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Abstract. This paper addresses the role of case-based reasoning in
semantic search, and in particular, as it applies to Knowledge Sifter,
an agent-based ontology-driven search system based on Web services.
The Knowledge Sifter architecture is extended to include a case-based
methodology for collaborative semantic search, including case creation,
indexing and retrieval services. A collaborative filtering methodology is
presented that uses stored cases as a way to improve user query specifi-
cation, refinement and processing.

Keywords: Agents, Semantic Search, Collaborative Filtering, Case-
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1 Introduction

This paper addresses an important problem, that of assisting users in posing
queries to multiple heterogeneous sources over the Internet and the World Wide
Web. There is a semantic mismatch between how a person conceptualizes a
query and how that query must be expressed using the limited keyword-based
query interfaces of traditional search engines. This “semantic mismatch” has
been addressed by WebSifter [1]; it performs a preprocessing step in which the
user develops a semantic taxonomy tree of concepts – terms and their synonyms
– which are then transformed into queries submitted to traditional search en-
gines. The resulting best matches from the individual search engines are then
rated by means of a multi-attribute decision model that associates weights to
the syntactic, semantic, categorical and authoritative components of each page
retrieved. The results are presented to the user who then has the opportunity to
rate those URLs that best match his or her requirements. WebSifter served as
the preferred embodiment for a recently-awarded patent [2].
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Knowledge Sifter [3] is the successor to WebSifter in that the lessons learned in
designing and building WebSifter have been used to create an agent-based system
that coordinates the search for knowledge in heterogeneous sources, such as
the Web, semi-structured data, relational databases and the emerging Semantic
Web.

This paper begins with an overview of the Knowledge Sifter (KS) agent-
based architecture. The artifacts created by the agents during the formulation,
refinement, processing and results ranking of a user query are captured and
described in terms of a meta-schema. The artifacts can be indexed and stored in
a repository as user-cases. A case-based framework is presented for specifying,
storing, retrieving and recommending user-cases to assist in query formulation,
recommendation and processing. The cases are represented in terms of an XML
schema, are stored in a case repository and are managed by a case management
agent. Finally, an algorithm is presented that uses a hybrid approach which
combines both content-based and collaborative filtering techniques.

2 The Knowledge Sifter Agent-Based Architecture

The Knowledge Sifter project, underway at George Mason University, has as its
primary goals: 1) to allow users to perform ontology-guided semantic searches for
relevant information, both in-house and open-source; 2) to access heterogeneous
data sources via agent-based knowledge services; and 3) to refine searches based
on user feedback. Increasingly, users seek information from open sources such
as the Web, XML-databases, relational databases and the emerging Semantic
Web. The Knowledge Sifter project makes use of open standards for both on-
tology construction – the Web Ontology Language (OWL) – and for searching
heterogeneous data sources – Web services. The Knowledge Sifter (KS) archi-
tecture, depicted in Fig. 1, may be considered a service-oriented architecture
consisting of a community of cooperating agents. The rationale for using agents
to implement intelligent search and retrieval systems is that agents can be viewed
as autonomous and proactive.

The information domain we address is that of Image Analysis, but multiple
ontologies and domains can be supported. The architecture has three layers:
User Layer, Knowledge Management Layer and Data Sources Layer. Specialized
agents reside at the various layers and perform well-defined functions. They sup-
port interactive query formulation and refinement, query decomposition, query
processing, result ranking and presentation. The KS architecture is general and
modular so that new ontologies[4] and new information resources can be incor-
porated easily, in almost a “plug-and-play” fashion. The various KS agents and
services are presented below.

User and Preferences Agents. The User Agent interacts with the user to elicit
user preferences that are managed by the Preferences Agent. These preferences
include the relative importance attributed to terms used to pose queries, the
user-perceived authoritativeness of Web search engine results, the biases a user
has towards data sources, etc., used by the Ranking Agent. The Preferences
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Fig. 1. The Knowledge Sifter Agent-Based Architecture

Agent can also learn the user’s preference based on experience and feedback
related to previous queries.

