

Lecture Notes in Computer Science 4449
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Zoltán Horváth Viktória Zsók
Andrew Butterfield (Eds.)

Implementation
and Application
of Functional Languages

18th International Symposium, IFL 2006
Budapest, Hungary, September 4-6, 2006
Revised Selected Papers

13

Volume Editors

Zoltán Horváth
Viktória Zsók
Eötvös Loránd University
Faculty of Informatics
Department of Programming Languages and Compilers
1117 Budapest, Hungary
E-mail: {hz,zsv}@inf.elte.hu

Andrew Butterfield
University of Dublin
Department of Computer Science
O’Reilly Institute, Trinity College
Dublin, Ireland
E-mail: Andrew.Butterfield@cs.tcd.ie

Library of Congress Control Number: 2007932229

CR Subject Classification (1998): D.3, D.1.1, D.1, F.3

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-74129-1 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-74129-9 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12104406 06/3180 5 4 3 2 1 0

Preface

This volume presents the reviewed and revised selected papers of the 18th In-
ternational Symposium on Implementation and Application of Functional Lan-
guages IFL 2006, held September 4–6, 2006, at Eötvös Loránd University,
Budapest, Hungary.

The symposium was organized according to the traditions of the IFL work-
shop series. The aim of these workshops is to bring together researchers actively
engaged in the implementation and application of functional and function-based
programming languages. They provide an open forum for researchers who wish to
present and discuss new ideas and concepts, work in progress, preliminary results,
etc., related primarily but not exclusively to the implementation and application
of functional languages. IFL became a symposium in 2006. A not necessarily ex-
haustive list of topics covered includes: language concepts, concurrent/parallel
programming, type checking, concurrent/parallel program execution, compila-
tion techniques, heap management, generic programming techniques, runtime
profiling, (abstract) interpretation, performance measurements, automatic pro-
gram generation, debugging and tracing, (abstract) machine architectures, veri-
fication, formal aspects, tools and programming techniques, array processing and
demos of well working, useable tools and applications in functional languages.

IFL 2006 was held in the Faculty of Informatics, Eötvös Loránd University,
Budapest, Hungary during the first week of September 2006. It attracted more
than 60 participants presenting 40 contributions during the three days of the
symposium.

All speakers attending the symposium were invited to submit a revised paper
afterwards. The submitted papers were each carefully checked by readers selected
from among the most qualified available and then revised once more by the
lecturers. Each paper was reviewed by three or four referees and thoroughly
discussed by four or five PC members. We are very grateful to the anonymous
referees, all excellent researchers in functional programming, for the time and
effort they devoted to reviewing the papers. Finally the PC decided to select 15
high-quality papers for publication in this volume.

We would like to acknowledge the work of all the members of the organizing
committee and the student volunteers.

The web-page of the symposium can be found at
http://www.inf.elte.hu/rendezvenyek/ifl/.

March 2007 Zoltán Horváth
Viktória Zsók

Andrew Butterfield

Organization

IFL 2006 was organized by the Department of Programming Languages and
Compilers, Faculty of Informatics, Eötvös Loránd University, Budapest,
Hungary.

Executive Committee

Program Chair Zoltán Horváth
(Eötvös L. University, Hungary)

Organizing Chairs Zoltán Horváth and Viktória Zsók
(Eötvös L. University, Hungary)

Organizing Committee Zoltán Csörnyei
Gergely Dévai
Péter Diviánszky
Gáspár Erdélyi
Hajnalka Hegedűs
Zoltán Juhász
Róbert Kitlei
Anikó Királyné-Csizmazia
Tamás Kozsik
Ildikó László
László Csaba Lőrincz
László Lövei
Mónika Mészáros
Gabriella Nádas
Adrienn Olajos
Zoltán Porkoláb
Beáta Reiz
Csaba Seres
Rozália Szabó-Nacsa
Máté Tejfel

(Eötvös L. University, Hungary)
Organizing Partner Judit Juhász (Managing Director, Pannonia

Tourist Service)

VIII Organization

Program Committee

Matthias Blume Toyota Technological Institute, Chicago, USA
Zoran Budimac University of Novi Sad, Serbia
Andrew Butterfield Trinity College Dublin, Ireland
Ralf Hinze University of Bonn, Germany
Zoltán Horváth Eötvös Loránd University, Budapest,

Hungary, Chair
Tamás Kozsik Eötvös Loránd University, Budapest,

Hungary
Hans-Wolfgang Loidl Ludwig-Maximilians-University Munich,

Germany
Rita Loogen Philipps-University Marburg, Germany
Frédéric Loulergue University of Orleans, France
Simon Marlow Microsoft Research, Cambridge, UK
Marco T. Morazán Seton Hall University, New Jersey, USA
Yolanda Ortega-Mallén University Complutense of Madrid, Spain
Rinus Plasmeijer Radboud University Nijmegen,

The Netherlands
Jaroslav Porubän Technical University of Kosice, Slovakia
Anna Soós Babeş-Bolyai University, Cluj-Napoca,

Romania
Doaitse Swierstra Utrecht University, The Netherlands
Peter Thiemann University of Freiburg, Germany
Germán Vidal Technical University of Valencia, Spain

Sponsoring Institutions

The symposium was supported by Nokia Hungary, Siemens PSE Hungary and
by the Faculty of Informatics, Eötvös Loránd University, Budapest, Hungary.

Table of Contents

On Optimising Shape-Generic Array Programs Using Symbolic
Structural Information . 1

Kai Trojahner, Clemens Grelck, and Sven-Bodo Scholz

Index Vector Elimination — Making Index Vectors Affordable 19
Robert Bernecky, Stephan Herhut, Sven-Bodo Scholz, Kai Trojahner,
Clemens Grelck, and Alex Shafarenko

Functional–Based Synthesis of a Systolic Array for GCD
Computation . 37

Laura Ruff and Tudor Jebelean

Comparing Alternative Evaluation Strategies for Stream-Based Parallel
Functional Languages . 55

Mercedes Hidalgo-Herrero, Yolanda Ortega-Mallén, and
Fernando Rubio

Parallel Coordination Made Explicit in a Functional Setting 73
Jost Berthold and Rita Loogen

Low-Level Programming in Hume: An Exploration of the HW-Hume
Level . 91

Kevin Hammond, Gudmund Grov, Greg Michaelson, and
Andrew Ireland

A Conference Management System Based on the iData Toolkit 108
Rinus Plasmeijer and Peter Achten

A Pattern Logic for Prompt Lazy Assertions in Haskell 126
Olaf Chitil and Frank Huch

Ivor, a Proof Engine . 145
Edwin Brady

Proving Program Properties Specified with Subtype Marks 163
Tamás Kozsik

Uniqueness Typing Redefined . 181
Edsko de Vries, Rinus Plasmeijer, and David M. Abrahamson

Heuristics for Type Error Discovery and Recovery . 199
Jurriaan Hage and Bastiaan Heeren

Testing Properties of Generic Functions . 217
Patrik Jansson, Johan Jeuring, Laurence Cabenda, Gerbo Engels,
Jacob Kleerekoper, Sander Mak, Michiel Overeem, and Kees Visser

