
Representation and Structure-Based Similarity
Assessment for Agile Workflows

Mirjam Minor, Alexander Tartakovski, and Ralph Bergmann

University of Trier
Department of Business Information Systems II

D-54286 Trier, Germany
minor@uni-trier.de
www.wi2.uni-trier.de

Abstract. The dynamics of the market requires workflow management
systems that support agile workflows - workflows which are flexible con-
cerning the adaptation to innovations. This paper presents a case-based
approach to representation and index-based retrieval of past workflows
in order to give authoring support for adaptation of recent workflow
instances. The utility of the presented methods is demonstrated by an
experimental evaluation.

1 Introduction

Thomas Herrmann reports the observation that many collaborative tasks in
companies can be partly seen as recurrent routines but partly to contain inno-
vation. ... This phenomenon will increase with the dynamics of the market and
its requirements to the flexibility of the company and to the individual customer
care.” [1, p. 145, own translation]. Traditional workflow systems are able to sup-
port the recurrent tasks quite well. In order to deal with the flexible, innovative
part, the workflows have to be adaptable to the innovation. Moreover, in highly
flexible domains like medicine or chip design, situations occur where the ongoing
workflows need to be changed. For instance, an alternative course of action has
to be taken when a certain therapy is not successful for a patient or when a
certain algorithm does not work for a new chip technology. This is not possible
with traditional workflow systems.

Case-Based Reasoning (CBR) is a quite natural approach to support the flex-
ibility of workflows. Experience from the adaptation of workflows in the past can
be reused for the adaptation of an ongoing workflow. A case base contains past
workflows in a certain state of execution together with the subsequent workflow
modifications. When a current workflow has to be adapted it can be used as a
query to the case base. Modifications of similar workflows from the case base
can be reused in order to change the current workflow. In this paper, we present
a new representation formalism for agile workflows [2] as well as a retrieval ap-
proach based on graph edit distances [3] that operates directly on the workflow
structure. We show in some experiments that our approach is suitable for this
kind of workflow.

R.O. Weber and M.M. Richter (Eds.): ICCBR 2007, LNAI 4626, pp. 224–238, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Representation and Structure-Based Similarity Assessment 225

In the literature, a number of approaches for agile workflows exist that re-
quire further information in addition to the workflow structure such as context
information [4,5] or conversational knowledge [6]. However, this information is
not always available and can be processed automatically only with considerable
effort. Furthermore, there is an approach that is related to our approach as it
operates directly on the workflow structure: Luo et al. [7] have developed a build-
ing block similarity for traditional workflows. Unfortunately, this method is not
suitable for changes of the order of workflow elements which are typical for agile
workflows. Minor changes, for instance, moving a task to a different block leads
to major restructuring activities within the building block tree and consequently
seems to impact the similarity values to an excessive degree.

The remainder of this paper is organized as follows: Section 2 provides an
introduction to agile workflows. In Sect. 3 we present a novel approach to rep-
resentation and index-based retrieval of agile workflows. Section 4 provides an
evaluation of our methods, while Sect. 5 concludes this paper with a discussion
and an outlook.

2 Agile Workflows

In the following, we give an introduction to agile workflows [2] for which we
have developed a retrieval approach based on graph edit distances. Agile work-
flows allow the incremental and flexible modeling of processes. Initial workflow
instances are derived from a set of templates called workflow definitions. The
instances can be adapted during the ongoing process. The term ’agile work-
flows’ neither covers work on process mining [8] nor Herrmann’s [1] approach
to learning workflows from sets of loosely coupled tasks. We call these kinds of
workflows ’emergent’ rather than ’agile’. There is a small research community
on agile workflow technology whose work we classify according to three types of
process changes at run time:

– Ad-hoc changes that apply to individual workflow instances only [9,6],
– Modifications to a worflow definition that is already in use by instances [9],

and
– Late-planning and hierarchical decomposition [4,5].

