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Abstract. SmartCAT is a Case Authoring Tool that creates knowledge-rich cases
from textual reports. Knowledge is extracted from the reports and used to learn a
concept hierarchy. The reports are mapped onto domain-specific concepts and the
resulting cases are used to create a hierarchically organised case-based system.
Indexing knowledge is acquired automatically unlike most textual case-based rea-
soning systems. Components of a solution are attached to nodes and relevant parts
of a solution are retrieved and reused at different levels of abstraction. We evalu-
ate SmartCAT on the SmartHouse domain looking at the usefulness of the cases,
the structure of the case-base and the retrieval strategy in problem-solving. The
system generated solutions compare well with those of a domain expert.

1 Introduction

Creating a case-based reasoning system can be quite challenging if the problem-solving
experiences are captured as unstructured or semi-structured text [13]. This is because
the system should be able to compare new problems with the textual case knowledge.
Although IR-based techniques can be used to retrieve whole documents or snippets
of documents, case comparison in this situation would only take place at word/phrase
level. The features pertaining to the documents would still have to be compared using
some domain/background knowledge or lexical source, in order to arrive at a useful
ranking. Alternatively, a structured case representation can be created and the textual
sources mapped onto it before they are used in reasoning [15]. This is quite difficult and
the costs can be prohibitive if it is manually done by an expert.

It has been observed that humans do not interpret text at word-level but do so at
a much higher level of abstraction where concepts are manipulated [4]. For example,
an occupational therapist that reads about a wheelchair user immediately thinks about
the person’s mobility. Hierarchical organisation of cases enables effective retrieval at
different levels of problem abstraction [2]. The humans’ ability to organise information
into concepts, in order to extract meaning that is beyond the words they read, is what
we attempt to mimic in our work.

Our Case Authoring Tool SmartCAT creates knowledge-rich cases from textual
SmartHouse reports. Figure 1 shows the expert interacting with SmartCAT to sanction
authored cases. SmartCAT uses the information embedded in text to learn a concept
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hierarchy. During case authoring, it maps the textual reports onto appropriate domain-
specific concepts. SmartH-CBR is the resulting SmartHouse case-based reasoning sys-
tem where the cases are organised in a hierarchy. In this paper, we examine the useful-
ness of the SmartCAT cases and the goodness of the SmartH-CBR retrieval strategy.
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Fig. 1. Using the SmartCAT Tool

The rest of the paper is organised as follows. Related work is presented in Section 2
after which we describe the domain in Section 3. Section 4 details how relevant terms
are extracted from the textual reports and used to represent the sub-problems. Section 5
presents the creation of the concept hierarchy which is used to organise the cases in
Section 6. The usefulness of the cases and the adopted retrieval strategy are evaluated
in Section 7 before our concluding remarks in Section 8.

2 Related Work

Early TCBR systems like FAQ Finder [5] retrieved whole unstructured documents or
document snippets as cases. IR-based retrieval was typically employed and understand-
ing case content was not a system requirement. More recent research has focused on
creating more knowledge-rich case representations. One approach maps the textual case
documents to a structured case representation, but in much of this work the case repre-
sentations are acquired manually. This renders the systems more difficult to maintain.
Examples include Wiratunga et. al.’s work [14] and systems created using frameworks
like jCOLIBRI [10]. Further efforts have tried to acquire case representations auto-
matically. Sophia [7] employs term distribution to create word-groups that co-occur in
similar documents and the word clusters can represent the textual documents.

In domains like SmartHouse where adaptation knowledge is difficult to acquire, the
effectiveness of the retrieval stage of CBR is also crucial. Both Bergmann & Wilke
and Watson & Perera demonstrate that cases represented as a hierarchy of smaller
cases lead to more efficient retrieval than using a simple flat case representation [2,12].
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Déjà Vu [11] is a hierarchically organised system that designs plant-control software.
Leaf nodes are tagged with sub-solutions. However, identifying abstract cases and dis-
covering the relationships between them is done manually. We address this shortcoming
by creating a concept hierarchy which enables us to automatically author cases and or-
ganise them in a hierarchy. Our earlier work was a first step towards building a concept
hierarchy [1]. The availability of more reports allows us to incorporate Latent Semantic
Indexing to identify relevant attributes for Formal Concept Analysis.

