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Abstract. The problem of label ranking has recently been introduced as
an extension of conventional classification in the field of machine learning.
In this paper, we argue that label ranking is an amenable task from a
CBR point of view and, in particular, is more amenable to supporting
case-based problem solving than standard classification. Moreover, by
developing a case-based approach to label ranking, we will show that, the
other way round, concepts and techniques from CBR are also useful for
label ranking. In addition to an experimental study in which case-based
label ranking is compared to conventional nearest neighbor classification,
we present an application in which label ranking is used for node ordering
in heuristic search.

1 Introduction

As a generic problem solving methodology, case-based reasoning (CBR) has al-
ready been applied successfully for various types of problems [21]. An especially
simple yet relevant problem class for CBR is prediction, including classification
(predicting one among a finite set of class labels) and regression (predicting a
numerical output) as special cases. In this context, CBR overlaps with the field
of machine learning and is typically referred to as case-based, instance-based,
or memory-based learning [20,2,1]. The core of case-based learning algorithms is
built upon the nearest neighbor estimation principle [7].

From a CBR point of view, prediction is arguably one of the least complex
problem types, mainly because the crucial subtask of adaptation is not an in-
tricate issue. In fact, the adaptation of previous solutions, retrieved from a case
library, to the current problem at hand is still one of the most challenging steps
of a CBR process and quite difficult to automate [9]. For prediction problems,
however, adaptation can be done in a rather straightforward way: In the case
of regression, one can hardly do better than deriving an average of the k near-
est neighbors’ outputs (in which the neighbors are weighted according to their
similarity to the query [17,4]). In the case of classification, the “solution space”
is given by the finite set of class labels, and the classes of the nearest neighbors
are typically combined through majority voting.

Despite the fact that (nearest neighbor) classification methods have been used
extensively in the CBR field, e.g., for problems such as diagnosis, one may argue
that the classification framework in its standard form is not fully satisfactory
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from a problem solving point of view, simply because problem solving usually
goes beyond predicting a single solution:

– A first crucial problem is that a simple classification does not imply a possible
course of action in the case where it fails: If the classification is wrong, the
problem is not yet solved, so the question is how to continue.

– Besides, in the case of failure, conventional classification does not offer a
means to properly learn from the unsuccessful trial, because a problem in
conjunction with a suboptimal solution is not an “example” in the sense of
supervised learning; and even if an optimal solution is eventually found, the
corresponding problem/solution pair will usually not comprise the complete
experience (e.g., differences in the quality of suboptimal solutions) that has
been gathered in the course of the problem solving episode.

To avoid these problems, we propose a (case-based) approach to label ranking
and elaborate on its application in case-based reasoning. Label ranking is an
extended classification task that has recently been studied in machine learning.
The goal in label ranking is to predict a complete ranking of all class labels
instead of only a single class (top-label). Obviously, a prediction of that kind
can be very useful in CBR. For example, it suggests a simple problem solving
strategy, namely a trial and error search process which successively tests the
candidate solutions until the problem has been solved. Needless to say, to be
effective, this strategy presupposes a solution space in the form of a finite set of
small to moderate size (just like classification learning itself).

To illustrate, consider a fault detection problem which consists of identifying
the cause for the malfunctioning of a technical system. Moreover, suppose that
a (case-based) learning system is used to predict the true cause, e.g., on the
basis of certain sensor measurements serving as input attributes (see, e.g., [3]
for an application of that type). A prediction in the form of a label ranking then
dictates the complete order in which the potential causes (which play the role
of labels) should be searched.

The remainder of the paper is organized as follows: The problem of label
ranking and its relation to CBR are discussed in Section 2. In Section 3, we
present a case-based approach to label ranking which is an extension of nearest
neighbor classification.1 Section 4 is devoted to experimental studies in which our
case-based label ranking method is compared to conventional nearest neighbor
classification. Moreover, this section elaborates on the idea of using case-based
label ranking for node ordering in heuristic search. Finally, Section 5 gives a
summary and concludes the paper.