Our work fits in the first and third classifications.
Figures 1 and 2 show two UML activitiy diagrams of sample workflow defi-

nitions that we modeled for the chip design domain in order to support ad-hoc
changes and late-planning. Each workflow consists of a control flow structure of
tasks and of a context model. The context is described by a set of context factors
with default values [10].

The control flow structure follows the design flow ’SciWay 2.0’, i.e. a standard-
ized description of the step by step design process for all digital design projects
of our industrial partner Silicon Images GmbH (formerly sci-worx). The lan-
guage to describe the control flow is based on the notation of workflow patterns
introduced by van Aalst et al [11]. Workflow patterns “address business require-
ments in an imperative workflow style expression” [11, p. 4]; broadly speaking,

226 M. Minor, A. Tartakovski, and R. Bergmann

Fig. 1. The workflow definition of a design project following SciWay 2.0

they are useful routing constructs within workflows. In terms of van Aalst et al,
our workflow modelling language consists of the five basic control flow elements
(workflow patterns) sequence, AND-split, AND-join, XOR-split, and XOR-join,
as well as loops. We regard loops as structured cycles with one entry point to
the loop (LOOP-join) and one exit point from the loop (LOOP-split). A dia-
mond with an ’[L’, one incoming and several outgoing arrows with conditions
in squared brackets stands for the LOOP-split; a diamond with an ’L]’, several
incoming and one outgoing arrows stands for the LOOP-join (see Fig. 2). Loops
cannot be interleaved but they can be nested, i.e. an inner loop may be set into
one or several outer loops. For reasons of adaptability, we have extended this
modelling language by three own workflow elements: (1) placeholder tasks for
sub-workflows are depicted as rounded boxes with double borders (see ’Dummy
design unit’ in Fig. 1); (2) placeholder tasks for sub-diagrams are marked by
a fork symbol (see the placeholder task for ’Design flow’ in Fig. 1); (3) break-
points are symbolized by stop signs (see Fig. 5). Sub-diagrams have only been
introduced for reasons of clarity. In contrast to sub-workflows, sub-diagrams do
not have an own workflow enactment service nor an own context model. Break-
points are necessary for the implementation of long-term workflows. Decisions
about how to modify a workflow region may take considerable time; setting a
breakpoint prevents the workflow engine from overrunning tasks that are about
to be modified.

Figure 3 shows a sample workflow instance that has been modified by late-
planning. In comparison with the workflow definition in Fig. 1, the sub-workflow
placeholder ’Dummy design unit’ has been replaced by three sub-workflow place-
holders for real design units. This has been done by the task ’Project planning’.
Figure 4 expands the sub-workflow instance of the design unit ’10a’ which has

Representation and Structure-Based Similarity Assessment 227

Fig. 2. The workflow definition of a design unit following SciWay 2.0

been derived from the template in Fig. 2. In addition to the workflow definition,
it has the task ’Check whether feature set confirmed’. Figure 5 shows a further
revision of this case that includes the implementation of additional features in
hardware description language (HDL). This has been driven by a change request
from the customer in a late project phase.

3 Representation and Retrieval of Workflow Instances

According to the above sample workflow instances, the representation has two
parts: one for the control flow structure of tasks and another one for the context
model.

The context is represented by a structural CBR approach with attribute-
value pairs in a straightforward way. The representation of workflow structure
makes use of the fact that the instances are derived from a particular workflow
definition. As the instances usually differ only slightly from their templates, they
can be described by means of the difference to their workflow definition.

A workflow definition is represented as a set of elements, such as tasks and
control flow elements, as well as a successor-predecessor relation on this set. The
difference between an ongoing instance and its workflow definition covers the
following issues:

1. the structural modifications of tasks and control flow elements
2. the state of processing

Both can be encoded by sets of added and deleted workflow elements with re-
spect to the original template. Hereby, completed tasks as well as passed control
flow elements are regarded as deleted.