3 The SmartHouse Domain

SmartHouse problem-solving experiences are recorded as textual reports. Each report
captures the problems/impairments of the person with disabilities and the SmartHouse
devices that were installed in their home to assist them in carrying out different tasks.
Figure 2 is an excerpt from a typical report. First, it briefly summarises the person’s dis-
abilities which are referred to as a type of problem, difficulty, impairment, or a disabling
medical condition like dementia. Thus, a person with impaired hearing is referred to
as having a hearing difficulty, problem or impairment. To distinguish disabilities from
other terms in the text we refer to them as disability terms.

Ms M was a powered wheelchair user with very limited mobility. She had severe curvature
of the spine, and this disability created difficulty when she attempted to carry out everyday
tasks around her home. A number of problems were identified:

Door Opening

Ms M did have a door-key fitted to a special fob that allowed her to unlock or lock her
door, but once it was locked, she found it physically impossible to open the door due to her
mobility problem... ... and the final choice of equipment consisted of:

Lighting Controls

The use of lighting controls was limited to two table lamps in the livingroom and one lamp
in the bedroom... The lights were simply switched off or on by the operation of the GEWA
control unit.

Door Opening Motor and Lock Release

These devices were intended to allow Ms M to unlock and open her door unaided...

Fig. 2. Report Excerpt

Next, sub-problem sections describe ways in which the person’s disabilities manifest
themselves. Each is dedicated to a given area of difficulty. The excerpt shows a sub-
problem where the person found door opening to be cumbersome. Every sub-problem
is given a summary heading, but they do not always accurately describe the area of
difficulty. Intercom operation may refer to a person’s difficulty in using their intercom
but this could be due to a hearing impairment or a mobility problem. Typically, the
person’s disabilities are mentioned in the summary but these need not be repeated in
the sub-problem text where symptoms and problem-areas are elaborated. The summary
and all sub-problems make up the problem-part of each SmartHouse case. Each section
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that describes an area of difficulty is called a sub-problem since they describe only a
part of the SmartHouse case problem.

Lastly, the report mentions the solution package which lists the SmartHouse devices,
each with a description of how they help. Although it is not always obvious from the
text, every sub-problem has a corresponding list of solutions. This is not always a 1-1
mapping because a particular sub-problem can generate the need for more than one
SmartHouse device. However, it is possible to map each sub-problem to its correspond-
ing solution components. In Figure 2 Door Opening Motor and Lock Release is the so-
lution for the Door Opening sub-problem. A report records one or more sub-problems
with accompanying solutions.

4 Identifying Relevant Terms

It is important for SmartHouse cases to capture useful problem features if they are to
be re-used in problem-solving. However, the effectiveness of a case-based reasoning
system also depends on its ability to compare cases. This requirement influences the
choice of case representation. It has been observed that humans interpret text at a con-
cept level and not merely at the level of words they read [4]. In fact, an occupational
therapist will list problem features under predefined domain-specific concepts. For ex-
ample the problem-features uses walking sticks and abnormal gait will be recorded
under a mobility concept. Therefore, not only do our cases need to capture relevant do-
main knowledge, we also need to be able to map the knowledge onto domain-specific
concepts where concepts are useful groupings of disabilities, disabling conditions, or
areas of difficulty.

In order to author cases that capture the relevant domain knowledge and allow for
effective comparison and retrieval, we need to do the following steps:

1. extract knowledge embedded in the text and represent the textual reports with
knowledge-rich terms;

2. use the knowledge to create a concept hierarchy;
3. map the problem representations onto the domain-specific concepts; and
4. attach solutions to the appropriate parts of the hierarchy.

