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Abstract. Artificial Intelligence techniques have been successfully ap-
plied to several computer games. However in some kinds of computer
games, like real-time strategy (RTS) games, traditional artificial intelli-
gence techniques fail to play at a human level because of the vast search
spaces that they entail. In this paper we present a real-time case based
planning and execution approach designed to deal with RTS games. We
propose to extract behavioral knowledge from expert demonstrations in
form of individual cases. This knowledge can be reused via a case based
behavior generator that proposes behaviors to achieve the specific open
goals in the current plan. Specifically, we applied our technique to the
WARGUS domain with promising results.

1 Introduction

Artificial Intelligence (AI) techniques have been successfully applied to several
computer games. However, in the vast majority of computer games traditional
AI techniques fail to play at a human level because of the characteristics of
the game. Most current commercial computer games have vast search spaces in
which the AI has to make decisions in real-time, thus rendering traditional search
based techniques inapplicable. For that reason, game developers need to spend
a big effort in hand coding specific strategies that play at a reasonable level for
each new game. One of the long term goals of our research is to develop artificial
intelligence techniques that can be directly applied to such domains, alleviating
the effort required by game developers to include advanced AI in their games.

Specifically, we are interested in real-time strategy (RTS) games, that have
been shown to have huge decision spaces that cannot be dealt with search based
AI techniques [2,3]. In this paper we will present a case-based planning architec-
ture that integrates planning and execution and is capable of dealing with both
the vast decision spaces and the real-time component of RTS games. Moreover,
applying case-based planning to RTS games requires a set of cases with which
to construct plans. To deal with this issue, we propose to extract behavioral
knowledge from expert demonstrations (i.e. an expert plays the game and our
system observes), and store it in the form of cases. Then, at performance time,
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the system will retrieve the most adequate behaviors observed from the expert
and will adapt them to the situation at hand.

As we said before, one of the main goals of our research is to create AI
techniques that can be used by game manufacturers to reduce the effort required
to develop the AI component of their games. Developing the AI behavior for an
automated agent that plays a RTS is not an easy task, and requires a large
coding and debugging effort. Using the architecture presented in this paper the
game developers will be able to specify the AI behavior just by demonstration;
i.e. instead of having to code the behavior using a programming language, the
behavior can be specified simply by demonstrating it to the system. If the system
shows an incorrect behavior in any particular situation, instead of having to find
the bug in the program and fix it, the game developers can simply demonstrate
the correct action in the particular situation. The system will then incorporate
that information in its case base and will behave better in the future.

Another contribution of the work presented in this paper is on presenting
an integrated architecture for case-based planning and execution. In our archi-
tecture, plan retrieval, composition, adaptation, and execution are interleaved.
The planner keeps track of all the open goals in the current plan (initially, the
system starts with the goal of winning the game), and for each open goal, the
system retrieves the most adequate behavior in the case base depending on the
current game state. This behavior is then added into the current plan. When a
particular behavior has to be executed, it is adapted to match the current game
state and then it is executed. Moreover, each individual action or sub-plan inside
the plan is constantly monitored for success or failure. When a failure occurs,
the system attempts to retrieve a better behavior from the case base. This inter-
leaved process of case based planning and execution allows the system to reuse
the behaviors extracted from the expert and apply them to play the game.

The rest of the paper is organized as follows. Section 2 presents a summary
of related work. Then, Section 3 introduces the proposed architecture and its
main modules. After that, Section 4 briefly explains the behavior representation
language used in our architecture. Section 5 explains the case extraction process.
Then sections 6 and 7 present the planning module and the case based reasoning
module respectively. Section 8 summarizes our experiments. Finally, the paper
finishes with the conclusions section.

2 Related Work

Concerning the application of case-based reasoning techniques to computer
games, Aha et al. [2] developed a case-based plan selection technique that learns
how to select an appropriate strategy for each particular situation in the game of
WARGUS. In their work, they have a library of previously encoded strategies,
and the system learns which one of them is better for each game phase. In addi-
tion, they perform an interesting analysis on the complexity of real-time strategy
games (focusing on WARGUS in particular). Another application of case based
reasoning to real-time strategy games is that of Sharma et al. [15], where they
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present a hybrid case based reinforcement learning approach able to learn which
are the best actions to apply in each situation (from a set of high level actions).
The main difference between their work and ours is that they learn a case selec-
tion policy, while our system constructs plans from the individual cases it has in
the case base. Moreover, our architecture automatically extracts the plans from
observing a human rather than having them coded in advance.

