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Abstract. Case-based reasoning systems routinely record the results of prior
problem-solving, but not the provenance of new cases: the way in which the
new cases were derived. This paper proposes the value of tracking provenance
information in CBR, especially when timely feedback may not be available. It
illustrates the use of provenance information with studies of the application of
provenance information to guide case-base maintenance. Experiments with two
data sets illustrate the benefit of using provenance to propagate maintenance and
to target maintenance effort.

1 Introduction

In case-based reasoning (CBR), memory of prior problems and solutions plays a cen-
tral role: new solutions are generated by retrieving and adapting prior solutions, and are
added to the case library for future use. However, standard CBR systems do not remem-
ber the provenance of the cases in their case libraries: how those cases came to be. This
paper proposes that the storage of simple provenance information can play a valuable
role in CBR for estimating solution confidence and guiding case base maintenance.

When a case is provided to a CBR system externally, provenance information records
the external source. When a CBR system generates a case internally, a minimal prove-
nance trace records the case(s) from which it was generated; a richer approach could
also record information such as the adaptation strategies used. Such information pro-
vides many potential opportunities for refining system performance. For example,
provenance information on externally-provided cases may be a useful source of clues to
the case’s applicability [1] or its reliability [2]. As an illustration, an ethnographic study
on remote naval troubleshooting support for sailors showed that not all cases captured
were treated equally: the reliability of the sailor who captured problem information was
a crucial concern to experts who consulted the cases later [3].

When a CBR system generates cases internally by case adaptation, both the cases
taken as starting point and the adaptations used may affect the quality of solutions; un-
reliable adaptations may cause quality loss, decreasing expected quality in cases gen-
erated by long sequences of unreliable adaptations. Thus considering case derivations
may provide useful clues to solution quality. Simple provenance-based reasoning may
enable increasing system robustness to other problems as well. For example, the effects
of learning in a CBR system may depend on the order of case presentation; a CBR
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system may learn different things from a single set of cases, based on case presentation
order. Tracking the history of case generation provides data which may be used to detect
and discount presentation-order effects.

This paper presents an argument for the importance of case provenance. It begins by
considering an implicit assumption of much CBR research, that feedback will be avail-
able. It shows that this assumption may not always hold in practice, and that provenance
can be a useful tool to help alleviate some of the problems caused by absent or delayed
feedback. The paper then considers a wider set of motivations for studying case prove-
nance, including guiding maintenance, which may be needed even if the system receives
timely feedback at case generation time. The discussion of motivations is followed with
a series of five experiments. The experiments first focus on feedback issues, studying
the effects of delayed feedback on solution quality and the use of provenance to prop-
agate feedback information that becomes available to related cases. They then examine
issues related to quality loss through repeated adaptations, examining solution quality
trends and the use of the number of adaptations as a predictor for cases likely to require
maintenance. The results illustrate how provenance information can guide the case-base
maintenance process.

2 The Fallacy of Feedback

Given the potential uses of case provenance information, it is interesting to consider
why provenance has not been a routine consideration within CBR systems. One possible
explanation for considering only cases, rather than cases’ origins, is that early CBR
research commonly assumed that the cases in the case-base were correct, due to the
CBR system receiving feedback on the success of its solutions as they are generated.
Feedback was seen as essential for successful CBR, to assure that the system would
not be led astray by reapplying failed solutions. However, the feedback assumption
merits re-visiting for two reasons. First, in practice, feedback may be delayed or even
unavailable, making it desirable to increase the robustness of CBR in the face of missing
feedback. Second, even in domains for which feedback appears to be available, it may
be incomplete. The goodness of solutions may depend on multiple dimensions, with
feedback available only for some of them. In such situations, robustness to incomplete
feedback is desirable as well.

Missing Feedback: In contexts such as CBR systems which provide advice to end
users, feedback may be hard to obtain. User feedback rates are notoriously low; for
example, the annual report of one help desk reports an average response rate under 8%
[4]. Even when feedback eventually will be available, the reasoner may need to act
before feedback is provided. In asynchronous troubleshooting, there may be a lag of
hours or days before a help desk receives the response to its advice on a new problem,
during which time similar problems may need to be solved. In product design, there
may be a time lag of months or even years before product use and maintenance reveal
problems, during which time new designs must still be generated.