Ontology Agent. The Ontology Agent accesses an imagery domain model, spec-
ified in OWL, and depicted in Fig. 2. In addition, there are three authoritative
name services: Princeton University’s WordNet [5], the US Geological Survey’s
GNIS, and the National Geospatial-Intelligence Agency’s GNS. They allow the
Ontology Agent to use terms provided by the name services to suggest query
refinements such as generalization, specialization and synonyms. For example,
WordNet can provide a collection of synonyms for a term, while GNIS and GNS
translate a physical place name – in the US and the World, respectively – into
latitude and longitude coordinates that are required by a data source such as
TerraServer. Other appropriate name and translation services can be added in
a modular fashion, and the domain model can be updated to accommodate new
concepts and relationships.

Authoritative Name Services. The three name services are WordNet, GNIS and
GNS. When the initial query instance, specifying a person, place, or thing, is
sent to the Ontology Agent, it then consults WordNet to retrieve synonyms. The
synonyms are provided to the Query Formulation Agent to request that the user
select one or more synonyms. The decision is communicated to the Ontology
Agent which then updates the appropriate attribute in the instantiated version
of the OWL schema. If the attribute value is the name of a class of type place
then the Ontology Agent passes the instance to the both GNIS and GNS. These
take the place name as input and provide the latitude-longitude coordinates as
output. This information can then be communicated to the Query Formulation
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Fig. 2. Imagery Ontology Schema in Unified Modeling Language Notation

Agent which then forwards the information in the reformulated queries to the
Web Services Agent for processing.

Query Formulation Agent. The User Agent poses an initial query to the Query
Formulation Agent. This agent, in turn, consults the Ontology Agent to re-
fine or generalize the query based on the semantic mediation provided by the
available ontology services. Once a query has been specified by means of inter-
actions among the User Agent and the Ontology Agent, the Query Formulation
Agent decomposes the query into subqueries targeted for the appropriate data
sources. This involves semantic mediation of terminology used in the domain
model ontology and name services with those used by the local sources. Also,
query translation is needed to retrieve data from the intended heterogeneous
sources.

Web Services Agent. The main role of the Web Services Agent is to accept a user
query that has been refined by consulting the Ontology Agent, and decomposed
by the Query Formulation Agent. The Web Services Agent is responsible for
the choreography and dispatch of subqueries to appropriate data sources, taking
into consideration such facets as: user preference of sites; site authoritativeness
and reputation; service-level agreements; size estimates of subquery responses;
and quality-of-service measures of network traffic and dynamic site workload [6].

Ranking Agent. The Ranking Agent is responsible for compiling the sub-query
results from the various sources, ranking them according to user preferences, as
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supplied by the Preferences Agent, for such attributes as: 1) the authoritativeness
of a source which is indicated by a weight – a number between 0 and 10 – assigned
to that source, or 2) the weight associated with a term comprising a query.

Data Sources and Web Services. At present, Knowledge Sifter consults two data
sources: Yahoo Images and the TerraServer. Yahoo Images supports Representa-
tional State Transfer (REST)-based [7] web services which simply returns XML
result data over HTTP. Yahoo Images supports the name and description for
images; this allows the Ranking Agent to perform more precise evaluation for
the semantic criteria. The Ranking Agent also uses the size of images contained
in Yahoo Images metadata to filter images based on user preference, but the
metadata does not contain the creation time of images which is a good measure
of temporal aspect.

3 Emergent Semantics in Knowledge Sifter

This section presents some notions related to emergent behavior and patterns
that arise from 1) the functioning of Knowledge Sifter, and 2) the use of compos-
able Web services to create reusable search frameworks. This topic is discussed
in detail in [3], so we present an overview here. Our approach to Emergent
Semantics in Knowledge Sifter is to collect, index, organize and store signifi-
cant artifacts created during the end-to-end workflow for KS. The KS workflow
manages the entire search process, including, query specification, query reformu-
lation, query decomposition, web service selection, data source selection, results
ranking and recommendation presentation.