Ponsen et al [14] developed a hybrid evolutionary and reinforcement learning
strategy for automatically generating strategies for the game of WARGUS. In
their framework, they construct a set of rules using an evolutionary approach
(each rule determines what to do in a set of particular situations). Then they use
a reinforcement learning technique called dynamic scripting to select a subset
of these evolved rules that achieve a good performance when playing the game.
There are several differences between their approach and ours. First, they focus
on automatically generating strategies while we focus on acquiring them from
an expert. Moreover, each of their individual rules could be compared to one of
our behaviors, but the difference is that their strategies are combined in a pure
reactive way, while our strategies are combined using a planning approach. For
our planner to achieve that, we require each individual behavior to be annotated
with the goal it pursues.

Hoang et al. [9] propose to use a hierarchical plan representation to encode
strategic game AI. In their work, they use HTN planning (inside the framework of
Goal-Oriented Action Planning [13]). Further, in [11] Muñoz and Aha propose
a way to use case based planning to the same HTN framework to deal with
strategy games. Moreover, they point out that case based reasoning provides
a way to generate explanations on the decisions (i.e. plans) generated by the
system. The HTN framework is very related to the work presented in this paper,
where we use the task-method decomposition to represent plans. Moreover, in
their work they focus on the planing aspects of the problem while in this paper
we focus on the learning aspects of the problem, i.e. how to learn from expert
demonstrations.

The work presented in this paper is strongly related to existing work in case-
based planning [8]. Case Based Planning work is based on the idea of planning
by remembering instead of planning from scratch. Thus, a case based planner
retains the plans it generates to reuse them in the future, uses planning failures
as opportunities for learning, and tries to retrieve plans in the past that satisfy
as many of the current goals as possible. Specifically, our work focuses on an
integrated planning and execution architecture, in which there has been little
work in the case based planning community. A sample of such work is that
of Freßmann et al. [6], where they combine CBR with multi-agent systems to
automate the configuration and execution of workflows that have to be executed
by multiple agents.

Integrating planning and execution has been studied in the search based plan-
ning community. For example, CPEF [12] is a framework for continuous planning
and execution. CPEF shares a common assumption with our work, namely that
plans are dynamic artifacts that must evolve with the changing environment in
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Fig. 1. A screenshot of the WARGUS game

which they are executing changes. However, the main difference is that in our
approach we are interested in case based planning processes that are able to deal
with the huge complexity of our application domain.

3 Case-Based Planning in WARGUS

WARGUS (Figure 1) is a real-time strategy game where each player’s goal
is to remain alive after destroying the rest of the players. Each player has a
series of troops and buildings and gathers resources (gold, wood and oil) in
order to produce more troops and buildings. Buildings are required to produce
more advanced troops, and troops are required to attack the enemy. In addition,
players can also build defensive buildings such as walls and towers. Therefore,
WARGUS involves complex reasoning to determine where, when and which
buildings and troops to build. For example, the map shown in Figure 1 is a
2-player version of the classical map “Nowhere to run nowhere to hide”, with
a wall of trees that separates the players. This maps leads to complex strategic
reasoning, such as building long range units (such as catapults or ballistas) to
attack the other player before the wall of trees has been destroyed, or tunneling
early in the game through the wall of trees trying to catch the enemy by surprise.

Traditionally, games such as WARGUS use handcrafted behaviors for the
built-in AI. Creating such behaviors requires a lot of effort, and even after that,
the result is that the built-in AI is static and easy to beat (since humans can
easily find holes in the computer strategy). The goal of the work presented in
this paper is to ease the task of the game developers to create behaviors for
these games, and to make them more adaptive. Our approach involves learning
behaviors from expert demonstrations to reduce the effort of coding the behav-
iors, and use the learned behaviors inside a case-based planning system to reuse
them for new situations. Figure 2 shows an overview of our case-based planning
approach. Basically, we divide the process in two main stages:
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Fig. 2. Overview of the proposed case-based planning approach

– Behavior acquisition: During this first stage, an expert plays a game of
WARGUS and the trace of that game is stored. Then, the expert anno-
tates the trace explaining the goals he was pursuing with the actions he
took while playing. Using those annotations, a set of behaviors are extracted
from the trace and stored as a set of cases. Each case is a triple: situa-
tion/goal/behavior, representing that the expert used a particular behavior
to achieve a certain goal in a particular situation.