Lack of feedback can cause problems for a CBR system. For example, without feed-
back, a CBR system’s conclusions from a given set of problems may be radically dif-
ferent depending on problem presentation order. As a simple example, consider the task
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Fig. 1. Cases C, D, and E in sequence extend the negative classification region

of predicting loan eligibility based on the loan amount and the borrower’s income. As-
sume that a CBR system predicts using 1-NN, with similarity determined by Euclidean
distance, and that the system starts with seed cases A and B. Case A records a request
for a $20,000 loan, an income of $40,000, and a negative decision; B records a re-
quest for a $20,000 loan, an income of $125,000, and a positive decision. Given the
sequence of problems (C = ($20,000, $60,000), D = ($20,000, $80,000), E = ($20,000,
$100,000)), cases C, D, and E will each extend the negative region, as illustrated in the
1-dimensional view of Figure 1. The same problems in the reverse order will succes-
sively extend the positive region, for the reverse effect. In either scenario, considering
how the solutions were generated makes clear the need to treat the results with caution.

Incomplete Feedback: Even when feedback is available, it may be partial. In case-
based planning, feedback may be available concerning a plan’s success or failure, but
not its comparative efficiency: The planner will know the number of plan steps but not
whether alternative plans might have involved fewer steps. In an example from CHEF
[5], the planner repairs an interaction problem by cooking two ingredients separately
instead of together. If the resulting recipe is later modified, replacing the two ingredi-
ents with others which do not interact, they will be cooked separately, even if that is
unnecessary. If a planner starts out with a set of high-quality expert plans, new plans
generated with minor variations might be expected to have reasonable efficiency, but
each successive adaptation may risk carrying forward aspects unneeded for the current
situation and missing possible optimizations, regardless of whether feedback confirms
successful accomplishment of goals. Here provenance information—how the new plan
was generated from an expert plan—may be useful as a proxy for estimating aspects of
quality not available from feedback to the system.

3 Motivations for Studying Case Provenance

While case provenance has not yet been studied as a CBR area in its own right, prove-
nance considerations could contribute both to assessing case quality and to guiding
case-base maintenance.
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Provenance and Confidence: Recent research has observed the importance of methods
for assessing confidence in the solutions of a CBR system. For example, Cheetham
and Price [6] argue persuasively for the importance of internal methods for assessing
confidence, and present an extensive set of confidence indicators, based on analyzing
individual cases and their relationships (e.g., the sum of similarities of retrieved cases
with the best solution). These provide rich criteria, provided that the cases in the case
base are themselves assumed to be trustworthy. However, their trustworthiness depends
on their own provenance.

In real-world case-based reasoning, cases may be collected from many distributed
sources (e.g., [7]). Confidence in externally-provided cases may vary by source, mak-
ing knowledge of sources important to balance tradeoffs between case similarity and
source-based factors if one source is less reliable than another [1].

For internally-generated cases, confidence may depend both on the original cases
and on their connections—the adaptation procedures generating one case from another.
It is commonplace in rule-based systems to assign confidence values to rules, and to
estimate the confidence of conclusions based on their derivations (e.g., [8]). For CBR
systems, the quality of solutions may be estimated based on the quality of the original
case and the chain of adaptation steps performed. In this paper, we explore the use of a
very simple provenance-based metric for estimating quality, the length of the adaptation
chain: the number of intermediate cases generated from an initial case before generating
the current solution. This may enable estimating adaptation-based case quality decay for
use in assessing confidence in a solution.

Provenance and Explanation: Beyond the direct use of provenance to assess confi-
dence, provenance information may be useful to explanation of a CBR system’s con-
clusions to the user. Understanding how a solution was derived from confirmed cases—
perhaps through a chain of intermediate problem-solving—can provide users with a
deeper understanding of how a solution was generated.

Provenance and maintenance: Case-base maintenance research has extensively exam-
ined case-base growth issues, focusing primarily on retention decisions for individual
cases and factors such as consistency and coverage (for a sampling of this work, see
[9]). This focus examines the contents of the cases in the case base at maintenance
time, rather than their sources (one exception is the HOMER project [2], which distin-
guishes between cases captured directly from help desk operators and confirmed cases
verified by a case author).