In the real world, queries are lists of problem descriptors for which a list of Smart-
House devices is sought. Therefore, we focus on creating problem concepts for the
SmartHouse domain. Thus cases will be represented as groups of domain-specific prob-
lem concepts and a corresponding list of SmartHouse devices that solve the problems.
We start by trying to identify and extract terms that are meaningful with respect to
SmartHouse problems. We will then use these terms to represent the problem parts of
the textual reports.

4.1 Term Extraction from Textual Reports

We extract information in the form of trigrams, bigrams and a few necessary unigrams,
since single words do not generally carry useful knowledge about the SmartHouse do-
main. This is to ensure that only potentially knowledge-rich text is mined for domain-
specific concepts. First, we carry out some pre-processing where, each problem part of a
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report is separated into sentences. A sentence is taken to be a group of words that is sep-
arated by a period, comma, bracket or other delimiting punctuation. Non-alphanumeric
and numeric characters are removed next and the final pre-processing step applies the
UEA-Lite [6] conservative stemmer that ensures words are reduced to forms that are
complete words. The main aim is to make the case representations and the nodes in the
concept hierarchy easy to comprehend and to allow manual refinement. Next, terms are
obtained from each sentence as follows:

1. All word subsequences of length 3 (trigrams) are extracted, discarding all that begin
or end with a stopword.

2. All word subsequences of length 2 (bigrams) are extracted, discarding all that begin
or end with a stopword or are substrings of trigrams.

3. All non-stopword unigrams are extracted, discarding all that are sub-strings of tri-
grams or bigrams.

It should be noted that we discard only those terms that are substrings of other terms
in the same sentence. This is to avoid unnecessary duplication, but at the same time
ensuring that short terms are not discarded just because they happen to be sub-strings
of terms that appear in other parts of the document. While limiting the incorporation of
single-word terms, the process ensures that every word in the document can be repre-
sented as itself or as a part of a longer phrase. The assumption here is that in any given
sentence, a single word is unlikely to occur independently of short phrases in which it
occurs. For example in the sentence “Case knowledge is a key knowledge source in case
based reasoning”, phrases like “case knowledge” and “case based reasoning” will be
extracted and the single word “case” will be ignored since it is a substring of the two
phrases and can therefore be assumed not to occur independently of the two phrases.
However, “case” will be extracted if it appears in a sentence like “A case is made up
of a problem and solution part”. The problem part of each SmartHouse report is trans-
formed into a set of terms containing stemmed words. The terms may contain stopwords
but will not start or end with one. Extracted terms are meaningful because they have not
been distorted by the removal of stopwords. We obtain 731 terms from 38 problems.
These terms will be filtered to obtain those that actually contain useful knowledge.

4.2 Latent Semantic Indexing

We make use of Latent Semantic Indexing (LSI) [3] to identify useful terms out of the
trigrams, bigrams and unigrams we have extracted. The problem part of a SmartHouse
report is regarded as a document because we identify useful terms by learning their
associations at case level. We represent the terms and the documents as an incidence
term × document matrix A. Entry aij is the product of a local log frequency weighting
and a global log entropy weighting of a term i in document j.

aij = log2(fij + 1)(1 −
N∑

k=1

Pik log2(Pik)
log2(N)

)

where fij is the frequency of term i in document j, and Pik is the relative frequency of
term i in document k, compared to the collection of N documents.
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LSI employs Singular Value Decomposition to decompose the term × document
m × n matrix A as:

A(m×n) = UO(m×m) × SO(m×n) × V T
O(n×n)

UO represents the term matrix, V T
O the document matrix, and SO is a diagonal matrix

containing singular values arranged in descending order. Each column in UO represents
a topic or concept and it captures terms that appear in that concept. The r highest singu-
lar values identify the r most important concepts in UO. These r concepts are referred to
as LSI-concepts in order to disambiguate them from later concepts in the paper. Keeping
only the r highest singular values removes noisy dimensions and gives the lower rank
approximation Ã, of the original matrix A.