– Execution: The execution engine consists of two main modules, a real-time
plan expansion and execution (RTEE) module and a behavior generation
(BG) module. The RTEE module maintains an execution tree of the current
active goals and subgoals and which behaviors are being executed to achieve
each of the goals. Each time there is an open goal, the RTEE queries the BG
module to generate a behavior to solve it. The BG then retrieves the most
appropriate behavior from its case base, and sends it to the RTEE. Finally,
when the RTEE is about to start executing a behavior, it is sent back to
the BG module for adaptation. Notice that this delayed adaptation is a key
feature different from traditional CBR required for real-time domains where
the environment continuously changes.

In the following sections we will present each of the individual components of
our architecture.

4 A Behavior Reasoning Language

In this section we will present the Behavior Reasoning Language used in our
approach, designed to allow a system to learn behaviors, represent them, and to
reason about the behaviors and their intended and actual effects. Our language
takes ideas from the STRIPS [5] planning language, and from the ABL [10]
behavior language, and further develops them to allow advanced reasoning and
learning capabilities over the behavior language.

The basic constituent piece is the behavior. A behavior has two main parts:
a declarative part and a procedural part. The declarative part has the purpose
of providing information to the system about the intended use of the behavior,
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and the procedural part contains the executable behavior itself. The declarative
part of a behavior consists of three parts:

– A goal, that is a representation of the intended goal of the behavior. For
every domain, an ontology of possible goals has to be defined. For instance,
a behavior might have the goal of “having a tower”.

– A set of preconditions that must be satisfied before the behavior can be
executed. For instance, a behavior can have as preconditions that a particular
peasant exists and that a desired location is empty.

– A set of alive conditions that represent the conditions that must be satisfied
during the execution of the behavior for it to have chances of success. If
at some moment during the execution, the alive conditions are not met,
the behavior can be stopped, since it will not achieve its intended goal. For
instance, the peasant in charge of building a building must remain alive; if
he is killed, the building will not be built.

Notice that unlike classical planning approaches, postconditions cannot be
specified for behaviors, since a behavior is not guaranteed to succeed. Thus, we
can only specify what goal a behavior pursues.

The procedural part of a behavior consists of executable code that can contain
the following constructs: sequence, parallel, action, and subgoal, where an action
represents the execution of a basic action in the domain of application (a set of
basic actions must be defined for each domain), and a subgoal means that the
execution engine must find another behavior that has to be executed to satisfy
that particular subgoal. Specifically, three things need to be defined for using
our language in a particular domain:

– A set of basic actions that can be used in the domain. For instance, in
WARGUS we define actions such asmove, attack, or build.

– A set of sensors, that are used in the behaviors to obtain information about
the current state of the world. For instance, in WARGUS we might define
sensors such as numberOfTroops, or unitExists. A sensor might return any
of the standard basic data types, such as boolean or integer.

– A set of goals. Goals can be structured in a specialization hierarchy in order
to specify the relations among them.

A goal might have parameters, and for each goal a function generateSuc-
cessTest must be defined, that is able to generate a condition that is satisfied
only when the goal is achieved. For instance, HaveUnits(TOWER) is a valid goal
in our gaming domain and it should generate the condition UnitExists(TOWER).
Such condition is called the success test of the goal. Therefore, the goal definition
can be used by the system to reason about the intended result of a behavior,
while the success test is used by the execution engine to verify whether a par-
ticular behavior succeeds at run time.

Summarizing, our behavior language is strongly inspired by ABL, but ex-
pands it with declarative annotations (expanding the representation of goals
and defining alive and success conditions) to allow reasoning.



170 S. Ontañón et al.

Table 1. Snippet of a real trace generated after playing WARGUS

Cycle Player Action Annotation
8 1 Build(2,“pig-farm”,26,20) -

137 0 Build(5,“farm”,4,22) SetupResourceInfrastructure(0,5,2)
WinWargus(0)

638 1 Train(4,“peon”) -
638 1 Build(2,“troll-lumber-mill”,22,20) -
798 0 Train(3,“peasant”) SetupResourceInfrastructure(0,5,2)

WinWargus(0)
878 1 Train(4,“peon”) -
878 1 Resource(10,5) -
897 0 Resource(5,0) SetupResourceInfrastructure(0,5,2)

WinWargus(0)
... ... ... ...

