
Using Cases Utility for Heuristic Planning
Improvement

Tomás de la Rosa, Angel Garćıa Olaya, and Daniel Borrajo

Departamento de Informática, Universidad Carlos III de Madrid
Avda. de la Universidad, 30. Leganés (Madrid). Spain

trosa@inf.uc3m.es, agolaya@inf.uc3m.es, dborrajo@ia.uc3m.es

Abstract. Current efficient planners employ an informed search guided
by a heuristic function that is quite expensive to compute. Thus, ordering
nodes in the search tree becomes a key issue, in order to select efficiently
nodes to evaluate from the successors of the current search node. In a
previous work, we successfully applied a CBR approach to order nodes
for evaluation, thus reducing the number of calls to the heuristic func-
tion. However, once cases were learned, they were not modified according
to their utility on solving planning problems. We present in this work a
scheme for learning case quality based on its utility during a validation
phase. The qualities obtained determine the way in which these cases are
preferred in the retrieval and replay processes. Then, the paper shows
some experimental results for several benchmarks taken from the Inter-
national Planning Competition (IPC). These results show the planning
performance improvement when case utilities are used.

1 Introduction

AI planning consists of the computational task of given a domain theory (prob-
lem space represented in a form of first order logic as a set of predicates, actions
and types), and a problem to be solved (instances of types, initial state and
goals), obtain a plan. The plan usually consists of an ordered set of instantiated
actions that transform the initial state into a state where the goals are met.
Some of the most useful current approaches to planning are based on heuristic
planning. Heuristic planners (e.g., ff [1], yahsp [2] or SGPlan [3]) are mainly
composed of an efficient search algorithm guided by a heuristic function. The
standard heuristic used consists of computing a solution to a relaxed planning
problem, and then returning the cost of that solution. It was first introduced
by ff and has proven to be accurate enough to guide efficiently the planners
towards reasonable solutions in most of the benchmark domains1. One of the
drawbacks of this heuristic is its computational cost, since it consumes most of
the total planning time. To address this issue, among other solutions, researchers
have incorporated additional heuristics to make the heuristic values more accu-
rate, thus reducing, for instance, the number of ties of heuristic values through
1 Since the reader does not need to know how it actually works, we refer the reader

to the ff papers for its details [1].

R.O. Weber and M.M. Richter (Eds.): ICCBR 2007, LNAI 4626, pp. 137–148, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

138 T. de la Rosa, A. Garćıa Olaya, and D. Borrajo

the search tree. Another option for improving planning time consists of ordering
the way in which nodes are evaluated when a greedy algorithm is used. ff uses
as the standard search algorithm a variation of hill-climbing called enforced hill-
climbing (EHC). In order to select the next successor of the current node, EHC
evaluates one successor after another, until it finds one that returns a heuristic
value better than the current node. Therefore, if node evaluations are correctly
ordered, it might imply a reduction on the number of evaluations: the sooner
a good successor is evaluated, the more probable will be to continue the search
further.

In our previous work [4,5], we showed that a CBR approach could improve
the planning time deciding the node evaluation order in EHC. This domain-
dependent knowledge is stored in a case base. The training phase consists of
solving a set of planning problems, and then extracting cases from the solution
path. Cases were structures called typed sequences which are abstracted state
transitions incorporated with the set of actions performed to solve the problem
for each object type in the domain, as we will describe in more detail in the next
section. This CBR cycle worked very well in the tested domains. However, we did
not assess how good the learned knowledge was, since the cases were extracted
from non-optimal solutions. Furthermore, there was no maintenance of the case
base, apart from merging new solutions to problems with previous ones. Also,
cases were used regardless of their efficiency of replaying them previously. In
this paper, we present an improved approach that dynamically learns the case
qualities, in terms of how useful they were for supporting planning search.

