Heuristics for Type Error Discovery and Recovery

Jurriaan Hage and Bastiaan Heeren

Department of Information and Computing Sciences, Universiteit Utrecht
P.O.Box 80.089, 3508 TB Utrecht, The Netherlands
{jur,bastiaan}@cs.uu.nl

Abstract. Type error messages that are reported for incorrect functional programs
can be difficult to understand. The reason for this is that most type inference al-
gorithms proceed in a mechanical, syntax-directed way, and are unaware of in-
ference techniques used by experts to explain type inconsistencies. We formulate
type inference as a constraint problem, and analyze the collected constraints to
improve the error messages (and, as a result, programming efficiency). A special
data structure, the type graph, is used to detect global properties of a program,
and furthermore enables us to uniformly describe a large collection of heuristics
which embed expert knowledge in explaining type errors. Some of these also sug-
gest corrections to the programmer. Our work has been fully implemented and is
used in practical situations, showing that it scales up well. We include a number
of statistics from actual use of the compiler showing us the frequency with which
heuristics are used, and the kind and number of suggested corrections.

Keywords: type inferencing, type graph, constraints, heuristics, error messages,
eITOr recovery.

1 Introduction

Type inference algorithms for Hindley-Milner type systems typically proceed in a
syntax-directed way. The main disadvantage of such a rigid and local approach is that
the reported type error messages not always reflect the actual problem. Over the last
five years we have developed the TOP framework to support flexible and customizable
type inference. This framework has been used to build the Helium compiler [6], which
implements almost the entire Haskell 98 standard, and which is especially designed for
learning the programming language.

An important issue is that the order in which constraints on types are resolved can
strongly influence at which point an inconsistency is detected. In existing compilers
(which tend to solve constraints as they go), this has the disadvantage that a bias exists
for finding errors towards the end of a program. In this paper we discuss a constraint
solver that uses type graphs, a data structure that allows a global analysis of the types
in a program. More importantly, type graphs naturally support heuristics, which embed
expert knowledge in explaining type errors.

Some of these heuristics correspond closely to earlier proposals for improving error
messages. Some are new, such as heuristics which can discover commonly made mis-
takes (like confusing addition + and append H-), and a sophisticated heuristic which
considers function applications in detail to discover incorrectly ordered, missing, or
superfluous arguments.

Z. Horvith, V. Zsék, and A. Butterfield (Eds.): IFL 2006, LNCS 4449, pp. 1991216.p007.
(© Springer-Verlag Berlin Heidelberg 2007

200 J. Hage and B. Heeren

A number of these heuristics are tried in parallel, and a voting mechanism decides
which constraints will be blamed for the inconsistency. These constraints are then re-
moved from the type graph, and each of them results in a type error message reported
back to the programmer. The use of type graphs thus leads naturally to reporting multi-
ple, possibly independent type error messages.

The contributions we make in this paper are the following: we have integrated a large
collection of heuristics into a comprehensive and extensible framework. Although some
of these are known from the literature, this is the first time, to our knowledge, that they
have been integrated into a full working system. In addition, we have defined a num-
ber of new heuristics based on our experiences as teachers of Haskell. Our work has
been fully implemented into the Helium compiler which shows that it scales to a full
programming language. Helium has been used in a course of functional programming
at Universiteit Utrecht since 2002, comprising several hundreds of students. It is freely
available for download [6]. Furthermore, we have applied the compiler to a large collec-
tion of programs written by students, and considered how often the various heuristics
influence the outcome. Many of the examples in this paper are taken from this collection
of programs.

This paper is organized as follows. After setting the scene in the next section, we
introduce each heuristic in turn in Section[3] In Section[8lwe show how the heuristics are
put together in the Helium compiler, and Section [6] gives statistical information about
the usage of heuristics based on a large collection of programs compiled by first-year
students. Section[d considers the type graph data structure on which the implementation
of our heuristics in Helium are based. In Section[7]we consider related work, after which
we conclude.

2 Constraints

In this paper we consider only sets of equality constraints. Naturally, polymorphism is
part of the language, but it is used only For every such use, the polymorphic type will
be replaced by a fresh instance of that type. The major consequence of this approach
is that definitions from previous binding groups are considered given and can not be
blamed for a type error, only their use can. Due to space restrictions, we refer the reader
to [2] for more details of this process.

For the purposes of this paper, we can thus simply assume that constraints are of
the form 7, = 79, in which 7 and 72 are monomorphic types, either type variables
v1, V2, ..., type constants (such as Int and —), or the application of a type to an-
other. For example, the type of functions from integers to booleans is written (((—
) Int) Bool). Type application is left-associative, and we omit parentheses where al-
lowed. We often write the function constructor infix, resulting in Int — Bool. We
assume the types are well-kinded: types like Int Bool do not occur.

3 Heuristics

In principle, all the constraints that contribute to an error are candidates for removal.
However, some constraints are better candidates for removal than others. To select the

Heuristics for Type Error Discovery and Recovery 201

“best” candidate for removal, we use a number of heuristics. These heuristics are usually
based on common techniques used by experts to explain type errors. In addition to
selecting what is reported, heuristics can specialize error messages, for instance by
including hints and probable fixes. For each removed constraint, we create a single type
error message using the constraint information stored with that constraint. The approach
naturally leads to multiple, independent type error messages being reported.