5 Behavior Acquisition in WARGUS

As Figure 2 shows, the first stage of our case-based planning architecture consists
of acquiring a set of behaviors from an expert demonstration. Let us present this
stage in more detail.

One of the main goals of this work is to allow a system to learn a behavior by
simply observing a human, in opposition to having a human encoding the behav-
ior in some form of programming language. To achieve that goal, the first step in
the process must be for the expert to provide the demonstration to the system. In
our particular application domain, WARGUS, an expert simply plays a game of
WARGUS (against the built-in AI, or against any other opponent). As a result
of that game, we obtain a game trace, consisting of the set of actions executed
during the game. Table 1 shows a snippet of a real trace from playing a game of
WARGUS. As the table shows, each trace entry contains the particular cycle in
which an action was executed, which player executed the action, and the action
itself. For instance, the first action in the game was executed at cycle 8, where
player 1 made his unit number 2 build a “pig-farm” at the (26,20) coordinates.

As Figure 2 shows, the next step is to annotate the trace. For this process,
the expert uses a simple annotation tool that allows him to specify which goals
was he pursuing for each particular action. To use such an annotation tool, a set
of available goals has to be defined for the WARGUS domain.

In our approach, a goal g = name(p1, ..., pn) consists of a goal name and a set
of parameters. For instance, in WARGUS, these are some of the goal types we
have defined:

– WinWargus(player): representing that the action had the intention of mak-
ing the player player win the game.

– KillUnit(unit): representing that the action had the intention of killing the
unit unit.
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Fig. 3. Extraction of cases from the annotated trace

– SetupResourceInfrastructure(player, peasants, farms): indicates that the
expert wanted to create a good resource infrastructure for player player, that
at least included peasants number of peasants and farms number of farms.

The fourth column of Table 1 shows the annotations that the expert specified
for his actions. Since the snippet shown corresponds to the beginning of the
game, the expert specified that he was trying to create a resource infrastructure
and, of course, he was trying to win the game.

Finally, as Figure 2 shows, the annotated trace is processed by the case ex-
tractor module, that encodes the strategy of the expert in this particular trace
in a series of cases. Traditionally, in the CBR literature cases consist of a prob-
lem/solution pair; in our system we extended that representation due to the
complexity of the domain of application. Specifically, a case in our system is de-
fined as a triple consisting of a game state, a goal and a behavior. See Section 7
for a more detailed explanation of our case formalism.

In order to extract cases, the annotated trace is analyzed to determine the
temporal relations among the individual goals appearing in the trace. For in-
stance, if we look at the sample annotated trace in Figure 3, we can see that the
goal g2 was attempted before the goal g3, and that the goal g3 was attempted
in parallel with the goal g4. The kind of analysis required is a simplified version
of the temporal reasoning framework presented by Allen [7], where the 13 basic
different temporal relations among events were identified. In our framework, we
are only interested in knowing if two goals are pursued in sequence, in parallel, or
if one is a subgoal of the other. We assume that if the temporal relation between
a particular goal g and another goal g′ is that g happens during g′, then g is
a subgoal of g′. For instance, in Figure 3, g2, g3, g4, and g5 happen during g1;
thus they are considered subgoals of g1.

From temporal analysis, procedural descriptions of the behavior of the expert
can be extracted. For instance, from the relations among all the goals in Figure 3,



172 S. Ontañón et al.
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case number 1 (shown in the figure) can be extracted, specifying that to achieve
goal g1 in the particular game state in which the game was at cycle 137, the
expert first tried to achieve goal g2, then attempted g3 and g4 in parallel, and
after that g5 was pursued. Then, for each one of the subgoals a similar analysis is
performed, leading to four more cases. For example, case 3 states that to achieve
goal g2 in that particular game state, basic actions a4 and a6 should be executed
sequentially.

6 Real-Time Plan Expansion and Execution

During execution time, our system will use the set of cases collected from expert
traces to play a game of WARGUS. In particular two modules are involved
in execution: a real-time plan expansion and execution module (RTEE) and
a behavior generation module (BG). Both modules collaborate to maintain a
current partial plan tree that the system is executing.