In the following sections we present a summary of how typed sequences are
used to support EHC. Then, we introduce the scheme for assessing case quality
based on two utility measures, one related to the sequence steps and the other one
related to the global use of the sequences during the replay process. Afterwards,
we show the experimental results comparing EHC, the previous approach, and
the use of cases based on their quality. We also include a study of training the
case base to recognize how much it may be populated depending on a particular
domain. We also use this study to select a good case base for assessing case
qualities. Finally we discuss some conclusions and future work.

2 Typed Sequences Overview

Current planners use a common standard language for describing their inputs,
the Planning Domain Definition Language (PDDL). This language is used in
the planning competitions (IPC) held every two years for describing the do-
mains and problems to be solved. Once of the features of the domain definitions
is the possibility of assigning types to predicate arguments and action variables.
This permits to recognize typical state transitions that each object type has [6].
In our work, we define a case as a sequence of these transitions, called typed se-
quence, which describes a particular episode of the object type. As an example,
if we have a domain in which crates have to be moved among some depots, using

Using Cases Utility for Heuristic Planning Improvement 139

trucks and hoists to load them into the trucks, we will have cases that refer to
crates, cases that refer to trucks, and so on for each type in the domain.

A typed sequence of a given type is formed by an ordered list of pairs (typed
sub-state, action to reach the state). A typed sub-state is a collection of all
properties that an object has in a particular state. The notion of object properties
was first introduced by TIM [6] with its domain analysis techniques. A property
is defined as a predicate subscripted with the object position of a literal (e.g.,
at1 is a property of object truck1 in the literal (at truck1 depot0). In addition,
an object sub-state is the set of the state literals in which the object is present.
Then, the set of object properties that forms the typed sub-state is extracted
from the object sub-state. For instance, suppose we have an initial state like
[(at truck1 depot1) (on crate0 crate1) (at crate0 depot0) (available hoist1) (clear
crate0). . .]. Then, the object sub-state of crate0 would be [(on crate0 crate1)
(at crate0 depot0) (clear crate0)]. This is generalized to (on1 at1 clear1) which
is a typed sub-state of type crate. If action lift(hoist1,crate0,crate1,depot0) were
applied in the initial state, we would generate first a pair with the initial state
and no action, and a second pair with the state resulting from applying that
action, and the action: [(lifting1 at1), lift].

The typed sequences grouped by domain types form the case base. In a train-
ing phase, the case base is populated, solving the training problems and ex-
tracting a sequence for each object of the problem instance. Figure 1 shows an
example of a typed sequence for crate0 and the plan from which it was generated.
The two no-op in the sequence are steps in which the typed sub-state does not
change (no action related to crate0 was executed), so there is no relevant action
to store in the sequence.

Fig. 1. An example of a typed sequence relevant to a crate

Typed sequences are used as follows. In a new problem, the planner retrieves
from the case base the most similar sequence for each instance (object) in the

140 T. de la Rosa, A. Garćıa Olaya, and D. Borrajo

problem. First, for each object in the problem instance, we generate two typed
sub-state, one from the initial state and the other from the problem goals (goals
are also described as state literals). Then, we match the typed sub-state from
the goals against the last step of all sequences in the case base. Then, we do
the same with the initial typed sub-state and the first step of the sequences
that resulting from the first match. The retrieved sequences are generalizations
of sub-states, so in order to use them properly, they are partially instantiated
in the adaptation phase by using objects found in applicable actions from the
initial state.2

Then, a modified version of EHC generates at any state S its successors, and
checks if any successor is recommended by the retrieved cases. If there are, the
successors are evaluated in order for obtaining their heuristic value h(S′). If h(S′)
is strictly less than h(S), the successor is selected, and the search continues from
it, until a state achieving the problem goals is reached. If h(S′) is equal or greater
than h(S), a second attempt with the next successor is done, and so on, until a
node with a better heuristic is found. If the CBR module could not recommend
any node, all skipped successors are evaluated in order, and the standard EHC
is used. A successor is recommended when its object sub-state (typed sub-state
if it is not fully instantiated) matches the current sequence step in one of the
retrieved sequences.

