniability, we
give augmented definitions for the random oracle model with auxiliary input
that allow one to distinguish protocols that fail upon instantiation from those
that do not (at least not due to the abovementioned limitation).

Although such a result does not imply the soundness of the random oracle
model, it helps to better understand which protocol can reasonably be expected
to be secure when instantiated with a fixed function.

We will now investigate the problem of auxiliary input in the random oracle
model in more detail. An important concept in cryptology is the auxiliary input.
The auxiliary input is a string that is given to the adversary at the beginning of the
execution of some cryptographic protocol. This string is usually chosen nonuni-
formly and depends on all protocol inputs. In other words, the auxiliary input
models the possibility that the adversary has some additional knowledge concern-
ing the situation at the beginning of the protocol. This additional knowledge may,
e.g., represent information acquired in prior protocol runs. It turns out that in
many cases the presence of an auxiliary input is an essential concept for proving se-
cure sequential composition. Therefore, most modern cryptographic schemes are
designed to be secure even in the presence of an auxiliary input (given that the
underlying complexity assumptions hold against nonuniform adversaries).

However, when we try to combine these two concepts, the random oracle
model and the auxiliary input, undesirable effects may occur. We will demon-
strate this by studying the definitions of two simple security notions: one-wayness
and collision-resistance. First, consider the notion of a one-way function. We
construct a function f := O in the random oracle model and ask whether it is
one-way. For this, we substitute O for f in the definition of one-wayness with



Random Oracles and Auxiliary Input 207

respect to auxiliary input, and get the following definition: The function f is
one-way if for any polynomial-time adversary A and any auxiliary input z, the
following probability is negligible in the security parameter k:

P
(
x

$← {0, 1}k, x′ ← AO(1k, z, O(x)) : O(x′) = O(x)
)
. (1)

Here O is a randomly chosen function (with some given domain and range), and
the adversary is given black-box access to O. It is now easy to see that f := O is
indeed secure in the above sense: The adversary can make at most a polynomial
number of queries, and each query except O(x) returns a uniformly random
image (exploiting this latter fact is later called the lazy sampling technique).
From this fact one can conclude that the adversary must make an exponential
number of queries to find a preimage of O(x), hence f is secure. The presence of
the auxiliary input does not have noticeable impact on the proof. The random
oracle heuristic now claims that f := H is oneway for a sufficiently unstructured
function H , even in the presence of auxiliary input. So far, nothing out of the
ordinary has happened.

We now try to use the same approach for another security property: collision-
resistance. Again, we set f := O, and then collision-resistance of f means that
for any polynomial-time adversary A and any auxiliary input z, the following
probability is negligible:

P
(
(x1, x2) ← AO(1k, z) : x1 �= x2 and O(x′) = O(x)

)
. (2)

This can again easily be proven using the lazy sampling technique: the answers to
the adversary’s queries are independent random values, and finding a collision
requires two of these random values to be identical which happens only with
negligible probability. Again, the auxiliary input does not help the adversary,
since it does not contain any information on where a collision might be. We now
use the random oracle heuristic, replace O by some sufficiently unstructured
function H , so that f = H , and then claim that f is collision-resistant in the
presence of an auxiliary input. But this of course is impossible, since the auxiliary
input may simply contain a collision of H , since H is a fixed function.2

Hence, the random oracle heuristic should not be applied to collision-resistance.
On the other hand, we would like to prove the one-wayness of f := O in the random
oracle model. We hence need a stronger variant of the random oracle heuristic that
does not allow one to prove the collision-resistance of f , but still allows one to prove
its one-wayness. An inspection of our proof above reveals the mistake we made: In
the random oracle model, the auxiliary input was chosen before the random oracle,

2 If we replace O by a family of functions, i.e., some parameter i is chosen at the
beginning of the protocol, and then a funcion Hi is used, then the problem described
here does not occur. Unfortunately, one is not always free to use such a family of
functions. On one hand, the index has in some way to be chosen, and we do not
want to leave that choice to the corrupted parties. On the other hand, practical
applications usually instantiate the random oracle using a fixed function like SHA-1

or SHA-256 [8].



208 D. Unruh

so it could not contain a collision. After instantiation, the function H was fixed, so
the auxiliary input did depend on H and therefore could provide a collision. The
random oracle heuristic should hence be recast as follows in the case of auxiliary
input: When a scheme is secure in the random oracle model with oracle-dependent
auxiliary input, it is still secure after replacing the random oracle by a sufficiently
unstructured fixed function H , even in the presence of auxiliary input.

It remains to clarify the formal meaning of oracle-dependent auxiliary input.
Unfortunately, we cannot simply say: “for randomly chosen O and every z”. At
least, the semantics underlying constructions like (1) and (2) get highly nontrivial
in this case. Fortunately, there is another possibility. By an oracle function z we
mean a function that returns a string zO for each possible value of the random
oracle O. So formally, z is simply a function that maps functions to strings. Then
a scheme is called secure in the random oracle model with oracle-dependent aux-
iliary input if for any polynomial-time adversary A and for any oracle function z
into strings of polynomial length (that may depend on k, of course), the adversary
cannot break the scheme even when given zO as auxiliary input.

As with the traditional random oracle model, the exact form these defini-
tions take depends on the security notion under consideration. For example,
the one-wayness and the collision-resistance of f := O take the following form:
for any polynomial-time adversary A and any oracle function z into strings of
polynomial-length, we have

P
(
x

$← {0, 1}k, x′ ← AO(1k, zO, O(x)) : O(x′) = O(x)
)

(3)

or
P

(
(x1, x2) ← AO(1k, zO) : x1 �= x2 and O(x′) = O(x)

)
, (4)

respectively. However, we can give a simple guideline on how to transform a
security definition in the random oracle model with an oracle-independent aux-
iliary input z into a security definition with oracle-dependent auxiliary input.
First, one quantifies over oracle functions z instead of strings z. And then one
replaces all occurrences of the string z by zO.

It is now easy to see that (4) is not negligible: let zO encode a collision x1, x2,
and let the adversary output that collision. Since such a collision always exists
(assuming a length-reducing f), this breaks the collision-resistance of f in the
presence of oracle-dependent auxiliary input, as we would have expected.

On the other hand, we expect (3) to be negligible in the presence of oracle-
dependent auxiliary input. However, it is not so easy to see whether there may
not be some possibility to encode information about the random oracle in a string
of polynomial length that allows one to find a preimage with non-negligible
probability. Although one-wayness is one of the weakest conceivable security
notions, proving its security with respect to oracle-dependent auxiliary input is
quite difficult. (We encourage the reader to try and find an elementary proof
for the one-wayness of f .3) The reason for this difficulty lies in the fact that
it is not possible any more to apply the lazy sampling technique: given some
3 We give a proof using the techniques from this paper in Lemma 10.



Random Oracles and Auxiliary Input 209

information zO on the random oracle O, the images under the random oracle
are not independently nor uniformly distributed any more. We therefore need
new techniques if we want to be able to cope with oracle-dependent auxiliary
input and to prove more complex cryptographic schemes secure in this model.
Such techniques will be presented in this paper.

On Nonuniform and Uniform Auxiliary Input. In this work, we always
consider nonuniform auxiliary inputs, that is, the auxiliary input is not required
to be the result of an efficient computation. This is the most common modelling
of auxiliary input in the cryptographic community. However, it is also possible
to consider uniform auxiliary inputs: In this case, the auxiliary input is not an
arbitrary sequence of strings, but is instead the output of a uniform probabilistic
algorithm. The main motivation of the auxiliary input, namely to model informa-
tion gained from prior executions of cryptographic protocols on the same data,
and thus to allow for composability, is preserved by this uniform approach. (See
[11] for a detailed analysis.) The main disadvantage of the uniform approach is
that definitions and proofs get more complicated due to the presence of another
machine. This is why the nonuniform auxiliary input is more commonly used.

Applying the uniform approach to our setting, a uniform oracle-dependent
auxiliary input would be the output of a polynomial-time oracle Turing machine
Z with access to the random oracle. Since that Turing machine could only make
a polynomial number of queries, using the lazy sampling technique would be
easy: all positions of the random oracle that have not been queried by Z can be
considered random.

However, if we use the random oracle heuristic to motivate the security of a
protocol with respect to uniform auxiliary input, the result is incompatible with
existing theorems and definitions in the nonuniform auxiliary input model. So
to use the random oracle heuristic together with existing results, we either have
to reprove all existing results for the uniform case, or we have to use nonuniform
oracle-dependent auxiliary input. It is the latter approach we follow in this work.

Instantiating the Random Oracle with Keyed Families of Functions.
Above, we showed that the random oracle is (unsurprisingly) not collision-
resistant in the presence of auxiliary input. It follows that we may not instantiate
the random oracle with a fixed function if we need collision-resistance. On the
other hand, replacing the random-oracle by a keyed family of functions may be
secure, since the auxiliary input cannot encode a collision for each function. We
do not claim that it is necessary to use oracle-dependent auxiliary input when
instantiating with families of functions. Rather, oracle-dependent auxiliary input
provides a tool for distinguishing the cases where the use of a single function4

is sufficient (e.g., in the case where we require only one-wayness) and where a

4 Here, by a single function we mean that the function is not parametrised by a key
that has to be known by all parties. However, the function may depend on the
security parameter. Otherwise a property like collision-resistance trivially cannot be
fulfilled by a single function, even against uniform adversaries. See also [16] in this
context.



210 D. Unruh

keyed family of functions is necessary (e.g., in the case that we require collision-
resistance). Since instantiating with a single function is much simpler (e.g., we
do not have to worry about who chooses the key), and is the usual practice in
real-world protocols, examining random oracle based protocols with respect to
oracle-dependent auxiliary input may give additional insight into when instanti-
ation with single functions is permitted and when we have to use keyed families.
Another disadvantage of using a family of functions is that we have to ensure
that the key is honestly generated, which may introduce additional difficulties if
no trusted party is available for this task.

Designing Special Protocols. An alternative to the approach in this pa-
per would be to systematically construct or transform a protocol so that it is
secure with respect to oracle-dependent auxiliary input (instead of verifying a
given protocol). However, here the same arguments as in the previous paragraph
apply. First, we might not be interested in a new protocol, but might want to
examine the security of an existing protocol (that possibly even has already been
implemented). Further, efficiency considerations might prevent the use of more
elaborate constructions.

1.1 Our Results

We introduce and motivate the random oracle model with oracle-dependent aux-
iliary input (preceding section). In this model, the auxiliary input given to the
adversary may depend on the random oracle.

In order to be able to prove security in the new model, we introduce a new
variant of the lazy sampling technique that is applicable even in the presence
of oracle-dependent auxiliary input. We show that one can replace the random-
oracle O by a new random oracle P that is independent of the auxiliary input,
except for a presampling. That is, a small fraction of the total random oracle P
is fixed (and dependent on the auxiliary input), while all other images are chosen
independently and uniformly at random (and in particular are independent of
the auxiliary input). In this new setting, lazy sampling is possible again: an
oracle query that is not in the presampled set is given a random answer.

This also gives some insight into why some schemes are secure and some fail in
the presence of oracle-dependent auxiliary input: Intuitively the protocols that
fail are those for which you can have a “reason for a failure” (e.g., a collision)
contained in a few entries of the random oracle.

As a technical tool, we also formulate a security amplification technique: for
many security notions, security with respect to nonuniform polynomial-time ad-
versaries implies security with respect to nonuniform adversaries whose running
time is bounded by some suitable superpolynomial function f . This technique is
useful in the context of oracle-dependent auxiliary input, since some reduction
proofs with presampling tend to introduce superpolynomial adversaries.

As an application of our techniques, we show that RSA-OAEP is IND-CCA2
secure in the random oracle model with oracle-dependent auxiliary input. Our
proof closely follows the proof of [9] where the security of RSA-OAEP was shown



Random Oracles and Auxiliary Input 211

in the classical random oracle model. This allows the reader to better compare
the differences in the proof introduced by the oracle-dependent auxiliary input.
However, we believe that the result does not only exemplify our techniques but
is worthwhile in its own light: it gives the first evidence that RSA-OAEP as used
in practical application (i.e., with the random oracle instantiated with a fixed
function H), is secure even in the presence of an auxiliary input.

1.2 Related Work

In [19], the problem of composition of zero-knowledge proofs in the random-
oracle model is investigated. It is shown that to guarantee sequential compo-
sition, oracle-dependent auxiliary input is necessary. Their definition of oracle-
dependent auxiliary input is somewhat weaker than ours in that the machine z
generating the auxiliary input is allowed only a polynomial number of queries to
the random oracle (it is similar to uniform oracle-dependent auxiliary input in
that respect). They give protocols that are secure with respect to that notion.
It would be interesting to know whether the techniques developed here allow to
show their protocols to be secure even with respect to our stronger notion of
oracle-dependent auxiliary input.

In [10], it was shown that a random permutation is one-way with respect
to oracle-dependent auxiliary input. They showed that the advantage of the
adversary is in 2−Ω(k) which is essentially the same bound as we achieve for
random functions in Section 3. However, their proof is specific to the property
of one-wayness and does not generalise to our setting. According to [10], a similar
result was shown for random functions in [12]. However, their proofs apply only
to the one-wayness of the random oracle, while our results imply that many more
cryptographic properties of the random oracle are preserved in the presence of
oracle-dependent auxiliary input.

In [14,5,4,7], unconditional security proofs in the bounded-storage model were
investigated. In this model, one assumes that the adversary is computationally
unlimited, but that it may only store a limited amount of data. One assumes that
at the beginning of the protocol some large source of randomness (e.g., a random
oracle) is available to all parties. The security of the protocol then roughly hinges
on the following idea: The honest parties store some (small) random part of the
source. Since the adversary does not know which part has been chosen, and
since it may not store the whole source, with high probability the honest parties
will find some part of the random source they both have information about,
but that is unknown to the adversary. To prove the security in this model, it
is crucial to show that the adversary cannot compress the source in a manner
that contains enough information to break the protocol. This is very similar to
the scenario investigated here, since the oracle-dependent auxiliary input can
be seen as compressed information on the random oracle. Our results differ
from those in the bounded-storage model in two ways: first, our results cover a
more general case, since we consider the effect of auxiliary input on arbitrary
protocols, while in the bounded-storage model a single protocol is analysed that
is specially designed to extract information from the random source that cannot



212 D. Unruh

be extracted given only a part of the source. On the other hand, precisely due
to the specialised nature of the protocols, the bounds achieved in the bounded-
storage model are better than those presented here. In particular, there are
protocols in the bounded storage model that are secure given a random source
of polynomial size [7], while our results are—at least with the present bounds—
only useful if the domain of the random oracle has superpolynomial size (cf. the
exact bounds given by Theorem 2). It would be interesting to know whether
our techniques can be used in the context of the bounded-storage model, and
to what extent the techniques developed in the bounded-storage model can be
applied to improve our bounds.

1.3 Further Applications

Besides the application described above, namely to be able to use the random-
oracle heuristic in the case of auxiliary input, our main result (the lazy sampling
technique) may also be useful in other situations.

In [10] it was shown that a random permutation is one-way in the presence
of oracle-dependent auxiliary input. This was the main ingredient for several
lower bounds on black-box constructions using one-way permutations. Using
our techniques, we might find lower bounds on black-box constructions based on
other cryptographic primitives: namely, we would show that the random oracle
(or a protocol using the random oracle) has a given security property X even
in the presence of oracle-dependent auxiliary input. Then using techniques from
[10], lower bounds on black-box constructions based on cryptographic primitives
fulfilling X might be derived.

1.4 Organisation

In Section 1 we introduce and motivate the concept of oracle-dependent auxiliary
input. In Section 2 we present the main result of this paper: a theorem that allows
one to use the lazy sampling technique even in the presence of oracle-dependent
auxiliary input. In Section 3 we give a simple example to show how to use the lazy
sampling technique. In Section 4 we present the security amplification technique.
This technique allows one to use superpolynomial adversaries in reduction proofs,
which sometimes is needed when using the lazy sampling technique. In Section 5
we prove that RSA-OAEP is IND-CCA2 secure in the random oracle model with
oracle-dependent auxiliary input. Details and proofs left out in this paper are
given in the full version [18].

1.5 Notation

For random variables A and B, we denote the Shannon-entropy of A by H(A),
and the conditional entropy of A given B by H(A|B). The statistical distance
between A and B is denoted Δ(A; B). The operator log means the logarithm
base 2. The variable k always denotes the security parameter. In asymptotic



Random Oracles and Auxiliary Input 213

statements of theorems or definitions, some variables implicitly depend on the
security parameter k. These variables are then listed at the end of the theo-
rem/definition. We call a nonnegative function in k negligible, if it lies in k−ω(1).
We call a nonnegative function non-negligible if it is not negligible.

Let O always denote the random oracle. Let Domain be the domain and Range
the range of the random oracle, i.e., O is a uniformly random function from
Domain → Range. In an asymptotic setting, O, Domain and Range implicitly
depend on the security parameter k. In this case we always assume #Domain
and #Range to grow at least exponentially in k.

An oracle function g into X is a mapping from Domain → Range into X . We
write the image of some function O under g as gO.

An assignment S is a list S = (x1 → y1, . . . , xn → yn) with xi ∈ Domain and
yi ∈ Range and with xi �= xj for i �= j. The length of S is n. We call yi the
image of xi under S. We write x ∈ S if xi = x for some i. The image im S is
defined as imS = {y1, . . . , yn}.

2 Lazy Sampling with Auxiliary Input

The main result of this paper is the following theorem which guarantees that we
can replace a random oracle with oracle-dependent auxiliary input by a new ran-
dom oracle that is independent of the auxiliary input with the exception of some
fraction of its domain (which is presampled). In order to formulate the theorem,
we first need to state what exactly we mean by an oracle with presampling:

Definition 1 (Random oracle with presampling). Let S = (x1 → y1, . . . ,
xn → yn) be an assignment. Then the random oracle P with presampling S is
defined as follows:

When queried x ∈ Domain with x = xi for some i ∈ {1, . . . , n}, the ora-
cle returns yi. If x has already been queried, the same answer is given again.
Otherwise, a uniformly random element y is chosen from Range and returned.

We can now state the main theorem.

Theorem 2 (Lazy sampling with auxiliary input). Let f ≥ 1 and q ≥ 0
be integers. Let z be an oracle function with finite range Z and p := log #Z.

Then there is an oracle function S, such that SO is an assignment of length at
most f , so that the following holds: For any probabilistic oracle Turing machine A
that makes at most q queries to the random oracle, it is

Δ
(
AO(zO); AP(zO)

)
≤

√
pq

2f

where P is the random oracle with presampling SO.

Before presenting the actual proof, we give a short sketch that is intended to serve
as a guide through the rest of the proof. To ease comparison with the details given
later, we provide forward references to the lemmas of the actual proof.



214 D. Unruh

For any i, let Ji be the maximum amount of information that a sequence of i
queries to the random oracle O gives about the auxiliary input zO. Since |z| = p,
Ji ≤ p for all i. Let Fi be the sequence of i queries that achieves this bound,
that is, the mutual information between zO and the oracle’s answers to Fi is Ji.

Assume that the queries Fi have already been performed. Let G be a sequence
of q queries. Then the answers to the queries Fi and G together contain at most
Jq+i bits of information about z. Thus the answers to G contain at most Jq+i −Ji

bits of information about z beyond what is already known from the answers to Fi.
Consider the quantities J0, Jq, J2q, . . . , Jf+q (assuming that q divides f). Since

J0 ≥ 0 and Jf+q ≤ p, there must be some f ′ ≤ f such that the Jf ′+q −Jf ′ ≤ pq
f .

Thus, given the answers to F := Ff ′ , any sequence G of q queries reveals at
most pq

f bits about the auxiliary input z. In other words, the answers to G are
almost independent of z (assuming that pq

f is sufficiently small). Thus, if we
fix the oracle P to match the answers to F , but choose P independently of z
everywhere else, with q queries we cannot distinguish between P and the original
oracle O. This gives Theorem 2 (except for the concrete bound

√
pq/2f).

In reality, however, the queries performed by A are adaptive, i.e., they depend
on z and on the answer to prior queries. So we cannot talk about a fixed sequence
G of queries made by A. To overcome this problem, we introduce the concept of an
adaptive list (Definitions 3 and 4), which is a generalisation of a sequence of queries
where the queries are allowed to be adaptive. When considering adaptive lists, it
does not make immediate sense to speak about the mutual information between
the answers to an adaptive list G and the auxiliary input zO. In Definition 5 we
therefore introduce quantities J(G) and J(G|F ) denoting the information that
the answers to the adaptive list G contains about zO (given the answers to the
adaptive list F in the case of J(G|F )). For this quantity, we show that J(F ) ≤ p
(Lemma 7) and give a chain rule for the information contained in the concate-
nation of adaptive lists (Lemma 6). Then we can construct the sequence F as in
the proof sketch above (Lemma 8). However, F is now an adaptive list. Finally,
Theorem 2 is proven (page 216) by showing that the adversary A can be consid-
ered as an adaptive list G of length q, and therefore cannot distinguish the answers
to queries outside F from uniform randomness. For convenience, in Corollary 9 we
formulate an asymptotic version of Theorem 2.

We now give the details of the proof, broken down to several lemmas. First
we have to define the concept of an adaptive list. To capture the possibility of
adaptive queries, an adaptive list is formally just a deterministic oracle Turing
machine. An adaptive list of length n makes n queries to the oracle and outputs
an assignment containing the queries and the results of these queries. To be
able to talk about the concatenation of adaptive lists, we slightly extend this
idea. An adaptive list takes an auxiliary input z, but also an assignment X .
This assignment can be thought of as the queries made by an adaptive list
executed earlier. So in a concatenation of two adaptive lists, the queries of the
second adaptive list can depend on the results of the queries made by the first
adaptive list. For definitional convenience, an adaptive list does not only output
its queries, but also the queries received as input. An adaptive list expecting a



Random Oracles and Auxiliary Input 215

queries as input and then making b − a queries, we call an a → b adaptive list.
We require that an adaptive list never repeats a query. Note that an adaptive
list is indeed a generalisation of a non-adaptive sequence of queries: a sequence
(x1, . . . , xn) corresponds to the 0 → n adaptive list querying the positions x1 to
xn and returning the results.

Definition 3 (Adaptive list). Let #Domain ≥ b ≥ a ≥ 0. An a → b adaptive
list M is defined as a deterministic oracle Turing machine that takes an assign-
ment X = (x1 → y1, . . . , xa → ya) and a string z ∈ Σ∗ as input and satisfies
the following properties

– M = M(X, z) does not query the oracle at positions x1, . . . , xa.
– M never queries the oracle twice at the same position.
– M queries the oracle exactly b − a times.
– Let x′1, . . . , x

′
b−a be the positions of the oracle calls made by M (in that

order). Let y′i := O(x′i) be the corresponding oracle answers.
– Then M outputs the assignment (x1 →y1, . . . , xa →ya, x′1 → y′1, . . . , x

′
b−a →

y′b−a).

We can now define simple operations on adaptive lists. The length of an adaptive
list is the number of queries it makes, and the composition of two adaptive lists
is the adaptive list that first queries the first list, and then executes the second,
which gets the queries made by the first as input.

Definition 4 (Operations on adaptive lists). Let M be an a → b adaptive
list. Then the length |M | is defined as |M | := b − a.

Let N be an a → b adaptive list, and M some b → c adaptive list. Then the
composition M ◦ N is defined as the oracle Turing machine that upon input of
an assignment X and a string z ∈ Σ∗ outputs MO(NO(X, z), z).

Obviously, M ◦ N is an a → c adaptive list, and |M ◦ N | = |M | + |N |.
We can now define the quantity J(M |N) for adaptive lists M, N . Intuitively,

J(M |N) denotes the information that the queries made by M (when executed
after N) contain about the auxiliary input zO beyond what is already known
from the queries made by N . Since the results to the queries made by M should
be uniformly random if they are independent of zO, we define J(M |N) as the
quantity by which the conditional entropy of M ’s queries given N ’s queries and
zO is lower than the hypothetical value of |M | · log #Range.

Definition 5 (Information of an adaptive list). Let N be some 0 → b
adaptive list, and M some b → c adaptive list. Let further O be the random
oracle and z a random variable (where z does not need to be independent of O).

Then the information J(M |N) is defined by

J(M |N) := |M | · log #Range − H(M ◦ NO(z)|NO(z), z).

(Note that J(M |N) implicitly depends on the joint distribution of O and z.)
We write short J(M) for J(M |∅) where ∅ is the adaptive list making no queries.



216 D. Unruh

We now give two simple properties of the information J(M |N): a chain rule and
an upper bound in terms of the auxiliary input’s length.

Lemma 6 (Chain rule for the information). Let N be some 0 → b adaptive
list, M2 some b → c adaptive list, and M1 some c → d adaptive list. Then

J(M1 ◦ M2|N) ≥ J(M1|M2 ◦ N) + J(M2|N).

Lemma 7 (Bounds for the information). Let z be a random variable with
finite range Z and p := log #Z. Let F be some 0 → b adaptive list. Then
J(F ) ≤ p.

The proofs of these lemmas as well as of the subsequent ones are given in the
full version [18].

Let Ji := maxF J(F ) where F ranges over all adaptive lists of length |F | = i.
Choose Fi such that J(Fi) = Ji. Consider the quantities J0, Jq, J2q, . . . , Jf+q

(assuming that q divides f). Since J0 ≥ 0 and Jf+q ≤ p by Lemma 7, there
must be some f ′ ≤ f such that Jf ′+q − Jf ′ ≤ pq

f =: ε. Defining F := Ff ′ we get
J(G|F ) ≤ J(G ◦ Ff ′) − J(Ff ′) ≤ Jq+f ′ − Jf ′ ≤ ε by Lemma 6.

By definition of J(G|F ), this implies that the results of the queries made by
G are only ε away from the maximum possible entropy |G| · log #Range. This
implies using a result from [13] that the statistical distance between those query-
results and the uniform distribution is bounded by

√
ε/2, even when given the

results of the queries made by F and the auxiliary input zO. This is formally
captured by the following lemma which is the core of the proof of Theorem 2.

Lemma 8 (The adaptive list F ). Let f, q ≥ 1 be integers. Let z be a ran-
dom variable with finite range Z (z may depend on the random oracle O) and
p := log #Z. Let Un denote the uniform distributions on n-tupels over #Range
(independent of z and O).

Then there is an adaptive list F with |F | ≤ f , such that for any |F | →
min{|F | + q, #Domain} adaptive list G, it is

Δ
(
∇G ◦ FO(z), FO(z), z; U|G|, FO(z), z

)
≤

√
pq

2f
.

Here ∇G ◦ F denotes the oracle Turing machine that behaves as G ◦ F but only
outputs the oracle answers that G got (instead of also outputting G’s input and
G’s queries). More formally, if G ◦ FO(z) = (x1 → y1, . . . , x|F |+|G| → y|F |+|G|),
we have ∇G ◦ FO(z) = (y|F |+1, . . . , y|F |+|G|).

Using Lemma 8, proving the main Theorem 2 is easy. For some adversary A let
μ := Δ

(
AO(zO); AP(zO)

)
. By fixing the worst-case random-tape, we can make

the adversary A deterministic. Then A’s output depends only on its input zO and
the answers to its oracle queries. So if we let A just output the queries it made,
the statistical distance μ does not diminish. Further, if we give the presampled
queries SO as an additional input to A, we can assume A to make exactly q dis-
tinct queries, and not to query any x ∈ SO. But then A fulfils the definition of an
adaptive list, so by Lemma 8 we have μ ≤

√
pq
2f , which proves Theorem 2.

We give the full details of the proof in the full version [18].



Random Oracles and Auxiliary Input 217

An interesting question is whether the bound
√

pq/2f on the statistical dis-
tance Δ achieved by Theorem 2 is tight. In particular, the bound falls only
sublinearly with f , while we were unable to find a counterexample where Δ did
not fall exponentially with f . So a tighter bound may be possible. However, this
would need to use new proof techniques, since the approach in this paper uses
an averaging argument that will at best give a bound that falls polynomially in
f (cf. the computation of Jf ′+q − Jf ′ below Lemma 7 above.)

Finally, for convenience we state an asymptotic version of Theorem 2 that
hides the exact bounds achieved there:

Corollary 9 (Lazy sampling with auxiliary input, asymptotic version).
For any superpolynomial function f and any polynomial q and oracle function
z into strings of polynomial length, there is an oracle function S, such that
SO is an assignment of length at most f , so that for any probabilistic oracle
Turing machine A making at most q queries, the following random variables are
statistically indistinguishable:

AO(1k, zO) and AP(1k, zO).

Here P is the random oracle with presampling SO.
(In this corollary, O, z, and S depend implicitly on the security parameter k.)

Proof. Immediate from Theorem 2. 
�

3 Example: One-Wayness of the Random Oracle

To give a first impression on how the lazy sampling technique is used in the
random oracle model with oracle-dependent auxiliary input, we show a very
simple result: If we let f := O, then f is a one-way function.

In the full version [18], as a second example we show that f := O is given-
preimage collision-resistant.

Lemma 10 (The random oracle is one-way). Let g := O where O denotes
the random oracle. Then g is a one-way function in the random oracle model
with oracle-dependent auxiliary input.

More formally, for any probabilistic polynomial-time oracle Turing machine A
and any oracle function z into strings of polynomial length, the following prob-
ability is negligible (in k):

AdvA := P
(
x

$← Domain , x′ ← AO(1k, zO, O(x)) : O(x′) = O(x)
)

(In this lemma, O, Domain, f , and z depend implicitly on the security parameter
k.)

We present this proof in some detail, to illustrate how Theorem 2 or Corollary 9
can be used. Since these steps are almost identical in most situations, knowledge
of this proof facilitates understanding of the proofs given later on.



218 D. Unruh

Proof. Let f := min{
√

#Range,
√

#Domain}. Let Ã be the oracle Turing ma-
chine that chooses a random x from Domaink, then let A(1k, zO, O(x)) choose
x′, and outputs 1 if and only if O(x′) = O(x). Then AdvA = P

(
ÃO(1k, zO) = 1

)
.

Since A is polynomial-time, Ã makes only a polynomial number of queries,
so Corollary 9 applies to Ã, hence ÃO(1k, zO) and ÃP(1k, zO) are statistically
indistinguishable (where P is the random oracle with presampling SO, and S is
as in Corollary 9). Then consider the following game:

Game 1: x
$← Domain , x′ ← AP(1k, zO, P(x)) : P(x′) = P(x).

We call the probability that the last expression evaluates to true (i.e., that
P(x′) = P(x)) the advantage Adv1 of the game. Since Adv1 is the probability
that ÃP(1k, zO) outputs 1, |AdvA − Adv1| is negligible.

(This step probably occurs at the beginning of virtually all proofs that use
Theorem 2 or Corollary 9. We are now in the situation that with at most f
exceptions, the oracle query P(x) returns a fresh random value, and can use
standard techniques based on lazy sampling.)

We now modify A in the following way resulting in a machine A2: A2 expects
an assignment S as an additional argument. Whenever A would query the ran-
dom oracle P with a value x, A2 first checks if x ∈ S. If so, A returns the image
of x under S. Otherwise, A2 queries its oracle. Then consider the following game:

Game 2: x
$← Domain , y ← P(x), x′ ← AP2 (1k, zO, y, SO) : y = P(x′)

Obviously, Adv1 = Adv2.
Since for somex /∈ SO (whichhappenswithprobability at least 1−f/#Domain),

the oracle P returns a random y ∈ #Range, the probability that y ∈ im SO is at
most f/#Domain + f/#Range. Furthermore, if x′ ∈ SO but y /∈ im SO, the
predicate y = P(x′) will be false.

So |Adv2 − Adv3| ≤ P (y ∈ im SO) is negligible for the following game 3:

Game 3: x
$← Domain , y ← P(x), x′ ← AP2 (1k, zO, y, SO) :

if (x′ ∈ SO) then false else y = P(x′).

Note that in game 3, A2 never queries P at a position in SO. Furthermore, the
query P(x′) is only executed if x′ /∈ S. So P is only queried at a position in
SO, if x ∈ SO, which has probability at most f/#Domain. But when queried
at positions outside SO, P behaves like a normal random oracle (i.e., without
presampling). We can therefore replace the oracle P by a random oracle R
(independent of O):

Game 4: x
$← Domain, y ← R(x), x′ ← AR2 (1k, zO, y, SO) :

if (x′ ∈ SO) then false else y = R(x′).

Then |Adv3 − Adv4| ≤ P (x ∈ SO) is negligible.



Random Oracles and Auxiliary Input 219

(We have now succeeded in completely separating the oracle from the auxiliary
input; R is independent from (zO, SO). From here on, the proof is a standard
proof of one-wayness of the random oracle. Note however, that SO has a length
that may be superpolynomial, so A2 is not polynomially bounded any more. In
our case, this does not pose a problem, since we only use the fact that A2 uses
a polynomial number of queries. In proof that additionally need computational
assumptions, one might need additional tools which we present in Section 4.)

Consider the following game:

Game 5: x
$← Domain , y

$← Range, x′ ← AR2 (1k, zO, y, SO) :

if (x′ ∈ SO) then false else y = R(x′).

Since A was polynomially bounded, there is a polynomial q bounding the number
of oracle queries of A2. The probability that A2 queries R at position x is
therefore at most q/#Domain (since x is randomly chosen and never used).
Furthermore, game 4 and 5 only differ if A2 queries R at position x. So |Adv4 −
Adv5| ≤ q/#Domain is negligible.

Since A2 makes at most q queries, the probability that one of these returns y is
at most q/#Domain . If x′ returns a value x′ it has not queried before, the prob-
ability that y = R(x′) is at most 1/#Domain. So Adv5 ≤ (q − 1)/#Domain is
negligible.

Collecting the bounds shown so far, we see that AdvA is negligible. 
�

In the preceding proof, we have only verified that the advantage of the adversary
is negligible. By using Theorem 2 instead of Corollary 9 and computing the exact
bounds, we even get AdvA ∈ 2−Ω(k) which is essentially the same bound as given
in [12] and [10].

4 Security Amplification

When using a random oracle with presampling, reduction proofs sometimes run
into situations where the adversary gets the presampling SO as an input. Un-
fortunately, this presampling is usually of superpolynomial size, so the resulting
adversary is not polynomial-time any more and a reduction to complexity as-
sumptions relative to polynomial-time adversaries is bound to fail. (E.g., in the
proof of Lemma 10 the adversary A2 was not polynomial-time in the security
parameter any more. In that case however, this did not matter since we only
used the polynomial bound on the number of queries made by A2.) An example
of a situation where superpolynomial adversaries occur, and do pose a problem,
is the proof that RSA-OAEP is secure with respect to oracle-dependent auxiliary
input, cf. Section 5. One possibility is simply to assume a stronger security no-
tion; in the case of RSA-OAEP one could use, e.g., the RSA-assumption against
quasi-polynomial adversaries.

Fortunately, there is another way which allows to use standard assumptions
(i.e., with respect to polynomial-time adversaries) in many cases. We show that
for some kinds of security notions, security against polynomial-time adversaries



220 D. Unruh

implies security against adversaries with f -bounded runtime, where f is a suit-
ably chosen superpolynomial function. Using this fact we can finish our reduction
proof: Corollary 9 guarantees that for any superpolynomial function f ′, we can
replace the random oracle by a random oracle with presampling of length f ′. We
then choose f ′ to be the largest function such that all adversaries constructed in
our proof are still f -bounded. Such an f ′ is still superpolynomial, so Corollary 9
applies. On the other hand, the resulting adversaries are efficient enough for the
reduction to go through. This proof method is applied in Section 5 to show the
security of RSA-OAEP.

Instead of giving a general proof of our security amplification technique, we
give here a proof for the security notion of partial-domain one-wayness (Defini-
tion 11). The proof can easily be adapted to other security notions (in particular,
our proof does not exploit how the advantage Adv is defined for this particular
notion). In the full version [18] we give a more general characterisation of the
security notions for which security amplification is possible.5

Definition 11 (Partial-domain one-way). A family of 1-1 functions fpk :
B × C → D is partial-domain one-way, if for any nonuniform polynomial-time
adversary A, the following advantage is negligible:

AdvA,k := P
(
pk ←K(1k), (s, t) $← B ×C, y←fpk (s, t), s′←A(1k, y) : s = s′

)
.

Here K denotes the index generation algorithm for the family fpk of functions.
Partial-domain one-way against f -bounded adversaries for some function f is
defined analogously.

(In this definition,B,C, andD depend implicitly on the security parameter k.)

Lemma 12 (Security amplification for partial-domain one-wayness).
Let the family fpk be partial-domain one-way (against polynomial-time nonuni-
form adversaries). Then there exists a superpolynomial function f such that fpk

is partial-domain one-way against f -bounded nonuniform adversaries.

Proof. For n ∈ � let μn(k) := max|A|≤n(AdvA,k) where A goes over all circuits
of size at most n. Assume there was a polynomial p with integer coefficients (an
integer polynomial for short) such that μp(k)(k) is not negligible in k. Then there
is a nonuniform adversary A consisting of circuits Ak with |Ak| ≤ p(k) such that
AdvA,k ≥ μp(k)(k) is non-negligible. Since A is polynomial-time, this contradicts
the assumption that the fpk are partial-domain one-way. Hence μp := μp(k)(k)
is negligible for all integer polynomials p.

We say that a function μ asymptotically dominates a function ν if for all
sufficiently large k we have μ(k) ≥ ν(k). [1] proves that for any countable set
S of negligible functions, there is a negligible function μ∗ that asymptotically
dominates all μ ∈ S.
5 This includes one-wayness, partial-domain one-wayness, IND-CPA, IND-CCA2, black-

box stand-alone security of function evaluations, UC (where the amplification con-
cerns the running time of the environment), black-box zero-knowledge, arguments,
black-box arguments of knowledge.



Random Oracles and Auxiliary Input 221

Therefore, there is a negligible function μ∗, that asymptotically dominates μp

for every integer polynomial p.
Let f(k) := max{p ∈ � : μp(k) ≤ μ∗(k)}. Then μfX(k)(k) ≤ μ∗(k) is negli-

gible. So for any nonuniform f -bounded adversary A the advantage AdvA,k is
negligible. Furthermore, we can show that f is superpolynomial. Assume this
is not the case. Then there an integer polynomial p such that p > f infinitely
often. But then μp > μ∗ holds infinitely often, in contradiction to the choice of
μ∗ (by definition of f). Thus f is superpolynomial. 
�

5 OAEP Encryption

In [9] it was shown that RSA-OAEP (introduced by [2]) is secure in the random or-
acle model under the RSA-assumption. However, their proof only covers the case
that no auxiliary input is given (or at least that the auxiliary input is not oracle-
dependent). In this section, we extend this result to encompass the case of oracle-
dependent auxiliary input. On one hand, this gives a nontrivial example of the
application of the lazy sampling technique in combination with the security am-
plification technique. On the other hand, this result is important in its own light,
since it gives evidence that RSA-OAEP may be secure with respect to an auxiliary
input, even when the random oracle has been instantiated with a fixed function.

To read this section, it is helpful to have at least basic knowledge of the OAEP
construction and its proof from [9]. We recommend [9] as an introduction.

Theorem 13 (OAEP is secure with respect to oracle-dependent auxil-
iary input). Let fpk be a family of partial-domain one-way trapdoor 1-1 func-
tions (with the property, that the elements of the domain of fpk consist of two
components each of superlogarithmic length).

Then the OAEP encryption scheme based on fpk is IND-CCA2 secure in the
random oracle model with oracle-dependent auxiliary input.

This theorem implies that RSA-OAEP is IND-CCA2 secure under the RSA-assum-
ption with respect to oracle-dependent auxiliary input, since in [9] it is shown
that the RSA family of functions is partial-domain one-way.

At this point, we only describe on a high level, in what points our proof differs
from the proof in [9]. In the full version [18], we reproduce the full proof of [9]
and highlight our changes for comparison.

In [9], the proof has roughly the following outer form: First, the IND-CCA2
game is formulated for the special case of the OAEP encryption scheme. Then
the game is rewritten in a series of small changes, to finally yield a plaintext
extractor. If the first game had a non-negligible success probability (i.e., the
OAEP encryption scheme was not IND-CCA2 secure), the plaintext extractor had,
for some random ciphertext fpk (s, t), a non-negligible probability of outputting
s. This breaks the assumption that fpk is partial-domain one-way.

Our proof starts with the same game, except that the adversary now has
access to an oracle-dependent auxiliary input zO. Then we can use Corollary 9 to



222 D. Unruh

replace the random oracle O by a random oracle P with presampling SO of a yet
to determine superpolynomial subexponential length f (similar to the first step in
the proof of Lemma 10).6 In this new situation, for randomly chosen x ∈ Domain ,
with overwhelming probability, the oracle response P(x) is uniformly distributed.
Using this fact, most of the rewriting steps in the sequence of games are the same
as in [9], sometimes with slightly larger errors to account for the possibility of
randomly choosing an x ∈ SO. Only in the construction of the plaintext extractor
additional care has to be taken. Here the original argument uses that the answer
to an oracle query can be assumed to be random if the adversary has not yet
queried it. From this they conclude any ciphertext the decryption oracle would
accept can also be decrypted by encrypting and comparing all oracles queries
that have been made by the adversary so far. This does not hold any more since
the auxiliary input zO can supply additional information on the presampled
queries SO. We thus have to change the plaintext extractor not only to encrypt
all oracle queries but also all presampled queries SO. Therefore the plaintext
extractor is not polynomial-time anymore, but instead a nonuniform machine
with running time p(f) for some polynomial p. We consequently do not directly
obtain a contradiction to the partial-domain one-wayness, since therefore the
plaintext extractor would have to be polynomial-time.

However, we can use the security amplification technique. By Lemma 12, there
is a superpolynomial function f ′ such that fpk is partial-domain one-way even
against nonuniform f ′-bounded adversaries. By choosing f small enough (but
still superpolynomial), it is p(f) ≤ f ′, so the plaintext extractor is f ′-bounded,
and the fact that the plaintext extractor returns s for some fpk (s, t) with non-
negligible probability is a contradiction.

6 Open Questions

We have shown how to apply the lazy sampling technique to the case of oracle-
dependent auxiliary input. Going further, the following open problems come to
mind:

– Polynomial presampling: In Corollary 9, we require the length f of the pre-
sampling to be superpolynomial. This makes reduction proofs more difficult,
in particular it necessitates the use of the security amplification technique.
It would be preferable to be able to use a polynomial length f (in this case,
the length would of course have to depend on the length of auxiliary input
and the number of queries made by the adversary).

– The random oracle as considered here is only a specific example of the class
of random objects that are given as oracle to the parties. Other examples
include random permutations (with or without access to the inverse), the
generic group model, ideal ciphers, or just random oracles with a skewed
distribution. When using these to motivate security results, the same argu-
ments apply as in the case of random oracles, and oracle-dependent auxiliary

6 The actual proof uses Theorem 2, but the asymptotic version is sufficient.



Random Oracles and Auxiliary Input 223

input should be considered. It is then necessary to extend the lazy sampling
technique to these constructions as well.

In the full version [18], we discuss these open questions in slightly more detail.

Acknowledgements. We thank Michael Backes, Dennis Hofheinz, Yuval Ishai,
Jörn Müller-Quade, Hoeteck Wee, and Jürg Wullschleger for valuable discus-
sions. We further thank the anonymous referees for helpful comments.

References

1. Bellare, M.: A note on negligible functions. Journal of Cryptology 15(4), 271–284
(2002)

2. Bellare, M., Rogaway, P.: Optimal asymmetric encryption—how to encrypt with
RSA. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 92–111.
Springer, Heidelberg (1995)

3. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: Proceedings of CCS 1993, pp. 62–73 (1993)

4. Cachin, C., Crépeau, C., Marcil, J.: Oblivious transfer with a memory-bounded
receiver. In: Proceedings of STOC 2002, pp. 493–502.

5. Cachin, C., Maurer, U.: Unconditional security against memory-bounded adver-
saries. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 292–306.
Springer, Heidelberg (1997)

6. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited.
In: Proceedings of STOC 1998, pp. 209–218 (1998)

7. Dziembowski, S., Maurer, U.: Tight security proofs for the bounded-storage model.
In: Proceedings of STOC 2002, pp. 341–350 (2002)

8. Federal Information Processing Standards Publications. FIBS PUB 180-2: Secure
Hash Standard (SHS) (August 2002)

9. Fujisaki, E., Okamoto, T., Pointcheval, D., Stern, J.: RSA-OAEP is secure under
the RSA assumption. Journal of Cryptology 17(2), 81–104 (2004)

10. Gennaro, R., Gertner, Y., Katz, J., Trevisan, L.: Bounds on the efficiency of generic
cryptographic constructions. SIAM J Computing 35(1), 217–246 (2005)

11. Goldreich, O.: A uniform-complexity treatment of encryption and zero-knowledge.
Journal of Cryptology 6(1), 21–53 (1993)

12. Impagliazzo, R.: Very strong one-way functions and pseudo-random generators
exist relative to a random oracle. Manuscript (1996)

13. Kullback, S.: A lower bound for discrimination information in terms of variation
(corresp.). IEEE Transactions on Information Theory 13(1), 126–127 (1967)

14. Maurer, U.: Conditionally-perfect secrecy and a provably-secure randomized ci-
pher. Journal of Cryptology 5(1), 53–66 (1992)

15. Pass, R.: On deniability in the common reference string and random oracle model.
In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 316–337. Springer, Hei-
delberg (2003)

16. Rogaway, P.: Formalizing human ignorance: Collision-resistant hashing without the
keys. In: Nguyen, P.Q. (ed.) VIETCRYPT 2006. LNCS, vol. 4341, pp. 221–228.
Springer, Heidelberg (2006)

17. RSA Laboratories. PKCS #1: RSA Cryptography Standard, Version 2.1, 2002.
18. Unruh, D.: Random oracles and auxiliary input. IACR ePrint, 2007/168. Full ver-

sion of this paper
19. Wee, H.: Zero knowledge in the random oracle model, revisited. Manuscript (2006)



Security-Amplifying Combiners for
Collision-Resistant Hash Functions

Marc Fischlin and Anja Lehmann

Darmstadt University of Technology, Germany
www.minicrypt.de

Abstract. The classical combiner CombH0,H1
class (M) = H0(M)||H1(M)

for hash functions H0, H1 provides collision-resistance as long as at least
one of the two underlying hash functions is secure. This statement is
complemented by the multi-collision attack of Joux (Crypto 2004) for
iterated hash functions H0, H1 with n-bit outputs. He shows that one can
break the classical combiner in n

2 · T0 +T1 steps if one can find collisions
for H0 and H1 in time T0 and T1, respectively. Here we address the
question if there are security-amplifying combiners where the security of
the building blocks increases the security of the combined hash function,
thus beating the bound of Joux. We discuss that one can indeed have
such combiners and, somewhat surprisingly in light of results of Nandi
and Stinson (ePrint 2004) and of Hoch and Shamir (FSE 2006), our
solution is essentially as efficient as the classical combiner.

1 Introduction

A hash function combiner [6] takes two hash functions H0 and H1 and combines
them into a single, failure-resistant hash function. That is, collision-resistance
of the combined function is granted, given that at least one of the starting
hash functions H0, H1 is secure. A classical example of a secure combiner is
CombH0,H1

class (M) = H0(M)||H1(M), concatenating the outputs of the two hash
functions. For this combiner any collision M �= M ′ immediately gives collisions
for both hash functions H0 and H1.

From a more quantitative viewpoint, the classical combiner provides the fol-
lowing security guarantee: If breaking H0 and H1 requires T0 and T1 steps,
respectively, finding a collision for the classical combiner takes at least T0 + T1

steps. This almost matches an upper bound by Joux [8], showing that for Merkle-
Damgȧrd hash functions H0, H1 with n-bit outputs the classical combiner can
be broken in n

2 · T0 + T1 steps. This means that if the security level of each hash
function is degraded only moderately through a new attack method, e.g., from
280 to 260, then the classical combiner, too, merely warrants a reduced security
level of T0 + T1 = 2 · 260. Ideally, we would like to have a better security bound
for combiners and such moderate degradations, going beyond the T0 + T1 limit
and the bound due to Joux.

Our Results. Here we introduce the notion of security-amplifying combiners for
collision-resistant hash functions. Such combiners guarantee a security level α ·

A. Menezes (Ed.): CRYPTO 2007, LNCS 4622, pp. 224–243, 2007.
c© International Association for Cryptologic Research 2007



Security-Amplifying Combiners for Collision-Resistant Hash Functions 225

(T0 + T1) for some α > 1 and, in a sense, are therefore stronger than the sum
of their components. Note that the classical combiner (and similar proposals)
are not security amplifying according to the previous discussion, indicating that
constructing such security-amplifying combiners is far from trivial.

We next discuss how to achieve security amplification. Consider two Merkle-
Damgȧrd hash functions H0, H1 (given by compression functions f0, f1) and the
classical combiner, but limited to input messages M = m0|| . . . ||mt−1 of t < n

4
blocks exactly:

CombH0,H1
amp,t (M) = H0(m0|| . . . ||mt−1) || H1(m0|| . . . ||mt−1)

This is clearly a secure combiner in the traditional sense, guaranteeing collision
resistance if at least one of both hash functions is collision-resistant. But we
show that it is even a security-amplifying combiner, assuming that the underly-
ing compression functions behave ideally. More precisely, we consider an attack
model in which the compression functions f0, f1 are given by random functions,
but where the adversary against the combiner can use subroutines C0, C1 to
generate collisions for the corresponding compression function. Intuitively, these
collision finder oracles implement the best known strategy to find collisions, and
each time the adversary calls Cb to get a collision for fb, we charge Tb steps. The
adversary’s task is now to turn such collisions derived through C0, C1 into one
against the combiner.

We note that the adversary against the combiner in our model is quite pow-
erful. For each query to the collision finders the adversary can significantly bias
the outcome, e.g., by presetting parts of the colliding messages. To give fur-
ther support of the significance of our model, we show that we can implement
the attack of Joux on the classical combiner Combclass in our model. We can
also realize similar attacks for more advanced combiners like CombH0,H1(M) =
H0(M)||H1(H0(M) ⊕ M).

Our main result is to certify the security amplification of our combiner
Combamp,t. The proof is basically split into two parts: one covering general state-
ments about our model (such as pre-image resistance, even in presence of the
collision finders), and the other part uses the basic facts to prove our specific
combiner Combamp,t to be security-amplifying. In our security proof we show
that calling each collision finder C0, C1 only polynomially many times does not
help to find a collision for Combamp,t. Therefore, successful attacks on the com-
biner require more than poly(n) · (T0 + T1) steps.

Viewed from a different perspective we can think of our result as a supplemen-
tary lower bound to the attack of Joux. His attack breaks the classical combiner
in n

2 · T0 + T1 steps if the hash functions allow to process t ≥ n
2 message blocks.

Our result indicates that restricting the input to t < n
4 many blocks suffices to

make the combiner security-amplifying and to overcome the bound by Joux. The
situation for t in between n

4 and n
2 remains open.

Finally, recall that our proposal at this point only allows to hash messages
of t < n

4 blocks. To extend the combiner to handle arbitrarily long messages
one can use hash trees in a straightforward way (with our combiner placed at



226 M. Fischlin and A. Lehmann

every node of the tree). Since finding collisions in such hash trees requires to
come up with collisions in one of the nodes, our security amplification result
carries over instantaneously. For messages of k blocks the classical combiner
takes about 2k applications of the compression functions, compared to roughly

t
t−1 · 2k applications for our tree-based combiner (but coming with the stronger
security amplification guarantee).

Limitations of the Model. Our hash combiner guarantees security amplification
in an idealized world where the underlying compression functions behave like
random functions. In this model only generic attacks on the hash function are
allowed, in the sense that the adversary cannot take advantage of weaknesses
of the compression functions beyond the ability to generate collisions (albeit
the collision finders are quite flexible). It remains open if similar results can be
obtained in a non-idealized setting at all.

Currently, our collision finders return two values mapping to the same com-
pression function output. A recent work of Yu and Wang [14], however, shows
that very weak compression functions as in MD4 may allow K-multi-collision
attacks, where one is able to find K instead of 2 simultaneous collisions for
the compression functions. We expect our results to transfer to this case, when
restriciting the number of message blocks further to t < n

4 log2 K . This will be
addressed in the full version of the paper.

Related Work. The idea of cryptographic combiners has been considered explic-
itly by Herzberg [6]. Among others, he analyzes the classical combiner Combclass

concatenating the hash function values. As for hash function combiners, Boneh
and Boyen [1] and subsequently Pietrzak [12] show that collision-resistant com-
biners cannot do better than the classical combiner in terms of the length, i.e.,
the output length of a secure combiner must essentially equal the sum of the
output lengths of the hash functions (as in our construction).

Interestingly, the idea of security amplification for cryptographic combiners
already appears implicitly in Yao’s work [13]. He shows that the existence of
weak one-way functions —where inversion may succeed with probability 1 −
1/poly(n)— can be turned into strong one-way functions where inversion al-
most surely fails. The construction can be viewed as a security-amplifying self-
combiner for one-way functions. See also [5] for improvements and [9] for related
results.

Other relevant works are the upper bounds of Nandi and Stinson [11] and of
Hoch and Shamir [7]. They extend the attack of Joux to arbitrary combiners for
iterated hash functions, where each message block is possibly processed via the
compression function more than once but at most a constant number of times.
They also transfer their results to tree-based constructions. However, in their
model the output of one compression function must not serve as an input to the
other compression function, thus disallowing mixes of intermediate hash values.
By this, the hash-tree based extension of our combiner circumvents their bounds.

Finally we remark that, in a concurrent work, Canetti et al. [3] also consider
amplification of collision resistance. In contrast to our idealized setting they use
a complexity-theoretic approach.



Security-Amplifying Combiners for Collision-Resistant Hash Functions 227

Organization. We start by defining our model and security amplifying combiners
(Section 2). Next, in Section 3, we discuss that the classical combiner and similar
proposals are not security amplifying. Section 4 present some general conclusions
in our model. The main result appears in Section 5 and the proof of this result is
given in Section 6. Some proofs in this version have been moved to the Appendix.

2 Preliminaries

2.1 Hash Functions and Combiners

A hash function H = (HKGen, H) is a pair of efficient algorithms such that HKGen
for input 1n returns (the description of) a hash function H , and H for input H
and M ∈ {0, 1}∗ deterministically outputs a digest H(M). The hash function
is called collision-resistant if for any efficient algorithm A the probability that
for H ← HKGen(1n) and (M, M ′) ← A(H) we have M �= M ′ but H(H, M) =
H(H, M ′), is negligible (as a function of n).

Definition 1. A hash function combiner Comb for hash functions H0, H1 is an
efficient deterministic algorithm such that, for input H0 ← HKGen0(1n), H1 ←
HKGen1(1n) and M ∈ {0, 1}∗, it returns a digest Comb(H0, H1, M). In addition,
the pair (CKGen, Comb), where CKGen(1n) generates H0 ← HKGen0(1n) and
H1 ← HKGen1(1n) and outputs (H0, H1), is a collision-resistant hash function
as long as H0 or H1 is collision-resistant.

The popular Merkle-Damgȧrd construction [10,4] of a hash function takes any
collision-resistant compression function f : {0, 1}l+n → {0, 1}n and an initial
vector IV. To compute a digest one divides (and possibly pads) the message
M = m0m1 . . . mk−1 into blocks mi of l bits and computes the digest H(M) =
ivk as

iv0 = IV, ivi+1 = f(ivi, mi) for i = 0, 1, . . . , k − 1.

In this case the description of the hash function simply consists of the pair
(f, IV). We note that, in order to make this construction collision-resistant for
messages of arbitrary length, one still needs to apply the compression function
once more to the bit length of the message.

In the idealized Merkle-Damgȧrd construction we assume that the compres-
sion function f behaves like a random function (drawn from the set of all func-
tions mapping (l + n)-bit strings to n-bit strings). In particular, if an algorithm
now gets as input the description of such an idealized MD-hash function then
it is understood that this algorithms gets IV as input string and oracle access
to the random function f . This holds also for a combiner Comb of such ide-
alized MD hash function, i.e., Comb gets oracle access to f0, f1 and receives
the strings IV0, IV1 as input. We then often write CombH0,H1(·) instead of
Combf0,f1(IV0, IV1, ·). We emphasize that the combiner may assemble a solution
from the compression functions and the initial vectors which is not necessarily
an iterated hash function.



228 M. Fischlin and A. Lehmann

2.2 Our Model

To analyze the security amplification of a combiner for two idealized MD hash
functions (f0, IV0) and (f1, IV1) we consider an adversary A with oracle access
to f0, f1 and input IV0, IV1. The task of this algorithm is to find a collision
for the combiner. Since finding collisions for the random compression function
directly is restricted to the birthday attack, we allow A oracle access to two

C0

C1

IV0, IV1

M, M’

f0 f1

A

Fig. 1. Attack Model

collision finder oracles C0, C1 generating colli-
sions for each compression function (both or-
acles themselves have access to f0, f1). These
collision finders can be viewed as the best
known algorithm to generate collision for the
compression function. See Figure 1. In its
most simple form algorithm A can query
the collision finder Cb by forwarding values
ivb, iv′b and getting a collision (mb, m

′
b) with

fb(ivb, mb) = fb(iv′b, m′b) from Cb. More gener-
ally, the adversary may want to influence the
colliding messages or enforce dependencies be-

tween the initial values ivb, iv′b and the messages mb, m
′
b. To model such advanced

collision finding strategies we allow the adversary to pass (the description of) a
circuit Cb : {0, 1}i → {0, 1}l+n (possibly containing f0- and f1-gates) to Cb in-
stead of ivb, iv′b only. The collision finder then applies an internal stateful source
S = S(Cb) to continuously generate i-bit strings s ← S and successively provides
each s as input to the circuit Cb. See Figure 2(a).1

mb

s

ivb

fb

f0

f1
Cb

S
(a)

samplesb(Cb) contains all tested pairs
(Cb(s), fb(Cb(s))) in Cb’s collision search
for input circuit Cb

cvalb contains all collisions returned by collision
finder Cb

fvalb contains all pairs (x, fb(x)) appearing in di-
rect fb-box queries of A or in an evaluation of
a circuit Cb

(b)

Fig. 2. Operation of collision finder Cb (a), Sets of function values (b)

For the circuit’s output (ivb, mb) = Cb(s) to the next input value s the finder
computes fb(ivb, mb) and checks if for some previously computed value (iv′b, m′b) a
1 The source S can be thought of the collision finder’s strategy to generate collisions

for the input circuit, and is possibly even known by A. Since we will later quantify
over all collision finders we do not specify this distribution; the reader may for now
think of S sequentially outputting the values 0, 1, 2, . . . in binary.



Security-Amplifying Combiners for Collision-Resistant Hash Functions 229

collision fb(ivb, mb) = fb(iv′b, m
′
b) occurs. If so, Cb immediately stops and outputs

the collision ((ivb, mb), fb(ivb, mb), s) and ((iv′b, m
′
b), fb(iv′b, m

′
b), s

′). Otherwise it
stores the new triple ((ivb, mb), fb(ivb, mb), s) and continues its computations. If
Cb does not find a collision among all i-bit inputs s to the circuit it returns ⊥. We
assume that the adversary implicitly gets to know all consulted input values s,
gathered in an ordered set sval(Cb). Note that we leave it essentially up to the
adversary and his choice for Cb to minimize the likelihood of undefined outputs
or trivial collisions (i.e., for the same pre-image).

2.3 Lucky Collisions

The collision finders should be the only possibility to derive collisions, i.e., we ex-
clude accidental collisions (say, A ignoring the collision finders and finding an f0-
collision by querying the f0-oracle many times). To capture such lucky collisions
we assume that each answer ((ivb, mb), fb(ivb, mb), s), ((iv′b, m′b), fb(iv′b, m′b), s

′)
of Cb is augmented by all pre-image/image pairs (x, y) of f0- and f1-gate evalua-
tions in the circuit computations during the search. We stress that this excludes
all samples (Cb(s), fb(Cb(s))) which the collision finder probes to find the colli-
sion, unless the sample also appears in one of the circuit evaluations (see also
the discussion below).

For a query Cb to Cb we denote the set of the pre-image/image pairs re-
turned to A by fval

cf
b (Cb) and by fval

cf
b we denote the union of fval

cf
b (Cb)

over all queries Cb made to Cb during A’s computation. Here we assume that the
set fval

cf
b is updated immediately after each function gate evaluation during a

circuit evaluation. Similarly, fval
box
b stands for the pre-image/image pairs gen-

erated by A as queries and answers to the fb-box directly. We now set fval as
the union of fval

cf
b and fval

box
b for both b = 0, 1.

Definition 2 (Lucky Collision). A pair (x, x′) is called a lucky collision if
for an execution we have x �= x′ and (x, y), (x′, y) ∈ fval for some y.

In the definition below A will not be considered successful if a lucky collision
occurs during an execution. It therefore lies in A’s responsibility to prevent lucky
collisions when querying f -boxes or the collision finders.

For notational convenience we collect the pre-image/image pairs of collisions
generated by the collision-finders in the set cval, which is the union of all
answers cvalb(Cb) of collision-finder Cb for query Cb, over all queries Cb and
b = 0, 1. We also let samplesb(Cb) denote all samples (Cb(s), fb(Cb(s))) which
the collision finder Cb collects to find a collision for query Cb, and samples stands
for the union over all samplesb(Cb) for all queries Cb and b ∈ {0, 1}. Clearly,
cvalb(Cb) ⊆ samplesb(Cb). An informal overview about the sets is given in
Figure 2(b).

We remark that we do not include the pairs (Cb(s), fb(Cb(s))) which the
collision finder probes in fvalb (unless they appear in the circuit’s evaluations).
This is in order to not punish the adversary for the collision finder’s search
and strengthens the model, as lucky collisions become less likely. However, for
an answer of the collision finder the adversary A can re-compute all or some



230 M. Fischlin and A. Lehmann

of those values by browsing through the ordered set sval(Cb), containing all
inspected s-values, and submitting Cb(s) to the fb-oracle. This value is then
added to the set fvalb, of course.

2.4 Security Amplification

As for the costs of each oracle call to collision finder Cb we charge the adversary
A a pre-determined number Tb of steps for each call (e.g., Tb = 2n/2 if Cb

implements the birthday attack, ignoring the fact that the collision finder may
even fail with some probability in this case). We do not charge the adversary
for other steps than these calls. In the definition below we make no restriction
on the number of calls to the collision finders, yet one might often want to limit
this number in some non-trivial way, e.g., for our main result we assume that
the adversary makes at most a polynomial number of calls.

Definition 3. A hash function combiner Comb for idealized Merkle-Damgȧrd
hash functions H0, H1 is called α(n)-security amplifying if for any oracles C0, C1

(with running times T0(n) and T1(n), respectively) and any algorithm A making
at most α(n) · (T0(n) + ·T1(n)) steps we have

Prob
[
Expamp,Comb

A,H0,H1,C0,C1(n) = 1
]

≈ 0

where

Experiment Expamp,Comb
A,H0,H1,C0,C1(n):

initialize (f0, IV0) ← HKGen0(1n), (f1, IV1) ← HKGen1(1n)
let (M, M ′) ← Af0,f1,C0,C1(IV0, IV1)
output 1 iff

M �= M ′, and
Combf0,f1(IV0, IV1, M) = Combf0,f1(IV0, IV1, M

′), and
no lucky collisions during A’s computation occured.

The combiner is called security amplifying if it is α(n)-security amplifying for
some function α(n) with α(n) > 1 for all sufficiently large n’s.

Our definition allows α(n) to converge to 1 rapidly, e.g., α(n) = 1 + 2−n. We
do not exclude such cases explicitly, but merely remark that, as long as T0(n)
and T1(n) are polynomially related and the combiner is security-amplifying, one
can always find a suitable function α(n) bounded away from 1 by a polynomial
fraction. For simplicity we have defined compression functions f0, f1 of equal
output length n (which is also the security parameter). We remark that all
our definitions and results remain valid for different output lengths n0, n1 by
considering n = min{n0, n1}.

3 Warming Up: Attack on the Classical Combiner

In this section, to get accustomed to our model, we first present the attack of
Joux on the classical combiner, showing that this one is not security amplifying



Security-Amplifying Combiners for Collision-Resistant Hash Functions 231

(even though it is a secure combiner in the traditional sense). This also proves
that finding such security-amplifying is far from trivial. Recall that the classical
combiner is given by

CombH0H1
class (M) := H0(M)||H1(M)

for idealized Merkle-Damgȧrdhash functions. Obviously this combiner is collision-
resistant as long as at least one of the hash functions has this property. Yet, it does
not have the desired security-amplification property, because an adversary A can
use the strategy of Joux [8] to find a collision rapidly. The idea is to build a multi-
collision set of size 2

n
2 for H0 by calling C0 only n

2 times, and then to let C1 search
for a pair among those messages in the multi-collision set which also constitutes
a collision under H1.

Adversary Af0,f1,C0,C1(IV0, IV1) :
for i = 0, 1, . . . , k := n

2 − 1:
let C0,i : {0, 1}l → {0, 1}l+n be the circuit C0,i(s) = (iv0,i, s), where iv0,0 = IV0

get ((iv0,i, mi), yi, s), ((iv0,i, m
′
i), yi, s

′) ← C0(C0,i)
where mi �= m′

i by the choice of C0,i

set iv0,i+1 = yi

end of for

construct circuit C1 : {0, 1}n/2 →{0, 1}l+n, containing all received collisions (mi, m
′
i)

from the first stage, as follows:
for i = 0, 1, . . . , k = n

2 − 1:
for the i-th input bit si let �mi = mi if si = 0, and �mi = m′

i otherwise
except for the last round, compute iv1,i+1 = f1(iv1,i, �mi), where iv1,0 = IV1

end of for
let the circuit output (iv1,k, �mk)

get ((iv1,k, �mk), yk, s), ((iv′
1,k, �m′

k), yk, s′) ← C1(C1)

reconstruct the successful combination M, M ′ of C1 by using the values s, s′

for the pairs (mi, m
′
i) as above, and output M, M ′

First, the collision finder C0 is called n
2 times by the adversary to derive n

2
pairs of colliding message blocks (mi, m

′
i) where f0(iv0,i, mi) = f0(iv0,i, m

′
i) for

i = 0, 1, . . . , k. Since the circuit C0,i passed to C0 does not evaluate the functions
f0, f1, no lucky collision can occur in this stage. The query to collision finder C1

then requires n
2 compression function evaluations in the circuit C1 for each input

s ∈ {0, 1}n/2, which selects one of the 2
n
2 multi-collisions derived from C0’s an-

swers. Yet, for each common prefix of the s-values the same function evaluations
are repeated, and the set fval

cf
1 therefore contains at most 2

n
2 pre-image/image

pairs (x, y) from the circuit evaluations. This implies that the probability for a
lucky collision is at most 1

2 .
On the other hand, given that no collision in fval1 occurs, all circuit outputs

are distinct and the set of probed values of the collision finder is at least 2
n
2 . But

then, C0 will find a collision among the values with constant probability (which
is roughly equal to 1−e−1/2 for the Euler constant e). Hence, the adversary suc-
ceeds with constant probability, taking only n

2 ·T0(n)+T1(n) steps. This implies



232 M. Fischlin and A. Lehmann

that the classical combiner is not security amplifying, because no appropriate
function α(n) > 1 exists.

Our model allows to implement attacks on more sophisticated hash combiners
such as CombH0,H1(M) = H0(M)||H1(H0(M)⊕M), which may seem to be more
secure than the classical combiner at first glance due to the dependency of both
hash functions. However, by using the circuit C1 to compute valid inputs for H1

we can realize a similiar attack as the one for Combclass.

4 Basic Conclusions

In this section we provide some basic conclusions in our model, e.g., that the
functions f0, f1 are still pre-image resistant in presence of the collision finders.
These results will also be useful when proving our combiner to be security am-
plifying.

The first lemma basically restates the well-known birthday paradox that, if
the adversary A in experiment Expamp,Comb

A,H0,H1,C0,C1(n) makes too many f0- and
f1-queries (either directly or through the collision-finders), then most likely a
lucky collision will occur and A cannot succeed anymore. This result —like all
results in this section— hold for arbitrary combiners (based on the idealized
Merkle-Damgȧrd model):

Lemma 1 (Birthday Paradox). Consider experiment Expamp,Comb
A,H0,H1,C0,C1(n)

and assume that |fvalb| > 2dn for b ∈ {0, 1} and a constant d > 1
2 . Then

the probability that no lucky collisions occur is negligible (and, in particular, the
probability that the experiment returns 1 is negligible, too).

Proof. Suppose |fvalb| > 2dn for some b. Then the birthday paradox implies
that with probability at most exp(−

(
2dn+1

2

)
/2n) ≤ exp(−2(2d−1)n−1) there would

be no lucky collision. Since d > 1
2 the term 2(2d−1)n−1 grows exponentially in n.

But if a lucky collision occurs, then the experiment outputs 0. �

We next show that the images of sample values samples\cval appearing during
the search of the collision finder (but which are not returned to A) are essentially
uniformly distributed from A’s viewpoint (i.e., given the sets fval,cval). This
holds at any point in the execution and even if A does not win:

Lemma 2 (Image Uncertainty). Assume that A in experiment
Expamp,Comb

A,H0,H1,C0,C1(n) makes at most 2cn calls to each collision-finder C0, C1 and
that fval0, fval1 each contain at most 2cn elements for a constant c < 1. Then
for any (iv, m), y and b ∈ {0, 1} such that ((iv, m), fb(iv, m)) /∈ fvalb ∪ cvalb,
we have Prob[fb(iv, m) = y | fval,cval ] ≤ 2 · 2−n (for sufficiently large n’s).

Proof. Consider the information about the image of a value (iv, m) (not ap-
pearing in fval ∪ cval) available through fval,cval. Suppose that this value
(iv, m) appears in the course of a collision search —else the claim already fol-
lows because the image is completely undetermined— and thus the image be-
longs to samples \ (fval ∪ cval). This only leaks the information that the



Security-Amplifying Combiners for Collision-Resistant Hash Functions 233

image of (iv, m) must be distinct from other images in such a collision search,
or else the collision finder would have output (iv, m) as part of the collision.
Hence, the information available through fval,cval only exclude the images in
samples∩ (fvalb ∪cvalb) —values for the other bit b are not relevant— which
is a set of size at most |fvalb ∪ cvalb| ≤ 3 · 2cn (since each of the 2cn calls to
Cb yields at most two entries in cvalb). Thus, for large n’s there are at least
2n − 3 · 2cn ≥ 1

2 · 2n candidate images left, each one being equally like. �

The next lemma says that the collision-finders cannot be used to break pre-image
resistance, i.e., despite the ability to find collisions via C0, C1, searching for a pre-
image to a chosen value is still infeasible. Below we formalize this by executing
an adversary B in mode challenge first, in which B explicitly determines an image
y for which a pre-image should be found under fb. To avoid trivial attacks we
also presume that no (iv, m) with fb(iv, m) = y has been found up to this point.
Then, we continue B’s execution in mode find in which B tries to find a suitable
pre-image (iv, m). This assumes that B cannot try out too many collision-finder
replies (i.e., at most 2cn many for some constant c < 1

2 ):

Lemma 3 (Chosen Pre-Image Resistance). For any algorithm B and any
constant c < 1

2 the following experiment Exppre,Comb
B,H0,H1,C0,C1(n) has negligible prob-

ability of returning 1:

Experiment Exppre,Comb
B,H0,H1,C0,C1

(n):
initialize (f0, IV0) ← HKGen0(1n), (f1, IV1) ← HKGen1(1n)
let (y, b, state) ← Bf0,f1,C0,C1(challenge, IV0, IV1)
let val

ch
b = fvalb ∪ cvalb at this point

let (iv, m) ← Bf0,f1,C0,C1(find, state)
return 1 iff

fb(iv, m) = y and ((iv, m), y) /∈ val
ch
b , and

B made at most 2cn calls to collision-finder Cb (in both phases together), and
no lucky collisions occured during B’s computation (in both phases together)

The proof is delegated to Appendix A. The proof idea is as follows. For any value
appearing in fvalb \ cvalb during the find phase the probability of matching
y is at most 2 · 2−n by the image uncertainty. Furthermore, according to the
Birthday Lemma 1 the set fvalb cannot contain more than 2dn elements for
some d > 1

2 (or else a lucky collision is very likely). But then the probability of
finding another pre-image among those values is negligible.

The harder part is to show that B cannot significantly influence the collision
finder Cb to search for a collision with image y (which would then appear in
cvalb and could be output by B). Here we use the property of our model saying
that the circuit’s output Cb(s) for each sample is essentially determined by B
(or, to be precise, by the previous values in fval and cval). But then the
Image Uncertainty Lemma applies again, and each sample Cb(s) yields y with
probability at most 2 · 2−n. The final step is to note that each collision search
most likely requires approximately 2

n
2 or less samples, and B initiates at most



234 M. Fischlin and A. Lehmann

2cn many searches for c < 1
2 . Hence, with overwhelming probability there is no

value with image y in samples in the find phase at all, and thus no such value
in cvalb. This shows Chosen Pre-Image Resistance.

For the final conclusions about our model, we prove that, given a collision
(iv, m), (iv′, m′) produced by a collision finder Cb, generating another pre-image
also mapping to fb(iv, m) = fb(iv′, m′), is infeasible. The proof is in two steps,
first showing that one cannot use the fb-boxes to find such an additional value,
and the second lemma shows that this remains true if one tries to use the collision
finder (if one does not call the collision finder more than a polynomial number
of times). We remark that this aspect refers to collisions for the compression
functions only; given a collision generated by the finders one can of course extend
this to further collisions for the iterated hash function by appending message
blocks:

Lemma 4 (f-Replication Resistance). Assume adversary A in
Expamp,Comb

A,H0,H1,C0,C1(n) makes at most 2cn calls to each collision-finder C0, C1 and
that each set fval0, fval1 contains at most 2dn elements for constants c, d with
c + d < 1. Then the probability that there exist values ((iv, m), y) ∈ cvalb and
((iv′, m′), y) ∈ fvalb \ cvalb for b ∈ {0, 1}, is negligible.

Proof. Fix a bit b. Since A makes at most 2cn calls to Cb and each reply re-
turns two elements, the set cvalb is of size at most 2 · 2cn. Consider any value
((iv, m), y) ∈ cvalb and any value ((iv′, m′), y′) ∈ fvalb \cvalb. Then, because
((iv′, m′), y′) /∈ cvalb, we must have y′ �= y or (iv, m) �= (iv′, m′). In the first
case we have no match, in the second case a match can occur with probability
at most 2 · 2−n by the image uncertainty (considering the point in the execution
where the the second of the two values appears for the first time).

Now sum over all 2 · 2cn · 2dn = 2 · 2(c+d)n combinations, such that the prob-
ability of finding any match is at most 4 · 2(c+d−1)n. Since c + d < 1 this is
negligible, and stays negligible if we sum over both choices for b. �

Note that the fact above indicates that, after having generated collisions through
the finder, finding other matching function values through the f -boxes is infea-
sible. This holds at any point in the execution, i.e., A may not even successfully
produce a collision but rather stop prematurely. Next, we use this fact (together
with pre-image resistance) to prove replication resistance with respect to the
collision finders:

Lemma 5 (C-Replication Resistance). Assume adversary A in
Expamp,Comb

A,H0,H1,C0,C1(n) makes at most poly(n) calls to each collision-finder C0, C1

and that fval0, fval1 each contain at most 2dn elements for a constant d < 1.
Then the probability that there exist values ((iv, m), y), ((iv′, m′), y), ((iv∗, m∗), y)
∈ cvalb for b ∈ {0, 1} with pairwise distinct (iv, m), (iv′, m′), (iv∗, m∗), is negli-
gible.

The proof is in Appendix B. The basic idea is that, at some point in the execu-
tion, there must be at most two of the three values in cvalb and then another



Security-Amplifying Combiners for Collision-Resistant Hash Functions 235

call adds the third value with the same image. But then this contradicts the
chosen pre-image resistance, because the right call to the collision finder among
the polynomially many ones can be guessed with probability 1/poly(n). We note
that the full argument needs to take care of the case that the third value appears
in fvalb before.

5 A Security-Amplifying Combiner

Our (input-restricted) security-amplifying combiner takes messages M = m0

|| . . . ||mt−1 of exactly t blocks with t ≤ en for some constant e < 1
4 and applies

each of the two hash functions H0, H1 to the message m0|| . . . ||mt and outputs
the concatenation:

Theorem 1. Let H0, H1 be idealized Merkle-Damgȧrd hash functions. Let e < 1
4

be a constant and assume that t ≤ en. Then the combiner

CombH0H1
amp,t(M) = H0(m0|| . . . ||mt−1) || H1(m0|| . . . ||mt−1)

of H0 and H1 is α(n)-security-amplifying for α(n) = poly(n) if the adversary
in experiment Expamp,Combamp,t

A,H0,H1,C0,C1(n) makes at most α(n) = poly(n) calls to each
collision finder.

We also remark that our combiner is obviously a (classically) secure combiner in
the non-idealized setting. The theorem shows that we get the improved security-
amplification guarantee against attacks in the idealized world.

For the proof idea it is instructive to investigate why the straightforward ap-
plication of the attack of Joux for the case of at most t ≤ n

4 message blocks
fails. In this case one would again build a multi-collision set for either hash
function of size at most 2t ≤ 2

n
4 . But this time the probability that any of the

22t < 2
n
2 pairs in such a multi-collision set also collides under the other hash

function, should be approximately 2
n
2 · 2−n = 2−

n
2 . Most likely, even approxi-

mately 2
n
2 multi-collsion sets should therefore not help to find a collision under

both hash functions. Our proof follows these lines of reasoning, i.e., bounding
the size of multi-collision sets and the probability that message pairs in such a
multi-collision set also collide under the other hash function. We stress, however,
that a full proof in our model still needs to deal with more general adversaries,
possibly taking advantage of the collision finders through “clever” queries.

To process messages of arbitrary length without losing the security-
amplification property we apply a hash-tree construction [10] to our combiner.
Since the construction is somewhat standard we merely give an example for
t = 2 in Figure 3. For a similar and more formal treatment see for instance [2].
In general the input restriction t of the hash combiner gives us an t-ary tree,
processing k message blocks m0 . . . mk−1.

If two messages M �= M ′ lead to a collision in the root of the hash tree,
it can be either the result of a non-trivial collision in the final application of
the combiner for different message lengths |M | �= |M ′| (in which case we get a



236 M. Fischlin and A. Lehmann

Fig. 3. Example of a hash tree construction for our combiner (t = 2, k = 6)

non-trivial collision for the basic combiner), or else the tree structures must be
identical. In the latter case the collision can always be traced back to a collision
for an earlier application of the combiner. Hence, in both cases the reason for
the tree collision is at least one collision for the basic combiner.

As for the efficiency, for a full t-ary tree (with k = tr, the number of message
blocks, being a power of t) we apply our basic combiner k−1

t−1 + 1 times. Each
time we need 2t applications of the compression functions, making our solution
about t

t−1 times slower than the classical combiner with 2k applications (but
with the advantage of security amplification for our combiner).

6 Proof of Security Amplification

Before giving the proof we first show a technical conclusions stating that the
adversary against our (input-restricted) combiner essentially cannot win if the
function values of the output are undetermined (the proof of this first lemma
follows from the image uncertainty and appears in Appendix C):

Lemma 6 (Output Knowledge). Assume that A in experiment
Expamp,Combamp,t

A,H0,H1,C0,C1(n) makes at most 2cn calls to each collision-finder C0, C1 for
some constant c < 1. Assume that A eventually outputs M = m0|| . . . ||mt−1 �=
M ′ = m′0|| . . . ||m′t−1 such that

ivb,0 = iv′b,0 = IVb, ivb,i+1 = fb(ivb,i, mi),

iv′b,i+1 = fb(iv′b,i, m
′
i)for b ∈ {0, 1} and i ∈ {0, 1, . . . , t − 1}

Suppose further that ((ivb,i, mi), ivb,i+1) or ((iv′b,i, m
′
i), iv

′
b,i+1)) does not belong

to fvalb ∪ cvalb for some b ∈ {0, 1} and some i ∈ {0, 1, . . . , t − 1}. Then the
probability that the experiment returns 1 is negligible.

The following lemma proves that, for t message blocks there can only be 2t multi-
collisions, as long as each collision finder is only called a polynomial number of
times:

Lemma 7 (Multi-Collisions). Assume attacker A in experiment
Expamp,Combamp,t

A,H0,H1,C0,C1(n) makes at most poly(n) calls to each collision-finder C0, C1



Security-Amplifying Combiners for Collision-Resistant Hash Functions 237

and that the experiment returns 1. Then, the probability that for some b ∈ {0, 1}
and some ivb,t, the set

multib(ivb,t) :=

�
M = m0|| . . . ||mt−1 :

ivb,i+1 = fb(ivb,i, mi) ∈ fvalb ∪ cvalb

for i = 0, 1, . . . , t − 1, where ivb,0 = IVb

�

contains more than 2t elements, is negligible.

The lemma holds because if there was a multi-collision set with more than 2t

elements, then there must be distinct values (ivb,i, mi), (iv′b,i, m
′
i) and (iv∗b,i, m

∗
i )

mapping to the same image under fb. According to the previous lemma we can
assume that all of them belong to fvalb ∪cvalb, but then they would either be
a lucky collision (two or three values in fvalb), refute f -replication resistance
(one value in fvalb) or contradict C-replication resistance (no value in fvalb).

With these two lemmas we can now prove that our combiner is security-
amplifying. The full proof appears in Appendix C. For an outline consider the
multi-collision sets defined in the previous lemma. Lemma 6 implies that, in
order to win, the adversary must know the images of the final output M �=
M ′. Hence, each of the two messages must appear in some multi-collision set,
and to constitute a collision under hash function Hb, they must appear in the
same multi-collision set multib(yb) for some yb. Moreover, since the messages
must collide under both hash functions simultaneously they must belong to an
intersection multi0(y0) ∩ multi1(y1) for some y0, y1.

Lemma 7 now says that each multi-collision set has at most 2t elements. Thus,
there are at most 22t ≤ 22en such pairs in each multi-collision set. Furthermore,
we can bound the number of multi-collision sets by the number of elements in
fvalb ∪ cvalb, and therefore by 3 · 2dn for a constant d > 1

2 with d + 2e < 1
(here we use the fact that e < 1

4 ). We therefore have at most 3 ·2(d+2e)n possible
pairs M �= M ′. The proof then shows that, by the image uncertainty, any of the
pairs M, M ′ in some multi-collision set multib(yb) also collides under the other
hash function Hb, with probability at most 6 ·2(d+2e−1)n which is negligible. Put
differently, with overwhelming probability the intersections of mulit-collision sets
for both hash functions are empty and the adversary cannot find appropriate
messages M, M ′.

Acknowledgments

We thank the anonymous reviewers for valuable comments. Both authors are
supported by the Emmy Noether Program Fi 940/2-1 of the German Research
Foundation (DFG).

References

1. Boneh, D., Boyen, X.: On the Impossibility of Efficiently Combining Collision Re-
sistant Hash Functions. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp.
570–583. Springer, Heidelberg (2006)



238 M. Fischlin and A. Lehmann

2. Bellare, M., Rogaway, P.: Collision-Resistant Hashing: Towards Making UOWHFs
Practical. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 470–484.
Springer, Heidelberg (1997)

3. Canetti, R., Rivest, R., Sudan, M., Trevisan, L., Vadhan, S., Wee, H.: Amplifying
Collision Resistance: A Complexity-Theoretic Treatment. In: Menezes, A. (ed.)
CRYPTO 2007. LNCS, vol. 4622, Springer, Heidelberg (2007)

4. Damgȧrd, I.: A Design Principle for Hash Functions. In:Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 416–427. Springer, Heidelberg (1990)

5. Goldreich, O., Impagliazzo, R., Levin, L., Venkatesan, R., Zuckerman, D.: Security
Preserving Amplification of Hardness. In: Proceedings of the Annual Symposium
on Foundations of Computer Science (FOCS)’90, pp. 318–326. IEEE Computer
Society Press, Los Alamitos (1990)

6. Herzberg, A.: On Tolerant Cryptographic Constructions. In: Menezes, A.J. (ed.)
CT-RSA 2005. LNCS, vol. 3376, pp. 172–190. Springer, Heidelberg (2005)

7. Hoch, J., Shamir, A.: Breaking the ICE — Finding Multicollisions in Iterated
Concatenated and Expanded (ICE) Hash Functions. In: Robshaw, M. (ed.) FSE
2006. LNCS, vol. 4047, Springer, Heidelberg (2006)

8. Joux, A.: Multicollisions in Iterated Hash Functions. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, Springer, Heidelberg (2004)

9. Lin, H., Trevisan, L., Wee, H.: On Hardness Amplification of One-Way Functions.
In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 34–49. Springer, Heidelberg
(2005)

10. Merkle, R.: One Way Hash Functions and DES. In: Brassard, G. (ed.) CRYPTO
1989. LNCS, vol. 435, pp. 428–446. Springer, Heidelberg (1990)

11. Nandi, M., Stinson, D.: Multicollision Attacks on a Class of Hash Functions. Num-
ber 2004/330 in Cryptology eprint archive (2004), eprint.iacr.org

12. Pietrzak, K.: Non-Trivial Black-Box Combiners for Collision-Resistant Hash-
Functions don’t Exist. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515,
Springer, Heidelberg (2007)

13. Yao, A.: Theory and Applications of Trapdoor Functions. In: Proceedings of the
Annual Symposium on Foundations of Computer Science (FOCS), IEEE Computer
Society Press, Los Alamitos (1982)

14. Yu, H., Wang, X.: MultiCollision Attack on the Compression Functions of MD4
and 3-Pass HAVAL. Number 2007/085 in Cryptology eprint archive (2007)
eprint.iacr.org

A Proof of Chosen Pre-image Resistance (Lemma 3)

In this section we prove Lemma 3, showing that no adversary B can determine
an image y and later find another pre-image to this value.

Proof. Let d be a constant with 1
2 < d < 1. Assume that fvalb contains more

than 2dn elements at the end. Then Lemma 1 implies that such executions can
only contribute with negligible probability to B’s success. From now on we can
therefore condition on this bound 2dn of number on elements in fvalb.

By the image uncertainty we conclude that the probability that any ((iv, m),
fb(iv, m)) ∈ fvalb\cvalb in B’s find phase yields y, is at most 2·2−n. Here we use
the fact that any function evaluation adding to fvalb\cvalb is either via a direct

eprint.iacr.org
eprint.iacr.org


Security-Amplifying Combiners for Collision-Resistant Hash Functions 239

call to the fb-box, or via an fb-gate evaluation in the computation of a circuit
C(s), carried out through one of the collision finders. In any case, the input to the
function only depends on the values in fval and cval before the corresponding
query; for fb-box queries this is clear and for circuit computations it follows as the
circuit is chosen by B and all previous function evaluations immediately appear
in fvalb. Therefore, the uncertainty bound applies. Summing over all at most
2dn many values in fvalb shows that the probability of hitting y is bounded from
above by 2 · 2(d−1)n and is thus negligible. In the sequel we therefore presume
that no ((iv, m), y) ∈ fvalb \cvalb appears (unless it has been in val

ch
b before,

in which case B cannot use it anymore for a successful run).
We next investigate the effect of collision finder calls on cvalb, addressing

the question if B can force the collision finder to bias collisions towards y in
some way. Recall that the collision finder makes at most 2cn many runs for
c < 1

2 . Let e = 3
4 − c

2 > 1
2 . Then we can assume that each run probes at most

2en new elements previously not in samples. This is so since, for a single run,
the probability of finding no collisions after 2en many trials for fresh values, is
double-exponentially small (see Lemma 1 and note that this remains true for a
slightly larger probability of 2 · 2−n). The probability that any of the 2cn calls
would require more fresh samples, is therefore still negligible. From now on we
thus presume that each call adds at most 2en new entries to samples.

Consider the j-th call Cb to the collision finder Cb in the find stage. Let
cval

before
b,j be the set cvalb before this call, such that cval

before
b,1 denotes the set

cvalb at the beginning of the find phase. Note that cval
before
b,j does not change

during the collision search, but only when the finder returns the collision. Sup-
pose further that cval

before
b,j does not contain any element ((iv, m), y) which is

not already in val
ch
b . This is obviously true for cval

before
b,1 .

A crucial aspect in our consideration is that all circuit values Cb(s) during
the collision search are fully determined given fvalb (containing the pairs of the
entire execution but whose images are distinct from y by assumption) as well as
cval

before
b,j . Hence, the uncertainty bound applies again, and the probability that

a specific sample Cb(s) gives a new pair (Cb(s), y) /∈ cval
before
b,j ∪val

ch
b , is at most

2 · 2−n (noting that any entry (Cb(s), fb(Cb(s))) ∈ (fvalb ∪ cval
before
b,j ) \ val

ch
b

has an image different from y by assumption). Since there are at most 2en new
samples, only with probability at most 2 · 2(e−1)n some new sample Cb(s) in
Cb’s search yields y. It follows that, except with probability 2 · 2(e−1)n, the set
cval

before
b,j+1 including the new collisions will not contain a suitable entry.

Finally, sum over all at most 2cn many calls to Cb to derive that cvalb does
not contain a new entry ((iv, m), y) ∈ cvalb \ val

ch
b , except with probability

2 · 2(c+e−1)n for c + e = 3
4 + c

2 < 1 which is negligible. Since the same holds for
fvalb \ cvalb the overall probability of finding a suitable pre-image (iv0, m),
including possibly the final output which is not a member in fvalb ∪ cvalb, is
negligible. �



240 M. Fischlin and A. Lehmann

B Proof of C-Replication Resistance (Lemma 5)

In this section we prove that no adversary can find three values in cval mapping
to the same image.

Proof. We discuss that if A could find three (or more) of those values then this
would contradict either f -replication resistance or chosen pre-image resistance.
Consider adversary B against the chosen pre-image resistance which basically
runs a black-box simulation of A. In the challenge-phase, B initially makes a
guess for a specific call j adversary A makes to one of the collision finders. Then
B runs A up to the point where A receives the answer ((iv, m), y), ((îv, m̂), y)
of Cb for this j-th call. Then B outputs y, b (and all internal information of A as
state) and concludes this stage. In the find-phase B continues A’s simulation and
waits to see a value ((iv∗, m∗), y) in the execution, and then outputs (iv∗, m∗)
and stops.

We next analyze B’s success probability. Since each call to the collision-finders
adds at most two new values to cvalb, there must be a point in A’s execution
where there is (iv, m) ∈ cvalb (and possibly (iv′, m′) ∈ cvalb) and only the
next call to Cb adds the value (iv∗, m∗) to cvalb, i.e., so far (iv∗, m∗) /∈ cvalb.
Suppose that the conditional probability (given such a value (iv∗, m∗) with the
same image really appears in the execution) that this value belongs to fvalb after
the corresponding call to Cb, was noticeable. Then this would clearly contradict
the f -replication resistance (bounding the polynomial number of calls by 2cn

for the constant c = 1
2 − d

2 with c + d < 1). We may therefore assume that
(iv∗, m∗) /∈ val

ch
b = cvalb∪fvalb at this point. But then B guesses the right call

j with probability 1/poly(n), and thus predicts a function value with noticeable
probability. This, however, contradicts the chosen pre-image resistance. �

C Proof of Security Amplification (Theorem 1)

In this section we provide the proofs of the claims in Section 6 and of the theorem.
First we prove that an adversary must essentially know the function values of
the output (Lemma 6):

Proof (of Lemma 6). Suppose A outputs such values M, M ′ and succeeds with
noticeable probability. Assume for simplicity that ((ivb,i, mi), ivb,i+1) /∈ fvalb ∪
cvalb; the case ((iv′b,i, m

′
i), iv

′
b,i+1) is treated analogously. Let i be maximal and

fix the bit b.
By Lemma 1 we can assume |fvalb| ≤ 2dn for d = max{ 3

4 , c}, except with neg-
ligible probability. Hence, from now on we can condition on |fvalb ∪ cvalb| ≤
3 · 2dn. For a success the messages M and M ′ must collide under Hb. If i = t− 1
then fb(ivb,i, mi) = ivb,i+1 is the output of the hash function, and since this
value does not appear in fvalb ∪ cvalb, the probability of matching iv′b,i+1 is
bounded from above by 2 · 2−n by the image uncertainty.

If i < t − 1 then there must exist an entry ((ivb,i+1, mi+1), ivb,i+2) ∈ fvalb ∪
cvalb (because i is chosen to be maximal). However, the probability that the



Security-Amplifying Combiners for Collision-Resistant Hash Functions 241

value fb(ivb,i, mi) appears as a prefix in any of the 3 · 2dn values in fvalb ∪
cvalb, is at most 6 ·2(d−1)n and thus negligible. On the other hand, if the prefix
fb(ivb,i, mi) does not appear in fvalb∪cvalb, then this contradicts the maximal
choice of i. Doubling the probability for both choices of b concludes the proof.

�

We next prove Lemma 7, bounding the number of messages in a multi-collision
set by 2t:

Proof (of Lemma 7). Assume that the experiment returns 1 (such that, except
with negligible probability, fval0, fval1 are of size at most 2dn each, for some
constant d < 1). If some set multib(ivb,t) contains more than 2t elements then
there must be an index i such that there are (at least) three distinct values
(ivb,i, mi), (iv′b,i, m

′
i) and (iv∗b,i, m

∗
i ) mapping to the same image under fb. If two

or more of those values belong to fvalb \ cvalb then this constitutes a lucky
collision and refutes the fact that the experiment returns 1. If one of the values
lies in fvalb \ cvalb, whereas the other two values belong to cvalb, then this
contradicts the f -replication resistance and this can only happen with negligible
probability. Finally, the case that all three values belong to cvalb can only
happen with negligible probability, too, under the C-replication resistance. �

Finally, we give the full proof that our combiner is security amplyifing:

Proof (of Theorem 1). According to our definition a combiner is called security-
amplifying if for any algorithm A making at most α(n) · (T0(n) + T1(n)) steps
the probability of finding a collision is negligible (for some α(n) > 1). Hence we
will show that, with overwhelming probability, no collisions for Combamp,t (with
t < en for constant e < 1

4 ) can be computed for any α(n) = poly(n) when calling
each collision finders at most α(n) = poly(n) many times.

Let d = 3
4 − e such that the constant d is at larger than 1

2 and d + 2e < 1.
Then we can assume that fval0, fval1 in A’s attack each contain at most 2dn

elements, otherwise the probability of winning would be negligible. Also assume
that the number of collision finder calls is bounded by 2 · poly(n) ≤ 2dn (for
sufficiently large n’s). Hence, in the following, we can assume that fvalb ∪cvalb

contains at most 3 · 2dn many elements for b ∈ {0, 1}.
For any b ∈ {0, 1} and any ivb,t we again consider all sets of multi-collisions,

multib(ivb,t) =

�
M = m0|| . . . ||mt−1 :

ivb,i+1 = fb(ivb,i, mi) ∈ fvalb ∪ cvalb

for i = 0, 1, . . . , t − 1, where ivb,0 = IVb

�

but this time we divide them into different stages (depending on the calls to the
collision finders). We denote by multi

before
b,j (y) the set of multi-collisions before

the j-th call to one of the two collision finders. The transition to the next phase
therefore adds all messages with respect to the new function values from the col-
lision finder’s reply as well as all subsequent function evaluations through the f -
boxes. Clearly, multi

before
b,j (y) ⊆ multi

before
b,j+1(y) for all j and multi

before
b,2·poly(n)+1(y)



242 M. Fischlin and A. Lehmann

—which we denote by multi
end
b (y)— contains all multi-collisions for y under Hb

at the end of the execution.
By Lemma 6 adversary A must “know” all function values in the final output,

i.e., they must belong to fvalb∪cvalb for some b ∈ {0, 1}. Hence, both messages
of the collision M �= M ′ for Hb output by A must also appear in the same set
multi

end
b (yb) for some yb. This basically reduces the task of showing that A

fails, to the proof that no M �= M ′ and y0, y1 with M, M ′ ∈ multi
end
0 (y0) ∩

multi
end
1 (y1) exist (except with some very small probability or if one of the

success requirements such as the absence of lucky collisions is violated).
We will show that, given that no success requirements are violated, with over-

whelming probability the intersection of multi-collision sets for b = 0, 1 will be
empty in the course of the execution. This is done by a careful inductive argu-
ment, where we use the invariant that for no yb the set multi

before
b,j (yb) contains

M �= M ′ such that they collide under Hb. This is clearly true for multi
before
b,1 (yb)

because up to the point where the first collision finder is called, only f -queries
have been made, and each set multi

before
b,1 (yb) can contain only one element (or

a lucky collision already occurs).
We also use that, according to the Multi-Collision Lemma 7, each set

multi
before
b,j (yb) can contain at most 2t elements (with overwhelming probabil-

ity). Additionally, we always have at most 3 · 2dn non-empty multi-collision sets,
because there can only be an element in a such set if there is at least one value
from fvalb∪cvalb. Hence, at any point there are at most 22t ·3·2dn ≤ 3·2(d+2e)n

many collision pairs (M, M ′) appearing together in one of the multi-collision sets,
for the constant d + 2e < 1.

Now suppose we make the j-th call to one of the collision finders, Cb. After this
call (and all subsequent f -function evaluations) take any pair M �= M ′ belonging
to the same set multi

before
b,j+1(yb) for some yb. The next step is to note that, most

likely, this pair M, M ′ cannot belong to some multi
before
b,j+1

(yb). Note that if M

and M ′ lie in multi-collision sets multi
before
b,j+1

(yb) and multi
before
b,j+1

(y′
b
) for yb �= y′

b

then they clearly do not collide under Hb as those sets must be disjoint.
Assume, towards contradiction, that M, M ′ appear in a single multi-collision

set for b. We already know that M, M ′ cannot belong to some multi
before
b,j

(yb) of
the previous stage, because none of these pairs constitutes a collision under Hb,
except with negligible probability. Hence, at least one of the two messages (say,
M) must have been added to multi

before
b,j+1

(yb) because of an fb-function evaluation
of Cb or via a direct evaluation of fb, taking into account that cvalb does not
change between the two points in time.

Suppose that M is added to some set multi
before
b,j+1

(yb) via a new fb-value (which
has not been in cvalb), and assume that either M ′ is added only now or has
already been in this set before the call. Consider the maximal i for which a new
function value is added (when one would process the blocks mi of message M
through the iterated hash function). If the final value ivb,t = fb(ivb,t−1, mt−1)
is added (i = t − 1) then, if for M ′ processing the final message block ivb,t =
fb(iv

′
b,t−1

, m′t−1) has been in fvalb before or is added to fvalb now, we would



Security-Amplifying Combiners for Collision-Resistant Hash Functions 243

have a lucky collision. So ivb,t = fb(iv
′
b,t−1

, m′t−1) must have been in cvalb

before. But then this would contradict the f -replication resistance. For any other
i < t − 1 we note that, if fb(ivb,j , mi) has not been determined before by A, the
probability that it matches any prefix of the at most 3 · 2dn previous values in
fvalb∪cvalb, is negligible (namely, at most 6·2(d−1)n by the image uncertainty).
But this would contradict the maximal choice of i.

In conclusion, for any of the pairs M, M ′ there must still be an fb-value not
in fvalb ∪ cvalb at this point, and the probability that the pair M, M ′ collides
under Hb at all, is thus at most 2 ·2−n. Therefore, the probability that any of the
at most 3 · 2(d+2e)n pairs M, M ′ for d + 2e < 1 constitutes a collision under Hb,
is negligible. The same argument applies now vice versa, no pair M, M ′ from a
set multi

before
b,j+1

(yb) yields a collision under Hb, except for some negligible error.
This gives us the invariant.

The argument can now be set forth to the at most 2 ·poly(n)+1 many phases,
showing that the final multi-collision sets for b = 0, 1 never intersect in more than
one element. This proves the theorem. �



Hash Functions and the
(Amplified) Boomerang Attack

Antoine Joux1,3 and Thomas Peyrin2,3

1 DGA
2 France Télécom R&D

thomas.peyrin@orange-ftgroup.com
3 Université de Versailles Saint-Quentin-en-Yvelines

antoine.joux@prism.uvsq.fr

Abstract. Since Crypto 2004, hash functions have been the target of
many attacks which showed that several well-known functions such as
SHA-0 or MD5 can no longer be considered secure collision free hash func-
tions. These attacks use classical cryptographic techniques from block
cipher analysis such as differential cryptanalysis together with some spe-
cific methods. Among those, we can cite the neutral bits of Biham and
Chen or the message modification techniques of Wang et al. In this pa-
per, we show that another tool of block cipher analysis, the boomerang
attack, can also be used in this context. In particular, we show that using
this boomerang attack as a neutral bits tool, it becomes possible to lower
the complexity of the attacks on SHA-1.

Keywords: hash functions, boomerang attack, SHA-1.

1 Introduction

The most famous design principle for dedicated hash functions is indisputably
the MD-SHA family, firstly introduced by R. Rivest with MD4 [16] in 1990 and
its improved version MD5 [15] in 1991. Two years after, the NIST publishes [12]
a very similar hash function, SHA-0, that will be patched [13] in 1995 to give
birth to SHA-1. This family is still very active, as NIST recently proposed [14]
a 256-bit new version SHA-256 in order to anticipate the potential cryptanalysis
results and also to increase its security with regard to the fast growth of the
computation power. Basically, MD-SHA family hash functions use the Merkle-
Damg̊ard extension domain and their compression function is build upon a block
cipher in Davies-Meyer mode: the output of the compression function is the
output of the block cipher with a feed-forward of the chaining variable.

The first cryptanalysis of a member of this family dates from Dobbertin [7]
with a collision attack against MD4. Then, Chabaud-Joux [5] provided the first
theoretical collision attack against SHA-0 and Biham-Chen [1] introduced the
idea of neutral bits, which led to the computation of a real collision with four
blocks of message [2]. Later on, a novel framework of collision attack, using

A. Menezes (Ed.): CRYPTO 2007, LNCS 4622, pp. 244–263, 2007.
c© International Association for Cryptologic Research 2007



Hash Functions and the (Amplified) Boomerang Attack 245

modular difference and message modification techniques, surprised the cryptog-
raphy community [19,23,24,22]. Those devastating attacks broke a lot of hash
functions, such as MD4, MD5, SHA-0, SHA-1, RIPEMD or HAVAL-128.

Even if SHA-1 is theoretically broken (with 269 message modifications), the
computational power needed in practice is too important and the question arise
that when will someone be able to come up with a real collision. Recently [20,21],
it has been claimed that the complexity of this attack can be improved up to
263 message modifications.

In this article we study the application of boomerang attacks, originally in-
troduced by D. Wagner [18] for block ciphers, to the case of hash functions.
In particular, we show that this very generic method may improve the already
known collision attacks against various hash functions when used with classic im-
provements such as neutral bits or message modification. Although this method
is generic, some aspects are closely related to the particular hash function one is
planning to attack. Thus, we give a practical proof of concept by applying this
improvement to SHA-1. We provide here the detailed constraints and advantages
of this particular case. Finally, we are able to present a novel attack against
SHA-1, dividing the work factor by 32 from the previous attacks.

An independent work by Klima, describing tunnels in MD5 was posted on
ePrint [10], shortly before our first public presentation of the boomerang at-
tack [8] applied to hash function. Each tunnel in Klima’s work can be decom-
posed into a collection of auxiliary differential in our attack. Note that due to
the simple message expansion in MD5, the tunnel can be directly observed in a
preexisting attack. In our SHA-1 application, a specific differential attack must
be constructed to accommodate the auxiliary differentials.

The paper is structured as follows. In Section 2, we recall the concept of
boomerang attack for block ciphers and in Section 3 we show how this concept
can be applied to hash functions. In particular, we give two different possible
approaches for using this method. Then, in Section 4, we treat a practical exam-
ple with the case of SHA-1. We explain all the specific aspects of the application
of boomerang attacks for SHA-1 and show that this method leads to improve-
ments for a collision attack. Finally, we draw conclusions and give future works
in Section 5.

Notations. In the following, + will stand for the addition on 32-bit words
(modulo 232) and ⊕ will represent the bitwise exclusive-OR. The left (resp.
right) bit rotation will be denoted � (resp. �), and ∧ (resp. ∨) is the bitwise
AND (resp. OR). The j-th bit (modulo 32) of a 32-bit word X is denoted Xj

and the bitwise complementary of X will be denoted X.

2 The Boomerang Attack

The boomerang attack was proposed by D. Wagner as a tool for the cryptanalysis
of block ciphers in [18]. It allows to weave two partial and independent differential
characteristics together into a global attack on the block cipher. The basic idea



246 A. Joux and T. Peyrin

P1

C1

P ′
1

C′
1

P2

C2

P ′
2

C′
2

Fig. 1. Schematic view of the boomerang attack on block ciphers

is quite simple. Assume that we are given a first differential characteristic D1

on the first half of the block cipher which predicts that an input difference Δ
leads to an output difference Δ∗ with probability p1. Then, assume a second
differential on the second half which predicts that an input difference ∇∗ leads
to an output difference ∇ with probability p2. Using these two differentials, we
can draw a diagram (see Figure 1) that involves four plaintext/ciphertext pairs.

This diagram can be turned into an attack as follows. First, the attacker
choses a random plaintext and asks for the encryption of both this plaintext P1

and of the plaintext P2 obtained by xoring P1 with Δ. The resulting ciphertexts
are denoted by C1 and C2. After that, the attacker computes C′1 by xoring C1

with ∇ and C′2 by xoring C2 with ∇. Then, he asks for the decrypted plaintext
P ′1 and P ′2. The key idea of the attack is to remark that when the pair (P1, P2)
follows the Δ differential path and both decryptions follow the ∇ differential
path, then the intermediate values corresponding to P ′1 and P ′2 have the correct
difference Δ∗. If in addition (P ′1, P ′2) is also a correct pair for Δ then the attacker
finds that P ′1 ⊕ P ′2 is Δ.

Assuming independence between the four instances of differential paths, we ob-
tain a probability of success p2

1p
2
2. Basically, this yields a distinguisher that allows

us to make the difference between the block cipher and a random permutation.

3 Adapting the Boomerang Attack to Hash Functions

At first, since many hash functions are based on block ciphers, it seems tempting
to directly apply the boomerang attack to these hash functions, however several
obstructions are quickly encountered and prevent this straightforward approach
from working. In particular, the need for decryption, which is an essential part
of the boomerang attack, can not be available in the context of hash functions.

Yet, we now show that the boomerang attack, and more specifically its chosen
plaintext variant (so-called amplified boomerang attack [9]), can be adapted to



Hash Functions and the (Amplified) Boomerang Attack 247

the hash function setting and yields improvements compared to previously known
differential attacks. The basic idea to adapt the boomerang attack is to use, in
addition to the good global differential path used in the now classical differential
attacks, several partial differential paths which are very good on a limited num-
ber of steps but fail to cover the complete compression function. In order to com-
bine these differential paths together, we use the same basic diagram as with the
boomerang attack against block ciphers. However, some specific obstructions ap-
pear and need to be removed. The first problem, that we already described when
considering the direct application, is the fact that in order to obtain collisions,
we cannot use the compression function in the backward direction. The second
problem is that we no longer have a nice symmetry with two characteristics play-
ing almost the same role. Instead, there is a main differential path which is our
target and some auxiliary paths which help in applying the main one.

M1

h1 ?

M ′
1

h′
1

=⇒ Preserve =⇒

=⇒ Randomize =⇒

M2

h2 ?

M ′
2

h′
2

Fig. 2. Schematic view of the boomerang attack on hash functions

Our adapted boomerang attack on iterated hash functions is based on a sim-
ple basic block, which we now describe. We start from a basic differential path
on an iterated hash function. For the sake of simplicity, we assume that this
differential path is of the simple type which yields a collision after a single it-
eration. Generalizing this description to near-collisions or multiple iterations is
a straightforward matter. The basic differential path consists in a message dif-
ference Δ, possibly completed by a list of restrictions on acceptable messages,
such that the two single block messages M and M ⊕ Δ collide, with probability
pΔ. As usual, this probability do not take into account the so-called early steps
where parts of the message M can be chosen independently of each others. From
now on, we split the rest of the steps into two main parts, the middle steps and
the late steps1. To each part, we associate a corresponding probability pM for
1 In some multi-block attacks, some of the final steps can be treated specifically, ig-

noring partial misbehaviors which can be corrected in the subsequent blocks.



248 A. Joux and T. Peyrin

the middle steps and pF for the late steps. Under a classical step independence
assumption, we have pΔ = pM · pF . The goal of the boomerang based attack is
to improve pM and thus the total complexity of the process. For this, we use
an auxiliary differential path that covers both the early and the middle steps
as a tool. Assume such an auxiliary differential path, that predicts that, with
probability pδ two messages M and M ⊕ δ yield, after the middle steps, two
intermediate internal states with some prescribed (not necessarily null) differ-
ence. Take a message pair M and M ′ = M ⊕ Δ that conforms to the main
differential path on the early and middle steps. Assume that both (M, M ⊕ δ)
and (M ′, M ′ ⊕ δ) conform to the auxiliary differential path. Then, we see that
the internal states differences cancel out, and that the pair (M ⊕ δ, M ′ ⊕ δ)
also conforms to the main differential up to the beginning of the late steps (see
Figure 2). Assuming independence, this pair yields a collision with probability
p2

δ · PF .
The basic block we just described is quite promising. Indeed, when p2

δ < pM

we can expect an improved attack. However, matters are not that simple. Indeed,
unless we are given a first pair (M, M ′), we cannot construct the second pair.
Thus, the basic block, by itself, at best doubles the number of candidate pairs.
Luckily, when a large number of auxiliary differential paths can be found, which
is a reasonable hypothesis since we are dealing with a small number of steps,
we can apply the basic block many times. Assuming that pδ = 1, for each of
t auxiliary differentials, we amplify a single candidate pair into 2t pairs. Of
course, we need to arrange the auxiliary differentials to make sure that they do
not overlap or present other similar incompatibilities. When pδ is smaller than
1 (but not too small), we still amplify a single pair into many.

After this overview of our adapted boomerang attack, the reader may rise two
important objections. The first one is the fact that the independence hypothesis
is extremely unnatural, because all these messages pairs are extremely correlated.
Experimentally, this hypothesis is false, however, we remarked that for well-
chosen differential characteristic, the bias induced by the dependencies is playing
for the attacker and not against him. The main gain is that, since M and M ⊕Δ
gives similar computations, the overall success probability of the two copies of
each auxiliary differential is usually nearer to pδ than p2

δ. The second objection
is that, at first, the early steps do not seem to come for free for the auxiliary
differentials. This would be a major problem, since we want pδ to be much
better than pM . In fact, we propose two different ways of putting together the
message construction and the auxiliary differentials choice in order to effectively
overcome this objection. Depending on the hash function under consideration
and the properties of the differential characteristics in use, each has its own
advantages.

3.1 Neutral Bits Approach

The first way to use the adapted boomerang attack is to note its similarity
with the neutral bit technique proposed by Biham and Chen [1] at Crypto’04.
There, the authors remarked in the case of SHA-0 that given a differential path,



Hash Functions and the (Amplified) Boomerang Attack 249

corresponding to our main path, it is possible to find so-called neutral bits. For a
message pair that conforms to the differential characteristic up to some reference
step, a neutral bit2 is a bit of the message which when its value is flipped yields a
new message pair that still conforms to the main path up to the reference step.
In [1], the neutral bits are found using a guided exhaustive search technique.
We argue that using auxiliary differential paths in place of or in addition to
these neutral bits, leads to a better attack. Otherwise, this way of implementing
our attack closely follows the method of Biham and Chen. The first step is to
identify among a large list of candidate auxiliary differential paths those which
works for the current message pair. Once this is done, we check, one pair at a
time, whether the acceptable differentials are mutually compatible. Even without
writing down the explicit algebraic conditions which need be satisfied for each
differential, it is clear that this pairwise compatibility check only works for pairs
of differential which do not strongly interact3. Then, build a large clique of
mutually compatible differentials in the graph of pairwise compatible ones.

Once this clique is build, assume that it contains t auxiliary differentials and,
using the basic technique presented above, construct the 2t pairs of messages
obtained by adding any subset of these differentials to the original message.
We expect that a good proportion of the derived pairs conforms to the main
characteristic up to the start of the final steps.

The main drawback of this technique is that the auxiliary differentials do not
take advantage of the free early steps. Indeed, the original message pair is chosen
independently of them, thus some probability must be paid for the early steps.
This prevents us from using auxiliary differentials which are very good in the
middle range but have a low probability of success in the early steps. It can be
improved by trying to use the free steps both on the main characteristic path
and on the auxiliary paths. However, if too many auxiliary paths are considered
during a single step, the probability of making a correct choice becomes too low
and no initial message pair can be constructed. The second approach given below
gives a way out of this dilemma.

3.2 Explicit Conditions Approach

In order to get a good set of auxiliary characteristics, it is preferable to construct
the first message pair carefully, forcing it to conform both to the main differential
path and to the chosen auxiliary paths in the early steps. In order to do this,
we should write down explicit conditions on bit values that are sufficient for
each auxiliary characteristic to hold (or at least such that pδ is increased). Once
this is done, we can check whether the condition of the various characteristics
are mutually compatible and, if so, we can choose the message values for each
of the early steps, except the last one or two, in order to satisfy these explicit
2 Here the term bit is taken in its information theoretic sense and may be a group of

several elementary message bits which are all flipped simultaneously.
3 Some long range interaction, such as carry propagation over several bits may be

overlooked. However, they rarely occur anyway and can be ignored in a first approx-
imation.



250 A. Joux and T. Peyrin

conditions. In the sequel, we call the partial message resulting from these choices
a message seed. Note that, while simple as a principle, this approach requires a
lot of specific work for each hash function in order to find a good way of writing
and satisfying these explicit conditions.

After building a message seed, we can complete it in many ways on the one
or two missing blocks to get an initial message pair. If the pair conforms to the
main differential path far enough, we can use the neutral bit technique described
above on the message pair, using as neutral bits the set of auxiliary paths that we
have forced into the message. Compared to the straight neutral bit approach, the
resulting auxiliary paths on the message pair are much more effective. Moreover,
with this approach, we may be able to build auxiliary differential paths remaining
conformant for more steps than in the case of neutral bits. In other words, the
final steps will contain less steps than in the classical attacks such as neutral
bits or message modification, and the total complexity will therefore decrease.
To resume, while more complicated to set up in practice, this approach yields
much better attacks.

For this method to succeed, we have to be able to build a main differential
path containing all the sufficient conditions needed for every auxiliary differential
paths we are planing to use. In order to make the approach efficient in practice, it
would be very useful to have an automated tool that generates a main differential
path satisfying those conditions. The availability and efficiency of such a tool
greatly depend on the hash function we are considering. In the sequel, we show
that the path generator proposed by De Cannière and Rechberger in [3] for SHA-1
can be used together with our boomerang approach.

4 Application to SHA-1

In this section, we show how our new attack applies for the case of SHA-1. After
a short description of the algorithm and the state-of-the-art attacks, we explain
how to build auxiliary differential paths, place them in a main differential path
and use them during the collision search.

4.1 A Short Description of SHA-1

SHA-1 is a 160-bit dedicated hash function based on the design principle of MD4.
Like most hash functions, SHA-1 uses the Merkle-Damg̊ard paradigm [6,11] and
thus only specifies a compression function. After a padding process, the message
is divided into k blocks of 512 bits. At each iteration of the compression function
h, a 160-bit chaining variable cvi is updated using one message block mi+1, i.e.
cvi+1 = h(cvi, mi+1). The initial value cv0 (also called IV) is predefined and cvk

is the output of the hash function.
The SHA-1 compression function is build upon the Davies-Meyer construction.

It uses a function E as a block cipher with cvi for the message input and mi+1

for the key input, a feed-forward is then needed in order to break the invertibility
of the process: cvi+1 = E(cvi, mi+1)⊕ cvi. This function is composed of 80 steps



Hash Functions and the (Amplified) Boomerang Attack 251

(4 rounds of 20 steps), each processing a 32-bit message word Wi to update 5 32-
bit internal registers (Ai, Bi, Ci, Di, Ei). Since more message bits than available
are utilized, a message expansion is therefore defined.

Message expansion. First, mi is split into 16 32-bit words M0, . . . , M15. These
16 words are then expanded linearly into 80 32-bit words Wi, as follows:

Wi =
{

Mi, for 0 ≤ i ≤ 15
(Wi−3 ⊕ Wi−8 ⊕ Wi−14 ⊕ Wi−16) � 1, for 16 ≤ i ≤ 79

State update. First, the chaining variable cvi is divided into 5 32-bit words
to fill the 5 registers (Ai, Bi, Ci, Di, Ei). Then we apply 80 times the following
transformation:

STEPi+1 :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ai+1 = (Ai � 5) + fi(Bi, Ci, Di) + Ei + Ki + Wi,
Bi+1 = Ai,
Ci+1 = Bi � 2,
Di+1 = Ci,
Ei+1 = Di.

where Ki are predetermined constants and fi are boolean functions defined in
Table 1:

Table 1. Boolean function and constants in SHA-1

round step i fi(B,C, D) Ki

1 1 ≤ i ≤ 20 fIF = (B ∧ C) ⊕ (B ∧ D) 0x5a827999

2 21 ≤ i ≤ 40 fXOR = B ⊕ C ⊕ D 0x6ed6eba1

3 41 ≤ i ≤ 60 fMAJ = (B ∧ C) ⊕ (B ∧ D) ⊕ (C ∧ D) 0x8fabbcdc

4 61 ≤ i ≤ 80 fXOR = B ⊕ C ⊕ D 0xca62c1d6

We refer to [13] for a more exhaustive description. Note that all updated
registers but Ai+1 are just rotated copies, so we only need to consider the register
A at each iteration. Thus, we have:

Ai+1 = (Ai � 5) + fi(Ai−1, Ai−2 � 2, Ai−3 � 2) + (Ai−4 � 2) + Ki + Wi.

4.2 Previous Attacks on SHA-1

Lots of research on SHA-1 has been conducted recently, but the major break-
through has been published by Wang et al. [22]. They provided the first collision
attack against the full SHA-1 algorithm, requiring only 269 message modifica-
tions, which is lower than the 280 hash computations expected for an ideal 160-
bit hash function. This attack is possible thanks to a non-linear main differential



252 A. Joux and T. Peyrin

path for SHA-1, given in the original paper. They also use a tool called message
modification technique that allows to build a message pair of messages conform-
ing to the main differential on the early and middle steps (approximatively step
22), thanks to clever modifications of message bits. Later, an unpublished re-
sult [20,21] claimed that using another non-linear main differential with more
complex message modification techniques, one can keep the conformance up to
step 25 approximatively and thus lower the complexity down to 263 message mod-
ifications. The main problem with this approach is that message modifications
can be costly during the collision attack and only the ones for the differential
path in [22] are known. Note however that some recent work [17] tried to theorize
this method.

Very recently, an interesting approach has been published by De Cannière and
Rechberger [3] in order to find non-linear main differential paths in an automatic
way. By introducing a sharp method to compute the probability of conformance
and the number of messages (called nodes) one has to deal with at each step,
they can use a heuristic algorithm to converge to a valid non-linear main differ-
ential path (prebuild from the Wang et al.’s disturbance vector). This algorithm
allowed to compute a 2-block collision on a 64-step reduced version of SHA-1
(and more recently on a 70-step reduced version [4]). Note that this automatic
tool did not improve the complexity of the previously explained collision attack
against full SHA-1, since a non-linear main differential path was already known
for that case.

We will show that using the boomerang attack for hash functions, we can
improve the collision attacks for SHA-1 of a factor 32. We managed to place five
auxiliary differentials maintaining conformance up to step 28 or even further
(compared to step 25 approximatively for neutral bits or message modification).
Another advantage of our new method is that once an auxiliary differential path
is settled, the cost for using it is null, unlike the message modification case which
can be quite demanding in terms of complexity [17]. The complex part of the
boomerang attack in the explicit conditions approach only takes place during
the main differential construction.

4.3 Building Auxiliary Differential Paths

In this section, our goal is to give an insight on how to build auxiliary differential
paths for SHA-1. We want those paths to conform to the main differential one
as far as possible. Since in the explicit conditions approach the main path is not
yet known at this stage, a natural method would be to find auxiliary differentials
leading to a collision on a late step. We also want the auxiliary differential paths
to be as light as possible. If not so, the number of necessary conditions to have
pδ 	 1 would quickly grow and this would be a problem while using the main
path automated generator, which needs a lot of degrees of freedom in the message
and in the registers.

Building a good auxiliary differential path is very close to building a main
differential one. As observed in the latter case, the sparser the better. So in order
to find good paths, we will use a well known tool for SHA-1 or SHA-0, introduced



Hash Functions and the (Amplified) Boomerang Attack 253

in [5]: the local collisions. This technique seems to make the attacker’s job much
more easier and minimize the number of differences one has to deal with. The
idea is to avoid the inserted differences (called perturbations or disturbance
vector) to spread among the registers by applying the necessary corrections
on the expanded message (the perturbations and the corrections will therefore
define the difference in the message). The problem arise that since the message
is expanded, we do not have full control over the disturbance vector and thus
this vector must respect the expansion as well. This is important when one has
to build a main differential path, but here the problem is much more relaxed as
we only deal with a few number of steps.

Local collisions. By inserting a difference on W j
i at step i+1, another difference

will appear on Aj
i+1. Note that a propagation of the difference to other bits of

Ai+1 may occur due to carry effect. To avoid this, we can set W j
i = Aj

i+1. Then,
at step i+2, the difference in Aj

i+1 needs to be corrected and this can be done by

setting W j+5
i+1 = Aj

i+1. For steps i + 3 to i + 5, the behaviour highly depends on
the boolean function fi we are using (and thus the round we are into). Finally,
at step i + 6, we set W j−2

i+5 = Aj
i+1 to correct the difference in Aj

i+1. At this
point, we achieve the local collision: no more difference will appear in the next
steps. We give in Table 2 all the constraints corresponding to the first round
case (fi = fIF ). If one respects all those constraints, the local collision occurs
with probability 1.

Now that we know how to build local collisions, how do we use them ? We
want the number of perturbations inserted in the early steps to be as low as

Table 2. Constraints for a local collision with a perturbation on W j
i for the first round

of SHA-1

step type constraints

i + 1 no carry W j
i = a, Aj

i+1 = a

i + 2 correction W j+5
i+1 = a

i + 3 no correction Aj+2
i−1 = Aj+2

i

correction Aj+2
i−1 �= Aj+2

i , W j
i+2 = a

i + 4 no correction Aj−2
i+2 = 0

correction Aj−2
i+2 = 1, W j−2

i+3 = a

i + 5 no correction Aj−2
i+3 = 1

correction Aj−2
i+3 = 0, W j−2

i+4 = a

i + 6 correction W j−2
i+5 = a



254 A. Joux and T. Peyrin

possible (at most 5 in practice), in order to minimize the number of constraints
on the message and the registers. Moreover, we want the auxiliary path to collide
at some middle step k (with k ≥ 25 in practice). It seems pretty clear that one
will achieve this minimization by setting all the corrected perturbations in the
16 first message blocks on the same bit position, as remarked for the main dif-
ferential path. Our goal is thus to have the first uncorrected perturbation as late
as possible. By brute-forcing all the possibilities of this 16-bit mask and all the
possibilities of propagation and corrections into the local collisions (correspond-
ing to the fIF case for round 1), we managed to find a lot of candidates (i.e. no
difference in registers Ak−4 to Ak). However, we added a filter: no perturbation
should occur from W15 to Wk−1 (note that a perturbation on Wk necessarily
exists since we have the first difference on Ak+1). Indeed, a corrected pertur-
bation introduced after step 14 would force some constraints on the message
and the register outside the early steps where we have degrees of freedom. This
would harden the final search of colliding messages. We even sharpen the filter
by setting no perturbation from W11 to Wk−1 to avoid problems with wrong bit
position corrections due to the rotation in the expansion for the case SHA-1 (if
the perturbation would occur on a bit j, some corrections would apply on bit
j +1 and thus introduce unwanted differences). Finally, our auxiliary differential
path will have no difference from register A12 to Ak. Note that a general rotation
on the bit position does not change the validity of an auxiliary path.

We give in Table 3 the disturbance vector and the differences on the message
for an auxiliary differential path with only three perturbations. In this example,
the first uncorrected perturbation (underlined) comes on W j

24 and thus we get a
collision at step 24. Here the three perturbations apply on step 1, 3, 11 and the
corresponding constraints to force pδ = 1 are depicted in Table 4. Each bit a, b, c,
d, e, f can take any value, as long as the a, b, c, d, e, f constraints are fulfilled.

Table 3. Example of an auxiliary differential path, with the perturbation mask and its
corresponding message differences for the 32 first steps. The rotation in the expansion
is not taken in account.

W0 to W15 W16 to W31

perturbation mask 1010000000100000

differences on W j 1010000000100000 0000000010110110

differences on W j+5 0101000000010000 0000000001011011

differences on W j−2 0001111100000011 0000000000001110

We previously claimed that we were looking for an auxiliary differential path
with k ≥ 25, so why do we presented a k = 24 one ? In fact, even if a perturbation
appears at step 25, there is a great probability, depending on the main differential
path, that our pair remains conformant for some more steps4. We experimentally
4 Said in other words, our auxiliary differential path will have a non-zero output

difference.



Hash Functions and the (Amplified) Boomerang Attack 255

Table 4. Example of an auxiliary differential path in the case j = 2: the constraints
on the registers and on the message blocks. The MSB’s are on the right and “-” stands
for no constraint.

i Ai Wi

-1: ---------------------------d----
00: ---------------------------d---- -----------------------------a--
01: ---------------------------e-a-- ------------------------a-------
02: ---------------------------e---1 -----------------------------b--
03: -----------------------------b-0 ------------------------b------a
04: -------------------------------0 -------------------------------a
05: -------------------------------0 -------------------------------a
06: -------------------------------- -------------------------------b
07: -------------------------------- -------------------------------b
08: -------------------------------- --------------------------------
09: ---------------------------f---- --------------------------------
10: ---------------------------f---- -----------------------------c--
11: -----------------------------c-- ------------------------c-------
12: -------------------------------0 --------------------------------
13: -------------------------------0 --------------------------------
14: -------------------------------- -------------------------------c
15: -------------------------------- -------------------------------c

observed that this greatly depends on the bit position j where we plan to apply
our auxiliary path, and the perturbation vector of the main path. For some
very few values of j, the auxiliary differential has a small probability to succeed.
However, in general, we have a good probability that a first perturbation at step
n does not change the main differential conformance of a pair of messages up to
step n + 4. We just have to choose the j values by avoiding critical positions.

4.4 Placing Auxiliary Differential Paths

We set ourselves in the case of a 2-block collision attack for SHA-1. For more
details, we refer to [3]. The first part is thus to find a valid main path for the
first block (with no difference on the IV). At this stage, our goal is to get the
biggest clique of auxiliary differential paths by placing them in a main one. Since
the main differential path automated tool from De Cannière and Rechberger is
a heuristic algorithm, placing auxiliary paths in a main one is not a formal
science. We tried different techniques but the best one seemed to be to force as
much space between the constraints as we could. Note that when placing several
auxiliary differential paths, some of them may have constraints in common.
Even if not dramatic, we preferred to avoid this situation and strengthen the
independence between the auxiliary paths (and thus use them as a clique as for
neutral bits). Moreover, some positions are forbidden as the constraints on the
message must apply on no-difference bits of the message only (otherwise, one of
the message pair would not follow the auxiliary path). Lots of parameters are
available when implementing or using the main differential automated tool and



256 A. Joux and T. Peyrin

they highly influence the number of auxiliary constraints one can force. However,
due to space restrictions, we omitted those details here.

We quickly recall in Table 5 the notations used in [3], but we encourage the
reader to glance through the original paper. The final main path presented in
Tables 8 and 9 contains the constraints of five independent auxiliary paths given
in Table 3 and Table 4 at positions j = {9, 12, 15, 18, 21}.

Note that the auxiliary differential path used here has constraints on the
IV (Aj+2

−1 = Aj+2
0 in Table 4). It expresses the equality between two bits and

thus happens with probability 1/2 for each auxiliary differential. The prepended
message computed to get the IV used in Table 8 is given in Table 6.

4.5 Using Auxiliary Differential Paths

Once a differential path is settled, one can easily generate a message instance con-
formant up to the end of the early steps since at this point the message blocks
can be fixed independently. De Cannière and Rechberger use this fast gener-
ating technique coupled with a refinement of the differential path. Advanced
approaches such as neutral bits or message modifications can decrease the com-
plexity of the final attack, even if their power is reduced for SHA-1 compared
to the SHA-0 case5. The boomerang attack for hash functions can be viewed as
a generalization of those techniques and thus can be used as a neutral bits or
message modification tool:

Neutral bit based. The easiest approach is to use a generalization of Biham
and Chen neutral bit implementation guidelines together with two levels of mes-
sage diversification. First, one constructs a base message with a large clique of
simultaneously neutral bits which are in addition compatible with the auxiliary
differential path. Then, one launches an enumeration that starts from this initial
message and applies the neutral bits (using a Gray code encoding for efficiency).
This yields many message pairs that follow the main differential path quite far.
When the enumeration finds a message conformant up to round 25, a second level
of enumeration diversifies this message using the auxiliary paths. The advantage
of this technique is that it is quite easy to implement and that the neutral bits
and the auxiliary paths can be addressed using very similar treatments. The
main drawback is the gap between the range of ordinary neutral bits and the
range of the auxiliary paths, which is a bit too wide and thus wastes degree of
freedom in the message, compared to the theoretic complexity gain.

Message modification based. From a theoretical point of view, a message
modification approach seems better. Indeed, the current best attack is message
modification based and using it avoids the initial loss seen with the neutral bit
approach. However, in addition to the implementation difficulties, using message
5 some conditions on the message words coming from the late steps have to be fulfilled

and in SHA-1 the rotation in the message expansion greatly increase the number of
impacted message bits. This harden the neutral bits or message modification work
since one has to check that the conditions remain valid after their use.



Hash Functions and the (Amplified) Boomerang Attack 257

modification involves a much higher cost per message pair than the neutral bit
approach. As a consequence, the apparent theoretical gain is less clear in practice.

Right now, our implementation of these ideas is not fast enough to allow
full scale attacks. However, once an initial pair is found, the multiplicative effect
works very well. For example, in Table 7 is the first message of a pair conformant
until step 29, following the differential path from Table 8. Using the auxiliary
differential paths provide 25 new conformant messages, the conformance limit
is always between step 27 and 29. Note that this group of message words was
generated using the neutral bit technique. This has the side effect of slightly
changing the main characteristic during the message generation. More precisely,
some bits (a, b or c in Table 4) of the auxiliary characteristics are flipped. Bit a
is changed for the characteristic in positions 9,12,15; bit b for 12,15,18 and bit
c for 15,18. The flipped bits are underlined in the given message. Of course, the
slightly modified characteristic is still correct and compatible with the auxiliary
ones (the 5 auxiliary differential paths remain valid).

4.6 Complexity Analysis for a Full Collision Attack

The literature has provided two ways of computing the complexity of a 2-block
collision attack against SHA-1 : the number of conditions introduced by Wang
et al. or the number of nodes introduced by C. De Cannière and C. Rechberger.
Whatever the original collision attack we are using, our improvement decreases
the complexity of a factor 32 since no message modification technique nor neutral
bit can keep the conformance later than step 25. Moreover, the probability that
a message being valid at step 25 is also valid at step 28 is lower than 2−5.

We do not provide here any main path with auxiliary differentials for the second
block since one needs the first block output values. However, experiments showed
the same behaviour as for the first block case and the authors believe that the
same technique can apply for the second part of the 2-block collision attack.

The reader could argue that we gave a differential path for the first block
with a prepended message leading to an IV with chosen properties, and this
will not be available for the second block stage of the attack. First, one has to
note that the IV defined by the specifications of SHA-1 is strongly structured.
Moreover, in a 2-block collision for SHA-1 the first block part costs much less
than the second one (about a factor of 8), due to the possible misbehaviour of
the final steps for the first block. Thus, by executing several times a first block
research, the general complexity is not increased and we have enough degrees of
freedom to start properly the second block: assuming the positions where we are
placing the auxiliary differentials paths for the second block, the probability of
satisfying the 5 constraints is 2−5 and 32 trials are required. However, this is not
the case here since when reaching the end of the first block, the idea is to look at
the available positions for including auxiliary differential. If enough positions are
available, we try to construct a compatible main path. Thus, instead of having a
single possibility with probability 2−5, we have many. Experimentally, less than
4 tests of prepended messages are needed to apply the boomerang attack with
five auxiliary paths.



258 A. Joux and T. Peyrin

5 Conclusion

In this paper, we showed that the boomerang attack which was initially devised
as a cryptanalytic tool for block ciphers can be adapted to apply on iterated
hash functions. Since the attacker model is quite different, due to the absence of
keys and the impossibility to use a chosen ciphertext attack, the adaptation is
not straightforward. Nonetheless, this new method leads to an improved crypt-
analytic technique.

In order to illustrate this technique, we applied it to SHA-1 and obtained a
significant improvement for collision attacks on this hash function. We believe
that this method would also be powerful against other hash functions. Applying
boomerang attack against SHA-0 or MD5 would be an interesting research topic.
It may also be worth looking for more general auxiliary differential paths, for
example by letting some local collisions slightly behave in a non-linear manner.
Another future work could be to find a way to place more auxiliary differential
paths in the main differential one, and thus lower the final complexity.

Acknowledgements

The authors would like to thank Christophe De Cannière and Christian Rech-
berger for their helpful advices when implementing their non-linear differential
path automatic search tool.

References

1. Biham, E., Chen, R.: Near-Collisions of SHA-0. In: Franklin, M. (ed.) CRYPTO
2004. LNCS, vol. 3152, pp. 290–305. Springer, Heidelberg (2004)

2. Biham, E., Chen, R., Joux, A., Carribault, P., Lemuet, C., Jalby, W.: Collisions of
SHA-0 and Reduced SHA-1. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS,
vol. 3494, pp. 36–57. Springer, Heidelberg (2005)

3. De Cannière, C., Rechberger, C.: Finding SHA-1 Characteristics: General Results
and Applications. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284,
pp. 1–20. Springer, Heidelberg (2006)

4. Rechberger, C., De Cannière, C., Mendel, F.: In: Rump Session of Fast Software
Encryption – FSE 2007 (2007)

5. Chabaud, F., Joux, A.: Differential Collisions in SHA-0. In: Krawczyk, H. (ed.)
CRYPTO 1998. LNCS, vol. 1462, pp. 56–71. Springer, Heidelberg (1998)

6. Damg̊ard, I.: A Design Principle for Hash Functions. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 416–427. Springer, Heidelberg (1990)

7. Dobbertin, H.: Cryptanalysis of MD4. In: Gollmann, D. (ed.) Fast Software En-
cryption. LNCS, vol. 1039, pp. 53–69. Springer, Heidelberg (1996)

8. Joux, A., Peyrin, T.: Message modification, neutral bits and boomerangs. In: Pro-
ceedings of NIST 2nd Cryptographic Hash Workshop (2006)

9. Kelsey, J., Kohno, T., Schneier, B.: Amplified Boomerang Attacks Against
Reduced-Round MARS and Serpent. In: Schneier, B. (ed.) FSE 2000. LNCS,
vol. 1978, pp. 75–93. Springer, Heidelberg (2001)



Hash Functions and the (Amplified) Boomerang Attack 259

10. Klima, V.: Tunnels in Hash Functions: MD5 Collisions Within a Minute. ePrint
archive (2006), http://eprint.iacr.org/2006/105.pdf

11. Merkle, R.C.: One Way Hash Functions and DES. In: Brassard, G. (ed.) CRYPTO
1989. LNCS, vol. 435, pp. 428–446. Springer, Heidelberg (1990)

12. National Institute of Standards and Technology. FIPS 180: Secure Hash Standard
(May 1993) available from http://csrc.nist.gov

13. National Institute of Standards and Technology. FIPS 180-1: Secure Hash Standard
(April 1995) available from http://csrc.nist.gov

14. National Institute of Standards and Technology. FIPS 180-2: Secure Hash Standard
(August 2002) available from http://csrc.nist.gov

15. Rivest, R.L.: RFC1321: The MD5 Message-Digest Algorithm (April 1992 ) available
from http://www.ietf.org/rfc/rfc1321.txt

16. R.L. Rivest. RFC 1320: The MD4 Message Digest Algorithm (April 1992), http://
www.ietf.org/rfc/rfc1320.txt

17. Sugita, M., Kawazoe, M., Imai, H.: Gröbner Basis based Cryptanalysis of SHA-
1. In: Fast Software Encryption – FSE’07. LNCS, Springer, Heidelberg (2007),
http://eprint.iacr.org/2006/098.pdf (to appear)

18. Wagner, D.: The Boomerang Attack. In: Knudsen, L.R. (ed.) FSE 1999. LNCS,
vol. 1636, pp. 156–170. Springer, Heidelberg (1999)

19. Wang, X., Lai, X., Feng, D., Chen, H., Yu, X.: Cryptanalysis of the Hash Functions
MD4 and RIPEMD. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494,
pp. 1–18. Springer, Heidelberg (2005)

20. Wang, X., Yao, A.C., Yao, F.: Cryptanalysis on SHA-1. In: Proceedings of NIST
Cryptographic Hash Workshop (2005)

21. Wang, X., Yin, Y.L., Yu, H.: New Collision Search for SHA-1. In: Rump Session
of CRYPTO (2005)

22. Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)

23. Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: Cramer,
R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg
(2005)

24. Wang, X., Yu, H., Yin, Y.L.: Efficient Collision Search Attacks on SHA-0. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 1–16. Springer, Heidelberg
(2005)

http://eprint.iacr.org/2006/105.pdf
http://csrc.nist.gov
 http://csrc.nist.gov
http://csrc.nist.gov
http://www.ietf.org/rfc/rfc1321.txt
http://www.ietf.org/rfc/rfc1320.txt
http://www.ietf.org/rfc/rfc1320.txt
http://eprint.iacr.org/2006/098.pdf


260 A. Joux and T. Peyrin

Appendix

Table 5. Notations used in [3] for a differential path: x represents a bit of the first
message and x∗ stands for the same bit of the second message

(x, x∗) (0, 0) (1, 0) (0, 1) (1, 1)
? � � � �
- � - - �
x - � � -
0 � - - -
u - � - -
n - - � -
1 - - - �
# - - - -

(x, x∗) (0, 0) (1, 0) (0, 1) (1, 1)
3 � � - -
5 � - � -
7 � � � -
A - � - �
B � � - �
C - - � �
D � - � �
E - � � �

Table 6. Message prepended to start with the IV used in Table 8

W0 0x63e045ce

W1 0x362a3ed8

W2 0x5c333351

W3 0x76481862

W4 0x71a360ab

W5 0x25e16eb9

W6 0x0419a9c2

W7 0x5977272f

W8 0x24b67e5d

W9 0x3898e2dd

W10 0x18be4543

W11 0x60746d11

W12 0x4cd56e7c

W13 0x1589d326

W14 0x19bab19c

W15 0x5fa6c656



Hash Functions and the (Amplified) Boomerang Attack 261

Table 7. First message (in binary and hexadecimal) of an example pair following
differential path from Table 8, conformant until step 29. Bits underlined are the bits
flipped in the the main differential path from Table 8 due to the neutral bits technique.

M0 11111101100111111111011111111011 0xfd9ff7fb

M1 01110101000001010011111101110001 0x75053f71

M2 00011100000111010111001100011111 0x1c1d731f

M3 00000111001110000000001001111001 0x07380279

M4 11110101101011101000100000101001 0xf5ae8829

M5 00110101111110101100101101010011 0x35facb53

M6 00010000011111001010101100011001 0x107cab19

M7 10100110111111100110001101101001 0xa6fe6369

M8 01001000001100111010100101011101 0x4833a95d

M9 01100000000110110110100111101100 0x601b69ec

M10 10100011010010100100111001100100 0xa34a4e64

M11 01011100100111101011111100100111 0x5c9ebf27

M12 10111011010000110101001001110111 0xbb435277

M13 10100101011101110100110011010100 0xa5774cd4

M14 11111110011110111011010000000000 0xfe7bb400

M15 10110101001110111010110101101011 0xb53bad6b



262 A. Joux and T. Peyrin

Table 8. Steps 1 to 39 of the main differential path of the first block. The constraints
needed for the first auxiliary differential path (in position j=9) are underlined.

i Ai Wi

-4: 00101001010011011100100101000111
-3: 00000111100001000110010101100010
-2: 11011000010000101001111101011111
-1: 01011011110111101101101111010001
00: 01000010101101110111101110011011 1uu11101100111110110--0111111011
01: n1n010111001011001001-0100100110 nuu101-10001011--111111101u1n0n1
02: 1nu11--01111101111101101111111u1 --n11-----0-10-1111000110n0111uu
03: nnu00-----0-00-0110000110111110n x-nn-1--1--01010001001--1u111001
04: u010u11-0--00010010110-1010un0u1 uu-u0-------11-0--1011001n1n10nu
05: 1001u00-0--000000000001u00011010 nn-u0------11010111--1--11n100u1
06: 011unnnnnnnnnnnnnnn1---110n001uu 00n-------1-1--1--00111100011001
07: u110-01000000u010110nu111uu1010n 1nu001------1--1-100-1-10-un-0n-
08: 1111010111111---011unu110-0--nu1 -un0----------11---------u0111nu
09: -0010---1--1--01-0u-10nnnnu01010 --u0-------------1--1001-u1--100
10: --------1--1--0--01-101nu1111u10 xxu00-----0--1--1--0--1--u----n-
11: 0---------0--1--1--0n-100nn0u1n0 -xn--1--0--0--1--0---11-0010--x-
12: 0---0-------0--0--0--01-010n1-nn x------------------------------u
13: 00----------0--0--0--00100n0n-00 --10------------------0--1n1----
14: -0--0-----------------10001u0un- ---1--------1--0--0--1--000---xn
15: n-----------------------unnn1101 -x-10-------1--0--0--1--0u-n--u-
16: --1---------------------1--nu001 -n0---------------------1u0-----
17: n-0-----------------------111-0n xxn-----------------1---1u-x--n-
18: -11-------------------------101- x-u1--------------------0----0--
19: ------------------------------u- x----------------------11n------
20: -------------------------------- --x----------------------------x
21: -------------------------------x --n----------------------xx-----
22: -------------------------------- x-----------------------1------x
23: ------------------------------x- -x-----------------------x----x-
24: ------------------------------x- xu-----------------------x----xx
25: -------------------------------x -x------------------------x---x-
26: -------------------------------- ------------------------------xx
27: ------------------------------x- -x-----------------------x----x-
28: ------------------------------x- xx-----------------------x----xx
29: -------------------------------x xx------------------------x---x-
30: -------------------------------- -------------------------------x
31: -------------------------------- -x----------------------------x-
32: ------------------------------x- xx-----------------------x----xx
33: -------------------------------x -x-----------------------xx---x-
34: -------------------------------- x------------------------------x
35: ------------------------------x- -x-----------------------x----x-
36: ------------------------------x- -x-----------------------x----x-
37: -------------------------------- -x----------------------------x-
38: -------------------------------- ------------------------------x-
39: ------------------------------x- -------------------------x------

· · · · · ·



Hash Functions and the (Amplified) Boomerang Attack 263

Table 9. Steps 40 to 80 of the main differential path of the first block

i Ai Wi

· · · · · ·
40: -------------------------------- x-----------------------------x-
41: -------------------------------- x-------------------------------
42: -------------------------------- x-----------------------------x-
43: ------------------------------x- x------------------------x------
44: -------------------------------- --------------------------------
45: ------------------------------x- x------------------------x------
46: -------------------------------- x-------------------------------
47: ------------------------------x- -------------------------x------
48: -------------------------------- x-------------------------------
49: ------------------------------x- -------------------------x------
50: -------------------------------- x-----------------------------x-
51: -------------------------------- --------------------------------
52: -------------------------------- x-------------------------------
53: -------------------------------- x-------------------------------
54: -------------------------------- --------------------------------
55: -------------------------------- --------------------------------
56: -------------------------------- --------------------------------
57: -------------------------------- --------------------------------
58: -------------------------------- --------------------------------
59: -------------------------------- --------------------------------
60: -------------------------------- --------------------------------
61: -------------------------------- --------------------------------
62: -------------------------------- --------------------------------
63: -------------------------------- --------------------------------
64: -------------------------------- -----------------------------x--
65: -----------------------------x-- ------------------------x-------
66: -------------------------------- -----------------------------x--
67: -------------------------------- ----------------------------x--x
68: ----------------------------x--- -----------------------x-------x
69: -------------------------------- ----------------------------x--x
70: -------------------------------- ---------------------------x--x-
71: ---------------------------x---- ----------------------x-------x-
72: -------------------------------- ---------------------------xx-x-
73: ----------------------------x--- -----------------------x--x--x--
74: --------------------------x----- ---------------------x------xx--
75: -------------------------------- --------------------------x--xx-
76: -------------------------------- -------------------------x--x-x-
77: -------------------------x------ --------------------x-------x-x-
78: -------------------------------- -------------------------xx-----
79: --------------------------x-x--- ---------------------x-xx--x----
80: ------------------------x-------



Amplifying Collision Resistance:
A Complexity-Theoretic Treatment

Ran Canetti1,�, Ron Rivest2, Madhu Sudan2,
Luca Trevisan3,��, Salil Vadhan4,� � �, and Hoeteck Wee3,†

1 IBM Research
canetti@us.ibm.com

2 MIT CSAIL
{rivest,madhu}@mit.edu

3 UC Berkeley
{luca,hoeteck}@cs.berkeley.edu

4 Harvard University
salil@eecs.harvard.edu

Abstract. We initiate a complexity-theoretic treatment of hardness amplification
for collision-resistant hash functions, namely the transformation of weakly
collision-resistant hash functions into strongly collision-resistant ones in the
standard model of computation. We measure the level of collision resistance
by the maximum probability, over the choice of the key, for which an efficient
adversary can find a collision. The goal is to obtain constructions with short
output, short keys, small loss in adversarial complexity tolerated, and a good
trade-off between compression ratio and computational complexity. We provide
an analysis of several simple constructions, and show that many of the parameters
achieved by our constructions are almost optimal in some sense.

