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Abstract. We present a novel approach to mine word similarity in Textual Case 
Based Reasoning.  We exploit indirect associations of words, in addition to 
direct ones for estimating their similarity. If word A co-occurs with word B, we 
say A and B share a first order association between them. If A co-occurs with B 
in some documents, and B with C in some others, then A and C are said to share 
a second order co-occurrence via B. Higher orders of co-occurrence may 
similarly be defined. In this paper we present algorithms for mining higher 
order co-occurrences. A weighted linear model is used to combine the 
contribution of these higher orders into a word similarity model. Our 
experimental results demonstrate significant improvements compared to 
similarity models based on first order co-occurrences alone. Our approach also 
outperforms state-of-the-art techniques like SVM and LSI in classification tasks 
of varying complexity.    

1   Introduction 

Textual Case Based Reasoning (TCBR) is based on the idea of modelling 
unstructured documents as cases. A knowledge light approach towards TCBR would 
use a bag of words directly to represent cases. The set of distinct terms and key-
phrases in the document collection is treated as the feature set. One is tempted to 
believe that this line of thinking undermines the importance of domain-specific 
knowledge and thus blurs the distinction between CBR and Information Retrieval (IR) 
[2][3]. However, it may be argued that knowledge light approaches facilitate the 
application of statistical techniques to significantly lower knowledge acquisition 
overheads, in comparison to knowledge intensive techniques. 

This paper presents a novel knowledge light technique for acquiring word 
similarities for TCBR. Our discussion is centred on a Case Retrieval Network (CRN) 
formalism, which has been demonstrated to be effective and efficient in retrieval over 
large and high dimensional case bases, typical with textual data [18]. CRNs have two 
main knowledge containers:  knowledge about how words in a domain are related to 
each other (similarity knowledge); and knowledge about relatedness of words to cases 
(relevance knowledge). Typically statistical approaches model similarity between two 
words based on the number of documents in the corpus where these words co-occur. 
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Notwithstanding significant amount of both philosophical and pragmatic debate on 
whether co-occurrence is a robust basis for semantic similarity [3], this simple 
approach works fairly well in the presence of large and representative collections 
[17]. Also, unlike domain-independent linguistic resources like WordNet or Roget’s 
Thesaurus, this approach can be used for estimating domain specific word similarities. 
In this paper, we show that we can do even better. We incorporate the notion of 
higher-order co-occurrence into our model of word similarity. The basic idea is to use 
indirect associations between words, in addition to direct ones. For example if words 
car and chassis co-occur in one document, and words automobile and chassis in 
another, we can infer that car and automobile are related to each other, even if they do 
not co-occur in any document. Such a relation is called a second-order association. 
We can extend this to orders higher than two. Several interesting examples showing 
the importance of second order associations have been reported in studies on large 
corpora. Lund and Burgess [4] observe that near-synonyms like road and street fail to  
co-occur in their huge corpus. In a French corpus containing 24-million words from 
the daily newspaper Le Monde in 1999, Lemaire and Denhiere [5] found 131 
occurrences of internet, 94 occurrences of web, but no co-occurrences at all. 
However, both words are strongly associated. Experiments [5] show that higher order 
co-occurrences can be exploited to infer “semantic relatedness” [19] between road 
and street, and between web and internet.  Throughout this paper, we use the word 
“similarity” as a measure of semantic relatedness, as opposed to a rigid semantic 
relation (like synonymy or hyponymy).   

This paper presents algorithms for mining higher order associations between 
words. The strengths of these associations are combined to yield an estimate of word 
similarity. One primary goal of this work is to evaluate the goodness of the learnt 
similarity knowledge. In addition, we show how our approach can be extended to 
incorporate class knowledge in supervised classification tasks. We compare our 
approach with state of the art text classifiers like Support Vector Machines (SVM) 
and k Nearest Neighbours (kNN) based on Latent Semantic Indexing (LSI). The 
comparison with LSI is particularly significant in the light of empirical evidence [6] 
that LSI implicitly exploits higher order co-occurrence relations between words to 
arrive at a reduced dimensional representation of words and documents. We make a 
comparative study to illustrate the advantages of explicitly capturing higher order 
associations, as opposed to doing so implicitly as in LSI.  