228 M. Minor, A. Tartakovski, and R. Bergmann

Fig. 3. Sample workflow instance of a design project

The experience that is contained in an ongoing workflow instance and the
changes applied to it can be captured within cases according to the CBR ap-
proach. A case consists of a pair of subsequent revisions of a workflow instance
[X, X ′] (compare the two revisions in Figures 4 and 5). The previous revision X
is the problem part of the case; X ′ is the solution part of the case.

3.1 Similarity Assessment and Index-Based Retrieval

The main challenge for the development of a similarity measure for agile work-
flows is comparing the structure of workflows. The comparison of context models
can be realized according to the local-global-principle of the structural CBR ap-
proach. The similarity value for the context part is aggregated with the value
for the structure part to an overall similarity value.

On the one hand the comparison of workflow structure should be kept com-
putationally efficient and on the other hand the measure has to approximate the
usability sufficiently well.

In the literature, several approaches have been developed for similarity
assessment between graphs [12], among them graph matching measures and
graph edit distance measures. To the first group belong measures which are
based on such characteristics as “graph isomorphis” [13,14], “sub-graph iso-
morphism” [15], and “largest common sub-graph” [16,17]. To the second group
belong algorithms dealing with graph edit distance, e.g. “weighted graph edit
distance” [3].

For similarity assessment in our system we have chosen the idea of the
weighted graph edit distance. The workflow definition (template) can be used to

Representation and Structure-Based Similarity Assessment 229

Fig. 4. Sub-workflow instance ’design unit 10a’ from Fig. 3

accelerate the similarity assessment. However, this leads to completely different
algorithms than those described in the literature.

Bunke and Messmer’s [3] measure generalizes the string edit distance [18]. It
is defined for attributed directed graphs but can be easily applied in a simplified
form to standard graphs as well. Similarity is modeled through a set of edit
operations on graphs. Each edit operation e transforms a graph into a successor
graph performing a modification of the following kind: insert a new node or a
new edge, delete a node or an edge, change a node or an edge label. Each edit
operation has assigned a certain cost c(e) ∈ [0, 1]. A difference can be defined
based on the total cost of a sequence of edit operations which transform one
graph into the other graph. The cheaper and the fewer the operations are that
are required to transform a graph into another the smaller is the difference and
hence the higher is the similarity between the two of them. These considerations
lead to the following difference function:

δ(x, y) = min{
k∑

i=1

c(ei) | (e1, . . . , ek) transformsx to y} (1)

The computation of the graph edit distance measure is an NP-complete [3]
problem and can be performed by a state-space search, e.g. by an A∗ algorithm.
Hence, this similarity measure should be used quite carefully.

Our similarity measure for the structure of workflows will be explained in the
two following sections. While the first section presents the similarity assessment
only for restricted workflows, the second section presents an extension to this
measure which can be applied to workflows with arbitrary tasks and control flow
elements as well.

230 M. Minor, A. Tartakovski, and R. Bergmann

Fig. 5. Late revision of sub-workflow instance ’design unit 10a’ from Fig. 3

3.2 Similarity Measure for Restricted Workflows

This section regards similarity assessment for restricted workflows that contain
arbitrary tasks as well as control flow elements only of the type “sequence”.
For the purpose of similarity assessment an abstract view on workflows will be
defined. It includes only tasks, names of tasks, and ordering on tasks, given
through control flow elements of the type “sequence”. The view can be repre-
sented as a directed and attributed graph:

V iew =< N, E, name > (2)

The nodes N in this graph represent workflows’ tasks and the edges E represent
the control flow elements of type “sequence”. Furthermore, every node is labelled
by the name of a respective task:

name : N → TaskNames (3)

There are two important characteristics of workflow instances that allow an ef-
ficient computation of the graph edit distance δ(V1, V2) between two arbitrary