Keywords: collision resistance, hash functions, hardness amplification, combin-
ers.

1 Introduction

Constructing collision-resistant hash functions is a central problem in cryptography,
both from the foundational and the practical points of view. The goal is to construct
length-decreasing functions for which it is infeasible to find two distinct inputs with
the same output. This problem has received much attention over the past two decades.
Still, coming up with constructions that are efficient enough to be of use in practice
and at the same time enjoy rigorous security guarantees (say, based on the hardness
of some well-studied problem) has turned out to be elusive. We also seem unable to
construct collision-resistant functions from potentially simpler primitives, c.f. [25]. The

� Supported by NSF grants CFF-0635297 and Cybertrust 0430450.
�� Supported by NSF grant CCF-0515231.

� � � Supported by NSF grants CNS-0430336 and CCF-0133096, and ONR grant N00014-04-1-
0478.

† Work done while visiting IBM Research, IPAM and Columbia University, the latter
supported by NSF grants CCF-0515231 and CCF-0347839.

A. Menezes (Ed.): CRYPTO 2007, LNCS 4622, pp. 264–283, 2007.
c© International Association for Cryptologic Research 2007



Amplifying Collision Resistance: A Complexity-Theoretic Treatment 265

problem is highlighted by the repeated attacks on the popular MD4, MD5 and SHA1
hash functions (refer to [20] and references therein).

Given this state of affairs, it is natural to ask whether one can “bootstrap” collision
resistance by constructing “full-fledged” collision-resistant hash functions (CRHF)
from “weak” ones. That is, are there general mechanisms for transforming hash
functions, for which it is “somewhat easy” (but not completely trivial) to find collisions,
into one for which it is infeasible to find collisions? In addition to providing rigorous
ways to improve the collision resistance of hash functions, such mechanisms could in
themselves suggest methodologies for constructing hash functions “from scratch”.

Several works propose design principles for hash functions, e.g. [17,4,14,3]. These
mechanisms can indeed be regarded as “hardness amplification” mechanisms for
collision-resistant hash functions. However, with the exception of [4], which concen-
trates on increasing the domain size of the hash function, all the analyses provided
for these mechanisms use idealized models of computation, such as modeling the
underlying building blocks as random functions. Consequently, we do not currently
have constructions that are guaranteed to provide some level of collision resistance
in the standard model of computation, under the sole assumption that the underlying
building blocks have some weaker collision resistance properties. (Recently, the closely
related problem of constructing “combiners” for hash functions has been studied in the
standard model [2,19]; we discuss this problem in more detail below.)

This state of the art should be contrasted with the “sister problem” of constructing
one-way functions. Here we have a well-established theory of hardness amplification
[27] (see also [11]). That is, we have concrete notions of “strength” of one-way
functions, and constructions that are guaranteed to provide “strong” one-way functions
based on the sole assumption that the underlying building block is a “weak” one-way
function. Several lower bounds for “black-box” hardness amplification are also known,
e.g. [23,15].

We note that collision resistance often exhibits very different properties than one-
wayness. For one, constructing collision-resistant hash functions calls for different
design principles (e.g. the proposed expander-based one-way function of [10] is very
bad as a collision-resistant function). Furthermore, both practice and theory indicate that
collision resistance is considerably harder to achieve than one-wayness, e.g. [6,26,25].
Still, except for some specific points highlighted within, we show that it is possible to
translate much of the analysis used in the study of amplification of one-wayness to the
setting of collision resistance.

1.1 This Work

We initiate a study of amplification of collision resistance, in a standard reductionist
complexity-theoretic framework. That is, we first provide a measure for the “level”
of collision resistance of hash functions. We then consider some constructions and
quantitatively analyze the amount in which they amplify the collision resistance, along
with a number of efficiency parameters (discussed below).

Model for hash functions. Following [4], we model hash functions as a family of
functions, where a function in the family is specified via a key. Security is analyzed



266 R. Canetti et al.

for the case where the key is chosen at random (from the space of keys) and made
public. We point out several advantages of this approach. Refer to [21] for a more
detailed discussion. First, it allows for a natural modeling of the adversary as an
algorithm (a circuit) that takes for input a key κ identifying a function hκ in the
family and tries to output a collision x0 �= x1 such that hκ(x0) = hκ(x1). (Such
modeling is not possible for single functions since for any length-reducing function
there always exists an adversary that outputs a collision for that function in constant
time.) Second, this approach supports a simple and natural quantitative measure for the
level of collision resistance: the level of collision resistance is the maximum probability,
over the choice of the key, with which an efficient adversary can find a collision. Third,
current constructions of hash functions can be naturally regarded as keyed function
families. For instance, we may interpret the initialization vector (IV) in SHA0 and
SHA1 as a key. Finally, several collision-finding attacks seems to depend on specific
values or properties of the key in use and work for some keys but not others. Specific
examples include Dobbertin’s attack on MD5 [6], time-memory trade-off attacks, and
attacks on Gibson’s hash function [8]. In particular, it may well be possible that even
“broken” functions still have a significant fraction of keys for which attacks are less
successful. On the other hand, it may not be sufficient to simply view an IV as a key,
because the IV may not be incorporated into the computation in a sufficiently strong
way; see the discussion at the end of the introduction.

Parameters. We consider the following parameters for hash functions and hardness
amplification. First and foremost is the level of collision resistance. The goal in hardness
amplification is to reduce the maximum probability that an efficient adversary can find
collisions from 1− δ to ε, where ε and δ are typically o(1). Another salient parameter is
the output length. Other parameters include the key size, the number of applications of
the underlying hash function, the the running time (or, complexity) of the adversaries
considered and the “compression ratio” (i.e the ratio of input length to output length).
By itself, the compression ratio is less interesting since we may apply a transformation
due to Merkle and Damgård [17,4] to increase the compression ratio arbitrarily; this
increases the number of applications of the underlying function but maintains the same
key size and output length. Our goal is to construct hash functions with a high level of
collision resistance, while maintaining short outputs, short keys, and a good trade-off
between compression ratio and number of operations.

Constructions. We analyze two construction for hardness amplification. The first is
based on simple concatenation (possibly folklore) and the second uses error-correcting
codes and was suggested by Knudsen and Preneel [14]. Then, we analyze two additional
constructions for reducing the key size and the output length respectively.

Amplification via concatenation. The first construction is simple concatenation: we
hash the input using several independently chosen functions and concatenate the hash
values. Formally, given a family H = {hκ} of hash functions, and a parameter q,
define the family H′ = {h′κ1,...,κq

} so that h′κ1,...,κq
(x) = hκ1(x) ◦ ... ◦ hκq(x), where

κ1, ..., κq are independently chosen keys in the family H. The analysis is essentially
the same as that for classic hardness amplification for one-way functions [27]. The
underlying intuition is that finding collisions in h′κ1,...,κq

is hard as long as finding



Amplifying Collision Resistance: A Complexity-Theoretic Treatment 267

collisions in one of hκ1 , . . . , hκq is hard. If the initial maximal probability of finding
collisions is δ, the maximal probability of finding collisions in the new hash family
is (1 − δ)Ω(q) = e−Ω(δq). This means that the improvement in the level of collision
resistance is exponential in q whereas the output length is linear in q.

Amplification via codes. In the second construction, we first encode the input with
an error-correcting code wherein the codeword has length q over some large alphabet.
Next, we hash the encoded input using q independently chosen functions (one for each
of the q symbols in the codeword) and concatenate the hash values as before. In order
to find a collision for this construction, one has to find collisions in many of the q
underlying hash functions (as opposed to all q functions as in the previous construction).
This construction was previously analyzed in an idealized setting in [14].

The analysis relies on the idea that finding collisions in the new hash function is
hard as long as finding collisions in several of the q functions is hard (as opposed to
finding collision in just a single function). Indeed, if the initial maximal probability of
finding collisions is δ, then we expect that it is hard to find collisions in δq functions.
To exploit this, we use a code with minimum distance (1 −O(δ))q, and for such codes,
we may achieve a rate of Ω(δ). Consequently this construction allows us to hash an
input that is longer by a factor of Θ(δq) (compared to the first construction) while still
using only q invocations of hash functions from the given family. When compared to
amplifying the domain size via the Merkle-Damgård transformation and then applying
the first construction, the second construction offers a Θ(δq) factor improvement in the
number of hashing operations. The price we pay for this improvement is that for the
same δ, ε (i.e., for fixed levels of collision resistance in the underlying and target hash
functions), the choice of q for the second construction is a constant multiplicative factor
larger than that for the first construction.

We remark that this analysis yields also hardness amplification for one-way functions
with a logarithmic factor improvement in the security reduction.

Reducing the key size. Next, we demonstrate how to modify both constructions so that
the key size increases only by an additive logarithmic term (at the price of increasing
the output length by a constant multiplicative factor). This is done by choosing the q
keys via randomness-efficient sampling using expander graphs. The sampler we require
for the concatenation construction is fairly standard (e.g. randomness-efficient samplers
were exploited in a similar manner in [5]), whereas the coding-theoretic construction
requires a modified analysis of a previous sampler [9].

Reducing the output length. Starting with a family H of hash functions with output
length �out and parameter q, the first two constructions yield a family with output length
q�out. We show that for any Δ, we may in fact reduce the output length to q·(�out − Δ).
More generally, we show how to transform any family H with output length �out into
one with output length �out−Δ with a negligible loss in the level of collision resistance.
However, the complexity of computing the function increases by a multiplicative factor
of 2Δ, so the construction is only useful for logarithmic values of Δ.

Limitations. We point out some of the limitations of our constructions and try to
justify them. A first limitation is that, given a guarantee on the resilience of H against



268 R. Canetti et al.

adversaries of a given size, we can only guarantee resilience of the new hash family
H′ against adversaries of much smaller size. A similar limitation is shared by existing
hardness amplification results for one-way functions. This may be expected, given that
all our constructions, as well as all existing constructions for hardness amplification
of one-way functions are “black box”. Indeed, evidence that such limitation may be
inherent in “black-box constructions” is given in [11, Chapter 2, Ex 16, p. 96]. In
addition, our constructions increase both the complexity of the hashing and the output
length. To explain the blow-up in these parameters, we provide lower bounds on the
number of hashing operations and output length:

– We establish a matching lower bound (up to multiplicative constants) on the number
of hashing operations used in our first two constructions. The bound holds for
black-box constructions that do not use the input as keys for the underlying hash
functions. In particular, the number of hashing operations must have an inverse
dependency on δ, the initial maximal probability of finding collisions. The bound
is derived from that for hardness amplification for one-way functions in [15].

– Assuming in addition some natural restrictions on the reduction used in the proof
of security, we show that the output length of the new hash function is at least
Ω(1

δ · �out). Our constructions achieve output length O(1
δ · �out · log 1

ε ).

While the guarantees provided by our constructions may be too weak to be of real
practical significance, this is unfortunately the state of the art for general constructions.
Providing better guarantees remains a fascinating open problem.

Combiners. Our results pertaining to the output length (namely the fourth construction
and lower bounds thereof) build on the recent work on black-box combiners for
collision resistance [2,19,12]. We briefly recall the notion and results and explain the
connection to hardness amplification.

Black-box combiners for collision resistance. A black-box combiner for collision
resistance is a procedure that given t functions h1, . . . , ht with output length �out,
computes a single function h̃ with the following property: there is an efficient
transformation that given a collision for h̃, outputs collision for each of h1, . . . , ht.
This guarantees that finding collisions on h̃ is hard as long as finding collisions on one
of h1, . . . , ht is hard. Concatenating the outputs of h1, . . . , ht on the same input yields
a combiner with output length t ·�out. Boneh, Boyen and Pietrzak [2,19] showed that
this trivial combiner is essentially optimal by giving a t·(�out − O(log n)) lower bound
for deterministic black-box combiners.

Black-box combiners for collision resistance arise naturally in the context of our
work. Indeed, our first hardness amplification construction may be viewed as choosing
κ1, . . . , κq at random and applying the trivial (deterministic) combiner to hκ1 , . . . , hκq .
In addition, since we deal with families of functions rather than with single functions,
it makes sense in our model to consider also randomized combiners (still, for single
functions). We can then incorporate any randomness used by the combiner in the key of
the new hash family. Two natural questions arise here: Can we beat the [2,19] bound by
using randomized combiners? Alternatively, can the bound be improved by removing
the additive logarithmic factor?



Amplifying Collision Resistance: A Complexity-Theoretic Treatment 269

We answer both questions negatively. We first extend the lower bound of [2,19] to
derive a t· (�out − O(log n) lower bound on the output length of randomized black-box
combiners. Our lower bound for the output length for hardness amplification builds on
this lower bound. We then construct a randomized black-box combiner with output
length t · (�out − Ω(log n)). This result is interesting in itself, since it is the first
non-trivial combiner that beats concatenation. Furthermore, this combiner underlies
our fourth construction mentioned above, which reduces the output length of hash
functions. Putting these two results together, we deduce that the optimal randomized
black-box combiner has output length t·(�out − Θ(log n)).

Combiners for families of hash functions. So far, we’ve discussed the relationship be-
tween combiners for single functions and hardness amplification for function families.
In addition, one may directly study combiners for families of functions: Given t families
of hash functions with output length �out, construct a single family of hash functions that
is collision-resistant as long as one of the t families is collision-resistant. We note that
it is possible to construct a combiner having output length t · (�out − O(log n)) using
our randomized black-box combiner. The concurrent work of Fischlin and Lehmann
[7] studies a very similar problem, albeit in an idealized model that only admits generic
attacks on the hash functions.

Extensions. Our positive results for hardness amplification of collision resistance may
be extended to several other variants of collision resistance. Details of these extensions
are deferred to the final version of the paper.

Resistance to correlations. As noted in previous work (e.g. [1]), collision resistance can
be regarded as a special case of “resistance to finding correlations.” That is, for a given
k-ary relation R, say that a family of functions H is R-resistant if it is hard given a
random h ∈ H to find x1, ...xk such that R(h(x1), ..., h(xk)) holds. In this terminology,
collision resistance is simply Req-resistance where Req(y1, y2) iff y1 = y2. Can R-
resistance be amplified for other relations? Can collision resistance be derived from (or
imply) R-resistance for other relations R? These are interesting questions.

As a small step in this direction, we consider amplification for the “near collision”
relation Rnear, where Rnear(y1, y2) iff the Hamming distance between y1 and y2 is
small (see e.g. [16, Sec 9.2.6]). We observe that by encoding the hash value with
an error-correcting code, we may transform a standard collision-resistant hash family
to a near-collision-resistant hash family. Conversely, given a near-collision-resistant
hash family, one can construct a standard collision-resistant hash family with shorter
output by “decoding” the hash value to the nearest codeword of a covering code. This
yields an amplification theorem for resistance to near-collisions, as a corollary of our
amplification theorems for collision resistance.

Target collision resistance. Our results extend also to the related notion of target
collision resistance (namely, universal one-way hash functions [18]). Here we may
use the same constructions as for collision resistance, except to replace the Merkle-
Damgård domain expansion with that of Shoup [24], and the same analysis goes
through. We stress that the extension should not be taken for granted, because



270 R. Canetti et al.

techniques for collision resistance do not always extend readily to target collision
resistance; domain expansion is a good example.

Discussion. We discuss some additional aspects of the analysis in this work. First,
we address only collision resistance, which is one out of many desired properties of
“cryptographic hash functions”. In fact, we do not even address properties such as
resistance to finding additional collisions, once a collision is found. Concentrating on
plain collision resistance allows for clearer understanding. In fact, constructing hash
functions achieving even this specific property seems to be challenging enough, as
evidenced by the attacks on MD5 and SHA1.

Another point worth highlighting is that our analysis can be viewed as a demonstra-
tion of the benefits in having families of hash functions, where there is some assurance
that finding collisions in one function in the family does not render other functions in the
family completely insecure. This may suggest a methodology for constructing practical
collision-resistant functions: Design such functions as keyed functions, where the key
is intimately incorporated in the evaluation of the function. This might give some hope
that finding collisions for one value of the key might not help much in finding collisions
for other values of the key. Then, apply a generic amplification mechanism such as
the ones studied here to guarantee strong collision resistance even when a significant
fraction of the keys result in weak functions. We stress that, in order to be of value,
the key has to be incorporated in the computation of the function in a strong way. This
fact is exemplified (in the negative) by the MD/SHA line of functions: Although these
functions are often modeled as families of functions that are keyed via the IV, the actual
constructions do not incorporate the IV in the computation in a strong way. And, indeed,
the very recent attacks against such functions (e.g. [26]) seem to work equally well for
all values of the IV. Similarly suspect are related methods for creating a hash function
family from a fixed hash function by treating a portion of the input as key.

Finally, we stress that even though we use asymptotic notation to make our results
more readable, they actually provide concrete bounds on the parameters achieved.
Moreover, we provide uniform reductions in all of our proofs of security, so even though
the positive results are stated for nonuniform adversaries, it is easy to derive an analogue
of those results for uniform adversaries.

Organization. We begin with by reviewing quantitative definitions of collision
resistance for CRHFs in Section 2. We present all of our constructions for hardness
amplification, key size reduction and output length reduction in Section 3, and our lower
bounds in Section 4. Given that randomized black-box combiners are a recurring tool
in this paper, we define them in Section 2 and present the construction in Section 3 and
the matching lower bound in Section 4.

2 Preliminaries

2.1 Quantitative Definitions of Collision Resistance

A family of hash functions is a collection of polynomial-time computable functions
H = {Hn : {0, 1}�key(n) × {0, 1}�in(n) → {0, 1}�out(n)}, where n is the security



Amplifying Collision Resistance: A Complexity-Theoretic Treatment 271

parameter, satisfying �out(n) < �in(n). We refer to �in, �out, �key as the input length,
output length and key size of the hash function. We use hκ : {0, 1}�in(n) → {0, 1}�out(n)

to denote the function Hn(κ, ·) associated with the key κ ∈ {0, 1}�key(n). We call a pair
(x0, x1) satisfying x0 �= x1 and hκ(x0) = hκ(x1) a collision for hκ.

For any n, we say that Hn is an (s, ε)-CRHF (collision-resistant hash function) if
for every nonuniform A of size s,

Pr[κ ← {0, 1}�key(n); A(κ) outputs a collision for hκ] < ε

(The quantity ε is what we refer to in the introduction as the level of collision resistance.)
For notational simplicity, we omit references to n whenever the context is clear (e.g.
H : {0, 1}�key × {0, 1}�in → {0, 1}�out).

We will also refer to asymptotic notions of CRHFs. As with one-way functions, we
want to consider the entire class of nonuniform polynomial-time adversaries (although
we do provide uniform reductions in our proofs of security). Formally, we say that
H is a strong CRHF if for every polynomial p(·) and every sufficiently large n, H
is a (p(n), 1

p(n) )-CRHF. Similarly, we say that H is a weak CRHF if there exists a
constant c such that for every polynomial p(·) and every sufficiently large n, H is a
(p(n), 1 − 1

nc )-CRHF. Standard cryptographic applications of hash functions actually
require strong CRHFs, so whenever the strength of the CRHF is not qualified, we will
refer to strong CRHFs.

Public-coin vs. secret-coin hash functions. As noted in [13], a distinction needs to
be made between public-coin and secret-coin hash functions. In a public-coin hash
function, the key corresponds to a uniformly generated random string and the key
generation algorithm computes the identity function. In a secret-coin hash function,
the distribution of the key may be any samplable distribution. For simplicity and clarity,
our definition and exposition refer to public-coin hash functions. It is easy to see that
all of our constructions (Constructions 1, 2 and 4) apart from the reduction in key size
using randomness-efficient sampling extend to secret-coin hash functions.

2.2 Black-Box Combiners for Collision Resistance

We generalize the notion of black-box combiners from [2,19] so as allow randomized
constructions.

Definition 1. We say that (C, R) is a randomized black-box (t′, t)-combiner for
collision resistance if C, R are deterministic poly-time oracle TMs, and there exists
some negligible function ν(·) such that for all h1, . . . , ht : {0, 1}�in → {0, 1}�out:

CONSTRUCTION. For every r, Ch1,...,ht

(r, ·) computes a function h̃r :
{0, 1}�in

′ → {0, 1}�out
′
, where �in

′ > �out
′.

REDUCTION. With probability 1 − ν(n) over r: if (x̃0, x̃1) is a collision for
h̃r, then Rh1,...,ht

(r, x̃0, x̃1) outputs t pairs (x1
0, x

1
1), . . . , (x

t
0, x

t
1) such that for

at least t − t′ + 1 values i ∈ {1, . . . , t}, (xi
0, x

i
1) is a collision for hi.



272 R. Canetti et al.

Intuitively, the guarantee is that if it is hard to find collisions on some t′ of the functions
h1, . . . , ht, then with overwhelming probability over r, it is hard to find collisions on
h̃r. Our definition generalizes that in [2,19] in that we provide both C and R with
additional “randomness” r, which is interpreted as a key. Specifically, in the previous
definitions, C computes a single function, whereas in our definition C computes a
family of functions {h̃r}. In our construction, R is deterministic, whereas our lower
bound (as with previous work) extends to randomized reductions R.

3 Constructions

The goal of hardness amplification is to deduce the existence of strong CRHFs from
weak CRHFs. Fix a security parameter n. The parameters for the new CRHF H′ will
be different from those for the starting CRHF H: we use �in, �out, �key to denote the
parameters for a (s, 1 − δ)-CRHF that we start with, and �in

′, �out
′, �key

′ to denote the
parameters for the (s′, ε)-CRHF that we are about to construct. Typical values of the
parameters are δ = 1

poly(n) and ε = neg(n). As outlined in the introduction, we begin
two basic constructions for hardness amplification (Sections 3.1 and 3.2) and then show
how to reduce the key size (Section 3.3) and output length (Section 3.4). A summary of
the parameters is given in Fig 1.

Domain expansion. We compensate the loss in compression ratio in our constructions
by first applying Merkle-Damgård domain expansion [4,17], noting that domain
expansion for collision resistance preserves the hardness parameter.

Proposition 0 ([4,17]). Fix some security parameter n. Suppose there exists a (s, ε)-
CRHF Hn from {0, 1}�key × {0, 1}�in to {0, 1}�out computable in time T . Then,
Construction 0 yields an (s′, ε)-CRHF H′n from {0, 1}�key

′ × {0, 1}�in
′

to {0, 1}�out
′

with the following parameters:

– �out
′ = �out and �key

′ = �key

– # hash calls = �in
′−�in

�out−�in

– security reduction : s′ = s − �in
′ · T

3.1 Amplification Via Concatenation

We begin with a description and the analysis of the basic concatenation construction.
The analysis we provide is very similar to that for hardness amplification for one-way
functions via direct product [27,11]. The presentations is somewhat simpler. We also
make a small modification to the analysis that facilitates the analysis of the coding-
theoretic construction, discussed in the next section.

Construction 1 (basic). Pick q = � 2
δ ln 2

ε � independent keys κ1, . . . , κq. On input x ∈
{0, 1}�in, output hκ1(x) ◦ hκ2(x) ◦ · · · ◦ hκq(x)

In using the same input to the hash functions under all of the q keys κ1, . . . , κq,
we ensure that a collision x0, x1 for the key (κ1, . . . , κq) is also a collision for the
underlying hash function on each of the keys κ1, . . . , κq.



Amplifying Collision Resistance: A Complexity-Theoretic Treatment 273

Proposition 1 (Construction 1). Fix some security parameter n. Suppose there exists
a (s, 1 − δ)-CRHF Hn from {0, 1}�key × {0, 1}�in to {0, 1}�out. Then, Construction 1
yields an (s′, ε)-CRHF H′n from {0, 1}�key

′ × {0, 1}�in
′

to {0, 1}�out
′

with the following
parameters:

– �in
′ = �in and �out

′ = Θ( �out
δ log 1

ε ) and �key = Θ( �key

δ log 1
ε )

– # hash calls = Θ( �in
′

δ�in
log 1

ε )
– security reduction : s′ = s · Θ(1

ε log 1
ε log 1

δ )−1

Proof. Suppose A finds collisions on H′n with probability at least ε, and consider the
following algorithm A′ for finding collisions on Hn: on input κ,

1. chooses κ1, . . . , κq at random, i ∈ [q] at random, and sets κi = κ.
2. runs A(κ1, . . . , κq) to obtain x0, x1, and outputs x0, x1.

To analyze the success probability for A′, first fix any set S of keys κ of density δ
2 .

Intuitively, S represents the set of keys for which it is hard for A′ to find a collision.

Pr
κ1,...,κq

[A(κ1, . . . , κq) outputs a collision
∧

at least one of the κj’s lies in S]

≥ ε − (1 − δ
2 )q ≥ ε

2

Hence,

Pr
κ1,...,κq,i

[A(κ1, . . . , κq) outputs a collision
∧

κi ∈ S] ≥ ε
2q

On the other hand,

Pr
κ1,...,κq,i

[A(κ1, . . . , κq) outputs a collision
∧

κi ∈ S]

= δ
2 · Pr

κ∈S
Pr[A′(κ) outputs a collision for hκ]

≤ δ
2 · max

κ∈S
Pr[A′(κ) outputs a collision for hκ]

This implies that for any set S of density δ
2 ,

max
κ∈S

Pr[A′(κ) outputs a collision for hκ] ≥ ε
δq

Hence,

Pr
κ

[
Pr[A′(κ) outputs a collision for hκ] ≥ ε

δq

]
≥ 1 − δ

2

By running A′ a total of δq
ε log 1

δ = O(1
ε log 1

ε log 1
δ ) times, we find collisions on Hn

for a 1 − δ
2 fraction of keys with probability 1 − δ

2 . This means we find collisions on
Hn for a random key with probability at least 1 − δ. ��



274 R. Canetti et al.

3.2 Amplification Via Codes

Note how the basic construction loses an O(q) factor in the compression ratio because
we repeat the same input for each of the q keys. The following work-around was
suggested in [14]. We first encode the input x using an error-correcting code C to obtain
q symbols C(x)1, . . . , C(x)q ∈ {0, 1}�in, and then we hash each of the q blocks with
independently chosen hash functions hκ1 , . . . , hκq and output the concatenation. Note
that the adversary may upon receiving the q keys only produce collisions wherein the
codewords disagree only on the “easy” keys. For the analysis to go through, we argue
that w.h.p., a δ

4 fraction of the keys (and not just one key) must be “hard”. If we pick
C to be a code with relative distance 1 − δ

8 , we are guaranteed there is a δ
8 fraction of

positions wherein the codewords disagree and the corresponding keys are “hard”.

Construction 2 (coding-theoretic). Pick q = � 16
δ ln 2

ε � independent keys κ1, . . . , κq.

Let C : {0, 1}�in
′ → ({0, 1}�in)q be an error-correcting code with minimum relative

distance 1 − δ
8 (e.g., the Reed-Solomon code), where �in

′ = Θ(δq�in). On input x ∈
{0, 1}�in

′
, output hκ1(C(x)1) ◦ hκ2(C(x)2) ◦ · · · ◦ hκq(C(x)q).

Proposition 2 (Construction 2). Fix some security parameter n. Suppose there exists
a (s, 1 − δ)-CRHF Hn from {0, 1}�key × {0, 1}�in to {0, 1}�out. Then, Construction 2
yields an (s′, ε)-CRHF H′n from {0, 1}�key

′ × {0, 1}�in
′

to {0, 1}�out
′

with the following
parameters:

– �in
′ = Θ(�in log 1

ε ) and �out
′ = Θ( �out

δ log 1
ε ) and �key

′ = Θ( �key

δ log 1
ε )

– # hash calls = Θ(1
δ log 1

ε )
– security reduction : s′ = s · Θ(1

ε log 1
δ )−1

Proof. Suppose A finds collisions on H′n with probability at least ε, and consider the
following algorithm A′ for finding collisions on Hn: on input κ,

1. chooses κ1, . . . , κq at random, i ∈ [q] at random, and sets κi = κ.
2. runs A(κ1, . . . , κq) to obtain x0, x1, and outputs C(x0)i, C(x1)i.

To analyze the success probability for A′, first fix any set S of keys κ of density δ
2 . By

a Chernoff bound (the multiplicative variant), we have

Pr
κ1,...,κq

[A(κ1, . . . , κq) outputs a collision (x0, x1)
∧

at least δ
4 fraction of κj’s lies in S]

≥ ε − e−δq/16 ≥ ε
2

Conditioned on the above event, for a δ
8 fraction of j’s in {1, 2, . . . , q}, we have

C(x0)j �= C(x1)j and κj ∈ S (since the former occurs for a 1 − δ
8 fraction of j’s

and the latter occurs for a δ
4 fraction of j’s). Hence,

Pr
κ1,...,κq,i

[A(κ1, . . . , κq) outputs a collision (x0, x1)∧ κi ∈S∧ C(x0)i �= C(x1)i] ≥ δε
16



Amplifying Collision Resistance: A Complexity-Theoretic Treatment 275

On the other hand,

Pr
κ1,...,κq,i

[A(κ1, . . . , κq) outputs a collision (x0, x1) ∧ κi ∈ S ∧ C(x0)i �= C(x1)i]

= δ
2 · Pr

κ∈S
Pr[A′(κ) outputs a collision for hκ]

≤ δ
2 · max

κ∈S
Pr[A′(κ) outputs a collision for hκ]

This implies that for any set S of density δ
2 ,

max
κ∈S

Pr[A′(κ) outputs a collision for hκ] ≥ ε
8

Hence,

Pr
κ

[
Pr[A′(κ) outputs a collision for hκ] ≥ ε

8

]
≥ 1 − δ

2

Again by running A′ a total of O(1
ε log 1

δ ) times, we can find collisions on Hn with
probability 1 − δ. ��

3.3 Reducing the Key Size

From a theoretical point of view, it is useful to have hash functions with short
descriptions (i.e. short keys). Short keys may also be of interest from a practical point
of view, although for the most common application of collision-resistant hash functions
(digital signatures) the key would be standardized and only distributed once. Starting
with a 160-bit key, the above transformations could yield a key that is much longer.
Fortunately, there is no inherent cause for this blow-up: we may reduce the key size in
each of the above constructions using randomness-efficient sampling [9], namely, we
want to sample q keys in {0, 1}�key using r bits of randomness, where r � q�key.

To accomplish this, we will use the randomness-efficient hitter in [9, Appendix C],
with a slightly different analysis showing that for the parameters we are interested in,
the construction satisfies a stronger sampler-like property. The weaker hitter guarantee
is sufficient to reduce the key size for Construction 1, whereas the stronger sampler-like
property is necessary for Construction 2. For our application, we will also require that
that the hitter satisfy a certain reconstructibility property, previously used in [5]. This
is used in the security reduction to generate challenges for the adversary breaking H′
given a key for H.

We stress here that for specific concrete parameters, we may use different choices
of hitters and samplers for ease of implementation and optimality for those specific
parameters.

Lemma 1. There exists a constant c such that for every δ, ε > 0, there is an efficient
randomized procedure G : {0, 1}r → ({0, 1}�key)q with the following properties:

— (sampler) for every subset S ⊆ {0, 1}�key of density δ, with probability at least 1−ε,
at least δq

2c of the strings output by G lie in S.
— (complexity) the randomness complexity r is �key + O(log 1

ε ) and the sample
complexity q is O(1

δ log 1
ε ).



276 R. Canetti et al.

— (reconstructible) there exists an efficient algorithm that on input (i, x), outputs a
uniformly random element from the set {σ | G(σ)i = x}.

Proof (sketch). The construction (based on that in [9]) proceeds in three stages:

– First, we construct a hitter that generates c
δ samples in {0, 1}�key using �key random

bits with the following property: for every subset S of {0, 1}�key with density δ,
with probability at least 2

3 , at least one sample lies in S. We may obtain such a
hitter using Ramanujan graphs of degree c

δ and vertex set {0, 1}�key, wherein we
pick a random vertex v, and the samples are the indices of the neighbors of v [9].

– Next, we construct a sampler that generates d = O(log 1
ε ) samples in {0, 1}�key

using �key + O(d) random bits with the following property: for every subset S′ of
{0, 1}�key with density 2

3 , with probability at least 1− ε, at least 1
2 of the samples lie

in S′. We may obtain such a sampler by taking a random walk of length d − 1 on a
constant-degree expander with vertex set {0, 1}�key [9].

– Finally, we compose the sampler and the hitter as follows: we consider a random
walk of length d−1 on the expander, and use each of the d vertices along the path as
random coins for the hitter. Overall, we will run the hitter d times, which generate
a total of q = d · c

δ samples using a total of �key + O(d) random bits. This yields
the desired query and randomness complexity.

The sampler guarantee follows fairly readily. Fix S of density δ. Let S′ be the set of
random coins for the hitter such that at least one sample lies in S, so S′ has density
at least 2

3 . We know that with probability at least 1 − ε (over the random walk), we
generate at least d

2 samples in S′, which in turn yields d
2 = δq

2c samples that lie in S.
Finally, we check each of the two components in our construction is reconstructible,

from which it follows that the combined construction is also reconstructible. For the
expander-based hitter, this means that given i, x, we need to compute the vertex v whose
i’th neighbor is labeled x. For the expander-based sampler, we need to given i, x, sample
a start vertex and a path such that the i’th vertex on the path is labeled x. Indeed, both
properties are readily satisfied for standard explicit constructions of constant-degree
expanders. ��

The next construction is obtained from Construction 2 by replacing independent
sampling of the q keys with randomness-efficient sampling using G, and using a code
with slightly different parameters:

Construction 3 (reduced key size). Run G to obtain q keys κ1, . . . , κq ∈ {0, 1}�key.
Let C : {0, 1}�in

′ → ({0, 1}�in)q be an error-correcting code with minimum relative
distance 1 − δ

4c (e.g., the Reed-Solomon code), where �in
′ = Θ(δq�in). On input x ∈

{0, 1}�in
′
, output hκ1(C(x)1) ◦ hκ2(C(x)2) ◦ · · · ◦ hκq(C(x)q).

It is straight-forward to verify that an analogue of Proposition 2 holds for Construction
3 if the CRHF is public-coin, and with essentially the same parameters except that
the key size is now reduced to �key + O(log 1

ε ) (i.e., the randomness complexity of
G). We now state our main result for hardness amplification of collision-resistance,
which is essentially a restatement of Proposition 2 for independent sampling and for
randomness-efficient sampling:



Amplifying Collision Resistance: A Complexity-Theoretic Treatment 277

Parameters Construction 0 Construction 1 Construction 2 Construction 4
input length �in

′ �in Θ(�in log 1
ε
) �in − Δ − log �in

output length �out Θ( �out
δ

log 1
ε
) Θ( �out

δ
log 1

ε
) �out − Δ

# hash calls �in
′−�in

�out−�in
Θ( 1

δ
log 1

ε
) Θ( 1

δ
log 1

ε
) Θ(2Δ�in)

key size �key Θ( �key
δ

log 1
ε
) Θ( �key

δ
log 1

ε
) Θ(�in

2 + Δ)
(public-coin) �key �key + Θ(log 1

ε
) �key + Θ(log 1

ε
) Θ(�in

2 + Δ)

Fig. 1. Summary of parameters for Constructions 0, 1, 2, & 4. In order to compare constructions
1 and 2 on inputs of the same length, we could apply the Merkle-Damgård transformation first, in
which case the latter offers a Θ(log 1

ε
) factor improvement in the number of hashing operations.

For the key size, the second line refers that achieved using Construction 3 for public-coin hash
functions.

Theorem 1. Fix some security parameter n. Suppose there exists a (s, 1 − δ)-CRHF
Hn from {0, 1}�key × {0, 1}�in to {0, 1}�out. Then, there exists an (s′, ε)-CRHF H′n from
{0, 1}�key

′ × {0, 1}�in
′

to {0, 1}�out
′

with the following parameters:

– �in
′ = Θ(�in log 1

ε ) and �out
′ = Θ( �out

δ log 1
ε ) and �key

′ = Θ( �key

δ log 1
ε )

– # hash calls = Θ(1
δ log 1

ε )
– security reduction : s′ = s · Θ(1

ε log 1
δ )−1

Moreover, if the CRHF is public-coin, then we may reduce �key
′ to �key + Θ(log 1

ε ).

3.4 Reducing the Output Length

We show that it is possible to reduce the output size of any CRHF by an additive factor
of Δ, with a negligible loss in the the probability of finding collisions, but at the price
of an exponential (in Δ) multiplicative increase in the complexity of the function, along
with a similar decrease in the size of adversaries tolerated. This imposes a limitation of
Δ = O(log n) for all reasonable settings.

Proposition 3. Suppose there exists a (s, ε)-CRHF H from {0, 1}�in to {0, 1}�out. Let
Δ = O(log n). Then, there exists a (s − poly(2Δ, n), ε + 2−Ω(�in))-CRHF from
{0, 1}�in−Δ−log �in−2 to {0, 1}�out−Δ. The complexity of the new CRHF is increases by
a factor poly(2Δ, �in).

This result follows the randomized black-box combiner in the following theorem,
setting t′ = t = 1.

Theorem 2. There is a randomized black-box (t′, t)-combiner (C, R) achieving para-
meters �in

′ = �in − Δ − log �in − 2 and �out
′ = (t − t′ + 1)·(�out − Δ) for any positive

Δ such that �in
′ > �out

′ > 0. The running times of C and R are polynomial in n and
2Δ and the randomness complexity of C is O(�in

2 + Δ).

We may in fact use this combiner instead of the trivial combiner for our hardness
amplification constructions. However, since we do not optimize on the output length



278 R. Canetti et al.

of our hardness amplification within constant multiplicative factors, it does not make
sense to try to cut down on the additive terms.

Overview of combiner. We begin with the case t′ = t = 1 and suppose h = h1

is “highly regular”, and we have a partition of {0, 1}�in into 2�in−Δ sets {Sx̃ | y ∈
{0, 1}�in−Δ} each of size 2t with the following property: for every x̃, Sx̃ contains a
unique string x such that h(x) has prefix 0Δ. Then, we define h̃(x̃) to be the (�out −Δ)-
bit suffix of h(x). It is easy to see how every collision (x̃, x̃′) for h̃ yields a collision
(x0, x1) for h. To arrive at the general construction (which is where randomness plays
a role),

– We replace 0Δ with a string z ∈ {0, 1}Δ that is relatively popular in the sense
that it occurs in at least an Ω(1/2Δ) fraction of the images of h. Such a z can be
identified by evaluating h on O(�in · 22Δ) random inputs. To bring the randomness
complexity down to O(�in + Δ), we choose these inputs using the randomness-
efficient Boolean sampler for approximating the mean within an additive error of
1
2 · 2−Δ with probability 1 − 2−2�in in [9].

– We replace the fixed partitioning with a random partitioning induced by a family
G of �in-wise independent functions from {0, 1}�in to {0, 1}�in−Δ−log �in−2. Given
g ∈ G, we take Sx̃ = g−1(x̃). This gives us a partition of {0, 1}�in into sets each
of size Õ(2Δ�in). With overwhelming probability over g, for every x̃, there exists
x ∈ Sx̃ such that h(x) has prefix z (we set x to be the lexicographically first string
with this property).

Construction and analysis. We formally state the construction for t′ = t = 1. For
simplicity, we present the construction using independent samples ui and defer the
randomness-efficient version to the full version.

Construction 4. Let G = {g : {0, 1}�in → {0, 1}�in−Δ−log �in−2} be a family of 6�in-
wise independent hash functions that such that given y, the set g−1(y) is computable in
time poly(2Δ, n). (This can be achieved using univariate polynomials of degree 6�in).
On input x̃ ∈ {0, 1}�in−Δ−log �in−2 and randomness r ∈ {0, 1}O(Δ+�in

2), we compute
h̃r(x̃) ∈ {0, 1}�out−Δ as follows:

1. Parse r as g ∈ G and u1, . . . , um ∈ {0, 1}�in, where m = Θ(22Δ�in).
2. Let z ∈ {0, 1}Δ be the lexicographically first string that occurs at least a 1/2Δ

fraction of times as a prefix among h(u1), . . . , h(um) (where h = h1);
3. Compute Sx̃ = g−1(x̃) in order to find a string x in Sx̃ such that h(x) has prefix z.

Choose the lexicographically first string if there are more than 1; output 0�out−Δ if
no such string exists or if |Sx̃| > 8�in · 2Δ.

4. Output the (�out − Δ)-bit suffix of h(x).

For general t′, t, we may simply apply the above construction to each of h1, . . . , ht−t′+1

and concatenate the output; it will be clear from the analysis that we may use the
same randomness r for all t functions. Theorem 2 follows readily once we establish
the following technical claim for t′ = t = 1.

Claim. With probability 1 − 2−Ω(�in) over r = (g, u1, . . . , um), the following
statements hold simultaneously:



Amplifying Collision Resistance: A Complexity-Theoretic Treatment 279

– |Γz| ≥ 2�in−Δ−1, where z is as in the construction and Γz = {x ∈ {0, 1}�in | h(x)
has prefix z};

– for all x̃, we have Sx̃ ∩ Γz �= ∅ (where Sx̃ = g−1(x̃));
– for all x̃, we have |Sx̃| ≤ 8�in · 2Δ.

Suppose we have a collision (x̃0, x̃1) for h̃r, where the conditions in the technical claim
do hold for r. Then, we could in poly(2Δ, �in) time compute (x0, x1) ∈ Sx̃0 ×Sx̃1 such
that h(x0) = z ◦ hr(x̃0) and h(x1) = z ◦ hr(x̃1). This implies (x0, x1) is a collision
for h.

Proof (of claim). By a Chernoff bound, we have that for each Δ-bit prefix w, if w occurs
in a pw fraction of outputs of h as a prefix, then with probability at least 1 − 2−2�in

over the ui’s, w will occur at most a pw + 1
2 · 2−Δ fraction of times (as a prefix)

among the h(ui)’s. Taking a union bound over all 2Δ < 2�in prefixes, we see that
with probability at least 1 − 2−�in , the prefix z must satisfy pz ≥ 1

2 · 2−Δ and thus
|Γz| ≥ 2�in−Δ−1. We assume in the rest of the proof that this is the case. Then, for each
y ∈ {0, 1}�in−Δ−log �in−2: E[|Sx̃ ∪ Γz|] = |Γz| · 2−�in+t+log �in+2 ≥ 2�in. Applying a tail
bound for 6�in-wise independence [22], we obtain:

Pr
g

[Sx̃ ∩ Γz = ∅] ≤ 2−2�in

Taking a union bound over all y ∈ {0, 1}�in−Δ−log �in−2, we have:

Pr
g

[∃y : Sx̃ ∩ Γz = ∅] ≤ 2−2�in · 2�in−Δ−log �in−2 = 2−Ω(�in)

Finally, for each y, E[|Sx̃|] = 4�in · 2Δ. Again, by using the tail bound for 6�in-wise
independence and a union bound, we have Pr[∃y : |Sx̃| > 8�in · 2Δ] < 2−Ω(�in). ��

4 Limitations

We begin by presenting the class of constructions for which we prove lower bounds:

Definition 2. We say that (C, R) is a black-box (1 − δ, ε)-amplifier for collision
resistance if C = (Ckey, Chash) is a pair of deterministic (oracle) TMs, and R =
(Rkey, Rcoll) is a pair of randomized (oracle) TMs, and both pairs of TMs run in time
poly(n, 1

δ , 1
ε ). In addition, for all H = {{0, 1}�key × {0, 1}�in → {0, 1}�out}:

CONSTRUCTION. C compute H′ = {{0, 1}�key
′ × {0, 1}�in

′ → {0, 1}�out
′}

where �out
′ > �in

′ as follows: given a key κ′ and a string x, we run Ckey(κ′) to

obtain κ1, . . . , κq and then set h′κ′(x) to be C
hκ1 ,...,hκq

hash (κ′, x).

REDUCTION. There exists a constant c such that for every TM A that outputs
a collision on h′κ′ with probability at least ε and any subset S of {0, 1}�key of
density at least δ/2, there exists κ ∈ S such that

Pr
σ,Rcoll

[
Rkey(κ; σ) = κ′; RHcoll(i, σ, A(κ′)) outputs a collision on hκ

]
>

(δε

n

)c



280 R. Canetti et al.

Note that a black-box amplifier should provide an efficient reduction that converts any
adversary A that finds collisions in h′κ′ with probability ε into an adversary A′ that
finds collisions in hκ with probability 1 − δ. Indeed, Definition 2 guarantees that for
a 1 − δ

2 fraction of keys κ, RA,H(κ) outputs a collision for hκ with probability ( δε
n )c.

Running R a total of O(( n
δε )

c log 1
δ ) yields the desired reduction. The above reduction

is more restrictive than an arbitrary black-box reduction due to the following structural
restrictions we place on the construction and the reduction, and this makes our result
weaker.

Construction. We do not allow constructions that use the input as a key into the
underlying family hash functions. We enforce this constraint by having a key
generation algorithm Ckey select the members hκ1 , . . . , hκq of the underlying
family given only the new key κ′, and restrict the actual computation Chash to only
query hκ1 , . . . , hκq . We will refer to q as the query complexity of the construction,
the idea being that Chash will query each of the functions hκ1 , . . . , hκq at least once
by having Ckey not generate extraneous keys.

Reduction. The restriction on the reduction states that the reduction only requires
a single collision from A′ to break H with noticeable probability. This is true
of the reductions used in our constructions and of all known reductions used
in hardness amplification for one-way functions (c.f. [15]): all these reductions
generate multiple challenges to the adversary and if the adversary successfully
answers any of the challenges, the reduction succeeds with high probability.

We present lower bounds for the query complexity of the construction q and the output
length �out

′.

Theorem 3. Suppose (C, R) is a black-box (1 − δ, ε)-amplifier for collision resistance
with ε ≤ δ

2 . Then,

q ≥ Ω(1
δ log 1

ε ) and �out
′ ≥ 1

δ ·
(
�out − O(log n + log 1

ε + log 1
δ )

)
− 2

The lower bound for q follows closely the lower bound in [15], by arguing that
Ckey must compute a randomness-efficient hitting sampler, and is omitted due to
lack of space. To obtain a lower bound for �out

′, we begin with an observation of
a connection between black-box hardness amplification and randomized black-box
combiners. Intuitively, a (1 − δ)-CRHF could comprise � 1

δ � functions, of which it is
hard to find collisions on just one of them. In this case, the black-box (1−δ, ε)-amplifier
acts like a randomized black-box (1, � 1

δ �)-combiner. To derive a lower bound for the
latter, we use the probabilistic argument in Pietrzak’s work [19]. We also note that the
probabilistic argument is already sufficient to obtain the lower bounds for deterministic
black-box combiners, therefore simplifying the lower bounds in [2,19] by eliminating
an additional randomization argument therein.

Proof. Set t to be a power of 2 in the interval [ 1δ , 2
δ ). Pick t random functions

f1, . . . , ft : {0, 1}�in → {0, 1}�out and identify {0, 1}�key with {1, 2, . . . , t} and H with
{f1, . . . , ft}. Consider the following procedure R̃ for finding collisions in f1, . . . , ft

given oracle access to these functions:



Amplifying Collision Resistance: A Complexity-Theoretic Treatment 281

— picks x′0, x
′
1 ∈ {0, 1}�in

′
and κ′ ∈ {0, 1}�key

′
at random;

— for each i = 1, 2, . . . , t, sample a random σi such that Rkey(i; σi) = κ′,
and output Rf1,...,ft

coll (i, σi, (x′0, x′1)).

We note that for all f1, . . . , ft and for all κ′, the function h′κ′ maps {0, 1}�in
′

to
{0, 1}�out

′
. By the standard lower bound on collision probability or a simple application

of Cauchy-Schwartz, we have

Pr
x′
0,x′

1

[(x′0, x
′
1) is a collision for h′κ′ ] ≥ 2−�out

′
− 2−�in

′
≥ 2−�out

′−1

Consider a procedure A that outputs collisions on every h′κ′ by repeatedly choosing
(x′0, x

′
1) at random until it finds a collision. By our choice of t, each {i} is a subset of

{0, 1}�key of density 1
t ≥ δ/2, for i = 1, 2, . . . , t. The reduction then guarantees that

Pr
σ,Rcoll

[
Rkey(i; σ) = κ′; RHcoll(i, σ, A(κ′)) outputs a collision on fi

]
>

(
δε
n

)c

In fact, the above statement is true even if we restrict A to only output collisions for
κ′ lying in some subset S′ of {0, 1}�key

′
of density ε. By a probabilistic argument, this

implies that for every subset S′ of {0, 1}�key
′

of density ε, there exists κ′ ∈ S′ such that:

Pr
[
σ ← Rkey(i; ·) = κ′; RHcoll(i, σ, A(κ′)) outputs a collision on hκ

]
>

(
δε
n

)c

Call such a κ′ i-good. Then, for each i, a 1 − ε fraction of κ′ is i-good. By a union
bound, there exists a 1 − tε fraction of κ′ that are i-good, for all i = 1, 2, . . . , t. Hence,

Pr
R̃

[
R̃f1,...,ft outputs collisions for each of f1, . . . , ft

]

≥ (1 − tε) · 2−�out
′−1 ·

(
δε
n

)ct

Note that the preceding inequality holds for all functions f1, . . . , ft and thus also
holds for random functions f1, . . . , ft. On the other hand, by the birthday paradox and
independence of the t functions, we know that the probability (over random functions)

R̃ outputs collisions in each of f1, . . . , ft is at most
(

Q2

2�out

)t

, where Q = poly(n, 1
δ , 1

ε )

is the query complexity of R̃. Comparing the two bounds and solving for �out
′ yields

the desired bound. ��
The above argument also yields a lower bound on the output length for (t′, t)-
combiners. The idea is to use R to find t − t′ + 1 collisions amongst random functions
f1, . . . , ft and observe that the probability is bounded by

(
t

t−t′+1

)
· ( Q2

2�out )
t−t′+1. This

establishes the optimality of our construction in Theorem 2 (up to constant factors in
the O(log n) term):

Theorem 4. Suppose (C, R) is a randomized black-box (t′, t)-combiner for CRHFs.
Let Q be an upper bound on the query complexity of R. Then,

�out
′ ≥ (t − t′ + 1)(�out − 2 log Q) − t − 1

Acknowledgments. We would like to thank Krzysztof Pietrzak for helpful discussions
on combiners.



282 R. Canetti et al.

References

1. Anderson, R.: The classification of hash functions. In: Cryptography and Coding ’93 (1993)
2. Boneh, D., Boyen, X.: On the impossibility of efficiently combining collision resistant hash

functions. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, Springer, Heidelberg (2006)
3. Coron, J.-S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-Damgård revisited: How to

construct a hash function. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, Springer,
Heidelberg (2006)

4. Damgård, I.: A design principle for hash functions. In: Brassard, G. (ed.) CRYPTO 1989.
LNCS, vol. 435, Springer, Heidelberg (1990)

5. De Santis, A., Di Crescenzo, G., Persiano, G.: Randomness-optimal characterization of two
NP proof systems. In: Rolim, J.D.P., Vadhan, S.P. (eds.) RANDOM 2002. LNCS, vol. 2483,
Springer, Heidelberg (2002)

6. Dobbertin, H.: Cryptanalysis of MD4. In: Fast Software Encryption (1996)
7. Fischlin, M., Lehmann, A.: Security-amplifying combiners for collision-resistant hash

functions. In: these proceedings (2007)
8. Gibson, J.K.: Discrete logarithm hash function that is collision free and one way. IEE

Proceedings - E 138(6), 407–410 (1991)
9. Goldreich, O.: A sample of samplers - a computational perspective on sampling. ECCC

TR97-020 (1997)
10. Goldreich, O.: Candidate one-way functions based on expander graphs. Cryptology ePrint

Archive, Report 2000/063 (2000)
11. Goldreich, O.: Foundations of Cryptography: Basic Tools. Cambridge University Press,

Cambridge (2001)
12. Herzberg, A.: Tolerant combiners: Resilient cryptographic design. Cryptology ePrint

Archive, Report 2002/135 (2002)
13. Hsiao, C.-Y., Reyzin, L.: Finding collisions on a public road, or do secure hash functions need

secret coins? In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, Springer, Heidelberg
(2004)

14. Knudsen, L.R., Preneel, B.: Construction of secure and fast hash functions using nonbinary
error-correcting codes. IEEE Transactions on Information Theory 48(9), 2524–2539 (2002)

15. Lin, H., Trevisan, L., Wee, H.: On hardness amplification of one-way functions. In: Kilian,
J. (ed.) TCC 2005. LNCS, vol. 3378, Springer, Heidelberg (2005)

16. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptography.
CRC Press, Boca Raton, USA (1996)

17. Merkle, R.C.: One way hash functions and DES. In: Brassard, G. (ed.) CRYPTO 1989.
LNCS, vol. 435, Springer, Heidelberg (1990)

18. Naor, M., Yung, M.: Universal one-way hash functions and their cryptographic applications.
In: Proc. 20th STOC (1989)

19. Pietrzak, K.: Non-trivial black-box combiners for collision-resistant hash-functions don’t
exist. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 23–33. Springer,
Heidelberg (2007

20. Preneel, B.: Hash functions - present state of art. ECrypt Conference on Hash Functions
(2005)

21. Rogaway, P.: Formalizing human ignorance: Collision-resistant hashing without the keys. In:
Nguyen, P.Q. (ed.) VIETCRYPT 2006. LNCS, vol. 4341, Springer, Heidelberg (2006)

22. Schmidt, J.P., Siegel, A., Srinivasan, A.: Chernoff-Hoeffding bounds for applications with
limited independence. SIAM J. Discrete Math 8(2), 223–250 (1995)



Amplifying Collision Resistance: A Complexity-Theoretic Treatment 283

23. Shaltiel, R.: Towards proving strong direct product theorems. Computational Complex-
ity 12(1–2), 1–22 (2003)

24. Shoup, V.: A composition theorem for universal one-way hash functions. In: Preneel, B. (ed.)
EUROCRYPT 2000. LNCS, vol. 1807, Springer, Heidelberg (2000)

25. Simon, D.R.: Finding collisions on a one-way street: Can secure hash functions be based on
general assumptions? In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, Springer,
Heidelberg (1998)

26. Wang, X., Yin, Y.L., Yu, H.: Finding collisions in the full SHA-1. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, Springer, Heidelberg (2005)

27. Yao, A.: Theory and applications of trapdoor functions. In: Proc. 23rd FOCS (1982)



How Many Oblivious Transfers Are Needed for
Secure Multiparty Computation?�

Danny Harnik��, Yuval Ishai� � �, and Eyal Kushilevitz†

Department of Computer Science, Technion, Haifa, Israel
{harnik,yuvali,eyalk}@cs.technion.ac.il

Abstract. Oblivious transfer (OT) is an essential building block for se-
cure multiparty computation when there is no honest majority. In this
setting, current protocols for n ≥ 3 parties require each pair of parties to
engage in a single OT for each gate in the circuit being evaluated. Since
implementing OT typically requires expensive public-key operations (al-
ternatively, expensive setup or physical infrastructure), minimizing the
number of OTs is a highly desirable goal.

In this work we initiate a study of this problem in both an information-
theoretic and a computational setting and obtain the following results.
– If the adversary can corrupt up to t = (1 − ε)n parties, where ε > 0

is an arbitrarily small constant, then a total of O(n) OT channels
between pairs of parties are necessary and sufficient for general se-
cure computation. Combined with previous protocols for “extending
OTs”, O(nk) invocations of OT are sufficient for computing arbi-
trary functions with computational security, where k is a security
parameter.

– The above result does not improve over the previous state of the
art in the important case where t = n − 1, when the number of
parties is small, or in the information-theoretic setting. For these
cases, we show that an arbitrary function f : {0, 1}n → {0, 1}∗ can
be securely computed by a protocol which makes use of a single OT
(of strings) between each pair of parties. This result is tight in the
sense that at least one OT between each pair of parties is necessary
in these cases. A major disadvantage of this protocol is that its
communication complexity grows exponentially with n. We present
natural classes of functions f for which this exponential overhead
can be avoided.

1 Introduction

Secure multiparty computation (MPC) [46,23,7,11] provides a powerful and
general tool for distributing computational tasks between mutually distrusting

� Research supported by grant 1310/06 from the Israel Science Foundation and the
Technion VPR fund. Part of this research was done while visiting IPAM.

�� Supported in part by a fellowship from the Lady Davis Foundation.
� � � Supported by grant 2004361 from the U.S.-Israel Binational Science Foundation.

† Supported by grant 2002354 from the U.S.-Israel Binational Science Foundation.

A. Menezes (Ed.): CRYPTO 2007, LNCS 4622, pp. 284–302, 2007.
c© International Association for Cryptologic Research 2007



How Many OTs Are Needed for Secure Multiparty Computation? 285

parties without compromising the privacy of their inputs. We consider the prob-
lem of secure computation in the case where a majority of the parties can be
corrupted. In this case, secure computation of nontrivial functions implies the
existence of oblivious transfer (OT) [44,40,17] — a secure two-party protocol
which allows a receiver to select one of two strings held by a sender and learn
this string (but not the other) without revealing its selection. Moreover, OT
can be used as a building block for general MPC protocols that tolerate an ar-
bitrary number of corrupted parties [47,24,22,33,21]. These protocols involve a
large number of OT invocations which typically constitute their efficiency bot-
tleneck. Indeed, standard implementations of OT require expensive public-key
operations, whereas alternative “information-theoretic” implementations of OT
require either a trusted setup [3] or physical infrastructure [13] and may be
viewed as being at least as expensive. Thus, minimizing the number of OTs in
MPC protocols is a highly desirable goal.

How many OTs are needed to secure the world? In a world consisting of just
two parties, this question was essentially answered by Beaver [4] (see also [31]).
In a pure information-theoretic setting, ignoring computational efficiency issues,
computing a two-argument function whose shorter input has length � generally
requires Θ(�) OTs. (Some specific functions require fewer OTs; see [15,5] for
a more refined study of the “OT complexity” of information-theoretic secure
two-party computation.) Quite remarkably, it is possible to do much better if
computational security is required. Assuming the existence of one-way functions,
a “seed” of k OTs, where k is a security parameter, can be used for implementing
an arbitrary polynomial number of OTs.1 This implies that k OTs are sufficient
for secure two-party computation of arbitrary functions, even ones whose input
length is much bigger than k.

Given Beaver’s result, it is natural to expect that k OTs would be sufficient
for computationally secure MPC protocols involving an arbitrary number of
parties. Unfortunately, known protocols are very far from achieving this goal.
Beaver’s OT extension technique crucially relies on the fact that the number
of OTs required by Yao’s two-party protocol [46] is equal to the length of the
shorter input. No similar protocols are known for n ≥ 3 parties. To make things
worse, the number of OT invocations in current protocols (e.g., [22,21]) does
not only depend on the length of the inputs but also on the complexity of the
function f being computed. Specifically, these protocols require each pair of
parties to invoke an OT protocol for each gate of a circuit computing f .2 In
the computational setting it is possible to apply Beaver’s OT extension protocol
between each pair of parties, requiring only k OTs for each of the

(
n
2

)
pairs. Thus,

the state of the art prior to the current work can be summarized as follows:

1 In contrast, it is not known how to implement even a single OT using a one-way
function alone, and the possibility of a black-box construction of this type was ruled
out by Impagliazzo and Rudich [30].

2 Some MPC protocols do not rely on OT but rather on other “public-key” primitives
such as threshold homomorphic encryption [19]; however, in these protocols too the
number of public-key operations grows linearly with the circuit size of f .



286 D. Harnik, Y. Ishai, and E. Kushilevitz

– In the information-theoretic setting, the number of OTs needed by n parties
to compute a circuit of size s is O(n2s).

– In the computational setting (assuming one-way functions exist) the total
number of OTs is O(n2k).

The above state of affairs leaves much to be desired and gives rise to several
natural questions: Can one reduce the quadratic dependence on the number of
parties while maintaining security against a dishonest majority? Can the depen-
dence on the circuit size in the information-theoretic case and the dependence
on the security parameter in the computational case be eliminated?

1.1 Our Contribution

We answer the above questions affirmatively, obtaining several upper and lower
bounds on the OT complexity of both information-theoretic and computationally
secure MPC with no honest majority. Before describing our results, we outline
(and justify) some essential details of our model.

Model. We consider a network of n parties that are connected via a synchronous
network of secure point-to-point channels (secure channels are necessary in the
information-theoretic setting, and can be cheaply implemented in a computa-
tional setting via the use of a hybrid encryption). The parties wish to compute
a function f , which by default is a polynomial-time computable function taking
one input bit from each party and returning an output of an arbitrary length
(our results can be generalized to the case where each party has an �-bit input
– see below). Our goal is to design an OT-efficient protocol which securely com-
putes f in the presence of a semi-honest (aka “honest-but-curious”) adversary
which may corrupt at most t parties, where the security threshold t satisfies
n/2 < t < n. In the computational setting, restricting the attention to security
in the semi-honest model is justified by the fact that it is possible to use one-
way functions (and no additional OTs) for upgrading security to the malicious
model [23,21]. Finally, we allow each pair of parties to invoke an ideal OT oracle
during the execution of the protocol and count the number of invocations of
this oracle. (This model is also referred to as the “OT-hybrid” model.) Using a
suitable composition theorem [10,21], each call to the OT oracle can be substi-
tuted with an actual secure OT protocol. It is important to stress that our basic
OT primitive is string OT; that is, the sender’s strings are of arbitrary length
(yet this length counts towards the communication complexity of our protocols).
This is justified by the fact that OT of long strings can be easily reduced to a
single invocation of OT of short keys of length k by using symmetric encryption
and no public-key operations. Furthermore, most efficient implementations of
OT (cf. [38]) directly realize OT of k-bit strings rather than bits.

In the above model, we obtain the following main results.

Number of OT channels. We start by examining the required number of
“OT channels” between pairs of parties, that is, the number of distinct pairs that
should jointly invoke the OT primitive. We show that if the adversary can corrupt



How Many OTs Are Needed for Secure Multiparty Computation? 287

up to t = (1 − ε)n parties, where ε > 0 is an arbitrarily small constant, then a
total of O(n) OT channels between pairs of parties are sufficient and necessary for
general MPC. This is a quadratic improvement over previous protocols, which
require OTs between each pair of parties. The O(n) upper bound relies on a
technique of Bracha [9] for distributing computations among several committees,
a technique for combining oblivious transfers [27], and explicit constructions
of dispersers [25,42,26]. Using OT extension protocols [4,31], the O(n) bound
implies that O(nk) invocations of OT are sufficient for computing arbitrary
functions with computational security3 when t = (1 − ε)n. The lower bound (in
a more general form) relies on results from extremal graph theory. We note that
the Ω(n) lower bound holds also if the OT channels are chosen dynamically,
namely the identity of the pairs of parties which can invoke the OT oracle can
be chosen during the execution of the protocol.

Coping with a bigger security threshold. The above results do not improve
over the previous state of the art in the important case where t = n − 1, when
the number of parties is small, or in the information-theoretic setting. For these
cases, we show that an arbitrary function f : {0, 1}n → {0, 1}∗ can be securely
computed by a protocol which makes use of a single OT between each pair of
parties. We also show that this result is tight, in the sense that when t = n − 1
at least one OT between each pair of parties is necessary. At a high level, the
protocol proceeds by n − 1 iterations, where in the end of the i-th iteration the
first i + 1 parties hold additive shares of the truth table of f(x1, . . . , xi, ·, . . . , ·),
namely f restricted by the inputs of the first i parties. A major disadvantage of
this protocol is that its communication complexity grows exponentially with n.
We present natural classes of functions f for which this exponential overhead can
be avoided. These include sparse polynomials, decision trees, deterministic and
nondeterministic finite automata, and CNF and DNF formulas, which capture
useful secure computation tasks (cf. [2]). Some of these efficient protocols rely
on expander-based constructions of extractors for bit-fixing sources [32].

In the case where each party holds an �-bit input (rather than a 1-bit input)
the above upper and lower bounds on the number of OTs grow by a factor of �,
whereas the bounds on the number of OT channels remain unchanged.

2 Preliminaries

Throughout the paper we use the following notation: By P1, . . . , Pn we denote
the n parties, the security threshold t is the maximal number of parties that the
adversary can corrupt, and k stands for a security parameter when considering
computational or statistical security. When an n-party function f has a single
output, we assume by default that the output is given to the first party P1.

3 This protocol inherits the security and assumptions of the underlying OT extension
protocol. In particular, the protocol of [4] can be based on one-way functions but
is only proved to be secure against non-adaptive adversaries, whereas the protocol
of [31] in the random oracle model can be shown to be adaptively secure.



288 D. Harnik, Y. Ishai, and E. Kushilevitz

Our model for secure multiparty computation follows standard definitions
from the literature [10,21]. The availability of an OT primitive is captured by
considering an OT-hybrid model, in which each pair of parties can invoke an
ideal OT oracle. By a t-secure protocol for f we refer by default to a protocol
which is perfectly secure in the semi-honest model against an adversary that may
adaptively corrupt at most t parties. Perfect security will sometimes be relaxed
to statistical or computational security.

3 Counting OT Channels: Upper and Lower Bounds

A closely related question to the number of required OT calls is the number
of required OT channels in a network. That is, given a network of n parties,
we look at a graph where each node stands for a party and an edge stands for
the ability to run an OT between two parties. On each such edge, we assume
the ability to execute arbitrarily many OT calls. In addition, there exist private
communication channels between every pair of parties. The question is how many
OT channels are needed in order to simulate a full network of OTs (a network
in which every two parties can execute an OT functionality).

More precisely, define the n party OT function fOT as a function that takes
inputs from two parties (if more than two parties provide inputs then the function
outputs an abort symbol). The first party inputs two string s0, s1 and the second
inputs a bit c. The output sc is received by the second party. The question at
hand is how many OT channels are required for the network to be able to securely
compute the function fOT .

OT Channels: Static vs. Dynamic. When discussing OT channels, special
care needs to be taken when modelling the network. The simpler case is when
the network is static, i.e., the OT channels are set in advance and known to
the adversary (this case is suitable for an implementation of OTs based on
some physical infrastructure). A stronger model (for the honest parties) allows
a dynamic network, in which the parties may set the OT channels as part of the
protocol (while trying to hide this information from the adversary). Our upper
bounds do not take advantage of the dynamic setting and work also in the static
setting. We prove our lower bounds initially in the static case and then extend
them to the dynamic case.

OT Channels and Counting OTs. Counting OT channels is an interesting
question in its own right, and may directly capture the case where OTs are im-
plemented via some physical infrastructure (e.g., noisy point-to-point channels).
Moreover, its connection to the number of OT calls needed for secure computa-
tion is two fold:

– As means of achieving upper bounds on the number of OT calls in a
computational setting. In the two-party computational setting, it is known
how to achieve a polynomial number of OT calls at the price of just k calls
[4,31] (where k is the security parameter). Therefore, if we only need, say,
O(n) OT channels, then we can simulate the whole network at the price of



How Many OTs Are Needed for Secure Multiparty Computation? 289

O(nk) OT calls, which is better than the trivial upper bound of
(
n
2

)
k OT

calls.
– As a mechanism for proving lower bounds on the number of OT calls (see

Theorem 4). Namely, the minimal number of channels needed to securely
compute the functionality fOT is in particular a lower bound on the number
of OT calls necessary.

We note that the function fOT is just a single example of a function for which
the lower bounds hold; a similar lower bound holds for any function that is
complete for n-party computation, in the sense that it can be used as an oracle for
computing arbitrary functions t-securely. A sufficient condition for completeness
is that for every pair of inputs, one of the two-party criteria from [34,6,28] is
met for some restriction of the other inputs.

3.1 Upper Bounds for t = (1 − δ)n: The Committees Method

We turn to the case that t = (1−δ)n (we mostly think of δ as a constant fraction,
but the discussion is not restricted to this case). Consider the following strategy:
from the n parties choose m committees, each of size d, where a party can (and
will) participate in several different committees. Assume that each committee
has a full network of OT channels between them.

Using each committee we generate a candidate for an OT protocol between
party A and party B as follows: The sender and receiver additively share their
inputs (s0, s1 and c respectively) between all committee members. The commit-
tee members now run a secure computation protocol that computes a random
additive sharing of sc between the committee members (this is done using their
OT channels and the “GMW protocol” [22]). Now each committee member sends
his share of sc to the receiver B who reconstructs the output. This constitutes
a secure OT protocol as long as not all of the committee has been corrupted
(if all of the committee is corrupted then there is no security at all). In total,
for each of the m committees we have a candidate for an OT protocol, which is
secure if not all of the underlying committee is corrupted. It is known how one
can combine OT candidates protocols to 1-secure OT protocol as long as a ma-
jority of the candidates are secure. This method is called an (�m+1

2 �, m)-robust
combiner for OT and its existence was pointed out in [27] (and [37]) based on
amplification techniques from [14,45].

Our goal is therefore to solve the following combinatorial problem: find a
collection of “small” committees such that every adversary, corrupting at most
t = (1 − δ)n of the parties, covers less than half of the committees. A simple
probabilistic argument shows that such collections exist and moreover a random
collection whose size depends only on δ (and not on n) is a good solution with
high probability.

An Explicit Construction. We next give an explicit choice of committees that
satisfies the above requirements. Consider a bipartite graph with m vertices
on the left (the committees) and n vertices on the right (the parties). Every
committee has d edges connecting it to all the parties it consists of (that is, the



290 D. Harnik, Y. Ishai, and E. Kushilevitz

graph is d-regular on its left side). The requirement for the committees protocol
to be secure is that every set of m/2 vertices on the left are connected to more
than (1 − δ)n vertices on the right. This is exactly the setting of a disperser4

with very high min-entropy (min-entropy of log(n/2) out of the possible log n).
There are several explicit constructions that we can use for this task including
Goldreich and Wigderson [25], Reingold et al. [42] and Gradwohl et al. [26], all
of which have near optimal degree (up to constants with respect to the lower
bounds of [41]). Specifically we can work with d = � 1

δ �, and m = n + o(n) (or
even m = n − o(n) if using the construction of [26]).

Corollary 1. There exists an explicit construction of a network consisting of
(n+o(n))

(�1/δ�
2

)
OT channels such that the network can t-securely compute fOT

in the presence of an adversary that corrupts up to t = (1 − δ)n of the parties.
Specifically:

– If δ is a constant then the network needs O(n) OT channels.
– As long as δ ≥ 1√

n
, the construction requires strictly less than the

(
n
2

)
OT

channels of the full network.

The above corollary can be combined with OT extension protocols [4,31] to yield
a ((1−δ)n)-secure protocol for an arbitrary function f that uses a total of O(kn)
OTs. This protocol inherits the security and assumptions of the underlying OT
extension protocol (see Footnote 3).

Related works using committees. The idea of virtually performing tasks by
committees has been used in distributed computing and cryptography. Originat-
ing in the work of Bracha [9] in the context of Byzantine agreement, committees
have been used in the same context by [8,12], for MPC [29] and for leader elec-
tion [39,48,35]. Committees have recently been used by Fitzi et al. [18] to achieve
Perfectly Secure Message Transmission (PSMT) in a partial network of secure
channels. It should be noted that while the task of PSMT is reminiscent of our
question regarding OT channels, there are inherent differences. For example, our
committees protocol (above) can effectively achieve an OT call even between two
parties that are isolated in the OT graph (not connected by an OT channel to
any other party). In PSMT, on the other hand, there is no chance of achieving
secure communication with a node that is not connected by any secure channel.5

On non-adaptive adversaries. In the case that the adversary is non-adaptive
but the network is dynamic, one can do much better. In fact, only a single
good committee is needed. Indeed, a randomly chosen committee of size k/δ has
probability of 1−2−Ω(k) of being good. Note, however, that this simple protocol
can be trivially broken by an adaptive adversary who first learns the identity of
the committee members and then corrupts all of them.

4 A definition and discussion on dispersers can be found in, e.g. [43].
5 Recall that in our OT channels model we assume a full network of secure channels

to be intact.



How Many OTs Are Needed for Secure Multiparty Computation? 291

3.2 Lower Bounds for t = n − 1: Full OT Network Is Necessary

In this section we look at the strictest security scenario, where the adversary can
corrupt all but one of the parties. We show that given an almost full network
of OT channels except for one missing channel, it is impossible to complete the
network (i.e., securely compute the function fOT ). As a first step we consider a
static network with just 3 parties, A,B and C.

Claim 2. Let A, B and C form a network where C has OT channels with both
A and B, but there is no OT channel between A and B. Then, any 2-secure
protocol for fOT over this partial network can be used (as a black box) to obtain
a two-party OT protocol in the plain model.

Proof: We transform the given 3-party protocol π3 into a two-party OT protocol
π2 in two steps: first we eliminate all invocations of the OT oracle, and then we
obtain a two-party protocol by letting one of the parties simulate A and the
other simulate B and C. These steps are captured by the following two lemmas.

Lemma 1. Any 3-party protocol π3 as in Claim 2 can be used (as a black box)
to obtain a protocol π′3 over a network with no OT channels, such that π′3 is
secure against an adversary that corrupts either {A, C} or {B, C}.

The protocol π′3 is obtained from π3 by implementing each OT call via the trivial
protocol in which C sends its input to the other OT participant (either A or B).
Note that this trivial OT protocol is perfectly secure against an adversary that
corrupts either {A, C} or {B, C}, since the input of C is guaranteed to be known
to the adversary.

We can now use π′3 to implement OT between A and B in a 3-party network
without OT channels. An important observation is that C has no inputs in this
protocol.

Lemma 2. Let Π be a protocol between A, B, C that computes a function for
which C has no inputs, and suppose that Π is secure against {A, C} and {B, C}.
Then Π is also secure against {A} and {B}.

The lemma follows simply by observing that when C has no input the view of a
corrupted A can be simulated using the simulation of {A, C} and likewise for B.

We can now use π′3 to get a two-party OT protocol π2 by letting one party
simulate A and the other party simulate B, C. Due to Lemma 2 we get that the
protocol is secure against corruption of either party and hence constitutes an
OT protocol in the plain model between two parties.

We Generalize Claim 2 to hold for a dynamic network of n parties (rather than
a static 3-party network). The proof appears in the full version.

Claim 3. Any (n − 1)-secure protocol for fOT over an n-party partial network
with at most

(
n
2

)
− 1 OT channels can be used (as a black box) to obtain a

two-party OT protocol in the plain model.



292 D. Harnik, Y. Ishai, and E. Kushilevitz

As corollaries of the previous lemma, we get the lower bounds that we were
seeking for the number of OT invocations:

Theorem 4. Any n-party protocol Π that (n − 1)-securely computes fOT using
less than

(
n
2

)
OT calls can be used (as a black box) to implement a two-party

OT protocol in the plain model. In particular, there is no such Π with perfect or
statistical security, and its existence with computational security cannot be based
on one-way functions in black-box way.

3.3 Lower Bounds for Corruption of t = n − d Parties

We show impossibility results for this case that are based on extremal graph
theory and give tight bounds (for different ranges of d). The bounds hold also
in the dynamic network model.

Theorem 5 (Lower bound for general d). Consider a network of n parties
in the presence of an adversary that can corrupt t = n − d parties.

1. Suppose the network (even a dynamic one) has o(n2/d) OT channels. Then
any (n − d)-secure protocol for fOT in this network be used (as a black box)
to implement a two-party OT protocol in the plain model.

2. Suppose d is a constant and the network (even a dynamic one) has less than
(1 − c))

(
n
2

)
OT channels (for some constant c). Then any (n − d)-secure

protocol for fOT in this network be used (as a black box) to implement a
two-party OT protocol in the plain model.

Proof: The two claims follow the same principle. The crux is that unless every
two sets of parties of size d be connected in the OT graph, then one can build
an OT in the plain model. Suppose that there exist two disconnected sets of size
at least d then define each of the groups as A and B and the rest of the graph
as C. We now reduce this setting to the case of the previous section where we
have parties A, B and C such that A and B are not connected and the adversary
may corrupt either {A, C} or {B, C} (since these are sets of size at most n − d).
By Claim 2, such a setting would allow building a two-party OT protocol in the
plain model.

Proving (1) for the static case. Due to the outline above, we examine graphs
where every two sets of size d must contain at least one edge between them. This
means, in particular, that in the graph of non-edges there exists no clique of size
2d. By Turan’s Theorem, such a graph can have at most (1 − 1/(2d))n2/2 non-
edges, and hence the OT graph must have at least n2

4d edges.

Proving (2). The above argument is limited since it only considers the fact
that the non-edges graph must not contain a clique of size 2d. But actually, the
graph cannot even contain a bipartite d × d clique which is a stricter constraint.
For such a graph there are rather tight results when d is a constant. Namely, for
constant d the Erdös-Stone-Simonovits Theorem [16] states that the non-edges
graph must have at most o(n2) missing edges, which amounts to the OT graph



How Many OTs Are Needed for Secure Multiparty Computation? 293

containing (1 − o(1))
(

n
2

)
OT channels. As in Claim 3, even if the layout of OT

channels is not known in advance it can simply be guessed. Since the number of
missing edges is constant, the probability that a random guess is correct about
the eventual network is inverse polynomial, which suffices to extend any static
network result (with constant d) to a similar result for dynamic networks.

Sketch of proof of (1) in the dynamic case. We provide an argument that
there must be at least n2

2d edges in the graph (when assuming that every two
sets of size d must contain at least one edge between them). This argument
provides a slightly better bound than Turan’s Theorem (since Turan’s theorem
discusses anti-cliques rather than bipartite d×d anti-cliques) but, more crucially,
gives us information that is useful for proving the bound in the dynamic case.
Specifically, we get a guarantee that if there are less than n2

2d edges in the graph
then in every partition of the graph to d sized sets, at least one of the sets has
no neighbor with some other d-sized set (the other set is not necessarily in the
partition). This information, gives rise to an efficient procedure that finds (with
noticeable probability) sets A, B and C where A and B are of size d and have no
connecting edges in the dynamically set network. This, in turn, allows to build a
two-party OT in the plain model from a secure protocol for fOT in the dynamic
setting. The complete proof appears in the full version.

4 Upper Bounds for the Case of t = n − 1

4.1 The Tables Method

The tables method is a generic secure computation protocol that computes a
function by an iterative process on the truth table of the function. The truth
table of a function f : {0, 1}n → {0, 1}m is simply a 2nm bit long string such that
the ith cell (or entry) contains the value f(x) where x is the string representing
the integer i. Denote the bits of the string x by x1, . . . , xn. The idea is to use
the fact that restricting the value of the variable x1 to be either 0 or 1 amounts
to looking either at the first or at the second half of the table. Denote by T f the
truth table of f and by T f |b the new table when fixing the first input variable
x1 to b, for b ∈ {0, 1}. Thus, T f |0 is simply the first half of the table T f while
the second half is T f |1.6 Similarly, denote the table of f after fixing the j most
significant bits of x as T f |x1,...,xj .

The idea of the protocol is that at the jth iteration the j parties P1, . . . , Pj

jointly distribute additive shares of the table T f |x1,...,xj between themselves. At
the end of the protocol all parties hold a share of the table T f |x1,...,xn which
consists simply of the single value f(x). The full protocol TABLES is presented
in Figure 1.

6 The first and second halves of a table correspond to fixing of the “most significant”
bit, x1. For every other xi, the fixing of the ith bit xi amounts to a different partition
of the table into two halves.



294 D. Harnik, Y. Ishai, and E. Kushilevitz

TABLES f(x1, . . . , xn)
Let f : {0, 1}n → {0, 1}m be a function to be computed by n parties P1, . . . , Pn, each
holding a single input bit x1, . . . , xn respectively.

– Initialization stage: P1 computes T f |x1 , i.e. the truth table of f when restricted
to his input x1. Let S1

1 = T f |x1 .
– Iteration stage: The following steps are repeated sequentially for each j ∈

[n − 1]. At the beginning of the jth iteration, each of the parties P1, . . . , Pj holds
a share Sj

1 , . . . , Sj
j (respectively) such that

�
i∈[j] S

j
i = T f |x1,...,xj . At the end of

the iteration, the table T f |x1,...,xj+1 is shared among the parties P1, . . . , Pj+1.

1. For each i ∈ [j], party Pi chooses a random mask Ri ∈ {0, 1}2n−j m and
calculates T 0

i = Sj
i |0 ⊕ Ri and T 1

i = Sj
i |1 ⊕ Ri.

2. Pj+1 runs an OT protocol with every Pi such that i ∈ [j]. They run the
protocol OT (T 0

i , T 1
i ; xj+1) with Pi as sender and Pj+1 as receiver.

3. For each i ∈ [j], party P i sets Sj+1
i = Ri while party Pj+1 sets Sj+1

j+1 =�
i∈[j] T

xj+1
i .

– Output stage: Each party sends its share Sn
i to P1 who outputs

�
i∈[n] S

n
i .

Fig. 1. The TABLES protocol

Theorem 6. Protocol TABLES is an (n−1)-secure protocol for the function f .
The protocol involves a single OT call between each pair of players.

A proof of Theorem 6 appears in the full version. Note that the protocol can be
easily generalized to handle �-bit inputs rather than single bits. In such a case,
each party runs � consecutive iterations, one for each input bit. The number of
OTs between each pair of players grows to �.

4.2 Applying the Tables Method

The advantage of the tables method is that it requires exactly one OT call
between each pair of parties (overall,

(
n
2

)
OT calls) and presents a plausibility

result for (n − 1)-secure computation of any function on n bits, matching the
lower bound on the number of OTs for the case of t = n − 1 (Theorem 4).

The main problem with the tables method, however, is that the strings sent
in the (string) OT are of length 2nm. This makes the protocol inefficient except
when the input domain of f is of feasible size. In the following we show that
for certain classes of functions one can get efficient protocols that still require
a minimal number of OTs. For example, we describe how to securely compute
any function in NC0, namely a function in which each bit of the output depends
on a constant number of input bits. Note that, under standard cryptographic
assumptions, there exist non-trivial cryptographic primitives such as one-way
functions and pseudorandom generators in NC0 [1].



How Many OTs Are Needed for Secure Multiparty Computation? 295

Proposition 7. For every function f ∈ NC0 there exists an efficient (n − 1)-
secure computation protocol using just

(
n
2

)
OT calls.

Proof sketch: For a function f : {0, 1}n → {0, 1}m in NC0 it is guaranteed
that each output bit is a function of c = O(1) input bits. We call these the c
input bits that affect the output bit.

The straightforward protocol runs m separate TABLES protocols, one for each
output bit. Since each output bit is affected by only c parties, then each TABLES
protocol can be executed only by the c parties that affect this output, using a
table of size 2c which is constant. However, if each protocol is run separately
then the number of OT calls would grow to

(
c
2

)
m, which may be bigger than

(
n
2

)
when m is large. Using a careful scheduling of the TABLES protocols, all OT calls
between each pair of parties can be computed using a single OT invocation. (See
full version for details.) Thus, the overall number of OTs remains

(
n
2

)
, matching

the lower bound.

Note that the above mentioned schedule works for every function f (not nec-
essarily in NC0). The efficiency though is only guaranteed for limited types of
functions. More precisely, efficiency is guaranteed for every function where each
output bit is affected only by a logarithmic number of input variables.

Extension to bounded degree polynomials. A straightforward extension
of the above proposition follows from observing that if the output stage is not
executed then the above protocol efficiently computes an additive secret-sharing
for each output bit. At the same cost, the parties can get an additive secret-
sharing of the sum of various outputs. This is done simply by each party taking
a local sum of the various shares that it holds to create a new share for the
sum. This forms an efficient low communication (n − 1)-secure protocol for all
logarithmic degree polynomials whose representation as the sum of monomials
has only a polynomially many terms.

4.3 Oblivious Linear Branching Programs

This section puts forward a generalization of the tables method that extends
the class of functions that we can securely compute by an efficient protocol. The
class of functions that we deal with is a linear version of oblivious branching
programs.

Definition 8 (Oblivious Linear Branching Programs). A linear branching
program LBP on an n-bit input is an ordered set of triples {(i1; M0

1 , M1
1 ), . . . , (is;

M0
s , M1

s )} and an initial vector v0 ∈ {0, 1}w0. Each triple contains an index
ij ∈ [n] and a pair of boolean wj−1 × wj matrices M0

j , M1
j (where wj ≥ 1). The

size of the program is s and its width w is the maximal wj over all j ∈ [s]. On
input x ∈ {0, 1}n the output of the program is LBP (x) = v0M

xi1
1 · · · Mxis

s .

Theorem 9. There exists an (n−1)-secure computation protocol for computing
the output of a linear branching program LBP. The protocol makes at most sn OT
calls on �-bit strings (where s and � are the size and width of LBP, respectively).



296 D. Harnik, Y. Ishai, and E. Kushilevitz

The protocol runs along the lines of the TABLES protocol (Figure 1), with the
main difference being that at step (1), the ith party computes T 0

i = Sj
i M0

j ⊕ Ri

and T 1
i = Sj

i M1
j ⊕ Ri (rather than T 0

i = Sj
i |0 ⊕ Ri and T 1

i = Sj
i |1 ⊕ Ri). The

complete protocol appears in the full version.

4.4 Functions Captured by Linear Branching Programs

As mentioned before, the protocol for linear branching programs is a general-
ization of the tables method. As such, it captures the same applications as the
previous method, but it also captures other functions that could not be efficiently
computed in the previous method. We highlight some function classes that can
be computed using this methodology:

Tables. The LBP model is indeed a generalization as exemplified by the fol-
lowing presentation: consider the initial vector v0 that is the truth table of the
function f . For each iteration, the two matrices M0

j and M1
j are simply two

projection matrices (and hence also linear operations). M0
j leaves only the first

half of the coordinates while M1
j leaves the second half of the coordinates.

Oblivious branching programs. Similar to linear branching programs, obliv-
ious branching programs inquire a single variable at each layer and move to a
new state according to its answer. This can be viewed as a layered graph where
each node has two outgoing edges labeled 0 and 1 going to the next level. The
width of the program is the maximal number of nodes in a layer and the number
of layers is the length of the program. The simulation of such a branching pro-
gram by an LBP looks at the intermediate states as indicator vectors of length
w (all zeros except a single one indicating the current state). The matrix for
input 0 has as its ith row, the indicator vector that the ith state should move to
in case that the input bit is 0 and likewise for the second matrix. Other models
of computation or functions that are captured by their view as a branching pro-
gram include decision trees, oblivious automata and membership in small
(polynomial size) set.

Oblivious counting branching programs. As in the oblivious branching
program case, a non-deterministic branching program allows going from one
state to a number of states. A counting branching program outputs the number
of accepting paths that a non-deterministic branching program has. Such non-
determinism can easily be incorporated into LBPs by allowing the state vector
to vary from an indicator with a single one. The ith row of the matrix will have
a 1 for each possible move from the ith state to the next level. If the operations
are executed over a large enough field, then the intermediate vector holds in
each location the number of paths that lead up to this state. Thus, over a large
field this implements a counting branching program. If working over the field
GF (2) then this is simply a parity branching program that indicates the parity
of the number of paths that lead to a state. Unfortunately, the most natural
non-deterministic model is not captured by LBPs. This is a non-deterministic



How Many OTs Are Needed for Secure Multiparty Computation? 297

procedure that asks whether their exists an accepting path to the program at all
(an operation that is no longer a linear one). In Section 5, we present protocols
for secure computation for this model.

Sparse Polynomials. LBPs allow for a simple and efficient computation of a
monomial over input bits.7 In addition, an LBP can incorporate in it a number of
parallel LBP computations and have the last operation sum their outputs (simply
by incorporating this linear operation in the last pair of matrices). Thus LBPs
can compute a polynomial as a sum of all of its monomials. For the program to
be efficient, the only limitation is that the number of monomials is polynomial.
Note that this captures a larger family of functions than in Section 4.2. A closely
related question is can one compute a DNF formula using LBPs (DNFs are the
OR of monomials rather than their sum). This is a special case of the non-
deterministic question addressed in the next section.

5 Secure Computation for Non-deterministic LBP

In this section we suggest a method of securely computing a nondeterministic
(or existential) linear branching program. As opposed to counting branching
programs that give the sum of the number of solutions (and are easy to compute
by LBPs), asking whether or not the exists a solution is a non-linear operation
and therefore is not captured by the general framework. A good example is the
computation of DNF formulas. Like sparse polynomials these are a polynomial
size collection of monomials over n input bits but the question is whether x
satisfies at least one of the monomials (rather than their sum). The problem
arises from the fact that the OR operation is not a linear one and hence it is
not captured by the LBP model. A natural approach is to first compute the
sum of the monomials over a large enough field (to avoid a wraparound), and
then check whether this sum is zero or not. However, revealing the sum is not a
good solution as it leaks more information on the inputs than the desired output
(it differentiates, for instance, whether there was a single satisfied monomial or
many of them).

We propose a generic method that securely computes the existential analogue
of any counting LBP. The method is secure against adversaries that can corrupt
up to t ≤ n − Ω(k) where k is the security parameter, and adds a statistical
error of at most 2−k. For simplicity we state and prove the theorem formally for
limited LBPs where each party has a single input bit and note that as in the
previous sections, this protocol may be generalized to more complex LBPs, at
the price of additional OT invocations.

Theorem 10. Let L be a LBP of length n computing a function f : {0, 1}n →
Zp where p is a (k/2)-bit prime and k is the security parameter. Then there
exists an efficient n-party statistically t-secure protocol with t = n−O(k) for the
predicate g defined as:
7 For example, an LBP for the AND function over n bits simply uses vectors and

matrices of dimension 1 and takes v0 = (0) and the ith triplet is (i, 0, 1).,



298 D. Harnik, Y. Ishai, and E. Kushilevitz

g(x) =
{

0, f(x) = 0;
1, otherwise.

The protocol requires 4
(
n
2

)
OT calls.

Proof: The basic idea is to add a randomization stage in each of the iterations of
the secure computation protocol for L. This randomization should give an output
with the following properties: The output should be uniformly distributed over
the domain if f(x) 	= 0 but should always be 0 if f(x) = 0. Therefore, if the
output is not 0 then we know for sure that f(x) 	= 0 but learn nothing else
about f(x). If the output is 0, then it is most likely that f(x) = 0. An error only
happens if the uniformly distributed output happened to hit 0 which happens
with probability that is inverse of the domain size (we will choose the domain
to be of size 2k).

Cayley expanders and a matrix representation. For the randomization
steps we use a constant degree Cayley expander graph with a specific structure. A
Cayley graph is described over a multiplicative group by a small set of generators
{G1, . . . , Gd}. For each element (vertex) v in the group, its neighbors are {G1 ·
v, . . . , Gd · v}. We can use any expander graph with a constant degree such that
its generators can be represented as affine transformation over Z

m
p . In particular

we can use the expander graph of Margulis [36] and Gaber and Galil [20]. This
is an expander over ZN × ZN for some integer N , and we take N to be a prime
p in the order of 2k/2. The expander has degree 8 and as we required can be
presented by 8 affine transformations.

For simplicity we will describe the construction over Z
2
p (as in the Margulis

graph) although this can be generalized. Suppose that each step is an affine
transformation, e.g. a step moves from vertex v ∈ Z

2
p to the vector Av + e where

A ∈ [Z]2,2 is a 2 × 2 matrix and e ∈ Z
2
p is a vector. For each such generator we

define the corresponding 3 × 3 matrix G ∈ [Z]3,3 as:

G =

�
�

a11 a12 e1

a21 a22 e2

0 0 1

�
�

Notice that multiplying the vector v = (v1, v2, 1) by G simply amounts to a
step in the expander from vertex (v1, v2) with the third coordinate remaining
1. If A1, . . . , An denotes a series of steps where each Ai ∈ {G1, . . . , Gd} and let
v = (0, 0, 1) then AnAn−1 . . . A1v stands for a random walk starting at vertex
(0, 0) and the first 2 coordinates of the output hold the end vertex of the walk.
On the other hand, AnAn−1 . . . A10 simply equals 0 (where 0 stands for the
vector (0, 0, 0)).

The randomization technique. Basically, each party in its turn will con-
tribute a random step Ai in the expander. Our goal is that at the end of the
execution the output will be the multiplication An . . . A1v where v is the vector
(0, 0, f(x)). Hence, if f(x) = 0 the output will simply be 0. On the other hand if
f(x) 	= 0 then the output represents the end of a random walk starting at (0, 0).
We use the following result of Kamp and Zuckerman [32], which states that an



How Many OTs Are Needed for Secure Multiparty Computation? 299

adversary that does not know Ω(k) of the n expander steps has essentially no
knowledge about the outcome of the random walk. The precise statement is that
a random walk on a good expander (where each step is represented by a single
symbol) is an extractor for a symbol fixing source.8

Theorem 11 (adapted from Kamp and Zuckerman [32], Theorem 3.1).
Let a1, . . . , an be a series of steps on an expander of degree d, size dm and second
eigenvalue λ ≤ d−α and let t be such that n − t ≥ 1

2α

(
m + 2

log d log 1
2ε

)
. Then

conditioned on the view of an adversary that observes at most t elements in the
series, the output of the walk is ε-close to uniform.

In our application the graph has parameters d = 8, α ≈ 0.06 (due to [20]) and
the graph is of size 2k, thus m = k/3. When choosing ε = 2−k the requirement
in the Theorem translates to n − t ≥ Ω(k).

Corollary 12. Let A1, . . . , An be a sequence of randomly chosen generator ma-
trices for a good expander graph (e.g. the Margulis graph) with vertex set Z

2
p

(for prime p in the order of 2k/2) . Let v = (0, 0, c) for c 	= 0 and denote
u = An . . . A1v. Then conditioned on the view of an adversary that observes at
most t = n − Ω(k) of the sequence the pair (u1, u2) is 2−k-close to the uniform
distribution on Z

2
p.

Proof: (of Corollary 12) The corollary follows directly from Theorem 11 in the
case that c = 1. It is left to show that it also holds for any c 	= 0. This can
be seen by breaking the vector v into the sum of c vectors of the type (0, 0, 1).
For each of the c vectors the random walk gives an almost uniform distribution.
When summing up we have a uniform distribution multiplied by c. Since we are
working in Zp then multiplication amounts to a permutation on the elements
of Zp and the output remains close to uniform. Note that this is the only place
where we require that p is prime.

The actual protocol. The protocol is the same protocol as the general one
for computing LBPs only at each iteration, the acting party (that redistributes
the shares) chooses a random step in the extractor. The matrix operations of
the LBP will always be multiplied from the right, while the random steps of the
expander will be multiplied from the left. Technically, the following changes are
applied:

– Instead of starting with the vector v0 of length w0, the protocol starts with
a matrix B0 of 3 vectors (B0 ∈ [Zp]3,w0). The first two rows of B0 are all
zero vectors and the third is the vector v0. Accordingly, the protocol runs
throughout with 3 row matrices rather than single row vectors.

– At step (1) of the iteration stage, rather than computing two values, party
Pi computes 2d values, two for each generator of the expander. They are for
each τ ∈ [d]: T 0τ

i = GτSj
i M0

j ⊕ Ri and T 1τ
i = GτSj

i M1
j ⊕ Ri.

8 A symbol fixing source is a randomness source for which t of n symbols are fixed
while the rest are uniformly distributed.



300 D. Harnik, Y. Ishai, and E. Kushilevitz

– At step (2) of the iteration, the acting party Pi chooses a random τ ∈ [d]
and runs a

(
2d
1

)
-OT protocol with each party according to his input xj and

τ . Such a protocol requires log d + 1 OT calls.
– At the output step, all parties send the first two rows of their shares (but

not the third row!) to the designated party P1. This party calculates the sum
and outputs 0 if the sum was (0, 0) and 1 otherwise.

The correctness and security of the overall protocol follows since the modified
LBP protocol forms a n − 1-secure computation for a sharing of the following
vector

u = An . . . A1B0M
xi1
1 . . . M

xin
n

In addition, B0M
xi1
1 . . .M

xin
n is simply the vector (0, 0, f(x)). Therefore, com-

bined with corollary 12, we get that if P1 outputs the correct value (up to an
error probability of at most 1/p2 ≤ 2−k). Moreover, if f(x) 	= 0 then an adver-
sary that corrupts up to t parties (including P1) sees a value that is statistically
close to uniform, hence leaking no additional information on f(x) or x. This
concludes the proof of Theorem 10.

Acknowledgements. We thank Ronen Shaltiel for pointers on constructions of
dispersers.

References

1. Applebaum, B., Ishai, Y., Kushilevitz, E.: Cryptography in NC0 In: 45th FOCS,
pp. 166–175 (2004)

2. Barkol, O., Ishai, Y.: Secure computation of constant-depth circuits with appli-
cations to database search problems. In: Shoup, V. (ed.) CRYPTO 2005. LNCS,
vol. 3621, pp. 395–411. Springer, Heidelberg (2005)

3. Beaver, D.: Precomputing oblivious transfer. In: Coppersmith, D. (ed.) CRYPTO
1995. LNCS, vol. 963, pp. 97–109. Springer, Heidelberg (1995)

4. Beaver, D.: Correlated pseudorandomness and the complexity of private computa-
tions. In: 28th STOC, pp. 479–488 (1996)

5. Beimel, A., Malkin, T.: A quantitative approach to reductions in secure compu-
tation. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 238–257. Springer,
Heidelberg (2004)

6. Beimel, A., Malkin, T., Micali, S.: The all-or-nothing nature of two-party secure
computation. In: Wiener, M.J. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 80–97.
Springer, Heidelberg (1999)

7. BenOr, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In: 20th STOC, pp. 1–10
(1988)

8. Berman, P., Garay, J., Perry, K.: Bit optimal distributed consensus. In: Computer
Science Research, pp. 313–332. Plenum Publishing Corporation (1992)

9. Bracha, G.: An o(log n) expected rounds randomized byzantine generals protocol.
Journal of the ACM 34(4), 910–920 (1987)

10. Canetti, R.: Security and composition of multiparty cryptographic protocols. Jour-
nal of Cryptology 13(1), 143–202 (2000)



How Many OTs Are Needed for Secure Multiparty Computation? 301

11. Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure protocols.
In: 20th STOC, pp. 11–19 (1988)

12. Coan, B., Welch, J.: Modular construction of a byzantine agreement protocol with
optimal message bit complexity. Information and Computation, 97(1) (1992)

13. Crépeau, C., Kilian, J.: Achieving oblivious transfer using weakened security as-
sumptions. In: 29th FOCS, pp. 42–52 (1988)

14. Damg̊ard, I., Kilian, J., Salvail, L.: On the (im)possibility of basing oblivious trans-
fer and bit commitment on weakened security assumptions. In: Stern, J. (ed.) EU-
ROCRYPT 1999. LNCS, vol. 1592, pp. 56–73. Springer, Heidelberg (1999)

15. Dodis, Y., Micali, S.: Lower bounds for oblivious transfer reductions. In: Stern, J.
(ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 42–55. Springer, Heidelberg (1999)

16. Erdos, P., Simonovits, M.: A limit theorem in graph theory. Stud. Sci. Math.
Hung 1, 51–57 (1966)

17. Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts.
Communications of the ACM 28(6), 637–647 (1985)

18. Fitzi, M., Franklin, M., Garay, J., Vardhan, H.: Towards optimal and efficient
perfectly secure message transmission. In: Vadhan, S.P. (ed.) TCC 2007. LNCS,
vol. 4392, Springer, Heidelberg (2007)

19. Franklin, M., Haber, S.: Joint encryption and message-efficient secure computation.
J. Cryptology 9(4), 217–232 (1996)

20. Gabber, O., Galil, Z.: Explicit constructions of linear-sized superconcentrators.
JCSS 22(3), 407–420 (1981)

21. Goldreich, O.: Foundations of Cryptography, vol. 2. Cambridge University Press,
Cambridge (2004)

22. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game - a com-
pleteness theorem for protocols with honest majority. In: 19th STOC, pp. 218–229
(1987)

23. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their va-
lidity, or all languages in NP have zero-knowledge proof system. Journal of the
ACM 38(1), 691–729 (1991)

24. Goldreich, O., Vainish, R.: How to solve any protocol problem - an efficiency im-
provement. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 73–86.
Springer, Heidelberg (1988)

25. Goldreich, O., Wigderson, A.: Tiny families of functions with random properties:
A quality-size trade-off for hashin. Rand. Structs. and Algs. 11(4), 315–343 (1997)

26. Gradwohl, R., Kindler, G., Reingold, O., Ta-Shma, A.: On the error parameter of
dispersers. In: APPROX-RANDOM, pp. 294–305 (2005)

27. Harnik, D., Kilian, J., Naor, M., Reingold, O., Rosen, A.: On tolerant combiners
for oblivious transfer and other primitives. In: Cramer, R.J.F. (ed.) EUROCRYPT
2005. LNCS, vol. 3494, pp. 96–113. Springer, Heidelberg (2005)

28. Harnik, D., Naor, M., Reingold, O., Rosen, A.: Completeness in two-party secure
computation - a computational view. In: 36th STOC, pp. 252–261 (2004)

29. Hirt, M., Maurer, U.: Player simulation and general adversary structures in perfect
multiparty computation. Journal of Cryptology 13(1), 31–60 (2000)

30. Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way per-
mutations. In: 21st STOC, pp. 44–61 (1989)

31. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers effi-
ciently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer,
Heidelberg (2003)

32. Kamp, J., Zuckerman, D.: Deterministic extractors for bit-fixing sources and
exposure-resilient cryptography. In: 44th FOCS, pp. 92–101 (2003)



302 D. Harnik, Y. Ishai, and E. Kushilevitz

33. Kilian, J.: Founding cryptography on oblivious transfer. In: 20th STOC, pp. 20–31
(1988)

34. Kilian, J.: A general completeness theorem for two-party games. In: 23rd STOC,
pp. 553–560 (1991)

35. King, V., Saia, J., Sanwalani, V., Vee, E.: Towards secure and scalable computation
in peer-to-peer networks. In: 47th FOCS, pp. 87–98 (2006)

36. Margulis, G.: Explicit constructions of concentrators. Problemy peredaci informa-
cii 9(4), 71–80 (1973)

37. Meier, R., Przydatek, B., Wullschleger, J.: Robuster combiners for oblivious trans-
fer. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, Springer, Heidelberg (2007)

38. Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: SIAM Symposium
on Discrete Algorithms (SODA 2001), pp. 448–457 (2001)

39. Ostrovsky, R., Rajagopalan, S., Vazirani, U.: Simple and efficient leader election
in the full information model. In: 26th STOC, pp. 234–242 (1994)

40. Rabin, M.O.: How to exchange secrets by oblivious transfer. TR-81, Harvard (1981)
41. Radhakrishnan, J., Ta-Shma, A.: Bounds for dispersers, extractors, and depth-two

superconcentrators. SIAM J. Discrete Math. 13(1), 2–24 (2000)
42. Reingold, O., Vadhan, S., Wigderson, A.: Entropy waves, the zig-zag graph prod-

uct, and new constant-degree expanders and extractors. ECCC, 8(18) (2001)
43. Shaltiel, R.: Recent developments in explicit constructions of extractors. Bulletin

of the EATCS 77, 67–95 (2002)
44. Wiesner, S.: Conjugate coding. SIGACT News 15(1), 78–88 (1983)
45. Wullschleger, J.: Oblivious transfer amplification. In: Naor, M. (ed.) EUROCRYPT

2007, vol. 4515, pp. 555–572. Springer, Heidelberg (2007)
46. Yao, A.C.: Protocols for secure computations. In: 23rd FOCS, pp. 160–164 (1982)
47. Yao, A.C.: How to generate and exchange secrets. In: 27th FOCS, pp. 162–167

(1986)
48. Zuckerman, D.: Randomness-optimal sampling, extractors, and constructive leader

election. In: 28th STOC, pp. 286–295 (1996)



Simulatable VRFs with Applications to
Multi-theorem NIZK

Melissa Chase and Anna Lysyanskaya

Computer Science Department
Brown University

Providence, RI 02912
{mchase,anna}@cs.brown.edu

Abstract. This paper introduces simulatable verifiable random func-
tions (sVRF). VRFs are similar to pseudorandom functions, except that
they are also verifiable: corresponding to each seed SK, there is a public
key PK, and for y = FPK(x), it is possible to prove that y is indeed the
value of the function seeded by SK. A simulatable VRF is a VRF for
which this proof can be simulated, so a simulator can pretend that the
value of FPK(x) is any y.

Our contributions are as follows. We introduce the notion of sVRF. We
give two constructions: one from general assumptions (based on NIZK),
but inefficient, just as a proof of concept; the other construction is prac-
tical and based on a special assumption about composite-order groups
with bilinear maps. We then use an sVRF to get a direct transformation
from a single-theorem non-interactive zero-knowledge proof system for a
language L to a multi-theorem non-interactive proof system for the same
language L.

1 Introduction

It has been more than twenty years since the discovery of zero-knowledge proofs.
In that time, they have attracted interest from the theoretical computer science
community (leading to the study of interactive proof systems and PCPs), theo-
retical cryptography community, and, more recently, cryptographic practice.

The proof protocols that have been implemented so far [Bra99, CH02, BCC04],
even though zero-knowledge in spirit, are not, strictly speaking, zero-knowledge
proofs as we usually define them. Typically, they are honest-verifier interactive
zero-knowledge proofs (sometimes, actually, arguments of knowledge) with the
interactive step removed using the Fiat-Shamir paradigm [FS87, GK03]. Inter-
action is an expensive resource, and so using a heuristic such as the Fiat-Shamir
transform in order to remove interaction is more attractive than using an inter-
active proof.
Single-theorem NIZK. In contrast to the Fiat-Shamir-basedprotocols adopted
in practice, that do not in fact provide more than just a heuristic security
guarantee [GK03], there are also well-known provable techniques for achieving
zero-knowledge in non-interactive proofs. Blum et al. [BFM88, DMP88, BDMP91]

A. Menezes (Ed.): CRYPTO 2007, LNCS 4622, pp. 303–322, 2007.
c© International Association for Cryptologic Research 2007



304 M. Chase and A. Lysyanskaya

introduced the notion of a non-interactive zero-knowledge (NIZK) proof system.
In such a proof system, some parameters of the system are set up securely ahead
of time. Specifically, a common random string σ is available to all participants.
The prover in such a proof system is given an x ∈ L for some language L and a
witness w attesting that x ∈ L. (For example, L can be the language of all pairs
(n, e) e is relatively prime to φ(n). The witness w can be the factorization of n.)
The prover computes a proof π, and the proof system is zero-knowledge in the
following sense: the simulator can pick its own σ′ for which it can find a proof π′

for the statement x ∈ L. The values (σ′, π′) output by the simulator are indis-
tinguishable from (σ, π) that are generated by first picking a random σ and then
having the honest prover produce π for x ∈ L using witness w. Blum et al. also
gave several languages L with reasonably efficient NIZK proof systems.

Let us explain the Blum et al. NIZK proof system for the language L in the
example above: L = {(n, e) | gcd(φ(n), e) = 1}. First, recall that if e is not
relatively prime to φ(n), then the probability that for a random x ∈ Z

∗
n there

exists y such that ye = x mod n is upper-bounded by 1/2. On the other hand,
if e is relatively prime to φ(n), then for all x ∈ Z

∗
n there exists such a y. So

the proof system would go as follows: parse the common random string σ as
a sequence z1, . . . , z� of elements of Z

∗
n, and for each zi, compute yi such that

ye
i = zi mod n. The proof π consists of the values y1, . . . , y�. The verifier simply

needs to check that each yi is the eth root of zi. For any specific instance (n, e),
the probability (over the choice of the common random string σ) that a cheating
prover can come up with a proof that passes the verification is 2−�. By the union
bound, letting � = k(|n|+ |e|) guarantees that the probability, over the choice of
σ, that a cheating prover can find an instance (n, e) and a proof π passing the
verification, is negligible in k.

Note that the proof system described above, although expensive, is not pro-
hibitively so. Proof systems of this type have been shown to yield themselves to
further optimizations [DCP97]. So why aren’t such proofs attractive in practice?

Multi-theorem NIZK. The problem with NIZK as initially defined and ex-
plained above was that one proof π completely used up the common random
string σ, and so to produce more proofs, fresh common randomness was required.
Blum et al. [BDMP91] showed a single-prover multi-theorem NIZK proof system
for 3SAT, and since 3SAT is NP-complete, the result followed for any language
in NP, assuming quadratic residuocity. Feige, Lapidot and Shamir [FLS99] con-
structed a multi-prover, multi-theorem NIZK proof system for all NP based on
trapdoor permutations. Recently, Groth, Ostrovsky and Sahai [GOS06] gave a
multi-theorem NIZK proof system for circuit satisfiability with very compact
common parameters and achieving perfect zero-knowledge (with computational
soundness), based on the assumption that the Boneh, Goh, Nissim [BGN05]
cryptosystem is secure.

In each of the multi-theorem NIZK results mentioned above, to prove that
x ∈ L for a language L in NP, the prover would proceed as follows: first, reduce
x to an instance of the right NP-complete problem, also keeping track of the
witness w. Then invoke the multi-theorem NIZK proof system constructed for



Simulatable VRFs with Applications to Multi-theorem NIZK 305

this NP-complete problem. In other words, even if the language L itself had an
efficient single-theorem NIZK, existing multi-theorem NIZK constructions have
no way of exploiting it. The Feige et al. result, which is the most attractive
because it is based on general assumptions, is especially bad in this regard: their
construction explicitly includes a step that transforms every instance x into a
new instance x′ via a Cook-Levin reduction. These reductions are what makes
NIZK prohibitively expensive to be considered for use in practice.

In this paper, we give a construction for achieving multi-theorem NIZK for
any language L based on single-theorem NIZK for L, without having to reduce
instances of L to instances of any NP-complete languages. This construction is
based on a new building block: a simulatable verifiable random function (sVRF).

Simulatable VRFs. Verifiable random functions (VRFs) were introduced by
Micali, Rabin, and Vadhan [MRV99]. They are similar to pseudorandom func-
tions [GGM86], except that they are also verifiable. That is to say, associated
with a secret seed SK, there is a public key PK, domain DPK , range RPK

and a function FPK(·) : DPK �→ RPK such that (1) y = FPK(x) is efficiently
computable given the corresponding SK; (2) a proof πPK(x) that this value
y corresponds to the public key PK is also efficiently computable given SK;
such a proof can exist only for a unique value y; (3) based purely on PK and
oracle calls to FPK(·) and the corresponding proof oracle, no adversary can
distinguish the value FPK(x) from a random value without explicitly querying
the function on input x. Several constructions of VRFs in the plain model ex-
ist [MRV99, Lys02, Dod02, DY05]. In the common-random-string model, Gold-
wasser and Ostrovsky [GO92] showed that existence of VRFs (with polynomial-
size domains; one can also call such VRFs verifiable pseudorandom generators,
or VPRGs) is a necessary and sufficient condition for multi-theorem NIZK for all
NP. Dwork and Naor [DN00] showed that (approximate) VPRGs in the standard
model are necessary and sufficient for zaps (zaps are witness-indistinguishable
proof protocols consisting of two rounds; the first round is a message from the
verifier to the prover than can be reused for future instances).

We introduce simulatable VRFs (sVRFs). In the common parameters model,
FPK(·) is a VRF in the sense defined above for all honest settings of the common
parameters. However, there is also a way to simulate the common parameters
such that, corresponding to a PK, for any x ∈ DPK , y ∈ RPK , it is possible to
simulate a proof π that FPK(x) = y. The resulting simulation is indistinguishable
from the view obtained when the parameters are set up correctly.

Using an sVRF to transform single-theorem NIZK to multi-theorem

NIZK. A simulatable VRF with domain of size �(k) and binary range allows a
prover to come up with a fresh verifiably random string R of appropriate length
�(k) every time he wants to prove a new theorem. He simply comes up with a
new PK for a VRF, and evaluates FPK on input i to obtain the ith bit of R, Ri.
The VRF allows him to prove that R was chosen correctly. He can then XOR
R with a truly random public string σ1 to obtain a string σ to be used in a
single-theorem NIZK. The resulting construction is zero-knowledge because of
the simulatability properties of both the sVRF and the single-theorem NIZK. It



306 M. Chase and A. Lysyanskaya

is sound because σ1 is a truly random string, and so it inherits the soundness
from the single-theorem NIZK (note that it incurs a penalty in the soundness
error). Note that because our sVRF construction is in the public parameters
model, the resulting multi-theorem proof system is also in the public parameters
model (rather than the common random string model).

Since we give an efficient instantiation of sVRFs, our results essentially mean
that studying efficient single-theorem NIZK proof systems for languages of in-
terest is a good idea, because our construction gives an efficient transformation
from such proof systems to multi-theorem ones.

Using an sVRF instead of the random oracle. An sVRF shares some
characteristics with a programmable random oracle: assuming that the parame-
ters of the system were picked by the simulator, the simulator can program it to
take certain values on certain inputs. One cannot necessarily use it instead of the
hash function in constructions where the adversary gets the code for the hash
function. But it turns out that it can sometimes replace the random oracle in
constructions where the adversary is allowed oracle access to the hash function
and requires some means to be sure that the output is correct. For example,
using an sVRF instead of H in the RSA-FDH construction [BR93, Cor00] would
make the same proof of security hold without the random oracle. Of course, it
is not a useful insight: an sVRF is already a signature, so it is silly to use it
as a building block in constructing another signature. The reason we think the
above observation is worth-while is that it is an example of when using an sVRF
instead of an RO gives provable instead of heuristic guarantees.

Constructing an sVRF. Our main result is a direct construction of a simu-
latable VRF based on the Subgroup Decision assumption (SDA) [BGN05], and
an assumption related to the Q-BDHI assumption [BB04b]. Dodis and Yam-
polskiy [DY05] used the Q-BDHI assumption to extend the Boneh-Boyen short
signature scheme [BB04a] and derive a VRF. The Dodis-Yampolskiy VRF is of
the form Fs(x) = e(g, g)1/(s+x), where g is a generator of some group G1 of
prime order q, and e : G1 × G1 �→ G2 is a bilinear map. The secret key is s
while the public key is gs. The DY proof that y = Fs(x) is the value π = g1/(s+x)

whose correctness can be verified using the bilinear map.
Our sVRF is quite similar, only it is in a composite-order group with a bilinear

map: the order of G1 is an RSA modulus n = pq. This is what makes simulata-
bility possible. In our construction, the public parameters consist of (g, A, D, H),
all generators of G1. As before, the secret key is s, but now the public key is
As. Fs(x) = e(H, g)1/(s+x), and the proof is a randomized version of the DY
proof: π = (π1, π2, π3), where π1 = Hr/(s+x)/Dr, π2 = g1/r and π3 = A(s+x)/r.
It turns out that, when A generates the entire G1, there is a unique y = Fs(x)
for which a proof exists. However, when A belongs to the order-p subgroup of
G1 (as is going to be the case when the system parameters are picked by the
simulator), the verification tests correctness only as far as the order-p subgroup
is concerned, and so the order-q component of Fs(x) is unconstrained. The proof
of security requires that a strengthening of Q-BDHI hold for the prime-order



Simulatable VRFs with Applications to Multi-theorem NIZK 307

subgroups of G1, and that the SDA assumption holds so that A picked by the
simulator is indistinguishable from the correct A.

We also give, as proof of concept, a construction under general assumptions,
based on multi-theorem NIZK.

Organization of the rest of this paper. In Section 2 we define sVRFs.
In Section 3 we give an sVRF construction based on general assumptions as a
proof of concept. In Section 4 we give our main result and its proof of security.
Finally, in Section 5 we give the transformation from single-theorem NIZK to
multi-theorem NIZK using sVRFs.

2 On Defining sVRFs

We begin by adapting the definition of Micali, Rabin and Vadhan [MRV99] in
the public parameters model.

Definition 1 (VRF in the public parameters model). Let Params(·) be
an algorithm generating public parameters p on input security parameter 1k. Let
D(p) and R(p) be families of efficiently samplable domains for all p ∈ Params.
The set of algorithms (G, Eval, Prove, Verify) constitutes a verifiable random
function (VRF) for parameter model Params, input domain D(·) and output
range R(·) if

Correctness. Informally, correctness means that the verification algorithm
Verify will always accept (p,PK, x, y, π) when y = FPK(x), and π is the
proof of this fact generated using Prove. More formally, ∀k, p ∈ Params(1k),
x ∈ D(p),

Pr[(PK,SK) ← G(p); y = Eval(p,SK, x); π ← Prove(p,SK, x);
b ← Verify(p,PK, x, y, π) : b = 1] = 1

Pseudorandomness. Informally, pseudorandomness means that, on input
(p,PK), even with oracle access to Eval(p,SK, ·) and Prove(p,SK, ·), no
adversary can distinguish FPK(x) from a random element of R(p) without
explicitly querying for it. More formally, ∀ PPT A, ∃ negligible ν such that

Pr[p ← Params(1k); (PK,SK) ← G(p);
(Qe, Qp, x, state) ← AEval(p,SK,·),Prove(p,SK,·)(p,PK);

y0 = Eval(p,SK, x); y1 ← R(p); b ← {0, 1};
(Q′e, Q

′
p, b
′) ← AEval(p,SK,·),Prove(p,SK,·)(state, yb)

: b′ = b ∧ x /∈ (Qe ∪ Qp ∪ Q′e ∪ Q′p)] ≤ 1/2 + ν(k)

where Qe and Qp denote, respectively, the contents of the query tape that
records A’s queries to its Eval and Prove oracles in the first query phase,
and Q′e and Q′p denote the query tapes in the second query phase.



308 M. Chase and A. Lysyanskaya

Verifiability. For all k, for all p ∈ Params(1k), there do not exist (PK, x,
y1, π1, y2, π2) such that y1 �= y2, but Verify(p,PK, x, y1, π1) = Verify(p,
PK, x, y2, π2) = ACCEPT.

Note that verifiability in the definition above can be relaxed so as to only hold
computationally (as opposed to unconditionally).

Simulatability, as defined below, is the novel aspect of sVRFs, setting them
apart from VRFs as previously defined. First, we give the definition, and then
we discuss variations.

Definition 2 (Simulatable VRF). Let (Params, G, Eval, Prove, Verify) be
a VRF (according to Definition 1). They constitute a simulatable VRF if there
exist algorithms (SimParams,SimG,SimProve) such that for all PPT A, A’s
views in the following two games are indistinguishable:

Game Real p ← Params(1k) and then A(p) gets access to the following oracle
R: On query NewPK, R obtains and stores (PK,SK) ← G(p), and returns
PK to A. On query (PK, x), R verifies that (PK,SK) has been stored for
some SK. If not it returns “error”. If so, it returns y = Eval(p,SK, x) and
π ← Prove(p,SK, x).

Game Simulated (p, t) ← SimParams(1k), and then A(p) gets access to the
following oracle S: On query NewPK, S obtains and stores (PK,SK) ←
SimG(p, t), and returns PK to A. On query (PK, x), S verifies if (PK,SK)
has been stored for some SK. If not, it returns “error”. If so, S (1) checks if
x has previously been queried, and if so, returns the answer stored; (2) oth-
erwise, S obtains y ← R(p) and π ← SimProve(p,SK, x, y, t), and returns
and stores (y, π).

2.1 Simplifying the Definition

The games in the above definition need to store multiple public keys and secret
keys, as well as responses to all the queries issued so far, and consistently re-
spond to multiple queries corresponding to all these various keys. It is clear that
this level of security is desirable: we want an sVRF to retain its security proper-
ties under composition with other instances within the same system. A natural
question is whether we can simplify the games by restricting the adversary to
just one NewPK query or just one (PK, x) query per PK without weakening the
security guarantees. In fact, the four possible combinations of such restrictions
yield four distinct security notions, as we show in the full version of this paper.

Although we cannot simplify Definition 2 in this way, we can give a seemingly
simpler definition (one that only allows one NewPK query from the adversary)
that is strictly stronger than Definition 2 in that it requires that the adversary
cannot distinguish the real game from the simulated one, even with the knowledge
of the trapdoor t.

Definition 3 (Trapdoor-indistinguishable sVRF). Let (Params, G, Eval,
Prove, Verify) be a VRF (as in Definition 1). They constitute a trapdoor-
indistinguishable (TI) sVRF if there exist algorithms (SimParams,SimG,



Simulatable VRFs with Applications to Multi-theorem NIZK 309

SimProve) such that the distribution Params(1k) is computationally indistin-
guishable from the distribution SimParams(1k) and for all PPT A, A’s views in
the following two games are indistinguishable:

Game Real Proofs. (p, t) ← SimParams(1k), (PK,SK) ← G(p) and then
A(p, t,PK) gets access to the following oracle R: On query x, R returns
y = Eval(p,SK, x) and π ← Prove(p,SK, x).

Game Simulated Proofs. (p, t) ← SimParams(1k), (PK,SK) ← SimG(p, t),
and then A(p, t,PK) gets access to the following oracle S: On query x, S
(1) checks if x has previously been queried, and if so, returns the answer
stored; (2) otherwise, obtains y ← R(p) and π ← SimProve(p,SK, x, y, t),
and returns and stores (y, π).

By a fairly standard hybrid argument, we have the following lemma (see the full
version for the proof):

Lemma 1. If (Params, G, Eval, Prove, Verify) is a TI-sVRF, it is an sVRF.

2.2 Weak Trapdoor-Indistinguishable sVRF

We now define a somewhat weaker notion of TI sVRFs, in which a simulator can
only give fake proofs for those values of the output range that it has sampled
itself in some special way.

Definition 4 (Weak TI-sVRF). Let (G, Eval, Prove, Verify) be a VRF in
the Params(1k) model with domain D(·) and range R(·). They constitute a
weak trapdoor-indistinguishable (TI) sVRF if there exist algorithms (SimParams,
SimG,SimProve,SimSample) such that the distribution Params(1k) is computa-
tionally indistinguishable from the distribution SimParams(1k) and for all PPT
A, A’s views in the following two games are indistinguishable:

Game Real Proofs. (p, t) ← SimParams(1k), (PK,SK) ← G(p) and then
A(p, t,PK) gets access to the following oracle: On query x, the oracle returns
y = Eval(p,SK, x) and π ← Prove(p,SK, x).

Game Simulated Proofs. (p, t) ← SimParams(1k), (PK,SK) ← SimG(p, t),
and then A(p, t,PK) gets access to the following oracle: On query x, the
oracle (1) checks if x has previously been queried, and if so, returns the
answer stored; (2) otherwise, obtains (y, w) ← SimSample(p, t,SK, x) and
π ← SimProve(p,SK, x, y, t, w), and returns and stores (y, π).

We now show that a weak TI-sVRF where SimSample outputs a uniformly
random element of a sufficiently large set can be converted to a TI-sVRF with
binary range. Let (G, Eval, Prove, Verify) be a weak TI-sVRF in the Params
model with domain D(p), and range R(p) ⊆ {0, 1}m(k) for some polynomial m
for all p ∈ Params(1k). Consider the following algorithms:

Params∗(1k) Pick r ← {0, 1}m(k), p ← Params(1k); return p∗ = (r, p).
G∗ On input p∗ = (r, p), output (PK∗,SK∗) ← G(p).



310 M. Chase and A. Lysyanskaya

Eval∗ and Prove∗ On input p∗ = (r, p), SK∗, and x ∈ D(p), compute y =
Eval(p,SK∗, x). Let y∗ = y · r, where by “·”, we denote the inner product,
i.e. y · r =

⊕|y|
i=1 yiri. Eval∗ outputs y∗. Prove∗ picks π ← Prove(p,SK∗, x)

and outputs π∗ = (π, y).
Verify∗ On input p∗ = (r, p), PK∗, x ∈ D(p), y∗ ∈ {0, 1}, π∗ = (π, y): accept

iff Verify(p,PK, x, y, π) accepts and y∗ = r · y.

Lemma 2. Suppose (G, Eval, Prove, Verify) is a weak TI-sVRF with
(SimParams,SimSample,SimG,SimProve) as in Definition 4. Let ρ be such that
for all (p, t) ∈ SimParams(1k), for all x ∈ D(p), for all (SK,PK) ∈ SimG(p, t),
|SimSample(p, t,SK, x)| ≥ ρ(k), and SimSample is a uniform distribution over
its support. Let μ be such that for all p ∈ Params(1k), |D(p)| ≤ μ(k). If there ex-
ists a negligible function ν such that μ(k)ρ(k)−

1
3 = ν(k) then (G∗, Eval∗, Prove∗,

Verify∗) as constructed above are a TI-sVRF in the Params∗ model with domain
D(p), and range {0, 1}.

Proof. Correctness, verifiability and pseudorandomness follow easily from the
respective properties of the weak TI-sVRF (recall that a weak TI-sVRF is still
a VRF – the “weak” part refers to simulatability only). In particular, pseudo-
randomness follows by standard techniques such as the leftover hash lemma.

We must show TI-simulatability. We first prove a useful claim. Consider spe-
cific values (p, t) ∈ SimParams(1k), (PK,SK) ∈ SimG(p, t). Since t and SK
are fixed, the distributions R′(x) = SimSample(p, t,SK, x) and Bad(x) = {r ∈
{0, 1}m(k) : |Pr[y ← R′(x) : y · r = 1] − .5| ≥ |R′(x)|− 1

3 } are well-defined.
In English, Bad(x) is the set of those r’s for which the random variable y · r
(where y is sampled uniformly at random from R′(x), i.e. sampled according to
SimSample(p, t,SK, x)) is biased by at least |R′(x)|− 1

3 from a random bit.

Claim. ∀x ∈ D(p), Pr[r ← {0, 1}m(k) : r ∈ Bad(x)] ≤ |R′(x)|− 1
3 .

Proof. (Of claim.) Suppose x ∈ D(p) is fixed. Let Weight(r) =
∑

y∈R′(x) y · r.
By definition of Bad(x), r ∈ Bad(x) if and only if |Weight(r)/|R′(x)| − .5| ≥
|R′(x)|− 1

3 . It is easy to see that, if the probability is taken over the choice of
r, then Exp[Weight(r)/|R′(x)|] = .5. On the other hand, for any pair y1 �=
y2 ∈ R′(x), y1 · r is independent from y2 · r, and so Weight(r) =

∑
y∈R′(x) y · r

is a sum of pairwise independent random variables. Thus, Var [Weight(r)] =∑
y∈R′(x) Var [y · r] = |R′(x)|/4, and Var [Weight(r)/|R′(x)|] = 1/4|R′(x)|. Plug-

ging Exp and Var for Weight(r)/|R′(x)| into Chebyshev’s inequality, we get
Pr[|Weight(r)/|R′(x)| − .5| ≥ |R′(x)|− 1

3 }] ≤ |R′(x)|− 1
3 which completes the

proof.

Now we will show that the simulatability property holds. Consider the following
algorithms:

SimParams∗. On input 1k, obtain (p, t) ← SimParams(1k), r ← {0, 1}m(k).
Output p∗ = (r, p), t∗ = t.



Simulatable VRFs with Applications to Multi-theorem NIZK 311

SimG∗. On input (p∗, t∗), where p∗ = (r, p) obtain (PK,SK) ← SimG(p, t∗).
Output PK∗ = PK,SK∗ = SK.

SimProve∗. On input (p∗,SK∗, x, y∗, t∗) where p∗ = (r, p), repeat the fol-
lowing up to k times until y · r = y∗: (y, w) ← SimSample(p, t,SK, x).
If after k calls to SimSample, y · r �= y∗, output “fail”. Else obtain π ←
SimProve(p, t,SK, x, (y, w)). Output π∗ = (π, y).

We define two intermediate games in which the adversary is given an oracle
that is similar to Game Simulated Proofs from the TI-sVRF definition in that
it does not use Eval and Prove; instead of Eval, it uses SimSample (from the
weak TI-sVRF definition) to obtain (y, w), and then outputs y∗ = y · r. The two
games generate the proofs in different ways: Game Intermediate Real Proof just
uses w and SimProve of the weak TI-sVRF definition to generate π, while Game
Intermediate Simulated Proof uses SimProve∗ defined above. More precisely:

Game Intermediate Real Proofs. (p∗, t∗) ← SimParams∗(1k), (PK∗,SK∗)
← SimG∗(p∗, t∗), and then A(p∗, t∗,PK∗) gets access to the following oracle:
On query x, the oracle (1) checks if x has previously been queried, and if so,
returns the answer stored; (2) otherwise, obtains (y, w) ← SimSample(p, t,
SK, x), y∗ = y · r, and π ← SimProve(p,SK, x, y, t, w), π∗ = (π, y), and
returns and stores (y∗, π∗).

Game Intermediate Simulated Proofs. (p∗, t∗) ← SimParams∗(1k), (PK∗,
SK∗) ← SimG∗(p∗, t∗), and then A(p∗, t∗,PK∗) gets access to the fol-
lowing oracle: On query x, the oracle (1) checks if x has previously been
queried, and if so, returns the answer stored; (2) otherwise, obtains (y′, w′) ←
SimSample(p, t,SK, x), y∗ = y′ · r, and π∗ ← SimProve∗(p,SK, x, y∗, t), and
returns and stores (y∗, π∗).

We now argue that these intermediate games are indistinguishable from Game
Real Proofs and Game Simulated Proofs as specified by the definition of TI-
sVRF, instantiated with (SimParams,SimG,SimSample,SimProve) that follow
from simulatability of our weak TI-sVRF, and with (SimParams∗,SimG∗,
SimProve∗) defined above. First, it is straightforward to see that an adversary
distinguishing between Game Real Proofs and Game Intermediate Real Proofs
directly contradicts the simulatability property of weak TI-sVRFs.

The only difference between Game Intermediate Simulated Proofs and Game
Simulated Proofs, is the choice of the bit y∗: in the former, it is chosen using
SimSample, i.e. indistinguishably from the way it is chosen in the real game. In
the latter, it is chosen at random. If we condition on the event that for all x,
r /∈ Bad(x), these two distributions are statistically close.

The only thing left to show is that the two intermediate games defined above
are indistinguishable. If we condition on the event that we never fail, then the
two games are identical. Note that if for all x, r /∈ Bad(x), then the probability
that we fail on a particular query is ≤ (1/2 + |R′(x)|− 1

3 )k which is negligible.
Thus we have shown that if the probability that r ∈ Bad(x) for some x is

negligible, then Game Real Proofs is indistinguishable from Game Simulated



312 M. Chase and A. Lysyanskaya

Proofs. By the union bound, combined with the claim, Pr[r ← {0, 1}m(k) : ∃x ∈
D(p) such that r ∈ Bad(x)] ≤ |D(p)||R′(x)|− 1

3 , which is equal to ν(k) by the
premise of the lemma. ��

From Lemmas 1 and 2, we see that from a weak TI-sVRF satisfying the condi-
tions of Lemma 2, we can construct an equally efficient sVRF with range {0, 1}.

Remark. Note that, even though the support of SimSample(p, t,SK, x) is quite
large, the construction above only extracts one bit of randomness from it. Al-
though it can be easily extended to extract a logarithmic number of random bits,
there does not seem to be a black-box construction extracting a superlogarith-
mic number of bits. Suppose ext is a procedure that extracts � bits from y, so
y∗ = ext(y) is of length �. Then how would SimProve∗ work to generate a proof
that y∗ is correct? It needs to call SimProve(p,SK, x, y, t, w) for some y such
that y∗ = ext(y) and w is an appropriate witness. It seems that the only way
to obtain such a pair (y, w) is by calling SimSample(p, t,SK, x); in expectation,
2� calls to SimSample are needed to obtain an appropriate pair (y, w); if � is
superlogarithmic, this is prohibitively inefficient.

3 Construction Based on General Assumptions

In the common-random-string (CRS) model, sVRFs can be constructed from any
one-way function and an unconditionally sound multi-theorem non-interactive
zero-knowledge proof system (NIZKProve, NIZKVerify) for NP (we review the
notion of NIZK in Section 5). Pseudorandom functions (PRFs) can be obtained
from one-way functions [HILL99, GGM86] (in the sequel, by Fs(x) we denote
a PRF with seed s and input x). In the CRS model, one-way functions also
imply unconditionally binding computationally hiding non-interactive commit-
ment [Nao91] (in the sequel, denoted as Commit(x, q, r), where x is the value to
which one commits, q is the public parameter, and r is the randomness). We
describe the construction below. In the full version, we prove it is an sVRF.

Params. Corresponding to the security parameter k, choose a common random
string σ of length �(k), where �(k) bits suffice for multi-theorem NIZK
[BDMP91, FLS99, GOS06]. Choose a random 2k-bit string q as the public
parameter for the Naor commitment scheme. The parameters are p = (σ, q).

Domain and range. The function has domain D(p) = {0, 1}p1(k), and range
R(p) = {0, 1}p2(k), where p1 and p2 are functions bounded by a polynomial.

G Pick a random seed s for a pseudorandom function Fs : {0, 1}p1(k) �→
{0, 1}p2(k). Let PK = Commit(s, q, r), SK = (s, r), where r is the randomness
needed for the commitment.

Eval On input x, output y = Fs(x).
Prove On input x, run NIZKProve using CRS σ to output a NIZK proof π of

the following statement: ∃(s, r) | PK = Commit(s, q, r) ∧ y = Fs(x).
Verify On input (PK, y, π), verify the proof π using the NIZKVerify algorithm.



Simulatable VRFs with Applications to Multi-theorem NIZK 313

4 Efficient Construction

We first present a construction for a weak TI-sVRF with a large output range.
As we have shown, this can then be transformed into an sVRF with range {0, 1}.
The security relies on the following assumptions.

Definition 5 ((Q, ν)-BDHI [BB04a]). A family G of groups satisfies the
(Q(k), ν(k))-bilinear Diffie-Hellman inversion assumption if no PPT A, on in-
put (instance, challenge) can distinguish if its challenge is of type 1 or type 2
with advantage asymptotically higher than ν(k) where instance and challenge
are defined as follows: instance = (G1, G2, q, e, g, gα, gα2

, gα3
, . . . , gαQ(k)

) where
q is a prime of length poly(k), G1, G2 are groups of order q returned by G(q),
e : G1 × G1 → G2 is a bilinear map, g ← G1, α ← Z

∗
q, challenge of type 1 is

e(g, g)
1
α , while challenge of type 2 is e(g, g)R for random R ← Z

∗
q .

Definition 6 ((Q, ν)-BDHBI). An family G of groups satisfies the (Q(k), ν(k))
bilinear Diffie-Hellman basegroup inversion assumption if no PPT A, on input
(instance, challenge) can distinguish if its challenge is of type 1 or type 2 with
advantage asymptotically higher than ν(k), where instance and challenge are
defined as follows: instance = (G1, G2, q, e, g, gα, gα2

, gα3
, . . . , gαQ(k)

, gβ) where
q is a prime of length poly(k), G1, G2 are groups of order q returned by G(q),
e : G1 × G1 → G2 is a bilinear map, g ← G1, α ← Z

∗
q, β ← Z

∗
q , challenge of

type 1 is g
1

αβ , while challenge of type 2 is gR for random R ← Z
∗
q .

The assumption in Definition 6 is a new assumption which can be shown to
imply Q-BDHI. We will assume that it holds for the prime order subgroup of
composite order bilinear groups that can be efficiently instantiated [BGN05].

Definition 7 (SDA [BGN05]). A family G of groups satisfies the subgroup
decision assumption if no PPT A, on input (instance, challenge) can distinguish
if its challenge is of type 1 or type 2, where instance and challenge are defined
as follows: instance = (G1, G2, n, e, h) where n = pq is a product of two primes
of length poly(k) (for k a sec. param.), G1, G2 are groups of order n returned
by G(q, p), e : G1 × G1 → G2 is a bilinear map, h is a random generator of G1,
challenge of type 1 is g, a random generator of G1, while challenge of type 2 is
gp, a random order-p element of G1.

The weak TI-sVRF construction is as follows:

Params. On input 1k, choose groups G1, G2 of order n = pq for primes p, q,
where |p| and |q| are polynomial in k, with bilinear map e : G1 × G1 →
G2. Choose random generators g, H, A, D for G1. Params will output p =
(G1, G2, n, e, g, H, A, D).

Domain and range. The input domain D(p) consists of integers 1 ≤ x ≤ l(k)
where l(k) < 2|q|−1 (We will later see the connection between l(k) and Q(k)
by which our assumption is parameterized.) Note that D(p) depends only
on k, not on p. R(p) = G2.



314 M. Chase and A. Lysyanskaya

G On input p, pick s ← Z
∗
n, output SK = s, PK = As.

Eval On input (p,SK, x), output e(H, g)
1

s+x .
Prove On input (p,SK, x), pick r ← Z

∗
n, and output π = (π1, π2, π3), where

π1 = H
r

s+x /Dr, π2 = g
1
r , π3 = A

x+s
r .

Verify On input (p,SK, x, y, π), parse π = (π1, π2, π3) and verify that e(π1, π2)
e(D, g) = y, e(π3, g) = e(AxPK, π2), e(π1, π3)e(D, AxPK) = e(H, A).

Theorem 1. (G, Eval, Prove, Verify) as described above constitute a weak TI-
sVRF for parameter model Params, input domain D of size l, and output range
G2 (where G2 is as output by Params) under the SDA assumption combined
with the (l(k), ν(k)/l2(k))-BDHBI, where ν is an upper bound on the asymptotic
advantage that any probabilistic polynomial-time algorithm has in breaking the
simulatability game of Definition 4.

Proof. Correctness follows from construction.
Verifiability: Suppose there exists an adversary who, given parameters p =
(G1, G2, n, e, g, H = gh, A = ga, D = gd) generated by Params can produce
PK, y, y′, π = (π1, π2, π3), π′ = (π′1, π′2, π′3) such that Verify(p,PK, y, π) =
Verify(p,PK, y′, π′) = 1. Then we will show that y = y′.

Let λ, μ, μ′, σ, φ, θ, σ′, φ′, θ′ ∈ Zn be the exponents such that PK = gλ, y =
gμ, y′ = gμ′

, π1 = gσ, π2 = gφ, π3 = gθ, π′1 = gσ′
, π′2 = gφ′

, π′3 = gθ′
.

If the verifications succeed, then we get that the following equations hold in
Zn: σφ + d = μ, θ = (ax + λ)φ, θσ + d(ax + λ) = ha.

Solving this system of equations gives us: ha = μ(ax+λ). Similarly, if (y′, π′)
satisfy the verification equations, then we know that ha = μ′(ax + λ). H, A are
generators for G1, so h, a ∈ Z

∗
n, and therefore, μ′(ax+λ) ∈ Z

∗
n, and μ(ax+λ) ∈

Z
∗
n. This in turn means that μ′, μ, (ax + λ) ∈ Z

∗
n.

From the solutions to the above equations, we know μ(ax + λ) = μ′(ax + λ).
Since (ax + λ) ∈ Z

∗
n, we can compute a unique inverse (ax +λ)−1, and conclude

that μ = μ′, and y = y′.
Note that this argument relies crucially on the fact that h, a ∈ Z

∗
n. In our

simulation, we will instead choose a = 0 mod q, which will allow us to avoid
this binding property.
Pseudorandomness follows under the Q-BDHI Assumption from pseudoran-
domnesss of the Dodis-Yampolskiy VRF [DY05].
Simulatability: Consider the following simulator algorithms:

SimParams(1k). Choose groups G1, G2 of order n = pq for prime p, q, where
|p| and |q| are polynomial in k, with bilinear map e : G1 × G1 → G2. Let
Gp be the order p subgroup of G1, and let Gq be the order q subgroup
of G1. Let (A, gp, Hp, Dp) ← G4

p and (gq, Hq, Dq) ← G3
q. Let g = gpgq,

H = HpHq, and D = DpDq. Output p = (G1, G2, n, e, g, H, A, D), t =
(gp, gq, Hp, Hq, Dp, Dq).
This is identical to Params except that A ∈ Gp, so that the verification
algorithm cannot properly verify the Gq components of y and π.

SimG(p, t) (SK,PK) ← G(p).



Simulatable VRFs with Applications to Multi-theorem NIZK 315

SimSample. On input (p, t,SK, x), pick w ← Z
∗
q .

Let y = e(Hp, gp)
1

s+x e(gq, gq)w. Output (y, w). (Note y’s Gp component will
be correct, while its Gq component will be random.)

SimProve. On input (p,SK, x, y, t, w), pick r ← Z
∗
n;

let π1 = (H
r

s+x
p /Dr

p)(gwr
q /Dr

q), π2 = g
1
r , π3 = A

x+s
r . Output π = (π1, π2, π3).

(Note that π’s Gp components are correct, while its Gq components are
chosen so as to allow us to fake the proof.)

Lemma 3. The distribution Params(1k) is indistinguishable from the distribu-
tion SimParams(1k) by the Subgroup Decision Assumption.

Proof. The only difference between these two distributions is that in Params,
A is chosen at random from G1, and in SimParams, A is chosen at random
from Gp. Thus, these two distributions are indistinguishable by the Subgroup
Decision assumption by a straightforward reduction. ��

Lemma 4. For the algorithms described above, Game Real Proofs and Game
Simulated Proofs (as in Definition 4) are indistinguishable with advantage more
that ν(k) by the (l(k), ν(k)/l2(k))-BDHBI assumption.

Before we prove this lemma, we will describe and prove an intermediate assump-
tion that follows from the assumptions that we have already made. We state this
assumption in terms of any prime order bilinear group. However, we will later
assume that this assumption (and the Q-BDHBI assumption) holds over the
prime order subgroup of a composite order bilinear group.

Definition 8 ((Q, ν)-Intermediate assumption). A family G of groups sat-
isfies the (Q(k), ν(k))-intermediate assumption if for all subsets X of Z2a(k)−1

(where a(k) is a polynomial), of size Q(k) − 1 for all x∗ ∈ Z2a(k)−1 \ X, no PPT
A, on input (instance, challenge) can distinguish if its challenge is of type 1 or
type 2 with advantage asymptotically higher than ν(k), for instance and challenge
defined as follows: instance = (G1, G2, q, e, g, H, D, {(Hrx

1
s+x /Drx , g

1
rx )}∀x∈X)

where q is an a(k)-bit prime, G1, G2 are groups of order q returned by G(q),
e : G1 × G1 → G2 is a bilinear map, (g, H, D) ← G3

1, and {rx}x∈X and s were
all picked at random from Z

∗
q; challenge of type 1 is (Hr∗ 1

s+x∗ /Dr∗, g
1

r∗ ) where
r∗ ← Z

∗
q, while challenge of type 2 is (gR1 , gR2) for R1 and R2 random from Z

∗
q.

Lemma 5. (l, ν)-BDHBI assumption implies (l, ν)-intermediate assumption.

Proof. Suppose there exists an adversary A who breaks the intermediate as-
sumption for set X of cardinality l−1, and x∗ /∈ X . Then we show an algorithm
B that can break l-BDHBI Assumption.

Algorithm B will behave as follows: Receive G, q, e, g, gα, . . . gαl

, gβ , and Z =
g

1
αβ or Z = gR for random R ∈ Z∗q .
Choose random values Δ1, Δ2 ← Z

∗
q . Implicitly, let γ = γ(α) = Δ1(α −

Δ2)
∏

x∈X(α + (x − x∗)). Compute H = gγ . Note that since this exponent is
just an l degree polynomial in α, we can compute this value using g, . . . gαl

. If



316 M. Chase and A. Lysyanskaya

we implicitly define s = α − x∗, we will get H = gΔ1(α−Δ2)
�

x∈X (s+x). (Note
that now we know neither s, nor α explicitly.) Note that because of Δ1, H
is uniformly distributed over G1, and is independent of g. Now we want to
provide D. Implicitly we will define d = γ−δ

α , where δ = Δ1Δ2

∏
x∈X(x − x∗)

is the constant term of the polynomial in α (represented by γ(α)). Note now
that δ is a quantity B can compute, while d is only defined implicitly. Since
d is a polynomial expression in α, D = gd can be expressed as a sum of terms
g, gα, . . . , gαl−1

, and computed using the given values. Finally, note that, because
of Δ2, D is uniformly distributed over G1, and is independent of (g, H).

For all x̂ ∈ X : Let γ′(x̂) = Δ1(α − Δ2)
∏

x∈X,x �=x̂(α + (x − x∗)) = γ
x̂+s .

Compute v = gγ′(x̂) = g
γ

s+x̂ = H
1

s+x̂ . We then choose a random rx̂ ← Z
∗
n. We

compute and output (vrx̂/Drx̂ , g
1

rx̂ ).
For x∗: Implicitly define r∗ = 1

β . Compute u1 = Zδ. If Z = g
1

αβ , then this is

equal to g
δ

αβ = g
γ

αβ− γ−δ
αβ = g

γ
αβ /g

γ−δ
αβ = Hr∗ 1

s+x∗ /Dr∗
. Otherwise, this is equal

to gR1 for random R1. Compute u2 = (gβ) = (g
1

r∗ ). Output (u1, u2).
Finally, if A guesses that he received (Hr∗ 1

s+x∗ /Dr∗
, g

1
r∗ ), B guesses that

Z = g
1

αβ , else that Z = gR
q . If A’s guess is correct, then B’s guess is correct. ��

Proof. (of Lemma 4) We first define a series of hybrid games:

Game Hybrid i: Obtain (p, t) ← SimParams(1k), and (PK,SK) ←
SimG(p, t) and then A(p, t,PK) gets access to the following oracle: The
oracle begins by storing j = 0. On query x, the oracle (1) checks if x
has previously been queried, and if so, returns the answer stored. Oth-
erwise, (2) if j < i the oracle obtains (y, w) ← SimSample(p, t,SK, x)
and π ← SimProve(p,SK, x, y, w, t), returns and stores (y, π), and incre-
ments j. (3) Or if j ≥ i, the oracle computes y = Eval(p,SK, x) and
π ← Prove(p,SK, x), returns and stores (y, π) and increments j.

Note that in this case, G(p) is identical to SimG(p, t) for all p, t, so Game
Hybrid 0 is identical to Game Real Proofs. Game Hybrid Q, where Q is the
maximum number of distinct oracle queries (not including repeated queries)
that the adversary is allowed to make, is identical to Game Simulated Proofs.
Thus, we have only to show the following lemma:

Lemma 6. Suppose the (l, ν)-BDHBI Assumption holds in one of the two sub-
groups of a composite bilinear group. Then, when the size of the domain is at
most l, no PPT adversary can distinguish Game Hybrid i−1 from Game Hybrid
i with advantage higher than νl.