2 Label Ranking and CBR

In label ranking, the problem is to learn a mapping from instances x of an
instance space X to rankings �x (total strict orders) over a finite set of labels

L = {λ1, λ2 . . . λc},

1 Parts of this section can also be found in the companion paper [6].
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where λi �x λj means that, for the instance x, label λi is placed ahead of λj ; in
this case, we shall also say that λi is preferred to λj (by x). As mentioned earlier,
in the context of CBR, instances correspond to problems and labels correspond
to candidate solutions. This should be kept in mind, since we shall subsequently
use both the CBR and the machine learning terminology.

A ranking over L can be represented by a permutation τ of {1 . . . c}, where
τ(i) denotes the position of the label λi; thus, λi �x λj iff τ(i) < τ(j). The
target space of all permutations over c labels will subsequently be referred to
as Sc.

As training data, a label ranking algorithm can refer to a number of example
instances together with different types of information regarding their preference
for labels. Since this point is important for CBR, we will discuss it in this specific
context.

2.1 Training Data in Label Ranking

Suppose that, in the course of a problem solving process in CBR, a subset of
all candidate solutions has been tried to solve a query problem x0. What can
be learned from these trials, and what experiences can be memorized? One type
of experience concerns the suitability of individual candidate solutions λi: Such
candidates may be feasible or acceptable as a solution or not. Subsequently, we
shall refer to this kind of distinction as an absolute preference.

Another type of experience concerns relative preferences: As soon as two al-
ternatives λi and λj have been tried as solutions for x0, these two alternatives
can be compared and, correspondingly, either a preference in favor of one of
them or an indifference can be expressed:

λi �x0 λj or λi ≺x0 λi or λi ∼x0 λj .

Again, these preferences can be memorized and utilized for future problem solv-
ing. For example, a preference λi �x0 λj clearly holds if λj turned out to be
unacceptable, while λi was found to be acceptable as a solution. However, even
if both alternatives were acceptable, or both unacceptable, one may state that
one of them is still better than the other one (e.g., because it is less expensive).
Indeed, more often than not, there will be more than one acceptable solution,
even though not all of them will be equally preferred.

To exploit experience of the above type, a CBR system may store a problem
along with absolute and relative preferences in a case library. Thus, a case may
look a follows:

〈
x, ([λ2, λ4]+, [λ1, λ6]−, λ4 � λ2, λ1 ∼ λ6)

〉
. (1)

The meaning of this example is that λ2 and λ4 are acceptable solutions for the
problem x, λ1 and λ6 are unacceptable, λ4 is preferred to λ2, and indifference
holds between λ1 and λ6. Note that a case such as (1) represents only partial
preference information about labels; for example, nothing is known about λ3,
perhaps because it has not been tried as a solution for x.
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As will be explained in more detail later on, cases of the form (1) correspond
to the (most general) type of examples that label ranking algorithms can learn
from. With regard to gathering experiences from a problem solving episode, label
ranking is hence more flexible and expressive than conventional classification. In
fact, the standard type of example in classification learning is a tuple consisting of
an instance and an associated class or, using CBR terminology, a problem with
its “correct” solution. Comparing these two approaches, label ranking clearly
exhibits the following advantages:

– Label ranking can also learn from unsuccessful trials; in contrast, the infor-
mation that a certain label is not the correct class is not directly utilizable
by standard classification methods (unless, of course, in the case of binary
problems with only two classes).

– Even if the problem was eventually solved, label ranking can learn more than
the optimal solution, because it additionally makes use of the preferences
between the alternatives that have been tried before.

Even though conventional classification has already been extended in one way
or the other, the aforementioned limitations essentially persist. For example,
in multi-label classification, an instance may belong to more than one class or,
stated differently, a problem may have more than one solution. So, an example
is a tuple consisting of an instance x together with an associated subset Lx ⊆ L
of class labels. In principle, it is hence possible to distinguish between acceptable
and unacceptable solutions, as we have done above. Note, however, that Lx must
indeed be known exactly, i.e., the representation of partial knowledge is still a
problem. Besides, of course, a more refined discrimination between solutions in
terms of relative preferences is not possible.