Representation and Structure-Based Similarity Assessment 231

views V1 =< N1, E1, name1 > and V2 =< N2, E2, name2 >. The first character-
istic is that the name of every task is unique within a single workflow instance.
The second characteristic is that two tasks, T1 from one workflow and T2 from
another workflow, can be seen as identical if and only if their names are equal.
This leads to following definitions:

Nodes within V1 but not within V2 : N̂1 := N1 \ N2

Nodes within V2 but not within V1 : N̂2 := N2 \ N1

Edges within E1 but not within E2 : Ê1 := E1 \ E2

Edges within E2 but not within E1 : Ê2 := E2 \ E1

(4)

Two nodes n1 ∈ N1 and n2 ∈ N2 are defined to be equal if and only if their
labels are equal: name(n1) = name(n2). Two edges e1 ∈ E1 and e2 ∈ E2 are de-
fined to be equal if and only if name(predecessor(e1)) = name(predecessor(e2))
and name(successor(e1)) = name(successor(e2)).

We can now define the distance δ(V1, V2) between the views V1 and V2. Sup-
pose, we are going to edit the view V1 until it is equal to V2. For this purpose
the nodes N̂1 have to be deleted from V1, since they are not in V2. The number
of edit operations is |N̂1|. Then the edges Ê1 have to be deleted for the same
reason. The number of edit operations is |Ê1|. The sets N̂2 and Ê2 have to be
added to the view V1, since the nodes and edges are within V2, but not within
V1. The number of operations is |N̂2| + |Ê2|. The overall sum of edit operations
is |N̂1| + |Ê1| + |N̂2| + |Ê2|. It can be simply proven that this number of edit
operations is minimal. Therefore the distance is set to:

δ(V1, V2) = |N̂1| + |Ê1| + |N̂2| + |Ê2| (5)

It should be mentioned that for this special case the complexity of the distance
assessment is not exponential but quadratic. However, the average complexity
could be further improved. The improvement is based on the fact that instances
to be compared are created starting from the same workflow definition and differ
only slightly from their template (with a view VT =< NT , ET >). Therefore the
respective views V1 and V2 can be redefined as follows:

V1 =< NT ∪ add.nodesV1 \ delete.nodesV1 , ET ∪ add.edgesV1 \ delete.edgesV1 >

V2 =< NT ∪ add.nodesV2 \ delete.nodesV2 , ET ∪ add.edgesV2 \ delete.edgesV2 >

(6)

Hereby the set add.nodesV1 defines nodes that should be added to the workflow
definition in order to get the view V1. The set of nodes delete.nodesV1 should
be deleted from VT . The sets add.edgesV1 and delete.edgesV1 have the same
semantics but the objects to be altered are edges. The same consideration can
be carried out for the view V2. Now the sets N̂1, Ê1, N̂2, Ê2 can be redefined.

232 M. Minor, A. Tartakovski, and R. Bergmann

N̂1 := {NT ∪ add.nodesV1 \ delete.nodesV1}\
{NT ∪ add.nodesV2 \ delete.nodesV2}

N̂2 := {NT ∪ add.nodesV2 \ delete.nodesV2}\
{NT ∪ add.nodesV1 \ delete.nodesV1}

Ê1 := {ET ∪ add.edgesE1 \ delete.edgesE1}\
{ET ∪ add.edgesE2 \ delete.edgesE2}

Ê2 := {ET ∪ add.edgesE2 \ delete.edgesE2}\
{ET ∪ add.edgesE1 \ delete.edgesE1}

(7)

Using results of the set theory the edit distance can be transformed to the
following formula:

δ(V1, V2) = |N̂1| + |Ê1| + |N̂2| + |Ê2| =
|{delete.nodesV1 ∪ delete.nodesV2} \ {delete.nodesV1 ∩ delete.nodesV2}|+

|{add.nodesV1 ∪ add.nodesV2} \ {add.nodesV1 ∩ add.nodesV2}|+
|{delete.edgesV1 ∪ delete.edgesV2} \ {delete.edgesV1 ∩ delete.edgesV2}|+

|{add.edgesV1 ∪ add.edgesV2} \ {add.edgesV1 ∩ add.edgesV2}| (8)