Proof. Suppose there exists an adversary A who can distinguish Game Hybrid
i − 1 from Game Hybrid i when the domain D is of size l. Then we show an
algorithm B that can break the l-intermediate assumption with advantage ε.

First we make a guess x∗ about which input A will give in its ith distinct
oracle query. Since |D| = l, and all values given to A will be independent of x∗,
we will be correct with probability 1/l.



Simulatable VRFs with Applications to Multi-theorem NIZK 317

Now, we will show an algorithm B, which can, with nonnegligible probability,
break the intermediate assumption for set X = D \ {x∗} and the x∗ chosen

above. B will receive G, p, q, e, gp, gq, Hq, Dq, {(H
rx

sq+x

q /Drx
q , g

1
rx
q )}∀x∈X , (Z1, Z2)

for gq, Hq, Dq ← Gq, and randomly chosen (but unknown) {rx}x∈X , sq ← Z
∗
q .

Here, either (Z1, Z2) = (H
r∗ 1

sq+x∗
q /Dr∗

q , g
1

r∗
q ) or (Z1, Z2) = (gR1

q , gR2
q ) for random

R1, R2 ← Z
∗
q .

First, B prepares the parameters as follows: Choose Hp, A, Dp ← Gp and
compute g = gpgq, H = HpHq, D = DpDq. Set p = (G1, G2, n, e, g, H, A, D).
Let sp ← Z

∗
p, and PK = Asp . Implicitly, set s ∈ Z

∗
n to the the element

such that s mod p = sp, and s mod q = sq. B sends p and trapdoor t =
(gp, gq, Hp, Hq, Dp, Dq) to A.

Now B must answer A’s queries. We assume (WLOG) that A does not repeat
queries.

When A sends its jth query, x̂, B proceeds as follows:
If j < i: if x̂ = x∗, then B has guessed wrong about which value A will
choose in his ith distinct query (if it is used again later, it will be repeated
and thus not distinct), so B aborts. Otherwise, B chooses a random w′ ∈
Z
∗
q . Let y = e(H

1
sp+x̂

p , gp)e(Hq, gq)w′
. Choose a random r ← Z

∗
n. Let π1 =

(H
r 1

sp+x̂

p /Dr
p)(Hw′r

q /Dr
q). Let π2 = g

1
r and π3 = A

x̂+sp
r . If we implicitly set

w = w′hq, (where Hq = g
hq
q ) then these value will be distributed as in the

output of SimSample and SimProve. Output (y, π = (π1, π2, π3)).
If j = i: If x̂ �= x∗, then B has guessed wrong, so it aborts. Otherwise,

choose random rp ← Z
∗
p. Implicitly set r ∈ Z

∗
n to be the element such that r

mod q = r∗ and r mod p = rp. Compute π1 = H
rp

1
x∗+sp

p /D
rp
p Z1. Note that, if

Z1 = H
r∗ 1

sq+x∗
q /Dr∗

q , then this is equal to H
r

s+x∗ /Dr. Otherwise, this is equal

to H
rp

1
x∗+sp

p /D
rp
p gR1

q . Now compute π2 = g
1

rp
p Z2, if Z2 = g

1
r∗
q , then this value

will be g
1
r . Otherwise it will be g

1
rp
p gR2

q Compute π3 = A
sp+x∗

rp = A
s+x∗

r . Finally,
compute y = e(π1, π2)e(D, g). Output (y, π = (π1, π2, π3)) to the adversary.

If j > i, we know x̂ �= x∗, and x̂ ∈ X . Let V1 = H
rx̂

1
sq+x̂

q /Drx̂
q , and V2 = g

1
rx̂ ,

as provided in B’s input. B chooses a random rp ← Z
∗
p. Implicitly, set r ∈ Z

∗
n

for this query to be the element such that r mod p = rp, and r mod q =

rx̂. B computes π1 = (H
rp

1
sp+x̂

p /D
rp
p )V1 = Hr 1

s+x̂ /Dr, π2 = g
1

rp
p V2 = g

1
r , and

π3 = A
sp+x̂

rp = A
x̂+s

r . Finally, B computes y = e(π1, π2)e(D, g) and outputs
(y, π = (π1, π2, π3)) to A.

Finally, B gets A’s guess bit b. If A guesses that this is Game Hybrid i −
1, B guesses that (Z1, Z2) = (H

r∗ 1
sq+x∗

q /Dr∗
q , g

1
r∗
q ); otherwise B guesses that

(Z1, Z2) = (gR1
q , gR2

q ). If A guesses correctly, B’s guess will also be correct.
B has a 1

l probability of not aborting. Suppose that when B aborts, it returns a
random bit. Then B’s quess is correct with probability (1− 1

l )∗ 1
2 + 1

l ∗ (1
2 + ε) =



318 M. Chase and A. Lysyanskaya

1
2 + ε

l , where ε is A’s advantage. Thus, if A’s advantage is ε > νl then B’s
advantage is higher than ν, contradicting the assumption. ��

For the theorem to follow, we observe that the overall reduction from breaking
the simulatability game to breaking the BDHBI assumption uses at most (l +
1) hybrids, and so the adversary’s advantage ε translates into the reduction’s
advantage ε/l2 in breaking BDHBI. ��

Remark. Since the construction above satisfies the premise of Lemma 2, it can
be converted to an sVRF with binary range using the construction in Section 2.2.

5 Multi-theorem NIZK from One-Theorem NIZK Via
sVRFs

Here, we omit the definition of single-theorem and multi-theorem NIZK, but
refer the reader to Blum et al. [BDMP91] and Feige, Lapidot, Shamir [FLS99].
Instead, we informally sketch this definition:

Algorithms NIZKProve and NIZKVerify. The algorithm NIZKProve takes as
input the common random string σ of length �(k), and values (x, w), |x| ≤
q(k), such that x ∈ L, and w is a witness to this. NIZKProve outputs a proof
Π . NIZKVerify is the algorithm that takes (σ, x, Π) as input, and outputs
ACCEPT or REJECT.

Perfect completeness. For all x ∈ L, for all witnesses w for x, for all values
of the public random string σ, and for all outputs π of NIZKProve(σ, x, w),
NIZKVerify(σ, x, π) = ACCEPT.

Soundness s(k). For all adversarial prover algorithms A, for a randomly cho-
sen σ, the probability that A can produce (x, π) such that x /∈ L but
NIZKVerify(σ, x, π) = ACCEPT, is s(k).

Single-theorem ZK. There exists an algorithm SimProveOne that, on input
1k and x ∈ L, |x| ≤ q(k), outputs simulated CRS σS together with a sim-
ulated proof ΠS , such that (σS , ΠS) are distributed indistinguishably from
(σ, Π) produced by generating a random CRS σ, and obtaining Π by running
NIZKProve.

Multi-theorem ZK. There exist algorithms SimCRS and NIZKSimProve, as fol-
lows: SimCRS(1k) outputs (σ, s). For all x, NIZKSimProve(σ, s, x) outputs a
simulated proof ΠS . Even for a sequence of adversarially and adaptively
picked (x1, . . . , xm) (m is polynomial in k), if for all 1 ≤ i ≤ m, xi ∈
L, then the simulated proofs ΠS

1 , . . . , ΠS
m are distributed indistinguishably

from proofs Π1, . . . , Πm that are computed by running NIZKProve(σ, xi, wi),
where wi is some witness that xi ∈ L.

Suppose that, for a language L, we are given a single-theorem NIZK proof
system (ProveOne, VerOne) in the CRS model, with perfect completeness and
unconditional soundness error s(k). Let �(k) denote the function such that an
�(k)-bit random string serves as the CRS for this proof system. Let q(k) denote



Simulatable VRFs with Applications to Multi-theorem NIZK 319

the polynomial upper bound on the size of the input x. Suppose also that we
are given a simulatable VRF (G, Eval, Prove, Verify) in the parameter model
Params, whose domain is [1, �(k)], with range {0, 1}. Consider the following
construction for multi-theorem NIZK in the common reference string model for
instances of size k:

Generate common parameters. The algorithm NIZKParams: Obtain σ1 ←
{0, 1}�(k). Let p ← Params(1k). The values (σ1, p) are the parameters of the
system.

Prove. The algorithm NIZKProve: On input instance x ∈ L with witness w, and
common parameters (σ1, p) do: Obtain (PK,SK) ← G(1k, p). Let R be the
�(k)-bit string computed as follows: for 1 ≤ i ≤ �(k), Ri = Eval(p,SK, i),
where Ri denotes the ith bit of R. For 1 ≤ i ≤ �(k), let πi ← Prove(p,SK, i).
Let σ = σ1 ⊕ R. Obtain Π ′ ← ProveOne(σ, x, w). Output the proof Π =
(PK, R, π1, . . . , p�(k), Π

′).
Verify. The algorithm NIZKVerify: On input x and Π , and common parameters

(σ1, p), do: (1) for 1 ≤ i ≤ �(i), check that Verify(p,PK, i, Ri, πi) accepts;
(2) let σ = σ1 ⊕ R; check that VerOne(σ, x, Π ′) accepts; if all these checks
passed, accept, otherwise, reject.

Theorem 2. If for a language L, (ProveOne, VerOne) is a single-theorem NIZK
proof system in the �(k)-bit CRS model for instances of length up to q(k) with per-
fect completeness and unconditional soundness error s(k), and (G, Eval, Prove,
Verify) in the parameter model Params(1k), is a strong simulatable VRF with
domain [1, �(k)] and range {0, 1}, then the above construction is a multi-theorem
NIZK proof system in the public parameters model that comprises the �(k)-bit
CRS and Params(1k), with perfect completeness and unconditional soundness
error s(k)2u(k), where u denotes the bit length of a PK output by G(p) on input
p ← Params(1k).

Proof. (Sketch) The perfect completeness property follows from the perfect com-
pleteness property of the single-theorem NIZK.

Let us show the multi-theorem zero-knowledge property. Recall that, by the
definition of (strong) sVRF, we have a simulator consisting of SimParams, SimG
and SimProve such that, if (PK,SK) were generated by SimG, then for a ran-
domly sampled y from the range of the sVRF, and for any x in the domain,
SimProve can generate a fake proof that y = Eval(SK, x). (See Section 2.)

Also recall that by the definition of NIZK, there exists a simulator
SimProveOne such that no adversary A can distinguish between the following
two distributions for any x ∈ L and any witness w for x: (1) choose σ ←
{0, 1}�(k), and let Π ← ProveOne(σ, x, w); give (σ, Π) to A; (2) (σ, Π) ←
SimProveOne(1k, x); give (σ, Π) to A.

Consider the following simulator S for our multi-theorem NIZK construc-
tion. The simulator will consist of SimCRS that generates the simulated pa-
rameters, and of NIZKSimProve that generates the simulated proof. SimCRS
works as follows: generate (p, t) ← SimParams, and σ1 ← {0, 1}�(k); publish



320 M. Chase and A. Lysyanskaya

(σ1, p) as the parameters of the system. NIZKSimProve works like this: gener-
ate (σ, Π ′) ← SimProveOne(1k, x). Then let R = σ ⊕ σ1. Let (PK,SK) ←
SimG(p, t). For 1 ≤ i ≤ �(k), let πi = SimProve(p,SK, x, Ri, t). Output the
proof Π = (PK, R, π1, . . . , p�(k), Π

′). In the full version, we show that the view
that the adversary obtains in the simulation is indistinguishable from the view
obtained when interacting with the prover.

We now show soundness. We are given that, for σ ← {0, 1}�(k), the probability
that there exists x /∈ L and a proof Π ′ such that Verify(σ, x, Π ′) = 1, is s(k).

Consider p ← Params, and (PK,SK) ← G(1k). Let R be as defined in
NIZKProve: Ri = Eval(SK, i). Note that by the verifiability property of the
sVRF, there is a unique R for which there exists a proof of correctness (π1, . . . ,
π�(k)). The probability, over the choice of σ1, that there exists x /∈ L and a proof
Π ′ such that Verify(R ⊕ σ1, x, Π ′) = 1 (if such an x exists, we say that PK
is bad for σ1), is still s(k), since we first fixed p and PK, and then randomly
chose σ1. By the union bound, since there are 2u(k) possible PK’s, for every p,
the probability that there exists a bad PK for a particular σ1, is s(k)2u(k). ��

Remark. Note that if an NIZK proof system is in the hidden-random-string
(HRS) model (such as those due to Feige, Lapidot and Shamir [FLS99] and
Kilian and Petrank [KP98]), then we can take advantage of it as follows: the
hidden random string can be obtained the way that σ is currently obtained by
the prover in the construction above; only in the construction above, the prover
reveals the entire string σ and the proof that each bit of σ is computed correctly;
while in the HRS model, the prover only reveals the subset of bits of the hidden
random string that he needs to reveal. This observation was inspired by Dwork
and Naor’s construction of zaps from VRFs and verifiable PRGs [DN00] based
on NIZK using HRS model. We give more details on consequences in the HRS
model in the full version.

Acknowledgments. We thank Leo Reyzin and Markulf Kohlweiss for helpful
discussions. We thank UCLA’s Institute for Pure and Applied Mathematics for
hosting us while part of this research was carried out. Melissa Chase is sup-
ported by NSF grant CNS-0374661 and NSF Graduate Research Fellowship.
Anna Lysyanskaya is supported by NSF CAREER grant CNS-0374661 and NSF
grant CNS-0627553.

References

[BB04a] Boneh, D., Boyen, X.: Efficient selective id secure identity based encryp-
tion without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EU-
ROCRYPT 2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg
(2004)

[BB04b] Boneh, D., Boyen, X.: Short signatures without random oracles. In:
Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027,
pp. 54–73. Springer, Heidelberg (2004)

[BCC04] Brickell, E., Camenisch, J., Chen, L.: Direct anonymous attestation. In:
11th ACM CCS, pp. 225–234. ACM press, New York (2004)



Simulatable VRFs with Applications to Multi-theorem NIZK 321

[BDMP91] Blum, M., De Santis, A., Micali, S.,: Non-interactive zero knowledge.
SIAM Journal of Computing 20(6) 1084–1118 (1991)

[BFM88] Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and
its applications (extended abstract). In: 20th Annual ACM STOC, pp.
103–112. ACM Press, New York (1988)

[BGN05] Boneh, D., Goh, E., Nissim, K.: Evaluating 2-DNF formulas on cipher-
texts. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341.
Springer, Heidelberg (2005)

[BR93] Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for
designing efficient protocols. In: 1st ACM CCS, pp. 62–73. ACM press,
New York (1993)

[Bra99] Brands, S.: Rethinking Public Key Infrastructure and Digital
Certificates— Building in Privacy. PhD thesis, Eindhoven Institute
of Technology, Eindhoven, The Netherlands (1999)

[CH02] Camenisch, J., Van Herreweghen, E.: Design and implementation of the
idemix anonymous credential system. Technical Report Research Report
RZ 3419, IBM Research Division (May 2002)

[Cor00] Coron, J.-S.: On the exact security of full domain hash. In: Bellare, M.
(ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 229–235. Springer, Heidelberg
(2000)

[DCP97] De Santis, A., Di Crescenzo, G., Persiano, G.: Randomness-efficient non-
interactive zero-knowledge (extended abstract). In: Degano, P., Gorrieri,
R., Marchetti-Spaccamela, A. (eds.) ICALP 1997. LNCS, vol. 1256, pp.
716–726. Springer, Heidelberg (1997)

[DMP88] De Santis, A., Micali, S., Persiano, G.: Non-interactive zero-knowledge
proof systems. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293,
pp. 52–72. Springer, Heidelberg (1988)

[DN00] Dwork, C., Naor, M.: Zaps and their applications. In: FOCS, pp. 283–293
(2000)

[Dod02] Dodis, Y.: Efficient construction of (distributed) verifiable random func-
tions. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 1–17.
Springer, Heidelberg (2002)

[DY05] Dodis, Y., Yampolskiy, A.: A verifiable random function with short proofs
and keys. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 416–432.
Springer, Heidelberg (2005)

[FLS99] Feige, U., Lapidot, D., Shamir, A.: Multiple noninteractive zero knowledge
proofs under general assumptions. SIAM Journal on Computing 29(1), 1–
28 (1999)

[FS87] Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identi-
fication and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986.
LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987)

[GGM86] Goldreich, O., Goldwasser, S., Micali, S.: How to construct random func-
tions. Journal of the ACM 33(4), 792–807 (1986)

[GK03] Goldwasser, S., Tauman Kalai , Y.: On the (in)security of the Fiat-Shamir
paradigm. In: 44th FOCS, pp. 102–115. IEEE Computer Society Press, Los
Alamitos (2003)

[GO92] Goldwasser, S., Ostrovsky, R.: Invariant signatures and non-interactive
zero-knowledge proofs are equivalent. In: Brickell, E.F. (ed.) CRYPTO
1992. LNCS, vol. 740, pp. 224–228. Springer, Heidelberg (1993)



322 M. Chase and A. Lysyanskaya

[GOS06] Groth, J., Ostrovsky, R., Sahai, A.: Perfect non-interactive zero knowledge
for NP. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp.
339–358. Springer, Heidelberg (2006)

[HILL99] H̊astad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom gen-
erator from any one-way function. SIAM Journal of Computing 28(4),
1364–1396 (1999)

[KP98] Kilian, J., Petrank, E.: An efficient noninteractive zero-knowledge proof
system for NP with general assumptions. Journal of Cryptology 11(1),
1–27 (1998)

[Lys02] Lysyanskaya, A.: Unique signatures and verifiable random functions from
the DH-DDH separation. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 597–612. Springer, Heidelberg (2002)

[MRV99] Micali, S., Rabin, M., Vadhan, S.: Verifiable random functions. In: 40th
FOCS, pp. 120–130. IEEE Computer Society Press, Los Alamitos (1999)

[Nao91] Naor, M.: Bit commitment using pseudorandomness. Journal of Cryptol-
ogy 4(2), 51–158 (1991)



Cryptography in the Multi-string Model

Jens Groth� and Rafail Ostrovsky��

University of California, Los Angeles, CA 90095
{jg,rafail}@cs.ucla.edu

Abstract. The common random string model introduced by Blum, Feldman and
Micali permits the construction of cryptographic protocols that are provably im-
possible to realize in the standard model. We can think of this model as a trusted
party generating a random string and giving it to all parties in the protocol. How-
ever, the introduction of such a third party should set alarm bells going off: Who
is this trusted party? Why should we trust that the string is random? Even if the
string is uniformly random, how do we know it does not leak private information
to the trusted party? The very point of doing cryptography in the first place is to
prevent us from trusting the wrong people with our secrets.

In this paper, we propose the more realistic multi-string model. Instead of
having one trusted authority, we have several authorities that generate random
strings. We do not trust any single authority; we only assume a majority of them
generate the random string honestly. This security model is reasonable, yet at the
same time it is very easy to implement. We could for instance imagine random
strings being provided on the Internet, and any set of parties that want to execute
a protocol just need to agree on which authorities’ strings they want to use.

We demonstrate the use of the multi-string model in several fundamental cryp-
tographic tasks. We define multi-string non-interactive zero-knowledge proofs
and prove that they exist under general cryptographic assumptions. Our multi-
string NIZK proofs have very strong security properties such as simulation-
extractability and extraction zero-knowledge, which makes it possible to com-
pose them with arbitrary other protocols and to reuse the random strings. We also
build efficient simulation-sound multi-string NIZK proofs for circuit satisfiabil-
ity based on groups with a bilinear map. The sizes of these proofs match the best
constructions in the single common random string model.

We suggest a universally composable commitment scheme in the multi-string
model. It has been proven that UC commitment does not exist in the plain model
without setup assumptions. Prior to this work, constructions were only known
in the common reference string model and the registered public key model. One
of the applications of the UC commitment scheme is a coin-flipping protocol in
the multi-string model. Armed with the coin-flipping protocol, we can securely
realize any multi-party computation protocol.

Keywords: Common random string model, multi-string model, non-interactive
zero-knowledge, universally composable commitment, multi-party computation.

� Computer Science Department. Work partially done while visiting IPAM and supported in part
by NSF ITR/Cybertrust grant No. 0456717 and Cybertrust grant No. 0430254.

�� Computer Science Department and Department of Mathematics. Research partially done while
visiting IPAM, and supported in part by IBM Faculty Award, Xerox Innovation Group Award,
NSF Cybertrust grant no. 0430254, and U.C. MICRO grant.

A. Menezes (Ed.): CRYPTO 2007, LNCS 4622, pp. 323–341, 2007.
c© International Association for Cryptologic Research 2007



324 J. Groth and R. Ostrovsky

1 Introduction

In the common random string model, the parties executing a protocol have access to a
uniformly random bit-string. A generalization of this model is the common reference
string (CRS) model, where the string may have a non-uniform distribution. Blum, Feld-
man and Micali [BFM88] introduced the CRS model to construct non-interactive zero-
knowledge (NIZK) proofs. Some setup assumption was needed, since only languages
in BPP can have non-interactive or two-round NIZK proofs in the plain model [GO94].
There are other examples of protocols that cannot be realized in the standard model but
are possible in the CRS model, for instance universally composable (UC) commitment
[CF01]. The CRS-model is therefore widely used in cryptographic protocols.

Using the CRS-model creates a problem: Where does the CRS come from? One
option is to have a trusted third party that generates the CRS, but this raises a trust
issue. It is very possible that the parties cannot find a party that they all trust. Would
Apple trust a CRS generated by Microsoft? Would US government agencies be willing
to use a CRS generated by their Russian counterparts?

Alternatively, the parties could generate the CRS themselves at the beginning of the
protocol. If a majority is honest, they could for instance use multi-party computation
to generate a CRS. However, this makes the whole protocol more complicated and
requires them to have an initial round of interaction. They could also trust a group of
parties to jointly generate a CRS; however, this leaves them with the task of finding
a volunteer group of authorities to run a multi-party computation protocol whenever
a CRS is needed. There is also no guarantee that different sets of parties can agree on
trusting the same group of authorities, so potentially this method will require authorities
to participate in many generations of CRS’s.

Barak, Canetti, Nielsen and Pass [BCNP04] suggest the registered public key model
as a relaxed setup that makes multi-party computation possible. In the registered public
key model, parties can only register correctly generated keys. While there is no longer
a common reference string in the registered public key model, the underlying prob-
lem still persists: who is the trusted party that will check that the parties only register
correctly generated public keys?

THE MULTI-STRING MODEL. We propose the multi-string model as a solution to the
above mentioned problem. In this model, we have a number of authorities that assist the
protocol execution by providing random strings. If a majority of these authorities are
honest the protocol will be secure.

There are two reasons that the multi-string model is attractive. First, the authori-
ties play a minimal role in the protocol. They simply publish random strings, they do
not need to perform any computation, be aware of each other or any other parties, or
have any knowledge about the specifics of the protocol to be executed. This permits
easy implementation, the parties wishing to execute a protocol can for instance simply
download a set of random strings from agreed upon authorities on the internet. Second,
the security of the protocols only needs to rely on a majority of the authorities being
honest at the time they created the strings. Even if they are later corrupted, the random
strings can still be used. Also, no matter how untrustworthy the other parties in your
protocol are, you can trust the protocol if a majority of the authorities is honest. The



Cryptography in the Multi-string Model 325

honesty of a small group of parties that are minimally involved can be magnified and
used by a larger set of parties.

The multi-string model is a very reasonable setup assumption. The next question is
whether there are interesting protocols that can be securely realized in the multi-string
model. We will answer this question affirmatively by constructing non-interactive zero-
knowledge proofs, UC commitment and general UC-secure multi-party computation in
the multi-string model in the presence of adaptive adversaries.

1.1 Non-interactive Zero-Knowledge

A zero-knowledge proof [GMR89, GMW87] is a two-party protocol, where a prover
tries to convince a verifier about the truth of some statement, typically membership
of an NP-language. The proof should have the following three properties: complete-
ness, soundness and zero-knowledge. Completeness means that a prover who has an
NP-witness can convince the verifier. Soundness means that if the statement is false,
then it is impossible to convince the verifier. Zero-knowledge means that the verifier
does not learn anything else from the proof than the fact that the statement is true. In-
teractive zero-knowledge proofs are known to exist in the standard model, however,
non-interactive and 2-round zero-knowledge proofs only exist for trivial languages
[GO94]. Instead, much research has gone into constructing non-interactive zero knowl-
edge proofs in the CRS-model, see for instance [BFM88, BDMP91, FLS99, Dam92],
[DP92, DDP99, DDP02, KP98, Sah01, DDO+02, GOS06b, GOS06a].

MULTI-STRING NIZK. We define the notion of multi-string NIZK proofs in Section 2.
In the definitions, we let the adversary see many honestly generated strings and pick the
ones it likes. We also allow the adversary to generate some of the strings itself, possibly
in a malicious and adaptive manner. Our definition of multi-string NIZK proofs calls for
completeness, soundness and zero-knowledge to hold in a threshold manner. If tc out of
n common reference strings are honest, then the prover holding an NP-witness for the
truth of the statement should be able to create a convincing proof. If ts out of n common
reference strings are honest, then it should be infeasible to convince the verifier about a
false statement. If tz out of n common reference strings are honestly generated, then it
should be possible to simulate the proof without knowing the witness.

It is desirable to minimize tc, ts, tz . As we shall see, tc = 0 is achievable, how-
ever, multi-string soundness and multi-string zero-knowledge are complementary in the
sense that there is a lower bound ts + tz > n for non-trivial languages, see Section 2.

A natural question is under which assumptions we can obtain multi-string NIZK
proofs. We prove that if hard on average languages exist in NP then single-string NIZK
implies the existence of multi-string NIZK and vice versa.
BEYOND VANILLA MULTI-STRING NIZK. It is undesirable to require a group of au-
thorities to produce random strings for each proof we want to make. We prefer it to be
possible to use the same strings over and over again, so each authority has to produce
only one single random string. We must therefore consider a setting, where multiple
protocols may be running concurrently and may be requiring the use of multi-string
NIZK proofs. When the protocol designer has to prove security in such a setting, it may
very well be that some of the proofs are simulated, while we still need other proofs to
be sound. Moreover, in some cases we may want to extract the witness from a proof. To



326 J. Groth and R. Ostrovsky

deal with this realistic setting, where we have both simulations of some proofs and wit-
ness extraction of other proofs going on at the same time, we introduce the notions of
simulation-extractable multi-string NIZK and extraction zero-knowledge multi-string
NIZK.

In simulation-extractable multi-string NIZK, we require that it be possible to ex-
tract a witness from the proof if ts strings are honestly generated, even if the adversary
sees simulated proofs for arbitrary other statements. In extraction zero-knowledge, we
require that if there are tz honest strings, then even if the adversary sees extractions
of witnesses in some proofs, the other proofs remain zero-knowledge and reveal noth-
ing. We offer a multi-string NIZK proof based on general assumptions, which is both
simulation-extractable and extraction zero-knowledge.
MULTI-STRING NIZK PROOFS FROM BILINEAR GROUPS. Recently Groth, Ostrovsky
and Sahai [GOS06b, GOS06a] have shown how to construct NIZK proofs from groups
with a bilinear map. Their CRS contains a description of a bilinear group and a set
of group elements. The group elements can be chosen such that the CRS gives either
perfect soundness or perfect zero-knowledge. Soundness strings and simulation strings
are computationally indistinguishable, so this gives a NIZK proof in the CRS model.

There is a major technical hurdle to overcome when trying to apply their techniques
in the multi-string model: the single-string NIZK proofs rely on the common reference
string to contain a description of a bilinear group. In the multi-string model, the authori-
ties generate their random strings completely oblivious of the other authorities. There is
therefore no agreement on which bilinear group to use. One might try to let the prover
pick the bilinear group, however, this too causes problems since now we need to set up
the random strings such that they will work for many choices of bilinear groups.

We resolve these problems by inventing a novel technique to “translate” common
reference strings in one group to common reference strings in another group. Each au-
thority picks its own bilinear group and the prover also picks a bilinear group. Using our
translation technique, we can translate simulation reference strings chosen by the au-
thorities to simulation reference strings in the prover’s bilinear group. Similarly, we can
translate soundness reference strings chosen by the authorities to soundness reference
strings in the prover’s bilinear group.

The resulting multi-string NIZK proofs for circuit satisfiability have size O(n +
|C|)k, where n is the number of random strings, |C| is the size of the circuit, and k
is the security parameter, i.e., the size of a group element. We will typically have n
much smaller than |C|, so this matches the best single-string NIZK proofs [GOS06b,
GOS06a] that have complexity O(|C|k).

1.2 Multi-party Computation

Canetti’s UC framework [Can01] defines secure execution of a protocol under concur-
rent execution of arbitrary protocols. Informally a protocol is UC secure if its execution
is equivalent to handing protocol input to an honest trusted party that computes every-
thing securely and returns the resulting outputs.

UC COMMITMENT. It is known that in the plain model, any (well-formed) ideal func-
tionality can be securely realized if a majority of the parties are honest. On the other



Cryptography in the Multi-string Model 327

hand, if a majority may be corrupt, there are certain functionalities that are provably
impossible to realize. One such example is UC commitment [CF01]. We demonstrate
that in the multi-string model UC commitment can be securely realized. The key idea
in this construction is to treat each common random string as the key for a commitment
scheme. By applying threshold secret-sharing techniques, we can spread the message
out on the n commitment scheme in a way such that we can tolerate a minority of fake
common reference strings.

MULTI-PARTY COMPUTATION. Canetti, Lindell, Ostrovsky and Sahai [CLOS02] show
that any (well-formed) ideal functionality can be securely realized in the CRS-model,
even against adversaries that can adaptively corrupt arbitrary parties and where parties
are not assumed to be able to securely erase any of their data. However, it was an
open question where this CRS should come from, since the parties provably could not
compute it themselves.

Armed with our UC commitment it is straightforward to solve this problem. We
simply run a coin-flipping protocol to create a CRS. This result points out a nice feature
of the multi-string model; it scales extremely well. We just require a majority of the
authorities to be honest. Then no matter which group of parties, even if it is a large group
of mostly untrustworthy parties, we can magnify the authorities’ honesty to enable this
entire group to do secure computation.

REMARK. The multi-string model is described in the UC framework as an ideal func-
tionality that provides random strings and allows the adversary to inject a minority
of malicious strings as well. This functionality is easy to implement with a set of au-
thorities that just provide random strings. It is important though that these strings are
local to the protocol, we do not guarantee security of other protocols that use the same
strings. Canetti, Dodis, Pass and Walfish [RCW07] have demonstrated that it is not
possible to have a fixed global common random string that is used for multiple and ar-
bitrary different protocol executions and this result extends to the multi-string model.
REMARK. Building on our multi-string NIZK, an alternative proof of our multiparty
computation result was shown by [PPS06].

2 Definitions

Let R be an efficiently computable binary relation. For pairs (x, w) ∈ R we call x the
statement and w the witness. Let L be the NP-language consisting of statements in R.

A multi-string proof system for a relation R consists of probabilistic polynomial
time algorithms K, P, V , which we will refer to as respectively the key generator, the
prover and the verifier. The key generation algorithm can be used to produce common
reference strings σ. In the present paper, we can implement our protocols with a key
generator that outputs a uniformly random string of polynomial length �(k), however,
for the sake of generality, we include a key generator in our definitions.

The prover takes as input (tc, ts, tz, σ, x, w), where σ is a set of n common ref-
erence strings and (x, w) ∈ R, and produces a proof π. The verifier takes as input
(tc, ts, tz, σ, x, π) and outputs 1 if the proof is acceptable and 0 if rejecting the proof.
We call (K, P, V ) a (tc, ts, tz, n)-NIZK proof system for R if it has the completeness,



328 J. Groth and R. Ostrovsky

soundness and zero-knowledge properties described below. We remark that (1, 1, 1, 1)-
NIZK proof systems correspond closely to the standard notion of NIZK proofs in the
CRS-model.

(tc, ts, tz, n)-COMPLETENESS. We will say that (K, P, V ) is (tc, ts, tz, n)-complete if
the prover can convince the verifier of a true statement, when at least tc string have been
generated honestly. As we shall see later, our protocols will have perfect (tc, ts, tz, n)-
completeness for all 0 ≤ tc ≤ n. In other words, even if the adversary chooses all
common reference strings itself, we still have probability 1 of outputting an acceptable
proof.

Definition 1. (K, P, V ) is (tc, ts, tz, n)-complete if for all non-uniform polynomial
time adversaries A we have

Pr
[
S := ∅; (σ, x, w) ← AK ; π ← P (tc, ts, tz, σ, x, w) :

V (tc, ts, tz, σ, x, π) = 0 and (x, w) ∈ R and |σ \ S| ≥ tc

]
≈ 0,

where K on query i outputs σi ← K(1k) and sets S := S ∪ {σi}.

(tc, ts, tz, n)-SOUNDNESS. The goal of the adversary in the soundness definition is
to forge a proof using n common reference strings, even if ts of them are honestly
generated. The adversary gets to see possible choices of correctly generated common
reference strings and can adaptively choose n of them, it may also in these n common
reference strings include up to n − ts fake common reference strings chosen by itself.

Definition 2. We say (K, P, V ) is (tc, ts, tz, n)-sound if for all non-uniform polyno-
mial time adversaries A we have

Pr
�
S := ∅; (σ, x, π) ← AK : V (tc, ts, tz, σ, x, π) = 1 and x /∈ L and |σ \ S| ≥ ts

�
≈ 0,

where K is an oracle that on query i outputs σi ← K(1k) and sets S := S ∪ {σi}.

(tc, ts, tz, n)-ZERO-KNOWLEDGE. We wish to formulate that if tz common reference
strings are correctly generated, then the adversary learns nothing from the proof. As
is standard in the zero-knowledge literature, we will say this is the case, when we can
simulate the proof given only the statement x. Let therefore S1 be an algorithm that
outputs (σ, τ), respectively a simulation reference string and a simulation trapdoor. Let
furthermore, S2 be an algorithm that takes input (tc, ts, tz , σ, τ , x, w) and simulates a
proof π if τ contains tz simulation trapdoors for common reference strings in σ.

We will strengthen the standard definition of zero-knowledge, by splitting the def-
inition into two parts. The first part simply says that the adversary cannot distinguish
real common reference strings from simulation reference strings. The second part, says
that even with access to the simulation trapdoors the adversary cannot distinguish the
prover from the simulator on a set of simulated reference strings.

Definition 3. We say (K, P, V, S1, S2) is (tc, ts, tz, n)-zero-knowledge if we have ref-
erence string indistinguishability and simulation indistinguishability as described be-
low.



Cryptography in the Multi-string Model 329

REFERENCE STRING INDISTINGUISHABILITY. For all non-uniform polynomial time
adversaries A we have

Pr
[
σ ← K(1k) : A(σ) = 1

]
≈ Pr

[
(σ, τ) ← S1(1k) : A(σ) = 1

]
.

(tc, ts, tz, n)-SIMULATION INDISTINGUISHABILITY. For all non-uniform interactive
polynomial time adversaries A we have

Pr
[
S := ∅; (σ, τ , x, w) ← AS1(1k); π ← P (tc, ts, tz, σ, x, w) :

A(π) = 1 and (x, w) ∈ R and |σ \ S| ≥ tz

]

≈ Pr
[
S := ∅; (σ, τ , x, w) ← AS1(1k); π ← S2(tc, ts, tz, σ, τ , x) :

A(π) = 1 and (x, w) ∈ R and |σ \ S| ≥ tz

]
,

where S1 on query i outputs (σi, τi) ← S1(1k) and sets S := S ∪{σi}, and τ contains
tz simulation trapdoors corresponding to σi’s in σ generated by S1.

LOWER BOUNDS FOR MULTI-STRING NIZK PROOFS. Soundness and zero-knowledge
are complementary. The intuition is that if an adversary controls enough strings to sim-
ulate a proof, then he can prove anything and we can no longer have soundness. We
capture this formally in the following theorem.

Theorem 1. If L is a language with a proof system (K, P, V ) that has (tc, ts, tz, n)-
completeness, soundness and zero-knowledge then L ∈ P/poly or ts + tz > n.

Proof. Assume we have an (tc, ts, tz, n)-NIZK proof system for R defining L and ts +
tz ≤ n. Given an element x, we wish to decide whether x ∈ L or not. We simulate tz
common reference strings (σi, τi) ← S1(1k) and generate n − tz common reference
strings σj ← K(1k) setting τj = ⊥. We then simulate the proof π ← S2(σ, τ , x).
Output V (σ, x, π).

Let us analyze this algorithm. If x ∈ L, then by (tc, ts, tz, n)-completeness a prover
with access to a witness w would output a proof that the verifier accepts if all common
reference strings are generated correctly. By reference string indistinguishability, we
will therefore also accept the proof when some of the common reference strings are
simulated. By (tc, ts, tz, n)-simulation indistinguishability, where we give (x, w) as
non-uniform advice to A, we will output 1 with overwhelming probability on x ∈ L.

On the other hand, if x /∈ L, then by the (tc, ts, tz, n)-soundness we output 0 with
overwhelming probability, since n − tz ≥ ts common reference strings have been
generated correctly. This shows that L ∈ BPP/poly. By [Adl78] we have P/poly =
BPP/poly, which concludes the proof. �

In general, the verifier wishes to minimize ts to make it more probable that the protocol
is sound, and at the same time the prover wishes to minimize tz to make it more probable
that the protocol is zero-knowledge. In many cases, choosing n odd, and setting ts =
tz = n+1

2 will be a reasonable compromise. However, there are also cases where it



330 J. Groth and R. Ostrovsky

might be relevant to have an unbalanced setting. Consider the case, where Alice wants
to e-mail a NIZK proof to Bob, but does not know Bob’s preferences with respect
to common reference strings. She may pick a set of common reference strings and
make a multi-string proof. Bob did not participate in deciding which common reference
strings to use, however, if they came from trustworthy authorities he may be willing to
believe that one of the authorities is honest. On the other hand, Alice gets to choose the
authorities, so she may be wiling to believe that all of them are honest. The appropriate
choice in this situation, is a multi-string proof with ts = 1, tz = n.

ADVANCED ZERO-KNOWLEDGE PROOFS. Multi-string NIZK proofs can have more
advanced properties. In a multi-string proof of knowledge, the reference strings can
be generated with an extraction trapdoor. If you hold at least ts extraction keys, it is
possible to extract a witness from the multi-string NIZK proof. We say a multi-string
NIZK proof has extraction zero-knowledge, if it is zero-knowledge even to an adversary
that can ask for arbitrary extractions of witnesses. This latter notion is similar in nature
to CCA-secure encryption.

Another way of strengthening soundness is to say that even after seeing arbitrary
simulated proofs, even on false statements, it should not be able to prove another false
statement. We call this simulation soundness. This notion can be extended and com-
bined with proofs of knowledge to simulation-extractability, which means that even if
we give the adversary access to see simulated multi-string proofs, it cannot produce
another proof without us being able to extract a witness from it.

We refer to the full paper [GO07] for formal definitions of multi-string proofs of
knowledge, simulation soundness, simulation-sound extractability and extraction zero-
knowledge.

3 Multi-string NIZK Proofs Based on General Assumptions

MULTI-STRING NIZK PROOFS. As a warm-up, we will start out with a simple con-
struction of a multi-string NIZK proof that works for tc = 0 and all choices of ts, tz, n
so ts+tz > n. This construction is used in the full paper [GO07] to prove the following
theorem connecting single-string NIZK proofs and multi-string NIZK proofs.

Theorem 2. Assuming hard on average languages exist in NP, the existence of NIZK
proofs for NP in the common random string model is equivalent to the existence of
multi-string NIZK proofs for NP in the common random strings model. The equivalence
preserves perfect completeness.

We use two tools in the construction: a zap (�zap, Pzap, Vzap) and a pseudorandom
generator PRG. Zaps, introduced by Dwork and Naor [DN02], are two-round public
coin witness-indistinguishable proofs, where the verifier’s first message is a random
string that can be fixed once and for all and be reused in subsequent zaps.

A common random string in our multi-string NIZK proof will consist of a random
value r and an initial message σ for the zap. Given a statement x ∈ L, the prover makes
n zaps using respectively initial messages σ1, . . . , σn for

x ∈ L or there are tz common reference strings where ri is a pseudorandom value.



Cryptography in the Multi-string Model 331

In the simulation, we create simulation reference strings as r := PRG(τ) enabling the
simulator to make zaps without knowing a witness w for x ∈ L.

MULTI-STRING SIMULATION-EXTRACTABLE NIZK PROOF. We will now construct
more advanced multi-string NIZK proofs of knowledge that are (0, ts, tz, n)-simulation-
extractable and (0, ts, tz , n)-extraction zero-knowledge.

To permit the extraction of witnesses, we include a public key for a CCA2-secure
cryptosystem in each common reference string. In a proof, the prover will make a
(ts, n)-threshold secret sharing of the witness and encrypt the shares under the n public
keys. To extract the witness, we will decrypt ts of these ciphertexts and combine the
shares to get the witness.

To avoid tampering with the proof, we will use a strong one-time signature. The
prover generates a key (vksots, sksots) ← Ksots(1k) that he will use to sign the proof.
The implication is that the adversary, who sees simulated proofs, must use a different
vksots in his forged proof, because he cannot forge the strong one-time signature.

The common reference string will contain a value, which in a simulation string will
be a pseudorandom 2k-bit value. The prover will prove that he encrypted a (ts, n)-
threshold secret sharing of the witness, or that he knows how to evaluate tz pseudoran-
dom functions on vksots using the seeds of the respective common reference strings.
On a real common reference string, this seed is not known and therefore he cannot
make such a proof. On the other hand, in the simulation the simulator does know these
seeds and can therefore simulate without knowing the witness. Simulation soundness
follows from the adversary’s inability to guess the pseudorandom functions’ evaluations
on vksots, even if he knew the evaluations on many other verification keys.

Zero-knowledge under extraction attack follows from the CCA2-security of the cryp-
tosystem. Even after having seen many extractions, the ciphertexts reveal nothing about
the witness, or even whether the trapdoor has been used to simulate a proof.

Common reference string/simulation string: (pk1, dk1), (pk2, dk2) ← KCCA2(1k);
r ← {0, 1}2k; σ ← {0, 1}�zap(k). Return Σ := (pk1, pk2, r, σ).
The simulators and extractors S1, E1, SE1 will generate the simulated reference
strings in the same way, except for choosing τ ← {0, 1}k and r := PRFτ (0). We
use the simulation trapdoor τ and the extraction key ξ := dk1.

Proof: P (0, ts, tz, (Σ1, . . . , Σn), x, w) where (x, w) ∈ R runs as follows: First, gener-
ate a key pair for a strong one-time signature scheme (vksots, sksots) ← Ksots(1k).
Use (ts, n)-threshold secret sharing to get shares w1, . . . , wn of w. Encrypt the
shares as c1i := Epk1i(wi, vksots; r1i). Also encrypt dummy values c2i ← Epk2i(0).
Consider the statement: “All c1i encrypt (wi, vksots), where w1, . . . , wn is a (ts, n)-
secret sharing of a witness w so (x, w) ∈ R or there exist at least tz seeds τi so
ri = PRFτi(0) and c2i encrypts PRFτi(vksots).” We can reduce this statement to a
polynomial size circuit C and a satisfiability witness W . For all i’s we create a zap
πi ← Pzap(σi, C, W ) for C being satisfiable. We sign everything using the one-
time signature sig ← Signsksots

(vksots, x, Σ1, c11, c21, π1, . . . , Σn, c1n, c2n, πn).
The proof is Π := (vksots, c11, c21, π1, . . . , c1n, c2n, πn, sig).

Verification: To verify Π on the form described above, verify the strong one-time
signature and verify the n zaps π1, . . . , πn.



332 J. Groth and R. Ostrovsky

Extraction: To extract a witness check that the proof is valid. Next, use the first ts
extraction keys in ξ to decrypt the corresponding ts ciphertexts. We combine the ts
secret shares to recover the witness w.

Simulated proof: To simulate a proof, pick the first tz simulation trapdoors in τ .
These are τi so ri = PRFτi(0). As in the proof generate (vksots, sksots) ←
Ksots(1k). Create tz pseudorandom values vi := PRFτi(vksots). Encrypt the val-
ues as c2i ← Epk2i(vi). For the other reference strings, just let c2i ← Epk2i (0).
Let w1, . . . , wn be a (ts, n)-threshold secret sharing of 0. We encrypt also these
values as c1i ← Epk1i(wi, vksots). Let again C be the circuit corresponding to the
statement “All c1i encrypt (wi, vksots), where w1, . . . , wn is a (ts, n)-secret shar-
ing of a witness w or there exist at least tz seeds τi so ri = PRFτi(0) and
c2i encrypts PRFτi(vksots).” From the creation of the ciphertexts c2i we have a
witness W for C being satisfiable. Create zaps πi ← Pzap(σi, C, W ) for C be-
ing satisfiable. Finally, make a strong one-time signature on everything sig ←
Signsksots

(vksots, x, Σ1, c11, c21, π1, . . . , Σn, c1n, c2n, πn). The simulated proof is
Π := (vksots, c11, c21, π1, . . . , c1n, c2n, πn, sig).

Theorem 3. The above protocol is a (0, ts, tz, n)-NIZK proof for all choices of ts +
tz > n. It has (0, ts, tz, n)-simulation-soundness, (0, ts, tz, n)-extraction zero-
knowledge and statistical (0, ts, tz, n)-knowledge. It can be securely implemented if
enhanced trapdoor permutations exist, and it can be implemented with random strings
if dense cryptosystems [DP92] and enhanced trapdoor permutations exist.

We refer to the full paper [GO07] for the proof.

4 Multi-string NIZK Proofs from Groups with a Bilinear Map

SETUP. We will use bilinear groups generated by (p, G, GT , e, g) ← G(1k) such that:

– p is a k-bit prime.
– G, GT are cyclic groups of order p.
– g is a generator of G.
– e : G × G → GT is a bilinear map such that e(g, g) generates GT and for all

a, b ∈ Zp we have: e(ga, gb) = e(g, g)ab.
– Group operations, group membership, and the bilinear map are efficiently com-

putable.
– Given a description (p, G, GT , e, g) it is verifiable that indeed it is a bilinear group

and that g generates G.
– There is a decoding algorithm that given a random string of (n+1)k bits interprets

it as n random group elements. The decoding algorithm is reversible, such that
given n group elements we can pick at random one of the (n + 1)k-bit strings that
decode to the n group elements.

– The length of the description of (p, G, GT , e, g) is at most 4k bits.1

1 It is easy to modify the protocol to work whenever the description of the bilinear group is O(k)
bits.



Cryptography in the Multi-string Model 333

– When working in the random multi-string model, we will assume G simply outputs
a uniformly random 4k-bit string, from which (p, G, GT , e, g) can be sampled.

We use the decisional linear assumption introduced by Boneh, Boyen and Shacham
[BBS04], which says that given group elements (f, g, h, fr, gs, ht) it is hard to tell
whether t = r + s or t is random. Throughout the paper, we use bilinear groups
(p, G, GT , e, g) ← G(1k) generated such that the DLIN assumption holds for G.

Example. We will offer a class of candidates for DLIN groups as described above.
Consider the elliptic curve y2 = x3 + 1 mod q, where q = 2 mod 3 is a prime. It
is straightforward to check that a point (x, y) is on the curve. Furthermore, picking
y ∈ Zq at random and computing x = (y2 − 1)

q+1
3 mod q gives us a random point

on the curve. The curve has a total of q + 1 points, where we include also the point at
infinity. When generating bilinear groups, we will pick p as a k-bit prime. We then let q
be the smallest prime2 so p|q + 1 and define G to be the order p subgroup of the curve.
The target group is the order p subgroup of F

∗
q2 and the bilinear map is the modified

Weyl-pairing [BF03]. Verification of (p, G, GT , e, g) being a group with bilinear maps
is straightforward, since it corresponds to checking that p, q are primes so p|q + 1 and
q = 2 mod 3 and g is an order p element on the curve. A random point in the group
G can be sampled by picking a random point (x, y) on the curve and raising it to q+1

p .
Reverse sampling is possible, since multiplying a group element with a random point
of order q+1

p gives a random (x, y) on the curve that would generate the group element.

MULTI-STRING NIZK PROOFS FROM DLIN GROUPS. We will construct a (0, ts,
tz, n)-simulation-sound NIZK proof for circuit satisfiability consisting of O((n+|C|)k)
bits, where |C| is the number of gates in the circuit and k is the security parameter.
Typically, n is much smaller than |C|, so the complexity matches the best known
NIZK proofs for circuit satisfiability in the single common reference string model
[GOS06b, GOS06a] that have proofs of size O(|C|k).

One could hope that the construction from Section 3 could be implemented effi-
ciently using groups with a bilinear map. This strategy does not work because each
common reference string is generated at random and independently of the others. This
means that even if the common reference strings contain descriptions of groups with
bilinear maps, most likely they are different and incompatible groups.

In our construction, we let all the common reference strings describe different groups
and we also let the prover pick a group with a bilinear map. Our solution to the problem
described above, is to translate simulation reference strings created by the authorities
into simulation reference strings in the prover’s group. This translation will require the
use of a pseudorandom generator, which we construct from the DLIN assumption in the
full paper [GO07]. This pseudorandom generator is constructed in such a way that there
exist efficient simulation-sound NIZK proofs for a value being pseudorandom [Gro06].

Consider a common reference string with group Gi and the prover’s group G. We
will let the common reference string contain a random string ri. The prover will choose

2 In other words, q is the smallest prime in the arithmetic progression 3p − 1, 6p − 1, 9p −
1, . . .. Granville and Pomerance [GP90] has conjectured that it requires O(k2) steps in this
progression to encounter a prime q.



334 J. Groth and R. Ostrovsky

a string si. Consider the pair of strings (ri ⊕ si, si). Since strings can be interpreted as
group elements, we have corresponding sets of group elements in respectively Gi and
G. However, since ri is chosen at random it is unlikely that both ri ⊕ si corresponds
to a pseudorandom value in Gi and at the same time si corresponds to a pseudorandom
value in G. Of course, the prover has some degree of freedom in choosing the group
G, but if one is careful and chooses a pseudorandom generator that stretches the input
sufficiently then one can use an entropy argument for it being unlikely that both strings
are pseudorandom values.

Now we use non-interactive zaps and NIZK proofs to bridge the two groups. The
prover will select si so ri ⊕ si is a pseudorandom value in Gi specified by the common
reference string and give an NIZK proof for this using that common reference string. In
his own group, he gets n values s1, . . . , sn and proves that tz of those are pseudorandom
or C is satisfiable. In the simulation, he knows the simulation trapdoors for tz reference
strings and he can therefore simulate NIZK proofs of ri ⊕si being pseudorandom. This
means, he can select the corresponding si’s as pseudorandom values and use this to
prove that there are at least tz pseudorandom values in his own group, so he does not
need to know the satisfiability witness w for C being satisfiable to carry out the proof
in his own bilinear group.

There is another technical detail to consider. We want the construction to be efficient
in n. Therefore, instead of proving directly that there are tz pseudorandom values or C
is satisfiable, we use a homomorphically encrypted counter. In the simulation, we set
the counter to 1 for each pseudorandom value and to 0 for the rest of the values in the
prover’s group. The homomorphic property enables us to multiply these ciphertexts and
get an encrypted count of tz . It is straightforward to prove that the count is tz or C is
satisfiable.

These ideas describe how to get soundness. We can set up the common reference
strings such that they enable us to make simulation-sound NIZK proofs in their bilinear
groups. With a few extra ideas, we then get a (0, ts, tz, n)-simulation-sound NIZK proof
for circuit satisfiability when ts + tz > n.

Common reference string/simulation reference string: Generate a DLIN group
(p, G, GT , e, g) ← G(1k). Generate a common reference string for a simulation-
sound NIZK proof on basis of this group Σ ← Ksim−sound(p, G, GT , e, g) as in
[Gro06]. Pick a random string r ← {0, 1}61k. Output Σ := (p, G, GT , e, g, σ, r).

Provided one can sample groups from random strings, this can all be set up in
the random multi-string model.

When generating a simulation reference string, use the simulator for the
simulation-sound NIZK proof to generate (σ, τ) ← Ssim−sound(p, G, GT , e, g).
Output Σ as described above and simulation trapdoor τ .

Proof: Given tz, (Σ1, . . . , Σn), C, w so C(w) = 1 do the following. Pick a group
(p, G, GT , e, g) ← G(1k). Pick also keys for a strong one-time signature scheme
(vksots, sksots) ← Ksots(1k). Encode vksots as a tuple of O(1) group elements
from G.

For each common reference string Σi do the following. Pick a pseudorandom
value with 6 key pairs, 6 input pairs and 36 structured elements, as described in the
full paper [GO07]. This gives us a total of 60 group elements from Gi. Concatenate



Cryptography in the Multi-string Model 335

the tuple of 60 group elements with vksots to get O(1) group elements from Gi.
Make a simulation-sound NIZK proof, using σi, for these O(1) group elements
being of a form such that the first 60 of them constitute a pseudorandom value.
From [Gro06] we know that the size of this proof is O(1) group elements from
Gi. Choose si ∈ {0, 1}61k to be a random string such that ri ⊕ si parses to the 60
elements from the pseudorandom value.

From now on we will work in the group (p, G, GT , e, g) chosen by the prover.
Pick pk := (f, h) as two random group elements. This gives us a CPA-secure cryp-
tosystem, encrypting a message m ∈ G with randomness r, s ∈ Zp as Epk(m; r, s)
:= (f r, hs, gr+sm). For each i = 1, . . . , n we encrypt 1 = g0 as ci ← Epk(1).
Also, we take si and parse it as 60 group elements. Call this tuple zi.
Make a non-interactive zap π using the group (p, G, GT , e, g) and combining tech-
niques of [GOS06a] and [Gro06] for the following statement:

C satisfiable ∨
( n∏

i=1

ci encrypts gtz ∧ ∀i : ci encrypts g0 or g1

∧ ∀i : zi is a pseudorandom value ∨ ci encrypts g0
)
.

The zap consists of O(n + |C|) group elements and has perfect soundness.
Sign everything sig ← Signsksots

(vksots, C, Σ1, s1, π1, c1, . . . , Σn, sn, πn, cn, p,
G, GT , e, g, f, h, π).
The proof is Π := (vksots, s1, π1, c1, . . . , sn, πn, cn, p, G, GT , e, g, f, h, π, sig).

Verification: Given common reference strings Σ1, . . . , Σn, a circuit C and a proof
as described above, do the following. For all i check the simulation-sound NIZK
proofs πi for ri ⊕ si encoding a pseudorandom structure in Gi using common
reference string σi. Verify (p, G, GT , e, g) is a group with a bilinear map. Verify
the zap π. Verify the strong one-time signature on everything. Output 1 if all checks
are ok.

Simulated proof: We are given reference strings Σ1, . . . , Σn. tz of them are simula-
tion strings, where we know the simulation trapdoors τi for the simulation-sound
NIZK proofs. We wish to simulate a proof for a circuit C being satisfiable.

We start by choosing a group (p, G, GT , e, g) ← G(1k) and public key f, h ←
G. We create ciphertexts ci ← Epk(g1) for the tz simulation reference strings,
where we know the trapdoor τi, and set ci ← Epk(g0) for the rest. We also choose
a strong one-time signature key pair (vksots, sksots) ← Ksots(1k).

For tz of the common reference strings, we know the simulation key τi. This
permits us to choose an arbitrary string si and simulate a proof πi that ri ⊕ si

encodes a 60 element pseudorandom structure. This means, we are free to choose
si so it encodes a pseudorandom structure zi in G

60. For the remaining n− tz < ts
reference strings, we select si so ri ⊕ si does encode a pseudorandom value in Gi

and carry out a real simulation-sound NIZK proof πi for it being a pseudorandom
value concatenated with vksots.

For all i we have ci encrypting gb, where b ∈ {0, 1}. We have
∏n

i=1 ci encrypting
gtz . We also have for the tz simulation strings, where we know τi that si encodes a
pseudorandom structure, whereas for the other common reference strings we have



336 J. Groth and R. Ostrovsky

ci encrypts g0. This means we can create the non-interactive zap π without knowing
C’s satisfiability witness.

Sign everything sig ← Signsksots
(vksots, C, Σ1, s1, π1, c1, . . . , Σn, sn, πn, cn,

p, G, GT , e, g, f, h, π). The simulated proof is Π := (vksots, s1, π1, c1, . . . , sn, πn,
cn, p, G, GT , e, g, f, h, π, sig).

Theorem 4. Assuming we have a DLIN group as described above, then the construc-
tion above gives us a (0, ts, tz, n)-simulation-sound NIZK proof for circuit satisfiability,
where the proofs have size O((n + |C|)k) bits. The proof has statistical (0, ts, tz, n)-
soundness. The scheme can be set up in the random multi-string model if we can sample
groups with bilinear maps from random strings.

The proof can be found in the full paper [GO07].

5 UC Commitment in the Multi-string Model

In the rest of the paper, we will work in Canetti’s UC framework. We refer to Canetti
[Can01] for a detailed description. Very briefly, the UC framework compares a real
world execution of a protocol with an ideal process where the parties have access to an
ideal functionality that handles all protocol execution honestly and securely.

IDEAL FUNCTIONALITIES. Let us first formalize the multi-string model in the UC
framework. Figure 1 gives an ideal multi-string functionality FMCRS. We will con-
struct universally composable commitments, see Figure 2, in the multi-string model.

Functionality FMCRS

Parameterized by polynomial �mcrs, and running with parties P1, . . . , PN and adversary S .
String generation: On input (crs, sid) from S , pick σ ← {0, 1}�mcrs(k) and store it. Send

(crs, sid, σ) to S .
String selection: On input (vector, sid, σ1, . . . , σn) where σ1, . . . , σn ∈ {0, 1}�mcrs(k)

from S check that more than half of the strings σ1, . . . , σn match stored strings. In that
case output (vector, sid, σ1, . . . , σn) to all parties and halt.

Fig. 1. The ideal multi-string generator

We will assume the parties can broadcast messages, i.e., have access to an ideal
broadcast functionality FBC.

UC COMMITMENT IN THE MULTI-STRING MODEL. We will describe our UC commit-
ment protocol later but first let us offer some intuition. To prove that our UC commit-
ment is secure, we will describe an ideal process adversary S that interacts with F1:N

COM

and makes a black-box simulation of A running with FMCRS and P1, . . . , PN . There
are two general types of issues that can come up in the ideal process simulation. First,
when F1:N

COM tells S that a party has committed to some message, S does not know



Cryptography in the Multi-string Model 337

Functionality F1:N
COM

Parameterized by polynomial �, and running with parties P1, . . . , PN and adversary S .
Commitment: On input (commit, sid, m) from party Pi check that m ∈ {0, 1}�(k) and in

that case store (sid, Pi, m) and send (commit, sid, Pi) to all parties and S . Ignore
future (commit, sid, ·) inputs from Pi.

Opening: On input (open, sid) from Pi check that (sid, Pi, m) has been stored, and in
that case send (open, sid, Pi, m) to all parties and S .

Fig. 2. The ideal commitment functionality

which message it is, however, S has to simulate to A that this party makes a UC com-
mitment. Therefore, we want to be able to make trapdoor commitments and later open
them to any value. Second, when a corrupt party controlled by A sends a UC commit-
ment, then S needs to input some message to F1:N

COM. In this case, we therefore need to
extract the message from the UC commitment.

As a tool to get both the trapdoor/simulation property and at the same time the ex-
tractability property, we will use a tag-based simulation-extractable commitment. In-
formally, a tag-based simulation-extractable commitment scheme, is a non-interactive
commitment scheme that takes as input an arbitrary tag, a message and a randomizer
(tag, m, r) and outputs a commitment c. The commitment can be opened for tag simply
by revealing m, r. The commitment must be a trapdoor commitment: given a simulation
trapdoor we can construct commitments for an arbitrary tag that can be opened to any
value we desire. At the same time it must be extractable: given an extraction key we can
extract the message from any commitment that uses a tag tag that has not been used in
a trapdoor commitment. In addition, we will need that the public key for the tag-based
simulation-extractable commitment scheme is pseudorandom such that we can set it up
in the common random strings model. Tag-based simulation-extractable commitments
are formally defined in the full paper [GO07] where we also give a construction.

Our idea in constructing a UC commitment is to use each of the n common ran-
dom strings output by FMCRS as a public key for a tag-based simulation-extractable
commitment scheme. This gives us a set of n commitment schemes, of which at least
t = �n+1

2 � are secure. Without loss of generality, we will from now on assume we have
exactly t secure commitment schemes. In the ideal process, the ideal process adversary
simulates FMCRS and can therefore pick the strings as simulation-extractable public
keys where it knows both the simulation trapdoors and the extraction keys.

To commit to a message m, a party makes a (t, n)-threshold secret sharing of it and
commits to the n secret share using the n public keys specified by the random strings.
When making a trapdoor commitment, S makes honest commitments to n − t ran-
dom shares for the adversarial keys, and trapdoor commitments with the t simulation-
extractable keys. Since the adversary knows at most n− t < t shares, we can later open
the commitment to any message we want by making suitable trapdoor openings of the
latter t shares. To extract a message m from a UC commitment made by the adversary,
we extract t shares from the simulation-extractable commitments. We can now combine
the shares to get the adversarial message.



338 J. Groth and R. Ostrovsky

One remaining issue is when the adversary recycles a commitment or parts of it.
This way, we may risk that it uses a trapdoor commitment made by an honest party,
in which case we are unable to extract a message. To guard against this problem, we
will let the tag for the simulation-extractable commitment scheme contain the identity
of the sender Pi, forcing the adversary to use a different tag, which in turn enables us
to extract.

Another problem arises when the adversary corrupts a party, which enables it to send
messages on behalf of this party. At this point, however, we learn the message so we just
need to force it to reuse the same message if it reuses parts of the trapdoor commitment.
We therefore introduce a second commitment scheme, which will be a standard trapdoor
commitment scheme, and use this trapdoor commitment scheme to commit to the shares
of the message. The tag for the simulation-extractable commitment will include this
trapdoor commitment. Therefore, if reusing a tag, the adversary must also reuse the
same trapdoor commitment given by this tag, which in turn computationally binds him
to use the same share as the one the party committed to before being corrupted.

These ideas give us a UC commitment scheme in the multi-string model. As an
additional bonus, the protocol is non-interactive except for a little coordination to ensure
that everybody received the same commitment.

Commitment: On input (vector, sid, (ck1, σ1), . . . , (ckn, σn)) from FMCRS and
(commit, sid, m) from Z , the party Pi does the following. He makes a (t, n)-
threshold secret sharing s1, . . . , sn of m. He picks randomizers rj and makes
commitments cj := Comckj (sj ; rj). He also picks randomizers Rj and makes
tag-based commitments Cj := Comσj ((Pi, cj); sj ; Rj). The commitment is c :=
(c1, C1, . . . , cn, Cn). He broadcasts (broadcast, sid, c).

Receiving commitment: A party on input (vector, sid, (ck1, σ1), . . . , (ckn, σn))
from FMCRS and (broadcast, sid, Pi, c) from FBC broadcasts (broadcast, sid,
Pi, c).

Once it receives similar broadcasts from all parties, all containing the same Pi, c,
it outputs (commit, sid, Pi) to the environment.

Opening commitment: Party Pi wishing to open the commitment broadcasts (open,
sid, s1, r1, R1, . . . , sn, rn, Rn).

Receiving opening: A party receiving (open, sid, Pi, s1, , r1, R1, . . . , sn, rn, Rn)
from FBC to a commitment it earlier received, checks that all commitments are
correctly formed cj = Comckj (sj ; rj) and Cj = Comσj ((Pi, cj); sj ; rj). It also
checks that s1, . . . , sn all are valid shares of a (t, n)-threshold secret sharing of
some message m. In that case it outputs (open, sid, Pi, m).

Theorem 5. The protocol securely realizes F1:N
COM in the (FBC, FMCRS)-hybrid model,

assuming tag-based simulation-extractable commitment schemes with pseudorandom
keys exist in the common random string model.

See the proof in the full paper [GO07].

6 Multi-party Computation

COIN-FLIPPING. A nice application of UC commitment is coin-flipping. In a coin-
flipping protocol the parties generate a series of uniformly random bits. In other words,



Cryptography in the Multi-string Model 339

all the protocols we have in the CRS-model can be securely realized if we can do coin-
flipping.

We will now show how to generate a common random string on the fly. The parties
will use the following natural coin-flipping protocol.

Commitment: Pi chooses at random ri ← {0, 1}�(k). It submits (commit, sid, ri)
to F1:N

COM. F1:N
COM on this input sends (commit, sid, Pi) to all parties.

Opening: Once Pi sees (commit, sid, Pj) for all j, it sends (open, sid, ri) to F1:N
COM.

F1:N
COM on this input sends (open, sid, Pi, ri) to all parties.

Output: Once Pi sees (commit, sid, Pj , rj) for all j, it outputs (crs, sid, ⊕N
j=1rj)

and halts.

Theorem 6. The protocol securely realizes (perfectly) the ideal common reference string
generator FCRS in the F1:N

COM-hybrid model.

MULTI-PARTY COMPUTATION. Armed with a coin-flipping protocol, we can gener-
ate random strings. Canetti, Lindell, Ostrovsky and Sahai [CLOS02] demonstrated that
with access to a common random string, it is possible to do any kind of multi-party com-
putation, even if only a minority of the parties is honest. We therefore get the following
corollary to Theorems 5 and 6, which we prove in the full paper [GO07].

Theorem 7. For any well-formed functionality F there is a non-trivial protocol that
securely realizes it in the (FBC, FMCRS)-hybrid model, provided enhanced trapdoor
permutations with dense public keys and augmented non-committing encryption exists.

Acknowledgments

We thank Silvio Micali and Eyal Kushilevitz for an inspiring discussion in February of
2004 that motivated us to explore this setting.

References

[Adl78] Adleman, L.M.: Two theorems on random polynomial time. In: proceedings of
FOCS ’78, pp. 75–83 (1978)

[BBS04] Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

[BCNP04] Barak, B., Canetti, R., Nielsen, J.B., Pass, R.: Universally composable protocols
with relaxed set-up assumptions. In: proceedings of FOCS ’04, pp. 186–195 (2004)

[BDMP91] Blum, M., De Santis, A., Micali, S., Persiano, G.: Noninteractive zero-knowledge.
SIAM Jornal of Computation 20(6), 1084–1118 (1991)

[BF03] Boneh, D., Franklin, M.K.: Identity-based encryption from the weil pairing. SIAM
Journal of Computing 32(3), 586–615 (2003)

[BFM88] Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its applica-
tions. In: proceedings of STOC ’88, pp. 103–112 (1988)

[Can01] Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: proceedings of FOCS ’01, pp. 136–145 (2001) Full paper available
at, http://eprint.iacr.org/2000/067

http://eprint.iacr.org/2000/067


340 J. Groth and R. Ostrovsky

[CF01] Canetti, R., Fischlin, M.: Universally composable commitments. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg (2001), Full
paper available at http://eprint.iacr.org/2001/055

[CLOS02] Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-party
and multi-party secure computation. In: proceedings of STOC ’02, pp. 494–503
(2002), Full paper available at, http://eprint.iacr.org/2002/140

[Dam92] Damgård, I.: Non-interactive circuit based proofs and non-interactive perfect
zero-knowledge with proprocessing. In: Rueppel, R.A. (ed.) EUROCRYPT 1992.
LNCS, vol. 658, pp. 341–355. Springer, Heidelberg (1993)

[DDO+02] De Santis, A., Di Crescenzo, G., Ostrovsky, R., Persiano, G., Sahai, A.: Robust non-
interactive zero knowledge. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139,
pp. 566–598. Springer, Heidelberg (2001)

[DDP99] De Santis, A., Di Crescenzo, G., Persiano, G.: Non-interactive zero-knowledge: A
low-randomness characterization of np. In: Wiedermann, J., van Emde Boas, P.,
Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 271–280. Springer, Heidel-
berg (1999)

[DDP02] De Santis, A., Di Crescenzo, G., Persiano, G.: Randomness-optimal characteriza-
tion of two np proof systems. In: Rolim, J.D.P., Vadhan, S.P. (eds.) RANDOM
2002. LNCS, vol. 2483, pp. 179–193. Springer, Heidelberg (2002)

[DN02] Damgård, I., Nielsen, J.B.: Perfect hiding and perfect binding universally com-
posable commitment schemes with constant expansion factor. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, pp. 581–596. Springer, Heidelberg (2002)

[DP92] De Santis, A., Persiano, G.: Zero-knowledge proofs of knowledge without interac-
tion. In: proceedings of FOCS ’92, pp. 427–436 (1992)

[FLS99] Feige, U., Lapidot, D., Shamir, A.: Multiple non-interactive zero knowledge proofs
under general assumptions. SIAM Journal of Computing 29(1), 1–28 (1999)

[GMR89] Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interac-
tive proofs. SIAM Journal of Computing 18(1), 186–208 (1985) First Published
at STOC 1985

[GMW87] Goldreich, O., Micali, S., Wigderson, A.: How to play ANY mental game, or A
completeness theorem for protocols with honest majority. In: proceedings of STOC
’87, pp. 218–229 (1987)

[GO94] Goldreich, O., Oren, Y.: Definitions and properties of zero-knowledge proof sys-
tems. Journal of Cryptology 7(1), 1–32 (1994)

[GO07] Groth, J., Ostrovsky, R.: Cryptography in the multi-string model. In: Menezes, A.
(ed.) CRYPTO 2007. LNCS, vol. 4622, Springer, Heidelberg (2007) Full paper avail-
able at http://www.cs.ucla.edu/∼rafail/PUBLIC/index.html

[GOS06a] Groth, J., Ostrovsky, R., Sahai, A.: Non-interactive zaps and new techniques for
nizk. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 97–111. Springer,
Heidelberg (2006)

[GOS06b] Groth, J., Ostrovsky, R., Sahai, A.: Perfect non-interactive zero-knowledge for
np. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 339–358.
Springer, Heidelberg (2006)

[GP90] Granville, A., Pomerance, C.: On the Least Prime in Certain Arithmetic Progres-
sions. Journal of the London Mathematical Society s2-41(2), 193–200 (1990)

[Gro06] Groth, J.: Simulation-sound nizk proofs for a practical language and con-
stant size group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT
2006. LNCS, vol. 4284, Springer, Heidelberg (2006), Full Paper available at
http://www.brics.dk/∼jg/NIZKGroupSignFull.pdf

http://eprint.iacr.org/2001/055
http://eprint.iacr.org/2002/140
http://www.cs.ucla.edu/~rafail/PUBLIC/index.html
http://www.brics.dk/~jg/NIZKGroupSignFull.pdf


Cryptography in the Multi-string Model 341

[KP98] Kilian, J., Petrank, E.: An efficient noninteractive zero-knowledge proof system for
np with general assumptions. Journal of Cryptology 11(1), 1–27 (1998)

[PPS06] Padney, O., Prabhakaran, M., Sahai, A.: personal communication (November 2006)
[RCW07] Canetti, R.P.R., Dodis, Y., Walfish, S.: Universally composable security with pre-

existing setup. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 61–85.
Springer, Heidelberg (2007), http://eprint.iacr.org/2006/432

[Sah01] Sahai, A.: Non-malleable non-interactive zero-knowledge and adaptive chosen-
ciphertext security. In: proceedings of FOCS ’01, pp. 543–553 (2001)

http://eprint.iacr.org/2006/432


Secure Identification and QKD in the
Bounded-Quantum-Storage Model

Ivan B. Damg̊ard1, Serge Fehr2,�, Louis Salvail1,��,
and Christian Schaffner2,� � �

1 BRICS†, FICS, Aarhus University, Denmark
{ivan,salvail}@brics.dk

2 CWI‡ Amsterdam, The Netherlands
{fehr,c.schaffner}@cwi.nl

Abstract. We consider the problem of secure identification: user U
proves to server S that he knows an agreed (possibly low-entropy) pass-
word w, while giving away as little information on w as possible, namely
the adversary can exclude at most one possible password for each exe-
cution of the scheme. We propose a solution in the bounded-quantum-
storage model, where U and S may exchange qubits, and a dishonest
party is assumed to have limited quantum memory. No other restric-
tion is posed upon the adversary. An improved version of the proposed
identification scheme is also secure against a man-in-the-middle attack,
but requires U and S to additionally share a high-entropy key k. How-
ever, security is still guaranteed if one party loses k to the attacker
but notices the loss. In both versions of the scheme, the honest par-
ticipants need no quantum memory, and noise and imperfect quantum
sources can be tolerated. The schemes compose sequentially, and w and
k can securely be re-used. A small modification to the identification
scheme results in a quantum-key-distribution (QKD) scheme, secure in
the bounded-quantum-storage model, with the same re-usability proper-
ties of the keys, and without assuming authenticated channels. This is
in sharp contrast to known QKD schemes (with unbounded adversary)
without authenticated channels, where authentication keys must be up-
dated, and unsuccessful executions can cause the parties to run out of
keys.

1 Introduction

Secure Identification. Consider two parties, a user U and a server S, which
share a common secret-key (or password or Personal Identification Number

� Supported by the Dutch Organization for Scientific Research (NWO).
�� QUSEP, Quantum Security in Practice, funded by the Danish Natural Science

Research Council.
� � � Supported by the European project SECOQC.

† Basic Research in Computer Science (www.brics.dk), and Foundations in Cryp-
tography and Security, funded by the Danish Natural Sciences Research Council.

‡ Centrum voor Wiskunde en Informatica, the national research institute for math-
ematics and computer science in the Netherlands.

A. Menezes (Ed.): CRYPTO 2007, LNCS 4622, pp. 342–359, 2007.
c© International Association for Cryptologic Research 2007



Secure Identification and QKD in the Bounded-Quantum-Storage Model 343

PIN) w. In order to obtain some service from S, U needs to convince S that
he is the legitimate user U by “proving” that he knows w. In practice—think of
how you prove to the ATM that you know your PIN—such a proof is often done
simply by announcing w to S. This indeed guarantees that a dishonest user U∗

who does not know w cannot identify himself as U, but of course incurs the risk
that U might reveal w to a malicious server S∗ who may now impersonate U.
Thus, from a secure identification scheme we also require that a dishonest server
S∗ obtains (essentially) no information on w.

There exist various approaches to obtain secure identification schemes, de-
pending on the setting and the exact security requirements. For instance zero-
knowledge proofs (and some weaker versions), as initiated by Feige, Fiat and
Shamir[12,11], allow for secure identification. In a more sophisticated model,
where we allow the common key w to be of low entropy and additionally con-
sider a man-in-the-middle attack, we can use techniques from password-based
key-agreement (like [14,13]) to obtain secure identification schemes. Common to
these approaches is that security relies on the assumption that some computa-
tional problem (like factoring or computing discrete logs) is hard and that the
attacker has limited computing power.

Our Contribution. In this work, we take a new approach: we consider
quantum communication, and we develop two identification schemes which are
information-theoretically secure under the sole assumption that the attacker can
only reliably store quantum states of limited size. This model was first consid-
ered in [4]. On the other hand, the honest participants only need to send qubits
and measure them immediately upon arrival, no quantum storage or quantum
computation is required. Furthermore, our identification schemes are robust to
both noisy quantum channels and imperfect quantum sources. Our schemes can
therefore be implemented in practice using off-the-shelf technology.

The first scheme is secure against dishonest users and servers but not against a
man-in-the-middle attack. It allows the common secret-key w to be non-uniform
and of low entropy, like a human-memorizable password. Only a user knowing w
can succeed in convincing the server. In any execution of this scheme, a dishonest
user or server cannot learn more on w than excluding one possibility, which is
unavoidable. This is sometimes referred to as password-based identification. The
second scheme requires in addition to w a uniformly distributed high-entropy
common secret-key k, but is additionally secure against a man-in-the-middle
attack. Furthermore, security against a dishonest user or server holds as for the
first scheme even if the dishonest party knows k (but not w). This implies that
k can for instance be stored on a smartcard, and security of the scheme is still
guaranteed even if the smartcard gets stolen, assuming that the affected party
notices the theft and thus does not engage in the scheme anymore. Both schemes
compose sequentially, and w (and k) may be safely re-used super-polynomially
many times, even if the identification fails (due to an attack, or due to a technical
failure).

A small modification of the second identification scheme results in a quantum-
key-distribution (QKD) scheme secure against bounded-quantum-memory



344 I.B. Damg̊ard et al.

adversaries. The advantage of the proposed new QKD scheme is that no authen-
ticated channel is needed and the attacker can not force the parties to run out of
authentication keys. The honest parties merely need to share a password w and
a high-entropy secret-key k, which they can safely re-use (super-polynomially
many times), independent of whether QKD succeeds or fails. Furthermore, like
for the identification scheme, losing k does not compromise security as long as
the loss is noticed by the corresponding party. One may think of this as a quan-
tum version of password-based authenticated key exchange. The properties of
our solution are in sharp contrast to all known QKD schemes without authen-
ticated channels (which do not pose any restrictions on the attacker). In these
schemes, an attacker can force parties to run out of authentication keys by mak-
ing the QKD execution fail (e.g. by blocking some messages). Worse, even if the
QKD execution fails only due to technical problems, the parties can still run
out of authentication keys after a short while, since they cannot exclude that
an eavesdropper was in fact present. This problem is an important drawback of
QKD implementations, especially of those susceptible to single (or few) point(s)
of failure[9].

Other Approaches. We briefly discuss how our identification schemes com-
pare with other approaches. We have already given some indication on how
to construct computationally secure identification schemes. This approach typi-
cally allows for very practical schemes, but requires some unproven complexity
assumption. Another interesting difference between the two approaches: whereas
for (known) computationally-secure password-based identification schemes the
underlying computational hardness assumption needs to hold indefinitely, the re-
striction on the attacker’s quantum memory in our approach only needs to hold
during the execution of the identification scheme, actually only at one single point
during the execution. In other words, having a super-quantum-storage-device at
home in the basement only helps you cheat at the ATM if you can communicate
with it on-line quantumly – in contrast to a computational solution, where an
off-line super-computer in the basement can make a crucial difference.

Furthermore, obtaining a satisfactory identification scheme requires some re-
striction on the adversary, even in the quantum setting: considering only passive
attacks, Lo[15] showed that for an unrestricted adversary, no password-based
quantum identification scheme exists. In fact, Lo’s impossibility result only ap-
plies if the user U is guaranteed not to learn anything about the outcome of the
identification procedure. We can argue, however, that a different impossibility
result holds even without Lo’s restriction: We first show that secure computation
of a classical and gate (in which both players learn the output) can be reduced
to a password-based identification scheme. The reduction works as follows. Let
w0, w′0 and w1 be three distinct elements from W . If Alice has private input
xA = 0 then she sets wA = w0 and if xA = 1 then she sets wA = w1, and
if Bob has private input xB = 0 then he sets wB = w′0 and if xB = 1 then
he sets wB = w1. Then, Alice and Bob run the identification scheme on inputs



Secure Identification and QKD in the Bounded-Quantum-Storage Model 345

wA and wB , and if the identification is rejected, the output is set to 0 while if it
is accepted, the output is set to 1. Security of the identification scheme is easily
seen to imply security of the and computation. Now, the secure computation
of an and gate—with statistical security and using quantum communication—
can be shown to require a superpolynomial number of rounds if the adversary
is unbounded[18]. Therefore, the same must hold for a secure password-based
identification scheme.1

Another alternative approach is the classical bounded-storage model[17,2,1].
In contrast to our approach, only classical communication is used, and it is as-
sumed that the attacker’s classical memory is bounded. Unlike in the quantum
case where we do not need to require the honest players to have any quantum
memory, the classical bounded-storage model requires honest parties to have a
certain amount of memory which is related to the allowed memory size of the
adversary: if two legitimate users need n bits of memory in an identification
protocol meeting our security criterion, then an adversary must be bounded in
memory to O(n2) bits. The reason is that given a secure password-based iden-
tification scheme, one can construct (in a black-box manner) a key-distribution
scheme that produces a one-bit key on which the adversary has an (average)
entropy of 1

2 . On the other hand it is known that in any key-distribution scheme
which requires n bits of memory for legitimate players, an adversary with mem-
ory Ω(n2) can obtain the key except for an arbitrarily small amount of remaining
entropy[8]. It follows that password-based identification schemes in the classical
bounded-storage model can only be secure against adversaries with memory at
most O(n2). This holds even for identification schemes with only passive security
and without security against man-in-the-middle attacks. Roughly, the reduction
works as follows. Alice and Bob agree on a public set of two keys {w0, w1}. Alice
picks a ∈R {0, 1}, Bob picks b ∈R {0, 1}, and they run the identification scheme
with keys wa and wb respectively. The outcome of the identification is then made
public from which Bob determines a. We argue that if the identification fails,
i.e. a �= b, then a is a secure bit. Thus, on average, a has entropy (close to) 1

2
from an eavesdropper’s point of view. Consider w′ �∈ {w0, w1}. By the security
property of the identification scheme, Alice and thus also a passive eavesdropper
Eve cannot distinguish between Bob having used wb or w′. Similarly, we can
then switch Alice’s key wa to w1−a and Bob’s switched key w′ to w1−b without
changing Eve’s view. Thus, Eve cannot distinguish an execution with a = 0 from
one with a = 1 if a �= b.

This limitation of the classical bounded-storage model is in sharp contrast
with what we achieve in this paper, the honest players need no quantum memory
at all while our identification scheme remains secure against adversaries with
quantum memory linear in the total number of qubits sent. The same separation
between the two models was shown for OT and bit commitment[4,3].

1 In fact, we believe that the proof from [18] can be extended to cover secure computa-
tion of equality of strings, which is equivalent to password-based identification. This
would mean that we could prove the impossibility result directly, without the detour
via a secure AND computation. Details are omitted due to the space limitation.



346 I.B. Damg̊ard et al.

Finally, if one settles for the bounded-quantum-storage model, then in princi-
ple one could take a generic construction for general two-party secure-function-
evaluation (SFE) based on OT together with the OT scheme from [4,3] in order
to implement a SFE for string equality and thus password-based identification.
However, this approach leads to a highly impractical solution, as the generic
construction requires many executions of OT, whereas our solution is compa-
rable with one execution of the OT scheme from [4,3]. Furthermore, SFE does
not automatically take care of a man-in-the-middle attack, thus additional work
would need to be done using this approach.

2 Preliminaries

2.1 Notation and Terminology

Quantum States. The state of a qubit can be described by a vector in the
2-dimensional Hilbert space C

2 in case of a pure state, and by a density ma-
trix/operator on C

2 in the general case of a mixed state. Similarly, an n-qubit
state is characterized by a vector in the n-fold tensor product (C2)⊗n in case
of a pure n-qubit state, and by a density matrix/operator on (C2)⊗n in case
of a mixed n-qubit state. The pair {|0〉, |1〉} denotes the standard basis, also
known as computational or rectilinear or “+”-basis, for C

2. When the context
requires, we also write |0〉+ and |1〉+ instead of |0〉 respectively |1〉. The di-
agonal or “×”-basis is defined as {|0〉×, |1〉×} where |0〉× = (|0〉 + |1〉)/

√
2 and

|1〉× = (|0〉 − |1〉)/
√

2. Measuring a qubit in the + -basis (resp. ×-basis) means
applying the measurement described by projectors |0〉〈0| and |1〉〈1| (resp. pro-
jectors |0〉×〈0|× and |1〉×〈1|×). The notation generalizes to n-qubit states: For
x = (x1, . . . , xn) ∈ {0, 1}n and θ = (θ1, . . . , θn) ∈ {+, ×}n, we let |x〉θ be the
n-qubit state |x〉θ = |x1〉θ1

· · · |xn〉θn
; and measuring a n-qubit state in basis

θ ∈ {+, ×}n means applying the measurement described by projections |x〉θ〈x|θ
with x ∈ {0, 1}n.

The behavior of a (mixed) quantum state in a register E is fully described by
its density matrix ρE. In order to simplify language, we tend to be a bit sloppy
and use E as well as ρE as “naming” for the quantum state. We often consider
cases where a quantum state E may depend on some classical random variable
X in that the state is described by the density matrix ρx

E if and only if X = x.
For an observer who has only access to the state E but not to X , the behavior
of the state is determined by the density matrix ρE :=

∑
x PX(x)ρx

E, whereas the
joint state, consisting of the classical X and the quantum state E, is described by
the density matrix ρXE :=

∑
x PX(x)|x〉〈x| ⊗ ρx

E, where we understand {|x〉}x∈X
to be the standard (orthonormal) basis of C

|X |. More general, for any event E
(defined by PE|X(x) = P [E|X =x] for all x), we write

ρXE|E :=
∑

x

PX|E(x)|x〉〈x| ⊗ ρx
E and ρE|E := trX(ρXE|E) =

∑
x

PX|E(x)ρx
E .

We also write ρX : =
∑

x PX(x)|x〉〈x| for the quantum representation of the
classical random variable X (and similarly for ρX|E). This notation extends



Secure Identification and QKD in the Bounded-Quantum-Storage Model 347

naturally to quantum states that depend on several classical random variables.
Given X and E as above, by saying that there exists a random variable Y such
that ρXY E satisfies some condition, we mean that ρXE can be understood as
ρXE = trY (ρXY E) for some ρXY E (with classical Y ) and that ρXY E satisfies the
required condition.

X is independent of E (in that ρx
E does not depend on x) if and only if ρXE =

ρX ⊗ ρE, which in particular implies that no information on X can be learned
by observing only E. Similarly, X is random and independent of E if and only
if ρXE = 1

|X |I ⊗ ρE, where 1
|X |I is the density matrix of the fully mixed state of

suitable dimension. Finally, if two states like ρXE and ρX ⊗ρE are ε-close in terms
of their trace distance δ(ρ, σ) = 1

2 tr(|ρ−σ|), which we write as ρXE ≈ε ρX ⊗ρE,
then the real system ρXE “behaves” as the ideal system ρX ⊗ ρE except with
probability ε in that for any evolution of the system no observer can distinguish
the real from the ideal one with advantage greater than ε [20].

We also need to express that a random variable X is (close to) independent
of a quantum state E when given a random variable Y . This means that when
given Y , the state E gives no (or little) additional information on X . Formally,
this is expressed by requiring that ρXY E is of the form (or close to)

ρXY E =
∑
x,y

PXY (x, y)|x〉〈x| ⊗ |y〉〈y| ⊗ ρy
E ,

where ρy
E =

∑
x PX|Y =y(x)ρx,y

E for all y. As shorthand for the right-hand side
above, we define ρX↔Y↔E :=

∑
x,y PXY (x, y)|x〉〈x| ⊗ |y〉〈y| ⊗ ρy

E.2 To further
illustrate its meaning, notice that if the Y -register is measured and value y is
obtained, the state ρX↔Y↔E collapses to (

∑
x PX|Y =y(x)|x〉〈x|) ⊗ ρy

E, so that
indeed no further information on x can be obtained from the E-register. This
notation naturally extends to ρX↔Y↔E|E simply by considering ρXY E|E .

(Conditional) Smooth Min-Entropy. We briefly recall the notion of (con-
ditional) smooth min-entropy[19,21]. For more details, we refer to the aforemen-
tioned literature. Let X be a random variable over alphabet X with distribution
PX . The notion of min-entropy is given by H∞(X) = − log

(
maxx PX(x)

)
. More

general, for any event E , H∞(XE) may be defined similarly simply by replacing
PX by PXE . Note that the “distribution” PXE is not normalized; H∞(XE) is still
well defined, though. For an arbitrary ε ≥ 0, the smooth version Hε

∞(X) is de-
fined as follows. Hε∞(X) is the maximum of the standard min-entropy H∞(XE),
where the maximum is taken over all events E with Pr(E) ≥ 1 − ε. As ε can be
interpreted as an error probability, we typically require ε to be negligible in the
security parameter n, denoted as ε = negl(n).

For a pair of random variables X and Y , the conditional smooth min-entropy
Hε
∞(X |Y ) is defined as Hε

∞(X |Y ) = maxE miny H∞(XE|Y =y), where the quan-
tification over E is over all events E (defined by PE|XY ) with Pr(E) ≥ 1 − ε. The

2 The notation is inspired by the classical setting where the corresponding indepen-
dence of X and Z given Y can be expressed by saying that X ↔ Y ↔ Z forms a
Markov chain.



348 I.B. Damg̊ard et al.

following lemma shows that for a small ε, smooth min-entropy is essentially as
good as ordinary min-entropy; the proof is given in the full version[5].

Lemma 2.1. If Hε∞(X |Y ) = r then there exists an event E ′ such that P [E ′] ≥
1 − 2ε and H∞(X |E ′, Y =y) ≥ r − 1 for every y with PY E′(y) > 0.

2.2 Tools

A New Min-Entropy-Splitting Lemma. A technical tool, which will come
in handy, is the following new entropy-splitting lemma, which may be of inde-
pendent interest. Informally, it says that if for a list of random variables, every
pair has high (smooth) min-entropy, then all of the random variables except one
must have high (smooth) min-entropy. The version given here follows immedi-
ately from the version given and proven in the full version[5].

Lemma 2.2 (Entropy-Splitting Lemma). Let ε > 0. Let X1, . . . , Xm be a
sequence of random variables over X1, . . . , Xm such that Hε

∞(XiXj) ≥ α for all
i �= j. Then there exists a random variable V over {1, . . . , m} such that for any
independent random variable W over {1, . . . , m}

H2
√

ε
∞ (XW |V W, V �=W ) ≥ α/2 − log(m) − log(1/ε) .

Quantum Uncertainty Relation. At the very core of our security proofs
lies (a special case of) the quantum uncertainty relation from [3], that lower
bounds the (smooth) min-entropy of the outcome when measuring an arbitrary
n-qubit state in a random basis θ ∈ {0, 1}n.
Theorem 2.3 (Uncertainty Relation[3]). Let E be an arbitrary fixed n-qubit
state. Let Θ be uniformly distributed over {+, ×}n (independent of E), and let
X ∈ {0, 1}n be the random variable for the outcome of measuring E in basis Θ.
Then, for any λ > 0, the conditional smooth min-entropy is lower bounded by
Hε∞(X |Θ) ≥

(
1
2 − λ

)
n with ε = negl(n).

Thus, ignoring negligibly small “error probabilities” and linear fractions that
can be chosen arbitrarily small, the outcome of measuring any n-qubit state in
a random basis has n/2 bits of min-entropy, given the basis.
Privacy Amplification. Finally, we recall the quantum-privacy-amplification
theorem of Renner and König[20]. We give the simplified version as used in
[4]. Recall that a class F of hash functions from X to Y is called (strongly)
universal-2 if for any x �= x′ ∈ X , and for F uniformly distributed over F , the
collision probability P [F (x) = F (x′)] is upper bounded by 1/|Y|, respectively,
for the strong notion, the random variables F (x) and F (x′) are uniformly and
independently distributed over Y.

Theorem 2.4 (Privacy Amplification[20,4]). Let X be a random variable
distributed over {0, 1}n, and let E be a q-qubit state that may depend on X. Let
F be the random and independent choice of a member of a universal-2 class of
hash functions F from {0, 1}n into {0, 1}�. Then

δ
(
ρF (X)FE, 1

2� I ⊗ ρFE
)

≤ 1
2

2−
1
2

(
H∞(X)−q−�

)
.



Secure Identification and QKD in the Bounded-Quantum-Storage Model 349

3 The Identification Scheme

3.1 The Setting

We assume the honest user U and the honest server S to share some key w ∈ W .
We do not require W to be very large (i.e. |W| may not be lower bounded by the
security parameter in any way), and w does not necessarily have to be uniformly
distributed in W . So, we may think of w as a human-memorizable password or
PIN code. The goal of this section is to construct an identification scheme that
allows U to “prove” to S that he knows w. The scheme should have the following
security properties: a dishonest server S∗ learns essentially no information on w
beyond that he can come up with a guess w′ for w and learns whether w′ = w or
not, and similarly a dishonest user succeeds in convincing the verifier essentially
only if he guesses w correctly, and if his guess is incorrect then the only thing
he learns is that his guess is incorrect. This in particular implies that as long as
there is enough entropy in w, the identification scheme may be safely repeated.

3.2 The Intuition

The scheme we propose is related to the (randomized) 1-2 OT scheme of [3]. In
that scheme, Alice sends |x〉θ to Bob, for random x ∈ {0, 1}n and θ ∈ {+, ×}n.
Bob then measures everything in basis + or ×, depending on his choice bit c, so
that he essentially knows half of x (where Alice used the same basis as Bob) and
has no information on the other half (where Alice used the other basis), though,
at this point, he does not know yet which bits he knows and which ones he does
not. Then, Alice sends θ and two hash functions to Bob, and outputs the hash
values s0 and s1 of the two parts of x, whereas Bob outputs the hash value sc

that he is able to compute from the part of x he knows. It is proven in [3] that
no dishonest Alice can learn c, and for any quantum-memory-bounded dishonest
Bob, at least one of the two strings s0 and s1 is random for Bob.

This scheme can be extended by giving Bob more options for measuring the
quantum state. Instead of measuring all qubits in the + or the × basis, he may
measure using m different strings of bases, where any two possible basis-strings
have large Hamming distance. Then Alice computes and outputs m hash values,
one for each possible basis-string that Bob might have used. She reveals θ and
the hash functions to Bob, so he can compute the hash value corresponding to
the basis that he has used, and no other hash value. Intuitively, such an extended
scheme leads to a randomized 1-m OT.

The scheme can now be transformed into a secure identification scheme as
follows, where we assume (wlog) that W = {1, . . . , m}. The user U, acting as
Alice, and the server S, acting as Bob, execute the randomized 1-m OT scheme
where S “asks” for the string indexed by his key w, such that U obtains random
strings s1, . . . , sm and S obtains sw. Then, to do the actual identification, U sends
sw to S, who accepts if and only if it coincides with his string sw. Intuitively,
such a construction is secure against a dishonest server since unless he asks for
the right string (by guessing w correctly) the string U sends him is random and



350 I.B. Damg̊ard et al.

thus gives no information on w. On the other hand, a dishonest user does not
know which of the m strings S asked for and wants to see from him. We realize
this intuitive idea in the next section. In the actual protocol, U does not have to
explicitly compute all the si’s, and also we only need a single hash function (to
compute sw). We also take care of some subtleties, for instance that the si are
not necessarily random if Alice (i.e. the user) is dishonest.

3.3 The Basic Scheme

Let c : W → {+, ×}n be the encoding function of a binary code of length n with
m = |W| codewords and minimal distance d. c can be chosen such that n is linear
in log(m) or larger, and d is linear in n. Furthermore, let F and G be strongly
universal-2 classes of hash functions3 from {0, 1}n to {0, 1}� and from W to
{0, 1}�, respectively, for some parameter �. For x ∈ {0, 1}n and I ⊆ {1, . . . , n},
we define x|I ∈ {0, 1}n to be the restriction of x to the coordinates xi with i ∈ I.
If |I| < n then applying f ∈ F to x|I is to be understood as applying f to x|I
padded with sufficiently many 0’s.

Q-ID:
1. U picks x ∈R {0, 1}n and θ ∈R {+, ×}n, and sends state |x〉θ to S.
2. S measures |x〉θ in basis c = c(w). Let x′ be the outcome.
3. U picks f ∈R F and sends θ and f to S. Both compute Iw := {i : θi = c(w)i}.
4. S picks g ∈R G and sends g to U.
5. U computes and sends z := f(x|Iw ) ⊕ g(w) to S.
6. S accepts if and only if z = z′ where z′ := f(x′|Iw ) ⊕ g(w).

Proposition 3.1 (User security). Let the initial state of a dishonest server
S∗, whose quantum memory at step 3 is bounded by q qubits, be independent of
the honest user’s key W . Then, the joint state ρWES∗ after the execution of Q-ID
is such that there exists a random variable W ′ that is independent of W and
such that

ρWW ′ES∗ |W ′ 
=W ≈ε ρW↔W ′↔ES∗ |W ′ 
=W ,

where ε = negl(d − 4 log(m) − 4q − 4�).

The proposition guarantees that whatever a dishonest S∗ does is essentially as
good as trying to guess W by some arbitrary (but independent) W ′ and learning
whether the guess was correct or not, but nothing beyond that. Such a property
is obviously the best one can hope for, since S∗ may always honestly execute the
protocol with a guess for W and observe whether he accepts U.

We would like to point out that the security definition used in Proposition 3.1,
and in fact any security claim in this paper, guarantees sequential composability,
as the output state is guaranteed to have the same independency property as is
required from the input state (except if the attacker guesses w).
3 Actually, we only need G to be strongly universal-2.



Secure Identification and QKD in the Bounded-Quantum-Storage Model 351

Proof. For readability, we do not keep track of negligibly small error probabilities
and of linear fractions that can be chosen arbitrarily small, but (sometimes)
merely give some indication of a small error by using the word “essentially”. It
is straightforward but rather tedious to keep rigorous track of these errors.

We consider and analyze a purified version of Q-ID where in step 1, in-
stead of sending |x〉θ to S∗ for a random x, U prepares a fully entangled state
2−n/2

∑
x |x〉|x〉 and sends the second register to S∗ while keeping the first. Then,

in step 3 when the memory bound has applied, he measures his register in the
random basis θ ∈R {+, ×}n in order to obtain x. Standard arguments imply
that this purified version produces exactly the same common state, consisting
of the classical information on U’s side and S∗’s quantum state.

Recall that before step 3 is executed, the memory bound applies to S∗, which
means that S∗ has to measure all but q of the qubits he holds, which consists of
his initial state and his part of the EPR pairs. Before doing the measurement,
he may append an ancilla register and apply an arbitrary unitary transform. As
a result of S∗’s measurement, S∗ gets some outcome y, and the common state
collapses to a (n + q)-qubit state (which depends on y), where the first n qubits
are with U and the remaining q with S∗. The following analysis is for a fixed y,
and works no matter what y is.

We use upper case letters W , X , Θ, F , G and Z for the random variables that
describe the respective values w, x, θ etc. in an execution of the purified version
of Q-ID. We write Xj = X |Ij for any j, and we let E′S∗ be S∗’s q-qubit state at
step 3, after the memory bound has applied. Note that W is independent of X ,
Θ, F , G and E′S∗ .

For 1 ≤ i �= j ≤ m, fix the value of X , and correspondingly of Xi and Xj , at
the positions where c(i) and c(j) coincide, and focus on the remaining (at least) d
positions. The uncertainty relation (Theorem 2.3) implies that the restriction of
X to these positions has essentially d/2 bits of min-entropy given Θ. Since every
bit in the restricted X appears in one of Xi and Xj, the pair Xi, Xj also has
essentially d/2 bits of min-entropy given Θ. Lemma 2.2 implies that there exists
W ′ (called V in Lemma 2.2) such that if W �= W ′ then XW has essentially d/4−
log(m) bits of min-entropy, given W and W ′ (and Θ). Privacy amplification then
guarantees that F (XW ) is ε′-close to random and independent of F, W, W ′, Θ and
E′S∗ , conditioned on W �= W ′, where ε′ = 1

2 · 2−
1
2 (d/4−log(m)−q−�). It follows that

Z = F (XW ) ⊕ G(W ) is ε′-close to random and independent of F, G, W, W ′, Θ
and E′S∗ , conditioned on W �= W ′. Formally, we want to upper bound

δ(ρWW ′ES∗ |W ′ 
=W , ρW↔W ′↔ES∗ |W ′ 
=W ) .

Since the output state ES∗ is, without loss of generality, obtained by applying
some unitary transform to the set of registers (Z, F, G, W ′, Θ, E′S∗), the distance
above is equal to δ(ρWW ′(Z,F,G,Θ,E′

S∗ )|W ′ 
=W , ρW↔W ′↔(Z,F,G,Θ,E′
S∗ )|W ′ 
=W ). We

then get:

ρWW ′(Z,F,G,Θ,E′
S∗)|W ′ 
=W ≈ε′ 1

2� I ⊗ ρWW ′(F,G,Θ,E′
S∗)|W ′ 
=W

= 1
2� I ⊗ ρW↔W ′↔(F,G,Θ,E′

S∗ )|W ′ 
=W ≈ε′ ρW↔W ′↔(Z,F,G,Θ,E′
S∗ )|W ′ 
=W ,



352 I.B. Damg̊ard et al.

where approximations follow from privacy amplification and the exact equality
comes from the independency of W , which, when conditioned on W ′ �= W ,
translates to independency given W ′. The claim follows, with ε = 2ε′. ��

Proposition 3.2 (Server security). Let the initial state of an (unbounded)
dishonest user U∗ be independent of the honest server’s key W , and let H∞(W ) ≥
1. Then, there exists W ′, independent of W , such that if W �= W ′ then S ac-
cepts with probability at most m2/2�−1, and the common state ρWEU∗ after the
execution of Q-ID satisfies

ρWW ′EU∗ |W ′ 
=W ≈m2/2�−1 ρW↔W ′↔EU∗ |W ′ 
=W .

The formal proof is given in the full version[5]. The idea is the following. We let
U∗ execute Q-ID with a server that is unbounded in quantum memory. Such a
server can obviously obtain x and thus compute sj = f(x|Ij ) ⊕ g(j) for all j.
Note that sw is the message z that U∗ is required to send in the last step. Now,
if the sj’s are all distinct, then z uniquely defines w′ such that z = sw′ , and thus
S accepts if and only if w′ = w, and U∗ does not learn anything beyond. The
strong universal-2 property of g guarantees that the sj ’s are all distinct except
with probability m2/2�.

We call an identification scheme ε-secure against impersonation attacks if user
and sender security are satisfied as in Propositions 3.1 and 3.2. The following
holds.

Theorem 3.3. If H∞(W ) ≥ 1, then the identification scheme Q-ID (with suit-
able choice of parameters) is ε-secure against impersonation attacks for any un-
bounded user and for any server with quantum memory bound q, where ε =
negl

(
n − 33 log(m) − 11q

)
.

Proof. We choose � = 1
8 (d + 4 log(m) − 4q). Then user security holds except

with an “error” negligible in d − 4 log(m) − 4q − 4� = d/2 − 6 log(m) − 2q,
and thus negligible in d − 12 log(m) − 4q. And server security holds except
with an “error” negligible in � − 1 − 2 log(m) = 1

8 (d − 12 log(m) − 4q) − 1,
and thus negligible in d − 12 log(m) − 4q. Using a code c which asymptotically
meets the Gilbert-Varshamov bound[22], d may be chosen arbitrarily close to
n · h−1

(
1 − log(m)/n

)
, where h−1 is the inverse function of the binary entropy

function h : p �→ −
(
p · log(p) + (1 − p) · log(1 − p)

)
restricted to 0 < p ≤ 1

2 . For
this d to be larger than 12 log(m), clearly n needs to be larger than 24 log(m),
so that h−1

(
1 − log(m)/n

)
> h−1

(
1 − 1

24

)
which turns out to be larger than 4

11 .
The claim follows by normalizing 4

11n − 12 log(m) − 4q for n. ��

3.4 An Error-Tolerant Scheme

We now consider an imperfect quantum channel with “error rate” φ. The scheme
Q-ID is sensitive to such errors in that they cause x|Iw and x′|Iw to be different
and thus an honest server S is likely to reject an honest user U. This problem
can be overcome by means of error-correcting techniques: U chooses a linear



Secure Identification and QKD in the Bounded-Quantum-Storage Model 353

error-correcting code that allows to correct a φ-fraction of errors, and then in
step 2, in addition to θ and f , U sends a description of the code and the syndrome
s of x|Iw to S; this additional information allows S to recover x|Iw from its noisy
version x′|Iw by standard techniques. However, this technique introduces a new
problem: the syndrome s of x|Iw may give information on w to a dishonest
server. Hence, to circumvent this problem, the code chosen by U must have the
additional property that for a dishonest user, who has high min-entropy on x|Iw ,
the syndrome s is (close to) independent of w.

This problem has recently been addressed and solved in the classical setting by
Dodis and Smith[7]. They present a family of efficiently decodable linear codes
allowing to correct a constant fraction of errors, and where the syndrome of a
string is close to uniform if the string has enough min-entropy and the code is
chosen at random from the family.4 It remains to verify that their analysis can be
translated to our setting where the adversary may have “quantum information”.

Lemma 5 of [7] guarantees that for every 0 < λ < 1 and for an infinite
number of n′’s there exists a δ-biased (as defined in [7]) family C = {Cj}j∈J
of [n′, k′, d′]2-codes with δ < 2−λn′/2, and which allows to efficiently correct a
constant fraction of errors. Theorem 3.2 of [10] (which generalizes Lemma 4 in [7]
to the quantum setting) guarantees that if a string Y has t bits of min-entropy
then for a randomly chosen code Cj ∈ C, the syndrome of Y is close to random
and independent of j and any q-qubit state that may depend on Y , where the
closeness is given by δ · 2(n′+q−t)/2. In our application, Y = XW , n′ ≈ n/2 and
t ≈ d/4 − log(m) − �, where the additional loss of � bits of entropy comes from
learning the �-bit string z. Choosing λ = 1− t

2n′ gives an ensemble of code families
that allow to correct a linear number of errors and the syndrome is ε-close to
uniform given the quantum state, where ε ≤ 2−n′/2+t/4 ·2(n′+q−t)/2 = 2−(t−2q)/4,
which is exponentially small provided that there is a linear gap between t and
2q. Thus, the syndrome gives essentially no additional information. The error
rate φ that can be tolerated this way depends in a rather complicated way on
λ, but choosing λ larger, for instance λ = 1 − t+νq

2n′ for a constant ν > 0, allows
to tolerate a higher error rate but requires q to be a smaller (but still constant)
fraction of t.

Another imperfection has to be taken into account in current implementations
of the quantum channel: imperfect sources. An imperfect source transmits more
than one qubit in the same state with probability η independently each time a
new transmission takes place. To deal with imperfect sources, we freely give away
(xi, θi) to the adversary when a multi-qubit transmission occurs in position i. It
is not difficult to see that parameter ε in Proposition 3.1 then becomes essentially
ε = negl((1 − η)d − 4 log(m) − 4q − 4�) in this case.

It follows that a quantum channel with error-rate φ and multi-pulse rate η,
called the (φ, η)-weak quantum model in [4], can be tolerated for some small
enough (but constant) φ and η.

4 As a matter of fact, the error correction in [7] is done by sending the string XOR’ed
with a random code word, rather than sending the syndrome, but obviously the latter
is equivalent to the first.



354 I.B. Damg̊ard et al.

4 Defeating Man-in-the-Middle Attacks

4.1 The Approach

In the previous section, we “only” proved security against impersonation attacks,
but we did not consider a man-in-the-middle attack, where the attacker sits
between an honest user and an honest server and controls their (quantum and
classical) communication. And indeed, Q-ID is highly insecure against such an
attack: the attacker may measure the first qubit in, say, basis +, and then forward
the collapsed qubit (together with the remaining untouched ones) and observe if
S accepts the session. If not, then the attacker knows that he introduced an error
and hence that the first qubit must have been encoded and measured using the
×-basis, which gives him one bit of information on the key w. The error-tolerant
scheme seems to prevent this particular attack, but it is by no means clear that
it is secure against any man-in-the-middle attack.

To defeat a man-in-the-middle attack that tampers with the quantum com-
munication, we perform a check of correctness on a random subset. The check
allows to detect if the attacker tampers too much with the quantum communi-
cation, and the scheme can be aborted before sensitive information is leaked to
the attacker. In order to protect the classical communication, one might use a
standard information-theoretic authentication code. However, the key for such
a code can only be securely used a limited number of times. A similar prob-
lem occurs in QKD: even though a successful QKD execution produces fresh
key material that can be used in the next execution, the attacker can have the
parties run out of authentication keys by repeatedly enforcing the executions to
fail. In order to overcome this problem, we will use some special authentication
scheme allowing to re-use the key under certain circumstances, as discussed in
Sect. 4.3.

4.2 The Setting

Similar to before, we assume that the user U and the server S share a not
necessarily uniform, low-entropy key w. In order to handle the stronger security
requirements of this section, we have to assume that U and S in addition share a
uniform high-entropy key k. We require that a man-in-the-middle attacker needs
to guess w correctly in order to break the scheme, and if his guess is incorrect
then he learns no more information on w besides that his guess is wrong, and he
essentially learns no information on k. Furthermore, we require security against
impersonation attacks, as defined in the previous section, even if the dishonest
party knows k. It follows that k can for instance be stored on a smartcard, and
security is still guaranteed even if the smartcard gets stolen, assuming that the
theft is noticed and the corresponding party does/can not execute the scheme
anymore. We would also like to stress that by our security notion, not only w
but also k may be safely reused, even if the scheme was under attack.



Secure Identification and QKD in the Bounded-Quantum-Storage Model 355

4.3 An Additional Tool: Extractor MACs

An important tool used in this section is an authentication scheme, i.e., a Mes-
sage Authentication Code (MAC), that also acts as an extractor, meaning that if
there is high min-entropy in the message, then the key-tag pair cannot be distin-
guished from the key and a random tag. Such a MAC, introduced in [6], is called
an extractor MAC, EXTR-MAC for short. For instance MAC∗α,β(x) = [αx] + β,
where α, x ∈ GF (2n), β ∈ GF (2�) and [ . ], denotes truncation to the � first bits,
is an EXTR-MAC: impersonation and substitution probability are 1/2�, and,
for an arbitrary message X , a random key K = (A, B) and the corresponding
tag T = [A · X ] + B, the tag-key pair (T, K) is 2−(H2(X)−�)/2-close to (U, K),
where U is the uniform distribution, respectively, ρTKE is 2(H2(X)−�−q)/2-close
to 1

2� I⊗ρKE = 1
2� I⊗ρK ⊗ρE if we allow a q-qubit state E that may depend only

on X . A useful feature of an EXTR-MAC is that if an adversary gets to see the
tag of a message on which he has high min-entropy, then the key for the MAC
can be safely re-used (sequentially). Indeed, closeness of the real state, ρTKE, to
the ideal state, 1

2� I ⊗ ρKE = 1
2� I ⊗ ρK ⊗ ρE , means that no matter how the state

evolves, the real state behaves like the ideal one (except with small probability),
but of course in the ideal state, K is still “fresh” and can be reused.

4.4 The Scheme

As for Q-ID, let c : W → {+, ×}n be the encoding function of a binary code of
length n with m = |W| codewords and minimal distance d. For some parameter
�, let F , G and H be strongly universal-2 classes of hash functions from {0, 1}n

to {0, 1}�, W to {0, 1}�, and {0, 1}n to {0, 1}2�, respectively. Also, let MAC :
{0, 1}2�×{0, 1}∗ → {0, 1}� be a standard MAC for a message of arbitrary length
L, with an 2�-bit key and an error probability at most �L/��·2−�, and let MAC∗ :
K × M → {0, 1}� be an EXTR-MAC with an arbitrary key space K, a (finite)
message space M that will become clear later, and an error probability 2−�.
Furthermore, let {synj}j∈J be the family of syndrome functions5 corresponding
to a family C = {Cj}j∈J of linear error correcting codes of size n′ = n/2, as
discussed in Section 3.4: any Cj allows to efficiently correct a δ-fraction of errors
for some constant δ > 0, and for a random j ∈ J , the syndrome of a string with
t = d/4 − log(m) − 5� bits of min-entropy is 2−(t−2q)/4-close to uniform (given
j and any q-qubit state). Finally, we let �∗ ≤ � be a parameter linear in n − �,
whose exact value will be specified in the proof.

Recall, by the set-up assumption, the user U and the server S share a password
w ∈ W as well as a uniform high-entropy key, which we define to be a random
authentication key k ∈ K. The scheme is given in the box below.

Proposition 4.1 (Security against man-in-the-middle). Let the initial
state of a man-in-the-middle attacker with quantum memory q be independent
5 We agree on the following convention: for a bit string y of arbitrary length, synj(y)

is to be understood as synj(y0 · · · 0) with enough padded zeros if its bit length is
smaller than n′, and as

�
synj(y′), y′′�, where y′ consist of the first n′ and y′′ of the

remaining bits of y, if its bit length is bigger than n′.



356 I.B. Damg̊ard et al.

Q-ID+:
1. U picks x ∈R {0, 1}n and θ ∈R {+, ×}n, and sends the n-qubit state |x〉θ to S.

Write Iw := {i : θi = c(w)i}.
2. S picks a random subset T ⊂ {1, . . . , n} of size �∗, it computes c = c(w),

replaces every ci with i ∈ T by ci ∈R {+, ×} and measures |x〉θ in basis c. Let
x′ be the outcome, and let test′ := x′|T .

3. U sends θ, j ∈R J , s : = synj(x|Iw ), f ∈R F , h ∈R H and tag∗ : =
MAC∗

k(θ, j, s, f, h, x|Iw ) to S.
4. S picks g ∈ G, and sends T and g to U.
5. U sends test := x|T , z := f(x|Iw ) ⊕ g(w) and tag := MACh(x|Iw )(g, T, test, z)

to S.
6. S recovers x|Iw from x′|Iw with the help of test and s, and it accepts if and

only if (1) both MAC’s verify correctly, (2) test coincides with test′ wherever
the bases coincide, and (3) z = f(x|Iw ) ⊕ g(w).

of the keys W and K. Then, there exists W ′, independent of W , such that the
common state ρKWE after the execution of Q-ID+ satisfies

ρKWW ′E|W ′ 
=W ≈ε ρK ⊗ ρW↔W ′↔E|W ′ 
=W ,

where ε = negl(d − 4 log(m) − 8q − 20�).

Proof. We use capital letters (W , Θ, etc.) for the values (w, θ, etc.) occurring
in the scheme whenever we view them as random variables, and we write XW

and X ′W for the random variables taking values x|Iw and x′|Iw , respectively. To
simplify the argument, we neglect error probabilities that are of order ε, as well
as linear fractions that can be chosen arbitrarily small. We merely give indication
of a small error by (sometimes) using the word “essentially”.

First note that due to the security of the MAC and its key, if the attacker
substitutes θ, j, s, f or h in step 3, or if S recovers an incorrect string as x|Iw ,
then S will reject at the end of the protocol. We can define W ′ (independent
of W ) as in the proof of Proposition 3.1 such that if W �= W ′ then XW has
essentially d/4 − log(m) bits of min-entropy, given W, W ′ and Θ. Furthermore,
given TAG∗, F (XW ), H(XW ), TEST (as well as K, F, H, T, W, W ′ and Θ), XW

has still essentially t = d/4 − log(m) − 5� bits of min-entropy, if W �= W ′.
By the property of the code family C, it follows that if t > 2q with a linear
gap then the syndrome S = synJ(XW ) is essentially random and independent
of J, TAG∗, F (XW ), H(XW ), TEST, K, F, H, T, W, W ′, Θ and E, conditioned on
W �= W ′. Furthermore, it follows from the privacy-amplifying property of MAC∗

and of f and h that if d/4 − log(m) − 5� > q with a linear gap, then the set
of values (TAG∗, F (XW ), H(XW )) is essentially random and independent of
K, F, H, TEST, T, W, W ′, Θ and E, conditioned on W �= W ′. Finally, K is inde-
pendent of the rest, and E is independent of K, F, H, TEST, T, W, Θ. It follows
that ρKWW ′E|W ′ 
=W ≈ ρK ⊗ ρW↔W ′↔E|W ′ 
=W , before he learns S’s decision to
accept or reject.

It remains to argue that S’s decision does not give any additional information
on W . We will make a case distinction, which does not depend on w, and we



Secure Identification and QKD in the Bounded-Quantum-Storage Model 357

will show for both cases that S’s decision to accept or reject is independent of
w, which proves the claim. But first, we need the following observation. Recall
that outside of the test set T , S measured in the bases dictated by w, but within
T in random bases. Let I ′w be the subset of positions i ∈ Iw with ci = c(w)i

(and thus also = θi), and let T ′ = T ∩ I ′w. In other words, we remove the
positions where S measured in the “wrong” basis. The size of T ′ is essentially
�∗/4, and given its size, it is a random subset of I ′w of size |T ′|. It follows from the
theory of random sampling, specifically from Lemma 4 of [16], that ν

(
x|I′

w
, x′|I′

w

)
essentially equals ν

(
x|T ′ , x′|T ′

)
(except with probability negligible in the size of

T ′), where ν(·, ·) denotes the fraction of errors between the two input strings.
Due to some technical reason, for the sampling technique to work it is required
that |T ′| is upper bounded by α · |I ′w|, where the constant α > 0 depends on
the allowed tolerance in estimating the error fraction, and as such on δ, the
fraction of errors the code Cj is able to correct. We refer to [16] for more details.
Important for us is that �∗ can be chosen linear in n−�. Furthermore, since the set
V = {i ∈ T : θi = ci} of positions where U and S compare x and x′ is a superset
of T ′ of essentially twice the size, ν

(
x|V , x′|V

)
is essentially lower bounded by

1
2 ν

(
x|T ′ , x′|T ′

)
. Putting things together, we get that ν

(
x|I′

w
, x′|I′

w

)
is essentially

upper bounded by 2 ν
(
x|V , x′|V

)
. Also note that ν

(
x|V , x′|V

)
does not depend

on w. We can now do the case distinction: Case 1: If ν
(
x|V , x′|V

)
≤ δ

2 (minus
an arbitrarily small value), then x|I′

w
and x′|I′

w
differ in at most a δ-fraction

of their positions, and thus S correctly recovers x|Iw (using test = x|T to get
x|Iw\I′

w
and using s to correct the rest), no matter what w is, and it follows

that S’s decision only depends on the attacker’s behavior, but not on w. Case 2:
Otherwise, either S cannot correctly recover x|Iw and thus rejects, or it can
correctly recover x|Iw and hence can verify tag with the correct key h(x|Iw ). S
is therefore guaranteed to get the correct test = x|T (or else rejects) and thus
rejects as test and test′, restricted to V , differ in more than a δ

2 -fraction of their
positions. Hence, S always rejects in case 2. ��

For a dishonest user or server who knows k (but not w), breaking Q-ID+ is
equivalent to breaking Q-ID, up to a change in the parameters. Doing the maths
on the parameters, it thus follows:

Theorem 4.2. If H∞(W ) ≥ 1, then the identification scheme Q-ID+ is ε-
secure against a man-in-the-middle attacker with quantum memory bound q,
and, even with a leaked k, Q-ID+ is ε-secure against impersonation attacks for
any unbounded user and for any server with quantum memory bound q, where
ε = negl(n − 100 log(m) − 19q).

It is easy to see that Q-ID+ can tolerate a noisy quantum communication up
to any error rate φ < δ. Similar to the discussion in Section 3.4, tolerating a
higher error rate requires the bound on the adversary’s quantum memory to be
smaller but still linear in the number of qubits transmitted. Imperfect sources
can also be addressed in a similar way as for Q-ID. It follows that Q-ID+ can
also be shown secure in the (φ, η)-weak quantum model provided φ and η are
small enough constants.



358 I.B. Damg̊ard et al.

5 Application to QKD

As already pointed out in Section 4.1, current QKD schemes have the shortcom-
ing that if there is no classical channel available that is authenticated by physical
means, and thus messages need to be authenticated by an information-theoretic
authentication scheme, an attacker can force the parties to run out of authenti-
cation keys simply by making an execution (or several executions if the parties
share more key material) fail. Even worse, even if there is no attacker, but some
execution(s) of the QKD scheme fails due to a technical problem, parties could
run out of authentication keys. This shortcoming could make the technology im-
practical in situations where denial of service attacks or technical interruptions
often occur.

The identification scheme Q-ID+ from the previous section immediately gives
a QKD scheme in the bounded-quantum-storage model that allows to re-use the
authentications key(s). Actually, we can inherit the key-setting from Q-ID+,
where there are two keys, a human-memorizable password and a uniform, high-
entropy key, where security is still guaranteed even if the latter gets stolen and
the theft is noticed. In order to agree on a secret key sk, the two parties execute
Q-ID+, and extract sk from x|Iw by applying yet another strongly universal-
2 function, for instance chosen by U in step 3, where n needs to be increased
accordingly to have the additional necessary amount of entropy in x|Iw . The
analysis of Q-ID+ immediately implies that if honest S accepts, then he is con-
vinced to share sk with the legitimate U which knows w. In order to convince
U, S can then use part of sk to one-time-pad encrypt w, and send it to U. The
rest of sk is then a secure secret key, shared between U and S. In order to have a
better “key rate”, instead of using sk (minus the part used for the one-time-pad
encryption) as secret key, one can also run a standard QKD scheme on top of
Q-ID+ and use sk as a one-time authentication key.

References

1. Aumann, Y., Ding, Y.Z., Rabin, M.O.: Everlasting security in the bounded storage
model. IEEE Transactions on Information Theory 48(6), 1668–1680 (2002)

2. Cachin, C., Crépeau, C., Marcil, J.: Oblivious transfer with a memory-bounded
receiver. In: 39th Annual IEEE Symposium on Foundations of Computer Science
(FOCS), pp. 493–502. IEEE Computer Society Press, Los Alamitos (1998)

3. Damg̊ard, I.B., Fehr, S., Renner, R., Salvail, L., Schaffner, C.: A tight high-order
entropic quantum uncertainty relation with applications. In: Menezes, A. (ed.)
CRYPTO 2007. LNCS, vol. 4622, pp. 360–378. Springer, Heidelberg

4. Damg̊ard, I.B., Fehr, S., Salvail, L., Schaffner, C.: Cryptography in the bounded
quantum-storage model. In: 46th Annual IEEE Symposium on Foundations of
Computer Science (FOCS), pp. 449–458. IEEE Computer Society Press, Los Alami-
tos (2005)

5. Damg̊ard, I.B., Fehr, S., Salvail, L., Schaffner, C.: Secure identification and QKD in
thebounded-quantum-storagemodel (2007), available athttp://eprint.iacr.org/
2007/

http://eprint.iacr.org/2007/
http://eprint.iacr.org/2007/


Secure Identification and QKD in the Bounded-Quantum-Storage Model 359

6. Dodis, Y., Katz, J., Reyzin, L., Smith, A.: Robust fuzzy extractors and authenti-
cated key agreement from close secrets. In: Dwork, C. (ed.) CRYPTO 2006. LNCS,
vol. 4117, pp. 232–250. Springer, Heidelberg (2006)

7. Dodis, Y., Smith, A.: Correcting errors without leaking partial information. In:
37th Annual ACM Symposium on Theory of Computing (STOC), pp. 654–663.
ACM Press, New York (2005)

8. Dziembowski, S., Maurer, U.M.: On generating the initial key in the bounded-
storage model. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 126–137. Springer, Heidelberg (2004)

9. Elliott, C., Pearson, D., Troxel, G.: Quantum cryptography in practice. In: SIG-
COMM ’03: Proceedings of the 2003 conference on Applications, technologies, ar-
chitectures, and protocols for computer communications, pp. 227–238 (2003)

10. Fehr, S., Schaffner, C.: Randomness extraction via delta-biased masking in the pres-
ence of a quantum attacker (2007), available at http://eprint.iacr.org/2007/

11. Feige, U., Fiat, A., Shamir, A.: Zero knowledge proofs of identity. In: 19th Annual
ACM Symposium on Theory of Computing (STOC), pp. 210–217. ACM Press,
New York (1987)

12. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987)

13. Gennaro, R., Lindell, Y.: A framework for password-based authenticated key ex-
change. In: Biham, E. (ed.) EUROCRPYT 2003. LNCS, vol. 2656, pp. 524–543.
Springer, Heidelberg (2003)

14. Katz, J., Ostrovsky, R., Yung, M.: Efficient password-authenticated key exchange
using human-memorable passwords. In: Pfitzmann, B. (ed.) EUROCRYPT 2001.
LNCS, vol. 2045, pp. 473–492. Springer, Heidelberg (2001)

15. Lo, H.-K.: Insecurity of quantum secure computations. Physical Review A 56(2),
1154–1162 (1997)

16. Lo, H.-K., Chau, H.F., Ardehali, M.: Efficient quantum key distribution scheme
and a proof of its unconditional security. Journal of Cryptology 18(2), 133–165
(2005)

17. Maurer, U.M.: A provably-secure strongly-randomized cipher. In: Damg̊ard, I.B.
(ed.) EUROCRYPT 1990. LNCS, vol. 473, pp. 361–373. Springer, Heidelberg
(1991)

18. Nielsen, J.B., Pedersen, T.B., Salvail, L.: Secure two-party quantum computation
against semi-honest adversaries. In preparation (2007)

19. Renner, R.: Security of Quantum Key Distribution. PhD thesis, ETH Zürich,
(2005), http://arxiv.org/abs/quant-ph/0512258

20. Renner, R., König, R.: Universally composable privacy amplification against quan-
tum adversaries. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 407–425.
Springer, Heidelberg (2005)

21. Renner, R., Wolf, S.: Simple and tight bounds for information reconciliation and
privacy amplification. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp.
199–216. Springer, Heidelberg (2005)

22. Thommesen, C.: The existence of binary linear concatenated codes with reed -
solomon outer codes which asymptotically meet the gilbert- varshamov bound.
IEEE Transactions on Information Theory 29(6), 850–853 (1983)

http://eprint.iacr.org/2007/
http://arxiv.org/abs/quant-ph/0512258


A Tight High-Order Entropic Quantum
Uncertainty Relation with Applications

Ivan B. Damg̊ard1,�, Serge Fehr2,��, Renato Renner3,� � �,†,
Louis Salvail1,‡, and Christian Schaffner2,†

1 Basic Research in Computer Science (BRICS), funded by the Danish National
Research Foundation, Department of Computer Science, University of Aarhus,

Denmark
{ivan,salvail}@brics.dk

2 Center for Mathematics and Computer Science (CWI), Amsterdam, Netherlands
{fehr,c.schaffner}@cwi.nl
3 Cambridge University, UK
r.renner@damtp.cam.ac.uk

Abstract. We derive a new entropic quantum uncertainty relation in-
volving min-entropy. The relation is tight and can be applied in various
quantum-cryptographic settings.

Protocols for quantum 1-out-of-2 Oblivious Transfer and quantum Bit
Commitment are presented and the uncertainty relation is used to prove
the security of these protocols in the bounded-quantum-storage model
according to new strong security definitions.

As another application, we consider the realistic setting of Quantum
Key Distribution (QKD) against quantum-memory-bounded eavesdrop-
pers. The uncertainty relation allows to prove the security of QKD proto-
cols in this setting while tolerating considerably higher error rates com-
pared to the standard model with unbounded adversaries. For instance,
for the six-state protocol with one-way communication, a bit-flip error
rate of up to 17% can be tolerated (compared to 13% in the standard
model).

Our uncertainty relation also yields a lower bound on the min-entropy
key uncertainty against known-plaintext attacks when quantum ciphers
are composed. Previously, the key uncertainty of these ciphers was only
known with respect to Shannon entropy.

1 Introduction

A problem often encountered in quantum cryptography is the following: through
some interaction between the players, a quantum state ρ is generated and then

� FICS, Foundations in Cryptography and Security, funded by the Danish Natural
Sciences Research Council.

�� Supported by the Dutch Organization for Scientific Research (NWO).
� � � Supported by HP Labs Bristol.

† Supported by the European project SECOQC.
‡ QUSEP, Quantum Security in Practice, funded by the Danish Natural Science

Research Council.

A. Menezes (Ed.): CRYPTO 2007, LNCS 4622, pp. 360–378, 2007.
c© International Association for Cryptologic Research 2007



A Tight High-Order Entropic Quantum Uncertainty Relation 361

measured by one of the players (call her Alice in the following). Assuming Al-
ice is honest, we want to know how unpredictable her measurement outcome
is to the adversary. Once a lower bound on the adversary’s uncertainty about
Alice’s measurement outcome is established, it is usually easy to prove the de-
sired security property of the protocol. Many existing constructions in quantum
cryptography have been proved secure following this paradigm.

Typically, Alice does not make her measurement in a fixed basis, but chooses
at random among a set of different bases. These bases are usually chosen to
be pairwise mutually unbiased, meaning that if ρ is such that the measurement
outcome in one basis is fixed then this implies that the uncertainty about the
outcome of the measurement in the other basis is maximal. In this way, one
hopes to keep the adversary’s uncertainty high, even if ρ is (partially) under the
adversary’s control.

An inequality that lower bounds the adversary’s uncertainty in such a scenario
is called an uncertainty relation. There exist uncertainty relations for different
measures of uncertainty, but cryptographic applications typically require the
adversary’s min-entropy to be bounded from below.

In this paper, we introduce a new general and tight entropic uncertainty
relation. Since the relation is expressed in terms of high-order entropy (i.e. min-
entropy), it is applicable to a large class of natural protocols in quantum cryp-
tography. In particular, the new relation can be applied in situations where an
n-qubit state ρ has each of its qubits measured in a random and independent
basis sampled uniformly from a fixed set B of bases. B does not necessarily have
to be mutually unbiased, but we assume a lower bound h (i.e. an average en-
tropic uncertainty bound) on the average Shannon entropy of the distribution
Pϑ, obtained by measuring an arbitrary 1-qubit state in basis ϑ ∈ B, meaning
that 1

|B|
∑

ϑ H(Pϑ) ≥ h.

Uncertainty Relation (informal): Let B be a set of bases with an average
entropic uncertainty bound h as above. Let Pθ denote the probability distribution
defined by measuring an arbitrary n-qubit state ρ in basis θ ∈ Bn. For a θ ∈R Bn

chosen uniformly at random, it holds except with negligible probability that

H∞(Pθ) � nh . (1)

Observe that (1) cannot be improved significantly since the min-entropy of a
distribution is at most equal to the Shannon entropy. Our uncertainty relation
is therefore asymptotically tight when the bound h is tight.

Any lower bound on the Shannon entropy associated to a set of measurements
B can be used in (1). In the special case where the set of bases is B = {+, ×} (i.e.
the two BB84 bases), h is known precisely using Maassen and Uffink’s entropic
relation, see inequality (2) below. We get h = 1

2 and (1) results in H∞(Pθ) � n
2 .

Uncertainty relations for the BB84 coding scheme [3] are useful since this coding
is widely used in quantum cryptography. Its resilience to imperfect quantum
channels, sources, and detectors is an important advantage in practice.



362 I.B. Damg̊ard et al.

We now discuss applications of our high-order uncertainty relation to impor-
tant scenarios in cryptography: two-party cryptography, quantum key distribu-
tion and quantum encryption.

Application I: Two-Party Cryptography in the Bounded-Quantum-Storage Model.
Entropic uncertainty relations are powerful tools for the security analysis of
cryptographic protocols in the bounded-quantum-storage model. In this model,
the adversary is unbounded in every respect, except that at a certain time, his
quantum memory is reduced to a certain size (by performing some measurement).
In [13], an uncertainty relation involving min-entropy was shown and used in the
analysis of protocols for Rabin oblivious transfer (ROT) and bit commitment.
This uncertainty relation only applies in the case when n qubits are all measured
in one out of two mutually unbiased bases.

A major difference between our result (1) and the one from [13] is that while
both relations bound the min-entropy conditioned on an event, this event hap-
pens in our case with probability essentially 1 (on average) whereas the corre-
sponding event from [13] only happens with probability about 1/2. In Sect. 4,
we prove the following:

1-2 OT in the Bounded-Quantum-Storage Model: There exists a non-
interactive protocol for 1-out-of-2 oblivious transfer (1-2 OT) of �-bit messages,
secure against adversaries with quantum memory size at most n/4 − 2�. Here,
n is the number of qubits transmitted in the protocol and � can be a constant
fraction of n. Honest players need no quantum memory.

Since all flavors of OT are known to be equivalent under classical information-
theoretic reductions, and a ROT protocol is already known from [13], the above
result may seem insignificant. This is not the case, however, for several reasons:
First, although it may in principle be possible to obtain a protocol for 1-2 OT
from the ROT protocol of [13] using the standard black-box reduction, the fact
that we need to call the ROT primitive many times would force the bound on
the adversary’s memory to be sublinear (in the number of transmitted qubits).
Second, the techniques used in [13] do not seem applicable to 1-2 OT, unless
via the inefficient generic reduction to ROT. And, third, we prove security ac-
cording to a stronger definition than the one used in [13], namely a quantum
version of a recent classical definition for information theoretic 1-2 OT [10]. The
definition ensures that all (dishonest) players’ inputs are well defined (and can
be extracted when formalized appropriately). In particular, this implies security
under sequential composition whereas composability of the protocol from [13]
was not proven.

Furthermore, our techniques for 1-2 OT imply almost directly a non-interactive
bit commitment scheme (in the bounded-quantum-storage model) satisfying a
composable security definition. As an immediate consequence, we obtain secure
string commitment schemes. This improves over the bit commitment construction
of [13], respectively its analysis, which does not guarantee composability and thus
does not necessarily allow for string commitments. This application can be found
in Sect. 5.



A Tight High-Order Entropic Quantum Uncertainty Relation 363

Application II: Quantum Key Distribution. We also apply our uncertainty rela-
tion to quantum key distribution (QKD) settings. QKD is the art of distributing
a secret key between two distant parties, Alice and Bob, using only a completely
insecure quantum channel and authentic classical communication. QKD proto-
cols typically provide information-theoretic security, i.e., even an adversary with
unlimited resources cannot get any information about the key. A major difficulty
when implementing QKD schemes is that they require a low-noise quantum chan-
nel. The tolerated noise level depends on the actual protocol and on the desired
security of the key. Because the quality of the channel typically decreases with
its length, the maximum tolerated noise level is an important parameter limiting
the maximum distance between Alice and Bob.

We consider a model in which the adversary has a limited amount of quantum
memory to store the information she intercepts during the protocol execution.
In this model, we show that the maximum tolerated noise level is larger than in
the standard scenario where the adversary has unlimited resources. For one-way
QKD protocols which are protocols where error-correction is performed non-
interactively (i.e., a single classical message is sent from one party to the other),
we show the following result:

QKD Against Quantum-Memory-Bounded Eavesdroppers: Let B be a
set of orthonormal bases of H2 with average entropic uncertainty bound h. Then,
a one-way QKD-protocol produces a secure key against eavesdroppers whose
quantum-memory size is sublinear in the length of the raw key at a positive rate
as long as the bit-flip probability p of the quantum channel fulfills Hbin(p) < h
where Hbin(·) denotes the binary Shannon-entropy function.

Although this result does not allow us to improve (i.e. compared to unbounded
adversaries) the maximum error-rate for the BB84 protocol (the four-state proto-
col), the six-state protocol can be shown secure against adversaries with memory
bound sublinear in the secret-key length as long as the bit-flip error-rate is less
than 17%. This improves over the maximal error-rate of 13% for the same pro-
tocol against unbounded adversaries. We also show that the generalization of
the six-state protocols to more bases (not necessarily mutually unbiased) can be
shown secure (against memory-bounded adversaries) for a maximal error-rate
up to 20% provided the number of bases is large enough.

The quantum-memory-bounded eavesdropper model studied here is not com-
parable to other restrictions on adversaries considered in the literature (e.g.
individual attacks, where the eavesdropper is assumed to apply independent
measurements to each qubit sent over the quantum channel [18,23]). In fact,
these assumptions are generally artificial and their purpose is to simplify secu-
rity proofs rather than to relax the conditions on the quality of the commu-
nication channel from which secure key can be generated. We believe that the
quantum-memory-bounded eavesdropper model is more realistic.

Application III: Key-Uncertainty of Quantum Ciphers. In [15], symmetric quan-
tum ciphers encrypting classical messages with classical secret-keys are consid-
ered. It is shown that under known-plaintext attacks, the Shannon uncertainty



364 I.B. Damg̊ard et al.

of the secret-key can be much higher for some quantum ciphers than for any clas-
sical one. The Shannon secret-key uncertainty H(K|C, M) of classical ciphers C
encrypting messages M of size m with keys K of size k > m is always such
that H(K|C, M) ≤ k − m. In the quantum case, the Shannon secret-key uncer-
tainty is defined as the minimum residual uncertainty about key K given the
best measurement (POVM) PM (C) applied to quantum cipher C given plain-
text M . Examples of quantum ciphers are provided with k = m + 1 such that
H(K|PM (C)) = m/2+1 and with k = 2m such that H(K|PM (C)) ≥ 2m−1. All
ciphers in [15] have their keys consisting of two parts. The first part chooses one
basis out a set B of bases while the other part is used as a classical one-time-
pad. The message is first encrypted with the one-time-pad before being rotated
in the basis indicated by the key. In this case, Theorem 4 in [15] states that
the Shannon secret-key uncertainty adds up under repetitions with independent
and random keys1: if H(K|PM (C)) ≥ h then n repetitions with independent
keys satisfy H(K1, . . . , Kn|PM1,...,Mn(C1, . . . , Cn)) ≥ nh. Our uncertainty rela-
tion allows to obtain a stronger result. The analysis in [15] shows that these
quantum ciphers with Shannon secret-key uncertainty h satisfy the condition of
our uncertainty relation. As result we obtain a lower bound on the min-entropy
key uncertainty given the outcome of any quantum measurement applied to all
ciphers and given all plaintexts. When H(K|PM (C)) ≥ h our uncertainty re-
lation tells us that H∞(K1, . . . , Kn|PM1,...,Mn(C1, . . . , Cn)) � nh. Notice that
unlike the two previous applications, this time the result holds unconditionally.
Details of this application will be provided in the full version.

History and Related Work. The history of uncertainty relations starts with
Heisenberg who showed that the outcomes of two non-commuting observables A
and B applied to any state ρ are not easy to predict simultaneously. However,
Heisenberg only speaks about the variance of the measurement results. Because
his result had several shortcomings (as pointed out in [19,16]), more general
forms of uncertainty relations were proposed by Bialynicki-Birula and Myciel-
ski [7] and by Deutsch [16]. The new relations were called entropic uncertainty
relations, because they are expressed using Shannon entropy instead of the sta-
tistical variance and, hence, are purely information theoretic statements. For in-
stance, Deutsch’s uncertainty relation [16] states that H(P )+H(Q) ≥ −2 log 1+c

2 ,
where P, Q are random variables representing the measurement results and c is
the maximum inner product norm between any eigenvectors of A and B. First
conjectured by Kraus [21], Maassen and Uffink [24] improved Deutsch’s relation
to the optimal

H(P ) + H(Q) ≥ −2 log c . (2)

Although a bound on Shannon entropy can be helpful in some cases, it is
usually not good enough in cryptographic applications. The main tool to reduce
the adversary’s information—privacy amplification [5,20,4,27,25]—only works if
a bound on the adversary’s min-entropy (in fact collision entropy) is known.
1 The proof of Theorem 4 in [15] is incorrect but can easily be fixed without changing

the statement.



A Tight High-Order Entropic Quantum Uncertainty Relation 365

Unfortunately, knowing the Shannon entropy of a distribution does in general
not allow to bound its higher order Rényi entropies.

An entropic uncertainty relation involving Rényi entropy of order 2 (i.e. colli-
sion entropy) was introduced by Larsen [22,30]. Larsen’s relation quantifies pre-
cisely the collision entropy for the set {Ai}d+1

i=1 of all maximally non-commuting
observables, where d is the dimension of the Hilbert space. Its use is therefore
restricted to quantum coding schemes that take advantage of all d + 1 observ-
ables, i.e. to schemes that are difficult to implement in practice. Uncertainty
relations in terms of Rényi entropy have also been studied in a different context
by Bialynicki-Birula [6].

2 Preliminaries

2.1 Notation and Terminology

For any positive integer d, Hd stands for the complex Hilbert space of dimension
d and P(H) for the set of density operators, i.e., positive semi-definite trace-1 ma-
trices, acting on H. The pair {|0〉, |1〉} denotes the computational or rectilinear
or “+” basis for the 2-dimensional Hilbert space H2. The diagonal or “×” basis
is defined as {|0〉×, |1〉×} where |0〉× = (|0〉 + |1〉)/

√
2 and |1〉× = (|0〉 − |1〉)/

√
2.

The circular or “�” basis consists of vectors (|0〉 + i|1〉)/
√

2 and (|0〉 − i|1〉)/
√

2.
Measuring a qubit in the + -basis (resp. ×-basis) means applying the measure-
ment described by projectors |0〉〈0| and |1〉〈1| (resp. projectors |0〉×〈0|× and
|1〉×〈1|×). When the context requires it, we write |0〉+ and |1〉+ instead of |0〉
and |1〉, respectively. If we want to choose the + or ×-basis according to the bit
b ∈ {0, 1}, we write [+, ×]b.

The behavior of a (mixed) quantum state in a register E is fully described
by its density matrix ρE. We often consider cases where a quantum state may
depend on some classical random variable X , in that the state is described by
the density matrix ρx

E if and only if X = x. For an observer who has access to the
state but not X , the behavior of the state is determined by the density matrix
ρE :=

∑
x PX(x)ρx

E, whereas the joint state, consisting of the classical X and the
quantum register E is described by the density matrix ρXE :=

∑
x PX(x)|x〉〈x| ⊗

ρx
E, where we understand {|x〉}x∈X to be the standard (orthonormal) basis of

H|X |. Joint states with such classical and quantum parts are called cq-states. We
also write ρX :=

∑
x PX(x)|x〉〈x| for the quantum representation of the classical

random variable X . This notation extends naturally to quantum states that
depend on several classical random variables (i.e. to ccq-states, cccq-states etc.).
Given a cq-state ρXE as above, by saying that there exists a random variable Y
such that ρXY E satisfies some condition, we mean that ρXE can be understood as
ρXE = trY (ρXY E) for some ccq-state ρXY E and that ρXY E satisfies the required
condition.2

2 The quantum version is similar to the case of distributions of classical random vari-
ables where given X, the existence of a certain Y is understood that there exists a
joint distribution PXY with

�
y PXY (·, y) = PX .



366 I.B. Damg̊ard et al.

We would like to point out that ρXE = ρX ⊗ ρE holds if and only if the
quantum part is independent of X (in that ρx

E = ρE for any x), where the latter
in particular implies that no information on X can be learned by observing only
ρE. Similarly, X is uniformly random and independent of the quantum state in
register E if and only if ρXE = 1

|X |�⊗ ρE, where 1
|X |� is the density matrix of

the fully mixed state of suitable dimension. Finally, if two states like ρXE and
ρX ⊗ ρE are ε-close in terms of their trace distance δ(ρ, σ) = 1

2 tr(|ρ −σ|), which
we write as ρXE ≈ε ρX ⊗ ρE, then the real system ρXE “behaves” as the ideal
system ρX ⊗ρE except with probability ε in that for any evolution of the system
no observer can distinguish the real from the ideal one with advantage greater
than ε [27].

2.2 Smooth Rényi Entropy

We briefly recall the notion of (conditional) smooth min-entropy [25,28]. For
more details, we refer to the aforementioned literature. Let X be a random
variable over alphabet X with distribution PX . The standard notion of min-
entropy is given by H∞(X) = − log

(
maxx PX(x)

)
and that of max-entropy by

H0(X) = log
∣∣{x ∈ X : PX(x) > 0}

∣∣. More general, for any event E (defined by
PE|X(x) for all x ∈ X ) H∞(XE) may be defined similarly simply by replacing PX

by PXE . Note that the “distribution” PXE is not normalized; H∞(XE) is still well
defined, though. For an arbitrary ε ≥ 0, the smooth version Hε

∞(X) is defined as
follows. Hε

∞(X) is the maximum of the standard min-entropy H∞(XE), where
the maximum is taken over all events E with Pr(E) ≥ 1 − ε. Informally, this can
be understood that if Hε

∞(X) = r then the standard min-entropy of X equals r
as well, except with probability ε. As ε can be interpreted as an error probability,
we typically require ε to be negligible in the security parameter n.

For random variables X and Y , the conditional smooth min-entropy Hε
∞(X | Y )

is defined as Hε
∞(X | Y ) = maxE miny H∞(XE | Y = y), where the quantification

over E is over all events E (defined by PE|XY ) with Pr(E) ≥ 1 − ε. In Sect. 6,
we work with smooth min-entropy conditioned on a quantum state. We refer the
reader to [25] for the definition of this quantum version. We will make use of the
following chain rule for smooth min-entropy [28], which in spirit was already shown
in [8].

Lemma 1. Hε+ε′

∞ (X | Y ) > Hε
∞(XY ) − H0(Y ) − log

(
1
ε′

)
for all ε, ε′ > 0.

2.3 Azuma’s Inequality

In the following and throughout the paper, the expected value of a real ran-
dom variable R is denoted by E[R]. Similarly, E[R|E ] and E[R|S] denote the
conditional expectation of R conditioned on an event E respectively random
variable S.

Definition 1. A list of real random variables R1, . . . , Rn is called a martin-
gale difference sequence if E[Ri | R1, . . . , Ri−1] = 0 with probability 1 for every
1 ≤ i ≤ n, i.e., if E[Ri | R1 =r1, . . . , Ri−1 =ri−1] = 0 for every 1 ≤ i ≤ n and
r1, . . . , ri−1 ∈ R.



A Tight High-Order Entropic Quantum Uncertainty Relation 367

The following lemma follows directly from Azuma’s inequality [2,1].

Lemma 2. Let R1, . . . , Rn be a martingale difference sequence such that |Ri| ≤
c for every 1 ≤ i ≤ n. Then, Pr

[∑
i Ri ≥ λn

]
≤ exp

(
−λ2n

2c2

)
for any λ > 0.

3 The Uncertainty Relation

We start with a classical tool which itself might be of independent interest.

Theorem 1. Let Z1, . . . , Zn be n (not necessarily independent) random vari-
ables over alphabet Z, and let h ≥ 0 be such that

H(Zi | Z1 = z1, . . . , Zi−1 = zi−1) ≥ h (3)

for all 1 ≤ i ≤ n and z1, . . . , zi−1 ∈ Z. Then for any 0 < λ < 1
2

Hε
∞(Z1, . . . , Zn) ≥ (h − 2λ)n ,

where ε = exp
(
− λ2n

32 log(|Z|/λ)2

)
.

If the Zi’s are independent and have Shannon-entropy at least h, it is known
(see [28]) that the smooth min-entropy of Z1, . . . , Zn is at least nh for large
enough n. Informally, Theorem 1 guarantees that when the independence
-condition is relaxed to a lower bound on the Shannon entropy of Zi given
any previous history, then we still have min-entropy of (almost) nh except with
negligible probability ε.