By stepping back and abstracting the agents, classes, their relationships and
properties, one can construct the Knowledge Sifter Meta-Model (KSMM) [3].
Fig. 3 depicts the UML Static Model for the KSMM. What follows is a brief
overview of the classes and relationships depicted in Fig. 3.

At the top is the Class Agent, which is specialized to those agents in the
KS architecture, specifically the UserAgent, PreferencesAgent, OntologyAgent,
QueryFormulationAgent, RankingAgent and WebServicesAgent. These agents
manage their respective object classes, process specifications, and WebServices.
For example, the UserAgent manages the User Class, the UserInterfaceScenario,
the User PatternMiningAlgorithm, and the WebServices. The User specifies User
Preferences that can be specialized to Search Preferences and Source Prefer-
ences. The User poses UserQuery that has several QueryConcept, which in turn
relates to an OntologyConcept. The Ontology Agent manages both the User-
Query and the OntologyConcept that is provided by an OntologySource. Both
OntologySource and DataSource are specializations of Source. Source is man-
aged by the WebServicesAgent and has attributes such as provenance, coverage,
access protocol and history. DataSource has attributes such as Quality-of-Service
Service-Level-Agreements (QoS-SLAS) and Certificate.

A UserQuery consists of several RefinedQuery, each of which is posed to sev-
eral DataSource. DataSource provides one-or-more DataItem in response to a
RefinedQuery as the QueryResult. Based on the returned QueryResult, the User
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Fig. 3. Knowledge Sifter Meta-Model Schema in UML Notation

may provide Feedback as to the result relevance and other comments. These may
impact the evolution of metadata associated with UserPreference, query formu-
lation, data source usage and result ranking. The KSMM can be implemented
as a relational database schema, which can be used to organize, store and inter-
relate the artifacts associated with a user query. The data can then be mined
emergent properties related to the use of Knowledge Sifter resources.

4 Case-Based Knowledge Sifter Framework

The original Knowledge Sifter [3] creates a repository of user queries and artifacts
produced during the search process. In this section, a case-based framework is
proposed for KS in order to recommend query specifications and refinements
based on the previously-stored user-query cases. A user query case is generated
only when a user provides relevance feedback for results returned for a query.
The user feedback is the user’s evaluation of the degree of relevance of a result to
the refined query; e.g., highly relevant; relevant; highly not relevant, or unclear.
This relevance feedback can also be regarded as a user rating of the result’s
information quality.

The role of the Case Management Agent in Fig. 4 is to communicate with the
User Agent, and to obtain cases from the User Query Case Base that have user
feedback annotations. The Query Formulation Agent communicates with the
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Case Management Agent to retrieve cases according to a user query and user
preferences. To efficiently retrieve cases, the Case Management Agent maintains
ontology-based indices to cases as described in Sect.4.2. From the retrieved cases,
a refined query with data source information will be selected using a collaborative
filtering approach which is described in Sect.4.3. KS also maintains pre-compiled
component repository for accessing data sources for each information domain
such as places, music, movies, scholarly papers, etc. Based on the collaborative
filtering approach, KS semi-automatically selects data sources and is dynamically
configured with Web Services-based wrapper components for each selected data
source.
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Fig. 4. Knowledge Sifter Case-Based Framework

4.1 Semantic Case Representation

Case-based Knowledge Sifter maintains cases representing a user query and its
artifacts; these are required to recommend a refined query for each user-selected
information domain. Fig. 5 shows an XML-based structure for the case represen-
tation. A case contains a username to identify its user, and this user identifier
will be used to perform collaborative filtering and to retrieve the user’s prefer-
ences. Also, each case has an associated user query and multiple refined queries,
because KS generates a refined query for each information domain.