This approach has been implemented in sayphi, a learning architecture in
which several techniques for control knowledge acquisition can be integrated
with a heuristic planner. The sayphi planner is an ff-like heuristic planner.
The planner includes several search algorithms and the same heuristic function
as ff. Figure 2 shows its architecture. We are currently using EHC as the search
algorithm, but we could use any other included in the planner, like the stan-
dard hill-climbing technique used in [4]. Also, there is one case base for each
domain.

3 Computing Quality of Cases

One of the drawbacks of this approach is that heuristic planners generate non-
optimal plans, and the typed sequences are extracted from those non-optimal
solutions. Moreover, our retrieval scheme returns the first choice when it finds an
exact match of the initial and goal typed sub-states, regardless of any other case
with an exact match too. This suggests that we could improve the behavior of the
CBR approach, by assessing cases quality, and using the quality to prefer useful
cases in the retrieval. An additional issue is that CBR could recommend more
than one node to evaluate in EHC, since the replay process uses one sequence per
object. This suggests that we can also improve the CBR behavior by assessing
how useful the steps in a sequence are, so we can break ties among cases when
they provide different recommendations of nodes to be evaluated first. In this
section we introduce two utility measures to address these issues.

2 We refer for details to [5].

Using Cases Utility for Heuristic Planning Improvement 141

Fig. 2. The sayphi architecture

3.1 Step Utility Measure

During the search, the CBR approach continues following (advances to its next
step) a retrieved case (typed sequence) in three different situations. The stan-
dard one is when a node (state) matches the current step of the case, and the
evaluation of the recommended node improves the heuristic value of its parent.
The second one is when the evaluation of the recommended node does not im-
prove the heuristic value, but none of its siblings improve the heuristic value
either. Even if it was not a good option, there was nothing better in the case
base. The third one is when a node is recommended by two or more cases. All
cases are then advanced to the next step if the node evaluation improves the
heuristic value. Thus, we say that a “right choice” is a step sequence that rec-
ommended a node that belongs to the solution path (independently, of whether
it improves the heuristic value of its parent). Likewise, we say that a “wrong
choice” is a sequence step that recommended a node that does not belong to
the solution path. If there is a wrong choice, there must be a sibling node that
improves the heuristic value. The sum of right and wrong choices of a case is the
number of recommendation attempts of the case. Thus, being g the number of
right choices and A the number of recommendations, we define the step utility
measure as:

γ =
g

A
(1)

γ is the step frequency of recommending a good choice. This frequency can be
easily computed after a problem is solved by just having a recommendation
trace of evaluated nodes. We wanted to deal with the exploration vs. exploita-
tion trade-off: when there is no good case for recommending a node, we can

142 T. de la Rosa, A. Garćıa Olaya, and D. Borrajo

prefer the less used cases (exploration), or the most used ones (exploitation).
Thus, we define a threshold μstep, and a sorting function that orders the rec-
ommendations (steps of cases) by γ when γ >= μstep (exploitation) and by in-
creasing number of recommendation attempts when γ < μstep (exploration: the
less frequently used cases will be selected first).3 Therefore, when none of the
step options reaches the threshold we assume that no choice was good enough,
and the less explored step is preferred. We can use high values of μ in a training
phase if we want to explore the different options in order to learn the cases steps
quality. In a test phase we can use lower values of μ to use the steps by their
utility discarding only the known bad ones.

