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Abstract. This paper presents extensions and improvements of previ-
ous work, where we defined a CBR system for action selection in the robot
soccer domain. We show empirical results obtained with real robots, com-
paring our team playing approach with an individualist approach.

1 Introduction

Action selection in robotics is a challenging task: the robot has to reason about
its world beliefs (the state of the environment), and rationally act in consequence
in order to complete a task (typically divided in subtasks). Moreover, in the case
of a robot team, robots must agree on the decisions made (who and what to
do to complete the subtasks), jointly execute the actions, and coordinate among
them to successfully perform the task. Working with real robots has additional
difficulties that must be considered while developing their reasoning system.
Thus, the reasoning engine must be capable of dealing with high uncertainty in
the robot’s perception (incoming information of the world), and be robust in
case of failure, since the outcomes of the actions performed are unpredictable.
Not to mention that decision must be made on real time and in our case, with
limited computational resources.

This paper presents extensions and improvements of previous work [7], where
we defined a CBR system for the robot soccer domain. Given a state of the
environment the aim of the approach is to define the sequence of actions the
robots should perform during a game. In this first attempt, we presented a
preliminary model of our CBR system and we also showed initial experiments
with one robot in a simulated environment.
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Because of the high uncertainty in our domain, in [5] we introduced the con-
cept of “scope” of a case. With this concept we refer to regions in the field where
a case should be retrieved. Dealing with regions is much more intuitive and fea-
sible than dealing with points in the field, since we are interested in observing if
the ball or a robot is in a given region, rather than if it is in an exact position.
Once we verified the effectiveness of this new concept, we have now introduced
it in the system as part of the description of a case.

In several different domains it has been proved that teamwork improves the
performance of a task. Robot soccer is one of these domains. Having a single
player running across the field with the ball may result in success if no problems
arise during the performance. But, what if while attempting to reach the at-
tacking goal it loses the ball? It could be a perfect opportunity for an opponent
to take the ball. Having teammates that can help during the task is essen-
tial to increase robustness in case of failure. Therefore, in [6] we presented our
first multi-robot case-based approach, where cases may include explicit passes
between robots, which for the best of our knowledge, has not been presented
before in this domain. In this preliminary work a fixed robot was in charge of
the reasoning process (retrieving cases) and coordinating the execution of the
case with the rest of the teammates. In order to increase the robustness of our
multi-robot approach, we now present an additional mechanism, where the best
candidate among the available robots is selected as the coordinator for each cycle
of the CBR process.

Based on the successful results obtained in our previous work, we have ex-
tended our system including the opponents. Due to the incorporation of new
cases with teammates and opponents, the complexity of the case base has also
increased. Thus, in this paper we also present a new representation of the case
base to facilitate the access during retrieval. Furthermore, since now we are
working with teammates, we have emphasized cooperation between robots, i.e.
we prefer to retrieve a case with teammates, than a case with a single robot. To
this end, we define a retrieval process that prioritizes cases with multiple robots,
rather than cases with a single robot.

In this paper we present the current version of our system and the empirical
results obtained with real robots. We compare our approach with an individualist
approach in two scenarios with a team of two robots. The aim of the experiments
is to prove that the performance of the robots using the extended system is more
cooperative, and hence, more robust in case of failure since more than one robot
participates as much as possible during the execution of the task.

We focus our work on the the Four-Legged League (RoboCup). Teams consist
of four Sony AIBO robots. The robots operate fully autonomously and they can
communicate with each other by wireless. The field represents a Cartesian plane
as shown in Figure 1. There are two goals (cyan and yellow) and four colored
markers the robots use to localize themselves in the field. A game consists of
two parts of 10 minutes each. At any point of the game, if the score difference
is greater than 10 points the game ends. For more details on the official rules of
the game refer the RoboCup Four-Legged League Rule Book.
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Fig. 1. Snapshot of the field (image extracted from the Official Rule Book)

The paper is organized as follows. Section 2 reviews the related work. In
Section 3 we define the case structure and related details and the retrieval process
is described in Section 4. We present the multi-robot approach and the case reuse
in Section 5 and we show empirical results in Section 6. Finally, we conclude the
paper in Section 7.