A user query can have multiple concepts which consist of a user term, multi-
ple ontology references, and a weight. For example, suppose one wishes to visit
the Washington Monument and then dine at a steakhouse in DC, then the key-
word terms in a query might be “Washington monument” and “steakhouse”.
The ontology reference is a concept identifier in an ontology which contains the
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concept. WordNet is employed as a general upper ontology and several domain-
specific ontologies such as places, restaurants, and wine can be linked and used
to represent user concepts. This referenced ontology concept serves as an index
of the user query as described in Sect.4.2. The concept weight is a degree of
importance the user assigns to a concept. A refined query has exactly one infor-
mation domain for which the query is specified. The refined query is a weighted
multi-dimensional/multi-valued query as represented in Fig. 5. The feature name
is also a variable since the schema of a refined query will be determined by
its information domain and the user-selected data source. The data source in-
formation is also a feature of the refined query and it can be represented as
FeatureName : data−source, FeatureV alue : imdb.com, where IMDB denotes
the Internet Movie Data Base.

Thus, a feature can be not only content-based metadata, but also metadata
created during on the information object’s life-cycle[9]. The feature name may
be standardized in the scope of KS to remove the ambiguity which can occur
during the search and recommendation processes described in Sect.4.3. Some
standardized metadata such as Dublin Core Metadata can be used to describe
feature attributes.

Fig. 5. XML-Based Semantic Representation of a User Case

4.2 Case Retrieval Via Ontology-Based Indices

The Case Management Agent maintains ontology-based indices for entire cases.
As represented in Fig. 5, each user term of the query concept can have refer-
enced ontology concepts. For each ontology concept, case identifiers referencing
the ontology concept can be stored as the indices. Fig. 6 represents a simple
index structure for an ontology which has an ontology identifier, several con-
cept indices consisting of ontology concept identifiers of that ontology, and case
identifiers for each of the ontology concepts. This approach allows for efficient re-
trieval of similar cases because it explores related ontology concepts first, rather
than navigating a large number of the user query cases. Fig. 7 represents an al-
gorithm for retrieving cases similar to the user query via ontology-based indices.
First, the algorithm generates expanded queries of every possible combinations of
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Fig. 6. XML-Schema for Ontology Index

concepts, including their equivalent and generalized concepts. For example, a
user query {Washington Monument, steakhouse} can be expanded via ontology
navigation as: {Washington Monument, chophouse}{Washington Monument,
restaurant}{DC, steakhouse}, etc. The DC concept is obtained from WordNet
through the “Part Holonym” relationship of the “Washington Monument” con-
cept to the “DC” concept, and this can be regarded as a spatial generalization.

The algorithm then retrieves cases which are indexed by all the concepts
of an expanded query, but limiting the number of the cases to a prespecified
maximum. For efficiency purposes, whether the required number of cases are
retrieved or not will be checked before expanding one element query of powerset
of the user query because the expanded queries cannot be more similar to the
user query than the original element query. The weighted sum of each query can
be calculated from (1). The sim(Ca, Ci) in the algorithm is a similarity between
the expanded user query of the active case and the user query of the retrieved
cases using cosine correlation which is widely used for the vector model in IR
[8] as defined in (2). This similarity will be used in Sect. 4.3 as the similarity
between the active case and its similar cases in terms of the similarity of their
user queries. Note that the original user query of the active case is also one of
the expanded user queries.

w(uqi) =
∑

j

tw(cij) ∗ uw(cij) (1)

tw(cij) =

⎧
⎪⎪⎨

⎪⎪⎩

1.0 if cij is a user concept
syw if cij is an equivalent concept of the user concept
hyw if cij is a generalized concept of the user concept
syw ∗ hyw if cij is a generalized concept of the equivalent concept

where uqi represents a user query for case i and tw(cij) represents a predefined
weight for the type of jth concept in uqi. The terms syw and hyw denote the
predefined weight for an equivalent (synonym) concept and a generalized (hy-
pernym) concept, respectively. The term uw(cij) is a user defined weight for a
concept cij .

sim(Ca, Ci) =

∑

j∈EQa

cwaj · cwij

√ ∑

j∈EQa

cw2
aj ·

√ ∑

j∈EQa

cw2
ij

(2)



A Case-Based Framework for Collaborative Semantic Search 25

where cwaj and cwij represent the weights of jth concept in the expanded
user query of the active case EQa and the user query of the retrieved case
respectively.