Tracking provenance information gives a new source of maintenance information,
with many potential uses:

– Responding to delayed feedback: When feedback is delayed, an unconfirmed case
may already have been used to solve other problems before its confirmation is re-
ceived. If the original case is erroneous, the cases derived from it may require re-
pair as well. Likewise, the error in the current case may suggest that the cases from
which it was derived need repair as well. Provenance information enables identify-
ing related cases for repair.

– Focusing case-base maintenance effort: In addition, internal case provenance
information enables an analysis of the case-base’s growth over time, and of the
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influences cases have on each other over time. If labor-intensive methods are needed
to maintain cases, cases which led to more adaptations are a natural candidate for
confirmation; in instances of conflict, derivations may be useful as well, to check
other regions of the case-base which are potentially affected.

– Focusing similarity and adaptation knowledge maintenance effort: Provenance in-
formation can suggest cases which may require attention, even in the absence of
feedback. Conversely, when feedback is available and shows problems in a derived
solution, provenance information about how the erroneous solution was generated
can provide data to analyze for flaws in the system’s similarity metric (if the case
used as a starting point was a poor choice) or adaptation knowledge (if case quality
decays quickly along paths involving particular adaptations).

– Guiding maintenance based on trends as cases are applied: There is a long history
of CBR systems using feedback about problem solutions to repair the cases gener-
ated to solve them (e.g., [5]). The commonplace approach it that a new solution is
generated, compared to feedback, and fixed if needed. Thus the repairs address the
current solution, but assume that the previous case is correct and is a good precedent
to use for similar cases.

However, even correct cases may not be good precedents. For example, in a
property value estimation domain, if the case for a particular house results in an
erroneous estimate for a new problem, a new case, with the correct price for that
problem, is stored; the initial case is retained unchanged. Nevertheless, if the orig-
inal case repeatedly yields faulty predictions, the original case may require adjust-
ment as well. If the previous house sold at an unusually high price, because the
specific buyers were willing to pay a premium for personal reasons (e.g., proximity
to their babysitter), using the case to predict the prices of other houses might often
produce estimates which are too high. If a system retains information about both
the cases to which a given case is adapted, and the success of those cases, analysis
of this information could prompt repair of the case—e.g., in this example, an anno-
tation to adjust how it is applied (e.g., “this case tends to suggest values 10% too
high)—or an adjustment of the similarity metric in that region of the case base.

4 Experimental Design and Results

The previous section hypothesizes that maintenance guided by case provenance infor-
mation can improve the overall performance of the CBR system. One way provenance
information might be exploited is for automatic feedback propagation. Human experts
can improve the quality of CBR systems by giving accurate reference solutions to cases
already in the case base, but it may be infeasible for a human expert to correct a large
number of cases. Therefore, we would like to maximize the benefit of each instance
of feedback a human expert is able to give, by applying that feedback to improve the
quality of related cases. Our experiments simulate a scenario in which human expert
feedback completely corrects a solution for a single case in the case base and then that
solution is used to repair the solutions for cases that were derived from the corrected
case. This approach was implemented using IUCBRF [10], a freely-available Java case-
based reasoning framework developed at Indiana University, extended with the needed
maintenance functionality. The experiments explored the following questions:
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– How do feedback delays affect overall solution quality?
– Is the length of the adaptation chain generating a case predictive of its solution

quality?
– Is provenance-based maintenance propagation a beneficial strategy, and what are

its computation costs?
– Is provenance information useful for selecting cases for which to solicit external

feedback (e.g., from a human expert)?

Case Base Datasets and Setup. Our tests used two separate case bases, the Boston
Housing Database and Abalone Database from the UCI [11] machine learning repos-
itory. The Boston Housing Dataset contains 506 cases, capturing attributes of house
types in the Boston metro area. The dataset has one class attribute, the median price of
houses of the given house type. In the experiments, the CBR system’s goal was to pre-
dict median housing prices. Seed case bases for these experiments included 100 house
types chosen at random, with the test sets composed of the remaining house types. The
Abalone Dataset includes 4177 cases with one class attribute, the age of the abalone,
which is continuously valued. This dataset was used to populate case bases with 100
cases along with their reference solutions, with the other data points used for testing. A
new case base was generated for each trial run.

