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Abstract. In this paper, we advance a novel approach to the problem
of autonomous robot navigation. The environment is a complex indoor
scene with very little a priori knowledge, and the navigation task is ex-
pressed in terms of natural language directives referring to natural fea-
tures of the environment itself. The system is able to analyze digital
images obtained by applying a sensor fusion algorithm to ultrasonic sen-
sor readings. Such images are classified in different categories using a
case-based approach. The architecture we propose relies on fuzzy theory
for the construction of digital images, and wavelet functions for their
representation and analysis.

1 Introduction

Indoor robot navigation poses a unique challenge to Artificial Intelligence re-
searchers. Mobile robots are inherently autonomous and they compel the re-
searcher to tackle key issues such as uncertainty (in both sensing and action),
reliability, and real time response. In particular, a still open problem is the de-
vising of efficient strategies able to cope with the problem of self-localization
in unstructured environments, i.e., the ability of estimating the position of the
mobile platform when no artificial landmarks can be used to precisely indicate
to the robot its position. To better explain this concept consider indoor navi-
gation: the motion planning phase, that has to identify the best path through
the environment must rely on the process of collection and interpretation of sen-
sory data. This means that the robot, having no artificial landmarks, is asked to
extract from natural features, like shape of corridors or lamps in the ceiling or
even the number of encountered doors, the best estimate of its position. More-
over, the accuracy of such a process must be sufficient to plan its future actions.
For this reason, to solve the self-localization problem for an autonomous mobile
robot carrying out a navigation task consisting in moving between two points of
a complex environment, the first step to take is characterizing an effective en-
vironment representation. This map must describe all the essential information
being, at the same time, compact and easy to handle. Indeed, self-localization is
always a multi-level process, usually consisting of more than one algorithm each
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one related to the accuracy requested for the subsequent motion steps. When
covering large distances, motion accuracy along the path is not demanding and
the environment representation itself can be more rough. On the contrary, when
approaching the goal, this ability must be improved to allow fine motion. So,
assuming that the motion planning step has to be performed within this rep-
resentation, the map must allow the description of the calculated path. This
means that the efficiency of the map, in terms of flexibility, extendibility, and
adaptability, must be considered as first goal in its design.

Now, suppose to restrict the problem and choose the environment in a partic-
ular class, still very wide: an office-like environment with corridors, corners and
other similar features. Then, the task to perform can be described in linguistic
terms containing topological elements such as “go straight along the corridor,
turn right at first corner, and follow the next corridor as far as the second door on
the left”. Suppose also that only low cost sonar sensors can be used: all localiza-
tion information, that at this point has a topological character, should be easily
extracted from sensory data and used to guide the platform along the path. Un-
fortunately, in a dynamic environment, those features (natural landmarks) can
vary and some unknown configurations could be found leaving to the robot the
choice on several strategies: one could consist in finding the nearest matching
topological element in a static library; an other one could include a supervised
learning stage in which the new pattern is used to increase the base library itself.
This second approach is often referred as Case-Based Reasoning (CBR) [1,7] and
tries to catch all the learning opportunities offered both by the environment and,
in an initial phase, by an external supervisor, to improve robot skill in analyzing
its exteroceptive sensorial view.

The rest of this paper is organized as follows. In Section 2, we review dif-
ferent approaches to constructing a model of the environment based on sensor
measurements. Section 3 presents the case-based architecture, in particular the
signal representation and the similarity metric. Section 4 describes the exper-
iments performed to evaluate the accuracy of the proposed system. Our final
remarks are given in Section 5.

2 Mapping the World

In literature, the way the world is represented is found to be grouped into two
main classes: metric maps, giving absolute geometric information about objects,
and topological maps containing only relations between objects with no metric
at all [2]. In general, topological maps can be more flexible due to their abstract
world representation and can be successfully employed when there is no metric
information or its quality is extremely poor. Moreover, a planar graph can be
used to describe a topological map, and metric information, when present, can
be introduced as weights on arcs or nodes.