2.2 Prediction and Loss Functions on Label Rankings

Apart from increased flexibility with respect to the representation of experiences,
label ranking has also advantages regarding the prediction of solutions for new
problems. Conventional classification learning essentially allows a classifier to
make a one shot decision in order to identify the correct label. A prediction
is either correct or not and, correspondingly, is rewarded in the former and
punished in the latter case. The arguably best-known loss function reflecting this
problem conception is the misclassification or error rate of a classifier. However,
in many practical applications, the problem is not to give a single estimation, but
to make repeated suggestions until the correct target label has been identified.
Obviously, this task is ideally supported by a label ranking.

To measure the quality of a predicted label ranking, a suitable loss function
�(·) is needed. To this end, several meaningful metrics can be used, such as the
sum of squared rank distances

�2(τ, τ ′) df=
c∑

i=1

(τ(i) − τ ′(i))2. (2)
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The linear transformation of the latter loss function into a [−1, 1]-valued simi-
larity measure is well-known as the Spearman rank correlation coefficient [19].

Remark 1. Regarding the relation between classification and label ranking, or-
dering the class labels according to their probability of being the top-label (i.e.,
the “true” label in classification) as suggested, e.g., by a probabilistic classifier,
does not usually yield a good prediction in the sense of a ranking error such
as (2). To illustrate, suppose that P(1 � 2 � 3) = 0.5, P(3 � 2 � 1) = 0.3,
P(2 � 1 � 3) = 0.2, while the probability of all other rankings is 0. The prob-
ability of being the top-label is, respectively, 0.5, 0.2, 0.3 for the three labels
1, 2, and 3, so sorting them according to these probabilities gives 1 � 3 � 2.
However, in terms of the sum of squared rank distances (2), this ranking is sub-
optimal as it has a higher expected loss than the ranking 2 � 1 � 3. This result
is not astonishing in light of the fact that, by only looking at the top-labels, one
completely ignores the information about the rest of the rankings. In the above
example, for instance, one ignores that label 2 is never on the lowest position.

In some applications, the quality of a ranking may not depend on the positions
assigned to all the labels. For example, consider again a fault detection problem
which consists of identifying the cause for the malfunctioning of a technical
system. As mentioned earlier, a ranking suggests a simple (trial and error) search
process which successively tests the candidates, one by one, until the correct
cause is found. In this scenario, where labels correspond to causes, the existence
of a single target label λ∗ (the true cause) instead of a target ranking can be
assumed. Hence, an obvious measure of the quality of a predicted ranking is the
number of futile trials made before that label is found. To distinguish it from real
ranking errors such as (2), a deviation of the predicted target label’s position
from the top-rank has been called a position error [3,16]. Needless to say, various
generalizations of a position error thus defined are conceivable, depending on the
type of search or problem solving process used to find the target label λ∗. For
instance, imagine a process which tries exactly k solutions and then takes the
best among these candidates, λ(k). In this case, a reasonable loss function is
given by the quality of λ∗ minus the quality of λ(k).

3 Case-Based Label Ranking

For the time being, let us make the idealized assumption that the training data
submitted to the learning algorithm consists of a set of examples

D = {(x1, τ1), (x2, τ2) . . . (xm, τm)} ,

where each example contains a complete label ranking. As discussed in Sec-
tion 2.1, the preference information being available in practice will usually be
much weaker. However, by reducing the technical complexity, this assumption
will allow us to focus on the main conceptual elements of case-based label rank-
ing. In Section 3.2, we will discuss how to handle more general scenarios that
relax the above assumption and allow for dealing with examples such as (1).
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In the following, we will introduce a general case-based framework for learn-
ing label rankings. The k-nearest neighbor algorithm (k-NN) is arguably the
most basic case-based learning method [7]. In its simplest version, it assumes
all instances to be represented by feature vectors x = (x1 . . . xN )� in the
N -dimensional space X = R

N endowed with a distance measure d(·) such as
the Euclidean metric. Given a query input x0, the k-NN algorithm retrieves the
k training instances closest to this point in terms of d(·). In the case of classifica-
tion learning, k-NN estimates the query’s class label by the most frequent label
among these k neighbors. As mentioned in the introduction, it can be adapted
to the regression learning scenario by replacing the majority voting step with
computing the (weighted) mean of the target values.