Input: the active user query uqa
Output: a number (maxnc) of cases similar to the user query

maxnc  10
A set of retrieved cases RCS  the Empty Set 
A set of expanded queries EQS  the Empty Set
CQS  the powerset of uqa except the empty set 
Sort elements of CQS in descending order of their weights 
FOREACH cq in CQS
IF #RCS < maxnc THEN 
FOREACH concept in cq
EC  a set containing the concept and its equivalent concepts

END
CPECS  Cartesian product of EC sets 
FOREACH cpec in CPECS
FOREACH concept in cpec
HC  a set containing the concept and its generalized concepts 

END
CPHCS  Cartesian product of HC sets
FOREACH cphc in CPHCS
WeightOfeq  a weighted sum of concept weights in cphc
Add cphc to EQS

  END 
 END 
Sort elements of EQS in descending order of WeightOfeq
FOREACH eq in EQS
If WeightOfeq > WeightOfNextcq THEN 
Remove eq from EQS 
CASES  a set of cases indexed by every concept in eq
IF #RCS < maxnc THEN 
FOREACH case in CASES
sim(Ca,Ci)  a cosine similarity of eq and case’s user query

END
Sort elements of CASES in descending order of sim(Ca,Ci)
FOREACH case in CASES
IF #RCS < maxnc THEN 
Add case to RCS

END
END

END

Fig. 7. Case Retrieval Algorithm via Ontology Index

4.3 Collaborative Incremental Query Specification

Content-based filtering is a method for recommending unseen items to a user
based on the contents of items they have already seen and are stored in their
profile. It can assist users in refining a query based on the artifacts of their
past queries which are similar to the active query. However, similar queries may
not yet exist in the active user’s profile, or the acceptable number of the user-
preferred data items cannot be easily obtained because of insufficient feedback
data provided thus-far.
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This situation is ameliorated by using collaborative filtering, which attempts
to predict usefulness of as yet unseen items for an active user, by proposing items
based on those previously rated by other users. The basic idea is to recommend
a set of unseen items that are preferred by other users who have tastes similar to
the active user. Thus, the drawbacks of content-based filtering can be addressed
with a higher level of confidence.

However, collaborative filtering cannot be applied directly to our case-based
KS framework because more than one user-query case, stored in the case reposi-
tory, may be similar to the active user query. A better approach is to recommend
a single aggregated refined query from the cases having a certain level of user-
query similarity. Therefore, a hybrid filtering approach which combines both
collaborative filtering and content-based filtering can be used effectively in this
architecture. However, if there is no previously-stored user query posed by the
active user in the selected similar cases, the collaborative filtering cannot be
directly used for the active refined query because the recommendation of the
query specification should be made before retrieving results from data sources,
i.e., no user feedback on results of the query which is required for the collabo-
rative filtering exists on the recommendation time. To address this problem, an
aggregated refined query from the refined queries of the selected cases can be
recommended.

The case-based KS recommends the refined query and the user confirms that
this is to now be the active refined query. During this confirmation step, the user
can fine-tune the query parameters, e.g., for the data source feature, the user
might add or remove data sources and adjust the weights for each data source.
Then, KS retrieves results from the data sources in the user-confirmed refined
query by dynamically translating it to one or more queries according to each
data source’s schema/ontology. The active user can provide feedback on some
results and can request another recommendation of the specification. At this
time, collaborative filtering can be used because the artifacts of active refined
query will have been stored in the case base as a new case, it can then be selected
as a similar case because the case’s user query would be identical to the current
specification of the active user query.

Data Item Recommendation via Query-to-Query Collaborative Fil-
tering. With the user rating values for result data items of the active refined
query, the active user’s rating value of unseen data items can be predicted from
the results and their rating values for the active refined query and neighbor re-
fined queries which can be found from the KS repository. The prediction can be
calculated from (3) and (4) which are derived from the well-known collaborative
filtering approach used in GroupLens [10].