X Table of Contents

Worst-Case Execution Times for a Purely Functional Language 235
Armelle Bonenfant, Christian Ferdinand, Kevin Hammond, and
Reinhold Heckmann

Automatic Partial Inversion of Inductively Sequential Functions 253
Jesús M. Almendros-Jiménez and Germán Vidal

Author Index . 271

On Optimising Shape-Generic Array Programs

Using Symbolic Structural Information

Kai Trojahner1, Clemens Grelck2, and Sven-Bodo Scholz2

1 University of Lübeck
Institute of Software Technology and Programming Languages

trojahner@isp.uni-luebeck.de
2 University of Hertfordshire

Department of Computer Science
{c.grelck,s.scholz}@herts.ac.uk

Abstract. Shape-generic programming and high run time performance
do match if generic source code is systematically specialised into non-
generic executable code. However, as soon as we drop the assumption of
whole-world knowledge or refrain from specialisation for other reasons,
compiled generic code is substantially less efficient. Limited effectiveness
of code optimisation techniques due to the inherent lack of knowledge
about the structural properties of arrays can be identified as the single
most important source of inefficiency.

However, in many cases partial structural information or structural
relationships between arrays would actually suffice for optimisation. We
propose symbolic array attributes as a uniform scheme to infer and to
represent partial and relational structural information in shape-generic
array code. By reusing the regular language to express structural prop-
erties in intermediate code, existing optimisations benefit from symbolic
array attributes with little or no alteration. In fact, program optimisa-
tion and identification of structural properties cross-fertilise each other.
We outline our approach in the context of the functional array language
SaC and demonstrate its effectiveness by a small case study.

1 Introduction

Shape-generic array programming means writing functions, modules and entire
programs in a style that completely or at least partially abstracts from the
structural properties of the arrays involved. For example, a shape-generic matrix
multiplication function is one that is applicable to pairs of matrices of any size,
as long as the extent of the second axis of the first matrix equals the extent of the
first axis of the second matrix. In fact, shape-generic array programming even
goes one step further and allows functions to abstract not only from the extents
of arrays along given axes, but even from the number of axes (or dimensionality
or rank). For example, the element-wise multiplication of two arrays can be
specified exactly once and applied to pairs of vectors, matrices, tensors and even
higher-dimensional arrays.

Z. Horváth, V. Zsók, and A. Butterfield (Eds.): IFL 2006, LNCS 4449, pp. 1–18, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

2 K. Trojahner, C. Grelck, and S.-B. Scholz

The functional array programming language SaC [1,2] supports shape-generic
array programming. Multi-dimensional arrays are characterised by their rank,
an integer denoting the number of axes of an array, and their shape, a vector
containing the extent along each axis. By step-wise abstraction from rank and
shape, the type system of SaC distinguishes between three classes of array types,
named shape classes :

1. Array of Known Shape (AKS),
2. Array of Known Dimensionality (AKD) and
3. Array of Unknown Dimensionality (AUD).

An AKS type, for example int[10,10], describes the set of all arrays of some
base type and a certain shape (including fixed rank). An AKD type, for example
int[.,.], defines the number of axes, but leaves the extent along each axis open.
Finally, an AUD type like int[*] encompasses all arrays of a given base type
regardless of their structure. Together, the array types form a natural hierarchy
that induces a subtype relationship, e.g. int[10,10] ≺ int[.,.] ≺ int[*].

When it comes to compiling shape-generic programs into executable code, it
turns out that the run time performance of compiled AUD code is significantly
inferior to compiled AKD code, which in turn is significantly inferior to compiled
AKS (i.e. non-generic) code (cf. Section 5). This observation can be attributed to
essentially two independent sources of inefficiency: Firstly, generic code requires
the shape vector to be maintained in the heap at run time rather than being a set
of compile time constants. The lack of a static rank knowledge also entails that
no suitable nesting of loops can be generated to traverse an array. Instead, we
must rely on a relatively inefficient loop structure. Secondly, and more gravely,
many optimisation techniques are less effective if they lack structural information
on the arrays involved. This holds for standard code transformations like con-
stant folding, common subexpression elimination and loop unrolling just as for
array-specific optimisations [3,4,5] or optimisations in the memory management
subsystem [6].

Our recent work focussed on careful identification of where and how far to
specialise [7]. Still, specialisation is not always the solution since sufficient struc-
tural information may lack at compile time or the number of specialisations
may grow beyond feasability. Fortunately, many code optimisation techniques
can benefit from more modest gains in structural knowledge than those result-
ing from specialisation. For example, it may be useful to know the extent of an
AKD array along certain but not all axes. Or, we may exploit that an AUD
array has at least two inner axes of which we may even figure out the extent.
Or, we may improve programs utilising the knowledge that certain arrays have
the same shape or the same dimensionality as others.

This work aims at making such fine-grained structural information below the
level of shape classes available to optimisations by compile time inference. We
introduce symbolic array attributes as uniform representations of the ranks and
shapes of all arrays involved in an intermediate code representation. More pre-
cisely, we associate each definition of an array with new symbolic identifiers for
its rank and its shape. Like an array identifier is bound to an expression defining

On Optimising Shape-Generic Array Programs 3

that array, the associated rank and shape identifiers are bound to expressions
that extract the definition of the array’s rank and shape from its original defini-
tion. Any array-valued expression effectively is replaced by a triple of expressions.
The first one is the original expression defining both structure and element val-
ues of the array. The second expression defines the shape, but abstracts from
element values. The third expression defines the rank, but abstracts from con-
crete extents along the array’s axes. Whereas the original code describes the
relationships between arrays on the level of rank, shape and element values all
at the same time, the augmented code explicates these relationships at each level
individually.

Since all three elements of the expression triples are regular expressions of
the language, they are automatically subject to a plethora of optimisations like
constant folding, constant/variable propagation or common subexpression elim-
ination to name just a few. This has a dual effect: The optimisations benefit
from symbolic structural information while at the same time the structural in-
formation is improved by the optimisations.

It is characteristic for our approach to represent and exploit structural and
relational properties of arrays in a purely compiler directed way. In particular,
the source language remains entirely unaffected. An alternative approach would
be to refine the type system towards using a variant of dependent types [8]. In
contrast to our work, that would require a substantial extension to SaC as a
programming language having a major impact on the style of programming.

The remainder of this paper is organised as follows: Section 2 defines a core
language that we use to illustrate our ideas. We formally define how we introduce
symbolic array attributes in Section 3 and how we use them for optimisation in
Section 4. In Section 5 we illustrate our approach by a small case study. We
discuss some related work in Section 6 and conclude in Section 7.

2 Introducing SaCmini

Many features of SaC are irrelevant for the context of this paper. Therefore,
we define a core language called SaCmini, which exposes the relevant features
in a condensed and simplified form. As defined in Fig. 1, a SaCmini program is
a sequence of potentially mutually recursive function definitions. Each function
definition consists of a return type, a function name, a typed parameter list in
parentheses and a code block. A code block is a sequence of variable-expression
bindings terminated by a goal-expression, that follows the key word return.
Alternatively, we may have a conditional where each branch either leads to a
further conditional or terminates with a goal-expression. This SaC-style notation
merely is a syntactic variation of a nesting of let-expressions and conditional
expressions in other functional languages.