A unified view of both classification and label ranking as discrete-valued learn-
ing problems suggests a straightforward generalization of the k-NN algorithm
which predicts the most common label ranking as a target object. However, on
second thought, several obvious problems make this approach seem inappropri-
ate in general:

– The cardinality of the target space in label ranking is |Sc| = c!, a number
exceeding the typical cardinality in classification learning abundantly clear.
Therefore, if the local distribution of label rankings does not have sharp
peaks, equal votes statistics are much more likely (except for k = 1). Ran-
dom tie-breaking, a standard technique in k-NN learning, will hence be used
rather frequently, resulting in randomly selecting a label ranking among the
k nearest neighbors.

– In contrast to classification learning, where only the discrete metric (0/1
loss) is given on the target space, meaningful non-trivial metrics can be
defined on label rankings (cf. Section 2.2), a property shared with regression
learning. The conventional k-NN algorithm does not exploit this property in
the aggregation step, which is typically realized as a simple majority vote
among the neighbors instead of any sort of averaging.

To avoid these problems, a more sophisticated algorithm should incorporate
the structured nature of the space of label rankings. Our approach, recently
put forward in [6], considers aggregation techniques for label ranking which are
conceptually related to averaging in k-NN regression learning. To this end, we
incorporate a common rank aggregation model to combine the k nearest neigh-
bors into a single ranking. Even though this model has already been used in a
variety of applications, such as in combining meta-search results [8], it is a novel
component in a label ranking algorithm. The consensus label ranking is com-
puted such that it minimizes the sum of pairwise disagreement measures with
respect to all k rankings, as will be detailed below.

3.1 Aggregating Label Rankings

Let τ1 . . . τk denote rankings of the c alternatives (labels) λ1 . . . λc. A common
method to measure the quality of a ranking

τ = AGGR(τ1 . . . τk)
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as an aggregation of the set of rankings τ1 . . . τk is to compute the sum of pairwise
loss values with respect to a loss (distance) function � : Sc × Sc → R≥0 defined
on pairs of rankings:

L(τ) df=
k∑

i=1

�(τ, τi)

Having specified a loss function �(·), this leads to the optimization problem of
computing a ranking τ̂ ∈ Sc (not necessarily unique) such that

τ̂ ∈ arg min
τ∈Sc

k∑

i=1

�(τ, τi). (3)

For the sum of squared rank distances as a loss function, a provably optimal
solution of (3) is obtained by ordering alternatives according to the so-called
Borda count [15], a voting technique well-known in social choice theory. The
Borda count of an alternative is the number of (weighted) votes for that alterna-
tive in pairwise comparisons with all remaining options. This voting rule requires
computational time on the order of O(kc + c log c) and thus can be evaluated
very efficiently2.

In the experimental section, we will use the Borda-count ordering technique as
it is computationally efficient and has a sound theoretical basis. However, as the
aggregation component is an isolated module within our case-based framework,
alternative aggregation techniques which may be suitable for the particular ap-
plication at hand may be integrated easily (such as aggregation techniques which
minimize loss functions focusing on correct top ranks rather than distributing
equal weights to all positions).

3.2 Extensions of Label Ranking

Practical applications of (case-based) label ranking suggest several generaliza-
tions of the framework that we introduced above. Essentially, these generaliza-
tions concern the target space, that is, the set Sc of all rankings over L. As
an appealing property of the case-based framework, replacing Sc by any more
general space, say, Sex

c can be done quite easily without changing the framework
itself, provided that Sex

c can be endowed with a suitable distance measure. In
the following, we give a brief overview of some important extensions, though
without going into much technical detail.