This refined query-based collaborative filtering allows KS to show the unseen
data items immediately because the data items are found in a neighbor’s search
history in the repository. The mismatch problem between user queries and re-
fined queries can be alleviated by using a threshold for the similarity between
the active refined query and neighbor refined query, i.e., only the neighbor refined
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query having a certain high similarity value will be selected for this prediction
process.

prqad,dtu = rrqad
+

∑

i∈NC

(rrqid,dtu − rrqid
) · sim(rqad, rqid) · sim(Ca, Ci)

∑

i∈NC

|sim(rqad, rqid)| · sim(Ca, Ci)
(3)

sim(rqad, rqid) =

∑

s∈SD

(rrqad,dts − rrqad
) · (rrqid,dts − rrqid

)

σrqad
· σrqid

(4)

where prqad,dtu represents a prediction for an unseen (unrated) data item dtu for
the active refined query rqad. rqad represents a refined query for the active user
case a for the domain d. sim(rqad, rqid) is the correlation weight for user rating
patterns of the refined queries rqad and rqid as defined by the Pearson Correlation
Coefficient shown in (4). sim(Ca, Ci) represents the similarity between the active
case Ca and a neighbor case Ci as defined in (2). NC is a set of neighbor cases
selected as similar to the active case. SD is a set of common seen (rated) items
between rqad and rqid. rrqad

and rrqid
represent mathematical means for the

ratings of the result data items of the queries rqad and rqid, respectively.

Incremental Refined Query Specification. The active refined query can be
incrementally specified based not only on the data items rated by the active user,
but also on the data items whose rating value predicted from (3) and (4). That
is, the refined query can be specified by content patterns of the rated data items
and a new result set can be retrieved from a new data source set. More unseen
data items can be found from above collaborative filtering with the new search
artifacts. Thus, the refined query can be incrementally specified by aggregating
the rated and predicted data items.

At first, the value weight for each feature of the active refined query can be
found from (5) and (6). Then, the feature weight can be determined by (7) and
(8) which also uses the Pearson Correlation Coefficient. This is based on an
idea that if the similarity value patterns for a criterion (feature) and the user
rating patterns are similar, the feature would be an important factor (feature)
for the user to determine his likeness on the data. Therefore, this approach also
takes into account the negative examples which have a negative feedback from
users whereas content-based filtering systems [11][12] consider only the positive
examples to refine queries in terms of weight adjustments. Furthermore, the
negative correlation weight will become zero via the n(x) function because the
negative correlation would not necessarily mean that the user rated a data item
as an relvant one since it is dissimilar to his query in the dimension of the feature
or vice versa.

vwadfv =
rvvadfv

madf∑

l=1

rvvadfl

(5)
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rvvadfl
=

∑

m∈MD

rrqad,dtm · O(vvadfl, dtm)

∑

m∈MD

O(vvadfl, dtm)
(6)

fwadf =
n(sim(fadf , rqad))

mad∑

k=1

n(sim(fadk, rqad))

; n(x) =
{

x if x > 0
0 otherwise (7)

sim(fadk, rqad) =

∑

m∈MD

(sim(fadk, dtm) − sim(fadk)) · (rrqad,dtm − rrqad
)

σfadk
· σrqad

(8)

where vwadfv represents the weight of the value vvadfv for a feature fadf of the
query rqad. MD is a set of data items representing the union of the set of the
seen data items and the set of predicted unseen data items.

rvvadfv
represents an average rating value for data items in the set MD hav-

ing a value vvadfv. O(vvadfl, dtm) is a binary variable which represents whether
the data item dtm has the value vvadfl, and if yes, its value is 1, otherwise
0. sim(fadk, rqad) represents the correlation weight between the criterion (fea-
ture) similarity and the original and predicted user ratings for the query rqad.
sim(fadk, dtm) represents the similarity value between the values of the query
rqad and the data item dtm in terms of the dimension of the feature fadk.