Any expression (and hence any variable) denotes an array, which is charac-
terised by a rank scalar, a shape vector and a data vector. While the latter acts
as a store for element values, all structural information is encoded in the rank
scalar and the shape vector. The rank scalar describes the rank or dimensionality

4 K. Trojahner, C. Grelck, and S.-B. Scholz

Program ⇒ [FunDef]*

FunDef ⇒ Type Id ([Param [, Param]*]) Block

Param ⇒ Type Id

Block ⇒ { [Id = Expr ;]* Return }
| { [Id = Expr ;]* Cond }

Return ⇒ return (Id) ;

Cond ⇒ if (Id) Block else Block

Expr ⇒ Const | Id | FunAp | Vector | With

FunAp ⇒ Fun ([Id [, Id]*])

Vector ⇒ [[Id [, Id]*]]

With ⇒ with [Generator Block]* genarray (Id , Id)

Generator ⇒ ([Id <=] Id < Id)

Type ⇒ AKS-Type | AKD-Type | AUD-Type

AKS-Type ⇒ BaseType [[IntConst [, IntConst]*]]

AKD-Type ⇒ BaseType [. [, .]*]

AUD-Type ⇒ BaseType [*]

Fig. 1. Syntax of SaCmini

of the array; the shape vector describes an array’s extent along each dimension.
Consequently, the rank scalar denotes the length of the shape vector. In this
model, scalars are rank zero arrays with an empty shape vector and a data vec-
tor consisting of a single element. Arrays can be nested as long as the whole
array remains representable by rank, shape and data vector, i.e., all elements of
an array must have the same element type and shape.

In addition to the usual scalar constants and identifiers, expressions may be
applications of defined or of built-in functions. Built-in functions include the
usual arithmetic, logic and relational operators on scalars. Whenever appropri-
ate, we use infix notation for applications to improve readability. Array-specific
built-in operations are limited to the following:

– dim(A) yields the rank scalar of array A .
– shape(A) yields the shape vector of array A .
– sel(iv,A) yields the element of A at the index specified by the integer

vector iv .
– modarray(A,iv,v) yields a new array that is equivalent to A except for the

element at index position iv , which is set to the scalar value v .
– reshape(shp,A) returns a new array whose data vector is given by the one

of A but whose shape vector equals shp .

In applications of both sel and modarray the length of the index vector must
coincide with the rank of the array; in applications of reshape the product of

On Optimising Shape-Generic Array Programs 5

the elements of the desired shape vector must match that of the elements of the
existing shape vector.

Unlike SaC, SaCmini only supports non-nested expressions, i.e., arguments
to a function application for example may only be identifiers, but not expres-
sions again. This restriction simplifies the definition of compilation schemes; it
can easily be achieved in a preprocessing step (from full SaC) by recursively
extracting nested expressions and binding them to new identifiers. Nevertheless,
we allow ourselves to use nested expressions wherever appropriate to improve
the readability of code examples.

SaCmini also features a simplified version of SaC’s versatile array comprehen-
sion construct called with-loop. A with-loop of the form

with ... genarray(shp,def)

defines an array whose shape is given by appending the integer vector shp with
the shape of the default value def . Each element of a with-loop-defined array is
either set to the default value or computed according to the specification given in
one of the parts. Each part consists of a generator, which defines a set of index
positions, and an associated expression block, which determines the values of
array elements at index positions covered by the generator.

A generator (lb <=iv <ub) defines a rectangular index range delimited by a
lower bound vector lb and an upper bound vector ub . A missing lower bound
specification defaults to a zero vector with the length of ub . The index variable
iv is introduced in the generator, and its scope is limited to the associated
expression; it represents the current index position. Multiple parts allow us to
define different array elements according to different specifications. In order to
ensure deterministic results, the index sets defined by the various generators of
an individual with-loop must be pairwise disjoint.

SaCmini and likewise SaC only have a very small set of built-in functions on
arrays. A comprehensive set of compound operations on arrays is provided as a

bool select(int idx, bool[.] array)
{
res = sel([idx], array);
return(res);

}

bool[*] select(int[.] idx, bool[*] array)
{
shp = drop(select(0, shape(idx)), shape(array));

res = with (iv < shp) {
elem = sel(idx ++ iv, array);
return(elem);

} genarray(shp, 0);
return(res);

}

Fig. 2. Generalised selection functions

6 K. Trojahner, C. Grelck, and S.-B. Scholz

standard library, where they are defined by means of with-loops. Even many
existing primitive functions are not intended for the general use, but rather serve
as implementation vehicles for more general standard library functions. As an
example, take the definition of a general selection facility in Fig. 2. The first
instance of select takes a single integer and a vector.1 In this case, the type in-
formation is sufficient to directly apply the built-in primitive sel without risking
a run time error. The second instance of select implements the general case of
selection: If the length of the selection vector is less than the dimensionality of
the array to be selected from, selection yields an entire subarray. We achieve this
by first dropping as many elements from the shape vector of the array as given
by the length of the selection vector before we create an array of that shape.
In the most relevant special case, the length of the selection vector actually co-
incides with the dimensionality of the array such that the application of drop
yields the empty vector. Hence, the subsequent with-loop creates an array with
an empty shape vector, which effectively is a scalar. Both auxiliary functions
drop and vector concatenation (++) can be found in Fig. 3. For a more detailed
explanation of the various SaC language features see [2]; a formal semantics may
be found in [7].

int[.] drop(int v, int[.] a)
{
dl = shape(a)[0] - v;
ds = [dl];

res = with ([i] < ds) {
drel = a[i + v];
return(drel);

} genarray(ds, 0);
return(res);

}

int[.] (++) (int[.] a, int[.] b)
{
sa = shape(a);
sb = shape(b);

res = with ([i] < sa) {
ael = a[i];
return(ael);

}
(sa <= [i] < sa + sb) {
bel = b[i - sa[0]];
return(bel);

} genarray(sa + sb, 0);
return(res);

}

Fig. 3. Auxiliary functions needed for the generalised selection

1 We use the base type bool here as an example only.

On Optimising Shape-Generic Array Programs 7

3 Symbolic Array Attributes

In non-generic array code (shape class AKS) any structural relationship between
arrays is properly expressed by their types. In non-specialised generic code, how-
ever, this property is immediately lost. For example, an application of the built-in
function modarray

v = modarray(a,iv,0);

is known to yield an array v with a shape identical to that of the first argument a.
Hence, the type inference system assigns v the type of a. Supposed a has a non-
generic AKS type, this accurately reflects the structural relationship between a
and v. However, if a has a generic AKD type say int[.], then v is also assigned
the type int[.]. This still reflects that a and v do have the same rank, but
the fact that both actually have the same shape is not expressed. In the AUD
case, we do not even know the equality of rank. This lack of information severely
limits our opportunities for code optimisation.

