
R.O. Weber and M.M. Richter (Eds.): ICCBR 2007, LNAI 4626, pp. 61–76, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Acquiring Word Similarities with Higher Order
Association Mining

Sutanu Chakraborti, Nirmalie Wiratunga, Robert Lothian, and Stuart Watt

School of Computing,
The Robert Gordon University

Aberdeen AB25 1HG, Scotland, UK
{sc,rml,nw,sw}@comp.rgu.ac.uk

Abstract. We present a novel approach to mine word similarity in Textual Case
Based Reasoning. We exploit indirect associations of words, in addition to
direct ones for estimating their similarity. If word A co-occurs with word B, we
say A and B share a first order association between them. If A co-occurs with B
in some documents, and B with C in some others, then A and C are said to share
a second order co-occurrence via B. Higher orders of co-occurrence may
similarly be defined. In this paper we present algorithms for mining higher
order co-occurrences. A weighted linear model is used to combine the
contribution of these higher orders into a word similarity model. Our
experimental results demonstrate significant improvements compared to
similarity models based on first order co-occurrences alone. Our approach also
outperforms state-of-the-art techniques like SVM and LSI in classification tasks
of varying complexity.

1 Introduction

Textual Case Based Reasoning (TCBR) is based on the idea of modelling
unstructured documents as cases. A knowledge light approach towards TCBR would
use a bag of words directly to represent cases. The set of distinct terms and key-
phrases in the document collection is treated as the feature set. One is tempted to
believe that this line of thinking undermines the importance of domain-specific
knowledge and thus blurs the distinction between CBR and Information Retrieval (IR)
[2][3]. However, it may be argued that knowledge light approaches facilitate the
application of statistical techniques to significantly lower knowledge acquisition
overheads, in comparison to knowledge intensive techniques.

This paper presents a novel knowledge light technique for acquiring word
similarities for TCBR. Our discussion is centred on a Case Retrieval Network (CRN)
formalism, which has been demonstrated to be effective and efficient in retrieval over
large and high dimensional case bases, typical with textual data [18]. CRNs have two
main knowledge containers: knowledge about how words in a domain are related to
each other (similarity knowledge); and knowledge about relatedness of words to cases
(relevance knowledge). Typically statistical approaches model similarity between two
words based on the number of documents in the corpus where these words co-occur.

62 S. Chakraborti et al.

Notwithstanding significant amount of both philosophical and pragmatic debate on
whether co-occurrence is a robust basis for semantic similarity [3], this simple
approach works fairly well in the presence of large and representative collections
[17]. Also, unlike domain-independent linguistic resources like WordNet or Roget’s
Thesaurus, this approach can be used for estimating domain specific word similarities.
In this paper, we show that we can do even better. We incorporate the notion of
higher-order co-occurrence into our model of word similarity. The basic idea is to use
indirect associations between words, in addition to direct ones. For example if words
car and chassis co-occur in one document, and words automobile and chassis in
another, we can infer that car and automobile are related to each other, even if they do
not co-occur in any document. Such a relation is called a second-order association.
We can extend this to orders higher than two. Several interesting examples showing
the importance of second order associations have been reported in studies on large
corpora. Lund and Burgess [4] observe that near-synonyms like road and street fail to
co-occur in their huge corpus. In a French corpus containing 24-million words from
the daily newspaper Le Monde in 1999, Lemaire and Denhiere [5] found 131
occurrences of internet, 94 occurrences of web, but no co-occurrences at all.
However, both words are strongly associated. Experiments [5] show that higher order
co-occurrences can be exploited to infer “semantic relatedness” [19] between road
and street, and between web and internet. Throughout this paper, we use the word
“similarity” as a measure of semantic relatedness, as opposed to a rigid semantic
relation (like synonymy or hyponymy).

This paper presents algorithms for mining higher order associations between
words. The strengths of these associations are combined to yield an estimate of word
similarity. One primary goal of this work is to evaluate the goodness of the learnt
similarity knowledge. In addition, we show how our approach can be extended to
incorporate class knowledge in supervised classification tasks. We compare our
approach with state of the art text classifiers like Support Vector Machines (SVM)
and k Nearest Neighbours (kNN) based on Latent Semantic Indexing (LSI). The
comparison with LSI is particularly significant in the light of empirical evidence [6]
that LSI implicitly exploits higher order co-occurrence relations between words to
arrive at a reduced dimensional representation of words and documents. We make a
comparative study to illustrate the advantages of explicitly capturing higher order
associations, as opposed to doing so implicitly as in LSI.