Since the sets add.nodes and del.nodes become available with the construction
of instances that starts from templates and since it normally has a low cardi-
nality the computation time of the edit distance decreases significantly. The sets
add.nodes and del.nodes can be understood as indexes.
Finally, the distance can be normalized and transformed to the compatible sim-
ilarity measure with a range [0, 1], e.g.:

sim(V1, V2) := 1 − δ(V1, V2)
|N1| + |N2| + |E1| + |E2|

(9)

This similarity measure can be enriched by the weights in order to emphasize
some types of edit operations.

3.3 Similarity Measure for Workflows with Control Flow Elements

The distance measure introduced in the previous section does not support flow
elements, such as AND-split, AND-join, XOR-split, XOR-join, and so on. How-
ever, taking them into consideration improves the approximation of usability
(see Sect. 4).

The consideration of the flow elements in the similarity function entails sev-
eral challenges. Contrary to tasks, which are unique within workflow instances
and which could be identified by unique names, control flow elements do not
have unique names and often occur several times within an instance. Because of
this circumstance the computation of an exact edit distance becomes computa-
tionally more expensive. Therefore we regarded several approximation methods
and evaluated the usability of the result sets empirically.

Representation and Structure-Based Similarity Assessment 233

Approximation Method 1. The first approach supports workflows containing
arbitrary control flow elements. However, it doesn’t take the semantics of the
control flow elements into account while computing the similarity value. The
main idea of this straightforward approach is to represent every control flow ele-
ment through one or several edges within a view. For this purpose every two tasks
which are directly connected through control flow elements will be transformed
to two nodes and one edge between them in the view. The ”direct connection”
means that there is a path in the workflows’ structure connecting these tasks
and this path does not contain any further tasks (but one or more control flow
elements between them are allowed). E.g. regard two paths (T1, AND−split, T2)

and (T1, AND − split, T3) within workflow instance T1 →
∣∣∣→ T2
→ T3

. The tasks T1,

T2, and T3 will be converted to nodes NT1 , NT2 , and NT3 in each respective view.
The control flow element will be substituted through two edges e1 = (NT1 , NT2)
and e2 = (NT1 , NT3). The similarity assessment can then be carried out in the
same way as presented in Sect. 3.2).

Approximation Method 2. The second approach is an extension of the first
one. Also here every control flow element will be represented through one or
several edges within a view. The difference is that every edge here is labelled
by names of substituted elements. In order to realize this, a view on workflow
instances will be extended to the following one:

V iew =< N, E, nameN , nameE > (10)

While nameN is a function providing names (or labels) for nodes, nameE does
the same for edges. For two tasks T1 and T2 which are directly connected
through some path p = (Task1, CFElement1, . . . , CFElementn, T ask2) the
function nameE(e) = nameE((nT1 , nT2)) provides an ordered set of the elements’
names: name(CFElement1), . . . , name(CFElementn). For example, consider
the workflow instance introduced by the description of approximation method 1.
The tasks T1 and T2 are directly connected by the path p = (T1, AND−split, T2).
For the edge e = (nT1 , nT2) the function nameE provides the value ”AND −
split”. Now consider two tasks T1 and T2 which are directly connected by the
path p = (T1, AND − split, XOR − split, AND − split, T2). For that setup the
function nameE(e) provides the value ”AND−split, XOR−split, AND−split”.

The last thing to do is to redefine the equality of edges. Two edges e1 ∈ E1
and e2 ∈ E2 are defined to be equal if and only if name(predecessor(e1)) =
name(predecessor(e2)) and name(successor(e1)) = name(successor(e2)) and
nameE(e1) = nameE(e2).