Many of our heuristics are considered in parallel, so we need some facility to co-
ordinate the interaction between them. The Helium compiler uses a voting mechanism
based on weights attached to the heuristics, and the “confidence” that a heuristic has
in its choice. Some heuristics, the tie-breakers, are only considered if none of the other
heuristics came up with a suggestion.

A consideration is how to present the errors to a user, taking into consideration the
limitations imposed by the used output format. In this paper we restrict ourselves to
simple textual error messages.

In the following we shall consider a number of heuristics, a subset of what is cur-
rently available in Helium. Heuristics available in Helium have been omitted for vari-
ous reasons: some of the heuristics are still in their experimental stages (e.g., the repair
heuristics developed as part of a Master Thesis project by Langebaerd [7]), some have
been considered elsewhere (e.g., the type inference directives [3]]), and some deal exclu-
sively with overloading, an issue we considered in an earlier paper [4]]. Note, however,
that all of the heuristics described do work in the presence of type classes, as evidenced
by the Helium implementation (with overloading turned on).

We have grouped the heuristics into three major groups: the general heuristics that
apply to constraint solving in general, the language dependent heuristics that are specific
for functional programming languages and Haskell in particular, and, finally, a number
of program correcting heuristics that include a probable fix as part of the type error
message.

We illustrate the heuristics by means of examples. The ones that are followed by an
error message are taken from a collection of 11,256 actual compiles made by students
in the course year 2004/2005. For reasons of brevity we only include the parts of the
program that are involved in the error, and in some cases have translated identifiers to
English and removed some unimportant aspects of the code, for reasons of clarity and
concision.

3.1 General Heuristics

The heuristics in this section are not restricted to type inference, but they can be used
for other constraint satisfaction problems as well.

Participation Ratio Heuristic. Our first heuristic applies some common sense reason-
ing: if a constraint is involved in more than one conflict, then it is a better candidate for
removal. The set of candidates is thus reduced to the constraints that occur most often
in conflicts. This heuristic is driven by a ratio 7 (typically at least 95%): only constraints
that occur in at least r percent of the conflicts are retained as candidates. This percent-
age is computed relative to the maximum number of conflicts any of the constraints in
the set was involved in.

202 J. Hage and B. Heeren

Note that this heuristic also helps to decrease the number of reported error messages,
as multiple conflicts are resolved by removing a single constraint. However, it does not
guarantee that the compiler returns the minimum number of error messages.

The participation-ratio heuristic implements the approach suggested by Johnson and
Walz [14]: if we have three pieces of evidence that a value should have type Int, and
only one for type Bool, then we should focus on the latter.

First Come, First Blamed Heuristic. The next heuristic we present is used as a final
tie-breaker since it always reduces the number of candidates to one. This is an important
task: without such a selection criteria, it would be unclear (even worse: arbitrary) what is
reported. We propose a tie-breaker heuristic which considers the position of a constraint
in the constraint list.

In [[1]] we address how to flatten an abstract syntax tree decorated with constraints into
a constraint list L. Although the order of the constraints is irrelevant while constructing
the type graph, we store it in the constraint information, and use it for this particular
heuristic: for each error path, we take the constraint which completes the path — i.e.,
which comes latest in L. This results in a list of constraints that complete an error path,
and out of these constraints we pick the one that came first in L.

3.2 Language Dependent Heuristics

The second class of heuristics involves those that are driven by domain knowledge.
Although the instances we give depend to some extent on the language under consider-
ation, it is likely that other programming languages allow similarly styled heuristics.

Trust Factor Heuristic. The trust factor heuristic computes a trust factor for each
constraint, which reflects the level of trust we have in the validity of a constraint. Obvi-
ously, we prefer to report constraints with a low trust factor. We discuss four cases that
we found to be useful.

(1) Some constraints are introduced pro forma: they trivially hold. An example is
the constraint expressing that the type of a let-expression equals the type of its body.
Reporting such a constraint as incorrect would be highly inappropriate. Thus, we make
this constraint highly trusted. The following definition is ill-typed because the type
signature declared for squares does not match with the type of the body of the let-
expression.

squares :: Int
squares =let f i = 1%
in map f [1..10]

Dropping the constraint that the type of the let-expression equals the type of the body
would remove the type inconsistency. However, the high trust factor of this constraint
prevents us from doing so. In this case, we select a different constraint, and report, for
instance, the incompatibility between the type of squares and its right-hand side.

(2) The type of a function imported from the standard Prelude, that comes with
the compiler, should not be questioned. Ordinarily, such a function can only be used
incorrectly.

Heuristics for Type Error Discovery and Recovery 203

(3) Although not mandatory, type annotations provided by a programmer can guide
the type inference process. In particular, they can play an important role in the reporting
of error messages. These type annotations reflect the types expected by a programmer,
and are a significant clue where the actual types of a program differ from his perception.
We can decide to trust the types that are provided by a user. In this way, we can mimic a
type inference algorithm that pushes a type signature into its definition. Practice shows,
however, that one should not rely too much on type information supplied by a novice
programmer: these annotations are frequently in error themselves.

(4) A final consideration for the trust factor of a constraint is in which part of the
program the error is reported. Not only types of expressions are constrained, but errors
can also occur in patterns, declarations, and so on. Hence, patterns and declarations
can be reported as the source of a type conflict. Whenever possible, we report an error
for an expression. In the definition of increment, the pattern (: z) (z must be a list)
contradicts with the expression = + 1 (z must be of type Int).

increment (:xz) =z +1

We prefer to report the expression, and not the pattern. If a type signature supports the
assumption that = must be of type Int, then the pattern can still be reported as being
erroneous.