2 Related Work

Researchers have focused their work on different techniques to model the agents’
behaviors in the action selection domain. In the CBR field, Wendler et al. [8]
describe an approach in the Simulation League to select actions based on previ-
ously collected experiences encoded as cases. Thus, many parameters they take
into account are not considered in our domain, and also they do not have to
deal with the major problems involved when working with real robots. Marling
et al. [3] introduce three CBR prototypes in their robot team (RoboCats, in the
Small Size League): the first prototype focused on positioning the goalie; the sec-
ond one, on selecting team formations; and the third one, on recognizing game
states. All three systems are mainly based on taking snapshots of the game and
extracting features from the positions of the robots during the game.

Lam et al. [1] focus their research on learning from observation. The aim
of this technique is to model agents that learn from observing other agents
and imitating their behavior. As in CBR, the learning agent selects the most
similar past observed situation with respect to the current problem and then
reproduces the solution performed at that time. The main difference between
these approaches is that the learning agent is not able to improve the observed
agent since there is no feedback in the model. Although our work does not include
yet the revise step, the main differences with this work are: the number of agents
implied in the scenes (we include teammates which interact among them); the
solution of the problem (we deal with a sequence of actions for each teammate
instead of a single action in [1]); and the objects locations (robots and ball are
within fixed regions of field in [1], whereas we deal with variable regions).

In the Simulation League, Riedmiller et al. [4] focus their work on Reinforce-
ment Learning applied to two different levels: moving level and tactical level.
The former refers to learning a specific move (learning to kick). While the latter
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refers to which move should be applied at a certain point (pass the ball). Lattner
et al. [2] present an approach that creates patterns based on the qualitative in-
formation of the environment. The result of learning is a set of prediction rules
that give information about what (future) actions or situations might occur with
some probability if certain preconditions satisfy. They all address their work to
the Simulation League.

3 Case Definition

A case represents a snapshot of the environment at a given time from a single
robot point of view. We call this robot the reference robot, since the information
in the case is based on its perception and internal state (its beliefs). The case
definition is composed of three parts: the problem description, which corresponds
to the state of the game; the knowledge description, which contains additional
information used to retrieve the case; and finally, the solution description, which
indicates the sequence of actions the robots should perform to solve the problem.
We formally define a case as a 3-tuple:

case = ((R, B, G, Tm, Opp, t, S), K, A)

where:

1. R: robot’s relative position (xR, yR) with respect to the ball and heading θ.

xR ∈ [−2700..2700]mm yR ∈ [−1800..1800]mm θ ∈ [0..360)degrees

2. B : ball’s global position (xB , yB)

xB ∈ [−2700..2700]mm yB ∈ [−1800..1800]mm

3. G: defending goal
G ∈ {cyan, yellow}

4. Tm: teammates’ relative positions with respect to the ball.

Tm = {tm1, tm2..., tmn}

where tmi is a point (x, y) and n = 1..3 for teams of 4 robots. This set could
be empty for cases where no teammates are implied in the case solution.

5. Opp: opponents’ relative positions with respect to the ball.

Opp = {opp1, opp2, ..., oppm}

where oppi is a point (x, y) and m = 1..4 for teams of 4 robots. This set
could be empty for cases where no opponents are described in the case.

6. t : timing of the match. Two halves parts of 10 min.

t ∈ [0..20]min, t ∈ IN
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7. S : difference between the goals scored by our team and the opponent’s team.
The maximum difference allowed is 10. The sign indicates if the team is losing
(negative) or winning (positive).

S ∈ [−10..10]

8. K : scope of the case. We define the scope as the regions of the field within
which the ball and the opponents should be positioned in order to retrieve
that case. We represent the scope as ellipses centered on the ball’s and op-
ponents’ positions indicated in the problem description.

K = (τB
x , τB

y , τ1
x , τ1

y , . . . , τm
x , τm

y )

where τB
x and τB

y correspond to the x and y radius of the ball’s scope, τ i
x

and τ i
y , to the radius of opponent i’s scope (i = 1..m).