3.2 Sequence Utility Measure

Once a sequence is retrieved for an object, it stays selected regardless of whether
it is used or not during the search. Though we could abandon it and select
a different relevant sequence, this would lead to a higher computational load.
Therefore, our replay process must deal with the problem of wrongly retrieved
sequences, since either they produce wrong step choices or they are not followed
at all. The problem of not using a retrieved sequence is different of the problem
of having a sequence that produces wrong choices. For the sequence utility mea-
sure we have decided that is more important to recognize the “bad advisors”
sequences, so the global utility measure for a sequence is a cumulative function
of the step utilities. Thus, we define:

λ =
∑N

i=1 gi
∑N

i=1 Ai

(2)

where λ is the global frequency for a sequence of giving a good choice, N is the
number of steps in the sequence, and i represents each step. As the step utility
measure, we have defined a threshold μcase to decide when it is bad to select
a given sequence. We keep our retrieval scheme of selecting the most similar
sequence, but the first one with an exact match. Then, we sort the cases of
each type by λ when they have γ >= μcase and the rest of cases are ordered
in ascending order by the number of total attempts of recommendation when
γ <= μcase. This utility measure adds all attempts independently from where
the attempts came. Frequently, the same sequence is retrieved more than once,
but assigned to different objects (two or more instantiations). Then, the λ value
of a case is computed adding the right choices and the attempts of all such
instantiations of the sequence. High values of μcase ensure that unused cases
are selected if there is more than one with an exact match. Lower values μcase
will guarantee that reasonably good cases are selected to avoid bad selections of
unknown ones.

3 We could have used any other way of implementing this trade-off as ε-greedy ap-
proaches in reinforcement learning.

Using Cases Utility for Heuristic Planning Improvement 143

4 Experimental Results

Before doing the tests with the utility measures we decided to perform a study
of the learning curve for each domain. Since one training planning problem
produces many cases (one per object) we intuitively know that the case base may
perform reasonably well after training the system with few planning problems.
Then, we selected the best training problem-set for each domain and used it
for learning their qualities using the two defined utility measures. We have used
four domains of the IPC in their version of classical planning (known as strips).
These benchmark domains are among the difficult ones: Satellite, Rovers, Depots
and Zenotravel. The Satellite domain involves planning a set of observation tasks
among multiple satellites. The Rovers domain requires that a collection of rovers
navigate a planet surface, finding samples, taking pictures and communicating
them back to a lander. In the Depots domain trucks transport crates around
depots and distributors, and crates must be stacked onto pallets or on top of
other crates at their destination. The Zenotravel domain involves transporting
people around in planes, using different modes of movement.

4.1 Study on Training Problems

To set up the training cases tests we have generated for each domain a training
set and a test set with the random problem generators supplied by the IPC. A
training set consists of 20 problems subdivided in 10 groups by their difficulty.
The test set consists of 100 problems subdivided in 20 sub-sets of incremental
difficulty. The last training sub-set has the same difficulty than the 10th of
the test sub-sets, so the test set has more complex problems. The aim of the
experiment is to solve the test set after training the case base with the first
sub-set, then after training with the first two sub-sets and so on. We expect that
at some point an extra training will not produce any advantage of time or plan
quality, and in some cases it could produce a disadvantage due to the overhead
that produces a larger case base.

Table 1 shows the results of the study in the cited domains. These are the
average length and evaluated nodes of problems solved with all training sub-sets.
In none of the domains a considerable difference of solved problems was encoun-
tered, and the trace of these differences does not reflect any kind of convergence.
In the Satellite domain, between 85 to 92 problems were solved depending on
the training sub-set. In the Rovers domain between 92 and 93 problems were
solved, while in the Depots domain between 61 and 64 were solved. The average
of the number of evaluated nodes reflects more interesting results because we
can observe the improvement as the case base grows. Though the average plan
length could be a good measure for selecting a training sub-set, we have chosen
the best training set in terms of the average of number of evaluated nodes. For
those sub-sets the average plan length is either the best or quite good. In the
Satellite domain the sixth sub-set was selected. It has 12 problems and gener-
ated 66 cases. In the Rovers domain the fifth sub-set was selected, that has 10
problems and generated 75 cases. In the Depots domain the fifth sub-set was

144 T. de la Rosa, A. Garćıa Olaya, and D. Borrajo

selected that has 10 problems and generated 55 cases. In the Zenotravel domain
the second sub-set was selected that has 4 problems and 24 cases.