Ã(m×n) = U(m×r) × S(r×r) × V T
(r×n) (shaded in Figure 3.)
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Fig. 3. Singular Value Decomposition and Latent Semantic Indexing

We accentuate the entries of U(m×r) by multiplying it by S(r×r) to obtain a term ×
concept matrix. The weights of terms in the matrix are a measure of the importance of
the individual terms to the key LSI-concepts in the document collection. We use the top
ten singular values (r = 10). Figure 4 illustrates a portion of the term×concept matrix
obtained for the SmartHouse domain. The term mobility problem is most important in
concept C4 (weight 8.02) and least important in concept C2 (weight -1.74). It is the
‘importance’ score and the groupings of terms as LSI-concepts that we exploit in order
to identify knowledge-rich terms.

4.3 Term Filtering

We reduce the search space for finding relevant terms by making use of term weights in
key LSI-concepts. In this domain, the areas of difficulty described in each sub-problem
are a result of the person’s disabilities and this helps us to target our search for relevant
terms to only those terms that are related to disability terms. Pattern-matching with the
words difficulty, problem and impairment and a list of disabling conditions are used to
identify the disability terms. The list is compiled using brochures from the website of
Tunstall, a leading provider of telecare solutions. The assumption we make here is that
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0.76…-1.930.851.797.29risk from fire

0.87…6.551.481.28-0.36weak grip

-1.98…-1.470.716.110.31unable to hear

2.30…6.951.871.301.39door open

0.69…0.860.961.697.48dementia

2.46…7.531.080.360.87wheelchair

2.51…8.021.12-1.740.92mobility problem

Cn…C4C3C2C1

Fig. 4. Term-Concept Matrix Showing Term Importance

“in a linear combination of terms in which the disability term is important, all other
terms that are nearly as important, will be relevant to the disability.” Thus disability
terms are used as anchor terms to identify relevant terms.

We shall use the example in Figure 2 to illustrate the term filtering process. Con-
sider the section describing the door opening sub-problem. The underlying disability
is mentioned here as a mobility problem. Therefore terms that are relevant to the door
opening problem are closely related to the disability term mobility problem. In Figure 4
we take the row in the term×concept matrix that represents the term mobility problem
and look for the LSI-concept in which it has the highest weight. In the example, this
is concept C4. We then set a threshold and extract terms whose weights are nearly as
high in this concept. So the terms wheelchair, weak grip and door open are identified
as being important. We look for those terms that actually appear in the sub-problem
text. These will be the representative terms for this sub-problem. The effect is that we
extract terms that are ‘important’ in LSI-concepts in which the disability term is most
important. Thus we extract terms that are as informative as the disability term. This
leaves only 238 terms rather than the 731 we had originally.

A sample of the discovered relevant terms is compared to text where an expert was
asked to highlight key phrases. Figure 5 shows (stemmed) text highlighted in bold by the
expert and LSI respectively for one sub-problem. The different n-grams are underlined
in the latter case. Generally, the text highlighted using LSI compares very well with
that highlighted by the expert. Although the expert does not highlight the heading door
open, it clearly is an important term since both the expert and LSI agree that difficult
to open the door is important in that context. It is not possible for LSI to highlight the
whole term poor flexibility in the joint as important since the terms it is presented with
are not more than 3 words long (trigrams). However, it highlights the important parts of
the term.

We use the relevant terms obtained to represent the sub-problems. We also include
the disability terms among the sub-problem representative terms since they may not be
explicitly repeated in the description.
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Expert’s Highlighting

door open

when mr. M wish to open the front door, he had to project himself forward to reach the door
handle and lock. because of poor flexibility in the joint, he found this task to be extremely
difficult and physically tiring. also, the position of the lock made it both difficult to open
the door from the inside upon leave, or from the outside when return home.

LSI Highlighting

door open

when mr. M wish to open the front door, he had to project himself forward to
reach the door handle and lock. because of poor flexibility in the joint, he found this task
to be extremely difficult and physically tiring. also, the position of the lock made it both

difficult to open the door from the inside upon leave, or from the outside when return home.