Rankings with Ties. So far, we assumed rankings in the form of strict total
orders, which means that, for any pair of alternatives λi, λj , either λi � λj or
λj � λi. More generally, as mentioned in Section 2.1, it might be reasonable to
allow for the case of indifference (λi ∼ λj), that is, to consider rankings with ties.
A ranking of that kind is also referred to as a bucket order [8]. More precisely, a

2 More technical details can be found in [6], where the aggregation problem is also
considered for other loss functions.
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bucket order is a transitive binary relation � for which there exist sets B1 . . . Bm

that form a partition of the set of alternatives L such that λi � λj if and only if
there exist 1 ≤ k < l ≤ m such that (λi ∈ Bk)∧(λj ∈ Bl). A bucket order induces
binary preferences among labels and, moreover, forms a natural representation
for generalizing various metrics on strict rankings to rankings with ties. To this
end, we define a generalized rank σ(i) for each label λi ∈ L as the average overall
position σ(i) =

∑
l<j |Bl| + 1

2 (|Bj | + 1) within the bucket Bj which contains λi.
Fagin et al. [8] proposed several generalizations of well-known metrics such as
Kendall’s tau and the Spearman footrule distance.

Calibrated Rankings. A particularly interesting generalization of label rank-
ing is calibrated label ranking as introduced in [5]. Roughly speaking, a calibrated
ranking is a ranking with an additional neutral label which splits a ranking into
two parts, say, a positive and a negative one. This way, it becomes possible
to combine absolute and relative preference information as introduced in Sec-
tion 2.1. For example, in a CBR context, the positive part may consist of those
alternatives (solutions) λi which are feasible, while the alternatives in the neg-
ative part are not acceptable as solutions for the current problem. The ranking
further refines this crude distinction, e.g., one alternative can be better than
another one, even though both are feasible.

An elegant extension of distance measures for rankings to measures for cal-
ibrated rankings was proposed in [6]. The basic idea is to define the distance
between two calibrated rankings by the distance between the associated ex-
tended rankings which include the neutral label. Moreover, the neutral label can
be duplicated to broaden the gap between the positive and the negative part.
This way, a deviation of a label’s estimated position from its true position is
punished more strongly if it furthermore leads to putting the label on the wrong
side.

Partial Preference Information. The assumption that a complete ranking
is given for every training example will generally not be satisfied in practice.
Instead, only partial preference information will be available, e.g., a ranking
of only a subset of the labels L. The problem of extending distance measures
to partial preference relations was studied by Ha and Haddawy [11]. Here, the
basic idea is to consider the set of all consistent extensions of such rankings (to
complete rankings), and to measure a distance between these extensions. Again,
this is a quite elegant approach, even though it may become computationally
complex.

4 Experiments

As already mentioned earlier, label ranking essentially assumes a finite label set
L of small to moderate size, a property it shares with conventional classifica-
tion. If this property is fulfilled for a solution space in CBR, label ranking can
be applied immediately. A related experimental study, which deals with pre-
dicting a rational, decision-theoretic agent’s ranking of actions in an uncertain
environment, is presented in Section 4.1.
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Moreover, in Section 4.2, we consider an interesting alternative, showing how
label ranking can be usefully applied as a sub-component in the context of a
search-based problem solving strategy operating on a complex solution space.
More specifically, by determining the order of successor states in heuristic search,
label ranking will be used for guiding a heuristic search process.3 Roughly speak-
ing, the idea is to assume that, if a certain ordering of successor nodes in a search
state A turned out to be useful, the same or a similar ordering will also be useful
in a similar state B.