Table 1. Results of the study on the training problems

Cycle Probs Satellite Rovers Depots Zenotravel
Cases Len. Eval. Cases Len. Eval. Cases Len. Eval. Cases Len. Eval.

1 2 14 32.0 279.5 15 25.6 88.5 16 30.2 768.6 14 14.5 122.5
2 4 22 31.7 231.6 33 25.6 83.0 21 30.1 733.5 24 13.7 66.5
3 6 30 31.8 221.5 51 25.9 94.7 36 29.6 657.4 37 13.7 71.1
4 8 43 32.2 278.4 62 25.8 86.6 55 29.4 728.3 49 13.6 77.8
5 10 57 31.9 208.9 75 25.5 80.0 55 29.4 559.8 58 13.7 81.3
6 12 66 31.9 208.8 98 25.8 86.0 71 29.3 618.5 68 13.8 74.3
7 14 79 32.1 271.9 120 25.7 87.0 85 29.6 663.6 78 13.9 78.1
8 16 92 31.9 281.5 147 25.9 92.2 92 29.8 632.5 90 13.9 81.8
9 18 106 32.2 240.3 174 25.9 90.8 92 29.5 647.5 108 13.8 72.2
10 20 118 32.2 230.6 201 25.7 84.8 100 29.9 710.5 128 13.8 83.8

4.2 Test Using the Utility Measure

In the following experiments, we chose for each domain the best training
problems-set in terms of the number of node evaluations. After the training
phase, we performed a validation phase with a validation problems-set to de-
termine the utility measures for each case. A validation set consists of 30 new
problems with the same difficulty scheme as the training set. This validation is
made with an on-line strategy, so the retrieval and the replay of sequences in
one problem uses the utility measures of the previous problem in the validation
set. The values of μstep and μcase for validation were set to 0.75 to prefer ex-
ploration.4 Afterwards, with the test set of 100 problems, we compare the EHC
performance by itself (no CBR advice), with the cases support (EHC-CBR), and
with the cases support using both utility measures (EHC-CBR-Utility). The val-
ues of μstep and μcase for the test phase were set to 0.5 to use more exploitation,
but not preferring cases that perform poorly more than half the time.

Table 2 shows the number of solved problems in each domain. In the Satellite
and Rovers domains one problem more than EHC was solved. In the Depots
domain the EHC-CBR does not perform quite well, but it was improved with
the utilities. Table 3 shows the accumulated time, the average of plan length
(solution quality) and the average of evaluated nodes for problems that were
solved by all techniques.

Figure 3 shows the detail for the accumulated time using each technique. The
results show that EHC-CBR-Utility greatly reduced the number of evaluations
done by EHC-CBR in four domains. Compared with EHC, EHC-CBR-Utility

4 We started with an “a priori” reasonable value for those thresholds. Since there are
heuristic values, we will perform an analysis to understand the influence of those
values in the results.

Using Cases Utility for Heuristic Planning Improvement 145

Table 2. Number of solved problems

Domains EHC EHC-CBR EHC-CBR-Utility
Satellite 93 93 94
Rovers 94 95 95
Depots 74 69 74

Zenotravel 73 72 73

reduced the number of evaluations in three of four domains, specially in the
Satellite domain, that had an improvement of 46%. In the Depots domain, both
CBR approaches perform worse than EHC, even though EHC-CBR-Utility has
improved EHC-CBR. The Depots domain is known as a hard benchmark in the
IPC, but in spite of that, we can blame the poor performance to our current case
representation. Typed sequences only store information about one object and do
not take into account the relation that this object has in other problem goals.
The Depots domain has strongly goal dependencies and the other domains are
serializable (at least there is a sub-optimal plan that can solve each goal individ-
ually). However, the CBR approaches can partially deal with goal dependencies
since the replay process holds more than one sequence at a time and selecting
actions from different sequences interleaves actions within a plan to achieve the
goals in the right order.