Nevertheless, the semantic associated to nodes and arcs can differ depending
on the authors. For example, in maps defined by [8] nodes represent places and
are associated to sensory data and arcs represent paths between places and are
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characterized by control strategies. On the contrary, maps defined by [14] are
obtained by analyzing probabilistic gridmaps (metric maps divided into small
cells) and partitioning them into regions (nodes) separated by narrow passages
(arcs). Finally, a different approach can be found in [6], where concepts from dig-
ital topology, extended to fuzzy gridmaps, are used to build a topology-based map
in which structure and shape of the free-space is analyzed and classified: nodes
of the graph represent connected components (usually rooms and corridors) and
arcs represent adjacency relationships between these components. In this paper,
we make use of a similar representation, that has been presented in [11], where
connected components (nodes) are classified using a semantic induced by the
particular shape, like corridors or corners, and arcs are again an adjacency re-
lationship. The high level planner can force a navigation strategy associating to
the particular node a behavior that the mobile robot must bind to while moving
in that portion of the environment. This kind of autonomous navigation implies,
therefore, a recognition phase for each step taken by the robot to estimate its
position, or better, to understand the particular shape of the environment (the
topological feature) inside its actual range of view.

In our case, this can be done comparing the actual sonar output with a set of
reference signals associated with particular topological features. In most cases,
association is done by comparing the actual view with a static list of models
obtained with a priori considerations on the environment itself [5]. However,
following a CBR philosophy, a learning approach can be devised in which real-
world cases obtained from a supervised navigation are used to build and update
a dynamic library.

In this paper, we want to show how such a method can be successfully applied
to help the robot during navigation in dynamic environments containing features
that only partially correspond to previously known cases. In particular, the prob-
lem we intend to address concerns the recognition of a sonar-based digital image
and its classification under one category belonging to a set of predetermined
topological situations (Corridor, Corner, Crossing, End Corridor, Open Space).

Basically, the surrounding of the robot is represented in terms of Fuzzy Local
Maps (FLM), i.e., Fuzzy Maps [10,11], that turned out extremely useful in many
sensor fusion problems, obtained from a preprocessing stage applied to the sonar
signals. Each FLM consists of 40 x 40 cells and, for each cell of an FLM, two
values specifying the degree of membership to the set of empty cells and to
the set of occupied cells are computed. An FLM, usually derived at each step
merging the last n sets of collected data, is thereafter represented by two fuzzy
sets: the empty cells set E , and the occupied cells set O. As an example, in
Figure 1 the E set of a FLM obtained in a corridor is reported. Different gray
levels in the image represent different fuzzy values. Pixels with darker gray levels
correspond to lower values of membership to the empty cell set E , white pixels
are unexplored regions, with a fuzzy value of membership to E equal to zero.

Now, with reference to the scheme depicted in Figure 3, let us assume that the
robot has acquired a new FLM. As first step, a feature-based representation of
the new FLM is evaluated by the feature extraction module. This representation
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Fig. 1. Map of a corridor Fig. 2. Worldmark

constitutes the “new case” of the proposed CBR system. The retrieval module
shown in the figure will effect a search in the Case Library containing the old
cases, based on a <problem representation, solution> structure, which in this
specific case will be <FLM based representation, topological category index>.
The solution given in the old case can therefore be seen as a pointer to the
“Library of Objects”, containing the categories (i.e., “topological features”) that
could appear in the maps to be analyzed. The “recognized object” is at this point
taken into consideration by the robot navigation system to plan its motion.
This object, which constitutes the old solution of the case retrieved from the
Case Library, will also be considered as a candidate solution of a new problem
(basically, there is no need for an adaptation of the old solution to suit the new
case) and if the human supervisor accepts it, the pair <new FLM based feature
representation, recognized object index> can be inserted as a new case in the
Case Library.

3 Case-Based Architecture

For sake of clarity and for an immediate understanding of the problems addressed
and the relative proposed solutions, the pseudo-code of a rather simplified version
of the classification algorithm is reported in Table 1. The complete solution,
employed for the experimental performance assessment, was implemented in C
language under the Linux operative system, for reasons of porting and efficiency.
To handle both the new case and any of those cases dwelling in the Case Library,
the use of a record structure comprising the three fields below was adopted:

– a one-dimensional fuzzy worldmark summarizing the content of the FLM;
– object, designed to store the label associated to the recognized object;
– time, reserved to the storage of information regarding the utility of the case

of reference.