The rest of the paper is organized as follows. Section 2 introduces the CRN. 
Section 3 explains the concept of higher order associations, along with algorithms to 
mine the same. Section 4 describes our model of word similarities. Section 5 presents 
experimental findings comparing the performance of our model at the empirically 
determined best choice of parameters, with other approaches. All experiments 
reported in this paper were carried out on four text classification tasks of varied 
complexity. In Section 6, we present a novel approach of influencing the similarity 
values based on class knowledge, along with empirical results. Section 7 shows that 
the parameters of this model can be determined automatically. Possible extensions of 
the current work are discussed in Section 8. In Section 9, we situate our work in the 
context of other related work. Finally, section 10 summarizes our main contributions 
and concludes the paper.   
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2   Case Retrieval Networks  

The CRN has been proposed as a representation formalism for CBR in [1]. To 
illustrate the basic idea we consider the example case-base in Fig. 1(a) which has nine 
cases comprising keywords, drawn from three domains: CBR, Chemistry and Linear 
Algebra. The keywords are along the columns of the matrix. Each case is represented 
as a row of binary values; a value 1 indicates that a keyword is present and 0 that it is 
absent. Cases 1, 2 and 3 relate to the CBR topic, cases 4, 5 and 6 to Chemistry and 
cases 7, 8 and 9 to Linear Algebra.  

 

Fig. 1. CRN for Text Retrieval 

Fig. 1(b) shows this case-base mapped onto a CRN. The keywords are treated as 
feature values, which are referred to as Information Entities (IEs). The rectangles 
denote IEs and the ovals represent cases. IE nodes are linked to case nodes by 
relevance arcs which are weighted according to the degree of association between 
terms and cases. In our example, relevance is 1 if the IE occurs in a case, 0 otherwise. 
The relevances are directly obtained from the matrix values in Fig. 1(a). IE nodes are 
related to each other by similarity arcs (circular arrows), which have numeric 
strengths denoting semantic similarity between two terms. For instance, the word 
“indexing” is more similar to “clustering” (similarity: 0.81) than to “extraction” 
(similarity: 0.42).  Knowledge acquisition in the context of CRNs boils down to 
acquiring similarity and relevance values. This paper focuses on an approach to 
acquire similarity values automatically from a given collection of texts.  

To perform retrieval, the query is parsed and IEs that appear in the query are 
activated. A similarity propagation is initiated through similarity arcs, to identify 
relevant IEs. The next step is relevance propagation, where the IEs in the query as 
well as those similar to the ones in the query spread activations to the case nodes via 
relevance arcs. These incoming activations are aggregated to form an activation score 
for each case node. Cases are ranked accordingly and the top k cases are retrieved.  
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A CRN facilitates efficient retrieval compared with a linear search through a case-
base. While detailed time complexity estimates are available in [1], intuitively the 
speedup is because computation for establishing similarity between any distinct pair 
of IEs happens only once. Moreover, only cases with non-zero similarity to the query 
are taken into account in the retrieval process. 

3   Higher Order Associations  

The idea of higher order associations is illustrated through an example in Fig. 2. 
Terms A and B co-occur in Document 1 in Fig. 2(a), hence they are said to have a first 
order association between them. In Fig. 2(b), terms A and C co-occur in one 
document, and terms C and B in another. In our terminology, A and B share a second 
order association between them, through C. Extending this idea to Fig. 2(c), we say 
that A and B share a third order association between them through terms C and D. The 
similarity between two terms A and B is a function of the different orders of 
association between them. When modelled as a graph as shown in Fig. 2(d), each 
higher order association defines a path between the two vertices corresponding to 
terms A and B. (A,C,B) is a second order path and (A,C,D,B) is a third order path. An 
arc between any two nodes stands for a first-order co-occurrence relation between the 
corresponding words. A slightly more involved version is the weighted graph shown 
in Fig. 2(e). The weight of an arc connecting two nodes is proportional to the number 
of documents in the collection where they co-occur. It is important to note that while 
we have considered co-occurrence over entire documents, the context can be localized 
to arbitrary length word windows or sentences to restrict the number and scope of 
mined associations.    