Proof (sketch). The idea is to use Lemma 2 for cleverly chosen Ri’s. For any i
we write Zi := (Z1, . . . , Zi) (with Z0 being the “empty symbol”), and similarly
for other sequences. We want to show that Pr

[
PZn(Zn) ≥ 2−(h−2λ)n

]
≤ ε. By

the definition of smooth min-entropy, this then implies the claim. Note that
PZn(Zn) ≥ 2−(h−2λ)n is equivalent to

n∑
i=1

(
log

(
PZi |Zi−1(Zi | Zi−1)

)
+ h

)
≥ 2λn .

We set Si := log PZi|Zi−1(Zi | Zi−1). For such a sequence of real-valued ran-
dom variables S1, . . . , Sn, it is easy to verify that R1, . . . , Rn where Ri : =
Si −E[Si | Si−1] forms a martingale difference sequence. If the |Ri| were bounded
by c, we could use Lemma 2 to conclude that

Pr

[
n∑

i=1

(
Si − E

[
Si | Si−1

])
≥ λn

]
≤ exp

(
−λ2n

2c2

)
.

As by assumption E[Si | Si−1] ≤ −h, this would give us a bound similar to what
we want to show. In order to enforce a bound on |Ri|, Si needs to be truncated
whenever PZi |Zi−1(Zi | Zi−1) is smaller than some δ > 0. It is then a subtle and
technically involved matter of choosing δ and ε appropriately in order to finish
the proof, as shown in the full version of the paper [12]. ��



368 I.B. Damg̊ard et al.

We now state and prove the new entropic uncertainty relation in its most general
form. A special case will then be introduced (Corollary 1) and used in the security
analysis of all protocols we consider in the following.

Definition 2. Let B be a finite set of orthonormal bases in the d-dimensional
Hilbert space Hd. We call h ≥ 0 an average entropic uncertainty bound for B
if every state in Hd satisfies 1

|B|
∑

ϑ∈B H(Pϑ) ≥ h, where Pϑ is the distribution
obtained by measuring the state in basis ϑ.

Note that by the convexity of the Shannon entropy H, a lower bound for all pure
states in Hd suffices to imply the bound for all (possibly mixed) states.

Theorem 2. Let B be a set of orthonormal bases in Hd with an average entropic
uncertainty bound h, and let ρ ∈ P(H⊗n

d ) be an arbitrary quantum state. Let
Θ = (Θ1, . . . , Θn) be uniformly distributed over Bn and let X = (X1, . . . , Xn)
be the outcome when measuring ρ in basis Θ, distributed over {0, . . . , d − 1}n.
Then for any 0 < λ < 1

2 and λ′ > 0,

Hε+ε′

∞ (X | Θ) ≥ (h − 2λ − λ′)n

with ε = exp
(
− λ2n

32(log(|B|·d/λ))2

)
and ε′ = 2−λ′n.

Proof. Define Zi := (Xi, Θi) and Zi := (Z1, . . . , Zi). Let zi−1 be arbitrary in
({0, . . . , d − 1} × B)i−1. Then

H(Zi | Zi−1 =zi−1) = H(Xi | Θi, Z
i−1 =zi−1) + H(Θi | Zi−1 =zi−1)≥ h + log |B|,

where the inequality follows from the fact that Θi is chosen uniformly at random
and from the definition of h. Note that h lower bounds the average entropy for
any system in Hd, and thus in particular for the i-th subsystem of ρ, with all
previous d-dimensional subsystems measured. We use the chain rule for smooth
min-entropy (Lemma 1) and Theorem 1 to conclude that,

Hε+ε′

∞ (X | Θ) > Hε
∞(Z) − H0(Θ) − log

(
1
ε′

)
≥ (h − 2λ)n − λ′n ,

for ε and ε′ as claimed. ��

For the special case where B = {+, ×} is the set of BB84 bases, we can use the
uncertainty relation of Maassen and Uffink [24] (see (2) with c = 1/

√
2), which,

using our terminology, states that B has average entropic uncertainty bound
h = 1

2 . Theorem 2 then immediately gives the following corollary.

Corollary 1. Let ρ ∈ P(H⊗n
2 ) be an arbitrary n-qubit quantum state. Let Θ be

uniformly distributed over {+, ×}n, and let X be the outcome when measuring
ρ in basis Θ. Then for any 0 < λ < 1

2 and λ′ > 0,

Hε+ε′

∞ (X | Θ) ≥
(

1
2 − 2λ − λ′

)
n

where ε = exp
(

− λ2n
32(2−log(λ))2

)
and ε′ = 2−λ′n.



A Tight High-Order Entropic Quantum Uncertainty Relation 369

Maassen and Uffink’s relation being optimal means there exists a quantum
state ρ—namely the product state of eigenstates of the subsystems, e.g. ρ =
|0〉〈0|⊗n—for which H(X | Θ) = n

2 . On the other hand, we have shown that
(1
2 − λ)n ≤ Hε

∞(X | Θ) for λ > 0 arbitrarily close to 0. For the product state
ρ, the Xi’s are independent and we know from [28] that in this case Hε

∞(X | Θ)
approaches H(X | Θ) = n

2 . It follows that the relation cannot be significantly
improved even when considering Rényi entropy of lower order than min-entropy
(but higher than Shannon entropy).

Another tight corollary is obtained if we consider the set of measurements
B = {+, ×, �}. In [29], Sánchez-Ruiz has shown that for this B the average
entropic uncertainty bound h = 2

3 is optimal. It implies that Hε
∞(X | Θ) ≈

H(X | Θ) = 2n
3 for negligible ε. In the full version [12], we compute the average

uncertainty bound for the set of all bases of a d-dimensional Hilbert space.

4 Application: Oblivious Transfer

4.1 Privacy Amplification and a Min-Entropy-Splitting Lemma

Recall, a class F of hash functions from, say, {0, 1}n to {0, 1}� is called two-
universal [9,31] if Pr[F (x) = F (x′)] ≤ 1/2� for any distinct x, x′ ∈ {0, 1}n and
for F uniformly distributed over F .

Theorem 3 (Privacy Amplification [27,25]). Let ε ≥ 0. Let ρXUE be a ccq-
state, where X takes values in {0, 1}n, U in the finite domain U and register E
contains q qubits. Let F be the random and independent choice of a member of
a two-universal class of hash functions F from {0, 1}n into {0, 1}�. Then,

δ
(
ρF (X)FUE, 1

2��⊗ ρFUE
)

≤ 1
2

2−
1
2

(
Hε

∞(X|U)−q−�
)

+ 2ε . (4)

The theorem stated here is slightly different from the version given in [27,25]
in that the classical and the quantum parts of the adversary’s knowledge are
treated differently. A derivation of the above theorem starting from the result
in [25] can be found in the full version [12].

A second tool we need is the following Min-Entropy-Splitting Lemma. Note
that if the joint entropy of two random variables X0 and X1 is large, then one is
tempted to conclude that at least one of X0 and X1 must still have large entropy,
e.g. half of the original entropy. Whereas this is indeed true for Shannon entropy,
it is in general not true for min-entropy. The following lemma, though, which
appeared in a preliminary version of [33], shows that it is true in a randomized
sense. For completeness, the proof can be found in the full version [12].

Lemma 3 (Min-Entropy-Splitting Lemma). Let ε ≥ 0, and let X0, X1 be
random variables (over possibly different alphabets) with Hε

∞(X0X1) ≥ α. Then,
there exists a binary random variable C over {0, 1} such that Hε

∞(X1−CC)≥α/2.

The corollary below follows rather straightforwardly by noting that (for normal-
ized as well as non-normalized distributions) H∞(X0X1 | Z) ≥ α holds exactly



370 I.B. Damg̊ard et al.

if H∞(X0X1 | Z = z) ≥ α for all z, applying the Min-Entropy-Splitting Lemma,
and then using the Chain Rule, Lemma 1.

Corollary 2. Let ε ≥ 0, and let X0, X1 and Z be random variables such that
Hε
∞(X0X1 | Z) ≥ α. Then, there exists a binary random variable C over {0, 1}

such that Hε+ε′

∞ (X1−C | ZC) ≥ α/2 − 1 − log(1/ε′) for any ε′ > 0.

4.2 The Definition

In 1-2 OT �, the sender Alice sends two �-bit strings S0, S1 to the receiver Bob
in such a way that Bob can choose which string to receive, but does not learn
anything about the other. On the other hand, Alice does not get to know which
string Bob has chosen. The common way to build 1-2 OT � is by constructing a
protocol for (Sender-)Randomized 1-2 OT �, which then can easily be converted
into an ordinary 1-2 OT � (see, e.g., [14]). Rand 1-2 OT � essentially coincides
with ordinary 1-2 OT �, except that the two strings S0 and S1 are not input by
the sender but generated uniformly at random during the protocol and output
to the sender.

For the formal definition of the security requirements of a quantum protocol
for Rand 1-2 OT �, let us fix the following notation: Let C denote the binary
random variable describing receiver R’s choice bit, let S0, S1 denote the �-bit
long random variables describing sender S’s output strings, and let Y denote the
�-bit long random variable describing R’s output string (supposed to be SC).
Furthermore, for a fixed candidate protocol for Rand 1-2 OT �, and for a fixed
input distribution for C, the overall quantum state in case of a dishonest sender
S̃ is given by the ccq-state ρCY S̃. Analogously, in the case of a dishonest receiver
R̃, we have the ccq-state ρS0S1R̃.

Definition 3 (Rand 1-2 OT �). An ε-secure Rand 1-2 OT � is a quantum pro-
tocol between S and R, with R having input C ∈ {0, 1} while S has no input, such
that for any distribution of C, if S and R follow the protocol, then S gets output
S0, S1 ∈ {0, 1}� and R gets Y = SC except with probability ε, and the following
two properties hold:

ε-Receiver-security: If R is honest, then for any S̃, there exist random vari-
ables S′0, S

′
1 such that Pr

[
Y = S′C

]
≥ 1 − ε and δ

(
ρCS′

0S′
1S̃, ρC ⊗ ρS′

0S′
1S̃

)
≤ ε.

ε-Sender-security: If S is honest, then for any R̃, there exists a binary random
variable D such that δ

(
ρS1−DSDDR̃, 1

|2�|�⊗ ρSDDR̃

)
≤ ε.

If any of the above holds for ε = 0, then the corresponding property is said to
hold perfectly. If one of the properties only holds with respect to a restricted class
S of S̃’s respectively R of R̃’s, then this property is said to hold and the protocol
is said to be secure against S respectively R.

Receiver-security, as defined here, implies that whatever a dishonest sender does
is as good as the following: generate the ccq-state ρS′

0S′
1S̃ independently of C,

let R know S′C , and output ρS̃. On the other hand, sender-security implies that



A Tight High-Order Entropic Quantum Uncertainty Relation 371

whatever a dishonest receiver does is as good as the following: generate the ccq-
state ρSDDR̃, let S know SD and an independent uniformly distributed S1−D,
and output ρR̃. In other words, a protocol satisfying Definition 3 is a secure
implementation of the natural Rand 1-2 OT � ideal functionality, except that
it allows a dishonest sender to influence the distribution of S0 and S1, and
the dishonest receiver to influence the distribution of the string of his choice.
This is in particular good enough for constructing a standard 1-2 OT � in the
straightforward way.

We would like to point out the importance of requiring the existence of S′0
and S′1 in the formulation of receiver-security in a quantum setting: requiring
only that the sender learns no information on C, as is sufficient in the classical
setting (see e.g. [10]), does not prevent a dishonest sender from obtaining S0, S1

by a suitable measurement after the execution of the protocol in such a way that
he can choose S0 ⊕ S1 at will, and SC is the string the receiver has obtained in
the protocol. This would for instance make the straightforward construction of
a bit commitment3 based on 1-2 OT insecure.

4.3 The Protocol

We introduce a quantum protocol for Rand 1-2 OT � that will be shown perfectly
receiver-secure against any sender and ε-sender-secure against any quantum-
memory-bounded receiver for a negligible ε. The first two steps of the protocol
are identical to Wiesner’s “conjugate coding” protocol [32] from circa 1970 for
“transmitting two messages either but not both of which may be received”.

The simple protocol is described in Fig. 1, where for x ∈ {0, 1}n and I ⊆
{1, . . . , n} we define x|I to be the restriction of x to the bits xi with i ∈ I. The
sender S sends random BB84 states to the receiver R, who measures all received
qubits according to his choice bit C. S then picks randomly two functions from a
fixed two-universal class of hash functions F from {0, 1}n to {0, 1}�, where � is to
be determined later, and applies them to the bits encoded in the + respectively
the bits encoded in ×-basis to obtain the output strings S0 and S1. Note that
we may apply a function f ∈ F to a n′-bit string with n′ < n by padding it
with zeros (which does not decrease its entropy). S announces the encoding bases
and the hash functions to the receiver who then can compute SC . Intuitively,
a dishonest receiver who cannot store all the qubits until the right bases are
announced, will measure some qubits in the wrong basis and thus cannot learn
both strings simultaneously.

We would like to stress that although protocol description and analysis are
designed for an ideal setting with perfect noiseless quantum communication and
with perfect sources and detectors, all our results can easily be extended to a
more realistic noisy setting along the same lines as in [13].

It is clear by the non-interactivity of Rand 1-2 QOT
� that a dishonest sender

cannot learn anything about the receiver’s choice bit. The proof of receiver-
security according to Definition 3 can be found in the full version [12]; the idea,
3 The committer sends two random bits of parity equal to the bit he wants to commit

to, the verifier chooses to receive at random one of those bits.



372 I.B. Damg̊ard et al.

Rand 1-2 QOT
�: Let c be R’s choice bit.

1. S picks x ∈R {0, 1}n and θ ∈R {+, ×}n, and sends |x1〉θ1
, . . . , |xn〉θn

to R.
2. R measures all qubits in basis [+, ×]c. Let x′ ∈ {0, 1}n be the result.
3. S picks two hash functions f0, f1 ∈R F , announces θ and f0, f1 to R, and

outputs s0 := f0(x|I0) and s1 := f1(x|I1) where Ib := {i : θi =[+,×]b}.
4. R outputs sc = fc(x′|Ic ).

Fig. 1. Quantum Protocol for Rand 1-2 OT �

though, simply is to have a dishonest S̃ execute the protocol with a receiver that
has unbounded quantum memory and that way can compute S′0 and S′1.

Proposition 1. Rand 1-2 QOT
� is perfectly receiver-secure.

4.4 Security Against Memory-Bounded Dishonest Receivers

We model dishonest receivers in Rand 1-2 QOT
� under the assumption that the

maximum size of their quantum storage is bounded. Such adversaries are only
required to have bounded quantum storage when Step 3 in Rand 1-2 QOT

� is
reached; before and after that, the adversary can store and carry out arbitrary
quantum computations involving any number of qubits. Let Rq denote the set
of all possible quantum dishonest receivers R̃ in Rand 1-2 QOT

� which have
quantum memory of size at most q when Step 3 is reached. We stress once more
that apart from the restriction on the size of the quantum memory available to
the adversary, no other assumption is made. In particular, the adversary is not
assumed to be computationally bounded and the size of his classical memory is
not restricted.

Theorem 4. Rand 1-2 QOT
� is ε-secure against Rq for a negligible (in n) ε if

n/4 − 2� − q ∈ Ω(n).

For improved readability, we merely give a sketch of the proof; the formal proof
that takes care of all the ε’s is given in the full version [12].

Proof (sketch). It remains to show sender-security. Let X be the random vari-
able that describes the sender’s choice of x, where we understand the distrib-
ution of X to be conditioned on the classical information that R̃ obtained by
measuring all but γn qubits. A standard purification argument, that was also
used in [13], shows that the same X can be obtained by measuring a quantum
state in basis θ ∈R {+, ×}n, described by the random variable Θ: for each qubit
|xi〉θi

the sender S is instructed to send to R, S instead prepares an EPR pair
|Φ〉 = 1√

2
(|00〉 + |11〉) and sends one part to R while keeping the other, and when

Step 3 is reached, S measures her qubits.
The uncertainty relation, Theorem 1, implies that the smooth min-entropy

of X given Θ is approximately n/2. Let now X0 and X1 be the two substrings
of X consisting of the bits encoded in the basis + or ×, respectively. Then the



A Tight High-Order Entropic Quantum Uncertainty Relation 373

Min-Entropy-Splitting Lemma, respectively Corollary 2, implies the existence
of a binary D such that X1−D has approximately n/4 bits of smooth min-
entropy given Θ and D. From the random and independent choice of the hash
functions F0, F1 and from the Chain Rule, Lemma 1, it follows that X1−D has
still about n/4−� bits of smooth min-entropy when conditioning on Θ, D, FD and
FD(XD). The Privacy Amplification Theorem 3, then guarantees that S1−D =
F1−D(X1−D) is close to random, given Θ, D, FD, SD, F1−D and R̃’s quantum
state of size q, if n/4 − 2� − q is positive and linear in n. ��

We note that by adapting recent and more advanced techniques [33] to the
quantum case, the security of Rand 1-2 QOT

� can be proven against Rq if
n/4 − � − q ∈ Ω(n).

5 Application: Quantum Bit Commitment

The binding criterion for classical commitments usually requires that after the
committing phase and for any dishonest committer, there exists a bit d ∈ {0, 1}
that can only be opened with negligible probability. In the quantum world,
the binding property cannot be defined the same way. If the commitment is
unconditionally concealing, the committer can place himself in superposition of
committing to 0 and 1 and only later make a measurement that fixes the choice.
For this reason, the previous standard approach (see e.g. [17]) was to use a weaker
binding condition only requiring that the probabilities p0 and p1 (to successfully
open b = 0 and b = 1 respectively), satisfy p0 + p1 � 1. The bit commitment
scheme proposed in [13] was shown to be binding in this weak sense.

We first argue that this weak notion is not really satisfactory. For instance,
it does not capture the expected behavior of a commitment scheme by allowing
a dishonest committer who can open the commitment with probability 1/2 to
any value, and with probability 1/2 is unable to open it at all (depending on
some event occurring during the opening). Another shortcoming of this notion
is that committing bit by bit does not yield a secure string commitment—the
argument that one is tempted to use requires independence of the pb’s between
the different executions, which in general does not hold. We now argue that
this notion is unnecessarily weak, even when taking into account a committer
committing in superposition. We propose the following definition.

Definition 4. An unconditionally secure commitment scheme is called binding,
if for every (dishonest) committer there exists a classical binary random vari-
able D whose distribution cannot be influenced by the (dishonest) committer
after the commit phase and with the property that the committer’s probability to
successfully open the commitment to 1 − D is negligible.

Note that this definition still allows a committer to commit to a superposition
and otherwise honestly follow the protocol. D is then simply defined to be the
outcome when the register that carries the superposition is measured. On the
other hand, the definition captures exactly what one expects from a commitment



374 I.B. Damg̊ard et al.

scheme, except that the bit, to which the committer can open the commitment, is
not fixed right after the commit phase. However, once committed, the dishonest
committer cannot influence its distribution anymore, and thus this is not of any
help to him, because he can always pretend not to know that bit.

It is also clear that with this stronger notion of the binding property, the
obvious reduction from a string to a bit commitment scheme by committing
bit-wise can be proven secure: the i-th execution of the bit commitment scheme
guarantees a random variable Di such that the committer cannot open the i-th
bit commitment to 1 − Di, and thus there exists a random variable S, namely
S = (D1, D2, . . .), such that the committer cannot open the list of commitments
to any other string than S.

We show in the following that the quantum bit-commitment scheme comm

from [13] fulfills the stronger notion of binding from Definition 4 above. Let Cq

denote the set of all possible quantum dishonest committers C̃ in comm which
have quantum memory of size at most q at the start of the opening phase. Then
the following holds.

Theorem 5. The quantum bit-commitment scheme comm from [13] is binding
according to Definition 4 against Cq if n/4 − q ∈ Ω(n).

Proof (Sketch). By considering a purified version of the scheme and using the
uncertainty relation, one can argue that X has (smooth) min-entropy about n/2
given Θ. The Min-Entropy-Splitting Lemma implies that there exists D such that
X1−D has smooth min-entropy about n/4 given Θ and D. Privacy amplification
implies that F (X1−D) is close to random given Θ, D, F and C̃’s quantum register
of size q, where F is a two-universal one-bit-output hash function, which in
particular implies that C̃ cannot guess X1−D. ��

6 Application: Quantum Key Distribution

Let B be a set of orthonormal bases on a Hilbert space H, and assume that
the basis vectors of each basis ϑ ∈ B are parametrized by the elements of some
fixed set X . We then consider QKD protocols consisting of the steps described
in Fig. 2. Note that the quantum channel is only used in the preparation step.
Afterwards, the communication between Alice and Bob is only classical (over an
authentic channel).

As shown in [25] (Lemma 6.4.1), the length � of the secret key that can be
generated in the privacy amplification step of the protocol described above is
given by4

� ≈ Hε
∞(X | E) − H0(C) ,

where E denotes the (quantum) system containing all the information Eve might
have gained during the preparation step of the protocol and where H0(C) is the
number of error correction bits sent from Alice to Bob. Note that this formula
4 The approximation in this and the following equations holds up to some small addi-

tive value which depends logarithmically on the desired security ε of the final key.



A Tight High-Order Entropic Quantum Uncertainty Relation 375

One-Way QKD: let N ∈ N be arbitrary
1. Preparation: For i = 1 . . . N , Alice chooses at random a basis ϑi ∈ B and a

random element Xi ∈ X . She encodes Xi into the state of a quantum system
(e.g., a photon) according to the basis ϑi and sends this system to Bob. Bob
measures each of the states he receives according to a randomly chosen basis
ϑ′

i and stores the outcome Yi of this measurement.
2. Sifting: Alice and Bob publicly announce their choices of bases and keep their

data at position i only if ϑi = ϑ′
i. In the following, we denote by X and Y

the concatenation of the remaining data Xi and Yi, respectively. X and Y are
sometimes called the sifted raw key.

3. Error correction: Alice computes some error correction information C depend-
ing on X and sends C to Bob. Bob computes a guess X̂ for Alice’s string X,
using C and Y .

4. Privacy amplification: Alice chooses at random a function f from a two-
universal family of hash functions and announces f to Bob. Alice and Bob
then compute the final key by applying f to their strings X and X̂ , respec-
tively.

Fig. 2. General form for one-way QKD protocols

can be seen as a generalization of the well known expression by Csiszár and
Körner for classical key agreement [11].

Let us now assume that Eve’s system E can be decomposed into a classical
part Z and a purely quantum part E′. Then, using the chain rule (Lemma 3.2.9
in [25]), we find

� ≈ Hε
∞(X | ZE′) − H0(C) � Hε

∞(X | Z) − H0(E′) − H0(C) .

Because, during the preparation step, Eve does not know the encoding bases
which are chosen at random from the set B, we can apply our uncertainty relation
(Theorem 2) to get a lower bound for the min-entropy of X conditioned on Eve’s
classical information Z, i.e., Hε

∞(X | Z) ≥ Mh, where M denotes the length of
the sifted raw key X and h is the average entropic uncertainty bound for B. Let
q be the bound on the size of Eve’s quantum memory E′. Moreover, let e be the
average amount of error correction information that Alice has to send to Bob
per symbol of the sifted raw key X . Then

� � M(h − e) − q .

Hence, if the memory bound only grows sublinearly in the length M of the sifted
raw key, then the key rate, i.e., the number of key bits generated per bit of the
sifted raw key, is lower bounded by

rate ≥ h − e .

The Binary-Channel Setting. For a binary channel (where H has dimension
two), the average amount of error correction information e is given by the binary



376 I.B. Damg̊ard et al.

Shannon entropy5 Hbin(p) = −
(
p log(p) + (1 − p) log(1 − p)

)
, where p is the bit-

flip probability of the quantum channel (for classical bits encoded according to
some orthonormal basis as described above). The achievable key rate of a QKD
protocol using a binary quantum channel is thus given by ratebinary ≥ h−Hbin(p).
Summing up, we have derived the following theorem.

Theorem 6. Let B be a set of orthonormal bases of H2 with average entropic
uncertainty bound h. Then, a one-way QKD-protocol as in Fig. 2 produces a
secure key against eavesdroppers whose quantum-memory size is sublinear in the
length of the raw key (i.e., sublinear in the number of qubits sent from Alice to
Bob) at a positive rate as long as the bit-flip probability p fulfills Hbin(p) < h.

For the BB84 protocol, we have h = 1
2 and Hbin(p) < 1

2 is satisfied as long as
p ≤ 11%. This bound coincides with the known bound for security against an
unbounded adversary. So, the memory-bound does not give an advantage here.6

The situation is different for the six-state protocol where h = 2
3 . In this case,

security against memory-bounded adversaries is guaranteed (i.e. Hbin(p) < 2
3 )

as long as p ≤ 17%. If one requires security against an unbounded adversary,
the threshold for the same protocol lies below 13%, and even the best known
QKD protocol on binary channels with one-way classical post-processing can
only tolerate noise up to roughly 14.1% [26]. It has also been shown that, in
the unbounded model, no such protocol can tolerate an error rate of more than
16.3%.

The performance of QKD protocols against quantum-memory bounded eaves-
droppers can be improved further by making the choice of the encoding bases
more random. For example, they might be chosen from the set of all possible
orthonormal bases on a two-dimensional Hilbert space. As shown in the full
version [12], the average entropic uncertainty bound is then given by h ≈ 0.72
and Hbin(p) < 0.72 is satisfied if p � 20%. For an unbounded adversary, the
thresholds are the same as for the six-state protocol.

7 Open Problems

It is interesting to investigate whether the uncertainty relation (Theorem 2) still
holds if the measurement bases (Θ1, . . . , Θn) are randomly chosen from a rela-
tively small subset of Bn (rather than from the entire set Bn). Such an extension
would reduce the amount of randomness that is needed in applications. In par-
ticular, in the context of QKD with quantum-memory-bounded eavesdroppers,
it would allow for more efficient protocols that use a relatively short initial se-
cret key in order to select the bases for the preparation and measurement of the
states and, hence, avoid the sifting step.

Another open problem is to consider protocols using higher-dimensional quan-
tum systems. The results mentioned in the previous paragraph show that for
5 This value of e is only achieved if an optimal error-correction scheme is used. In

practical implementations, the value of e might be slightly larger.
6 Note, however, that the analysis given here might not be optimal.



A Tight High-Order Entropic Quantum Uncertainty Relation 377

high-dimensional systems, the average entropic uncertainty bound converges to
its theoretical maximum. The maximal tolerated channel noise might thus be
higher for such protocols (depending on the noise model for higher-dimensional
quantum channels).

References

1. Alon, N., Spencer, J.: The Probabilistic Method, 2nd edn. Series in Discrete Math-
ematics and Optimization. Wiley, Chichester (2000)

2. Azuma, K.: Weighted sums of certain dependent random variables. Tôhoku Math-
ematical Journal 19, 357–367 (1967)

3. Bennett, C.H., Brassard, G.: Quantum cryptography: Public key distribution and
coin tossing. In: Proceedings of IEEE International Conference on Computers,
Systems, and Signal Processing, pp. 175–179. IEEE Computer Society Press, Los
Alamitos (1984)

4. Bennett, C.H., Brassard, G., Crépeau, C., Maurer, U.M.: Generalized privacy am-
plification. IEEE Transactions on Information Theory 41, 1915–1923 (1995)

5. Bennett, C.H., Brassard, G., Robert, J.-M.: Privacy amplification by public dis-
cussion. SIAM J. Comput. 17(2), 210–229 (1988)

6. Bialynicki-Birula, I.: Formulation of the uncertainty relations in terms of the Rényi
entropies. Physical Review A. 74, 52101 (2006)

7. Bialynicki-Birula, I., Mycielski, J.: Uncertainty relations for information entropy.
Communications in Mathematical Physics 129(44) (1975)

8. Cachin, C.: Smooth entropy and Rényi entropy. In: Fumy, W. (ed.) EUROCRYPT
1997. LNCS, vol. 1233, pp. 193–208. Springer, Heidelberg (1997)

9. Carter, J.L., Wegman, M.N.: Universal classes of hash functions. In: 9th Annual
ACM Symposium on Theory of Computing (STOC), pp. 106–112. ACM Press,
New York (1977)

10. Crépeau, C., Savvides, G., Schaffner, C., Wullschleger, J.: Information-theoretic
conditions for two-party secure function evaluation. In: Vaudenay, S. (ed.) EURO-
CRYPT 2006. LNCS, vol. 4004, pp. 538–554. Springer, Heidelberg (2006)

11. Csiszár, I., Körner, J.: Broadcast channels with confidential messages. IEEE Trans-
actions on Information Theory 24(3), 339–348 (1978)

12. Damg̊ard, I.B., Fehr, S., Renner, R., Salvail, L., Schaffner, C.: A tight high-
order entropic quantum uncertainty relation with applications (2007), available
at http://arxiv.org/abs/quant-ph/0612014

13. Damg̊ard, I.B., Fehr, S., Salvail, L., Schaffner, C.: Cryptography in the bounded
quantum-storage model. In: 46th Annual IEEE Symposium on Foundations of
Computer Science (FOCS), pp. 449–458. IEEE Computer Society Press, Los Alami-
tos (2005)

14. Damg̊ard, I.B., Fehr, S., Salvail, L., Schaffner, C.: Oblivious transfer and linear
functions. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 427–444.
Springer, Heidelberg (2006)

15. Damg̊ard, I.B., Pedersen, T.B., Salvail, L.: On the key-uncertainty of quantum ci-
phers and the computational security of one-way quantum transmission. In: Cachin,
C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 91–108.
Springer, Heidelberg (2004)

16. Deutsch, D.: Uncertainty in quantum measurements. Physical Review Let-
ters 50(9), 631–633 (1983)

http://arxiv.org/abs/quant-ph/0612014


378 I.B. Damg̊ard et al.

17. Dumais, P., Mayers, D., Salvail, L.: Perfectly concealing quantum bit commitment
from any quantum one-way permutation. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, pp. 300–315. Springer, Heidelberg (2000)

18. Fuchs, C.A., Gisin, N., Griffiths, R.B., Niu, C.-S., Peres, A.: Optimal eavesdropping
in quantum cryptography. Physical Review A 56, 1163–1172 (1997)

19. Hilgevood, J., Uffink, J.: The mathematical expression of the uncertainty principle.
In: Microphysical Reality and Quantum Description, Kluwer Academic Publishers,
Dordrecht (1988)

20. Impagliazzo, R., Levin, L.A., Luby, M.: Pseudo-random generation from one-way
functions. In: 21st Annual ACM Symposium on Theory of Computing (STOC),
pp. 12–24. ACM Press, New York (1989)

21. Kraus, K.: Complementary observables and uncertainty relations. Physical Review
D 35(10), 3070–3075 (1987)

22. Larsen, U.: Superspace geometry: the exact uncertainty relationship between com-
plementary aspects. Journal of Physics A: Mathematical and General 23(7), 1041–
1061 (1990)

23. Lütkenhaus, N.: Security against individual attacks for realistic quantum key dis-
tribution. Physical Review A. 61, 52304 (2000)

24. Maassen, H., Uffink, J.B.M.: Generalized entropic uncertainty relations. Physical
Review Letters 60(12), 1103–1106 (1988)

25. Renner, R.: Security of Quantum Key Distribution. PhD thesis, ETH Zürich (2005),
http://arxiv.org/abs/quant-ph/0512258

26. Renner, R., Gisin, N., Kraus, B.: An information-theoretic security proof for QKD
protocols. Phys. Rev. A. 72(012332) (2005)

27. Renner, R., König, R.: Universally composable privacy amplification against quan-
tum adversaries. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 407–425.
Springer, Heidelberg (2005)

28. Renner, R., Wolf, S.: Simple and tight bounds for information reconciliation and
privacy amplification. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp.
199–216. Springer, Heidelberg (2005)

29. Sánchez -Ruiz, J.: Entropic uncertainty and certainty relations for complementary
observables. Physics Letters A 173(3), 233–239 (1993)

30. Sánchez -Ruiz, J.: Improved bounds in the entropic uncertainty and certainty rela-
tions for complementary observables. Physics Letters A 201(2–3), 125–131 (1995)

31. Wegman, M.N., Carter, J.L.: New classes and applications of hash functions. In:
20th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp.
175–182. IEEE Computer Society Press, Los Alamitos (1979)

32. Wiesner, S.: Conjugate coding. SIGACT News 15(1), 78–88 (1983), original man-
uscript written circa 1970

33. Wullschleger, J.: Oblivious-Transfer amplification. In: Naor, M. (ed.) EURO-
CRYPT 2007. LNCS, vol. 4515, pp. 555–572. Springer, Heidelberg (2007)

http://arxiv.org/abs/quant-ph/0512258


Finding Small Roots of Bivariate Integer
Polynomial Equations: A Direct Approach

Jean-Sébastien Coron

University of Luxembourg

Abstract. Coppersmith described at Eurocrypt 96 an algorithm for
finding small roots of bivariate integer polynomial equations, based on
lattice reduction. A simpler algorithm was later proposed in [9], but it
was asymptotically less efficient than Coppersmith’s algorithm. In this
paper, we describe an analogous simplification but with the same as-
ymptotic complexity as Coppersmith. We illustrate our new algorithm
with the problem of factoring RSA moduli with high-order bits known;
in practical experiments our method is several orders of magnitude faster
than [9].

Keywords: Coppersmith’s theorem, lattice reduction, cryptanalysis.

1 Introduction

At Eurocrypt 96, Coppersmith described how lattice reduction can be used to
find small roots of polynomial equations [5,6,7]. Coppersmith’s technique has
found numerous applications for breaking variants of RSA; for example, crypt-
analysis of RSA with d < N .29 [3], polynomial-time factorization of N = prq for
large r [4], and cryptanalysis of RSA with small secret CRT-exponents [18,1].
Coppersmith’s technique was also used to obtain an improved security proof for
OAEP with small public exponent [23], and to show the deterministic equiva-
lence between recovering the private exponent d and factoring N [10,19].

There are two main theorems from Coppersmith. The first one concerns find-
ing small roots of p(x) = 0 mod N when the factorization of N is unknown.
Coppersmith proved that any root x0 with |x0| < N1/δ can be found in poly-
nomial time, where δ = deg p. The technique consists in building a lattice that
contains the solutions of the modular polynomial equation; all small solutions
are shown to belong to an hyperplane of the lattice; an equation of this hyper-
plane is obtained by considering the last vector of an LLL-reduced basis; this
gives a polynomial h(x) such that h(x0) = 0 over the integers, from which one
can recover x0. The method can be extended to handle multivariate modular
polynomial equations, but the extension is heuristic only.

Coppersmith’s algorithm was further simplified by Howgrave-Graham in [13].
Howgrave-Graham’s approach is more direct and consists in building a lattice
of polynomials that are multiples of p(x) and N ; then by lattice reduction one
computes a polynomial with small coefficients such that h(x0) = 0 mod Nk; if
the coefficient of h(x) are sufficiently small then h(x0) = 0 must hold over Z as

A. Menezes (Ed.): CRYPTO 2007, LNCS 4622, pp. 379–394, 2007.
c© International Association for Cryptologic Research 2007



380 J.-S. Coron

well, which enables to recover x0. Howgrave-Graham’s approach seems easier to
analyze, in particular for the heuristic extension to multivariate modular equa-
tions, for which there is much more freedom in selecting the polynomial multiples
than for the univariate case. Howgrave-Graham’s approach was actually used in
all subsequent applications of Coppersmith’s technique [1,3,4,18,19,20].

Coppersmith’s second theorem concerns finding small roots of bivariate inte-
ger polynomial equations p(x, y) = 0 over the integers (not modulo N). Copper-
smith proved that if |x0| < X and |y0| < Y with XY < W 2/(3δ) then such root
(x0, y0) can be found in polynomial-time, where W := maxij |pij |X iY j . As for
the univariate case, the algorithm consists in building a lattice containing the
solutions of the polynomial equation; all small solutions are shown to belong to
an hyperplane of the lattice, that is obtained by considering the last vector of
an LLL-reduced basis. The equation of the hyperplane gives another polynomial
h(x, y) with the same root (x0, y0) as p(x, y), which enables to recover (x0, y0).
There can be improved bounds depending on the shape of the polynomial p(x, y);
see [2] for a complete analysis. As for the univariate case, the method extends
heuristically to more variables. However, as mentioned in [8], the analysis is more
difficult to follow than for the univariate case.

For Coppersmith’s second theorem, a simplification was later proposed at
Eurocrypt 2004 [9], analogous to Howgrave-Graham’s simplification for the uni-
variate case. It consists in generating an arbitrary integer n of appropriate size
and constructing a lattice of polynomials that are multiples of p(x, y) and n; then
by lattice reduction one computes a polynomial with small coefficients such that
h(x0, y0) = 0 mod n; if the coefficients of h(x, y) are sufficiently small, then
h(x0, y0) = 0 holds over Z, which enables to recover (x0, y0) by taking the resul-
tant of h(x, y) and p(x, y). As for the univariate case, this approach seems easier
to implement; it was later used in [11] for partial key exposure attacks on RSA,
and in [16] to break one variant of RSA.

However, as opposed to the univariate case, this later simplification is not
fully satisfactory because asymptotically its complexity is worse than for Cop-
persmith’s second theorem. Namely, the algorithm in [9] is polynomial time
under the stronger condition XY < W 2/(3δ)−ε, for any constant ε > 0; but for
XY < W 2/(3δ) the algorithm has exponential-time complexity :

exp
(
O(log2/3 W )

)
,

whereas Coppersmith’s algorithm is polynomial time.
Therefore in this paper we describe a new algorithm for the bivariate integer

case, with a simplification analogous to Howgrave-Graham and [9], but with the
same polynomial-time complexity as in Coppersmith’s algorithm; namely for
XY < W 2/(3δ) our algorithm has complexity

O(log15 W )

using LLL [17] and O(log11 W ) using the improved L2 algorithm [21]. This is
done by taking a well chosen integer n (rather than arbitrary) when building the



Finding Small Roots of Bivariate Integer Polynomial Equations 381

lattice of polynomials; this enables to eliminate most columns of the lattice and
then apply LLL on a sub-lattice of smaller dimension. Our new algorithm is easy
to implement and performs well in practice. In Section 4 we show the results of
practical experiments for the factoring with high-order bits known attack against
RSA; we show that the running time is improved by several orders of magnitude
compared to [9].

2 Preliminaries

Let u1, . . . , uω ∈ Z
n be linearly independent vectors with ω ≤ n. A lattice L

spanned by 〈u1, . . . , uω〉 is the set of all integer linear combinations of u1, . . . , uω.
Such a set of vectors ui’s is called a lattice basis. We say that the lattice is full
rank if ω = n.

Any two bases of the same lattice L are related by some integral matrix of
determinant ±1. Therefore, all the bases have the same Gramian determinant
det1≤i,j≤ω < ui, uj >. One defines the determinant of the lattice L as the square
root of the Gramian determinant. If the lattice L is full rank, then the determi-
nant of L is equal to the absolute value of the determinant of the ω × ω matrix
whose rows are the basis vectors u1, . . . , uω.

Theorem 1 (LLL). Let L be a lattice spanned by (u1, . . . , uω) ∈ Z
n, where

the Euclidean norm of each vector is bounded by B. The LLL algorithm, given
(u1, . . . , uω), finds in time O(ω5n log3 B) a vector b1 such that:

‖b1‖ ≤ 2(ω−1)/4 det(L)1/ω.

In order to obtain a better complexity, one can use an improved version of
LLL due to Nguyen and Stehlé, called the L2 algorithm [21]. The L2 algorithm
achieves the same bound on ‖b1‖ but in time O(ω4n(ω + log B) log B).

In this paper we also consider lattices generated by a set of vectors that
are not necessarily linearly independent. Let u1, . . . , um ∈ Z

n with m ≥ n;
the lattice L generated by 〈u1, . . . , um〉 consists of all integral linear combina-
tions of u1, . . . , um. A lattice basis for L can be obtained by triangularization of
u1, . . . , um; a polynomial-time triangularization algorithm is described in [12];
more details will be given in Section 3.1.

We prove a simple lemma that will be useful when analyzing the determinant
of such lattices; it shows that the determinant of a full rank lattice generated by
a matrix of row vectors is not modified when performing elementary operations
on the columns of the matrix :

Lemma 1. Let M be an integer matrix with m rows and n columns, with m ≥ n.
Let L be the lattice generated by the rows of M . Let M ′ be a matrix obtained by
elementary operations on the columns of M , and let L′ be the lattice generated
by the rows of M ′. Then if L is full rank, L′ is full rank with detL′ = detL.

Proof. See Appendix.



382 J.-S. Coron

3 Our New Algorithm

We consider a polynomial p(x, y) with coefficients in Z with maximum degree δ
independently in x, y :

p(x, y) =
∑

0≤i,j≤δ

pi,jx
iyj.

We are looking for an integer pair (x0, y0) such that p(x0, y0) = 0 and |x0| < X
and |y0| < Y . We assume that p(x, y) is irreducible over the integers.

Let k be an integer > 0. We consider the set of polynomials :

sa,b(x, y) = xa · yb · p(x, y), for 0 ≤ a, b < k (1)
ri,j(x, y) = xi · yj · n, for 0 ≤ i, j < k + δ (2)

where the integer n is generated in the following way.
Let indexes (i0, j0) be such that 0 ≤ i0, j0 ≤ δ; let S be the matrix of

row vectors obtained by taking the coefficients of the polynomials sa,b(x, y) for
0 ≤ a, b < k, but only in the monomials xi0+iyj0+j for 0 ≤ i, j < k. There are k2

such polynomials sa,b(x, y) and k2 such monomials, so the matrix S is a square
matrix of dimension k2 (see Figure 1 for an illustration); we take :

n := | detS|.

We will show in Lemma 3 that for a well chosen (i0, j0), the value | detS| is lower
bounded; in particular, this implies that | detS| > 0 and therefore matrix S is
invertible.

S =

x2y2 x2y xy2 xy

s1,1(x, y) a b c d
s1,0(x, y) a c
s0,1(x, y) a b
s0,0(x, y) a

Fig. 1. Matrix S with p(x, y) = axy + bx + cy + d, for k = 2 and (i0, j0) = (1, 1). We
get n = | detS| = a4.

Let h(x, y) be a linear combination of the polynomials sa,b(x, y) and ri,j(x, y).
Since we have that sa,b(x0, y0) = 0 mod n for all a, b and ri,j(x0, y0) = 0 mod n
for all i, j, we obtain :

h(x0, y0) = 0 mod n.

The following lemma, due to Howgrave-Graham [13], shows that if the coeffi-
cients of polynomial h(x, y) are sufficiently small, then h(x0, y0) = 0 holds over
the integers. For a polynomial h(x, y) =

∑
i,j hijx

iyj , we define ‖h(x, y)‖2 :=∑
i,j |hij |2.



Finding Small Roots of Bivariate Integer Polynomial Equations 383

Lemma 2 (Howgrave-Graham). Let h(x, y) ∈ Z[x, y] which is a sum of at
most ω monomials. Suppose that h(x0, y0) = 0 mod n where |x0| ≤ X and
|y0| ≤ Y and ‖h(xX, yY )‖ < n/

√
ω. Then h(x0, y0) = 0 holds over the integers.

Proof. We have:

|h(x0, y0)| =
∣∣∣∑ hijx

i
0y

i
0

∣∣∣ =
∣∣∣∣
∑

hijX
iY j

(x0

X

)i (y0

Y

)j
∣∣∣∣

≤
∑∣∣∣∣hijX

iY j
(x0

X

)i (y0

Y

)j
∣∣∣∣ ≤

∑ ∣∣hijX
iY j

∣∣
≤

√
ω‖h(xX, yY )‖ < n

Since h(x0, y0) = 0 mod n, this gives h(x0, y0) = 0. 	


We consider the lattice L generated by the row vectors formed with the coef-
ficients of polynomials sa,b(xX, yY ) and ri,j(xX, yY ). In total, there are k2 +
(k + δ)2 such polynomials; moreover these polynomials are of maximum degree
δ + k − 1 in x, y, so they contain at most (δ + k)2 coefficients. Let M be the
corresponding matrix of row vectors; M is therefore a rectangular matrix with
k2+(k+δ)2 rows and (k+δ)2 columns (see Figure 2 for an illustration). Observe
that the rows of M do not form a basis of L (because there are more rows than
columns), but L is a full rank lattice of dimension (k + δ)2 (because the row
vectors corresponding to polynomials ri,j(xX, yY ) form a full rank lattice).

M =

x2y2 x2y xy2 xy x2 y2 x y 1
s1,1(xX, yY ) aX2Y 2 bX2Y cXY 2 dXY
s1,0(xX, yY ) aX2Y cXY bX2 dX
s0,1(xX, yY ) aXY 2 bXY cY 2 dY
s0,0(xX, yY ) aXY bX cY d

r2,2(xX, yY ) nX2Y 2

r2,1(xX, yY ) nX2Y
r1,2(xX, yY ) nXY 2

r1,1(xX, yY ) nXY
r2,0(xX, yY ) nX2

r0,2(xX, yY ) nY 2

r1,0(xX, yY ) nX
r0,1(xX, yY ) nY
r0,0(xX, yY ) n

Fig. 2. Lattice of polynomials with p(x, y) = axy+ bx+ cy+d, for k = 2 and (i0, j0) =
(1, 1)

Let L2 be the sublattice of L where the coefficients corresponding to all mono-
mials of the form xi0+iyj0+j with 0 ≤ i, j < k are set to zero (those monomials
correspond to the matrix left-hand block in Fig. 2). There are k2 such monomials,
so L2 is a full rank lattice of dimension :



384 J.-S. Coron

ω = (δ + k)2 − k2 = δ2 + 2 · k · δ. (3)

A matrix basis for L2 can be obtained by first triangularizing M using elementary
row operations and then taking the corresponding submatrix (see Fig. 3). A
polynomial-time triangularization algorithm is described in [12]; more details
will be given in Section 3.1.

x2y2 x2y xy2 xy x2 y2 x y 1
s1,1(xX, yY ) aX2Y 2 bX2Y cXY 2 dXY
s1,0(xX, yY ) aX2Y cXY bX2 dX
s0,1(xX, yY ) aXY 2 bXY cY 2 dY
s0,0(xX, yY ) aXY bX cY d

q0(xX, yY ) ∗ ∗ ∗ ∗ ∗
q1(xX, yY ) ∗ ∗ ∗ ∗
q2(xX, yY ) ∗ ∗ ∗
q3(xX, yY ) ∗ ∗
q4(xX, yY ) ∗

Fig. 3. Triangularized lattice of polynomials with p(x, y) = axy + bx + cy + d, for
k = 2 and (i0, j0) = (1, 1). The 5 polynomials qi(xX, yY ) generate lattice L2, with
coefficients only in the 5 monomials x2, y2, x, y and 1. Algorithm LLL is applied on
the corresponding 5-dimensional lattice.

We apply the LLL algorithm on lattice L2. From theorem 1, we obtain a
non-zero polynomial h(x, y) that satisfies h(x0, y0) = 0 mod n and :

‖h(xX, yY )‖ ≤ 2(ω−1)/4 · det(L2)1/ω. (4)

From lemma 2, this implies that if :

2(ω−1)/4 · det(L2)1/ω ≤ n√
ω

, (5)

then h(x0, y0) = 0 must hold over the integers.
Now we claim that polynomial h(x, y) cannot be a multiple of p(x, y). Assume

the contrary; then the row vector coefficients of h(x, y) is a linear combination
of the row vector coefficients of polynomials sa,b(x, y) only. Given that matrix
S contains the coefficients of sa,b(x, y) for monomials xi+i0yj+j0 and given that
h(x, y) does not contain such monomials (because h(x, y) lies in L2), this gives
a linear combination of the rows of S equal to zero with non-zero coefficients; a
contradiction since matrix S is invertible.

The polynomial p(x, y) being irreducible, this implies that p(x, y) and h(x, y)
are algebraically independent with a common root (x0, y0); therefore, taking :

Q(x) = Resultanty(h(x, y), p(x, y))

gives a non-zero integer polynomial such that Q(x0) = 0. Using any standard
root-finding algorithm, we can recover x0, and finally y0 by solving p(x0, y) = 0.
This terminates the description of our algorithm.



Finding Small Roots of Bivariate Integer Polynomial Equations 385

It remains to compute the determinant of lattice L2. First we consider the
same matrices of row vectors as previously, except that we remove the X iY j

powers. Therefore let M ′ be the same matrix as M , except that we take the
coefficients of polynomials sa,b(x, y) and ri,j(x, y), instead of sa,b(xX, yY ) and
ri,j(xX, yY ); matrix M ′ has k2 +(k+δ)2 rows and (k+δ)2 columns. We put the
coefficients corresponding to monomials xi+i0yj+j0 for 0 ≤ i, j < k on the left
hand block, which has therefore k2 columns; matrix M ′ has then the following
form :

M ′ =

⎡
⎣ S T
nIk2 0

0 nIw

⎤
⎦

where S is the previously defined square matrix of dimension k2, while T is a
matrix with k2 rows and ω = k2 + 2kδ columns. Let L′ be the lattice generated
by the rows of M ′, and let L′2 be the sublattice where all coefficients corre-
sponding to monomials xi+i0yj+j0 for 0 ≤ i, j < k are set to zero. Note that
lattice L′ corresponds to lattice L without the X iY j powers, whereas lattice L′2
corresponds to lattice L2.

Since n = | detS|, we can find an integer matrix S′ satisfying :

S′ · S = nIk2 ,

namely S′ is (up to sign) the adjoint matrix (or comatrix) of S, verifying S′ ·
S = (det S)Ik2 . By elementary operations on the rows of M ′, we can therefore
subtract S′ · S to the nIk2 block of M ′; this gives the following matrix :

M ′
2 =

⎡
⎣ Ik2 0 0
−S′ Ik2 0
0 0 Iω

⎤
⎦ · M ′ =

⎡
⎣S T

0 T ′

0 nIω

⎤
⎦ , (6)

where T ′ = −S′ · T is a matrix with k2 rows and ω columns. By elementary
operations on the rows of M ′

2, we obtain :

M ′
3 = U · M ′

2 =

⎡
⎣S T

0 T ′′

0

⎤
⎦ ,

where T ′′ is a square matrix of dimension ω. We obtain that T ′′ is a row matrix
basis of lattice L′2, which gives :

detL′ = | det
[
S T
0 T ′′

]
| = | detS| · | detT ′′| = | detS| · detL′2 = n · det L′2. (7)

We now proceed to compute detL′. The polynomial p(x, y) being irreducible,
the gcd of its coefficients is equal to 1. This implies that by elementary operation
of the columns of M ′, we can obtain a matrix whose left upper k2 × k2 block is
the identity matrix and the right upper block is zero. From lemma 1, this does



386 J.-S. Coron

not change the determinant of the generated lattice. Let V be the corresponding
unimodular transformation matrix of dimension (δ + k)2; this gives :

M ′
4 = M ′ · V =

[
Ik2 0

nV

]
.

By elementary row operations on M ′
4 based on V −1 we obtain :

M ′
5 =

[
Ik2 0
0 V −1

]
· M ′

4 =
[

Ik2 0
nI(δ+k)2

]
=

⎡
⎣ Ik2 0

nIk2 0
0 nIω

⎤
⎦ ,

which again by elementary row operations gives :

M ′
6 = U ′ · M ′

5 =

⎡
⎣Ik2 0

0 nIω

0 0

⎤
⎦ .

Finally this implies :

detL′ = det
[
Ik2 0
0 nIω

]
= nω (8)

Combining equations (7) and (8), we obtain :

detL′2 = nω−1.

Recall that the columns of L′2 correspond to monomials xiyj for 0 ≤ i, j < δ +k,
excluding monomials xi0+iyj0+j for 0 ≤ i, j < k. The columns of lattice L2 are
obtained from the columns of L′2 by multiplication with the corresponding X iY j

powers; this gives :

det L2 = det L′2 ·

∏
0≤i,j<δ+k

X iY j

∏
0≤i,j<k

X i0+iY j0+j

= nω−1 · (XY )(δ+k−1)·(δ+k)2/2−(k−1)·k2/2

(X i0Y j0)k2

From inequality (5) we obtain the following condition for Howgrave-Graham’s
lemma to apply :

2ω·(ω−1)/4 · (XY )(δ+k−1)·(δ+k)2/2−(k−1)·k2/2

(X i0Y j0)k2 ≤ n

ωω/2
. (9)

It remains to bound n = | detS| as a function of the coefficients of p(x, y).
Let

W = max
i,j

|pij |X iY j

The following lemma shows that for the right choice of (i0, j0), the determinant
of S is bounded in absolute value :



Finding Small Roots of Bivariate Integer Polynomial Equations 387

Lemma 3. Given (u, v) such that W = |puv|XuY v, let indices (i0, j0) that max-
imize the quantity 8(i−u)2+(j−v)2 |pij |X iY j. Then

(
W

X i0Y j0

)k2

2−6k2δ2−2k2 ≤ | detS| ≤
(

W

X i0Y j0

)k2

· 2k2
. (10)

Proof. The proof is very similar to the proof of Lemma 3 in [7]; see Appendix
B.

Combining inequalities (9) and (10) with n = | detS| and
√

ω ≤ 2ω/2, we
obtain the sufficient condition :

2ω·(ω−1)/4 · (XY )(δ+k−1)·(δ+k)2/2−(k−1)·k2/2 ≤ W k2 · 2−6k2δ2−2k2 · 2−ω2/2.

This condition is satisfied if :

XY < Wα · 2−9δ,

where

α =
2k2

δ · (3k2 + k(3δ − 2) + δ2 − δ)
.

Finally we obtain the sufficient condition :

XY < W 2/(3δ)−1/k · 2−9δ. (11)

The running time is dominated by the time it takes to run LLL on a lattice of
dimension δ2 + 2kδ, with entries bounded by O(W k2

). Namely, the entries of a
matrix basis for L2 can be reduced modulo n·X iY j on the columns corresponding
to monomial xiyj, because of polynomials rij(xX, yY ) = n · X iY jxiyj. This
implies that we can obtain a matrix basis for L2 whose entries are bounded
by O(nXδ+kY δ+k). From inequality (10) we have n = O(W k2

); using (11) this
implies that the matrix entries can be bounded by O(W k2

). From theorem 1
and taking k > δ, the running time is therefore bounded by :

O
(
δ6k12 log3 W

)
using the LLL algorithm, and O

(
δ5k9 log2 W

)
using the improved L2 algorithm.

Finally, under the weaker condition

XY < W 2/(3δ),

one can set k = �log W � and do exhaustive search on the high order O(δ)
unknown bits of x0. The running time is then polynomial in 2δ and log W .
Moreover, for a fixed δ, the running time is O(log15 W ) using the LLL algorithm,
and O(log11 W ) using the improved L2 algorithm. Thus we have shown :

Theorem 2 (Coppersmith). Let p(x, y) be an irreducible polynomial in two
variables over Z, of maximum degree δ in each variable separately. Let X and
Y be upper bounds on the desired integer solution (x0, y0), and let W = maxi,j

|pij |X iY j. If XY < W 2/(3δ), then in time polynomial in (log W, 2δ), one can
find all integer pairs (x0, y0) such that p(x0, y0) = 0, |x0| ≤ X, and |y0| ≤ Y .



388 J.-S. Coron

As in [7], there can be improved bounds depending on the shape of the polyno-
mial p(x, y) :

Theorem 3 (Coppersmith). With the hypothesis of Theorem 2, except that
p(x, y) has total degree δ, the appropriate bound is :

XY < W 1/δ.

Proof. See the full version of this paper.

3.1 Computing a Basis of L2

In the previous section one needs to compute a basis for lattice L2, which is
then given as input to the LLL algorithm. Such lattice basis can be obtained
by triangularization of matrix M ; a matrix A is upper triangular if Aij = 0 for
i > j (as illustrated in Figure 3). A triangularization algorithm is described in
[12]; for an m × n matrix of row vectors, its running time is O(n3+εm log1+ε B)
for any ε > 0, when the matrix entries are bounded by B in absolute value.

Observe that we don’t need to triangularize the full matrix M . Namely from
our analysis of the previous section, equation (6) can be used to obtain a set of
row vectors that generate L2; a triangularization algorithm is then applied to
derive a lattice basis for L2. For this we need to compute matrix S′ such that
S′ ·S = (det S) ·I; we note that this is implemented in Shoup’s NTL library [22].

Another possibility is to compute the Hermite Normal form (HNF) of M .
An m × n matrix A of rank n is in HNF if it is upper triangular and aii > 0
for all 1 ≤ i ≤ n and 0 ≤ aij < ajj for all 1 ≤ j ≤ n and 1 ≤ i < j. A
classical result says that if an m × n matrix M is of rank n then there exists
a m × m unimodular matrix U such that U · M is in HNF; moreover the HNF
is unique. An algorithm for computing the HNF is also described in [12], with
the same asymptotic complexity as triangularization. A HNF algorithm is also
implemented in Shoup’s NTL library 1.

3.2 Difference with the Algorithm in [9]

In [9] a similar lattice L is built but with an integer n which is co-prime with
the constant coefficient of p(x, y). This implies that the full lattice L must be
considered, whose dimension dL = (δ + k)2 grows quadratically with k instead
of linearly as in our sub-lattice of dimension ω = δ2 + 2kδ.

With the full lattice L the LLL fudge factor is then 2(dL−1)/4 = 2O(k2) instead
of 2(ω−1)/4 = 2O(k). This translates in the bound for XY into the condition
XY < W 2/(3δ)−1/k · 2−O(k2+δ) instead of XY < W 2/(3δ)−1/k · 2−9δ. This implies
that in [9], in order to reach the bound XY < W 2/(3δ), one must do exhaustive

1 The LLL algorithms implemented in Shoup’s NTL library can in principle receive
as input a matrix with m ≥ n, but for large dimensions we got better results when
a lattice basis was provided instead.



Finding Small Roots of Bivariate Integer Polynomial Equations 389

search on the high order O((log W )/k + k2) bits of X . The optimum is to take
k := O(log1/3 W ); this gives a sub-exponential time complexity :

exp
(
O(log2/3 W )

)
,

instead of the polynomial-time complexity as in Coppersmith’s algorithm and
our new algorithm.

3.3 Extension to More Variables

Our algorithm can be extended to solve integer polynomial equations with more
than two variables, but as for Coppersmith’s algorithm, the extension is heuristic
only.

Let p(x, y, z) be a polynomial in three variables over the integers, of degree δ
independently in x, y and z. Let (x0, y0, z0) be an integer root of p(x, y, z), with
|x0| ≤ X , |y0| ≤ Y and |z0| ≤ Z. As for the bivariate case, we can select indices
(i0, j0, k0) that maximize the quantity X iY jZk|pijk| and consider the matrix
S formed by the coefficients of polynomials sabc(x, y, z) = xaybzc · p(x, y, z) for
0 ≤ a, b, c < m for some parameter m, but only in the monomials xi0+iyj0+jzk0+k

for 0 ≤ i, j, k < m. Then we take n := | detS| and define the additional poly-
nomials rijk(x, y, z) = xiyjzkn for 0 ≤ i, j, k < δ + m. Then one builds the
lattice L formed by all linear combinations of polynomials sabc(xX, yY, zZ) and
rijk(xX, yY, zZ), and consider the sublattice L2 obtained by setting to 0 the
coefficients of monomials corresponding to matrix S. Lattice L2 has dimension
ω = (δ + m)3 − m3 and using the same analysis as in Section 3, one obtains
that detL′2 = nω−1 where L′2 is the same lattice as L2 but without the X iY jZk

powers.
One then applies LLL to sublattice L2; if the ranges X, Y, Z are small enough,

we are guaranteed to find a polynomial h1(x, y, z) such that h1(x0, y0, z0) = 0
over Z and h1(x, y, z) is not a multiple of p(x, y, z), but this is not enough. The
second vector produced by LLL gives us a second polynomial h2(x, y, z) that
can satisfy the same property by bounding its norm as in [3]. One can then take
the resultant between the three polynomials p(x, y, z), h1(x, y, z) and h2(x, y, z)
in order to obtain a polynomial f(x) such that f(x0) = 0. But we have no
guarantee that the polynomials h1(x, y, z) and h2(x, y, z) will be algebraically
independent; this makes the method heuristic only.

4 Practical Experiments

As mentioned previously, a direct application of Coppersmith’s theorem for the
bivariate integer case is to factor N = pq when half of the most significant bits
(or least significant bits) of p are known.

Theorem 4 (Coppersmith [7]). Given N = pq and the high-order 1/4 log2 N
bits of p, one can recover the factorization of N in time polynomial in log N .



390 J.-S. Coron

Namely, given the most significant bits of p, one can write :

N = (P0 + x) · (Q0 + y),

where P0 and Q0 contain the most significant bits of p and q. This gives a bivari-
ate integer polynomial equation, for which Theorem 2 can be applied directly.
One gets W = P0 · X  N1/2 · X which gives XY < W 2/3  N1/3 · X2/3. With
X = Y this gives |x0| ≤ X = N1/4.

The result of practical experiments are summarized in Table 1, using Shoup’s
NTL library [22]. For comparison we have implemented our algorithm and the
algorithm in [9]. Table 1 shows that our new algorithm is significantly more
efficient; for example, for a 1024-bits modulus with 282 = 256 + 26 bits of
p given, our algorithm takes 1 second instead of 13 minutes for the algorithm
in [9]; this is due to the fact that LLL is applied on a lattice of smaller
dimension.

Table 1. Running times for factoring N = pq given the high-order bits of p, using our
algorithm and the algorithm in [9], with Shoup’s NTL library on a 1.6 GHz PC under
Linux

Parameters New algorithm Algorithm in [9]
N k bits of p given Dimension LLL Dimension LLL

512 bits 4 144 bits 9 <1 s 25 20 s
512 bits 5 141 bits 11 <1 s 36 2 min
1024 bits 5 282 bits 11 1 s 36 13 min
1024 bits 12 266 bits 25 42 s 169 -

The problem of factoring N = pq given the high-order (or low-order) bits of
p can also be solved using a simple variant of the one variable modular case,
as shown by Howgrave-Graham in [13]. Therefore we have also implemented
Howgrave-Graham’s algorithm to provide a comparison; experimental results
are given in Table 2. We obtain that for the particular case of factoring with
high-order bits known, our algorithm and Howgrave-Graham’s algorithm have
roughly the same running time, and work with the same lattice dimension (but
the two lattices are different).

Table 2. Running times for factoring N = pq given the high-order bits of p, using
Howgrave-Graham’s algorithm with Shoup’s NTL library on a 1.6 GHz PC running
under Linux.

N k bits of p given Dimension LLL
512 bits 4 144 bits 9 <1 s
512 bits 5 141 bits 11 <1 s
1024 bits 5 282 bits 11 1 s
1024 bits 12 266 bits 25 37 s



Finding Small Roots of Bivariate Integer Polynomial Equations 391

5 Conclusion

We have described a new algorithm for finding small roots of bivariate polynomial
equations over the integers, which is simpler than Coppersmith’s algorithm but
with the same asymptotic complexity. Our simplification is analogous to the
simplification brought by Howgrave-Graham for the univariate modular case;
it improves on the algorithm in [9] which was not polynomial-time for certain
parameters. In practical experiments, our algorithm performs several order of
magnitude faster than the algorithm in [9].

References

1. Bleichenbacher, D., May, A.: New Attacks on RSA with Small Secret CRT-
Exponents. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G. (eds.) PKC 2006.
LNCS, vol. 3958, Springer, Heidelberg (2006)

2. Blomer, J., May, A.: A Tool Kit for Finding Small Roots of Bivariate Polynomials
over the Integers. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494,
pp. 251–267. Springer, Heidelberg (2005)

3. Boneh, D., Durfee, G.: Crypanalysis of RSA with private key d less than N0.292 . In:
Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, Springer, Heidelberg (1999)

4. Boneh, D., Durfee, G., Howgrave-Graham, N.A.: Factoring n = prq for large r. In:
Wiener, M.J. (ed.) CRYPTO 1999. LNCS, vol. 1666, Springer, Heidelberg (1999)

5. Coppersmith, D.: Finding a Small Root of a Univariate Modular Equation. In:
Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, Springer, Heidelberg
(1996)

6. Coppersmith, D.: Finding a Small Root of a Bivariate Integer Equation; Factor-
ing with High Bits Known. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS,
vol. 1070, Springer, Heidelberg (1996)

7. Coppersmith, D.: Small solutions to polynomial equations, and low exponent vul-
nerabilities. J. of Cryptology 10(4), 233–260 (1997) Revised version of two articles
of Eurocrypt ’96

8. Coppersmith, D.: Finding small solutions to small degree polynomials. In: Silver-
man, J.H. (ed.) CaLC 2001. LNCS, vol. 2146, Springer, Heidelberg (2001)

9. Coron, J.S.: Finding Small Roots of Bivariate Polynomial Equations Revisited. In:
Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, Springer,
Heidelberg (2004)

10. Coron, J.S., May, A.: Deterministic Polynomial-Time Equivalence of Computing
the RSA Secret Key and Factoring. Journal of Cryptology 20(1) (2007)

11. Ernst, M., Jochemsz, E., May, A., de Weger, B.: Partial Key Exposure Attacks
on RSA up to Full Size Exponents. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005.
LNCS, vol. 3494, pp. 371–386. Springer, Heidelberg (2005)

12. Hafner, J., McCurley, K.: Asymptotically fast triangularization of matrices over
rings. SIAM J. Comput. 20, 1068–1083 (1991)

13. Howgrave-Graham, N.A.: Finding small roots of univariate modular equations re-
visited. In: Darnell, M. (ed.) Cryptography and Coding. LNCS, vol. 1355, pp.
131–142. Springer, Heidelberg (1997)

14. Howgrave-Graham, N.A.: Approximate integer common divisors. In: Silverman,
J.H. (ed.) CaLC 2001. LNCS, vol. 2146, Springer, Heidelberg (2001)



392 J.-S. Coron

15. Howgrave-Graham, N.A.: Computational Mathematics Inspired by RSA. PhD the-
sis, University of Bath (1998)

16. Jochemz, E., May, A.: A Strategy for Finding Roots of Multivariate Polynomials
with New Applications in Attacking RSA Variants. In: Lai, X., Chen, K. (eds.)
ASIACRYPT 2006. LNCS, vol. 4284, Springer, Heidelberg (2006)

17. Lenstra, A.K., Lenstra Jr., H.W., Lovász, L.: Factoring polynomials with rational
coefficients. Mathematische Ann. 261, 513–534 (1982)

18. May, A.: Cryptanalysis of Unbalanced RSA with Small CRT-Exponent. In: Yung,
M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 242–256. Springer, Heidelberg (2002)

19. May, A.: Computing the RSA Secret Key is Deterministic Polynomial Time Equiv-
alent to Factoring. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp.
213–219. Springer, Heidelberg (2004)

20. May, A.: Secret Exponent Attacks on RSA-type Schemes with Moduli N = prq.
In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 218–230.
Springer, Heidelberg (2004)

21. Nguyen, P.Q., Stehlé, D.: Floating-Point LLL Revisited. In: Cramer, R.J.F. (ed.)
EUROCRYPT 2005. LNCS, vol. 3494, Springer, Heidelberg (2005)

22. Shoup, V.: Number Theory C++ Library (NTL) version 5.4. Available at,
http://www.shoup.net

23. Shoup, V.: OAEP reconsidered. In: Kilian, J. (ed.) CRYPTO 2001. LNCS,
vol. 2139, Springer, Heidelberg (2001)

A Proof of Lemma 1

Let R be a matrix basis of L and let U be the unimodular matrix such that :

U · M =
[
R
0

]

(a unimodular matrix U satisfies det U = ±1). Let V be the unimodular matrix
such that M ′ = M · V . Then :

U · M · V = U · M ′ =
[
R′

0

]
,

where R′ = R · V is a matrix basis for L′. Then

detL′ = | detR′| = | det(R · V )| = | detR| · | det V | = | detR| = detL.

B Proof of Lemma 3

The proof is very similar to the proof of Lemma 3 in [7]. It consists in showing
that a matrix related to S is diagonally dominant, which enables to derive a
lower bound for its determinant.

Let W = maxi,j |pij |X iY j and let indices (u, v) such that W = |puv|XuY v.
Let indices (i0, j0) that maximize the quantity

8(i−u)2+(j−v)2 |pij |X iY j .

http://www.shoup.net


Finding Small Roots of Bivariate Integer Polynomial Equations 393

The matrix S is obtained by taking the coefficients of the polynomials xaybp(x, y)
for 0 ≤ a, b < k, taking only the coefficients of monomials xi0+iyj0+j for 0 ≤
i, j < k. We must show :

(
W

X i0Y j0

)k2

2−6k2δ2−2k2 ≤ | detS| ≤
(

W

X i0Y j0

)k2

2k2
(12)

We let μ(i, j) = ki + j be an index function; the matrix element Sμ(a,b),μ(i,j)

is the coefficient of xi0+iyj0+j in xaybp(x, y), namely :

Sμ(a,b),μ(i,j) = pi0+i−a,j0+j−b

We multiply each μ(i, j) column of S by

82(i0−u)i+2(j0−v)jX i0+iY j0+j

and we multiply each μ(a, b) row by

8−2(i0−u)a−2(j0−v)bX−aY −b

to create a new matrix S′ whose element is :

S′μ(a,b),μ(i,j) = pi0+i−a,j0+j−bX
i0+i−aY j0+j−b82(i0−u)(i−a)+2(j0−v)(j−b)

and we have :
detS′ = detS ·

(
X i0Y j0

)k2

(13)

Now we show that S′ is a diagonally dominant matrix. Let denote p̃ij = pijX
iY j ;

the elements of matrix S′ are :

S′μ(a,b),μ(i,j) = p̃i0+i−a,j0+j−b82(i0−u)(i−a)+2(j0−v)(j−b)

From maximality of (i0, j0) we have :

|p̃i0+i−a,j0+j−b| · 8(i−a+i0−u)2+(j−b+j0−v)2 ≤ |p̃i0j0 |8(i0−u)2+(j0−v)2

which gives :

|p̃i0+i−a,j0+j−b| · 82(i−a)(i0−u)+2(j−b)(j0−v) ≤ |p̃i0j0 |8−(i−a)2−(j−b)2

and then :
|S′μ(a,b),μ(i,j)| ≤ |p̃i0,j0 |8−(i−a)2−(j−b)2

Each diagonal element S′μ(a,b),μ(a,b) of matrix S′ is equal to p̃i0,j0 , and using :

∑
(i,j) �=(a,b)

8−(i−a)2−(j−b)2 ≤
∑

(i,j) �=(0,0)

8−i2−j2 ≤ −1 +
∑
(i,j)

8−i2−j2

≤ −1 +

(∑
i

8−i2

)2

≤ 3
4



394 J.-S. Coron

we obtain that the sum of the absolute values of the off-diagonal entries in each
μ(a, b) row is at most 3

4 |p̃i0,j0 |. Therefore matrix S′ is diagonally dominant and
each eigenvalue λ must verify :

1
4
|p̃i0,j0 | ≤ |λ| ≤ 7

4
|p̃i0,j0 |

which gives :
|p̃i0,j0 |k

2
2−2k2 ≤ | detS′| ≤ |p̃i0,j0 |k

2
2k2

(14)

From the optimality of (i0, j0), we have :

8(i0−u)2+(j0−v)2 |p̃i0,j0 | ≥ 80+0|p̃u,v| = W

which gives :
8−2δ2

W ≤ |p̃i0,j0 | ≤ W

Combining with (14) we obtain :

W k2
2−6k2δ2−2k2

≤ | detS′| ≤ W k2
· 2k2

and using (13) we obtain (12).



A Polynomial Time Attack on RSA with
Private CRT-Exponents Smaller Than N 0.073

Ellen Jochemsz1,� and Alexander May2

1 Department of Mathematics and Computer Science,
TU Eindhoven, 5600 MB Eindhoven, the Netherlands

e.jochemsz@tue.nl
2 Faculty of Computer Science

TU Darmstadt, 64289 Darmstadt, Germany
may@informatik.tu-darmstadt.de

Abstract. Wiener’s famous attack on RSA with d < N0.25 shows that
using a small d for an efficient decryption process makes RSA completely
insecure. As an alternative, Wiener proposed to use the Chinese Remain-
der Theorem in the decryption phase, where dp = d mod (p − 1) and
dq = d mod (q − 1) are chosen significantly smaller than p and q. The
parameters dp, dq are called private CRT-exponents. Since Wiener’s pro-
posal in 1990, it has been a challenging open question whether there
exists a polynomial time attack on small private CRT-exponents. In this
paper, we give an affirmative answer to this question, and show that a
polynomial time attack exists if dp and dq are smaller than N0.073.

Keywords: RSA, CRT, cryptanalysis, small exponents, Coppersmith’s
method.

1 Introduction

In the RSA cryptosystem, the public modulus N = pq is a product of two primes
of the same bitsize. The public and private exponent e and d satisfy

ed = 1 mod (p − 1)(q − 1).

In many applications of RSA, either e or d is chosen to be small, for efficient
modular exponentiation in the encryption/verifying or in the decryption/signing
phase. It is well-known that it is dangerous to choose a small private exponent,
since Wiener [22] showed that the RSA scheme is insecure if d < N0.25, which
was extended to d < N0.292 by Boneh and Durfee [4].

� The work described in this paper has been supported in part by the European Com-
mission through the IST Programme under Contract IST-2002-507932 ECRYPT.
The information in this document reflects only the author’s views, is provided as is
and no guarantee or warranty is given that the information is fit for any particular
purpose. The user thereof uses the information at its sole risk and liability.

A. Menezes (Ed.): CRYPTO 2007, LNCS 4622, pp. 395–411, 2007.
c© International Association for Cryptologic Research 2007



396 E. Jochemsz and A. May

As an alternative approach, Wiener proposed to use the Chinese Remainder
Theorem (CRT) for decryption/signing as described by Quisquater and Cou-
vreur in [18], and to use small private CRT-exponents instead of a small private
exponent. In that case, the public exponent e and private CRT-exponents dp

and dq satisfy edp = 1 mod (p − 1) and edq = 1 mod (q − 1). To obtain a
fast decryption/signing phase, dp and dq are chosen significantly smaller than p
and q. In time-critical applications, for instance for signing procedures on smart-
cards, this technique is especially useful. Whether there exists a polynomial time
attack on this RSA-CRT system with small dp and dq has been a challenging
open question since Wiener’s work (see also the comments in Boneh-Durfee [4],
the STORK roadmap [19], and the ECRYPT document on the hardness of the
main computational problems in cryptography [9]).

So far, the best attack on this variant is a square-root attack [3] that enables
an adversary to factor N in time and space Õ(min{

√
dp,

√
dq}), which is expo-

nential in the bitsize of dp and dq. All other attacks on RSA with small private
CRT-exponents can be divided in two categories.

First, there are attacks on the special case where p and q are ’unbalanced’ (not
of the same bitsize). May [16] described two attacks that work up to a smallest
prime factor of N0.382. Recently, Bleichenbacher and May [2] improved this to
N0.468.

Secondly, there are attacks on a special case where not only dp and dq, but
also e is chosen to be small. Galbraith, Heneghan and McKee [10] and Sun and
Wu [20] have made proposals to use RSA-CRT in a way that ’balances’ the
cost of encryption and decryption by forcing both e and dp, dq to be small.
In these articles, several attacks are described, after which the authors propose
parameters that are not affected by these attacks. Bleichenbacher and May [2]
in turn described a new attack on RSA-CRT with balanced exponents, forcing
Galbraith, Heneghan, McKee and Sun, Wu to revise their parameter suggestions
in [11] and [21], respectively.

However, the attacks in both categories are not applicable in the standard RSA
case with small CRT-exponents dp and dq, that is, when p and q are balanced
and e is full size. In this paper, we describe a way to extend one of the attacks
of Bleichenbacher, May [2] such that it also works in the standard RSA-CRT
case. This leads to the first polynomial time attack on standard RSA with small
private CRT-exponents. More precisely, we present the following result.

Theorem 1 (RSA-CRT with Small dp, dq). Under a well-known heuristic
assumption (as described in Section 6), for every ε > 0 and sufficiently large n,
the following holds:
Let N = pq be an n-bit RSA modulus, and p, q primes of bitsize n

2 . Let e < φ(N),
dp < p − 1, and dq < q − 1 be the public exponent and private CRT-exponents,
satisfying edp ≡ 1 mod (p−1) and edq ≡ 1 mod (q−1). Let bitsize(dp) ≤ δn and
bitsize(dq) ≤ δn. Then N can be factored in time polynomial in log(N) provided
that

δ < 0.0734 − ε.



A PTime Attack on RSA with Small Private CRT-Exponents 397

The rest of the paper is organized as follows. In Section 2, we give a brief intro-
duction to Coppersmith’s lattice-based method for finding small roots of polyno-
mials [5]. In Section 3, we recall the Bleichenbacher-May attack [2]. In Section 4,
we show how an extension of the attack leads to our new attack on standard
RSA-CRT with δ < 0.0734 − ε. Furthermore, we generalize our bound to public
exponents e of arbitrary size, and show that this leads to a polynomial time
attack on one of the revised parameter choices in [21]. In Section 5, we explain
in detail how we use Coppersmith’s original method for the implementation of
the attack. In Section 6, we discuss the only heuristic part of the attack, namely
how to retrieve a common root from a number of polynomials. We conclude in
Section 7 by giving experimental data for our attack.

2 Finding Small Roots of Polynomials

Many attacks in RSA cryptanalysis use a similar technique, which originated
from Coppersmith’s work on finding small roots of polynomials [5]. In essence,
the attack starts with a polynomial equation in some of the unknowns of the
RSA variant, such as p, q, d, or dp and dq in the case of RSA-CRT. An example
is the usual RSA equation

ed = 1 + k(N + 1 − (p + q)),

with the unknowns d, k, p, and q.
Such an equation yields a polynomial f which has a certain root that an

attacker wishes to find. In the example, the polynomial

f(x1, x2, x3) = ex1 − 1 − x2(N + 1 − x3)

has the root (x(0)
1 , x

(0)
2 , x

(0)
3 ) = (d, k, p + q). Finding the root is equivalent to

factoring N , since p, q can be computed from p + q using N = pq. The goal is
to derive a polynomial time attack provided that the size of the root is below a
certain bound.

In our new attack on standard RSA-CRT (Section 4), our goal is to find a root
of a four-variate polynomial f(x1, x2, x3, x4). We follow the strategy of Jochemsz
and May [13], that we will sketch here.

Let (x(0)
1 , x

(0)
2 , x

(0)
3 , x

(0)
4 ) be a root of the polynomial f(x1, x2, x3, x4) that is

small in the sense that |x(0)
1 | < X1, |x(0)

2 | < X2, |x(0)
3 | < X3, |x(0)

4 | < X4,
for some known upper bounds Xj , for j = 1, . . . , 4. Moreover, we define W as
the maximal absolute coefficient of f(x1X1, x2X2, x3X3, x4X4). That is, W :=
‖f(x1X1, x2X2, x3X3, x4X4)‖∞, where ‖f(x1, x2, x3, x4)‖∞ = max |ai1i2i3i4 | for
a polynomial f(x1, x2, x3, x4) =

∑
ai1i2i3i4x

i1
1 xi2

2 xi3
3 xi4

4 .
A basis B of a lattice L is defined via so-called shift polynomials of the form

xi1
1 xi2

2 xi3
3 xi4

4 f(x1, x2, x3, x4). The choice of the combinations {i1, i2, i3, i4} that
are used is described by a set S. The set M then consists of all monomials that
appear in the shift polynomials. The choice of S is crucial and depends on the



398 E. Jochemsz and A. May

monomials that appear in f . We will give the precise definition of S in Section 4
for our specific polynomial.

Then, LLL-reduction [15] is performed on B to find small vectors in the lattice
L. From a result of [13], we know that under the condition

Xs1
1 Xs2

2 Xs3
3 Xs4

4 < W s, for sj =
∑

x
i1
1 x

i2
2 x

i3
3 x

i4
4 ∈M\S

ij and s = |S|, (1)

the first vectors in the reduced basis are small enough to ensure that we find a list
f0, . . . , f� of at least three polynomials that all have the root (x(0)

1 , x
(0)
2 , x

(0)
3 , x

(0)
4 )

over the integers. The polynomials {f, f0, . . . , f�} will reveal their common root
(x(0)

1 , x
(0)
2 , x

(0)
3 , x

(0)
4 ) under the assumption that three variables can be eliminated

from the polynomial system of equations {f = 0, f0 = 0, . . . , f� = 0}. Resultant
computations are often used for this elimination process, but we choose to use
Gröbner Bases, as we will explain in Section 6. Experiments must be done to
verify that the elimination assumption holds in practice.

3 The Bleichenbacher-May Attack

In [2], Bleichenbacher and May describe two new attacks on RSA-CRT. One of
them is meant for the case that both e and dp and dq are chosen to be smaller
than in standard RSA-CRT. For notation, we use e = Nα, dp < N δ, and dq < N δ

for some α ∈ [0, 1] and δ ∈ [0, 1
2 ]. Clearly, if an attack on this so called ’balanced’

RSA works in the case α = 1, then it threatens the security of standard RSA
with small private CRT-exponents.

The attack of Bleichenbacher and May uses a lattice of dimension 3. The
attack works whenever δ < min{ 1

4 , 2
5 − 2

5 α}, and therefore gives no result in
the case α = 1. However, we present a generalization of the attack for higher
dimensional lattices that is applicable also for α = 1. To explain our new attack,
we first describe the basics of the BM-attack [2].

Bleichenbacher and May start with the two RSA-CRT equations edp = 1 +
k(p − 1) and edq = 1 + l(q − 1), and rewrite these as

edp + k − 1 = kp and edq + l − 1 = lq.

Multiplying the two equations yields

e2dpdq + edp(l − 1) + edq(k − 1) − (N − 1)kl − (k + l − 1) = 0.

This can be transformed into the linear equation e2x1+ex2−(N −1)x3−x4 = 0,
if we substitute x1 = dpdq, x2 = dp(l − 1) + dq(k − 1), x3 = kl, x4 = k + l − 1.

The given linear equation leads directly to a lattice attack with a lattice of
dimension 3. This attack works provided that δ < min{ 1

4 , 2
5 − 2

5 α}.
Although linearization of an equation makes the analysis easier and keeps the

lattice dimension small, better results can sometimes be obtained by using a
non-linear polynomial equation directly. In the next section, we will pursue this
approach and use a polynomial with the variables x1, . . . , x4 corresponding to
dp, dq, k, and l, respectively.



A PTime Attack on RSA with Small Private CRT-Exponents 399

4 The New Attack on RSA-CRT

The equation we introduced in the previous section

e2dpdq + edp(l − 1) + edq(k − 1) − (N − 1)kl − (k + l − 1) = 0

yields a polynomial f(x1, x2, x3, x4) = e2x1x2 + ex1x4 − ex1 + ex2x3 − ex2 −
(N −1)x3x4 −x3 −x4 +1 with monomials 1, x1, x2, x3, x4, x1x2, x1x4, x2x3, x3x4

and a small root

(x(0)
1 , x

(0)
2 , x

(0)
3 , x

(0)
4 ) = (dp, dq, k, l), with

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

|x(0)
1 | < X1 = N δ,

|x(0)
2 | < X2 = N δ,

|x(0)
3 | < X3 = Nα+δ− 1

2 ,

|x(0)
4 | < X4 = Nα+δ− 1

2 .

We will follow the strategy for finding small integer roots of Jochemsz and
May [13] as sketched in Section 2, to analyze which attack bound corresponds
to this polynomial f .

In the basic strategy of [13], the set S that describes which monomials xi1
1 xi2

2

xi3
3 xi4

4 are used for the shift polynomials, is simply the set that contains all
monomials of fm−1 for a given integer m. The set M is defined as the set of all
monomials that appear in xi1

1 xi2
2 xi3

3 xi4
4 f(x1, x2, x3, x4), with xi1

1 xi2
2 xi3

3 xi4
4 ∈ S.

Since f has a non-zero constant coefficient, all monomials of S are included in
M . More precisely, S and M can be described as

xi1
1 xi2

2 xi3
3 xi4

4 ∈ S ⇔

⎧⎪⎪⎨
⎪⎪⎩

i1 = 0, . . . , m − 1 − i3,
i2 = 0, . . . , m − 1 − i4,
i3 = 0, . . . , m − 1,
i4 = 0, . . . , m − 1,

xi1
1 xi2

2 xi3
3 xi4

4 ∈ M ⇔

⎧⎪⎪⎨
⎪⎪⎩

i1 = 0, . . . , m − i3,
i2 = 0, . . . , m − i4,
i3 = 0, . . . , m,
i4 = 0, . . . , m.

However, in [13] it is also advised to explore the possibility of extra shifts of one
or more variables. Since X1 and X2 are significantly smaller than X3 and X4 for
α > 1

2 , we find that the attack bound is superior for α = 1 if we use extra shifts
of x1 and x2. Therefore, we take

xi1
1 xi2

2 xi3
3 xi4

4 ∈ S ⇔

⎧⎪⎪⎨
⎪⎪⎩

i1 = 0, . . . , m − 1 − i3 + t,
i2 = 0, . . . , m − 1 − i4 + t,
i3 = 0, . . . , m − 1,
i4 = 0, . . . , m − 1,

xi1
1 xi2

2 xi3
3 xi4

4 ∈ M ⇔

⎧⎪⎪⎨
⎪⎪⎩

i1 = 0, . . . , m − i3 + t,
i2 = 0, . . . , m − i4 + t,
i3 = 0, . . . , m,
i4 = 0, . . . , m,

for some t that has to be optimized as a function of m and α.



400 E. Jochemsz and A. May

Our goal is to find at least three polynomials f0, f1, f2 that share the root
(x(0)

1 , x
(0)
2 , x

(0)
3 , x

(0)
4 ) over the integers. From Section 2 we know that these poly-

nomials can be computed by lattice reduction techniques as long as

Xs1
1 Xs2

2 Xs3
3 Xs4

4 < W s, for sj =
∑

x
i1
1 x

i2
2 x

i3
3 x

i4
4 ∈M\S

ij and s = |S|.

For a given integer m and t = τm, our last definition of S and M yields the
bound

(X1X2)(
5
12+ 5

3 τ+ 9
4 τ2+τ3)m4+o(m4)(X3X4)(

5
12+ 5

3 τ+ 3
2 τ2)m4+o(m4)

< W ( 1
4+τ+τ2)m4+o(m4).

To obtain the asymptotic bound, we let m grow to infinity and let all terms
of order o(m4) contribute to some error term ε. If we substitute the values for
X1, X2, X3, X4, W , we obtain

(
5
12 + 5

3τ + 9
4τ2 + τ3

)
· 2δ +

(
5
12 + 5

3τ + 3
2τ2

)
· (2α + 2δ − 1)
<

(
1
4 + τ + τ2

)
· (2α + 2δ) ,

which leads to

δ <
5 − 4α + 20τ − 16ατ + 18τ2 − 12ατ2

14 + 56τ + 66τ2 + 24τ3
− ε.

For α = 1, we find an optimal value of τ ≈ 0.381788, and we get

δ < 0.0734 − ε.

Hence, for a 1024-bit modulus, dp and dq are in the attack space if they are less
then 75 bits. Analogously, for a 2048-bit modulus, dp and dq are in the attack
space if they are at most 150 bits.

4.1 Extending the Attack to Other Values of α

In Section 4, we assumed that x
(0)
1 , x

(0)
2 are smaller than x

(0)
3 , x

(0)
4 , t.i. α ≥ 1

2 .
For α < 1

2 , symmetrically one uses extra x3 and x4-shifts instead of extra x1

and x2-shifts. Because of the symmetry, one can immediately see that the attack
bound is

(X1X2)(
5
12+ 5

3 τ+ 3
2 τ2)m4+o(m4)(X3X4)(

5
12 + 5

3 τ+ 9
4 τ2+τ3)m4+o(m4)

< W ( 1
4+τ+τ2)m4+o(m4).

The above bound leads to

δ <
5 − 4α + 20τ − 16ατ + 27τ2 − 30ατ2 + 12τ3 − 24ατ3

14 + 56τ + 66τ2 + 24τ3
− ε.

Note that this bound only holds for α + δ > 1
2 , since we assume that the values

of k and l are unknown to the attacker. Both conditions are only met if α ≥ 1
6 .



A PTime Attack on RSA with Small Private CRT-Exponents 401

However, in Section 7.1 we provide experimental evidence that our heuristic
attack is successful only when α ≥ 1

4 .
In the revised paper by Sun, Hinek, Wu [21], the authors propose as new

parameters {α = 0.577, δ = 0.186}. For this choice, we find the bound δ < 0.192,
which breaks the new proposal in polynomial time.

5 Implementation Using Coppersmith’s Original Method

Although we have derived our attack bound from the strategy of Jochemsz, May
[13], we deviate from their strategy for the implementation of the attack. Ba-
sically, we make use of Coppersmith’s original technique [5] instead of Coron’s
reformulation [6]. This does not change the asymptotic bound of the attack, but
it has a major practical advantage. Namely, the lattices used in the attacks are
high-dimensional, and Coppersmith’s original method requires only the reduc-
tion of a lower-dimensional sublattice1. Since the LLL-process is the most costly
factor in our attack, this leads to a significant improvement in practice. Further-
more, we slightly adapt Coppersmith’s original method such that we directly
obtain triangular lattice bases, which simplifies the determinant calculations.

So let us first explain how to apply Coppersmith’s technique for our attack.
We introduce the shift polynomials

gi1i2i3i4(x1, x2, x3, x4) = xi1
1 xi2

2 xi3
3 xi4

4 f(x1, x2, x3, x4),

for xi1
1 xi2

2 xi3
3 xi4

4 ∈ S for a set of monomials S, as specified in Section 4. As
before, we define the set M as the set of all monomials that appear in the shift
polynomials. We use the notation s = |S| for the total number of shifts and
d = |M | − |S| for the difference of the number of monomials and the number
of shifts. Notice that the maximal coefficient of f(x1X1, x2X2, x3X3, x4X4) is
e2X1X2, and the monomial corresponding to it is x1x2. We define S′ as the set
of monomials xi1+1

1 xi2+1
2 xi3

3 xi4
4 , for xi1

1 xi2
2 xi3

3 xi4
4 ∈ S. Naturally, |S′| = |S| = s.

We now build a (d + s) × (d + s) matrix B1 as follows.
The upper left d × d block is diagonal, where the rows represent the mono-

mials xi1
1 xi2

2 xi3
3 xi4

4 ∈ M\S′. The diagonal entry of the row corresponding to
xi1

1 xi2
2 xi3

3 xi4
4 is (X i1

1 X i2
2 X i3

3 X i4
4 )−1. The lower left s × d block contains only ze-

ros.
The last s columns of the matrix B1 represent the shift polynomials gi1i2i3i4 =

xi1
1 xi2

2 xi3
3 xi4

4 f , for xi1
1 xi2

2 xi3
3 xi4

4 ∈ S. The first d rows correspond to the monomials
in M\S′, and the last s rows to the monomials of S′. The entry in the column
corresponding to gi1i2i3i4 is the coefficient of the monomial in gi1i2i3i4 .

This description asks for a simple example. Let us use the set S as described
in Section 4 with m = 1 and t = 0, which results in the lattice basis B1 given in
1 In these CRYPTO’07 proceedings, a new article by Coron [7] shows how to adapt

his method such that it also requires only the reduction of a sublattice instead of
the reduction of the full lattice, and hence his new technique could be applied here,
too.



402 E. Jochemsz and A. May

Figure 1. We only use the polynomial f(x1, x2, x3, x4) itself as a shift polynomial.
Therefore, s = 1 and we have d+s = 9 monomials. The rows represent the mono-
mials 1, x1, x2, x3, x4, x3x4, x2x3, x1x4, x1x2 and the last column corresponds to
the coefficients of these monomials in f .

�
��������������

1 0 0 0 0 0 0 0 −1
0 1

X1
0 0 0 0 0 0 −e

0 0 1
X2

0 0 0 0 0 −e

0 0 0 1
X3

0 0 0 0 −1
0 0 0 0 1

X4
0 0 0 −1

0 0 0 0 0 1
X3X4

0 0 1 − N

0 0 0 0 0 0 1
X2X3

0 e

0 0 0 0 0 0 0 1
X1X4

e

0 0 0 0 0 0 0 0 e2

�
��������������

Fig. 1. Matrix B1 for the case m = 1, t = 0

In general, the determinant of the matrix B1 is

det(B1) =

⎛
⎜⎝ ∏

x
i1
1 x

i2
2 x

i3
3 x

i4
4 ∈M\S′

(X i1
1 X i2

2 X i3
3 X i4

4 )−1

⎞
⎟⎠ · (e2)s.

Let
v(x1, x2, x3, x4) = (1, x1, x2, x3, x4, x3x4, x2x3, x1x4, x1x2).

Note that in our example,

v(x1, x2, x3, x4) · B1 := (1, x1
X1

, x2
X2

, x3
X3

, x4
X4

, x3x4
X3X4

, x2x3
X2X3

, x1x4
X1X4

, f(x1, x2, x3, x4)).

So,

‖v(dp, dq, k, l) · B1‖ = ‖(1,
dp

X1
,

dq

X2
, k

X3
, l

X4
, kl

X3X4
,

dqk
X2X3

,
dpl

X1X4
, 0)‖ ≤

√
d.

Since the Xj upper bound the root, there is always such a vector v which, if one
substitutes the unknowns {dp, dq, k, l} for the variables {x1, x2, x3, x4}, becomes
a vector with Euclidean norm smaller than

√
d after multiplication with the

matrix B1.
Let us perform a unimodular transformation U1 on B1 to create a matrix B2

such that

B2 = U1 · B1 =
(

Ad×d 0d×s

A′s×d Is×s

)
.

Now if the rows of B1 form a basis of a lattice L, then the rows of B2 form a
basis of the same lattice. Moreover, the rows of

B3 =
(
Ad×d 0d×s

)



A PTime Attack on RSA with Small Private CRT-Exponents 403

are a basis of the sublattice L0 of L which has zeros in the last s entries. Notice
that det(L0) = det(L). Clearly, v(dp, dq, k, l) ·B1 is in the lattice L0 spanned by
the rows of B3.
Since

v(dp, dq, k, l) · B1 = v(dp, dq, k, l)U−1
1 B2,

this means that the last s entries of v(dp, dq, k, l)U−1
1 must be zero. We use the

notation 
v�sh for the vector v with its length ’shortened’ to its first d entries.
Then,


v(dp, dq, k, l) · B1�sh = 
v(dp, dq, k, l)U−1
1 B2�sh = 
v(dp, dq, k, l)U−1

1 �shA.

Next, we reduce A using lattice basis reduction to a basis B = U2A. It follows
that


v(dp, dq, k, l) · B1�sh = 
v(dp, dq, k, l)U−1
1 �shU−1

2 B.

We use the notation v′(dp, dq, k, l) for the vector 
v(dp, dq, k, l)U−1
1 �shU−1

2 , and
B∗ (with row vectors b∗i ) for the basis after applying Gram-Schmidt orthogo-
nalization to B. Now we can make three observations. Firstly, the vector v′ is
integral. This is because both matrices U1 and U2 have integer entries. Secondly,
‖v(dp, dq, k, l) · B1‖ <

√
d. Thirdly, it is known [15] that the Gram-Schmidt

orthogonalization of the LLL-reduced basis satisfies

‖b∗d‖ ≥ 2
−(d−1)

4 det(L)
1
d .

So, if we combine these three facts, we obtain that
√

d ≥ ‖v(dp, dq, k, l) · B1‖ = ‖ 
v(dp, dq, k, l) · B1�sh ‖ = ‖ v′(dp, dq, k, l)B ‖

≥ | v′(dp, dq, k, l)d | · ‖b∗d‖ ≥ | v′(dp, dq, k, l)d | · 2 −(d−1)
4 det(L)

1
d .

Since the terms 2
−(d−1)

4 and
√

d do not depend on N , we let them contribute to
an error term ε. Thus, whenever

det(L)
1
d > 1,

we must have | v′(dp, dq, k, l)d | = 0.
Hence, the polynomial f0(x1, x2, x3, x4) corresponding to the coefficient vector

v′(x1, x2, x3, x4)d contains the root (dp, dq, k, l) over the integers.
In Appendix A, we show that the bound det(L)

1
d > 1 is equivalent to the

bound (1) that was given in Section 2. Moreover, we use a result from Jutla [14]
to show that the vectors v′(x1, x2, x3, x4)d−�, � ≥ 2, yield a list of at least three
polynomials f0, . . . , f� having the same root (dp, dq, k, l). In the next section, we
show how to retrieve this root from the polynomials f , f0, . . . , f�.

The running time of our algorithm is dominated by the time to LLL-reduce
the lattice basis A. Taking the algorithm of Nguyen, Stehlé [17] this can be
achieved in O(d5(d+log Am) log Am), where log Am is the maximal bitsize of an



404 E. Jochemsz and A. May

entry in A. Our lattice dimension d depends on ε−1 only, whereas the bitsize of
the entries is bounded by a polynomial in log N . Therefore, the construction of
f0, . . . , f� can be done in time polynomial in log N .

Moreover, f0, . . . , f� have a fixed degree that only depends on ε−1 and coeffi-
cients with bitsize polynomial in log N . This will be important for the analysis
in the following section.

6 Extracting the Common Root

Assume that we want to retrieve a common root from four polynomials f , f0,
f1, f2. Usually, one uses resultants to eliminate variables one by one until one
obtains a univariate polynomial w0(x1) that has x

(0)
1 as a root:

r0(x1, x2, x3) = Resx4(f, f0)
s0(x1, x2) = Resx3(r0, r1)

r1(x1, x2, x3) = Resx4(f, f1) w0(x1) = Resx2(r3, r4)
s1(x1, x2) = Resx3(r1, r2)

r2(x1, x2, x3) = Resx4(f, f2)

However, this method only works if the polynomials are algebraically indepen-
dent. One cannot easily use more than three candidates fj , besides repeating the
scheme for different combinations. Moreover, the last resultant computation can
take a significant amount of time and memory, since the degrees of the resultant
polynomials grow fast. We use Gröbner Bases instead of resultant methods to
extract the root. For a detailed introduction to Gröbner Bases, we refer to [8].

Suppose we have a set of polynomials {f, f0, . . . , f�} that have the small root
(x(0)

1 , . . . , x
(0)
n ) in common. Then a Gröbner Basis G := {g1, . . . , gt} is a set of

polynomials that preserves the set of common roots of {f, f0, . . . , f�}. In other
words, the variety of the ideal I generated by {g1, . . . , gt} is the same as the vari-
ety of the ideal generated by {f, f0, . . . , fl}. The advantage of having a Gröbner
Basis is that the gi can be computed with respect to some ordering that elim-
inates the variables. Having such an elimination ordering, it is easy to extract
the desired root.

In our experiments in Section 7 we usually found much more polynomials
f0, . . . , f� than the required amount of � = 2. Therefore, we have two advantages
of Gröbner Bases in comparison with resultants. First, in contrast to resultants
the computation time of a Gröbner Basis usually benefits from more overdefined
systems which lowers the time for extracting the root. Second, we do not have
to search over all subsets of three polynomials until we find an algebraically in-
dependent one. Instead, we simply put all the polynomials in our Gröbner Basis
computation. The elimination of variables can only fail if the variety V(I) de-
fined by the ideal I which is generated by {f, f0, . . . , f�} is not zero-dimensional.
Therefore, we make the following heuristic assumption for our attack.

Assumption 1: The variety V(I) of the ideal I generated by the polynomials
in the construction of Section 5 is zero-dimensional.



A PTime Attack on RSA with Small Private CRT-Exponents 405

Under Assumption 1, the secret root (dp, dq, k, l) can be derived in polynomial
time, since we run a Gröbner Basis computation on polynomials of a fixed degree.

Recently, Bauer and Joux [1] made some important progress considering the
heuristic involved in Coppersmith methods. Their result, for roots of trivariate
polynomials, can in theory be extended to more variables. In this way, one could
investigate if Assumption 1 can be replaced by a weaker assumption. In this
paper, we made no efforts in this direction. Instead we verified the validity of
Assumption 1 by experiments.

7 Experiments

In order to test the attack described in this paper for varying bitsizes of e
and dp, dq we designed a key generation process similar to the one proposed
by Galbraith, Heneghan, and McKee [10].

INPUT: Bitsizes n of N, αn of e, δn of dp, dq

(1) Choose dp, dq of bitsize δn.
(2) Choose k, l of bitsize (α + δ − 1

2 )n such that gcd(dp, k) = gcd(dq , l) =
gcd(k, l) = 1.

(3) Compute e using Chinese Remaindering such that
∣∣∣∣e = d−1

p mod k
e = d−1

q mod l

∣∣∣∣ .
(4) Compute e := e + c · kl for some c of bitsize (1 − α − 2δ)n.
(5) Compute p = edp−1

k − 1 and q = edq−1
l − 1. If either p or q is composite,

repeat the whole algorithm.

OUTPUT: CRT-RSA-instance (e, N, dp, dq, p, q)

Notice that this key generation algorithm works as long as α + 2δ ≤ 1. Namely,
in Step 3 we compute a public key e of bitsize (2α + 2δ − 1)n, which is extended
in Step 4 to bitsize αn. Therefore, we require that α ≥ 2α + 2δ − 1.

The above key generation is a slight variation of the GHM algorithm. In [10],
the authors choose e, k, l first and afterwards compute dp, dq as inverses of e
mod k, l, respectively. Then analogously to Step 4 above, they fill up dq, dq to
the desired bitsize. Thus, their key generation requires that the sizes of dp, dq

are at least the sizes of k, l. However, this condition is not fulfilled by a large
portion of the RSA instances that we can attack. If the conditions of both key
generations are fulfilled, one should however prefer the GHM method. It is more
efficient, since one can generate p and q separately.

In the following experiments, we applied our key generation algorithm for
varying sizes of e and dp, dq. The LLL reduction was carried out using a C-
implementation of the provable L2 reduction algorithm due to Nguyen and
Stehlé [17]. The timings were performed on a 1GHz PC running Cygwin.



406 E. Jochemsz and A. May

7.1 Experiments for Small e

All experiments in this section were done for 1000-bit N . For every fixed e, we
looked for the maximal bitsize for dp, dq that gave us enough small vectors for
recovering the secrets. In our experiments, we fixed the attack parameter m = 2
and tried different values of t.

In the table below, the third column provides the bound of Bleichenbacher-
May which can be achieved using a 3-dimensional lattice. The fourth column
provides the bound for an attack of Galbraith, Heneghan, and McKee [10], which
is closely related to the attack described in this paper (see Appendix B for details
on this GHM-attack). The δ-column gives the theoretical upper bound for the
chosen parameters m, t and e. The ’asymp’-column gives the asymptotic bound
which is reached when the lattice dimension goes to infinity.

e dp, dq BM[2] GHM[10] δ asymp lattice parameters LLL
250 bit 332 bit 0.250 0.333 0.227 0.287 m = 2, t = 0, dim = 27 2 sec
300 bit 299 bit 0.250 0.300 0.209 0.271 m = 2, t = 0, dim = 27 2 sec
400 bit 239 bit 0.240 0.233 0.173 0.243 m = 2, t = 0, dim = 27 2 sec
500 bit 199 bit 0.200 0.167 0.136 0.214 m = 2, t = 0, dim = 27 2 sec
577 bit 168 bit 0.169 0.115 0.108 0.192 m = 2, t = 0, dim = 27 2 sec
700 bit 119 bit 0.120 0.033 0.064 0.157 m = 2, t = 0, dim = 27 2 sec
800 bit 79 bit 0.080 −0.033 0.027 0.128 m = 2, t = 0, dim = 27 2 sec
900 bit 38 bit 0.040 −0.100 −0.009 0.100 m = 2, t = 0, dim = 27 2 sec
900 bit 40 bit 0.040 −0.100 0.013 0.100 m = 2, t = 1, dim = 56 93 sec
925 bit 29 bit 0.030 −0.117 −0.018 0.093 m = 2, t = 0, dim = 27 2 sec
925 bit 31 bit 0.030 −0.117 0.006 0.093 m = 2, t = 1, dim = 56 87 sec
950 bit 19 bit 0.020 −0.133 −0.027 0.087 m = 2, t = 0, dim = 27 2 sec
950 bit 23 bit 0.020 −0.133 −0.001 0.087 m = 2, t = 1, dim = 56 80 sec

In all the above experiments, we were able to recover the factorization of
N . Experimentally, we see that our attack is much better than theoretically
predicted. The reason is that for these RSA parameter settings, the shortest
vectors are linear combinations of certain subsets of the lattice basis. I.e., the
shortest vectors belong to some sublattice and the determinant calculation of the
full lattice in Section 4 does not accurately capture the optimal choice of basis
vectors. However, to identify the optimal sublattice structure for every fixed size
e seems to be a difficult task.

Let us first comment on the results for 250-bit and 300-bit e. As can be seen
in Appendix B, there exists an attack by Galbraith, Heneghan, and McKee [10]
that is closely related to our new attack. Basically, they use a Coppersmith
method for finding modular roots, to find the small root (k, l) of a polynomial
fe modulo e. The polynomial fe is exactly our polynomial f taken modulo e.
Since for α = 0.25, α = 0.3, the bound of the GHM-attack is superior to our
new attack bound, the GHM-attack should be used for these cases instead of the



A PTime Attack on RSA with Small Private CRT-Exponents 407

new attack. However, if one uses the new attack, the lattice reduction algorithm
chooses certain sublattices that still lead to the GHM-bound. This explains for
these small values of α, why the experimental results are better than expected.
These were the only instances that we discovered, where Assumption 1 failed.
Since the reduced basis vectors corresponded to the underlying structure of the
GHM-attack, we were not able to eliminate three variables. However, we always
found a polynomial of the form (k + l − 1)x3x4 − kl(x3 + x4 − 1) in the Gröbner
Basis, which directly yields k and l. The knowledge of k is sufficient to factor N
in polynomial time, provided that e is large enough: Notice that

p = 1 − k−1 mod e.

From a theorem of Coppersmith for factoring with high bits known [5], it follows
that we can find p in polynomial time whenever e ≥ N

1
4 , which is satisfied in our

experiments. We also made attacks for the case e < N
1
4 , where we still got the

secrets k, l. However, this information seems to be not sufficient for factoring N
efficiently. This is consistent with the GHM-attack, where Galbraith, Heneghan,
and McKee state that the attack only succeeds if the factorization of N can be
extracted in polynomial time from the knowledge of the exposed k, l.

For α ≥ 2/5, i.e. e of bitsize at least 400, Assumption 1 was always valid. In all
experiments, the Gröbner Basis of all polynomials yields the secret parameters
(dp, dq, k, l) and therefore the factorization of N . The roots were found by using
the F4 Gröbner Basis algorithm implemented in Magma V2.11-14. We would
like to note that, when we did not include all candidates f0, . . . , f� but used
only a few, it sometimes happened that we could eliminate two variables only.
In that case, we were still able to retrieve the secrets, since the Gröbner Basis,
where x2 and x4 were eliminated, then contained a polynomial with the terms
(dp + (k − 1)x1 − dpx3) and (dq + (l − 1)x1 − dqx3) in its factorization.

For e of bitsizes 400 up to 800, we actually rediscovered the bound 2
5 (1−α) by

Bleichenbacher, May experimentally. Again the lattice reduction algorithm chose
certain sublattices which in this case lead to the BM-bound. Even a moderate
increasement of the lattice dimension did not give us any improvement in this
range of e. Although our asymptotical bound always beats the BM-bound, we
are not able to see this effect for small e, since going beyond the BM-bound
requires high-dimensional lattice bases.

For e larger than 900 bits we can for the first time see the effect of increasing
the lattice dimension and we are able to go slightly beyond the BM-bound. This
effect intensifies for full size e, where the BM-bound does not give any results
at all.

7.2 Experiments for Full Size e

Here we describe the experiments for RSA with a standard key generation for
small CRT-exponents, which usually yields full size e. Namely, the parameters



408 E. Jochemsz and A. May

dp, dq are chosen for a fixed bitsize and e is the unique integer modulo φ(N)
which is the inverse of dp, dq modulo p − 1 and q − 1, respectively.

N dp, dq δ lattice parameters LLL-time
1000 bit 10 bit −0.015 m = 2, t = 1, dim = 56 61 sec
1000 bit 13 bit −0.002 m = 2, t = 2, dim = 95 1129 sec
1000 bit 15 bit 0.002 m = 3, t = 1, dim = 115 13787 sec
2000 bit 20 bit −0.015 m = 2, t = 1, dim = 56 255 sec
2000 bit 22 bit −0.002 m = 2, t = 2, dim = 95 1432 sec
2000 bit 32 bit 0.002 m = 3, t = 1, dim = 115 36652 sec
5000 bit 52 bit −0.015 m = 2, t = 1, dim = 56 1510 sec
5000 bit 70 bit −0.002 m = 2, t = 2, dim = 95 18032 sec

10000 bit 105 bit −0.015 m = 2, t = 1, dim = 56 3826 sec
10000 bit 140 bit −0.002 m = 2, t = 2, dim = 95 57606 sec

Every experiment gave us sufficiently many polynomials with the desired roots
over the integers, such that we could recover the factorization. The Gröbner
computation never took more than 100 seconds and consumed a maximum of
300 MB.

Notice that for 10000-bit N , we can recover dp, dq of bitsize 140, which would
not be possible by a square-root attack.

As in the experiments before, the δ-bound is very inaccurate. For lattice di-
mensions 56 and 95, we should not obtain any results at all, while experimentally
we succeeded for d with bitsizes roughly a 0.010-fraction respectively a 0.013-
fraction of N . On the other hand, our asymptotical bound states that we could
in theory go up to a 0.073-fraction. Unfortunately, we are a tad bit away from the
theoretical bound, since currently the best LLL-reductions only allow to reduce
lattice bases of moderate size, when the base matrices have large entries. Let us
give a numerical example. Theoretically, for m = 10 we find an optimal value of
t = 6 which yields a bound of 0.063. However, this parameter choice results in a
lattice dimension of 4200 which is clearly out of practical reach.

Our result guarantees that one can find the factorization of N for a sufficiently
large – but fixed – lattice dimension for CRT-exponents dp, dq up to a 0.073-
fraction. Moreover, it does not rule out that one can go beyond this bound. Even
with our approach, the experimental results seem to indicate that an analysis of
sublattice structures could lead to a better theoretical bound. We hope that these
open problems stimulate further research in the exciting areas of lattice-based
cryptanalysis and fast practical lattice reduction algorithms.

Acknowledgements

We thank Antoine Joux and Ralph-Philipp Weinmann for discussions about
Gröbner Bases, Maike Ritzenhofen for doing the Gröbner Basis computations in
Magma, and Benne de Weger for his helpful comments.



A PTime Attack on RSA with Small Private CRT-Exponents 409

References

1. Bauer, A., Joux, A.: Toward a Rigorous Variation of Coppersmith’s Algorithm on
Three Variables. In: Naor, M. (ed.) Eurocrypt 2007. LNCS, vol. 4515, pp. 361–378.
Springer, Heidelberg (2007)

2. Bleichenbacher, D., May, A.: New Attacks on RSA with Small Secret CRT-
Exponents. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G. (eds.) PKC 2006.
LNCS, vol. 3958, pp. 1–13. Springer, Heidelberg (2006)

3. Boneh, D.: Twenty Years of Attacks on the RSA Cryptosystem. Notices of the
American Mathematical Society 46, 203–213 (1999)

4. Boneh, D., Durfee, G.: Cryptanalysis of RSA with Private Key d Less Than N0.292.
IEEE Transactions on Information Theory 46, 1339–1349 (2000)

5. Coppersmith, D.: Small Solutions to Polynomial Equations, and Low Exponent
RSA Vulnerabilities. Journal of Cryptology 10, 233–260 (1997)

6. Coron, J.-S.: Finding Small Roots of Bivariate Integer Equations Revisited. In:
Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 492–
505. Springer, Heidelberg (2004)

7. Coron, J.-S.: Finding Small Roots of Bivariate Integer Polynomial Equations: a
Direct Approach. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 379–
394. Springer, Heidelberg (2007)

8. Cox, D., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms, 2nd edn. Springer,
Heidelberg (1998)

9. ECRYPT - Hardness of the Main Computational Problems Used in Crypto-
graphy, IST-2002-507932, available at http://www.ecrypt.eu.org/documents/
D.AZTEC.4-1.1.pdf

10. Galbraith, S., Heneghan, C., McKee, J.: Tunable Balancing of RSA. In: Boyd, C.,
González Nieto, J.M. (eds.) ACISP 2005. LNCS, vol. 3574, pp. 280–292. Springer,
Heidelberg (2005)

11. Galbraith, S., Heneghan, C., McKee, J.: Tunable Balancing of RSA, full version of
[10] http://www.isg.rhul.ac.uk/∼sdg/full-tunable-rsa.pdf

12. Howgrave-Graham, N.: Finding Small Roots of Univariate Modular Equations Re-
visited. In: Darnell, M. (ed.) Cryptography and Coding. LNCS, vol. 1355, pp.
131–142. Springer, Heidelberg (1997)

13. Jochemsz, E., May, A.: A Strategy for Finding Roots of Multivariate Polynomials
with New Applications in Attacking RSA Variants. In: Lai, X., Chen, K. (eds.)
ASIACRYPT 2006. LNCS, vol. 4284, pp. 267–282. Springer, Heidelberg (2006)

14. Jutla, C.S.: On Finding Small Solutions of Modular Multivariate Polynomial Equa-
tions. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 158–170.
Springer, Heidelberg (1998)

15. Lenstra, A., Lenstra Jr., H., Lovász, L.: Factoring Polynomials with Rational Co-
efficients. Mathematische Ann. 261, 513–534 (1982)

16. May, A.: Cryptanalysis of Unbalanced RSA with Small CRT-Exponent. In: Yung,
M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 242–256. Springer, Heidelberg (2002)

17. Nguyen, P., Stehlé, D.: Floating-Point LLL Revisited. In: Cramer, R.J.F. (ed.)
EUROCRYPT 2005. LNCS, vol. 3494, pp. 215–233. Springer, Heidelberg (2006)

18. Quisquater, J.J., Couvreur, C.: Fast decipherment algorithm for RSA public-key
cryptosystems. Electronic Letters 18, 905–907 (1982)

19. STORK - Strategic Roadmap for Crypto, IST-2002-38273, available at http://
www.stork.eu.org/documents/RUB-D6-2 1.pdf

20. Sun, H.-M., Wu, M.-E.: An Approach Towards RSA-CRT with Short Public Ex-
ponent IACR eprint, http://eprint.iacr.org/2005/053

http://www.ecrypt.eu.org/documents/D.AZTEC.4-1.1.pdf
http://www.ecrypt.eu.org/documents/D.AZTEC.4-1.1.pdf
http://www.isg.rhul.ac.uk/~sdg/full-tunable-rsa.pdf
http://www.stork.eu.org/documents/RUB-D6-2_1.pdf
http://www.stork.eu.org/documents/RUB-D6-2_1.pdf
http://eprint.iacr.org/2005/053


410 E. Jochemsz and A. May

21. Sun, H.-M., Hinek, M.J., Wu, M.-E.: On the Design of Rebalanced RSA-
CRT, revised version of [20] http://www.cacr.math.uwaterloo.ca/techreports/
2005/cacr2005-35.pdf

22. Wiener, M.: Cryptanalysis of Short RSA Secret Exponents. IEEE Transactions on
Information Theory 36, 553–558 (1990)

A Calculating the Bound and Finding More Polynomials

In this appendix, we show that the bound det(L)
1
d > 1 of the implementation

of our attack using Coppersmith’s original method (Section 5) is equivalent to
the bound (1) corresponding to an implementation following Coron’s method
(as used in Section 2). Moreover, we use a result from Jutla [14] to show that
the vectors v′(x1, x2, x3, x4)d−�, � ≥ 2, yield a list of at least three polynomials
f0, . . . , f� having the same root (dp, dq, k, l).

One can check that

det(L)
1
d = det(B1)

1
d =

⎛
⎜⎝ ∏

x
i1
1 x

i2
2 x

i3
3 x

i4
4 ∈M\S′

(X i1
1 X i2

2 X i3
3 X i4

4 )−1

⎞
⎟⎠

1
d

· (e2)
s
d .

So the bound det(L)
1
d > 1 implies that⎛

⎜⎝ ∏
x

i1
1 x

i2
2 x

i3
3 x

i4
4 ∈M\S′

(X i1
1 X i2

2 X i3
3 X i4

4 )

⎞
⎟⎠ < (e2)s. (2)

Let us substitute e2 by W
X1X2

. We observe that the difference between the mono-
mials of M\S′ and M\S is s times the monomial x1x2. Multiplying both sides
by (X1X2)s yields

Xs1
1 Xs2

2 Xs3
3 Xs4

4 < W s, for sj =
∑

x
i1
1 x

i2
2 x

i3
3 x

i4
4 ∈M\S

ij and s =
∑

x
i1
1 x

i2
2 x

i3
3 x

i4
4 ∈S

1.

Notice that this condition is equivalent to the condition (1) given in Section 2.
It follows that if this bound holds, then applying Coppersmith’s method gives

us a polynomial f0(x1, x2, x3, x4) from the coefficient vector v′(x1, x2, x3, x4)d,
such that f0 has the desired root (dp, dq, k, l) over the integers. But in order to
extract the root, we have to construct at least two more polynomials which share
the same root.

We will prove now that it is always possible to construct any constant number
of polynomials with the same common root provided that condition (1) is satis-
fied, at the cost of a slightly larger error term ε in the construction. Therefore,
we use a theorem of Jutla [14], which gives us a lower bound for the length of
any Gram-Schmidt vector in an LLL-reduced basis. Namely,

‖b∗i ‖ ≥ 2
−(i−1)

4

(
det(L)
bm−i
max

) 1
i

for i = 1 . . . d,

where bmax is the maximal length of the Gram-Schmidt orthogonalization of
the matrix A (the matrix before starting the LLL-reduction process). Following

http://www.cacr.math.uwaterloo.ca/techreports/2005/cacr2005-35.pdf
http://www.cacr.math.uwaterloo.ca/techreports/2005/cacr2005-35.pdf


A PTime Attack on RSA with Small Private CRT-Exponents 411

the analysis of [14], it can be checked that in our attack, bmax = e2. Therefore,
‖b∗i ‖ > 1 reduces to

2
−(i−1)

4

⎛
⎝

(∏
x

i1
1 x

i2
2 x

i3
3 x

i4
4 ∈M\S′(X

i1
1 X i2

2 X i3
3 X i4

4 )−1
)

· (e2)s

(e2)d−i

⎞
⎠

1
i

> 1.

Since 2
−(i−1)

4 does not depend on N , we let it contribute to an error term ε. This
simplifies our condition to∏

x
i1
1 x

i2
2 x

i3
3 x

i4
4 ∈M\S′

(X i1
1 X i2

2 X i3
3 X i4

4 ) < (e2)s−(d−i),

Notice that for i = d, we obtain the same bound as in (2). In Section 4, we have
seen that s = m4(1 + o(1)). So as long as d − i = o(m4), the asymptotic bound
does not change and we get just another error term that contributes to ε. This is
clearly satisfied if d − i = � for some constant �. Thus, all polynomials f0, . . . , f�

corresponding to the coefficient vectors v′(x1, x2, x3, x4)d−i, i = 0 . . . �, share the
common root (dp, dq, k, l), as desired.

B A Related Attack by Galbraith, Heneghan, and McKee

In Section 7.1 we noted that for very small e, there is an attack by Galbraith,
Heneghan, and McKee [10, Section 5.1] that works better than our new attack.
In this appendix, we briefly describe this GHM-attack and its relation to our
new attack.

Recall that for our new attack, we multiply the equations

edp + k − 1 = kp and edq + l − 1 = lq

to obtain the polynomial

f(x1, x2, x3, x4) = e2x1x2 +ex1x4 −ex1+ex2x3 −ex2 −(N −1)x3x4 −x3−x4 +1

with the small root (dp, dq, k, l).
In their attack in [10, Section 5.1], Galbraith, Heneghan, and McKee do essen-

tially the same, but modulo e. Hence, the goal of their attack is to find the modular
root (k, l) of the polynomial fe(x3, x4) = (N − 1)x3x4 + x3 + x4 − 1 modulo e.
This polynomial fe, with monomials 1, x3, x4, x3x4 has a well-known [5] bound

X3X4 < e
2
3 .

that specifies for which upper bounds X3, X4 of x3, x4 the root can be found in
polynomial time. Substituting X3 = X4 = Nα+δ− 1

2 , and e = Nα, we find the
attack bound

δ <
1
2

− 2
3
α.

For very small α (for instance α = 0.25 and δ = 0.3), this bound is superior
to the bound obtained by our new attack, and for these cases, the GHM-attack
should be preferred to the new attack.



Invertible Universal Hashing and the TET
Encryption Mode

Shai Halevi

IBM T.J. Watson Research Center,
Hawthorne, NY 10532, USA

shaih@alum.mit.edu

Abstract. This work describes a mode of operation, TET, that turns
a regular block cipher into a length-preserving enciphering scheme for
messages of (almost) arbitrary length. When using an n-bit block cipher,
the resulting scheme can handle input of any bit-length between n and 2n

and associated data of arbitrary length.
The mode TET is a concrete instantiation of the generic mode of

operation that was proposed by Naor and Reingold, extended to handle
tweaks and inputs of arbitrary bit length. The main technical tool is a
construction of invertible “universal hashing” on wide blocks, which is
as efficient to compute and invert as polynomial-evaluation hash.

1 Introductions

Adding secrecy protection to existing (legacy) protocols and applications raises
some unique problems. One of these problems is that existing protocols some-
times require that the encryption be “transparent”, and in particular preclude
length-expansion. One example is encryption of storage data “at the sector level”,
where both the higher-level operating system and the lower-level disk expect the
data to be stored in blocks of 512 bytes, and so any encryption method would
have to accept 512-byte plaintext and produce 512-byte ciphertext.

Clearly, insisting on a length-preserving (and hence deterministic) transfor-
mation has many drawbacks. Indeed, even the weakest common notion of se-
curity for “general purpose encryption” (i.e., semantic security [GM84]) cannot
be achieved by deterministic encryption. Still, there may be cases where length-
preservation is a hard requirement (due to technical, economical or even political
constrains), and in such cases one may want to use some encryption scheme that
gives better protection than no encryption at all. The strongest notion of security
for a length-preserving transformation is “strong pseudo-random permutation”
(SPRP) as defined by Luby and Rackoff [LR88], and its extension to “tweak-
able SPRP” by Liskov et al. [LRW02]. A “tweak” is an additional input to the
enciphering and deciphering procedures that need not be kept secret. This re-
port uses the terms “tweak” and “associated data” pretty much interchangeably,
except that “associated data” hints that it can be of arbitrary length.

Motivated by the application to “sector level encryption”, many modes of
operation that implement tweakable SPRP on wide blocks were described in the

A. Menezes (Ed.): CRYPTO 2007, LNCS 4622, pp. 412–429, 2007.
c© International Association for Cryptologic Research 2007



Invertible Universal Hashing and the TET Encryption Mode 413

literature in the last few years. Currently there are at least eight such propos-
als, following three different approaches: The “encrypt-mix-encrypt” approach
is used for CMC, EME and EME∗ [HR03, HR04, Hal04], the “hash-ECB-hash”
(due to Naor and Reingold [NR97]) is used in PEP [CS06b], and the “hash-CTR-
hash” approach is used by XCB [FM04], HCTR [WFW05] and HCH [CS06a]
(and some variation of the last approach is used in ABL4 [MV04]). Among these
proposals, the “encrypt-mix-encrypt” modes are the most efficient (at least in
software), the “hash-CTR-hash” modes are close behind, and PEP and ABL4
are considerably less efficient (more on efficiency in Section 3.5).

This work presents a ninth mode called TET (for linear-Transformation; ECB;
linear-Transformation). TET belongs to the “hash-ECB-hash” family, but in
terms of efficiency it is similar to the modes of the “hash-CTR-hash” family,
thus complementing the current lineup of modes. We also mention that TET may
have some practical advantages with respect to intellectual-property concerns,
see further discussion in the appendix.

The main technical contribution of this work is a construction of an efficient
invertible universal hashing for wide blocks, which is needed in the “hash-ECB-
hash” approach. Given the wide range of applications of universal hashing in
general, this invertible universal hashing may find applications beyond the TET
mode itself. Another small contribution is a slight modification of the OMAC
construction for pseudorandom function due to Iwata and Korasawa [IK03]. (In
TET we use that pseudorandom function to handle the message-length and the
tweak). This construction too can find other applications.

The Naor-Reingold construction and TET. Recall that the Naor-Reingold con-
struction from [NR97] involves a layer of ECB encryption, sandwiched between
two layers of universal hashing, as described in Figure 1. The universal hashing
layers must be invertible (since they need to be inverted upon decryption), and
their job is to ensure that different queries of the attacker will almost never
result in “collisions” at the ECB layer. Namely, for any two plaintext (or cipher-
text) vectors p = 〈p1, . . . , pm〉, q = 〈q1, . . . , qm〉 and two indexes i, j (such that
(p, i) �= (q, j)) it should hold with high probability (over the hashing key) that
the i’th block of hashing p is different from the j’th block of hashing q.

As mentioned above, the main contribution of this note is a construction of an
invertible universal hashing on wide blocks, which is as efficient to compute and
invert as polynomial-evaluation hash. In a nutshell, the hashing family works on
vectors in GF(2n)m, and it is keyed by a single random element τ ∈R GF(2n),
which defines the following m × m matrix:

Aτ
def=

⎛
⎜⎜⎜⎝

τ τ2 τm

τ τ2 τm

. . .
τ τ2 τm

⎞
⎟⎟⎟⎠

Set σ
def= 1 + τ + τ2 + . . . + τm, we observe that if σ �= 0 then the matrix

Mτ = Aτ +I is invertible and its inverse is M−1
τ = I −(Aτ/σ). Thus multiplying



414 S. Halevi

E E E E

P1 P2 P3 P4

C1 C2 C3 C4

”blockwise universal” hashing

”blockwise universal” hashing

Fig. 1. The Naor-Reingold generic mode: the universal hashing must be invertible, and
its job is to prevent collisions in the ECB layer

by Mτ for a random τ (subject to σ �= 0) is an invertible universal hashing, and
computing and inverting this hash function is about as efficient as computing
polynomial evaluation.

The starting point of this work is an implementation of the generic Naor-
Reingold mode of operation using the above for the universal hashing layers. We
then extend that mode to handle associated data and input of arbitrary length,
thus getting the TET mode. Specifically, TET takes a standard cipher with n-
bit blocks and turns it into a tweakable enciphering scheme with message space
M = {0, 1}n..2n−1 (i.e., any string of at least n and at most 2n − 1 bits) and
tweak space T = {0, 1}∗. The key for TET consists of two keys of the underlying
cipher (roughly one to process the tweak and another to process the data). As we
mentioned, TET offers similar performance characteristics to XCB, HCTR and
HCH (making it significantly more efficient than PEP and ABL4, and almost as
efficient as CMC, and EME/EME∗).

A word on notations. Below we use ⊕ to denote bit-wise exclusive or (which is
the same as addition in GF (2n)), and we use +/− to denote addition/subtraction
in other fields or domains (e.g., integer addition). The sum operator

∑
is always

used to denote finite-field addition.

Organization. Some standard definitions are recalled in Appendix A (which
is taken almost verbatim from [HR04, Hal04]). Section 2 describes the hash-
ing scheme that underlies TET, Section 3 describes the TET mode itself, and
Section 4 examines the security for this mode. In Appendix B we briefly discuss
intellectual-property issues.



Invertible Universal Hashing and the TET Encryption Mode 415

2 The Underlying Hashing Scheme

The universality property that is needed for the Naor-Reingold mode of operation
is defined next.

Definition 1. Let H : K × D → Rm be a hashing family from some domain D
to m-vectors over the range R, with keys chosen uniformly from K. We denote
by Hk(x) the output of H (which is an m-vector over R) on key k ∈ K and input
x ∈ D. We also denote by Hk(x)i the i’th element of that output vector.

For a real number ε ∈ (0, 1), we say that H is “ε-blockwise-universal” if for
every x, x′ ∈ D and integers i, i′ ≤ m such that (x, i) �= (x′, i′), it holds that
Prk[Hk(x)i = Hk(x′)i′ ] ≤ ε, where the probability is taken over the uniform
choice of k ∈ K.

We say that H is “ε-xor-blockwise-universal” if in addition for all fixed Δ ∈
GF(2n) it holds that Prk[Hk(x)i ⊕ Hk(x′)i′ = Δ] ≤ ε.

It was proven in [NR99] that the construction from Figure 1 is a strong PRP
on wide blocks provided that the hashing layers are blockwise universal and
invertible, and the underlying cipher E is a strong PRP on narrow blocks.

2.1 BPE: A Blockwise Universal Hashing Scheme

To get an invertible blockwise universal hash function, Naor and Reingold pro-
posed in [NR97] to use an unbalanced Feistel network with standard universal
hashing. For example, use polynomial-evaluation hash function applied to the
first m − 1 blocks, xor the result to the last block, and then derive m − 1 “pair-
wise independent” values from the last block and xor them back to the first
m − 1 blocks. This solution, however, is somewhat unsatisfying in that it entails
inherent asymmetry (which is likely to raise problems with implementations).
Below we propose a somewhat more elegant blockwise universal hashing based
on a simple algebraic trick.

Although for TET we only need a hashing scheme over the field GF (2n), we
describe here the scheme over an arbitrary field. Let F be a field (with more
than m + 2 elements) and consider an m × m matrix over F , Mτ

def= Aτ + I for
an element τ ∈ F , where

Aτ
def=

⎛
⎜⎜⎜⎝

τ τ2 τm

τ τ2 τm

. . .
τ τ2 τm

⎞
⎟⎟⎟⎠ (1)

It is easy to check that the determinant of Mτ is σ
def=

∑m
i=0 τ i, and so Mτ is

invertible if and only if σ �= 0. We observe that when it is invertible, the structure
of M−1

τ is very similar to the structure of Mτ itself.



416 S. Halevi

Observation 1. Let F be a field and let τ ∈ F be such that σ
def=

∑m
i=0 τ i �= 0,

let Aτ be an m × m matrix with Ai,j = τ j , and let Mτ
def= Aτ + I. Then M−1

τ =
I − (Aτ/σ).

Proof. We first note that A2
τ = Aτ (σ − 1), since for all i, j we have

(A2
τ )i,j =

m∑
k=1

τk+j = τ j

(
m∑

k=1

τk

)
= τ j

(
m∑

k=0

τk − 1

)
= (Aτ )i,j · (σ − 1)

Therefore, assuming σ �= 0 we get

(Aτ + I) · (I − Aτ

σ
) = Aτ + I − A2

τ

σ
− Aτ

σ
= I +

Aτσ − Aτ (σ − 1) − Aτ

σ
= I

It follows that computing y = Mτx and x = M−1
τ y can be done as efficiently

as computing polynomial-evaluation hash. Namely, to compute y = Mτx we
first compute s =

∑m
i=1 xiτ

i and set yi = xi + s, and to invert x = M−1
τ y we

re-compute s as s =
∑m

i=1 yi(τ i/σ) and set xi = yi − s. Moreover, since τ and σ
depend only the hashing key, one can speed up the multiplication by τ and τ/σ
by pre-computing some tables (cf. [Sho96]).

The blockwise-universal family BPE. Given the observation from above, we de-
fine the hashing family BPE (for Blockwise Polynomial-Evaluation) and its in-
verse BPE−1 as follows: Let F be a finite field with m + 3 or more elements.

Input: An m-vector of elements from F , x = 〈x1, . . . , xm〉 ∈ Fm.
Keys: Two elements τ, β ∈ F , such that

∑m
i=0 τm �= 0.

Output: Let α be some fixed primitive element of F , and denote by b def=〈
β, αβ, . . . , αm−1β

〉
the m-vector over F whose i’th entry is αi−1β. The two

hash functions BPEτ,β(x) and BPE−1
τ,β(x) are defined as

BPEτ,β(x) def= Mτx + b and BPE−1
τ,β(x) def= M−1

τ (x − b) (2)

By construction if follows that BPE−1
τ,β(BPEτ,β(x)) = x for all x and all τ, β

(provided that
∑m

i=0 τm �= 0). We now prove that these two families (BPE and
its inverse) are indeed “blockwise universal”.

Claim. Fix a finite field F and an integer m ≤ |F| − 3, and also fix x,x′ ∈ Fm

and indexes i, i′ ≤ m such that (x, i) �= (x′, i′), and any δ ∈ F .

(i) If i �= i′ then Prτ,β [[BPEτ,β(x′)]i′ − [BPEτ,β(x′)]i′ = δ] = 1/|F| and simi-

larly Prτ,β

[
[BPE−1

τ,β(x′)]i′ − [BPE−1
τ,β(x′)]i′ = δ

]
= 1/|F|.

(ii) If i = i′ and x �= x′ then both Prτ,β [[BPEτ,β(x′)]i′ − [BPEτ,β(x′)]i′ = δ] and

Prτ,β

[
[BPE−1

τ,β(x′)]i′ − [BPE−1
τ,β(x′)]i′ = δ

]
are bounded by m

|F|−g , where g=
GCD(m + 1, |F| − 1) if the characteristic of the field F divides m + 1, and
g = GCD(m + 1, |F| − 1) − 1 otherwise.



Invertible Universal Hashing and the TET Encryption Mode 417

Proof. Case (i), i �= i′. In this case we have [BPEτ,β(x)]i − [BPEτ,β(x′)]i′ =
(αi−1 − αi′−1)β + ((Mτx)i − (Mτx′)i′) which is equal to any fixed δ with prob-
ability exactly 1/|F| over the choice of β ∈R F (since α is primitive and so
αi−1 �= αi′−1). Similarly

[BPE−1
τ,β(x)]i − [BPE−1

τ,β(x′)]i′ =
(

(I − Aτ

σ
)(x − b)

)
i

−
(

(I − Aτ

σ
)(x′ − b)

)
i′

= ((
Aτ

σ
b)i − bi) − ((

Aτ

σ
b)i′ − bi′) +

(
(I − Aτ

σ
)x

)
i

−
(

(I − Aτ

σ
)x′

)
i′

= (αi′−1 − αi−1)β +
(

(I − Aτ

σ
)x

)
i

−
(

(I − Aτ

σ
)x′

)
i′

where the last equality follows since (Aτb)i = (Aτb)i′ (because all the rows of
Aτ are the same). Again, this sum equals δ with probability exactly 2−n.
Case (ii), i = i′ and x �= x′. In this case we have [BPEτ,β(x)]i−[BPEτ,β(x′)]i−
δ = (xi − x′i − δ) +

∑m
j=1(xj − x′j)τ

j , which is zero only when τ is a root of this
specific non-zero degree-m polynomial. Similarly for BPE−1

τ,β we have

[BPE−1
τ,β(x)]i − [BPE−1

τ,β(x′)]i − δ =
�

(I − Aτ

σ
)(x − b)

�
i

−
�

(I − Aτ

σ
)(x′ − b)

�
i

− δ

=
�

(I − Aτ

σ
)x
�

i

−
�

(I − Aτ

σ
)x′
�

i

− δ = (xi − x′
i − δ) +

m�
j=1

τ j

σ
(xj − x′

j)

∗=
1
σ

�
(xi − x′

i − δ)(
m�

j=0

τ j) +
m�

j=1

τ j(xj − x′
j)

�

=
1
σ

�
(xi − x′

i − δ) +
m�

j=1

τ j((xj − x′
j) + (xi − x′

i − δ))

�

where the equality ∗= holds since σ =
∑m

i=0 τ j . The last expression is zero when τ
is a root of the parenthesized polynomial. That polynomial is non-zero since (a) if
xi−x′i �= δ then it has non-zero constant term, and (b) if xi−x′i = δ then there is
some index j such that xj �= x′j , and thus the coefficient ((xj −x′j)+(xi −x′i−δ))
of τ j is non-zero.

We conclude that for both BPEτ,β and BPE−1
τ,β, a collision in this case im-

plies that τ must be a root of some fixed non-zero degree-m polynomial. Such
polynomials have at most m roots, and τ is chosen at random in GF(2n) subject
to the constraint that σ �= 0. Since σ itself is a non-zero degree-m polynomial,
then there are at least 2n − m elements τ ∈ GF(2n) for which σ �= 0, and so the
collision probability is at most m/(2n − m).

Moreover, for most values of m we can actually show that there are fewer than
m values of τ for which σ = 0. Specifically, we note that σ = (τm+1 −1)/(τ −1),
so σ = 0 implies that also τm+1 − 1 = 0, which means that τ is an m + 1’st
root of unity in F . We know that the number of m + 1’st roots of unity in F
is exactly GCD(m + 1, |F| − 1), and one of them is the trivial root τ = 1. The



418 S. Halevi

trivial root τ = 1 is also a root of σ if and only if the characteristic of F divides
m + 1 (since there are m + 1 terms in the sum that defines σ), and all the other
m + 1’st roots of unity are also root of σ. Hence τ is chosen at random from a
set of size |F| − g, where g = GCD(m + 1, |F| − 1) if the characteristic of F
divides m + 1 and g = GCD(m + 1, 2n − 1) − 1 otherwise.

A variant of BPE. It is easy to see that the same claim can be proven also
for the variant of BPE that subtracts the vector b before multiplying by Mτ ,
namely if we define

B̃PEτ,β(x) def= Mτ (x − b) and B̃PE
−1

τ,β(x) def= M−1
τ x + b (3)

then also the hash families B̃PE and B̃PE
−1

are ε-blockwise universal for the
same ε.

Variable input length. Claim 2.1 refers only to the fixed-input length scenario,
where BPEτ,β is applied always to inputs of the same length. Similar arguments
can be used to show universality of BPE, BPE−1, B̃PE, and B̃PE also in the
variable-input-length scenario, where the same τ and β are used for all the
different input lengths.

Claim 2.1 refers only to the fixed-input length scenario, where BPEτ,β is ap-
plied always to inputs of the same length. Similar arguments can show that the
four variations BPE, BPE−1, B̃PE, and B̃PE are also ε-blockwise universal in
the variable-input-length scenario, where the same τ and β are used for all the
different input lengths.

One complication is that in the variable-input-length scenario, the element
τ ∈ F must be chosen such that for all m it holds that 1+τ + . . .+τm �= 0. This
can be achieved by choosing τ as a primitive element in F , which means that it
is not an m + 1’ts root of unity for any m < |F| − 2, and therefore also not a
root of 1 + τ + . . . + τm. As the number of primitive elements in F is φ(|F| − 1)
(where φ is Euler’s totient function), it follows that in this case we choose τ from
a set of size exactly φ(|F| − 1). Hence the collision probability for any x,x′ is
bounded by ε = m/φ(|F| − 1) where m is the length of the longer of x,x′.

3 The TET Mode of Operation

The BPE hashing scheme immediately implies a mode of operation for imple-
menting a fixed-input-length, non-tweakable enciphering scheme for block-sizes
that are a multiple of n bits: namely the Naor-Reingold construction from [NR97]
with BPE for the hashing layers (over the field GF(2n), where n is the block
size of the underlying cipher). In this section I describe how to extend this con-
struction to get a tweakable scheme that supports arbitrary input lengths (and
remains secure also when using the same key for different input lengths).



Invertible Universal Hashing and the TET Encryption Mode 419

3.1 Tweaks and Variable Input Length

Incorporating a tweak into the basic mode turns out to be almost trivial: Instead
of having the element β be part of the key, we derive it from the tweak using the
underlying cipher. For example, if we are content with n-bit tweaks then we can
just set β ← EK(T ) where k is the cipher key and T is the tweak. Intuitively,
this is enough since the multiples of β will be used to mask the input values
before they arrive at the ECB layer, so using different pseudo-random values of
β for different tweak values means that the ECB layer will be applied on different
blocks.

To handle longer tweaks we can replace the simple application of the underly-
ing cipher E with a variable-input-length cipher-based pseudo-random function
(e.g., CBC-MAC, PMAC, etc.), using a key which is independent of the cipher
key that is used for the ECB layer. In Section 3.3 I describe a particular CBC-
MAC-like implementation that suits our needs.

The same fix can be applied also to handle variable input length: namely
we derive β from both the tweak and the input length. If we are content with
input length of no more than 2� and tweaks of size n − 
 bits, then we can
use β ← EK(L, T ) where T is the tweak value and L is the input length, or
else we can use β ← PRFK(L, T ) for some variable-input-length pseudo-random
function. As noted above, using the same hashing key for different input lengths
implies that the element τ must satisfy σm = 1 ⊕ τ ⊕ . . . ⊕ τm �= 0 for every
possible input length m, and this can be ensured by choosing τ as a random
primitive element in GF(2n).

3.2 Partial Blocks

It appears harder to extend the mode to handle inputs whose length is not a
multiple of n bits. Ideally, we would have liked an elegant way of extending
BPE to handle such lengths, and then handle partial blocks in the ECB layer
using ciphertext-stealing (cf. [MM82, Fig.2-23]). Unfortunately, I do not know
how to extend BPE to handle input length that is not a multiple of n bits while
maintaining invertability (except going back to the unbalanced Feistel idea).

Instead, I borrowed a technique that was used also in EME∗: When process-
ing an input whose length is not a multiple of n bits, one of the block cipher
applications in the ECB layer is replaced with two consecutive applications of
the cipher, and the middle value (between the two calls to the underlying ci-
pher) is xor-ed to the partial block. (In addition, the partial block is added to
the polynomial-evaluation, so that its value effects all the other blocks.)

In more details, let x = 〈x1, . . . , xm〉 be all the full input blocks and let xm+1

be a partial block, 
 = |xm+1|, 0 < 
 < n. Instead of just computing y = BPE(x),
we set the i’th full block to yi ← BPE(x)i ⊕ (xm+110..0), while leaving xm+1

itself unchanged. Then we apply the ECB layer, computing zi ← EK(yi) for the
first m − 1 full blocks, and computing u ← EK(ym) and zm ← EK(u) for the
last full block. The first bits of u are then xor-ed into the partial block, setting
wm+1 = xm+1 ⊕ u|1..� . Then we do the final BPE layer (adding (wm+110..0) to



420 S. Halevi

each full block), thus getting wi ← BPE(z)i ⊕ (wm+110..0) and the TET output
is the vector w1, . . . , wm, wm+1.

3.3 The PRF Function

It is clear that any secure pseudo-random function can be used to derive the
element β. We describe now a specific PRF, which is a slight adaptation of the
OMAC construction of Iwata and Korasawa [IK03], that seems well suited for our
application. The slight modification to OMAC can be thought of as constructing
a “tweakable PRF”, with an on-line/off-line optimization for the tweak.1 (In our
case, the input-length of TET is the “tweak” for the PRF and the tweak of TET
is the input to the PRF.)

We assume that the input length of TET is less than 2n bits, and we denote
by L the input length in bits encoded as an n-bit integer. Also denote the
tweak for TET (which is the input to the PRF) by T = 〈T1, . . . , Tm′〉 where
|T1| = · · · = |Tm′−1| = n and 1 ≤ |Tm′ | ≤ n.

To compute β ← PRFK(L, T ) we first compute X ← EK(L), then compute
β as a CBC-MAC of T , but before the last block-cipher application we xor
either the value αX or the value α2X (depending on whether the last block
is a full block or a partial block). In more details, we set V0 = 0 and then
Vi ← EK(Vi−1 ⊕ Ti) for i = 1, . . . , m′ − 1. Then, if the last block is a full block
(|Tm′ | = n) then we set β ← EK(αX ⊕ Vm′−1 ⊕ Tm′), and if the last block is a
partial block (|Tm′ | < n) then we set β ← EK(α2X ⊕ Vm′−1 ⊕ (Tm′10..0)).

Notice that the only difference between this function and the OMAC construc-
tion is that OMAC does not have the additional input L and it sets X ← EK(0).
Proving that this is a secure pseudo-random function is similar to the proof of
OMAC [IK03], and is omitted here.

We point out that on one hand, the length L is needed only before processing
the last tweak block, so this pseudo-random function is suited for streaming
applications where the length of messages is not known in advance.2 On the
other hand, if used with a fixed input length (where L is known ahead of time)
then the computation of X can be done off line, in which case we save one
block-cipher application during the on-line phase.

3.4 Some Other Details

To get a fully-specified mode of operation one needs to set many other small
details. Below I explain my choices for the details that I set, and describe those
that are still left unspecified.

1 Formally there is not much difference between a “tweakable” and “non-tweakable”
PRF, one can always process the tweak by concatenating it to the input. But here
it is convenient to make the distinction since we can offer some tweak-specific per-
formance optimization.

2 As explained in Section 3.5, TET is not a very good fit for such cases, but this PRF
functions can perhaps be used in applications other than TET.



Invertible Universal Hashing and the TET Encryption Mode 421

Table 1. Bad τ values for various input lengths, assuming n = 128

If the input length is then these elements are bad values for τ Bad key probability

512 bytes α(2128−1)/3, α2·(2128−1)/3 2−127

1024 bytes αi·(2128−1)/5 for i = 1, 2, 3, 4 2−126

4096 bytes αi·(2128−1)/257 for i = 1, 2, . . . , 256 2−120

65536 bytes αi·(2128−1)/17 for i = 1, 2, . . . , 16 2−124

The element α ∈ GF(2n). Recall that BPE uses a fixed primitive element α ∈
GF(2n). If the field GF(2n) is represented with a primitive polynomial, then
this fixed element should be set as the polynomial x (or 1/x), in which case a
multiplication by α can be implemented with an n-bit shift and a conditional
xor.3

The two hashing layers. I chose to use the same hashing keys τ, β for both
hashing layers. The security of the mode does not seem to be effected by this.
On the other hand, having different keys for the two hashing layers adds a
considerable burden to an implementation, especially it if optimizes the GF
multiplications by preparing some tables off line.