Table 3. Accumulated time of solved problems using EHC, EHC-CBR and EHC-CBR-
Utility

Domains EHC EHC-CBR EHC-CBR-Utility
Time Len Eval Time Len Eval Time Len Eval

Satellite 1291.9 35.1 316.2 1040.2 34.6 254.6 695.9 34.1 146.8
Rovers 669.4 26.8 116.5 590.0 26.4 93.0 553.9 26.4 81.7
Depots 529.5 33.8 744.6 943.8 33.8 1432.8 667.5 33.4 816.0

Zenotravel 505.3 18.1 133.6 499.4 17.9 126.1 395.3 17.9 101.6

We can also analyze the plan quality measured in terms of the plan length.
In all domains, the plan length was either equal or slightly improved by both
CBR approaches. In EHC, the heuristic function can suggest irrelevant actions
even if the heuristic value is improved with that action, producing non-optimal
plans. EHC uses an inconsistent heuristic. Therefore, search can generate nodes
with successors that improve the heuristic value, but with different estimations
among them (the search will go through the first node evaluated of them). This
fact is specially observed in bigger problems (in terms of size of initial state),
and since typed sequences are learned from easy problems, the sequences do not
store many of these irrelevant actions. Thus, the CBR recommendation is giving
an additional heuristic to suggest the best successor even if there is another
successor that also improves the heuristic value.

146 T. de la Rosa, A. Garćıa Olaya, and D. Borrajo

 0

 200

 400

 600

 800

 1000

 1200

 1400

 10 20 30 40 50 60 70 80 90 100

A
cc

. T
im

e

Prob. No.

Satellite Domain

EHC
EHC-CBR

CBR-CBR-Utility

 0

 100

 200

 300

 400

 500

 600

 700

 10 20 30 40 50 60 70 80 90 100

A
cc

. T
im

e

Prob. No.

Rovers Domain

EHC
EHC-CBR

CBR-CBR-Utility

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 10 20 30 40 50 60 70 80 90 100

A
cc

. T
im

e

Prob. No.

Depots Domain

EHC
EHC-CBR

CBR-CBR-Utility

 0

 100

 200

 300

 400

 500

 600

 10 20 30 40 50 60 70 80 90 100

A
cc

. T
im

e

Prob. No.

Zenotravel Domain

EHC
EHC-CBR

CBR-CBR-Utility

Fig. 3. Accumulated time of all techniques

5 Related Work

The relevance of object type transitions were shown by [6]. With a pre-processing
tool, they obtain Finite State Machines that represent states in which a type of
object can be and can move to (state invariants). A basic difference is that
state invariants help planners to build efficient action schemas, needed to com-
pute applicable actions, and in our approach typed sequences are used to guide
the search ordering nodes during the search. Previous CBR approaches have
supported different kinds of planning tasks. PARIS [7] stores cases in different
abstraction levels of a solved problem, CAPlan-CBC [8] performs plan-space
search and replay and Analogy [9] integrates CBR with generative planning
based on a derivational analogy process, in which lines of reasoning are trans-
fered and adapted to a new problem. More recently, in [10] CBR is applied to
Hierarchical Task Networks Planning, another AI paradigm for planning. Our
approach differs from these contributions, since ours is the first CBR approach
applied to heuristic planning. Nevertheless, heuristic planning has been applied
to support CBR retrieval. Tonidandel and Rillo [11] proposed a similarity metric
based on the FF heuristic function. They use the heuristic estimation to measure
the distance between the initial state of a problem and the initial state of a case,
and between the problem goals and the goal state stored in the case. This idea
was suitable for case-based planners that use whole plans as cases and needs

Using Cases Utility for Heuristic Planning Improvement 147

significant effort to transform the solution to fit in the new problem, but this
idea was not implemented to support heuristic planning.