The basic idea is to estimate the strengths of different higher order co-occurrences 
and combine them into a word similarity model. Details of our similarity model 
appear in the next section.  To estimate higher order strengths, we first tried a simple 
approach using goal driven unification supported by Prolog. The Prolog program has 
two parts to it: a fact base and a set of rules. The fact base was constructed 
automatically from the non-zero entries of the term document matrix, by taking all 
possible pairwise combinations of terms that appear in any document. From the 
matrix of Fig 1(a) we can construct facts such as 

 
first_order(extraction, clustering). 
first_order(extraction, matrix). 
first_order(extraction, indexing). 

 
Defining rules for higher order association is straightforward using Prolog. Second 
and third order associations are defined in the following statements:  

 
second_order(X, Y ,Z) :- first_order(X, Z), first_order(Z, Y), X \== Y. 
third_order(X,Y,Z,W) :- second_order(X,W,Z), first_order(W,Y), X \== Y, 
Z\== Y.  

 

Often, we are not interested in the actual words that act as links between words, as 
extracted by the Prolog unifications, but more in the number of distinct paths linking 
up words.  This is easy in Prolog, as well:   
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lengthOfList([], 0).  
lengthOfList ([_|Tail], N) :- lengthOfList (Tail, N1), N is 1 + N1.  
no_of_2ord_paths(X,Y,N, List) :- setof(Z, second_order(X,Y,Z), List), 
lengthOfList(List,N). 
no_of_3ord_paths(X,Y,N, List1) :- setof((K,L), third_order(X,Y,K,L), 
List1), lengthOfList(List1,N). 

 

Fig. 2. Graphical Representation of Higher Order Co-occurrences   

One main limitation of Prolog in this task is the combinatorial explosion in the 
number of first order associations that had to be recorded in the fact-base. In realistic 
tasks over several hundreds of documents, our version of Prolog (SWI-Prolog) often 
ran out of memory. To address this limitation, we explored the applicability of matrix 
operations to directly compute the strengths of higher order associations. We first 
implemented an approach reported by [7], where the authors start by computing a first 
order co-occurrence matrix. For |W| words in the feature set, this is a |W| × |W| matrix 
which has a value 1 in the i,jth element if word i co-occurs with word j in at least one 
document. For all pairs of words that do not co-occur in any document, the 
corresponding element in the matrix is 0. The diagonal values are set to zero since we 
are not interested in trivial co-occurrence of a word with itself. The first-order co-
occurrence matrix is calculated using the following steps:  

Step 1: The term document matrix A is multiplied with its transpose AT to obtain 
the |W| × |W| matrix T0.   
Step 2: All non-zero values of T0 are set to 1, and the diagonal values are set to 
zero to yield a binary first order co-occurrence matrix T.   
Step 3: The second order co-occurrence matrix T2 can be calculated by squaring 
T. The third order matrix T3 is given as T3. Other higher order co-occurrence 
matrices can be calculated similarly.         
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Before a matrix is reduced to binary, the value of its i,jth element is the number of 
co-occurrence paths between words i and j. The strength of a first order co-occurrence 
path is the number of documents in which two words co-occur. The strength of a 
second order co-occurrence path between words a and b is the number of distinct 
words c such that a co-occurs with c and b co-occurs with c.  

Implementing the above algorithm revealed a critical shortcoming. Let us consider 
a third order association between terms a and b via terms c and d. Thus pairs a and c, 
c and d, and d and b co-occur with each other.  In finding distinct pairs of terms c and 
d, we need to ensure that they are not the same as either a or b. By setting the 
diagonal elements to 0 in Step 2 above, the algorithm ensures that a and c are 
different, and so are d and b. But in addition we also need to ensure that d is not the 
same as a, and c is not the same as b, and this is not taken care of.  Thus the strengths 
of third order associations were over-estimated by the algorithm. We need to make a 
correction to the algorithm to address this limitation.  The brute force approach of 
explicitly counting terms that satisfy the above-mentioned constraint instead of 
blindly cubing the binary matrix T, turned out to be computationally expensive. We 
present below a technique that rewrites this procedure as an equivalent matrix 
manipulation, which can be implemented efficiently in matrix processing 
environments like Matlab. 