Fig. 5. Text Highlighted by Expert and LSI

5 Creation of a Concept Hierarchy

Concept-superconcept relationships do not exist in the semantic structure captured by
LSI. However, Formal Concept Analysis (FCA) yields a concept hierarchy where the
concepts are ordered according to their concept-superconcept relationships. We employ
FCA to create a concept hierarchy using the knowledge we have extracted using LSI. A
brief description of FCA and how its use to create the concept hierarchy now follows.

5.1 Formal Concept Analysis

FCA is used to represent and analyse data in information science [8,9]. A formal context
is a triple (O, A, I) where O is a set of objects, A a set of attributes and I ⊆ O × A is
a binary incidence relation between O and A. I indicates which objects have which at-
tributes. A formal context is often represented as in Figure 6. The different SmartHouse
sub-problems form the set of objects, and some possible features of the sub-problems
form the set of attributes. For example telephone operation has an attribute hearing
impairment arising from a person with a hearing impairment who has difficulties oper-
ating their telephone. FCA uses a formal context to produce formal concepts.

A concept is a pair (o ⊆ O, a ⊆ A) such that every object in o is described by every
attribute in a and conversely, every attribute in a covers every object in o. In Figure 6,
the set of objects {intercom operation, window operation, door operation} have the set
of attributes {mobility problem} in common. Conversely, the set of attributes {mobility
problem} shares a common set {intercom operation, window operation, door opera-
tion} of objects to which they belong. No other object has this set of attributes.

The concept lattice resulting from the context in Figure 6 is shown in Figure 7.
Every node represents a concept and the nodes are ordered by a concept-subconcept
relationship. The highest node represents the most general concept while the lowest
one represents the most specific concept. So as you descend the hierarchy and therefore
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ATTRIBUTES

OBJECTS hearing wheelchair mobility poor unable cerebral lack of multiple
impairment problem flexibility to palsy strength sclerosis

in the joints stretch in hands

intercom X X X X
operation

telephone X
operation

window X X X
operation

door X X
opening

Fig. 6. Context for some SmartHouse Problems

become more specific (and less general), the number of objects at a node reduces while
the number of attributes increases. Conversely, the number of objects increases and the
number of attributes reduces as one ascends the hierarchy.

The objects associated with a concept are called its extent, and the attributes describ-
ing the concept are called its intent. Node 1 is the concept created as a result of the
object set {intercom operation, window operation, door operation} having a common
set of attributes {mobility problem} and the set of attributes {mobility problem} cover-
ing a common set of objects {intercom operation, window operation, door operation}.
This concept has intent {mobility problem} and extent {intercom operation, window
operation, door operation}. Similarly, the concept shown as node 2 has intent {hearing
impairment} and extent {telephone operation}.

To prevent cluttering, reduced labeling is used. An attribute is attached to the top-
most concept that has the attribute in its intent. The attribute occurs in all intents of
concepts that are reachable by descending the subtree from which it is attached. Node 3
represents a concept whose intent is {mobility problem, lack of strength in hands, mul-
tiple sclerosis}. Conversely, an object is attached to the bottom-most concept where it
is part of the extent. Every concept that is reachable by ascending from this point to the
top-most concept has the object in its extent. Node 1 represents a concept whose extent
is {intercom operation, window operation, door operation}. A description of how we
obtain the objects and attributes for use in FCA now follows.

5.2 FCA Objects and Attributes

Each FCA object and associated attributes result in a concept and super-concepts if the
object has common attributes with other objects. Each sub-problem of a SmartHouse
report represents a specific need for a set of SmartHouse devices. We want to create a
hierarchy of concepts pertaining to people’s areas of difficulty which are described in
the sub-problems. It is for this reason that we use each sub-problem as an FCA object.
For easy identification, we name the FCA objects using the problem summary heading
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Increasing specificity;

Increasing number of attributes

Increasing generality;

Increasing number of objects

1

2
3

Fig. 7. Example Lattice

and the underlying disability. Thus the objects can be easily identified in the lattice
which in turn, makes it easier for an expert to refine the hierarchy as necessary.