9. A: sequence of actions, called gameplays, each robot performs.

A = {tm0 : [a01, a02, . . . , a0p0 ], . . . , tmn : [an1, an2, . . . , anpn ]}

where n = 0..3 is the Id of the robot, and pi the number of actions teammate
tmi performs (tm0 corresponds to the reference robot). The actions are either
individual actions, such as “get the ball and kick”, or joint actions, such as
“get the ball and pass it to robot tmi”.

Case Description Details

Problem description. Each robot constantly reports its position to the rest of
the robots in the same team. Thus, the reference robot can update Tm at every
time step. Regarding the opponents’ positions, the robots may include a vision
processing system to detect them. However, in this work we do not use this sys-
tem because it is not robust enough. The purpose of this research is to study the
performance of the CBR approach, and not to improve robustness to the per-
ception system. Therefore, to test our system independently from vision issues,
the robots from the opponent team also report their positions to all the robots
in the field. Since we are only interested on the opponents near the ball (an
opponent far from the ball does not take part in the immediate gameplay) the
reference robot only considers the existence of an opponent (active opponent) if
it is within a given radius from the ball’s position.

Knowledge description. We are more interested in defining qualitative positions
of the ball and opponents rather than using precise positions. Hence, describing
the scope of cases based on ellipses is beneficial in two aspects: first, because
of the high degree of uncertainty in our domain, dealing with exact positions is
not feasible; and second, we can easily describe the opponents’ positions with
respect to the ball by means of qualitative positions. Figure 2a shows in a section
of the field an example of the ball’s and opponent’s scope of a given case. Given
a new problem, if the ball and the opponent are within the scopes, i.e. the
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Fig. 2. (a) Example of the scope of a case. (b) Example of a problem. The scope of
the opponent is translated with respect to the ball.

ball (black circle) is within the solid ellipse, and the opponent in front of it,
the case would be considered as a potential solution. Note that the opponent’s
scope (dashed ellipse) is computed with respect to the actual ball’s position.
Figure 2b illustrates an example of a new problem to solve, where the ball is
within the ball’s scope, and the scope of the opponent is located with respect
to this position. To solve this problem, the case shown in Figure 2a would be
retrieved.

The initial scopes of the cases (values of τx and τy for the ball and opponents)
are initially given by hand when creating the cases and then automatically ad-
justed by means of a learning mechanism presented in [5].

Solution description. Although actions have different durations, through the exe-
cution of joint actions there is no need of explicit action synchronization between
robots, nor to specify timings to actions. This is so because each action corre-
sponds to low level behaviors which are triggered when a set of preconditions are
fulfilled. For instance, a pass between two robots corresponds to two sequences:
“pass the ball” and “wait for ball”. The first robot (the one that initiates the
pass) gets the ball and then kicks it towards the second robot. Meanwhile, the
robot receiving the ball remains in its position until the ball is close enough to
it. Once the ball approaches the second robot, it will catch the ball and continue
with whatever action is indicated in the gameplay (such as “kick to goal”).

4 Case Retrieval

A case can be retrieved if we can modify part of the current problem description
in order to adapt it to the description of the case. We separate the features
of the problem description in two sets: controllable indices and non-controllable
indices. The former ones refer to the reference robot and teammates (since they
can move to more appropriate positions), while the latter refers to the ball,
opponents, defending goal, time and score difference (which we cannot directly
modify). The modification of the controllable features leads to a planning process
where the system has to decide how to reach the positions of the robots indicated
in the retrieved case in order to reuse its solution. We compute two measures for
each set. We briefly describe them next (see [7] for details).
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Similarity function. This measure indicates how similar the non-controllable
features are between the problem and the case. We define different functions for
each domain of features and we then compute the overall similarity using the
harmonic mean of the individual similarities.

The similarity simB for the ball and the similarities simOppi for the opponents
are computed using a 2D Gaussian function:

sim(x1, y1, x2, y2) = e
−
[(

x1−x2
τx

)2

+

(
y1−y2

τy

)2
]

where the point (x1, y1) refers to either the robots’ or the ball’s position in the
problem and (x2, y2) refers to the positions in the case. τx and τy correspond to
the scopes (K) of either the ball or the opponents described in the case.