The rest of the paper is organized as follows. Section 2 introduces the CRN.
Section 3 explains the concept of higher order associations, along with algorithms to
mine the same. Section 4 describes our model of word similarities. Section 5 presents
experimental findings comparing the performance of our model at the empirically
determined best choice of parameters, with other approaches. All experiments
reported in this paper were carried out on four text classification tasks of varied
complexity. In Section 6, we present a novel approach of influencing the similarity
values based on class knowledge, along with empirical results. Section 7 shows that
the parameters of this model can be determined automatically. Possible extensions of
the current work are discussed in Section 8. In Section 9, we situate our work in the
context of other related work. Finally, section 10 summarizes our main contributions
and concludes the paper.

 Acquiring Word Similarities with Higher Order Association Mining 63

2 Case Retrieval Networks

The CRN has been proposed as a representation formalism for CBR in [1]. To
illustrate the basic idea we consider the example case-base in Fig. 1(a) which has nine
cases comprising keywords, drawn from three domains: CBR, Chemistry and Linear
Algebra. The keywords are along the columns of the matrix. Each case is represented
as a row of binary values; a value 1 indicates that a keyword is present and 0 that it is
absent. Cases 1, 2 and 3 relate to the CBR topic, cases 4, 5 and 6 to Chemistry and
cases 7, 8 and 9 to Linear Algebra.

Fig. 1. CRN for Text Retrieval

Fig. 1(b) shows this case-base mapped onto a CRN. The keywords are treated as
feature values, which are referred to as Information Entities (IEs). The rectangles
denote IEs and the ovals represent cases. IE nodes are linked to case nodes by
relevance arcs which are weighted according to the degree of association between
terms and cases. In our example, relevance is 1 if the IE occurs in a case, 0 otherwise.
The relevances are directly obtained from the matrix values in Fig. 1(a). IE nodes are
related to each other by similarity arcs (circular arrows), which have numeric
strengths denoting semantic similarity between two terms. For instance, the word
“indexing” is more similar to “clustering” (similarity: 0.81) than to “extraction”
(similarity: 0.42). Knowledge acquisition in the context of CRNs boils down to
acquiring similarity and relevance values. This paper focuses on an approach to
acquire similarity values automatically from a given collection of texts.

To perform retrieval, the query is parsed and IEs that appear in the query are
activated. A similarity propagation is initiated through similarity arcs, to identify
relevant IEs. The next step is relevance propagation, where the IEs in the query as
well as those similar to the ones in the query spread activations to the case nodes via
relevance arcs. These incoming activations are aggregated to form an activation score
for each case node. Cases are ranked accordingly and the top k cases are retrieved.

64 S. Chakraborti et al.

A CRN facilitates efficient retrieval compared with a linear search through a case-
base. While detailed time complexity estimates are available in [1], intuitively the
speedup is because computation for establishing similarity between any distinct pair
of IEs happens only once. Moreover, only cases with non-zero similarity to the query
are taken into account in the retrieval process.

3 Higher Order Associations

The idea of higher order associations is illustrated through an example in Fig. 2.
Terms A and B co-occur in Document 1 in Fig. 2(a), hence they are said to have a first
order association between them. In Fig. 2(b), terms A and C co-occur in one
document, and terms C and B in another. In our terminology, A and B share a second
order association between them, through C. Extending this idea to Fig. 2(c), we say
that A and B share a third order association between them through terms C and D. The
similarity between two terms A and B is a function of the different orders of
association between them. When modelled as a graph as shown in Fig. 2(d), each
higher order association defines a path between the two vertices corresponding to
terms A and B. (A,C,B) is a second order path and (A,C,D,B) is a third order path. An
arc between any two nodes stands for a first-order co-occurrence relation between the
corresponding words. A slightly more involved version is the weighted graph shown
in Fig. 2(e). The weight of an arc connecting two nodes is proportional to the number
of documents in the collection where they co-occur. It is important to note that while
we have considered co-occurrence over entire documents, the context can be localized
to arbitrary length word windows or sentences to restrict the number and scope of
mined associations.

The basic idea is to estimate the strengths of different higher order co-occurrences
and combine them into a word similarity model. Details of our similarity model
appear in the next section. To estimate higher order strengths, we first tried a simple
approach using goal driven unification supported by Prolog. The Prolog program has
two parts to it: a fact base and a set of rules. The fact base was constructed
automatically from the non-zero entries of the term document matrix, by taking all
possible pairwise combinations of terms that appear in any document. From the
matrix of Fig 1(a) we can construct facts such as

first_order(extraction, clustering).
first_order(extraction, matrix).
first_order(extraction, indexing).

Defining rules for higher order association is straightforward using Prolog. Second
and third order associations are defined in the following statements:

second_order(X, Y ,Z) :- first_order(X, Z), first_order(Z, Y), X \== Y.
third_order(X,Y,Z,W) :- second_order(X,W,Z), first_order(W,Y), X \== Y,
Z\== Y.