Avoid Folklore Constraints Heuristic. Some of the constraints restrict the type of a
subterm (e.g., the condition of a conditional expression must be of type Bool), whereas
others constrain the type of the complete expression at hand (e.g., the type of a pair is a
tuple type). These two classes of constraints correspond very neatly to the unifications
that are performed by algorithm WV and algorithm M [8]], respectively. We refer to
constraints corresponding to M as folklore constraints. Often, we can choose between
two constraints — one which is folklore, and one which is not. In the following definition,
the condition should be of type Bool, but is of type String.

test :: Bool — String
test b = if "b" then "yes! " else "no!"

Algorithm W detects the inconsistency at the conditional, when the type inferred for
"b" is unified with Bool. As a consequence, it mentions the entire conditional and
complains that the type of the condition is String instead of Bool. Algorithm M, on
the other hand, pushes down the expected type Bool to the literal "b", which leads to
a similar error report, but now only the literal "b" will be mentioned. The former gives
more context information, and is thus easier to understand for novice programmers. For
this reason we prefer not to blame folklore constraints for an inconsistency.

Avoid Application Constraints Heuristic. This heuristic is surprising in the sense that
we only found out that we needed it after using our compiler, and discovering that some
programs gave counterintuitive error messages. Consider the following fragment

if plus 1 2 then ... else ...

in which plus has type Int — Int — Int.
The application heuristic (a program correcting heuristic discussed in Section [3.3)
finds that the arguments to plus indeed fit the type of the function. However, the result

204 J. Hage and B. Heeren

of the application does not match the expected Bool for the condition. In this situation,
algorithm WV would put the blame on the condition, while M would blame the use of
plus. Because our constraints are very fine-grained and introduce some intermediary
constraints, there is (unfortunately) another possibility: the application itself is blamed.
However, given that the arguments do fit, it is quite unlikely that the application as
a whole is at fault, and such an error message becomes unnatural. The task of this
heuristic is to remove these constraints from the candidate set.

Unifier Vertex Heuristic. At this point, the reader may have the impression that heuris-
tics always put the blame on a single location. If we have only two locations that con-
tradict, however, then preferring one over another introduces a bias. Our last heuristic
illustrates that we can also design heuristics to restore balance and symmetry in er-
ror messages, by reporting multiple program locations with contradicting types. This
technique is comparable to the approach suggested by Yang [[13].

The design of our type rules (Chapter 6 of [2]]) accommodates such a heuristic: at
several locations, a fresh type variable is introduced to unify two or more types, e.g.,
the types of the elements in a list. We call such a type variable a unifier. In our heuris-
tic, we use unifiers in the following way: we remove the edges from and to a unifier
type variable. Then, we try to determine the types of the program fragments that were
equated via this unifier. With these types we create a specialized error message. In the
following example, the type of the context is also a determining factor.

All the elements of a list should be of the same type, which is not the case in f’s
definition.

fzy=[z,y,id, "\n"]

In the absence of a type signature for f, we choose to ignore the elements x and y in
the error message, because their types are unconstrained. We report that ¢d, which has
a function type, cannot appear in the same list as the string "\n". By considering how
f is applied in the program, we could obtain information about the types of z and y. In
our system, however, we never let the type of a function depend on the way it is used.
An example from the collection of logged programs is the following.

simplify :: Prop — Prop

simplify = (...)

simplifyAnd :: [Prop] — [Prop]

simplifyAnd (p : ps) = [simplify p, simplifyAnd ps]

yields the error message

(5,22): Type error in list (elements have different types)
expression : [simplify p, simplifyAnd ps]
1st element : simplify p
type : Prop
2nd element : simplifyAnd ps
type : [Prop]

which simply lists all the participating uses and the types inferred for these uses, and
leaves putting the blame in the hands of the programmer.

Heuristics for Type Error Discovery and Recovery 205

Without the unifier heuristic, Helium returns the following message

(5,22): Type error in element of list
expression : [simplify p, simplifyAnd ps]
term : simplifyAnd ps

type : [Prop]

does not match : Prop

which puts the blame squarely on the second element in the list.

3.3 Program Correcting Heuristics

A different direction in error reporting is trying to discover what a user was trying to ex-
press, and how the program could be corrected accordingly. Given a number of possible
edit actions, we can start searching for the closest well-typed program. An advantage
of this approach is that we can report locations with more confidence. Additionally, we
can equip our error messages with hints how the program might be corrected. However,
this approach has a disadvantage too: suggesting program fixes is potentially harmful
since there is no guarantee that the proposed correction is the semantically intended
one (although we can guarantee that the correction will result in a well-typed program).
Furthermore, it is not immediately clear when to stop searching for a correction, nor
how we could present a complicated correction to a programmer.

An approach to automatically correcting ill-typed programs is that of type isomor-
phisms [10]. Two types are considered isomorphic if they are equivalent under
(un)currying and permutation of arguments. Such an isomorphism is witnessed by two
morphisms: expressions that transform a function of one type to a function of the other
type, in both directions. For each ill-typed application, one may search for an isomor-
phism between the type of the function and the type expected by the arguments and the
context of that function. The heuristics described in this section elaborate on this idea.

the application, the permutation and the sibling heuristics take into account that
class predicates that need to be satisfied due to program corrections can indeed be re-
solved [3]. These heuristics can therefore be said to work correctly in the presence of
overloading.