Symbolic array attributes are meant to fill this gap and provide a systematic
means to express partial structural information both with respect to individual
arrays as well as structural relationships between different arrays. We augment
any variable-expression binding in a function body with two (flattened) expres-
sions: one to denote the array’s rank (enclosed in round brackets) and one to
denote the array’s shape (enclosed in square brackets):

(vd)[vs] v = expr;

Only scalar constants, constant arrays and identifiers may occur in attribute
positions. More complex sub-expressions are lifted into additional variable-ex-
pression bindings. Thus, despite appearing on the left-hand side of the assign-
ment operator, symbolic array attributes are no less proper expressions than
those on the right-hand side. Depending on the shape class of an array, the
contents of vd and vs may vary, as outlined in the table below.

Shape class vd vs Example
AKS Const Array const (0)[[]]

(2)[[10,10]]
AKD Const Id (2)[s]
AUD Id Id (d)[s]

Although rank and shape of an array may not be known until run time, we can
consult their symbolic compile time representations using the attribute access
functions D and S. If the identifier a has been attributed with the pair (d)[s],
then D(a) gives d and S(a) yields s . The knowledge about the shape-preserving
properties of modarray, can now be encoded by assigning the result v exactly
those attributes of the modified array a :

(D(a))[S(a)] v = modarray(a,iv ,val);

In Fig. 4 we show the transformation scheme SAA that introduces symbolic
array attributes and, thus, makes array ranks and shapes explicit in terms of
SaCmini expressions. Rules of the form

C [[expr]] = expr ′

8 K. Trojahner, C. Grelck, and S.-B. Scholz

SAA [[type fun (params) { body }]]
= type fun (R [[params]]) { MIR [[params]]; SAA [[body]] }

SAA [[if (c) then else else]] = if (c) SAA [[then]] else SAA [[else]]

SAA [[return(a);]] = return(a);

SAA [[v = c ; R]] = (0)[[]] v = c ; SAA [[R]]

SAA [[v = sclprf (args); R]] = (0)[[]] v = sclprf (args); SAA [[R]]

SAA [[v = a ; R]] = (D(a))[S(a)] v = a ; SAA [[R]]

SAA [[v = shape(a); R]] =

⎧
⎨

⎩

(1)[[1]] vs = [D(a)];
(1)[vs] v = shape(a);
SAA [[R]]

SAA [[v = reshape(s ,a); R]] =

⎧
⎨

⎩

(0)[[]] vd = S(s)[0];
(vd)[s] v = reshape(s ,a);
SAA [[R]]

SAA [[v = modarray(a ,iv ,v); R]]
= (D(a))[S(a)] v = modarray(a ,iv ,v); SAA [[R]]

SAA [[v = []; R]] = (1)[[0]] v = []; SAA [[R]]

SAA [[v = [a0,...,an−1]; R]] =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(0)[[]] vd = 1 + D(a0);
(1)[[1]] vss = [vd];
(1)[vss] vs = [n] ++ S(a0);
(vd)[vs] v = [a0,...,an−1];
SAA [[R]]

SAA [[v = fun (args); R]] = R [[v]]= fun (args);MIR [[T [[fun]]v]];SAA [[R]]

SAA [[v = with parts genarray(s ,d); R]]

=

⎧
⎨

⎩

(0)[[]] vd = S(s)[0];
(vd)[s] v = with SAA [[parts]] genarray(s ,d);
SAA [[R]]

∣
∣
∣
∣
∣
∣
if D(d)≡ 0

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(0)[[]] ss0 = S(s)[0];
(0)[[]] vd = ss0 + D(d);
(1)[[1]] vss = [vd];
(1)[vss] vs = s ++ S(d);
(vd)[vs] v = with SAA [[parts]] genarray(s ,d);
SAA [[R]]

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

otherwise

SAA [[(lb <= iv < ub) block R]]
= (lb <= SAA′ [[iv]][[ub]] < ub) SAA [[block]] SAA [[R]]

SAA′ [[iv]][[ub]] = (1)[S(ub)] iv

SAA′ [[[i1, ..., id]]][[ub]] = [(0)[[]] i1, ..., (0)[[]] id]

Fig. 4. Transformation scheme for inserting symbolic array attributes

On Optimising Shape-Generic Array Programs 9

denote the context-free replacement of a program fragment expr by a another
program fragment expr ′. The scheme SAA does not only express the relation-
ships between the arguments and the shapes of the results of the SaCmini built-in
functions, but also ensures proper attribute annotation at function boundaries.

Identifiers bound to constants or applications of scalar-valued functions (in-
cluding dim) are assigned the attribute pair (0)[[]]. Identifiers bound to the
values of other identifiers (i.e. a = b;) share the same pair of attributes. By
definition, the result of function shape(a) is a vector of length equal to the
rank of a . This correspondence is expressed in the symbolic array attribute
(1)[[D(a)]], which is converted into flat code to adhere to our grammar. Vice
versa, the rank of the result of reshape(s,a) is determined by the length of
vector s , which is accessed by selecting the first element from the shape of s .

The vector construct [a0,...,an−1] yields an array whose rank is given by
increasing the rank of a0 by one. The shape vector is obtained by concatenating
[n] and the shape vector of a0

2 using the function (++) depicted in Fig. 3.
The with-loop with ... genarray(shp,def) generalises array construc-

tion. The rank of its result can be computed by adding the rank of the default
value def 2 to the length of vector shp . Similar to vector construction, comput-
ing the shape vector requires to concatenate shp and the shape vector of def .
The index vector is also annotated with symbolic array attributes by the aux-
iliary scheme SAA′ before the main scheme is recursively applied to the parts.
Here, we exploit the restriction that index vector and boundary vectors must
coincide in length.

As explained so far, SAA inserts symbolic array attributes that describe an
array’s rank and shape in terms of existing arrays within the scope of the function
body. For obvious reasons this approach can neither be carried over to function
parameters nor to arrays defined by function applications. In both cases, we fall
back to introducing applications of the built-in functions dim and shape. This is
formalised by the auxiliary scheme MIR shown in Fig. 5. Scheme R only serves
to provide fresh identifiers and thus avoid naming conflicts. The relationship
between rank, shape and value of a function parameter or an application result is
established by the additional application of an internal pseudo function saabind:

(d)[s] v’ = saabind(d,s ,v);

The assignment associates the identifier v’ with the rank d and the shape s .
However, it makes no statement about the array attributes of v which may not
be present at all. Thus, the above line is substantially different from

(d)[s] v’ = v ;
which states that v’ and v are identical and thus have the same attributes.

2 By definition all elements of a vector must have the same shape. Likewise, all el-
ements of an array created using a genarray-with-loop must match the default
element in shape. If the compiler does not manage to guarantee this property by
static analysis, the code generator inserts a run time check into compiled code.
Thus, we may safely adopt one representative here, which is either the first element
of a non-empty vector or the default element of a with-loop.

10 K. Trojahner, C. Grelck, and S.-B. Scholz

MIR [[t [s1,...,sd] a]] =

⎧
⎨

⎩

(0)[[]] ad = d ;

(1)[[d]] as = [s1,...,sd];

(d)[[s1,...,sd]] a = saabind(ad,as,R [[a]]);

MIR [[t [•1, ..., •d] a]] =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(0)[[]] ad = d ;

(1)[[d]] as = shape(R [[a]]);
(0)[[]] as1 = as[0];

...