Using this extended model the similarity computation can be executed ac-
cording to the approach presented in Sect. 3.2.

Approximation Method 3. The idea of this approximation method is to model
the control flow elements of the type “sequence” as edges and other control flow
elements (abbreviated with ¬sequence) as nodes. The only restriction is that for
every ¬sequence-control flow element type (e.g. “AND − split”) only one node

234 M. Minor, A. Tartakovski, and R. Bergmann

will be introduced in the view, and this is independent from the real number of
the same elements that occurred in a workflow instance. Thus, for all pairs of
workflow elements e1 and e2, with e2 being a direct successor of e1, the following
components will be introduced in the view:

– nodes ne1 , nsuccessor(e2) and edge e = (ne1 , nsuccessor(e2)) if element e1 is a
task and e2 is a control flow element of a type “sequence”.

– nodes ne1 , ntype(e2) and edge e = (ne1 , ntype(e2)) if element e1 is a task and
e2 is a ¬sequence-flow element.

– nodes ntype(e1), ne2 and edge e = (ntype(e1), ne2) if element e2 is a task and
e1 is a ¬sequence-flow element.

– nodes ntype(e1), ntype(e2) and edge e = (ntype(e1), ntype(e2)) if the both ele-
ments are ¬sequence-flow elements.

Here, the name of every node n ∈ N representing a ¬sequence-flow element is
set to the element type: nameN(n) = type(n).

For example, the following two parts of one workflow instance T1 →
∣∣∣→ T2
→ T3

and

T4 →
∣∣∣→ T5
→ T6

will be transformed to the following nodes and edges within a view:

nT1 ↘
nT2 ↗ nAND−split

↗ nT3

↗ nT4

↘ nT5

↘ nT6

.

Also in this case the similarity computation can be carried out according to the
approach presented in Sect. 3.2).

This approximation method could be further improved by counting the recur-
rent edges within a view. This can be achieved by using bags of edges instead of
sets of edges. All operations on sets should be then replaced through operations
on bags.

We have selected the approximation methods 1 and 3 for our empirical evalu-
ation in order to get first insights whether and to what extent the results differ.
In future, further experiments are required as well as a further extension of the
described methods. For instance the control flow elements could be identified
unambiguously by means of a naming function using their succeeding workflow
elements.

4 Formative Evaluation

We did an experimental evaluation of the approximation methods 1 and 3. The
test case base consists of 37 workflow instances from the chip design domain.
They are derived from real change request documents of our industrial partner
Silicon Image GmbH (formerly sci-worx). We presented each of the cases as a

Representation and Structure-Based Similarity Assessment 235

query to the remainder of the case base according to the leave-one-out approach.
35 of them have an empirically best matching case (EBMC) from the remainder
of the case base. The EBMC has been selected by a human expert. As a quality
criterion for the evaluation, we investigated whether the empirically best match-
ing case was in the 10 most similar cases according to approximation methods 1
and 3. Method 3 is implemented with the bag approach that we sketched above.

0

1

2

3

4

5

6

7

0 5 10 15 20 25 30 35 40

number of query case

p
o

si
ti

o
n

 E
B

M
C

Position EBMC M1

Positon EBMC M3

Fig. 6. Position of the empirically best matching case (EBMC) in the retrieval results

Both methods gave excellent results (compare Figures 6 – 7). For 34 of the
queries, the EBMC was under the 10 most similar cases for both methods. For 21
of those, the EBMC was among the three most similar cases for both methods.
Fig. 6 shows the positions of the particular EBMC’s in the retrieval result lists.
The squared dots stand for the results of method 1 and the diamonds for those
of method 3. For example, for the case number five (x-axis) used as query the
EBMC achieved position 3 (y-axis) for method 1 and the best position (position
1) for method 3. The expected position of the EBMC in a result set is with 2.91
for method 1 worse than for method 3 with 2.38. In 17 cases, the two methods
gave the identical retrieval results. In 6 cases, method 1 achieved a better result
and in 12 cases, method 3 was empirically more successful. In two of these cases
of those, method 3 was significantly better; the empirically best matching case
had a difference of 4 positions in the lists of most similar cases.