The Application Heuristic. Function applications are often involved in type inconsis-
tencies. Hence, we introduce a special heuristic to improve error messages involving
applications. It is advantageous to have all the arguments of a function available when
analyzing such a type inconsistency. Although mapping n-ary applications to a num-
ber of binary ones simplifies type inference, it does not correspond to the way most
programmers view their programs.

The heuristic behaves as follows. First, we try to determine the type of the func-
tion. We can do this by inspecting the type graph after having removed the constraint
created for the application. In some cases, we can determine the maximum number
of arguments that a function can consume. However, if the function is polymorphic
in its result, then it can receive infinitely many arguments (since a type variable can
always be instantiated to a function type). For instance, every constant has zero argu-
ments, the function map :: (a — b) — [a] — [b] has two, and the function foldr :
(a = b — b) — b — [a] — b apossibly infinite number.

206 J. Hage and B. Heeren

If the number of arguments passed to a function exceeds the maximum, then we
can report that too many arguments are given — without considering the types of the
arguments. In the special case that the maximum number of arguments is zero, we
report that it is not a function.

To conclude the opposite, namely that not enough arguments have been supplied,
we do not only need the type of the function, but also the type that the context of the
application is expecting. An example follows.

The following definition is ill-typed: map should be given more arguments (or s
should be removed from the left-hand side).

doubleList :: [Int] — [Int]
doubleList xs = map (*2)

At most two arguments can be given to map: only one is supplied. The type signature for
doubleList provides an expected type for the result of the application, which is [Int].
Note that the first [Int] from the type signature belongs to the left-hand side pattern
xs. We may report that not enough arguments are supplied to map, but we can do even
better. If we are able to determine the types inferred for the arguments (this is not always
the case), then we can determine at which position we have to insert an argument, or
which argument should be removed. We achieve this by unification with holes. First, we
have to establish the type of map’s only argument: (*2) has type Int — Int. Because
we are one argument short, we insert one hole (e) to indicate a forgotten argument.
(Similarly, for each superfluous argument, we would insert one hole in the function
type.) This gives us the two configurations depicted in Figure[Tl

Configuration 1 does not work out, since column-wise unification fails. The second
configuration, on the other hand, gives us the substitution S = [a := Int,b := Int].
This informs us that our function (map) requires a second argument, and that this argu-
ment should be of type S([a]) = [Int].

The final technique we discuss attempts to blame one argument of a function appli-
cation in particular, because there is reason to believe that the other arguments are all
right. If such an argument exists, then we put extra emphasis on this argument in the
reported error message.

evaluate :: Prop — [String] — Bool
evaluate (And [p: q]) zs = all [p | p — xs]

(2,27): Type error in application
expression s oall [p|p— xs]
term : all
type : (a — Bool) — [a] — Bool
does not match : [String] — Bool
probable fix : insert a first argument

The Tuple Heuristic. Many of the considerations for the application heuristic also
apply to tuples. As a result, this heuristic can suggest that elements of a tuple should be
permuted, or that some component(s) should be inserted or removed.

Heuristics for Type Error Discovery and Recovery 207

configuration 1 :
function (a—b) — [a] — [b]
arguments + context ° — (Int — Int) — [Int]

configuration 2 :
function (a—b) — [a] — [b]
arguments + context (Int — Int) — ° — [Int]

Fig. 1. Two configurations for column-wise unification

The Permutation Heuristic. A mistake that is often made is the simple exchange of
one or more arguments to a function. The permutation heuristic considers applications
which are type incorrect, and tries to determine whether there is a single permutation
that makes the application correct. For this to work, we need the type of the application
expected by the context, and the types of the arguments (if any of these cannot be
typed, then it makes no sense to apply this heuristic). By local changes to the type
graph, the compiler then determines how many permutations result in a correctly typed
application. If there is only one, then a fix to the program is suggested (in addition to
the usual error message). If there are more, then we deem it impossible to suggest a
probable fix, and no additional hint is given.

zero :: (Float — Float) — Float — Float
zero f y0 = until (\b — b — f b /. diff [D)
(\b — f b <.0.000001) y0

with the following error message as a result

(2,13): Type error in application
expression sountil A —b—fb/...)(Ab—..)y0
term : until
type : (a — Bool) = (a —a) = a—a
does not match : (Float — Float)— (Float — Bool)— Float — Float
probable fix : re-order arguments

The Sibling Function Heuristic. Novice students often have problems distinguishing
between specific functions, e.g., concatenate two lists (+) and insert an item at the front
of alist (). We call such functions siblings. If we encounter an error in an application in
which the function that is applied has a sibling, then we can try to replace it by its sibling
to see if this solves the problem (naturally only at the type level). This can be done quite
easily and efficiently on type graphs by a local modification of the type graph. The main
benefit is that the error message may include a hint suggesting to replace the function
with its sibling. (Helium allows programmers to add new pairs of siblings, which the
compiler then takes into account [3]).)

smash :: [a] — [a]
smash [| =]
smash [a] = head [a] H smash (tail [a])

208 J. Hage and B. Heeren

with the following error message as a result

(3,22): Type error in variable
expression : H
type ¢ [a] = [a] — [a]
expected type : b — [b] — [b]
because : unification would give infinite type
probable fix : use : instead