4.1 Case-Based Decision Making

In our first experiment, we replicate a setting that has been used in the context of
label ranking in [10]. The problem is to learn the ranking function of an expected
utility maximizing agent. More specifically, we proceed from a standard setting
of expected utility theory: A = {a1 . . . ac} is a set of actions the agent can choose
from and Ω = {ω1 . . . ωm} is a set of world states. The agent faces a problem of
decision under risk where decision consequences are lotteries: Choosing action
ai in state ωj yields a utility of uij ∈ R, where the probability of state ωj is pj .
Thus, the expected utility of action ai is given by

E(ai) =
m∑

j=1

pj · uij . (4)

Expected utility theory justifies (4) as a criterion for ranking actions and, hence,
gives rise to the following preference relation:

ai � aj ⇔ E(ai) > E(aj). (5)

Now, suppose the probability vector p = (p1 . . . pm) to be a parameter of the
decision problem (while A, Ω and the utility matrix matrix U = (uij) are fixed).
A vector p can be considered as a description of the “problem” that the agent
has to solve, namely as a characterization of the uncertain environment in which
the agent must take an action.

The above decision-theoretic setting can be used for generating synthetic data
for label ranking. The set of instances (problems) corresponds to the set of
probability vectors p, which are generated at random according to a uniform
distribution over {p ∈ R

m | p ≥ 0, p1 + . . . + pm = 1}. The ranking associated
with an instance is defined by the pairwise preferences (5). Thus, an experiment is
characterized by the following parameters: The number of actions/labels (c), the
number of world states (m), the number of examples (n), and the utility matrix
which is generated at random through independent and uniformly distributed
entries uij ∈ [0, 1].

In this study, we applied our case-based approach to label ranking (CBLR),
using the aggregation technique described in Section 3.1. For comparison, we
3 The idea of using CBR to support heuristic search has already been put forward by

several authors; see e.g. [18] for a very recent and closely related approach.
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used the standard k-NN classification method, which simply orders the class
labels according to the number of votes they receive from the neighbors (ties
are broken at random). The main goal of this study is to show the benefit of
the additional information contained in the comparison of suboptimal solutions,
which is exploited by CBLR but not by the simple k-NN classifier.

In the experiments, we chose the problem dimensions to be m ∈ {5, 10, 15, 20},
c ∈ {5, 15, 20}, and fixed the number of training and test examples to 1, 000
each. For each value of the input dimension, we generated 10 different label
ranking problems originating from independently sampled utility matrices. As
evaluation measures, we considered the position error (i.e., the position assigned
to the true top-label) and the Spearman rank correlation. In order to simplify
the comparison, the position error was re-scaled into a similarity measure on
[−1, +1] in a straightforward way. For each learning problem and algorithm, the
neighborhood parameter k ∈ {1, 3 . . .19, 21} was determined based upon the
performance (with respect to the particular evaluation measure at hand) on a
random 70/30 split of the training data. The performance results on the test
sets were averaged over all 10 runs.

Table 1. Results of the first experimental study. In each horizontal block, the first line
shows the accuracy values for CBLR, the second line for the simple k-NN classifier.

m pos. err. rank. err. pos. err. rank. err. pos. err. rank. err.
5 .967 ± .020 .969 ± .011 .932 ± .026 .929 ± .019 .878 ± .0628 .880 ± .046

.967 ± .020 .625 ± .080 .923 ± .025 .697 ± .071 .866 ± .0670 .706 ± .084
10 .980 ± .008 .979 ± .005 .959 ± .017 .951 ± .007 .924 ± .0333 .909 ± .023

.977 ± .008 .437 ± .067 .950 ± .016 .484 ± .102 .907 ± .0373 .536 ± .114
15 .987 ± .005 .985 ± .002 .966 ± .011 .964 ± .007 .954 ± .0196 .926 ± .006

.982 ± .006 .302 ± .065 .957 ± .015 .414 ± .094 .940 ± .0213 .425 ± .109
20 .988 ± .003 .988 ± .002 .972 ± .007 .968 ± .006 .948 ± .0204 .936 ± .019

.984 ± .002 .266 ± .043 .958 ± .008 .337 ± .055 .926 ± .0232 .419 ± .099
c = 5 c = 10 c = 20

The results in Table 1 show that CBLR clearly outperforms the simple k-NN
classifier. As it was to be expected, the differences in performance are indeed
dramatic for the rank correlation which takes the complete ranking into account.
However, CBLR is also superior for the position error, which is essentially a
type of classification error. This result shows that exploiting information about
suboptimal solutions can also improve the standard classification performance.