FCA attributes are features of the FCA objects. Each sub-problem is an FCA object
and it follows that the terms describing the objects are used as FCA attributes. Thus the
sub-problem representative terms identified using LSI, and the corresponding disabil-
ity term, become the attributes for the sub-problem FCA objects. FCA is applied to a
context of attributes and their corresponding objects to create a concept hierarchy.

6 Case Representation and Organisation

The concept hierarchy is used to define and organise cases in the SmartHouse domain.
Figure 8 shows a portion of the SmartHouse problem concept hierarchy we have built.
Normally, an occupational therapist would record a person’s disabilities, problem areas
and symptoms, under pre-defined groupings: wheelchair would be recorded under mo-
bility; learning difficulties under cognitive problems. Similarly, the case representation
task involves mapping the problem-representative terms onto the discovered concepts
in the hierarchy and attaching a set of solutions that assists with the problem.

We map each sub-problem on to a concept by finding one whose whole intent is
all of the sub-problem’s representative terms. Node 5 in Figure 8 represents a concept
whose intent is {mobility problem, door open, reach the door handle and lock, poor
flexibility, joint, difficult and physically tiring, position of the lock, difficult to open
the door}. This intent is also all the terms identified using LSI in the door opening
sub-problem illustrated in Figure 5 plus the corresponding disability term. Thus the
door opening sub-problem is mapped on to the concept represented by node 5. We
shall use the term concrete to refer to those concepts onto which a sub-problem is
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1

2

3

5

4

Fig. 8. Concept Activation During Retrieval

mapped. Concrete concepts include all of the most specific concepts in the hierarchy,
and some abstract concepts whose intent completely represents a sub-problem in the
document collection. We also refer to abstract concepts on to which no sub-problem is
mapped, as completely-abstract. Mapping each sub-problem on to a concept transforms
the problem-part of the original textual case to a list of concrete concepts. A case that
contains n sub-problems is mapped onto n concrete concepts in the concept hierarchy.

We map each sub-problem on to a corresponding list of SmartHouse devices by
making use of overlaps between the words in the sub-problem and solution description
text. We also take advantage of device names because sometimes they reflect the sub-
problems they assist with. For example, Door Opening Motor and Lock Release in Fig-
ure 2 is the solution to the door opening sub-problem mentioned in the report excerpt.
Thus we map each sub-problem and invariably each concrete concept on to a list of
SmartHouse devices. Consequently, a case becomes a list of concrete concepts each of
which is tagged with a list of SmartHouse devices that solve the different sub-problems.
All this is implemented in a case-based reasoning system called SmartH-CBR.

During problem-solving, the concept hierarchy is searched for the most specific con-
cepts matching the query terms. Ideally, a concept is activated by a query term that
forms part of its intent. However, since a query term cannot always be the same as that
in the intent, substring matching of the query and intent strings is used to ensure that
the two need not be exactly the same for a concept to be activated. A path ending at a
concrete concept node leads to retrieval of the attached solution. However, when a path
ends at a completely-abstract node, it is not possible to predict the next point in the path
without further knowledge about the problem. In this situation, SmartH-CBR returns
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the disjunction of all solutions of concrete concepts that are reachable by descending
the subtree from which the completely-abstract concept is attached. If all we knew about
a problem was that the person has cerebral palsy and a mobility problem, nodes 1 and 2
in Figure 8 would be activated. Without any further knowledge, it is difficult to predict
if the person also has a door opening problem, an appliance operation problem or any
other problem whose concepts are reachable by descending from node 2. Generally, the
retrieved solution depends on how much of the problem is described in the query.