The problems presented to the CBR systems were solved by adapting prior cases
using simple heuristics. For the Boston Housing Database, new solutions were formed
by taking the case with the most similar problem features and offsetting its median
house price by the relative difference in the sizes of the houses. A similar technique
was used for the Abalone Age Dataset using the age of the nearest neighbor case and
the relative lengths of the abalones.

Provenance Information Used. As our testbed system generates new cases by adapta-
tion, it records the cases from which new cases are derived. This information is used to
define the following relationships, considered by provenance-based maintenance pro-
cesses: Case C is a child of parent case P if C was generated by adapting P ; case D is
a descendant of ancestor case A if case D was generated through some chain of adapta-
tions from A (either a single adaptation or adaptations through a chain of intermediate
cases). Any descendant or ancestor of C is considered related to C.

4.1 Test 1: Solution Quality with Delayed Feedback

The first experiment measured the solution quality decay of a CBR system given feed-
back delayed by various time intervals. At each time step a new problem was presented
to the system to solve. The new adapted case, C, was then added to the case base, with
a case removed at random if the case base size limit was exceeded. After n steps, feed-
back in the form of a reference solution was given for C and adapted solutions were
propagated to all related cases.

We used the values 1, 5, 10, 50 as the number of steps of delay before giving feedback
to the system. The mean absolute error (MAE) average of all the cases in case base was
graphed at each time step.
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Test 1: Results. Figure 2 illustrates the dramatic benefit of feedback in the sample
domains. Each plot line starts with increasing error up until the problem number when
expert feedback is first received. At this point the error for each stops increasing and
gradually decreases over the remainder of the problems. We note that the initial slope,
while error increases, depends on the effectiveness of the adaptation method; better
adaptation methods will yield gentler slopes, meaning less error added per adaptation.
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Fig. 2. MAE with varying feedback delays for the Abalone Age and Boston Housing datasets
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4.2 Test 2: MAE Per Adaptation

This test measured the amount of error introduced into the case base for each adapted
solution that was added. For this test we initialized case bases with 100 reference cases
and then presented them 1000 randomly chosen new problems. The CBR system solved
each problem, added the newly created case for the problem, and then performed main-
tenance by randomly deleting a case. No feedback was used for this test.

After each problem was solved, the MAE was computed for the entire case base
along with the average number of adaptation generations for all the cases. These two
values were stored after each problem presentation and later graphed to show the rela-
tionship between error and the number of adaptation generations.

Test 2: Results. Results were similar for both case bases, so only the results from
the Boston Housing dataset are shown. Figure 3 shows the relationship between a case
base’s average number of adaptation generations per case and the normalized MAE for
the entire case base. As expected, the greater the number of adaptation generations, the
higher the overall error for the case base. As with Test 1, the slope of the linear fit line
reflects the effectiveness of the system’s adaptation method.
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Fig. 3. The average number of adaptation generations per case in a case base is directly related to
the case base’s overall quality in the Boston Housing Database

4.3 Test 3: Using Feedback Propagation to Improve Case Base Quality

The third test examined different feedback propagation strategies using case prove-
nance information, using MAE of all the cases in the case base to measure solution
quality.
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For each trial, the case base was initialized with 100 randomly-selected cases with
known correct reference solutions, and a series of 200 test problems was presented
to the system to solve. For each test problem, the system retrieved the most similar
stored case and adapted its solution to the current problem. The adapted solution and
current problem then formed a new case that was inserted back into the case base. Case
base size was limited to 100 cases throughout the tests, with a randomly-chosen case
removed from the case base for each addition, to keep the case base size constant. The
entire test was repeated 100 times and the resulting MAE values were averaged over all
the runs.

After each test problem, feedback was given for a single random case R in the
case base. This was meant to simulate a human expert giving the system feedback.
Once the feedback was given, one of the following solution propagation strategies was
applied.

– No Propagation: Only the single case, R, that was given the reference solution
was changed. This is the baseline method that has been common in past CBR
systems.