To compute the opponents’ similarity we first must determine the correspon-
dence between the opponents of the problem and the case, i.e. which opponent
oppi from the problem description corresponds to which opponent oppj in the
case description. In [7] we presented a Branch&Bound algorithm to efficiently
obtain the best match between n robots. However, since in this work n is low (at
most three robots per team) we perform an exhaustive search to obtain the cor-
respondences, which has a lower computational complexity than implementing
the B&B search. Once we obtain the correspondences, we compute the similarity
for each pair using the Gaussian function defined above.

We model the strategy of the game based on the time and the score difference.
As time passes and depending on the score of the game, we expect a more
offensive or defensive behavior. We define the strategy function as:

strat(t, S) =

⎧⎨
⎩

t
20(S−1) if S < 0
t
20 if S = 0

t
20(S+1) if S > 0

where strat(t, S) ∈ [−1..1], with -1 meaning a very offensive strategy and 1
meaning a very defensive strategy. The similarity function for the strategies is:

simtS(t1, S1, t2, S2) = 1 − |strat(t1, S1) − strat(t2, S2)|

where t1 and S1 corresponds to the time and scoring features in the problem
and t2 and S2, the features in the case.

Finally, the overall similarity is defined as:

sim = f(simB, simtS, simOpp1 , . . . , simOppm)

where f is the harmonic mean, m is the number of opponents in the case, and
each argument of f corresponds to the similarity value obtained for each feature.
For more details regarding the similarity functions refer to [7].

Cost function. This measure computes the cost of modifying the controllable
features, i.e. the cost of adapting the problem to the case. It is computed as the
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sum of the distances between the positions of the robots in the problem and the
adapted positions specified in the case (after obtaining their correspondences).

The adapted positions correspond to the global locations where the robots
should position in order to execute the solution of the case. To compute them,
we transform the robots’ relative coordinates to global coordinates, having the
position of the ball in the problem as the reference point. Figure 3 illustrates a
simple adaptation example with one robot.

Retrieving a Case

Since we are working in a real time domain and because of computational lim-
itations in the robots, it is essential to minimize the time invested during the
retrieval process. To speed up the search we use an indexed list to store the cases.
Thus, when a new problem enters the system we can easily access the subset of
cases (CBs) we are interested in by indexing the case base using the value of the
defending goal (yellow or cyan) and the number of opponents involved in each
case. Searching in the rest of the case base is useless since those cases will not
match the current problem at all. In Section 6 we show some examples of cases.

After computing the similarities between the problem and the cases in the
subset CBs, we obtain a list of potential cases. From this list, we compute the
cost for each case and select those cases that have a cost lower than a given
threshold. From this list of potential cases (PC) we must select one case for the
reuse step.

We consider a compromise between the similarity degree between the problem
and the case and the cost of adapting the problem to the case. Moreover, since
we are working in a multi-robot domain (teams of robots), we are also interested
in stimulating cooperation between them as much as possible. Thus, given two
candidate cases, one described with a single robot, and the other, with two robots
that cooperate during the execution of the solution, the system would select the
second case as the retrieved case (although it might have a lower similarity).

Therefore, given the list of potential cases (PC), we first classify the cases
based on the number of robots described in the case (number of teammates, n,
plus one -the reference robot-). Each subset is further classified into four lists
based on different similarity intervals: H = [0.8, 1.0], h = [0.6, 0.8), l = [0.4, 0.6)
and L = (0.0, 0.4). Finally, each list is sorted based on the cost, where the first
case of the list corresponds to the case with lower cost. Formally:

PC = [[simn+1
H , simn+1

h , simn+1
l , simn+1

L ], . . . , [sim1
H , sim1

h, sim1
l , sim

1
L]]

where simi
s = [ci

s1, c
i
s2, . . .] is an ordered list of cases based on their cost (i.e.

cost(ci
s1) < cost(ci

s2)); s ∈ {H, h, l, L} stands for the similarity interval; and
i = 1..n + 1 is the number of players in the case. The retrieved case corresponds
to the first element of the flatten1 list PC: ret case = first(flat(PC)).