Let T be the matrix of first order connections with diagonal elements set to zero. 
For third-order co-occurrences, we seek to enumerate paths of type i-j-k-l for all i and 
l. Now 

( )3

,
ij jk klil

j k

T T T T= ∑
 

is the total number of such paths, including paths of type i-j-i-l and i-l-k-l, which we 
wish to exclude. Let ni be the number of paths of type i-j-i. This is equal to the total 
number of paths originating from i. We may evaluate ni by summing the rows (or 
columns) of T:  

∑=
j

iji Tn  

Now, the number of paths of type i-j-i-l is niTil and for type i-l-k-l the count is nlTil. If 
Til ≠ 0, then we have counted the path i-j-i-j twice, so the total number of invalid paths 
is (ni+nl-1)Til. Equivalently, if we construct a discount matrix D whose elements Dil = 
(ni+nl-1), then the number of invalid paths between words i and j is given by the i,j th 
element of the pointwise product D*T.  We use the following procedure: 

(1)  Calculate T3. 
(2)  Enumerate and discount the invalid paths as above. T3- D*T is the revised 

third order matrix.  

3.1   An Example  

We illustrate the above ideas on a toy case base comprising 4 terms and 4 documents 
as shown in Fig.3. The third order matrix T3’ says that there are two third-order paths 
between terms t2 and t3, one third order path between t1 and t2, another between 
terms t1 and t3, and none between t1 and t4.  A closer inspection of matrix T reveals 
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that that this is indeed true. Fig. 4 shows a graphical representation of matrix T, where 
an arc exists between any two nodes iff the corresponding entry in the matrix is 1, 
denoting that there is at least one document in the collection that has both of these 
terms.  The two third order paths between t2 and t3 are t2-t1-t4-t3 and t2-t4-t1-t3. The 
only third order path between t1 and t2 is t1-t3-t4-t2, and between t1 and t3 is t1-t2-
t4-t3. There are only two possible candidates for a third order path between t1 and t4:  
t1-t2-t3-t4 and t1-t3-t2-t4. Either would require a first order association between t2 
and t3, which in our example does not exist, since there are no documents that contain 
both t2 and t3. Hence any third order association between t1 and t4 is ruled out. 

 

Fig. 3. An Example    

 

Fig. 4. The Term-Term Association Graph 

4   Modeling Word Similarities   

Once higher order co-occurrences are mined, we need to translate them into a measure 
of similarity between words. Intuition suggests that very high order co-occurrences do 
not really indicate similarity. In a study of higher order associations in the context of 
LSI [5], the authors report experimental evidence to confirm that associations beyond 
an order of 3 have a very weak influence on similarity modeled by LSI. In our word 
similarity model, we ignore the effects of orders higher than 3. In the last section, we 
have defined the strength of a higher order association between two terms as the 
number of co-occurrence paths between those terms. Let first_order(a,b), 
second_order(a,b) and third_order(a,b) denote the strengths of first, second and third 
order associations between terms a and b respectively. The similarity between terms a 
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and b can be expressed as a weighted linear combination of the strengths of the first 
three orders of co-occurrence as follows:  

similarity(a,b) = α first_order(a,b) + β second_order(a,b) + γ third_order(a,b)       (1) 

Note that higher the order of association, the larger the number of co-occurrence paths 
(since Tn

i,j > Tm
i,j, if n>m and if for all Ti,j ≠0, Ti,j ≥ 1, which is true in our case), and 

hence the greater the strength of association. Thus, to make α, β and γ comparable to 
each other, we need to normalize first_order(a,b),  second_order(a,b)  and  
third_order(a,b) to values in [0,1]. In our implementation, we achieve this by dividing 
each of these values by the maximum value between any pair of words corresponding 
to that order. Each distinct choice of α, β and γ leads to a different set of similarities 
between terms, which can then be used as similarity arcs in the CRN to perform 
retrieval or classification. In complex domains, we would expect higher order 
associations to play a critical role and hence such domains should show preference for 
higher values of β and γ compared to simpler ones.        

5   Experimental Results  

Our first experiment has two goals. Firstly, we test the hypothesis that higher order co-
occurrences indeed lead to better classification effectiveness. Secondly, we study the 
values of α, β and γ that lead to best performances in four classification tasks of varying 
complexity. These experiments are carried out by varying α, β and γ, computing term 
similarities at each of these settings as given by (1) above, and observing the 
classification accuracies achieved by the CRN with these similarity values. 