As indicated above, the first field is dedicated to the representation of the
FLM. In order to guarantee the applicability of the current approach to real-time
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Table 1. Pseudo-code for CBR

Function REC(NewImage) returns RecObject
inputs : NewImage; the input image
variables : CaseLib; the case library

Cj; the generic old case
Tnouse; the inactivity time
Sa; the reliability threshold
Sb; the identity threshold

local variables : D.image; the image representation
D.object; the recognized object
sj ; the metric value
tempvalue; the temporary metric value
tempind; the temporary case index

D.image ←WAVELET(NewImage)
D.object ← 0
tempvalue ← 0
tempind ← 0
for each old case Cj in CaseLib do

begin
sj ← COMPARE CASE(D.image, Cj.image )
if (tempvalue < sj) then

begin
tempvalue ← sj

tempind ← j
end

end
if (tempvalue < Sa) then

begin
D.object ← HumanExpertSolution
Cn+1.image ← D.image
Cn+1.object ← D.object
Cn+1.time ← 0

end
else
begin

if (Ctempind.object = HumanExpertSolution) then
begin

D.object ← Ctempind.object
Ctempind.time ← 0

end
else

D.object ← HumanExpertSolution
if (tempvalue < Sb) then

begin
Cn+1.image ← D.image
Cn+1.object ← D.object
Cn+1.time ← 0

end
end

CLEAN LIB(CaseLib,Tnouse)
RecObject← D.object
returns RecObject

control, a simplification has been introduced: the bi-dimensional fuzzy map of
Figure 1 is replaced with a one-dimensional fuzzy signal, named worldmark. The
worldmark is computed by determining, for each direction around the robot, the
value of the cell with the highest matching score to the set of empty cells, or, in
other words, the cell for which the risk of belonging to a possible obstacle is min-
imum (see fig. 2). Therefore the “new case” that appears in Figure 2 consists of
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Fig. 3. Navigation architecture with Case-Based Reasoning

a vector of N elements (typically N=360) with values in the interval [0,1]. Before
launching into the detailed description of the representation modalities of the
aforementioned three fields, we believe it useful to provide a general overview of
the entire algorithm. The domain expert’s possibility to intervene in the decision
task is certainly of primary interest. Such an intervention is possible both in the
initial training phase of the system as well as during the verification phase for
the retrieved solutions. The human element is, in fact, deemed indispensable
not only when the robot begins to navigate without the support of any kind of
information regarding the different topological configurations it may encounter,
but also in the course of the regular operation of the system. In this way it is
possible – in fieri – to remedy possible training shortcomings due to the limited
information available. Another aspect worthy of attention is the one related to
the adoption of a double similarity test. It is manifest that as the pertinence
of the Case Library increases, so does the probability of retrieving a candidate
with a good value of similarity to the case under examination and, therefore,
that the associated solution to will prove to be valid even in a contingent situa-
tion. On the other hand, a rather voluminous library presents the two following
inconveniences:

– more time necessary for the retrieval of the required information;
– a depletion in terms of available space.

It is evident that these problems relate across the board to any practical ap-
plication of the CBR method. This becomes obvious when considering the con-
siderable amount of work dedicated to the matter by the Artificial Intelligence
community (see for instance [13]). In order to avoid, at least partially, this state of
affairs, the proposed architecture uses two different tests, respectively, named re-
liability test and identity test. The former provides indications on the possibility
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of successfully apply the solution of the retrieved case to the new situation. It
is a kind of measurement of the actual extent to which the case extracted from
the library represents the class of the one under observation. Instead, the sec-
ond test controls the insertion of the new case into the system memory. The
reason for the introduction of the identity test parameter is owed to circum-
stances where it is useless to include a new case, “quite” similar to a case stored
in the library in the system memory. In fact, such lesser information contribu-
tion would not justify the depletion of resources its storage would entail. The
reliability test is performed by comparing the current similarity metric value sj