(0)[[]] asd
= as[d−1];

(1)[[d]] as’ = [as1,...,asd
];

(d)[as] a = saabind(ad,as’ ,R [[a]]);

MIR [[t [*] a]] =

⎧
⎪⎪⎨

⎪⎪⎩

(0)[[]] ad = dim(R [[a]]);
(1)[[1]] ass

= [ad];

(1)[ass
] as = shape(R [[a]]);

(ad)[as] a = saabind(ad,as,R [[a]]);

Fig. 5. Compilation scheme for representing array attributes at function boundaries

Depending on the shape class of the argument, different code patterns are
used. For AKS arrays, both attributes are simple constants. This also holds for
the rank attribute of AKD arrays. Their shape, however, must be determined
dynamically. The elements of the shape vector are selected one by one and re-
assembled to form a new vector. Doing so we introduce mirrors for the whole
shape vector and for all the elements which can be obtained by selecting from
the new shape vector. In the AUD case, the pattern essentially applies dim and
shape. The additional code line serves to encode the correspondence between
the length of the shape vector and the rank of the array. The auxiliary scheme T
used in the rule function application yields the base type of the function value.

4 Effects of Symbolic Array Attributes

Symbolic array attributes provide uniform access to the ranks and shapes of
arrays even if these properties are unknown until run time. In conjunction, they
reflect all static relationships between rank scalars, shape vectors and array val-
ues within one function. A compiler may now exploit this information as a foun-
dation for program optimisation. In particular, symbolic array attributes allow
the compiler to statically eliminate data dependencies resulting from accessing
array rank and shape properties.

Fig. 6 shows the basic partial evaluation steps that exploit symbolic array
attributes. All applications of dim(a) and shape(a) are replaced by the cor-
responding attribute values D(a) and S(a), respectively. Even applications of
saabind(d,s ,a) can actually be eliminated if there are symbolic array at-
tributes for a identical to (d)[s], which may well happen as a result of function
inlining. Although these transformations seem simple, they are in fact crucial

On Optimising Shape-Generic Array Programs 11

SVO [[dim(a)]] = D(a) if D(a) defined

SVO [[shape(a)]] = S(a) if S(a) defined

SVO [[saabind(ad,as,a)]] = a if D(a) ≡ ad ∧ S(a) ≡ as

Fig. 6. Optimisation schemes for dim, shape, and saabind

for triggering a plethora of further optimisations that may even not be aware of
symbolic array attributes.

By means of symbolic array attributes the available information on partial
structural information of individual arrays as well as the structural relation-
ships between different arrays are explicitly modeled in terms of regular SaCmini

expressions. As such they are subject to standard optimisations like constant
folding, constant/variable propagation or common subexpression elimination to
name just a few. Relationships between arrays like shape equality are expressed
in the most natural way: by having all queries for the shape of one or another ar-
ray be replaced by the same (symbolic) identifier. High-level optimisations like
with-loop-folding [3] or with-loop-fusion [5] and memory management tech-
niques like update-in-place or memory reuse [6] benefit from this information
with little or no alteration. Likewise, shape cliques [9] can be identified without
further analysis: all arrays belonging to the same shape clique have the same
symbolic shape identifier.

Symbolic array attributes make exactly those rank and shape computations
explicit in intermediate code that otherwise would be created by the code gener-
ator at a much later stage of the compilation process. If not a single optimisation
applies, we end up with the same code generated in the end as without symbolic
array attributes. However, our experience shows that typically our optimisa-
tions are quite effective, and, hence, rank and shape computation are partially
performed at compile time and shared among different arrays in many cases.

5 Case Study

In this section, we demonstrate how symbolic array attributes influence the
compilation process. Instead of quantifying performance using a broad range
of benchmarks, our case study aims at illustrating in detail how program opti-
misation is affected and why symbolic array attributes allow us to generate more
efficient code. For this purpose, we choose a small but very important example:
element-wise mapping of a function to an array in a shape-generic way. In the
absence of higher-order functions in SaCmini (and in SaC), we need a concrete
definition for each scalar operator. This functional pattern appears in abundance
in generic SaC applications.

Fig. 7 shows the standard library implementation of extending the scalar
boolean negation operator to boolean arrays of any shape. Essentially, the func-
tion (!) defines the result array to have the same shape as the argument array

12 K. Trojahner, C. Grelck, and S.-B. Scholz

bool[*] (!) (int[*] a)
{
s = shape(a);
res = with (iv < s) {

ael = a[iv];
return(!ael);

} genarray(s, false);
return(res);

}

Fig. 7. Case study: element-wise mapping of a function to a generic array

bool[*] (!) (int[*] a’)
{
(0) [[]] ad = dim(a’);
(1) [[1]] ass = [ad];
(1) [ass] as = shape(a’);
(ad)[as] a = saabind(ad,as,a’);
(1) [[1]] shs = [ad];
(1) [shs] s = shape(a);
(0) [[]] rd = shs[0];
(rd)[s] res = with ((1)[shs] iv < s) {

(0) [[]] d = shape(iv)[0];
(0) [[]] ss = shape(s)[0];
(0) [[]] dl = ss - d;
(1) [[1]] ds = [dl];
(0) [[]] dd = shape(ds)[0];
(dd) [ds] shp = with ([(0)[[]]j] < ds) {

(0)[[]] drel=s[j+d];
return(drel);

} genarray(ds,0);
(0) [[]] aed = shape(shp)[0];
(aed)[shp] ael = with ((1)[dub] jv < shp) {

(0)[[]] elem=sel(iv++jv,a);
return(elem);

} genarray(shp,0);
return(!ael);

} genarray(s, false);
return(res);

}

Fig. 8. The example with inlined functions and symbolic shape attributes

with all elements being set to the negated values of the corresponding elements
of the argument array. As the function signature deliberately leaves the struc-
ture of argument arrays unrestricted, selection into the argument array refers to
the second instance of select from Fig. 2. Hence, it also relies on the auxiliary
functions drop and (++) shown in Fig. 3.

Fig. 8 shows the intermediate code after inlining the functions select and
drop. Due to the limited space we refrain from inlining the application of ++ as

On Optimising Shape-Generic Array Programs 13

well. Without symbolic shape attributes no further optimisation would be possi-
ble. It is needless to say that this code shows a very poor run time performance.
There is one with-loop alone for computing the shape shp of the selected ele-
ment which is a relict from the drop function. Although it is bound to always
yield the same result, the with-loop is evaluated for each element of the new
array res. It cannot be lifted out of the outer with-loop because it depends
on the index vector iv via ds, dl and d. Even worse, as the selected element is
a scalar, shp must always be the empty vector []. Hence, the following with-
loop will only produce a single element by selecting into the array a at position
iv++[] = iv.