5.1   Experimental Methodology    

Experiments were conducted on four datasets, of which two involve text classification 
in routing tasks and two involve Spam filtering. It may be noted that while the results 
reported are based on classification tasks for ease of evaluation, the techniques 
presented in this paper are fairly general and can easily be adapted for unsupervised 
retrieval tasks as well. 

The two datasets used for text classification in routing were formed from the 20 
Newsgroups [8] corpus which has about 20,000 Usenet news postings organized into 
20 different newsgroups. One thousand messages (of discussions, queries, comments 
etc.) from each of the twenty newsgroups were chosen at random and partitioned by 
the newsgroup name. We form the following two subcorpuses:  

• HARDWARE which has 2 hardware problem discussion groups, one on 
Apple Mac and the other on PC 

• RELPOL which has two groups, one concerning religion, the other 
politics 

The two datasets used for evaluating performance on Spam filtering include  

• USREMAIL contains 1000 personal emails of which 50% are spam  
• LINGSPAM dataset which contains 2893 email messages, of which 

83% are non-spam messages related to linguistics, the rest are spam 
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We created equal sized disjoint training and test sets, where each set contains 20 % 
of the dataset of documents randomly selected from the original corpus, preserving 
the class distribution of the original corpus. For repeated trials, 15 such train test splits 
were formed.  

Textual cases were formed by pre-processing documents by removing stopwords 
(common words) and special characters such as quote marks, commas and full stops. 
Some special characters like “!”, “@”, “%” and “$” were retained since they have 
been found to be discriminative for some domains. Remaining words are reduced to 
their stem using the Porter’s algorithm [9]. The word stems that remain after 
preprocessing constitute the set of IEs. 

In our experiments, we took into account first, second and third order associations, 
as given by (1). α is set to 1, and β and γ are incremented steps of 0.1 in the range 
[0,1.9] to examine the effect of second and third orders. β = 0, γ = 0 corresponds to 
the situation where only first order associations are used. At each unique choice of the 
three parameters, the term–term similarities obtained with those settings are used to 
define the similarity arcs in a CRN. The relevance arcs were set to 1 or 0 based on 
whether an IE(word) is present or absent in a case. The CRN produces the dot product 
of the incoming case with each of the existing cases. These values are normalized 
using the query and case norms to obtain the cosine similarity.  A weighted 3-nearest 
neighbour algorithm is used to classify the test document.  

We compare the classification accuracies with two other classifiers. The first is 
Support Vector Machines (SVM) which is reported to yield state-of-the-art 
performance in text categorization. The second is Latent Semantic Indexing (LSI), 
which maps terms and documents to a lower dimensional “concept” space, which is 
hypothesized to be more robust to variations due to word choice. Cases are 
represented using the reduced dimensions obtained with LSI, and a usual k-NN 
approach can then be used for retrieval.  The comparison of our approach with LSI is 
motivated by the observations in [6], which attribute LSI performance to its ability to 
implicitly model higher order associations between words. However unlike our 
approach, LSI is constrained by the need to maximize variance across the concept 
dimensions, and by the need to produce the best k-rank approximation to the original 
term document matrix, in the least-squares sense. Our intuition was that these 
constraints are unnecessarily restrictive in a classification domain and could be 
relaxed to obtain better performance. Unlike LSI, our approach explicitly captures 
higher order associations and embeds this into term-term similarity knowledge. This 
also opens avenues for better visualization as discussed in Section 8.  

LSI performance is critically dependent on the number of concept dimensions used 
for representing terms and documents. To make a fair comparison, we report LSI 
performance at the dimension at which its performance was found to be optimal. For 
SVM, we used a linear kernel as this was reported to yield best results in text 
categorization tasks [10]. 