Often, we are not interested in the actual words that act as links between words, as
extracted by the Prolog unifications, but more in the number of distinct paths linking
up words. This is easy in Prolog, as well:

 Acquiring Word Similarities with Higher Order Association Mining 65

lengthOfList([], 0).
lengthOfList ([_|Tail], N) :- lengthOfList (Tail, N1), N is 1 + N1.
no_of_2ord_paths(X,Y,N, List) :- setof(Z, second_order(X,Y,Z), List),
lengthOfList(List,N).
no_of_3ord_paths(X,Y,N, List1) :- setof((K,L), third_order(X,Y,K,L),
List1), lengthOfList(List1,N).

Fig. 2. Graphical Representation of Higher Order Co-occurrences

One main limitation of Prolog in this task is the combinatorial explosion in the
number of first order associations that had to be recorded in the fact-base. In realistic
tasks over several hundreds of documents, our version of Prolog (SWI-Prolog) often
ran out of memory. To address this limitation, we explored the applicability of matrix
operations to directly compute the strengths of higher order associations. We first
implemented an approach reported by [7], where the authors start by computing a first
order co-occurrence matrix. For |W| words in the feature set, this is a |W| × |W| matrix
which has a value 1 in the i,jth element if word i co-occurs with word j in at least one
document. For all pairs of words that do not co-occur in any document, the
corresponding element in the matrix is 0. The diagonal values are set to zero since we
are not interested in trivial co-occurrence of a word with itself. The first-order co-
occurrence matrix is calculated using the following steps:

Step 1: The term document matrix A is multiplied with its transpose AT to obtain
the |W| × |W| matrix T0.
Step 2: All non-zero values of T0 are set to 1, and the diagonal values are set to
zero to yield a binary first order co-occurrence matrix T.
Step 3: The second order co-occurrence matrix T2 can be calculated by squaring
T. The third order matrix T3 is given as T3. Other higher order co-occurrence
matrices can be calculated similarly.

66 S. Chakraborti et al.

Before a matrix is reduced to binary, the value of its i,jth element is the number of
co-occurrence paths between words i and j. The strength of a first order co-occurrence
path is the number of documents in which two words co-occur. The strength of a
second order co-occurrence path between words a and b is the number of distinct
words c such that a co-occurs with c and b co-occurs with c.

Implementing the above algorithm revealed a critical shortcoming. Let us consider
a third order association between terms a and b via terms c and d. Thus pairs a and c,
c and d, and d and b co-occur with each other. In finding distinct pairs of terms c and
d, we need to ensure that they are not the same as either a or b. By setting the
diagonal elements to 0 in Step 2 above, the algorithm ensures that a and c are
different, and so are d and b. But in addition we also need to ensure that d is not the
same as a, and c is not the same as b, and this is not taken care of. Thus the strengths
of third order associations were over-estimated by the algorithm. We need to make a
correction to the algorithm to address this limitation. The brute force approach of
explicitly counting terms that satisfy the above-mentioned constraint instead of
blindly cubing the binary matrix T, turned out to be computationally expensive. We
present below a technique that rewrites this procedure as an equivalent matrix
manipulation, which can be implemented efficiently in matrix processing
environments like Matlab.

Let T be the matrix of first order connections with diagonal elements set to zero.
For third-order co-occurrences, we seek to enumerate paths of type i-j-k-l for all i and
l. Now

()3

,
ij jk klil

j k

T T T T= ∑

is the total number of such paths, including paths of type i-j-i-l and i-l-k-l, which we
wish to exclude. Let ni be the number of paths of type i-j-i. This is equal to the total
number of paths originating from i. We may evaluate ni by summing the rows (or
columns) of T:

∑=
j

iji Tn

Now, the number of paths of type i-j-i-l is niTil and for type i-l-k-l the count is nlTil. If
Til ≠ 0, then we have counted the path i-j-i-j twice, so the total number of invalid paths
is (ni+nl-1)Til. Equivalently, if we construct a discount matrix D whose elements Dil =
(ni+nl-1), then the number of invalid paths between words i and j is given by the i,j th
element of the pointwise product D*T. We use the following procedure:

(1) Calculate T3.
(2) Enumerate and discount the invalid paths as above. T3- D*T is the revised

third order matrix.

3.1 An Example

We illustrate the above ideas on a toy case base comprising 4 terms and 4 documents
as shown in Fig.3. The third order matrix T3’ says that there are two third-order paths
between terms t2 and t3, one third order path between t1 and t2, another between
terms t1 and t3, and none between t1 and t4. A closer inspection of matrix T reveals

 Acquiring Word Similarities with Higher Order Association Mining 67

that that this is indeed true. Fig. 4 shows a graphical representation of matrix T, where
an arc exists between any two nodes iff the corresponding entry in the matrix is 1,
denoting that there is at least one document in the collection that has both of these
terms. The two third order paths between t2 and t3 are t2-t1-t4-t3 and t2-t4-t1-t3. The
only third order path between t1 and t2 is t1-t3-t4-t2, and between t1 and t3 is t1-t2-
t4-t3. There are only two possible candidates for a third order path between t1 and t4:
t1-t2-t3-t4 and t1-t3-t2-t4. Either would require a first order association between t2
and t3, which in our example does not exist, since there are no documents that contain
both t2 and t3. Hence any third order association between t1 and t4 is ruled out.