However, annotating the code with symbolic array attributes, as described in
Section 3, drives the optimisation process way beyond. The key to eliminating
overhead in the outer with-loop lies in the highlighted code section in Fig. 8. By
identifying that iv and s have in fact the same shape, it becomes apparent that
the shape of the selected element is [], i.e., the element turns out to be scalar.
The symbolic shape attributes allow us to partially evaluate both shape(iv)
and shape(s) to shs, such that both d and s become shs[0], which is further
resolved to ad. Exploiting the algebraic property that x − x = 0 makes dl
become zero and thus ds turns into the constant vector [0]. Hence, standard
optimisations transform the four highlighted lines of code in Fig. 8 into

(0) [[]] d = ad;
(0) [[]] ss = ad;
(0) [[]] dl = 0;
(1) [[1]] ds = [0];

The optimisation process continues in a similar fashion. With ds = [0], the
inner with-loop that computes shp, the shape of the element selected from
a, is known to merely yield the empty vector []. As a consequence, the sym-
bolic array attributes of ael have been refined to constants, namely (0)[[]].
Furthermore, with shp = [], the with-loop performing the selection itself can
be unrolled, yielding ael = sel(iv++[], a), which in turn is simplified to
ael = sel(iv, a).

Finally, by eliminating common subexpressions and dead code, we obtain the
code shown in Fig. 9. The result looks strikingly similar to the original program
in Fig. 7. However, instead of being forced to use the expensive generic selection
function from Fig. 2, we now employ the built-in function sel. Moreover, the
symbolic array attributes clearly reflect the shape equality between argument
and result. This property is exploited by the compiler to generate code that
tries to immediately reuse the memory that holds a for storing res [6].

In order to quantify the effect of the transformations enabled by symbolic
array attributes in our case study, we have created a synthetic micro benchmark:
We run 100 negations of an array of 2000 × 2000 elements3 on a 3 GHz Intel
Xeon processor. Fig. 10 shows program run times and memory consumption of
the micro benchmark for compiled AKS, AKD and AUD code. Symbolic array
3

SaC stores boolean values as integers rather than bits. Hence, we need approximately
16MB of memory to store one array.

14 K. Trojahner, C. Grelck, and S.-B. Scholz

bool[*] (!) (int[*] a’)
{
(0) [[]] ad = dim(a’);
(1) [[1]] ass = [ad];
(1) [ass] as = shape(a’);
(ad)[as] a = saabind(ad,as,a’);
(ad)[as] res = with ((1)[ass] iv < as) {

(0)[[]] ael = sel(iv, a);
return(!ael);

} genarray(as, false);
return(res);

}

Fig. 9. The fully optimised example

attributes have no impact on the compilation of non-generic code. The AUD
variant profits the most from the extended optimisation capabilities: execution
time is reduced by 95% from 149.5s to 7.1s. This is not surprising given how much
overhead has been eliminated from the intermediate program. The remaining
slowdown with respect to the AKS program is explained by the lower efficiency
of the AUD array traversal code. In both the AUD and the AKD case, symbolic
array attributes enable memory reuse, thereby reducing space requirements to
the AKS level. The AKD program especially benefits from this: its run time is
reduced by 28%, approaching the AKS run time.

In generic array programming, small functions like the negation on arrays
serve as building blocks for more complex operations. Fig. 11 illustrates this
concept by means of a shape-generic implementation of element-wise logical
implication. The function is composed of negation and disjunction, where the
implementation of the latter follows the familiar pattern. Since our type system
cannot express the shape conformability restriction on the argument arrays, we
use an application of reshape instead. The run time figures show that symbolic
array attributes have a drastic effect beyond the improvements we observed in
the compilation of the individual components. Since the applications of shape

 1

 10

 100

 1000

AUDAKDAKS

R
un

tim
e

in
 s

ec
on

ds

no SAA
with SAA

 0

 10

 20

 30

 40

 50

AUDAKDAKS

M
em

or
y

de
m

an
d

in
 m

ill
io

n
by

te
s no SAA

with SAA

Fig. 10. Run time and memory impact of symbolic array attributes

On Optimising Shape-Generic Array Programs 15

bool[*] impl(bool[*] a, bool[*] b)
{
a = reshape(shape(b), a);
return(!a | b);

}

 1

 10

 100

 1000

AUDAKDAKS

R
un

tim
e

in
 s

ec
on

ds

no SAA
with SAA

Fig. 11. Run time performance of logical implication on arrays

used in the constituent functions have been removed, with-loop-folding is able
to merge the two consecutive with-loops performing negation and disjunction.
Hence, the AKD execution time is reduced by 56% from 3.9s to 1.7s, once more
reaching the performance level of the AKS variant. The AUD run time drops
by almost 98% from 442.5s to 9.8s, making the once prohibitively expensive
shape-generic program useful in practice.

6 Related Work

An example for the importance of structural information for array processing is
Jay’s FISh [10]. In FISh, each function f is accompanied by a shape function #f
that maps the shape of the argument to the shape of the result. Shape inference
proceeds by complete static evaluation of these shape functions and rejects all
programs for which it fails. As a consequence, FISh does not support non-
uniform functions like take and drop for which the result shape depends on
argument values rather than only shapes.

SaC is less restrictive than FISh and properly supports non-uniform opera-
tions. However, efficiency of compiled code nevertheless depends on the accuracy
of the available shape information [11]. To improve structural information we
previously focused on a combination of partial evaluation and selective function
specialisation [7]. Bernecky recently introduced the concept of shape cliques, sets
of arrays of provably equal shape [9], and investigated their impact on a selected
optimisation: index vector elimination. Symbolic array attributes generalise the
concept of shape cliques by representing partial and relational structural infor-
mation explicitly in the code. In particular, symbolic array attributes allow us
to identify shape cliques, but go beyond this specific application.

Runtime performance is not a key issue in untyped, interpreted array lan-
guages like MatLab, APL or J. However, as soon as attempts are indeed made
to accelerate program execution, structural array properties gain interest. For
example, the Falcon MatLab compiler [12] by de Rose and Padua infers either
precise shapes or rather fuzzy approximations like notMatrix and notScalar.
Recently, Joisha and Banerjee [13] presented an approach for inferring symbolic

16 K. Trojahner, C. Grelck, and S.-B. Scholz

array shapes that is based on modeling the shape semantics of the built-ins in an
algebraic system and evaluation of the resulting expressions using term rewrit-
ing. Another approach taken by McGosh [14] is to use propositional logic to
represent the constraints on the variables. The shape constraints of each state-
ment are expressed as sequences of clauses, before a whole-procedure solution
for all shapes is computed by finding n-cliques in the constraint graph. In the
domain of APL Bernecky proposed array predicates [15] as a framework to rep-
resent knowledge about arrays that exceeds structural information, e.g., a vector
may be attributed as sorted if it is the result of a sort operation. In a setting
dominated by powerful built-in operations such predicates can be maintained
and exploited at a later stage, e.g. to avoid (re-)sorting of an already sorted
array.