The Sibling Literal Heuristic. A similar kind of confusion that students have is that
they mix floating points numbers with integers (in Helium we distinguish the two), and
characters with strings. This gives rise to a heuristic that may replace a string literal
"c" with a character literal * ¢’ if that resolves the inconsistency.

writeRow :: [[String]|] — Int — String
writeRow tab n = if n == (length tab + 3) then ""
else replicate (columnWidth tab n) " " +H " " H ...

results in

(3,61): Type error in literal

expression :
type : String
expected type : Char
probable fix : use a char literal instead

4 Type Graphs

The heuristics of the previous section share the characteristic that they have all been
implemented in Helium as functions that work on type graphs. Essentially, a type graph
represents a set of constraints, and as such is similar to a substitution. The main dif-
ference is that type graphs can also represent inconsistent sets of constraints. In this
section, we first describe what type graphs are, and then describe for a few of the pre-
viously described heuristics how they can be handled in terms of operations on type
graphs. Due to lack of space we only try to convey the essential ideas, intuitions, and
features of type graphs and how they may be used. For a complete description we refer
the reader to Chapter 7 of the PhD thesis of the second author [2]].

Our type graphs resemble the path graphs that were proposed by Port [11]], and which
can be used to find the cause of non-unifiability for a set of equations. However, we
follow a more effective approach in dealing with derived equalities (i.e., equalities ob-
tained by decomposing terms, and by taking the transitive closure).

McAdam has also used graphs to represent type information [9]]. In his case, parts
of the graph are duplicated to handle let-constructs, which implies a lot of duplication
of effort, and, worse, it can give rise to duplication of errors if the duplicated parts
themselves are inconsistent. We avoid this complication by first handling the definitions
of a let (which gives us the complete types of those definitions), before continuing with
the let body. This implies that in case of a mismatch between the definition and the use
of an identifier, the blame is always on the latter.

Heuristics for Type Error Discovery and Recovery 209

@ #l | @7 Bool
@) \3 /s
N -
(©)
-) —#2 1 g

Fig. 2. An inconsistent type graph

We consider a set of equality constraints as a running example and show how type
graphs may be used to determine which constraints should be removed to make the set
of constraints consistent. The resulting constraint set can then be converted into a sub-
stitution (the usual outcome of the type inference process). As explained in Section 2]
we may assume that we deal with equality constraints exclusively: polymorphism is
handled at a different level.

Consider the following set of equality constraints.

#0 #1 #2 #3
{v1 = vo — v, V1 = V2 — U3, Vg =
Annotations like #0 are used for reference purpose only. For each left and right hand
side of a constraint we construct a term graph, which reflects the hierarchical structure
of type terms. These term graphs consist of vertices and directed edges, as shown on
the left and right hand side of Figure [2l Recall that the type vo — vg is represented
by a binary type application ((—) vg) vo, and it is this type that is used in type graph
construction. For readability, we continue to use vg — vg in the text.

The equality constraints between terms introduce undirected edges in the type graph.
Thus each constraint results in a single undirected edge (with its number as a label),
called an initial edge. When we equate two structured types, we implicitly equate the
subtypes of these types. In the example, vy and v2 become equated, because through vy,
vg — vg and ve — v3 become equated. This gives rise to the derived edges, occurring
as dashed edges in Figure[2l The connected components that arise when considering all
vertices that are connected via an initial or derived edge, are called equivalence groups.
Clearly, each vertex in an equivalence groups should represent the same type. This is
not the case in Figure[2] because Int and Bool end up in the same equivalence group.
The paths between such clashing constants are called error paths, which may contain
both initial and derived edges. When we encounter such an error path, we unfold the
derived edges until we end up with a path that consists solely of initial edges (remember
that these relate directly to the constraints from which the type graph was built).

The example type graph has only a single error path, but can in principle contain
many. The task of the type graph solver is to dissolve all error paths and it may do
so by selecting a constraint from each error path. This is exactly where the heuristics
discussed earlier in this paper come in: they operationalize what are the best places to

210 J. Hage and B. Heeren

cut. After a set of constraints is selected, the removal of which dissolves all error paths,
then we can use the resulting type graph to construct a substitution as the end result of
the solving process.

In the example, there are a number of possibilities to dissolve the error path. This is
generally the case, and this is where the heuristics play a role in selecting the most likely
candidate for removal. We can choose to remove any of the four constraints to make the
type graph consistent, each choice leading to a substitution obtained from the remaining
type graph. For example, if we remove #0, then the resulting substitution maps v; to
Int — Bool, vo to Int, and vs to Bool. If we choose to remove #3 instead, then the
substitution maps vg, ve and vs to Int, and vy to Int — Int. In our implementation,
the constraint is provided with enough information to be able to generate a precise error
message that tells the user why it was removed, in terms of types computed from the
remainder of the type graph. For example, in the latter case it will contrast the type it
expected for v3, which is Int, with the type it found for vs, which is Bool.

Thus far, we have explained rather informally how type graphs are built and handled,
but in practice there are a number of complications: The number of vertices in a type
graph grows quickly, as does the number of derived edges. The number of error paths
in any given type graph can be very large, even when one disregards error paths that
may be considered superfluous. Furthermore, how can one effectively deal with infinite
types, which occur as a result of constraints such as v; = v; — Int? How does one
deal with type synonyms, that introduce new type constants as abbreviations for existing
types? Detailed descriptions of solutions to these complications can be found in [2].