The hashing key τ . I also chose to derive the hashing key τ from the same
cipher key as the hashing key β, rather than being a separate key. (This
decision is rather arbitrary, I made it because I could not see any reason to
keep τ as a separate key.) Specifically, it can be set as τ ← PRFK(0, 0n) =
EK(α · EK(0)). Note that this is not a duplicate of any PRFK(L, T ), since
the input length L is always at least n bits.4

Of course, τ must be chosen so that for any message length m it holds that
σm �= 0 (where σm =

∑m
i=0 τm). Hence if setting τ ← PRFK(0, 0) results

in a bad value for τ then we can keep trying PRFK(0, 1), PRFK(0, 2), etc.
When using TET with fixed input length (containing m complete blocks),
we can just include a list of all the “bad τ values” for which σm = 0 with the
implementation. This list is fairly easy to construct: Denoting g = GCD(m+
1, 2n−1), when m is even the lists consists of αi·(2n−1)/g for i = 1, 2, . . . , g−1
(where α is a primitive element). When m is odd it consists of the same
elements and also of the element α0 = 1. In Table 1 we list the “bad τ
values” for various input lengths assuming n = 128.
The approach of having a fixed list of “bad τ values” may not work as well
when using TET with variable-input length. One way to handle this case is to
insist on τ being a primitive element in GF(2n), in which case we know that
σm �= 0 for all length m. (We can efficiently test is τ is a primitive element
given the prime factorization of 2n−1). But a better way of handling variable

3 The choice between setting α = x or α = 1/x depends on the endianess of the field
representation, and it should be made so that multiplication by α requires left shift
and not right shift.

4 Setting τ ← EK(0) would work just as well in this context, but the effort in proving
it is too big for the minuscule saving in running time.



422 S. Halevi

length is to allow different τ ’s for different input lengths. Specifically, when
handling a message of with m full blocks, we try PRFK(0, 0), PRFK(0, 1),
. . . and set τ to the first value for which σm �= 0. It is not hard to see that
this is just as secure as insisting on the same τ for all lengths (since we only
use τ to argue about collisions between messages of the same length).

Ordering the blocks for polynomial-evaluation. I chose to order theblocks
at the input of BPE in “reverse order”, evaluating the polynomial as

∑m
i=1

xiτ
m−i+1. The reason is to allow processing to start as soon as possible in the

case where the input arrives one block at a time. We would like to use Horner’s
rule when computing BPE(x), processing the blocks in sequence as

s = (. . . ((x1τ ⊕ x2)τ ⊕ x3)τ . . . ⊕ xm)τ

which means that x1 is multiplied by τm, x2 is multiplied by τm−1, etc.
Similarly when computing BPE−1(y) we would implement the polynomial-
evaluation as

s = (. . . ((y1τ ⊕ y2)τ ⊕ y3)τ . . . ⊕ ym)(τ/σ)

which means that y1 is multiplied by τm/σ, y2 is multiplied by τm−1/σ, etc.
The hashing direction. For each of the two hashing layers, one can use either

of BPE, BPE−1, B̃PE, or B̃PE
−1

. For the encryption direction, I chose to

use B̃PE
−1

for the first hashing layer and BPE−1 for the second layer. This
means that on decryption we use BPE as the first hashing layer and B̃PE
for the second layer.
I chose the inverse hash function on encryption and the functions themselves
on decryption because inverting the functions may be less efficient than
computing them in the forward direction (since one needs to multiply also
by τ/σ). In a typical implementation for storage, one would use encryption
when writing to storage and decryption when reading back from storage. As
most storage is optimized for read (at the expense of the less-frequent write
operations), it makes sense to allocate the faster operations for read in this
case too.
As for the choice between BPE and B̃PE, I chose to add the vector b in the
middle, right before and after the ECB layer. The rationale here is that it
is possible to do the computation β ← PRFK(L, T ) concurrently with the
multiplication by Mτ (or its inverse).

Given the choices above, the specification of the TET mode is given in Figure 2.
Other details that are not specified here are the choice of the underlying cipher and
the block-size n, and the representation of the field GF(2n) (including endianess
issues).

3.5 Performance of TET

As specified above, the TET mode can be used with variable input length, and
in the long version of this note [Hal07] we prove that it is secure when used in



Invertible Universal Hashing and the TET Encryption Mode 423

function PRFK(L, T1 · · · Tm′) // |L| = |T1| = · · · = |Tm′−1| = n, 1 ≤ |Tm′ | ≤ n

001 V0 ← 0, X ← EK(L)
002 for i ← 1 to m′ − 1 do Vi ← EK(Vi−1 ⊕ Ti)
003 if |Tm′ | = n then return EK(Vm′−1 ⊕ Tm′ ⊕ αX)
004 else return EK(Vm′−1 ⊕ Tm′ ⊕ α2X)

Algorithm TETK1,K2(T ; P1 · · · PmPm+1)

// |P1| = · · · = |Pm| = n, 0 ≤ |Pm+1| < n

101 L ← mn + |Pm+1| // input size (bits)
102 i = 0
103 τ ← PRFK1(0, i), σ ← 1 ⊕ τ ⊕ . . . ⊕ τm

104 if σ = 0 then i ← i + 1, goto 103
105 β ← PRFK1(L, T ), SP ← 0, SC ← 0

110 for i ← 1 to m do SP ← (SP ⊕ Pi) · τ
111 SP ← SP/σ
112 if |Pm+1| > 0 then
113 SP ← SP ⊕ Pm+1 padded with 10..0

120 for i ← 1 to m do
121 PP i ← Pi ⊕ SP
122 PPP i ← PP i ⊕ αi−1β
123 for i ← 1 to m − 1 do
124 CCC i ← EK2(PPP i)
125 if |Pm+1| > 0 then
126 MM ← EK2(PPPm)
127 CCCm ← EK2(MM )
128 Cm+1 ← Pm+1 ⊕ (MM truncated)
129 else CCCm ← EK2(PPPm)

130 for i ← 1 to m do
131 CC i ← CCC i ⊕ αi−1β
132 SC ← (SC ⊕ CC i) · τ
133 SC ← SC/σ
134 if |Pm+1| > 0 then
135 SC ← SC ⊕ Cm+1 padded with 10..0

140 for i ← 1 to m do
141 Ci ← CC i ⊕ SC

150 return C1 . . . CmCm+1

Algorithm TET−1
K1,K2

(T ; C1 · · · CmCm+1)

// |C1| = · · · = |Cm| = n, 0 ≤ |Cm+1| < n

201 L ← mn + |Cm+1| // input size (bits)
202 i = 0
203 τ ← PRFK1(0, i), σ ← 1 ⊕ τ ⊕ . . . ⊕ τm

204 if σ = 0 then i ← i + 1, goto 203
205 β ← PRFK1(L, T ), SP ← 0, SC ← 0

210 for i ← 1 to m do SC ← (SC ⊕ Ci) · τ
212 if |Cm+1| > 0 then
213 SC ← SC ⊕ Cm+1 padded with 10..0

220 for i ← 1 to m do
221 CC i ← Ci ⊕ SC
222 CCC i ← CC i ⊕ αi−1β
223 for i ← 1 to m − 1 do
224 PPP i ← E−1

K2
(CCC i)

225 if |Cm+1| > 0 then
226 MM ← E−1

K2
(CCCm)

227 PPPm ← E−1
K2

(MM )
228 Pm+1 ← Cm+1 ⊕ (MM truncated)
229 else PPPm ← E−1

K2
(CCCm)

230 for i ← 1 to m do
231 PP i ← PPP i ⊕ αi−1β
232 SP ← (SP ⊕ PP i) · τ
234 if |Cm+1| > 0 then
235 SP ← SP ⊕ Pm+1 padded with 10..0

240 for i ← 1 to m do
241 Pi ← PP i ⊕ SP

250 return P1 . . . PmPm+1

Fig. 2. Enciphering and deciphering under TET, with plaintext P = P1 . . . PmPm+1,
ciphertext C = C1 · · · CmCm+1, and tweak T . The element α ∈ GF(2n) is a fixed
primitive element.

this manner. However, its efficiency (at least in software) depends crucially on
pre-processing that is only possible when used with fixed input length (or at
least with a small number of possible lengths). The reason is that on encryption
one needs to multiply by τ/σ, which depends on the message length (since σ =∑m

i=0 τ i). When used with fixed input length, the value τ/σ can be computed
off line, and some tables can be derived to speed up the multiplication by τ/σ.
When used with variable input length, however, the value τ/σ must be computed
on-line, which at least for software implies a considerable cost. Hence, TET is
not very appealing as a variable-input-length mode.



424 S. Halevi

We stress, however, that the motivating application for TET, namely “sector-
level encryption”, is indeed a fixed-input-length application. Also, there are some
limited settings where one can use variable input length without suffering much
from the drawback above. For example, a “write once / read many times” appli-
cation, where the data is encrypted once and then decrypted many times, would
only need to worry about computing σ in the initial encryption phase (since σ
is not used during decryption). Also, the same value of σ is used for every bit-
length from mn to (m + 1)n − 1, so length variability within this limited range
in not effected.5

Below we analyze the performance characteristics of TET only for fixed input
length. With this assumption, the computation of the PRF function from above
takes exactly m′ applications of the cipher, where m′ is the number of blocks of
associated data (full or partial). (This is because the computation of the mask
value X ← EK(L) can be done off line.) Then we need either m or m − 1 GF-
multiplies for the polynomial evaluation (depending if we have m or m − 1 full
blocks), followed by m block-cipher applications for the ECB layer, and again m
or m − 1 GF multiplies. Altogether, we need m + m′ block-cipher applications
and either 2m or 2m − 2 GF multiplies. (The shift and xor operations that
are also needed are ignored in this description, since they are insignificant in
comparison.)

Table 2. Workload for enciphering an m-block input with a 1-block tweak

Mode CMC EME∗ XCB HCH TET
Block-cipher calls 2m + 1 2m + 1 + �m/n� m + 1 m + 3 m + 1

GF multiplies – – 2(m + 3) 2(m − 1) 2m or 2(m − 1)

Table 2 compares the number of block-cipher calls and GF multiplies in CMC,
EME∗, XCB, HCH, and TET.6 It is expected that software efficiency will be
proportional to these numbers. (As far as I know, the current “common wisdom”
is that computing a GF(2128) multiplication in software using the approach from
[Sho96] with reasonable-size tables, is about as fast as a single application of
AES-128.)

As for hardware implementations, all the modes except CMC are parallelizable
and pipelinable, so they can be made to run as fast as needed using sufficiently
large hardware. Table 3 describes a somewhat speculative efficiency compari-
son of hypothetical “fully pipelined” implementations of the modes from above
(except CMC). In that table I assume (following [YMK05]) that a one-cycle
GF(2128) multiplication is about three times the size of a module for computing

5 For example, an implementation can handle both 512-byte blocks and 520-byte
blocks with a single value of σ (assuming block length of n = 128 bits).

6 The other modes are not included since EME is essentially a special case of EME∗,
PEP an ABL4 are significantly less efficient than the others, and HCTR is almost
identical to HCH.



Invertible Universal Hashing and the TET Encryption Mode 425

Table 3. Hardware efficiency: A speculative comparison of pipelined implementations
for m-block input and 1-block tweak. Latency is number of cycles until first output
block, time is number of cycles until last output block, and size is measured in the
equivalent of number of AES-round modules.

Mode EME∗ XCB HCH TET
Latency m + 30 m + 13 m + 31 2m + 11

Time 2m + 10(�m/n� + 2) 2m + 27 2m + 31 2m + 11
Size 10 13 13 13

the AES round function, and that AES-128 is implemented as 10 such modules.
A few other relevant characteristics of these modes are discussed next.

Any input length. All of these modes except CMC support any input length
from n bits and up. CMC supports only input length which is a multiple
of n bits (but it should be relatively straightforward to extended it using
ciphertext-stealing).

Associated data. The modes EME∗, XCB and TET support tweaks of arbi-
trary length. CMC and HCH support only n-bit tweaks (but it is straight-
forward to extended them to support arbitrary-size tweaks).

Security proofs. The security of XCB was not proved formally, only a sketch
was given, and CMC was only proven secure with respect to fixed input-
length. The other modes were proven secure with respect to variable input-
length. Providing the missing proof seems fairly straightforward to me (but
one never knows for sure until the proof is actually written).

Number of keys. Although in principle it is always possible to derive all the
needed key material from just one key, different modes are specified with
different requirements for key material. In fact using two keys as in TET
(one for the ECB layer and one for everything else) offers some unexpected
practical advantages over using just one key.
Specifically, implementations sometimes need to be “certified” by standard
bodies (such as NIST), and one criterion for certification is that the im-
plementation uses an “approved mode of operation” for encryption. Since
standard bodies are slow to approve new modes, it may be beneficial for a
TET implementation to claim that it uses the “approved” ECB mode with
pre-and post-processing, and moreover the pre- and post-processing is inde-
pendent of the ECB key. Also, detaching the ECB key from the key that
is used elsewhere may make it easier to use a hardware accelerator that
supports ECB mode.

4 Security of TET

We relate the security of TET to the security of the underlying primitives from
which it is built as follows:



426 S. Halevi

Theorem 1. [TET security] Fix n, s ∈ N. Consider an adversary attacking
the TET mode with a truly random permutation over {0, 1}n in place of the block
cipher and a truly random function instead of PRF, such that the total length of
all the queries that the attacker makes is at most s blocks altogether.

The advantage of this attacker in distinguishing TET from a truly random
tweakable length-preserving permutation is at most 1.5s2/φ(2n − 1) (where φ is
Euler’s totient function). Using the notations from Appendix A, we have

Adv±�prp
TET (s) ≤ 3s2

2φ(2n − 1)

The proof appears in the long version of this note [Hal07]. The intuition is that
as long as there are no block collisions in the hash function, then the random
permutation in the ECB layer will be applied to new blocks, so it will will output
random blocks and the answer that the attacker will see is therefore random. 
�

Corollary 1. With the same setting as in Theorem 1, consider an attacker
against TET with a specific cipher E and a specific PRF F , where the attack
uses at most total of s′ blocks of associated data. Then

Adv±�prp
TET[E](t, s, s

′) ≤ 3s2

2φ(2n − 1)
+ 2( Adv±prp

E (t′, s) + Advprf
PRF (t′, s′))

where t′ = t + O(n(s + s′)). �

5 Conclusions

We presented a new method for invertible “blockwise universal” hashing which
is about as efficient as polynomial-evaluation hash, and used it in a construction
of a tweakable enciphering scheme called TET. This complements the current
lineup of tweakable enciphering schemes by providing a scheme in the family of
“hash-ECB-hash” which is as efficient as the schemes in the “hash-CTR-hash”
family. We also expect that the hashing scheme itself will find other uses beyond
TET.

Acknowledgments. I would like to thank the participants of the IEEE SISWG
working group for motivating me to write this note. I also thank Doug Whiting
and Brian Gladman for some discussions about this mode, and the anonymous
CRYPTO reviewers for their comments.

References

[CS06a] Chakraborty, D., Sarkar, P.: HCH: A new tweakable enciphering scheme
using the hash-encrypt-hash approach. In: Barua, R., Lange, T. (eds.)
INDOCRYPT 2006. LNCS, vol. 4329, pp. 287–302. Springer, Heidelberg
(2006)



Invertible Universal Hashing and the TET Encryption Mode 427

[CS06b] Chakraborty, D., Sarkar, P.: A new mode of encryption providing a tweak-
able strong pseudo-random permutation. In: Robshaw, M. (ed.) FSE 2006.
LNCS, vol. 4047, pp. 293–309. Springer, Heidelberg (2006)

[FM04] Fluhrer, S.R., McGrew, D.A.: The extended codebook (XCB) mode
of operation. Technical Report, 2007/278, IACR ePrint archive (2004)
http://eprint.iacr.org/2004/278/

[GM84] Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of Computer
and System Sciences 28(2), 270–299 (1984)

[Hal04] Halevi, S.: EME∗: extending EME to handle arbitrary-length messages with
associated data. In: Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT
2004. LNCS, vol. 3348, pp. 315–327. Springer, Heidelberg (2004)

[Hal07] Halevi, S.: Invertible Universal Hashing and the TET Encryption Mode.
In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 412–429.
Springer, Heidelberg (2007) Long version available on-line at, http://
eprint.iacr.org/2007/014/

[HR03] Halevi, S., Rogaway, P.: A tweakable enciphering mode. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 482–499. Springer, Heidelberg (2003)

[HR04] Halevi, S., Rogaway, P.: A parallelizable enciphering mode. In: Okamoto,
T. (ed.) CT-RSA 2004. LNCS, vol. 2964, pp. 292–304. Springer, Heidelberg
(2004)

[IK03] Iwata, T., Kurosawa, K.: OMAC: One-Key CBC MAC. In: Johansson, T.
(ed.) FSE 2003. LNCS, vol. 2887, pp. 129–153. Springer, Heidelberg (2003)

[LR88] Luby, M., Rackoff, C.: How to construct pseudorandom permutations from
pseudorandom functions. SIAM Journal of Computing 17(2) (1988)

[LRW02] Liskov, M., Rivest, R.L., Wagner, D.: Tweakable block ciphers. In: Yung,
M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 31–46. Springer, Heidelberg
(2002)

[MM82] Meyr, C.H., Matyas, S.M.: Cryptography: A New Dimension in Computer
Data Security. John Wiley & Sons, Chichester (1982)

[MV04] McGrew, D.A., Viega, J.: Arbitrary block length mode. Manuscript
(2004) Available on-line from http://grouper.ieee.org/groups/1619/
email/pdf00005.pdf

[NR97] Naor, M., Reingold, O.: A pseudo-random encryption mode (1997) Manu-
script available from http://www.wisdom.weizmann.ac.il/∼naor/

[NR99] Naor, M., Reingold, O.: On the construction of pseudo-random permuta-
tions: Luby-Rackoff revisited. Journal of Cryptology 12(1), 29–66 (1999)

[Sho96] Shoup, V.: On fast and provably secure message authentication based on
universal hashing. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109,
pp. 74–85. Springer, Heidelberg (1996)

[WFW05] Wang, P., Feng, D., Wu, W.: HCTR: A variable-input-length enciphering
mode. In: Feng, D., Lin, D., Yung, M. (eds.) CISC 2005. LNCS, vol. 3822,
pp. 175–188. Springer, Heidelberg (2005)

[YMK05] Yang, B., Mishra, S., Karri, R.: A High Speed Architecture for Ga-
lois/Counter Mode of Operation (GCM). Technical Report, 2005/146,
IACR ePrint archive (2005), http://eprint.iacr.org/2005/146/

A Preliminaries

A tweakable enciphering scheme is a function E : K × T × M → M where
M =

⋃
i∈I{0, 1}i is the message space (for some nonempty index set I ⊆ N)

http://eprint.iacr.org/2004/278/
http://eprint.iacr.org/2007/014/
http://eprint.iacr.org/2007/014/
http://grouper.ieee.org/groups/1619/email/pdf00005.pdf
http://grouper.ieee.org/groups/1619/email/pdf00005.pdf
http://www.wisdom.weizmann.ac.il/~naor/
http://eprint.iacr.org/2005/146/


428 S. Halevi

and K �= ∅ is the key space and T �= ∅ is the tweak space. We require that for
every K ∈ K and T ∈ T we have that E(K, T, ·) = ET

K(·) is a length-preserving
permutation on M. The inverse of an enciphering scheme E is the enciphering
scheme D = E−1 where X = DT

K(Y ) if and only if ET
K(X) = Y . A block cipher

is the special case of a tweakable enciphering scheme where the message space is
M = {0, 1}n (for some n ≥ 1) and the tweak space is the singleton set containing
the empty string. The number n is called the blocksize. By Perm(n) we mean
the set of all permutations on {0, 1}n. By PermT (M) we mean the set of all
functions π : T × M → M where π(T, ·) is a length-preserving permutation.

An adversary A is a (possibly probabilistic) algorithm with access to some
oracles. Oracles are written as superscripts. By convention, the running time of
an algorithm includes its description size. The notation A ⇒ 1 describes the
event that the adversary A outputs the bit one.

Security measure. For a tweakable enciphering scheme E : K × T × M → M
we consider the advantage that the adversary A has in distinguishing E and its
inverse from a random tweakable permutation and its inverse: Adv±�prp

E (A) =

Pr
[
K

$← K : AEK(·,·) E−1
K (·,·) ⇒ 1

]
− Pr

[
π

$← PermT (M) : Aπ(·,·) π−1(·,·) ⇒ 1
]

The notation shows, in the brackets, an experiment to the left of the colon and
an event to the right of the colon. We are looking at the probability of the
indicated event after performing the specified experiment. By X

$← X we mean
to choose X at random from the finite set X . In writing ±p̃rp the tilde serves
as a reminder that the PRP is tweakable and the ± symbol is a reminder that
this is the “strong” (chosen plaintext/ciphertext attack) notion of security. For
a block cipher, we omit the tilde.

Without loss of generality we assume that an adversary never repeats an
encipher query, never repeats a decipher query, never queries its deciphering
oracle with (T, C) if it got C in response to some (T, M) encipher query, and
never queries its enciphering oracle with (T, M) if it earlier got M in response to
some (T, C) decipher query. We call such queries pointless because the adversary
“knows” the answer that it should receive.

When R is a list of resources and Advxxx
Π (A) has been defined, we write

Advxxx
Π (R) for the maximal value of Advxxx

Π (A) over all adversaries A that use
resources at most R. Resources of interest are the running time t, the number
of oracle queries q, and the total number of n-bit blocks in all the queries s. The
name of an argument (e.g., t, q, s) will be enough to make clear what resource
it refers to.

B Intellectual-Property Issues

The original motivation for devising the TET mode was to come up with a
reasonably efficient mode that is “clearly patent-free”. The IEEE security-in-
storage working group (SISWG) was working on a standard for length-preserving



Invertible Universal Hashing and the TET Encryption Mode 429

encryption for storage, and some of the participants expressed the wish to have
such a mode. (Disclaimer: Not being a patent lawyer, I can only offer my educated
guesses for the IP status of the various modes. The assessment below reflects only
my opinion about where things stand.)

The modes CMC/EME/EME∗ from the “encrypt-mix-encrypt” family are all
likely to be patent-encumbered, due to US Patent Application 20040131182A1
from the University of California (which as of this writing was not yet issued).
Similarly, the XCB mode – which is the first proposed mode in the “hash-CTR-
hash” family – is likely to be patent-encumbered due to a US patent application
US20070081668A1 from Cisco Systems (also still not issued as of this writing).
The status of the other members of the “hash-CTR-hash” family is unclear: they
may or may not be covered by the claims of the Cisco patent when it is issued.

This state of affairs left the “hash-ECB-hash” approach as the best candidate
for finding patent-free modes: this approach is based on the paper of Naor and
Reingold [NR97] that pre-dates all these modes by at least five years, and for
which no patent was filed. Specifically for TET, I presented the basic construction
from Section 2 in an open meeting of the IEEE SISWG in October of 2002 (as
well as in an email message that I sent the SISWG mailing list on October
9, 2002), and I never filed for any patent related to this construction. Thus it
seems unlikely to me that there are any patents that cover either the general
“hash-ECB-hash” approach or TET in particular.



Reducing Trust in the PKG in Identity Based
Cryptosystems

Vipul Goyal

Department of Computer Science
University of California, Los Angeles

vipul@cs.ucla.edu

Abstract. One day, you suddenly find that a private key corresponding
to your Identity is up for sale at e-Bay. Since you do not suspect a key
compromise, perhaps it must be the PKG who is acting dishonestly and
trying to make money by selling your key. How do you find out for sure
and even prove it in a court of law?

This paper introduces the concept of Traceable Identity based En-
cryption which is a new approach to mitigate the (inherent) key escrow
problem in identity based encryption schemes. Our main goal is to re-
strict the ways in which the PKG can misbehave. In our system, if the
PKG ever maliciously generates and distributes a decryption key for an
Identity, it runs the risk of being caught and prosecuted.

In contrast to other mitigation approaches, our approach does not
require multiple key generation authorities.

1 Introduction

The notion of identity based encryption (IBE) was introduced by Shamir [Sha84]
as an approach to simplify public key and certificate management in a public
key infrastructure (PKI). Although the concept was proposed in 1984 [Sha84], it
was only in 2001 that a practical and fully functional IBE scheme was proposed
by Boneh and Franklin [BF01]. Their construction used bilinear maps and could
be proven secure in the random oracle model. Following that work, a rapid
development of identity based PKI has taken place. A series of papers [CHK03,
BB04a, BB04b, Wat05, Gen06] striving to achieve stronger notions of security
led to efficient IBE schemes in the standard model. There now exist hierarchical
IBE schemes [GS02, HL02, BBG05], identity based signatures and authentication
schemes [CC03, FS86, FFS88] and a host of other identity based primitive.

In an IBE system, the public key of a user may be an arbitrary string like
an e-mail address or other identifier. This eliminates certificates altogether; the
sender could just encrypt the message with the identity of the recipient without
having to first obtain his public key (and make sure that the obtained public
key is the right one). Of course, users are not capable of generating a private key
for an identity themselves. For this reason, there is a trusted party called the
private key generator (PKG) who does the system setup. To obtain a private key

A. Menezes (Ed.): CRYPTO 2007, LNCS 4622, pp. 430–447, 2007.
c© International Association for Cryptologic Research 2007



Reducing Trust in the PKG in Identity Based Cryptosystems 431

for his identity, a user would go to the PKG and prove his identity. The PKG
would then generate the appropriate private key and pass it on to the user.

Since the PKG is able to compute the private key corresponding to any iden-
tity, it has to be completely trusted. The PKG is free to engage in malicious
activities without any risk of being confronted in a court of law. The malicious
activities could include: decrypting and reading messages meant for any user,
or worse still: generating and distributing private keys for any identity. This, in
fact, has been cited as a reason for the slow adoption of IBE despite its nice
properties in terms of usability. It has been argued that due to the inherent key
escrow problem, the use of IBE is restricted to small and closed groups where a
central trusted authority is available [ARP03, LBD+04, Gen03].

One approach to mitigate the key escrow problem problem is to employ mul-
tiple PKGs [BF01]. In this approach, the master key for the IBE system is
distributed to multiple PKGs; that is, no single PKG has the knowledge of the
master key. The private key generation for an identity is done in a threshold
manner. This is an attractive solution and successfully avoids placing trust in
a single entity by making the system distributed. However, this solution comes
at the cost of introducing extra infrastructure and communication. It is bur-
densome for a user to go to several key authorities, prove his identity to each of
them and get a private key component (which has to be done over a secure chan-
nel). Further, maintaining multiple independent entities for managing a single
PKI might be difficult in a commercial setting (e.g., the PKI has to be jointly
managed by several companies).

To the best of our knowledge, without making the PKG distributed, there is
no known solution to mitigate the problem of having to place trust in the PKG.

A New Approach. In this paper, we explore a new approach to mitigate the
above trust problem. Very informally, the simplest form of our approach is as
follows:

– In the IBE scheme, there will be an exponential (or super-polynomial) num-
ber of possible decryption keys corresponding to every identity ID.

– Given one decryption key for an identity, it is intractable to find any other.
– A users gets the decryption key corresponding to his identity from the PKG

using a secure key generation protocol. The protocol allows the user to obtain
a single decryption key dID for his identity without letting the PKG know
which key he obtained.

– Now if the PKG generates a decryption key d′ID for that identity for malicious
usage, with all but negligible probability, it will be different from the key
dID which the user obtained. Hence the key pair (dID, d′ID) is a cryptographic
proof of malicious behavior of the PKG (since in normal circumstances, only
one key per identity should be in circulation).

The PKG can surely decrypt all the user message passively. However, the PKG
is severely restricted as far as the distribution of the private key d′ID is concerned.
The knowledge of the key d′ID enables an entity E to go to the honest user U



432 V. Goyal

(with identity ID and having key dID) and together with him, sue the PKG by
presenting the pair (d′ID, dID) as a proof of fraud (thus potentially closing down
its business or getting some hefty money as a compensation which can be happily
shared by E and U). This means that if the PKG ever generates a decryption
key for an identity for malicious purposes, it runs the risk that the key could fall
into “right hands” which could be fatal.

The above approach can be compared to a regular (i.e., not identity based)
PKIs. In a regular PKI, a user will go to a CA and get a certificate binding
his identity with his public key. The CA could surely generate one more cer-
tificate binding a malicious public key to his identity. However, two certificates
corresponding to the same identity constitute a cryptographic proof of fraud.
Similarly in our setting, the PKG is free to generate one more decryption key
for his identity. However, two decryption keys corresponding to the same iden-
tity constitute a proof of fraud. Of course, there are important differences. In a
regular PKI, the CA has to actively send the fraudulent certificate to potential
encrypters (which is risky for the CA) while in our setting, the PKG could just
decrypt the user messages passively. However, we believe that the IBE setting is
more demanding and ours is nonetheless a step in the right direction.

We call an identity based encryption scheme of the type discussed above as
a traceable identity based encryption (T-IBE) scheme. This is to reflect the fact
that if a malicious decryption key is discovered, it can be traced back either
to the corresponding user (if his decryption key is the same as the one found)
or to the PKG (if the user has a different decryption key). We formalize this
notion later on in the paper. We remark that what we discussed above is a slight
simplification of our T-IBE concept. Given a decryption key for an identity, we
allow a user to compute certain other decryption keys for the same identity as
long as all the decryption keys computable belong to the same family (a family
can be seen as a subspace of decryption keys). Thus in this case, two decryption
keys belonging to different families is a cryptographic proof of malicious behavior
of the PKG.

Although the concept of T-IBE is interesting, we do not expect it to be usable
on its own. We see this concept more as a stepping stone to achieving what we
call a black-box traceable identity based encryption discussed later in this section.

Our Constructions. We formalize the notion of traceable identity based encryp-
tion and present two construction for it; one very efficient but based on a strong
assumption, the other somewhat inefficient but based on the standard decisional
BDH assumption.

Our first construction is based on the identity based encryption scheme re-
cently proposed by Gentry [Gen06]. The scheme is the most efficient IBE con-
struction known to date without random oracle. Apart from computational effi-
ciency, it enjoys properties such as short public parameters and a tight security
reduction (albeit at the cost of using a strong assumption). Remarkably, we are
able to convert Gentry’s scheme to a T-IBE scheme without any changes whatso-
ever to the basic cryptosystem. We are able to construct a secure key generation



Reducing Trust in the PKG in Identity Based Cryptosystems 433

protocol as per our requirement for the basic cryptosystem and then present new
proofs of security to show that the resulting system is a T-IBE system.

Our second construction of traceable identity based encryption is based on the
decisional BDH assumption and uses the IBE scheme of Waters [Wat05] and the
Fuzzy IBE scheme of Sahai and Waters [SW05] as building blocks. We remark
that the construction is not very efficient and requires several pairing operations
per decryption.

Black-Box Traceable Identity based Encryption. In traceable identity based en-
cryption, as explained we consider the scenario when a PKG generates and tries
to distribute a decryption key corresponding to an identity. T-IBE specifically
assumes that the key is a well-formed decryption key. However, one can imagine
a scenario where the PKG constructs a malformed decryption key which, when
used in conjunction with some other decryption process, is still able to decrypt
the ciphertexts. In the extreme case, there could a black box (using an unknown
key and algorithm) which is able to decrypt the ciphertexts. Given such a box, a
third party (such as the court of law), possibly with the cooperation of the PKG
and the user, should be able to trace the box back to its source. That is, it should
be able to determine whether it was the PKG or the user who was involved in
the creation of this black box. We call such a system as black-box traceable iden-
tity based encryption system. This is a natural extension of the T-IBE concept
and is closely related to the concept of black-box traitor tracing in broadcast
encryption [CFN94, BSW06]. We leave the construction of a black-box T-IBE
scheme as an important open problem.

We stress that black-box T-IBE is really what one would like to use in practice.
We intend the current work only to serve as an indication of what might be
possible, and as motivation for further work in this direction.

Related Work. To our knowledge, T-IBE is the first approach for any kind of mit-
igation to the problem of trust in the PKG without using multiple PKGs. On the
multiple PKGs side, Boneh and Franklin [BF01] proposed an efficient approach
to make the PKG distributed in their scheme using techniques from threshold
cryptography. Lee et al [LBD+04] proposed a variant of this approach using
multiple key privacy agents (KPAs). Also relevant are the new cryptosystems
proposed by Gentry [Gen03] and Al-Riyami and Paterson [ARP03]. Although
their main motivation was to overcome the key escrow problem, these works are
somewhat orthogonal to ours since these cryptosystems are not identity based.

Other Remarks. We only consider identity based encryption in this paper.
The analogue of T-IBE for identity based signatures appears straightforward
to achieve. We also note that it may be possible to profitably combine our ap-
proach with the multiple PKG approach and exploit the mutual distrust between
the PKGs. For example if two (or more) PKGs collude together to generate a
decryption key for an identity, each PKG knows that it has left a cryptographic
proof of its fraud with others. We can have a system where the PKG who presents



434 V. Goyal

this proof of fraud to the court is not penalized. Now since a PKG has the power
to sue another (to close down its business and have one less competitor), this
seems to be an effective fraud prevention idea. We do not explore this approach
in this paper and defer it to future work.

2 Preliminaries

2.1 Bilinear Maps

We present a few facts related to groups with efficiently computable bilinear
maps. Let G1 and G2 be two multiplicative cyclic groups of prime order p. Let
g be a generator of G1 and e be a bilinear map, e : G1 × G1 → G2. The bilinear
map e has the following properties:

1. Bilinearity: for all u, v ∈ G1 and a, b ∈ Zp, we have e(ua, vb) = e(u, v)ab.
2. Non-degeneracy: e(g, g) �= 1.

We say that G1 is a bilinear group if the group operation in G1 and the
bilinear map e : G1 × G1 → G2 are both efficiently computable. Notice that the
map e is symmetric since e(ga, gb) = e(g, g)ab = e(gb, ga).

2.2 Complexity Assumptions

Decisional Bilinear Diffie-Hellman (BDH) Assumption. Let a, b, c, z ∈ Zp be
chosen at random and g be a generator of G1. The decisional BDH assumption
[BB04a, SW05] is that no probabilistic polynomial-time algorithm B can distin-
guish the tuple (A = ga, B = gb, C = gc, e(g, g)abc) from the tuple (A = ga, B =
gb, C = gc, e(g, g)z) with more than a negligible advantage. The advantage of B is

∣∣Pr[B(A, B, C, e(g, g)abc) = 0] − Pr[B(A, B, C, e(g, g)z) = 0]
∣∣

where the probability is taken over the random choice of the generator g, the
random choice of a, b, c, z in Zp, and the random bits consumed by B.

Decisional Truncated q-ABDHE Assumption. The truncated augmented bilin-
ear Diffie-Hellman exponent assumption (truncated q-ABDHE assumption) was
introduced by Gentry [Gen06] and is very closely related to the q-BDHE prob-
lem [BBG05] and the q-BDHI problem [BB04a]. Let g be a generator of G1. The
decisional truncated q-ABDHE assumption is: given a vector of q + 3 elements

(g′, g′(α
q+2), g, gα, g(α2), . . . , g(αq))

no PPT algorithm B can distinguish e(g, g′)(α
q+1) from a random element Z ∈ G2

with more than a negligible advantage. The advantage of B is defined as



Reducing Trust in the PKG in Identity Based Cryptosystems 435

∣∣∣∣Pr[B(g′, g′(α
q+2), g, gα, g(α2), . . . , g(αq), e(g, g′)(α

q+1)) = 0]

− Pr[B(g′, g′(α
q+2), g, gα, g(α2), . . . , g(αq), Z) = 0]

∣∣∣∣
where the probability is taken over the random choice of generator g, g′ ∈ G1,
the random choice of α ∈ Zp, the random choice of Z ∈ G2, and the random
bits consumed by B.

Computational q-BSDH Assumption. The q-Strong Diffie-Hellman assumption
(q-SDH assumption) was introduced by Boneh and Boyen [BB04c] for the con-
struction of short signatures where it was also proven to be secure in the generic
group model. This assumption was also later used in the construction of short
group signatures [BBS04]. Let g be a generator of G1. The q-SDH assumption
is defined in (G, G) as follows. Given a vector of q + 1 elements

(g, gα, g(α2), . . . , g(αq))

no PPT algorithm A can compute a pair (r, g1/(α+r)) where r ∈ Zp with more
than a negligible advantage. The advantage of A is defined as

∣∣∣ Pr[A(g, gα, g(α2), . . . , g(αq)) = (r, g1/(α+r))]
∣∣∣

The q-BSDH assumption is defined identically to q-SDH except that now A
is challenged to compute (r, e(g, g)1/(α+r)). Note that the q-BSDH assumption
is already implied by the q-SDH assumption.

2.3 Miscellaneous Primitives

Zero-knowledge Proof of Knowledge of Discrete Log. Informally, a zero-knowledge
proof of knowledge (ZK-POK) of discrete log protocol enables a prover to prove to
a verifier that it possesses the discrete log r of a given group element R in question.
Schnorr [Sch89] constructed an efficient number theoretic protocol to give a ZK-
POK of discrete log.

A ZK-POK protocol has two distinct properties: the zero-knowledge property
and the proof of knowledge properties. The former implies the existence of a
simulator S which is able to simulate the view of a verifier in the protocol
from scratch (i.e., without being given the witness as input). The latter implies
the existence of a knowledge-extractor Ext which interacts with the prover and
extracts the witness using rewinding techniques. For more details on ZK-POK
systems, we refer the reader to [BG92].

1-out-of-2 Oblivious Transfer. Informally speaking, a 1-out-of-2 oblivious trans-
fer protocol allows a receiver to choose and receive exactly one of the two string
from the sender, such that the other string is computationally hidden from the
receiver and the choice of the receiver is computationally hidden from the sender.



436 V. Goyal

Oblivious transfer was first introduced by [Rab81] while the 1-out-of-2 variant
was introduced by [EGL85]. Various efficient constructions of 1-out-of-2 obliv-
ious transfer are known based on specific assumptions such factoring or Diffie-
Hellman [NP01, Kal05].

3 The Definitions and the Model

A Traceable Identity Based Encryption (T-IBE) scheme consists of five compo-
nents.

Setup. This is a randomized algorithm that takes no input other than the implicit
security parameter. It outputs the public parameters PK and a master key MK.

Key Generation Protocol. This is an interactive protocol between the public
parameter generator PKG and the user U . The common input to PKG and U are:
the public parameters PK and the identity ID (of U) for which the decryption
key has to be generated. The private input to PKG is the master key MK.
Additionally, PKG and U may use a sequence of random coin tosses as private
inputs. At the end of the protocol, U receives a decryption key dID as its private
output.

Encryption. This is a randomized algorithm that takes as input: a message m,
an identity ID, and the public parameters PK. It outputs the ciphertext C.

Decryption. This algorithm takes as input: the ciphertext C that was encrypted
under the identity ID, the decryption key dID for ID and the public parameters
PK. It outputs the message m.

Trace. This algorithm associates each decryption key to a family of decryption
keys. That is, the algorithm takes as input a well-formed decryption key dID and
outputs a decryption key family number nF .

Some additional intuition about the relevance of trace algorithm is as follows.
In a T-IBE system, there are a super-polynomial number of families of decryp-
tion keys. Each decryption key dID for an identity ID will belong to a unique
decryption key family (denoted by the number nF ). Roughly speaking, in the
definitions of security we will require that: given a decryption key belonging to a
family, it should be intractable to find a decryption key belonging to a different
family (although it may be possible to find another decryption key belonging to
the same family).

To define security for a traceable identity based encryption system, we first
define the following games.

The IND-ID-CPA game. The IND-ID-CPA game for T-IBE is very similar to the
IND-ID-CPA for standard IBE [BF01].

Setup. The challenger runs the Setup algorithm of T-IBE and gives the public
parameters PK to the adversary.



Reducing Trust in the PKG in Identity Based Cryptosystems 437

Phase 1. The adversary runs the Key Generation protocol with the challenger
for several adaptively chosen identities ID1, . . . , IDq and gets the decryption keys
dID1 , . . . , dIDq .

Challenge. The adversary submits two equal length messages m0 and m1 and
an identity ID not equal to any of the identities quries in Phase 1. The challenger
flips a random coin b and encrypts mb with ID. The ciphertext C is passed on
to the adversary.

Phase 2. This is identical to Phase 1 except that adversary is not allowed to
ask for a decryption key for ID.

Guess. The adversary outputs a guess b′ of b.
The advantage of an adversary A in this game is defined as Pr[b′ = b] − 1

2 .
We note that the above game can extended to handle chosen-ciphertext at-

tacks in the natural way by allowing for decryption queries in Phase 1 and Phase
2. We call such a game to be the IND-ID-CCA game.

The FindKey game. The FindKey game for T-IBE is defined as follows.

Setup. The adversary (acting as an adversarial PKG ) generates and passes the
public parameters PK and an identity ID on to the challenger. The challenger
runs a sanity check on PK and aborts if the check fails.

Key Generation. The challenger and the adversary then engage in the key
generation protocol to generate a decryption key for the identity ID. The chal-
lenger gets the decryption dID as output and runs a sanity check on it to ensure
that it is well-formed. It aborts if the check fails.

Find Key. The adversary outputs a decryption key d′ID. The challenger runs a
sanity check on d′ID and aborts if the check fails.

Let SF denote the event that trace(d′ID) = trace(dID), i.e., d′ID and dID belong
to the same decryption key family. The advantage of an adversary A in this
game is defined as Pr[SF ].

We note that the above game can be extended to include a decryption phase
where the adversary adaptively queries the challenger with a sequence of cipher-
texts C1, . . . , Cm. The challenger decrypts Ci with its key dID and sends the
resulting message mi. This phase could potentially help the adversary deduce
information about the decryption key family of dID if it is able to present a
maliciously formed ciphertext and get the challenger try to decrypt it.

However, if the adversary was somehow restricted to presenting only well-
formed ciphertexts, the decrypted message is guaranteed to contain no informa-
tion about the decryption key family (since decryption using every well-formed
key would lead to the same message). This can be achieved by adding a cipher-
text sanity check phase during decryption. In both of our constructions, we take
this route instead of adding a decryption phase to the FindKey game.

The ComputeNewKey game. The ComputeNewKey game for T-IBE is defined
as follows.



438 V. Goyal

Setup. The challenger runs the Setup algorithm of T-IBE and gives the public
parameters PK to the adversary.

Key Generation. The adversary runs the Key Generation protocol with the
challenger for several adaptively chosen identities ID1, . . . , IDq and gets the de-
cryption keys dID1 , . . . , dIDq .

New Key Computation. The adversary outputs two decryption keys d1
ID and

d2
ID for an identity ID. The challenger runs a key sanity check on both of them

and aborts if the check fails.
Let DF denote the event that trace(d1

ID) �= trace(d2
ID), i.e., d1

ID and d2
ID belong

to different decryption key families. The advantage of an adversary A in this
game is defined as Pr[DF ].

We also define a Selective-ID ComputeNewKey game where the adversary has
to declare in advance (i.e., before the setup phase) the identity ID for which it
will do the new key computation. The advantage of the adversary is similarly
defined to be the probability of the event that it is able to output two decryption
keys from different decryption key families for the pre-declared identity ID. This
weakening of the game can be seen as similar to weakening of the IND-ID-CPA
game by some previously published papers [CHK03, BB04a, SW05, GPSW06].

Definition 1. A traceable identity based encryption scheme is IND-ID-CPA se-
cure if all polynomial time adversaries have at most a negligible advantage in the
IND-ID-CPA game, the FindKey game and the ComputeNewKey game. IND-ID-
CCA security for T-IBE is defined similarly.

4 Construction Based on Gentry’s Scheme

Our first construction of traceable identity based encryption is based on the
identity based encryption scheme recently proposed by Gentry [Gen06]. The
scheme is the most efficient IBE construction known to date without random
oracle. Apart from computational efficiency, it enjoys properties such as short
public parameters and a tight security reduction. This comes at the cost of
using a stronger assumption known as the truncated q-ABDHE which is a vari-
ant of an assumption called q-BDHE introduced by Boneh, Boyen and Goh
[BBG05].

Remarkably, we are able to convert Gentry’s scheme to a T-IBE scheme with-
out any changes whatsoever to the basic cryptosystem. We are able to construct
a secure key generation protocol as per our requirement for the basic cryptosys-
tem and then present new proofs of security to show the negligible advantage of
the adversary in the three games of our T-IBE model. Our proofs are based on
the truncated q-ABDHE and the q-BSDH assumption (see Section 2). The end
result is a T-IBE scheme which is as efficient as the best known IBE scheme with-
out random oracle. We view this fact as evidence that the additional traceability
property does not necessarily come at the cost of a performance penalty.



Reducing Trust in the PKG in Identity Based Cryptosystems 439

4.1 The Construction

Let G1 be a bilinear group of prime order p, and let g be a generator of G1. In
addition, let e : G1 × G1 → G2 denote a bilinear map. A security parameter, κ,
will determine the size of the groups.

As discussed before, the basic cryptosystem (i.e., Setup, Encryption and De-
cryption) is identical to Gentry’s [Gen06]. For completeness, we describe the
whole T-IBE scheme. Parts of this section are taken almost verbatim from
[Gen06].

Setup. The PKG picks random generators g, h1, h2, h3 ∈ G1 and a random α ∈
Zp. It sets g1 = gα and then chooses a hash function H from a family of universal
one-way hash function. The published public parameters PK and the master key
MK are given by

PK = g, g1, h1, h2, h3, H MK = α

Key Generation Protocol. This is the protocol through which a user U with an
identity ID can securely get a decryption key dID from PKG . As in [Gen06], PKG
aborts if ID = α. The key generation protocol proceeds as follows.

1. The user U selects a random r ∈ Zp and sends R = hr
1 to the PKG .

2. U gives to PKG a zero-knowledge proof of knowledge of the discrete log (as
in Section 2) of R with respect to h1.

3. The PKG now chooses three random numbers r′, rID,2, rID,3 ∈ Zp. It then
computes the following values

(r′, h′ID,1), (rID,2, hID,2), (rID,3, hID,3)

where h′ID,1 = (Rg−r′
)1/(α−ID) and hID,i = (hig

−rID,i)1/(α−ID), i ∈ {2, 3}

and sends them to the user U .
4. U computes rID,1 = r′/r and hID,1 = (h′ID,1)

1/r. Note that since h′ID,1 =
(hr

1g
−r′

)1/(α−ID), hID,1 = ((hr
1)1/r(g−r′

)1/r)1/(α−ID) = (h1g
−rID,1)1/(α−ID). It

sets the decryption key dID = {(rID,i, hID,i) : i ∈ {1, 2, 3}}.
5. U now runs a key sanity check on dID as follows. It computes gα−ID = g1/gID

and checks if e(hID,i, g
α−ID) ?= e(hig

−rID,i , g) for i ∈ {1, 2, 3}. U aborts if the
check fails for any i.

At the end of this protocol, U has a well-formed decryption key dID for the
identity ID.

Encryption. To encrypt a message m ∈ G2 using identity ID ∈ Zp, generate a
random s ∈ Zp and compute the ciphertext C as follows

C = (gs
1g
−s.ID, e(g, g)s, m·e(g, h1)−s, e(g, h2)se(g, h3)sβ)

where for C = (u, v, w, y), we set β = H(u, v, w).



440 V. Goyal

Decryption. To decrypt a ciphertext C = (u, v, w, y) with identity ID, set β =
H(u, v, w) and test whether

y = e(u, hID,2hID,3
β)vrID,2+rID,3β

If the above check fails, output ⊥, else output

m = w·e(u, hID,1)vrID,1

For additional intuition about the system and its correctness, we refer the
reader to [Gen06]. We also note that the ciphertext sanity check in the decryption
algorithm rejects all invalid ciphertexts as shown in [Gen06].

Trace. This algorithm takes a well-formed decryption key dID = {(rID,i, hID,i) :
i ∈ {1, 2, 3}} and outputs the decryption key family number nF = rID,1. Hence
if rID,1 = r′ID,1 for two decryption keys dID and d′ID, then trace(d′ID) = trace(dID)
(i.e., the two keys belong to the same decryption key family).

4.2 Security Proofs

Theorem 1. The advantage of an adversary in the IND-ID-CCA game is negligi-
ble for the above traceable identity based encryption scheme under the decisional
truncated q-ABDHE assumption.

Proof Sketch: The proof in our setting very much falls along the lines of the
proof of IND-ID-CCA security of Gentry’s scheme [Gen06]. Here we just give a
sketch highlighting the only difference from the one in [Gen06].

The only difference between [Gen06] and our setting is how a decryption key
dID is issued for an identity ID. In the proof of [Gen06], PKG was free to choose a
decryption key dID on its own and pass it on to the user. PKG in fact chose rID,i

using a specific technique depending upon the truncated q-ABDHE problem
instance given. In our setting, however, PKG and the user U engage in a key
generation protocol where rID,1 is jointly determined by both of them (via the
choice of numbers r and r′). Hence PKG does not have complete control over
rID,1.

The above problem can be solved as follows. PKG generates a decryption key
dID = {(rID,i, hID,i) : i ∈ {1, 2, 3}} on its own exactly as in [Gen06] and then
“forces” the output of U to be the above key during key generation. Recall that
during the key generation protocol, U first chooses a random r ∈ Zp and sends
R = hr

1 to the PKG . U then gives to PKG a zero-knowledge proof of knowledge of
the discrete log of R. The proof of knowledge property of the proof system implies
the existence of a knowledge extractor Ext (see Section 2). Using Ext on U during
the proof of knowledge protocol, PKG can extract the discrete log r (by rewinding
U during protocol execution) with all but negligible probability. Now PKG sets
r′ = rrID,1. It then sends (r′, h′ID,1 = hr

ID,1), (rID,2, hID,2), (rID,3, hID,3) to U .
The user U will compute rID,1 = r′/r, hID,1 = (h′ID,1)

1/r. Hence, PKG has suc-
cessfully forced the decryption key dID to be the key chosen by it in advance. �



Reducing Trust in the PKG in Identity Based Cryptosystems 441

Theorem 2. Assuming that computing discrete log is hard in G1, the advantage
of an adversary in the FindKey game is negligible for the above traceable identity
based encryption scheme.

Proof: Let there be a PPT algorithm A that has an advantage ε in the FindKey
game in the above T-IBE construction. We show how to build a simulator B
that is able to solve discrete log in G1 with the same advantage ε. B proceeds as
follows.

B runs the algorithm A and gets the public parameters PK = (g, g1, h1, h2, h3)
and the identity ID from A. It then invokes the challenger, passes on h1 to it
and gets a challenge R ∈ G1. The goal of B would be to find the discrete log r
of R w.r.t. h1.

B engages in the key generation protocol with A to get a decryption key for ID
as follows. It sends R to A and now has to give a zero-knowledge proof of knowl-
edge of the discrete log of R. The zero-knowledge property of the proof system
implies the existence of a simulator S which is able to successfully simulate the
view of A in the protocol (by rewinding A), with all but negligible probability.
B uses the simulator S to simulate the required proof even without of knowledge
of r. B then receives the string (r′, h′ID,1), (rID,2, hID,2), (rID,3, hID,3) from A. As

before, B runs a key sanity check by testing if e(hID,i, g
α−ID) ?= e(hig

−rID,i , g) for

i ∈ {2, 3}. For i = 1, B tests if e(h′ID,i, g
α−ID) ?= e(Rg−r′

, g). If any of these tests
fail, B aborts as would an honest user in the key generation protocol.

Now with probability at least ε, A outputs a decryption key (passing the
key sanity check and hence well-formed) d′ID such that its decryption key family
number n′F equals the decryption key family number of the key dID, where dID is
defined (but unknown to B) as (r′/r, (h′ID,1)

1/r , (rID,2, hID,2), (rID,3, hID,3)). After
computing n′F from d′ID (by running trace on it), B computes r = r′/n′F . B
outputs r as the discrete log (w.r.t. h1) of the challenge R and halts. �

Theorem 3. The advantage of an adversary in the ComputeNewKey game is
negligible for the above traceable identity based encryption scheme under the
computational q-BSDH assumption.

Proof: Let there be a PPT algorithm A that has an advantage ε in the Com-
puteNewKey game in the above T-IBE construction. We show how to build a
simulator B that is able to solve the computational q-BSDH assumption with
the same advantage ε. B proceeds as follows.

The functioning of B in this proof is very similar to that of the simulator in
the IND-ID-CPA proof of Gentry’s scheme [Gen06]. B invokes the challenger and
gets as input the q-BSDH problem instance (g, g1, g2, . . . , gq), where gi = g(αi).

B generates random polynomials fi(x) ∈ Zp[x] of degree q for i ∈ {1, 2, 3}.
It computes hi = gfi(α) using (g, g1, g2, . . . , gq) and sends the public parameters
PK = (g, g1, h1, h2, h3) to the algorithm A.

B now runs the key generation protocol with A (possibly multiple times) to
pass on the decryption keys dID1 , . . . , dIDq for the identities ID1, . . . , IDq chosen
adaptively by A. For an identity ID, B runs the key generation protocol as follows.



442 V. Goyal

If ID = α, B uses α to solve the q-BSDH problem immediately. Otherwise, let
FID,i(x) denote the (q − 1) degree polynomial FID,i(x) = (fi(x) − fi(ID))/(x −
ID). B computes the decryption key dID = {(rID,i, hID,i) : i ∈ {1, 2, 3}} where
rID,i = fi(ID) and hID,i = gFID,i(α). Note that this is a valid private key since
hID,i = g(fi(α)−fi(ID))/(α−ID) = (hig

−fi(ID))1/(α−ID). Now B forces the output of
A to be the key dID during the key generation protocol (see proof of Theorem 1).
For more details on why this decryption key appears to be correctly distributed
to A, we refer the reader to [Gen06].

Now with probability at least ε, A outputs two decryption keys (passing
the key sanity check and hence well-formed) d1

ID = {(r1
ID,i, h

1
ID,i)} and d2

ID =
{(r2

ID,i, h
2
ID,i)} for i ∈ {1, 2, 3} for an identity ID such that trace(d1

ID) �= trace(d2
ID).

This means that r1
ID,1 �= r2

ID,1. B then computes

(h1
ID,1/h2

ID,1)
1/(r2

ID,1−r1
ID,1)

= (h1g
−r1

ID,1/h1g
−r2

ID,1)1/(r2
ID,1−r1

ID,1)(α−ID)

= g1/(α−ID)

Finally, B outputs −ID, g1/(α−ID) as a solution to the q-BSDH problem in-
stance given and halts. �

5 Construction Based on Decisional BDH Assumption

Our second construction of traceable identity based encryption is based on the
decisional BDH assumption which is considered to be relatively standard in the
groups with bilinear maps. However, the construction is not very efficient and
requires several pairing operations per decryption.

We use two cryptosystems as building blocks in this construction: the identity
based encryption scheme proposed by Waters [Wat05] and the fuzzy identity
based encryption (FIBE) scheme proposed by Sahai and Waters [SW05]. Our
first idea is to use an IBE scheme derived from the FIBE construction of Sahai
and Waters [SW05]. In FIBE, the encryption is done with a set of attributes
which will be defined by the identity in our setting. Additionally, we add a set of
dummy attributes in the ciphertext. During the key generation protocol, the user
gets the set of attributes as defined by his identity as well as a certain subset of
the dummy attributes. Very roughly, the subset is such that it can be used to
decrypt the ciphertext part encrypted with dummy attributes.

The main properties we need (to add traceability) are derived from the above
IBE scheme constructed using FIBE [SW05]. However, as is the case with FIBE,
the IBE scheme is only secure in the selective-ID model. To achieve full secu-
rity, we use the Waters cryptosystem [Wat05] in parallel with the FIBE scheme.
We remark that Waters cryptosystem is only used to achieve full security and
any other fully secure IBE scheme (e.g., [BB04b]) based on a standard assump-
tion could be used. We treat the Waters cryptosystem as a black box as we do
not require any specific properties from it. Although we are able to achieve full



Reducing Trust in the PKG in Identity Based Cryptosystems 443

security in the IND-ID-CCA game, we do need to use the selective-ID model for
the ComputeNewKey game.

5.1 The Construction

As before, G1 is a bilinear group of prime order p, and let g be a generator of
G1. In addition, let e : G1 × G1 → G2 denote a bilinear map.

We represent the identities as strings of a fixed length �ID (since an identity
ID ∈ Zp, �ID is the number of bits required to represent an element in Zp). Let
�sp be a number which is decided by a statistical security parameter κs. Let � =
�ID +�sp. We define the following sets: S = {1, . . . , �}, SID = {1, . . . , �ID}, Ssp =
{�ID + 1, . . . , �}. We shall denote the ith bit of the identity ID with IDi. Our
construction follows.

Setup. Run the setup algorithm of the Waters cryptosystem [Wat05] and get
the public parameters PKw and master key MKw. Now, for each i ∈ S, choose
two numbers ti,0 and ti,1 uniformly at random from Zp such that all 2� numbers
are different. Also choose a number y uniformly at random in Zp.

The published public parameters are PK = (PKw, PKsw), where:

PKsw = ({(Ti,j = gti,j ) : i ∈ S, j ∈ {0, 1}}, Y = e(g, g)y, g)

The master key MK = (MKw, MKsw), where:

MKsw = ({(ti,j) : i ∈ S, j ∈ {0, 1}}, y)

Key Generation Protocol. The key generation protocol between PKG and a user
U (with the identity ID) proceeds as follows.

1. U aborts if the published values in the set {Ti,j : i ∈ S, j ∈ {0, 1}} are not
all different.

2. PKG generates a decryption key dw for identity ID using MKw as per the
key generation algorithm of the Waters cryptosystem. It sends dw to U .

3. PKG generates � random numbers r1, . . . , r� from Zp such that r1 + · · ·+r� =
y. It computes R1 = gr1 , . . . , R� = gr� and sends them to the user.

4. PKG computes the key components dsw,i = gri/ti,IDi for all i ∈ SID and
sends them to U . It also computes key components dsw,i,j = gri/ti,j for all
i ∈ Ssp, j ∈ {0, 1} and stores them.

5. PKG and U then engage in �sp executions of a 1-out-of-2 oblivious transfer
protocol where PKG acts as the sender and U acts as the receiver. In the ith
execution (where i ∈ Ssp), the private input of PKG is the key components
dsw,i,0, dsw,i,1 and the private input of U is a randomly selected bit bi. The
private output of U is the key component dsw,i,bi . For each i ∈ Ssp, U now
runs the following check:

e(Ri, g) ?= e(Ti,bi , dsw,i,bi)



444 V. Goyal

U aborts if any of the above checks fails. This check roughly ensures that for
a majority of indices i ∈ Ssp, the correct value ri was used in the creation of
dsw,i,0 and dsw,i,1. Thus for a majority of indices i ∈ Ssp, dsw,i,0 and dsw,i,1

were different from each other.
6. U sets dsw = ({dsw,i}i∈SID , {bi, dsw,i,bi}i∈Ssp) and runs a key sanity check

on dsw by checking if:

Y
?=

∏
i∈SID

e(Ti,IDi , dsw,i)
∏

i∈Ssp

e(Ti,bi , dsw,i,bi)

U aborts if the above check fails. Finally, U sets its decryption key dID =
(dw, dsw).

Encryption. To encrypt a message m ∈ G2 under an identity ID, break the
message into two random shares m1 and m2 such that m1 ⊕ m2 = m. Now
choose a random value s ∈ Zp and compute the ciphertext C = (Cw, Csw).
Cw is the encryption of m1 with ID using the public parameters PKw as per
the encryption algorithm of the Waters cryptosystem and Csw is given by the
following tuple.

(C′ = m2Y s, C′′ = gs, {(Ci = Ti,IDi

s) : i ∈ SID}, {(Ci,j = Ti,j
s) : i ∈ Ssp, j ∈ {0, 1}})

Decryption. To decrypt the ciphertext C = (Cw, Csw) using the decryption key
dID = (dw, dsw), first run a ciphertext sanity check on Csw by checking if:

e(Ci, g) ?= e(Ti,IDi , C
′′), i ∈ SID, and

e(Ci,j , g) ?= e(Ti,j , C
′′), i ∈ Ssp, j ∈ {0, 1}

If any of the above check fails, output ⊥. It is easy to see that this check ensures
that {(Ci = Ti,IDi

s) : i ∈ SID}, {(Ci,j = Ti,j
s) : i ∈ Ssp, j ∈ {0, 1}} where s is the

discrete log of C′′ w.r.t. g. This ensure that all invalid ciphertexts are rejected.
In the appendix, we sketch an alternative technique of doing ciphertext sanity
check which requires only two pairing operations.

If the ciphertext sanity check succeeds, recover the share m1 by running the
decrypt algorithm of Waters cryptosystem on Cw using dw. The share m2 is
recovered by the following computations:

C′/
∏

i∈SID

e(Ci, dsw,i)
∏

i∈Ssp

e(Ci,bi , dsw,i,bi)

= m2e(g, g)sy/
∏

i∈SID

e(gsti,IDi , gri/ti,IDi )
∏

i∈Ssp

e(gsti,bi , gri/ti,bi )

= m2e(g, g)sy/
∏
i∈S

e(g, g)sri = m2

Finally, output m = m1 ⊕ m2.



Reducing Trust in the PKG in Identity Based Cryptosystems 445

Trace. This algorithm takes a well-formed decryption key dID = (dw , dsw) where
the component dsw = ({dsw,i}i∈SID , {bi, dsw,i,bi}i∈Ssp) and outputs the decryp-
tion key family number nF = b�ID+1◦b�ID+2◦. . .◦b�, where ◦ denotes concatena-
tion.

Security proofs are omitted for the lack of space. They can be found in the
full version.

6 Future Work

This work motivates several interesting open problems. The most important one
of course is the construction of a black-box traceable identity based encryption
as discussed in Section 1.

Our second construction based on the decisional BDH assumption is not very
efficient and requires several pairing operations per decryption. It is an open
problem to design more efficient T-IBE schemes based on an standard assump-
tion. Further, the second construction used the Selective-ID ComputeNewKey
game to prove security. It would be interesting to see if this restriction can be
removed. Combining the T-IBE approach with the multiple PKG approach also
seems to be a promising direction.

Finally, it remains to be seen if the same approach to mitigate the key es-
crow problem can be profitably used in other related setting like attribute based
encryption [SW05, GPSW06].

Acknowledgements

We wish to thank the anonymous reviewers for many useful comments and sug-
gestions. Thanks to Yevgeniy Dodis and Omkant Pandey for helpful discussions.
Finally, thanks to Rafail Ostrovsky and Amit Sahai for their feedback and en-
couragement.

References

[ARP03] Al-Riyami, S.S., Paterson, K.G.: Certificateless public key cryptography.
In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 452–473.
Springer, Heidelberg (2003)

[BB04a] Boneh, D., Boyen, X.: Efficient Selective-ID Secure Identity Based En-
cryption Without Random Oracles. In: Cachin, C., Camenisch, J.L. (eds.)
EUROCRYPT 2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg
(2004)

[BB04b] Boneh, D., Boyen, X.: Secure identity based encryption without random
oracles. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 443–
459. Springer, Heidelberg (2004)

[BB04c] Boneh, D., Boyen, X.: Short signatures without random oracles. In:
Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027,
pp. 56–73. Springer, Heidelberg (2004)



446 V. Goyal

[BBG05] Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption
with constant size ciphertext. In: Cramer [Cra05], pp. 440–456

[BBS04] Boneh, D., Boyen, X., Shacham, H.: Short Group Signatures. In: Franklin,
M. (ed.) CRYPTO 2004. LNCS, vol. 3152, Springer, Heidelberg (2004)

[BF01] Boneh, D., Franklin, M.: Identity Based Encryption from the Weil Pairing.
In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer,
Heidelberg (2001)

[BG92] Bellare, M., Goldreich, O.: On defining proofs of knowledge. In: Brickell,
E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 390–420. Springer, Heidel-
berg (1993)

[Bra90] Brassard, G. (ed.): CRYPTO 1989. LNCS, vol. 435. Springer, Heidelberg
(1990)

[BSW06] Boneh, D., Sahai, A., Waters, B.: Fully collusion resistant traitor tracing
with short ciphertexts and private keys. In: Vaudenay [Vau06] pp. 573–592

[CC03] Cha, J., Cheon, J.: An identity-based signature from gap diffie-hellman
groups. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 18–30.
Springer, Heidelberg (2002)

[CFN94] Chor, B., Fiat, A., Naor, M.: Tracing traitor. In: Desmedt, Y.G. (ed.)
CRYPTO 1994. LNCS, vol. 839, pp. 257–270. Springer, Heidelberg (1994)

[CHK03] Canetti, R., Halevi, S., Katz, J.: A Forward-Secure Public-Key Encryp-
tion Scheme. In: Biham, E. (ed.) EUROCRPYT 2003. LNCS, vol. 2656,
Springer, Heidelberg (2003)

[Cra05] Cramer, R.J.F. (ed.): EUROCRYPT 2005. LNCS, vol. 3494, pp. 22–26.
Springer, Heidelberg (2005)

[EGL85] Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing
contracts. Commun. ACM 28(6), 637–647 (1985)

[FFS88] Feige, U., Fiat, A., Shamir, A.: Zero-knowledge proofs of identity. J. Cryp-
tology 1(2), 77–94 (1988)

[FS86] Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identi-
fication and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986.
LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987)

[Gen03] Gentry, C.: Certificate-based encryption and the certificate revocation
problem. In: Biham, E. (ed.) EUROCRPYT 2003. LNCS, vol. 2656, pp.
272–293. Springer, Heidelberg (2003)

[Gen06] Gentry, C.: Practical identity-based encryption without random oracles.
In: Vaudenay [Vau06] pp. 445–464

[GPSW06] Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption
for fine-grained access control of encrypted data. In: Juels, A., Wright,
R.N., De Capitani di, S. (eds.) ACM Conference on Computer and Com-
munications Security, pp. 89–98. ACM, New York (2006)

[GS02] Gentry, C., Silverberg, A.: Hierarchical id-based cryptography. In: Zheng,
Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer, Hei-
delberg (2002)

[HL02] Horwitz, J., Lynn, B.: Toward hierarchical identity-based encryption. In:
Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 466–481.
Springer, Heidelberg (2002)

[Kal05] Kalai, Y.T.: Smooth projective hashing and two-message oblivious trans-
fer. In: Cramer [Cra05], pp. 78–95



Reducing Trust in the PKG in Identity Based Cryptosystems 447

[LBD+04] Lee, B., Boyd, C., Dawson, E., Kim, K., Yang, J., Yoo, S.: Secure key
issuing in id-based cryptography. In: Hogan, J.M., Montague, P., Purvis,
M.K., Steketee, C. (eds.) ACSW Frontiers. CRPIT, vol. 32, pp. 69–74.
Australian Computer Society (2004)

[NP01] Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: SODA, pp.
448–457 (2001)

[Rab81] Rabin, M.O.: How to exchange secrets by oblivious transfer. In: TR-81,
Harvard (1981)

[Sch89] Schnorr, C.-P.: Efficient identification and signatures for smart cards. In:
Brassard [Bra90], pp. 239–252

[Sha84] Shamir, A.: Identity Based Cryptosystems and Signature Schemes. In:
Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 37–
53. Springer, Heidelberg (1985)

[SW05] Sahai, A., Waters, B.: Fuzzy Identity Based Encryption. In: Cramer,
R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer,
Heidelberg (2005)

[Vau06] Vaudenay, S. (ed.): EUROCRYPT 2006. LNCS, vol. 4004. Springer, Hei-
delberg (2006)

[Wat05] Waters, B.: Efficient identity-based encryption without random oracles.
In: Cramer, [Cra05], pp. 114–127

Appendix

A Efficient Ciphertext Sanity Check in the Second
Construction

To decrypt the ciphertext C = (Cw , Csw) using the decryption key dID =
(dw, dsw), the efficient ciphertext sanity check on Csw is run as follows. First
choose �ID + 2�sp random numbers si,IDi , i ∈ SID and si,j , i ∈ Ssp, j ∈ {0, 1}.
Now check if:

e

(
g,

∏
i∈SID

C
si,IDi

i

∏
i∈Ssp,j∈{0,1}

C
si,j

i,j

)
?= e

(
C′′,

∏
i∈SID

T
si,IDi

i,IDi

∏
i∈Ssp,j∈{0,1}

T
si,j

i,j

)

If the above check fails, output ⊥. It can be shown that the above check rejects
an invalid ciphertext with all but negligible probability (while the previous check
was perfect).



Pirate Evolution: How to Make the Most of
Your Traitor Keys

Aggelos Kiayias� and Serdar Pehlivanoglu�

Computer Science and Engineering, University of Connecticut
Storrs, CT, USA

{aggelos,sep05009}@cse.uconn.edu

Abstract. We introduce a novel attack concept against trace and re-
voke schemes called pirate evolution. In this setting, the attacker, called
an evolving pirate, is handed a number of traitor keys and produces a
number of generations of pirate decoders that are successively disabled
by the trace and revoke system. A trace and revoke scheme is susceptible
to pirate evolution when the number of decoders that the evolving pirate
produces exceeds the number of traitor keys that were at his possession.
Pirate evolution can threaten trace and revoke schemes even in cases
where both the revocation and traceability properties are ideally satis-
fied: this is because pirate evolution may enable an attacker to “magnify”
an initial key-leakage incident and exploit the traitor keys available to
him to produce a great number of pirate boxes that will take a long
time to disable. Even moderately successful pirate evolution affects the
economics of deployment for a trace and revoke system and thus it is
important that it is quantified prior to deployment.

In this work, we formalize the concept of pirate evolution and we
demonstrate the susceptibility of the trace and revoke schemes of Naor,
Naor and Lotspiech (NNL) from Crypto 2001 to an evolving pirate that
can produce up to t · log N generations of pirate decoders given an initial
set of t traitor keys. This is particularly important in the context of
AACS, the new standard for high definition DVDs (HD-DVD and Blue-
Ray) that employ the subset difference method of NNL: for example
using our attack strategy, a pirate can potentially produce more than
300 pirate decoder generations by using only 10 traitor keys, i.e., key-
leakage incidents in AACS can be substantially magnified.

1 Introduction

A trace and revoke scheme is an encryption scheme that is suitable for digital
content distribution to a large set of receivers. In such a scheme, every receiver
possesses a decryption key that is capable of inverting the content scrambling
mechanism. The defining characteristics of a trace and revoke scheme are the
following: (i) revocation: the sender can scramble content with a “broadcast pat-
tern” in such a way so that the decryption capability of any subset of the receiver
� Research partly supported by NSF CAREER Award CNS-0447808.

A. Menezes (Ed.): CRYPTO 2007, LNCS 4622, pp. 448–465, 2007.
c© International Association for Cryptologic Research 2007



Pirate Evolution: How to Make the Most of Your Traitor Keys 449

population can be disabled, (ii) tracing: given a rogue decryption device (called a
pirate decoder) that was produced using the keys of a number of receivers (called
traitors) it is possible to render such device useless from future transmissions.
This can be done by identifying the traitors and revoking them or in some other
fashion (that may not involve the direct identification of any traitor).

Trace and revoke schemes conceptually are a combination of two crypto-
graphic primitives that have been originally suggested and studied indepen-
dently: broadcast encryption, introduced by Fiat and Naor in [10] and studied
further in e.g., [13, 14, 22, 8, 15, 16, 21], and traitor tracing and related codes, in-
troduced by Chor, Fiat and Naor in [6] and studied further in e.g., [33,23,20,2,
28,29,30,17,18,19,31,34,5,27]. The combination of the two primitives appeared
first in [24] and explored further in [9]. Trace and revoke schemes for stateless
receivers were proposed in [22] and explored further in [15, 16]. The stateless
receiver setting is of particular interest since it does not require receivers to
maintain state during the life-time of the system; this greatly simplifies the sys-
tem aspects and deployment management of a trace and revoke scheme.

The security requirements for trace and revoke schemes are relatively well
understood when one considers the revocation or tracing components in isola-
tion: the revocation component should be coalition resistant to an adversary
that adaptively joins the system, is entirely revoked and subsequently attempts
to decrypt a ciphertext. The tracing component should also be coalition resis-
tant: an adversary given a set of keys should be incapable of producing a pirate
decoder that cannot have at least one traitor identified. When Naor, Naor and
Lotspiech [22] introduced the broadcast encryption framework of subset cover,
they made the nice observation that if a broadcast encryption scheme satisfies a
property called “bifurcation” then it is possible to construct an efficient tracing
procedure that will produce ciphertexts that are unreadable by any given rogue
pirate decoder; this satisfies the requirements for a trace and revoke scheme
(albeit without identifying traitors directly). They proposed two combinatorial
designs (called the complete-subtree and subset-difference method) for broad-
cast encryption that satisfy bifurcation and thus produced two trace and revoke
schemes. The subset-difference scheme is particularly attractive as it enjoys a
linear communication overhead during encryption (linear in r the number of re-
voked users) and it was employed as the basis for the new high definition DVD
encryption standard, the AACS [1].

It is common in cryptographic design when a construction combines simul-
taneously two security functionalities (even when they are well understood in
isolation) that the possibility for new forms of attacks springs up. In our case, in
a trace and revoke scheme the adversaries that have been considered so far were
attacking directly the revocation component (they were revoked and attempted
to evade revocation) or the traceability component (they produced a pirate de-
coder that attempted to evade the tracing algorithm). This raises the question,
in a trace and revoke scheme, are these the only relevant attack scenarios?

Pirate Evolution. Pirate evolution is a novel attack concept against a trace
and revoke scheme that exploits the properties of the combined functionality of



450 A. Kiayias and S. Pehlivanoglu

tracing and revocation in such a scheme. In a pirate evolution attack, a pirate
obtains a set of traitor keys through a “key-leaking” incident. Using this set of
keys the pirate produces an initial pirate decoder. When this pirate decoder is
captured and disabled by the transmission system using the tracing mechanism,
the pirate “evolves” the first pirate decoder by issuing a second version that
succeeds in decrypting ciphertexts that have the broadcast pattern disabling the
first decoder. The same step is repeated again and the pirate continues to evolve
a new version of the previous decoder whenever the current version of pirate
decoder becomes disabled from the system. A pirate that behaves as above will
be called an evolving pirate and each version of the pirate decoder will be called
a generation (as presumably many copies of the same pirate decoder may be
spread by the pirate).

This is a novel attack concept as the adversary here is not trying to evade the
revocation or the traceability component. Instead he tries to remain active in the
system for as long as possible in spite of the efforts of the administrators of the
system. We say that a trace and revoke scheme is immune to pirate evolution
if the number of generations that an evolving pirate can produce equals the
number of traitor keys that have been corrupted (i.e., the number of traitors).
The number of traitors is a natural lower bound to the generations that an
evolving pirate can produce: trivially, an evolving pirate can set each version it
releases to be equal to the decoder of one of the traitors. Nevertheless, the number
of generations that a pirate may produce can be substantially larger depending
on the combinatorial properties of the underlying trace and revoke system. We
call the maximum number of decoders an evolving pirate can produce, the pirate
evolution bound evo of the trace and revoke scheme. Note that this bound will
be a function of the number of traitors t as well as of other parameters in the
system (such as the number of users).

When evo is larger than t, we say that a trace and revoke scheme is susceptible
to pirate evolution. When evo is much larger than t, this means that an initial
leaking incident can be “magnified” and be of a scale much larger than what
originally expected. Interestingly, a system may satisfy both the tracing and
revocation properties in isolation and still be rendered entirely useless if evo is
sufficiently large (say super-poly in t). In this case the trace and revoke scheme
could be defeated by simply taking too long to catch up with an evolving pirate
that could keep exploiting a minor initial key leakage incident to produce a
multitude of pirate decoders in succession.

Even when evo is just moderately larger than t, it is an important consid-
eration for a trace and revoke scheme in an actual deployment. The economics
of a deployment would be affected and we believe that resilience against pirate
evolution attacks should be part of the suggested considerations.

In this work, we introduce and study pirate evolution in the subset cover
framework of stateless receivers of [22]. We first formalize the concept of pirate
evolution through the means of an attack game played between the evolving
pirate and a challenger that verifies certain properties about the pirate decoders
produced by the evolving pirate. Next, we prove that it is in fact possible to



Pirate Evolution: How to Make the Most of Your Traitor Keys 451

design trace and revoke schemes that are immune against pirate evolution by
presenting a simple design that renders any evolving pirate incapable of pro-
ducing more pirate decoders than traitors. This result (albeit not very efficient
as a trace and revoke scheme) shows that immunity against pirate evolution is
attainable in principle. Still, it is interesting to note that immunity may come
at a high cost for certain systems and thus it could be desirable in many set-
tings to sacrifice immunity in favor of efficiency if the amount of pirate evolution
that is possible is deemed to be within acceptable limits for the economics of a
certain system deployment (compare this to the usual example of a bank that
allows a few fraudulent transactions if the incurred losses can be factored into
the profits).

Next, we focus on the complete-subtree and subset-difference trace and revoke
systems of [22]. We demonstrate both these schemes are susceptible to pirate
evolution. Each of our pirate evolution attacks requires careful scheduling of
how the traitor keys are expended by the pirate; moreover in both cases there is
sensitivity to the “geometry” of the leaking incident. For the complete subtree
method we present a pirate evolution attack that given t traitor keys, it enables
an evolving pirate to produce up to t log(N/t) generations where N is the total
number of users in the system (actually number of leaves in the tree, as the set
of currently active users may be much less). For the subset difference method we
present a pirate evolution attack that given t traitor keys, it enables an evolving
pirate to produce up to t log N generations of pirate decoders.

In the context of AACS, [1], the new encryption standard for high definition
DVDs, where the subset-difference method of [22] is deployed, the pirate evolu-
tion attack we present suggests that each single traitor key can be used to yield
up to 31 generations of pirate decoders (refer to section 3.3).

2 The Subset-Cover Revocation Framework

The Subset-Cover revocation framework [22] is an abstraction that can be used
to formulate a variety of revocation methods. It defines a set of subsets that
cover the whole user population and assigns (long-lived) keys to each subset;
each user receives a collection of such keys (or derived keys). We denote by N
the set of all users where |N| = N and R ⊂ N the set of users that are to be
revoked at a certain instance where |R| = r. Note that N is not necessarily the
set of currently active users but the number of all users that are anticipated in
the lifetime of the system.

The goal of the sender is to transmit a message M to all users such that any
u ∈ N\R can recover the message whereas the revoked users in R can not recover
it. Note that the non-recovery property should also extend to any coalition of
revoked users. The framework is based on a collection of subsets {Sj}j∈J where
Sj ⊆ N such that any subset S ⊆ N can be partitioned into disjoint subsets
of {Sj}j∈J . Each subset Sj is associated with a long-lived key Lj . Users are
assumed to be initialized privately with a set of keys such that u has access to
Lj if and only if u ∈ Sj . The private data assigned to user u in this intialization



452 A. Kiayias and S. Pehlivanoglu

step will be denoted by Iu. In particular we define Iu = {j ∈ J | u ∈ Sj}
and Ku = {Lj | j ∈ Iu}. Given a revoked set R, the remaining users N \ R are
partitioned into disjoint {Si1 , . . . , Sim} ⊂ {Sj}j∈J so that N\R =

⋃m
j=1 Sij . The

transmission of the message M is done in a hybrid fashion. First a random session
key K is encrypted with all long-lived keys Lij corresponding to the partition,
and the message M is encrypted with the session key. Two encryption functions
are being used in this framework: (1) FK : {0, 1}∗ �→ {0, 1}∗ to encrypt the
message. (2) QL : {0, 1}l �→ {0, 1}l to encrypt the session key. Each broadacast
ciphertext will have the following form:

〈[i1, i2, . . . im, QLi1
(K), QLi2

(K), . . .QLim
(K)︸ ︷︷ ︸

HEADER

], FK(M)︸ ︷︷ ︸
BODY

〉 (1)

The receiver u decrypts a given ciphertext C = 〈[i1, i2, . . . im, C1, C2, . . . Cm],
M ′〉 as follows: (i) Find ij such that u ∈ Sij , if not respond null, (ii) Obtain
Lij from Ku. (iii) Decrypt the session key: K ′ = Q−1

Lij
(Cj). (iv) Decrypt the

message: M = F−1
K (M ′). In [22], two methods in the subset cover framework

are presented called the Complete Subtree CS and the Subset Difference SD.

Tracing Traitors in the Subset Cover Framework. Beyond revoking sets
of users that are not supposed to receive content, trace and revoke schemes are
supposed to be able to disable the rogue pirate decoders which are constructed
using a set of traitor’s keys that are available to the pirate. One way this can be
achieved is to identify a traitor given access to a pirate box and then add him to
the set of revoked users. Given that the goal of tracing is to disable the pirate
box, the NNL tracing algorithm focuses on just this security goal. In the NNL
setting, it is sufficient to find a “pattern” which makes the pirate box unable to
decrypt.

Regarding the tracing operation, the following assumptions are used for the
pirate decoder: (1) the tracing operation is black-box, i.e., it allows the tracer
to examine only the outcome of the pirate decoder as an oracle. (2) the pirate
decoder is not capable of recording history; (3) the pirate decoder lacks a “lock-
ing” mechanism which will prevent the tracer to pose more queries once the
box detects that it is under tracing testing. (4) the pirate decoder succeeds in
decoding with probability greater than or equal to a threshold q.

Based on the above, the goal of the tracing algorithm is to output either a
non-empty subset of traitors, or a partition of N \ R =

⋃m
j=1 Sij for the given

revoked users R, such that if this partition is used to distribute content M in
the framework as described above it is impossible to be decrypted by the pirate
box with sufficiently high probability (larger than the threshold q); at the same
time, all good users can still decrypt.

The tracing algorithm can be thought of as a repeated application of the fol-
lowing basic procedure that takes as input a partition: First it is tested whether
the box decrypts correctly with the given partition

⋃m
j=1 Sij (with probability p

greater than the threshold). If not, the subset tracing outputs the partition as
the output of the tracing algorithm. Otherwise, it outputs one of the subsets



Pirate Evolution: How to Make the Most of Your Traitor Keys 453

containing at least one of the traitors. The tracing algorithm then partitions
that subset somehow and inputs the new partition (that is more “refined”) to
the next iteration of the basic procedure. If the subset resulting by the basic
procedure contains only one possible candidate, then we can revoke that user
since it is a traitor. Here is how the basic procedure works:

Let pj be the probability that the box decodes the special tracing ciphertext

〈[i1, i2, . . . im, QLi1
(R), QLi2

(R), . . .QLij
(R), QLij+1

(K), . . . QLim
(K)], FK(M)〉

where R is a random string of the same length as the key K. Note that p0 = p
and pm = 0, hence there must be some 0 < j ≤ m for which |pj−1 − pj | ≥ p

m .
Eventually, this leads the existence of a traitor in the subset Sij under the
assumption that it is negligible to break the encryption scheme Q and the key
assignment method.

The above can be turned into a full-fledged tracing algorithm, as long as the
Subset-Cover revocation scheme satisfies the “Bifurcation property”: any subset
Sk can be partitioned into not extremely uneven sets Sk1 and Sk2 . Both CS
and SD methods allow us to partition any subset Sk into two subsets with the
Bifurcation property. For the Complete Subset, it is simply taking the subsets
rooted at the children of node vk. For the SD method, given Si,j we take the
subsets Si,c and Sc,j where vc is a child of the node vi and vj is on the subset
rooted at vc. Formally, we have the following definition for tracing algorithm
and encryption procedure after tracing pirate boxes to disable them recovering
message:

Definition 1. For a given set of revoked users R and pirate boxes B1, B2, · · · , Bs

caught by the sender, the encryption function first finds a partition S which
renders the pirate boxes useless and outputs the ciphertext. Let T be the trac-
ing function outputting the partition to render the pirate boxes useless, then:
T B1,B2,···,Bs(R) = S. Denote the ciphertext created by the encryption scheme in-
terchangeably by following notations: C = EB1,B2,···,Bs

R (M) or C = ES(M), where
E−1

k (C) = M for k /∈ R, and any pirate box Bi, 0 < i ≤ s, decrypts the ciphertext
with probability less than threshold q, i.e. Prob[Bi(C) = M ] < q.

According to the above definition, the sender applies tracing algorithm on the
pirate boxes he has access to before broadcasting the message.

3 Pirate Evolution

In this section we introduce the concept of pirate evolution. We present a game
based definition that is played with the adversary which is the “evolving pirate.”
Let t be the number of traitor keys in the hands of the pirate. The traitor
keys are made available to the pirate through a key-leaking “incident” L that
somehow chooses a subset of size t from the set {I1, . . . , IN} (the set of all
users’ private data assigned by a function G with a security parameter λ). We
permit L to be also based on the current set of revoked users R. Specifically, if



454 A. Kiayias and S. Pehlivanoglu

T = L(I1, I2, · · · In, t, R) then |T| = t, T ⊆ {Iu | u ∈ N \ R}. This models the
fact that the evolving pirate may be able to select the users that he corrupts.
Separating the evolving pirate from the leaking incident is important though
as it enables us to describe how a pirate can deal with leaking incidents that
are not necessarily the most favorable (the pirate evolution attacks that we will
describe in the sequel will operate with any given leaking incident and there will
be leaking incidents that are more favorable than others). We note that partial
leaking incidents can also be considered within our framework.

Once the leaking incident determines the private user data that will be avail-
able to the evolving pirate (i.e., the traitor key material), the evolving pirate P
receives the keys and produces a “master” pirate box B. The pirate is allowed
to have oracle access to an oracle ER(M) that returns ciphertexts distributed
according to plaintext distribution that is employed by the digital content distri-
bution system (i.e., the access we consider is not adaptive); an adaptive version
of the definition (similar to a chosen plaintext attack against symmetric encryp-
tion) is also possible.

Given the master pirate box, an iterative process is initiated: the master pi-
rate box spawns successively a sequence of pirate decoders B1, B2, . . . where
Bi = B(1t+log N , �) for � = 1, 2, . . .. Note that we loosely think that the master
box is simply the compact representation of a vector of pirate boxes; the time
complexity allowed for its operation is polynomial in t + log N + log � (this can
be generalized in other contexts if needed — we found it to be sufficient for the
evolving pirates strategies we present here). Each pirate box is tested whether it
decrypts correctly the plaintexts that are transmitted in the digital content dis-
tribution system with success probability at least q. The first pirate box is tested
against the “initial” encryption function ER(·), whereas any subsequent box is
tested against EB1,B2,···Bi−1

R (·) which is the encryption that corresponds to the
conjunctive revocation of the set R and the tracing of all previous pirate boxes.
The iteration stops when the master pirate box B is incapable of producing a
pirate decoder with decryption success exceeding the threshold q. Each iteration
of the master box corresponds to a “generation” of pirate boxes. The number of
successfully decoding pirate generations that the master box can spawn is the
output of the game-based definition given below. The trace and revoke scheme
is susceptible to pirate evolution if the number of generations returned by the
master box is greater than t. Note that the amount of susceptibility varies with
the difference between the number of generations and t; the pirate evolution
bound evo is the highest number of generations any evolving pirate can produce.
Formally, we have the following:

Definition 2. Consider the game of figure 1 given two probabilistic machines
P , L and parameters R ⊆ {1, 2, · · ·n}, t, r = |R|, q. Let PER

P,L(t) be the output
of the game. We say that the trace and revoke scheme TR = (G, Q, F) is immune
to pirate evolution with respect to key-leaking incident L if, for any probabilis-
tic polynomial time adversary P, any R and any t ∈ {1, . . . , |N − R|}, it holds
PER
P,L(t) = t. We define the pirate evolution bound evo[TR] of a trace and revoke

scheme TR as the supremum of all PER
P,L(t), for any leaking incident L, any set



Pirate Evolution: How to Make the Most of Your Traitor Keys 455

〈I1, I2, · · · IN〉 ← G(1λ; ρ; N) where ρ ← Coins
T ← L(I1, I2, · · · In, t, R); K = {Ku | u : Iu ∈ T}
B ← PER(M)(T, K) where ER(M) is an oracle that returns ER(m) with m ← M
� = 0
repeat � = � + 1

B� ← B(1t+log N , �)
until Prob[B�(EB1,B2,···B�−1

R (m)) = m] < q with m ← M
output �.

Fig. 1. The attack game played with an evolving pirate

of revoked users R and any evolving pirate P; note that evo[TR] is a function
of t and possibly of other parameters as well. A scheme is susceptible to pirate
evolution if its pirate evolution bound satisfies evo[TR] > t.

Note that immunity against pirate evolution attacks is possibly a stringent prop-
erty; even though we show that it is attainable (cf. the next section) it could
be sacrificed in favor of efficiency. Naturally, using a trace and revoke scheme
that is susceptible to a pirate evolution that produces many pirate decoders may
put the system’s managers at a perilous condition once a leaking incident occurs
(and as practice has shown leaking incidents are unavoidable). The decision to
employ a particular trace-and-revoke scheme in a certain practical setting should
be made based on a variety of requirements and constraints and the system’s be-
havior with respect to pirate evolution should be one of the relevant parameters
that must be considered in the security analysis.

3.1 A Trace and Revoke Scheme Immune to Pirate-Evolution

In this section we show a simple trace and revoke design that achieves immunity
against pirate-evolution. The system simply encrypts the session key with the
unique key of each user in the system that is not revoked. This kind of linear
length trace and revoke scheme can be formalized in the context of the Subset-
Cover framework as follows:

Definition 3. Let |Sj | = 1 for all j ∈ J = {1, 2, · · ·N}, i.e. the collection is
consist of single element sets. Thus, for any user u, |Ku| = |{Lu}| = 1 holds.
The key assignment G(1λ, N) is done by choosing a random key for each Sj.
The encryption functions Q and F are encryption functions used in any Subset-
Cover framework. We say such trace and revoke scheme (G, Q, F) is called linear
length scheme since the size of cover for non-revoked users in N\R will be linear
in |N| − |R|.

The header of a ciphertext C contains the encryption of session key QLu(K) if
user u ∈ N \ R. Under the assumption of sufficiently strong Q(·) no other user
will be able recover session key through QLu(K) and a user u will not be able to
recover session key unless the header contains QLu(K). We show that immunity
to pirate evolution is achievable:



456 A. Kiayias and S. Pehlivanoglu

Theorem 1. The trace and revoke scheme as defined in Definition 3 is immune
to pirate evolution, i.e. for all polynomial-time adversaries P and for any key
leaking incident L, PER

P,L(t) = t.

3.2 Pirate Evolution for the Complete Subtree Method

In this section, we demonstrate that the complete subtree method (CS) of [22] is
susceptible to pirate evolution. Specifically, we present an evolving pirate that
can produce up to t log N/t pirate boxes, given t traitor keys. Below we present
some definitions that will be used throughout this section:

Definition 4. The partition S = T (R) is the set of subsets Si1 , Si2 , · · · Sim

where, 0 < j ≤ m, ij ∈ J corresponds to a node in the full binary tree. Denote
the root of subtree containing the users in S ∈ {Sj}j∈J by root(S), in general
we will be using root() as a function outputting root of a given tree. Suppose
T = L(I1, · · · , In, t, R), then we say the Steiner tree ST (T, S) is the minimal
subtree of the binary tree rooted at root(S) that connects all the leaves on which
the users in T ∩ S are placed.

We denote the unique key of a node v by L(v). It is possible for any u ∈ S to
deduce L(root(S)) from its private information Iu, Ku. A pirate box Box(L(v)) is
a decoder that uses the key associated to S where root(S) = v; it decrypts ES(· )
iff there exists a S ∈ S s.t. root(S) = v holds. in other terms, Box(L(v)) decrypts
C = ER(· ) iff the header of C contains the encryption QL(v)(K).

Figure 2 is an illustration for the partition of non-revoked users and the set of
traitors in a broadcasting scheme using the CS method. The description of the
evolving pirate relies on a simple observation that is the following lemma:

Fig. 2. Complete Subtree with cover and set of traitors

Lemma 1. For a given set of revoked users R let T Pi(R) be the partition gen-
erated after tracing pirate box P = Box(L(v)). Let S be the subset such that
root(S) = v holds. Suppose S = SL ∪ SR where subset SL (resp. SR) is left (resp.



Pirate Evolution: How to Make the Most of Your Traitor Keys 457

right) part of the subtree rooted at v. It holds that: S ∈ T (R) if and only if
SL ∈ T P (R) and SR ∈ T P (R).

According to the above lemma, the pirate will be able to produce a new version
of pirate box after Pi = Box(L(root(S))) is caught. That is true because after
tracing Pi, a traitor u is either in SL or SR, and the pirate still will be able to
produce a new box by using the key associated to SL( or SR depends on which
one contains u). The motivation of the evolving pirate is exploiting the above
observation to successively generate pirate boxes.

We define the master pirate box B produced by the adversary PER(M)(T, K) as
producing a vector of pirate boxes. B constructs the sequence of pirate boxes by
walking on the nodes of the forest of Steiner trees {ST (T, S) | S ∈ T (R)}. More
technically, it recursively runs a procedure called makeboxes on each Tree =
ST (T, S) which first creates a pirate box Box by using the unique key assigned
to the node root(Tree). It then splits the Tree into two trees. The splitting is
needed because tracing Box will result in the partition of the subset S. Thus the
splitting procedure is based on the partition of subset S into two equal subsets
(in CS tracing works by splitting into the two subtrees rooted at the children of
root(Tree)). The master box B then runs makeboxes independently on both of
the trees resulted from the partition. Figure 3 is the summary of the evolving
pirate strategy. The number of generations that can be produced equals the
number of nodes in the forest of Steiner trees {ST (T, S) | S ∈ T (R)}.

1. For each S ∈ T (R) run makeboxes(ST (T, S)) till the �-th box is produced.
makeboxes(Tree)
1. Take any user u placed on a leaf of Tree.
2. Output Box(L(root(Tree))) where L(root(Tree)) is available from Ku

3. Let STL and STR be respectively the left and right subtrees of Tree.
4. run makeboxes(STL)
5. run makeboxes(STR)

Fig. 3. The description of master box program B(1t+log N , �) parameterized by
T (R), T, Ku for u ∈ T that is produced by the evolving pirate for the complete subtree
method

Theorem 2 is formalizing and proving the correctness of the above procedure,
i.e. the next generation should be able to decrypt the message encrypted after
tracing has disabled all previous boxes.

Theorem 2. Let P1, P2, · · · , Pv+1 be a sequence of pirate boxes constructed by
the evolving pirate strategy described in Figure 3. Suppose C = EP1,P2,···,Pv

R (M),
then Prob[Pv+1(C) = M ] ≥ q, provided that v is less than the number of nodes
in the forest of trees {ST (T, S) | S ∈ T (R)}.

Leaking Incidents. For the polynomial time adversary P described in Figure 3,
PER
P,L(t) is the number of nodes in the forest of the Steiner trees of the traitors.



458 A. Kiayias and S. Pehlivanoglu

Theorem 3 and Theorem 4 give some bounds on this quantity depending on the
leaking incident.

Theorem 3. Let N be the set of N users represented by a full binary tree in
the Complete Subtree method. For a given R, any leaking incident L corrupting
t users in a single subset S ∈ T (R) enables an evolving pirate with respect to L
so that PER

P,L(t) ≥ 2t − 2 + log(|S|/t).

Theorem 4. Let N be the set of N users represented by a full binary tree. For
a given R, there exists a leaking incident L corrupting t users in a single subset
S ∈ T (R) so that PER

P,L(t) ≥ 2t − 1 + t log(|S|/t).

Fig. 4. The illustration of the bounds on the number of pirate boxes produced (a) All
of the traitors are descendants of a same node with height log t (b) None of the paths
with length log(|S|/t) from leaves to the root intersect

Figure 4 shows the cases where it is possible to achieve the bounds given in
above two theorems. Figure 4(a) is yielding the bound in Theorem 3 and, Figure
4(b) is yielding the bound in Theorem 4. The maximum number of generations
can be achieved following Figure 4(b) in a configuration of the system when there
is no revoked user; in this case there is a single element in the partition, namely
S containing N users. It follows that the pirate can produce up to t log(N/t)
generations and thus:

Corollary 1. The pirate evolution bound for the CS method satisfies evo[CS] ≥
t log(N/t).

3.3 Pirate Evolution for the Subset Difference Method

In this section we turn our attention to the Subset Difference (SD) method of [22]
that is part of the AACS standard [1]. Compared to the Complete Subtree
method, the subsets in the SD method are represented by pairs of nodes. We
define the required notations as follows:

Definition 5. Let Si,j ∈ {Si,j}(i,j)∈J be the set of all leaves in the subtree
rooted at vi but not of vj. We define the function set : {(vi, vj) | (i, j) ∈ J } →



Pirate Evolution: How to Make the Most of Your Traitor Keys 459

{Si,j}(i,j)∈J such that the inverse function set−1() maps a subset to its cor-
responding pair of nodes. Since Si,j is somehow related to a tree, we still use
root(Si,j) to output vi. Suppose T = L(I1, · · · , t, R), then we say the Steiner tree
ST (T, vi, vj) is the minimal subtree of the binary tree rooted at vi, excluding
the descendants of vj, that connects all the leaves in T ∩ set(vi, vj) and node
vj. A pirate box Box(vi, vj , Ku) is a decoder that uses the key associated to
set(vi, vj) as inferred by the private data Ku assigned to the user u. For simplic-
ity, we also denote the pirate decoder by Box(vi, vj , u)(omitting Ku). By defini-
tion; Box(vi, vj , u) inverts ES(·) iff there exists a S ∈ S such that set(vi, vj) = S
holds.

The susceptibility of the SD method to pirate evolution relies on the following
simple observation regarding the tracing algorithm and the way it operates on
a given pirate box:

Lemma 2. For a given set of revoked users R let T P (R) be the partition gen-
erated after tracing pirate box P = Box(vi, vj , u). Suppose vc is the child of vi

that is on the path from vi to vj; note that in this case set(vi, vj) = set(vi, vc) ∪
set(vc, vj). It holds that: set(vi, vj) ∈ T (R) if and only if set(vi, vc) ∈ T P (R)
and set(vc, vj) ∈ T P (R).

We will exploit the above lemma to successively generate pirate boxes. This is
possible because after tracing P = Box(vi, vj , u), the traitor u is still in one of
the subsets in the partition T P (R). We will present an evolving pirate strategy
based on the forest of Steiner trees {ST (T, vi, vj) | set(vi, vj) ∈ T (R)} by walking
on the paths of Steiner trees that will be predefined according to a scheduling of
traitors. Unlike our evolving pirate strategy for the CS method, we are focusing
on paths instead of nodes because of the inherent structure of the SD method and
the way tracing works by merging subsets under a simple condition that is shown
in lemma 3. The merging performed by NNL (whose main objective is to curb
the ciphertext expansion) is, as we observe, an opportunity for pirate evolution
as it leads to the reuse of some nodes in different pairs, i.e. different subsets
in the collection {Si,j}(i,j)∈J . In general, the merging will occur whenever it is
allowed based on lemma 3 with the following exception: S1 will not be merged
if the partition contains another subset S2 such that they have resulted from a
split-up of a single subset at an earlier iteration of the subset-tracing procedure.
The reader may refer to [22].

Lemma 3. Let Vi, v1, v2, · · · vd, Vj be any sequence of vertices which occur in
this order along some root-to-leaf path in the tree corresponding to the subset
set(Vi, Vj), then set(Vi, Vj) = set(Vi, v1) ∪ set(v1, v2) ∪ · · · ∪ set(vd, Vj).

According to the way tracing works on the SD, whenever the partition contains
a series of subsets {set(vi, v1), set(v1, v2), · · · , set(vd, vj)} they can potentially
be merged using Lemma 3 into one single subset set(vi, vj). To illustrate how
evolution for SD method works, we first give an example of a partition of non-
revoked users and the set of traitors in Figure 5. Let’s focus on the subset rooted
at g that is magnified in Figure 6(a) and start creating pirate boxes.



460 A. Kiayias and S. Pehlivanoglu

Fig. 5. Subset Difference with cover and set of traitors

Suppose that the evolving pirate uses the keys of the traitor T4 first; the
sequence of pirate boxes created until T4 is entirely revoked would be B1 =
Box(1, 5, T4), B2 = Box(2, 5, T4) and B3 = Box(3, 5, T4). Due to lemma 2
tracing all these boxes would end up with revoking T4 and T B1,B2,B3(R) =
{set(1, 2), set(2, 3)}. Note that in light of lemma 3 the tracing algorithm will
merge these two subsets to have the single subset set(1, 3) shown in Figure 6(b).
This illustrates the fact that an evolving pirate against the SD method may use
the keys of a traitor as many times as the height of the subset it belongs to without
necessarily restricting the same opportunity for other traitors that are scheduled
to be used later. Indeed, we can execute a pirate box construction using the keys
of traitor T3 that would be as many as the height of the tree (compare this to the
Complete Subtree method where this is not achievable and using the keys of one
traitors strips the opportunity to use such keys for other traitors scheduled later).
Proceeding with our example, the master pirate box B will now be able to create
a pirate box Box(1, 3, T3) (recall that T B1,B2,B3(R) = {set(1, 3)}) followed by
another box Box(1, 2, T3) and so on until T3 is entirely revoked. Even though
we have the opportunity now to make more boxes per traitor compared to the
complete subset method, special care is needed to choose the order with which
we are expending the traitor keys as we will illustrate below. This is in sharp
contrast to the complete subset method where the scheduling of traitors makes
no difference in terms of the number of pirate box generations that the master
box can spawn. To see the importance of scheduling the traitors appropriately,
suppose that we use the traitor T3 first instead of T4; then, the sequence of pi-
rate boxes created until T3 is entirely revoked would be B1 = Box(1, 5, T3), B2 =
Box(1, 2, T3), B3 = Box(8, 9, T3) and B4 = Box(10, 12, T3) (refer to figure 6(b)
for the node numbering). Tracing all these boxes would end up with revoking T3

and T B1,B2,B3,B4(R) = {set(2, 5), set(8, 10), set(10, 11)}. Note that this subset
collection will also be merged by tracing algorithm, resulting the partition given
in figure 6(c). The pirate then will be able to create a pirate box Box(2, 5, T4)
and so on until T4 is revoked. Observe that now T4 is isolated in its own subtree,



Pirate Evolution: How to Make the Most of Your Traitor Keys 461

Fig. 6. (a) The subset S1,5 of Figure 5 that contains all the traitors. The master pirate
box will start producing boxes according to this subset. (b) The partition after pirate
evolution using T4 took place; T4 is revoked from the system. (c) The partition after
pirate evolution using T3 took place; T3 is revoked from the system.

and the master pirate box will be able to make fewer boxes using the keys of T4.
Thus, it would have been preferable to start the pirate evolution with traitor T4.

We observe that the evolving pirate strategy can be based on a representation
of the Steiner tree by means of paths hanging off each other hierarchically such
that each path stems from an internal node to a traitor placed on a leaf. Each
time we choose a traitor, we actually choose a path to walk on to construct
pirate boxes. We observe two criteria to maximize the number of pirate decoders.
(1) Once a traitor is revoked, we choose a shortest path hanging off the path
containing the recently revoked traitor. (2) If there are more than one shortest
path, a path with large number of paths hanging off itself would be preferable.
Choosing a traitor amounts to choosing a path according to this criteria (in
a recursive way). In the next paragraphs we formalize these observations. We
introduce a special annotation of the Steiner Tree ST (T, u, v), where set(u, v) is
one of the subsets in the partition, that will enable us to choose the best ordering
of the traitors.

Definition 6. A traitor annotation of a Steiner tree ST (T, u, v) is the mapping
from its nodes to T∪{⊥} that is defined in Figure 7. We say ST (T, u, v) is anno-
tated by f . Denote the parent of a node v by parent(v), the sibling by sibling(v),
the height by height(v). We define the rank of a traitor s given an annotation f
as the number of nodes with 2 children that are annotated by s. We denote the
rank of s ∈ T by rank(s). Given a Steiner tree ST annotated by f , for any u ∈ T
the u-path(ST) is the path that is made out of all nodes that are annotated by u.
Similarly, we define ⊥-path(ST) and further we call it as the basic path of the
tree ST . We denote u-path(ST) by a vector of nodes, u-path(ST)=〈v1, v2, · · · vs〉
where vi = parent(vi+1) for 0 < i < s and u = f(vi); we also denote v1 and vs

in this path by topf (u) and bottomf (u) respectively.

Lemma 4. For a given set of revoked users R and the set of traitors T, let
Tree = ST (T, vi, vj) ∈ {ST (T, g, r) | set(g, r) ∈ T (R)} be one of the Steiner
trees. Consider the annotation of Tree given in Figure 7. Suppose the shortest
path hanging off the ⊥-path(Tree) is annotated by u. Let u1 = topf (u) and us =



462 A. Kiayias and S. Pehlivanoglu

annotation(Tree ST (T, i, j))
Initially annotate each leaf l with its corresponding traitor u ∈ T, i.e. f(l) = u
rank(u) = 0, for each u ∈ T
f(j) =⊥ and rank(⊥) = 0.
Annotate each node from bottom to top by following rule:

f(parent(v)) =

��
�

f(v) sibling(v) �∈ Tree ∨ f(v) =⊥
f(v) rank(f(v)) ≥ rank(f(sibling(v)))
f(sibling(v)) otherwise

��
�

update rank(f(parent(v))) = rank(f(parent(v))) + 1 if sibling(v) ∈ Tree
output f

Fig. 7. Computing the traitor annotation for a given Steiner tree

bottomf (u) where s is the length of the u-path(Tree). It holds that: (1) There
exists a sequence of pirate boxes B1, B2, · · ·Bk, each using a private key derived
from Ku where k = height(Tree) + Au and Au ∈ {0, 1} such that Au = 1 if
and only if sibling(u1) has a single child in Tree. (2) T B1,B2,···Bk(R) = {T (R) \
set(vi, vj)} ∪ {set(vi, parent(u1)), set(u1, us)}.
We next describe our evolving pirate strategy against the SD method. We define
the master pirate box B produced by the adversary PER(M)(T, K) as follows: B
recursively runs a procedure for each subset S = set(vi, vj) ∈ T (R) which is called
makeboxes, with input the traitor annotated Steiner tree Tree = ST (T, vi, vj).
Observe below that whenever the recursive call is made, the annotation of Tree
satisfies that the root is annotated with ⊥. The basic procedure works as follows:

The root vi is annotated as ⊥. Let u-path(Tree)=〈u1, u2, · · ·us〉 be the shortest
path hanging off the ⊥-path(Tree). The master box B constructs Box(vi, vj , u)
and more pirate decoders by applying lemma 2. After creating pirate boxes as
many as the height of Tree (plus one possibly if Au = 1, cf. lemma 4), the traitor
u will be entirely revoked by the system. Lemma 4 tells us that the partition
after revoking u will include the subsets set(vi, parent(u1)) and set(u1, us). We
update the path 〈u1, u2, · · · us〉 in ST (T, u1, us) by annotating it ⊥ since u is no
more in (set(u1, us)). The master box B then runs makeboxes independently on
both of the trees ST (T, vi, parent(u1)) and ST (T, u1, us). Refer to figure 8 for
the detailed specification of the evolving pirate strategy.

In the following theorem we prove the correctness of the strategy, i.e. that
each box will decrypt the ciphertexts that are generated assuming all previous
boxes are traced. We also show the maximum number of pirate decoders that
can be created.

Theorem 5. Let P1, P2, · · · , Pk+1 be a sequence of pirate boxes constructed by
the pirate evolution strategy described in Figure 8. Suppose C = EP1,P2,···,Pk

R (M),
then Prob[Pk+1(C) = M ] ≥ q, provided that

k <
∑

set(vi,vj)∈T (R)

⎛
⎝rank(⊥) · height(vi) +

∑
u∈T∩set(vi,vj)

Cu + Au

⎞
⎠

where Cu = rank(u)· | u-path(ST (T, vi, vj)) |.



Pirate Evolution: How to Make the Most of Your Traitor Keys 463

1. For each Si,j = set(vi, vj) ∈ T (R)
2. Compute f = annotation(ST (T, vi, vj))
3. Run makeboxes(ST (T, vi, vj), f) till the �-th pirate box is produced.
makeboxes(Tree, annotation f)
1. Let ⊥-path in Tree be 〈k1, k2, · · · km〉. Note that k1 = vi and km = vj

2. Choose the shortest path hanging off the ⊥-path, i.e. pick l = max(l : sibling(kl) ∈
Tree) to use the keys of traitor u = f(sibling(kl)); if no such path exists, exit.
3. Denote u-path by 〈u1, u2, · · · us〉
4. Output Box(k1, km, u), Box(k2, km, u), · · · Box(kl−1, km, u)
5. Output Box(kl−1, kl, u) iff l < m.
6. Output Box(u1, sibling(u2), u), Box(u2, sibling(u3), u), ..Box(us−1, sibling(us), u)
8. Update f(ui) =⊥, for 0 < i ≤ s
9. makeboxes(ST (T, u1, us), f)
10. makeboxes(ST (T, k1, kl−1), f)

Fig. 8. The description of master box program B(1t+log N , �) parameterized by T (R), T,
Ku for u ∈ T that is produced by the evolving pirate for the Subset Difference method

Leaking Incidents. For the evolving pirate P described in Figure 8, the value of
PER
P,L(t) follows from theorem 5. Theorem 6 gives some bounds on this quantity

depending on the leaking incident for the SD method.

Theorem 6. Let N be the set of N users represented by a full binary tree in the
SD method. For a given R, there exists a leaking incident L corrupting t users
in S ∈ T (R)(for simplicity assume S is complete subset, and thus log |S| is an
integer), that enables an evolving pirate with respect to L so that

PER
P,L(t) =

{ t log |S|, t ≤ log |S| + 1
t log( |S|2m ) + 2m log( |S|2m−3 ) − log |S| − 3,

t ∈
{

2m−1 log(
|S|

2m−2
)+1, . . . , 2m log(

|S|
2m−1

)
}

for 0< m< log |S|

To see the above existence result, consider the following: our goal is to choose
t traitors in the set S. Once a leaf is chosen in a complete subtree to place
a traitor, we will next choose to place other traitors in the subtrees hanging
off the path of that traitor.The first traitor chosen in each hanging subtree, it
contributes to the number PER

P,L(t) as many pirate generations as the height of
the tree (say h = log |S|). After this first stage of placement, we have h subtrees
each containing one traitor and each have different heights. We recursively place
the remaining traitors in these subtrees by using the highest possible subtrees
first. In short, we can think of the leaking incident of theorem 6 as follows:
the first traitor is placed in an arbitrary leaf; then, h stages follow: in stage m
(where m = 0, . . . , h − 1), the remaining traitors are placed on the subtrees of
height h − m. At stage m > 0 we can place 2m−1(h − m) traitors (where we
place h traitors at stage 0). By the end of stage m we will have already placed
2m log( |S|2m−1 ) traitors. Note that a traitor placed at stage m will contribute h−m
pirate boxes following our evolving pirate strategy. The formula in theorem 6
gives the sum of all pirate generations for each traitor.



464 A. Kiayias and S. Pehlivanoglu

The maximum number of generations can be achieved following the leaking
incident of Theorem 6 in a configuration of the system when there is no revoked
user; in this case there is a single element in the partition, namely S containing
N users. The corollary below follows easily from theorem 6.
Corollary 2. The pirate evolution bound for the SD method satisfies evo[SD] ≥
t log N for t ≤ log N . It also satisfies that evo[SD] ≥ t log N

2 for t ≤
√

N · log N
2 .

Relation to the AACS. The AACS standard for Blue-Ray disks and HD-DVDs
uses the SD method with N = 231 nodes. It follows that a leaking incident with t
traitors enables our evolving pirate strategy to generate up to 31 · t generations of
pirate boxes in the case that the system has an initial state of ciphertexts with a
single element in the partition; note that if the starting configuration of the system
has more elements in the partition (e.g., 28 elements each corresponding to 223

users) the total number of generations would be 23 · t for t ≤ 23, and so on.

References

1. AACS Specifications (2006), http://www.aacsla.com/specifications/
2. Boneh, D., Franklin, M.: An Efficient Public-Key Traitor Tracing Scheme. In:

Wiener, M.J. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 338–353. Springer, Hei-
delberg (1999)

3. Boneh, D., Sahai, A., Waters, B.: Fully Collusion Resistant Traitor Tracing with
Short Ciphertexts and Private Keys. In: Vaudenay, S. (ed.) EUROCRYPT 2006.
LNCS, vol. 4004, pp. 573–592. Springer, Heidelberg (2006)

4. Boneh, D., Shaw, J.: Collusion-Secure Fingerprinting for Digital Data. IEEE Trans-
actions on Information Theory 44(5), 1897–1905 (1998)

5. Chabanne, H., Hieu Phan, D., Pointcheval, D.: Public Traceability in Traitor Trac-
ing Schemes. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp.
542–558. Springer, Heidelberg (2005)

6. Chor, B., Fiat, A., Naor, M.: Tracing Traitors. In: Desmedt, Y.G. (ed.) CRYPTO
1994. LNCS, vol. 839, pp. 257–270. Springer, Heidelberg (1994)

7. Chor, B., Fiat, A., Naor, M., Pinkas, B.: Tracing Traitors. IEEE Transactions on
Information Theory 46(3), 893–910 (2000)

8. Dodis, Y., Fazio, N.: Public Key Broadcast Encryption for Stateless Receivers. In:
Feigenbaum, J. (ed.) DRM 2002. LNCS, vol. 2696, pp. 61–80. Springer, Heidelberg
(2003)

9. Dodis, Y., Fazio, N., Kiayias, A., Yung, M.: Scalable public-key tracing and revoking.
In: Proceedings of the Twenty-Second ACM Symposium on Principles of Distributed
Computing (PODC 2003), July 13-16, 2003, Boston, Massachusetts (2003)

10. Fiat, A., Naor, M.: Broadcast Encryption. In: Stinson, D.R. (ed.) CRYPTO 1993.
LNCS, vol. 773. Springer, Heidelberg (1994)

11. Fiat, A., Tassa, T.: Dynamic Traitor Tracing. Journal of Cryptology 4(3), 211–223
(2001)

12. Goldreich, O., Goldwasser, S., Micali, S.: How to Construct Random Functions. J.
of the ACM 33(4), 792–807 (1986)

13. Gafni, E., Staddon, J., Yin, Y.L.: Efficient Methods for Integrating Traceability and
Broadcast Encryption. In: Wiener, M.J. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp.
372–387. Springer, Heidelberg (1999)

14. Garay, J.A., Staddon, J., Wool, A.: Long-Lived Broadcast Encryption. In: Bellare,
M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 333–352. Springer, Heidelberg (2000)

http://www.aacsla.com/ specifications/


Pirate Evolution: How to Make the Most of Your Traitor Keys 465

15. Halevy, D., Shamir, A.: The LSD Broadcast Encryption Scheme. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, pp. 47–60. Springer, Heidelberg (2002)

16. Jho, N., Hwang, J.Y., Cheon, J.H., Kim, M.H., Lee, D.H., Yoo, E.S.: One-Way
Chain Based Broadcast Encryption Schemes. In: Cramer, R.J.F. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 559–574. Springer, Heidelberg (2005)

17. Kiayias, A., Yung, M.: Self Protecting Pirates and Black-Box Traitor Tracing. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 63–79. Springer, Heidelberg
(2001)

18. Kiayias, A., Yung, M.: On Crafty Pirates and Foxy Tracers. In: Sander, T. (ed.)
DRM 2001. LNCS, vol. 2320, pp. 22–39. Springer, Heidelberg (2002)

19. Kiayias, A., Yung, M.: Traitor Tracing with Constant Transmission Rate. In: Knud-
sen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 450–465. Springer, Hei-
delberg (2002)

20. Kurosawa, K., Desmedt, Y.: Optimum Traitor Tracing and Asymmetric Schemes.
In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 145–157. Springer,
Heidelberg (1998)

21. Micciancio, D., Panjwani, S.: Corrupting One vs. Corrupting Many: The Case of
Broadcast and Multicast Encryption. In: Bugliesi, M., Preneel, B., Sassone, V.,
Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052. Springer, Heidelberg (2006)

22. Naor, D., Naor, M., Lotspiech, J.B.: Revocation and Tracing Schemes for Stateless
Receivers. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 41–62. Springer,
Heidelberg (2001)

23. Naor, M., Pinkas, B.: Threshold Traitor Tracing. In: Krawczyk, H. (ed.) CRYPTO
1998. LNCS, vol. 1462, pp. 502–517. Springer, Heidelberg (1998)

24. Naor, M., Pinkas, B.: Efficient Trace and Revoke Schemes. In: Frankel, Y. (ed.)
FC 2000. LNCS, vol. 1962, pp. 1–20. Springer, Heidelberg (2001)

25. Naor, M., Reingold, O.: Number-Theoretic Constructions of Efficient Pseudo-
Random Functions. In: FOCS ’97, pp. 458–467. IEEE Computer Society, Los
Alamitos (1997)

26. Pfitzmann, B.: Trials of Traced Traitors. In: Anderson, R. (ed.) Information Hiding.
LNCS, vol. 1174, pp. 49–63. Springer, Heidelberg (1996)

27. Phan, D.H., Safavi-Naini, R., Tonien, D.: Generic Construction of Hybrid Public
Key Traitor Tracing with Full- Public-Traceability, pp. 264–275.

28. Safavi-Naini, R., Wang, Y.: Sequential Traitor Tracing. In: Bellare, M. (ed.)
CRYPTO 2000. LNCS, vol. 1880, pp. 316–332. Springer, Heidelberg (2000)

29. Safavi-Naini, R., Wang, Y.: Collusion Secure q-ary Fingerprinting for Perceptual
Content. In: Sander, T. (ed.) DRM 2001. LNCS, vol. 2320, pp. 57–75. Springer,
Heidelberg (2002)

30. Safavi-Naini, R., Wang, Y.: New Results on Frameproof Codes and Traceability
Schemes. IEEE Transactions on Information Theory 47(7), 3029–3033 (2001)

31. Safavi-Naini, R., Wang, Y.: Traitor Tracing for Shortened and Corrupted Finger-
prints. In: Feigenbaum, J. (ed.) DRM 2002. LNCS, vol. 2696, pp. 81–100. Springer,
Heidelberg (2003)

32. Staddon, J.N., Stinson, D.R., Wei, R.: Combinatorial Properties of Frameproof and
Traceability Codes. IEEE Transactions on Information Theory 47(3), 1042–1049
(2001)

33. Stinson, D.R., Wei, R.: Combinatorial Properties and Constructions of Traceability
SchemesandFrameproofCodes. SIAMJournal onDiscreteMath. 11(1), 41–53 (1998)

34. Tardos, G.: Optimal probabilistic fingerprint codes. In: ACM 2003, pp. 116–125
(2003)



A Security Analysis of the NIST SP 800-90
Elliptic Curve Random Number Generator

Daniel R.L. Brown1 and Kristian Gjøsteen2

1 Certicom Research,
dbrown@certicom.com

2 Department of Mathematical Sciences, Norwegian
University of Science and Technology, NO-7491 Trondheim, Norway

kristian.gjosteen@math.ntnu.no

Abstract. An elliptic curve random number generator (ECRNG) has
been approved in a NIST standard and proposed for ANSI and SECG
draft standards. This paper proves that, if three conjectures are true,
then the ECRNG is secure. The three conjectures are hardness of the
elliptic curve decisional Diffie-Hellman problem and the hardness of two
newer problems, the x-logarithm problem and the truncated point prob-
lem. The x-logarithm problem is shown to be hard if the decisional Diffie-
Hellman problem is hard, although the reduction is not tight. The trun-
cated point problem is shown to be solvable when the minimum amount
of bits allowed in NIST standards are truncated, thereby making it in-
secure for applications such as stream ciphers. Nevertheless, it is argued
that for nonce and key generation this distinguishability is harmless.

Keywords: Random Number Generation, Elliptic Curve Cryptography.

1 Introduction

Certain random number generator (RNG) algorithms, such as the Blum-Micali
[1] and Kaliski [2] generators, have been proven secure — assuming the conjec-
tured hardness of associated number-theoretic problems. Recently, a new random
number generator has been undergoing standardization (see [3,4,5,6]). In this pa-
per, this new generator is called the Elliptic Curve Random Number Generator
(ECRNG). Like Kaliski’s generator, the ECRNG is based on elliptic curves and
is adapted from the Blum-Micali generator. Compared to many other number-
theoretic RNGs, the ECRNG is considerably more efficient, because it outputs
more bits per number-theoretic operation. The ECRNG is different from the
Kaliski RNG in two major respects:

– The ECRNG uses ordinary elliptic curves, not the supersingular elliptic curves
of Kaliski RNG. Supersingular curves can make the state transition function a
permutation, which is advantageous for making the Blum-Micali proof work,
but is disadvantageous because of the Menezes-Okamoto-Vanstone (MOV) at-
tack, which requires a larger curve to make the proof give a useful assurance.1

1 This is not to say that MOV attack could be applied against the Kaliski RNG for
smaller sized curves.

A. Menezes (Ed.): CRYPTO 2007, LNCS 4622, pp. 466–481, 2007.
c© International Association for Cryptologic Research 2007



A Security Analysis of the NIST SP 800-90 ECRNG 467

For ordinary curves, the state transition function is many-to-one, often two-to-
one. This paper adapts the Blum-Micali proof by introducing the x-logarithm
problem to overcome the obstacle introduced by state transition function not
being a permutation.

– The ECRNG produces at each state update an output with almost as many
bits as in the x-coordinate of an elliptic curve point, whereas the Kaliski
ECRNG outputs just a single bit. Therefore the ECRNG is considerably
more efficient than the Kaliski RNG if operated over the same elliptic curve.
The Kaliski RNG outputs a single bit that is a hardcore predicate for the
elliptic curve discrete logarithm problem (ECDLP). The ECRNG output
function essentially uses a conjectured hardcore function of the ECDLP. The
basis of this conjecture is the elliptic curve DDH problem, and the truncated
point problem (TPP), defined below.

This paper proves that ECRNG is secure if the following problems are hard:

– The elliptic curve version of the well known decisional Diffie-Hellman prob-
lem (DDH). This is now widely accepted for certain groups. These groups
include most small cofactor order elliptic curve groups defined over finite
fields, such as the NIST curves. Boneh [7] gives an excellent survey about
the DDH problem.

– The x-logarithm problem (XLP): a new problem, which is, given an elliptic
curve point, determine whether its discrete logarithm is congruent to the
x-coordinate of an elliptic curve point. This problem is discussed further in
§5. We provide some evidence that the XLP problem is almost as hard as
the DDH problem. The evidence takes the form of loose reduction between
a related problem, AXLP (defined below), and the DDH problem.

– The truncated point problem (TPP): a new problem, which is, given a bit
string of a certain length, determine whether it is obtained by truncating
the x-coordinate of a random elliptic curve point. The TPP problem con-
cerns extraction of pseudorandom bits from random elliptic curve points. El
Mahassni and Shparlinski [8] give some results about extraction of pseudo-
random bits from elliptic curve points. Gürel [9] also gives some results, al-
though with fewer bits extracted than in the ECRNG. We discuss the TPP
problem in §7. We find that if too few bits are truncated, then the result is
distinguishable from a random bit string. Schoenmakers and Sidorenko [10]
independently found a similar result.

Naor and Reingold [11] constructed pseudorandom functions secure as the
hardness of the DDH problem, while Gertner and Malkin constructed such a
pseudorandom number generator based on the same assumption. Farashahi,
Schoenmakers and Sidorenko [12] recently constructed pseudorandom number
generators following a modified version of the ECRNG, which are secure as
DDH over certain groups.

This paper does not attempt to analyze the various issues surrounding en-
tropy of the secret state of the RNG. Prediction resistance is the ability of
RNG to add additional entropy into the secret state to recover completely from



468 D.R.L. Brown and K. Gjøsteen

a circumstance where an adversary has information about the previous state.
Initialization and prediction resistance are general RNG issues, and indeed the
standards specifying the ECRNG do not treat the ECRNG especially differ-
ent from other RNGs with respect initialization and prediction resistance. This
paper deliberately restricts itself to ECRNG specific issues.

2 The Elliptic Curve Random Number Generator

Let Fq be a finite field with q elements. An elliptic curve E over Fq is defined by
a nonsingular cubic polynomial in two variables x and y with coefficients in Fq.
This paper considers only cubics in a specially reduced Weierstrass form

E(x, y) = y2 + cxy − (x3 + ax1+c + b) = 0 (1)

where c is 0 if q is odd and 1 if q is odd, since these are most often used in
cryptography, and particularly in the ECRNG. We define the rational points of
the curve to be

E(Fq) = {(x, y) ∈ F
2
q : E(x, y) = 0} ∪ {0}. (2)

An addition law is defined on E(Fq) using the well-known chord-and-tangent
law. For example, (u, v) + (x, y) = (w, z) is computed as follows. Form a line
through (u, v) and (x, y), which intersects the curve E(x, y) = 0 in three points,
namely (u, v), (x, y) and some third point (w, −z), which defines the desired sum
by negating the y-coordinate.

In the ECRNG, and in elliptic curve cryptography more generally, one defines
some base point P on the curve. One assumes that P has prime order n in the
elliptic curve group, so that nP = 0. Generally, the number of points in E(Fq) is
hn, where the cofactor h is usually quite small, typically with h ∈ {1, 2, 4}. We
say that a point Q is valid if it is an additive multiple of P . We will generally
only consider valid points in this paper, so when we say a random point, we
mean a random valid point.

The ECRNG maintains a state, which is an integer si ∈ [0, max{q−1, n−1}].
The iteration index i increments upon each output point of the ECRNG. The
ECRNG is intended to be initialized by choosing the initial state s0 uniformly
at random from [0, n − 1].

For a point P = (x, y) ∈ E(Fq), we write x(P ) = x̄, where x̄ ∈ Z is obtained
by taking the bit representation of the x ∈ Fq and considering this is as the bit
representation of an integer. When q is prime, we essentially have x̄ = x, but
when q is not a prime, the value of x̄ depends on the representation used for the
finite field Fq. (We may arbitrarily define x(0) = 0, but we will encounter this
case negligibly often in our analysis.) Therefore, to fully specify the ECRNG, one
needs to define a field representation, because the function x(·) has an important
rôle in the ECRNG, as we see below.

The ECRNG has another initialization parameter, which is a point Q. The
point should ideally be chosen at random, preferably verifiably at random, such
as by deriving it from the output of secure hash function or block cipher.



A Security Analysis of the NIST SP 800-90 ECRNG 469

When the state is si, the (raw) output point is defined as

Ri = siQ. (3)

The actual output of the ECRNG applies further processing to Ri. The final out-
put is ri = t(x(Ri)), where t is a function that truncates certain bits from the bit
string representation of an elliptic curve point. The purpose of t is to convert the
x-coordinate of a pseudorandom EC point to a pseudorandom bit string.

After generating an output point Ri, the state is updated as

si+1 = x(siP ). (4)

It is convenient to adopt the following notation. We define the prestate at it-
eration i + 1 as Si+1 = siP . Note that si+1 = x(Si+1). We may think of the
prestate being updated as

Si+2 = x(Si+1)P. (5)

The following notation for the ECRNG will be convenient. Let s0 be the initial
state. We define gm(Q, s0) = (R0, R1, . . . , Rm) inductively by

g0(Q, s0) = (s0Q) and gm(Q, s0) = (s0Q, gm−1(Q, x(s0P ))),

where we use the convention that a comma indicates concatenation of point se-
quences. We shall continue to use this convention for the remainder of the paper.

3 Lemmas on Indistinguishability

Random variables X and Y are computationally indistinguishable if, given a sam-
ple value u that has probability 1

2 of coming from X and 1
2 from Y , an adversary

cannot distinguish , with a feasible cost of computation and reasonable success
rate, whether u comes from X or from Y . Pseudorandomness is indistinguisha-
bility from a uniform (equiprobable) distribution. Indistinguishability is a well
known notion in cryptology, but for completeness, this section introduces some
general notation and lemmas on indistinguishability that are convenient for the
proofs of the main theorems.

We write X ∼ Y to indicate that random variables X and Y are indistin-
guishable. Where needed, we write X

σ∼ Y to quantify the indistinguishability
by some parameters σ, such as success rate or computational cost. We write
X ∼= Y when random variables X and Y are identically distributed. Obviously,
X ∼= Y implies X ∼ Y .

Intuitively, one expects indistinguishability (∼) to be an equivalence relation.
Certainly, ∼ is reflexive and symmetric, and more interestingly, it is transitive ([13,
Ex. 27], for example). This is such a fundamental point it is worth repeating here.

Lemma 1. If X ∼ Y and Y ∼ Z, then X ∼ Z.

A second lemma, which one also intuitively expects, makes proofs cleaner through
separating complicated constructions from indistinguishability.



470 D.R.L. Brown and K. Gjøsteen

Lemma 2. If f is an efficiently computable function, and X ∼ Y , then f(X) ∼
f(Y ).

It is worth noting that the converse to this lemma does not necessarily hold:
generally, f(X) ∼ f(Y ) does not imply X ∼ Y . A constant function f is a
trivial counterexample. Nontrivial counterexamples exist too, such as f being a
bijection whose inverse is not efficiently computable.

A third lemma, which one again intuitively expects, allows one to analyze
distributions by analyzing independent components.

Lemma 3. If X ∼ Y and W ∼ Z, and X and W are independent variables, as
are Y and Z, and X and Z can be efficiently sampled, then (X, W ) ∼ (Y, Z).

This lemma also applies under our notational convention that if X and Y are
sequences, then (X, Y ) is their concatenation.

4 The Decisional Diffie-Hellman Problem

The decisional Diffie-Hellman problem (DDH) for a given elliptic curve E and
a base point P is to distinguish between a triple (Q, R, S) = (qP, rP, qrP ) and
a triple (Q, R, Z) = (qP, rP, zP ) where q, r, z are integer random variables uni-
formly distributed in the interval [0, n − 1]. (Note this q is not to be confused
with the field order.) The triple (Q, R, S) is often called a Diffie-Hellman triple.
For certain elliptic curves, it is conjectured that the DDH problem is hard.

Conjecture 1. If q, r and z are independent random integers uniformly distrib-
uted in [0, n − 1], then (qP, rP, qrP ) ∼ (qP, rP, zP ).

This, if true, provides a nontrivial counterexample to the converse to Lemma 2
because random variables X = (q, r, qr) and Y = (q, r, z) are distinguishable,
but if one applies the function f defined by f(x, y, z) = (xP, yP, zP ), then the
conjecture says f(X) ∼ f(Y ).

The conjectured hardness of the DDH problem, for certain groups, is widely
believed among cryptologists. One should be aware that for certain elliptic
curves, however, there are efficiently computable so-called pairings that can be
used to distinguish Diffie-Hellman triples. Pairings exist for all elliptic curves,
but only for a very few are they known to be efficiently computable. For most
elliptic curves, one can verify that the known pairings are extremely inefficient
and infeasible to use in practice. This has been confirmed for most of the NIST
recommended elliptic curves.

5 The x-Logarithm Problem

The x-Logarithm Problem (XLP) for elliptic curve E(Fq) and base point P is to
distinguish between dP and xP where: d is an integer chosen uniformly at random
in [0, n − 1]; and x = x(Z) for a point Z chosen uniformly at random in E(Fq).
We conjecture that the x-logarithm problem is hard for most elliptic curves:

Conjecture 2. If d and z are random integers uniformly distributed in the interval
[0, n − 1], then dP ∼ x(zP )P .



A Security Analysis of the NIST SP 800-90 ECRNG 471

Now d and x = x(zP ) are generally distinguishable. Firstly, known tests on
x quickly determine whether there exists a y ∈ Fq such that (x, y) ∈ E(Fq).
Secondly, when the cofactor h > 1, we expect to have x > n for at least about
half of the x-coordinates x of random points, whereas for d, we always have
d < n. Therefore, this conjecture, if true, gives another counterexample to the
converse of Lemma 2.

An intuitive reason for the plausibility of the XLP conjecture is that given
public key dP , one expects that nothing substantial is leaked about the private
key d. This intuition derives from the conjectured hardness of the elliptic curve
discrete logarithm problem (ECDLP). However, a formal argument that the
ability to determine whether dP = x(zP )P for some z, implies an ability to find
d is not known to the authors. In fact, conceivably, the ECDLP could be hard,
even though certain information about the discrete logarithm, such as whether
it is congruent to an x-coordinate, is easily discernible.

Certain bits in the binary representation of the d have been shown by Kaliski
[2] to be as hard to find as the whole of d. A bit of information with such a
property is known as a hardcore predicate for the ECDLP. Kaliski’s proof that
certain bits of the binary representation of the discrete logarithm are hardcore
predicate works with a reduction, as follows. Given Q = dP , determine from Q
a bit of information about d. Then transform Q to some Q′ = d′P in such a
way that there is an known relation between d and d′, and d′ has one less bit of
freedom than d. Next determine a bit of information about d′, then d′′ and so on.
The transformation is such that all bits of information learnt are independent
and can be easily be reconstituted to learn d in its entirety.

What would be ideal to make Conjecture 2 into a theorem, would be another
transformation with comparable properties to Kaliski’s for determining the dis-
crete logarithm d using an oracle for solving XLP. Instead we have the following
result, Theorem 1, which is not ideal in that it

1. is not a tight reduction,
2. concerns a harder variant of the XLP.

The Arbitrary-base x-Logarithm Problem (AXLP) for elliptic curve E(Fq) is to
distinguish between (P, dP ) and (P, xP ) where: d is an integer chosen uniformly
at random in [0, n − 1]; and x = x(Z) for points P and Z chosen uniformly
at random in E(Fq). The distinction between AXLP and XLP is that in XLP,
the adversary needs only to succeed for fixed base P , whereas in AXLP, the
adversary must succeed for any base P .

Note that for r chosen uniformly at random from [0, n − 1], we have that
(P, dP ) ∼= (rP, rdP ) and (P, xP ) ∼= (rP, rxP ). This means that any adversary
A can be replaced by an equally effective adversary A′ that first randomizes its
input by multiplying both points by a random integer r. Let

fi = Pr[A(P, iP ) = 1] and f = Pr[A(P, Q) = 1] =
1
n

n−1∑
i=0

fi (6)

where the probabilities are taken over random P and Q.



472 D.R.L. Brown and K. Gjøsteen

Lemma 4. For any adversary A against AXLP, there exists an adversary B
against DDH with advantage

ε =
2
n

n−1∑
i=0

(fi − f)2. (7)

Proof. The idea is that for a DDH triple (Q, R, S), logP Q = logR S. If we run
A with the pairs (P, Q) and (R, S) as input, the output should be correlated.
But if (Q, R, S) is a random triple, the output should be uncorrelated.

Let B be the algorithm that on input of (Q, R, S) samples u and v uniformly
at random from 0, 1, ..., n − 1, then runs A on (uP, uR) and (vQ, vS). If the
outputs are equal, B outputs 1, otherwise 0.

We compute the advantage of B in distinguishing DDH tuples from random
tuples as ε = |δ0 − δ1|, where δ0 is the probability that B outputs 1 on input of a
DDH triple, and δ1 is the probability that B outputs 1 on input of a random triple.

For a DDH triple (Q, R, S) = (qP, rP, qrP ), the two runs of A will have
identical the same input distributions. That is, we can deal with each possible
logarithm r = i separately and get

δ0 = Pr[B(Q, R, S) = 1]
= Pr[A(uP, ruP ) = A(vQ, rvQ) = 1] + Pr[A(uP, ruP ) = A(vQ, rvQ) = 0]

=
∑

i

(Pr[A(P, iP ) = 1]2 + Pr[A(P, iP ) = 0]2)/n

=
∑

i

(f2
i + (1 − fi)2)/n

=
∑

i

(1 + 2f2
i − 2fi)/n.

(8)
For a random triple, the two runs of A will be independent, and we get

δ1 = Pr[A(P, jP ) = 1 | j random]2 + Pr[A(P, jP ) = 0 | j random]2

= f2 + (1 − f)2 = 1 + 2f2 − 2f

=
∑

i

(1 + 2f2 − 2fi)/n.
(9)

Summing up, we get

ε =

∣∣∣∣∣
∑

i

(1 + 2f2
i − 2fi − (1 + 2f2 − 2fi))/n

∣∣∣∣∣
= (2/n)

∣∣∣∣∣
∑

i

(f2
i − f2)

∣∣∣∣∣ = (2/n)
∑

i

(fi − f)2
(10)

which completes the proof. ��



A Security Analysis of the NIST SP 800-90 ECRNG 473

We now need to show that this adversary against DDH has a significant advan-
tage if the AXLP adversary has a significant advantage.

Let ai be the probability that the x-coordinate of a random point Z of order
n is i modulo n, that is

ai = Pr[x(Z) ≡ i (mod n) | Z random of order n]. (11)

The signed advantage of an adversary A against AXLP is

ε′ = Pr[A(P, iP ) = 1 | i = x(Z), Z random of order n]−
Pr[A(P, iP ) = 1 | i random]

=
∑

i

Pr[A(P, iP ) = 1](ai − 1/n)

=
∑

i

fi(ai − 1/n).

(12)

Since
∑

i(ai − 1/n) = 0, we can write

ε′ =
∑

i

(fi − f)(ai − 1/n). (13)

Next, let t be the maximal number of points on a curve with the same x-
coordinate modulo n. (That is, t is at most twice the cofactor.) Then |ai−1/n| ≤
(t − 1)/n, or alternatively

|ai − 1/n| n

t − 1
≤ 1. (14)

Lemma 5. For any adversary A against AXLP, we have

2
n

∑
i

(fi − f)2 ≥ 2
t − 1

(ε′)2, (15)

where fi, f , t and ε′ are as defined above.

Proof. We multiply each term in the sum with ((ai−1/n)n/(t−1))2 ≤ 1, getting

2
n

∑
i

(fi − f)2 ≥ 2
(t − 1)2

1
n

∑
i

(fi − f)2(ai − 1/n)2n2 = μ. (16)

Using the fact that the average sum of squares is greater than the square of the
average (Jensen’s inequality applied to z 
→ z2), we get that

μ ≥ 2
(t − 1)2

(∑
i

1
n

(fi − f)(ai − 1/n)n

)2

=
2

(t − 1)2
(ε′)2, (17)

which concludes the proof. ��



474 D.R.L. Brown and K. Gjøsteen

Theorem 1. If the DDH problem is hard and the cofactor is small, then AXLP
is hard.

Proof. If there exists an adversary A against AXLP with advantage |ε′|, then by
Lemma 4 and 5 there exists an adversary against DDH with advantage

ε ≥ 2
(t − 1)2

(ε′)2. (18)

If |ε′| is non-negligible and the cofactor (and hence t) is small, then ε is non-
negligible. ��

This reduction is not tight. If |ε′| ≈ 1
2 and the cofactor is 1, then ε ≈ 1

2 . On
the the other hand, if |ε′| ≈ 2−40, then ε ≈ 2−80. It may be the case that
a feasible distinguisher for DDH exists with this advantage, in which case an
efficient distinguisher for AXLP with advantage 2−40 could not be ruled out.

In practice, the bound given by t is not sharp. For the cofactor two NIST
curves, one can prove that for almost all d ∈ [0, n−1], at most one of d and d+n
can be the x-coordinate of a valid point. This is because a valid x-coordinate
has a certain trace, and in trinomial or pentanomial basis representation, the
trace depends on a few bits of the x-coordinate including the least significant
bit. From this we see that t = 2 would work. For cofactor four curves, we only
have a heuristic estimate for t, which presumably could be confirmed (or denied)
by further analysis.

The advantage of B in the proof above can possibly be increased by also
comparing A’s run on (T, V ) and (U, W ) and other such pairings, although one
does not expect a significant increase compared to increased runtime.

Because AXLP appears to be a hard problem, it seems quite reasonable to
conjecture that XLP is also a hard problem. It should be noted that the hardness
of XLP suggests that the output of the ECRNG, before truncation, is suitable
to use for the generation of an ECC private key. One would conjecture that it
would therefore be just as sensible to concatenate enough output of the prop-
erly truncated ECRNG, and use these as a ECC private key, since presumably
truncation and concatenation should not decrease the security.

6 Security of the Raw ECRNG Outputs Points

The traditional notion of security for an RNG is that its output is indistinguish-
able from random. We prove below in Theorem 2 that the raw output points
of the ECRNG are indistinguishable from random points, that they are pseudo-
random as points. Furthermore, we prove that the points are forward secure, as
defined below.

The following proof is not substantially different than the proof for the Blum-
Micali generator [1] or the Kaliski generator [2]. However, unlike these genera-
tors, which used a hardcore bit of the discrete logarithm, the ECRNG uses a
hardcore function — as suggested, for example, in [14] — which yields greater



A Security Analysis of the NIST SP 800-90 ECRNG 475

efficiency provide that one accepts hardness of the corresponding problem, DDH,
to ensure the function is hardcore. A second reason for providing the proof anew
here is that the state update transition function is not a permutation. This issue
is addressed via recourse to the hardness of the x-logarithm problem. Roughly
speaking, hardness of XLP ensures that the state transition function is indistin-
guishable from a permutation.

In cryptology, forward secrecy refers to the following property: present secrets
remain secret into the future, even from an adversary who acquires all future
secrets. So, in forward secrecy, the secrecy of present secrets extends forward
into the future indefinitely and without depending on protection of some future
secrets. Many key agreement schemes, and even some digital signature schemes,
claim forward secrecy. When implementing these schemes, one likely needs to
ensure that any RNGs used have forward secrecy too. In [5,3], forward secrecy has
been renamed2 backtracking resistance to convey the notion that an adversary
cannot use future secret to backtrack to present secrets.

To model forward secrecy, we let adversary see the latest prestate, but still it
cannot distinguish previous output points from random points.

Theorem 2. If the DDH and XLP problems are hard, and Q, Z0, . . . , Zm, Zm+1

are independent and uniformly distributed random points, and s0 is a random
integer uniformly distributed in [0, n − 1], and gm(Q, s0) = (R0, . . . , Rm), with
the next prestate of the ECRNG being Sm+1, then

(Q, R0, . . . , Rm, Sm+1) ∼ (Q, Z0, . . . , Zm, Zm+1). (19)

Proof. The case of m = 0 is to show (Q, R0, S1) ∼ (Q, Z0, Z1). This follows
directly from hardness of the DDH problem. Assume by induction that

(Q, R0, . . . , Rm−1, Sm) ∼ (Q, Z0, . . . , Zm−1, Zm). (20)

The current outputs and prestate are given by

(Q, R0, . . . , Rm−1, Rm, Sm+1) = (Q, R0, . . . , Rm−1, x(Sm)Q, x(Sm)P ) (21)

Combining (20) and (21), and applying Lemma 2, we get

(Q, R0, . . . , Rm−1, Rm, Sm+1) ∼ (Q, Z0, . . . , Zm−1, x(Zm)Q, x(Zm)P ). (22)

Hardness of XLP gives x(Zm)P ∼ Zm+1. Writing Q = qP , Lemma 2 gives

(Q, Z0, . . . , Zm−1, x(Zm)Q, x(Zm)P ) ∼ (qP, Z0, . . . , Zm−1, qZm+1, Zm+1).
(23)

Hardness of DDH gives (qP, qZm+1, Zm+1) ∼ (Q, Zm, Zm+1) where Q = qP , so
Lemma 3 gives

(qP, Z0, . . . , Zm−1, qZm+1, Zm+1) ∼ (Q, Z0, . . . , Zm−1, Zm, Zm+1). (24)

Lemma 1 on transitivity connects (22) to (23) to (24) to complete the inductive
step, getting us our desired result. ��
2 Breaking precedent not only with wider usage in cryptology but also with other ANSI

standards such as X9.42 and X9.62, which use forward secrecy.



476 D.R.L. Brown and K. Gjøsteen

This proof makes essential use of Q being random. The reason for this is more
than just to make the proof work. If Q is not random, then it may be the case
the adversary knows a d such that dQ = P . Then dRi = dSi+1, so that such
a distinguisher could immediately recover the secret prestates from the output.
Once the distinguisher gets the prestates, it can easily distinguish the output
from random. Therefore, it is generally preferable for Q to be chosen randomly,
relative to P .

Although Theorem 2 says that hardness of the DDH problem is one of the
sufficient conditions for indistinguishability of the ECRNG output points, it is
not at all clear whether or not hardness of the DDH problem is a necessary
condition. It is clear that hardness of the computational Diffie-Hellman problem
(CDH) is a necessary condition in that Si+1 is the Diffie-Hellman product of P
and Ri to the base Q.

Hardness of XLP, however, is necessary for indistinguishability of the raw
output points. Output R1 = s1Q = x(S1)Q, so distinguishing it from random
Z1 is essentially XLP. Distinguishing output Rj = x(Sj−1)Q from random is
almost XLP except that Sj−1 is not necessarily a random point. However, if
distinguishing algorithm A is an XLP solver, then one heuristically expects that
A could distinguish Rj from a random point. Algorithm A would only fail if
the Sj−1 were distributed with a bias such that A reports that x(Sj−1)Q was
not of the form x(Z)P for some valid point Z. Therefore one cannot hope to
strengthen Theorem 2 by replacing the hardness of XLP with a weaker yet still
natural assumption. One could improve the result, however, by proving that
XLP is as hard as some other problems, such as DDH or ECDLP.

7 Truncated Point Problem and Security of the Full
ECRNG

For appropriate choice of truncation function t(·), we conjecture the following.

Conjecture 3. Let R be a random point and b a random bit string of length
matching the output length of t(·). Then t(x(R)) ∼ b.

We call the problem of distinguishing between t(x(R)) and b, the Truncated Point
Problem (TPP). This paper does not substantially address this conjecture, but
rather uses it to prove something about the final output of the ECRNG, rather
than just its raw output points.

Theorem 3. If the DDH, XLP and TPP problems are hard, then the ECRNG
has forward secrecy.

Proof. Apply Theorem 2 to get that the raw outputs are indistinguishable. By
the assumed hardness of the TPP problem, each truncated point is indistinguish-
able from random bit strings. Apply the lemmas as necessary and get that the
ECRNG output bit strings are indistinguishable from random bit strings, even
from an adversary that gets to see the latest prestate. ��



A Security Analysis of the NIST SP 800-90 ECRNG 477

Although hardness of XLP is necessary for the raw output points to be pseudo-
random, it does not seem necessary for the full ECRNG output bit strings to
be pseudorandom. Likewise, hardness of CDH may not be necessary for security
of the full ECRNG, even if it is necessary for the indistinguishability of the raw
output points. Truncation of the raw output points may yield bit strings are
that unusable even by an XLP distinguisher or a CDH solver to distinguish the
ECRNG outputs.