Fig. 3. An Example

Fig. 4. The Term-Term Association Graph

4 Modeling Word Similarities

Once higher order co-occurrences are mined, we need to translate them into a measure
of similarity between words. Intuition suggests that very high order co-occurrences do
not really indicate similarity. In a study of higher order associations in the context of
LSI [5], the authors report experimental evidence to confirm that associations beyond
an order of 3 have a very weak influence on similarity modeled by LSI. In our word
similarity model, we ignore the effects of orders higher than 3. In the last section, we
have defined the strength of a higher order association between two terms as the
number of co-occurrence paths between those terms. Let first_order(a,b),
second_order(a,b) and third_order(a,b) denote the strengths of first, second and third
order associations between terms a and b respectively. The similarity between terms a

68 S. Chakraborti et al.

and b can be expressed as a weighted linear combination of the strengths of the first
three orders of co-occurrence as follows:

similarity(a,b) = α first_order(a,b) + β second_order(a,b) + γ third_order(a,b) (1)

Note that higher the order of association, the larger the number of co-occurrence paths
(since Tn

i,j > Tm
i,j, if n>m and if for all Ti,j ≠0, Ti,j ≥ 1, which is true in our case), and

hence the greater the strength of association. Thus, to make α, β and γ comparable to
each other, we need to normalize first_order(a,b), second_order(a,b) and
third_order(a,b) to values in [0,1]. In our implementation, we achieve this by dividing
each of these values by the maximum value between any pair of words corresponding
to that order. Each distinct choice of α, β and γ leads to a different set of similarities
between terms, which can then be used as similarity arcs in the CRN to perform
retrieval or classification. In complex domains, we would expect higher order
associations to play a critical role and hence such domains should show preference for
higher values of β and γ compared to simpler ones.

5 Experimental Results

Our first experiment has two goals. Firstly, we test the hypothesis that higher order co-
occurrences indeed lead to better classification effectiveness. Secondly, we study the
values of α, β and γ that lead to best performances in four classification tasks of varying
complexity. These experiments are carried out by varying α, β and γ, computing term
similarities at each of these settings as given by (1) above, and observing the
classification accuracies achieved by the CRN with these similarity values.

5.1 Experimental Methodology

Experiments were conducted on four datasets, of which two involve text classification
in routing tasks and two involve Spam filtering. It may be noted that while the results
reported are based on classification tasks for ease of evaluation, the techniques
presented in this paper are fairly general and can easily be adapted for unsupervised
retrieval tasks as well.

The two datasets used for text classification in routing were formed from the 20
Newsgroups [8] corpus which has about 20,000 Usenet news postings organized into
20 different newsgroups. One thousand messages (of discussions, queries, comments
etc.) from each of the twenty newsgroups were chosen at random and partitioned by
the newsgroup name. We form the following two subcorpuses:

• HARDWARE which has 2 hardware problem discussion groups, one on
Apple Mac and the other on PC

• RELPOL which has two groups, one concerning religion, the other
politics

The two datasets used for evaluating performance on Spam filtering include

• USREMAIL contains 1000 personal emails of which 50% are spam
• LINGSPAM dataset which contains 2893 email messages, of which

83% are non-spam messages related to linguistics, the rest are spam

 Acquiring Word Similarities with Higher Order Association Mining 69

We created equal sized disjoint training and test sets, where each set contains 20 %
of the dataset of documents randomly selected from the original corpus, preserving
the class distribution of the original corpus. For repeated trials, 15 such train test splits
were formed.

Textual cases were formed by pre-processing documents by removing stopwords
(common words) and special characters such as quote marks, commas and full stops.
Some special characters like “!”, “@”, “%” and “$” were retained since they have
been found to be discriminative for some domains. Remaining words are reduced to
their stem using the Porter’s algorithm [9]. The word stems that remain after
preprocessing constitute the set of IEs.

In our experiments, we took into account first, second and third order associations,
as given by (1). α is set to 1, and β and γ are incremented steps of 0.1 in the range
[0,1.9] to examine the effect of second and third orders. β = 0, γ = 0 corresponds to
the situation where only first order associations are used. At each unique choice of the
three parameters, the term–term similarities obtained with those settings are used to
define the similarity arcs in a CRN. The relevance arcs were set to 1 or 0 based on
whether an IE(word) is present or absent in a case. The CRN produces the dot product
of the incoming case with each of the existing cases. These values are normalized
using the query and case norms to obtain the cosine similarity. A weighted 3-nearest
neighbour algorithm is used to classify the test document.