All the approaches mentioned so far share with ours the aim to identify
information that is hidden in the code. An alternative class of approaches en-
able the user to express constraints on arrays by more expressive type systems.
Dependent types [8] naturally lend themselves for this purpose as they allow
the use of (dynamic) terms to index within families of types. Unfortunately,
the problem of type equality is generally undecidable as it boils down to de-
ciding whether two index terms denote the same value. For example, Augusts-
son’s Cayenne [16] is a fully dependently typed language. Its type system is
undecidable and it lacks phase distinction. Both problems can be overcome
by restricting the type language. For example, epigram [17,18] (Altenkirch,
McBride, McKinna) rules out general recursion in type-forming expressions to
retain decidability. Other, light-weight approaches such as Xi and Pfenning’s
dml [19], Xi’s applied type system [20], and Zenger’s indexed types [21] allow
term-indexing into type families only for certain index sorts. The type-checking
problem can then be reduced to constraint solving on these sorts, which is
decidable.

Our work is in part inspired by the above mentioned dependently typed pro-
gramming systems. Symbolic array attributes may be regarded as index-terms
into the type family of multi-dimensional arrays of a given base type with SaC

itself being used as the term language. However, our approach does not aim
at providing stronger typing facilities, but at obtaining a uniform representa-
tion of the knowledge already present in a program. In consequence, there is no
obligation of keeping type equality decidable. There is also a relation to work
which aims at optimising dependently typed programs. Xi and Pfenning report
successful array bounds check elimination [22], Xi even outlined a scheme for
dead code removal through dependent types in dml [23]. McKinna and Brady
describe optimisations in the compilation of epigram to remove compile time
only values from terms as well as array bounds checks [24].

7 Conclusion and Future Work

We have proposed a novel approach to represent incomplete structural informa-
tion on shape-generic arrays inferred by the compiler. The appealing

On Optimising Shape-Generic Array Programs 17

characteristic of our symbolic array attributes is that they map information from
the domain of shapely types into the domain of the expression language where a
plethora of optimisation techniques wait to be reused to improve the compile time
knowledge on structural properties of shape-generic arrays. As a consequence,
we observe a cross-fertilisation between code optimisation and gathering of ad-
ditional structural information. Our case study demonstrates how our technique
may substantially improve the run time behaviour of shape-generic code without
the need for specialisation into non-generic code. Although we have illustrated
the concept of symbolic array attributes in the context of SaC, the ideas can be
carried over to other settings with support for generic array programming rather
straightforwardly.

A limitation of our approach so far is the fact that our analysis is mostly intra-
functional. Function inlining and function specialisation with respect to sym-
bolic array attributes are two ways to infer structural properties across function
boundaries. However, both are somewhat orthogonal to our approach. Instead,
we intend to embed our current work in a more general framework that actually
extends the shape-generic type system by a variant of dependent types adapted
to the special needs of shape-generic programming. This step would allow us
to express structural relationships between function parameters and function
results in a systematic way. Symbolic array attributes would then serve as an
implementation vehicle for type inference and as an interface between the type
system and the optimisation framework.

References

1. Scholz, S.B.: Single Assignment C — Efficient Support for High-Level Array Opera-
tions in a Functional Setting. Journal of Functional Programming 13(6), 1005–1059
(2003)

2. Grelck, C., Scholz, S.B.: SAC — A Functional Array Language for Efficient Multi-
threaded Execution. International Journal of Parallel Programming 34(4), 383–427
(2006)

3. Scholz, S.B.: With-loop-folding in SAC — Condensing Consecutive Array Opera-
tions. In: Clack, C., Hammond, K., Davie, T. (eds.) IFL 1997. LNCS, vol. 1467,
pp. 72–92. Springer, Heidelberg (1998)

4. Grelck, C., Scholz, S.B., Trojahner, K.: With-Loop Scalarization: Merging Nested
Array Operations. In: Trinder, P., Michaelson, G.J., Peña, R. (eds.) IFL 2003.
LNCS, vol. 3145, pp. 118–134. Springer, Heidelberg (2004)

5. Grelck, C., Hinckfuß, K., Scholz, S.B.: With-Loop Fusion for Data Locality and Par-
allelism. In: Butterfield, A., Grelck, C., Huch, F. (eds.) IFL 2005. LNCS, vol. 4015,
pp. 178–195. Springer, Heidelberg (2006)

6. Grelck, C., Trojahner, K.: Implicit Memory Management for SAC. In: Grelck, C.,
Huch, F. (eds.) Hardware Specification, Verification and Synthesis: Mathematical
Aspects. LNCS, vol. 408, Springer, Heidelberg (1990)

7. Grelck, C., Scholz, S.B., Shafarenko, A.: A Binding-Scope Analysis for Generic
Programs on Arrays. In: Butterfield, A. (ed.) IFL 2005. LNCS, vol. 4015, pp. 212–
230. Springer, Heidelberg (2006)

8. Martin-Löf, P.: Intuitionistic Type Theory. Biblio-Napoli (1984)

18 K. Trojahner, C. Grelck, and S.-B. Scholz

9. Bernecky, R.: Shape Cliques. In: Horváth, Z., Zsók, V., eds.: Proceedings of the
18th International Symposium on Implementation of Functional Languages, IFL
2006, Budapest, Hungary, September 4-6, 2006, Eötvös Loránd University 1–12
(2006)

10. Jay, C., Steckler, P.: The Functional Imperative: Shape! In: Hankin, C. (ed.) ESOP
1998 and ETAPS 1998. LNCS, vol. 1381, pp. 139–153. Springer, Heidelberg (1998)

11. Kreye, D.: A Compilation Scheme for a Hierarchy of Array Types. In: Arts, T.,
Mohnen, M. (eds.) IFL 2001. LNCS, vol. 2312, pp. 24–26. Springer, Heidelberg
(2002)

12. de Rose, L., Padua, D.: Techniques for the translation of matlab programs into
fortran 90. ACM Transactions on Programming Languages and Systems 21(2),
286–323 (1999)

13. Joisha, P., Banerjee, P.: An algebraic array shape inference system for matlab.
ACM Transactions on Programming Languages and Systems 28(5), 848–907 (2006)

14. McCosh, C.: Type-based specialization in a telescoping compiler for matlab. Master
Thesis TR03-412, Rice University, Houston, Texas, USA (2003)

15. Bernecky, R.: Reducing Computational Complexity with Array Predicates. In:
Picchi, S., Micocci, M. (eds.) Proceedings of the International Conference on Array
Processing Languages (APL’98), Rome, Italy, pp. 46–54. ACM Press, New York
(1998)

16. Augustsson, L.: Cayenne – a language with dependent types. In: International
Conference on Functional Programming. pp. 239–250 (1998)

17. McBride, C., McKinna, J.: The view from the left. Journal of Functional Program-
ming 14(1), 69–111 (2004)

18. Altenkirch, T., McBride, C., McKinna, J.: Why dependent types matter.
Manuscript, available online (2005)

19. Xi, H., Pfenning, F.: Dependent Types in Practical Programming. In: Aiken, A.
(ed.) Proceedings of the 26th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL’99), pp. 214–227. San Antonio, Texas, USA,
ACM Press, New York (1999)

20. Xi, H.: Applied Type System (extended abstract). In: Berardi, S., Coppo,
M., Damiani, F. (eds.) TYPES 2003. LNCS, vol. 3085, pp. 394–408. Springer,
Heidelberg (2004)

21. Zenger, C.: Indexed types. Theorectical Computer Science 187(1-2), 147–165 (1997)
22. Xi, H., Pfenning, F.: Eliminating array bound checking through dependent types.