We note that it is straightforward to generalize the construction to any group
G with suitable maps x : G → Zn and t : G → {0, 1}l. If the corresponding DDH,
XLP and TPP problems are hard, the generator will have forward secrecy. If the
map x is a permutation, the corresponding XLP will be trivially hard.

The proposed truncation function drops some number of the leftmost bits of
the bit representation of the x-coordinate. The number of bits dropped is at least
13 + log2(h), where h is the cofactor. The number of bits dropped must also be
such that resulting length is a multiple of eight. Current (draft) standards allow
any number of bits to be dropped that meets these conditions.

We consider if B ∼ t(x(R)) where R is a random point and B is a random
bit string whose output length l matches that of the truncation function. Let k
be the number of bits truncated from x(R), which has length m = k + l.

It is well-known that the advantage of any distinguisher is bounded above
by the statistical distance between the distributions B and t(x(R)), and that
the optimal distinguisher has advantage equal to the statistical distance. The
statistical distance Δ between B and t(x(R)) is by definition

Δ = Δ(B, t(x(R))) =
∑

b

|Pr[t(x(R)) = b] − Pr[B = b]| . (25)

The easier probability to compute is Pr[B = b] = 2−l because all 2l bit strings b are
equally likely. The other probability has theoretical formula givenby Pr[t(x(R))] =
n(b)

n , where n(b) is the number of valid points R such that t(x(R)) = b. Note the
n(b) is always even, if we ignore the negligibly frequent case R = 0, because x(R) =
x(−R). Also, as k bits of the x-coordinate are truncated, we have 0 ≤ n(b)/2 ≤ 2k.
Let Bi be the number of b such that n(b) = 2i. Then

Δ =
2k∑
i=0

Bi

∣∣∣∣2i

n
− 2−l

∣∣∣∣ . (26)

Now we make some heuristic assumptions. Assume that the set X of valid x-
coordinates is a random subset of bit strings of length k + l, such that each
bit string belongs to X with probability 1/(2h), where h is the cofactor. Con-
sider cofactor h = 1. Our first heuristic assumption implies Bi has a binomial
distribution, so its approximate expectation is:

E(Bi) ≈ 2l−2k

(
2k

i

)
, (27)

where E is not to be confused with the elliptic curve equation. This distribution
is because there are 2k bit strings of length k + l that truncate to a given bit



478 D.R.L. Brown and K. Gjøsteen

string b of length l, and each of these completions of b has probability 1
2 of

belonging to X . Typically a few Bi may veer off considerably from the expected
value. Nevertheless, by linearity of expectation, we can substitute these expected
values into (25), getting expected statistical distance:

E(Δ) ≈
2k∑
i=0

2l−2k

(
2k

i

) ∣∣∣∣2i

n
− 2−l

∣∣∣∣ . (28)

Take the approximation n ≈ 2l+k, to get a second heuristic assumption that
2i
n ≈ 2i

2k+l . Pulling a common factor through the sum gives

E(Δ) ≈ 2−2k−k+1
2k∑
i=0

(
2k

i

) ∣∣i − 2k−1
∣∣ . (29)

The terms with 0 ≤ i ≤ 2k−1 are identical to those with 2k ≥ i ≥ 2k−1, and the
term with i = 2k−1 is zero, so we can eliminate the absolute value signs, getting

E(Δ) ≈ 2−2k−k+2
2k−1∑
i=0

(
2k

i

) (
2k−1 − i

)
. (30)

Using the general identity i
(
j
i

)
= j

(
j−1
i−1

)
, with a convention that

(
j−1
−1

)
= 0, gives

E(Δ) ≈ 2−2k−k+2
2k−1∑
i=0

(
2k−1

(
2k

i

)
− 2k

(
2k − 1
i − 1

))
. (31)

Pulling out common factor 2k−1 from the sum and the general identity
(
j
i

)
=(

j−1
i−1

)
+

(
j−1

i

)
gives

E(Δ) ≈ 2−2k+1
2k−1∑
i=0

((
2k − 1

i

)
−

(
2k − 1
i − 1

))
. (32)

This summation telescopes, giving

E(Δ) ≈ 2−2k+1

(
2k − 1
2k−1

)
(33)

For large even J , Stirling’s approximation gives a third heuristic assumption that(
J

J/2

)
≈ 2J√

2πJ
, and clearly

(
J−1
J/2

)
= 1

2

(
J

J/2

)
. Applying this to (33) with J = 2k

gives

E(Δ) ≈ 1√
2π2k

(34)

as the heuristic value for the statistical distance. For k = 16, the heuristic for
the expected statistical distance is about 1

641 . Although this is just a heuristic,



A Security Analysis of the NIST SP 800-90 ECRNG 479

it may be prudent to pay the price of using a larger k when a high degree
of indistinguishability is desired. If only unpredictability is desired, say if the
ECRNG is used for nonces or keys, but not as one-time pads, then this may not
be so critical.

An optimal distinguisher can be constructed by computing n(b), which has
a computational cost of about 2k times the cost of validating a potential x-
coordinate. If n(b)

n > 2−l report t(x(R)), otherwise report B. Provided that k is
small enough, then one heuristically expects that an efficient distinguisher exists
with advantage of about that given by (34).

Rather than making all these highly heuristic assumptions, one can also gather
some empirical data by sampling random B to infer an approximate distribution
for n(B). The inferred distribution can be used as estimates for the quantities
Bi and thus the statistical distance Δ. An accurate inference requires a large
random sampling. We have carried out quite extensive experiments, and they
confirm the heuristic estimates.

One possibility for repairing the ECRNG is to use standard techniques for
entropy extraction to process the raw outputs. In order to increase the asymp-
totic output rate, one may want to extract output from tuples of points instead
of single points. This introduces a higher startup cost and requires a buffer to
hold the points, but this can be tolerated in many practical applications.

Acknowledgments

The first author thanks the ANSI X9F1 working group for introducing him to
the ECRNG, and Certicom colleagues for valuable discussions, especially Matt
Campagna for a careful reading. The second author thanks John Kelsey for
introducing him to the ECRNG. We would also like to thank the anonymous
referees for helpful comments.

References

1. Blum, M., Micali, S.: How to generate cryptographically strong sequences of
pseudo-random bits. SIAM Journal on Computing 13, 850–864 (1984)

2. Kaliski, B.S.: A pseudo-random bit generator based on elliptic logarithms. In:
Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 84–103. Springer, Hei-
delberg (1987)

3. Barker, E., Kelsey, J.: Recommendation for Random Number Generation Using De-
terministic Random Bit Generators. National Institute of Standards and Technol-
ogy (2006), http://csrc.nist.gov/CryptoToolkit/RNG/SP800-90 June2006.pdf

4. Johnson, D.B.: X9.82 part 3 number theoretic DRBGs. Presentation at NIST
RNG Workshop (2004), http://csrc.nist.gov/CryptoToolkit/RNG/Workshop/
NumberTheoreticDRBG.pdf

5. Barker, E.: ANSI X9.82: Part 3 —2006, Random Number Generation, Part 3: De-
terministic Random Bit Generators. American National Standards Institute (2006),
Draft. http://www.x9.org/

http://csrc.nist.gov/CryptoToolkit/RNG/SP800-90_June2006.pdf
http://csrc.nist.gov/CryptoToolkit/RNG/Workshop/NumberTheoreticDRBG.pdf
http://csrc.nist.gov/CryptoToolkit/RNG/Workshop/NumberTheoreticDRBG.pdf
http://www.x9.org/


480 D.R.L. Brown and K. Gjøsteen

6. Standards for Efficient Cryptography Group: SEC 1: Elliptic Curve for Cryptog-
raphy. Draft 1.7 edn. (2006), http://www.secg.org/

7. Boneh, D.: The decision Diffie-Hellman problem. In: Buhler, J.P. (ed.) Algorith-
mic Number Theory. LNCS, vol. 1423, pp. 48–63. Springer, Heidelberg (1998),
http://crypto.stanford.edu/∼dabo/abstracts/DDH.html

8. Mahassni, E.E., Shparlinksi, I.: On the uniformity of distribution of congruential
generators over elliptic curves. In: International Conference on Sequences and Their
Applications, SETA ’01, pp. 257–264. Springer, Heidelberg (2002)

9. Gürel, N.: Extracting bits from coordinates of a point of an elliptic curve. ePrint
2005/324, IACR (2005), http://eprint.iacr.org/

10. Schoenmakers, B., Sidorenko, A.: Cryptanalysis of the dual elliptic curve pseudo-
random generator. ePrint 2006/190, IACR (2006), http://eprint.iacr.org/

11. Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random
functions. In: FOCS ’97, pp. 458–467. IEEE Computer Society Press, Los Alamitos
(1997), http://www.wisdom.weizmann.ac.il/∼reingold/publications/GDH.PS

12. Farashahi, R.R., Schoenmakers, B., Sidorenko, A.: Efficient pseudorandom gener-
ators based on the DDH assumption. ePrint 2006/321, IACR (2006),
http://eprint.iacr.org/

13. Luby, M.: Pseudorandomness and Cryptographic Applications. Princeton Univer-
sity Press, Princeton, NJ (1996)

14. Goldreich, O.: Foundations of Cryptography. Cambridge University Press, Cam-
bridge (2001)

15. Smart, N.P.: A note on the x-coordinate of points on an elliptic curve in charac-
teristic two. Information Processing Letters 80(5), 261–263 (2001)

A Unpredictability of the Next State from the Current
Output

Unpredictability is a much weaker property than indistinguishability, but is
also much more important. If the ECRNG outputs are used as cryptographic
keys, very little harm may come from them being distinguishable. If they are
predictable, however, then all may be lost. Indistinguishability implies unpre-
dictably, so in fact, we have already proven unpredictability.

The theorem below, however, proves a little bit of unpredictability under
weaker, arguably more accepted, conjectures, such as hardness of CDH instead
of the hardness of the DDH problem.

Theorem 4. If CDH and XLP are hard, and q and s0 are independent random
integers uniformly distributed in [0, n − 1], and gm(qP, s0) = (R0, . . . , Rm) and
Q = qP , then an adversary who gets to see only Q and Rm cannot compute the
next prestate Sm+1.

Proof. Clearly S1 ∼ Z where Z = zP and z is a random integer uniformly
distributed in [0, n − 1]. Indeed, s0

∼= z, so S1 = s0P ∼= zP = Z. Assume
by induction that Sj−1 ∼ Z. Now Sj = x(Sj−1)P ∼ x(Z)P ∼ Z, with the
second indistinguishability flowing from the hardness of XLP. Therefore Sm+1 ∼
Z. Since q is independent of z, we have (Q, Sm+1) ∼ (Q, Z). Now (Q, Rm) =

http://www.secg.org/
http://crypto.stanford.edu/~dabo/abstracts/DDH.html
http://eprint.iacr.org/
http://eprint.iacr.org/
http://www.wisdom.weizmann.ac.il/~reingold/publications/GDH.PS
http://eprint.iacr.org/


A Security Analysis of the NIST SP 800-90 ECRNG 481

(Q, qSm+1) ∼ (Q, qZ) ∼ (Q, Z), with the second indistinguishability flowing
from Z being able to absorb q by independence.

Suppose adversary A takes (Q, Rm) and outputs Sm+1 = q−1Rm. Then ad-
versary can also take (Q, Z) and output U = q−1Z, because otherwise A could
distinguish (Q, Rm) from (Q, Z). Let (X, Y ) = (xP, yP ) with x, y independent
random integers uniformly distributed in [0, n − 1]. We will use A to compute
xyP . Pick a random integer u with the same distribution. Let U = uP . Apply
A to (X, U) to get V = x−1U = x−1uP . Let W = u−1V = x−1P = wP . Apply
A to (W, Y ) to get w−1Y = (x−1)−1Y = xY = xyP , as desired. Because we
assumed that CDH is hard, adversary A cannot find xyP , so we get a contra-
diction. ��

The simple proof techniques above do not seem to rule out an adversary who
could use two output points to find the next state, or one output point to find
the next output point. The obstacle in the first case seems to be that output
points obey a relationship that needs to be simulated if we wish to solve CDH.
The obstacle in the second case is that the next output can be thought of as a
one-way function of the Diffie-Hellman product of public values, and we seem to
need to invert it to solve CDH.

B A Caution About the Truncated Point Problem for
Binary Curves

It should be noted that for the NIST recommended curves defined over the binary
field F2409 , valid elliptic curve points have a fixed rightmost bit in their canonical
representation. Therefore, for the curves B-409 and K-409, the truncation func-
tion should also drop the rightmost bit. The explanation for this phenomenon
(see also [15]) is that one of the conditions for a point to have the correct order
can be characterized by the trace of the x-coordinate have a fixed value. The
trace depends on the field representation. For trinomial and pentanomial field
representations, the trace simplifies to a sum of just a few of the bits, the trace
bits, in the representation. In all fields, the rightmost bit is a trace bit. For the
409-bit field, the rightmost bit is the only trace bit. For the other four NIST
recommended binary fields, there is at least one trace bit among the leftmost
truncated bits. Consequently, the constant trace condition does not leak any
information after truncation in these cases.



A Generalization of DDH with Applications to
Protocol Analysis and Computational Soundness

Emmanuel Bresson1, Yassine Lakhnech2, Laurent Mazaré3,
and Bogdan Warinschi4,�

1 DCSSI Crypto Lab,
emmanuel@bresson.org
2 VERIMAG Grenoble,

yassine.lakhnech@imag.fr
3 Amadeus SAS,

laurent.mazare@m4x.org
4 University of Bristol,
bogdan@cs.bris.ac.uk

Abstract. In this paper we identify the (P, Q)-DDH assumption, as an
extreme, powerful generalization of the Decisional Diffie-Hellman (DDH)
assumption: virtually all previously proposed generalizations of DDH are
instances of the (P, Q)-DDH problem. We prove that our generalization
is no harder than DDH through a concrete reduction that we show to be
rather tight in most practical cases. One important consequence of our
result is that it yields significantly simpler security proofs for protocols
that use extensions of DDH. We exemplify in the case of several group-key
exchange protocols (among others we give an elementary, direct proof for
the Burmester-Desmedt protocol). Finally, we use our generalization of
DDH to extend the celebrated computational soundness result of Abadi
and Rogaway [1] so that it can also handle exponentiation and Diffie-
Hellman-like keys. The extension that we propose crucially relies on our
generalization and seems hard to achieve through other means.

Keywords: Diffie-Hellman Assumptions, Protocol Security, Provable
Security, Computational Soundness.

1 Introduction

The Decisional Diffie-Hellman (DDH) assumption postulates that, even if given
gx and gy, it is difficult for any feasible computation to distinguish between gxy

and gr, when x, y and r are selected at random. The simplicity of the state-
ment and several other nice properties (for example random self-reducibility)

� The work described in this paper has been supported in part by the European Com-
mission through the IST Programme under Contract IST-2002-507932 ECRYPT.
The information in this document reflects only the author’s views, is provided as is
and no guarantee or warranty is given that the information is fit for any particular
purpose. The user thereof uses the information at its sole risk and liability.

A. Menezes (Ed.): CRYPTO 2007, LNCS 4622, pp. 482–499, 2007.
c© International Association for Cryptologic Research 2007

emmanuel@bresson.org
yassine.lakhnech@imag.fr
laurent.mazare@m4x.org
bogdan@cs.bris.ac.uk


A Generalization of DDH with Applications to Protocol Analysis 483

make the DDH assumption a powerful building block for cryptographic primitives
and protocols. Examples of its use include provably secure public-key cryptosys-
tems [13,11], pseudo-random functions [19,9], and pseudo-random generators [4].
The assumption has been particularly successful in the design of efficient and
provably secure protocols for key-exchange: two parties can exchange a key by
sending to each other gx and gy (for randomly chosen x and y). Pseudorandom-
ness of the established common key gxy is ensured by the DDH assumption.

Several generalizations of the DDH assumption naturally appear in the context
of extending the above scenario from the two-party case to groupkey-exchange pro-
tocols. Perhaps the best known such generalization is the Group Decisional Diffie-
Hellman assumption proposedby Steiner et al. [23] and refined by Bresson et al. [7].
Here, the assumption is that given all values g

�
i xi , for up to n − 1 exponents, it is

hard to distinguish gx1···xn from a random power gr. The assumption is sufficient
to prove secure a protocol where users that privately select powers x1, x2, . . . xn

agree on a common shared key gx1···xn . Such generalizations serve two goals.On the
one hand they provide simple solutions to the problem that inspired them. More
importantly, whenever such general assumptions can be reduced to a more stan-
dard assumption (as is the case of many generalizations of DDH), security proofs
for protocols can be made more modular: First, prove once and for all the equiv-
alence between the general and the basic assumption. Then, use the more general
assumptionas amore convenientbasic buildingblock for protocols. In this paperwe
investigate the limits of extending the DDH assumption. Our results are as follows.
Generalization of DDH. Our generalization of DDH is as follows:

– The adversary receives elements of the form gp(x1,x2,...,xn); here p ranges over
a fixed set of polynomials P . This setting generalizes significantly all of the
previous work where only monomials were allowed in the exponents (i.e. the
adversary was given only elements g

�
I xi for some subset I).

– The adversary receives several challenges of the form gq(x1,x2,...,xn); here q
ranges over a fixed set of polynomials Q and the adversary has to determine if
he is confronted with these challenges or random group elements. The adver-
sary can see the challenges at any moment (i.e., not necessarily at the end).

We call the problem associated to polynomial sets P and Q, the (P, Q)-DDH
problem. In spite of its generality we show that the (P, Q)-DDH assumption
reduces to the basic DDH assumption under several mild restrictions on the
polynomials in P and Q. In particular, polynomials in Q have to be linearly
independent from those in P since otherwise the problem becomes trivial. In
general, the loss of security in the reduction that we provide from (P, Q)-DDH
to DDH may be exponential. This is to be expected, and perhaps unavoidable,
due to the general setting in which we work. Fortunately, we identify several
situations where the security loss stays within practical bounds and note that
all practical scenarios that we are aware of are instances of these situations.
Furthermore, we show that the quality of the reduction can be often improved
by using the random self reducibility property of DDH. We prove the equivalence
with DDH via a hybrid argument which generalizes those used previously for



484 E. Bresson et al.

other generalizations of DDH. We give the formal description of the (P, Q)-DDH
problem and clarify its relation to basic DDH in Section 2.
Applications to protocol security. Next, we demonstrate the versatility
of the (P, Q)-DDH assumption through several examples:

– we show that the multi-decisional Diffie-Hellman [6] and the Group Deci-
sional Diffie-Hellman assumptions [7] are instances of the (P, Q)-DDH as-
sumption for appropriately chosen P and Q. Interestingly, for the latter
assumption our main theorem yields a better reduction to DDH than in
previous works.

– we use the (P, Q)-DDH assumption to provide proofs for some DDH-based
key-exchange protocols in the presence of passive adversaries. In particular,
we supply a simple security proof for the Burmester-Desmedt protocol, and
exemplify the use of our assumption for a simple protocol that we introduce.

Our examples show that the (P, Q)-DDH problem is an extremely convenient
tool for proving the security of protocols in the presence of passive adversaries.
In combination with generic results that map such protocols to protocols se-
cure against active adversaries, our simple proofs form the basis of a powerful
two-step methodology for the design of provably secure protocols. 1) Prove the
protocol secure against passive adversaries using our flexible assumption 2) map
the protocol to one secure against active adversaries using special purpose com-
pilers such as the one developed by Katz and Yung for the case of group-key
exchange protocols [14]. We develop the ideas sketched above in Section 3.
Application to computational soundness. Our final application is in the
context of computational soundness framework. The general goal of this research
direction is to allow symbolic, and thus mechanical reasoning about protocols
at an abstract, symbolic level, in such a way that symbolically derived results
imply security in the standard cryptographic sense. This would permit to prove
the cryptographic security of protocols, but it would avoid the standard hand-
made, error-prone cryptographic proofs through the use of automated tools.

In all of the prior work in this direction, the translation of results from the
symbolic world to the cryptographic world is done using so-called “soundness
theorems”. Notice that these theorems have to deal with all arbitrary uses of the
primitives in all possible protocols! This explains perhaps why exponentiation
and Diffie-Hellman like keys are conspicuously missing from all existing compu-
tational soundness results: one needs to identify precisely, and in a generic way
which of all possible uses of exponentiation are secure and which not. The main
result of this paper accomplishes precisely that.

Based on our result we incorporate Diffie-Hellman keys in the framework
proposed by Abadi and Rogaway [1]. We extend appropriately the symbolic lan-
guage introduced in [1] and show that it is possible to use the resulting language
to symbolically prove indistinguishability of cryptographic distributions. In par-
ticular, this result yields a mechanical way of proving security of key-exchange
protocols (in the presence of passive adversaries, with no corruption). The sym-
bolic language and the soundness theorem are in Section 4.



A Generalization of DDH with Applications to Protocol Analysis 485

Related Work. A generalization of Diffie-Hellman to more general polynomials
expressions was investigated by Kiltz in 2001 [15], where a (single) challenge of
the form gP (a,b), with the adversary seeing ga and gb, is considered. We enlarge
the setting in two distinct directions: first we allow many variables instead of just
two (and thus, allow the adversary to “see” many polynomials in the exponent),
second we allow multiple challenges. Moreover, we provide direct and concrete
applications of our main results to the analysis of cryptographic protocols. We
note that the work in [15] also studies the case of computational problems in
generic groups [21]. Here we concentrate on the decisional case only, and use the
standard cryptographic model. Essentially, all previous generalizations of DDH
are particular case of our framework. This thus include the so-called “group
Diffie-Hellman” assumptions [7], in which the challenge is gx1···xn , but also the
so-called “parallel Diffie-Hellman” assumption [6], in which the adversary sees
(gx1 , . . . , gxn) and must distinguish tuples of the form (grx1 , . . . , grxn) from ran-
dom ones (gy1 , . . . , gyn). Perhaps the closest assumption to the one that we study
here is the General Diffie-Hellman Exponent (GDHE) introduced by Boneh et
al. in the full version of [5]. We remark that GDHE has been designed to handle
bilinear pairings, it has been designed with a single challenge, and its hardness
has only been studied in the generic group model. Finally we notice that Square
Exponent [16,10,22] and Inverse Exponent can [20] can be seen as instances of
our setting.

2 A Generalization of the Decisional Diffie-Hellman
Problem

2.1 The DDH Problem

A group family G is a set of finite cyclic groups G = {Gλ} where λ ranges over
an infinite index set. We assume in the following that there exists a polynomial-
time (in the bit-length of λ) algorithm that given λ and two elements in Gλ

outputs their product. (We adopt the multiplicative notation for groups).
Let η be the security parameter. An Instance Generator IG for G is a prob-

abilistic polynomial-time (in η) algorithm that outputs some index λ and a
generator g of Gλ; therefore, IG induces a distribution on set of indexes λ.
The Decisional Diffie-Hellman assumption states that for every probabilistic
polynomial-time algorithm A, every constant α and all sufficiently large η’s,
we have:∣∣∣∣ Pr

[
A(λ, g, ga, gb, gab) = 1

]
− Pr

[
A(λ, g, ga, gb, gc) = 1

] ∣∣∣∣ <
1
ηα

,

where the probabilities are taken over the random bits of A, the choice of 〈λ, g〉
according to the distribution IG(1η) and the choice of a, b and c uniformly at
random in [1, |Gλ|].

In the remaining of the paper we will need to deal with concrete security
results. We define the advantage of any algorithm A as the difference of proba-
bilities above. We say that the DDH problem is (ε, t)-hard on G if the advantage



486 E. Bresson et al.

of any algorithm running in time t is upper-bounded by ε. The (asymptotic)
DDH assumption states it is the case for t polynomial and ε negligible (in η).

2.2 The (P,Q)-DDH Problem

Here we introduce formally our generalization of the Decisional Diffie-Hellman
problem. As discussed in the introduction we generalize the DDH problem in two
crucial directions. First, the group elements that the adversary sees are powers of
g that are polynomials (instead of monomials as in the original problem and prior
generalizations). Second the adversary is confronted with multiple challenges
simultaneously. That is, his goal is to distinguish a list of values obtained by
raising g to various polynomials from a list of random powers of g.

Let P and Q be two sets of polynomials in Zq[X1, X2, . . . , Xn]. We assume
that these sets are ordered, and write p1, p2, . . . and q1, q2, . . . for their elements,
respectively. Informally, the (P, Q)-DDH-problem asks an adversary to distin-
guish the distributions:

(
{gpi(x1,x2,...,xn)}pi∈P , {gqj(x1,x2,...,xn)}qj∈Q

)
, with xi

$← Zq (1)

and
(
{gpi(x1,x2,...,xn)}pi∈P , {grj}j∈[|Q|]

)
, with xi

$← Zq, rj
$← Zq (2)

Notice that our generalization is quite powerful. All previous generalizations
of the DDH problem can be seen as instances of the (P, Q)-DDH problem for
suitably chosen P and Q. For example:

– For sets P = {X1, X2} and Q = {X1X2}, the associated (P, Q)-DDH is the
standard DDH problem.

– For sets P = {
∏

i∈E Xi | E � [1, n]} and Q = {X1X2 · · · Xn} the associ-
ated (P, Q)-DDH problem corresponds to the group decisional Diffie-Hellman
problem.

– For sets P = {X1, X2, . . . , Xn} and Q = {X1Xn+1, X2Xn+1, . . . , XnXn+1}
the associated (P, Q)-DDH problem is the parallel Diffie-Hellman problem
(see for instance [6]).

We call a pair of sets of polynomials (P, Q) a challenge. Our formalization of the
(P, Q)-DDH problem departs from the more established formulations where an
adversary is explicitly given as input samples from either distribution (1) or distri-
bution (2) and has to decide which is the case. However here the size of sets P and
Q may be exponential (for instance for the GDH problem the set P contains expo-
nentially many polynomials), and yet we are typically interested in polynomial-
time adversaries who may not have the time to read all the inputs. Therefore we
provide the adversary with access to the two distributions via oracles.

Definition 1 ((P, Q)-DDH). Let q be a prime number. Let G be a group of
order q, g a generator of G, and P, Q ⊆ Zq[X1, X2, . . . , Xn] two sets of polyno-
mials. We define the oracles Real(P,Q) and Fake(P,Q) as follows. Both oracles first
select uniformly at random xi

$← Zq, for i ∈ [n]. Then they answer two types of



A Generalization of DDH with Applications to Protocol Analysis 487

queries. On input (info, i) for 1 ≤ i ≤ |P |, both Real(P,Q) and Fake(P,Q) answer
with gpi(x1,x2,...,xn). On each new input (chall, j) for some 1 ≤ j ≤ |Q|, oracle
Real(P,Q) answers with gqj(x1,x2,...,xn) whereas oracle Fake(P,Q) selects rj

$← Zq

and answers with grj . The adversary can intertwine info and chall queries.
His goal is to distinguish between these two oracles.

We define the advantage of an adversary A to solve the (P, Q)-DDH problem by:

Adv(P,Q)-DDH
A =

∣∣∣ Pr
[
AReal(P,Q)(g) = 1

]
− Pr

[
AFake(P,Q)(g) = 1

] ∣∣∣
where the probabilities are over the coins of the adversary and those used by the
oracles. We say that the (P, Q)-DDH problem is (ε, t)-hard in G, if for any A
running within time t, Adv(P,Q)-DDH

A ≤ ε.

2.3 Our Main Result: DDH Implies (P,Q)-DDH

Before giving our main theorem, we introduce some necessary notions and no-
tations. For a polynomial p we write mon(p) for the set of monomials occurring
in p and write var(p) for the set of variables that occur in p. The notation is
naturally extended to sets of polynomials1. For a monomial m we denote by
ord(m) the order of m (i.e., the sum of the powers of its variables). We say p is
power-free if any Xi ∈ var(p) appears at power at most 1 (our results hold only
for such polynomials). We write PF(Zq[X1, X2, . . . , Xn]) for the set of power-free
polynomials with variables {X1, . . . , Xn} and coefficients in Zq. Finally, we write
Span(P ) for the vector space over Zq generated by P .

For some choice of the (P, Q) challenge, the (P, Q)-DDH problem is trivial
(think of the case when P = {x1, x2} and Q = {x1 + x2}). We therefore restrict
the class of challenges only to the interesting cases where the polynomials in Q
are linearly independent from those in P . Our main technical result will state
that for all non-trivial challenges solving the (P, Q)-DDH problem reduces to
solving DDH.

Definition 2 (Non-trivial challenge). We say that challenge (P, Q) is non-
trivial if Span(P )∩Span(Q) = {0} and polynomials in Q are linearly independent.

First we identify a syntactic condition on the sets P and Q which ensures that
the adversary has 0 advantage in breaking the (P, Q)-DDH problem. Our condi-
tion enforces that for these challenges, which we call impossible challenges the
distribution of the gq(x1, x2, . . . , xn) (for all polynomials q ∈ Q) is statistically
independent from the joint distribution (gp)p∈P . The definition is somewhat
technical, and uses the graph G(P,Q) whose vertexes are mon(P ∪ Q), and in
which there is an edge between monomials m1 and m2 if there exists p ∈ P
such that m1, m2 are in mon(p). We denote by mon+

P (Q) the set of monomials
reachable in this graph from mon(Q) (that is, the strongly connected compo-
nents of G(P,Q) containg mon(Q)). This set, informally, is the smallest superset

1 For example, for set P = {X1X3 + X1X4, X2 + X1X4} it holds that var(P ) =
{X1, X2, X3, X4}, mon(P ) = {X2, X1X3, X1X4}.



488 E. Bresson et al.

of mon(Q) that is stable through linear combinations with any polynomials of
P containing a monomial of mon+

P (Q).

Definition 3 (Impossible Challenge). We say that a non-trivial challenge
(P, Q) is impossible if the two following conditions hold:

1. ∀m ∈ mon+
P (Q), ord(m) = 1: all monomials in mon+

P (Q) are variables,
2. ∀m ∈ mon+

P (Q), ∀m′ ∈ mon(P )\mon+
P (Q), m /∈ var(m′): any monomial

that occurs in P but not in mon+
P (Q) cannot contain an element of mon+

P (Q)
as a variable.

The first requirement asks that all polynomials in Q are actually sums of vari-
ables. The second requirement asks that all polynomials in P either do not use
any variable linked to Q (i.e. from mon+

P (Q)) or are sums of variables. The next
lemma formally captures that for all challenges that satisfy these two require-
ments no adversary can win the associated (P, Q)-DDH problem.

Lemma 4. If (P, Q) is an impossible challenge then Adv(P,Q)-DDH
A = 0 for all

adversaries A.

Strategies. The proof of our main theorem is based on a hybrid argument: it
uses a sequence of transformations from a non-trivial challenge (P, Q) into an
impossible challenge, such that if an adversary succeeds in the original challenge
with significantly better probability than in the transformed challenge, then DDH
is easy. In our formalization we use power-free polynomials with 2α variables,
that is polynomials in PF(Zq[X1, X2, . . . , X2α ]), for some natural number α. It is
convenient to identify the index of variables with subsets of [α], and by a slight
abuse of notation we identify Xi and X{i} (for each i ∈ [α]). Thus, we regard
Zq[X1, X2, . . . , Xα] as Zq[X{1}, X{2}, . . . , X{α}].

Given a non-trivial challenge (P, Q) with P, Q ⊆ PF(Zq[X1, . . . , Xα]) we
show how to build a sequence of challenges (P0, Q0), (P1, Q1), . . . , (Pl, Ql), with
Pi, Qi ∈ PF(Zq[X1, X2, . . . , X2α ]) such that:

(i). (P, Q) = (P0, Q0)
(ii). for each adversary A against the (Pi, Qi)-DDH there exists an adversary B

against DDH such that:

Adv(Pi,Qi)-DDH
A ≤ 2.AdvDDH

B + Adv(Pi+1,Qi+1)-DDH
A

(iii). (Pl, Ql) is an impossible challenge, so Adv(Pl,Ql)-DDH
A = 0

Our main result follows by finding an appropriate bound on the length l of the
sequence.

One possible way to construct a sequence as above is as follows. Set (P0, Q0) to
be (P, Q). To obtain (Pi+1, Qi+1) out of (Pi, Qi) we select a pair of variables Xu

and Xv that occur together in some monomial in mon(P ∪ Q), and merge them
into a new variable Xu∪v. More precisely, in each monomial m ∈ mon(P ∪ Q)
where both Xu and Xv occur, we remove these two variables and replace them



A Generalization of DDH with Applications to Protocol Analysis 489

with Xu∪v. (Recall that variables are indexed by subsets of [α].) We call one such
transformation a DDH step. The procedure ends when we obtain an impossible
challenge (Pl, Ql) (condition (iii) above). We call a sequence of DDH reductions
as above a strategy, and we represent strategies as lists of pairs of variables
(Xu1 , Xv1), ..., (Xul

, Xvl
), with ui, vi ⊆ [α] for all i. The length of a strategy is

the length of the associated list. A strategy σ is successful for challenge (P, Q),
if the result of applying σ to (P, Q) is an impossible challenge.

Example 5. Take P = {X1, X2, X3} and Q = {X1X2X3}. A successful strategy
for (P, Q) is (X1, X2), (X1,2, X3). That is, in the first step we replace X1X2 by
X1,2, and obtain P1 = P and Q1 = {X1,2X3}. In the second step we replace
X1,2X3 by X1,2,3. The resulting challenge (P, {X1,2,3}) is impossible.

The following lemma shows the obtained strategies satisfy condition (ii) above.

Lemma 6. Let (P ′, Q′) be a challenge obtained from challenge (P, Q) by a DDH
step. Then for any adversary A there exists an adversary B such that:

Adv(P,Q)-DDH
A = 2.AdvDDH

B + Adv(P ′,Q′)-DDH
A

Moreover, if tA is the execution time of A, NA is a bound on the number
of oracle queries made by A, then the execution time tB of B is bounded by
tA + NAt(P,Q), where t(P,Q) is (a bound on) the execution time of the oracle
related to challenge (P, Q). If (P, Q) is a non-trivial challenge then (P ′, Q′) is
also a non-trivial challenge.

The previous two lemmas yield the following concrete security relation between
DDH and (P, Q)-DDH.

Proposition 7. Let P, Q ∈ PF(Zq[X1, X2, . . . , Xα]) form a non-trivial chal-
lenge. If (P, Q) has a successful strategy of length n and if the DDH problem is
(ε, t)-hard, then the (P, Q)-DDH is (ε′, t′)-hard, for ε′ = 2n·ε and t′+Nt(P,Q) = t
where N is a bound on the number of oracle queries and t(P,Q) a bound on the
execution time of the oracle for challenge (P, Q).

Generic Strategies. We now exhibit a class of strategies, that we call generic
strategies that are successful for arbitrary challenges (P, Q). Recall that there
are two conditions for a challenge (P, Q) to be impossible: all the monomials
of mon+

P (Q) must be variables and these variables must not occur in any other
monomial of P . The idea behind generic strategies is rather simple. First, we
change monomials in mon+

P (Q) into monomials of order 1 by successively merg-
ing variables. This leads to an intermediate challenge (P ′, Q′) for which all mono-
mials of mon+

P ′(Q′) are variables. Next, we deal with the fact that some variables
in mon+

P ′(Q′) may occur elsewhere in P ′. Then, for any variable x in mon+
P ′(Q′),

if x appears in a monomial m of P ′ whose order is greater than 2, then m is
transformed using a DDH step so that x does not appear anymore in m. After
applying these two steps, we obtain an impossible challenge.

Example 8. Consider the challenge (P, Q) where P has as single element the
polynomial p = X1X2X3X4 and Q has as single element the polynomial q =



490 E. Bresson et al.

X1X2. The first step transforms q into a variable by using the DDH step (X1, X2).
The resulting challenge is (P ′, Q′) = ({X1,2X3X4}, {X1,2}). Notice that X1,2

appears in P ′, so we apply the DDH step (X1,2, X3) and obtain the challenge
({X1,2,3X4}, {X1,2}). This challenge is impossible therefore we found a successful
strategy whose length is 2.

Next, we provide a bound on the length of generic strategies, which in turn gives
an upper bound on the length of successful strategies. Let (P, Q) be an arbitrary
challenge. First, we define the order of Q within P which we denote by ord+

P (Q).
This quantity is defined by ord+

P (Q) =
∑

m∈mon+
P (Q)

(
ord(m) − 1

)
.

The set nm(P, Q) of non-maximal elements of mon+
P (Q) is the set of mono-

mials m which appear in mon+
P (Q) such that there exists a monomial m′ that

verifies the following two requirements:

1. m is a strict sub-monomial of m′: all the variables of m appear in m′ and m
is different from m′.

2. m′ is in mon(P ) but is not in mon+
P (Q).

Example 9. We still consider the challenge (P, Q) where P contains one element
p = X1X2X3X4 and Q has one element q = X1X2. Then mon+

P (Q) contains only
q. Moreover q is not maximal because p = qX3X4 hence the set of non-maximal
elements nm(P, Q) is also equal to {q}.

We are able to show that for any non-trivial challenge there exist strategies
whose length can be upper-bounded.

Proposition 10 (Bounded strategies). For any non-trivial challenge (P, Q),
there exists a successful strategy of length:

ord+
P (Q) +

(
2|nm(P,Q)| − 1

)
.
(
α + ord+

P (Q)
)

Combined with Proposition 7, we obtain our main theorem:

Theorem 11 (Relating (P, Q)-DDH to DDH). Let (P, Q) be a non-trivial
challenge on variables X1 to Xα. If the DDH problem is (ε, t)-hard, then (P, Q)-
DDH is (ε′, t′)-hard, for

ε′ = 2ε
(
ord+

P (Q) +
(
2|nm(P,Q)| − 1

)
.
(
α + ord+

P (Q)
))

and t′ + Nt(P,Q) = t where N is a bound on the number of oracle queries.

Several remarks are in order. We restrict challenges to sets of power-free polyno-
mials. Extending our result beyond this class, would require dealing with group
elements of the form gX2

. This seems to be a difficult problem since, for instance,
the indistinguishability of (gx, gx2

) and (gx, gr) under the DDH assumption is an
open problem [2]. On the other hand, we can easily lift the requirement that poly-
nomials in Q are linearly independent, and modifying appropriately the behavior
of the Fake(P,Q) oracle. We choose to use the current formulation for simplicity.



A Generalization of DDH with Applications to Protocol Analysis 491

The formulation of our theorem implies that in the worst case, the loss of se-
curity in our reduction may be exponential. We note however that in most, if not
all, practical cases nm(P, Q) is empty, and in those cases the loss in security is
only linear. Moreover, notice that in the case when P and Q contain only mono-
mials the hypothesis of the theorem implies that mon+

P (Q) = mon(Q) = Q and
ord+

P (Q) =
∑

m∈Q

(
ord(m) − 1

)
. In the next section we consider a few examples

where our theorem gives linear security reductions in several interesting applica-
tions. However for some applications (like the Burmester-Desmedt protocol), bet-
ter reductions can be found using the random self-reducibility property of DDH.
Random Self-Reducibility. As said above, the DDH problems has the nice
property to be Random Self-Reducible (RSR for short). Roughly, this prop-
erty means that an efficient algorithm for the average case implies an efficient
algorithm for the worst case. In the case of DDH, when randomizing an in-
stance, one gets instances, which (1) are uniformly distributed, (2) have all the
same solution as the original instance. Thus, being able to solve a single ran-
dom instance implies that we can solve any instance. As an illustration, let
(X, Y, Z) = (gx, gy, [gxy|gz]) be an instance of DDH (the notation Z = [A|B]
means that the problem is to decide whether Z equals A or B). It is easy to see
that for α and β chosen at random, (Xα, Y β , Zαβ) is a new, random instance
with the same (decision) solution than the original one.

Here we use RSR as introduced in lemma 5.2 of [3]: from (gx, gy, [gxy|gz]) we
generate two new instances of DDH: (gαx, gy, [gαxy|gαz]), where α is randomly
sampled in Zq and (gαx, gβy, [gαβxy|gαβz]) where α and β are sampled in Zq.
Using this, we are able to lower the bound given in proposition 7 by giving a
finer definition of the weight of a sequence. The idea is that multiple steps can
be combined in a single step using RSR. A strategy (Xu1 , Xv1), . . . , (Xuk

, Xvk
)

is said to be randomly self-reducible (RSR) for a challenge (P, Q) if:

– For step i, Xui and Xvi have not been introduced in previous steps: for any
j < i, ui and vi are different from uj ∪ vj .

– For step i, Xvi has to be fresh, i.e. this variable was never used in previous
steps: for any j < i, vi is different from uj and vj .

– Let Xu and Xv be two distinct variables from the strategy, if the product
Xu.Xv occurs in P or Q, then there exists a step i such that u = ui and
v = vi (or u = vi and v = ui).

Then the weight of such a sequence is 1 as it only counts as a single step and we can
extend the result of lemma 6. The idea is that all the kind of “independence” of
variables captured by the above conditions allows us to use a single DDH challenge
to deal with all the steps (Xui , Xvi) at once. Formally, we have the following:

Lemma 12. Let (P ′, Q′) be a challenge obtained from challenge (P, Q) by a
RSR strategy. Then for any adversary A there exists an adversary B such that:

Adv(P,Q)-DDH
A = 2.AdvDDH

B + Adv(P ′,Q′)-DDH
A

Moreover, if tA is the execution time of A, NA is a bound on the number of oracle
queries made by A, then the execution time tB of B is bounded by tA+NAt(P,Q),



492 E. Bresson et al.

where t(P,Q) is (a bound on) the execution time of the oracle related to challenge
(P, Q).

We exemplify the use of RSR strategies in obtaining better reductions in Sec-
tion 3 for the case of the Burmester-Desmedt protocol.

3 Applications: Simple Proofs for Diffie-Hellman-Based
Protocols

In this section, we show the applicability of our main theorem in a few differ-
ent contexts. First we apply it to reprove equivalence between the Group DDH
problem and basic DDH. Our result yield a tighter security reduction than pre-
vious result. As explained in the introduction, our theorem can be used to easily
obtain relation between the hardness of DDH and various of its extensions. To
illustrate the simplicity associated to using the (P, Q)-DDH assumption we show
how to use it to link the reverse DDH assumption (which we introduce) and basic
DDH. Finally, we demonstrate that our theorem yields simpler proofs of security
for group key-exchange protocols in the presence of passive adversaries, and we
show how to obtain a proof for the Burmester-Desmedt protocol.

Throughout this section, we work in a group in which the DDH problem is
(ε, t)-hard and work with polynomials with α variables X1, . . . , Xα (we assume
α to be equal to the security parameter.)
GDDH. The Group Decisional Diffie-Hellman (GDDH) problem [23] can be
formalized with the challenge (P, Q):

– P = {
∏

i∈E Xi | E � [1, α]}, that is, P contains all the monomials of order
up to α − 1.

– Q = {
∏

1≤i≤α Xi}.

Clearly, Span(P ) ∩ Span(Q) = {0} and therefore we can apply Theorem 11.
Notice that sets P and Q contain only monomials and since X1X2 · · ·Xα is
trivially maximal in P , it follows that the (P, Q)-DDH problem is (ε′, t′)-hard,
with ε′ = 2(α − 1)ε and t′ = t − Nt(P,Q) ≥ t − t′t(P,Q). Thus t′ is greater
than t/(1 + t(P,Q)). Moreover, when calling the oracle, the worst case consists in
generating all the Xi and multiplying them, which can be done time polynomial
in α. Our results contrasts with that of [7] where the reduction is linear but
requires an exponential time in α.
Reverse GDDH. We illustrate the use of non-maximal elements through an
example that we call the Reverse GDDH problem. This problem is given by the
challenge (P, Q):

– P = {
∏

i∈E Xi | E ⊆ [1, α] ∧ E = {1}}, that is, P contains all the possible
monomials except X1.

– Q = {X1}.

Since X1 is not maximal in P we have that |nm(P, Q)| = 1. By Theorem 11 we
obtain that the loss of security is ε′ = 2αε, which is linear in the security parameter.



A Generalization of DDH with Applications to Protocol Analysis 493

The Burmester-Desmedt Protocol. Introduced in [8] and later analyzed
in [14], this protocol is a two-round key exchange protocol between α parties. In
the first round, each user Ui samples a random Xi and broadcasts gXi . In the
second round, Ui broadcasts gXiXi+1−Xi−1Xi (with the convention that X0 = Xα

and Xα+1 = X1). The common secret is gX1X2+···+XαX1 .
Recall that in the passive setting, security of such a group key-exchange pro-

tocol is roughly modeled as follows. First the (passive) adversary observes bit-
strings for the different messages exchanged by the participants (using so-called
Execute queries). At some point the adversary decides to challenge the shared
secret by trying to distinguish that secret from a random element (the so-called
Test query). The adversary is allowed to intertwine his queries. The model, ac-
tually corresponds to the (P, Q)-DDH assumption, where the polynomials that
correspond to the messages sent by parties are placed in P and the polyno-
mial that corresponds to the shared secret is in Q. Therefore the (P, Q)-DDH
assumption that corresponds to polynomials:

– P = {Xi | 1 ≤ i ≤ α} ∪ {XiXi+1 − Xi−1Xi | 1 ≤ i ≤ α} corresponds to the
broadcast messages.

– Q = {
∑α

i=1 XiXi+1} corresponds to the shared secret.

is equivalent to the security of the Burmester Desmedt protocol against passive
adversaries.

It is easy to check that Span(P ) ∩ Span(Q) = {0} (see for instance [14]). Here
again Q has only one element and this element is maximal in P . We get ord+

P (Q) =
α and after applying Theorem 11, ε′ = 2αε, that is we obtain a linear reduction.

The reduction factor obtained through the use of Theorem 11 is based on
generic strategies and is not optimal. Next we show that it is possible to use
RSR strategies to obtain better reduction factors (essentially matching the ones
that appear in [14]). For simplicity, we assume that α is a multiple of 3. The as-
sumption does not change the asymptotic factors obtained through the reduction
bellow. We proceed in two steps: First, we apply the RSR strategy:

(X1, X2)(X4, X5) . . . (X3i+1, X3i+2) . . .

Let (P ′, Q′) be the resulting challenge. Finally, by applying the following RSR
strategy

(X2, X3)(X3, X4)(X5, X6)(X6, X7) . . . (X3i+2, X3i+3), (X3i+3, X3i+4) . . .

we obtain an impossible challenge. Using Lemma 12 twice, we get that for any
adversary A against (P, Q)-DDH there exists an adversary B (of similar time
complexity) against DDH such that Adv(P,Q)-DDH

A = 4AdvDDH
B .

Centralized Diffie-Hellman. We introduce a toy group key exchange pro-
tocol in order to illustrate how our results can be used to easily prove such new
protocols. This key distribution protocol considers α− 2 users U1, . . . , Uα−2 and
a server S. Each user Ui randomly samples a group element Xi, while the server
S samples two group elements Xα−1, Xα. Then each user Ui sends gXi to S and



494 E. Bresson et al.

receives gXα+XiXα−1 . The server also broadcasts gXα−1 . The shared secret is
gXα . The security of the shared key is captured by the challenge (P, Q), where:

– P = {Xi | 1 ≤ i ≤ α − 1} ∪ {Xα + XiXα−1 | 1 ≤ i ≤ α − 2} corresponds to
the broadcast messages.

– Q = {Xα} corresponds to the shared secret.

Each monomial XiXα−1 appears only once, thus Span(P ) ∩ Span(Q) = {0}. The
setQhas only one element and this elementwhich ismaximal inP . Thusmon(Q) =
{Xα} and mon+

P (Q) = {Xα, X1Xα−1, . . . , Xα−2Xα−1} from which it follows that
ord+

P (Q) is α − 2. The loss of security in the reduction is thus only linear.

4 A Symbolic Logic for Diffie-Hellman Exponentials and
Encryption

In this section we give a symbolic language for representing messages formed by
using nonces, symmetric encryption and exponentiation. In some sense, the lan-
guage that we give in this section is a formal “notation” for distributions. This
notation has the crucial property that it can be used to automatically reason
about the indistinguishability of distributions that arise in cryptographic pro-
tocols, without resorting to reduction proofs. For example, using this language,
one can define and reason about the security of keys in multicast protocols (see
for example [17]) in a way that is meaningful to standard cryptographic models.
The main ingredient that enables for such results is a soundness theorem which
explains how results at the abstract level of the notation that we introduce map
to results about the indistinguishability of distributions.
Syntax. First we make precise the set of symbolic messages that we consider.
Let Keys, Nonce and Exponents be three countable disjoint sets of symbols
for keys, random nonces, and exponents. We let Poly be the set of power-free
polynomials with variables in Exponents and coefficients in Zq. The set Msg
of message expressions is defined by the following grammar:

Msg ::= Keys | gPoly | Nonce | (Msg,Msg) | {Msg}Keys | {Msg}h(gPoly)

Equality for expressions is defined modulo polynomial equality. For exam-
ple, let p and q be two polynomials from Poly such that p = q (for classical
polynomial equality, e.g. p = X1 + X2 + X1 and q = 2X1 + X2), then gp = gq.
Computational Interpretation. One should think of the elements of Msg as
symbolic representation for (ensembles of) distributions . For instance, elements
of Keys represent (the distributions of) cryptographic keys obtained by running
the key generation algorithm of some (fixed) encryption scheme. A term like
gX represents the distribution of gx when exponent x is chosen at random,
and h(gX1X2) represents the distribution of keys obtained by applying a hash
function to gx1x2 for random x1 and x2. A slightly more complex example is the
expression: (gx, gy, {K}h(gxy)) that represents the distribution of a conversation



A Generalization of DDH with Applications to Protocol Analysis 495

between two parties that first exchange a Diffie-Hellman key, and then use this
key to encrypt a symmetric key.

Let us precise how symbolic expressions are mapped to distributions. Consider
a symmetric encryption scheme Π = (KG, E , D), a family of groups G = (Gη)η∈N

which come with a publicly known generator g for each security parameter, and
an efficiently computable function h : Gη → {0, 1}η to derive cryptographic keys
out of exponentials.

We associate to each expression E ∈ Msg and security parameter η ∈ N a
distribution Ê (to avoid cluttered notation we omit to show the dependency on
Π, G and η.) We define this distribution as the output of the following random-
ized algorithm: For each key symbol K that occurs in E we generate a value
K̂

$← KG(η); for each variable Xi ∈ Exponents we select X̂
$← {1, . . . , |Gη|}; for

every nonce N ∈ Nonce we select N̂
$← {0, 1}η. The output Ê is computed in-

ductively on the structure of E: ̂(E1, E2) = Ê1.Ê2, ̂gp(X1,...,Xn) = gp(�X1...,�Xn),
{̂E}K = E(Ê, K̂), and ̂{E}h(gp) = E

(
Ê, h(ĝp)

)
.

The symbolic adversary. Now we explain how one can reason symbolically
about secrecy of message in expressions. Security of encryption in symbolic mes-
sages is captured by an axiomatically defined deduction relation �. The � relation
defines precisely when an expression E ∈ Msg can be deduced from a finite set
of expressions S ⊆ Msg (written S � E) by a passive eavesdropper. The deduc-
tion relation � is an extension of the standard Dolev-Yao inference system [12]
and is given by the following rules:

E ∈ S

S � E

S � (E1, E2)
S � E1

S � (E1, E2)
S � E2

S � {E}K E � k

S � E

We only consider deduction rule in this axiomatisation. Indeed the � relation
is only used to check that a key or an exponentiation can be deduced, thus
composition rules are useless.

To the standard Dolev-Yao rules that capture security of encryption, we add
several rules for dealing with exponentials, and keys derived from exponentials:

E � g1

E � gp E � gq

E � gλp+q
λ ∈ Zq

E � {m}h(gp) E � gp

E � m

The first rule says that the adversary knows the generator g of the group; the
second says that the adversary can multiply group elements that it knows, and
raise group elements that it knows to arbitrary powers in Zq. The last rule allows
the adversary to decrypt a ciphertext under a key derived from an exponential,
provided that the adversary can compute that exponential.
Symbolic equivalence of expressions. In a symbolic expression, the infor-
mation revealed via � can be characterized using patterns [1,17]. Intuitively, the
pattern of expression E ∈ Msg is obtained by replacing all its unrecoverable sub-
expressions (those sub-expressions that occur encrypted under keys that the ad-
versary cannot derive from E) by the symbol � (undecryptable). For an expression
E ∈ Msg its pattern is formally defined by the following inductive rules:



496 E. Bresson et al.

pattern
(
(E1, E2)

)
=

(
pattern(E1), pattern(E2)

)
pattern

(
{E′}K

)
= {pattern(E′)}K if E � K

pattern
(
{E′}K

)
= {�}K if E � K

pattern
(
{E′}h(gp)

)
= {pattern(E′)}h(gp) if E � gp

pattern
(
{E′}h(gp)

)
= {�}h(gp) if E � gp

pattern(E′) = E′ if E′ ∈ Nonce ∪ Keys ∪ gPoly

Two expressions E1, E2 ∈ Msg are deemed symbolically equivalent if they
have the same pattern (an adversary can gather the same information out of
both expressions): E1 ≡ E2 if and only if pattern(E1) = pattern(E2).

We would like to claim that equivalent expressions have associated indistin-
guishable distributions. However, the equivalence defined above is too stringent:
For example, expressions (K1, {K1}K2) and (K2, {K2}K3) are different, although
they clearly have equal distributions. The solution is to relax the equivalence by
allowing renaming of key and nonce symbols (and even renaming of polynomials).
The above expressions become equivalent by renaming (in the first expression)
K1 and K2 to K2 and K3, respectively.

Renaming the polynomials that occur in exponentials is more subtle. Notice
that we would like to identify the expressions E1 = (gX1 , gX2 , gX1X2) and E2 =
(gX1 , gX2 , gX3) by renaming the polynomial X1X2 to the polynomial X3 (this
models the DDH assumption). However not all renamings of polynomials should
be considered valid: the expression E1 and E3 = (gX1 , gX2 , gX1+X2) (which
are distinguishable since the linear dependency that the adversary can observe
in the second expression is absent in the first expression) should not be made
indistinguishable by mapping for example X1X2 to X1 + X2. Based on the
intuition that underlies our main theorem, we only consider linear dependence
preserving injective renamings of polynomials (which are renamings that preserve
all linear dependencies in the original expression).

Definition 13 (Linear dependance preserving renamings). Let E be an
expression and σ : poly(E) → Poly be an injective renaming of the polynomials
in E. Then σ is said to be linear dependence preserving (ldp) if:

∀p1, p2, . . . , pn ∈ poly(E), ∀a1, ..., an, b ∈ Z,

n∑
i=1

ai.pi = b ⇔
n∑

i=1

ai.piσ = b

For the expression E1 given above, it can be verified that σ defined by σ(X1) =
X1, σ(X2) = X2 and σ(X1X2) = X3 is ldp whereas if we set σ(X1X2) = X1+X2,
σ the resulting renaming is not.

We say that two expressions E1 and E2 are equivalent up to renaming, and
we write E1

∼= E2 if there exists a renaming σ that is injective on the sets of
nonces, keys, and injective and dependence preserving on the set of polynomials,
such that σ(m) ≡ n.
Soundness Theorem. We are now ready to state our soundness theorem. Sim-
ilarly to the original paper of Abadi and Rogaway [1], we implement encryption
using a scheme that besides being IND-CPA secure also hides the length of the
plaintext. We write IND-CPA∗ for the resulting security notion. We emphasize



A Generalization of DDH with Applications to Protocol Analysis 497

that we use the additional requirement only for simplicity – this requirement
can be easily lifted by refining the pattern definition as in [18,17]. The imple-
mentation that we consider uses a family of groups where the DDH problem
is (asymptotically) hard. Finally, we require that the key derivation function h
is such that KG(η) and h(gr) output equal distributions when r is selected at
random. The soundness result holds for acyclic expressions, that is expressions
where encryption cycles do not occur.

Definition 14 (Acyclic expression). An expression E is acyclic if the two
following conditions are satisfied:

1. If p is a polynomial such that h(gp) occurs as an encryption key in E, then
p is not a linear combination of the polynomials that occur in E (and are
different from p).

2. There exists an order ≺ between keys and polynomials from poly(E): if u
appears encrypted using v or gv then u ≺ v. This order must not have any
cycles.

The first condition is intended to avoid encryptions in which the plaintext and the
encryption key are linearly dependent, as for example in {gX1 , gX1+X2}h(gX2). It
can be easily shown that the occurrence of such a ciphertext can reveal the en-
cryption key without contradicting IND-CPA-security of the encryption scheme.

The next theorem establishes the main result of this section: the distributions
of equivalent expressions are computationally indistinguishable.

Theorem 15 (Symbolic equivalence implies indistinguishability). Let
E1 and E2 be two acyclic expressions, such that E1

∼= E2. Let Π be a symmetric
encryption scheme that is IND-CPA∗ secure and G be a group such that the DDH
assumption holds, then Ê1 ≈ Ê2.

To appreciate the power that the above soundness theorem provides, consider
the expression:

E(F ) =
(
gX1 , gX2 , gX3 , gX1X2 , gX1X3 , gX2X3 , {K}h(gX1X2X3), {F}K

)

where F is some arbitrary expression. Expression E represents the transcript of
the executions of the following (toy) protocol: three parties with secret keys X1,
X2 and X3 first agree on a common secret key h(gX1X2X3) (by broadcasting the
first 6 messages in the expression). Then, one of the parties generates a new key
K which it broadcasts to the other parties encrypted under h(gX1X2X3). Finally,
one of the parties, sends some secret expression F encrypted under K. To argue
about the security of the secret expression (against a passive adversary) it is
sufficient to show that the distributions associated to the expressions E(F ) and
E(0) are indistinguishable.

Although conceptually simple, a full cryptographic proof would require several
reductions (to DDH and security of encryption), and most likely would involve
at least one hybrid argument (for proving the security of encrypting K under
h(gX1X2X3)). The tedious details of such a proof can be entirely avoided by



498 E. Bresson et al.

using our soundness theorem: it is straightforward to verify that E(F ) ∼= E(0),
and this procedure can be automated. Since E(F ) is acyclic, the desired result
follows immediately by Theorem 15.

5 Conclusion

In this paper we propose a significant generalization of the DDH problem. We
show that in most of the important cases our generalization is not harder than
the classical two-parties DDH. As applications, we demonstrate that our general-
ization enables simple and tight security proofs for several existing key exchange
protocols. Moreover, the generalization is instrumental in obtaining a computa-
tional soundness theorem that deals with exponentiation and Diffie-Hellman-like
keys. We leave as an interesting open problem the question of how to extend this
last result to the case of active adversaries.

Acknowledgments. We would like to thank Mihir Bellare, Mathieu Baudet
and anonymous reviewers for useful comments and suggestions. Some of the re-
search was carried out while the fourth author was with LORIA, INRIA Lorraine
in the CASSIS group. He was supported by ACI Jeunes Chercheurs JC9005 and
ARA SSIA Formacrypt.

References

1. Abadi, M., Rogaway, P.: Reconciling two views of cryptography (the computational
soundness of formal encryption). In: IFIP TCS2000, pp. 3–22 (2000)

2. Bao, F., Deng, R., Zhu, H.: Variations of Diffie-Hellman problem. In: Qing, S.,
Gollmann, D., Zhou, J. (eds.) ICICS 2003. LNCS, vol. 2836, pp. 301–312. Springer,
Heidelberg (2003)

3. Bellare, M., Boldyreva, A., Micali, S.: Public-key encryption in a multi-user set-
ting: Security proofs and improvements. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, pp. 259–274. Springer, Heidelberg (2000)

4. Blum, M., Micali, S.: How to generate cryptographically strong sequences of
pseudo-random bits. SIAM J. of Computing 13, 850–864 (1984)

5. Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with
constant size ciphertext. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS,
vol. 3494, pp. 440–456. Springer, Heidelberg (2005)

6. Bresson, E., Chevassut, O., Pointcheval, D.: Group Diffie-Hellman key exchange
secure against dictionary attacks. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS,
vol. 2501, pp. 497–514. Springer, Heidelberg (2002)

7. Bresson, E., Chevassut, O., Pointcheval, D.: The group Diffie-Hellman problems. In:
Nyberg, K., Heys, H.M. (eds.) SAC 2002. LNCS, vol. 2595, pp. 325–338. Springer,
Heidelberg (2003)

8. Burmester, M., Desmedt, Y.: A secure and efficient conference key distribution
system (extended abstract). In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS,
vol. 950, pp. 275–286. Springer, Heidelberg (1995)

9. Canetti, R.: Towards realizing random oracles: Hash functions that hide all partial
information. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 455–
469. Springer, Heidelberg (1997)



A Generalization of DDH with Applications to Protocol Analysis 499

10. Coppersmith, D., Shparlinski, I.: On polynomial approximation of the discrete
logarithm and the Diffie-Hellman mapping. J. of Cryptology 13(2), 339–360 (2000)

11. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS,
vol. 1462, pp. 13–25. Springer, Heidelberg (1998)

12. Dolev, D., Yao, A.: On the security of public key protocols. IEEE IT 29(12), 198–
208 (1983)

13. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithm. IEEE IT 31(4), 469–472 (1985)

14. Katz, J., Yung, M.: Scalable protocols for authenticated group key exchange. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 110–125. Springer, Heidelberg
(2003)

15. Kiltz, E.: A tool box of cryptographic functions related to the Diffie-Hellman func-
tion. In: Indocrypt ’01, pp. 339–350 (2001)

16. Maurer, U., Wolf, S.: Diffie-Hellman oracles. In: Koblitz, N. (ed.) CRYPTO 1996.
LNCS, vol. 1109, pp. 268–282. Springer, Heidelberg (1996)

17. Micciancio, D., Panjwani, S.: Adaptive security of symbolic encryption. In: Kilian,
J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 245–263. Springer, Heidelberg (2005)

18. Micciancio, D., Warinschi, B.: Completeness theorems for the Abadi-Rogaway logic
of encrypted expressions. J. of Computer Security. Preliminary version in WITS
2002 (2004)

19. Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random
functions. In: FOCS ’97, pp. 458–467 (1997)

20. Sadeghi, A.-R., Steiner, M.: Assumptions related to discrete logarithms: Why sub-
tleties make a real difference. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS,
vol. 2045, pp. 244–261. Springer, Heidelberg (2001)

21. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997)

22. Shparlinski, I.: Security of most significant bits of gx2
. IPL 83(2), 109–113 (2002)

23. Steiner, M., Tsudik, G., Waidner, M.: Diffie-Hellman key distribution extended to
group communication. In: ACM CCS 96, pp. 31–37. ACM Press, New York (1996)



Chernoff-Type Direct Product Theorems

Russell Impagliazzo1,�, Ragesh Jaiswal1,��, and Valentine Kabanets2

1 University of California San Diego, USA
{russell,rjaiswal}@cs.ucsd.edu
2 Simon Fraser University, Canada

kabanets@cs.sfu.ca

Abstract. Consider a challenge-response protocol where the probability
of a correct response is at least α for a legitimate user, and at most β < α
for an attacker. One example is a CAPTCHA challenge, where a human
should have a significantly higher chance of answering a single challenge
(e.g., uncovering a distorted letter) than an attacker. Another example
would be an argument system without perfect completeness. A natural
approach to boost the gap between legitimate users and attackers would
be to issue many challenges, and accept if the response is correct for more
than a threshold fraction, for the threshold chosen between α and β. We
give the first proof that parallel repetition with thresholds improves the
security of such protocols. We do this with a very general result about an
attacker’s ability to solve a large fraction of many independent instances
of a hard problem, showing a Chernoff-like convergence of the fraction
solved incorrectly to the probability of failure for a single instance.

1 Introduction

Cryptographic protocols use gaps between the informational and computational
abilities of legitimate users and attackers to distinguish the two. Thus, the greater
the gap between the ability of legitimate users to solve a type of problem and
that of attackers, the more useful the problem is. Ideally, a problem should be
reliably easy for legitimate users (in that the chance of failure for legitimate
users should be negligible) but reliably hard for attackers (in that the chance of
the attacker’s success is negligible).

Direct product theorems point out ways to make problems reliably hard for
attackers. The idea is that if an attacker has some chance of failing on a single
challenge, the chance of solving multiple independent challenges should drop
exponentially. Examples of such theorems in cryptography include Yao’s theorem
that weak one-way functions imply strong one-way functions ([23]) and results
of [4,6], showing similar drops even when an attacker cannot know for certain
whether a response to a challenge is correct. Direct product theorems are also
important in average-case complexity, circuit complexity, and derandomization.
� Research partially supported by NSF Awards CCR-0313241 and CCR-0515332.

Views expressed are not endorsed by the NSF.
�� Research partially supported by NSF Awards CCR-0313241, CCR-0515332, CCF-

0634909 and CNS-0524765. Views expressed are not endorsed by the NSF.

A. Menezes (Ed.): CRYPTO 2007, LNCS 4622, pp. 500–516, 2007.
c© International Association for Cryptologic Research 2007



Chernoff-Type Direct Product Theorems 501

While intuitive, such results are frequently non-trivial. One reason for this is
that there are other circumstances where the intuition is incorrect, and many
instances are not proportionally harder. Examples of circumstances where direct
products fail are parallel repetition for multiple round protocols and for non-
verifiable puzzles ([4,6,19]).

While standard direct product theorems are powerful, they can only be used
to amplify the gap between legitimate users and attackers if legitimate users
are successful with high probability. The legitimate user’s chance of solving k
independent challenges also drops exponentially, so unless the probability of
failure isn’t much more than 1/k to start, both legitimate users and attackers
will almost certainly fail to solve all of the problems.

For example, a CAPTCHA protocol is meant to distinguish between humans
and programs, usually using a visual challenge based on distorted text with ex-
traneous lines ([2]). While there seems to be a large gap between the abilities of
typical humans and the best current vision algorithms to solve these challenges,
algorithms can solve a non-negligible fraction of the puzzles, and many humans
(including us) fail a non-negligible fraction of the puzzles. [2] prove that sequen-
tial repetition of the protocol increases this gap, and refer to [4] for the “more
complicated” case of parallel repetition. Indeed, the results of [4] (and improved
by [6]) do apply to parallel repetition of CAPTCHA protocols. However, for the
reason above, these results only show that the probability of algorithmic success
decreases with repetitions, not that the gap improves.

An obvious, intuitive solution to this problem is to make many independent
challenges, but accept if the solver is successful on a larger fraction than ex-
pected for an attacker. Here, we prove that, for a large variety of problems,
this approach indeed amplifies the gap between legitimate users and attackers.
The kind of problems we consider are the weakly verifiable puzzles of [6], which
include challenge-response protocols such as CAPTCHA as a special case. The
puzzles are weakly verifiable in the sense that, while the generator of the puzzle
can verify a solution, the attacker (who is just given the puzzle, not the way it
was generated) cannot necessarily verify whether a proposed solution is accept-
able. For P a weakly verifiable puzzle, we denote by P k,T the puzzle that asks
k independent challenges from P and accepts if at least (k −T ) of the responses
are correct solutions to P .

Theorem 1 (Main Theorem). Let P be a weakly verifiable puzzle so that any
solver running in time t(n) has probability at least δ of failure (for sufficiently

large n). Let k, γ > 0, T = (1 − γ)δk, and ε > 2 · e−
γ2δ2k

64 , be given parameters
(as functions of n). Then no solver running in time t′(n) = t(n)poly(ε, 1/n, 1/k)
time can solve P k,T with probability greater than ε, for some polynomial poly,
for sufficiently large n.

We call this a Chernoff-type direct product theorem, since it shows that the
“tail bound” on the number of correctly solved puzzles drops exponentially in
the region beyond its expectation.



502 R. Impagliazzo, R. Jaiswal, and V. Kabanets

Standard Chernoff bounds show that, if the legitimate user can solve the
problem with probability of failure less than say (1−2γ)δ, then they will succeed
in P k,T with all but exponentially small probability. Thus, the above Chernoff-
type direct product theorem indeed shows how to amplify any gap between
legitimate users and attackers.

1.1 Weakly Verifiable Puzzles

Our result holds for the notion of weakly verifiable puzzles defined by [6].
A weakly verifiable puzzle has two components: First, a distribution ensemble

D = D1, ..., Dn, ... on pairs (x, α), where x is called the puzzle and α the check
string. n is called the security parameter. Secondly, a polynomial-time com-
putable relation R((x, α), y) where y is a string of a fixed polynomially-related
length.

The puzzle is thought of as defining a type of challenge x, with y being the
solver’s response. However, the correctness of the response is not easily veri-
fied (and may not be well-defined) given just x. On the other hand, the party
generating the puzzle x also knows α, so can verify correctness.

In [6], the distribution D is restricted to being polynomially-sampleable. In
this case, without loss of generality, we can assume that α is the n bit random
tape used to generate the puzzle and check string (if not, we can redefine R as
R′ which first generate the check string from the random tape, then verifies R.
Thus, to simplify the notation in our proofs, we usually assume α is a uniformly
generated n bit string, and that x is a function of α. A version of our result
also holds when D is not polynomial time sampleable, but only for non-uniform
adversaries (since many samples from D are required as advice.)

Some examples of how weakly verifiable puzzles arise in different settings
include:

1. Consider a challenge-response protocol where a prover is trying to get a
verifier to accept them as legitimate (e.g., a CAPTCHA protocol, where
the prover is trying to convince the verifier to accept them as human.) We
assume that the verifier is polynomial time with no secret inputs, (although
an honest prover may have secret inputs.) Let α be the random bits used by
the verifier. In the first round, the verifier sends a challenge x = g(α), and
the prover sends a response y. The verifier then decides whether to accept by
some polynomial time algorithm, R(α, y). Our results are interesting if there
is some chance that the honest prover will be rejected, such as an honest
human user failing a CAPTCHA challenge based on visual distortion.

2. Consider a secret-agreement protocol with a passive eavesdropper. Let rA be
the random tape used by one party, and rB that by the other party. Then
the conversation C is a function of both rA, rB, as is the message m agreed
upon. The eavesdropper succeeds if she computes m given C. Then consider
α = (rA, rB), x = C, and R(C, (rA, rB), y) if y is the message agreed upon
by the two parties using rA and rB. Note that there may be some tapes
where the parties fail to agree, and thus has no success. Our result shows



Chernoff-Type Direct Product Theorems 503

that, if the parties agree more probably than the eavesdropper can guess the
secret, then running the protocol several times, they will almost certainly
have more shared secrets than the eavesdropper can guess. Note that, unlike
for challenge-response protocols, here there is no restriction on the amount
of interaction between the legitimate parties (as long as the eavesdropper is
passive).

3. Let f be a (weak) one-way function, and b a (partially-hidden) bit for f , in
the sense that it is sometimes hard to always predict b from x = f(z). Since
f may not be one-to-one, b may be hard to predict for either information-
theoretic or computational reasons. Here, we let α = z, x = f(α), and
R(x, α, b′) if b′ = b(α). Our results say that no adversary given an n tuple
of xi = f(zi) can produce a string closer in relative Hamming distance to
b(x1)...b(xn) than the hardness of prediction.

4. In the non-uniform setting, our results apply to any function. If f is a func-
tion (possibly non-Boolean, or even multi-valued, as long as it takes on at
most a polynomial number of values), we can define α to be (the set of all
elements in) f(x). Then y ∈ f(x) if and only if y ∈ α, so this is testable
in polynomial-time given α. This distribution isn’t necessarily polynomial-
time sampleable, so our results would only apply for non-uniform adversaries
(e.g., Boolean circuits.)

Note that in some examples, success may be ill-defined, in that x may not
uniquely determine α, and so it may not be information-theoretically possible
to know whether R((x, α), y) given only x.

1.2 Related Work

The notion of a Direct Product Theorem, in which solving multiple instances of a
problem simultaneously is proven harder than a single instance, was introduced
by Yao in [23]. Due to its wide applicability in cryptography and computational
complexity, a number of different versions and proofs of such theorems can be
found in the literature. [8] contains a good compilation of such results. In this
paper, we use some of the proof techniques (namely the trust halving strategy)
introduced by Impagliazzo and Wigderson in [12]. Such techniques were also
used to show a version of the Direct Product Theorem under a more general
cryptographic setting by Bellare, Impagliazzo and Naor in [4]. The idea was to
show that the soundness error decreases exponentially with parallel repetition in
any 3-round challenge-response protocol. This paper also showed that such error
amplification might not be possible for a general (> 3)-round protocol. Pietrzak
and Wikstrom in [19] extend this negative result. On the positive side, Canetti,
Halevi and Steiner in [6] used ideas from [4] to define a general class of weakly
verifiable puzzles for which they show parallel repetition amplifies hardness, also
giving a quantitative improvement over [4]. More recently, Pass and Venkita-
subramaniam [18] show similar positive results for constant round public coin
protocols. Note that all the results mentioned above, consider parallel repetition
without threshold i.e. they consider the hardness of answering all the instances
of the parallel repetition question simultaneously.



504 R. Impagliazzo, R. Jaiswal, and V. Kabanets

In this paper, we use the Sampling Lemma (Lemma 1) from [11] in an essen-
tial manner. The proof of this Lemma uses ideas from Raz’s parallel repetition
paper [20].

1.3 Techniques

Our main lemma shows how to use a breaking strategy that solves the threshold
puzzle with probability ε as a subroutine in an algorithm that solves a single
puzzle with probability greater than (1 − δ). This algorithm is a version of the
trust-reducing strategies from [12,4]. In a trust-reducing strategy, the real puzzle
is hidden among (k−1) randomly generated puzzles, and the number of mistakes
the subroutine makes on the random puzzles is used to compute a probability
that the algorithm accepts the answer for the real puzzle.

However, we need to deviate substantially from the analysis in the previous
papers. The previous work considered the performance of the strategy on a set
H of “hard” instances, and showed that if |H | ≥ δ2n, then the strategy worked
almost certainly on random elements of H . (Thus the fraction of puzzles where
the strategy fails with reasonable probability would be at most δ.) In contrast,
in the threshold scheme, it suffices for the adversary to answer correctly only
on the instances outside a “really hard” set H ′ of size (1 − γ)δ, and make an
error on the instances in H ′. Since H ′ could be a large (1− γ) fraction of H , the
conditional probability of success on H of any strategy is at most γ.

In order to get around this obstacle, we need a more global way of analyzing
the trust-reducing strategy. Our main tool for doing this is a sampling lemma
(from [11]) that can be used to show that the strategy has approximately the
same success probability on almost all instances. This allows us us to analyze the
strategy on random instances, and infer similar success for almost all instances.

2 Preliminaries

Definition 1. For any distribution D, x ← D denotes sampling an element from
the distribution D, and D(x) denotes the probability of sampling the element x.

Definition 2. Given two distributions D1 and D2 over {0, 1}n, the statistical
distance Dist(D1, D2) between them is defined as

Dist(D1, D2) =
1
2

∑
x∈{0,1}n

|Pr[D1(x)] − Pr[D2(x)]|

Let U be the uniform distribution on {0, 1}n. Consider the following distribution
over {0, 1}n. Pick an m tuple of n-bit string (x1, . . . , xm) uniformly at random
and output xi for a randomly chosen i ∈ [m]. The distribution is equivalent to U
if the tuple is randomly chosen from {0, 1}nm. The next lemma shows that the
distribution is close to uniform even when the tuple is chosen randomly from a
subset G ⊆ {0, 1}nm of size ε2nm.



Chernoff-Type Direct Product Theorems 505

Lemma 1 (Sampling Lemma). Let G ⊆ {0, 1}mn be any subset of size ε2mn.
Let U be a uniform distribution on the set {0, 1}n, and let D be the distribution
defined as follows: pick a tuple (x1, . . . , xm) of n-bit strings uniformly from the
set G, pick an index i uniformly from [m], and output xi. Then the statistical

distance between the distributions U and D is less than 0.6
√

log 1/ε
m .

See [11] for the proof of this lemma. The following corollary will be used in the
proof of our main result.

Corollary 1. Let G be a distribution over {0, 1}nm (which can be viewed as m-
tuples of n-bit strings) such that for any x̄ ∈ {0, 1}nm, G(x̄) ≤ 1

ε 2nm . Let U
be a uniform distribution over {0, 1}n, and let D be the distribution defined as
follows: pick a tuple (x1, . . . , xm) ← G, pick an index i uniformly from [m], and
output xi. Then the statistical distance between the distributions U and D is less

than 0.6
√

log 1/ε
m .

Proof. We can represent the distribution G as a convex combination of uniform
distributions on subsets of size at least ε2nm. We can then apply the Sampling
Lemma to each term in the combination to obtain the corollary. ��

3 Proof of the Main Theorem

The proof is by contradiction. Given a solver C̄ that solves the weakly verifiable
puzzle P k,T with probability at least ε, we give a solver C which solves the puzzle
P with probability at least (1−δ). The probability of success is over the internal
randomness of the solver and uniformly chosen α ∈ {0, 1}n.

Let G be the subset of ᾱ = (α1, . . . , αk) ∈ ({0, 1}n)k where1

|{i : ¬R((xi, αi), C̄(x1, . . . , xk)i)}| ≤ (1 − γ)δk

So G denotes the “good” subset of ᾱ’s for the solver C̄ where we have mini-
mum guarantee of ε. In order to illustrate the ideas of the proof, we first prove
the Theorem assuming access to an oracle OG deciding the membership of a
given tuple (α1, . . . , αk) in the “good” set G. We then drop this assumption by,
essentially, imitating the behavior of the oracle.

3.1 Assuming Oracle OG Exists

In this subsection, in order to illustrate the ideas of the proof in a simplified
setting, we temporarily assume that there is an oracle OG which tells if a given
tuple (α1, . . . , αk) belongs to the “good” set G. This subsection is to develop
the reader’s intuition, and is not strictly required for the proof of the real case.
For this reason, we will slur over some calculations. In the rest of the section, we
show how to drop this assumption by approximating oracle OG in a computable
1 For a string αi, we implicitly denote the puzzle by xi.



506 R. Impagliazzo, R. Jaiswal, and V. Kabanets

way. The rest of the section is self-contained, so this subsection, while helpful,
may be skipped by the reader. Note that this oracle is unrealistic in many ways,
one of which is that it’s answer depends on α, when in the real case the Solver
will only have x, not α.

Consider the randomized Solver C defined in Figure 1 which is allowed a
special output ⊥ which is considered as an incorrect answer in the analysis.

Input: z = (x, α)
Output: y
Oracle access: Solver C̄ and OG

Parameters: ε ≥ 2 · e− γ2δ2k
64 , timeout = 4n

ε
.

1. Repeat lines 2-6 for at most timeout times:
2. Choose i ∈ [k] uniformly at random.
3. Choose α1, . . . , αk−1 ∈ {0, 1}n uniformly at random.
4. Let ᾱ ← (α1, . . . , αi−1, α, αi, . . . , αk−1).
5. If OG(ᾱ) = 1
6. then output y = C̄(x̄)i, //where the elements of x̄ are the puzzles

// generated from check strings ᾱ.
7. output ⊥

Solver 1. Randomized Solver C given C̄ and OG as oracle

We want to analyze the success probability of solver C on a given input z =
(x, α). To this end, we need to argue that (1) the probability of the timeout
(i.e., of outputting ⊥ in line 7) is small, and (2) conditioned on the output being
different from ⊥, it is a correct output with high probability (greater than 1−δ).

We will focus on analyzing the conditional success probability in (2), i.e.,
Pri,α1,...,αk−1 [C(α) is correct | output 
= ⊥], for a given input z = (x, α) to
C. Observing that C outputs something other than ⊥ exactly when the tuple
ᾱ built in line 4 is in the set G, we can rewrite this conditional probability as
Pri∈[k],ᾱ=(α1,...,αk)∈G[C(αi) is correct | αi = α], where i is chosen uniformly from
[k], and ᾱ uniformly from G.

Let D(α) = Pri∈[k],ᾱ∈G[αi = α], and let U be the uniform distribution on αs.
Using our Sampling Lemma, we will argue that the distributions D and U are
statistically close to each other. Using this closeness, we can finish the analysis of
the success probability of solver C as follows. The conditional success probability
of C for a random input α is

∑
α Pri,ᾱ∈G[C(αi) is correct | αi = α]∗U(α), which

is approximately equal to
∑

α Pri,ᾱ∈G[C(αi) is correct | αi = α] ∗ D(α). The
latter expression is exactly Pri,ᾱ∈G[C(αi) is correct], which is at least 1 − (1 −
γ)δ = 1−δ+γδ, by the definition of G. We will show that the statistical distance
between D and U and the probability of the timeout of C are less than γδ, which
would imply that C succeeds on more than 1 − δ fraction of inputs.

To demonstrate the structure of the analysis in the general case, we recast
the arguments above as follows. We introduce a certain random experiment E



Chernoff-Type Direct Product Theorems 507

(see Figure 1), which corresponds to the inner loop of the algorithm C. We then
relate the success probability of C to that of E .

Experiment E
(α1, . . . , αk) $← G // Let x1, ..., xk be the corresponding puzzles

i
$← [k]

output (αi, C̄(x1, . . . , xk)i)

Fig. 1. Experiment E

We say that experiment E succeeds if it outputs a pair (α, y) such that
R((x, α), y). Since for each k-tuple in G, C̄ outputs a correct answer for at least
1−(1−γ)δ fraction of the elements, the probability of success of this experiment
is clearly ≥ 1 − (1 − γ)δ.

Let D be the probability distribution on the first elements of outputs of E ,
i.e., D(α) is the probability that E outputs a pair (α, y). Let Rα represent the
probability that it outputs such a pair with R((x, α), y), and Wα the probability
that it outputs such a pair with ¬R((x, α), y). So, D(α) = Rα +Wα. Clearly, we
have that 1 − (1 − γ)δ ≤ Pr[E succeeds] =

∑
α∈{0,1}n Rα.

Since D is sampled by picking a random element of a set G of tuples of
size at least ε2nk, from the sampling lemma it is within 0.6

√
log(1/ε)/k ≤ γδ/8

statistical distance of the uniform distribution. In particular, for H = {α|D(α) ≤
(1/2)2−n}, |H | ≤ (γδ/4)2n.

Let pα be the probability that a random ᾱ containing α is in G. Then
the expectation of pα for random α is at least ε, and D(α) = pα/

∑
α′ pα′ =

2−n(pα/Exp[pα′ ]). So all elements not in H have pα ≥ ε/2. For each such ele-
ment, the probability that we get a timeout in C is at most (1−pα)timeout ≤ e−n.

Given that C on α does not time out, the probability of it succeeding is
Rα/D(α). Thus, the overall probability of success is at least (

∑
α U(α)Rα/D(α))

− Pr[C times out]. We get
∑

α U(α)Rα/D(α) =
∑

α(U(α) − D(α))Rα/D(α) +∑
α Rα ≥

∑
α(−1)|U(α) − D(α)| + (1 − (1 − γ)δ) ≥ 1 − (1 − γ)δ − Dist(D, U) ≥

1 − (1 − 3/4γ)δ.
The probability of time-out can be bounded by the probability that α ∈ H

plus the probability of time-out given that α 
∈ H . As previously mentioned, this
is at most δγ/4+ e−n, giving a total success probability at least 1− (1−γ/2)δ−
e−n > 1 − δ, as desired.

3.2 Removing the Oracle OG

We will use the same set of ideas as in the previous subsection while removing
the dependency on the simplifying assumptions. The most important assumption
made was the existence of the oracle OG which helped us to determine if a tuple
(α1, . . . , αk) ∈ G. The second assumption that we made was that the randomized
solver C receives as input the pair z = (x, α) which is not a valid assumption
since α is supposed to be hidden from the solver.



508 R. Impagliazzo, R. Jaiswal, and V. Kabanets

We get around these assumptions, in some sense, by imitating the combined
behavior of the randomized solver and the oracle OG of the previous subsection.
Below we define a new randomized solver which is only given x as an input, with
α being hidden from the solver.

Input: x //corresponding to α
Output: y
Oracle access: Solver C̄

Parameters: ε ≥ 2 · e− γ2δ2k
64 , timeout = 4n

ε
, t0 = (1 − γ)δk, ρ = 1 − γδ

16 .

1. Repeat lines 2-10 for at most timeout times:
2.
3.
4.
5.
6.
7.
8.
9.
10.

// Subroutine TRS (Trust Reducing Strategy)
Choose i ∈ [k] uniformly at random.
Choose α1, . . . , αk−1 ∈ {0, 1}n uniformly at random.
Let x̄ ← (x1, . . . , xi−1, x, xi, . . . , xk−1).
Let l = {j : ¬R((xj , αj), C̄(x1, . . . , xk−1)j), j �= i}
If |l| > t0

output C̄(x1, . . . , xk−1)i with probability ρ|l|−t0

else
output C̄(x1, . . . , xk−1)i with probability 1

11. output ⊥

Solver 2. Randomized Solver C given C̄ as oracle

To be able to analyze the above solver we abstract out a single execution of
the loop 2 − 10 (the subroutine TRS) and design an experiment E3 which has
similar behavior. To further simplify the analysis we design a simpler experiment
E2 such that (1) analyzing E2 is easy and (2) E2 is not too much different from
E3 so that we can easily draw comparisons between them. The description of
Experiments E2 and E3 is given in Figure 2.

Definition 3. Experiments E2 and E3 are said to succeed if they output a correct
pair (i.e. a pair (α, y) such that R((x, α), y)). The success probability is defined
as the probability that a correct pair is produced conditioned on the experiment
producing a pair.

Proof outline. We observe that the success probability of C on a given input x
corresponding to a hidden string α is exactly the success probability of experi-
ment E3 conditioned on the event that E3 produces a pair (α, ·). For a random
input x corresponding to a uniformly random string α, the success probability
of C is then

∑
α Pr[E3 succeeds | E3 outputs (α, ·)] ∗ U(α), where U denotes the

uniform distribution. On the other hand, the success probability of E3 can be
written as

∑
α Pr[E3 succeeds | E3 outputs (α, ·)] ∗ D3(α), where D3(α) is the

probability that experiment E3 produces a pair (α, ·) conditioned on E3 produc-
ing some pair (i.e., conditioned on the output of E3 being different from ⊥). We



Chernoff-Type Direct Product Theorems 509

Experiment E2 Experiment E3

(α1, . . . , αk) $← ({0, 1}n)k (α1, . . . , αk) $← ({0, 1}n)k

i
$← [k] i

$← [k]
J ← {j|¬R((xj , αj), C̄(x1, . . . , xk))j} J ← {j|¬R((xj , αj), C̄(x1, . . . , xk))j}
if |J | > (1 − γ)δk if |J | > (1 − γ)δk

t = |J | − (1 − γ)δk t = |J | − (1 − γ)δk
else else

t = 0 output (αi, C̄(x1, . . . , xk)i)
output (αi, C̄(x1, . . . , xk)i) with probability 1

with probability ρt and ⊥ if i ∈ J
with probability (1 − ρt) output (αi, C̄(x1, . . . , xk)i)

with probability ρt−1 and ⊥
with probability (1 − ρt−1)

else
output (αi, C̄(x1, . . . , xk)i)

with probability ρt and ⊥
with probability (1 − ρt)

Fig. 2. Experiments E2 and E3

then argue that the distributions U and D3 are statistically close, and hence
the success probability of C can be lowerbounded with that of E3. Finally, we
lowerbound the success probability of E3, getting the result for C.

In reality, the success probability of experiment E2 is easier to analyze than
E3. So we actually show that the conditional success probability of E3 can be
lowerbounded by that of E2, and then argue that U is statistically close to D2,
where D2 is defined for E2 in the same way as D3 was defined for E3 above.

Next we give the details of the proof. We start by analyzing E2.

Analyzing E2. Let us partition the k-tuples ({0, 1}n)k into the following sub-
sets:

G0 = G = {(α1, ..., αk) ∈ {0, 1}nk : |{j : ¬R((xj , αj), C̄(x1, ..., xk)j)}| ≤ (1 − γ)δk}

G1 = {(α1, ..., αk) ∈ {0, 1}nk : |{j : ¬R((xj , αj), C̄(x1, ..., xk)j)}| = (1 − γ)δk + 1}
...

Gk(1−(1−γ)δ) = {(α1, ..., αk) ∈ {0, 1}nk : |{j : ¬R((xj , αj), C̄(x1, ..., xk)j)}| = k}

Definition 4. We let S �⊥ denote the general event that the experiment produces
a pair (i.e. does not produce ⊥) and Sc denote the event that the experiment
produces a correct output.

Claim 2. Pr[E2 succeeds] ≥
(
1 − t0+γδk/2

k

)(
1 − ργδk/2

ε

)
, where t0 = (1−γ)δk.



510 R. Impagliazzo, R. Jaiswal, and V. Kabanets

Proof. Let t0 = (1 − γ)δk and Δ = γδk. Let Ā denote the random tuple chosen
in the first step of experiment E2. Recalling that the success probability of E2 is
defined as the probability of producing a correct pair conditioned on producing
a pair as output, we get

Pr[E2 succeeds] = Pr[Sc|S �⊥]
= Pr[Sc, S �⊥]/Pr[S �⊥]

=
∑

ᾱ∈{0,1}nk

Pr[Sc, S �⊥, Ā = ᾱ]/Pr[S �⊥]

=
∑

ᾱ∈{0,1}nk

Pr[Sc|S �⊥, Ā = ᾱ] · Pr[S �⊥, Ā = ᾱ]/Pr[S �⊥].

We will split the set of ᾱ’s into the following three sets:

G = G0, I = G1 ∪ . . . ∪ GΔ/2, B = {0, 1}nk − G − I,

which stand for “good”, “intermediate” and “bad”, respectively. We note that
E2 performs well on tuples in the good subset, reasonably well on tuples in the
intermediate subset and poorly on the tuples in the bad subset. The intuitive idea
is that we counter the poor effect of the bad subset of tuples by exponentially
weighing down their contribution in the overall probability of success of E2.

We have

Pr[E2 succeeds] ≥
∑

ᾱ∈G∪I

Pr[Sc|S �⊥, Ā = ᾱ] · Pr[S �⊥, Ā = ᾱ]/Pr[S �⊥]

≥
∑

ᾱ∈G∪I

(
1 − t0 + Δ/2

k

)
· Pr[S �⊥, Ā = ᾱ]/Pr[S �⊥]

≥
(

1 − t0 + Δ/2
k

) (∑
ᾱ∈G∪I Pr[S �⊥, Ā = ᾱ]

Pr[S �⊥]

)

=
(

1 − t0 + Δ/2
k

)
· Pr[S �⊥] − Pr[S �⊥, Ā ∈ B]

Pr[S �⊥]

=
(

1 − t0 + Δ/2
k

)
·
(

1 − Pr[S �⊥, Ā ∈ B]
Pr[S �⊥]

)
.

Observe that Pr[S �⊥, Ā ∈ B] ≤ Pr[S �⊥|Ā ∈ B] ∗ Pr[Ā ∈ B] ≤ ρΔ/2 · 1 =
ρΔ/2, and Pr[S �⊥] ≥ Pr[S �⊥, Ā ∈ G] ≥ ε. Thus, we get that 1 − Pr[S �⊥, Ā ∈
B]/Pr[S �⊥] ≥ 1 − ρΔ/2/ε, and the claim follows. ��

Let A be the random variable denoting the first element of the pair produced
by E2 conditioned on E2 producing a pair. We now write down the success prob-
ability of E2 in terms of the conditional probability that E2 produces a correct
pair given that it produces a pair (α, .) for a fixed α ∈ {0, 1}n.



Chernoff-Type Direct Product Theorems 511

Pr[E2 succeeds] = Pr[Sc|S �⊥]

=
∑

α∈{0,1}n

Pr[E2 succeeds on A|A = α, S �⊥] · Pr[A = α|S �⊥]

=
∑

α∈{0,1}n

Pr[E2 succeeds on A|A = α, S �⊥] · D2(α) (1)

where D2 is a distribution defined as D2(α) = Pr[A = α|S �⊥].
Note the similarity between the distribution D2 and distribution D of the

previous section. D was sampled by producing a randomly chosen element from
a randomly chosen tuple in G. Here we allow tuples to be chosen from any Gi

but we weigh down the contribution of the tuple by a factor of ρi. In other words,
D2 can be sampled in the following manner: Pick a random tuple ᾱ ∈ {0, 1}nk,
let ᾱ ∈ Gi, output a randomly chosen element of the tuple with probability ρi.

Comparing D2 and U. We will show that D2 is statistically close to the
uniform distribution U .

Claim 3. Dist(D2, U) < 0.6
√

log 1/ε
k .

Proof. To sample from D2, pick (α1, . . . , αk) ← G, pick a random i ∈ [k] and
output αi, where G is a distribution on k-tuples such that G(ᾱ) is the conditional
probability that E2 outputs the randomly chosen element from ᾱ given that E2

produces a pair. More specifically, given ᾱ ∈ Gi,

G(ᾱ) =
ρi

|G0| + ρ |G1| + . . . + ρk(1−(1−γ)δ) |Gk(1−(1−γ)δ)|
≤ 1

|G0|
≤ 1

ε · 2nk
.

By Corollary 1, we get the conclusion of the Claim. ��

Comparing E3 and E2. To continue, we need the following definitions.

Definition 5. Given α ∈ {0, 1}n and a k-tuple (α1, . . . , αk) ∈ ({0, 1}n)k, let
h(α, (α1, . . . , αk)) = {i : αi = α}. Given a k-tuple (α1, . . . , αk) ∈ ({0, 1}n)k and
solver C̄, let l(α1, . . . , αk) = {i : ¬R((xi, αi), C̄(x1, . . . , xk)i)}

In other words, for a given element and tuple, h denotes the subset of indices
where the element is present, and, for a given tuple, l denotes the subset of
indices where C̄ is incorrect. Consider the following two quantities:

Xα =
�
ᾱ∈G

|h(α, ᾱ) ∩ l(ᾱ)|

� �� �
Mα

+
�

ᾱ∈{0,1}nk−G

|h(α, ᾱ) ∩ l(ᾱ)| · ρ|l(ᾱ)|−t0

� �� �
Nα

Yα =
�
ᾱ∈G

|h(α, ᾱ) − h(α, ᾱ) ∩ l(ᾱ)| +
�

ᾱ∈{0,1}nk−G

|h(α, ᾱ) − h(α, ᾱ) ∩ l(ᾱ)| · ρ|l(ᾱ)|−t0



512 R. Impagliazzo, R. Jaiswal, and V. Kabanets

It is easy to see that

Pr[E2 succeeds on A | A = α, S �⊥] =
Yα

Xα + Yα
=

Yα

Mα + Nα + Yα
. (2)

Experiment E3 is mostly the same as E2, except when, for a randomly chosen
tuple ᾱ ∈ {0, 1}nk − G (line 1), the randomly chosen index i (line 2) lands in
the subset l(ᾱ) of indices on which C̄ is incorrect. Here E2 only outputs the pair
with probability ρ|l(ᾱ)|−t0 (instead of ρ|l(ᾱ)|−t0−1 as in E3). Thus we have

Pr[E3 succeeds on A | A = α, S �⊥] =
Yα

Mα + Nα/ρ + Yα
. (3)

Finally, using (2) and (3), we get:

Pr[E2 succeeds on A | A = α, S �⊥]
Pr[E3 succeeds on A | A = α, S �⊥]

=
Mα + Nα/ρ + Yα

Mα + Nα + Yα

≤ Mα + Nα + Yα

ρ · (Mα + Nα + Yα)
= 1/ρ. (4)

Analyzing C. We first note that the subset H of α’s for which the above solver
does not produce an answer (or produces ⊥) is small. Consider the following two
claims:

Claim 4. Let H ⊆ {0, 1}n be such that, for every α ∈ H, TRS produces an
answer with probability < ε/4. Then |H | < γδ

4 · 2n.

Proof. For the sake of contradiction, assume that |H | ≥ γδ
4 · 2n. For a randomly

chosen tuple ᾱ = (α1, . . . , αk), the expected number of αi’s from H is γδk/4. By
Chernoff bounds, all but e−

γδk
64 fraction of tuples ᾱ will contain at least γδk/8

elements from H .
For a random α ∈ H , consider the distribution on tuples ᾱ induced by lines

3–5 of Solver 2. That is, ᾱ is sampled by picking independently uniformly at
random α ∈ H , location i ∈ [k], and α1 . . . αk−1 ∈ {0, 1}n, and producing ᾱ =
(α1, . . . , αi−1, α, αi, . . . , αk−1). Observe that every tuple ᾱ′ containing exactly s
elements from H will be assigned by this distribution probability exactly 4s

γδk

times the probability of ᾱ′ under the uniform distribution. So the probability
of sampling tuples in G which have more than γδk

8 elements from H is at least
ε−e− γδk

64

2 ≥ ε
4 , since ε = 2 · e−

γ2δ2k
64 . This means that for a random α ∈ H , a

single iteration of the subroutine TRS of Solver 2 will produce a definite answer
with probability at least ε/4 (note that TRS always produces an answer when
ᾱ′ ∈ G). By averaging, there exists a particular α0 ∈ H for which TRS succeeds
in producing an answer with probability at least ε/4. ��

Claim 5. For every α ∈ {0, 1}n − H, Pr[C(x) 
= ⊥] > 1 − e−n.



Chernoff-Type Direct Product Theorems 513

Proof. From the previous claim we know that for any α ∈ {0, 1}n − H , the
subroutine TRS produces an answer with probability at least ε/4. So, the prob-
ability that Solver 2 fails to produce a definite answer on this input α within
timeout iterations is at most (1 − ε/4)

4n
ε ≤ e−n. ��

The similarity between solver C and Experiment E3 yields the following useful
fact:

Pr[R((x, α), C(x))|C(x) 
= ⊥] = Pr[E3 succeeds on A | A = α, S �⊥]. (5)

We now analyze the success probability of the solver C. The probability is
over uniformly random α ∈ {0, 1}n and its internal randomness.

Pr[C succeeds] =
1
2n

�

α∈{0,1}n

Pr[R((x,α), C(x)) ∧ C(x) �= ⊥]

=
�

α∈{0,1}n

Pr[R((x, α), C(x)) | C(x) �= ⊥] ∗ Pr[C(x) �= ⊥] ∗ U(α)

=
�

α∈{0,1}n

Pr[E3 succeeds on A | A = α, S �⊥] ∗ Pr[C(x) �= ⊥] ∗ U(α)

(from (5)) (6)

Let H ⊆ {0, 1}n be the set from Claim 4. Let H̄ be the complement of H in
the set {0, 1}n. By Claim 5 and Eq. (4), we get that for every α ∈ H̄ ,

Pr[E3 succeeds on A | A = α, S �⊥] ∗ Pr[C(x) 
= ⊥] ∗ U(α) ≥
(1 − e−n) ρ Pr[E2 succeeds on A | A = α, S �⊥] ∗ U(α). (7)

Comparing C and E2. We can now compare the success probabilities of Ex-
periment E2 and the solver C.

Claim 6. Pr[C succeeds]≥Pr[E2 succeeds]−
(
Dist(U , D2)+(1−ρ)+ρ · e−n+ γδ

4

)

Proof. Using the lower bound from (7), we can lower-bound Pr[C succeeds] as
follows:

Pr[C succeeds] ≥ ρ(1 − e−n)
∑
α∈H̄

Pr[E2 succeeds on A | A = α, S �⊥] ∗ U(α).

Next, observe that
∑
α∈H̄

Pr[E2 succeeds on A | A = α, S �⊥] ∗ U(α) ≥

∑
α∈{0,1}n

Pr[E2 succeeds on A | A = α, S �⊥] ∗ U(α) − γδ/4,



514 R. Impagliazzo, R. Jaiswal, and V. Kabanets

since
∑

α∈H U(α) < γδ/4. Expressing U(α) as (U(α) − D2(α)) + D2(α), we can
rewrite ∑

α∈{0,1}n

Pr[E2 succeeds on A | A = α, S �⊥] ∗ U(α)

as ∑
α∈{0,1}n

Pr[E2 succeeds on A | A = α, S �⊥] ∗ D2(α) +

∑
α∈{0,1}n

Pr[E2 succeeds on A | A = α, S �⊥] ∗ (U(α) − D2(α)).

The first summand is exactly Pr[E2 succeeds]. The second summand can be
lower-bounded by restricting the summation to those α ∈ {0, 1}n where U(α) <
D2(α), and observing that the resulting expression is at least −Dist(U , D2).

Putting it all together, we get that

Pr[C succeeds] ≥ ρ(1 − e−n)(Pr[E2 succeeds] − Dist(U , D2) − γδ/4).

Rearranging the terms on the right-hand side yields the claim. ��
The previous claim and Claim 2 yield the following final result.
Claim 7. Pr[C succeeds] ≥ (1 − δ) + γδ

32 .

Proof. Indeed, we have

Pr[C succeeds] ≥
(

1 − t0 + Δ/2
k

) (
1 − ρΔ/2

ε

)
−

(
Dist(U , D2) + (1 − ρ) + ρ · e−n +

γδ

4

)
. (8)

For ρ = 1 − γδ
16 , ε = 2e−

γ2δ2k
64 , Δ = γδk and t0 = (1 − γ)δk, we get 1 − (t0 +

Δ/2)/k = 1 − δ + γδ/2 and 1 − ρΔ/2/ε ≥ 1 − e−γ2δ2k/64/2. By Claim 3, we have
that Dist(U , D2) ≤ γδ/8. So we can lowerbound the right-hand side of Eq. (8)
by

1−δ−(1−δ)e−γ2δ2k/64/2+(1−e−γ2δ2k/64/2)γδ/2−(γδ/8+γδ/16+ε−n+γδ/4),

which is at least 1 − δ + γδ/32, for sufficiently large n. ��

4 Open Problems

While the results here are fairly general, there are some obvious possible ex-
tensions. First, can similar results be proved for other domains, such as public-
coin protocols ([18]). Also, our bounds on the adversary’s success probability,
although asymptotically exponentially small, are quite weak when applied to
concrete problems such as actual CAPTCHA protocols with reasonable num-
bers of repetitions. Can the bounds be improved quantitatively, analogously to
how [6] improved the bounds from [4]? Finally, we would like to find more ap-
plications of our results, to such problems as making strong secret agreement
protocols from weak ones ([9]).



Chernoff-Type Direct Product Theorems 515

References

1. Aaronson, S.: Limitations of quantum advice and one-way communication. In:
Proceedings of the Nineteenth Annual IEEE Conference on Computational Com-
plexity, pp. 320–332. IEEE Computer Society Press, Los Alamitos (2004)

2. von Ahn, L., Blum, M., Hopper, N.J., Langford, J.: CAPTCHA: Using hard AI
problems for security. In: Biham, E. (ed.) Advances in Cryptology – EUROCRPYT
2003. LNCS, vol. 2656, pp. 294–311. Springer, Heidelberg (2003)

3. Babai, L., Fortnow, L., Nisan, N., Wigderson, A.: BPP has subexponential time
simulations unless EXPTIME has publishable proofs. Computational Complex-
ity 3, 307–318 (1993)

4. Bellare, M., Impagliazzo, R., Naor, M.: Does parallel repetition lower the error
in computationally sound protocols? In: Proceedings of the Thirty-Eighth Annual
IEEE Symposium on Foundations of Computer Science, pp. 374–383. IEEE Com-
puter Society Press, Los Alamitos (1997)

5. Chernoff, H.: A measure of asymptotic efficiency for tests of a hypothesis based on
the sum of observations. Annals of Mathematical Statistics 23, 493–509 (1952)

6. Canetti, R., Halevi, S., Steiner, M.: Hardness amplification of weakly verifiable
puzzles. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 17–33. Springer, Hei-
delberg (2005)

7. Gal, A., Halevi, S., Lipton, R., Petrank, E.: Computing from partial solutions.
In: Proceedings of the Fourteenth Annual IEEE Conference on Computational
Complexity, pp. 34–45. IEEE Computer Society Press, Los Alamitos (1999)

8. Goldreich, O., Nisan, N., Wigderson, A.: On Yao’s XOR-Lemma. Electronic Col-
loquium on Computational Complexity (TR95-050) (1995)

9. Holenstein, T.: Key agreement from weak bit agreement. In: Proceedings of the
37th ACM Symposium on Theory of Computing, pp. 664–673. ACM Press, New
York (2005)

10. Impagliazzo, R.: Hard-core distributions for somewhat hard problems. In: Proceed-
ings of the Thirty-Sixth Annual IEEE Symposium on Foundations of Computer
Science, pp. 538–545. IEEE Computer Society Press, Los Alamitos (1995)

11. Impagliazzo, R., Jaiswal, R., Kabanets, V.: Approximately list-decoding direct
product codes and uniform hardness amplification. In: Proceedings of the Forty-
Seventh Annual IEEE Symposium on Foundations of Computer Science (FOCS06),
pp. 187–196. IEEE Computer Society Press, Los Alamitos (2006)

12. Impagliazzo, R., Wigderson, A.: P=BPP if E requires exponential circuits: Deran-
domizing the XOR Lemma. In: Proceedings of the Twenty-Ninth Annual ACM
Symposium on Theory of Computing, pp. 220–229. ACM Press, New York (1997)

13. Klivans, A.R.: On the derandomization of constant depth circuits. In: Goemans,
M.X., Jansen, K., Rolim, J.D.P., Trevisan, L. (eds.) RANDOM 2001 and APPROX
2001. LNCS, vol. 2129. Springer, Heidelberg (2001)

14. Klauck, H., Spalek, R., de Wolf, R.: Quantum and classical strong direct prod-
uct theorems and optimal time-space tradeoffs. In: Proceedings of the Forty-Fifth
Annual IEEE Symposium on Foundations of Computer Science, pp. 12–21. IEEE
Computer Society Press, Los Alamitos (2004)

15. Levin, L.A.: One-way functions and pseudorandom generators. Combinatorica 7(4),
357–363 (1987)

16. Nisan, N., Rudich, S., Saks, M.: Products and help bits in decision trees. In: Pro-
ceedings of the Thirty-Fifth Annual IEEE Symposium on Foundations of Computer
Science, pp. 318–329. IEEE Computer Society Press, Los Alamitos (1994)



516 R. Impagliazzo, R. Jaiswal, and V. Kabanets

17. Parnafes, I., Raz, R., Wigderson, A.: Direct product results and the GCD problem,
in old and new communication models. In: Proceedings of the Twenty-Ninth An-
nual ACM Symposium on Theory of Computing, pp. 363–372. ACM Press, New
York (1997)

18. Pass, R., Venkitasubramaniam, M.: An efficient parallel repetition theorem for
arthur-merlin games. In: STOC’07 (to appear)

19. Pietrzak, K., Wikstrom, D.: Parallel repetition of computationally sound protocols
revisited. In: TCC’07, 2007 (to appear)

20. Raz, R.: A parallel repetition theorem. SIAM Journal on Computing 27(3), 763–803
(1998)

21. Shaltiel, R.: Towards proving strong direct product theorems. In: Proceedings of
the Sixteenth Annual IEEE Conference on Computational Complexity, pp. 107–
119. IEEE Computer Society Press, Los Alamitos (2001)

22. Trevisan, L.: List-decoding using the XOR lemma. In: Proceedings of the Forty-
Fourth Annual IEEE Symposium on Foundations of Computer Science, pp. 126–
135. IEEE Computer Society Press, Los Alamitos (2003)

23. Yao, A.C.: Theory and applications of trapdoor functions. In: Proceedings of the
Twenty-Third Annual IEEE Symposium on Foundations of Computer Science, pp.
80–91. IEEE Computer Society Press, Los Alamitos (1982)



Rerandomizable RCCA Encryption

Manoj Prabhakaran and Mike Rosulek

Department of Computer Science, University of Illinois, Urbana-Champaign
{mmp,rosulek}@uiuc.edu

Abstract. We give the first perfectly rerandomizable, Replayable-CCA
(RCCA) secure encryption scheme, positively answering an open problem
of Canetti et al. (CRYPTO 2003). Our encryption scheme, which we call
the Double-strand Cramer-Shoup scheme, is a non-trivial extension of the
popular Cramer-Shoup encryption. Its security is based on the standard
DDH assumption. To justify our definitions, we define a powerful “Re-
playable Message Posting” functionality in the Universally Composable
(UC) framework, and show that any encryption scheme that satisfies
our definitions of rerandomizability and RCCA security is a UC-secure
implementation of this functionality. Finally, we enhance the notion of
rerandomizable RCCA security by adding a receiver-anonymity (or key-
privacy) requirement, and show that it results in a correspondingly en-
hanced UC functionality. We leave open the problem of constructing a
scheme achieving this enhancement.

1 Introduction

Non-malleability and rerandomizability are opposing requirements to place on an
encryption scheme. Non-malleability insists that an adversary should not be able
to use one ciphertext to produce another one which decrypts to a related value.
Rerandomizability on the other hand requires that anyone can alter a ciphertext
into another ciphertext in an unlinkable way, such that both will decrypt to the
same value. Achieving this delicate tradeoff was proposed as an open problem
by Canetti et al. [7].

We present the first (perfectly) rerandomizable, RCCA-secure public-key en-
cryption scheme. Because our scheme is a non-trivial variant of the Cramer-
Shoup scheme, we call it the Double-strand Cramer-Shoup encryption. Like the
original Cramer-Shoup scheme, the security of our scheme is based on the De-
cisional Diffie Hellman (DDH) assumption. Additionally, our method of using
ciphertext components from two related groups may be of independent interest.

Going further, we give a combined security definition in the Universally-
Composable (UC) security framework by defining a “Replayable Message Post-
ing” functionality Frmp. As a justification of the original definitions of reran-
domizability and RCCA security, we show that any scheme which satisfies these
definitions is also a UC-secure realization of the functionality Frmp. (Here we
restrict ourselves to static adversaries, as opposed to adversaries who corrupt
the parties adaptively.) As an additional contribution on the definitional front,

A. Menezes (Ed.): CRYPTO 2007, LNCS 4622, pp. 517–534, 2007.
c© International Association for Cryptologic Research 2007



518 M. Prabhakaran and M. Rosulek

in Sect. 7.1, we introduce a notion of receiver anonymity for RCCA encryptions,
and a corresponding UC functionality.

Frmp is perhaps the most sophisticated functionality that has been UC-securely
realized in the standard model, i.e., without super-polynomial simulation, global
setups, or an honest majority assumption.

Once we achieve this UC-secure functionality, simple modifications can be
made to add extra functionality to our scheme, such as authentication and
replay-testability (the ability for a ciphertext’s recipient to check whether it
was obtained via rerandomization of another ciphertext, or was encrypted inde-
pendently).

Related work. Replayable-CCA security was proposed by Canetti et al. [7] as a
relaxation of standard CCA security. They also raised the question of whether
a scheme could be simultaneously rerandomizable and RCCA secure. Gröth [18]
presented a rerandomizable scheme that achieved a weaker form of RCCA se-
curity, and another with full RCCA security in the generic groups model. Our
work improves on [18], in that our scheme is more efficient, and we achieve full
RCCA security in a standard model.

Rerandomizable encryption schemes also appear using the term universal re-
encryption schemes (universal refers to the fact that the rerandomization/re-
encryption routine does not require the public key), introduced by Golle et al.
[17]. Their CPA-secure construction is based on El Gamal, and our construction
can be viewed as a non-trivial extension of their approach, applied to the Cramer-
Shoup construction.

The notion of receiver-anonymity (key-privacy) that we consider in Sect. 7.1
is an extension to the RCCA setting, of a notion due to Bellare et al. [3] (who
introduced it for the simpler CPA and CCA settings).

As mentioned before, our encryption scheme is based on the Cramer-Shoup
scheme [9,10], which in turn is modeled after El Gamal encryption [14]. The
security of these schemes and our own is based on the DDH assumption (see,
e.g. [4]). Cramer and Shoup [10] later showed a wide range of encryption schemes
based on various assumptions which provide CCA security, under a framework
subsuming their original scheme [9]. We believe that much of their generalization
can be adapted to our current work as well, though we do not investigate this
in detail here (see the remark in the concluding section).

Shoup [26] and An et al. [1] introduced a variant of RCCA security, called
benignly malleable, or gCCA2, security. It is similar to RCCA security, but uses
an arbitrary equivalence relation over ciphertexts to define the notion of replay-
ing. However, these definitions preclude rerandomizability by requiring that the
equivalence relation be efficiently computable publicly. A simple extension of
our scheme achieves a modified definition of RCCA security, where the replay-
equivalence relation is computable only by the ciphertext’s designated recip-
ient. Such a functionality also precludes perfect rerandomization, though our
modification does achieve a computational relaxation of the rerandomization
requirement.



Rerandomizable RCCA Encryption 519

Motivating applications. Golle et al. [17] propose a CPA-secure rerandomiz-
able encryption scheme for use in mixnets [8] with applications to RFID tag
anonymization. Implementing a re-encryption mixnet using a rerandomizable en-
cryption scheme provides a significant simplification over previous implementa-
tions, which require distributed key management. Golle et al. call such networks
universal mixnets. Some attempts have been made to strengthen their scheme
against a näıve chosen-ciphertext attack, including by Klonowski et al. [19], who
augment the scheme with a rerandomizable RSA signature. However, these mod-
ifications still do not prevent all practical chosen-ciphertext attacks, as demon-
strated by Danezis [11].

We anticipate that by achieving full RCCA security, our construction will
be an important step towards universal mixnets that do not suffer from active
chosen-ciphertext attacks. However, mix-net applications tend to also require a
“receiver-anonymity” property (see Sect. 7.1) from the underlying encryption
scheme. In fact, the utility of rerandomizable RCCA encryption is greatly en-
hanced by this anonymity property. We do not have a scheme which achieves
this. However, our current result is motivated in part by the power of such a
scheme. We illustrate its potential with another example application (adapted
from a private communication [20]). Consider a (peer-to-peer) network routing
scenario, with the following requirements: (1) each packet should carry a path
object which encodes its entire path to the destination; (2) each node in the net-
work should not get any information from a path object other than the length
of the path and the next hop in the path; and (3) there should be a mechanism
to broadcast link-failure information so that any node holding a path object
can check if the failed link occurs in that path, without gaining any additional
information. This problem is somewhat similar to “Onion Routing” [5,12,16,21].
However, adding requirement (3) makes the above problem fundamentally dif-
ferent. Using an anonymous, rerandomizable, RCCA-secure encryption scheme
one can achieve this selective revealing property as well as anonymity. We defer
a more formal treatment of this scenario to future work.

Due to lack of space, we have omitted many details in this paper. We refer
the readers to the online version for a detailed presentation [24].

2 Definitions

We call a function ν negligible in n if it asymptotically approaches zero faster
than any inverse polynomial in n; that is, ν(n) = n−ω(1). We call a function
noticeable if it is non-negligible. A probability is overwhelming if it is negligibly
close to 1 (negligible in an implicit security parameter). In all the encryption
schemes we consider, the security parameter is the number of bits needed to
represent an element from the underlying cyclic group.

2.1 Encryption and Security Definitions

In this section we give the syntax of a perfectly rerandomizable encryption
scheme, and then state our security requirements, which are formulated as



520 M. Prabhakaran and M. Rosulek

indistinguishability experiments. Later, we justify these indistinguishability-based
definitions by showing that any scheme which satisfies them is a secure realiza-
tion of a powerful functionality in the UC security model, which we define in
Sect. 5.

Syntax and correctness of a perfectly rerandomizable encryption scheme. A per-
fectly rerandomizable encryption scheme consists of four polynomial-time algo-
rithms (polynomial in the implicit security parameter):

1. KeyGen: a randomized algorithm which outputs a public key PK and a cor-
responding private key SK.

2. Enc: a randomized encryption algorithm which takes a plaintext (from a
plaintext space) and a public key, and outputs a ciphertext.

3. Rerand: a randomized algorithm which takes a ciphertext and outputs an-
other ciphertext.

4. Dec: a deterministic decryption algorithm which takes a private key and a
ciphertext, and outputs either a plaintext or an error indicator ⊥.

We emphasize that the Rerand procedure takes only a ciphertext as input, and
in particular, no public key.

We require the scheme to satisfy the following correctness properties for all
key pairs (PK, SK) ← KeyGen:

– For every plaintext msg and every (honestly generated) ciphertext ζ ←
EncPK(msg), we must have DecSK(ζ) = msg.

– For every independently chosen (PK ′, SK′) ← KeyGen, the sets of honestly
generated ciphertexts under PK and PK′ are disjoint, with overwhelming
probability over the randomness of KeyGen.

– For every plaintext msg and every (honestly generated) ciphertext ζ ←
EncPK(msg), the distribution of Rerand(ζ) is identical to that of EncPK(msg).

– For every (purported) ciphertext ζ and every ζ′ ← Rerand(ζ), we must have
DecSK(ζ′) = DecSK(ζ).

In other words, decryption is the inverse of encryption, and ciphertexts can
be labeled “honestly generated” for at most one honestly generated key pair.
We require that rerandomizing an honestly generated ciphertext induces the
same distribution as an independent encryption of the same message, while the
only guarantee for an adversarially generated ciphertext is that rerandomization
preserves the value of its decryption (under all private keys).

Perfect vs. computational rerandomization. For simplicity, we only consider sta-
tistically perfect rerandomization. However, for most purposes (including our
UC functionality), a computational relaxation suffices. Computational reran-
domization can be formulated as an indistinguishability experiment against an
adversary; given two ciphertexts (of a chosen plaintext), no adversary can have a
significant advantage in determining whether they are independent encryptions
or if one is a rerandomization of the other. As in our other security experiments,
the adversary is given access to a decryption oracle.



Rerandomizable RCCA Encryption 521

Replayable-CCA (RCCA) security. We use the definition from Canetti et al. [7].
An encryption scheme is said to be RCCA secure if the advantage of any PPT
adversary A in the following experiment is negligible:

1. Setup: Pick (PK, SK) ← KeyGen. A is given PK.
2. Phase I: A gets access to the decryption oracle DecSK(·).
3. Challenge: A outputs a pair of plaintexts (msg0, msg1). Pick b ← {0, 1}

and let ζ∗ ← EncPK(msgb). A is given ζ∗.
4. Phase II: A gets access to a guarded decryption oracle GDec(msg0,msg1)

SK which
on input ζ, first checks if DecSK(ζ) ∈ {msg0, msg1}. If so, it returns replay;
otherwise it returns DecSK(ζ).

5. Guess: A outputs a bit b′ ∈ {0, 1}. The advantage of A in this experiment
is Pr[b′ = b] − 1

2 .

Tightness of decryption. An encryption scheme is said to have tight decryption
if the success probability of any PPT adversary A in the following experiment
is negligible:

1. Pick (PK, SK) ← KeyGen and give PK to A.
2. A gets access to the decryption oracle DecSK(·).
3. A outputs a ciphertext ζ. A is said to succeed if DecSK(ζ) = msg �= ⊥ for

some msg, yet ζ is not in the range of EncPK(msg).

Observe that when combined with correctness property (2), this implies that an
adversary cannot generate a ciphertext which successfully decrypts under more
than one honestly generated key. Such a property is useful in achieving a more
robust definition of our UC functionality Frmp in Sect. 5 (without it, a slightly
weaker yet still meaningful definition is achievable).

2.2 Decisional Diffie-Hellman (DDH) Assumption

Let G be a (multiplicative) cyclic group of prime order p. The Decisional Diffie-
Hellman (DDH) assumption in G is that the following two distributions are
computationally indistinguishable:

{(g, ga, gb, gab)}g←G;a,b←Zp and {(g, ga, gb, gc)}g←G;a,b,c←Zp .

Here, x ← X denotes that x is drawn uniformly at random from a set X .

Cunningham chains. Our construction requires two (multiplicative) cyclic groups
with a specific relationship: G of prime1 order p, and Ĝ of prime order q, where Ĝ

is a subgroup of Z
∗
p. We require the DDH assumption to hold in both groups (with

respect to the same security parameter).
As a concrete example, the DDH assumption is believed to hold in QR

∗
p, the

group of quadratic residues modulo p, where p and p−1
2 are prime (i.e, p is a safe

1 It is likely that our security analysis can be extended to groups of orders with large
prime factors, as is done in [10]. For simplicity, we do not consider this here.



522 M. Prabhakaran and M. Rosulek

prime). Given a sequence of primes (q, 2q+1, 4q+3), the two groups Ĝ = QR
∗
2q+1

and G = QR
∗
4q+3 satisfy the needs of our construction. A sequence of primes of

this form is called a Cunningham chain (of the first kind) of length 3 (see [2]).
Such Cunningham chains are known to exist having q as large as 20,000 bits. It
is conjectured that there are infinitely many such chains.

3 Motivating the Double-Strand Construction

Conceptually, the crucial enabling idea in our construction is that of using two
“strands” of ciphertexts which can be recombined with each other for rerandom-
ization without changing the encrypted value. To motivate this idea, we sketch
the rerandomizable scheme of Golle et al. [17], which is based on the El Gamal
scheme and secure against chosen plaintext attacks.

Recall that in an El Gamal encryption scheme over a group G of order p, the
private key is a ∈ Zp and the corresponding public key is A = ga. A message
μ ∈ G is encrypted into the pair (gv, μAv) for a random v ∈ Zp.

To encrypt a message μ ∈ G in a “Double-strand El Gamal” scheme, we
generate two (independent) El Gamal ciphertexts: one of μ (say, C0) and one
of the identity element in G (say, C1). Such a double-strand ciphertext (C0, C1)
can be rerandomized by computing (C′0, C

′
1) = (C0C

r
1 , Cs

1) for random r, s ← Zp

(where the operations on C0 and C1 are component-wise).
Our construction adapts this paradigm of rerandomization for Cramer-Shoup

ciphertexts, and when chosen ciphertext attacks are considered. The main tech-
nical difficulty is in ensuring that the prescribed rerandomization procedure is
the only way in which “strands” can be used to generate a valid ciphertexts.

Cramer-Shoup encryption. The Cramer-Shoup scheme [9] uses a group G of
prime order p in which the DDH assumption is believed to hold. The private
key is b1, b2, c1, c2, d1, d2 ∈ Zp and the public key is g1, g2 ∈ G, B =

∏2
i=1 gbi

i ,
C =

∏2
i=1 gci

i , and D =
∏2

i=1 gdi

i .
To encrypt a message msg, first pick x ∈ Zp. and for i = 1, 2 let and Xi = gx

i .
Encode msg into an element μ in G. The ciphertext is (X1, X2, μBx, (CDm)x)
where m = H(X1, X2, μBx) and H is a collision-resistant hash function.

In our scheme the ciphertext will contain two “strands,” each one similar to
a Cramer-Shoup ciphertext, allowing rerandomization as in the example above.
However, instead of pairs we require 5-tuples of gi, bi, ci, di (i.e., for i = 1, . . . , 5).
To allow for rerandomization, we use a direct encoding of the message for the
exponent m (instead of a hash of part of the ciphertext). Finally, we thwart
attacks which splice together strands from different encryptions by correlating
the two strands with shared random masks.

Our security analysis is more complicated than the ones in [3,9,18]. However
all these analyses as well as the current one follow the basic idea that if an
encryption were to be carried out using the secret key in a “bad” way, the
result will remain indistinguishable from an actual encryption (by the DDH
assumption), but will also become statistically independent of the message and
the public key.



Rerandomizable RCCA Encryption 523

4 Our Construction

In this section we describe our main construction, the Double-strand Cramer-
Shoup (DSCS) encryption scheme. First, we introduce a simpler encryption
scheme that is used as a component of the main scheme.

4.1 Double-Strand Malleable Encryption Scheme

We now define a rerandomizable encryption scheme which we call the “Double-
strand malleable encryption” (DSME). As its name suggests, it is malleable,
so it does not achieve our notions of RCCA security. However, it introduces
the double-strand paradigm for rerandomization which we will use in our main
construction. We will also use our DSME scheme as a component in our main
construction, where its malleability will actually be a vital feature.

System parameters. A cyclic multiplicative group Ĝ of prime order q. Ĝ also
acts as the message space for this scheme.

Key generation. Pick random generators ĝ1, ĝ2, ĝ3 from Ĝ, and random a =
(a1, a2, a3) from (Zq)3. The private key is a. The public key consists of ĝ1, ĝ2,
ĝ3, and A =

∏3
j=1 ĝ

aj

j .

Encryption: MEncMPK(u ∈ Ĝ):

– Pick random v, w ∈ Zq. For j = 1, 2, 3: let Vj = ĝv
j and Wj = ĝw

j .
– Output (V, uAv,W, Aw), where V = (V1, V2, V3) and W = (W1, W2, W3).

Decryption: MDecMSK(U = (V, AV ,W, AW )):

– Check ciphertext integrity: Check if AW
?=

∏3
j=1 W

aj

j . If not, output ⊥.
– Derive plaintext: Output AV /

∏3
j=1 V

aj

j .

Rerandomization: MRerand(U = (V, AV ,W, AW )): The only randomness used
in MEnc is the choice of v and w in Ĝ. We can rerandomize both of these
quantities by choosing random s, t ∈ Zq and outputting the following ciphertext:

U ′ = (VWs, AV · As
W ,Wt, At

W ).

Here VWs and Wt denote component-wise operations. It is not hard to see that
if U is in the range of MEncMPK(u) (with random choices v and w), then U ′ is
in the range of MEncMPK(u) with corresponding random choices v′ = v + sw
and w′ = tw.

Homomorphic operation (multiplication by known value): Let u′ ∈ Ĝ and let
U = (V, AV ,W, AW ) be a DSME ciphertext. We define the following operation:



524 M. Prabhakaran and M. Rosulek

u′ ⊗ U
def= (V, u′ · AV ,W, AW ).

It is not hard to see that for all private keys MSK, if MDecMSK(U) �= ⊥
then MDecMSK(u′ ⊗ U) = u′ · MDecMSK(U), and if MDecMSK(U) = ⊥ then
MDecMSK(U ′) = ⊥ as well.

Observe that this scheme is malleable under more than just multiplication by
a known quantity. For instance, given r ∈ Zq and an encryption of u, one can
derive an encryption of ur. As it turns out, the way we use DSME in the main
construction ensures that we achieve our final security despite such additional
malleabilities.

4.2 Double-Strand Cramer-Shoup Encryption Scheme

Now we give our main construction: a rerandomizable, RCCA-secure encryption
scheme called the “Double-strand Cramer-Shoup” (DSCS) scheme. At the high
level, it has two Cramer-Shoup encryption strands, one carrying the message,
and the other to help rerandomize it. But unlike in the Cramer-Shoup scheme,
we need to allow rerandomization, and so we do not use a prefix of the ciphertext
itself in ensuring consistency; instead we use a direct encoding of the plaintext.

Further, we must prevent the possibility of mixing together strands from two
different encryptions of the same message (say, in the manner in which rerandom-
izability allows two strands to be mixed together) to obtain a ciphertext which
successfully decrypts, which would yield a successful adversarial strategy in our
security experiments. For this, we correlate the two strands of a ciphertext with
shared random masks. These masks are random exponents which are separately
encrypted using the malleable DSME scheme described above (so that they may
be hidden from everyone but the designated recipient, but also be rerandomized
via the DSME scheme’s homomorphic operation).

Finally, we must restrict the ways in which a ciphertext’s two strands can be
recombined, so that essentially the only way in which the two strands can be
used to generate a ciphertext that decrypts successfully is to combine the two
strands in the manner prescribed in the Rerand algorithm. To accomplish this,
we perturb the exponents of the message-carrying strand by an additional (fixed)
vector. Intuitively, this additive perturbance must remain present in the message-
carrying strand of a ciphertext, which restricts the ways in which that strand
can be combined with things. As a side-effect, our construction requires longer
strands (i.e., more components) than in the original Cramer-Shoup scheme.

System parameters. A cyclic multiplicative group G of prime order p. A space of
messages. An injective encoding encodeG of messages into G. An injective map-
ping encodeZp of messages into Zp (or into Z

∗
p, without any significant difference).

These functions should be efficiently computable in both directions.
We also require a secure DSME scheme over a group Ĝ of prime order q,

where Ĝ is also a subgroup of Z
∗
p. This relationship is crucial, as the homomor-

phic operation ⊗ of the DSME scheme must coincide with multiplication in the
exponent in G.



Rerandomizable RCCA Encryption 525

Finally, we require a fixed vector z = (z1, . . . , z5) ∈ (Zp)5 with a certain
degenerate property. For our purposes, z = (0, 0, 0, 1, 1) is sufficient.

Key generation. Generate 5 keypairs for the DSME scheme in Ĝ. Call them
Ai, ai for i = 1, . . . , 5.

Pick random generators g1, . . . , g5 ∈ G, and random b = (b1, . . . , b5), c =
(c1, . . . , c5),d = (d1, . . . , d5) from (Zp)5. The private key consists of b, c,d and
the 5 private keys for the DSME scheme. The public key consists of (g1, . . . g5),
the 5 public keys for the DSME scheme, and the following values:

B =
∏5

i=1 gbi

i , C =
∏5

i=1 gci

i , D =
∏5

i=1 gdi

i .

Encryption: EncPK(msg):

– Pick random x, y ∈ Z
∗
p and random u1, . . . , u5 ∈ Ĝ.

– For i = 1, . . . , 5: let Xi = g
(x+zi)ui

i ; Yi = gyui

i ; and Ui = MEncAi(ui).
– Let μ = encodeG(msg), and m = encodeZp(msg).
– Output:

(X, μBx, (CDm)x,Y, By, (CDm)y,U),

where U = (U1, . . . , U5),X = (X1, . . . , X5),Y = (Y1, . . . , Y5).

Decryption: DecSK(ζ = (X, BX , PX ,Y, BY , PY ,U)):

– Decrypt Ui’s: For i = 1, . . . , 5: set ui = MDecai(Ui). If any ui = ⊥, imme-
diately output ⊥.

– Strip ui’s and zi’s: For i = 1, . . . , 5: set Xi = X
1/ui

i g−zi

i and Y i = Y
1/ui

i .
– Derive purported plaintext: Set μ = BX/

∏5
i=1 X

bi

i , msg = encode−1
G

(μ),
and m = encodeZp(msg).

– Check ciphertext integrity: Check the following conditions:

BY
?=

∏5
i=1 Y

bi

i ; PX
?=

∏5
i=1 X

ci+dim

i ; PY
?=

∏5
i=1 Y

ci+dim

i .

If any checks fail, output ⊥. Otherwise output msg.

Rerandomization: Rerand(ζ = (X, BX , PX ,Y, BY , PY ,U)): The only random-
ness used in Enc is the choice of x, y, u = (u1, . . . , u5), and the randomness used
in each instance of MEnc. We can rerandomize each of these quantities by choos-
ing random r1, . . . , r5 ∈ Ĝ, random s, t ∈ Z

∗
p, and constructing a ciphertext

which corresponds to an encryption of the same message, with corresponding
random choices u′i = uiri, x′ = x + ys, and y′ = yt:

– For i = 1, . . . , 5, set U ′i = MRerand(ri ⊗ Ui); X ′i = (XiY
s
i )ri ; and Y ′i = Y rit

i .
– B′X = BXBs

Y and P ′X = PXP s
Y .

– B′Y = Bt
Y and P ′Y = P t

Y .

The rerandomized ciphertext is ζ′ = (X′, B′X , P ′X ,Y′, B′Y , P ′Y ,U′).



526 M. Prabhakaran and M. Rosulek

4.3 Complexity

The complexities of the DSCS scheme are summarized in Table 1 and Table 2.2

Clearly our scheme is much less efficient than the Cramer-Shoup encryption

Table 1. Number of elements

�G Zq G Zp

Public key 20 - 8 -
Private key - 15 - 15
Ciphertext 40 - 14 -

Table 2. Group operations performed

exp. mult. inv.
�G G Z

∗
p G Z

∗
p G

Enc 40 16 15 3 0 0
Dec (worst case) 30 35 40 22 10 1
Rerand 36 19 40 7 0 0

scheme. On the other hand, it is much more efficient than the only previously
proposed rerandomizable (weak) RCCA-secure scheme [18], which used O(k)
group elements to encode a k-bit message (or in other words, to be able to
use the group itself as the message space, it used O(log p) group elements). In
fact, if we restrict ourselves to weak RCCA security (as defined in [18]) and a
computational version of rerandomizability, our construction can be simplified
to have only 10 group elements (we omit the details of that construction in this
paper).

Rerandomizable RCCA security is a significantly harder problem by our cur-
rent state of knowledge. Despite the inefficiency, we believe that by providing
the first complete solution (i.e., not in the generic group model) we have not
only solved the problem from a theoretical perspective, but also opened up the
possibility of efficient and practical constructions.

5 Replayable Message Posting

We define the “Replayable Message Posting” functionality Frmp in the Uni-
versally Composable (UC) security framework [6,22], also variously known as
environmental security [15,25] and network-aware security [23] framework.

This functionality concisely presents the security achieved by a rerandomiz-
able, RCCA-secure encryption scheme. The functionality allows parties to pub-
licly post messages which are represented by abstract handles, arbitrary strings
provided by the adversary. The adversary is not told the actual message (un-
less, of course, the recipient is corrupted by the adversary). Only the designated
receiver is allowed to obtain the corresponding message from the functionality.

Additionally, Frmp provides a reposting functionality: any party can “repost”
(i.e., make a copy of) any existing handle. Requesting a repost does not reveal the
message. To the other parties (including the adversary and the original message’s
recipient), the repost appears exactly like a normal message posting; i.e, the

2 Multiplication and inversion operations in Z
∗
p include operations in the subgroup �G.

We assume that for �gi elements of the public key, �g−1
i can be precomputed.



Rerandomizable RCCA Encryption 527

functionality’s external behavior is no different for a repost versus a normal
post.

A similar functionality Frpke was defined by Canetti et. al [7] to capture
(not necessarily rerandomizable) RCCA security. Frpke is itself a modification
of the Fpke functionality of [6], which modeled CCA security. Both of these func-
tionalities similarly represent messages via abstract handles. However, the most
important distinction between these two functionalities is that Frmp provides
the ability to repost handles as a feature; thus, it does not include the notion of
“decrypting” handles which are not previously known to the functionality.

We now formally define the behavior of Frmp. It accepts the following four
kinds of requests from parties:

Registration: On receiving a message register from a party sender, the functional-
ity sends (id-req, sender) to the adversary, and expects in response an identifier
string id.3 If the string received in response has been already used, ignore the
request. Otherwise respond to sender with the string id, and also send a message
(id-announce, id) to all other parties.

Additionally, we reserve a special identifier id⊥ for the adversary. The adver-
sary need not explicitly register to use this identifier, nor is it announced to
the other parties. We also insist that only corrupted parties are allowed to post
messages for id⊥ (though honest parties may repost the resulting handles).4

Message posting: On receiving a request (post, id, msg) from a party sender, the
functionality behaves as follows:5 If id is not registered, ignore the request.

If id is registered to an uncorrupted party, send (handle-req, sender, id) to
the adversary; otherwise send (handle-req, sender, id, msg) to the adversary.
In both cases, expect a string handle in return. If handle has been previously
used, ignore this request. Otherwise, record (handle, sender, id, msg) internally
and publish (handle-announce, handle, id) to all registered parties.

Note that if the recipient of a message is corrupted, it is reasonable for the
functionality to reveal msg to the adversary when requesting the handle.

Message reposting: On receiving a message (repost, handle) from a party sender,
the functionality behaves as follows: If handle is not recorded internally, ignore
the request.

Otherwise, suppose (handle, sender′, id, msg) is recorded internally. If id is reg-
istered to an uncorrupted party, send (handle-req, sender, id) to the adversary;

3 This can be modified to have the functionality itself pick an id from a predeter-
mined distribution specified as part of the functionality. In this case the function-
ality will also provide the adversary with some auxiliary information about id (e.g.,
the randomness used in sampling id). For simplicity we do not use such a stronger
formulation.

4 id⊥ models the fact that an adversary may generate key pairs without announcing
them, and broadcast encryptions under those keys.

5 We assume that msg is from a predetermined message space, with size superpolyno-
mial in the security parameter; otherwise the request is ignored.



528 M. Prabhakaran and M. Rosulek

otherwise send (handle-req, sender, id, msg) to the adversary. In both cases,
expect a string handle′ in return. If handle′ has been previously used, ignore
this request. Otherwise, record (handle′, sender, id, msg) internally and publish
(handle-announce, handle′, id) to all registered parties.

As above, if the message’s recipient is corrupted, the functionality can legiti-
mately reveal msg to the adversary when requesting the handle.

Message reading: On receiving a message (get, handle) from a party, if a record
(handle, sender, id, msg) is recorded internally, and id is registered to this party,
then return (id, msg) to it. Otherwise ignore this request.

6 Results

We present two main results below. The first is that the DSCS encryption scheme
presented in Sect. 4 achieves the security definitions defined in Sect. 2.1. The
second result is that any construction which meets these guarantees is a secure
realization of the Frmp functionality defined in Sect. 5. For the complete proofs
of these results, we refer the reader to the full version of this paper [24].

Theorem 1. The DSCS scheme (Sect. 4) is a perfectly rerandomizable encryp-
tion scheme which satisfies the definitions of RCCA security and tight decryption
under the DDH assumption in G and Ĝ.

Proof overview: Here we sketch an outline of the proof of RCCA security.
It is convenient to formulate our proof in terms of alternate encryption and

decryption procedures. We remark that this outline is similar to that used in
previous proofs related to the Cramer-Shoup construction [3,9,10,13]. However,
the implementation is significantly more involved in our case.

Alternate encryption. First, we would like to argue that the ciphertexts hide
the message and the public key used in the encryption. For this we describe an
alternate encryption procedure AltEnc. AltEnc actually uses the private key to
generate ciphertexts. In short, instead of using {Xi = gx

i } and {Yi = gy
i }, AltEnc

picks random group elements for these ciphertext components, then uses the
private key to generate the other components according to the quantities which
are computed by Dec.

When AltEnc is used to generate the challenge ciphertext in the RCCA secu-
rity experiment, it follows from the DDH assumption in G and Ĝ that for any
adversary the experiment’s outcome does not change significantly. Additionally,
the ciphertexts produced by AltEnc are information-theoretically independent of
the message.

Alternate decryption. An adversary may be able to get information about the
message used in the encryption not only from the challenge ciphertext, but also
from the answers to the decryption queries that it makes. Indeed, since the de-
cryption oracle uses the private key there is a danger that information about



Rerandomizable RCCA Encryption 529

the private key is leaked, especially when the oracle answers maliciously crafted
ciphertexts. To show that our scheme does leak information in this way, we
describe an alternate decryption procedure AltDec to be used in the security ex-
periments, which can be implemented using only the public key(s) and challenge
ciphertext (quantities which are already known to the adversary). AltDec will
be computationally unbounded, but since it is accessed as an oracle, this does
not affect the analysis. More importantly, its functionality is statistically indis-
tinguishable from the honest decryption procedure (even when the adversary is
given a ciphertext generated by AltEnc).

By computing discrete logarithms of some components of its input and com-
paring with the public key and challenge ciphertext, the alternate decryption
procedure can check whether its input is “looks like” an honest encryption or
a rerandomization of the challenge ciphertext, and give the correct response in
these cases. To establish the correctness of this approach, we show that cipher-
texts which are rejected by AltDec would be rejected by the normal decryption
algorithm with overwhelming probability as well. The u and z components of
our construction are vital in preventing all other ways of combining the challenge
strands and the public key. This is the most delicate part of our proof.

We conclude that with these two modifications – alternate challenge ciphertext
and the alternate decryption procedure – the adversary’s view in the RCCA
security experiment is independent of the secret bit b, and so the adversary’s
advantage is zero. Furthermore, the outcome of this modified experiment is only
negligibly different from the outcome of the original experiment, so the security
claim follow. �

Theorem 2. Every rerandomizable encryption scheme which is RCCA-secure,
and has tight decryption6 is a secure realization of Frmp in the standard UC
model.

Proof overview: For simplicity we consider all communications to use a
broadcast channel. The scheme yields a protocol for Frmp in the following natural
way: public keys correspond to identifiers and ciphertexts correspond to handles.
To register oneself, one generates a key pair and broadcasts the public key. To
post a message to a party, one simply encrypts the message under his public
key. To repost a handle, one simply applies the rerandomization procedure. To
retrieve a message in a handle, one simply decrypts it using one’s private key.

To prove the security of this protocol, we demonstrate a simulator S for each
adversary A. The simulator S internally runs A and behaves as follows:

When Frmp receives a registration request from an honest party, it requests
an identifier from S. S generates a key pair, sends the public key as the identifier
string, and simulates to A that an honest party broadcasted this public key.
6 By relaxing the requirement that the scheme have tight decryption (and also the

correctness requirement that ciphertexts are not honest ciphertexts for more than
one honest key pair), we can still realize a weaker variant of Frmp. In this variant,
handles may be re-used, and the adversary is notified any time an honest party
reposts any handle which the adversary posted/reposted. We omit the details here.



530 M. Prabhakaran and M. Rosulek

When Frmp receives a post request addressed to an honest party (or a repost
request for such a handle), it requests a new handle from S, without revealing the
message. The ith time this happens, S generates the handle handleH

i by picking
a random message msgH

i and encrypting it under the given identity (say, public
key PKi). In its simulation, S uses this ciphertext as the one broadcast by the
sender. The correctness of this simulated ciphertext follows from the scheme’s
RCCA security property.

When A broadcasts a public key, S registers it as an identifier in Frmp. When
A broadcasts a ciphertext ζ, S behaves as follows:

1. If for some i, DecSKi
(ζ) = msgH

i (the ith random message chosen to sim-
ulate a ciphertext between honest parties), then S instructs Frmp to repost
handleH

i .
2. If DecSK(ζ) = msg �= ⊥ for any of the private keys SK that it picked while

registering honest parties, then S instructs Frmp to post msg, addressed to
the corresponding honest party.

3. Otherwise, ζ does not successfully decrypt under any of these private keys.
The jth time this happens, S picks a random message msgA

j and instructs
Frmp to post msgA

j to id⊥. It also remembers handleA
j = ζ.

In all the above cases, S sends ζ to Frmp as the handle for this new message.
Tight decryption ensures that at most one of the above decryptions succeeds.
Further, if one does succeed, the ciphertext must be in the support of honest
encryptions, so the perfect rerandomization condition holds for it.

When Frmp receives a post request addressed to a corrupted party (or a repost
request for such a handle), it sends the corresponding message msg and identifier
id to S, and requests a new handle.

1. If id = id⊥ and msg = msgA
j (the jth random message chosen to simulate an

adversarial ciphertext to Frmp), then S generates a handle by rerandomizing
the corresponding handleA

j .
2. Otherwise, S generates a handle by encrypting the message under the ap-

propriate public key.

In its simulation, S uses this ciphertext as the one broadcast by the sender. �

7 Extensions

Once our construction is made available as a UC-secure realization of Frmp, it is
easier to extend in a modular fashion. We first describe a few useful extensions
which are easily achieved, and then discuss extending the notion of receiver-
anonymity to rerandomizable RCCA encryption schemes.

Replay-test. In some applications, it is convenient if the recipient of a ciphertext
is able to check whether it is a rerandomization of another ciphertext, or an in-
dependent encryption of the same plaintext. We call such a feature a replay-test



Rerandomizable RCCA Encryption 531

feature. A replay-test precludes having perfect or even statistical rerandomiza-
tion, and so we must settle for a computational definition of rerandomization.

Redefining RCCA security and rerandomizability for schemes which include
a replay-test feature is a non-trivial extension of our current definitions. In par-
ticular, note that in a chosen ciphertext attack, the adversary should be allowed
to access a replay-test oracle as well as a decryption oracle, while responses from
the decryption oracle should be guarded based on the replay-test instead of a
check of the plaintext.

However, instead of modifying our security definitions based on standalone
experiments, we can directly formulate a new UC functionality. The functionality
is identical to Frmp, but it provides an additional test command: a party can give
two handles, and if it is the designated receiver of both the handles, then the
functionality tells it whether the two handles were derived as reposts of the
same original post. To do this, the functionality maintains some extra book-
keeping internally. This functionality can be easily achieved starting from Frmp:
each message is posted with a random nonce appended. To implement test, the
receiver retrieves the messages of the two handles and compares their nonces.

Authentication. As should be intuitive, authentication can be achieved by signing
the messages using a public-key signature scheme, before posting them. In terms
of the functionality, a separate register feature is provided which allows senders
to register themselves (this corresponds to publishing the signature verification
key). Then the functionality’s get command is augmented to provide not only the
message in the handle, but also who originally posted the handle. The identifiers
for receiving messages and sending messages are separate, but they can be tied
together (by signing the encryption scheme’s public key and publishing it), so
that only the signature verification keys need to be considered as identifiers in
the system.

Variable-length plaintexts. In our presentation of our encryption scheme, there
is a hard limit on the message length, because the message must be encoded as
an element in a group of fixed size. However, Frmp can easily be extended to al-
low messages of variable lengths: for this the longer message is split into smaller
pieces; a serial number and a common random nonce are appended to each piece;
the first piece also carries the total number of pieces. Then each piece is posted
using the fixed-length Frmp functionality. The decryption procedure performs
the obvious simple integrity checks on a set of ciphertexts and discards them if
they are not all consistent and complete. Note that the resulting modification to
the Frmp functionality tells the adversary the length of the message (i.e., number
of pieces) while posting or reposting a handle. It is straight-forward to construct
a simulator (on receiving a handle and a length, the simulator creates the ap-
propriate number of handles and reports to the adversary; when the adversary
reposts handles, the simulator will not make a repost to the functionality unless
all handles it generated for one variable-length handle are reposted together).We
note that these extensions can be applied one after the other.



532 M. Prabhakaran and M. Rosulek

7.1 Anonymity

Bellare et al. [3] introduced the notion of receiver-anonymity (or key-privacy) for
CPA and CCA secure encryption schemes, which we extend to the RCCA set-
ting. In a system with multiple users, rerandomizability of ciphertexts, without
receiver-anonymity, may not be satisfactory. For instance, while rerandomizabil-
ity allows unlinkability of multiple encryptions in terms of their contents, without
anonymity they could all be linked as going to the same receiver.