We compare the classification accuracies with two other classifiers. The first is
Support Vector Machines (SVM) which is reported to yield state-of-the-art
performance in text categorization. The second is Latent Semantic Indexing (LSI),
which maps terms and documents to a lower dimensional “concept” space, which is
hypothesized to be more robust to variations due to word choice. Cases are
represented using the reduced dimensions obtained with LSI, and a usual k-NN
approach can then be used for retrieval. The comparison of our approach with LSI is
motivated by the observations in [6], which attribute LSI performance to its ability to
implicitly model higher order associations between words. However unlike our
approach, LSI is constrained by the need to maximize variance across the concept
dimensions, and by the need to produce the best k-rank approximation to the original
term document matrix, in the least-squares sense. Our intuition was that these
constraints are unnecessarily restrictive in a classification domain and could be
relaxed to obtain better performance. Unlike LSI, our approach explicitly captures
higher order associations and embeds this into term-term similarity knowledge. This
also opens avenues for better visualization as discussed in Section 8.

LSI performance is critically dependent on the number of concept dimensions used
for representing terms and documents. To make a fair comparison, we report LSI
performance at the dimension at which its performance was found to be optimal. For
SVM, we used a linear kernel as this was reported to yield best results in text
categorization tasks [10].

5.2 Analysis of Results

Table 2 presents a summary of the results. The figures in bold are the best results after
paired t-tests between each classifier over results from the 15 trials. In situations
where the differences between the top ranking classifiers is not statistically significant

70 S. Chakraborti et al.

(p > 0.05), all top figures have been marked in bold. We observe that using second
and third order co-occurrences at parameter settings that yield best performance
results in better classification accuracies compared to using first-order co-occurrences
alone (β,γ = 0). While the differences are statistically significant on all four datasets,
the magnitude of improvement is more conspicuous in HARDWARE and RELPOL,
which are harder domains, compared to USREMAIL and LINGSPAM, which already
recorded high accuracies with simpler approaches. In the RELPOL domain, 16 terms
provided second order path between Bible and sin; interestingly these include Christ,
Jesus, faith, scripture, heaven, roman, kill, genocide and biblical. It may be noted that
the use of higher order co-occurrences leads to better accuracies compared to LSI and
the differences are statistically significant on all four domains. This is all the more
noteworthy in the light of our paired tests that reveal that LSI does better than first
order co-occurrences on both HARDWARE and RELPOL, while results are
statistically equivalent on the other two datasets. These two observations show LSI
does better than using first order associations alone, but is outperformed comprehend-
sively when higher orders are used.

We also note that our approach outperforms SVM on all datasets except
HARDWARE where SVM performs significantly better. One possible reason for the
relatively poor performance in HARDWARE could be a significant overlap in
vocabularies used to describe problems in Mac and PC. The problem is compounded
by the fact that we ignore class knowledge of training documents while constructing
similarity relations between terms. In contrast this is a critical input to SVM.
Motivated by this observation, we investigated a novel way of introducing class
knowledge into the higher order mining algorithm, which is described in Section 6.

Table 1 reports α, β and γ values at which best performances are observed. Easier
domains like USREMAIL and LINGSPAM appear to prefer lower values of β and γ
compared to HARDWARE and RELPOL. We will re-examine this observation in the
light of more experimental results in Section 7.

Table 1. Empirically determined best values of α,β and γ

 HARDWARE RELPOL USREMAIL LINGSPAM

(α,β,γ)optimal
(1,0.37 ,1.15) (1,0.61 ,1.04 (1,0.21,0.15) (1,0.27, 0.31)

Table 2. Comparing classifier accuracies

HARDWARE RELPOL USREMAIL LINGSPAM

 BASE(VSM)
(Euclidean)

.5951 .7054 .5923 .8509

LSI-mined
Similarities

.7240 .9339 .9583 .9832

SVM .7883 .9228 .9583 .9636

First Order
Similarities

.7171 .9309 .9577 .9826

Higher Order
Similarities

.7451 .9530 .9640 .9859

 Acquiring Word Similarities with Higher Order Association Mining 71

6 Incorporating Class Knowledge into Word Similarities

In a supervised classification context, we have class knowledge of training documents
in addition to the co-occurrence knowledge. Our intention is to incorporate this class
knowledge as part of pre-processing. The idea is very similar to the approach
described in [11], where LSI was extended to supervised classification tasks. Each
document in the training set is padded with additional artificial terms that are
representative of class knowledge. For example in the Hardware domain, all
documents belonging to Apple Mac are augmented with artificial terms A, B , C and
D, and all documents belonging to PC are padded with E, F, G and H. The padded
terms, which we refer to as sprinkled terms, appear as new IEs in the CRN and are
treated like any existing IE node. The revised architecture is shown in Fig. 5. When
co-occurrences are mined on this new representation, terms representative of the same
class are drawn closer to each other, and terms from disjoint classes are drawn farther
apart. This happens because the sprinkled terms provide second-order co-occurrence
paths between terms of the same class. For the test documents, the class is unknown;
hence none of the artificial terms are activated. One important question is to decide
the number of additional terms to be added for each class; an empirical solution is to
use as many as yields best results over a cross validation dataset. While sprinkled
terms help in emphasizing class knowledge, using too many of them may distort finer
word association patterns in the original data [11]. In our experiments, we used 8
additional terms per class, as this was empirically found to yield good results.