– Propagation to Similar Cases: The entire case base is searched for cases that are
similar to R within a given similarity threshold T . Sufficiently similar cases are
then given new solutions adapted directly from R’s reference solution. In our tests
T was 0.2 for the Boston Housing dataset and 0.1 for the Abalone Age dataset.

– Propagation to Children: Any child cases of R are given new solutions adapted
directly from R’s reference solution.

– Propagation to Parent: Any parent case of R is given a new solution adapted di-
rectly from R’s reference solution.

– Propagation to Descendants: Any descendant cases of R are given new solutions
adapted from their immediate parent cases. This corresponds to recursively adapt-
ing solutions through generations of descendants from R’s reference solution.

– Propagation to Ancestors: Any ancestor cases of R are given new solutions adapted
from their immediate children cases. This corresponds to recursively adapting so-
lutions up through generations from R’s reference solution.

Test 3: Results. Figure 4 shows the results of different types of feedback propagation
for the two data sets. No propagation results in the highest error across the problems
(approximately 0.46 normalized MAE), i.e., every form of feedback propagation helped
decrease overall error to some degree. Propagation to children and propagation to de-
scendants outperformed propagation to parents and propagation to ancestors, which
can be attributed to the greater number of cases reached by propagation to children and
descendants: multiple cases may be adapted from a single parent case but each case has
only a single parent. Overall, automatically propagating feedback to relative cases ap-
pears promising. The best performing feedback propagation methods reduced the error
between 12% and 17% for the two test case bases.

On the Abalone dataset, performance of propagation to similar cases was nearly
equivalent to propagation to children, but was only roughly comparable to propagation
to parent and propagation to ancestor for the Boston Housing dataset. This difference is



Case Provenance: The Value of Remembering Case Sources 203

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0  20  40  60  80  100  120  140  160  180  200

N
or

m
al

iz
ed

 M
ea

n 
A

bs
ol

ut
e 

E
rr

or

Problem Number

Abalone Age Prediction

No Propagation
Parent

Ancestor
Similar

Children
Descendant

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0  20  40  60  80  100  120  140  160  180  200

N
or

m
al

iz
ed

 M
ea

n 
A

bs
ol

ut
e 

E
rr

or

Problem Number

Boston Housing

No Propagation
Parent

Ancestor
Similar

Children
Descendant

Fig. 4. MAE for varying propagation methods for the Abalone Age and Boston Housing datasets

a subject for further study. It may be attributable to inherent differences in the datasets
or to the similarity thresholds used to determine which cases in the case base were
considered similar enough to be given new solutions. However, additional tests adjust-
ing the similarity thresholds were not conclusive.
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4.4 Test 4: Computational Efficiency of Feedback Propagation

Propagating feedback by adapting case relatives increases processing cost, raising the
question of tradeoffs between propagation time and improvement in solution quality for
candidate methods. To examine this tradeoff, we compared feedback propagation time
for each method. Propagation time was defined as CPU time (on a 1.2 GHz Pentium
4 with 768 MB of RAM) from presentation of feedback until completion of all case
base updating. This test used case bases with 100 cases for each dataset and ran 1000
randomly chosen problems selected from the case bases with replacement. We then
graphed the propagation times for each different technique.

Test 4: Results. Figure 5 shows the feedback propagation times of the various
propagation methods for both datasets. All the propagation methods took less than 2
seconds per 1000 test problems. The method of propagating feedback to any similar
cases (whether directly adapted from the corrected case or not) took substantially more
time than the other methods, due to identifying similar cases by linear search through
the case base. Indexing strategies could significantly decrease this cost, but provenance-
based methods might still be preferable to similarity-based methods for very large
case bases.
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Fig. 5. Computational overhead of feedback propagation methods

4.5 Test 5: Targeted Feedback

Section 3 hypothesized that provenance information may be useful for predicting case
quality in systems for which quality is expected to decay with repeated adaptations.
Similarly, provenance information may be useful for directing limited maintenance
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resources, e.g., by directing a human expert towards those cases that when updated will
maximize the benefit to the CBR system. This is especially important when the feed-
back process is time-consuming and costly. If the system can identify which cases are
likely to have ineffective solutions, then the expert can focus on correcting those cases
first, with the aim of maximizing the benefit of human effort. Likewise, if verifying a
case requires additional costs (e.g., for running tests, etc.), the ability to target the right
cases may be valuable.