RCCA receiver-anonymity. An encryption scheme is said to be RCCA receiver-
anonymous if the advantage of any PPT adversary A in the following experiment
is negligible:

1. Setup: Pick (PK0, SK0) ← KeyGen and (PK1, SK1) ← KeyGen. A is given
(PK0, PK1)

2. Phase I: A gets access to the decryption oracles DecSK0(·) and DecSK1(·).
3. Challenge: A outputs a plaintext msg. Pick b ← {0, 1} and let ζ∗ ←

EncPKb
(msg). A is given ζ∗.

4. Phase II: A gets access to a guarded decryption oracle GDecmsg
SK0,SK1

(·),
which on input ζ, first checks if msg ∈ {DecSK0(ζ), DecSK1(ζ)}. If so, it
returns replay; otherwise it returns the pair (DecSK0(ζ), DecSK1(ζ)).

5. Guess: A outputs a bit b′ ∈ {0, 1}. The advantage of A in this experiment
is Pr[b′ = b] − 1

2 .

Our scheme does not achieve this definition of anonymity. We leave it as an
interesting open problem.

Modifications to Frmp. If a rerandomizable RCCA-secure encryption scheme
additionally meets this definition of RCCA anonymity, the scheme can be used
to implement an “anonymous” variant of Frmp. In this variant, the functionality
does not reveal the handle’s recipient in a handle-announce broadcast, nor in
the handle-req messages it sends to the adversary (unless the handle’s recipient
is corrupted).

In proving this, compared to the proof of Theorem 2, the only change in the
simulator for this modified functionality is that it uses a “dummy” public key
to generate all simulated ciphertexts addressed to honest recipients, instead of
using the correct key.

8 Conclusions and Future Directions

This work leads to several interesting questions. First, can the efficiency of
our scheme be improved? Public-key encryption schemes like Cramer-Shoup
are much less efficient than private-key schemes. To exploit the best of both
worlds, one can use a hybrid encryption scheme which uses a public-key en-
cryption scheme to share a private key, and then encrypt the actual voluminous
data with the private-key encryption. It is interesting to consider whether such



Rerandomizable RCCA Encryption 533

a hybrid scheme can be devised in a rerandomizable manner. To achieve perfect
rerandomization, the public-key scheme would have to be malleable (to reran-
domize the private key), and the private-key scheme should allow reencryption
which changes the key accordingly.

Second, can rerandomizable RCCA-secure schemes be constructed which are
also RCCA receiver-anonymous? As mentioned earlier, many applications re-
quire not only rerandomizability of the ciphertexts, but also receiver anonymity.

Third, can CCA-like tradeoffs be defined for encryption schemes with more so-
phisticated homomorphic features? In this work, we give a tight tradeoff, allowing
malleability via the identity function in the strongest manner, while prohibit-
ing all other kinds of malleability. How can one define (and achieve) a similar
tradeoff for, say, malleability via multiplication?

Finally, we based our schemes on the DDH assumption. However, as men-
tioned before, it is likely that the extensions of Cramer and Shoup [10] can
be adapted for our problem too. But we point out that our requirements on
the “Universal Hash Proofs” would be more demanding than what they re-
quire. In particular, when using the double-strand approach, we seem to require
5-universality instead of 2-universality, corresponding to our use of five bases
g1, . . . , g5 instead of just two.

Acknowledgments

We would like to acknowledge useful discussions with Rui Xue about the work
in [10]. We also thank Ran Canetti, Michael Loui, and the anonymous referees
for their helpful feedback on earlier drafts of this manuscript.

References

1. An, J.H., Dodis, Y., Rabin, T.: On the security of joint signature and encryption. In:
Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 83–107. Springer,
Heidelberg (2002)

2. Andersen, J.K., Weisstein, E.W.: Cunningham chain. From MathWorld–A Wolfram
Web Resource (2005), http://mathworld.wolfram.com/CunninghamChain.html

3. Bellare, M., Boldyreva, A., Desai, A., Pointcheval, D.: Key-privacy in public-key
encryption. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 566–582.
Springer, Heidelberg (2001)

4. Boneh, D.: The decision diffie-hellman problem. In: Buhler, J.P. (ed.) Algorithmic
Number Theory. LNCS, vol. 1423, pp. 48–63. Springer, Heidelberg (1998)

5. Camenisch, J., Lysyanskaya, A.: A formal treatment of onion routing. In: Shoup,
V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 169–187. Springer, Heidelberg (2005)

6. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. Cryptology ePrint Archive, Report 2000/067 (2005)

7. Canetti, R., Krawczyk, H., Nielsen, J.B.: Relaxing chosen-ciphertext security. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 565–582. Springer, Heidelberg
(2003)

8. Chaum, D.: Untraceable electronic mail, return addresses, and digital pseudonyms.
Commun. ACM 4(2) (February 1981)

http://mathworld.wolfram.com/CunninghamChain.html


534 M. Prabhakaran and M. Rosulek

9. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS,
vol. 1462. Springer, Heidelberg (1998)

10. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002)

11. Danezis, G.: Breaking four mix-related schemes based on universal re-encryption.
In: Proceedings of Information Security Conference 2006. Springer, Heidelberg
(2006)

12. Dingledine, R., Mathewson, N., Syverson, P.F.: Tor: The second-generation onion
router. In: USENIX Security Symposium, pp. 303–320. USENIX (2004)

13. Elkind, E., Sahai, A.: A unified methodology for constructing public-key encryp-
tion schemes secure against adaptive chosen-ciphertext attack. Cryptology ePrint
Archive, Report 2002/042 (2002), http://eprint.iacr.org/

14. Gamal, T.E.: A public key cryptosystem and a signature scheme based on discrete
logarithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196,
pp. 10–18. Springer, Heidelberg (1985)

15. Goldreich, O.: Foundations of Cryptography: Basic Applications. Cambridge Uni-
versity Press, Cambridge (2004)

16. Goldschlag, D.M., Reed, M.G., Syverson, P.F.: Onion routing. Commun.
ACM 42(2), 39–41 (1999)

17. Golle, P., Jakobsson, M., Juels, A., Syverson, P.: Universal re-encryption for
mixnets. In: Proceedings of the 2004 RSA Conference, Cryptographer’s track, San
Francisco, USA (February 2004)

18. Gröth, J.: Rerandomizable and replayable adaptive chosen ciphertext attack se-
cure cryptosystems. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 152–170.
Springer, Heidelberg (2004)

19. Klonowski, M., Kutylowski, M., Lauks, A., Zagórski, F.: Universal re-encryption
of signatures and controlling anonymous information flow. In: WARTACRYPT ’04
Conference on Cryptology. Bedlewo/Poznan (2006)

20. Lad, M.: Personal communication (2005)
21. The onion routing program. A program sponsored by the Office of Naval Research,

DARPA and the Naval Research Laboratory, http://www.onion-router.net/
22. Pfitzmann, B., Waidner, M.: Composition and integrity preservation of secure re-

active systems. In: ACM Conference on Computer and Communications Security,
pp. 245–254. ACM Press, New York (2000)

23. Prabhakaran, M.: New Notions of Security. PhD thesis, Department of Computer
Science, Princeton University (2005)

24. Prabhakaran, M., Rosulek, M.: Anonymous rerandomizable rcca encryption. Cryp-
tology ePrint Archive, Report 2007/119, (2007), http://eprint.iacr.org/

25. Prabhakaran, M., Sahai, A.: New notions of security: achieving universal com-
posability without trusted setup. In: STOC, pp. 242–251. ACM Press, New York
(2004)

26. Shoup, V.: A proposal for an iso standard for public key encryption. Cryptology
ePrint Archive, Report 2001/112, (2001), http://eprint.iacr.org/

http://eprint.iacr.org/
http://www.onion-router.net/
http://eprint.iacr.org/
http://eprint.iacr.org/


Deterministic and Efficiently Searchable
Encryption

Mihir Bellare1, Alexandra Boldyreva2, and Adam O’Neill2

1 Dept. of Computer Science & Engineering, University of California at San Diego,
9500 Gilman Drive, La Jolla, CA 92093, USA

mihir@cs.ucsd.edu
http://www-cse.ucsd.edu/users/mihir

2 College of Computing, Georgia Institute of Technology,
266 Ferst Drive, Atlanta, GA 30332, USA

{aboldyre,amoneill}@cc.gatech.edu
http://www.cc.gatech.edu/{∼ aboldyre, amoneill}

Abstract. We present as-strong-as-possible definitions of privacy, and
constructions achieving them, for public-key encryption schemes where
the encryption algorithm is deterministic. We obtain as a consequence
database encryption methods that permit fast (i.e. sub-linear, and in
fact logarithmic, time) search while provably providing privacy that is
as strong as possible subject to this fast search constraint. One of our
constructs, called RSA-DOAEP, has the added feature of being length
preserving, so that it is the first example of a public-key cipher. We gener-
alize this to obtain a notion of efficiently-searchable encryption schemes
which permit more flexible privacy to search-time trade-offs via a tech-
nique called bucketization. Our results answer much-asked questions in
the database community and provide foundations for work done there.

1 Introduction

The classical notions of privacy for public-key encryption schemes, mainly indis-
tinguishability or semantic security under chosen-plaintext or chosen-ciphertext
attack [34,43,47,28,10], can only be met when the encryption algorithm is ran-
domized. This paper treats the case where the encryption algorithm is determin-
istic. We begin by discussing the motivating application.

Fast search. Remote data storage in the form of outsourced databases is of
increasing interest [49]. Data will be stored in encrypted form. (The database
service provider is not trusted.) We are interested in a public key setting, where
anyone can add to the database encrypted data which a distinguished “receiver”
can retrieve and decrypt. The encryption scheme must permit search (by the
receiver) for data retrieval. Public-key encryption with keyword search (PEKS)
[15,1,17] is a solution that provably provides strong privacy but search takes
time linear in the size of the database. Given that databases can be terabytes
in size, this is prohibitive. The practical community indicates that they want
search on encrypted data to be as efficient as on unencrypted data, where a

A. Menezes (Ed.): CRYPTO 2007, LNCS 4622, pp. 535–552, 2007.
c© International Association for Cryptologic Research 2007



536 M. Bellare, A. Boldyreva, and A. O’Neill

record containing a given field value can be a retrieved in time logarithmic in the
size of the database. (For example, via appropriate tree-based data structures.)
Deterministic encryption allows just this. The encrypted fields can be stored in
the data structure, and one can find a target ciphertext in time logarithmic in
the size of the database. The question is what security one can expect. To answer
this, we need a definition of privacy for deterministic encryption.

A definition. One possibility is to just ask for one-wayness, but we would like to
protect partial information about the plaintext to the maximum extent possible.
To gauge what this could be, we note two inherent limitations of deterministic
encryption. First, no privacy is possible if the plaintext is known to come from
a small space. Indeed, knowing that c is the encryption under public key pk of a
plaintext x from a set X , the adversary can compute the encryption cx of x under
pk for all x ∈ X , and return as the decryption of c the x satisfying cx = c. We
address this by only requiring privacy when the plaintext is drawn from a space of
large min-entropy. Second, and more subtle, is that the ciphertext itself is partial
information about the plaintext. We address this by only requiring non-leakage
of partial information when the plaintext and partial information do not depend
on the public key. This is reasonable because in real life public keys are hidden
in our software and data does not depend on them. While certainly weaker than
the classical notions met by randomized schemes, our resulting notion of privacy
for deterministic encryption, which we call PRIV, is still quite strong. The next
question is how to achieve this new notion.

Constructions. Our first construction is generic and natural: Deterministi-
cally encrypt plaintext x by applying the encryption algorithm of a randomized
scheme but using as coins a hash of (the public key and) x. We show that this
“Encrypt-with-Hash” deterministic encryption scheme is PRIV secure in the
random oracle (RO) model of [12] assuming the starting randomized scheme
is IND-CPA secure. Our second construction is an extension of RSA-OAEP
[13,31]. The padding transform is deterministic but uses three Feistel rounds
rather than the two of OAEP. RSA-DOAEP is proven PRIV secure in the RO
model assuming RSA is one-way. This construction has the attractive feature
of being length-preserving. (The length of the ciphertext equals the length of
the plaintext.) This is important when bandwidth is expensive —senders in the
database setting could be power-constrained devices— and for securing legacy
code.

Historical context. Diffie and Hellman [26] suggested that one encrypt plain-
text x by applying to it an injective trapdoor function. A deterministic encryp-
tion scheme is just a family of injective trapdoor functions, so our definition is
an answer to the question of how much privacy Diffie-Hellman encryption can
provide. (We clarify that not all trapdoor functions meet our definition. For
example, plain RSA does not.)

In the symmetric setting, deterministic encryption is captured by ciphers in-
cluding block ciphers. So far there has been no public key analog. Deterministic



Deterministic and Efficiently Searchable Encryption 537

encryption meeting our definition provides one, and in particular RSA-DOAEP
is the first length-preserving public-key cipher.

Efficiently searchable encryption. We introduce the notion of efficiently
searchable encryption (ESE) schemes. These are schemes permitting fast (i.e. log-
arithmic time) search. Encryption may be randomized, but there is a determin-
istic, collision-resistant function of the plaintext that can also be computed from
the ciphertext and serves as a tag, permitting the usual (fast) comparison-based
search. Deterministic encryption schemes are a special case and the notion of
security remains the same. (Our PRIV definition does not actually require en-
cryption to be deterministic.) The benefit of the generalization is to permit
schemes with more flexible privacy to search-time trade-offs. Specifically, we an-
alyze a scheme from the database literature that we call “Hash-and-Encrypt.”
It encrypts the plaintext with a randomized scheme but also includes in the ci-
phertext a deterministic, collision-resistant hash of the plaintext. (This is an ESE
scheme with the hash playing the role of the tag, and so permits fast search.)
We prove that this scheme is PRIV secure in the RO model when the under-
lying encryption scheme is IND-CPA. With this scheme, loss of privacy due to
lack of entropy in the message space can be compensated for by increasing the
probability δ of hash collisions. (This can be done, for example, by truncating
the output of the hash function.) The trade-off is that the receiver gets “false
positives” in response to a search query and must spend the time to sift through
them to obtain the true answer. This technique is known as bucketization in the
database literature, but its security was not previously rigorously analyzed.

Discussion. Our schemes only provide privacy for plaintexts that have high
min-entropy. (This is inherent in being deterministic or efficiently searchable,
not a weakness of our particular constructs.) We do not claim database fields
being encrypted have high min-entropy. They might or they might not. The point
is that practitioners have indicated that they will not sacrifice search time for
privacy. Our claim is to provide the best possible privacy subject to allowing fast
search. In some cases, this may very well mean no privacy. But we also comment
that bucketization can increase privacy (at the cost of extra processing by the
receiver) when the database fields being encrypted do not have high min-entropy.

Extensions. Our basic PRIV definition, and the above-mentioned results, are
all for the CPA (chosen-plaintext attack) case. The definition easily extends to
the CCA (chosen-ciphertext attack) case, and we call the resulting notion PRIV-
CCA. Our Encrypt-with-Hash deterministic encryption scheme is not just PRIV,
but in fact PRIV-CCA, in the RO model even if the underlying randomized
encryption scheme is only IND-CPA, as long as the latter has the extra property
that no ciphertext is too likely. In Section 6 we detail this and also discuss how
RSA-DOAEP and Encrypt-and-Hash fare under CCA.

Open. All our constructs are in the RO model. An important open question is
to construct ESE or deterministic encryption schemes meeting our definition in
the standard model. We note that in the past also we have seen new notions
first emerge only with RO constructions achieving them, but later standard



538 M. Bellare, A. Boldyreva, and A. O’Neill

model constructs have been found. This happened for example for IBE [14,52]
and PEKS [17]. Note that the results of [32] rule out a standard model black-
box reduction from deterministic public-key encryption to ordinary public-key
encryption, but the former could still be built under other assumptions.

Related work. In the symmetric setting, deterministic encryption is both
easier to define and to achieve than in the asymmetric setting. Consider the
experiment that picks a random challenge bit b and key K and provides the
adversary with a left-or-right oracle that, given plaintexts x0, x1 returns the
encryption of xb under K. Security asks that the adversary find it hard to guess
b as long as its queries (x1

0, x
1
1), . . . , (x

q
0, x

q
1) satisfy the condition that x1

0, . . . , x
q
0

are all distinct and also x1
1, . . . , x

q
1 are all distinct. To the best of our knowledge,

this definition of privacy for deterministic symmetric encryption first appeared
in [11]. However, it is met by a PRP and in this sense deterministic symmetric
encryption goes back to [42].

Previous searchable encryption schemes provably meeting well-defined notions
of privacy include [15,35,1,6,16,17] in the public-key setting and [50,33,23] in the
symmetric setting. However, all these require linear-time search, meaning the
entire database must be scanned to answer each query. In the symmetric setting,
further assumptions such as the data being known in advance, and then having
the user (who is both the “sender” and “reciever” in this setting) pre-compute a
specialized index for the server, has been shown to permit efficiency comparable
to ours without sacrificing security [24]. Follow-on work to ours [4] treats ESE
(as we mean it here) in the symmetric setting, providing the symmetric analog
of what we do in our current paper.

Sub-linear time searchable encryption has been much targeted by the database
security community [45,3,36,25,38,39,41,37,19,51]. However, they mostly employ
weak, non-standard or non-existing primitives and lack definitions or proofs of
security. As a notable exception, Kantarcioglu and Clifton [40] recently called
for a new direction of research on secure database servers aiming instead for
“efficient encrypted database and query processing with provable security prop-
erties.” They also propose a new cryptographic definition that ensures schemes
reveal only the number of records accessed on each query, though a scheme
meeting the definition requires tamper-resistant trusted hardware on the server.

Definitions that, like ours, restrict security to high min-entropy plaintexts have
appeared before, specifically in the contexts of perfectly one-way probabilistic
hash functions (POWHFs) [20,21] and information-theoretically secure one-time
symmetric encryption [48,27]. The first however cannot be met by determinis-
tic schemes, and neither handle the public-key related subtleties we mentioned
above. (Namely that we must limit security to plaintexts not depending on the
public key.) Also our definition considers the encryption of multiple related mes-
sages while those of [20,21] consider only independent messages.

Use for other applications. We note that one can also use our definitions
to analyze other systems-security applications. In particular, a notion of “con-
vergent encryption” is proposed in [2,29] for the problem of eliminating wasted
space in an encrypted file system by combining duplicate files across multiple



Deterministic and Efficiently Searchable Encryption 539

users. Despite pinpointing the correct intuition for security of their scheme, they
are only able to formally show (for lack of a suitable security definition) that it
achieves the very weak security notion of one-wayness. One can use our defini-
tions to show that their scheme achieves much stronger security.

2 Notation and Conventions

Unless otherwise indicated, an algorithm may be randomized. An adversary is
either an algorithm or a tuple of algorithms. In the latter case, we say it is poly-
nomial time if each constituent algorithm is polynomial time. The abbreviation
“PT” stands for “polynomial time” and “PTA” for polynomial time algorithm
or adversary. If x is a string then |x| denotes its length in bits. By x1‖ · · · ‖xn we
denote an encoding of x1, . . . , xn from which x1, . . . , xn are uniquely recoverable.
Vectors are denoted in boldface, for example x. If x is a vector then |x| denotes
the number of components of x and x[i] denotes its ith component (1 ≤ i ≤ |x|).

3 Deterministic Encryption and Its Security

Asymmetric Encryption. An (asymmetric) encryption scheme Π = (K, E , D)
consists of three PTAs. The key-generation algorithm K takes input the unary
encoding 1k of the security parameter k to return a public key pk and matching
secret key sk. The encryption algorithm E takes pk and a plaintext x to return a
ciphertext. The deterministic decryption algorithm D takes sk and a ciphertext
c to return a plaintext. We require that D(sk, c) = x for all for all k and all
x ∈ PtSp(k), where the probability is over the experiment

(pk, sk) $← K(1k) ; c
$← E(pk, x)

and PtSp is a plaintext space associated to Π . Unless otherwise indicated, we
assume PtSp(k) = {0, 1}∗ for all k. We extend E to vectors via

Algorithm E(pk,x)

For i = 1, . . . , |x| do y[i] $← E(pk,x[i])
Return y

We say that Π is deterministic if E is deterministic. Although this is an important
case of interest below, this is not assumed by the definition, which also applies
when E is randomized.

Privacy Adversaries. A privacy adversary A = (Am, Ag) is a pair of PTAs.
We clarify that Am, Ag share neither coins nor state. Am takes input 1k but
not the public key, and returns a plaintext vector x together with some side
information t. Ag takes 1k, pk and an encryption x and tries to compute t.

The adversary must also obey the following rules. First, there must exist
functions v(·), n(·) such that |x| = v(k) and |x[i]| = n(k) for k, all (x, t) output
by Am(1k), and all 1 ≤ i ≤ v(k). Second, all plaintext vectors must have the same
equality pattern, meaning for all 1 ≤ i, j ≤ v(k) there is a symbol � ∈ {=, �=}



540 M. Bellare, A. Boldyreva, and A. O’Neill

such that x[i] � x[j] for all (x, t) output by Am(1k). We say that A has min-
entropy μ(·) if

Pr
[
x[i] = x : (x, t) $← Am(1k)

]
≤ 2−μ(k)

for all 1 ≤ i ≤ v(k) and all x ∈ {0, 1}∗. We say that A has high min-entropy if
μ(k) ∈ ω(log(k)).

The definition below is for chosen-plaintext attacks (CPA). In Section 6 we
extend the definition to take chosen-ciphertext attacks (CCA) into account.

The Definition. Let Π = (K, E , D) be an encryption scheme and A be a
privacy adversary as above. We associate to A, Π the following:

Experiment Exppriv-0
Π,A (k)

(pk, sk) $← K(1k)

(x1, t1)
$← Am(1k)

c $← E(pk,x1)

g
$← Ag(1k, pk, c)

If g = t1 then return 1
Else return 0

Experiment Exppriv-1
Π,A (k)

(pk, sk) $← K(1k)

(x0, t0)
$← Am(1k) ; (x1, t1)

$← Am(1k)

c $← E(pk,x0)

g
$← Ag(1k, pk, c)

If g = t1 then return 1
Else return 0

The advantage of a privacy adversary A against Π is

Advpriv
Π,A(k) = Pr

[
Exppriv-0

Π,A (k) = 1
]

− Pr
[
Exppriv-1

Π,A (k) = 1
]

.

We say that Π is PRIV secure if Advpriv
Π,A(·) is negligible for every PTA A with

high min-entropy.
As usual, in the random oracle (RO) model [12], all algorithms and adversaries

are given access to the RO(s). In particular, both Am and Ag get this access.
Let us now discuss some noteworthy aspects of the new definition.

Access to the Public Key. If Am were given pk, the definition would be
unachievable for deterministic Π . Indeed, Am(1k) could output (x, t) where x[1]
is chosen at random from {0, 1}k, |x| = 1, and t = E(pk,x). Then Ag(1k, pk, c)
could return c, and A would have min-entropy 2−k but

Advpriv
Π,A(k) ≥ 1 − 2−k .

Intuitively, the ciphertext is non-trivial information about the plaintext, show-
ing that any deterministic scheme leaks information about the plaintext that
depends on the public key. Our definition asks that information unrelated to the
public key not leak. Note that this also means that we provide security only for
messages unrelated to the public key, which is acceptable in practice, because
normal data is unlikely to depend on any public key. In real life, public keys are
abstractions hidden in our software, not strings we look at.

Vectors of Messages. The classical definitions explicitly only model the en-
cryption of a single plaintext, but a simple hybrid argument from [8] shows that
security when multiple plaintexts are encrypted follows. This hybrid argument



Deterministic and Efficiently Searchable Encryption 541

fails in our setting. One can give examples showing that the version of our de-
finition in which |x| is restricted to be 1 does not imply the stated version.
(See the full paper [9] for details.) This is why we have explicitly considered the
encryption of multiple messages.

The High Min-Entropy Requirement. In the absence of the high-entropy
restriction on A, it is clear that the definition would be unachievable for deter-
ministic Π . To see this, consider Am(1k) that outputs (0, 0) with probability 1/2
and (1, 1) with probability 1/2. Then Ag(1k, pk, c) could return 0 if E(pk, 0) = c
and 1 otherwise, giving A an advantage of 1/2. This reflects the fact that trial
encryption of candidate messages is always a possible attack when encryption is
deterministic.

Security for Multiple Users. The classical notions of privacy, as well as
ours, only model a single user (SU) setting, where there is just one receiver and
thus just one public key. An extension of the classical notions to cover multiple
users, each with their own public key, is made in [8,7], and these works go on to
show that SU security implies multi-user (MU) security in this case. We leave it
open to appropriately extend our definition to the MU setting and then answer
the following questions: does SU security imply MU security, and do our schemes
achieve MU security? But we conjecture that the answer to the first question is
“no” while the answer to the second is “yes.”

4 Secure Deterministic Encryption Schemes

We propose two constructions of deterministic schemes that we prove secure
under our definition.

4.1 Encrypt-with-Hash

We first propose a generic deterministic encryption scheme that replaces the
coins used by a standard encryption scheme with the hash of the message. More
formally, let AE = (K, E , D) be any public-key encryption scheme. Say that
E(pk, x) draws its coins from a set Coinspk(|x|). We write E(pk, x; R) for the
output of E on inputs pk, x and coins R. Let H : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ be
a hash function with the property that H(pk, x) ∈ Coinspk(|x|) for all pk and
all x ∈ {0, 1}∗. The RO-model “Encrypt-with-Hash” deterministic encryption
scheme EwH = (DK, DE , DD) is defined via

Alg DK(1k)

(pk, sk) $← K(1k)
Return (pk, (sk, pk))

Alg DEH(pk, x)
R ← H(pk, x)
y ← E(pk, x; R)
Return y

Alg DDH((sk, pk), y)
x ← D(sk, y)
R ← H(pk, x)
If E(pk, x; R) = y then

Return x
Else Return ⊥



542 M. Bellare, A. Boldyreva, and A. O’Neill

The max public-key probability mpk(·) of AE is defined as follows: for every k we
let mpk(k) be the maximum taken over all w ∈ {0, 1}∗ of the quantity

Pr
[

(pk, sk) $← K : pk = w
]

.

The following then implies that the construction achieves PRIV-security if the
starting encryption scheme is IND-CPA.

Theorem 1. Suppose there is a privacy adversary A = (Am, Ag) against EwH
with min-entropy μ, which outputs vectors of size v and makes at most qh queries
to its hash oracle. Then there exists an IND-CPA adversary B against AE such
that

Advpriv
EwH,A ≤ Advind-cpa

AE,B +
2qhv

2μ
+ 2qhmpk , (1)

where mpk is the max public-key probability of AE. Furthermore, B makes v
queries to its LR-oracle and its running-time is at most that of A plus O(1).

The proof is in [9].
We stress that mpk(·) is negligible for any IND-CPA scheme, so its being small

here is not an extra assumption. The reason we make the term explicit is that for
most schemes it is easy to analyze directly and is unconditionally exponentially-
small in the security parameter, which provides more precise security guarantees.
For example, in ElGamal [30], the public key contains a value gx, where x is a
random exponent in the secret key. In this case, the max public-key probability
is 1/|G|, where |G| is the order of the corresponding group. Also note that in
the theorem (and in the rest of the paper), we use the definition of IND-CPA
(or -CCA) that allows an adversary to make as many queries as it likes to its
LR-oracle. This is known to be equivalent (with loss in security by a factor less
than or equal to the total number of LR-queries made) to allowing only one such
query [8]. We also clarify that (1) is a relationship between functions of k, so we
are saying it holds for all k ∈ N. For simplicity of notation we omit k here and
further in the paper.

4.2 RSA-DOAEP, a Length-Preserving Deterministic Scheme

It is sometimes important to minimize the number of bits transmitted over the
network. We devise an efficient deterministic encryption scheme that is optimal
in this regard, namely is length-preserving. (That is, the length of the ciphertext
equals the length of the plaintext.) Length-preserving schemes can also be needed
for securing legacy code. Ours is the first such construction shown secure under a
definition of security substantially stronger than one-wayness, and in particular
is the first construction of an asymmetric cipher.

The Scheme. The construction is based on RSA-OAEP [13,31]. But in place
of the randomness in this scheme we use part of the message, and we add an
extra round to the underlying transform. Formally, our scheme is parameter-
ized by integers k0, k1 > 0 satisfying n > 2k0 and n ≥ k1. The plaintext



Deterministic and Efficiently Searchable Encryption 543

space PtSp(k) consists of all strings of length at least max(k1, 2k0 + 1). We
assume here for simplicity that all messages to encrypt have a fixed length
n = n(k). Let F be an RSA trapdoor-permutation generator with modulus
length |N | = k1. The key-generation algorithm of the associated RO-model de-
terministic encryption scheme RSA-DOAEP (“D” for “deterministic”) on input
1k runs F on the same input and returns (N, e) as the public key and (N, d) as
the secret key. Let s[i . . . j] denote bits i through j of a string s, for 1 ≤ i ≤ j ≤
|s|. The encryption and decryption algorithms have oracle access to functions
H1, H2 : {0, 1}∗ × {0, 1}∗ → {0, 1}k0 and R : {0, 1}∗ × {0, 1}∗ → {0, 1}n−k0, and
are defined as follows:

Algorithm EH1,H2,R((N, e), x)
xl ← x[1 . . . k0]
xr ← x[k0 + 1 . . . n]
s0 ← H1((N, e), xr) ⊕ xl

t0 ← R((N, e), s0) ⊕ xr

s1 ← H2((N, e), t0) ⊕ s0

x1 ← (s1‖t0)[1 . . . n − k1]
x2 ← (s1‖t0)[n − k1 + 1 . . . n]
y ← x1‖(xe

2 mod N)
Return y

Algorithm DH1,H2,R((N, d), y)
x1 ← y[1 . . . n − k1]
y1 ← y[n − k1 + 1 . . . n]
x ← x1‖(yd

1 mod N)
s1 ← x[1 . . . k0]
t0 ← x[k0 + 1 . . . n]
s0 ← H2((N, e), t0) ⊕ s1

xr ← R((N, e), s0) ⊕ t0
xl ← H1((N, e), xr) ⊕ s0

Return xl‖xr

Security. The following implies that the construction achieves PRIV-security
if RSA is one-way.

Theorem 2. Suppose there exists a privacy adversary A = (Am, Ag) against
RSA-DOAEP with min-entropy μ that makes at most qhi queries to oracle Hi for
i ∈ {1, 2} and qr to oracle R, and outputs vectors of size v with components of
length n. Let mpk be the max public-key probability of RSA-DOAEP. We consider
two cases:
• Case 1: n < k0 + k1. Then there is an inverter I against F such that

Advpriv
RSA-DOAEP,A ≤ qh2v ·

√
Advowf

F ,I + 24k0−2k1+10

− 22k0−k1+5 +
2qrv

2k0
+

2qh1qrv

2μ
+ 2(qh1 + qh2 + qr)mpk .

Furthermore the running-time of I is at most that of A plus O(qh2 log(qh2)+
k3
1).

• Case 2: n ≥ k0 + k1. Then there is an inverter I against RSA F such that

Advpriv
RSA-DOAEP,A ≤ v · Advowf

F ,I

+
2qrv

2k0
+

2qh1qrv

2μ
+ 2(qh1 + qh2 + qr)mpk .

Furthermore, the running-time of I is at most that of A plus O(qh2 log(qh2)).

The proof is in [9].



544 M. Bellare, A. Boldyreva, and A. O’Neill

In practice, we will have, e.g. k1 = 1024, and then one can set the parameter
k0 to, say, 160 bits to effectively maximize security regardless of which case of
the theorem applies (i.e. independent of the length of the particular plaintext
to encrypt). Thus, typically, letting n be the length to whose restriction the
message space gives the smallest adversarial min-entropy, the relation between
n − 160 and 1024 then determines which case of the theorem applies. We note
that the weaker security guarantee in Case 1 is analogous to the state-of-the-art
for RSA-OAEP itself [31,46].

Encrypting Long Messages. Typically, to encrypt long messages efficiently
using an asymmetric scheme in practice, one employs hybrid encryption. This
methodology in particular applies to the Encrypt-with-Hash construction, in
which the starting scheme can be a hybrid one. However, with RSA-DOAEP,
we do not provide an explicit way to securely utilize hybrid encryption while
keeping encryption deterministic, and, in any case, if using some form of hy-
brid encryption, RSA-DOAEP would no longer be length-preserving (since an
encrypted symmetric key would need to be included with the ciphertext). We
would therefore like to stress that one can efficiently encrypt long messages us-
ing RSA-DOAEP without making use of hybrid encryption. Intuitively, this is
possible because, somewhat similarly to the randomized case [18], the underly-
ing Feistel-network in the scheme acts as a kind of “all-or-nothing transform”
(AONT), such that unless an adversary with large min-entropy inverts the RSA
image in a ciphertext then it cannot recover any information about a (long)
message, for the practical parameter settings given above.

5 Efficiently Searchable Encryption (ESE)

We now turn to the aforementioned application of outsourced databases, where
data is sent to a remote server. The database server is untrusted. The data
in each field in the database is encrypted separately under the public key of
a receiver, who needs to be able to query the server to retrieve the encrypted
records containing particular data. Since databases are often large, a linear scan
by the server on each query is prohibitive. Deterministic encryption provides a
possible solution to the problem. A query, i.e. a ciphertext, specifies the exact
piece of data the server needs to locate, so the server can answer it just like for
unencrypted data, and hence search-time stays sub-linear (or logarithmic) in the
database size. In general though, encryption permitting efficient search does not
to be deterministic per se. Accordingly, we first define a new primitive that we
call efficiently searchable encryption (ESE), which more generally permits this
“efficient searchability.”

The New Primitive. The basic idea is to associate a “tag” to a plaintext, which
can be computed both by the client to form a particular query and by the server
from a ciphertext that encrypts it, so that it can index the data appropriately
in standard (e.g. tree-based) data structures and search according to the tags.
These functionalities are captured, respectively, by the functions F, G below.



Deterministic and Efficiently Searchable Encryption 545

Let AE = (K, E , D) be a public-key encryption scheme with associated plain-
text space PtSp(k). We say AE is a δ-efficiently searchable encryption (-ESE)
scheme where δ(·) < 1 if there exist PTAs F, G such that for every k we have

1. Perfect Consistency: For every x1 ∈ PtSp(k), the probability that F (pk, x1)
= G(pk, c) equals one, where the probability is over

(pk, sk) $← K(1k) ; c
$← E(pk, x1) .

2. Computational Soundness: For every PTA M that on input 1k outputs a pair
of distinct messages in PtSp(k), the probability that F (pk, x0) = G(pk,
E(pk, x1)) is at most δ(k), where the probability is over

(pk, sk) $← K(1k) ; (x0, x1)
$← M(1k) .

We refer to the output of F, G as the tag of the message or a corresponding
ciphertext.

Above, consistency ensures that the server can locate at least the desired ci-
phertexts on a query, because their tags and those of the plaintexts used in form-
ing the query will be the same. Soundness limits the number of false-positives
that are located as well, by bounding the number of other plaintexts that may
have the same tag, and precludes degeneracy, where the whole database is re-
turned on every query. With flexible trade-offs are desirable here, δ may be quite
large. This is why M is not given input pk; if it were, the soundness condition
would not make sense for large δ, since M could compute tags of messages itself
and then output two of the many it finds to agree on their tags. As in our defi-
nition of privacy, one way to view this restriction is as saying that, in practice,
the data is not picked as depending on any public key.

Security of ESE. The rule that a privacy adversary output vectors with the
same equality pattern has a natural interpretation in the context of ESE. Intu-
itively, this means that, in the outsourced database application, all the server
should learn about the data is which records contain the same attribute val-
ues/keywords and how many times each one occurs (called the occurrence pro-
file/distribution of the data).

As shown in the full version [9], any deterministic encryption scheme is 0-
efficiently searchable under our definition. We will see how under our PRIV
definition, relaxing the soundness of a different ESE scheme (i.e. increasing δ)
via “bucketization” (cf. [44,22]), with each plaintext being randomly assigned a
tag and some number of them corresponding to each tag (i.e. each “bucket”),
though requiring the receiver to do more work to filter out false-positive results
can mitigate the power of a dictionary attack by the server when min-entropy of
the data is low. While one might want to try to use such bucketization to hide
the occurrence profile of the data as well, or else to have the bucket distribution
depend on that of the input, as we explain in the full version [9], neither of
these are likely to be possible in practice. So we stick to the PRIV definition in
analyzing ESE.

We next analyze a simple probabilistic ESE construction occurring in the
database literature.



546 M. Bellare, A. Boldyreva, and A. O’Neill

5.1 Encrypt-and-Hash ESE

This scheme represents an approach suggested in the database literature, in
which the tag of a message is its hash. Let AE = (K, E , D) be any pubic-key
encryption scheme and H : {0, 1}∗ × {0, 1}∗ → {0, 1}lh for some lh > 0 be a
hash function. The RO-model “Encrypt-and-Hash” encryption scheme EaH =
(HK, HE , HD) is defined via

Alg HK(1k)

(pk, sk) $← K(1k)
Return (pk, (sk, pk))

Alg HEH(pk, x)
h ← H(pk, x)
y ← E(pk, x)
Return y‖h

Alg HDH((sk, pk), y‖h)
x ← D(sk, y)
h′ ← H(pk, x)
If h′ = h then

Return x
Else Return ⊥

Then EaH is efficiently searchable under our definition. (See the full version [9] for
details.) The following implies the construction is PRIV secure if the underlying
encryption scheme is IND-CPA, independent of lh, the proof of which appears
in [9].

Theorem 3. Suppose there is a privacy adversary A = (Am, Ag) against EaH
that outputs vectors of size v and makes at most qh queries to its hash oracle.
Then there exists an IND-CPA adversary B against AE such that

Advpriv
EaH,A ≤ Advind-cpa

AE,B +
2qhv

2μ
+ 2qhmpk ,

where mpk is the max public-key probability of AE. Furthermore, B makes v
queries to its LR-oracle and its running-time is at most that of A plus O(1).

The above tells us that the construction achieves security when min-entropy of
the data is high enough to preclude a dictionary attack by the adversary against
the scheme. What about when min-entropy of the data is not high? In this case,
the construct allows for bucketization as previously described. To obtain a γ-
ESE scheme (assuming that γ is power of two), one can simply set lh to be log γ.
The particular RO chosen for an instance of the scheme then determines the
plaintext-to-tag mapping. Intuitively, if the number of plaintexts corresponding
to any given tag is not too low, the scheme can still provide reasonable security
because the adversary will not be able to distinguish ciphertexts of plaintexts
with equal tags. The following captures the security gain from using this tech-
nique in a quantatitive way. The parameter j below represents a lower bound on
the minimum bucket-size (i.e. the minimum number of plaintexts associated to
any given tag) according to the choice of the RO, which we hope to be as large
as possible with a given hash-length lh for security.

Theorem 4. Suppose there is a privacy adversary A = (Am, Ag) against EaH
with min-entropy μ, which outputs vectors of length v and makes at most qh

queries to H. Then there exists an IND-CPA adversary B against AE such that

Advpriv
EaH,A ≤ Advind-cpa

AE,B +
2qhv

2μj
+ 2qhmpk ,



Deterministic and Efficiently Searchable Encryption 547

for any 0 ≤ qhv ≤ 2μ (larger qhv cannot increase A’s advantage) and any j > 0
with probability at least 1 − 1/(exp(2μ − 2lh(lh + (j − 1) ln lh))) over the choice
of H. Furthermore, B makes v queries to its LR-oracle and its running-time is
at most that of A plus O(1).

The proof is in [9].
Thus when j above is such that j � (2μ−lh − lh)/ ln(lh) + 1, the given bound

on Advpriv
EaH,A holds with probability extremely close to one. This means that the

analysis is only meaningful when μ is large enough relative to lh (say by at least
a few bits) for the right-hand side of this inequality to be sigificantly greater
than 1, reflecting the fact that, if μ and lh are the same size, bucketization
is unlikely to have much effect on security because the minimum-bucket size
is likely to be very small (again, with probability taken over the choice of the
RO in the scheme). Precise bounds can be obtained for a specific application by
plugging in the appropriate values and checking at what value a greater-or-equal
minimum bucket-size j becomes overwhelmingly likely, in which case one can use
the bound with such a j. We provide an example in the full paper [9]. Note that
the trade-off as the hash length is decreased is query-efficiency. On each query,
all records whose specified attributes values are in the same buckets as those of
the desired result are returned to the user, who can complete the query itself by
filtering out false-positives as needed.

We remark that one cannot use a POWHF [20,21] to compute the tags in
place of the RO in the construction, because POWHFs are randomized and this
will violate the consistency requirement of ESE.

6 CCA and Other Extensions

Our definition, and so far our security proofs, are for the CPA case. Here we
discuss extensions to the CCA case and then other extensions such as to hash
functions rather than encryption schemes.

PRIV-CCA. Extend Exppriv-b
Π,A (k) to give Ag oracle access to D(sk, ·), for b ∈

{0, 1}, which it can query on any string not appearing as a component of c. Note
that Am does not get this decryption oracle. Let

Advpriv-cca
Π,A (k) = Pr

[
Exppriv-0

Π,A (k) = 1
]

− Pr
[
Exppriv-1

Π,A (k) = 1
]

.

We say that Π is PRIV-CCA secure if Advpriv-cca
Π,A (·) is negligible for every PTA

A with high min-entropy.

Encrypt-with-Hash. Deterministic encryption scheme EwH is PRIV-CCA se-
cure even if the starting encryption scheme is only IND-CPA but meets an extra
condition, namely that no ciphertext occurs with too high a probability. More
precisely, the max-ciphertext probability mc(·) of AE = (K, E , D) is defined as fol-
lows: we let mc(k) be the maximum taken over all x ∈ PtSp(k) of the quantity

Pr
[

(pk, sk) $← K ; c1, c2
$← E(pk, x) : c1 = c2

]
.



548 M. Bellare, A. Boldyreva, and A. O’Neill

Then Theorem 1 extends as follows.

Theorem 5. Suppose there is a PRIV-CCA adversary A = (Am, Ag) against
EwH with min-entropy μ, which outputs vectors of size v with components of
length n and makes at most qh queries to its hash oracle and at most qd queries
to its decryption oracle. Let mpk and mc be max public-key and max-ciphertext
probabilities of AE, respectively. Then there exists an IND-CPA adversary B
against AE such that

Advpriv
EwH,A ≤ Advind-cpa

AE,B +
2qhv

2μ
+ 2qhmpk + 2qdmc .

Furthermore, B makes v queries to its LR-oracle and its running-time is at
most that of A plus O(qh(TE + qd)), where TE is the maximum time for one
computation of E on a message of length n.

The proof is given in [9].
The requirement that mc(·) be small is quite mild. Most practical encryption

schemes have negligible max-ciphertext probability. Furthermore, any IND-CPA
scheme can be easily modified to have low max-ciphertext probability if does not
already. In the full paper [9], we detail all this and also show by example that
not all IND-CPA schemes have low max-ciphertext probability.

RSA-DOAEP. Although RSA-DOAEP as a stand-alone is demonstrably PRIV-
CCA insecure, when properly combined in an “encrypt-then-sign” fashion with a
secure digital signature scheme it achieves CCA security in the natural “outsider
security” model analogous to that in [5]. This may come at no additional cost, for
example in the database-security application we discussed, which also requires
authenticity anyway.

Extensions to Other Primitives. It is straightforward to adapt our PRIV
definition to a more general primitive that we call a (public-key) hiding scheme,
which we define as a pair HIDE = (Kg, F) of algorithms, where Kg outputs a key
K and F takes K and an input x to return an output we call the ciphertext.
Note that every public-key encryption scheme (K, E , D) has an associated hiding
scheme where Kg runs K to receive output (pk, sk) and then returns pk, and
F(K, ·) is the same as E(pk, ·). In general, though, a hiding scheme is not required
to be invertible, covering for example the case of hash functions.

Encrypt-and-Hash. In contrast to Encrypt-with-Hash, PRIV-CCA security of
ESE scheme EaH requires IND-CCA security of the starting encryption scheme
AE in general, in which case the analogous statements to Theorem 3 and
Theorem 4 holds when considering PRIV-CCA adversaries against EaH. These
are stated and proven in [9].

In fact, the basic construction generalizes to using any deterministic hiding
scheme HIDE = (Kg, F) as defined above in place of the RO, where we replace
a query H(pk, x) in the scheme by F(K, (pk, x)). Theorem 3 then generalizes as
follows.

Theorem 6. Suppose there is a privacy adversary A = (Am, Ag) against EaH
that outputs vectors of size v. Let mpk be the max public-key probability of AE.



Deterministic and Efficiently Searchable Encryption 549

Then there exists an IND-CPA adversary B against AE and a privacy adversary
B′ against HIDE such that

Advpriv
EaH,A ≤ Advind-cpa

AE,B + Advpriv
HIDE,B′ .

Furthermore, B makes v queries to its LR-oracle, B′ outputs vectors of length
v with components of length n, and the running-times of B, B′ are at most that
of A plus O(1).

Again, the proof is in [9]. Note that in the RO model it is easy to construct a
PRIV secure deterministic hiding scheme (Kg, F), simply by setting Kg to output
nothing and F on input x to return H(x), where H is a RO. In this case, we
recover the original construction.

Acknowledgments

We would like to thank Brian Cooper and Cynthia Dwork for helpful discussions,
and Alex Dent and Ulrich Kühn for feedback on an early draft of this paper.
Thanks also to Diana Smetters and Dan Wallach for pointing us to the work of
[2,29], and to Nisheeth Vishnoi for help in formulating and proving Theorem 4.
Finally, we thank the anonymous reviewers of Crypto 2007 for their comments
and suggestions. Mihir Bellare was supported by NSF grants CNS-0524765, CNS-
0627779, and a gift from Intel Corporation. Alexandra Boldyreva was supported
in part by NSF CAREER award 0545659. Adam O’Neill was supported in part
by the above-mentioned grant of the second author.

References

1. Abdalla, M., Bellare, M., Catalano, D., Kiltz, E., Kohno, T., Lange, T., Malone-
Lee, J., Neven, G., Paillier, P., Shi, H.: Searchable encryption revisited: Consis-
tency properties, relation to anonymous IBE, and extensions. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621. Springer, Heidelberg (2005)

2. Adya, A., Bolosky, W.J., Castro, M., Cermak, G., Chaiken, R., Douceur, J.R., How-
ell, J., Lorch, J.R., Theimer, M., Wattenhofer, R.: FARSITE: Federated, available,
and reliable storage for an incompletely trusted environment. In: Symposium on
Operating System Design and Implementation (OSDI ’02). Springer, Heidelberg
(2002)

3. Agrawal, R., Kiernan, J., Srikant, R., Xu, Y.: Order preserving encryption for
numeric data. In: SIGMOD ’04. ACM Press, New York (2004)

4. Amanatidis, G., Boldyreva, A., O’Neill, A.: New security models and provably-
secure schemes for basic query support in outsourced databases. In: Working Con-
ference on Data and Applications Security (DBSec ’07). LNCS. Springer, Heidel-
berg (2007)

5. An, J.-H., Dodis, Y., Rabin, T.: On the security of joint signature and encryption.
In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332. Springer, Heidelberg
(2002)

6. Baek, J., Safavi-Naini, R., Susilo, W.: Public key encryption with keyword search
revisited. Cryptology ePrint Archive, Report 2005/151 (2005)



550 M. Bellare, A. Boldyreva, and A. O’Neill

7. Baudron, O., Pointcheval, D., Stern, J.: Extended notions of security for multicast
public key cryptosystems. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP
2000. LNCS, vol. 1853. Springer, Heidelberg (2000)

8. Bellare, M., Boldyreva, A., Micali, S.: Public-key encryption in a multi-user set-
ting: Security proofs and improvements. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807. Springer, Heidelberg (2000)

9. Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and efficiently search-
able encryption. Full Version of this paper (2007), http://www.cc.gatech.edu/
~aboldyre/publications.html

10. Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A concrete security treatment of
symmetric encryption. In: FOCS ’97, pp. 394–403 (1997)

11. Bellare, M., Kohno, T., Namprempre, C.: Authenticated encryption in SSH: prov-
ably fixing the SSH binary packet protocol. In: Conference on Computer and Com-
munications Security (CCS ’02). ACM Press, New York (2002)

12. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for design-
ing efficient protocols. In: Conference on Computer and Communications Security
(CCS ’93). ACM Press, New York (1993)

13. Bellare, M., Rogaway, P.: Optimal asymmetric encryption – how to encrypt with
RSA. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950. Springer, Hei-
delberg (1995)

14. Boneh, D., Boyen, X.: Secure identity based encryption without random oracles.
In: Franklin, M. (ed.) Crypto ’04, LNCS, vol. 3027. Springer, Heidelberg (2004)

15. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption
with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027. Springer, Heidelberg (2004)

16. Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted data
(2007)

17. Boyen, X., Waters, B.: Anonymous hierarchical identity-based encryption (without
random oracles). In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117. Springer,
Heidelberg (2006)

18. Boyko, V.: On the security properties of OAEP as an all-or-nothing transform. In:
Wiener, M.J. (ed.) CRYPTO 1999. LNCS, vol. 1666, Springer, Heidelberg (1999)

19. Brinkman, R., Feng, L., Doumen, J.M., Hartel, P.H., Jonker, W.: Efficient tree
search in encrypted data. Technical Report TR-CTIT-04-15, Enschede (March
2004)

20. Canetti, R.: Towards realizing random oracles: Hash functions that hide all partial
information. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294. Springer,
Heidelberg (1997)

21. Canetti, R., Micciancio, D., Reingold, O.: Perfectly one-way probabilistic hash
functions. In: STOC ’98. ACM Press, New York (1998)

22. Ceselli, A., Damiani, E., De Capitani di Vimercati, S., Jajodia, S., Paraboschi, S.,
Samarati, P.: Modeling and assessing inference exposure in encrypted databases.
ACM Trans. Inf. Syst. Secur. 8(1), 119–152 (2005)

23. Chang, Y.-C., Mitzenmacher, M.: Privacy preserving keyword searches on remote
encrypted data. In: Ioannidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS 2005.
LNCS, vol. 3531. Springer, Heidelberg (2005)

24. Curtmola, R., Garay, J.A., Kamara, S., Ostrovsky, R.: Searchable symmetric en-
cryption: Improved definitions and efficient constructions. In: Juels, A., Wright,
R.N., De Capitani di Vimercati, S. (eds.) Conference on Computer and Commu-
nications Security (CCS ’06). ACM Press, New York (2006)

http://www.cc.gatech.edu/~aboldyre/publications.html
http://www.cc.gatech.edu/~aboldyre/publications.html


Deterministic and Efficiently Searchable Encryption 551

25. Damiani, E., De Capitani Vimercati, S., Jajodia, S., Paraboschi, S., Samarati, P.:
Balancing confidentiality and efficiency in untrusted relational DBMSs. In: Jajodia,
S., Atluri, V., Jaeger, T. (eds.) Conference on Computer and Communications
Security (CCS ’03). ACM Press, New York (2003)

26. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Transactions on
Information Theory 22(6), 1130–1140 (1976)

27. Dodis, Y., Smith, A.: Entropic security and the encryption of high entropy mes-
sages. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378. Springer, Heidelberg (2005)

28. Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography. SIAM Journal on
Computing 30(2) (2000)

29. Douceur, J.R., Adya, A., Bolosky, W.J., Simon, D., Theimer, M.: Reclaiming space
from duplicate files in a serverless distributed file system. In: Conference on Dis-
tributed Computing Systems (ICDCS’02) (2002)

30. ElGamal, T.: A public key cryptosystem and signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory 31 (1985)

31. Fujisaki, E., Okamoto, T., Pointcheval, D., Stern, J.: RSA-OAEP is secure under
the RSA assumption. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139. Springer,
Heidelberg (2001)

32. Gertner, Y., Malkin, T., Reingold, O.: On the impossibility of basing trapdoor
functions on trapdoor predicates. In: FOCS ’01. IEEE Computer Society Press,
Los Alamitos (2001)

33. Goh, E.-J.: Secure indexes. Cryptology ePrint Archive, Report, 2003/216 (2003),
http://eprint.iacr.org/2003/216/

34. Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of Computer and Sys-
tem Sciences 28(2) (1984)

35. Golle, P., Staddon, J., Waters, B.: Secure conjunctive keyword search over en-
crypted data. In: Jakobsson, M., Yung, M., Zhou, J. (eds.) ACNS 2004. LNCS,
vol. 3089. Springer, Heidelberg (2004)

36. Hacigümüs, H., Iyer, B., Li, C., Mehrotra, S.: Executing SQL over encrypted data
in the database-service-provider model. In: Conference on Management of data
(SIGMOD ’02). ACM Press, New York (2002)

37. Hacigümüs, H., Iyer, B.R., Mehrotra, S.: Efficient execution of aggregation queries
over encrypted relational databases. In: Lee, Y., Li, J., Whang, K.-Y., Lee, D.
(eds.) DASFAA 2004. LNCS, vol. 2973. Springer, Heidelberg (2004)

38. Hore, B., Mehrotra, S., Tsudik, G.: A privacy-preserving index for range queries.
In: Nascimento, M.A., Özsu, M.T., Kossmann, D., Miller, R.J., Blakeley, J.A.,
Schiefer, K.B. (eds.) VLDB ’04. Morgan Kaufmann, San Francisco (2004)

39. Iyer, B.R., Mehrotra, S., Mykletun, E., Tsudik, G., Wu, Y.: A framework for effi-
cient storage security in RDBMS. In: Bertino, E., Christodoulakis, S., Plexousakis,
D., Christophides, V., Koubarakis, M., Böhm, K., Ferrari, E. (eds.) EDBT 2004.
LNCS, vol. 2992. Springer, Heidelberg (2004)

40. Kantracioglu, M., Clifton, C.: Security issues in querying encrypted data. In: Jajo-
dia, S., Wijesekera, D. (eds.) Data and Applications Security XIX. LNCS, vol. 3654,
pp. 325–337. Springer, Heidelberg (2005)

41. Li, J., Omiecinski, E.: Efficiency and security trade-off in supporting range queries
on encrypted databases. In: Jajodia, S., Wijesekera, D. (eds.) Data and Applica-
tions Security XIX. LNCS, vol. 3654, pp. 69–83. Springer, Heidelberg (2005)

42. Luby, M., Rackoff, C.: How to construct pseudorandom permutations from pseudo-
random functions. SIAM J. Comput. 17(2) (1988)

43. Micali, S., Rackoff, C., Sloan, B.: The notion of security for probabilistic cryptosys-
tems. SIAM Journal on Computing 17(2), 412–426 (1988)

http://eprint.iacr.org/2003/216/


552 M. Bellare, A. Boldyreva, and A. O’Neill

44. Mykletun, E., Tsudik, G.: Aggregation queries in the database-as-a-service model.
In: Damiani, E., Liu, P. (eds.) Data and Applications Security XX. LNCS, vol. 4127,
pp. 89–103. Springer, Heidelberg (2006)

45. Özsoyoglu, G., Singer, D.A., Chung, S.S.: Anti-tamper databases: Querying en-
crypted databases. In: Working Conference on Data and Applications Security
(DBSec ’03). LNCS, Springer, Heidelberg (2003)

46. Pointcheval, D.: How to encrypt properly with RSA. RSA Laboratories’ Crypto-
Bytes, 5(1) (Winter/Spring 2002)

47. Rackoff, C., Simon, D.: Non-interactive zero-knowledge proof of knowledge and
chosen ciphertext attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576.
Springer, Heidelberg (1992)

48. Russell, A., Wang, H.: How to fool an unbounded adversary with a short key. IEEE
Transactions on Information Theory 52(3), 1130–1140 (2006)

49. Arsenal Digital Solutions. Top 10 reasons to outsource remote data protection,
http://www.arsenaldigital.com/services/remote data protection.htm

50. Song, D.X., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted
data. In: Symposium on Security and Privacy. IEEE Press, New York (2000)

51. Wang, H., Lakshmanan, L.V.S.: Efficient secure query evaluation over encrypted
XML databases. In: VLDB ’06. VLDB Endowment (2006)

52. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer,
R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494. Springer, Heidelberg (2005)

http://www.arsenaldigital.com/services/remote_data_protection.htm


Secure Hybrid Encryption from Weakened Key
Encapsulation

Dennis Hofheinz and Eike Kiltz�

Cryptology and Information Security Research Theme
CWI Amsterdam
The Netherlands

{hofheinz,kiltz}@cwi.nl

Abstract. We put forward a new paradigm for building hybrid encryp-
tion schemes from constrained chosen-ciphertext secure (CCCA) key-
encapsulation mechanisms (KEMs) plus authenticated symmetric
encryption. Constrained chosen-ciphertext security is a new security no-
tion for KEMs that we propose. It has less demanding security require-
ments than standard CCCA security (since it requires the adversary to
have a certain plaintext-knowledge when making a decapsulation query)
yet we can prove that it is CCCA sufficient for secure hybrid encryption.

Our notion is not only useful to express the Kurosawa-Desmedt public-
key encryption scheme and its generalizations to hash-proof systems in an
abstract KEM/DEM security framework. It also has a very constructive
appeal, which we demonstrate with a new encryption scheme whose se-
curity relies on a class of intractability assumptions that we show (in the
generic group model) strictly weaker than the Decision Diffie-Hellman
(DDH) assumption. This appears to be the first practical public-key en-
cryption scheme in the literature from an algebraic assumption strictly
weaker than DDH.

1 Introduction

One of the main fields of interest in cryptography is the design and analysis of en-
cryption schemes in the public-key setting (PKE schemes) that are secure against
a very strong type of attacks — indistinguishability against chosen-ciphertext
attacks (IND-CCA) [24]. In this work, we are interested in practical schemes
with proofs of security under reasonable security assumptions (without relying
on heuristics such as the random oracle model) and in general methods for con-
structing such schemes.

The first practical IND-CCA secure PKE scheme without random oracles was
proposed in a seminal paper by Cramer and Shoup [11, 13]. Their construction
was later generalized to hash proof systems [12]. In [30, 13] Cramer and Shoup
also give a hybrid variant that encrypts messages of arbitrary length. The idea
� Supported by the research program Sentinels (http://www.sentinels.nl). Sentinels

is being financed by Technology Foundation STW, the Netherlands Organization for
Scientific Research (NWO), and the Dutch Ministry of Economic Affairs.

A. Menezes (Ed.): CRYPTO 2007, LNCS 4622, pp. 553–571, 2007.
c© International Association for Cryptologic Research 2007

http://www.sentinels.nl


554 D. Hofheinz and E. Kiltz

is to conceptually separate the key-encapsulation (KEM) part from the sym-
metric (DEM) part. Generally, this hybrid approach greatly improved practical-
ity of encryption schemes. A folklore composition theorem (formalized in [13])
shows that if both KEM and DEM are CCA-secure then the hybrid encryp-
tion is CCA-secure. Common wisdom was that this sufficient condition was also
necessary. However, at CRYPTO 2004, Kurosawa and Desmedt challenged this
common wisdom by presenting a hybrid encryption scheme that demonstrates
that a weaker security condition on the KEM may suffice for full CCA-secure
hybrid encryption. Compared to the original Cramer-Shoup scheme, the scheme
by Kurosawa and Desmedt improved efficiency and ciphertext expansion by re-
placing some of its algebraic components with information theoretically secure
symmetric primitives. More recently, the KEM part of their scheme was indeed
shown to be not CCA secure [15].

One natural open problem from [21] is if there exists a weaker yet nat-
ural security condition on the KEM such that, in combination with sufficiently
strong symmetric encryption, chosen-ciphertext secure hybrid encryption can
be guaranteed.

Extending the work of Cramer and Shoup [12], it was demonstrated in [21,
2, 14] that a variant of hash-proof systems (HPS) can be combined with sym-
metric encryption and a message authentication code (MAC) to obtain hybrid
encryption. If the hash-proof system is universal2, then the encryption scheme is
chosen-ciphertext secure. However, the Kurosawa-Desmedt hybrid scheme could
not be rigorously explained in this general HPS framework since the underlying
hash-proof system is not universal2. (Roughly, this is since universal2 is a statis-
tical property whereas the Kurosawa-Desmedt system contains a computational
component, namely a target collision resistant (TCR) hash function.) In [21]
(and [12]) only less efficient “hash-free variants” of their schemes could be ex-
plained through hash proof systems; security of all efficient TCR-based schemes
had to be proved separately.

Surprisingly, almost all practical standard-model encryption schemes [11, 13,
21,2,10,9,19,20] are based on the difficulty of Decision Diffie-Hellman (DDH) or
stronger assumptions. This is contrasted by the existence of many natural groups
in which the DDH assumption is known to be wrong; examples include pairing-
groups and certain non prime-order groups like Z

∗
p. This often overlooked fact may

turn into a serious problem in case DDH turns out to be wrong in all cryptograph-
ically interesting groups. In particular, [16] give evidence that groups with easy
DDH problem, but hard computational Diffie-Hellman problem exist. [16] inter-
pret this as an argument to rely on weaker assumptions than DDH.

1.1 Our Contributions

A new KEM/DEM composition theorem. We put forward the security no-
tion of indistinguishability against constrained chosen-ciphertext attacks
(IND-CCCA) for KEMs which is stronger than IND-CPA (CPA stands for chosen-
plaintext attacks) yet strictly weaker than IND-CCA. Intuitively, CCCA is sepa-
rated from CCA security by only allowing an adversary to make a decapsulation



Secure Hybrid Encryption from Weakened Key Encapsulation 555

query if it has sufficient “implicit knowledge” about the plaintext key to be de-
capsulated (hence the name “constrained chosen-ciphertext security”).1

As our main technical contribution we formalize the above notion and prove
a composition theorem that shows that any IND-CCCA secure KEM combined
with any authenticated (symmetric) encryption scheme yields IND-CCA secure
hybrid encryption. This gives a positive answer to the open question from [21]
mentioned before. Authenticated encryption is a quite general symmetric prim-
itive and examples include “encrypt-then-mac” schemes (based on computation-
ally secure primitives), and also more efficient single-pass schemes (see, e.g., [25]).

Constrained chosen-ciphertext secure KEMs formalize a new design paradigm
for efficient hybrid encryption. To guarantee chosen-ciphertext security for hy-
brid encryption schemes it is sufficient to verify a natural security condition on
the key encapsulation part. We assess the constructive appeal of this framework
by demonstrating that the original Kurosawa-Desmedt scheme [21], along with
its variants [2,23] and all hash-proof systems based schemes [12,21], can be thor-
oughly explained through it. We furthermore present a new IND-CCCA secure
KEM from the DDH assumption and show how to build a class of practical
KEMs from progressively weaker assumptions than DDH.

Constrained chosen-ciphertext secure KEM from DDH. We propose
a new KEM which is IND-CCCA secure under the DDH assumption. Although
it relies on different proof techniques (it is not based on hash proof systems),
syntactically it is reminiscent to the one by Kurosawa and Desmedt and can in
fact be viewed as its dual (in the sense that certain parts from the ciphertext
and the symmetric key are swapped in our scheme).

Constrained chosen-ciphertext secure KEM from n-Linear. Building
on [8,18] we introduce a new class of purely algebraic intractability assumptions,
the n-Linear assumptions, where n ≥ 1 is a parameter. They are such that the
DDH assumption equals the 1-Linear assumption, the Linear assumption [8]
equals the 2-Linear assumption, and the n-Linear assumptions become strictly
weaker as the parameter n grows. More precisely, 1-Linear = DDH, and n-Linear
implies n + 1-Linear, but (in the generic group model [29]) n + 1-Linear is still
hard relative to an n-Linear oracle. In fact, for n ≥ 2 the n-Linear assumption
does not seem to be invalid in any obvious sense even in the groups from [16], in
which the DDH problem is easy, and the computational Diffie-Hellman problem
is supposedly hard. We generalize the KD scheme and its dual to a class of
parametrized KEMs and prove their IND-CCCA security assuming n-Linear.
These appear to be the first practical encryption schemes in the literature from
a purely algebraic assumption which is strictly weaker than DDH.

Computational Hash-Proof Systems. We propose a purely computational
variant of hash-proof systems. Generalizing [12,21], we prove that computational

1 This is reminiscent to the notion of “plaintext awareness” for public-key encryp-
tion [5] where it is infeasible for an adversary to come up with a valid ciphertext
without being aware of the corresponding plaintext. Our definition is weaker in the
sense that it only requires the adversary to have implicit knowledge on the plaintext.



556 D. Hofheinz and E. Kiltz

hash-proof systems directly imply IND-CCCA secure KEMs. Hence, in combina-
tion with authenticated encryption, they yield efficient IND-CCA secure hybrid
encryption. The Kurosawa-Desmedt scheme fits this framework, i.e. the underly-
ing HPS is computational. This gives the first full explanation of the Kurosawa-
Desmedt scheme in terms of HPS. As a generalization we provide computational
hash-proof systems from the n-Linear assumptions hence explaining IND-CCCA
security of our class of KEMs from the n-Linear assumptions.

1.2 Discussion and Related Work

In [1] (which is the full version of [2]), Abe et al. address the question from [21]
about the existence of a natural weaker security condition for KEMs. They pro-
pose the notion of LCCA secure KEMs with respect to the predicate Pmac and
prove it sufficient to obtain, in combination with a MAC, IND-CCA secure tag-
KEMs (and hence IND-CCA secure hybrid encryption). Though syntactically
similar to ours, their notion mingles security of the KEM with the MAC part
of the symmetric encryption scheme. The conceptual difference in our notion is
that we give a general security definition for KEMs that is completely indepen-
dent of any particular symmetric primitive. We think that this is more natural
and more closely follows the spirit of the KEM/DEM approach [13], where (for
good reason) KEM and DEM are viewed as independent components.

Independent from this work Shacham [28] also proposes a family of hybrid
encryption schemes from the n-Linear assumptions. His schemes can be viewed as
a (slightly less efficient) Cramer-Shoup variant of our schemes from Section 4.2.

The 2-Linear assumption was introduced by Boneh, Boyen, and Shacham [8]
and was later used in gap-groups to build an IND-CCA secure KEM [19]. For
n > 2, Kiltz [18] introduced the class of gap n-Linear assumptions and (gen-
eralizing [19]) built a class of IND-CCA secure KEMs from it. Compared to
n-Linear, in the latter gap-assumptions an adversary gets access to a DDH or-
acle which makes (for example) the gap 2-Linear assumption incomparable to
DDH. In contrast, our motivation is to build schemes from an assumption weaker
than DDH.

2 Hybrid Encryption from Constrained CCA
Secure KEMs

2.1 Key Encapsulation Mechanisms

A key-encapsulation mechanism KEM = (KEM.Kg, KEM.Enc, KEM.Dec) with
key-space K(k) consists of three polynomial-time algorithms (PTAs). Via (pk , sk)
$← KEM.Kg(1k ) the randomized key-generation algorithm produces public/secret
keys for security parameter k ∈ N; via (K, C) $← KEM.Enc(pk ) the randomized
encapsulation algorithm creates an uniformly distributed symmetric key K ∈
K(k) together with a ciphertext C; via K ← KEM.Dec(sk , C) the possessor of
secret key sk decrypts ciphertext C to get back a key K which is an element



Secure Hybrid Encryption from Weakened Key Encapsulation 557

in K or a special rejection symbol ⊥. For consistency, we require that for all
k ∈ N, and all (K, C) $← KEM.Enc(pk) we have Pr [ KEM.Dec(sk , C) = K ] = 1,
where the probability is taken over the choice of (pk , sk) $← KEM.Kg(1k ), and
the coins of all the algorithms in the expression above. Here we only consider
only KEMs that produce perfectly uniformly distributed keys (i.e., we require
that for all public keys pk that can be output by KEM.Kg, the first component
of KEM.Enc(pk ) has uniform distribution).2

Constrained Chosen-Ciphertext Security. The common requirement for
a KEM is indistinguishability against chosen-ciphertext attacks (IND-CCA) [13]
where an adversary is allowed to adaptively query a decapsulation oracle with
ciphertexts to obtain the corresponding session key. We relax this notion to
indistinguishability against constrained chosen-ciphertext attacks (IND-CCCA).
Intuitively, we only allow the adversary to make a decapsulation query if it al-
ready has some “a priori knowledge” about the decapsulated key. This partial
knowledge about the key is modeled implicitly by letting the adversary addi-
tionally provide an efficiently computable Boolean predicate pred : K → {0, 1}.
If pred(K) = 1 then the decapsulated key K is returned, and ⊥ otherwise.
The amount of uncertainty the adversary has about the session key (denoted
as plaintext uncertainty uncertA) is measured by the fraction of keys the pred-
icate evaluates to 1. We require this fraction to be negligible for every query,
i.e. the adversary has to have a high a priori knowledge about the decapsulated
key when making a decapsulation query. More formally, for an adversary A we
define the advantage function

Advccca
KEM ,A(k) =

∣∣∣Pr[Expccca-1
KEM ,A(k) = 1] − Pr[Expccca-0

KEM ,A(k) = 1]
∣∣∣

where, for b ∈ {0, 1}, Expccca-b
KEM ,A is defined by the following experiment.

Experiment Expccca-b
KEM ,A(k)

(pk , sk) $← KEM.Kg(1k)
K∗0

$← K(k) ; (K∗1 , C∗) $← KEM.Enc(pk )
b′ $← ADec(·,·)(pk , K∗b , C∗)
Return b′

Dec(predi, Ci)
K ← KEM.Dec(sk , Ci)
If K = ⊥ or predi(K) = 0 then ⊥
Else return K ∈ K

with the restriction that A is only allowed to query Dec(predi, Ci) on predi-
cates predi that are provided as PTA3 and on ciphertexts Ci different from the
challenge ciphertext C∗.

For an adversary A, let tA denote the number of computational steps A
runs (that includes the maximal time to evaluate each predi once), and let QA
2 This requirement is met by all popular KEMs and makes our reduction in Theorem 1

tighter. However, we can show Theorem 1 also without this assumption, and derive
that the keys are computationally close to uniform from our upcoming KEM security
assumption. This comes at the price of a less tight security reduction in Theorem 1.

3 Technically, we charge the time required to evaluate each predi to A’s runtime and
require that A be polynomial-time.



558 D. Hofheinz and E. Kiltz

be the number of decapsulation queries A makes to its decapsulation oracle.
For simplicity and without losing on generality, we consider only adversaries
for which tA and QA are independent of the environment that A runs in. To
adversary A in the above experiment we also associate A’s (implicit) plaintext
uncertainty uncertA(k) when making decapsulation queries, measured by

uncertA(k) =
1
Q

∑
1≤i≤Q

Pr
K∈K

[predi(K) = 1] ,

where predi : G → {0, 1} is the predicate A submits in the ith decapsulation
query. Let, for integers k, t, Q and 0 ≤ µ ≤ 1,

Advccca
KEM ,t,Q,µ(k) = max

A
Advccca

KEM ,A(k),

where the maximum is over all A with tA ≤ t, QA ≤ Q, and uncertA(k) ≤ µ.
A key encapsulation mechanism KEM is said to be indistinguishable against

constrained chosen ciphertext attacks (IND-CCCA) if for all PTA adversaries A
with negligible uncertA(k) (in any environment), the advantage Advccca

KEM ,A(k)
is a negligible function in k.

It is worth pointing out that by making different restrictions on uncert(k)
our notion of CCCA security leads to an interesting continuum between CPA
and CCA security. With the restriction uncert(k) = 0 then CCCA = CPA;
with the trivial restriction uncert(k) ≤ 1 (which makes is possible to always
use the constant predicate pred(·) := 1) then CCCA = CCA. Here, we require
a negligible uncert(k), which syntactically makes IND-CCCA more similar to
IND-CPA than to IND-CCA security. Yet, since it in principle allows decryption
queries, IND-CCCA is substantially stronger than IND-CPA, and — as we will
show — is a good base for hybrid IND-CCA security.

2.2 Authenticated Encryption

An authenticated symmetric encryption (AE) scheme AE = (AE.Enc, AE.Dec)
is specified by its encryption algorithm AE.Enc (encrypting M ∈ MsgSp(k) with
keys K ∈ K(k)) and decryption algorithm AE.Dec (returning M ∈ MsgSp(k) or
⊥). Here we restrict ourselves to deterministic PTAs AE.Enc and AE.Dec. The
AE scheme needs to provide privacy (indistinguishability against one-time at-
tacks) and authenticity (ciphertext authenticity against one-time attacks). This
is simultaneously captured (similar to the more-time attack case [26]) by defining
the ae-ot-advantage of an adversary Bae as Advae-ot

AE ,Bae
(k) =

2
∣∣∣Pr[K $← K(k) ; b

$← {0, 1} ; b′ $← BLoRb(·,·),DoRb(·)
ae (1k) : b = b′] − 1

∣∣∣ .

Here, LoRb(M0, M1) returns ψ ← AE.Enc(K, Mb), and Bae is allowed only one
query to this left-or-right encryption oracle (one-time attack), with a pair of
equal-length messages. Furthermore, the decrypt-or-reject oracle DoR1(ψ) re-
turns M ← AE.Dec(K, ψ) and DoR0(ψ) always returns ⊥ (reject), Bae is allowed



Secure Hybrid Encryption from Weakened Key Encapsulation 559

only one query to this decrypt-or-reject oracle which must be different from the
output of the left-or-right oracle.

We say that AE is a one-time secure authenticated encryption scheme (AE-OT
secure) if the advantage function Advae-ot

AE ,Bae
(k) is negligible for all PTA Bae .

Again, for integers k, t, Advae-ot
AE ,t (k) = maxBae Advae-ot

AE ,Bae
(k), where the maxi-

mum is over all Bae that fulfill tBae ≤ t.

2.3 Hybrid Encryption

Let KEM = (KEM.Kg, KEM.Enc, KEM.Dec) be a KEM and let AE = (AE.Enc,
AE.Dec) be an authenticated encryption scheme. We assume that the two schemes
are compatible in the sense that for all security parameters k, we have that the
KEM’s and the AE’s key-space are equal. Then we can consider a hybrid public
key encryption scheme (whose syntax and security definition is standard and can
be looked up in the full version) that encrypts arbitrary messages M ∈ MsgSp.
The construction of PKE = (PKE.kg, PKE.Enc, PKE.Dec) is as follows.

PKE.kg(1k )
(pk , sk) $← KEM.Kg(1k )
Return (pk , sk)

PKE.Enc(pk , M)
(K, C) $← KEM.Enc(pk )
ψ ← AE.Enc(K, M)
Return Cpke = (C, ψ)

PKE.Dec(sk ,Cpke = (C, ψ))
K ← KEM.Dec(sk , C)
M ← AE.Dec(K, ψ)
Return M or ⊥

Here PKE.Dec returns ⊥ if either KEM.Dec or AE.Dec returns ⊥.

Theorem 1. Assume KEM is secure in the sense of IND-CCCA and AE is
secure in the sense of AE-OT. Then PKE is secure in the sense of IND-CCA.
In particular,

Advcca
PKE ,t,Q(k) ≤ Advccca

KEM ,t,Q,Q·Advae-ot
AE,t

(k)
(k) + (Q + 1)Advae-ot

AE ,t (k) +
Q

|K| .

Proof. Let A be an adversary on the IND-CCA security of the hybrid scheme. We
will consider a sequence of games, Game 1, Game 2, . . . , each game involving A.
Let Xi be the event that in Game i, it holds that b = b′, i.e., that the adversary
succeeds. We will make use of the following simple “Difference Lemma” [13].

Lemma 1. Let X1,X2, B be events, and suppose that X1 ∧ ¬B ⇔ X2 ∧ ¬B.
Then |Pr [ X1 ] − Pr [ X2 ]| ≤ Pr [B ].

Game 1. The original PKE IND-CCA game, i.e. we have

| Pr[X1] − 1/2| = Advcca
PKE ,A(k) .

Game 2. Let C ∗pke = (C∗, ψ∗) be the challenge ciphertext in the PKE IND-
CCA game. In this game the decryption oracle in the first phase rejects all
ciphertexts of the form Cpke = (C∗, ∗). The view of adversary A is identical



560 D. Hofheinz and E. Kiltz

in Games 1 and 2 until a decryption query (C∗, ∗) is made in the first phase
of the IND-CCA experiment (so before A gets to see C∗).
Since the key K encapsulated in C∗ is uniformly distributed and independent
of A’s view in the first phase, we have

| Pr[X2] − Pr[X1]| ≤ Q

|K| .

Note that each ciphertext uniquely determines a key.
Game 3. Replace the symmetric key K∗ used to create the PKE challenge
ciphertext with a random key K∗, uniformly independently chosen from K.
The proof of the following lemma is postponed until later.

Lemma 2. | Pr[X3] − Pr[X2]| ≤ Advccca
KEM ,t,Q,Q·Advae-ot

AE,t
(k)

(k).

Game 4. Reject all ciphertexts Cpke of the form (C∗, ∗). Since ψ∗ was gen-
erated using a random key K∗ ∈ K that only leaks to A through ψ∗, au-
thenticity of AE implies

| Pr[X4] − Pr[X3]| ≤ QA · Advae-ot
AE ,Bae

(k)

for a suitable adversary Bae that simulates Game 3, using the LoRb with
two identical messages to obtain the AE part of the challenge ciphertext.
Bae simply uniformly picks one AE part of a decryption query of the form
(C∗, ψ) to submit to the decrypt-or-reject oracle DoR1(·).
Finally, Game 4 models one-time security of the AE scheme, and we have

| Pr[X4] − 1/2| ≤ Advae-ot
AE ,t (k) .

Collecting the probabilities proves the theorem. It leaves to prove Lemma 2.

Proof (Lemma 2). We show that there exists an adversary Bkem against the
IND-CCCA security of KEM with tBkem = tA, QBkem = QA, and an adversary
Bae against AE with tBae = tA, such that

uncertBkem (k) ≤ QA · Advae-ot
AE ,Bae

(k) (1)

Pr[X2] = Pr[Expccca-1
KEM ,Bkem

(k) = 1] (2)

Pr[X3] = Pr[Expccca-0
KEM ,Bkem

(k) = 1] . (3)

The adversary Bkem against the CCCA security of KEM is defined as follows.
Bkem inputs (pk , K∗b , C∗) for an unknown bit b. First, Bkem runs A1 on input
pk . For the ith decryption query (Ci, ψi) made by adversary A, adversary Bkem
defines the function predi : K → {0, 1} as

predi(K) :=
{

0 : if AE.Dec(K, ψi) returns ⊥
1 : otherwise

Note that the symmetric ciphertext ψi is hard-coded into predi(·) which is clearly
efficiently computable. Bkem queries (predi, Ci) to its own oracle Dec(·, ·) and



Secure Hybrid Encryption from Weakened Key Encapsulation 561

receives the following answer. If KEM.Dec(sk, Ci) returns a key Ki ∈ K with
AE.Dec(Ki, ψi) returns ⊥ then Dec(predi, Ci) returns the key Ki. Otherwise
(if KEM.Dec(sk , Ci) returns ⊥ or if AE.Dec(Ki, ψi) returns ⊥), Dec(predi, Ci)
returns ⊥. Note that by the syntax of AE this perfectly simulates A’s
decryption queries.

For A’s encryption challenge for two messages M0, M1, Bkem uses its own input
(K∗b , C∗) together with a random bit δ to create a challenge ciphertext C ∗pke =
(C∗, ψ∗ ← AE.Enc(K∗, Mδ)) of message Mδ. Adversary Bkem runs A2(C ∗pke ,St1)
and inputs a guess bit δ′ for δ. Finally, Bkem concludes its game with outputting
b′ = 1 if δ = δ′ and b′ = 0, otherwise. This completes the description of Bkem .

Adversary Bkem always perfectly simulates A’s decapsulation queries. In case
b = 1, Bkem uses the real key K∗1 for A’s simulation which implies Equation (2).
In case b = 0, Bkem uses a random key K∗0 for A’s simulation which implies
Equation (3). The complexity bounds for Bkem are clear from the construction,
and it is left to show that uncertBkem (k) ≤ Q · Advae-ot

AE ,Bae
(k) for a suitable Bae .

To this end we build an adversary Bae against the AE security of AE as fol-
lows. Bae inputs 1k and, using its own pair of KEM keys (pk , sk) $← KEM.Kg(1k),
emulates the same simulation for A as Bkem did above (using sk to answer its own
Dec(·, ·) queries). It additionally picks a random index j∗ ∈ {1, . . . , Q}. On A’s
j∗ decryption query (Cj∗ , ψj∗), Bae submits ψj∗ to its own decryption-or-reject
oracle DoRb(·), and outputs b′ = 0 iff DoRb(·) rejects with ⊥.

Now Bae will always output b′ = 0 if b = 0 by definition of DoR0. In
case b = 1, Bae will output b′ = 1 iff the ciphertext ψj∗ is valid in the sense
AE.Dec(K ′, ψj∗) 
= ⊥ for an independent, uniformly (by the AE experiment)
chosen key K ′. So adversary Bae ’s advantage is as follows.

Advae-ot
AE ,Bae

(k) = Pr[K ′ $← K : AE.Dec(K ′, ψj∗) 
= ⊥]

The above equals Pr[K ′ $← K : predj∗(K ′) = 1], where predj∗(·) = AE.Dec(·, ψj∗)
is the predicate Bkem submits to oracleDec as the j∗th query. For a uniformly cho-
sen j∗ ∈ {1, . . . , Q}, the above equals uncertBae (k).Consequently,Advae-ot

AE ,Bae
(k) ≥

1
Q · uncertBae (k). ��

3 Efficient Key Encapsulation from DDH

3.1 Building Blocks

We describe the building blocks used and assumptions made about them.

Group schemes. A group scheme GS [13] specifies a sequence (GRk)k∈N of
group descriptions. For every value of a security parameter k ∈ N, GRk specifies
the four tuple GRk = (Ĝk, Gk, pk, gk) (for notational convenience we sometimes
drop the index k). GRk = (Ĝ, G, p, g) specifies a finite abelian group Ĝ, along
with a prime-order subgroup G, a generator g of G, and the order p of G. We
denote the identity element of G as 1G ∈ G. We assume the existence of an



562 D. Hofheinz and E. Kiltz

efficient sampling algorithm x
$← G and an efficient membership algorithm that

test if a given element x ∈ Ĝ is contained in the subgroup G.
We further assume the DDH problem is hard in GS, captured by defining the

ddh-advantage of an adversary Bddh as

Advddh
GS,Bddh

(k) = |Pr[Bddh(g, h, ga, ha) = 1] − Pr[Bddh(g, h, ga, K) = 1]| ,

where g, h, K
$← G and a ← Z

∗
p.

Authenticated Encryption. We need an abstract notion of algebraic authen-
ticated encryption where the keyspace consists of G, secure in the sense of OT-
AE. In the full version we recall (following the encrypt-then-mac approach [4,13])
how to build such algebraic AE satisfying all required functionality and security
from the following basic primitives:
– A (computationally secure) one-time symmetric encryption scheme with bi-

nary k-bit keys (such as AES or padding with a PRNG)
– A (computationally secure) MAC (existentially unforgeable) with k-bit keys
– A (computationally secure) key-derivation function (pseudorandom).

We remark that for our purposes it is also possible to use a more efficient single-
pass authenticated encryption scheme (see, e.g., [25]). In both cases the ciphertext
expansion (i.e., ciphertext size minus plaintext size) of the AE scheme is only k
(security parameter) bits which is optimal with respect to our security notion.

Target Collision Resistant Hashing. TCR = (TCRk)k∈N is a family of
keyed hash functions TCRs

k : G → Zp for each k-bit key s. It is assumed to
be target collision resistant (TCR) [13], which is captured by defining the tcr-
advantage of an adversary Btcr as Advtcr

TCR,Btcr
(k) =

Pr[TCRs(c∗) = TCRs(c) ∧ c 
= c∗ : s
$← {0, 1}k ; c∗ $← G ; c

$← Btcr(s, c∗)].

Note TCR is a weaker requirement than collision-resistance, so that, in particular,
any practical collision-resistant function can be used. Also note that our notion
of TCR is related to the stronger notion of universal one-way hashing [22], where
in the security experiment of the latter the target value c∗ is chosen by the
adversary (but before seeing the hash key s).

Commonly [13, 21] this function is implemented using a dedicated crypto-
graphic hash function like MD5 or SHA, which we assume to be target collision
resistant. Since |G| = |Zp| = p we can alternatively also use a fixed (non-keyed)
bijective encoding function INJ : G → Zp. In that case we have a perfectly colli-
sion resistant hash function, i.e. Advtcr

INJ,Btcr
(k) = 0. In the full version, we show

how to build such bijective encodings for a number of concrete group schemes.

3.2 The Key-Encapsulation Mechanism

Let GS be a group scheme where GRk specifies (Ĝ, G, g, p) and let TCR :
G → Zp be a target collision resistant hash function (for simplicity we as-
sume TCR to be non-keyed). We build a key encapsulation mechanism KEM =
(KEM.kg, KEM.Enc, KEM.Dec) with K = G as follows.



Secure Hybrid Encryption from Weakened Key Encapsulation 563

KEM.Kg(1k)
x, y, ω

$← Z
∗
p

u ← gx ; v ← gy ; h ← gω

pk ← (u, v, h) ∈ G
3

sk ← (x, y, ω) ∈ (Zp)3

Return (sk , pk )

KEM.Enc(pk )
r

$← Z
∗
p ; c ← gr

t ← TCR(c) ; π ← (utv)r

C ← (c, π) ∈ G
2

K ← hr ∈ G

Return (C, K)

KEM.Dec(sk , C)
Parse C as (c, π) ∈ Ĝ

2

if c 
∈ G return ⊥
t ← TCR(c)
if cxt+y 
= π return ⊥
Return K ← cω

We stress that decryption never explicitly checks if π ∈ G; this check happens
implicitly when c ∈ G and cxt+y = π is checked. A correctly generated ciphertext
has the form C = (c, π) ∈ G × G, where c = gr and π = (utv)r = (gxt+y)r =
cxt+y. Hence decapsulation will not reject and compute the key K = cω = hr,
as in encapsulation.

Encryption takes four standard exponentiations plus one application of TCR,
where the generation of π can also be carried out as one single multi-exponentia-
tion [6]. Decryption takes two exponentiations plus one application of TCR, where
the two exponentiations can also be viewed as one sequential exponentiation [6]
(which is as efficient as a multi-exponentiation) to simultaneously compute cxt+y

and cω. The proof of the the following theorem is given in the full version.

Theorem 2. Let GS be a group scheme where the DDH problem is hard and
assume TCR is target collision resistant. Then KEM is secure in the sense of
IND-CCCA. In particular,

Advccca
KEM ,t,Q,uncert(k)(k) ≤ Advddh

GS,t(k) + Advtcr
TCR ,t(k) + uncert(k) +

Q

p
.

3.3 Comparison with Cramer-Shoup and Kurosawa-Desmedt

The following table summarizes the key-encapsulation part of the Cramer-Shoup
encryption scheme [13], the Kurosawa-Desmedt scheme [21], and ours.

Scheme Ciphertext Encapsulated Key
Cramer-Shoup gr, ĝr, (utv)r hr

Kurosawa-Desmedt gr, ĝr (utv)r

Ours gr, (utv)r hr

Here ĝ is another element from the public-key. Compared to the Cramer-Shoup
scheme, the Kurosawa-Desmedt scheme leaves out the value hr and defines (utv)r

as the session key. Our results shows that it is also possible to leave out the
element ĝr from the ciphertext and that π = (utv)r is sufficient to authenticate
c = gr. Hence, our scheme can be viewed as the dual of (the KEM part of) the
Kurosawa-Desmedt scheme [21].

From a technical point of view, our scheme mixes Cramer-Shoup like tech-
niques [12] to obtain a form of “plaintext awareness” for inconsistent cipher-
texts with an “algebraic trick” from the Boneh-Boyen identity-based encryption
scheme [7] to decrypt consistent ciphertexts.Compared to Cramer-Shoup based



564 D. Hofheinz and E. Kiltz

proofs [11, 13, 21, 2] the most important technical difference, caused by the men-
tioned ability to decrypt consistent ciphertexts without knowing the full secret
key, is that during our simulation the challenge ciphertexts is never made incon-
sistent. Intuitively this is the reason why we manage to maintain a consistent simu-
lation using less redundancy in the secret key. This demonstrates that IND-CCCA
security can be obtained with constructions that differ from hash proof systems.

On the other hand, the security proofs of all known schemes based on IBE tech-
niques [10,9,19,20,18] inherently rely on some sort of external consistency check
for the ciphertexts. This can be seen as the main reason why security of the IBE-
based PKE schemes could only be proved in pairing groups (or relative to a gap-
assumption), where the pairing was necessary for helping the proof identifying
inconsistent ciphertexts. In our setting, the consistency check is done implicitly,
using information-theoretic arguments borrowed from hash proof systems.

3.4 Efficiency

We compare our new DDH-based scheme’s efficiency with the one of Kurosawa
and Desmedt (in its more efficient “explicit-rejection” variant from [23]). Most
importantly, the number of exponentiations for encryption and decryption are
equal in both schemes. Although our security result is much more general (our
KEM can be combined with any authenticated encryption scheme) this is not an
exclusive advantage of our scheme. In fact we can derive the same result for the
KD scheme from a more general theorem that we will prove in Section 5. (A sim-
ilar result about combining the Kurosawa-Desmedt scheme with authenticated
encryption was already obtained in [3] in the context of statefull encryption.)

However, there is one crucial difference in case one needs a scheme that is
provably secure solely on the DDH assumption. Note that security (of the KD
scheme and ours) relies on the DDH assumption and the assumption that TCR
is target collision resistant. So as long as one does not want to sacrifice provable
security by implementing the TCR function with a dedicated hash function like
SHA-x or MD5 (what potentially renders the whole scheme insecure given the
recent progress in attacking certain hash functions), one must either resort to
inefficient generic constructions of TCR functions [22, 27], or one can use the
“hash-free technique” described in [13]. With this latter technique, one can get
rid of the TCR function completely; however, this comes at the cost of additional
elements in the public and the secret key, and additional exponentiations during
encryption. This overhead is linear in the number of elements that would have
been hashed with the TCR. In the Kurosawa-Desmedt scheme, TCR acts on two
group elements whereas in our scheme only on one. Hence the hash-free variant
of our scheme is more efficient.

More importantly, since in our scheme a TCR is employed which maps one
group element to integers modulo the group-order this can also be a bijection.
In many concrete groups, e.g., when using the subgroup of quadratic residues
modulo a safe prime or certain elliptic curves, this bijection can be trivially im-
plemented at zero cost [13,9], without any additional computational assumption,



Secure Hybrid Encryption from Weakened Key Encapsulation 565

and without sacrificing provable security. See the full version for more details.
In terms of efficiency we view this as the main benefit of our scheme.

4 Key Encapsulation from n-Linear

4.1 Linear Assumptions

Let n = n(k) be a polynomial in k. Generalizing [8,18] we introduce the class of
n-Linear assumptions which can be seen as a natural generalization of the DDH
assumption and the Linear assumption.

Let GS be a group scheme. We define the n-lin-advantage of an adversary
Bn-lin as

Advn-lin
GS,Bn-lin(k) =

∣∣Pr[Bn-lin(g1, . . . , gn, gr1
1 , . . . , grn

n , h, hr1+...+rn) = 1]

− Pr[Bn-lin(g1, . . . , gn, gr1
1 , . . . , grn

n , h, K) = 1]
∣∣,

where g1, . . . , gn, h, K
$← G and all ri ← Z

∗
p. We say that the n-Linear Deci-

sional Diffie-Hellman (n-Linear) assumption relative to group scheme GS holds if
Advn-lin

GS,Bn-lin is a negligible function in k for all polynomial-time adversariesBn-lin.
The n-Linear assumptions form a strict hierarchy of security assumptions

with 1-Linear = DDH, 2-Linear=Linear [8] and, the larger the n, the weaker
the n-Linear assumption. More precisely, for any n ≥ 1 we have that n-Linear
implies n+1-Linear. On the other hand (extending the case of n = 1 [8]) we can
show that in the generic group model [29], the n+1-Linear assumption holds,
even relative to an n-Linear oracle.

Lemma 3. DDH = 1-Linear �⇐⇒ 2-Linear �⇐⇒ 3-Linear �⇐⇒ . . .

4.2 The Key-Encapsulation Mechanism

Let GS be a group scheme where GRk specifies (Ĝ, G, g, p) and let TCR : G
n+1 →

Zp be a target collision resistant hash function. Generalizing the Kurosawa-
Desmedt KEM, for a parameter n = n(k) ≥ 1, we build KEM = (KEM.Kg,
KEM.Enc, KEM.Dec) as follows.

Key generation KEM.Kg(1k) generates random group elements g1, . . . , gn, h ∈
G. Furthermore, it defines uj = g

xj

j hz and vj = g
yj

j hz′
for random z, z′ ∈

Zp and xj , yj ∈ Zp (j ∈ {1, . . . , n}). The public key contains the elements h,
(gj , uj)1≤i≤n, and the secret key contains all corresponding indices.

KEM.Enc(pk )
∀j ∈ {1, . . . , n}: rj

$← Z
∗
p ; cj ← g

rj

j

d ← hr1+...+rn ; t ← TCR(c1, . . . , cn, d)
C ← (c1, . . . , cn, d) ; K =

∏n
i=1(u

t
ivi)ri

Return (C, K)

KEM.Dec(sk , C)
∀j ∈ {1, . . . , n}: check if cj ∈ G

Check if d ∈ G

t ← TCR(c1, . . . , cn, d)
Return K ← dzt+z′ ·

∏n
j=1 c

xjt+yj

j



566 D. Hofheinz and E. Kiltz

Ciphertexts contain n+1 group elements, public/secret keys 2n+1 elements.
The scheme instantiated with n = 1 precisely reproduces the KEM part of the
Kurosawa-Desmedt encryption scheme [21]. Security of the schemes can be ex-
plained using the more general framework of computational hash-proof systems.
This will be done in Section 5.

Theorem 3. Let GS be a group scheme where the n-Linear problem is hard,
assume TCR is target collision resistant. Then KEM is secure in the sense of
IND-CCCA.

We remark that it is also possible to give the scheme in its explicit-rejection
variant [13]. Furthermore, in the full version we also provide a class of alterna-
tive schemes generalizing our dual KD scheme from Section 3 to the n-Linear
assumption.

5 Key Encapsulation from Hash Proof Systems

In [12], Cramer and Shoup showed that their original scheme in [13] was a
special instance of a generic framework based on hash proof systems (HPS).
Following [12] we recall the basic ideas of hash proof systems and show (gen-
eralizing [21]) how to build IND-CCCA secure key encapsulation based on a
computational variant of hash proof systems. Here we use a slightly different no-
tation for HPS that better reflects our primary application of hash-proof systems
to key-encapsulation mechanisms.

5.1 Hash Proof Systems

Let C, K be sets and V ⊂ C a language. Let Dsk : C → K be a hash function
indexed with sk ∈ S, where S is a set. A hash function Dsk is projective if there
exists a projection µ : S → P such that µ(sk) ∈ P defines the action of Dsk

over the subset V . That is, for every C ∈ V , the value K = Dsk (C) is uniquely
determined by µ(sk ) and C. In contrast, nothing is guaranteed for C ∈ C \ V ,
and it may not be possible to compute Dsk (C) from µ(sk) and C. A strongly
universal2 projective hash function has the additional property that for C ∈ C\V ,
the projection key µ(sk) actually says nothing about the value of K = Dsk (C),
even given an instance (C∗, K∗) such that C∗ ∈ C \ V and K∗ = Dsk (C). More
precisely, for all pk ∈ P , C, all C∗ ∈ C \ V with C 
= C∗, all K, K∗ ∈ K,

Pr
sk∈S

Dsk (C
∗)=K∗

µ(sk)=pk

[Dsk (C) = K] = 1/|K|. (4)

A hash proof system HPS = (HPS.param, HPS.pub, HPS.priv) consists of three
algorithms where the randomized algorithm HPS.param(1k) generates instances
of params = (group, C, V , P , S, D(·) : C → K, µ : S → P), where group may con-
tain some additional structural parameters. The deterministic public evaluation
algorithm HPS.pub inputs the projection key pk = µ(sk), C ∈ V and a witness



Secure Hybrid Encryption from Weakened Key Encapsulation 567

w of the fact that C ∈ V and returns K = Dsk (C). The deterministic private
evaluation algorithm inputs sk ∈ S and returns Dsk (C), without knowing a wit-
ness. We further assume there are efficient algorithms given for sampling sk ∈ S
and sampling C ∈ V uniformly together with a witness w.

As computational problem we require that the subset membership problem is
hard in HPS which means that the two elements C and C′ are computationally
indistinguishable, for random C ∈ V and random C′ ∈ C \ V . This is captured
by defining the advantage function Advsm

HPS ,A(k) of an adversary A as

Advsm
HPS ,A(k) :=

∣∣ Pr[C1
$← C ; b′ $← A(C, V , C1) : b′ = 1 ]

− Pr[C0
$← C \ V ; b′ $← A(C, V , C0) : b′ = 1 ]

∣∣ .

5.2 Key Encapsulation from HPS

Using the above notion of a hash proof system, Kurosawa and Desmedt [21]
proposed a hybrid encryption scheme which improved the schemes from [12].
The key-encapsulation part of it is as follows. The system parameters of the
scheme consist of params $← HPS.param(1k).

KEM.Kg(k). Choose random sk $← S and define pk = µ(sk ) ∈ P . Return
(pk , sk).

KEM.Enc(pk ). Pick C
$← V together with its witness ω that C ∈ V . The session

key K = Dsk (C) ∈ K is computed as K
$← HPS.pub(pk , C, ω). Return

(K, C).
KEM.Dec(sk , C). Reconstruct the key K = Dsk (C) as K ← HPS.priv(sk , C) and

return K.

We can prove the following theorem that is a slight generalization of [21].

Theorem 4. If HPS is strongly universal2 and the subset membership problem
is hard in HPS then KEM is secure in the sense of IND-CCCA.

Unfortunately, the original KEM part of the Kurosawa Desmedt DDH-based
hybrid encryption scheme [21] cannot be explained using this framework and
hence needed a separate proof of security. This is since the underlying DDH-
based hash proof system involves a target collision resistant hash function TCR
which is a “computational primitive” whereas the strongly universal2 property
from Equation (4) is a statistical property which is in particularly not fulfilled by
the DDH-based HPS from [12] used in [21]. In fact, the most efficient HPS-based
schemes that are known involve computation of a TCR function and hence all
need a separate proof of security. We note that this problem is inherited from
the original HPS approach [13].

We overcome this problem we defining the weaker notion of computational
hash proof systems.



568 D. Hofheinz and E. Kiltz

5.3 Computational Hash Proof Systems

We now define a weaker computational variant of strongly universal2 hash-
ing. For an adversary B we define the advantage function Advcu2

HPS ,B(k) =

| Pr[Expcu2-1
HPS ,B(k) = 1] − Pr[Expcu2-0

HPS ,B(k) = 1]| where, for b ∈ {0, 1}, Expcu2-b
HPS ,B

is defined by the following experiment.

Experiment Expcu2-b
HPS ,B(k)

params $← HPS.param(1k) ; sk $← S ; pk ← µ(sk )
C∗ $← C \ V ; K∗ ← Dsk (C∗) ; (C,St) $← BEvalD(·)

1 (pk , C∗, K∗)
K0

$← K ; K1 ← Dsk (C) ; b′ $← B2(St , Kb)
Return b′

where the evaluation oracle EvalD(C) returns K = Dsk (C) if C ∈ V and ⊥,
otherwise. We also restrict to adversaries that only return ciphertexts C 
= C∗

and that ensure C ∈ C \ V . This is without losing generality, since B1 can check
C ∈ V with its oracle EvalD. A hash proof system HPS is said to be compu-
tationally universal2 (CU2) if for all polynomial-time adversaries B that satisfy
these requirements, the advantage function Advcu2

HPS ,B(k) is a negligible function
in k.

The following theorem strengthens Theorem 4. A proof will be given in the
full version.

Theorem 5. If HPS is computationally universal2 and the subset membership
problem is hard then KEM from Section 5.2 is IND-CCCA secure. In particular,

Advccca
KEM ,t,Q,uncertA(k)(k) ≤ Advsm

HPS ,t(k)+(Q+1)·(uncertA(k)+Advcu2
HPS ,t

(k)) .

5.4 A Computational HPS from n-Linear

Let GS be a group scheme where GRk specifies (Ĝ, G, g, p). Let group = (GR,
g1, . . . , gn, h), where g1, . . . , gn, h are independent generators of G. Define C =
G

n+1 and V = {(gr1
1 , . . . , grn

n , hr1+...+rn) ⊂ G
n+1 : r1, . . . , rn ∈ Zp} The values

(r1, . . . , rn) ∈ Z
n
p are a witness of C ∈ V . Let TCR : G

n+1 → Zp be a target
collision resistant hash function. Let S = Z

2n+2
p , P = G

2n, and K = G. For
sk = (x1, y1, . . . , xn, yn, z, z′) ∈ Z

2n+2, define µ(sk ) = (u1, . . . , un, v1, . . . , vn),
where, for 1 ≤ i ≤ n, ui = gxi

i hz and vi = gyi

i hz′
. This defines the output of

HPS.param(1k). For C = (c1, . . . , cn, d) ∈ C define

Dsk (C) := dzt+z′ ·
n∏

i=1

cxit+yi

i , where t = TCR(c1, . . . , cn) . (5)

This defines HPS.priv(sk , C). Given pk = µ(sk ), C ∈ V and a witness w =
(r1, . . . , rn) ∈ (Zp)n such that C = (c1, . . . , cn, d) = (gr1

1 , . . . , grn
n , hr1+...+rn)

public evaluation HPS.pub(pk , C, w) computes K = Dsk (C) as

K =
n∏

i=1

(ut
ivi)ri .



Secure Hybrid Encryption from Weakened Key Encapsulation 569

Correctness follows by Equation (5) and the definition of µ. This completes the
description of HPS . Clearly, under the n-Linear assumption, the subset mem-
bership problem is hard in HPS .

Obviously, the above defined HPS is not strongly universal2 in the sense of
Equation (4). But it is still computationally universal2.

Lemma 4. The n-Linear based HPS is computationally universal2.

Together with Theorem 5 this proves Theorem 3. For the case n = 1 this also
gives an alternative security proof for the Kurosawa-Desmedt scheme [21].

Proof. Consider an adversary B in the CU2 experiment such that B1 outputs a
ciphertext C ∈ C \ V and let K ← Dsk (C). Let col be the event that C 
= C∗

but TCR(C) = TCR(C∗). We claim that for the following adversary Btcr we have
Advtcr

TCR,Btcr
(k) = Pr[col]. Adversary Btcr inputs (s, C∗) and generates a random

instance of params with known indices αi such that h = gαi . Furthermore, Btcr

picks a random sk ∈ S and runs B1 on pk = µ(sk), a random C∗ ∈ C \ V ,
and K∗ = Dsk (C∗). To answer a query to the evaluation oracle EvalD(·), Btcr

fist verifies C = (c1, . . . , cn, d) ∈ V by checking if
∏

cαi

i = d. If not, return ⊥.
Otherwise it returns K = Dsk (C). If for a decapsulation query C event col

happens, Btcr returns C to its TCR experiment and terminates.
Now we claim that conditioned under ¬col, the key K = Dsk (C) is a uni-

form element in K independent of the adversary’s view. This implies that not
even a computationally unbounded B2 could succeed in the second stage. Hence,
Advcu2

HPS ,B(k) ≤ Advtcr
TCR,Btcr

(k), which proves the lemma.
Let log(·) = logg(·). Consider the view of B2 consisting of the random variables

(pk , C∗, K∗, C), where sk = (x1, y1, . . . , xn, yn, z, z′) $← Z
2n+2, pk = µ(sk ) =

(u1, . . . , un, v1, . . . , vn), C∗ = (c∗1, . . . , c
∗
n, d∗) = (gr∗

1
1 , . . . , g

r∗
n

n , hr∗
) with

∑
r∗i 
=

r∗ since C∗ ∈ C \ V , K∗ = Dsk (C∗), and C = (c1, . . . , cn, d) = (gr1
1 , . . . , grn

n , hr)
(
∑

ri 
= r since C ∈ C \ V). From the system parameters g1, . . . , gn, h, adversary
B2 learns ω = log h, ωi = log gi, and from pk

for 1 ≤ i ≤ n : log ui = ωixi + ωz, log vi = ωiyi + ωz′ . (6)

From C∗ the adversary learns r∗i = loggi
c∗i , r∗ = logh d∗, and from K∗ (by

Equation (5)) the value

log K∗ =
∑

ωir
∗
i (xit

∗ + yi) + ω(zt∗ + z′) , (7)

and t∗ = TCR(c∗1, . . . , c
∗
n, d∗). Furthermore, from C, B2 learns ri = loggi

ci and
r = logh d. Let K = Dsk (C). Our claim is that

log K =
∑

ωiri(xit + yi) + ω(zt + z′) , (8)

with t = TCR(C) 
= t∗, is a uniform and independent element in Zp. Consider the
set of linear equations over the hidden values x1, . . . , xn, y1, . . . , yn, z, z′ defined



570 D. Hofheinz and E. Kiltz

by Equations (6), (7), and (8), defined by the matrix M ∈ Z
n+2×n+2
p ,

M =

x1 . . . xn y1 . . . yn z z′�
��������������

ω1 ω

. . . 0
... 0

ωn ω
ω1 ω

0
. . . 0

...
ωn ω

ω1r
∗
1t∗ · · · ωnr∗

nt∗ ω1r
∗
1 . . . ωnr∗

n ωt∗r∗ ωr∗

ω1r1t · · · ωnrnt ω1r1 . . . ωnrn ωtr ωr

�
��������������

Since det(M) = ω2
∏

ωi(t − t∗)(
∑n

i=1 ri − r)(
∑n

i=1 r∗i − r∗) 
= 0, Equation (8) is
linearly independent of (6) and (7).

Wenote that (generalizing [12])we can also give a computationally universal2hash-
proof system based on Paillier’s decision composite residue (DCR) assumption.

References

1. Abe, M., Gennaro, R., Kurosawa, K.: Tag-KEM/DEM: A new framework
for hybrid encryption. Cryptology ePrint Archive, Report 2005/027 (2005),
http://eprint.iacr.org/

2. Abe, M., Gennaro, R., Kurosawa, K., Shoup, V.: Tag-KEM/DEM: A new frame-
work for hybrid encryption and a new analysis of Kurosawa-Desmedt KEM. In:
Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 128–146. Springer,
Heidelberg (2005)

3. Bellare, M., Kohno, T., Shoup, V.: Stateful public-key cryptosystems: How to en-
crypt with one 160-bit exponentiation. In: ACM CCS 2006, pp. 380–389. ACM
Press, New York (2006)

4. Bellare, M., Namprempre, C.: Authenticated encryption: Relations among notions
and analysis of the generic composition paradigm. In: Okamoto, T. (ed.) ASI-
ACRYPT 2000. LNCS, vol. 1976, pp. 531–545. Springer, Heidelberg (2000)

5. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: ACM CCS 1993, pp. 62–73. ACM Press, New York (1993)

6. Bernstein, D.J.: Pippenger’s exponentiation algorithm (2001), Available from
http://cr.yp.to/papers.html#pippenger

7. Boneh, D., Boyen, X.: Efficient selective-ID secure identity based encryption with-
out random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

8. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

9. Boyen, X., Mei, Q., Waters, B.: Direct chosen ciphertext security from identity-
based techniques. In: ACM CCS 2005, pp. 320–329. ACM Press, New York (2005)

10. Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based
encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 207–222. Springer, Heidelberg (2004)

http://eprint.iacr.org/
http://cr.yp.to/papers.html#pippenger


Secure Hybrid Encryption from Weakened Key Encapsulation 571

11. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS,
vol. 1462, pp. 13–25. Springer, Heidelberg (1998)

12. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002)

13. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM Journal on Com-
puting 33(1), 167–226 (2003)

14. Gennaro, R., Shoup, V.: A note on an encryption scheme of Kurosawa and Desmedt.
Cryptology ePrint Archive, Report 2004/194 (2004)

15. Hofheinz, D., Herranz, J., Kiltz, E.: The Kurosawa-Desmedt key encapsulation is
not chosen-ciphertext secure. Cryptology ePrint Archive, Report 2006/207 (2006)

16. Joux, A., Nguyen, K.: Separating decision Diffie-Hellman from computational Diffie-
Hellman in cryptographic groups. Journal of Cryptology 16(4), 239–247 (2003)

17. Katz, J., Yung, M.: Unforgeable encryption and chosen ciphertext secure modes of
operation. In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 284–299. Springer,
Heidelberg (2001)

18. Kiltz, E.: Chosen-ciphertext secure key-encapsulation based on Gap Hashed Diffie-
Hellman. In: PKC 2007. LNCS, vol. 4450, pp. 282–297 (2007)

19. Kiltz, E.: Chosen-ciphertext security from tag-based encryption. In: Halevi, S.,
Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 581–600. Springer, Heidelberg
(2006)

20. Kiltz, E.: On the limitations of the spread of an IBE-to-PKE transformation. In:
Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G. (eds.) PKC 2006. LNCS, vol. 3958,
pp. 274–289. Springer, Heidelberg (2006)

21. Kurosawa, K., Desmedt, Y.: A new paradigm of hybrid encryption scheme. In:
Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 426–442. Springer, Hei-
delberg (2004)

22. Naor, M., Yung, M.: Universal one-way hash functions and their cryptographic
applications. In: 21st ACM STOC, pp. 33–43. ACM Press, New York (1989)

23. Phong, L.T., Ogata, W.: On a variation of Kurosawa-Desmedt encryption scheme.
Cryptology ePrint Archive, Report 2006/031 (2006)

24. Rackoff, C., Simon, D.R.: Non-interactive zero-knowledge proof of knowledge and
chosen ciphertext attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576,
pp. 433–444. Springer, Heidelberg (1992)

25. Rogaway, P., Bellare, M., Black, J., Krovetz, T.: OCB: A block-cipher mode of
operation for efficient authenticated encryption. In: ACM CCS 2001, pp. 196–205.
ACM Press, New York (2001)

26. Rogaway, P., Shrimpton, T.: A provable-security treatment of the key-wrap prob-
lem. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 373–390.
Springer, Heidelberg (2006)

27. Rompel, J.: One-way functions are necessary and sufficient for secure signatures.
In: 22nd ACM STOC, pp. 387–394. ACM Press, New York (1990)

28. Shacham, H.: A Cramer-Shoup encryption scheme from the Linear Assumption
and from progressively weaker linear variants. Cryptology ePrint Archive, Report
2007/074 (2007)

29. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy, W.
(ed.) EUROCRYPT1997. LNCS, vol. 1233, pp. 256–266. Springer,Heidelberg (1997)

30. Shoup, V.: Using hash functions as a hedge against chosen ciphertext attack. In:
Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807. Springer, Heidelberg (2000)



Scalable and Unconditionally Secure Multiparty
Computation

Ivan Damg̊ard and Jesper Buus Nielsen�

Dept. of Computer Science, BRICS, Aarhus University

Abstract. We present a multiparty computation protocol that is un-
conditionally secure against adaptive and active adversaries, with com-
munication complexity O(Cn)k + O(Dn2)k + poly(nκ), where C is the
number of gates in the circuit, n is the number of parties, k is the bit-
length of the elements of the field over which the computation is carried
out, D is the multiplicative depth of the circuit, and κ is the security
parameter. The corruption threshold is t < n/3. For passive security
the corruption threshold is t < n/2 and the communication complexity
is O(nC)k. These are the first unconditionally secure protocols where
the part of the communication complexity that depends on the circuit
size is linear in n. We also present a protocol with threshold t < n/2 and
complexity O(Cn)k+poly(nκ) based on a complexity assumption which,
however, only has to hold during the execution of the protocol – that is,
the protocol has so called everlasting security.

1 Introduction

In secure multiparty computation a set of n parties, P = {P1, . . . , Pn}, want to
compute a function of some secret inputs held locally by some of the parties.
The desired functionality is typically specified by a function f : ({0, 1}∗)n →
({0, 1}∗)n. Party Pi has input xi ∈ {0, 1}∗ and output yi ∈ {0, 1}∗, where
(y1, . . . , yn) = f(x1, . . . , xn). During the protocol a subset C ⊂ P of the parties
can be corrupted. Security means that all parties receive correct outputs and
that the messages seen by the corrupted parties Pi ∈ C during the protocol con-
tain no information about the inputs and outputs of the honest parties (P \ C),
other than what can be computed efficiently from the inputs and outputs of the
corrupted parties. Passive security means that the above condition holds when
all parties follow the protocol. Active security means that the above condition
holds even when the corrupted parties in C might deviate from the protocol in
an arbitrary coordinated manner. When a protocol is secure against all subsets
of size at most t we say that it is secure against an adversary with corruption
threshold t.

In the cryptographic model each pair of parties is assumed to share an authen-
ticated channel and the corrupted parties are assumed to be poly-time bounded,
to allow the use of cryptography. In the information theoretic model it is assumed
� Funded by the Danish Agency for Science, Technology and Innovation.

A. Menezes (Ed.): CRYPTO 2007, LNCS 4622, pp. 572–590, 2007.
c© International Association for Cryptologic Research 2007



Scalable and Unconditionally Secure Multiparty Computation 573

that each pair of parties share a perfectly secure channel and that the parties
have an authenticated broadcast channel, and it is assumed that the corrupted
parties are computationally unbounded. We talk about cryptographic security
versus unconditional security.

The MPC problem dates back to Yao [Yao82]. The first generic solutions with
cryptographic security were presented in [GMW87, CDG87], and later generic
solutions with unconditional security were presented in [BGW88, CCD88, RB89,
Bea89]. In both cases, security against an active adversary with threshold t < n/2
is obtained, and t < n/2 is known to be optimal.

Thresh. Adv. Communication Reference
t < n/2 passive O(Cn2)k [BGW88]
t < n/2 active O(Cn5)k + poly(nκ) [CDD+99]
t < n/3 active O(Cn2)k + poly(nκ) [HM01]
t < n/2 active O(Cn2)k + poly(nκ) [BH06]
t < n/2 passive O(Cn)k this paper
t < n/3 active O(Cn)k + O(Dn2)k + poly(nκ) this paper
t < n/2 active, limited O(Cn)k + poly(nκ) this paper

during protocol

Fig. 1. Comparison of some unconditionally secure MPC protocols

The communication complexity of a MPC protocol is taken to be the total
number of bits sent and received by the honest parties in the protocol. Over the
years a lot of research have been focused on bringing down the communication
complexity of active secure MPC [GV87, BB89, BMR90, BFKR90, Bea91, GRR98]
[CDM00, CDD00, HMP00, HM01, HN05, DI06, HN06]. Building on a lot of pre-
vious work, it was recently shown in [DI06, HN06]that there exist cryptographic
secure MPC protocols with communication complexity O(Cn)k+poly(nκ), where
C is the size of a Boolean circuit computing f , k is the bit length of elements from
the field (or ring) over which the computation takes place (at least k = log2(n))
and poly(nκ) is some complexity independent of the circuit size, typically covering
the cost of some fixed number of broadcasts or a setup phase. All earlier protocols
had a first term of at least O(Cn2)k, meaning that the communication complexity
depending on C was quadratic in the number of parties. Having linear communi-
cation complexity is interesting as it means that the work done by a single party
is independent of the number of parties participating in the computation, giving
a fully scalable protocol. Until the work presented in this paper it was, however,
not known whether there existed an unconditionally secure protocol with linear
communication complexity. In fact, this was an open problem even for passive se-
cure protocols. We show that indeed it is possible to construct an unconditional
secure protocol where the part of the communication complexity which depends
on the circuit size is linear in n. For active security, however, we get a quadratic
dependency on the multiplicative depth of the circuit, denoted by D. Our results
are compared to some previous unconditionally secure protocol in Fig. 1.



574 I. Damg̊ard and J.B. Nielsen

Note that our active secure protocol is more efficient than even the previous
most efficient passive secure protocol, as clearly D ≤ C. Note also that our active
secure protocol obtains threshold t < n/3. When no broadcast channel is given,
this is optimal. If a broadcast channel is given, however, it is possible to get active
security for t < n/2 [RB89]. By using an unconditionally hiding commitment
scheme to commit parties to their shares, it is possible to obtain a protocol
with resilience t < n/2 and with communication complexity O(Cn)κ+poly(nκ).
This protocol is not unconditional secure, but at least has everlasting security
in the sense that if the computational assumptions are not broken during the
run of the protocol, then the protocol is secure against a later computationally
unbounded adversary.

In comparison to the earlier work achieving linear complexity, we empha-
size that achieving unconditional security is not only of theoretical interest:
using “information theoretic” techniques for multiparty computation is compu-
tationally much more efficient than using homomorphic public-key encryption
as in [HN06], for instance. We can therefore transplant our protocols to the
computational setting, using cryptography only as a transport mechanism to
implement the channels, and obtain a protocol that is computationally more ef-
ficient than the one from [HN06], but incomparable to what can be obtained
from [DI06]: we get a better security threshold but a non-constant number
of rounds.

On the technical side, we make use of a technique presented in [HN06] that
was used there to get computational security. It is based on the fact that the
standard method for secure multiplication based on homomorphic encryption
uses only public, broadcasted messages. The idea is now to select a “king”,
to whom everyone sends what they would otherwise broadcast. The king does
whatever computation is required and returns results to the parties. This can
save communication, provided we can verify the king’s work in a way that is
cheap when amortized over many instances.

This idea is not immediately applicable to unconditionally secure protocols,
because the standard method for multiplication in this scenario involves pri-
vate communication where players send different messages to different players.
This can of course not all be sent to the king without violating privacy. We
therefore introduce a new multiplication protocol, involving only public com-
munication that is compatible with the “king-paradigm” (the main idea is used
in the Triples protocol in Fig. 4). This, together with adaptation of known
techniques, is sufficient for passive security.

For active security, we further have to solve the problem that each player
frequently has to make a secret shared value public, based on shares he has
received in private. Here, we need to handle errors introduced by corrupt players.
Standard VSS-based techniques would be quadratic in n, but we show how to
use error correction based on Van der Monde matrices to correct the errors, while
keeping the overall complexity linear in n (this idea is used in the OpenRobust

protocol in Fig. 9).



Scalable and Unconditionally Secure Multiparty Computation 575

2 Preliminaries

Model. We use P = {P1, . . . , Pn} to denote a set of n parties which are to
do the secure evaluation, and we assume that each pair of parties share a per-
fectly secure channel. Furthermore, we assume that the parties have access to
an authenticated broadcast channel. We allow some subset of corrupted parties
C ⊂ P , of size at most t, to behave in some arbitrary coordinated manner. We
call H = P\C the honest parties. We consider secure circuit evaluation. All input
gates are labeled by a party from P . That party provides a secret input for the
gate, and the goal of the secure circuit evaluation is to make the output of the
circuit public to each party in P . The protocol takes an extra input κ ∈ N, the
security parameter, which is given to all parties. The protocol should run in time
poly(κ) and the ”insecurity” of the protocol should be bounded by poly(κ)2−κ.

The Ground Field and the Extension Field. For the rest of the paper we
fix a finite field F over which most of our computations will be done. We call
F the ground field. We let k = log2(|F|) denote the bit-length of elements from
F. We also fix an extension field G ⊃ F to be the smallest extension for which
|G| ≥ 2κ. Since |G| < 22κ, a field element from G can be written down using
O(κ) bits. We call G the extension field.

Van der Monde Matrices. We write a matrix M ∈ F
(r,c) with r rows and c

columns as M = {mi,j}j=1,...,c
i=1,...,r . For C ⊆ {1, . . . , c} we let MC = {mi,j}j∈C

i=1,...,r

denote the matrix consisting of the columns from M indexed by j ∈ C. We use
M� to denote the transpose of a matrix, and for R ⊆ {1, . . . , r} we let MR =
((M�)R)�. For distinct elements α1, . . . , αr ∈ F we use Van(r,c)(α1, . . . , αr) ∈
F

(r,c) to denote the Van der Monde matrix {αj
i}

j=0,...,c−1
i=1,...,r , and we use Van(r,c) ∈

F
(r,c) to denote some Van der Monde matrix of the form Van(r,c)(α1, . . . , αr)

when the elements α1, . . . , αr are inconsequential. It is a well-known fact that
all Van(c,c) are invertible. Consider then V = Van(r,c) with r > c, and let R ⊂
{1, . . . , r} with |R| = c. Since VR is a Van der Monde matrix Van(c,c) it follows
that VR is invertible. So, any c rows of a Van der Monde matrix form an invertible
matrix. In the following we say that Van der Monde matrices are super-invertible.

Secret Sharing. For the rest of the paper a subset I ⊆ F
∗ of |P| non-zero

elements is chosen. Each party in P is then assigned a unique element i from I,
and we index the parties in P by Pi for i ∈ I. For notational convenience we will
assume that I = {1, . . . , |P|}, which is possible when F has characteristic at least
n. All our techniques apply also to the case where F has smaller characteristic,
as long as |F| > n.

By a d-polynomial we mean a polynomial f(X) ∈ F[X ] of degree at most d. To
share a value x ∈ F with degree d, a uniformly random d-polynomial f(X) ∈ F[X ]
with f(0) = x is chosen, and Pi is given the share xi = f(i). This is the same
as letting x0 = x, choosing x1, . . . , xd ∈ F uniformly at random and letting
(y1, . . . , yn) = M (d)(x0, x1, . . . , xd), where M (d) = Van(n,d+1)(1, . . . , n).

In the following we call a vector y = (y1, . . . , yn) ∈ F
n a d-sharing (of x) if

there exists (x1, . . . , xd) ∈ F
d such that M (d)(x, x1, . . . , xd) and y agree on the



576 I. Damg̊ard and J.B. Nielsen

share of all honest parties; I.e., yH = M
(d)
H (x, x1, . . . , xd). In the following we

typically use [x] to denote a d-sharing of x with d = t, and we always use 〈x〉 to
denote a d-sharing of x with d = 2t.

Whenever we talk about a sharing [x] we implicitly assume that party Pi is
holding xi such that [x] = (x1, . . . , xn). We introduce a shorthand for specifying
computations on these local shares. If sharings [x(1)], . . . , [x(�)] have been dealt,
then each Pi is holding a share x

(l)
i of each [x(l)]. Consider any function f : F

� →
F

m. By ([y(1)], . . . , [y(m)]) = f([x(1)], . . . , [x(�)]), we mean that each Pi computes
(y(1)

i , . . . , y
(m)
i ) = f(x(1)

i , . . . , x
(�)
i ), defining sharings [y(k)] = (y(k)

1 , . . . , y
(k)
n ) for

k = 1, . . . , m. It is well-known that if f is an affine function and each [x(l)] is a
consistent d-sharing, then the [y(k)] are consistent d-sharings of (y(1), . . . , y(m)) =
f(x(1), . . . , x(�)). Furthermore, if [x1] and [x2] are consistent d-sharings, then
[y] = [x1][x2] is a consistent 2d-sharing of y = x1x2. When d = t we therefore
use the notation 〈y〉 = [x1][x2].

Error Correction. It is well-known that Van der Monde matrices can be used
for error correction. Let M = Van(r,c) be any Van der Monde matrix with r > c.
Let x ∈ F

c and let y = Mx. Consider any R ⊂ {1, . . . , r} with |R| = c. By
Van der Monde matrices being super-invertible it follows that MR is invertible.
Since yR = MRx it follows that x = M−1

R yR, so that x can be computed
from any r entries of y. It follows that if x(1) �= x(2) and y(1) = Mx(1) and
y(2) = Mx(2), then ham(y(1), y(2)) ≥ r−c+1, where ham denotes the Hamming
distance. Assume now that r ≥ c + 2t for some positive integer t, such that
ham(y(1), y(2)) ≥ 2t + 1. This allows to correct up to t errors, as described now.
Let y = Mx and let y′ be any vector with ham(y, y′) ≤ t. It follows that
ham(y′, Mx′) ≥ t + 1 for all x′ �= x. Therefore y can be computed uniquely
from y′ as the vector y with ham(y, y′) ≤ t. Then x can be compute from y as
x = M−1

R yR with e.g. R = {1, . . . , c}. The Berlekamp-Welch algorithm allows
to compute y from y′ at a price in the order of performing Gaussian elimination
on a matrix from F

(r,r).

Randomness Extraction. We also use Van der Monde matrices for randomness
extraction. Let M = Van(r,c)� be the transpose of any Van der Monde matrix
with r > c. We use the computation (y1, . . . , yc) = M(x1, . . . , xr) to extract ran-
domness from (x1, . . . , xr). Assume that (x1, . . . , xr) is generated as follows: First
R ⊂ {1, . . . , r} with |R| = c is picked and a uniformly random xi ∈R F is gener-
ated for i ∈ R. Then for j ∈ T , with T = {1, . . . , r}\R, the values xj are generated
with an arbitrary distribution independent of {xi}i∈R. For any such distribution of
(x1, . . . , xr) the vector (y1, . . . , yc) is uniformly random in F

c. To see this, note that
(y1, . . . , yc) = M(x1, . . . , xr) can be written as (y1, . . . , yc) = MR(x1, . . . , xr)R +

MT (x1, . . . , xr)T . Since MR = Van(r,c)
R

�
we have that MR is invertible. By de-

finition of the input distribution, the vector (x1, . . . , xr)R is uniformly random
in F

c. Therefore MR(x1, . . . , xr)R is uniformly random in F
c. Since (x1, . . . , xr)T

was sampled independent of (x1, . . . , xr)R, it follows that MR(x1, . . . , xr)R +MT

(x1, . . . , xr)T is uniformly random in F
c, as desired.



Scalable and Unconditionally Secure Multiparty Computation 577

3 Private, t < n/2

We first present a passive secure circuit-evaluation protocol. Later we show how to
add robustness.Throughout this sectionwe assume that there are atmost t = �(n−
1)/2 corruptedparties.To prepare for adding robustness, someparts of the passive
protocol are slightly more involved than necessary. The extra complications come
from the fact thatwe want to place all dealings of sharings in a preprocessingphase,
where the inputs have not been used yet. This will later allow aparticularly efficient
way of detecting cheating parties, and will furthermore give a circuit-evaluation
phase which consists of only opening sharings, limiting the types of errors that can
be encountered after the parties entered their inputs into the computation.

3.1 Random Double Sharings

We first present a protocol, Double-Random(�), which allows the parties to
generate sharings [r1], . . . , [r�] and 〈R1〉, . . . , 〈R�〉, where each [rl] is a uniformly
random t-sharing of a uniformly random value rl ∈ F and each 〈Rl〉 is a uniformly
random 2t-sharing of Rl = rl. We consider the case � = n − t. For larger �, the
protocol is simply run in parallel a number of times. As part of the protocol the
parties use a fixed matrix M = Van(n,n−t)� for randomness extraction.

1. Each Pi ∈ P : Pick a uniformly random value s(i) ∈R F and deal a t-sharing
[s(i)] and a 2t-sharing 〈s(i)〉.

2. Compute
([r1], . . . , [rn−t]) = M([s(1)], . . . , [s(n)])

(〈R1〉, . . . , 〈Rn−t〉) = M(〈s(1)〉, . . . , 〈s(n)〉) ,

and output (([r1], 〈R1〉), . . . , ([rn−t], 〈Rn−t〉)).

Fig. 2. Double-Random(n − t)

The protocol is given in Fig. 2. Assume that t parties are corrupted, leaving
exactly m = n − t honest parties. The m sharings [s(i)] dealt by the honest
parties are independent uniformly random sharings of independent, uniformly
random values unknown by the corrupted parties. The matrix M being a super-
invertible matrix with m rows then implies that the sharings ([r1], . . . , [rm]) are
independent uniformly random t-sharings of uniformly random values unknown
by the corrupted parties. In the same way (〈R1〉, . . . , 〈Rm〉) are seen to be inde-
pendent, uniformly random 2t-sharings of uniformly random elements unknown
by the corrupted parties, and Rl = rl. We also use a protocol Random(�) which
runs as Double-Random(�) except that the 2t-sharings 〈R〉 are not generated.

Each of the 2n dealings communicate O(n) field elements from F, giving a total
communication complexity of O(n2k). Since n − t = Θ(n) pairs are generated,
the communication complexity per generated pair is O(nk). A general number
� of pairs can thus be generated with communication complexity O(n�k + n2k).



578 I. Damg̊ard and J.B. Nielsen

3.2 Opening Sharings

The next protocol, Open(d, [x]), is used for reconstructing a d-sharing efficiently.
For this purpose a designated party Pking ∈ P will do the reconstruction and
send the result to the rest of the parties.

1. Each Pi ∈ P : Let Pking ∈ P be some agreed-upon party and send the share xi

of [x] to Pking.
2. Pking: Compute a d-polynomial f(X) ∈ F[X] with f(i) = xi for all Pi ∈ P , and

send x = f(0) to all parties.
3. Each Pi ∈ P : Output x.

Fig. 3. Open(d, [x])

It is clear that if [x] is a d-sharing of x and there are no active corruptions, then
all honest parties output x. The communication complexity is 2(n − 1) = O(n)
field elements from F.

3.3 Multiplication Triples

We then present a protocol, Triples(�) which allows the parties to generate
� multiplication triples, which are just triples ([a], [b], [c]) of uniformly random
t-sharings with c = ab.

1. All parties: Run Random(2�) and Double-Random(�) and group the outputs
in � triples ([a], [b], ([r], 〈R〉)). For each triple in parallel, proceed a follows:
(a) All parties: Compute 〈D〉 = [a][b] + 〈R〉.
(b) All parties: Run D ← Open(2t, 〈D〉).
(c) All parties: Compute [c] = D − [r], and output ([a], [b], [c]).

Fig. 4. Triples(�)

The sharings [a] and [b] are t-sharings, so [a][b] is a 2t-sharing of ab. Therefore
〈D〉 = [a][b]+〈R〉 is a uniformly random 2t-sharing of D = ab+R. The revealing
of D leaks no information on a or b, as R is uniformly random. Therefore the
protocol is private. Then [c] = D − [r] is computed. Since [r] is a t-sharing, [c]
will be a t-sharing, of D − r = ab + R − r = ab. The communication complexity
of generating � triples is seen to be O(n�k + n2k).

3.4 Circuit Evaluation

We are then ready to present the circuit-evaluation protocol. The circuit Circ =
{Ggid} consists of gates Ggid of the following forms.



Scalable and Unconditionally Secure Multiparty Computation 579

input: Ggid = (gid, inp, Pj), where Pj ∈ P provides a secret input xgid ∈ F.
random input: Ggid = (gid, ran), where xgid ∈R F is chosen as a secret, uni-

formly random element.
affine: Ggid = (gid, aff, a0, gid1, a1, . . . , gid�, a�), where a0, a1, . . . , a� ∈ F and

xgid = a0 +
∑�

l=1 alxgidl
.

multiplication: Ggid = (gid, mul, gid1, gid2), where xgid = xgid1xgid2 .
output: Ggid = (out, gid1), where all parties are to learn xgid1 .1

What it means to securely evaluate Circ can easily be phrased in the UC
framework[Can01], and our implementation is UC secure. We will however not
prove this with full simulation proofs in the following, as the security of our
protocols follow using standard proof techniques.

Preprocessing Phase. First comes a preprocessing phase, where a number of
sharings are generated for some of the gates in Circ. The details are given in
Fig. 5. The communication complexity is O(n�k+n2k), where � is the number of
random gates plus the number of input gates plus the number of output gates.

All gates are handled in parallel by all parties running the following:

random: Let r be the number of random gates in Circ, run Random(r) and as-
sociate one t-sharing [xgid] to each (gid, ran) ∈ Circ.

input: Let i be the number of input gates in Circ, run Random(i) and associate
one t-sharing [rgid] to each (gid,inp, Pj) ∈ Circ. Then send all shares of [rgid]
to Pj to let Pj compute rgid.

multiplication: Let m be the number of multiplication gates, run Triples(m)
and associate one multiplication triple ([agid], [bgid], [cgid]) to each
(gid,mul, gid1, gid2) ∈ Circ.

Fig. 5. Preprocess(Circ)

Evaluation Phase. Then comes an evaluation phase. During the evaluation
phase a t-sharing [xgid] is computed for each gate gid, and we say that gid has
been computed when this happens. Note that the random gates are computed
already in the preprocessing. A non-output gate a said to be ready when all its
input gates have been computed. An output gate is said to be ready when in
addition all input gates and random gates in the circuit have been computed.2

The evaluation proceeds in rounds, where in each round all ready gates are com-
puted in parallel. When several sharings are opened in a round, they are opened
in parallel, using one execution of Open. The individual gates are handled as
detailed in Fig. 6. Note that the evaluation phase consists essentially only of
opening sharings and taking affine combinations.

1 Private outputs can be implemented using a standard masking technique.
2 This definition will ensure that all inputs have been provided before any outputs are

revealed.



580 I. Damg̊ard and J.B. Nielsen

The evaluation proceeds in rounds, where in each round all ready gates are com-
puted in parallel, as follows:

input: For (gid,inp, Pj) ∈ Circ:
1. Pj : Retrieve the input xgid ∈ F and send δgid = xgid + rgid to all parties.
2. All parties: Compute [xgid] = δgid − [rgid].

affine: For (gid, aff, a0, gid1, a1, . . . , gid�, a�) ∈ Circ: All parties compute [xgid] =
a0 +

��
l=1 al[xgidl

].
multiplication: For (gid,mul, gid1, gid2) ∈ Circ all parties proceed as follows:

1. Compute [αgid] = [xgid1 ] + [agid] and [βgid] = [xgid2 ] + [bgid].
2. Run αgid ← Open([αgid]) and βgid ← Open([βgid]).
3. Let [xgid] = αgidβgid − αgid[bgid] − βgid[agid] + [cgid].

output: For (out, gid) ∈ Circ: Run xgid ← Open([xgid]).

Fig. 6. Eval(Circ)

The correctness of the protocol is straight-forward except for Step 3 in multi-
plication. The correctness of that step follows from [BB89] which introduced this
preprocessed multiplication protocol. The privacy of the protocol follows from the
fact that rgid in the input protocol and agid and bgid in the multiplication pro-
tocol are uniformly random elements from F, in the view of the corrupted parties.
Therefore δgid = xgid +rgid and αgid = xgid1 +agid and βgid = xgid2 +bgid leak no
information on xgid respectively xgid1 and xgid2 . Therefore the values of all gates
are hidden, except for the output gates,whose values are allowed (required) to leak.

The communication complexity, including preprocessing, is seen to be O(nCk+
n2k), where C = | Circ | is the number of gates in the circuit.

4 Robust, t < n/4

By now we have a circuit-evaluation protocol which is private and correct as
long a no party deviates from the protocol. In this section we add mechanisms
to ensure robustness. Throughout this section we assume that there are at most
t = �(n − 1)/4 corrupted parties. In the following section we then extend the
solution to handle t < n/3.

4.1 Error Points

In the passive secure protocol there are several points where a party could deviate
from the protocol to make it give a wrong output. We comment on two of these
here and sketch how they are dealt with. More details follow later. A party
which was asked to perform a d-sharing could distribute values which are not
d-consistent. We are going to detect a cheater by asking the parties to open
a random polynomial combination of all sharings they have dealt. Also, Pking



Scalable and Unconditionally Secure Multiparty Computation 581

could fail to send the right value in Open (Fig. 3). We are going to use error
correction to make sure this does not matter, by opening a Van der Monde
code of the sharings to be opened and then correcting the t mistakes that the
corrupted parties might have introduced.

4.2 Coin-Flip

In the protocol opening a polynomial combination of sharings we need a random
value x ∈ G from the extension field. Therefore we need a protocol, Flip(), for
flipping a random value from G. The standard protocol does this using a VSS
protocol as subprotocol: Each Pi ∈ P : Pick uniformly random xi ∈R G and deal
a VSS of xi among the parties in P . All parties: Reconstruct each xi and let
x =

∑
Pi∈P xi. Any of the known VSS’s will do, e.g., [BGW88], since we only call

Flip a small number of times, and so its precise complexity is not important.

4.3 Dispute Control

In the following we use the technique of dispute control[BH06]. We keep a dis-
pute set Disputes, initially empty, consisting of sets {Pi, Pj} with Pi, Pj ∈ P . If
{Pi, Pj} ∈ Disputes, then we write Pi � Pj . If during a protocol a dispute arises
between Pi and Pj , then {Pi, Pj} is added to Disputes. This is done in such a
way that: (1) All parties in P agree on the value of Disputes. (2) If Pi � Pj ,
then Pi is corrupted or Pj is corrupted. For a given dispute set Disputes and
Pi ∈ P we let Disputesi be the set of Pj ∈ P for which Pi � Pj , and we let
Agreei = P \ Disputesi.

All sub-protocols will use the same dispute set Disputes. We say that a sub-
protocol has dispute control if (1) It can never halt due to a dispute between Pi

and Pj if {Pi, Pj} is already in Disputes. (2) If it does not generate a dispute,
then it terminates with the correct result. (3) If it generates a dispute, then it
is secure to rerun the sub-protocol (with the now larger dispute set).

We also keep a set Corrupt ⊂ P . If during the run of some protocol a party
Pi is detected to deviate from the protocol, then Pi is added to Corrupt. This is
done in such a way that: (1) All parties in P agree on the value of Corrupt. (2)
If Pi ∈ Corrupt, then Pi is corrupted.

We enforce that when it happens for the first time that | Disputesi | > t, where
t is the bound on the number of corrupted parties, then Pi is added to Corrupt.
It is easy to see that if | Disputesi | > t, then indeed Pi is corrupted.

Secret Sharing with Dispute Control. We use a technique from [BH06] to
perform secret sharing with dispute control. When a party Pi is to deal a d-
sharing [x] then Pi uses a random d-polynomial where f(0) = x and f(j) =
0 for Pj ∈ Disputesi. Since all sharings will have d ≥ t and Pi ∈ Corrupt
if | Disputesi | > t, this type of dealing is possible for all Pi �∈ Corrupt. The
advantage is that all parties will agree on what Pi sent to all Pj ∈ Disputesi.
This can then be exploited to ensure that Pi will never get a new dispute with
some Pj ∈ Disputesi.



582 I. Damg̊ard and J.B. Nielsen

4.4 Dealing Consistent Sharings

The robust protocol for sharing values will run the private protocol for dealing
sharings followed by a check that the generated sharings are consistent. In Fig. 7
we consider the case where Pi shares � values (y1, . . . , y�).

1. If Pi ∈ Corrupt, then output ([y1], . . . , [y�]) = ([0], . . . , [0]), where [0] =
(0, . . . , 0) is the dummy sharing of 0. Otherwise, proceed as below.

2. Pi: Deal d-sharings [y1], . . . , [y�] over F among the parties in P along with a
d-sharing [r] over G, where r ∈R G is a uniformly random element from the
extension field. By definition all parties in Disputesi get 0-shares.

3. All parties in P : Run x ← Flip(), and compute [y] = [r] +
��

l=1 xl[yl] in G.
4. All parties in Agreei: Broadcast the share of [y]. All parties in Disputesi are

defined to broadcast 0.
5. Pi: In parallel with the above step, broadcast all shares of [y].
6. All parties in P : If the sharing [y] broadcast by Pi is not a d-sharing with all

parties in Disputesi having a 0-share, then output ([y1], . . . , [y�]) = ([0], . . . , [0]).
Otherwise, if the shares broadcast by the other parties are identical to
those broadcast by Pi, then output ([y1], . . . , [y�]). Otherwise, let Disputes′ =
Disputes∪{(Pi, Pj)} for each Pj ∈ Agreei broadcasting a share different from
that broadcast by Pi.

Fig. 7. Share(Pi, Disputes)

We first argue that if any of the sharings dealt by Pi are not d-sharings, then
a dispute will be generated, except with probability poly(κ)2−κ. Namely, let
f0(X) ∈ G[X ] be the lowest degree polynomial consistent with the honest shares
of [r], and for i = 1, . . . , � let fl(X) ∈ G[X ] be the lowest degree polynomial
consistent with the honest shares of [yl]. It can be seen that fl(X) is also the
lowest degree polynomial f

(F)
l (X) ∈ F[X ] consistent with the honest shares of

[yl].3 It follows that if the sharings dealt by Pi are not all d-consistent, then one
of the polynomials fl(X) has degree larger than d. Let m be such that fm(X)
has maximal degree among f0(X), . . . , f�(X), let dm be the degree of fm(X) and
write each fl(X) as fl(X) = αlx

dm + f ′l (X), where f ′l (X) has degree lower than
dm. By definition αm �= 0. Therefore g(Y ) =

∑�
i=0 αlY

l is a non-zero polynomial
over G with degree at most �, and since x is uniformly random in G, it follows
that g(x) = 0 with probability at most �/|G| = poly(κ)2−κ. So, we can assume
that g(x) �= 0. This implies that f(X) =

∑�
l=0 xlfl(X) has degree dm > d. Note

that f(X) is consistent with the honest shares of [y] = [r] +
∑�

l=1 xl[yl], and
let g(X) ∈ G[X ] be the lowest degree polynomial which is consistent with the
honest shares of [y]. Let h(X) = f(X) − g(X). Clearly h(i) = 0 for all honest
3 The polynomial fl(X) can be computed from the indexes i ∈ F of the honest parties

Pi and the shares x
(i)
l ∈ F of the honest parties Pi using Lagrange interpolation,

which is linear. Therefore the coefficients of fl(X) ends up in F, even when the
interpolation is done over the extension G.



Scalable and Unconditionally Secure Multiparty Computation 583

parties Pi. Since h(i) has degree at most dm < |H |, where H is the set of honest
parties, and h(i) = 0 for i ∈ H it follows that h(X) is the zero-polynomial. So,
g(X) = f(X) and [y] thus has degree dm. Therefore the honest shares of [y] are
not on a d-polynomial, and thus some dispute will be generated. It follows that
when no dispute is generated, then all the sharings dealt by Pi are d-consistent,
except with probability poly(κ)2−κ. This in particular applies to the sharings
[y1], . . . , [y�].

As for the privacy, note that when Pi is honest,
∑�

l=1 xl[yl] is a d-sharing over
G and [r] is an independent uniformly random d-sharings over G of a uniformly
random r ∈R G. Therefore [y] is a uniformly random d-sharing over G and leaks
no information to the corrupted parties when reconstructed.

If the protocol Share(Pi, Disputes) fails, it is rerun using the new larger
Disputes′. Since Disputesi grows by at least 1 in each failed attempt, at most
t failed attempts will occur. So, if ��/t� values are shared in each attempt, the
total number of attempts needed to share � values will be 2t. Since each attempt
has communication complexity O(��/t�nk) + poly(nκ) the total complexity is
O(�nk) + poly(nκ), where poly(nκ) covers the cost of the n broadcasts and the
run of Flip() in each attempt. The round complexity is O(t).

Dealing Inter-Consistent Sharings. The above procedure allows a party Pi

to deal a number of consistent d-sharings. This can easily be extend to allow a
party Pi to deal consistent t-sharings [y1], . . . , [y�] and 2t-sharings 〈Y1〉, . . . , 〈Y�〉
with Yl = yl. The check uses a random t-sharing [r] and a random 2t-sharing
〈R〉 with R = r, and then [y] = [r] +

∑�
l=1 xl[yl] and 〈Y 〉 = 〈R〉 +

∑�
l=1 xl[Yl]

are opened as above. In addition to the sharings being t-consistent (respectively
2t-consistent), it is checked that Y = y. Note that if R = r and Xl = xl, then
indeed Y = y. On the other hand, if R �= r or some Xl �= xl, then Y − y =
(R−r)+

∑�
l=1 xl(Yl −yl) is different from 0 except with probability �/|G|, giving

a soundness error of poly(κ)2−κ.

4.5 Random Double Sharings

Recall that the purpose of this protocol is to generate a set of random values that
are unknown to all parties and are both t- and 2t-shared. The robust protocol
for this is derived directly from the passive secure protocol, and we also denote it
by Double-Random(�). The only difference between the two is that the above
robust procedure for dealing inter-consistent sharings is used as subprotocol. To
generate � double sharings, first each party deals ��/(n − t)� random pairs using
the procedure for dealing inter-consistent sharings. Then the first pair from each
party is used to compute n−t pairs as in the passive secure Double-Random(�),

using a matrix Van(n,n−t)�. At the same time the second pairs from each party is
used to compute n− t more pairs, and so on. This yields a total of (n− t)��/(n−
t)� ≥ � pairs. The communication complexity is O(�nk) + poly(nκ).



584 I. Damg̊ard and J.B. Nielsen

4.6 Opening Sharings

We describe how sharings are opened. We assume that the sharings to be opened
are consistent d-sharings of the same degree d ≤ 2t. Reconstruction of a single
sharing happens by sending all shares to some king, which then reconstructs.
Since the sharing is d-consistent, the king receives at least n − t > 3t = d + t
correct sharings and at most t incorrect sharings. Therefore the king can always
compute the d-polynomial f(X) of the sharing using Berlekamp-Welch. The
details are given in Fig. 8.

1. The parties agree on a consistent d-sharings [x] with d ≤ 2t.
2. Each Pi ∈ P : Send the share xi of [x] to Pking.
3. Pking: Run Berlekamp-Welch on the received shares to get x, and send x to all

parties.

Fig. 8. Open(Pking, d, [x])

The protocol in Fig. 8 has the obvious flaw that Pking could send an incorrect
value. This is handled by expanding n − (2t + 1) sharings to n sharings using a
linear error correcting code tolerating t errors. Then each Pi opens one sharing,
and the possible t mistakes are removed by error correction. The details are given
in Fig. 9.

1. The parties agree on consistent d-sharings [x1], . . . , [x�] with � = n − (2t + 1)
and d ≤ 2t.

2. All parties: Compute ([y(1)], . . . , [y(n)]) = M([x1], . . . , [x�]), where M =
Van(n,�).

3. All parties: For each Pi ∈ P in parallel, run y(i) ← Open(Pi, d, [y(i)]).
4. All parties: Run Berlekamp-Welch on the values (y(1), . . . , y(n)) to get

(x1, . . . , x�).