In summary, when a new problem enters the system, the system retrieves a
case maximizing both the number of players implied in the solution and the
similarity, while minimizing the cost.
1 We define a flatten list as a list with one single level, i.e. no nested lists.
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Fig. 3. Case description (Rc, Bc), and
current problem description (Rp, Bp).
The robot in dashed lines represents
the adapted position of the robot with
respect to the ball’s position described
in the problem.
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Fig. 4. Case-based multi-robot archi-
tecture for n = 3 robots and k = 2
retrievers

5 Multi-robot Architecture and Case Execution

Next we describe the architecture for our multi-robot system integrating the re-
trieval and reuse steps of the CBR approach. The multi-robot system is composed
of n robots. All robots interact with the environment and among them, i.e. they
perceive the world, they perform actions and they send messages (MSG) to each
other to coordinate and to exchange information about their internal states.

We distinguish a subset of k (1 ≤ k ≤ n) robots, called retrievers. These
robots are capable of retrieving cases as new problems arise. All robots have a
copy of the same case base so they can gather the information needed during
the case reuse. Figure 4 shows the architecture described. Given a new problem
to solve, the first step of the process is to decide which of the retrievers is going
to actually retrieve a case to solve it (since only one case can be executed at a
time). We believe that the most appropriate robot to perform this task should
be the one that has the most accurate information about the environment. From
the set of features described in a case, the only feature that might have different
values from one robot to another, is the ball’s position. Moreover, this is the
most important feature in order to retrieve the correct case and we must ensure
as less uncertainty as possible. The remaining features are either shared among
the robots, or given by an external system, i.e. defending goal, the score and time
of the game. Therefore, we propose that the robot retrieving the case should be
the one closer to the ball, since its information will be the most accurate (the
further a robot is from an object, the higher the uncertainty about the object’s
information). From now on, we will refer to this robot as the coordinator.

Since we are working with a distributed system, the robots may have different
information about each other at a given time. Their beliefs about the state of
the world are constantly updated. They are also constantly sending messages
about their current internal states (position, ball’s position, etc.) to the rest of
the robots. As a consequence, we cannot ensure that all robots agree on who is



Team Playing Behavior in Robot Soccer 55

the one closer to the ball at a given time. To solve this issue, only one robot
is responsible for selecting the coordinator. In order to have a robust system
(robots may crash, or be removed due to a penalty), the robot performing this
task is always the one with lower Id among those present in the game (since
the robots always have the same Id). Once it selects the coordinator, it sends a
message to all the robots indicating the Id of the new coordinator.

After the coordinator is selected, it retrieves a case according to the process
described in Section 4 and informs the rest of the team which case to reuse.
It also informs the correspondences between the robots in the current problem
and the robots in the retrieved case (so they can know which actions to execute
accessing their case bases).

At this point the case execution begins. Firstly, all robots that take part of
the solution of the case move to their adapted positions (computed as showed
in Section 4). Once they reach them, they send a message to the coordinator
in order to synchronize the beginning of the gameplays execution with the rest
of the robots. Next, they all execute their actions until ending their sequences.
Finally, they report the coordinator that they finished the execution and wait
for the rest of the robots to end. When the coordinator receives all messages,
it informs the robots so they all go back to the initial state of the process, i.e.
selecting a new coordinator, retrieving a case and executing its solution.

The execution of a case may be aborted at any moment if any of the robots
either detects that the retrieved case is not applicable anymore or an expected
message does not arrive. In either case, the robot sends an aborting message to
the rest of the robots so they all stop executing their actions. They once again
go back to the initial state in order to restart the process. For more details on
the behaviors presented refer to [6].

6 Evaluation

To evaluate the approach presented in this paper, we have compared it with
the behavior-based approach used by the CMDash team in the US Open’05. We
briefly introduce the basic ideas of this approach.