5.2   Analysis of Results 

Table 2 presents a summary of the results. The figures in bold are the best results after 
paired t-tests between each classifier over results from the 15 trials. In situations 
where the differences between the top ranking classifiers is not statistically significant 
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(p > 0.05), all top figures have been marked in bold. We observe that using second 
and third order co-occurrences at parameter settings that yield best performance 
results in better classification accuracies compared to using first-order co-occurrences 
alone (β,γ = 0). While the differences are statistically significant on all four datasets, 
the magnitude of improvement is more conspicuous in HARDWARE and RELPOL, 
which are harder domains, compared to USREMAIL and LINGSPAM, which already 
recorded high accuracies with simpler approaches. In the RELPOL domain, 16 terms 
provided second order path between Bible and sin; interestingly these include Christ, 
Jesus, faith, scripture, heaven, roman, kill, genocide and biblical. It may be noted that 
the use of higher order co-occurrences leads to better accuracies compared to LSI and 
the differences are statistically significant on all four domains. This is all the more 
noteworthy in the light of our paired tests that reveal that LSI does better than first 
order co-occurrences on both HARDWARE and RELPOL, while results are 
statistically equivalent on the other two datasets. These two observations show LSI 
does better than using first order associations alone, but is outperformed comprehend-
sively when higher orders are used.  

We also note that our approach outperforms SVM on all datasets except 
HARDWARE where SVM performs significantly better. One possible reason for the 
relatively poor performance in HARDWARE could be a significant overlap in 
vocabularies used to describe problems in Mac and PC. The problem is compounded 
by the fact that we ignore class knowledge of training documents while constructing 
similarity relations between terms. In contrast this is a critical input to SVM. 
Motivated by this observation, we investigated a novel way of introducing class 
knowledge into the higher order mining algorithm, which is described in Section 6.  

Table 1 reports α, β and γ values at which best performances are observed. Easier 
domains like USREMAIL and LINGSPAM appear to prefer lower values of β and γ 
compared to HARDWARE and RELPOL. We will re-examine this observation in the 
light of more experimental results in Section 7. 

Table 1. Empirically determined best values of α,β and γ 

 HARDWARE RELPOL USREMAIL LINGSPAM 

(α,β,γ)optimal 
(1,0.37 ,1.15 ) (1,0.61 ,1.04 (1,0.21,0.15 ) (1,0.27, 0.31) 

Table 2. Comparing classifier accuracies 

HARDWARE RELPOL USREMAIL LINGSPAM 

  BASE(VSM) 
(Euclidean)

.5951 .7054 .5923 .8509 

LSI-mined 
Similarities

.7240 .9339 .9583 .9832 

SVM .7883 .9228 .9583 .9636 

First Order 
Similarities

.7171 .9309 .9577 .9826 

Higher Order 
Similarities

.7451 .9530 .9640 .9859 
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6   Incorporating Class Knowledge into Word Similarities    

In a supervised classification context, we have class knowledge of training documents 
in addition to the co-occurrence knowledge. Our intention is to incorporate this class 
knowledge as part of pre-processing. The idea is very similar to the approach 
described in [11], where LSI was extended to supervised classification tasks. Each 
document in the training set is padded with additional artificial terms that are 
representative of class knowledge. For example in the Hardware domain, all 
documents belonging to Apple Mac are augmented with artificial terms A, B , C and 
D, and all documents belonging to  PC are padded with E, F, G and H. The padded 
terms, which we refer to as sprinkled terms, appear as new IEs in the CRN and are 
treated like any existing IE node. The revised architecture is shown in Fig. 5. When 
co-occurrences are mined on this new representation, terms representative of the same 
class are drawn closer to each other, and terms from disjoint classes are drawn farther 
apart.  This happens because the sprinkled terms provide second-order co-occurrence 
paths between terms of the same class. For the test documents, the class is unknown; 
hence none of the artificial terms are activated. One important question is to decide 
the number of additional terms to be added for each class; an empirical solution is to 
use as many as yields best results over a cross validation dataset.  While sprinkled 
terms help in emphasizing class knowledge, using too many of them may distort finer 
word association patterns in the original data [11]. In our experiments, we used 8 
additional terms per class, as this was empirically found to yield good results. 