Figure 7 shows the frequency distribution of the positions of the EBMC’s.
Method 3 achieved better results than method 1, as the density of the distribu-
tion is higher for the better positions (the lower part of the distribution).

The representation according to method 1 required less nodes and edges for
the same workflow instances. On average, this saved about a third of the size of
the graph that was required by method 3.

236 M. Minor, A. Tartakovski, and R. Bergmann

0 2 4 6 8 10 12 14

Method 3

Method 1

occurrence frequency

position EBMC: 10

position EBMC: 9

position EBMC: 8

position EBMC: 7

position EBMC: 6

position EBMC: 5

position EBMC: 4

position EBMC: 3

position EBMC: 2

position EBMC: 1

Fig. 7. Frequency distribution of the positions of the EBMC’s

5 Conclusion

Handling the increasing dynamics of the market by means of agile workflow
technology can be supported by CBR successfully. Our results have shown that
the experience with the adaptation of ongoing workflows can be represented
appropriately by the graph-based structure. Our new retrieval approach gave
excellent experimental results showing that it provides a good approximation
of the utility for the user. In addition, the experiments have clarified that it is
worth-while to consider the control flow elements of the workflows explicitely
within the similarity measure. The implementation seems to be computationally
efficient due to our first experiments. The approximation graphs representing
the agile workflows for retrieval purposes can be derived automatically from
the process data and are available for further machine processing in future. We
believe that our approach is suitable for developing a semi-automatic adaptation
of workflows as well as for learning optimal weights for the distance measure, for
instance by means of neural networks.

As next steps, we will conduct further experiments with approximation
method 2 as well as with a more general distance model for agile workflows.
Furthermore, we are going to do research on the employment of AI planning
methods, for instance hierarchical planning [19], for semi-automatic, interactive
adaptation of agile workflows.

Acknowledgements

The authors acknowledge the Federal Ministry for Education and Science
(BMBF) for funding parts of our work under grant number 01M3075. We

Representation and Structure-Based Similarity Assessment 237

acknowledge the assistance we have received from our industrial partners in
the chip design company Silicon Image GmbH (formerly sci-worx).

References

1. Herrmann, T.: Lernendes Workflow. In: Herrmann, T., Scheer, A.-W., Weber, H.
(eds.) Verbesserung von Geschäftsprozessen mit flexiblen Workflow-Management-
Systemen, pp. 143–154. Physica-Verlag, Heidelberg (2001)

2. Weber, B., Wild, W.: Towards the Agile Management of Business Processes. In:
Althoff, K.-D., Dengel, A., Bergmann, R., Nick, M., Roth-Berghofer, T.R. (eds.)
WM 2005. LNCS (LNAI), vol. 3782, pp. 409–419. Springer, Heidelberg (2005)

3. Bunke, H., Messmer, B.T.: Similarity Measures for Structured Representations.
In: Wess, S., Richter, M., Althoff, K.-D. (eds.) Topics in Case-Based Reasoning.
LNCS, vol. 837, pp. 106–118. Springer, Heidelberg (1994)

4. van Elst, L., Aschoff, F.R., Bernardi, A., Maus, H., Schwarz, S.: Weakly-structured
Workflows for Knowledge-intensive Tasks: An Experimental Evaluation. In: 12th
IEEE International Workshops on Enabling Technologies (WETICE 2003), Infras-
tructure for Collaborative Enterprises, pp. 340–345. IEEE Computer Society, Los
Alamitos (2003)