The behavior-based approach consists in defining high level behaviors (state-
based behaviors) the robot executes based on the state of the environment. For
example, a robot defending its goal should get the ball and clear it from the
defense region. They coordinate to prevent from going towards the ball at the
same time and to collide between them as they move with the ball. When a robot
decides to go after the ball it informs its teammates so they try to move away
from its trajectory. Therefore, they do not have explicit passes between them,
and passes occur by chance. The roles are used to maintain the robot’s positions
within certain regions of the field. Therefore, the robots can be organized in
different layouts on the whole field as needed.

There are four main differences with our approach: (i) behaviors are applicable
only if all preconditions are fully satisfied (true or false); (ii) there are few
behaviors, and therefore, they are very general; (iii) the approach has an implicit
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Fig. 5. The letters correspond to the robots (A, B and G), the numbers to the time step
of the execution (1, 2 and 3) and the arrows represent the ball’s and robots’ movement,
solid and dashed respectively. (a) Scenario 1 using the case-based approach: “multiple
right side” case followed by “single right middle” case. (b) Scenario 2 using the case-
based approach: “multiple left middle” case followed by “single goalie front” case.

coordination mechanism, where coordination results as an emerging property
(robots actually play always individually and passes are unintentional); and,
(iv) the approach does not have a representation model. Thus, modifying the
behaviors results in a very tedious task if the user is not familiar with it.

The goal of our experimentation is to prove that the resulting behavior of the
robot team using our approach is more cooperative than a robot team using the
behavior-based approach. In other words, our approach results in a collective
or “team playing” behavior (participation of more than one robot of the same
team during the execution of a task through passes), as opposed to individual
behavior (only one robot executing the task).

A trial consists in positioning the robots and the ball on the field and the
robots’ task is to move the ball until reaching the penalty area (rectangular box
in front the attacking goal). Two sets of experiments where performed, each
composed of 15 trials. Figure 5a illustrates the first scenario, where two robots
(A and B) initiate the task in the right side of the field (negative y). While in
the second scenario, Figure 5b, two robots are positioned in the left middle side
of the field, and an opponent is also included (the goalie) in the left side of the
attacking goal (cyan goal). Both approaches (case-based and behavior-based)
were tested in the two scenarios. Next, we describe the results obtained for each
approach.

6.1 Behavior-Based Approach

During the experiments with the behavior-based approach, we observed that
due to its individualistic nature, in general only one robot was implied in the
execution of the task. From the 30 trials (15 for each scenario), 4 times the
ball went out of field, failing the experiment. Although the remaining trials were
fulfilled, a single robot was always after the ball while the second robot remained
behind it to avoid intercepting either the first robot or the ball. Hence, for
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Fig. 6. Behavior-based approach. (a) Scenario 1. (b) Scenario 2.

an external observer, the performance was lacking of teamwork or cooperation
(although the robot was actually avoiding to cross the path of the first robot as
part of its teamwork mechanism).

Figure 6 shows examples of the robots’ paths in both scenarios. We can observe
how robot B is the robot that goes after the ball constantly, while robot A
remains behind it, moving back and forth to avoid robot B. This behavior may
be reasonable when there are no opponents, but is not effective when there are
opponents around.

6.2 Case-Based Approach

Given the symmetric properties of the features of the field, for each manually
created case in any of the four quadrants of the field, we can easily generate
three more cases using symmetric transformations. Our case base is composed
of 56 cases, even though only 14 cases were manually created.

Because of the non-deterministic nature of the real world we are working
on, although the initial layout of robots and ball is always the same, different
outcomes can occur after executing the same actions several times. For instance,
the ball’s trajectory is not exactly the same, a robot may lose the ball when
attempting to grab it, the kick strength can be stronger or weaker, etc. Therefore
even if the first case that the robots retrieve is the same at different times, the
next retrieved case may not be the same because it will depend on the outcome
of the actions performed during the execution of the first case (the final positions
of the robots and the ball).

After studying the results obtained from the experiments, we can classify the
trials in different groups based on the sequence of retrieved cases during the
performance. For space reasons we only describe the second scenario which is
more interesting since an opponent is included. However, the ideas discussed are
based on both sets of experiments.