A partial plan tree (that we will refer to as simply the “plan”) in our framework
is represented as a tree consisting of two types of nodes: goals and behaviors (fol-
lowing the same idea of the task/method decomposition [4]). Initially, the plan
consists of a single goal: “win the game”. Then, the RTEE asks the BG module
to generate a behavior for that goal. That behavior might have several subgoals,
for which the RTEE will again ask the BG module to generate behaviors, and
so on. For instance, on the right hand side of Figure 4 we can see a sample
plan, where the top goal is to “win”. The behavior assigned to the “win” goal
has three subgoals, namely “build base”, “build army” and “attack”. The “build
base” goal has already a behavior assigned that has no subgoals, and the rest
of subgoals still don’t have an assigned behavior. When a goal still doesn’t have
an assigned behavior, we say that the goal is open.

Additionally, each behavior in the plan has an associated state. The state of
a behavior can be: pending, executing, succeeded or failed. A behavior is pending
when it still has not started execution, and its status is set to failed or succeeded
after its execution ends, depending on whether it has satisfied its goal or not.
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A goal that has a behavior assigned and where the behavior has failed is also
considered to be open (since a new behavior has to be found for this goal).

Open goals can be either ready or waiting. An open goal is ready when all the
behaviors that had to be executed before this goal have succeeded, otherwise, it
is waiting. For instance, in Figure 4, “behavior 0” is a sequential behavior and
therefore the goal “build army” is ready since the “build base” goal has already
succeeded and thus “build army” can be started. However, the goal “attack” is
waiting, since “attack” has to be executed after “build army” succeeds.

The RTEE is divided into two separate modules, that operate in parallel
to update the current plan: the plan expansion module and the plan execution
module. The plan expansion module is constantly querying the current plan to
see if there is any ready open goal. When this happens, the open goal is sent to
the BG module to generate a behavior for it. Then, that behavior is inserted in
the current plan, and it is marked as pending.

The plan execution module has two main functionalities: a) check for basic
actions that can be sent directly to the game engine, b) check the status of plans
that are in execution:

– For each pending behavior, the execution module evaluates the precondi-
tions, and as soon as they are met, the behavior starts its execution.

– If any of the execution behaviors have any basic actions, the execution mod-
ule sends those actions to WARGUS to be executed.

– Whenever a basic action succeeds or fails, the execution module updates the
status of the behavior that contained it. When a basic action succeeds, the
executing behavior can continue to the next step. When a basic action fails,
the behavior is marked as failed, and thus its corresponding goal is open
again (thus, the system will have to find another plan for that goal).

– The execution module periodically evaluates the alive conditions and success
conditions of each behavior. If the alive conditions of an executing behavior
are not satisfied, the behavior is marked as failed, and its goal is open again.
If the success conditions of a behavior are satisfied, the behavior is marked
as succeeded.

– Finally, if a behavior is about to be executed and the current game state has
changed since the time the BG module generated it, the behavior is handed
back to the BG and it will pass again through the adaptation phase (see
Section 7) to make sure that the plan is adequate for the current game state.

7 Behavior Generation

The goal of the BG module is to generate behaviors for specific goals in specific
scenarios. Therefore, the input to the BG module is a particular scenario (i.e.
the current game state in WARGUS) and a particular goal that has to be
achieved (e.g. “Destroy The Enemy’s Cannon Tower”). To achieve that task,
the BG system uses two separate processes: case retrieval and case adaptation
(that correspond to the first two processes of the 4R CBR model [1]).



174 S. Ontañón et al.

mapsize = 32x32
waterArea = 0
treeArea = 85
goldmines = 2

SetupResourceInfrastructure(1,2,1)

Build(2,”pig-farm”,26,20)
Train(4,”peon”)
Build(2,”troll-lumber-mill”,22,20)
Train(4,”peon”)
Resource(10,5)
Resource(12,5)

GOAL:

BEHAVIOR:

STATE:

numTownhalls = 1
numPeasants = 1

numFarms = 0
numFighters = 0

…

numTownhalls = 1
numPeasants = 1

numFarms = 0
numFighters = 0

…

Player 0 Player 1

Case 1:

Fig. 5. Example of a case extracted from an expert trace for the WARGUS game

Notice that to solve a complex planning task, several subproblems have to be
solved. For instance, in our domain, the system has to solve problems such as
how to build a proper base, how to gather the necessary resources, or how to de-
stroy each of the units of the enemy. All those individual problems are different
in nature, and in our case base we might have several cases that contain differ-
ent behaviors to solve each one of these problems under different circumstances.
Therefore, in our system we will have an heterogeneous case base. To deal with
this issue, we propose to include in each case the particular goal that it tries to
solve. Therefore we represent cases as triples: c = 〈S, G, B〉, where S is a partic-
ular game state, G is a goal, and B is a behavior; representing that c.B is a good
behavior to apply when we want to pursue goal c.G in a game state similar to c.S.