The Implementation of Heuristics

The type graph data structure is well-suited for implementing the heuristics we have
defined. Because it is important for many heuristics to know what kind of constraint
we are dealing with, this information is included explicitly during the constraint gener-
ation process. For example, this is how the heuristics can tell that a certain constraint
is a so-called folklore constraint. Implementing the avoid folklore constraints heuris-
tic is then simply a matter of removing these constraints from the current candidate
set.

A slightly more complicated example is the implementation of the siblings heuristic.
When applied to a given edge e, it first decides whether that edge directly relates to
the type of some identifier, say 1d. Then it considers whether siblings were defined for
id. If so, then it tries to discover whether replacing 1d with any of its siblings resolves
the type error. This is accomplished by removing the edge e, computing the type id is
supposed to have based on the context in which it was used, and determining whether
any of the candidates fit this context. If so, then a hint is given that suggests to use
any of the matching candidates (there may be more than one). Care must be taken to
verify that the possible class predicates generated by the context, and by the use of the
candidate are satisfied.

The application heuristic works in a similar fashion: we remove and add a few edges
in the type graph and consider whether that removes the error paths we are currently
considering. Indeed, the idea of adding and removing edges is central to many of the
heuristics.

Heuristics for Type Error Discovery and Recovery 211

5 Putting It All Together

The Helium compiler includes all the heuristics we have discussed (and more), and
has been used for a number of years to teach students to program in Haskell. Reac-
tions in the first year were very promising (some of these students had used Hugs
before and indicated that the quality of error messages was much improved). Since
then we have improved the compiler in many ways, adding new language features and
new heuristics. Unfortunately, the students who currently do the course have never en-
countered any other system for programming in Haskell and thus cannot compare their
experiences.

Another issue we would like to address here is that of efficiency of the compiler.
We have constructed a special kind of solver that partitions the program into a number
of relatively independent chunks (in a first approximation, every top level definition is
a chunk), applies a fast greedy solver to each, and only when it finds a type error in
one of the chunks, does it apply the slower but more sophisticated type graph solver
to this erroneous chunk (but not to the foregoing chunks). This means that the type
graph solver is only used when a type error is encountered, and only on a small part
of the program. Additionally, there is a maximum to the number of error paths that the
type graph solver will consider in a single compile. Still, constructing and inspecting a
type graph involves additional overhead, which slows down the inference process. In a
practical setting (teaching Haskell to students), we have experienced that the extra time
spent on type inference does not hinder programming productivity.

To give the reader some idea how the ideas of the previous section take form in an
actual compiler, we have included the function listOfHeuristics in Figure [Tt takes
a (partially user specified) list of siblings to generate the list of available heuristics for
this compilation.

Each heuristic can be categorized as either a filtering heuristic or a selector heuristic.
The heuristic avoid TrustedConstraints is an example of the former: it filters out all
the constraints from the candidate set that have a high trust value, thus making sure
that these are never reported. Note that avoidForbiddenConstraints avoids constraints
of the sort described under (1) of the trust factor heuristic, only (3) and (4) are part of
avoidTrustedConstraints (case (2) is already taken care of by our choice that the use
of an identifier can never influence its type). It is easy to make the distinction between
selectors and filters in listOfHeuristics: all the heuristics that are part of the Voting
construct in the middle are selectors, the others are filters.

A voting heuristic is built out of a number of subsidiary heuristics, each of which
looks to see whether it can suggest a constraint likely to be responsible for the type
inconsistency. Each voting heuristic also returns a value that gives a measure of trust the
heuristic has in its suggestion. Based on these measures the combined voting heuristic
will decide which constraint to select, if any.

Most of the heuristics in Figure 3] are connected directly with heuristics discussed
in the paper. There are a few special cases, however: variableFunction has largely
the same functionality as the applicationHeuristic, but the latter is only triggered on
applications (a function followed by at least one argument). Instead, variable Function
is triggered on identifiers that have a function type, but that do not have arguments at
all. It may for instance suggest to insert certain arguments to make the program type

212 J. Hage and B. Heeren

listOfHeuristics siblings path =
earlyFilters + [Heuristic (Voting selectors)] +- tiebreakers
where

earlyFilters = [avoidForbiddenConstraints, highParticipation 0.95 path]

selectors = [siblingFunctions siblings, similarNegation
, applicationHeuristic, foHasTooManyArguments
, siblingLiterals, variableFunction, tupleHeuristic |

tiebreakers = [avoidApplicationConstraints, avoidNegationConstraints
, avoid TrustedConstraints , avoidFolklore Constraints
, firstComePFirstBlamed |

Fig. 3. The list of heuristics taken from the Helium compiler

correct. Another thing to remark is that the permutation of arguments in applications is
implemented as part of the applicationHeuristic as well.

The heuristic similarNegation provides the same functionality as siblingFunctions,
but specifically for the negation function, which is a syntactic construct in Haskell and
must be treated somewhat differently. The heuristic foHasTooManyArguments (fb is
short for function binding) tries to discover whether the type inconsistency can be ex-
plained by a discrepancy between the number of formal arguments, and the expected
number of arguments derived from the function’s explicit type signature.

The heuristics in the final block, starting with avoidApplication Constraints are low
priority heuristics that are used as tie-breakers. Note that avoidNegationConstraints
provides the same functionality as avoidApplicationConstraints, but specifically for
negation.