4.2 Label Ranking for Controlling Heuristic Search

Resource-based configuration (RBC) is a special approach to knowledge-based
configuration [13]. It proceeds from the idea that a (technical) system is as-
sembled from a set of primitive components. A resource-based description of
components is a special property-based description in which each component
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(e.g. a lamp) is characterized by some set of resources or functionalities it
provides (e.g. light) and some other set of resources it demands (e.g. electric cur-
rent). The relation between components is modeled in an abstract way as an ex-
change of resources. A configuration problem consists of minimizing the price of
a configuration while satisfying an external demand of functionalities. In its sim-
plest form it corresponds to an integer linear program A × z ≥ x, c�z → min,
where the matrix A = (aij) specifies the quantities of functionalities offered and
demanded by the components (aij = quantity of the i-th functionality offered
by the j-th component, demands are negative offers), the vector x quantifies
the external demand, and the vector c contains the prices of the components. A
configuration is identified by the vector z, where the j-th entry is the number
of occurrences of the j-th component. In practice, it is reasonable to assume
that different problems share the same knowledge base 〈A, c〉 while the external
demand x changes. Thus, the instance (problem) space X can be identified by
all possible demand vectors.

Since an RBC problem, in its basic form, is equivalent to an integer linear
program, one could think of using standard methods from operations research for
solving it. However, this equivalence is already lost under slight but practically
relevant generalizations of the basic model (such as non-additive dependencies
between components). Realizing a heuristic search in the configuration space,
i.e., the set Z of possible configurations (identified by integer-valued vectors z),
seems to be a reasonable alternative which is more amenable toward extensions of
the model. Besides, this approach is better suited for incorporating (case-based)
experience from previously solved problems [14].

In fact, there are different ways of realizing the idea of learning from a set
of (optimally) solved problems in connection with heuristic search. Here, we
consider the possibility of employing (case-based) label ranking to guide the
search process, i.e., to control the choice of search operators: By starting with the
empty configuration (root of the search tree) and adding basic components one
by one, every node η of the search tree can be associated with an (intermediate)
configuration z(η) and a corresponding demand x(η) = x−A×z(η) which still
remains of the original demand x; the search process stops as soon as x(η) ≤ 0.
The key idea of our approach is to use label ranking to predict a promising order
τ in which to explore the successors of a search state, that is, the order in which
adding the basic components is tried (see Figure 1); the latter hence correspond
to the class labels, while the demand x(η) serves as an instance. As mentioned
above, label ranking thus implements the heuristic (CBR) assumption that, to
find a good solution for a problem x(η), the next component to be added to the
current configuration should be one that turned out to be a good choice for a
similar problem x′ as well.

In our experiments, we generated synthetic configuration problems as follows:
The components of a 5×5-matrix A were generated at random by sampling from
a uniform distribution over {−1, 0, 1, 2, 3} (the sampling process was repeated
until a feasible solution with a cost ≤ 25 existed). Likewise, the components of
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Fig. 1. Configuration as heuristic search: Every node η of the search tree is associated
with an intermediate configuration z(η). Each successor of η is obtained by adding
one of the c available components, and the order in which components are tried is
determined by the ranking (permutation) τ . The search stops if x ≤ 0.

the cost vector c and the demand vector x were sampled, respectively, from a
uniform distribution over {1, 2, 3} and {1, 2, 3, 4, 5}.

We constructed a case library as follows: Given a matrix A, a cost vector
c and a demand vector x, we used iterative deepening search to determine a
solution with minimum cost. Then, the search was repeated with a cost bound
of twice the optimum value. In this “exploration phase”, each node in the search
graph corresponds to an intermediate configuration and a remaining demand
vector. Moreover, each successor configuration can be associated with the min-
imum cost of all solutions within that subtree (which is set to infinity if no
solution with bounded costs of twice the optimum value exists). Hence, from
a label ranking point of view, we can see the remaining demand vector as an
instance, the associated ranking of which is obtained by ordering the 5 possible
successor configurations according to the subtree solution quality. We also used a
calibration label (cf. Section 3.2) which corresponds to the maximum finite cost
value, i.e., this label separates subtrees with finite-cost solutions from subtrees
with no feasible solution.