Fig. 9. OpenRobust(d, [x1], . . . , [x�])

The communication complexity of opening � = n − (2t + 1) values is O(n2k),
giving an amortized communication complexity of O(nk) per reconstruction. An
arbitrary � sharings can thus be reconstructed with communication complexity
O(�nk + n2k).

4.7 Circuit Evaluation

We now have robust protocols Double-Random (and thus Random) and
OpenRobust. This allows to implement a robust version of Triples exactly as
in Fig. 4. Then a robust preprocessing can be run exactly as in Fig. 5. This in



Scalable and Unconditionally Secure Multiparty Computation 585

turn almost allows to run a robust circuit-evaluation as in Fig. 6. Note in par-
ticular that since all sharings computed during the circuit evaluation are linear
combinations of sharings constructed in the preprocessing, all sharings will be
consistent t-sharings. Therefore Berlekamp-Welch can continuously be used to
compute the openings of such sharings. Indeed, the only additional complication
in running Eval(Circ) is in Step 2 in input, where it must be ensured that Pj

sends the same δgid to all parties. This is handled by distributing all δgid using
n parallel broadcasts (each Pj broadcast all its δgid in one message).

Since an �-bit message can be broadcast with communication complexity
O(�) + poly(nκ) (see [FH06]), the communication complexity of handling the
input gates will be O(�ink) + poly(nκ), where �i is the number of input gates.
The communication complexity of handling the remaining gates is seen to be
O(nCk + (D + 1)n2k) + poly(nκ), where C = | Circ | and D is the multiplicative
depth of the circuit. The term (D+1)n2k comes from the fact that OpenRobust

is run for each layer of multiplication gates and run once to handle the output
gates in parallel. If we sum the above with the communication complexity of
the preprocessing phase we get a communication complexity of O(nCk + (D +
1)n2k) + poly(nκ). The round complexity is O(t + D + 1), where t comes from
running the robust sharing protocol.

5 Robust, t < n/3

We sketch how the case t < n/3 is handled. Assume first that a preprocessing
phase has been run where the ”usual” consistent t-sharings have been associated
to each gate. Since t < n/3 it follows that there are at least 2t + 1 honest shares
in each sharing. Therefore Berlekamp-Welch can be used to reconstruct these t-
sharings. Since the circuit-evaluation phase consists only of opening t-sharings,
it can thus be run exactly as in the case t < n/4.

The main problem is therefore to establish the preprocessed t-sharings. The
protocol Share can be run as for t < n/4 as can then Double-Random.
Going over Triples it thus follows that the only problematic step is D ←
Open(2t, 〈D〉), where a sharing of degree 2t is opened. Since there are only
2t + 1 honest parties, Berlekamp-Welch cannot be used to compute D in Step 3
in Fig. 8. An honest party Pking can therefore find itself not being able to con-
tribute correctly to the reconstruction. This is handled by ensuring that when
this happens, then Pking can complain and the parties together identify a new
dispute.

In more detail, when Pking is to reconstruct some 2t-sharing 〈y〉 as part of
the run of Open in Triples (Fig. 4), then Pking collects shares yj from each
Pj ∈ Agreeking.

4 If these shares are on some 2t-polynomial D(X) ∈ F[X ], then
Pking sends D(0) to all parties. Otherwise some Pj ∈ Agreeking sent an incorrect
yj . This is used to find a new dispute, as detailed in Fig. 10.

4 Pking can safely ignore Dj from Pj ∈ Disputesking as Pking knows that these Pj are
corrupted.



586 I. Damg̊ard and J.B. Nielsen

0. Assume that Pking was reconstructing some 2t-sharing 〈y〉 as part of the opening
in Triples (Fig. 4), and assume that the shares yj for Pj ∈ Agreeking are 2t-
inconsistent.

1. Each Pj ∈ Honest: Broadcast all the shares sent and received during Random

and Double-Random.a At the same time Pking broadcasts the 2t-inconsistent
shares 〈y〉.

2. All parties: If some Pj ∈ Honest claims to have sent sharings which do not have
the correct degree, then add Pj to Corrupt and terminate. Otherwise, if some
Pi and Pj disagree on a share R

(i)
j sent from Pi to Pj , then add the dispute

Pi � Pj .b Otherwise, proceed as below.
3. All parties: Compute from the broadcast sharings the 2t-sharing 〈y′〉 that Pking

was reconstructing. Since 〈y′〉 is 2t-consistent and 〈y〉 is 2t-inconsistent on
Agreeking, there exists Pi ∈ Agreeking where y′

i �= yi. For each such Pi, add
the dispute Pking � Pi.c

a This is secure as the secret inputs did not enter any computation yet in the
preprocessing phase.

b Note that the dispute will be new, as Pi � Pj implies that R
(i)
j is defined to be

0, and thus no dispute can arise.
c The dispute is new as Pi ∈ Agreeking. Note that we cannot add Pi to Corrupt,

as Pking could be lying about yi.

Fig. 10. Detect-Dispute

The protocol in Fig. 10 can be greatly optimized, using a more involved pro-
tocol avoiding many of the broadcasts. However, already the simple solution
has communication complexity poly(nκ). Since the protocol always leads to
a new dispute and at most O(t2) disputes are generated in total, it follows
that the protocol contributes with a term poly(nκ) to the overall communica-
tion complexity. This gives us a robust protocol with communication complexity
O(nCk + (D + 1)n2k) + poly(nκ) for the case t < n/3.

6 Robust, t < n/2

It is yet an open problem to get an unconditionally secure protocol with linear
communication complexity for the case t < n/2. One can however construct a
protocol withstanding a computationally bounded adversary during the protocol
and a computationally unbounded adversary after the protocol execution. Due
to space limitations we can only sketch the involved ideas.

Transferable Secret Sharing. To allow some Pking to reconstruct a sharing
and, verifiably, transfer the result to the other parties, each t-sharing [x] is aug-
mented by a Pedersen commitment C = commit(x; r), known by all parties, and
the randomness r is shared as [r]. We write [[x]] = (C, [x], [r]). In the preprocess-
ing, each Pj generates many random t-sharings [[x]] and corresponding, normal



Scalable and Unconditionally Secure Multiparty Computation 587

2t-sharings 〈x〉, where Pi ∈ Disputesj get xi = ri = 0. By committing using a
group of prime order q and secret sharing in GF(q), the sharings [[x]] = (C, [x], [r])
are linear modulo q, and the usual protocols can be used for checking consistency
of sharings and for combining random sharings using a Van der Monde matrix
(Sec. 4.4 and 4.5). When a consistency check fails, a new dispute is identified
using a technique reminiscent of that used when t < n/3, but slightly more in-
volved. Then a new attempt is made at generating random shared values. The
total overhead of identifying disputes is kept down by generating the random
shared values in phases, each containing a limited number of sharings.

Multiplication Triples. After enough pairs ([[xl]], 〈xl〉) have been generated, a
multiplication protocol to be described below is run to generate multiplication
triples. Generation of triples are done in n sequential phases, where for efficiency
checks for correct behavior are done simultaneously for all triples in a phase.

The input to the generation of a multiplication triple is sharings [[a]], [[b]], [[r]],
〈r〉, [[b̃]], [[r̃]], 〈r̃〉. The parties compute their shares in [a][b]+ 〈r〉, [a][b̃]+ 〈r̃〉, send
these to a selected party Pking, who reconstructs values D, respectively D̃, and
sends these values to all players. Players now compute [[c]] = D − [[r]] and [[c̃]] =
D̃−[[r̃]]. For simplicity we assume that 2t+1 = n, in which case the shares received
by Pking will always be 2t-consistent. Hence even an honest Pking might be tricked
into reconstructing wrong D and D̃, this problems is handled below. Also, a
dishonest Pking may distribute inconsistent values for D, D̃. We therefore run the
share consistency check from Sec. 4.4 over all [[c]], [[c̃]] in the current phase and
disqualify Pking if it fails. Now the (supposed) multiplication triples ([[a]], [[b]], [[c]])
and ([[a]], [[b̃]], [[c̃]]) are checked. First a uniformly random value X ∈R GF(q) is
flipped. Then it is checked that ([[a]], [[b̃]] + X [[b]], [[c̃]] + X [[c]]) is a multiplication
triple: Compute b = Open([[b̃]]+X [[b]]), compute d = Open([[a]]b− ([[c̃]]+X [[c]])),
and check that d = 0. If d = 0, then ([[a]], [[b]], [[c]]) is taken to be the generated
triple. Here Open refers to the reconstruction procedure described below, which
either disqualifies Pking or lets at least one honest player compute d plus a proof
that it is correct. He can therefore alert all parties if d �= 0.

For efficiency the same X is used for all checks done in the same phase. If
d �= 0, then all messages sent and received during the multiplication and the
generating of the sharings involved in the multiplication are broadcast and some
new dispute is found. Since O(1) sharings are involved in multiplication, each
being a linear combination of at most O(n) sharings, at most O(n) sharings are
broadcast to find a dispute. Since at most t2 disputes are generated, the total
overhead is thus independent of the circuit size.

Reconstructing. As usual, the evaluation phase proceeds by computing affine
combinations of the t-sharings [[x]] generated in the preprocessing and by opening
such sharings. All that we need is thus a protocol for opening such t-sharings.
From a beginning some fixed reconstructor Pking ∈ Honest is chosen. In a recon-
struction of [[x]] = (C, [x], [r]), each Pi sends (xi, ri) to Pking, who computes (x, r)



588 I. Damg̊ard and J.B. Nielsen

and sends (x, r) to all parties. The receivers can check that C = commit(x; r).
If the shares received by Pking are not t-consistent, then Pking complains and
a special protocol Find-Corrupt-Share is run to remove some corrupted
party from Honest. The details of how Find-Corrupt-Share identifies a new
corrupted party from the incorrect shares is rather involved, and the details
will be given in the full version due to space limitations. Most important is
that the communication complexity of Find-Corrupt-Share is bounded by
O(| Circ |k) + poly(nκ). Since each run of Find-Corrupt-Share removes one
new party from Honest, it is run at most t = O(n) times, giving a total over-
head of at most O(| Circ |nk)+poly(nκ). The procedure Find-Corrupt-Share

will be run until Pking sees that the shares (xi, ri) from parties in Honest are
t-consistent. At this point Pking can then interpolate (x, r) and send it to all
parties. The above procedure always allows an honest Pking to compute (x, r)
and send it to all parties, maybe after some runs of Find-Corrupt-Share.
A party Pi not receiving (x, r) such that C = commit(x; r) therefore knows
that Pking is corrupt. If Pi does not receive an opening it therefore signs the
message “Pi disputes Pking” and sends it to all parties. All parties receiving
“Pi disputes Pking” signed by Pi adds the dispute Pi � Pking and sends the
signed “Pi disputes Pking” to all parties. Any party which at some point sees
that Pking has more than t disputes stops the execution. Then Pking is removed
from Honest, and some fresh Pking ∈ Honest is chosen to be responsible for
reconstructing the sharings. Then the computation is restarted. When a new
reconstructor Pking is elected, all gates that the previous reconstructor have
(should have) handled might have to be reopened by the new Pking. To keep the
cost of this down, each reconstructor will handle only O(| Circ |/n) gates before
a new reconstructor is picked.

Distributing Results. At the end of the evaluation, each sharing [[y]] associated
to an output gate has been opened by some Pking which was in Honest at the end
of his reign. This means that Pking was, at the end of his reign, disputed by at
most t parties, which in turn implies that at least one of the t + 1 honest parties
holds the opening of the [[y]] handled by Pking. But it is not guaranteed that all
honest parties hold the opening. Therefore, each Pi ∈ Honest is made responsible
for O/| Honest | of the O output sharings [[y]]. All parties holding an opening of
[[y]] for which Pi is responsible sends the opening to Pi; At least the one honest
party will do so, letting Pi learn all openings. Then each Pi sends the opening of
each [[y]] for which it is responsible to all parties. The total communication for
this is O(Onk). Since there is honest majority in Honest, all parties now hold the
opening of more than half the outputs, and they know which ones are correct.
To ensure that this is enough, a Van der Monde error correction code is applied
to the outputs before distribution. This is incorporated into the circuit, as a
final layer of affine combinations. The only cost of this is doubling the number
of output gates in the circuit. Note that the code only has to correct for erasures
and hence can work for t < n/2.



Scalable and Unconditionally Secure Multiparty Computation 589

References

[BB89] Bar-Ilan, J., Beaver, D.: Non-cryptographic fault-tolerant computing in
constant number of rounds of interaction. In: PODC’89, pp. 201–209 (1989)

[Bea89] Beaver, D.: Multiparty protocols tolerating half faulty processors. In: Bras-
sard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 560–572. Springer, Hei-
delberg (1990)

[Bea91] Beaver, D.: Efficient multiparty protocols using circuit randomization.
In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432.
Springer, Heidelberg (1992)

[BFKR90] Beaver, D., Feigenbaum, J., Kilian, J., Rogaway, P.: Security with low com-
munication overhead (extended abstract). In: Menezes, A.J., Vanstone,
S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 62–76. Springer, Heidel-
berg (1991)

[BGW88] Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for
non-cryptographic fault-tolerant distributed computation (extended ab-
stract). In: 20th STOC, pp. 1–10 (1988)

[BH06] Beerliova-Trubiniova, Z., Hirt, M.: Efficient multi-party computation with
dispute control. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876,
pp. 305–328. Springer, Heidelberg (2006)

[BMR90] Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure pro-
tocols (extended abstract). In: 22nd STOC, pp. 503–513 (1990)

[Can01] Canetti, R.: Universally composable security: A new paradigm for crypto-
graphic protocols. In: 42nd FOCS, pp. 136–145 (2001)

[CCD88] Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure
protocols (extended abstract). In: 20th STOC, pp. 11–19 (1988)

[CDD+99] Cramer, R., Damg̊ard, I., Dziembowski, S., Hirt, M., Rabin, T.: Efficient
multiparty computations secure against an adaptive adversary. In: Stern,
J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 311–326. Springer, Hei-
delberg (1999)

[CDD00] Cramer, R., Damg̊ard, I., Dziembowski, S.: On the complexity of verifiable
secret sharing and multiparty computation. In: 32nd STOC, pp. 325–334
(2000)

[CDG87] Chaum, D., Damg̊ard, I., van de Graaf, J.: Multiparty computations ensur-
ing privacy of each party’s input and correctness of the result. In: Pomer-
ance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 87–119. Springer, Hei-
delberg (1988)

[CDM00] Cramer, R., Damg̊ard, I., Maurer, U.: General secure multi-party compu-
tation from any linear secret-sharing scheme. In: Preneel, B. (ed.) EURO-
CRYPT 2000. LNCS, vol. 1807, pp. 316–334. Springer, Heidelberg (2000)

[DI06] Damg̊ard, I., Ishai, Y.: Scalable secure multiparty computation. In: Dwork,
C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 501–520. Springer, Heidel-
berg (2006)

[FH06] Fitzi, M., Hirt, M.: Optimally efficient multi-valued byzantine agreement.
In: PODC 2006 (2006)

[GMW87] Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or
a completeness theorem for protocols with honest majority. In: 19th STOC
(1987)

[GRR98] Gennaro, R., Rabin, M., Rabin, T.: Simplified VSS and fast-track multi-
party computations with applications to threshold cryptography. In:
PODC’98 (1998)



590 I. Damg̊ard and J.B. Nielsen

[GV87] Goldreich, O., Vainish, R.: How to solve any protocol problem - an ef-
ficiency improvement. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS,
vol. 293, pp. 73–86. Springer, Heidelberg (1988)

[HM01] Hirt, M., Maurer, U.: Robustness for free in unconditional multi-party
computation. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp.
101–118. Springer, Heidelberg (2001)

[HMP00] Hirt, M., Maurer, U.M., Przydatek, B.: Efficient secure multi-party com-
putation. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp.
143–161. Springer, Heidelberg (2000)

[HN05] Hirt, M., Nielsen, J.B.: Upper bounds on the communication complexity
of optimally resilient cryptographic multiparty computation. In: Roy, B.
(ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 79–99. Springer, Heidelberg
(2005)

[HN06] Hirt, M., Nielsen, J.B.: Robust multiparty computation with linear com-
munication complexity. In: Dwork, C. (ed.) CRYPTO 2006. LNCS,
vol. 4117, pp. 463–482. Springer, Heidelberg (2006)

[RB89] Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols
with honest majority. In: 21th STOC, pp. 73–85.

[Yao82] Yao, A.C.-C.: Protocols for secure computations (extended abstract). In:
23rd FOCS.



On Secure Multi-party Computation in
Black-Box Groups

Yvo Desmedt1,�, Josef Pieprzyk2, Ron Steinfeld2, and Huaxiong Wang2,3

1 Dept. of Computer Science, University College London, UK
2 Centre for Advanced Computing – Algorithms and Cryptography (ACAC)

Dept. of Computing, Macquarie University, North Ryde, Australia
3 Division of Math. Sci., Nanyang Technological University, Singapore

{josef,rons,hwang}@comp.mq.edu.au, hxwang@ntu.edu.sg

Abstract. We study the natural problem of secure n-party computa-
tion (in the passive, computationally unbounded attack model) of the
n-product function fG(x1, . . . , xn) = x1 · x2 · · · xn in an arbitrary finite
group (G, ·), where the input of party Pi is xi ∈ G for i = 1, . . . , n.
For flexibility, we are interested in protocols for fG which require only
black-box access to the group G (i.e. the only computations performed
by players in the protocol are a group operation, a group inverse, or
sampling a uniformly random group element).

Our results are as follows. First, on the negative side, we show that if
(G, ·) is non-abelian and n ≥ 4, then no �n/2�-private protocol for com-
puting fG exists. Second, on the positive side, we initiate an approach
for construction of black-box protocols for fG based on k-of-k thresh-
old secret sharing schemes, which are efficiently implementable over any
black-box group G. We reduce the problem of constructing such pro-
tocols to a combinatorial colouring problem in planar graphs. We then
give two constructions for such graph colourings. Our first colouring con-
struction gives a protocol with optimal collusion resistance t < n/2, but
has exponential communication complexity O(n

�2t+1
t

�2) group elements
(this construction easily extends to general adversary structures). Our
second probabilistic colouring construction gives a protocol with (close
to optimal) collusion resistance t < n/μ for a graph-related constant
μ ≤ 2.948, and has efficient communication complexity O(nt2) group
elements. Furthermore, we believe that our results can be improved by
further study of the associated combinatorial problems.

Keywords: Multi-Party Computation, Non-Abelian Group, Black-Box,
Planar Graph, Graph Colouring.

1 Introduction

Background. Groups form a natural mathematical structure for cryptography.
In particular, the most popular public-key encryption schemes today (RSA [17]
� A part of this research was funded by NSF ANI-0087641, EPSRC EP/C538285/1.

Yvo Desmedt is BT Chair of Information Security.

A. Menezes (Ed.): CRYPTO 2007, LNCS 4622, pp. 591–612, 2007.
c© International Association for Cryptologic Research 2007



592 Y. Desmedt et al.

and Diffie-Hellman/ElGamal [8,9]) both operate in abelian groups. However, the
discovery of efficient quantum algorithms for breaking these cryptosystems [19]
gives increased importance to the construction of alternative cryptosystems in
non-abelian groups (such as [13,15]), where quantum algorithms seem to be much
less effective.

Motivated by such emerging cryptographic applications of non-abelian groups,
we study the natural problem of secure n-party computation (in the passive, com-
putationally unbounded attack model) of the n-product function fG(x1, . . . , xn)
= x1 · x2 · · ·xn in an arbitrary finite group (G, ·), where the input of party Pi

is xi ∈ G for i = 1, . . . , n. For flexibility, we are interested in protocols for fG

which require only black-box access to the group G (i.e. the only computations
performed by players in the protocol are a group operation (x, y) → x · y, a
group inverse x → x−1, or sampling a random group element x ∈R G). It is well
known that when (G, ·) is abelian, a straightforward 2-round black-box protocol
exists for fG which is t-private (secure against t parties) for any t < n and has
communication complexity O(n2) group elements. However, to our knowledge,
when (G, ·) is non-abelian, no constructions of black-box protocols for fG have
been designed until now. Consequently, to construct a t-private protocol for fG

in some non-abelian group G one currently has to resort to adopting existing non
black-box methods, which may lead to efficiency problems (see ‘Related Work’).

Our Results. Our results are as follows. First, on the negative side, we show
that if (G, ·) is non-abelian and n ≥ 4, then no �n/2�-private protocol for com-
puting fG exists. Second, on the positive side, we initiate an approach for con-
struction of black-box protocols for fG based only on k-of-k threshold secret
sharing schemes (whereas previous non black-box protocols rely on Shamir’s t-
of-n threshold secret sharing scheme over a ring). We reduce the problem of con-
structing such protocols to a combinatorial colouring problem in planar graphs.
We then give two constructions for such graph colourings. Our first colouring
construction gives a protocol with optimal collusion resistance t < n/2, but has
exponential communication complexity O(n

(
2t+1

t

)2
) group elements (this con-

struction also easily generalises to general Q2 adversary structures A as defined
in [11], giving communication complexity O(n|A|2) group elements). Our sec-
ond probabilistic colouring construction gives a protocol with (close to optimal)
collusion resistance t < n/μ for a graph-related constant μ ≤ 2.948, and has effi-
cient communication complexity O(nt2) group elements. Furthermore, we believe
that our results can be improved by further study of the associated combinator-
ial problems. We note that our protocols easily and naturally generalize to other
arbitrary functions defined over the group G.

Related Work. There are two known non black-box methods for construct-
ing a t-private protocol for the n-product function fG for any t < n/2. They
are both based on Shamir’s t-of-n threshold secret sharing scheme [18] and its
generalizations.

The first method [3,4,10] requires representing fG as a boolean circuit, and
uses Shamir’s secret sharing scheme over the field GF (p) for a prime p > 2t+ 1.
This protocol has total communication complexity O(t2 log t · NAND(fG)) bits,



On Secure Multi-party Computation in Black-Box Groups 593

where NAND(fG) denotes the number of AND gates in the boolean AND/NOT
circuit for computing fG. Thus this protocol is efficient only for very small groups
G, for which NAND(fG) is manageable.

The second method [5] (see also [2] for earlier work) requires representing fG as
an arithmetic circuit over a finite ring R, and accordingly, uses a generalization
of Shamir’s secret sharing scheme to any finite ring. This protocol has total
communication complexity O(t2 log t ·NM (fG) · �(R)) bits, where NM (fG) is the
number of multiplication operations in the circuit for fG over R and �(R) ≥
log |R| denotes the number of bits needed for representing elements of R. If we
‘embed’ group G in the ring R = R(G), so that R inherits the multiplication
operation of G, then NM (fG) = n − 1, and hence the protocol from [5] has
total communication complexity O(nt2 log t · �(R(G))) bits, compared to O(nt2 ·
�(G)) bits for our (second) protocol (assuming t < n/2.948), where �(G) ≥
log |G| is the representation length of elements of G. Hence, for t < n/2.948,
the communication complexity of our protocol for fG is smaller than the one
from [5] by a factor Θ( �(R(G))

�(G) · log t) (for n/2.948 < t < n/2, the protocol
of [5] is still asymptotically the most efficient known proven protocol). Note
that, for any finite group G, we can always take R(G) to be the group algebra
(or group ring) of G over GF (2), which can be viewed as a |G|-dimensional
vector space over GF (2) consisting of all linear combinations of the elements
of G (the basis vectors) with coefficients from GF (2) (the product operation of
R(G) is defined by the operation of G extended by linearity and associativity,
and the addition operation of R(G) is defined componentwise). However, for this
generic choice of R(G) we have �(R(G)) = |G|, so, assuming �(G) = log |G|, our
protocol reduces communication complexity by a factor Θ( |G|

log |G| · log t), which
is exponentially large in the representation length log |G|. In the worst case, we
may have �(R(G)) = Θ(�(G)) and our protocol may only give a saving factor
O(log t) over the protocol from [5], e.g. this is the case for G = GL(k, 2) (the
group of invertible k × k matrices over GF (2)). We remark that this O(log t)
saving factor arises essentially from the fact that Shamir’s secret sharing for 2t+1
shares requires a ring of size greater than 2t + 1, and hence, for a secret from
GF (2), the share length is greater than the secret length by a factor Θ(log t)
(whereas our approach does not use Shamir’s sharing and hence does not suffer
from this length expansion). On the other hand, for sharing a secret from GF (q)
for ‘large’ q (q > 2t + 1), Shamir’s scheme is ideal, so for specific groups such as
G = GL(k, q) with q > 2t+1, the communication cost of the protocols from [2,5]
reduces to O(nt2 · �(R(G))).

Organization. The paper is organized as follows. Section 2 contains defini-
tions and results we use. In Section 3 we show that t < n/2 is necessary for
secure computation of fG. In Sections 4.2 and 4.3 we show how to construct a
t-private protocol for fG given a ‘t-Reliable’ colouring of a planar graph. Then in
Section 4.4, we present two constructions of such t-Reliable colourings. Finally,
Section 4.5 summarizes some generalizations and extensions, and Section 5 con-
cludes with some open problems. Some proofs are omitted from this version of
the paper due to space limitations – they are available in the full version [6].



594 Y. Desmedt et al.

2 Preliminaries

We recall the definition of secure multi-party computation in the passive (semi-
honest), computationally unbounded attack model, restricted to deterministic
symmetric functionalities and perfect emulation [10]. Let [n] denote the set
{1, . . . , n}.

Definition 1. Let f : ({0, 1}∗)n → {0, 1}∗ denote an n-input, single-output
function, and let Π be an n-party protocol for computing f . We denote the party
input sequence by x = (x1, . . . , xn), the joint protocol view of parties in subset
I ⊆ [n] by VIEWΠ

I (x), and the protocol output by OUTΠ(x). For 0 < t < n, we
say that Π is a t-private protocol for computing f if there exists a probabilistic
polynomial-time algorithm S, such that, for every I ⊂ [n] with #I ≤ t and every
x ∈ ({0, 1}∗)n, the random variables

〈S(I,xI , f(x)), f(x)〉 and 〈VIEWΠ
I (x), OUTΠ(x)〉

are identically distributed, where xI denotes the projection of the n-ary sequence
x on the coordinates in I.

To prove our result we will invoke a combinatorial characterization of 2-input
functions for which a 1-private 2-party computation protocol exists, due to
Kushilevitz [12]. To state this result, we need the following definitions.

Definition 2. Let M = C ×D be a matrix, where C is the set of rows and D is
the set of columns. Define a binary relation ∼ on pairs of rows of M as follows:
x1, x2 ∈ C satisfy x1 ∼ x2 if there exists y ∈ D such that Mx1,y = Mx2,y. Let ≡
denote the equivalence relation on the rows of M which is the transitive closure
of ∼. Similarly, we define ∼ and ≡ on the columns of M .

Definition 3. A matrix M is called forbidden if all its rows are equivalent, all
its columns are equivalent, and not all entries of M are equal.

Definition 4. Let f : {0, 1}n×{0, 1}n → {0, . . . , m−1} be any 2-input function.
A matrix M for f is a 2n × 2n matrix with entries in {0, . . . , m − 1}, where
each row x of f corresponds to a value for the first input to f , each column y
corresponds to a value for the second input to f , and the entry Mx,y contains
the value f(x, y).

Theorem 1 (Kushilevitz [12]). Let f be a 2-input function and let M be a
matrix for f . Then a 1-private 2-party protocol for computing f exists if and
only if M does not contain a forbidden submatrix.

3 Honest Majority Is Necessary for n-Product in
Non-abelian Groups

We show that an honest majority t < n/2 is necessary for secure computation
of the n-product function in non-abelian groups.



On Secure Multi-party Computation in Black-Box Groups 595

Theorem 2. Let (G, ·) denote a finite non-abelian group and let n ≥ 4. There
does not exist a

⌈
n
2

⌉
-private protocol for computing fG(x1, . . . , xn) = x1·x2 · · · xn.

Proof. The proof proceeds by contradiction; we show that if a
⌈

n
2

⌉
-private proto-

col Π exists for fG for n ≥ 4, then we can construct a 1-private 2-party protocol
for a 2-input function f ′G whose matrix M ′ contains a forbidden submatrix, thus
contradicting Theorem 1.

Lemma 1. Suppose there exists a
⌈

n
2

⌉
-private n-party protocol Π for computing

the n-input function fG : Gn → G defined by fG(x1, . . . , xn) = x1 · · · xn for n ≥
4. Then we can construct a 1-private 2-party protocol Π ′ for computing the 2-
input function f ′G : G2×G2 → G defined by f ′G((x′1, x

′
3), (x

′
2, x
′
4)) = x′1 ·x′2 ·x′3 ·x′4.

Proof. Given party P ′1 with input (x′1, x
′
3) and party P ′2 with input (x′2, x

′
4), the

protocol Π ′ runs as follows. First, if n ≥ 5, we partition the set {5, . . . , n} into
two disjoint subsets S′1 and S′2 such that the size of both S′1 and S′2 is at most⌈

n
2

⌉
− 2 (namely, if n is even we take #S′1 = #S′2 = n/2 − 2, and if n is odd

we take #S′1 = (n − 3)/2 and #S′2 = (n − 5)/2). Then Π ′(P ′1, P ′2) consists of
running the n-party protocol Π(P1, . . . , Pn) where:

– P ′1 plays the role of parties (P1, P3, {Pi}i∈S′
1
) in Π , and sets those parties

inputs to be x1 = x′1, x3 = x′3, and xi = 1 for all i ∈ S′1, respectively.
– P ′2 plays the role of parties (P2, P4, {Pi}i∈S′

2
) in Π , and sets those parties

inputs to be x2 = x′2, x4 = x′4 and xi = 1 for all i ∈ S′2, respectively.

The 1-privacy of protocol Π ′(P ′1, P ′2) for computing f ′G follows from the
⌈

n
2

⌉
-

privacy of protocol Π(P1, . . . , Pn) for computing fG because:

– fG(x′1, x
′
2, x
′
3, x
′
4, 1, . . . , 1) = f ′G(x′1, x

′
2, x
′
3, x
′
4) = x′1 · x′2 · x′3 · x′4 for all

x′1, x
′
2, x
′
3, x
′
4 ∈ G.

– For each (x′1, x
′
2, x
′
3, x
′
4), the view of P ′1 (resp. P ′2) in protocol Π ′(P ′1, P

′
2) is

identical to the view of a set of at most
⌈

n
2

⌉
parties in protocol Π(P1, . . . , Pn)

whose inputs are known to P ′1 (resp. P ′2), with special settings of 1 for some
inputs. Thus the same view simulator algorithm S of Π can be used to
simulate the view in Π ′.

This completes the proof. ��

Lemma 2. For any non-abelian group G, the matrix M for the 2-input function
f ′G : G2 × G2 → G defined by f ′G((x′1, x

′
3), (x

′
2, x
′
4)) = x′1 · x′2 · x′3 · x′4 contains a

2 × 2 forbidden submatrix.

Proof. Observe from Definitions 2 and 3 that any 2 × 2 matrix with 3 equal
elements and a fourth distinct element is a forbidden matrix. Now recall that
the rows of matrix M for f ′G are indexed by (x′1, x

′
3) ∈ G2, the columns of M

are indexed by (x′2, x′4) ∈ G2, and the entry of M at row (x′1, x′3) and column
(x′2, x

′
4) is M(x′

1,x′
3),(x

′
2,x′

4)
= x′1 · x′2 · x′3 · x′4. Also, since G is non-abelian, there

exist a pair of elements a and b in G such that a and b do not commute and
a, b �= 1. Consider the 2 × 2 submatrix of M formed by the intersections of



596 Y. Desmedt et al.

the 2 rows (1, 1) and (a, a−1) and the 2 columns (1, 1) and (b, b−1) (these row
and column pairs are distinct because a, b �= 1). We claim that this submatrix is
forbidden. Indeed, three of the submatrix entries are equal because M(1,1),(1,1) =
M(a,a−1),(1,1) = M(1,1),(b,b−1) = 1, and the remaining fourth entry is distinct
because M(a,a−1),(b,b−1) = a · b · a−1 · b−1 = (a · b) · (b · a)−1 �= 1 since a and b do
not commute. This completes the proof. ��

Combining Lemma 1 and Lemma 2, we conclude that if a
⌈

n
2

⌉
-private protocol

Π exists for fG for n ≥ 4, then we obtain a contradiction to Theorem 1. This
completes the proof. ��

4 Constructions

4.1 Our Approach: Black Box Non-abelian Group Protocols

Our protocols will treat the group G as a black box in the sense that the only
computations performed by players in our protocols will be one of the following
three: Multiply (Given x ∈ G and y ∈ G, compute x · y), Inverse (Given x ∈ G,
compute x−1), and Random Sampling (Choose a uniformly random x ∈ G).
It is easy to see that these three operations are sufficient for implementing a
perfect k-of-k threshold secret sharing scheme. We use this k-of-k scheme as a
fundamental building block in our protocols. The following proposition is easy
to prove.

Proposition 1. Fix x ∈ G and integers k and j ∈ [k], and suppose we cre-
ate a k-of-k sharing (sx(1), sx(2), . . . , sx(k)) of x by picking the k − 1 shares
{sx(i)}i∈[k]\{j} uniformly and independently at random from G, and computing
sx(j) to be the unique element of G such that x = sx(1)sx(2) · · · sx(k). Then the
distribution of the shares (sx(1), sx(2), . . . , sx(k)) is independent of j.

4.2 Construction of n-Product Protocol from a Shared 2-Product
Subprotocol

We begin by reducing the problem of constructing a t-private protocol for the
n-product function f(x1, . . . , xn) = x1 · · ·xn (where party Pi holds input xi for
i = 1, . . . , n), to the problem of constructing a subprotocol for the Shared 2-
Product function f ′(x, y) = x · y, where inputs x, y and output z = x · y are
shared among the parties. We define for this subprotocol a so-called strong t-
privacy definition, which will be needed later to prove the (standard) t-privacy of
the full n-product protocol built from subprotocol ΠS . The definition of strong
t-privacy requires the adversary’s view simulator to simulate all output shares
except one share not held by the adversary, in addition to simulating the internal
subprotocol view of the adversary.

Definition 5 (Shared n-Party 2-Product Subprotocol). A n-Party Shared
2-Product subprotocol ΠS with sharing parameter � and share ownership func-
tions Ox, Oy, Oz : [�] → [n] has the following features:



On Secure Multi-party Computation in Black-Box Groups 597

– Input: For j = 1, . . . , �, party POx(j) holds jth share sx(j) ∈ G of x and party
POy(j) holds jth share sy(j) ∈ G of y, where sx = (sx(1), sx(2), . . . , sx(�))

and sy = (sy(1), sy(2), . . . , sy(�)) denote �-of-� sharing of x
def= sx(1) ·

sx(2) · · · sx(�) and y
def= sy(1) · sy(2) · · · sy(�), respectively.

– Output: For j = 1, . . . , �, party POz(j) holds jth share sz(j) of output product

z
def= sz(1) · · · sz(�).

– Correctness: We say that that ΠS is correct if, for all protocol inputs sx =
(sx(1), sx(2), . . . , sx(�)) and sy = (sy(1), sy(2), . . . , sy(�)), the output shares
sz = (sz(1), sz(2), . . . , sz(�)) satisfy

z = x · y

where x
def= sx(1) · sx(2) · · · sx(�), y

def= sy(1) · sy(2) · · · sy(�) and z
def=

sz(1) · · · sz(�).
– Strong t-Privacy: We say that ΠS achieves strong t-privacy if there exists a

probabilistic simulator algorithm SΠS such that for all I ⊂ [n] with #I ≤ t,
there exist j∗ ∈ [�] with Ox(j∗) /∈ I and Oz(j∗) /∈ I, and j∗y ∈ [�] with
Oy(j∗y) /∈ I such that for all protocol inputs sx = (sx(1), . . . , sx(�)) and
sy = (sy(1), . . . , sy(�)), the random variables

〈SΠS (I, {sx(j)}j∈[n]\{j∗}, {sy(j)}j∈[�]\{j∗
y})〉 and

〈VIEWΠS

I (sx, sy), {sz(j)}j∈[�]\{j∗}〉

are identically distributed (over the random coins of ΠS). Here
VIEWΠS

I (sx, sy) denotes the view of I in subprotocol ΠS run with input shares
sx, sy, and sz(j) denotes the jth output share. If j∗y = j∗ for all I, then we
say ΠS achieves symmetric strong t-privacy.

Remark 1. The share ownership functions Ox, Oy, Oz specify for each share in-
dex j ∈ [�], the indices Ox(j), Oy(j), Oz(j) in [n] of the party which holds the
jth input shares sx(j) and sy(j) and jth output share sz(j), respectively.

Remark 2. The adversary view simulator SΠS for collusion I is given all input
shares except the j∗th x-share sx(j∗) and j∗yth y-share sy(j∗y ) (where j∗, j∗y ∈ [�],
which depend on I, are indices of shares given to players not in I), and outputs
all output shares except the j∗th share sz(j∗) of z. Because, for each I, the same
value of index j∗ is used for both x-input shares and output shares, this allows
multiple simulator runs to be composed, using output shares of one subprotocol
run as x-input shares in a following subprotocol run, as shown in the security
proof of the following construction. If in addition, symmetric strong t-privacy
is achieved, one can use output shares of one subprotocol run as either x-input
or y-input shares for the following subprotocol run, allowing for more efficient
protocols.

We now explain our construction of an n-Product Protocol Π(T, ΠS) given a
binary computation tree T for fG with n leaf nodes corresponding to the n



598 Y. Desmedt et al.

protocol inputs (as illustrated in Fig. 1), and a Shared 2-Product subprotocol
ΠS with sharing parameter � and share ownership functions Ox, Oy, Oz . The
protocol Π begins with each party Pj computing an �-of-� sharing of its input
xj , and distributing out these shares to the n parties according to the share
ownership functions Ox, Oy of ΠS . Then protocol Π performs each of the internal
node 2-product computations of the computation tree T on �-of-� sharings of the
internal node’s two children nodes by running the shared 2-product subprotocol
ΠS , resulting in an �-of-� sharing of the internal node value. Eventually this
recursive process gives an �-of-� sharing of the root node value x1 · · · xn of T ,
which is broadcast to all parties.

Fig. 1. (a) Example of a binary tree T with n = 7 leaves. (b) The slanted linear tree
Tslin with n leaves.

The following Lemma establishes the t-privacy of protocol Π(T, ΠS), assum-
ing the correctness and strong t-privacy of subprotocol ΠS . Refer to [6] for a
proof.

Lemma 3. For any binary tree T with n leaves, if the n-party Shared 2-Product
subprotocol ΠS satisfies correctness and symmetric strong t-privacy (see Defin-
ition 5), then protocol Π(T, ΠS) is an n-party t-private protocol for computing
n-Product function fG(x1, . . . , xn) = x1 · · · xn. For the slanted linear binary tree
Tslin shown in Fig 1(b), the above result holds even if ΠS satisfies (ordinary)
strong t-privacy (i.e. symmetric strong t-privacy is not needed in this case).

4.3 Construction of a t-Private n-Party Shared 2-Product
Subprotocol from a t-Reliable n-Colouring of a Planar Graph

Next, we reduce the problem of constructing a t-Private n-Party Shared 2-
Product Subprotocol ΠS to a combinatorial problem defined below of finding a
‘t-Reliable n-Colouring’ of the nodes of a planar graph. We note that our no-
tion of a ’t-Reliable n-Colouring’ is closely related to a similar notion defined



On Secure Multi-party Computation in Black-Box Groups 599

in [7], and shown to be equivalent to the existence of private communication via
a network graph in which each node is assigned one of n possible colours and
the adversary controls all nodes with colours belonging to a t-colour subset I.

Consider a Planar Directed Acyclic Graph (PDAG) G having 2� source (in-
put) nodes drawn in a horizontal row at the top, � sink (output) nodes drawn
in a horizontal row at the bottom, and σG nodes overall. We use PDAG G to
represent a blackbox protocol, where the input/output nodes are labelled by
the protocol input/output group elements, and the internal graph nodes are
labelled by intermediate protocol values. Each internal graph node is also as-
signed a colour specifying the player which computes the internal node value.
The graph edges represent group elements sent from one player to another. The
computation performed at each node is multiplication of the values on all incom-
ing edges and resharing the product along the outgoing edges using the k-of-k
secret sharing scheme in Proposition 1. All computations in the ith round of the
2-Product subprotocol correspond to the ith row (from the top) in the PDAG.
Communications between nodes correspond to edges between consecutive rows.

Actually to construct a protocol for any non-abelian group our requirement
on graph G is slightly stronger than planarity and can be precisely defined as
follows.

Definition 6 (Admissible PDAG). We call graph G an Admissible PDAG
with share parameter � and size parameter m if it has the following properties:

– Nodes of G are drawn on a square m × m grid of points (each node of G is
located at a grid point but some grid points may not be occupied by nodes).
Rows of the grid are indexed from top to bottom and columns from left to
right by the integers 1, 2, . . . , m. A node of G at row i and column j is said
to have index (i, j). G has 2� source (input) nodes on top row 1, and � sink
(output) nodes on bottom row m.

– Incoming edges of a node on row i only come from nodes on row i − 1, and
outgoing edges of a node on row i only go to nodes on row i + 1.

– For each row i and column j, let η
(i,j)
1 < . . . < η

(i,j)

q(i,j) denote the ordered
column indices of the q(i,j) > 0 nodes on level i + 1 which are connected to
node (i, j) by an edge. Then, for each j = 1, . . . , m − 1, we have

η
(i,j)

q(i,j) ≤ η
(i,j+1)
1 , (1)

i.e. the rightmost node on level i + 1 connected to node (i, j) is to the left of
(or equal to) the leftmost node on level i + 1 connected to node (i, j + 1).

We call the left � source nodes on row 1 (indexed (1, 1), . . . , (1, �)) the ‘x-input’
nodes and the last � source nodes on row 1 (indexed (1, � + 1), . . . , (1, 2�)) the
‘y-input’ nodes. By ith x-input node, we mean the x-input node at position i
from the left. We define the ith y-input and ith output node similarly.

Let C : [m] × [m] → [n] be an n-Colouring function that associates to each
node (i, j) of G a colour C(i, j) chosen from a set of n possible colours [n]. We
now define the notion of a t-Reliable n-Colouring.



600 Y. Desmedt et al.

Definition 7 (t-Reliable n-Colouring). We say that C : [m]× [m] → [n] is a
t-Reliable n-Colouring for admissible PDAG G (with share parameter � and size
parameter m) if for each t-colour subset I ⊂ [n], there exist j∗ ∈ [�] and j∗y ∈ [�]
such that:

– There exists a path PATHx in G from the j∗th x-input node to the j∗th
output node, such that none of the path node colours are in subset I (we call
such a path I-avoiding), and

– There exists an I-avoiding path PATHy in G from the j∗y th y-input node to
the j∗th output node.

If j∗y = j∗ for all I, we say that C is a Symmetric t-Reliable n-Colouring.

Remark 3. The paths PATHx and PATHy in Definition 7 are free to move in
any direction along each edge of directed graph G, i.e. for this definition we
regard G as an undirected graph (throughout the paper we assume that a path
is simple, i.e. free of cycles; hence each node on the path is only visited once).

An example of an admissible PDAG with I-avoiding paths PATHx and PATHy

is shown in Fig 2(a). Given an admissible PDAG G (with share parameter � and
size parameter m) and an associated t-Reliable n-Colouring C : [m]× [m] → [n],
we construct a t-Private n-Party Shared 2-Product Subprotocol ΠS(G, C).

Shared 2-Product Subprotocol ΠS(G, C)

Input: We define the share ownership functions Ox, Oy, Oz of ΠS(G, C) accord-
ing to the colours assigned by C to the input and output nodes of G (i.e.
Ox(j) = C(1, j), Oy(j) = C(1, � + j), Oz(j) = C(m, j) for j = 1, . . . , �). For
j = 1, . . . , �, party POx(j) holds jth share sx(j) ∈ G of x and party POy(j)

holds jth share sy(j) ∈ G of y, where sx = (sx(1), sx(2), . . . , sx(�)) and sy =

(sy(1), sy(2), . . . , sy(�)) denote �-of-� sharing of x
def= sx(1) · sx(2) · · · sx(�) and

y
def= sy(1) · sy(2) · · · sy(�), respectively.
For each row i = 1, . . . , m and column j = 1, . . . , m of G, party PC(i,j) does

the following:

– PC(i,j) computes a label v(i,j) for node (i, j) of G as follows. If i = 1, PC(i,j)

defines v(i,j) = sx(j) for j ≤ � and v(i,j) = sy(j) for � + 1 ≤ j ≤ 2�. If
i > 1, PC(i,j) computes v(i,j) by multiplying the shares received from nodes
at previous row i − 1 (labels of edges between a node on row i − 1 and node
(i, j)), ordered from left to right according to the sender node column index.

– If i = m, PC(m,j) sets output share j to be the label v(m,j),
– else, if i < m, let η

(i,j)
1 < . . . < η

(i,j)

q(i,j) denote the ordered column indices
of the nodes on level i + 1 which are connected to node (i, j) by an edge.
PC(i,j) chooses q(i,j) − 1 uniformly random elements from G and computes
a q(i,j)-of-q(i,j) secret sharing s

(i,j)
1 , . . . , s

(i,j)

q(i,j) of label v(i,j) such that:

v(i,j) = s
(i,j)
1 · · · s(i,j)

q(i,j) .



On Secure Multi-party Computation in Black-Box Groups 601

– For k = 1, . . . , q(i,j), PC(i,j) sends share s
(i,j)
k to party P

C(i+1,η
(i,j)
k )

and labels

edge from node (i, j) to node (i + 1, η
(i,j)
k ) by the share s

(i,j)
k .

Note that the correctness of ΠS follows from the fact that the product of node
values at each row of PDAG G is preserved and hence equal to x · y, thanks to
condition (1) in Definition 6.

Lemma 4. If G is an admissible PDAG and C is a t-Reliable n-Colouring for
G then ΠS(G, C) achieves strong t-privacy. Moreover, if C is a Symmetric t-
Reliable n-Colouring, then ΠS(G, C) achieves Symmetric strong t-privacy.

Proof. (Sketch) The full proof of Lemma 4 can be found in [6]. Here we only
explain the main idea by considering the case when the I-avoiding paths PATHx

and PATHy only have downward edges (in [6] we extend the argument to paths
with upward edges). Consider PATHx from the j∗th x-input node to the j∗th
output node. At the first node PATHx(1) on the path, although the node value
v(1) = sx(j∗) is not known to the view simulator SΠS , we may assume, by
Proposition 1, that in the real subprotocol ΠS , when node PATHx(1) shares
out its node label among its q outgoing edges, it sends new random elements
(labels) ri on each of the q − 1 outgoing edges not on PATHx. Thus simulator
SΠS can easily simulate all outgoing edge values of PATHx(1) which are not
on PATHx. The same argument shows that for all kth nodes PATHx(k) and
PATHy(k) on PATHx and PATHy respectively, simulator SΠS can simulate
all values on outgoing edges of PATHx(k) and PATHy(k) which are not on
PATHx or PATHy by independent random elements. The values on edges along
PATHx or PATHy depend on the inputs sx(j∗) and sy(j∗y) which are not known
to simulator SΠS , but since the paths PATHx and PATHy are I-avoiding,
these values are not in the view of I and need not be simulated by SΠS . Since
SΠS knows all inputs to ΠS it can compute all other edge values in the ΠS ,
including all outputs except the j∗th one (which is on PATHx and PATHy), as
required. ��

4.4 Constructions of t-Reliable n-Colourings of Planar Graphs

We now present two general constructions of t-Reliable n-Colourings of planar
graphs which can be used to build t-Private n-Party protocols for the n-Product
function in any finite group as explained in the previous sections. Our first
deterministic construction achieves optimal collusion security (t < n/2) but has
exponential complexity (� =

(
n
t

)
). Our second probabilistic construction has a

slightly suboptimal collusion security (t < n/2.948) but has a very efficient linear
complexity (� = O(n)).

The PDAG. The admissible PDAG Gtri(�′, �) that we consider has sharing
parameter � and has �′×� nodes. It is shown in Fig. 2(b). The nodes of Gtri(�′, �)
are arranged in an �′ × � node grid. Let (i, j) denote the node at row i ∈ [�′]
(from the top) and column j (from the left). There are three types of edges in
directed graph Gtri(�′, �): (1) Horizontal edge: An edge connecting two adjacent



602 Y. Desmedt et al.

nodes on the same row, directed from right to left (i.e. from node (i, j) to node
(i, j − 1), for i ∈ [�′], j ∈ [�] \ {1}), (2) Vertical edge: An edge connecting two
adjacent nodes on the same column, directed from top to bottom (i.e. from node
(i, j) to node (i+1, j), for i ∈ [�′]\ {�′}, j ∈ [�]), and (3) Diagonal edge: An edge
connecting node (i, j) to node (i + 1, j − 1), for i ∈ [�′] \ {�′}, j ∈ [�] \ {1}).

The � nodes on the top row (row 1) of Gtri are the x-input nodes, indexed
from left to right. The top � nodes on the rightmost column of Gtri (column �)
are the y-input nodes, indexed from top to bottom.

Fig. 2. (a) Example of an admissible PDAG G with sharing parameter � = 3 (node
colours are not indicated). For a given collusion I , an example I-avoiding path PATHx

is shown in heavy black, and an example I-avoiding path PATHy (until the meeting
with PATHx) is shown in heavy gray. In this example, we have j∗ = 2 and j∗

y = 3. (b)
The admissible PDAG Gtri(�′, �).

Remark 4. The reader may notice that the above specification of Gtri does not
formally satisfy the convention for drawing an admissible PDAG as defined in
Def. 6, due to the horizontal edges and the fact that the y-input nodes are
arranged along a column, rather than along the same row as the x-input nodes.
However, it is easy to see that Gtri can also be drawn strictly according to Def. 6.
Namely by rotating the drawing of Gtri in Fig. 2 by 45 degrees anticlockwise,
the horizontal edges become diagonal edges, and x-inputs and y-inputs can be
formally put on the same row by adding appropriate ‘connecting’ nodes of the
same colour as the corresponding input nodes of Gtri. These are only formal



On Secure Multi-party Computation in Black-Box Groups 603

changes in drawing conventions, and there is no change in the protocol itself. In
this section we use the drawing convention in Fig. 2 for clarity.

Remark 5. All diagonal edges in the definition of Gtri above are parallel (with
a ‘positive slope’, when using the drawing convention in Fig 2). However, it is
clear that the admissible PDAG requirements are still satisfied if we remove from
Gtri some ‘positive slope’ diagonal edges and add some ‘negative slope’ diagonal
edges (connecting a node (i, j) to node (i + 1, j + 1), for some i ∈ [�′] \ {�′},
j ∈ [�] \ {�}), as long as planarity of G is preserved (no two diagonal edges
intersect). We denote such ‘generalised’ PDAGs by Ggtri.

First Construction Ccomb (t < n/2 and � =
(
n
t

)
). We now present an explicit

construction of a t-Reliable n-Colouring Ccomb of the square graph Gtri(�, �). The
construction applies for all n ≥ 2t + 1 (i.e. t ≤ �n−1

2 �), and hence (by Section 3)
the n-Product protocol constructed from it by the method of Sections 4.2 and 4.3
achieves �n−1

2 �-privacy (which is optimal, as shown in Section 3). Unfortunately,
the sharing parameter in this construction � =

(
n
t

)
, is exponential in t (and

therefore the protocol communication cost is also exponential in t).

Colouring Ccomb for graph Gtri(�, �) with � =
�

n
t

�
and n ≥ 2t + 1

1. Let I1, . . . , I� denote the sequence of all � =
�

n
t

�
t-colour subsets of [n] (in some

ordering).
2. For each (i, j) ∈ [�] × [�], define the colour C(i, j) of node (i, j) of Gtri(�, �) to

be any colour in the set Si,j = [n] \ (Ii

�
Ij) (note that since |Ii| = |Ij | = t and

n ≥ 2t + 1, the set Si,j contains at least n − (|Ii| + |Ij |) ≥ n − 2t ≥ 1 colours, so
Si,j is never empty).

Lemma 5. For n ≥ 2t + 1, the colouring Ccomb is a Symmetric t-Reliable n-
Colouring for graph Gtri(�, �), with � =

(
n
t

)
.

Proof. Given each t-colour subset I ⊆ [n], let j∗ denote the index of I in the
sequence I1, . . . , I� of all t-colour subsets used to construct Ccomb, i.e Ij∗ = I. By
construction of Ccomb, none of the nodes of Gtri(�, �) along column j∗ have colours
in Ij∗ = I. Hence one can take column j∗ of Gtri(�, �) as PATHx. Similarly, we
also know that none of the nodes of Gtri(�, �) along row j∗ have colours in Ij∗ = I,
so one can take PATHy to consist of all nodes on row j∗ which are on columns
j ≥ j∗, followed by all nodes on column j∗ which are on rows i ≥ j∗. Thus Ccomb

is a Symmetric t-Reliable n-Colouring for graph Gtri(�, �), as required. ��

Remark 6. The colouring Ccomb remains a Symmetric t-Reliable n-Colouring
even if we remove all diagonal edges from Gtri(�, �) (since the paths PATHx and
PATHy only contain vertical and horizontal edges).

Combining Lemma 5 (applied to a subset of n′ = 2t + 1 ≤ n colours from [n])
with Lemmas 3 and 4, we have

Corollary 1. For any t < n/2, there exists a black-box t-private protocol for fG

with communication complexity O(n
(
2t+1

t

)2
) group elements.



604 Y. Desmedt et al.

Second Construction Crand (t < n/2.948 and � = O(n)). It is natural to ask
whether the exponentially large sharing parameter � =

(
n
t

)
can be reduced. Our

second construction Crand shows that this is certainly the case when t < n/2.948,
achieving a linear sharing parameter � = O(n).

As a first step towards our second construction, we relax the properties re-
quired from C in Definition 7 to slightly simpler requirements for the square
graph Gtri(�, �) (i.e. �′ = �), as follows.

Definition 8 (Weakly t-Reliable n-Colouring). We say that C : [�] × [�] →
[n] is a Weakly t-Reliable n-Colouring for graph Gtri(�, �) if for each t-colour
subset I ⊂ [n]:

– There exists an I-avoiding path Px in G from a node on the top row (row
1) to a node on the bottom row (row �). We call such a path an I-avoiding
top-bottom path.

– There exists an I-avoiding path Py in G from a node on the rightmost column
(column �) to a node on the leftmost column (column 1). We call such a path
an I-avoiding right-left path.

Note that in the above definition of Weak t-Reliability, the index of the starting
node of path Px in the top row need not be the same as the index of the exit
node of Px in the bottom row (whereas in the definition of t-Reliability, PATHx

must exit at the same position along the output row as the position in the top
row where PATHx begins).

The following lemma shows that finding a Weakly t-Reliable n-Colouring for
the square graph Gtri(�, �) is sufficient for constructing a (standard) t-Reliable
n-Colouring for a rectangular graph Ggtri(2� − 1, �). The idea is to add � − 1
additional rows to Gtri(�, �) by appending a ‘mirror image’ (reflected about the
last row) of itself, as shown in Fig. 3 (refer to [6] for the detailed proof).

Lemma 6. Let C : [�]×[�] → [n] be a Weakly t-Reliable n-Colouring (see Def. 8)
for square admissible PDAG Gtri(�, �). Then we can construct a (standard) t-
Reliable n-Colouring (see Def. 7) for a rectangular admissible PDAG Ggtri(2� −
1, �).

For our second colouring construction, we use the ‘probabilistic method’ [1],
namely we choose the colour of each node in the square graph Gtri(�, �) inde-
pendently and uniformly at random from [n]. Although there is a finite error
probability p that such a random n-Colouring will not be Weakly t-Reliable, we
show that if n/t > 2.948 and we use a sufficiently large (but only linear in n)
sharing parameter � = O(n), then the error probability p can be made arbitrarily
small. Moreover, p decreases exponentially fast with �, so p can be easily made
negligible.

Colouring Crand for graph Gtri(�, �) with � = O(n) and n ≥ 2.948t

For each (i, j) ∈ [�] × [�], choose the colour C(i, j) of node (i, j) of Gtri(�, �)
independently and uniformly at random from [n].



On Secure Multi-party Computation in Black-Box Groups 605

Fig. 3. (a) Example paths in square PDAG Gtri(�, �) for a given Weakly t-Reliable
n-Colouring (Px in heavy black, Py in heavy gray). (b) Corresponding paths in rectan-
gular PDAG Ggtri(2� − 1, �).

To analyse this construction, we will make use of the following counting
Lemma. Here, for any right-left path in Gtri(�, �), we define its length as the
number of nodes on the path. We say a path is minimal if removing any node
from the path disconnects the path.

Lemma 7. The number NP (k, �) of minimal right-left paths of length k in graph
Gtri(�, �) is upper bounded as

NP (k, �) ≤ c(μ) · � · μk,

for some constants μ, c(μ), with μ ≤ 2.948. We call the minimal possible value
for μ the connective constant of Gtri(�, �).

Proof. For a minimal right-left path, there are � possible starting nodes on the
rightmost column. We may assume without loss of generality that the first edge
of the path is not a vertical edge. For the ith starting node on the rightmost
column, there are at most 2 possibilities for the first path edge: a horizontal
edge, or a diagonal edge. For j ≥ 1, let Ni(j) denote the number of minimal
paths in Gtri(�, �) of length j starting at the ith node on the rightmost column.
Note that the paths counted in Ni(j) are not necessarily right-left paths, i.e. the
last node in the path need not be on the leftmost column.

We use induction on j to show Ni(j) ≤ 3j−1 for j ≥ 2. We have already
shown above the basis step Ni(2) = 2 < 3. For the induction step, suppose that
Ni(j) ≤ 3j−1 for some j ≥ 2. We show that Ni(j + 1) ≤ 3j.



606 Y. Desmedt et al.

Consider each path P of length j. We claim that there are at most 3 possible
choices for adding a (j + 1)th node P (j + 1) to P to create a minimal path P ′

of length j + 1. Let P (j − 1) and P (j) denote the (j − 1)th node and jth node
of P , respectively.

Suppose first that P (j) is is a boundary node of Gtri(�, �) (i.e. it is on row 1
or row � or column 1 or column �). Then P (j) has degree at most 4, and one of
the 4 nodes adjacent to P (j) is P (j − 1), so there are at most 3 possible choices
for P (j + 1), as required.

Now suppose that P (j) is an internal node of Gtri(�, �). Then P (j) has degree
6, and one of the 6 nodes adjacent to P (j) is P (j −1). Hence there are at most 5
possibilities for P (j +1). But it is easy to verify that 2 of those 5 adjacent nodes
of P (j) must also be adjacent to P (j − 1). Hence, neither of these 2 nodes can
be chosen as P (j + 1) since the resulting path P ′ will not be minimal (indeed,
if P (j + 1) is chosen adjacent to P (j − 1) then internal node P (j) could be
removed from P ′ without disconnecting it). So there are at most 3 possibilities
for P (j + 1) to keep P ′ minimal.

We conclude that any minimal path P of length j can be extended in at most 3
ways to a minimal path P ′ of length j+1. It follows that Ni(j+1) ≤ 3Ni(j) ≤ 3j ,
which completes the inductive step. Since there are � possible starting nodes on
the rightmost column, we get NP (k, �) ≤ � · 3k, which proves μ ≤ 3.

We now show how to improve the connective constant upper bound to μ ≤
2.948. This improvement is based on the fact that the bound μ ≤ 3 only takes
into account a ‘1 edge history’ of the path to restrict the number of possible
‘next’ nodes by ruling out those which destroy the path minimality due to 3
node cycles. By taking into account m-edge history for larger m > 1, we can
improve the bound by also ruling out m′-cycles for m′ > 3. Here we examine
the case of m = 4 edge history, ruling out m′ = 6 node cycles, as well as m′ = 3
node cycles (see [6] for some results with even larger m).

Consider the 6 node cycle C6 in graph Gtri(�, �) shown in Fig. 4(a). For any
minimal path P of length j ≥ 4 whose last 4 edges match a sequence of 4
successive edges along C6 (in either clockwise or anticlockwise sense, such as the
4 edges between nodes P (j−4), P (j−3), P (j−2), P (j−1), P (j) in Fig. 4(a)), we
have at most 2 possibilities (labelled n1, n2 in Fig. 4(a)) for choosing a (j + 1)th
node P (j +1) to extend P to a minimal path P ′ of length j +1. This is because
by minimality, only 3 possiblities are allowed for P (j + 1) to rule out 3-node
cycles in P ′ (as shown above), and out of those 3 nodes, one (labelled n∗ in
Fig 4(a)) can be eliminated to rule out the 6-cycle C6 from being contained in
P ′. This reduction from 3 to 2 possibilities for P (j + 1) when the last 4 edges of
P match a sequence from C6 will give us the improved upper bound on μ.

To analyse this improvement, let S(j) denote the set of all minimal paths
P in Gtri(�, �) of length j starting at the ith node on the rightmost column of
Gtri(�, �). We partition S(j) into 4 disjoint subsets S1(j), . . . , S4(j) according to
the number of matches of the 4 last edges of P with a sequence of successive
edges on C6, namely:



On Secure Multi-party Computation in Black-Box Groups 607

– S4(j) denotes the subset of paths in S(j) whose 4 last edges match a sequence
of 4 successive edges along C6 (in either clockwise or anticlockwise sense).

– For k = 3, 2, 1, Sk(j) denotes the subset of paths in S(j) which are not in
Sk+1(j), but whose k last edges match a sequence of k successive edges along
C6 (in either clockwise or anticlockwise sense).

For j ≥ 5 and k ∈ {1, 2, 3, 4}, we say that a minimal path P of length j is in
state k if P ∈ Sk(j). We can now construct a finite state machine M whose
state transition function specifies for each minimal path P of length j in state
k, the possible ‘next’ state k′ of a minimal path P ′ of length j + 1 formed by
adding a (j + 1)th node to P . The state transition diagram of M is shown in
Fig 4(b), where a label b on a transition from state k to k′ indicates that there
are b possibilities for the (j + 1)th node which lead to this state transition. For
example, as shown in Fig 4(a), if P is in state 4, then there are 2 possibilities
for node P (j + 1): one (node labelled n1) leads to a transition to state 1 (since
no two successive edges in C6 are in the same column), the other (node labelled
n2) leads to a transition to state 2 (since no three successive edges in C6 are
in the order ‘horizontal, vertical, horizontal’). It is easy to verify that the same
transition rule from state 4 holds for all paths P in state 4 (i.e. regardless of the
particular sequence of 4 successive edges along C6 which form the last 4 edges
of P ). The transition rules for the other three states are also easy to verify.

Fig. 4. (a) The 6 node cycle C6 in Gtri(�, �) is shown in heavy black. (b) The state
transition diagram of finite state machine M .

For j ≥ 5 and k ∈ {1, 2, 3, 4} let Nk(j) denote the number of minimal paths
(starting at ith node of the rightmost column of Gtri(�, �)) of length j in state
k. From the labelled state transition diagram of M in Fig 4(b), we immediately
obtain the following recursive bound:⎛

⎜⎜⎝
N1(j + 1)
N2(j + 1)
N3(j + 1)
N4(j + 1)

⎞
⎟⎟⎠ ≤ AM ·

⎛
⎜⎜⎝

N1(j)
N2(j)
N3(j)
N4(j)

⎞
⎟⎟⎠ , where AM =

⎛
⎜⎜⎝

1 1 1 1
2 1 1 1
0 1 0 0
0 0 1 0

⎞
⎟⎟⎠ . (2)



608 Y. Desmedt et al.

It follows from (2) that the vector N(j) def= [N1(j) N2(j) N3(j) N4(j)]T satisfies

N(j) ≤ Aj−5
M N(5) (3)

for j ≥ 5. The matrix AM can be diagonalised into the form AM = Q · D · Q−1,
where Q is a 4×4 invertible matrix having the eigenvectors of AM as its columns,
and D is a 4 × 4 diagonal matrix having the 4 eigenvalues λ1, . . . , λ4 of AM on
the diagonal. Note that Aj−5

M = Q · Dj−5 · Q−1, and Dj−5 is a diagonal matrix
with diagonal elements λj−5

k for k = 1, . . . , 4. Plugging into (3) and adding
up the components of N(j), we get the following upper bound on the number
NP (j) = N1(j)+ · · · N4(j) of minimal paths of length j, starting at the ith node
in the rightmost column of Gtri(�, �):

NP (j) ≤ c1λ
j−5
1 + c2λ

j−5
2 + c3λ

j−5
3 + c4λ

j−5
4 , (4)

where the constants c1, . . . , c4 are determined from (3) by N(5) and the eigenvec-
tor matrix Q. It follows that NP (j) = O(λj), where λ

def= maxk |λk| is the largest
eigenvalue magnitude of AM . Numerical computation shows that λ ≤ 2.948,
and hence (considering the � possible starting nodes on the rightmost column of
Gtri(�, �)), the claimed bound NP (k, �) ≤ c(μ) · � ·μk with μ = λ ≤ 2.948 follows,
for some constant c(μ). ��

Remark 7. Our terminology connective constant for μ comes from similar (al-
though not identical) constants defined in combinatorial studies of the ‘self avoid-
ing walk’ in a lattice [14,16]. However, the particular connective constant μ which
arises in our work seems to not have been previously studied.

Remark 8. We have done some preliminary numerical eigenvalue computations
using MATLAB with larger values of the ‘edge history’ parameter m on the
path, extending our method for proving Lemma 7 (refer to [6] for more details).
Using m = 8 we obtained the improved bound μ ≤ 2.913, although we are not
yet certain about the accuracy of these MATLAB computations. We believe the
efficient techniques from [14,16] can be useful to further improve our numerical
computed upper bound on μ by using even larger values of the ‘edge history’
on the path. Also, our method of bounding μ does not take into account the
restriction that the paths of length k are right-left paths, so further improvements
might result by taking this restriction into account.

Now we are ready to prove the following result.

Theorem 3. Let μ, c(μ) denote the connective constants of Gtri(�, �) (see Lemma
7). For any real constant R > μ, if t ≤ n/R, there exists a Weakly t-Reliable
n-Colouring for graph Gtri(�, �) for some � = O(n). Moreover, for any constant
δ > 0, the probability p that the random n-Colouring Crand is not Weakly t-
Reliable is upper bounded by δ if we choose

� ≥ b ·
log

(
n
t

)
log(R/μ)

,



On Secure Multi-party Computation in Black-Box Groups 609

for a constant b satisfying

b −
(

3
log R

)
log b ≥ 1 +

log
(

2c(μ)δ−1
(

log R
log(R/μ)

)3
)

log R
. (5)

Proof. Fix a t-colour subset I. We upper bound the probability p(I), that if all
�2 node colours of Gtri(�, �) are chosen uniformly and independently at random
from [n], the colouring Crand is not Weakly t-Reliable, i.e. either an I-avoiding
top-bottom path Px doesn’t exist, or an I-avoiding right-left path Py doesn’t
exist.

Suppose that for a given colouring C, an I-avoiding top-bottom path Px

doesn’t exist. This implies that the set S(C) of graph nodes with colours in I
must form a top-bottom cutset, which is defined as follows.

Definition 9 (Cutset/Minimal Cutset). A set of nodes S in Gtri(�, �) is
called a top-bottom cutset (resp. right-left cutset) if all top-bottom paths (resp.
right-left paths) in Gtri(�, �) pass via a node in S. A cutset S is called minimal
if removing any node from S destroys the cutset property.

Note that the top-bottom cutset S(C) must contain a minimal top-bottom cut-
set. The following intuitively obvious lemma shows that in order to count the
minimal top-bottom cutsets of Gtri(�, �) it is enough to look at all minimal right-
left paths in Gtri(�, �). Its formal proof can be found in [6].

Lemma 8 (Minimal Cutsets are Minimal Paths). A set of nodes S in
Gtri(�, �) is a minimal top-bottom cutset (resp. right-left cutset) if and only if it
is a minimal right-left path (resp. top-bottom path).

By Lemma 8, we conclude that if an I-avoiding top-bottom path doesn’t exist
for a colouring C then S(C) contains a minimal right-left path Pc,x. Since Pc,x

is a subset of S(C), its nodes only have colours in I. So, over the random choice
of colouring Crand, the probability that an I-avoiding top-bottom path doesn’t
exist is equal to the probability px(I) that there exists a minimal right-left path
Pc,x whose node colours are all in t-collusion I.

Let NP (k, �) denote the total number of minimal right-left paths in Gtri(�, �)
of length k. Since node colours are chosen independently and uniformly in [n],
each such path has probability (t/n)k to have all its node colours in I. It is clear
that � ≤ k ≤ �2. So, summing over all possible path lengths, we get the following
upper bound: px(I) ≤

∑�2

k=� NP (k, �)(t/n)k. By symmetry, a similar argument
gives the same upper bound on the probability py(I) that a right-left I-avoiding
path Py does not exist. So we get the following upper bound on the probability
p(I) that either I-avoiding top-bottom path doesn’t exist or an I-avoiding right-
left path doesn’t exist for each fixed t-subset I: p(I) ≤ 2

∑�2

k=� NP (k, �)(t/n)k.
Finally, taking a union bound over all

(
n
t

)
possible t-colour subsets I, we get

an upper bound on the probability p that the colouring Crand is not Weakly t-
Reliable of the form p ≤ 2

∑�2

k=� NP (k, �)(t/n)k
(
n
t

)
. Using the bound on NP (k, �)

from Lemma 7, we get

p ≤ 2c(μ)�3(μt/n)�

(
n

t

)
. (6)



610 Y. Desmedt et al.

Since n/t ≥ R > μ, it is clear that this upper bound on p is less than 1 for
sufficiently large �. In fact, it suffices to take � = O(log(

(
n
t

)
)/ log(n/(μt))) =

O(n), as claimed. Now suppose we fix δ > 0 and we want to find a lower bound
on � such that the error probability p ≤ δ. From (6) and using n/t ≥ R we see
that p ≤ δ is satisfied as long as

� log(R/μ) − 3 log(�) ≥ log(2c(μ)Nδ−1), (7)

where N =
(
n
t

)
. Take � = b log(N)/ log(R/μ). Plugging this choice of � into

(7), and using the fact that N ≥
(�R�

1

)
≥ R for all n ≥ R (since N =

(
n

n/R

)
increases monotonically with n), we conclude that (7) is satisfied if the constant
b is sufficiently large such that (5) holds. This completes the proof. ��

Combining Theorem 3 (applied with n′ = R · t ≤ n colours from [n] for constant
R > μ) with Lemmas 3, 4, 6 and 7, we have

Corollary 2. For any constant R > 2.948, if t ≤ n/R, there exists a black box
t-private protocol for fG with communication complexity O(nt2) group elements.
Moreover, for any δ > 0, we can construct a probabilistic algorithm, with run-
time polynomial in n and log(δ−1), which outputs a protocol Π for fG such that
the communication complexity of Π is O(nt2 log2(δ−1)) group elements and the
probability that Π is not t-private is at most δ.

Remark 9. Our computational experiments indicate that t > n/2.948 can be
achieved with moderate values of � – for example, for n = 24, t = 11 (i.e.
t ≈ n/2.182), we found a t-Reliable n-Colouring of Gtri(�, �) with � = 350, which
is much smaller than

(
n
t

)
≈ 2.5 · 106.

4.5 Generalisations and Other Results

General functions over G. Some applications may require n-party computation
of more general functions over G (using only the group operation) instead of
fG. The most general such function is of the form f ′G(x1, . . . , xm) = x1 . . . , xm,
where m ≥ n and each of the n parties holds one or more xi’s. Our reduction
from Section 4.2 (and hence all our protocols) trivially extends to this most
general case in the natural way.

General adversary structures. One may also consider more general adversary
structures in place of the t-threshold structure. With the exception of our second
construction in Section 4.4, all other results in the paper trivially generalise to the
case of a Q2 adversary structure A, in which no pairwise union of collusions in A
covers all n parties [11]. In particular, the generalisation of the first construction
in Section 4.4 has communication complexity O(n|A|2) group elements.

More efficient protocols for small t. For the cases t ∈ {1, 2}, we have managed
to design explicit t-private black-box protocols for fG with linear communica-
tion complexity (O(n) group elements) and optimal collusion resistance. These



On Secure Multi-party Computation in Black-Box Groups 611

protocols and their analysis can be found in [6]. We have also implemented a com-
puter program for finding t-Reliable n-Colourings of a given graph, with which
one can easily construct efficient protocols for small values of n, t (avoiding the
error probability δ of Theorem 3).

5 Conclusions

We showed how to design black-box t-private protocols for computing the n-
product function over any finite group by reducing the problem to a combinato-
rial graph colouring problem, using tools from communication security [7]. Our
work raises some interesting combinatorial questions. For example, for our PDAG
Gtri(�, �), what is the shape of the ‘tradeoff’ curve Rmax(�) relating the maximal
achievable (using a suitable colouring) secure collusion resistance Rmax = t/n
to the graph size �? (we showed that Rmax(�) ≥ 1/2.948 for � = O(t) and
Rmax(�) = 1/2 for � ≥

(
2t+1

t

)
). More generally, what is the largest collusion

resistance achievable with an admissible PDAG of size polynomial in n, and
what kind of PDAG achieves this optimum? There are also interesting crypto-
graphic questions. First, can our black-box protocols be efficiently strengthened
to yield black-box protocols secure against active adversaries? Second, can the
communication complexity O(nt2) of our t-private protocols be reduced further?
Third, does there exist an efficient (run-time polynomial in n) deterministic al-
gorithm to generate a Weakly t-Reliable n-Colouring of Gtri(�, �) (or some other
admissible PDAG) given n, t as input?

Acknowledgements. This research was supported by ARC research grants
DP0451484, DP0558773, DP0663452 and DP0665035. Ron Steinfeld’s research
was supported in part by a Macquarie University Research Fellowship (MURF).
Huaxiong Wang’s research was supported in part by the Singapore Ministry of
Education grant (T206B2204). Yvo Desmedt is grateful for the research visits to
Macquarie University. The authors also thank Chris Charnes and Scott Contini
for helpful discussions about this work.

References

1. Alon, N., Spencer, J.: The Probabilistic Method. Wiley-Interscience, New York
(2000)

2. Bar-Ilan, J., Beaver, D.: Non-Cryptographic Fault-Tolerant Computing in a Con-
stant Number of Rounds of Interaction. In: Symposium on Principles Of Distrib-
uted Computing (PODC), pp. 201–209. ACM Press, New York (1989)

3. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness Theorems for Non-
Cryptographic Fault-Tolerant Distributed Computation. In: Proc. 20-th STOC,
pp. 1–10. ACM Press, New York (1988)

4. Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure protocols.
In: Proceedings of the twentieth annual ACM Symp. Theory of Computing, STOC,
May 2–4, 1988, pp. 11–19. ACM Press, New York (1988)



612 Y. Desmedt et al.

5. Cramer, R., Fehr, S., Ishai, Y., Kushilevitz, E.: Efficient Multi-Party Computation
Over Rings. In: Biham, E. (ed.) EUROCRPYT 2003. LNCS, vol. 2656, pp. 596–613.
Springer, Heidelberg (2003)

6. Desmedt, Y., Pieprzyk, J., Steinfeld, R., Wang, H.: On Secure Multi-Party Com-
putation in Black-Box Groups. Full version of this paper(2007), Available at
http://www.comp.mq.edu.au/∼rons/

7. Desmedt, Y., Wang, Y., Burmester, M.: A Complete Characterization of Tolera-
ble Adversary Structures for Secure Point-to-Point Transmissions. In: Deng, X.,
Du, D.-Z. (eds.) ISAAC 2005. LNCS, vol. 3827, pp. 277–287. Springer, Heidelberg
(2005)

8. Diffie, W., Hellman, M.: New Directions in Cryptography. IEEE Trans. on Infor-
mation Theory 22, 644–654 (1976)

9. ElGamal, T.: A Public Key Cryptosystem and a Signature Scheme Based on Dis-
crete Logarithms. IEEE Tran. Info. Theory, IT 31(4), 469–472 (1985)

10. Goldreich, O.: Foundations of Cryptography, Volume II. Cambridge University
Press, Cambridge (2004)

11. Hirt, M., Maurer, U.: Complete Characterization of Adversaries Tolerable in Secure
Multi-Party Computation (Extended Abstract). In: Symposium on Principles Of
Distributed Computing (PODC), pp. 25–34. ACM Press, New York (1997)

12. Kushilevitz, E.: Privacy and Communication Complexity. SIAM J. on Discrete
Mathematics 5(2), 273–284 (1992)

13. Magliveras, S., Stinson, D., van Trung, T.: New approaches to Designing Public
Key Cryptosystems using One-Way Functions and Trapdoors in Finite Groups.
Journal of Cryptology 15, 285–297 (2002)

14. Noonan, J.: New Upper Bounds for the Connective Constants of Self-Avoiding
Walks. Journal of Statistical Physics 91(5/6), 871–888 (1998)

15. Paeng, S., Ha, K., Kim, J., Chee, S., Park, C.: New Public Key Cryptosystem Using
Finite Non Abelian Groups. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139,
pp. 470–485. Springer, Heidelberg (2001)

16. Pönitz, A., Tittmann, P.: Improved Upper Bounds for Self-Avoiding Walks in ZZd.
The Electronic Journal of Combinatorics 7 (2000)

17. Rivest, R.L., Shamir, A., Adleman, L.: A Method for Obtaining Digital Signa-
tures and Public-Key Cryptosystems. Communications of the ACM 21(2), 120–128
(1978)

18. Shamir, A.: How To Share a Secret. Communications of the ACM 22, 612–613
(1979)

19. Shor, P.: Polynomial-Time Algorithms for Prime Factorization and Discrete Log-
arithms on a Quantum Computer. SIAM J. Comp. 26(5), 1484–1509 (1997)

http://www.comp.mq.edu.au/~rons/


A Note on Secure Computation of the
Moore-Penrose Pseudoinverse and Its
Application to Secure Linear Algebra

Ronald Cramer1,2, Eike Kiltz1,�, and Carles Padró3,��

1 Cryptology and Information Security Research Theme
CWI Amsterdam
The Netherlands

{cramer,kiltz}@cwi.nl
2 Mathematical Institute

Leiden University
The Netherlands

3 Department of Applied Mathematics IV
Universitat Politècnica de Catalunya

Barcelona, Spain
cpadro@ma4.upc.edu

Abstract. This work deals with the communication complexity of se-
cure multi-party protocols for linear algebra problems. In our model,
complexity is measured in terms of the number of secure multiplications
required and protocols terminate within a constant number of rounds of
communication.

Previous work by Cramer and Damg̊ard proposes secure protocols for
solving systems Ax = b of m linear equations in n variables over a finite
field, with m ≤ n. The complexity of those protocols is n5.

We show a new upper bound of m4 + n2m secure multiplications for
this problem, which is clearly asymptotically smaller. Our main point,
however, is that the advantage can be substantial in case m is much
smaller than n. Indeed, if m =

√
n, for example, the complexity goes

down from n5 to n2.5.
Our secure protocols rely on some recent advances concerning the

computation of the Moore-Penrose pseudo-inverse of matrices over fields
of positive characteristic. These computations are based on the evalua-
tion of a certain characteristic polynomial, in combination with varia-
tions on a well-known technique due to Mulmuley that helps to control
the effects of non-zero characteristic. We also introduce a new method

� Supported by the research program Sentinels (http://www.sentinels.nl). Sentinels
is being financed by Technology Foundation STW, the Netherlands Organization for
Scientific Research (NWO), and the Dutch Ministry of Economic Affairs.

�� Supported by the Spanish Ministry of Education and Science under projects
TIC2003-00866 and TSI2006-02731. This work was done while this author was in
a sabbatical stay at CWI, Amsterdam. This stay was funded by the Secretaŕıa de
Estado de Educación y Universidades of the Spanish Ministry of Education and
Science.

A. Menezes (Ed.): CRYPTO 2007, LNCS 4622, pp. 613–630, 2007.
c© International Association for Cryptologic Research 2007

http://www.sentinels.nl


614 R. Cramer, E. Kiltz, and C. Padró

for secure polynomial evaluation that exploits properties of Chebychev
polynomials, as well as a new secure protocol for computing the charac-
teristic polynomial of a matrix based on Leverrier’s lemma that exploits
this new method.

1 Introduction

This paper deals with secure multi-party computation (MPC), that is, with the
scenario in which n players want to compute an agreed function of their secret
inputs in such a way that the correct result is obtained but no additional in-
formation about the inputs is released. These requirements should be achieved
even in the presence of an adversary who is able to corrupt some players. The
power of a passive adversary is limited to see all internal data of the corrupted
adversaries, while an active one can control their behavior.

Multi-party computation protocols can be classified according to which model
of communication is considered. In the cryptographic model, first considered
in [21,11], the adversary can see all messages in the network and the security
must rely on some computational assumption. Unconditional security can be
achieved if the existence of a private channel between every pair of participants
is assumed. This is the information-theoretic model introduced in [5,6]. It is
well known that in both models any functionality can be securely evaluated —
if evaluating the functionality is efficient, so is the secret multi-party protocol.
However, generic solutions may need polynomial many rounds of communica-
tion between the participating players, whereas in practise one wants the round
complexity to be as small as possible, preferably constant.

For conditionally secure multi-party protocols in the cryptographic model,
every probabilistic polynomial-time functionality can be efficiently and privately
evaluated in a constant number of communication rounds [22,3]. The situation
is completely different for unconditionally secure multi-party protocols in the
information-theoretic model. Up to now it is not known yet which class of func-
tions can be efficiently computed in a constant number of rounds. Some progress
in the direction of solving that question was made in [1,9,12,13,2] but, for in-
stance it is not even known if all functions in basic classes like NC can be securely
evaluated in constant rounds.

For specific functions of interest from linear algebra, Cramer and Damg̊ard [7]
proposed constant round multi-party computation protocols in the information-
theoretic model. Among their considered functions are the determinant, the char-
acteristic polynomial, the rank of a matrix, and solving a linear system of equa-
tions. The advantage with the approach from [7] is that all protocols could be
tailor-made to the nature of the specific problem and, in contrast to the generic
solutions, did not have to rely on circuit-based secure gate evaluation techniques.

1.1 Our Results

This work deals with the communication complexity of secure multi-party proto-
cols for linear algebra problems. In our model, complexity is measured in terms



A Note on Secure Computation 615

of the number of secure multiplications required and protocols terminate within
a constant number of rounds of communication.

Assuming a model in which constant round protocols for basic arithmetic
operations are given as usual, previous work by Cramer and Damg̊ard proposes
secure protocols for solving systems Ax = b of m linear equations in n variables
over a finite field, with m ≤ n. The complexity of those protocols is n5. Since
a solution in [7] could only be obtained for square matrices the general case of
non-square matrices had to be reduced to solving linear systems for the case of
an n×n matrix which is potentially huge compared to the original m×n matrix
A. The protocol for the latter problem basically reduces to computing n times
the characterstic polynomial which is shown in [7] to be securely computable in
constant rounds and with (roughly) n4 complexity (n4 calls to the multiplication
protocol). Therefore the overall complexity of the proposed protocol to solve the
linear system Ax = b is n5.

We show a new upper bound of m4 + n2m secure multiplications for this
problem, which is clearly asymptotically smaller. Our main point, however, is
that the advantage can be substantial in case m is much smaller than n. Indeed,
if m =

√
n, for example, the complexity goes down from n5 to n2.5.

As a concrete motivating application we consider the secure multi-party vari-
ant of the travelling salesman problem from combinatorial optimization. Given
a number of t cities and the costs of travelling from any city to any other city,
what is the cheapest round-trip route that visits each city exactly once and then
returns to the starting city?1 In a multi-party scenario the participating players
may want to keep the travelling cost between two cities belonging to “their ter-
ritory” secret such that only the concrete round-trip is revealed to everybody.
It is well known [20, Vol 2, Chap. 58.4] that this problem can be reduced us-
ing integer linear programming to simultaneously solving two systems of linear
equations, each of size m × n, where n = 2t · 2m ≈ 2m and m ≤ t2 is the number
of edges in the graph representing the cost-matrix between the t cities. Hence,
in this (admittingly extreme) example complexity of our protocol is ≈ (2m)2,
compared to the (2m)5 protocol from [7].

Our secure protocols rely on some recent advances concerning the computation
of the Moore-Penrose pseudo-inverse of matrices over fields of positive character-
istic. These computations are based on the evaluation of a certain characteristic
polynomial, in combination with variations on a well-known technique due to
Mulmuley that helps to control the effects of non-zero characteristic. We also in-
troduce a new method for secure polynomial evaluation that exploits properties
of Chebychev polynomials, as well as a new secure protocol for computing the
characteristic polynomial of a matrix based on Leverrier’s lemma that exploits
this new method. These techniques may be of separate interest, and are central
to our claimed improvements.

Below we give a more detailed overview of the techniques used. If A is an
n × m matrix over a field K, a pseudoinverse of A is any m × n matrix B such

1 Since the travelling salesman problem is known to be NP-complete, for the purpose
of this motivating example one may think of a small amount of cities t.



616 R. Cramer, E. Kiltz, and C. Padró

that ABA = A and BAB = B. Note that in case A is a non-singular square
matrix then B = A−1. A linear system of equations Ax = b can be easily solved
if a pseudoinverse of A is given. First of all, the system has a solution if and
only if ABb = b. In this case, x0 = Bb is a particular solution and, since the
columns of the matrix Im − BA span kerA, the general solution of the system
is obtained.

Our secure MPC protocol to solve linear systems of equations applies the
results and techniques from [10] about using of the Moore-Penrose pseudoinverse
for solving linear systems of equations over arbitrary fields. Specifically, there
is a polynomial that, evaluated on the Gram matrix G = A�A, (where A�

denotes the transpose of A) makes it possible to efficiently compute in MPC the
Moore-Penrose pseudoinverse of A. The polynomial in turn is derived from the
characteristic polynomial of G = A�A. Here our secure polynomial evaluation
protocol based on Chebyshev polynomials can be used to perform the secure
evaluation.

Nevertheless, the Moore-Penrose pseudoinverse of a matrix A exists if and only
if the subspaces kerA and ImA have trivial intersection with their orthogonals,
and unfortunately this may not be the case if the field has positive characteristic.
This problem is solved by using some techniques from [10], based on results by
Mulmuley [17]. Namely, there exists a random invertible diagonal matrix that,
with high probability, transforms the matrix A into a matrix A′ having the
required properties on the subspaces kerA′ and ImA′.

Computing the Moore-Penrose pseudoinverse in particular involves secure
evaluation of a public (or secret) polynomial in a secret field element (or a
secret matrix). Motivated by this and maybe of independent interest, we present
a constant round MPC protocol for the above task. If the field element (or the
matrix) is guaranteed to be invertible this can be done using the well-known
technique of unbounded fan-in multiplication [1]. In the general case of non-
zero field elements a generic framework from [1] can be applied. However, the
latter technique boosts the complexity of the resulting protocol from linear to
quadratic in the degree d of the polynomial. One the other hand, if one admits
some small probability of information leakage then the protocol can be made
linear in d using certain randomization techniques.

We present an alternative protocol for the same task which is perfectly secure
and has complexity linear in the degree d. The basic idea is explained in the
following. Consider a matrix M(x) whose entries are polynomials over a finite
field F and such that M(α) is invertible for every α ∈ F. Specifically, we present
a 2 × 2 matrix M(x) such that in the top-left entry of M(2x)M i−1(x) we have
the ith Chebyshev polynomial Ti(x). Since the first d+1 Chebyshev polynomials
{Ti(x)}0≤i≤d form a basis of the polynomials of degree at most d, every polyno-
mial of degree d is a linear combination the Chebyshev polynomials. Therefore
we can securely compute, even if α may be zero, F (α) for every polynomial F (x)
with degree at most d by using the unbounded fan-in multiplication protocol to
compute the needed powers of the matrix M(α).



A Note on Secure Computation 617

1.2 Related Work

Nissim and Weinreb [19] also considered the problem of securely solving a set of
linear equations in the computational two-party model, focusing on low (nearly
optimal) communication complexity. Their protocol needs O(n0.275) rounds of
communication which was later improved to O(log n) [15].

2 Preliminaries

2.1 The Model

We assume that n parties are connected by perfectly secure channels in a syn-
chronous network. Let Fp denote the finite field with p elements where p is a
prime power. We will assume throughout that p is large enough because our
protocols can only guarantee security with a probability 1 − O(n2/p), where n
is the maximum number of rows or columns in the matrices appearing in the
linear systems of equations.

By [a] we denote a secret sharing of a ∈ Fp over Fp. We assume that the
secret-sharing scheme allows to compute a sharing [a+b] from [a] and [b] without
communication, and that it allows to compute [ab] from a ∈ Fp and [b] without
communication; we write

[a + b] ← [a] + [b] and [ab] ← a[b]

for these operations. The secret-sharing scheme should of course also allow to
take a sharing [c] and reveal the value c ∈ Fp to all parties; We write c ←
reveal([c]).

We also assume that the secret sharing scheme allows to compute a sharing
[ab] from [a] and [b] with unconditional security. We denote the multiplication
protocol by mult, and write

[ab] ← mult([a], [b]) .

We will express the protocols’ round complexities as the number of sequential
rounds of mult invocations — and their communication complexities as the
overall number of mult invocations. I.e., if we first run a copies of mult in
parallel and then run b copies of mult in parallel, then we say that we have
round complexity 2 and communication complexity a + b. Note that standard
linear (verifiable) secret-sharing schemes have efficient constant-rounds protocols
for multiplication.

For a matrix A ∈ F
n×m
p = (Aij)1≤i≤n,1≤j≤m we will use [A] =

([Aij ])1≤i≤n,1≤j≤m for a sharing of a matrix. For multiplication of two ma-
trices A ∈ F

n×k
p , B ∈ F

k×m
p of matching dimensions we simply write [C] ←

mult([A], [B]), where C = AB ∈ F
n×m
p . Matrix multiplication has to be un-

derstood componentwise and can be carried out in one round and nmk parallel
invocations of the multiplication protocol.



618 R. Cramer, E. Kiltz, and C. Padró

For our protocols to be actively secure, the secret sharing scheme and the
multiplication protocol should be actively secure. This in particular means that
the adversary structure must be Q2. By the adversary structure we mean the
set A of subsets C ⊂ {1, . . . , n} which the adversary might corrupt; It is Q2 if
it holds for all C ∈ A that {1, . . . , n} \ C �∈ A.

2.2 Some Known Techniques

The following known techniques will be of importance later on.

Random Elements. The parties can share a uniformly random, unknown field
element. We write [a] ← ran(). This is done by letting each party Pi deal a
sharing [ai] of a uniformly random ai ∈ Fp. Then the parties compute the sharing
[a] =

∑n
i=1[ai]. The communication complexity of this is given by n dealings,

which we assume is upper bounded by the complexity of one invocation of the
multiplication protocol.

If passive security is considered, this is trivially secure. If active security is
considered and some party refuses to contribute with a dealing, the sum is just
taken over the contributing parties. This means that the sum is at least taken
over ai for i ∈ H , where H = {1, . . . , n} \ C for some C ∈ A. Since A is Q2 it
follows that H �∈ A. So, at least one honest party will contribute to the sum,
implying randomness and privacy of the sum.

Random Invertible Elements. Using [1] the parties can share a uniformly random,
unknown, invertible field element along with a sharing of its inverse. We write
([a], [a−1]) ← ran

∗() and it proceeds as follows: [a] ← ran() and [b] ← ran().
[c] = mult([a], [b]). c ← reveal([c]). If c �∈ F

∗
p, then abort. Otherwise, proceed

as follows: [a−1] ← c−1[b]. and output ([a], [a−1]).
The correctness is straightforward. As for privacy, if c ∈ F

∗
p, then (a, b) is

a uniformly random element from F
∗
p × F

∗
p for which ab = c, and thus a is a

uniformly random element in F
∗
p. If c �∈ F

∗
p, then the algorithm aborts. This

happens with probability less than 2/p. The complexity is (at most) 2 rounds
and 3 invocations of mult.

Unbounded Fan-In Multiplication. Using the technique from [1] it is possible
to do unbounded fan-in multiplication in constant rounds. For the special case
where we compute all “prefix products”

∏m
i=1 ai (m = 1, . . . , �), we write

([a1], . . . , [(a1a2 · · · a�)]) ← mult
∗([a1], . . . , [a�]) .

In the following, we only need the case where we have inputs [a1], . . . , [a�], where
ai ∈ F

∗
p. For 1 ≤ i0 ≤ i1 ≤ �, let ai0,i1 =

∏i1
i=i0

ai. We are often only interested in
computing a1,�, but the method allows to compute any other ai0,i1 at the cost of
one extra multiplication. For the complexity analysis, let A denote the number
of ai0,i1 ’s which we want to compute.

First run ran
∗ �+1 times in parallel, to generate [b0 ∈R F

∗
p], [b1 ∈R F

∗
p], . . . , [b�

∈R F
∗
p], along with [b−1

0 ], [b−1
1 ], . . . , [b−1

� ], using 2 rounds and 3(�+1) invocations



A Note on Secure Computation 619

of mult. For simplicity we will use the estimate of 3� invocations. Then for i =
1, . . . , � compute and reveal [di] = mult([bi−1], [ai], [b−1

i ]), using 2 rounds and 2�

invocations of mult. Now we have that di0,i1 =
∏i1

i=i0
di = bi0−1(

∏i1
i=i0

ai)b−1
i1

=
bi0−1ai0,i1b

−1
i1

, so we can compute [ai0,i1 ] = di0,i1mult([b−1
i0−1], [bi1 ]), using 1

round and A invocations of mult. The overall complexity is 5 rounds and O(�+a)
invocations of mult.

The same concept generalizes to unbounded fan-in multiplication of matrices.
Let shares [Mi] of matrices Mi ∈ F

m×m
p be given. Again we write

([M1], . . . , [(M1M2 · · · M�)]) ← mult
∗([M1], . . . , [M�]) .

for the special case where we compute all “prefix matrix products”
∏k

i=1 Mi

(k = 1, . . . , �). The above protocol generalizes to the matrix case, where a random
invertible field element now translates to a random invertible matrix. Random
invertible matrices are created using the same the method as generating a shared
random invertible field element.

Equality. We define the equality function δ : Fp → Fp as δ(x) = 0 if x = 0
and δ(x) = 1 otherwise. Given a shared value [x], there exists a protocol [8,18]
that computes, in a constant number of rounds and using O(log p) calls to the
multiplication protocol mult, shares [δ(x)]. We write [y] ← eq([x]).

3 Secure Polynomial Evaluation

In this section we are interested in the natural problem of secure polynomial
evaluation: the players hold a public (shared) polynomial F of maximal public
degree d and a shared field element x. The goal is to securely evaluate F in x,
i.e. to compute shares [F (x)].

Based on known techniques [1,4] the latter shares can be computed in constant
rounds and quadratic complexity, i.e. the protocol makes O(d2) calls to the
multiplication protocol.

Surprisingly, as we will show in this section, Chebyshev polynomials of the first
and the second kind can be used as a mathematical tool to bring the complexity
of the above problem down to linear. We will first consider the simpler case
where the polynomial F (X) is publicly known and later reduce the case of a
shared polynomial to the latter one.

3.1 Known Solution

First we present a näıve protocol based on known techniques with linear com-
plexity. Unfortunately, as we will see, the protocol leaks information for the
interesting case when the polynomial gets evaluated at zero.

The protocol is given a shared value [x], where x ∈ F
∗
p and a public polynomial

F (X) =
∑d

i=0 aiX
i. The protocol’s task is to compute shares [F (x)]. First, it

computes ([x], [x2], . . . , [xd]) ← mult
∗
p([x], . . . , [x]) and then the share [F (x)]



620 R. Cramer, E. Kiltz, and C. Padró

can be computed without interaction as [F (x)] ← a0 + a1[x] +
∑d

i=2 ai[xi]. The
complexity is constant rounds and 6d = O(d) invocations of the multiplication
protocol mult. Privacy follows since we assumed x ∈ F

∗
p and hence we can apply

the protocol mult
∗ securely. On the other hand, if x �∈ F

∗
p then this fact will

leak throughout the application of protocol mult
∗.

As already done in [1], using a technique from [4], the general case (where the
input may be equal to zero) can be reduced to unbounded fan-in multiplication of
non-singular 3×3 matrices as we will sketch now. Later we will give an alternative
protocol for the same task with improved running time. The main result from [4]
states that every algebraic formula Φ of depth l can be expressed as the product
of O(4l) non-singular 3×3 matrices over Fp (in the sense that the value Φ(x) can
be read from the right top corner of the matrix product). Since any polynomial
F (X) of degree d can be expressed as an algebraic formula of depth log d, F (X)
can be expressed as the product of O(d2) such non-singular 3 × 3 matrices. The
appearing matrices are either one of five (known) constant matrices or are the
identity matrix with x in the right upper corner. Using an efficient constant round
protocol for multiplying non-singular constant size matrices we imply that there
there exists a protocol that privately computes shares [F (x)], where x may equal
to zero. The protocol runs in a constant number of rounds and O(d2) invocations
of mult.

If we admit some small probability of information leakage we can get a O(d)
protocol for the same task as follows. First choose a random field element [c] ←
ran() and compute the share [x+ c]. Then compute ([x+ c], [(x+ c)2], . . . , [(x+
c)d]) ← mult

∗
p([x+ c], . . . , [x+ c]). This step is secure as long as x+ c �= 0 which

happens with probability 1 − 1/p (over all coin tosses of the ran protocol).
Then open the share [c] to obtain the field element c. Since the polynomials
(x + c)i (0 ≤ i ≤ d) form a basis for all polynomials of degree at most d we
can compute [F (x)] without interaction using F (x) =

∑d
i=0 λi(x + c)i, where

the coefficients λi can be computed by the players using only public information
(including the value c). The protocol runs in a constant number of rounds and
O(d) invocations of mult. However, it leaks information about x with probability
1/p. In the remainder of this section we will develop a perfectly secure protocol
in O(d) invocations of mult.

3.2 Chebyshev Polynomials

We use Chebyshev polynomials of the first kind which satisfy the linear recur-
rence

Td(x) = 2xTd−1(x) − Td−2(x), d ≥ 2

with starting values T0(x) = 1 and T1(x) = x, and Chebyshev polynomials of
the second kind

Ud(x) = 2xUd−1(x) − Ud−2(x), d ≥ 2

with starting values U0(x) = 1 and U1(x) = 2x. For notational convenience we
also set Td(x) = Ud(x) = 0 for any d < 0. It is well known that the Chebyshev
polynomials Ti(x), 0 ≤ i ≤ d form a basis for all polynomials of degree at most



A Note on Secure Computation 621

d. I.e., there exist coefficients λi ∈ Fp such that every polynomial F of degree at
most d given in its monomial representation F (x) =

∑d
i=0 aix

i can be expressed
in the Chebyshev basis as

F (x) =
d∑

i=0

λiTi(x) . (1)

The coefficients λi only depend on the polynomial F , but not on x. (All λi’s can
be computed from the ai’s in O(d2 log2 p) bit operations using, for instance, the
recursive formulas from [16].)

For x ∈ Fp define the 2 × 2 matrix M(x) over Fp as

M(x) =
(

x −1
1 0

)
,

and note that since det(M(x)) = 1, the matrix M(x) is always non-singular.

Claim. The following identity holds for any integer d ≥ 1:

M(x)Md−1(2x) =
(

Td(x) −Td−1(x)
Ud−1(x) −Ud−2(x)

)
. (2)

We quickly prove the claim by induction over d. For d = 1 (2) is correct by
definition. Now assume (2) holds for an integer d ≥ 1. Then we have

M(x)Md(2x) = M(x)Md−1(2x) · M(2x) =
(

Td(x) −Td−1(x)
Ud−1(x) −Ud−2(x)

)
·
(

2x −1
1 0

)
,

=
(

2Td(x) · x − Td−1 −Td(x)
2Ud−1(x) · x − Ud−2(x) −Ud−1(x)

)
.

This shows (2) for d + 1.

3.3 Perfectly Secure Polynomial Evaluation of a Shared Field
Element

We now come to our improvement over the protocols from Section 3.1. We de-
sign an alternative protocol to evaluate a polynomial in a share with running
time linear in the degree d (instead of quadratic). The protocol does not leak
any information about the shared secret x. Using the results on the Chebychev
polynomials from the last section a protocol to securely evaluate a given public
polynomial F ∈ Fp[X ] of degree d in a share [x] is as follows: The players first
locally create matrix-shares [M(x)] and [M(2x)] from the share [x]. Then they
compute (component-wise and in parallel) matrix-shares [M(x)M i−1(2x)] for
1 ≤ i ≤ d by

([M(x)M(2x)], . . . , [M(x)Md−1(2x)]) ← mult
∗([M(x)], [M(2x)], . . . , [M(2x)]).



622 R. Cramer, E. Kiltz, and C. Padró

Security is granted since M(x) and M(2x) are both non-singular. By Eq. (2), the
share [Ti(x)] can now be read in the upper left corner of the resulting matrices.

Once we are given shares of the Chebychev basis {Ti(x)}1≤i≤d we can evaluate
any given polynomial F of maximal degree d without interaction by computing
[F (x)] =

∑d
i=0 λi[Ti(x)]. Here λi are the coefficients from (1) that are computed

by each player in a precomputation phase. This leads to the following:

Proposition 1. Let a set of � public polynomials Fi ∈ Fp[X ] be given, all of
maximal degree d. There exists a multi-party protocol that, given shares [x] (for
any x ∈ Fp, possibly x = 0), computes all shares ([F1(x)], . . . , [F�(x)]). The
protocol runs in constant rounds and O(d) applications of the multiplication pro-
tocol.

It is easy to see that the given techniques can be extended to evaluate a shared
value x in a shared polynomial F , i.e. the shared F is given by shares of its
coefficients [ai], 1 ≤ i ≤ d. The protocol first computes shares [xi] for 1 ≤ i ≤ d
with the methods from Proposition 1 (here the ith polynomial Fi(X) is defined
as Fi(X) = X i). Then the polynomial F can be securely evaluated in x by first
computing all shares [aix

i] using d parallel applications of the multiplication
protocol and finally summing the products all up.

Theorem 1. Let a shared polynomial [F (X)] of maximal degree d (i.e., shared
field elements [a0], . . . , [ad] such that F (X) =

∑d
i=0[ai]X i) and a shared field

element [x] (for any x ∈ Fp, possibly x = 0) be given. There exists a perfectly
secure multi-party protocol that computes shares [F (x)] in constant rounds and
O(d) applications of the multiplication protocol.

3.4 Perfectly Secure Polynomial Evaluation of a Shared Matrix

In this section we generalize the results from the last sections to the case of
evaluating a shared matrix in a known/shared polynomial. Let a share [A] of a
matrix A ∈ F

m×m
p be given, together with a public polynomial F (x) of degree

d. We want to give a multi-party protocol that computed shares [F (A)]. With
known techniques, similar to the finite field case from Section 3.1 this can be
carried out using O(d2m3) applications of the multiplication protocol.

Analogously to Section 3.2, for an m × m matrix A we define the 2m × 2m
matrix M(A) over Fp as

M(A) =
(

A −Im

Im 0

)
,

where Im is the m × m identity matrix. We note that since det(M(A)) = 1,
M(A) is non-singular for each A ∈ F

m×m
p , including the special case of singular

A. Then again the following identity is easy to show by induction over d:

M(A)Md−1(2A) =
(

Td(A) −Td−1(A)
Ud−1(A) −Ud−2(A)

)
.



A Note on Secure Computation 623

Proposition 2. Let a set of � public polynomials Fi ∈ Fp[X ] of maximal degree
d and a shared m × m matrix [A] be given. There exists a perfectly secure multi-
party protocol that computes all shares ([F1(A)], . . . , [Fl(A)]) in constant rounds
and O(dm3) applications of the multiplication protocol.

Theorem 2. Let a shared polynomial [F (x)] of maximal degree d and a shared
m × m matrix [A] be given. There exists a perfectly secure multi-party protocol
that computes shares [F (x)] in constant rounds and O(dm3) applications of the
multiplication protocol.

4 Solving Linear Systems of Equations

In this section we provide the necessary mathematical framework for understand-
ing our algorithm. In particular, we present here the probabilistic algorithm to
solve linear systems of equations that will be implemented in Section 5 in a se-
cure multi-party computation protocol. This algorithm is based on the methods
presented in [10]. Specifically, we solve the linear system of equations Ax = b
by computing the Moore-Penrose pseudoinverse of the matrix A. Since we are
dealing with finite fields, we have to use the results by Mulmuley [17] to avoid
that certain subspaces have nontrivial intersection with their orthogonals.

4.1 Computing the Rank of a Matrix

Let K be a field. For every pair of vectors u, v ∈ K
n, we notate 〈u, v〉 for the

usual scalar product 〈u, v〉 =
∑n

i=1 uivi. If V ⊂ Kn is a subspace, we notate
V ⊥ = {u ∈ K

n : 〈u, v〉 = 0 for every v ∈ V }. Clearly, dimV ⊥ = n − dimV . It
is well known that V ⊥ ∩ V = {0} if K = Q or K = R. This does not hold in
general if K has positive characteristic.

If A is an n × m matrix over the field K , the Gram matrix of A is defined
by G(A) = A�A, where A� denotes the transpose of A. For every i = 1, . . . , m,
we take the vector ui ∈ K

n corresponding to the i-th column of A. Then, the
entries of the Gram matrix are the scalar products of these vectors, that is,
G(A) = (〈ui, uj〉)1≤i,j≤m.

Consider the vector spaces E = K
m and F = K

n and let A be an n×m matrix
over K representing a linear mapping A : E → F . Then, the transpose matrix
A� corresponds to a linear mapping A� : F → E such that 〈Ax, y〉 = 〈x, A�y〉
for every pair of vectors x ∈ E and y ∈ F . Then, kerA� = (Im A)⊥ and
Im A� = (kerA)⊥. The terminology we introduce in the following definition will
simplify the presentation.

Definition 1. A subspace V ⊂ K
n is said to be suitable if V ⊥ ∩ V = {0}.

We say that a matrix A is suitable if Im A is a suitable subspace, that is, if
(Im A)⊥ ∩ Im A = {0}.

Lemma 1. Let A be an n × m matrix over K and let G = A�A be its Gram
matrix. Then A is a suitable matrix if and only if kerG = kerA.



624 R. Cramer, E. Kiltz, and C. Padró

Proof. Observe that kerA ⊂ kerG. If A is suitable and x ∈ kerG, then Ax ∈
Im A ∩ kerA� = Im A ∩ (Im A)⊥ = {0}. Conversely, if kerA = kerG and y =
Ax ∈ Im A ∩ (Im A)⊥, then x ∈ kerG = kerA, and hence y = 0.

Lemma 2. Let A be an n × m matrix over K and suppose that A and A� are
both suitable matrices. Let G = A�A and H = AA� be the Gram matrices of A
and A�, respectively. Then G and H are suitable matrices.

Proof. Since G is a symmetric matrix, Im G = (ker G)⊥. By applying Lemma 1,
Im G = (kerG)⊥ = (kerA)⊥ = Im A�. Since A� is suitable, (ImG)⊥ ∩ Im G =
{0}. Symmetrically, H is suitable as well.

Lemma 3. Let G be a symmetric m × m matrix and assume G is suitable.
Consider P (X) = det(XIm − G) = Xm + a1X

m−1 + · · · + am−1X + am, the
characteristic polynomial of G. Then rankG = max{i : ai �= 0}.

Proof. From Lemma 1, kerG2 = kerG. If r = max{i : ai �= 0}, the characteristic
polynomial of G is of the form P (X) = Xm−rQ(X) with Q(0) �= 0. Then
dim kerG = dim kerGm−r = m − r, and hence rankG = r.

From the previous lemmas the rank of the matrix A can be found by computing
the characteristic polynomial of the Gram matrix G(A) = A�A. Nevertheless,
we need that both A and A� are suitable matrices. If we are dealing with a field
with positive characteristic we cannot be sure that this is the case. We avoid this
problem by applying a random transformation to the matrix A that, with high
probability, produces a matrix with the same rank and verifying that property.
This can be done by using Theorem 3, due to Mulmuley [17], and Propositions 3
and 4.

Theorem 3. Consider the field K(x), a transcendental extension of the field
K, and the diagonal matrix Dx = diag(1, x, . . . , xn−1), which defines a linear
mapping Dx : K(x)n → K(x)n. Then for every subspace V ⊂ K, the subspace
Vx = Dx(V ′) ⊂ K(x)n, where V ′ ⊂ K(x)n is the natural extension of V , is
suitable. As a consequence, for every n×m matrix A over the field K, the matrix
DxA (over the field K(x)) is suitable.

The proofs of the next two propositions will be given in the full version.

Proposition 3. Let K be a finite field with |K| = p. Consider the vector space
F = K

n and a subspace V ⊂ F . For every α ∈ K , we consider the diagonal
matrix Dα = diag(1, α, α2, . . . , αn−1). If an invertible element α ∈ K

∗ is chosen
uniformly at random, then the probability that the subspace Vα = Dα(V ) ⊂ F is
suitable is at least 1 − 2n(n − 1)/p.

Proposition 4. Let K be a finite field with |K| = p and let A be an n × m
matrix over the field K. For every α ∈ K, take the diagonal matrices Dn,α =
diag(1, α, . . . , αn−1) and Dm,α = diag(1, α, . . . , αm−1), and the matrix Aα =
Dn,αADm,α. Then the probability that both Aα and A�α are suitable matrices
if an invertible element α ∈ K

∗ is chosen uniformly at random is at least 1 −
(2/p)(n(n − 1) + m(m − 1)).



A Note on Secure Computation 625

4.2 Moore-Penrose Pseudoinverse

Consider the vector spaces E = K
m and F = K

n and let A be an n × m matrix
over K representing a linear mapping A : E → F . A pseudoinverse of A is any
m × n matrix B : F → E such that ABA = A and BAB = B. Given two
subspaces V, W ⊂ E, the notation E = V ⊕ W means that E is the direct sum
of V and W , that is, E = V + W and V ∩ W = {0}.

There can exist many different pseudoinverses of a matrix. If B is a pseudoin-
verse of A, then E = Im B⊕kerA and F = Im A⊕kerB. Moreover, for every pair
of subspaces V1 ⊂ E and V2 ⊂ F such that E = V1 ⊕ kerA and F = Im A ⊕ V2,
there exists a unique pseudoinverse B of A such that V1 = Im B and V2 = kerB.
Finally, there is at most one pseudoinverse B of A such that AB and BA are
symmetric matrices. This is the only pseudoinverse with Im B = (kerA)⊥ and
kerB = (Im A)⊥. Of course, such a pseudoinverse exists if and only if ker A ⊂ E
and ImA ⊂ F are suitable subspaces.

Definition 2. Let A be an n × m matrix corresponding to a linear mapping
A : E → F such that kerA ∩ (kerA)⊥ = {0} and ImA ∩ (Im A)⊥ = {0}, that
is, A and A� are suitable matrices. The Moore-Penrose pseudoinverse A† of A
is the unique pseudoinverse of A with Im A† = (kerA)⊥ and kerA† = (Im A)⊥.
Actually, the Moore-Penrose pseudoinverse of A can be defined too as the unique
m × n matrix A† : F → E such that AA†A = A, and A†AA† = A†, and AA†

and A†A are symmetric matrices.

Observe that the Moore-Penrose pseudoinverse of A can be defined only if A
and A� are suitable matrices. Assume that we are in this situation. We consider
G = A�A and H = AA�, the Gram matrices of A and A�. From Lemma 2, G
and H are suitable matrices with kerG = kerA and kerH = kerA�.

We present next a useful expression for A† in terms of the characteristic
polynomial of H or the one of G. Let f0 : Im A� → Im A be the linear mapping
obtained from the restriction of A : E → F to Im A� and let π : F → Im A be the
orthogonal projection over ImA. It is not difficult to check that f0 is invertible
and that A† = f−1

0 π. Consider r = rankA = rankA� = rankG = rankH .
From Lemma 3, the characteristic polynomial of H is of the form det(XIn −
H) = Xn + a1X

n−1 + · · · + arX
n−r with ar �= 0. Moreover, the characteristic

polynomial of G has the same coefficients as the one of H , that is, det(XIm −
G) = Xm + a1X

m−1 + · · · + arX
m−r. Consider a vector y ∈ F and take z =

Hry + a1H
r−1y + · · ·+ ar−1Hy + ary. By applying Cayley-Hamilton and taking

into account that kerH2 = kerH , we get that z ∈ kerH . Then, y = a−1
r z −

a−1
r (Hry+a1H

r−1y+ · · ·+ar−1Hy) = z1 +z2 with z1 = a−1
r z ∈ kerH = kerA�

and z2 ∈ Im H = Im A. Therefore, the orthogonal projection of y ∈ F on Im A
is π(y) = −a−1

r (Hry + a1H
r−1y + · · ·+ ar−1Hy). Now, taking into account that

f−1
0 AA� = A�, we get that

A† = f−1
0 π = −a−1

r f−1
0 (Hr + a1H

r−1 + · · · + ar−1H) =

= −a−1
r A�(Hr−1+a1Hr−2+· · ·+ar−1In) = −a−1

r (Gr−1+a1G
r−2+· · ·+ar−1Im)A�.



626 R. Cramer, E. Kiltz, and C. Padró

The Moore-Penrose pseudoinverse can be used to solve a linear system of
equations of the form Ax = b, but we need that both A and A� are suitable
matrices. Nevertheless, by using Proposition 4, we can apply a random transfor-
mation to the matrix A to obtain a matrix Aα verifying this property with high
probability.

4.3 The Algorithm

Given the theoretical results from the preceding sections, we extract the following
probabilistic algorithm for solving linear systems of equations.

Algorithm Linsolve.
The input is A, y, m, n, where A ∈ F

n×m
p , y ∈ F

n
p , and m ≤ n

The output is x such that Ax = y and a bit s indicating if the system is
solvable.
1. Pick random α

R← Fp and create the n×n matrix Dn,α = diag(1, α, . . . ,
αn−1) and the m × m matrix Dm,α = diag(1, α, . . . , αm−1).

2. Compute Aα ← Dn,αADm,α and yα ← Dn,αy.
3. Compute G ← A�α Aα ∈ F

m×m //G is a symmetric m × m matrix
4. Compute the coefficients (a1, . . . , am) of the characteristic polynomial

of G
5. Compute the rank r of G
6. Compute A†α ← −a−1

r (Gr−1 + a1G
r−2 + · · · + ar−1Im)A�α

7. Check if AαA†αyα = yα. If not, the system has no solution, and the bit
s = 0 is returned.

8. If the system has a solution return s = 1 and x ← Dm,αA†αyα.

Correctness of the algorithm is stated in the next lemma.

Lemma 4. Let A ∈ F
n×m
p , y ∈ F

n
p , and m ≤ n. Suppose that y ∈ Im A, that is,

that the system has a solution. Let x be the output of the randomized algorithm
Linsolve applied to A, y, m, n. Then, with probability at least 1−(2/p)(n(n−1)+
m(m − 1)), we have Ax = y.

Proof. Clearly, Ax = D−1
n,αAαD−1

m,αDm,αA†αyα = D−1
n,αAαA†αyα = D−1

n,αyα = y.

Until now we assumed m ≤ n. If n ≤ m, we should adapt the algorithm by using
H = AαA�α instead of G to obtain A†α. Since the obtained solution depends on
α, a random solution x0 of the linear system of equations Ax = y is obtained
but, clearly, the probability distribution is not uniform on the set of all possible
solutions. If we want the output of the algorithm to be uniformly distributed
among all possible solutions of the system, we can take a random vector z ∈ F

m
p

and compute x1 = x0 + Dm,α(Im − A†αAα)z. Finally, observe that by picking at
random an m×m invertible matrix M and computing Dm,α(Im −A†αAα)M , we
get a random element among all m × m matrices whose columns span kerA.



A Note on Secure Computation 627

5 The Secure Multi-party Protocols

Theorem 4. Let shares [A] of an n×m matrix and shares [y] of an n-dimensional
vector be given. There exists a multi-party protocol that, with probability at least
1 − O(n2/p), securely computes shares [x] of a solution to the system of linear
equations Ax = y and shares [s] of a bit indication if the system is solvable. The
protocol runs in constant rounds and uses O(m4 + m2n + m log p) applications of
the multiplication protocol.

We remark that the above protocol can easily be extended to yield shares of a
uniform solution of the system.

Theorem 5. Assume Fp has characteristic at least m. Let shares [A] of an
n × m matrix be given. There exists a multi-party protocol that, with probability
at least 1−O(n2/p), securely computes shares ([a1], . . . , [an]) of the characteristic
polynomial of A. The protocol runs in constant rounds and uses O(m4 + m2n)
applications of the multiplication protocol.

Proof of Theorem 4 (sketch). We show how to securely implement each step
of the protocol linsolve from Section 4.3 within the given complexity bounds.
We remark that, as a by-result, we also get efficient constant-round protocols for
securely computing the characteristic polynomial and the rank of a given shared
matrix. Details of the protocol are given in the full version of the paper. Instead
we give some intuition and mention the main techniques used.

For the first two steps the players jointly agree on a common public value
α. Since α is public, for computing shares of the appearing matrices there is no
further interaction needed. Computing shares of the characteristic polynomial in
Step 4 is done with the protocol from Theorem 5. In Step 5, shares of the rank
need to be computed that, by Lemma 3, can be derived from the characteristic
polynomial. Here we have to use several sequential applications of the equality
protocol eq to finally compute the rank in unary representation. Step 6 computes
shares of the Moore-Penrose pseudoinverse. Note that the formula to compute
A†α explicitly depends on the rank r of matrix G. Since we do not know r in
the clear we need to develop a technique to obliviously evaluate the matrix G
in the correct polynomial. A first approach is to evaluate A†α for all the possible
values of the rank r ∈ {1, . . . , m} and then sum the resulting matrices weighted
with the respective bit indicating if the summation index equals the rank. Note
that shares of the latter bits are known from the last step. However, the naive
complexity of this approach is m5. Using certain linearities in the coefficients
of the sums of the above polynomials we develop an alternative approach to
obtain the necessary complexity O(m4). Efficiency of this step heavily relies on
our efficient polynomial evaluation protocols proposed in Section 3. The rest of
the steps are more or less easy to implement. We mention that the complexity of
the protocol is dominated by Steps 4 and 6 (O(m4)), Step 5 (O(m · log p) for in
total O(m) applications of eq), and computing two products of an m × n with
an m×m matrix (O(m2n)) in Steps 3 and 6. Security of the protocol follows by
the security of the sub-protocols used.



628 R. Cramer, E. Kiltz, and C. Padró

Proof of Theorem 5 (sketch). We assume we are given shares of a symmetric
square m × m matrix, if not apply the first three steps of the Linsolve protocol
using O(m2n) multiplications. Due to [7] there already exists a constant-round
protocol for computing shares of the characteristic polynomial. We present an al-
ternative and much simpler protocol based on Leverrier’s Lemma (see Lemma 5)
which basically says that the coefficients of the characteristic polynomial can be
retrieved by inverting a certain non-singular lower-triangular matrix S, where
each entry below the diagonal is the trace of the powers Gi of the matrix G.
Leverrier’s lemma is obtained by combining Newton’s identities with the fact
that these traces correspond to sums of powers of the characteristic roots.

Computing shares of all the m powers Gi of G can be done using the protocol
from Proposition 2 in O(m4) applications of the multiplication protocol. All the
traces of Gi can be locally computed by the players and assembled into the m×m
matrix S. Finally the players compute the inverse of the non-singular matrix S
using the protocol inv which enables them to compute the coefficients of the
characteristic polynomial. The total complexity of the protocol is O(m4 + m2n)
applications of the multiplication protocol and it runs in constant rounds. More
details will be given in Appendix A. Security of the protocol follows by the
security of the sub-protocols used.

Acknowledgments

The authors would like to thank an anonymous referee from CRYPTO 2006
who proposed the “small error protocol” for secure polynomial evaluation from
Section 3.1.

References

1. Bar-Ilan, J., Beaver, D.: Non-cryptographic fault-tolerant computing in a constant
number of rounds interaction. In: 8th ACM PODC, Edmonton, Alberta, Canada,
August 14–16, 1989, pp. 201–209 (1989)

2. Beaver, D.: Minimal latency secure function evaluation. In: Preneel, B. (ed.) EU-
ROCRYPT 2000. LNCS, vol. 1807, pp. 335–350. Springer, Heidelberg (2000)

3. Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols.
In: 22nd ACM STOC, Baltimore, Maryland, USA, May 14–16, 1990, pp. 503–513.
ACM Press, New York (1990)

4. Ben-Or, M., Cleve, R.: Computing algebraic formulas using a constant number of
registers. SIAM J. Comput. 21(1), 54–58 (1992)

5. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for noncryp-
tographic fault-tolerant distributed computations. In: 20th ACM STOC, Chicago,
Illinois, USA, May 2–4, 1988, pp. 1–10. ACM Press, New York (1988)

6. Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure protocols.
In: 20th ACM STOC, Chicago, Illinois, USA, May 2–4, 1988, pp. 11–19. ACM
Press, New York (1988)

7. Cramer, R., Damg̊ard, I.: Secure distributed linear algebra in a constant number of
rounds. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 119–136. Springer,
Heidelberg (2001)



A Note on Secure Computation 629

8. Damg̊ard, I., Fitzi, M., Kiltz, E., Nielsen, J.B., Toft, T.: Unconditionally secure
constant-rounds multi-party computation for equality, comparison, bits and expo-
nentiation. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 285–304.
Springer, Heidelberg (2006)

9. Feige, U., Kilian, J., Naor, M.: A minimal model for secure computation. In: 26th
ACM STOC, Montréal, Québec, Canada, May 23–25, 1994, pp. 554–563. ACM
Press, New York (1994)

10. Lombardi, H., Diaz-Toca, G.M., Gonzalez-Vega, L.: Generalizing cramer’s rule:
Solving uniformly linear systems of equations. SIAM J. Matrix Anal. Appl. 27,
621–637 (2005)

11. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game, or a
completeness theorem for protocols with honest majority. In: 19th ACM STOC,
May 25–27, 1987, pp. 218–229. ACM Press, New York (1987)

12. Ishai, Y., Kushilevitz, E.: Private simultaneous messages protocols with applica-
tions. In: Proc. 5th Israel Symposium on Theoretical Comp. Sc. ISTCS, pp. 174–183
(1997)

13. Ishai, Y., Kushilevitz, E.: Randomizing polynomials: A new paradigm for round-
efficient secure computation. In: 41st FOCS, Las Vegas, Nevada, USA, Novem-
ber 12–14, 2000. IEEE Computer Society Press, Los Alamitos (2000)

14. Jájá, J.: An Introduction to Parallel Algorithms. Eddison-Wesley (1992)
15. Kiltz, E., Mohassel, P., Weinreb, E., Franklin, M.: Secure linear algebra using

linearly recurrent sequences. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392,
pp. 291–310. Springer, Heidelberg (2007)

16. Krogh, F.T.: Efficient algorithms for polynomial interpolation and numerical dif-
ferentiationi. Math. Comput. 24, 185–190 (1970)

17. Mulmuley, K.: A fast parallel algorithm to compute the rank of a matrix over an
arbitrary field. Combinatorica 7, 101–104 (1987)

18. Nishide, T., Ohta, K.: Multiparty Computation for Interval, Equality, and Com-
parison without Bit-Decomposition Protocol. In: PKC 2007. LNCS, vol. 4450, pp.
343–360. Springer, Heidelberg (2007)

19. Nissim, K., Weinreb, E.: Communication efficient secure linear algebra. In: Halevi,
S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876. Springer, Heidelberg (2006)

20. Schrijver, A.: Combinatorial Optimization - Polyhedra and Efficiency. Springer,
Heidelberg (2003)

21. Yao, A.: Protocols for secure computation. In: 23rd FOCS, Chicago, Illinois, No-
vember 3–5, 1982, pp. 160–164. IEEE Computer Society Press, Los Alamitos (1982)

22. Yao, A.: How to generate and exchange secrets. In: 27th FOCS, Toronto, Ontario,
Canada, October 27–29, 1986, pp. 162–167. IEEE Computer Society Press, Los
Alamitos (1986)

A Protocol for the Characteristic Polynomial

We assume we are given shares of a symmetric square m × m matrix (possibly
singular), if not apply the first three steps of the Linsolve protocol using O(m2n)
multiplications. We want to compute shares ([a1], . . . , [am]) of the characteristic
polynomial of G. With the techniques of Cramer and Damg̊ard [7] this can be
reduced to computing m times (in parallel) the determinant of a non-singular
matrix and applying polynomial interpolation to reconstruct the coefficients.



630 R. Cramer, E. Kiltz, and C. Padró

Since securely computing the determinant can essentially be done by multiplying
two shared m × m matrices, which can be carried out in constant rounds and
using O(m3) applications of the multiplication protocol, the whole protocol runs
in constant rounds and O(m4) applications of the multiplication protocol. We
write

([a1], . . . , [am]) ← charpoly([G]).

We now describe an alternative and more simple approach with roughly the
same complexity based on Leverrier’s Lemma [14, Chapter 8]. For this technique
to work we will have to assume that the finite field’s characteristic is at least
m. Efficiency of this approach depends on the new secure polynomial evaluation
technique from Section 3. We note that the use of Leverrier’s Lemma in that
context was first proposed by M. Rabin in [7]. Our algorithm retrieves the co-
efficients of the characteristic polynomial by inverting a certain lower-triangular
matrix, where each entry below the diagonal is the trace of the powers Gi of the
matrix G. The following lemma is obtained by combining Newton’s identities
with the fact that these traces correspond to sums of powers of the characteris-
tic roots.

Lemma 5 (Leverrier’s Lemma). The coefficients a1, a2, . . . , am of the char-
acteristic polynomial of a matrix G satisfy

S ·

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a1

a2

a3

...
am−1

am

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

s1

s2

s3

...
sm−1

sm

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, where S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 . . . 0 0
s1 2 0 . . . 0 0
s2 s1 3 . . . 0 0
...

...
...

...
...

sm−2 sm−3 sm−4 . . . m − 1 0
sm−1 sm−2 sm−3 . . . s1 m

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

and si = tr(Gi) =
∑m

j=1 Gi
jj for all 1 ≤ i ≤ m.

Based on Leverrier’s Lemma we can securely compute shares of the characteristic
polynomial as follows: First the players compute shares of all the powers of G
using the protocol from Proposition 2 and then they locally compute shares
of the traces [si]. Then they apply the matrix inversion protocol to compute
[S−1] ← inv([S]), where S is the matrix from Lemma 5. Finally they calculate
shares of the matrix-vector product S−1 · (s1, s2, . . . , sm)� to obtain shares of
the characteristic polynomial. (Note that the matrix S is guaranteed to be non-
singular since for it’s determinant we have det(S) =

∏m
i=1 i which is non-zero

by our assumption that Fp has characteristic at least m.) Using the protocol
explained in Proposition 2 shares of all powers G, G2, . . . , Gm can be computed
in constant rounds and O(m · m3) = O(m4) applications of the multiplication
protocol. The protocol is secure with probability at least 1 − O(m2/p). This
proves Theorem 5.



Author Index

Anderson, Ross 68
Applebaum, Benny 92

Beimel, Amos 31
Bellare, Mihir 535
Boldyreva, Alexandra 535
Boneh, Dan 50
Bresson, Emmanuel 482
Brown, Daniel R.L. 466

Canetti, Ran 264
Chase, Melissa 303
Coron, Jean-Sébastien 379
Cramer, Ronald 613

Damg̊ard, Ivan B. 342, 360, 572
Desmedt, Yvo 591
Dubois, Vivien 1

Fehr, Serge 342, 360
Fischlin, Marc 224
Fouque, Pierre-Alain 1, 13

Gjøsteen, Kristian 466
Goyal, Vipul 430
Groth, Jens 323

Halevi, Shai 412
Hanrot, Guillaume 170
Harnik, Danny 284
Hofheinz, Dennis 553
Horvitz, Omer 111
Howgrave-Graham, Nick 150

Impagliazzo, Russell 500
Ishai, Yuval 92, 284

Jaiswal, Ragesh 500
Jochemsz, Ellen 395
Joux, Antoine 244

Kabanets, Valentine 500
Katz, Jonathan 111
Kiayias, Aggelos 448
Kiltz, Eike 553, 613
Kushilevitz, Eyal 50, 92, 284

Lakhnech, Yassine 482
Lehmann, Anja 224

Leurent, Gaëtan 13
Lysyanskaya, Anna 303

Malkin, Tal 31
Maurer, Ueli 130, 187
May, Alexander 395
Mazaré, Laurent 482
Moore, Tyler 68

Nguyen, Phong Q. 13
Nielsen, Jesper Buus 572
Nissim, Kobbi 31

O’Neill, Adam 535
Ostrovsky, Rafail 50, 323

Padró, Carles 613
Pehlivanoglu, Serdar 448
Peyrin, Thomas 244
Pieprzyk, Josef 591
Pietrzak, Krzysztof 130
Prabhakaran, Manoj 517

Renner, Renato 130, 360
Rivest, Ron 264
Rosulek, Mike 517

Salvail, Louis 342, 360
Schaffner, Christian 342, 360
Shamir, Adi 1
Skeith III, William E. 50
Stehlé, Damien 170
Steinfeld, Ron 591
Stern, Jacques 1
Sudan, Madhu 264

Tessaro, Stefano 187
Trevisan, Luca 264

Unruh, Dominique 205

Vadhan, Salil 264

Wang, Huaxiong 591
Warinschi, Bogdan 482
Wee, Hoeteck 264
Weinreb, Enav 31


	Title Page
	Preface
	Organization
	Table of Contents
	Practical Cryptanalysis of SFLASH
	Introduction
	Description of SFLASH
	The Multiplicative Property of the Differential
	Recovering Multiplications from the Public Key
	Recovering a Full $C*$ Public Key
	Breaking SFLASH When the Number of Deleted Quadratic Equations $r$ Is Up to $n/2$
	Comparison with the Method of Dubois $et al$.[1] 
	Conclusion

	Full Key-Recovery Attacks on HMAC/NMAC-MD4 and NMAC-MD5
	Introduction
	Background and Notation
	MD4 and MD5
	Collision Attacks Based on Differential Cryptanalysis

	Key-Recovery Attacks on HMAC and NMAC
	Extracting Hash Collisions from NMAC Collisions
	IV-Recovery Attacks
	Subtleties Between the Inner and Outer Keys
	Summary

	Attacking HMAC/NMAC-MD4
	Our IV-Recovery Attack Against MD4
	Deriving a Composite IV-Recovery Attack Against MD4
	MD4 Attack Summary

	Attacking NMAC-MD5
	The IV-Recovery Attack Against MD5
	Deriving a Composite IV-Recovery Against MD5
	MD5 Attack Summary

	Improving the MD4 IV-Recovery
	Reducing the Online Cost
	Reducing the Offline Cost

	IV-Dependent Differential Path

	How Should We Solve Search Problems Privately?
	Introduction
	This Work

	Definitions
	Equivalence Protecting Privacy Definition 
	Private Algorithms for Monotone Search Problems
	Applications of the Construction

	Resemblance Preserving Algorithms
	Generic Constructions of Resemblance Preserving Algorithms
	Resemblance Preserving Using Pairwise Independence
	Applications of the Pairwise Independence Construction

	Deterministic vs. Randomized Private Algorithms

	Public Key Encryption That Allows PIR Queries
	Introduction
	Reference Table of Notation

	Ingredients
	Bloom Filters
	Oblivious Modification
	Modifying Encrypted Data in a Communication-Efficient Way

	Definitions
	Extensions

	Main Construction

	Information Security Economics – and Beyond
	Introduction
	Foundational Concepts
	Misaligned Incentives
	Security as an Externality

	Applications
	Economics of Vulnerabilities
	Economics of Privacy
	Incentives and the Deployment of Security Mechanisms
	Protecting Computer Systems from Rational Adversaries

	The Role of Governments
	Open Problems
	Algorithmic Mechanism Design
	Network Topology and Information Security
	Large Project Management
	Psychology and Security

	Conclusions

	Cryptography with Constant Input Locality (Extended Abstract)
	Introduction
	Our Results
	Our Techniques
	Previous Work

	Preliminaries
	Randomized Encoding

	Randomized Encoding with Constant Input Locality
	Primitives with Constant Input Locality and Output Locality
	Main Assumption: Intractability of Decoding Random Linear Code
	Pseudorandom Generator in Local^3_3
	Commitment in Local_3^4
	Semantically Secure Public-Key Encryption in Local_3^$O$(1)

	Negative Results for Cryptographic Primitives
	MACs and Signatures
	Non-malleable Encryption

	Negative Results for Randomized Encodings
	A Necessary Condition for Encoding with Low Input Locality
	Impossibility of Universal Encoding for Linear Functions


	Universally-Composable Two-Party Computation in Two Rounds
	Introduction
	Framework, Tools, and Assumptions
	Round-Efficient UC Two-Party Computation
	A Two-Round Protocol for Single-Output Functionalities
	A Two-Round Protocol for Two-Output Functionalities
	Two Rounds Are Necessary

	Two-Round Universally-Composable Blind Signatures

	Indistinguishability Amplification
	Introduction
	Indistinguishability Amplification for Random Variables
	Contributions of This Paper
	Discrete Systems, Indistinguishability, and Game-Winning
	Related Work and Applications

	Random Systems
	Random Systems
	Special Random Systems
	Distinguishing Random Systems
	Game-Winning and Monotone Binary Outputs

	Relating Indistinguishability and Game-Winning
	From Game-Winning to Indistinguishability
	From Indistinguishability to Game-Winning

	Amplification of the Distinguishing Advantage
	Neutralizing Constructions
	Winning Independent Games
	The Product Theorem
	Implications of the Product Theorem

	Amplification of the Distinguisher Class

	A Hybrid Lattice-Reduction and Meet-in-the-Middle Attack Against NTRU
	Introduction
	Roadmap

	The NTRU Cryptosystem
	Lattice Attacks Against NTRU
	Odlyzko's Meet-in-the-Middle Attack on NTRU
	Choosing NTRUEncrypt Parameters

	Lattice Basis Representation and Lattice Reduction
	Reducing the NTRU Public Basis

	The Hybrid Lattice-Reduction and Meet-in-the-Middle Method
	Results
	A Small Example
	$ees251ep6$ with $m=302$
	A Table of Results with an Extrapolation

	Lessening Storage Requirements
	Generalizations
	Conclusions

	Improved Analysis of Kannan’s Shortest Lattice Vector Algorithm (Extended Abstract)
	Introduction
	Background on Lattice Reduction
	Kannan's SVP Algorithm
	Short Lattice Points Enumeration
	Solving SVP
	Cost of Kannan's SVP Solver

	Complexity of the Enumeration Procedure
	Integer Points in Hyper-Ellipsoids
	The Case of Quasi-HKZ-Reduced Bases
	A Property on the Geometry of HKZ-Reduced Bases

	CVP and Other Related Problems
	Practical Implications
	Pre-processing Before Enumerating
	Estimating the Cost of Solving SVP


	Domain Extension of Public Random Functions: Beyond the Birthday Barrier
	Introduction
	Secret vs. Public Random Functions
	Domain Extension and the Birthday Barrier
	Significance of Domain Extension for Public Random Functions
	Contributions and Outline of This Paper

	Preliminaries
	Notation and Probabilities
	Indistinguishability of Random Systems
	Indifferentiability, Reductions, and Public Random Primitives

	Beyond-Birthday Domain Extension for Public Random Functions
	The Construction
	Input-Restricting Functions
	Main Result
	Proof of Theorem 1

	Existence of Input-Restricting Function Families
	Constructing Public Random Oracles

	Random Oracles and Auxiliary Input
	Introduction
	Our Results
	Related Work
	Further Applications
	Organisation
	Notation

	Lazy Sampling with Auxiliary Input
	Example: One-Wayness of the Random Oracle
	Security Amplification
	OAEP Encryption
	Open Questions

	Security-Amplifying Combiners for Collision-Resistant Hash Functions
	Introduction
	Preliminaries
	Hash Functions and Combiners
	Our Model
	Lucky Collisions
	Security Amplification

	Warming Up: Attack on the Classical Combiner
	Basic Conclusions
	A Security-Amplifying Combiner 
	Proof of Security Amplification
	Proof of Chosen Pre-image Resistance (Lemma 3)
	Proof of $\collfinder$-Replication Resistance (Lemma 5)
	Proof of Security Amplification (Theorem 1)

	Hash Functions and the (Amplified) Boomerang Attack
	Introduction
	The Boomerang Attack
	Adapting the Boomerang Attack to Hash Functions
	Neutral Bits Approach
	Explicit Conditions Approach

	Application to $SHA-1$
	A Short Description of $SHA-1$
	Previous Attacks on $SHA-1$
	Building Auxiliary Differential Paths
	Placing Auxiliary Differential Paths
	Using Auxiliary Differential Paths
	Complexity Analysis for a Full Collision Attack

	Conclusion

	Amplifying Collision Resistance: A Complexity-Theoretic Treatment
	Introduction
	This Work

	Preliminaries
	Quantitative Definitions of Collision Resistance
	Black-Box Combiners for Collision Resistance

	Constructions
	Amplification Via Concatenation
	Amplification Via Codes
	Reducing the Key Size
	Reducing the Output Length

	Limitations

	How Many Oblivious Transfers Are Needed for Secure Multiparty Computation?
	Introduction
	Our Contribution

	Preliminaries
	Counting OT Channels: Upper and Lower Bounds
	Upper Bounds for $t = (1-\delta)n$: The Committees Method
	Lower Bounds for $t=n-1$: Full OT Network Is Necessary
	Lower Bounds for Corruption of $t = n-d$ Parties

	Upper Bounds for the Case of $t = n-1$
	The Tables Method
	Applying the Tables Method
	Oblivious Linear Branching Programs
	Functions Captured by Linear Branching Programs

	Secure Computation for Non-deterministic LBP

	Simulatable VRFs with Applications to Multi-theorem NIZK
	Introduction
	On Defining sVRFs
	Simplifying the Definition
	Weak Trapdoor-Indistinguishable sVRF

	Construction Based on General Assumptions
	Efficient Construction
	Multi-theorem NIZK from One-Theorem NIZK Via sVRFs

	Cryptography in the Multi-string Model
	Introduction
	Non-interactive Zero-Knowledge
	Multi-party Computation

	Definitions
	Multi-string NIZK Proofs Based on General Assumptions
	Multi-string NIZK Proofs from Groups with a Bilinear Map
	UC Commitment in the Multi-string Model
	Multi-party Computation

	Secure Identification and QKD in the Bounded-Quantum-Storage Model
	Introduction
	Preliminaries
	Notation and Terminology
	Tools

	The Identification Scheme
	The Setting
	The Intuition
	The Basic Scheme
	An Error-Tolerant Scheme

	Defeating Man-in-the-Middle Attacks
	The Approach
	The Setting
	An Additional Tool: Extractor MACs
	The Scheme

	Application to QKD

	A Tight High-Order Entropic Quantum Uncertainty Relation with Applications
	Introduction
	Preliminaries
	Notation and Terminology
	Smooth Rényi Entropy
	Azuma's Inequality

	The Uncertainty Relation
	Application: Oblivious Transfer
	Privacy Amplification and a Min-Entropy-Splitting Lemma
	The Definition
	The Protocol
	Security Against Memory-Bounded Dishonest Receivers

	Application: Quantum Bit Commitment
	Application: Quantum Key Distribution 
	Open Problems

	Finding Small Roots of Bivariate Integer Polynomial Equations: A Direct Approach
	Introduction
	Preliminaries
	Our New Algorithm
	Computing a Basis of $L_2$
	Difference with the Algorithm in [9]
	Extension to More Variables

	Practical Experiments
	Conclusion
	Proof of Lemma 1
	Proof of Lemma 3

	A Polynomial Time Attack on RSA with Private CRT-Exponents Smaller Than N^0.073
	Introduction
	Finding Small Roots of Polynomials
	The Bleichenbacher-May Attack
	The New Attack on RSA-CRT
	Extending the Attack to Other Values of $\alpha$ 

	Implementation Using Coppersmith's Original Method
	Extracting the Common Root
	Experiments
	Experiments for Small $e$
	Experiments for Full Size $e$

	Calculating the Bound and Finding More Polynomials
	A Related Attack by Galbraith, Heneghan, and McKee

	Invertible Universal Hashing and the TET Encryption Mode
	Introductions
	The Underlying Hashing Scheme
	BPE: A Blockwise Universal Hashing Scheme

	The TET Mode of Operation
	Tweaks and Variable Input Length
	Partial Blocks
	The PRF Function
	Some Other Details
	Performance of TET

	Security of TET
	Conclusions
	Preliminaries
	Intellectual-Property Issues

	Reducing Trust in the PKG in Identity Based Cryptosystems
	Introduction
	Preliminaries
	Bilinear Maps
	Complexity Assumptions
	Miscellaneous Primitives

	The Definitions and the Model
	Construction Based on Gentry's Scheme
	The Construction
	Security Proofs

	Construction Based on Decisional BDH Assumption
	The Construction

	Future Work
	Efficient Ciphertext Sanity Check in the Second Construction

	Pirate Evolution: How to Make the Most of Your Traitor Keys
	Introduction
	The Subset-Cover Revocation Framework
	Pirate Evolution
	A Trace and Revoke Scheme Immune to Pirate-Evolution
	Pirate Evolution for the Complete Subtree Method 
	Pirate Evolution for the Subset Difference Method


	A Security Analysis of the NIST SP 800-90 Elliptic Curve Random Number Generator
	Introduction
	The Elliptic Curve Random Number Generator
	Lemmas on Indistinguishability
	The Decisional Diffie-Hellman Problem
	The x-Logarithm Problem
	Security of the Raw ECRNG Outputs Points
	Truncated Point Problem and Security of the Full ECRNG
	Unpredictability of the Next State from the Current Output
	A Caution About the Truncated Point Problem for Binary Curves

	A Generalization of DDH with Applications to Protocol Analysis and Computational Soundness
	Introduction
	A Generalization of the Decisional Diffie-Hellman Problem
	The $DDH$ Problem
	The (P,Q)-$DDH$ Problem
	Our Main Result: $DDH$ Implies (P,Q)-$DDH$

	Applications: Simple Proofs for Diffie-Hellman-Based Protocols
	A Symbolic Logic for Diffie-Hellman Exponentials and Encryption
	Conclusion

	Chernoff-Type Direct Product Theorems
	Introduction
	Weakly Verifiable Puzzles
	Related Work
	Techniques

	Preliminaries
	Proof of the Main Theorem
	Assuming Oracle $\mathcal{O}^{G}$ Exists
	Removing the Oracle $\mathcal{O}^{G}$

	Open Problems

	Rerandomizable RCCA Encryption
	Introduction
	Definitions
	Encryption and Security Definitions
	Decisional Diffie-Hellman (DDH) Assumption

	Motivating the Double-Strand Construction
	Our Construction
	Double-Strand Malleable Encryption Scheme
	Double-Strand Cramer-Shoup Encryption Scheme
	Complexity

	Replayable Message Posting
	Results
	Extensions
	Anonymity

	Conclusions and Future Directions

	Deterministic and Efficiently Searchable Encryption
	Introduction
	Notation and Conventions
	Deterministic Encryption and Its Security
	Secure Deterministic Encryption Schemes
	Encrypt-with-Hash
	RSA-DOAEP, a Length-Preserving Deterministic Scheme

	Efficiently Searchable Encryption (ESE)
	Encrypt-and-Hash ESE

	CCA and Other Extensions

	Secure Hybrid Encryption from Weakened Key Encapsulation
	Introduction
	Our Contributions
	Discussion and Related Work

	Hybrid Encryption from Constrained CCA Secure KEMs
	Key Encapsulation Mechanisms
	Authenticated Encryption
	Hybrid Encryption

	Efficient Key Encapsulation from DDH
	Building Blocks
	The Key-Encapsulation Mechanism
	Comparison with Cramer-Shoup and Kurosawa-Desmedt
	Efficiency

	Key Encapsulation from $n$-Linear
	Linear Assumptions
	The Key-Encapsulation Mechanism

	Key Encapsulation from Hash Proof Systems
	Hash Proof Systems
	Key Encapsulation from HPS
	Computational Hash Proof Systems
	A Computational HPS from $n$-Linear


	Scalable and Unconditionally Secure Multiparty Computation
	Introduction
	Preliminaries
	Private, $t$ < $n/2$
	Random Double Sharings
	Opening Sharings
	Multiplication Triples
	Circuit Evaluation

	Robust, $t$ < $n/4$
	Error Points
	Coin-Flip
	Dispute Control
	Dealing Consistent Sharings
	Random Double Sharings
	Opening Sharings
	Circuit Evaluation

	Robust, $t$ < $n/3$
	Robust, $t$ < $n/2$

	On Secure Multi-party Computation in Black-Box Groups
	Introduction
	Preliminaries
	Honest Majority Is Necessary for n-Product in Non-abelian Groups
	Constructions
	Our Approach: Black Box Non-abelian Group Protocols
	Construction of $n$-Product Protocol from a Shared 2-Product Subprotocol
	Construction of a $t$-Private $n$-Party Shared 2-Product Subprotocol from a $t$-Reliable $n$-Colouring of a Planar Graph
	Constructions of $t$-Reliable $n$-Colourings of Planar Graphs
	Generalisations and Other Results

	Conclusions

	A Note on Secure Computation of the Moore-Penrose Pseudoinverse and Its Application to Secure Linear Algebra
	Introduction
	Our Results
	Related Work

	Preliminaries
	The Model
	Some Known Techniques

	Secure Polynomial Evaluation
	Known Solution
	Chebyshev Polynomials
	Perfectly Secure Polynomial Evaluation of a Shared Field Element
	Perfectly Secure Polynomial Evaluation of a Shared Matrix

	Solving Linear Systems of Equations
	Computing the Rank of a Matrix
	Moore-Penrose Pseudoinverse
	The Algorithm

	The Secure Multi-party Protocols
	Protocol for the Characteristic Polynomial

	Author Index