Fig. 5. A CRN Architecture after Sprinkling Terms that carry class knowledge

72 S. Chakraborti et al.

6.1 Empirical Results

The results are summarized in Tables 3 and 4. Sprinkling led to conspicuous
improvement in performance over the HARDWARE dataset from 74.51% to 80.44%.
This unambiguously points to the importance of class knowledge in this dataset.
Table 3 suggests that sprinkled higher orders outperforms SVM on all datasets; in the
USREMAIL dataset, the improvement is not statistically significant. This is possibly
because the domain is simple and had already high recorded accuracies. For the
RELPOL domain however, adding class knowledge led to a slight drop in the
performance from 95.30% to 93.93% (Table 4), which was still significantly better
than both LSI and SVM. The drop in RELPOL performance indicates that in this
domain, class knowledge is not as important as in HARDWARE. In our current
implementation, we have used uniform number of sprinkled terms over all domains.
Performance could be improved by optimising the number of sprinkled terms for each
individual domain. For example, HARDWARE would be more heavily sprinkled than
RELPOL.

Table 3. Comparing Sprinkled Higher Orders against SVM

 HARDWARE RELPOL USREMAIL LINGSPAM

Sprinkled HO .8044 .9393 .9630 .9838

SVM .7883 .9228 .9583 .9636

Table 4. Comparing Higher Orders with and without Sprinkling

 HARDWARE RELPOL USREMAIL LINGSPAM

Sprinkled HO .8044 .9393 .9630 .9838

Higher Order .7451 .9530 .9640 .9859

7 Learning Model Parameters Automatically

Performing exhaustive search on the parameter space allows us to empirically
ascertain the contributions of each co-occurrence order. However, in practice, we
would need a mechanism to determine the parameters automatically based on a given
text collection. We have investigated a Genetic Algorithm based approach to achieve
this in supervised classification tasks. The parameters are learnt on the training set,
with the objective of maximizing classification accuracy on the unseen test set. Since
the test set is not available, we instead set our objective to optimizing classification
accuracy over 5-fold cross validation on the training set. While details of our
approach can be found in [21], we summarize our main findings below.

Table 5 presents the classification accuracies when the parameters were learnt
using the GA-based approach. We used the architecture of Fig. 5 where sprinkled
terms were used as carriers of class knowledge. The accuracy figures with the learnt

 Acquiring Word Similarities with Higher Order Association Mining 73

Table 5. Comparing effectiveness of empirically determined and GA-learnt parameters

 HARDWARE RELPOL USREMAIL LINGSPAM

Sprinkled HO
(parameter learning)

.7938 .9304 .9593 .9814

Sprinkled HO .8044 .9393 .9630 .9838

Table 6. Parameter values learnt by GA

 HARDWARE RELPOL USREMAIL LINGSPAM

(α,β,γ)optimal (1,1.88 ,1.56) (1,1.01 ,1.15
)

(1,0.97,0.85) (1,0.73, 0.96)

parameters are very similar to the figures obtained by the approach of Section 6 where
the best values are chosen after exhaustively searching the parameter space in fixed
increments. While there is still a statistically significant difference in three of four
datasets, the very close average values suggest that the GA-based approach holds
promise in significantly lowering manual overheads in parameter setting, while still
continuing to deliver good performance. We need further research into better tuning
of our approach for facilitating faster and more effective search in the parameter
space. Table 6 shows the values of α,β and γ that were learnt by our algorithm for
each of the four datasets. Comparing these values with the corresponding ones in
Table 1, we observe a significant increase in the values of β. This can be attributed to
the fact that sprinkled terms provide second order co-occurrence paths between terms
of the same class. Increasing β thus helps in boosting similarity between terms of the
same class, and decreasing similarity between terms of disjoint classes. This explains
the greatly improved performance in the HARDWARE domain with sprinkling.

8 Discussion

While we have evaluated our ideas in the context of classification domains, it would
be possible to apply the basic idea to unsupervised retrieval scenarios as well. One
interesting metric to evaluate goodness of a TCBR configuration in unsupervised
domains was recently proposed by Luc Lamontagne [12]. The measure, which the
author calls case cohesion, measures the degree of correspondence between problem
and solution components of textual cases. Using case cohesion instead of
classification accuracy as a measure of the fitness function in our optimization
algorithm would be a first cut towards applying our approach to retrieval tasks.