 

Fig. 5. A CRN Architecture after Sprinkling Terms that carry class knowledge   
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6.1   Empirical Results 

The results are summarized in Tables 3 and 4. Sprinkling led to conspicuous 
improvement in performance over the HARDWARE dataset from 74.51% to 80.44%. 
This unambiguously points to the importance of class knowledge in this dataset.  
Table 3 suggests that sprinkled higher orders outperforms SVM on all datasets; in the 
USREMAIL dataset, the improvement is not statistically significant. This is possibly 
because the domain is simple and had already high recorded accuracies.  For the 
RELPOL domain however, adding class knowledge led to a slight drop in the 
performance from 95.30% to 93.93% (Table 4), which was still significantly better 
than both LSI and SVM. The drop in RELPOL performance indicates that in this 
domain, class knowledge is not as important as in HARDWARE. In our current 
implementation, we have used uniform number of sprinkled terms over all domains. 
Performance could be improved by optimising the number of sprinkled terms for each 
individual domain. For example, HARDWARE would be more heavily sprinkled than 
RELPOL. 

Table 3. Comparing Sprinkled Higher Orders against SVM   

 HARDWARE RELPOL USREMAIL LINGSPAM 

Sprinkled HO  .8044 .9393 .9630 .9838 

SVM .7883 .9228 .9583 .9636 

Table 4. Comparing Higher Orders with and without Sprinkling   

 HARDWARE RELPOL USREMAIL LINGSPAM 

Sprinkled HO  .8044 .9393 .9630 .9838 

Higher Order  .7451 .9530 .9640 .9859 

7   Learning Model Parameters Automatically    

Performing exhaustive search on the parameter space allows us to empirically 
ascertain the contributions of each co-occurrence order. However, in practice, we 
would need a mechanism to determine the parameters automatically based on a given  
text collection. We have investigated a Genetic Algorithm based approach to achieve 
this in supervised classification tasks. The parameters are learnt on the training set, 
with the objective of maximizing classification accuracy on the unseen test set. Since 
the test set is not available, we instead set our objective to optimizing classification 
accuracy over 5-fold cross validation on the training set. While details of our 
approach can be found in [21], we summarize our main findings below.  

Table 5 presents the classification accuracies when the parameters were learnt 
using the GA-based approach. We used the architecture of Fig. 5 where sprinkled 
terms were used as carriers of class knowledge. The accuracy figures with the learnt 
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Table 5. Comparing effectiveness of empirically determined and GA-learnt parameters    

 HARDWARE RELPOL USREMAIL LINGSPAM 

Sprinkled HO 
(parameter learning)  

.7938 .9304 .9593 .9814 

Sprinkled HO .8044 .9393 .9630 .9838 

Table 6. Parameter values learnt by GA     

 HARDWARE RELPOL USREMAIL LINGSPAM 

(α,β,γ)optimal (1,1.88 ,1.56 ) (1,1.01 ,1.15 
)

(1,0.97,0.85 ) (1,0.73, 0.96) 

 
parameters are very similar to the figures obtained by the approach of Section 6 where 
the best values are chosen after exhaustively searching the parameter space in fixed 
increments. While there is still a statistically significant difference in three of four 
datasets, the very close average values suggest that the GA-based approach holds 
promise in significantly lowering manual overheads in parameter setting, while still 
continuing to deliver good performance. We need further research into better tuning 
of our approach for facilitating faster and more effective search in the parameter 
space.   Table 6 shows the values of α,β and γ that were learnt by our algorithm for 
each of the four datasets. Comparing these values with the corresponding ones in 
Table 1, we observe a significant increase in the values of β. This can be attributed to 
the fact that sprinkled terms provide second order co-occurrence paths between terms 
of the same class.  Increasing β thus helps in boosting similarity between terms of the 
same class, and decreasing similarity between terms of disjoint classes. This explains 
the greatly improved performance in the HARDWARE domain with sprinkling.  

8   Discussion 

While we have evaluated our ideas in the context of classification domains, it would 
be possible to apply the basic idea to unsupervised retrieval scenarios as well. One 
interesting metric to evaluate goodness of a TCBR configuration in unsupervised 
domains was recently proposed by Luc Lamontagne [12]. The measure, which the 
author calls case cohesion, measures the degree of correspondence between problem 
and solution components of textual cases. Using case cohesion instead of 
classification accuracy as a measure of the fitness function in our optimization 
algorithm would be a first cut towards applying our approach to retrieval tasks.   