7 Evaluation

We judge the usefulness of the authored cases by testing whether they capture knowl-
edge that is useful for finding solutions. We also test whether the retrieval strategy em-
ployed by organising the cases in a hierarchy results in retrieval of useful solutions. We
compare SmartH-CBR’s and the expert’s solution packages for four problems shown in
Figure 9. Problems A and B were handcrafted by the expert who ensured the description
terms were the same as the ones in the case base. Although these terms are familiar, we
have no cases whose problems are completely described by the same terms. Problem
C is a problem part of a report that is excluded in the creation of the hierarchy. It is a
test of whether the rest of the cases in the case base capture enough knowledge about
the domain in order to give useful solutions to this problem that has not influenced the
case representation. It is also a test of SmartH-CBR’s ability to find appropriate parts
of useful cases in order to reuse them for problem-solving. Problem D is another test of
the same sort as Problem C. Hence, problems C and D are more challenging.

Problem A window opening, door opening, spinal problem, wheelchair user,

unable to bathe independently

Problem B cognitive problems, aphasia, confusion, disorientation, fully ambulant,

perseveration, no insight into condition

Problem C intercom operation, unable to hear buzzer, telephone operation, problem

hearing the caller, unable to listen to television, can only

watch pictures on television

Problem D paralysis, ataxia, chair bound, body constricted, poor hand

to eye coordination, left sided weakness, copious aspiration

Fig. 9. Test Problems

Sometimes the occupational therapist has a list of terms describing the person’s com-
plications and she is required to anticipate the needs of the person. Therefore, we test
the system’s ability to recognise terms as belonging to given sub-problems and sub-
sequently retrieving their solutions. In problems B and D, the person’s complications
are given but the specific needs like door or window opening are not enumerated. This
makes the problems harder to solve than those where the specific needs can be targeted
in the search for a solution. Thus problem B is harder to solve than A and problem D is
harder than C.
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SmartH-CBR attempts to index each problem in order to retrieve the appropriate so-
lutions. The possession of features that are familiar to SmartH-CBR makes problems A
and B easier to index than problems C and D. Figure 10 illustrates the solution packages
offered by SmartH-CBR and the expert for problems A, B, C and D. The similarity of
solutions for SmartH-CBR and the expert are compared using precision and recall. In
the SmartHouse domain, precision is the proportion of SmartHouse devices proposed
by SmartH-CBR that occur in the expert solution package; recall is the proportion of
devices proposed by the expert that are also proposed by SmartH-CBR. Recall is more
important than precision because SmartHouse solution recommendation is typically a
supervised task. An occupational therapist prefers to be presented with a list of devices
to choose from than to have a list of devices that perfectly solve only a part of the prob-
lem and be required to formulate the rest of the solution from scratch. Altogether, there
are 38 composite cases (reports) and 90 sub-problems, each of which can be solved by
one or more SmartHouse devices.

Solution A CBR Expert Solution C CBR Expert

powered windows Yes Yes video intercom No Yes

powered external doors Yes Yes visual doorbell Yes Yes

community alarm Yes No telephone amplifying unit Yes Yes

electrically operated locks Yes Yes video interface to telephone No Yes

environmental controls Yes No television/audio amplifying
headset

Yes Yes

shower with sitting facility Yes Yes

Precision = 0.7 Recall = 1.0 Precision = 1.0 Recall = 0.6

Solution B CBR Expert Solution D CBR Expert

smoke/heat/gas alarms Yes Yes smoke/heat/gas alarms Yes Yes

stove shutoff isolator Yes Yes video entry phone No Yes

intelligent microwave Yes No door entry system Yes No

community alarm Yes Yes community alarm Yes Yes

environmental controls Yes Yes environmental controls Yes Yes

out-of-house alert Yes No very sheltered accommodation Yes No

flashing lights as prompts to
check PC for next activity

No Yes needs assistance with toileting
and feeding

No Yes

Precision = 0.7 Recall = 0.8 Precision = 0.6 Recall = 0.6

Fig. 10. SmartHouse Devices for Test Problems

Problem A was the easiest to solve and this is confirmed by the high values of recall
obtained by SmartH-CBR. It activates nodes 3, and 4 in Figure 8. Node 4 is a concrete
node which results in the return of the attached solution shower with sitting facility.
However, two of the paths end at completely-abstract concept nodes which results in the
generation of two additional devices. Nevertheless, SmartH-CBR recommends all the
solutions that are proposed by the expert hence obtaining high recall for this problem.
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Problem B was harder to solve as SmartH-CBR was required to find devices that
would help the person, without knowledge of the person’s specific needs. It has a wider
space to search and was therefore more prone to returning solutions for completely-
abstract concept nodes. Hence the poorer values of precision and recall.