6 Conclusions and Future Work

We have presented an approach that is based on previous work. The starting
point is a CBR approach that advises a heuristic planner which is the best
successor of each node to evaluate first during the search. In this paper, we
describe a way of assessing the quality of the learned cases and results show
that it can reduce the total planning time in some benchmark domains. This
improvement is basically due to the reduction of the number of calls to the
heuristic function, which is computationally expensive for planners.

In our future work we want to extend our system to numeric domains (in-
corporate cost functions different than plan length and handle numeric fluents).
The IPC benchmark domains are very challenging in their numeric versions, and
most planners can not find good solutions even for easy problems. We believe
typed sequences, together with the quality of the solutions, could improve not
only planning time, but also quality of solutions.

Acknowledgments

This work has been partially supported by the Spanish MEC project TIN2005-
08945-C06-05 and regional CAM-UC3M project CCG06-UC3M/TIC-0831.

References

1. Hoffmann, J., Nebel, B.: The FF planning system: Fast plan generation through
heuristic search. Journal of Artificial Intelligence Research 14, 253–302 (2001)

2. Vidal, V.: A lookahead strategy for heuristic search planning. In: Proceedings of
the Fourteenth International Conference on Automated Planning and Scheduling,
pp. 150–160 (2004)

3. Chen, Y., Hsu, C.W., Wah, B.: SGPlan: Subgoal partitioning and resolution in
planning. In: ICAPS’04. Proceedings of the 4th International Planning Competi-
tion (IPC4) in Conference, pp. 30–33 (2004)

4. DelaRosa, T., Borrajo, D., Garcfa-Olaya, A.: Replaying type sequences in forward
heuristic planning. In: Ruml, W., Hutter, F. (eds.) Technical Report of the AAAI’06
Workshop on Learning for Search, Boston, MA, AAAI Press, Stanford (2006)

5. de la Rosa, T., Garćıa-Olaya, A., Borrajo, D.: Case-based recommendation for node
ordering in planning. In: Dankel II, D. (ed.) Proceedings of the 20th International
FLAIRS Conference, Key West, FL, AAAI Press, Stanford (2007)

6. Fox, M., Long, D.: The automatic inference of state invariants in TIM. Journal of
Artificial Intelligence Research 9, 317–371 (1998)

7. Bergmann, R., Wilke, W.: Paris: Flexible plan adaptation by abstraction and re-
finement. In: Voss, A. (ed.) ECAI (1996). Workshop on Adaptation in Case-Based
Reasoning, John Wiley & Sons, Chichester (1996)

148 T. de la Rosa, A. Garćıa Olaya, and D. Borrajo

8. Muñoz-Avila, H., Paulokat, J., Wess, S.: Controlling nonlinear hierarchical plan-
ning by case replay. In: in working papers of the Second European Workshop on
Case-based Reasoning, Chantilly, France, pp. 195–203 (1994)

9. Veloso, M.M., Carbonell, J.G.: Derivational analogy in PRODIGY: Automating
case acquisition, storage, and utilization. Machine Learning 10(3), 249–278 (1993)

10. Macedo, L., Cardoso, A.: Cased-based, decision-theoretic, HTN-Planning. In: Funk,
P., González Calero, P.A. (eds.) ECCBR 2004. LNCS (LNAI), vol. 3155, Springer,
Heidelberg (2004)

11. Tonidandel, F., Rillo, M.: An accurate adaptation-guided similarity metric for case-
based planning. In: Aha, D.W., Watson, I. (eds.) ICCBR 2001. LNCS (LNAI),
vol. 2080, pp. 531–545. Springer, Heidelberg (2001)

	Using Cases Utility for Heuristic Planning Improvement
	Introduction
	Typed Sequences Overview
	Computing Quality of Cases
	Step Utility Measure
	Sequence Utility Measure

	Experimental Results
	Study on Training Problems
	Test Using the Utility Measure

	Related Work
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