Fig. 8 represents an example of the feature weight adjustment using the multi-
ple weighted-valued query generated only from the positive examples via (3) and
(4) and increased user feedback information via the query-to-query collaborative
filtering. For the explanation purpose, the queries and data items in the example
have only binary values for each features, but the equations surely work for the
real values. The left table represents the feature vectors of the query and data
items. The right table represents similarity values of the query and data items
for each feature and rating values of the data items for the query. In this exam-
ple, the similarity value of the query and a data item for a feature is 1 if they
have same value, otherwise 0. Intuitively, the feature fad1 would be regarded as
an important criterion for which the user determines the relevance of the data
items; therefore, it would be beneficial to have a higher weight on the feature for
the efficiency of the system’s automatic rating/search process. This approach
would be advantageous for adjusting criterion weights for the systems of us-
ing the weighted/multi-valued query-based and heterogeneous types of values in
each criterion thereby requiring different metrics for evaluating the values.

The incrementally specified query can seem to degrade the prediction ratio
and efficiency of the search process because it aggregates contents of multiple
data items. However, clearly it can have better recall ratio. The prediction ratio
can be alleviated by using the weights so that the results can be automatically
rated and sorted by a similarity measure based on the weights. The efficiency
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fad1 fad2 fad3 fad4 dt1 dt2 dt3 dt4 sim(fadk,rqad) fwadk

dt1 1 0 1 0 sim(fad1,dti) 1 0 1 0 4 0.63
dt2 0 1 0 1 sim(fad2,dti) 0 1 0 1 -4 0
dt3 1 1 1 0 sim(fad3,dti) 1 1 1 0 2.31 0.37
dt4 0 1 1 0 sim(fad4,dti) 0 1 1 0 0 0
rqad 1 0 1 0 rating(rqad,dti) 1 0 1 0

Fig. 8. An Example of Feature Weight Adjustment

problem can be caused if the refined query has more values because the number
of data sources can be increased and some data sources do not provide multi-
valued queries so that the refined query can be translated to a number of data
source-specific queries. To address this problem, the translated queries having
higher weight values can be priorly posed to a data source with a certain degree
of parallel processing and the partial results can be shown to the users.

5 Conclusions

The Case-Based Knowledge Sifter framework expands on the original KS archi-
tecture by incorporating a novel XML-based index together with an indexing
scheme for the efficient storage and retrieval of user-query cases. A methodol-
ogy is presented for specifying, refining and processing user queries, based on a
hybrid filtering approach that combines the best aspects of both content-based
and collaborative filtering techniques.

The XML-based indexing scheme uses ontology-based concepts to index user-
query cases. This leads to efficient algorithms for associative retrieval of relevant
related cases, thereby avoiding a sequential search of the case base, as is the case
in other case-based collaborative filtering systems [13][14][15].
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6. Menascé, D.A.: QoS Issues in Web Services. IEEE Internet Computing 72–75
(November/December 2002)

7. Fielding, R.: Architectural styles and the design of network-based software archi-
tectures. Ph. D. Dissertation, University of California at Irvine (2000)

8. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. ACM Press, New
York (1999)

9. Smith, J.R., Schirling, P.: Metadata Standards Roundup. IEEE MultiMedia 13(2),
84–88 (2006)

10. Herlocker, J.L., Konstan, J.A., Borchers, A., Riedl, J.: An Algorithmic Framework
for Performing Collaborative Filtering. SIGIR 230–237 (1999)

11. Porkaew, K., Chakrabarti, K.: Query refinement for multimedia similarity retrieval
in MARS. ACM Multimedia (1), 235–238 (1999)

12. Wu, L., Faloutsos, C., Sycara, K., Payne, T.: Falcon: Feedback adaptive loop for
content-based retrieval. In: Proceedings VLDB Conference, pp. 297–306 (2000)

13. Bradley, K., Smyth, B.: An Architecture for Case-Based Personalised Search. In:
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