with the reliability threshold Sa, while the identity test is performed by com-
paring the same value sj with an identity threshold Sb. In Tables 3, 4 and 5
the threshold values determined by a heuristic procedure are reported together
with the percentage of coincidence between the responses given by the system
and those provided by a domain expert. Specifically, for the setup of Sa and
Sb, the available memory space, the amount of resources necessary to keep in
memory the pair <representation of signal, represented object> and the statis-
tics of the similarity index were considered. The results obtained by adopting
such a strategy are more than satisfactory, but this does not deny the fact that
an adaptive mechanism would certainly be preferable, i.e., one capable of dy-
namically determining the optimal values for the two thresholds on the basis of
certain parameters established by the user, and in conformity with the structure
of the overall system. This option is not yet a reality, but we believe that the
resources necessary for developing such a solution could be actually quite con-
tained. Keeping in mind an “intelligent” management of the resources available
to the system, a third test has been introduced. The idea that has, concretely,
lead to its introduction, stems from the need to keep track, for all cases stored
in memory, of the frequency of their appearance and the effectiveness of the
solution associated to them. The record field time was specifically introduced
in consideration of these aims. Once more, the clean library test compares this
value with a threshold Tnouse. If time exceeds Tnouse the case is removed from
the library. For the determination of the optimal value to assign to the indicator
Tnouse, the same considerations expressed above for the parameters Sa and Sb

still apply. However, for a full understanding of the architecture proposed in
this article there are still two major aspects that, as always, in any case-based
system, constitute the heart around which all the rest revolves, that is,

– the signal representation;
– the similarity metric.

These aspects are, furthermore, strongly interrelated.

3.1 Signal Representation

Choosing the most efficient representation for a current problem constitutes the
crucial moment of any application of signal processing. In fact, it is certain
that the availability of a representation that makes the extraction of character-
istics simple and immediate is of vital importance for the positive outcome of
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subsequent applications. Here, we resorted to a wavelet representation of the
worldmark. The wavelet representation expresses the signal of interest as super-
imposed elementary waves and, therefore, in this respect does not introduce any
innovation compared to traditional methods, such as Fourier series expansion.
However, the innovative aspect offered by wavelet functions consists in the possi-
bility of subdividing the available data in components with differing bandwidths
and time durations. Each of these components is subsequently analyzed by a
resolution associated to its scale. The advantages offered by this procedure are
tangible, above all, in respect to the analysis of physical situations where typical
signals show discontinuity and sudden peaks, exactly as happens with world-
marks. The advantages of adopting representations in similar situations through
wavelet functions, instead of traditional methods, are extensively expounded in
the literature [4,9,3].

The analysis procedure through wavelets is based on the use of a prototype
function, called mother wavelet, whose translated and scaled versions consti-
tute the basis functions of a series expansion which it is possible to represent
the original signal with, by way of coefficients. Operations involving signals can,
therefore, be developed – in a decidedly more straightforward and efficient way –
directly on corresponding wavelet coefficients. If the choice of the mother wavelet
is performed in an appropriate manner, i.e., if the coefficients below a certain
threshold value are shrinked, it is possible to represent the original data sparsely,
meaning with few coefficients different from zero. As a consequence, the wavelet
constitute a formidable tool in the context of data compression and noise filter-
ing in temporal series. Computation of the wavelet transform can be performed
in a fast way (at a computational cost O(n), where n is the number of signal
samples) by means of the Fast Wavelet Transform (FWT) [9], a computationally
efficient implementation of the Discrete Wavelet Transform (DWT) that exploits
a surprising relationship between the coefficients of the DWT at adjacent scales.
DWT can, moreover, be easily extended to multi-dimensional data, such as im-
ages, which may turn out to be useful in view of a possible application of our
architecture to direct treatment of FLM, instead of the respective worldmarks.
All these considerations induced us to rely heavily on the transformed wavelet
in the context of our experiments.

3.2 Similarity Metric

The last aspect to be examined concerns the choice of the metric necessary for
the evaluation of the similarity existing between case f in input and the generic
case g belonging to the Case Library. The importance of this choice is due to its
fundamental role in determining the quality of the selection procedure for the
most promising case, which is the very essence of a CBR system. A review of
any kind of CBR application will easily confirm this priority since the crucial
role of the similarity metric selection is obvious in every instance.