Figure 5b shows the execution scheme for the second scenario: robot B passes
the ball to robot A, who then kicks it near the penalty area (“multiple left
middle” case). The interesting situation occurs next, when the ball is near the
penalty area but there is an opponent between the player and the goal. Hence,
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Fig. 7. Scenario 2 using the case-based approach: (a) “multiple left middle” case fol-
lowed by “single goalie diagonal” case. (b) robots’ real paths performed during the
execution of both cases.

the retrieved cases must include an opponent. We classified the 15 trials in two
groups based on the retrieved cases for this second part of the execution:

Opponent: The goalie is either in between the ball and the goal (Figure 5b) or
diagonally located with respect to the ball, i.e. not obstructing the trajectory of
the ball to the goal (Figure 7). In the first case, the attacking robot must grab it
under its chin, move sideways to the right with the ball to avoid the goalie and
kick forward. In the second case, since the goalie is diagonally located, there is
no need to avoid it, and the robot can directly kick the ball.

No opponent: The task is achieved with a single case (Figure 8a and 8b)), or the
opponent was not considered during the next retrieval because the opponent is not
within the radius of the ball (not an active opponent as mentioned in Section 3).
Therefore, a case with no opponents is retrieved next (Figure 8c and 8d).

In both scenarios the first retrieved cases are always the same since the initial
positions are fixed. From that point on, depending on the events occurred during
the execution, the next case may vary. In any case, the robots always made a
good decision and performed the task successfully in a cooperative way.

After discussing the qualitative results of the experimentation, we now show
the most significant data obtained from the experiments with the case-based
approach. Figure 9 shows a table with the number of retrieved cases in both
scenarios. As we can see, from a total of 65 cases, 57 were correctly retrieved and
successfully executed. The 8 remaining where aborted during execution because
the robots realized that the cases were not applicable anymore. From an observer
point of view, these 8 cases were incorrectly retrieved since the states of the
environment were not similar to the cases descriptions. However, from the robots’
point of view, the cases indeed matched the states of the environment at the
retrieving stage, but due to localization errors, the robots’ beliefs were wrong.
From the moment they correctly relocalized (and therefore, correctly localized
the position of the ball), they realized that the cases did not match the state of
the environment and aborted the execution. Figure 10 depicts the regions of the
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Fig. 8. Scenario 2 using the case-based approach: “multiple left middle” case followed
by (a) no more cases; (c) “single right front” case; and (b) and (d) robots’ real paths
performed during the execution of both executions

field covered during the performance of both experiments. From the case base,
a total of 11 different cases were retrieved in both scenarios.

We also noticed that during the experiments with the behavior-based ap-
proach, the robots collided between them 8 times and 4 times the ball went out
of the field. While with our approach, the robots never collided, neither kicked
the ball out of the field.

Finally, we must also point out that during a game our approach results
in a more controlled strategy, rather than an aggressive one where the robots
are constantly trying to individually get the ball and score. This is because we
include a reasoning module which takes care of higher level decisions. Although
the chances of scoring increases with an aggressive strategy, it also increases the
number of lost balls, which may allow the opponent team to score more goals.

retrieved
cases

lost
cases

completed
execution

Scenario 1 36 6 30
Scenario 2 29 2 27
Total 65 8 57

Fig. 9. Case results in both scenarios Fig. 10. Case execution coverage
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7 Conclusions and Future Work

We have presented an extension of our CBR system for action selection in the
robot soccer domain. Since we have increased the complexity of the system
(including teammates and opponents), we have developed a new representation
of the case base (an indexed list) as well as a retrieval process that prioritizes
the participation of more than one robot. Hence, as shown in the evaluation, the
robots behavior results in a “real” team playing performance (more cooperative
with explicit passes) instead of an individualistic performance, which we believe
is more adequate for robot soccer. To this end, we also presented a mechanism
to select the robot in charge of the retrieval process and the coordination of the
team.

As future work we propose to have the different robots retrieving cases, and
therefore, the need of an agreement mechanism will arise. For instance, it would
be interesting to integrate a negotiation mechanism based on appropriate infor-
mation (e.g. how well localized a robot is) to allow the robots to decide the most
appropriate case in a better informed manner. We also plan to further extend
the system by a more complete coverage of the possible situations that arise
during a game after introducing more teammates and opponents.
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