The function that applies the list of heuristics starts with a set of constraints that lie
on an error path. It considers the heuristics in listOfHeuristics in sequence. A filtering
heuristic may remove any number of candidates from the set, but never all. If a con-
straint is selected by a selector heuristic, all other constraints will be removed from the
set of candidates leaving only the selected constraint.

6 Validation and Statistics

The existence of an actual implementation of our work immediately raises another is-
sue: it should be possible to establish whether the implemented heuristics are effective
by means of this implementation. However, the “quality” of a type error message is not
likely to get a precise definition any time soon, which means that the usability of Helium
can only be verified empirically. To perform such experiments is a difficult problem in
itself and beyond the scope of this paper.

The best way to judge the quality of the improved error messages of Helium is, sim-
ply, by using it. Still, to give the reader an idea of how often heuristics are applied, we
indicate for each kind of heuristics how often it was responsible for choosing or con-
tributing to finding what Helium considered to be the erroneous constraint. We present
a number of statistics computed from programs collected by logging Helium compila-
tions in a first year programming course. Each logging corresponds to a unique compile

Heuristics for Type Error Discovery and Recovery 213

heuristic type contributing deciding
Avoid forbidden constraints filter 3756 22
Participation ratio (ratio=0.95) filter 3791 202
Function siblings selector 479 433
Similar negation selector 0 0
Literal siblings selector 196 145
Application heuristic selector 2229 1891
Variable function selector 123 111
Tuple heuristic selector 5 5
Function binding has too many arguments selector 35 35
Avoid application constraints filter 726 15
Avoid negation constraints filter 0 0
Avoid trusted constraints filter 2371 1146
Avoid folklore constraints filter 1298 922
First come, first blamed filter 963 963

Fig. 4. The frequency of heuristics for the loggings of 2004/2005

performed by a student in the student network. We use the data sets collected for the
course year 2004-2005, with a total of 11, 256 loggings of which 3, 448 resulted in one
or more type errors. In total, the type incorrect programs produced 5,890 type error
messages.

Figure @] shows how often each heuristic contributed to eliminating candidate con-
straints, and in how many cases it was also decisive in bringing the number of candi-
dates down to one. In other words, it was responsible for selecting the constraint to be
removed and as such strongly influences the error message reported to the program-
mer. Note that the contributing count includes the deciding count. One thing that can be
noted from the results is that the tuple heuristic and the special heuristics for negation
are hardly used. The reason for this is that the programming assignments in 2004/2005
did not call for heavy use of tuples and negation.

Note that the heuristics below are applied in the given order, starting with Avoid for-
bidden constraints. Note that a filter heuristic such as this contributes often, but only
rarely is the deciding factor. This should not be surprising, because it can only be deci-
sive if all but one of the candidate constraints is forbidden, and this is not very likely. In
many programs there are cases of forbidden constraints, such as the one that says that
the body of the let and the let-expression as a whole have the same type. In the case of
the selector heuristics, the number of contributing and deciding occurrences should be
quite close, because typically they select a single candidate to remain.

FigureBlfocuses on the type of probable fixes given to the programmer. Of the 5,890
error messages, a total of 1,116 actually gave such a probable fix (in addition to the
standard error message). Note that for example the application heuristic in Figure @ may
result in a variety of probable fixes: re-order arguments, insert missing argument, and
so on. On the other hand, some of the fixes suggested by the variable function heuristic
are the same as those of the application heuristic. As explained before, the variable
function heuristic is conceptually the same as the application heuristic. For reasons of
brevity, we have kept the table compact, lumping a number of similar probable fixes of

214 J. Hage and B. Heeren

probable fix generated by frequency
insert a first/second/... argument application/variable function 142
insert one/two/three/... argument(s) application/variable function 107
remove a first/second/... argument application 139
swap the two arguments application 57
re-order arguments application 56
re-order elements of tuple tuple 3
use a char/int/float/string literal instead sibling literals 154
use ++ instead sibling functions 100
use : instead instead sibling functions 142
use concatMap instead sibling functions 62
use eqString instead sibling functions 45
other sibling fixes sibling functions 109

Fig. 5. Probable fix frequency for the loggings of 2004/2005

lesser frequency together. For example “insert a first and second argument” falls into
the category of “insert a first/second/... argument”. We do make the distinction between
“insert a first argument” and “insert one argument”. In the former case, the compiler
was able to conclude unambiguously that the first argument was missing.

7 Related Work

There is quite a large body of work on improving type error messages for polymorphic,
higher-order functional programming languages such as Haskell, cf. [T4TTIO/TOIT3].
The drawback of these papers is that they have not led to full scale implementations
and in many cases disregard issues such as efficiency and scalability. Since we refer to
the articles who have influenced our choice of heuristic where we discuss the heuristic,
we shall consider only some of the more current approaches in the remainder of this
section. For a very detailed description of the literature in this area, see Chapter 3 of the
PhD thesis of the second author [2].

In recent years, there is a trend towards implementation. One of these systems is
Chameleon [[12] which is an interactive system for type-debugging Haskell. The view-
point here is that no static type inference process will come up with a good message in
every possible situation. For this reason, they prefer to support an interactive dialogue
to find the source of the error. A disadvantage of such a system is that is not very easy
to use by novice programmers, and more time consuming as well. An advantage is that
the process itself may give the programmer insight into the process of type inferencing,
helping him to avoid repeating the mistake. In a later paper, the authors move in the di-
rection of type error reporting [13]], using the same algorithm to compute the locations
contributing to the error. As far as we know, Chameleon has not been used on groups of
(non-expert) programmers.