Regardless of the application context, a good metric must anyhow be able
to guarantee an efficient compromise between the two main requisites, which
are the quality of the recognition and the computational complexity. Clearly, an
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evaluation procedure that offers excellent success rates but, at the same time,
also requires excessive processing lengths, is not suitable for an autonomous
mobile robot for which real time response is a mandatory requirement. On the
other hand, it would be just as inexpedient to have a robot colliding, at high
speed, against the first possible obstacle.

Accordingly, during the experimental activity several different metrics were
tested, each of which revealed assets and shortfalls. Among them, the relatively
best results were obtained by using the cross-correlation factor as metric, whose
expression is:

Max
θ∈[0,2π]

〈f(x), g(x − θ)〉
√

〈f(x), f(x)〉 〈g(x), g(x)〉
In addition, when the worldmark is too noisy the similarity between the shrinked
versions of the new and old worldmarks can be applied. This quantity was cal-
culated both in the time and frequency domains, respectively, obtaining in both
cases significant results with moderate processing time, through computation
resources available on the market today.

4 Experimental Results

For our tests, we used the simulator of Nomad200 by Nomadic Technologies, a
mobile robot equipped with a ring of 16 equally spaced ultrasonic sensors. The
procedure consists of tracing a number of global maps of hypothetical office-
like environments, simulating the robot dynamics and, finally, collecting the
output data. For these operations we used the real time navigation software
A.N.ARCH.I.C. [12] which, together with the aforementioned simulator, made
the robot virtual navigation inside the mapped environment possible produc-
ing the sequence of FLMs and corresponding worldmark, each pair related to
a different position taken during the followed path. Each sequence, therefore,
includes hundreds of FLMs and worldmarks, which constitute the input for the
tests that we performed on our classifier. The values reported below were ob-
tained by using a machine equipped with a Pentium M processor, 1700 MHz,
and 512 MB RAM. Before discussing the results obtained during the system
test experiments, we deem it useful to set out here below some pertinent con-
siderations. The recognition and classification of a digital image in one of the
possible categories belonging to a predetermined set is a complicated task, not
only for the machine itself, but also for humans. For example, imagine having to
determine exactly the topological configuration that appears in the digital image
shown in Figure 4. In this case, as may be easily discerned, it is not possible
to affirm with absolute certainty that the robot is advancing along a corridor
or is at a crossing, or an angle. This problem becomes increasingly complex as
the robot approaches a transition situation between a perfectly defined configu-
ration and its subsequent position. Similar considerations are clearly valid also
for the corresponding worldmark, represented in Figure 5. Thus, one must gen-
erally bear these factors in mind during the analysis and evaluation phase of
the results given by the experimentation. Indeed, the performance, as for any
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Fig. 4. Ambiguity map
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Fig. 5. Ambiguity worldmark

knowledge-based system, depends above all on the quality and quantity of the
training effected before operating directly on the input data. Accordingly, dur-
ing the testing phase, we initialized the system through representations related
to four different configurations:

– corridor
– crossing
– end of corridor
– angle

providing, for each of these, three different standard schemes, in practice as it
appears in the initial phase, at its basic level, and in the final phase. Table 2
shows the configuration of the system memory, at the time when the robot be-
gins its navigation. We believe it necessary to stress how, in an architecture
based on cases such as the one described here, the initial training constitutes
only the first stage for the system acquisition of a knowledge base. Subsequently,
during the normal course of recognition operations, the domain expert may in-
tervene at any time if s/he deems it opportune, in order to enrich the Object
Library. In practice, if it appears that the FLM does not represent any of the
categories already in memory, following the similarity metric values adopted,
nothing prevents the expert from envisaging and consequently introducing a
new category. For example, if the robot goes against a well defined obstacle,
say a desk, the human expert would have the possibility to intervene and as-
sign the corresponding worldmark to a new class. All other worldmarks deemed
similar to the one mentioned above, would subsequently belong, according to
the used metric, to the new class. The ease and immediacy of such an opera-
tion constitute the strong points of the system presented herein. Tables 3, 4,
and 5 show the results recorded during different series of tests of the system.
Table 3 illustrates the results obtained by performing the similarity evaluation
between the input signal and the generic one inside the Case Library directly
in the time domain. Instead, for Tables 4 and 5, the same operation was ef-
fected in the wavelet domain, i.e., the matching evaluation of the two signals
was not made by estimating the cross-correlation between sequences of tempo-
ral samples, but between the corresponding residual low-frequency components,
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Table 2. Initial system memory