An initial case library containing all remaining demand vectors and the asso-
ciated rankings (with ties) we created for the search graph up to the maximum
limit of twice the optimal cost. To reduce the number of ties and hence to in-
crease the number of meaningful examples, we considered only those vectors for
which the labels were associated with at least 2 different cost values. Fixing
the matrix A, the process was repeated 10 times for randomly sampled initial
demand vectors x (see above). Finally, a subsample of constant size S was ran-
domly selected from the the complete case library to equalize the knowledge base
size for different matrices A.

We gave this final case library to our CBLR approach (with k = 3) and used
it as the main building block for a heuristic search strategy: Each search node
corresponds to a remaining demand vector and the predicted ranking among
the successor configuration can be interpreted as a qualitative ordering of the
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Fig. 2. Performance curve for case-based heuristic search: Average ratio between the
cost of the solution found and the true optimum (minimal cost), as a function of the
size of the case library (number S of stored cases)

utility for searching a particular subtree. Hence, we traverse the search graph
in the order dictated by the predicted ranking, where the calibration label is
associated with a back-tracking step. To evaluate this strategy, we sample a new
initial demand vector, conduct 100 search steps, and store the solution with
minimum cost found in the course of this process. Additionally, we determined
an optimal solution using the iterative deepening strategy.

The overall process of sampling A and c, building the case library, and testing
on a new demand vector was repeated 100 times. Figure 2 shows the average
ratio between the cost of the solution found by our CBLR search heuristic and
the optimal cost obtained by iterative deepening, depending on the size S of
the case library. As can be seen, for a large enough case library, the solution
quality comes close to the optimum. For example, for S = 600, the quality of the
heuristic approach (which is faster by at least one order of magnitude) deviates
by not more than 10% on average, showing the effectiveness of the approach.

5 Summary and Conclusions

The aim of this paper is to establish a connection between CBR and the label
ranking problem that was recently introduced in the field of machine learning.
In fact, our claim is that this connection can be beneficial for both sides: Firstly,
as we showed in [6], a case-based approach to the label ranking problem offers
an interesting alternative to hitherto existing model-based methods [12,10]. Sec-
ondly, we have argued here that, for various reasons, label ranking can be useful
in the context of case-based problem solving, especially when being compared to
conventional classification learning. In particular, label ranking can better ex-
ploit the pieces of experience that accumulate in the course of a problem solving
episode, and provides predictions that are potentially more helpful in finding a
solution to a new problem.

To substantiate our claims, we presented experimental studies which, in
absence of existing benchmark problems, are based on artificial scenarios and
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synthetic data. Despite the usefulness of these settings (e.g., for conducting
controlled experiments), an obvious next step is to put the ideas outlined in
this paper into practice, that is, to use label ranking in conjunction with CBR
methods for solving real problems.
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10. Fürnkranz, J., Hüllermeier, E.: Pairwise preference learning and ranking. In:
Lavrač, N., Gamberger, D., Todorovski, L., Blockeel, H. (eds.) ECML 2003. LNCS
(LNAI), vol. 2837, Springer, Heidelberg (2003)

11. Ha, V., Haddawy, P.: Similarity of personal preferences: theoretical foundations
and empirical analysis. Artificial Intelligence 146, 149–173 (2003)

12. Har-Peled, S., Roth, D., Zimak, D.: Constraint classification: a new approach to
multiclass classification. In: Cesa-Bianchi, N., Numao, M., Reischuk, R. (eds.) ALT
2002. LNCS (LNAI), vol. 2533, pp. 365–379. Springer, Heidelberg (2002)

13. Heinrich, M.: Ressourcenorientiertes Konfigurieren. Künstliche Intelligenz 1(93),
11–14 (1993)
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