For this test, recorded provenance information included a count of the length of the
provenance path, i.e., the number of adaptations that a particular case is from a known
accurate solution. We expected that given the imperfect case adaptation strategy used,
cases closer in lineage to accurate solutions would be more accurate themselves, due to
compounding of errors as repeated adaptations are performed.

The test compared resulting quality with four different maintenance techniques. The
first, the baseline, used no feedback at all. The second, in each trial, used feedback to
correct a random case in the case base. The third requested feedback on the case in the
case base which was the highest number of generations from a reference solution, and
corrected that case. The fourth corrected the case with the maximum error. We used
100 randomly chosen problems for each technique on case bases of size 100. We ran 25
trials and averaged the MAE for each problem.

Test 5: Results. Figure 6 shows that targeting feedback towards cases with the longest
adaptation chain substantially improves overall solution quality, compared to randomly
picking cases for feedback. This can be explained by the feedback improving the cases
expected to account for the greatest error.

For the two datasets, targeting based on adaptation history reduced the error obtained
using random feedback by 75% on the Abalone dataset, and 82% on the Boston dataset.
This suggests the value of targeted feedback, and that the number of adaptations per-
formed provides a useful proxy for identifying cases with the most error, when the ac-
tual amount of error is not known. For comparison, the bottom line on each graph shows
the effect which would be achieved with the optimal strategy of always correcting the
case with greatest error.

Other methods for targeting feedback are an interesting topic for future research.
For example, targeting feedback to the case with the most descendants and then
using the corresponding propagation method from Test 3 might provide additional
benefits.

4.6 General Observations

Overall, the tests are encouraging for the use of case adaptation history information to
guide maintenance for systems with weak adaptation. If a CBR system already has a
very accurate adaptation method, then there is little error introduced per adaptation and
the feedback propagation and targeting methods do not have as dramatic an impact. If a
CBR system has a poor method of adaptation that on average adds substantial error per
adaptation, then the methods tested above are even more beneficial.
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Fig. 6. Effect of selection of cases to correct on MAE for the Abalone Age and Boston Housing
datasets

5 Related Work

The general notion of provenance is now attracting much attention in the e-Science
community [12], for tasks such as enabling replication of results and estimating quality
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of scientific data. It is also attracting interest in Semantic Web research, for example,
to support explanation (e.g., [13]). Tracking the derivations of beliefs and using those
derivations to guide belief updating has a long history in AI, dating back to work on
truth maintenance systems [14].

In the CBR literature, Goel and Murdock [15] proposed meta-cases to capture the
reasoning underlying the CBR process, to support explanation of the reasoning un-
derlying the processing of an individual case; such a reasoning trace is stored by the
ROBBIE system as well [16]. However, in both these systems, the focus is on apply-
ing the trace to understand current reasoning, rather than understanding the extended
derivation history of a case through the chain of cases from which it was derived.

6 Conclusion

This paper has argued for the value of studying of case provenance, and has illus-
trated the potential value of provenance-based strategies for estimating case confidence
and guiding maintenance. The provenance-based approach is innovative in that—unlike
maintenance work which only detects and fills gaps, or responds to problems revealed
by feedback or inconsistencies—provenance-based methods can make a priori sugges-
tions of candidates for case replacements or confirmations.

The paper explores simple strategies with much room for refinement. Interesting
questions include how to use richer provenance information, such as information on the
specific adaptations performed, and how to exploit such information for finer-grained
prediction of case quality and for case base maintenance propagation strategies.

Provenance considerations may also prove useful for explanation, to enable ground-
ing explanations of new solutions in authoritative cases connected to the current sit-
uation by short adaptation chains. The CBR community has long noted the value of
supporting a conclusion by the known prior case from which it is derived (e.g., [17]).
However, when solutions are based on cases generated by the system, simply showing
the prior system case may not be as compelling. An interesting question is whether
user trust may be increased by showing the full derivation of a solution, back to an
externally-provided or externally-confirmed case.
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