In its search for a solution to the intercom operation sub-problem in problem C,
SmartH-CBR activates a concrete node that results in the return of the solution visual
doorbell. One interesting thing to note though is that, for the television sub-problem,
SmartH-CBR returns the solution television amplifier OR audio amplifying headset be-
cause this particular path ends at a completely-abstract node. However, in real-life, ei-
ther solution would assist with the sub-problem that is why the expert gives the solution
as being either the television amplifier or the audio amplifying headset. Thus SmartH-
CBR recommends the right solution by returning solutions of sub-cases attached to a
completely-abstract node at which the search path ends.

Problem D was the most challenging. The fact that SmartH-CBR obtains reasonable
values of precision and recall shows that there is good coverage of cases in the case
base and that the vocabulary used is fairly standard since previously unseen terms can
activate concepts in the hierarchy. However, the hierarchy has to expand its vocabulary
and incorporate new terms. For example neither the query term poor hand to eye coor-
dination nor its sub-strings activate any concept node. This could be done by the expert
refining the concept hierarchy when she saw a need during problem-solving.

8 Conclusions and Future Work

We have presented SmartCAT, a case authoring tool that creates knowledge-rich cases
from semi-structured textual reports. SmartCAT uses SmartHouse problem-solving ex-
periences to learn a concept hierarchy. It then organises the knowledge-rich cases into
a structure based on concept-superconcept relationships in the concept hierarchy. The
result is SmartH-CBR, a hierarchically structured case-base where abstract cases and
sub-cases exist at several levels of abstraction and all nodes whose intents completely
represent a sub-problem are tagged with sub-solutions.

We obtain good results for precision and recall on the test cases. This is partly be-
cause tagging sub-problems with their solutions helps SmartH-CBR to retrieve only the
relevant part of an otherwise composite solution. SmartH-CBR’s ability to recommend
sensible solutions can also be attributed to the retrieval mechanism. The use of the hi-
erarchy as the basis for retrieval ensures the return of some form of solution. This is
particularly important in domains where high recall is preferred to high precision.

Unlike most textual case-based reasoning systems, SmartH-CBR’s case knowledge
and the structure of the case-base are generated automatically. This feature makes the
case knowledge for SmartH-CBR easy to acquire and maintain from textual records.
This is the main novelty in our work. The use of FCA and LSI in CBR is not novel but
using LSI to enrich FCA in order to exploit the resulting FCA hierarchy in CBR has not
been explored by others.

The concept hierarchy could benefit from interaction with a human expert who would
refine the relations and thus supplement existing knowledge with more background
knowledge. For this the knowledge determining the structure of the case base has to
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be comprehensible. The extents in the concept hierarchy have been named using both
a sub-problem header and the discovered disability term. These should be informative
descriptions of the underlying problem for the expert. The intents consist of terms that
an expert is likely to have chosen as key phrases. Therefore it is easy for an expert to
see the attributes in context and amend the hierarchy as necessary.
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retrieval. In: Funk, P., González Calero, P.A. (eds.) ECCBR 2004. LNCS (LNAI), vol. 3155,
pp. 806–820. Springer, Heidelberg (2004)


	Case Authoring: From Textual Reports to Knowledge-Rich Cases
	Introduction
	Related Work
	The SmartHouse Domain
	Identifying Relevant Terms
	Term Extraction from Textual Reports
	Latent Semantic Indexing
	Term Filtering

	Creation of a Concept Hierarchy
	Formal Concept Analysis
	FCA Objects and Attributes

	Case Representation and Organisation
	Evaluation
	Conclusions and Future Work



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (Color Management Off)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