The importance of modeling similarity using higher order co-occurrences extends
beyond textual CBR. In the context of recommender systems, several authors have
reported problems due to sparseness of user-item matrices [16]; Semeraro et al [15]
for example, report that 87% of the entries in their user-item matrix are zero.
Knowledge representations used in collaborative recommenders (like concept lattices
[24]) fail to exploit associations beyond the first order. Higher order associations can
help reduce the sparseness and allow for better recommendation. In this context,
analysis of higher-order associations in user item matrices will help discover novel

74 S. Chakraborti et al.

product recommendation rules that would normally be implicit in the user ratings. Our
approach can also be applied to link analysis in social networks [23], for clustering
similar words, and resolving ambiguity of words spanning several clusters.

While our approach has outperformed SVM, the important thing to note is the
explicit nature of our similarity relations as compared to SVM. It is not clear how
SVM can be used to mine similarity between words, or incorporate expert feedback.
The comparison with SVM illustrates that our techniques can outperform the best-in-
line classifier while being able to explicitize its knowledge content, and supporting
lazy incremental updates, both of which are strengths of CBR. The Prolog-based
system described in Section 3 has its own advantages for visualization. For any given
pair of words, all higher order associations can be depicted in graphs of the kind
shown in Fig.2, which may be useful for explanation or for initiating expert feedback.

9 Related Works

Several works in the past have pointed to the importance of higher order co-
occurrence in modeling word similarity. However we have not come across any work
that explicitly attempts to obtain a parameterized model of similarity based on these
co-occurrences, and learn optimal values of these parameters based on a fitness
criterion. The work by Kontostathis and Pottenger [6] provides empirical evidence to
show that LSI implicitly exploits higher order co-occurrence paths between words to
arrive at its revised representations. This provides a fresh explanation for
improvements obtained using LSI in text retrieval applications. Edmonds [13]
examines the role of higher order co-occurrence in addressing the problem of lexical
choice, which is important to both machine translation and natural language
generation. Broadly speaking, the goal is to determine which of the possible
synonyms is most appropriate for a given communication (or pragmatic) goal. The
authors show that using second order co-occurrence has a favourable influence on the
performance of their lexical choice program. Recent work by Lemaire and Denhiere
[5] makes an in-depth study of the relationship between similarity and co-occurrence
in a huge corpus of children’s texts. They show that while semantic similarity is
largely associated with first order co-occurrence, the latter overestimates the former.
Higher order co-occurrences as well as lone occurrences (occurrence of word a but
not b and vice versa) were used to account for LSI-inferred term similarities. Unlike
our work, the authors do not propose an algorithm to arrive at word similarities; their
approach is more analytic than synthetic. Two other recent approaches potentially
useful for mining word similarities are distributional word clustering for textual case
indexing [20][22], and Propositional Semantic Indexing [2] which mines word
relationships using Association Rule Mining (ARM) with the goal of feature
generalization. However, probability estimates used in the first approach and the
ARM approach used in the second currently fail to accommodate associations beyond
the first order. It appears that both approaches can potentially benefit from higher-
order knowledge.

 Acquiring Word Similarities with Higher Order Association Mining 75

10 Conclusion

The main contribution of this paper is an approach for exploiting higher-order
associations between words to acquire similarity knowledge for CRNs. We
demonstrated the importance of higher order co-occurrences in determining word
similarity, presented both supervised and unsupervised algorithms for mining such
associations and proposed a word similarity model, whose parameters are learnt using
an evolutionary approach. We have demonstrated the effectiveness of the learnt
similarity knowledge and shown that using second and third order-co-occurrences
yields better results than using first-order co-occurrence alone. Another contribution
of the current work is to incorporate class knowledge into the process of mining
higher order associations. We have demonstrated the effectiveness of this extension as
our approach outperforms state of the art classifiers like SVM and LSI/kNN on
classification tasks of varying complexity. Though the work has been presented in the
context of CRNs, in essence we have presented a general approach to mine feature
similarities, which can be easily integrated into other retrieval formalisms. Future
work will aim at improving the parameter learning algorithm, and forming an easy-to-
use workbench for similarity knowledge mining, for textual and non-textual CBR
applications.