5. Freßmann, A., Maximini, R., Sauer, T.: Towards Collaborative Agent-Based
Knowledge Support for Time-Critical and Business-Critical Processes. In: Althoff,
K.-D., Dengel, A., Bergmann, R., Nick, M., Roth-Berghofer, T.R. (eds.) WM 2005.
LNCS (LNAI), vol. 3782, pp. 420–430. Springer, Heidelberg (2005)

6. Weber, B., Wild, W., Breu, R.: CBRFlow: Enabling Adaptive Workflow Man-
agement Through Conversational Case-Based Reasoning. In: Funk, P., González
Calero, P.A. (eds.) ECCBR 2004. LNCS (LNAI), vol. 3155, pp. 434–448. Springer,
Heidelberg (2004)

7. Luo, Z., Sheth, A., Kochut, K., Arpinar, B.: Exception Handling for Con-
flict Resolution in Cross-Organizational Workflows. Distributed and Parallel
Databases 13(3), 271–306 (2003)

8. Schimm, G., van der Aalst, W.M.P., van Dongen, B., Herbst, J.: Workflow Mining:
a Survey of Issues and Approaches. Data and Knowledge Engineering. 47(2), 237–
267 (2003)

9. Reichert, M., Rinderle, S., Dadam, P.: ADEPT Workflow Management System:
Flexible Support For Enterprise-wide Business Processes (Tool Presentation). In:
van der Aalst, W.M.P., ter Hofstede, A.H.M., Weske, M. (eds.) BPM 2003. LNCS,
vol. 2678, pp. 370–379. Springer, Heidelberg (2003)

10. Minor, M., Koldehoff, A., Schmalen, D., Bergmann, R.: Configurable Contexts
for Experience Management. In: Gronau, N. (ed.) 4th Conference on Professional
Knowledge Management - Experiences and Visions. Potsdam, University of Pots-
dam, GITO-Verlag, Berlin vol. 2. pp. 119–126 (2007)

11. van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.:
Workflow Patterns. Distributed and Parallel Databases 14, 5–51 (2003)

12. Bergmann, R. (ed.): Experience Management. LNCS (LNAI), vol. 2432. Springer,
Heidelberg (2002)

13. Babai, L., Erdös, P., Selkow, S.M.: Random Graph Isomorphism. SIAM Journal of
Computation 9, 628–635 (1980)

14. Babai, L., Kucera, L.: Canonical Labelling of Graphs in Linear Average Time. In:
Proceedings of the 20th Annual IEEE Symposium on Foundations of Computer
Science, pp. 39–46 (1979)

238 M. Minor, A. Tartakovski, and R. Bergmann

15. Ullman, J.R.: An Algorithm for Subgraph Isomorphism. Journal of the Association
for Computing Machinery. 23(1), 31–42 (1976)

16. Brandstädt, A.: Graphen und Algorithmen. Teubner, Stuttgart (1994)
17. Mehlhorn, K.: Data Structures and Algorithms 2: Graph Algorithms and NP-

Completeness. Springer, Heidelberg (1984)
18. Wagner, K., Bodendiek, R.: Graphentheorie I. BI-Wissenschaftsverlag, Mannheim

(1989)
19. Nau, D.S., Cao, Y., Lotem, A., Muñoz-Avila, H.: SHOP: Simple Hierarchical Or-

dered Planner. In: Dean, T. (ed.) IJCAI 99. Proceedings of the Sixteenth Inter-
national Joint Conference on Artificial Intelligence, Stockholm, Sweden, July 31 -
August 6, 1999, vol. 2, pp. 968–975. 1450 pages, Morgan Kaufmann, San Francisco
(1999)

	Representation and Structure-Based Similarity Assessment for Agile Workflows
	Introduction
	Agile Workflows
	Representation and Retrieval of Workflow Instances
	Similarity Assessment and Index-Based Retrieval
	Similarity Measure for Restricted Workflows
	Similarity Measure for Workflows with Control Flow Elements

	Formative Evaluation
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