Ideally, a compiler provides a combination of feedback and interaction: if the pro-
vided heuristics are reasonably sure that they have located the source of error, then a
type error message may suffice, otherwise an interactive session can be used to examine

Heuristics for Type Error Discovery and Recovery 215

the situation in detail. Our unifier heuristic occupies a middle point: it makes no judg-
ment on who is to blame, but only describes which types clash and where they arise
from. It only applies if there is no overwhelming amount of evidence against one of the
candidates for removal (for a particular choice of “overwhelming”).

Finally, our focus on expert knowledge was inspired by work of Jun, Michaelson,
and Trinder [16]]. Their idea of interviewing experts has appeal, but a drawback of their
work is that the resulting algorithm H is very incomplete (only 10 out of 40 rules are
given), and we have not been able to find an implementation.

8 Conclusion

We have discussed heuristics for the discovery of and the recovery from type errors in
Haskell. Knowledge of our problem domain allows us to define special purpose heuris-
tics that can suggest how to change parts of the source program so that they become
type correct. Although there is no guarantee that the hints always reflect what the pro-
grammer intended, we do think that they help in many cases. Moreover, we have shown
that it is possible to integrate various heuristics known from the literature with our own
resulting in a full scale, practical system that can be easily extended with new heuristics
as the need arises. We have applied our compiler to a large body of programs that have
been compiled by students during a first year functional programming course, resulting
in information about the frequency of hints and particular heuristics. Many of the ex-
amples in the paper are taken from this body of programs, lending additional strength
to our work.

References

1. Hage, J., Heeren, B.: Ordering type constraints: A structured approach. Technical Report
UU-CS-2005-016, Department of Information and Computing Science, Utrecht University,
Netherlands, Technical Report (April 2005)

2. Heeren, B.: Top Quality Type Error Messages. PhD thesis, Universiteit Utrecht, The Nether-
lands, http://www.cs.uu.nl/people/bastiaan/phdthesis (2005)

3. Heeren, B., Hage, J.: A first attempt at type class directives. Technical Report UU-CS-2002-
031, Department of Information and Computing Science, University Utrecht, Netherlands,
Technical Report (September 2004)

4. Heeren, B., Hage, J.: Type class directives. In: Seventh International Symposium on Practical
Aspects of Declarative Languages, pp. 253-267. Springer, Heidelberg (2005)

5. Heeren, B., Hage, J., Swierstra, S.D.: Scripting the type inference process. In: Eighth ACM
Sigplan International Conference on Functional Programming, pp. 3—-13. ACM Press, New
York (2003)

6. Heeren, B., Leijen, D., van [Jzendoorn, A.: Helium, for learning Haskell. In: ACM Sigplan
2003 Haskell Workshop, pp. 62-71. ACM Press, New York (2003)

7. Langebaerd, A.: Repair systems, automatic correction of type errors in functional programs.
http://www.cs.uu.nl/wiki/Top/Publications

8. Lee, O., Yi, K.: Proofs about a folklore let-polymorphic type inference algorithm. ACM
Transanctions on Programming Languages and Systems 20(4), 707-723 (July 1998)

http://www.cs.uu.nl/people/bastiaan/phdthesis
http://www.cs.uu.nl/wiki/Top/Publications

216

9.

10.

11.

12.

13.

14.

15.

16.

J. Hage and B. Heeren

McAdam, B.J.: Generalising techniques for type debugging. In: Trinder, P.,Michaelson, G.,
Loidl, H-W. (eds.), Trends in Functional Programming, Bristol, UK, Intellect, vol. 1, pp.
50-59 (2000)

McAdam, B.J.: How to repair type errors automatically. Trends in Functional Program-
ming 3, 87-98 (2002)

Port, G.S.: A simple approach to finding the cause of non-unifiability. In: Kowalski, R.A.,
Bowen, K.A. (eds.) Proceedings of the Fifth International Conference and Symposium on
Logic Programming, pp. 651-665. The MIT Press, Cambridge (1988)

Stuckey, P.J., Sulzmann, M., Wazny, J.: Interactive type debugging in Haskell. In: Haskell’03:
Proceedings of the ACM SIGPLAN Workshop on Haskell, pp. 72-83. ACM Press, New York
(2003)

Stuckey, P.J., Sulzmann, M., Wazny, J.: Improving type error diagnosis. In: Haskell’04: Pro-
ceedings of the ACM SIGPLAN Workshop on Haskell, pp. 80-91. ACM Press, New York
(2004)

Walz, J.A., Johnson, G.F.: A maximum flow approach to anomaly isolation in unification-
based incremental type inference. In: Conference Record of the 13th Annual ACM Sym-
posium on Principles of Programming Languages, pp. 44-57, St. Petersburg, FL. (January
1986)

Yang, J.: Explaining type errors by finding the sources of type conflicts. In: Greg Michael-
son, Phil Trindler, and Hans-Wolfgang Loidl, editors, Trends in Functional Programming,
pp. 58-66. Intellect Books (2000)

Yang, J., Michaelson, G., Trinder, P.: Explaining polymorphic types. The. Computer Jour-
nal 45(4), 436-452 (2002)

	Heuristics for Type Error Discovery and Recovery
	Introduction
	Constraints
	Heuristics
	General Heuristics
	Language Dependent Heuristics
	Program Correcting Heuristics

	Type Graphs
	Putting It All Together
	Validation and Statistics
	Related Work
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