References

1. Lenz, M., Burkhard, H.: Case Retrieval Nets: Foundations, Properties, Implementation,
and Results, Technical Report, Humboldt-Universität zu Berlin (1996)

2. Wiratunga, N., Lothian, R., Chakraborti, S., Koychev, I.: A Propositional Approach to
Textual Case Indexing. In: Jorge, A.M., Torgo, L., Brazdil, P.B., Camacho, R., Gama, J.
(eds.) PKDD 2005. LNCS (LNAI), vol. 3721, pp. 380–391. Springer, Heidelberg (2005)

3. Jarmasz, M., Szpakowicz, S.: Roget’s thesaurus and semantic similarity. In: Proceedings
of the International Conference on Recent Advances in NLP (RANLP-03), pp. 212–219
(2003)

4. Lund, K., Burgess, C.: Producing high-dimensional semantic spaces from lexical co-
occurrence. Behavior Research, Methods, Instruments and Computers 28(2), 203–208
(1996)

5. Lemaire, B., Denhière, G.: Effects of High-Order Co-occurrences on Word Semantic
Similarity. Current Psychology Letters 18(1) (2006)

6. Kontostathis, A., Pottenger, W.M.: A framework for understanding LSI performance.
Information Processing and Management 42(1), 56–73 (2006)

7. Mill, W., Kontostathis, A.: Analysis of the values in the LSI term-term matrix, Technical
report, Ursinus College (2004)

8. Mitchell, T.: Machine Learning. Mc Graw Hill International (1997)
9. Porter, M.F.: An algorithm for suffix stripping. Program 14(3), 130–137 (1980)

10. Joachims, T.: Text Categorization with Support Vector Machines: Learning with Many
Relevant Features. In: Proc. of ECML, pp. 137–142. ACM Press, New York (1998)

11. Chakraborti, S., Mukras, R., Lothian, R., Wiratunga, N., Watt, S., Harper, D.: Supervised
Latent Semantic Indexing using Adaptive Sprinkling. In: Proc. of IJCAI, pp. 1582–1587
(2007)

76 S. Chakraborti et al.

12. Lamontagne, L.: Textual CBR Authoring using Case Cohesion, in TCBR’06 - Reasoning
with Text. In: Proceedings of the ECCBR’06 Workshops, pp. 33–43 (2006)

13. Edmonds, P.: Choosing the word most typical in context using a lexical co-occurrence
network. Meeting of the Association for Computational Linguistics, 507–509 (1997)

14. Lenz, M.: Knowledge Sources for Textual CBR Applications. In: Lenz, M. (ed.) Textual
CBR: Papers from the 1998 Workshop Technical Report WS-98-12, pp. 24–29. AAAI
Press, Stanford (1998)

15. Semeraro, G., Lops, P., Degemmis, M.: WordNet-based User Profiles for Neighborhood
Formation in Hybrid Recommender Systems. In: Procs. of Fifth HIS Conference, pp.
291–296 (2005)

16. Xue, G.-R., Lin, C., Yang, Q., Xi, W., Zeng, H.-J., Yu, Y., Chen, Z.: Scalable
Collaborative Filtering Using Cluster-based Smoothing. In: Procs. of the 28th ACM SIGIR
Conference, pp. 114–121 (2005)

17. Terra, E., Clarke, C.L.A.: Frequency Estimates for Word Similarity Measures. In:
Proceedings of HLT-NAACL 2003, Main Papers, pp. 165–172 (2003)

18. Lenz, M., Burkhard, H.-D.: CBR for Document Retrieval - The FAllQ Project. In: Leake,
D.B., Plaza, E. (eds.) Case-Based Reasoning Research and Development. LNCS,
vol. 1266, pp. 84–93. Springer, Heidelberg (1997)

19. Budanitsky, A.: Lexical semantic relatedness and its application in natural language
processing, Technical Report CSRG390, University of Toronto (1999)

20. Patterson, D., Rooney, N., Dobrynin, V., Galushka, M.: Sophia: A novel approach for
textual case-based reasoning. In: Proc. of IJCAI, pp. 1146–1153 (2005)

21. Chakraborti, S., Lothian, R., Wiratunga, N., Watt, S.: Exploiting Higher Order Word
Associations in Textual CBR, Technical Report, The Robert Gordon University (2007)

22. Wiratunga, N., Massie, S., Lothian, R.: Unsupervised Textual Feature Selection. In: Roth-
Berghofer, T.R., Göker, M.H., Güvenir, H.A. (eds.) ECCBR 2006. LNCS (LNAI),
vol. 4106, pp. 340–354. Springer, Heidelberg (2006)

23. Mori, J., Ishizuka, M., Matsuo, Y.: Extracting Keyphrases To Represent Relations in
Social Networks from Web. In: Proc. of the Twentieth IJCAI Conference, pp. 2820–2825
(2007)

24. Boucher-Ryan, P., Bridge, D.: Collaborative Recommending using Formal Concept
Analysis. Knowledge-Based Systems 19(5), 309–315 (2006)

	Acquiring Word Similarities with Higher Order Association Mining
	Introduction
	Case Retrieval Networks
	Higher Order Associations
	An Example

	Modeling Word Similarities
	Experimental Results
	Experimental Methodology
	Analysis of Results

	Incorporating Class Knowledge into Word Similarities
	Empirical Results

	Learning Model Parameters Automatically
	Discussion
	Related Works
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