Figure 5 shows an example of a case, where we can see the three elements: a
game description, that contains some general features about the map and some
information about each of the players in the game; a particular goal (in this
case, building the resource infrastructure of player “1”); and finally a behavior
to achieve the specified goal in the given map. In particular, we have used a game
state definition composed of 35 features that try to represent each aspect of the
WARGUS game. Twelve of them represent the number of troops (number of
fighters, number of peasants, and so on), four of them represent the resources
that the player disposes of (gold, oil, wood and food), fourteen represent the
description of the buildings (number of town halls, number of barracks, and
so on) and finally, five features represent the map (size in both dimensions,
percentage of water, percentage of trees and number of gold mines).

The case retrieval process uses a standard nearest neighbor algorithm but
with a similarity metric that takes into account both the goal and the game
state. Specifically, we use the following similarity metric:

d(c1, c2) = αdGS(c1.S, c2.S) + (1 − α)dG(c1.G, c2.G)

where dGS is a simple Euclidean distance between the game states of the two
cases (where all the attributes are normalized between 0 and 1), dG is the distance
metric between goals, and α is a factor that controls the importance of the game
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state in the retrieval process (in our experiments we used α = 0.5). To measure
distance between two goals g1 = name1(p1, ..., pn) and g2 = name2(q1, ..., qm)
we use the following distance:

dG(g1, g2) =

⎧
⎨

⎩

√
∑

i=1...n

(
pi−qi

Pi

)2
if name1 = name2

1 otherwise

where Pi is the maximum value that the parameter i of a goal might take (we
assume that all the parameters have positive values). Thus, when name1 =
name2, the two goals will always have the same number of parameters and the
distance can be computed using an Euclidean distance among the parameters.
The distance is maximum (1) otherwise.

The result of the retrieval process is a case that contains a behavior that
achieves a goal similar to the requested one by the RTEE, and that can be applied
to a similar map than the current one (assuming that the case base contains
cases applicable to the current map). The behavior contained in the retrieved
case then needs to go through the adaptation process. However, our system
requires delayed adaptation because adaptation is done according to the current
game state, and the game state changes with time. Thus it is interesting that
adaptation is done with the most up to date game state (ideally with the game
state just before the behavior starts execution). For that reason, the behavior in
the retrieved case is initially directly sent to the RTEE. Then, when the RTEE
is just about to start the execution of a particular behavior, it is sent back to
the BG module for adaptation.

The adaptation process consists of a series of rules that are applied to each
one of the basic operators of a behavior so that it can be applied in the current
game state. Specifically, we have used two adaptation rules in our system:

– Unit adaptation: each basic action sends a particular command to a given
unit. For instance the first action in the behavior shown in Figure 5 commands
the unit “2” to build a “pig-farm”. However, when that case is retrieved and
applied to a different map, that particular unit “2” might not correspond to a
peon (the unit that can build farms) or might not even exist (the “2” is just an
identifier). Thus, the unit adaptation rule finds the most similar unit to the
one used in the case for this particular basic action. To perform that search,
each unit is characterized by a set of 5 features: owner, type, position (x,y),
hit-points, and status (that can be idle, moving, attacking, etc.) and then the
most similar unit (according to an Euclidean distance using those 5 features)
in the current map to the one specified in the basic action is used.

– Coordinate adaptation: some basic actions make reference to some particular
coordinates in the map (such as the move or build commands). To adapt
the coordinates, the BG module gets (from the case) how the map in the
particular coordinates looks like by retrieving the content of the map in a 5x5
window surrounding the specified coordinates. Then, it looks in the current
map for a spot in the map that is the most similar to that 5x5 window, and
uses those coordinates.
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Table 2. Summary of the results of playing against the built-in AI of WARGUS in
several 2-player versions of “Nowhere to run nowhere to hide”

map1 map2 map3
trace1 3 wins 3 wins 1 win, 1 loss, 1 tie
trace2 1 loss, 2 ties 2 wins, 1 ties 2 losses, 1 tie

trace1 & trace2 3 wins 3 wins 2 wins 1 tie

8 Experimental Results

To evaluate our approach, we used several variations of a 2-player version of the
well known map “Nowhere to run nowhere to hide”, all of them of size 32x32.
As explained in Section 3, this map has the characteristic of having a wall of
trees that separates the players and that leads to complex strategic reasonings.
Specifically, we used 3 different variations of the map (that we will refer as map1,
map2 and map3), where the initial placement of the buildings (a gold mine, a
townhall and a peasant in each side) varies strongly, and also the wall of trees
that separates both players is very different in shape (e.g. in one of the maps it
has a very thin point that can be tunneled easily).