Number of cases represented Case library Object library
12 12 4

Fig. 6. Global map

obtained through DWT. Consequently, it is possible to appreciate in a more
tangible way the extent of the possible advantages granted by the expansion of
signals in series of waveform, perfectly located in time and in frequency. To
perform this experimentation, we simulated the robot navigation in an environ-
ment that Figure 6 illustrates as a global map. In the same figure we have also
traced the path followed by the robot, planned on the basis of specific methods
for which further explanation is out of the scope of this paper. A sequence of
636 FLMs is thus generated, as well as a corresponding number of worldmarks.
In order to streamline the experimental procedure, without, however, penalizing
its efficiency, since the variation between one FLM and the subsequent one was
practically insignificant, we decided to consider only one over three samples and
to discard the others. As a result, the map effectively input to the system consists
of only 212 FLMs. Initially, we shall examine the values reported in Table 3.
As anticipated earlier, the tests were performed by running the system before-
hand through the same training session, for each test series. This fact becomes
apparent by looking at the data in the 6th column, since the same value recurs
systematically in each line (12 cases). As a matter of fact, the coincidence does
not only concern the number of cases used, but also the samples themselves. In
this way, we attempted to guarantee the same initial condition in each test se-
ries. A reading of the data discloses the consistency of the recorded fluctuations,
in respect to the varying values assigned to the two similarity thresholds. For
example, it is noticeable that when the reliability threshold Sa decreases, there
is a proportional decrease in the number of interventions required of the domain
expert by the system. Similarly, there is a clear increase in the number of cases
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Table 3. Experimental results obtained in the time domain

Sa Sb Input Expert Coincidence Cases Cases Processing
Cases Interventions Percentage Before After Time (s)

0.88 0.91 212 12 90.1% (191) 12 37 8.07
0.88 0.93 212 12 85.4% (181) 12 51 9.97
0.88 0.95 212 11 84.4% (179) 12 74 13.55
0.89 0.91 212 14 90.1% (191) 12 37 8.17
0.89 0.93 212 15 85.4% (181) 12 51 10.07
0.89 0.95 212 14 84.9% (180) 12 74 13.71
0.90 0.91 212 15 90.1% (191) 12 37 8.32
0.90 0.93 212 15 85.4% (181) 12 51 10.04
0.90 0.95 212 14 84.9% (180) 12 74 13.66
0.91 0.93 212 23 91.9% (195) 12 51 10.35
0.91 0.95 212 19 89.6% (190) 12 74 13.89
0.93 0.95 212 30 90.6% (192) 12 74 14.30

inserted in the relative library matching an increase in the identity threshold
Sb. However, the phenomenon of major importance and interest relates to the
trend recorded by the factor indicated in the table as coincidence percentage. In
previous sections of this paper, we dealt with the problem of finding a parame-
ter that could, albeit roughly, provide an idea of the quality of the recognition
and classification operations performed by the system. In accordance to such
evaluations and also taking into account that it is necessary to assess the per-
formance of a system that requires training, we deemed it expedient to adopt as
evaluation factor the coincidence percentage gathered by a comparison between
the system responses and those that would have been given by the same expert
who performed the training, when examining the corresponding FLM. Clearly,
such a strategy is inevitably damaged by the loss of information that occurs
during the passage from a bi-dimensional fuzzy map (FLM) to the correspond-
ing polar map (worldmark). However, notwithstanding this additional source
of uncertainty, the results obtained may be considered more than satisfactory.
Proceeding with the analysis of the data reported in Tables 4 and 5, which refer
to the same experimental tests, but performed on the wavelet coefficients and
not on their corresponding original signals, the gain is noteworthy, both in terms
of coincidence percentage as well as computational complexity. In particular, it
can be observed how the first factor is affected to a significant lesser degree by
the variation of the values assigned to the two thresholds Sa and Sb. Although
we do not wish to dwell upon too many details of the experimentation, it should
be noted, however, that to obtain the wavelet coefficients relating to sequences
of 360 temporal samples we applied a four-level DWT with analysis filters of
the type of the Haar wavelet (Table 4) and the Daubechies wavelet with four
coefficients (Table 5). The choice of these wavelets was due to the support size,
that is, the size of the domain in which the wavelet function is nonzero. Selecting
a wavelet with a small size of support is fundamental in order to characterize
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Table 4. Experimental results obtained through DWT with the Haar wavelet