The importance of modeling similarity using higher order co-occurrences extends 
beyond textual CBR. In the context of recommender systems, several authors have 
reported problems due to sparseness of user-item matrices [16]; Semeraro et al [15] 
for example, report that 87% of the entries in their user-item matrix are zero. 
Knowledge representations used in collaborative recommenders (like concept lattices 
[24]) fail to exploit associations beyond the first order. Higher order associations can 
help reduce the sparseness and allow for better recommendation. In this context, 
analysis of higher-order associations in user item matrices will help discover novel 
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product recommendation rules that would normally be implicit in the user ratings. Our 
approach can also be applied to link analysis in social networks [23], for clustering 
similar words, and resolving ambiguity of words spanning several clusters.  

While our approach has outperformed SVM, the important thing to note is the 
explicit nature of our similarity relations as compared to SVM. It is not clear how 
SVM can be used to mine similarity between words, or incorporate expert feedback. 
The comparison with SVM illustrates that our techniques can outperform the best-in-
line classifier while being able to explicitize its knowledge content, and supporting 
lazy incremental updates, both of which are strengths of CBR. The Prolog-based 
system described in Section 3 has its own advantages for visualization. For any given 
pair of words, all higher order associations can be depicted in graphs of the kind 
shown in Fig.2, which may be useful for explanation or for initiating expert feedback.     

9   Related Works  

Several works in the past have pointed to the importance of higher order co-
occurrence in modeling word similarity. However we have not come across any work 
that explicitly attempts to obtain a parameterized model of similarity based on these 
co-occurrences, and learn optimal values of these parameters based on a fitness 
criterion.  The work by Kontostathis and Pottenger [6] provides empirical evidence to 
show that LSI implicitly exploits higher order co-occurrence paths between words to 
arrive at its revised representations. This provides a fresh explanation for 
improvements obtained using LSI in text retrieval applications. Edmonds [13] 
examines the role of higher order co-occurrence in addressing the problem of lexical 
choice, which is important to both machine translation and natural language 
generation. Broadly speaking, the goal is to determine which of the possible 
synonyms is most appropriate for a given communication (or pragmatic) goal. The 
authors show that using second order co-occurrence has a favourable influence on the 
performance of their lexical choice program. Recent work by Lemaire and Denhiere 
[5] makes an in-depth study of the relationship between similarity and co-occurrence 
in a huge corpus of children’s texts. They show that while semantic similarity is 
largely associated with first order co-occurrence, the latter overestimates the former. 
Higher order co-occurrences as well as lone occurrences (occurrence of word a but 
not b and vice versa) were used to account for LSI-inferred term similarities. Unlike 
our work, the authors do not propose an algorithm to arrive at word similarities; their 
approach is more analytic than synthetic.  Two other recent approaches potentially 
useful for mining word similarities are distributional word clustering for textual case 
indexing [20][22], and Propositional Semantic Indexing [2] which mines word 
relationships using Association Rule Mining (ARM) with the goal of feature 
generalization. However, probability estimates used in the first approach and the 
ARM approach used in the second currently fail to accommodate associations beyond 
the first order. It appears that both approaches can potentially benefit from higher-
order knowledge.   
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10   Conclusion 

The main contribution of this paper is an approach for exploiting higher-order 
associations between words to acquire similarity knowledge for CRNs. We 
demonstrated the importance of higher order co-occurrences in determining word 
similarity, presented both supervised and unsupervised algorithms for mining such 
associations and proposed a word similarity model, whose parameters are learnt using 
an evolutionary approach. We have demonstrated the effectiveness of the learnt 
similarity knowledge and shown that using second and third order-co-occurrences 
yields better results than using first-order co-occurrence alone.  Another contribution 
of the current work is to incorporate class knowledge into the process of mining 
higher order associations. We have demonstrated the effectiveness of this extension as 
our approach outperforms state of the art classifiers like SVM and LSI/kNN on 
classification tasks of varying complexity. Though the work has been presented in the 
context of CRNs, in essence we have presented a general approach to mine feature 
similarities, which can be easily integrated into other retrieval formalisms. Future 
work will aim at improving the parameter learning algorithm, and forming an easy-to-
use workbench for similarity knowledge mining, for textual and non-textual CBR 
applications. 
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