We recorded expert traces for the first two variants of the map (that we will
refer as trace1 and trace2). Specifically, trace1 was recorded in map1 and used a
strategy consisting on building a series of ballistas to fire over the wall of trees;
and trace2 was recorded in map2 and tries to build defense towers near the wall
of trees so that the enemy cannot chop wood from it. Each trace contains 50 to
60 actions, and about 6 to 8 cases can be extracted from each of them. Moreover,
in our current experiments, we have assumed that the expert wins the game, it
remains as future work to analyze how much the quality of the expert trace
affects the performance of the system.

We tried the effect of playing with different combinations of them in the
three variations of the map. For each combination, we allowed our system to
play against the built-in AI three times (since WARGUS has some stochastic
elements), making a total of 27 games.

Table 2 shows the obtained results when our system plays only extracting
cases from trace1, then only extracting cases from trace2, and finally extracting
cases from both. The table shows that the system plays the game at a decent
level, managing to win 17 out of the 27 games it played. Moreover, notice that
when the system uses several expert traces to draw cases from, its play level
increases greatly. This can be seen in the table since from the 9 games the
system played using both expert traces, it won 8 of them and never lost a game,
tying only once. Moreover, notice also that the system shows adaptive behavior
since it was able to win in some maps using a trace recorded in a different map
(thanks to the combination of planning, execution, and adaptation).

Finally, we would like to remark the low time required to train our system
to play in a particular map (versus the time required to write a handcrafted
behavior to play the same map). Specifically, to record a trace an expert has to
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play a complete game (that takes between 10 and 15 minutes in the maps we
used) and then annotate it (to annotate our traces, the expert required about
25 minutes per trace). Therefore, in 35 to 40 minutes of time it is possible to
train our architecture to play a set of WARGUS maps similar to the one where
the trace was recorded (of the size of the maps we used). In contrast, one of our
students required several weeks to hand code a strategy to play WARGUS at
the level of play of our system. Moreover, this are preliminary results and we
plan to systematically evaluate this issue in future work. Moreover, as we have
seen our system is able to combine several traces and select cases from one or the
other according to the current situation. Thus, an expert trace for each single
map is not needed.

9 Conclusions

In this paper we have presented a case based planning framework for real-time
strategy games. The main features of our approach are a) the capability to deal
with the vast decision spaces required by RTS games, b) being able to deal
with real-time problems by interleaving planning and execution in real-time,
and, c) solving the knowledge acquisition problem by automatically extracting
behavioral knowledge from annotated expert demonstrations in form of cases. We
have evaluated our approach by applying it to the real-time strategy WARGUS
with promising results.

The main contributions of this framework are: 1) a case based integrated
real-time execution and planning framework; 2) the introduction of a behavior
representation language that includes declarative knowledge as well as procedu-
ral knowledge to allow both reasoning and execution; 3) the idea of automatic
extraction of behaviors from expert traces as a way to automatically extract do-
main knowledge from an expert; 4) the idea of heterogeneous case bases where
cases that contain solutions for several different problems (characterized as goals
in our framework) coexist and 5) the introduction of delayed adaptation to deal
with dynamic environments (where adaptation has to be delayed as much as
possible to adapt the behaviors with the most up to date information).

As future lines of research we plan to experiment with adding a case retention
module in our system that retains automatically all the adapted behaviors that
had successful results while playing, and also annotating all the cases in the case
base with their rate of success and failure allowing the system to learn from
experience. Additionally, we would like to systematically explore the transfer
learning [15] capabilities of our approach by evaluating how the knowledge learnt
(both from expert traces or by experience) in a set of maps can be applied to a
different set of maps. We also plan to further explore the effect of adding more
expert traces to the system and evaluate if the system is able to properly extract
knowledge from each of them to deal with new scenarios.

Further, we would like to improve our current planning engine so that, in
addition to sequential and parallel plans, it can also handle conditional plans.
Specifically, one of the main challenges of this approach will be to detect and
properly extract conditional behaviors from expert demonstrations.
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