Sa Sb Input Expert Coincidence Cases Cases Processing
Cases Interventions Percentage Before After Time (s)

0.88 0.91 212 12 91.9% (195) 12 38 0.41
0.88 0.93 212 11 91.5% (194) 12 48 0.58
0.88 0.95 212 10 90.1% (191) 12 74 0.75
0.89 0.91 212 16 91.9% (195) 12 38 0.46
0.89 0.93 212 14 91.5% (194) 12 48 0.53
0.89 0.95 212 13 90.1% (191) 12 74 0.74
0.90 0.91 212 22 94.8% (201) 12 38 0.68
0.90 0.93 212 18 91.5% (194) 12 48 0.62
0.90 0.95 212 15 90.6% (192) 12 74 0.68
0.91 0.93 212 21 91.5% (194) 12 48 0.67
0.91 0.95 212 15 90.6% (192) 12 74 0.78
0.93 0.95 212 28 93.8% (199) 12 74 0.93

Table 5. Experimental results obtained through DWT with the Daubechies-4 wavelet

Sa Sb Input Expert Coincidence Cases Cases Processing
Cases Interventions Percentage Before After Time (s)

0.88 0.91 212 7 95.8% (203) 12 31 0.42
0.88 0.93 212 7 95.3% (202) 12 43 0.57
0.88 0.95 212 7 95.3% (202) 12 64 0.62
0.89 0.91 212 12 96.2% (204) 12 31 0.51
0.89 0.93 212 11 95.8% (203) 12 43 0.56
0.89 0.95 212 10 95.8% (203) 12 64 0.77
0.90 0.91 212 13 96.2% (204) 12 31 0.52
0.90 0.93 212 12 95.8% (203) 12 43 0.58
0.90 0.95 212 10 95.8% (203) 12 64 0.75
0.91 0.93 212 15 95.8% (203) 12 43 0.61
0.91 0.95 212 13 95.8% (203) 12 64 0.79
0.93 0.95 212 25 97.2% (206) 12 64 0.91

a signal with only few nonzero components in the transformed data. The Haar
wavelet and the Daubechies-4 wavelet are the wavelets with the smallest support
size [4]. This can be seen by the number of filter coefficients needed to represent
each of them (two for Haar and four for Daubechies-4). Of the 360 coefficients of
the complete DWT (it should be noted that being an orthogonal transformation
there is coincidence between the number of signal samples to be transformed and
the number of coefficients of the transformed signal) it was sufficient to only con-
sider the 22 comprising the residual low-frequency component. The results show
how the Daubechies-4 wavelet enabled us to better understand the dynamics of
the input signal and to discard the phenomena ascribed to noise superimposed
on the signal, which, on the contrary, considerably pollutes the values obtained
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when the entire original signal is analyzed. Another observation should be made
on the processing time. In order to finalize this experimentation, for sake of
clarity, we decided to operate on the group of worldmarks generated during the
course of the overall navigation inside the simulated environment. Consequently,
the time necessary to operate in real-time is decidedly less than that reported
in the tables and, above all, significantly lower than the time allowed during the
robot actual navigation.

5 Conclusions

Traditional methodologies of pattern recognition usually require the availability
of templates of the objects we want to classify. This template collection reflects
the a priori knowledge we have about the problem to be solved by the image
classifier. However, in practical cases, as for the robot autonomous navigation,
the prior knowledge could be rather poor, thus leading to a risk of misclassifi-
cations. In our contribution, we included a feature extraction algorithm into a
CBR shell, which allows a constant update of the environment knowledge. We
point out that, in principle, there is no limit to the number and complexity of
information that may be collected in the Object Library, as well as in the Case
Library. Future work will be focused on introducing the possibility of fusing
more information coming from different kind of sensors (e.g., laser scanners or
cameras) into a more detailed worldmark to supply the classifier with a better
and more robust input data.
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