In: Proceedings of ACM SIGPLAN Conference on Programming Language Design
and Implementation, Montreal, pp. 249–257 (1998)

23. Xi, H.: Dead code elimination through dependent types. In: Gupta, G. (ed.) PADL
1999. LNCS, vol. 1551, pp. 228–242. Springer, Heidelberg (1999)

24. McKinna, J., Brady, E.: Phase distinctions in the compilation of epigram. Draft,
available online (2005)

Index Vector Elimination

— Making Index Vectors Affordable

Robert Bernecky1, Stephan Herhut2, Sven-Bodo Scholz2, Kai Trojahner3,
Clemens Grelck2, and Alex Shafarenko2

1 University of Toronto, Canada
bernecky@acm.org

2 University of Hertfordshire, UK
{s.a.herhut,s.scholz,c.grelck,a.shafarenko}@herts.ac.uk

3 University of Lübeck, Germany
trojahner@isp.uni-luebeck.de

Abstract. Compiling indexing operations on n-dimensional arrays into
efficiently executable code is a challenging task. This paper focuses on
the reduction of offset computations as they typically occur when trans-
forming index vectors into offsets for linearized representations of n-
dimensional arrays. We present a high-level optimization to that effect
which is generally applicable, even in the presence of statically unknown
rank (n). Our experiments show run-time improvements between a factor
of 2 and 16 on a set of real-world benchmarks.

1 Introduction

Languages that permit us to express algorithms in a terse, consistent manner
enhance our thought processes, providing us with what Ken Iverson called ”tools
of thought” [1]. Data-parallel array languages, such as SaC, APL, and J, fall into
this class of programming languages. They offer the programmer such benefits
as shape-invariant programming, terse expression, and simpler control flow.

Some of these benefits arise from the use of index sets to specify data-parallel
indexing operations on multi-dimensional arrays [2,3,4]. Index sets may be
thought of as arrays of index vectors, in which each index vector specifies a
single element or an entire sub-array to be selected from an array. For example,
the index vector [3,4] in SaC could be used to select the element in row three
and column four of a rank-2 matrix, or to select the matrix of shape [7,6] at
hyperplane three and plane four from a tensor of shape [9,8,7,6].

As powerful as index vectors are on the level of algorithmic specifications, they
open a Pandora’s Box of troubles when it comes to generating highly efficient
executable code from them. If index vectors actually appear in code generated
by an array-language compiler, run-time performance can be severely degraded.
One source of performance degradation is memory management overhead arising
from dynamic allocation and deallocation of all arrays, including index vectors.
To avoid superfluous memory allocations and, even more importantly, to avoid
superfluous array copying, reference counting is used as predominant garbage

Z. Horváth, V. Zsók, and A. Butterfield (Eds.): IFL 2006, LNCS 4449, pp. 19–36, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

20 R. Bernecky et al.

collection technique. Although quite some research went into optimizing this
technique, such as the work described in [5,6,7], the dynamic creation of index
vectors within the innermost loops often cannot be avoided.

Another major source of performance degradation due to index vectors ap-
pears whenever the n-dimensional arrays they select from are internally repre-
sented in a linearized fashion. This requires all index vectors within selections
to be translated into offsets within the linearizations of the arrays they select
from. Although this may seem an inexpensive operation – n − 1 additions and
n−1 multiplications per selection into an n-dimensional array – it turns out that
indexing operations are usually heavily used within inner loops and, therefore,
have a significant impact on the overall run-time.

In a setting with fixed array dimensionality (rank) or shape, the runtime im-
pact can be alleviated by scalarizing indexing operations and consecutively ap-
plying standard optimization techniques. However, in generic array programming
languages such as SaC, where the programmer is not bound to predefine the
dimensionality of an array, scalarizing indexing operations often is not possible.
In this paper, we describe index-vector-elimination (IVE), an optimization
technique that independently of the static shape-knowledge is able to eliminate
redundant offset computations.

The paper is organized as follows: the next section gives a brief introduc-
tion of a stripped-down version of SaC which serves as our model language.
Section 3 presents an example which demonstrates the potential for code im-
provements due to array indexing within a typical loop kernel, and identifies
the improvements that our optimization targets. A formalization of index-vec-

tor-elimination, presented in Section 4, provides the required transformation
schemes for our model language SaCλ. Section 5 presents some performance
figures for a set of real-world benchmarks. We discuss related work in Section 6
and draw some conclusions in Section 7.

2 SaCλ

We now describe a stripped-down version of SaC, comprising only the bare
essentials of the language: its syntax has been modified to a λ-calculus style, in
order to ease comprehension by a functional-programming audience.

Figure 1 shows the syntax of SaCλ. A program consists of a set of mutu-
ally recursive function definitions and a designated main expression. Essentially,
expressions are either constants, variables or function applications. Since SaC

does not, at present, support higher-order functions nor nameless functions, all
abstractions (function definitions) are explicitly user-defined. Function applica-
tions are written in C-style, i.e., with parentheses around arguments, rather than
around entire applications of functions. Constants are either scalars or vectors of
expressions enclosed by square brackets. The reader may note here, that our for-
mal description of SaCλ distinguishes between LetExpr, Expr, and V al where
one would usually expect just Expr. This measure eases the formal specification
of code transformations in later sections. Since a transformation of the general

Index Vector Elimination — Making Index Vectors Affordable 21

Program ⇒ [FunId = λ Id[, Id]* .LetExpr ;]*
main = LetExpr ;

LetExpr ⇒ V al

| let Id = Expr in LetExpr

Expr ⇒ V al

| FunId (V al [, V al]*)

| Prf (V al [, V al]*)

| if V al then LetExpr else LetExpr

| with(V al <= Id < V al) : LetExpr
genarray(V al , V al)

V al ⇒ Const

| [[V al [, V al]*]]

| Id

Prf ⇒ shape | dim | sel | ∗ | ...

Fig. 1. The syntax of SaCλ

case into this restricted form is rather straight-forward, we take the liberty to
ignore some of these restrictions in our examples whenever this improves their
readability.

SaCλ provides a few built-in array operators, referred to as primitive functions
(Prf). Among these are shape and dim for computing an array’s shape and
dimensionality (rank), respectively. A selection operation, sel, is also provided; it
takes two arguments: an index vector, specifying the element to be selected, and
an array from which to select. These basic array operations are complemented by
element-wise extensions of arithmetic and relational operations, such as multiply
(∗) and greater-than-or-equal (>=), respectively. For improved readability, we
use the latter in infix notation throughout our examples.

On top of this language kernel, SaC provides the with-loop, a language con-
struct for defining array operations in a generic way. In the interest of simplified
exposition, we consider only a restricted form of the with-loop; fully-fledged
with-loops are described in [3].

As can be seen from Figure 1, with-loops in SaCλ take the general form:

with (lower <= iv < upper) :expr
genarray(shape, default)

where iv is an identifier, lower, upper, and shape denote expressions that should
evaluate to vectors of identical length, and expr and default denote arbitrary
expressions that must evaluate to arrays of identical shape. Such a with-loop
defines an array of shape shape, whose elements are either computed from the
expression expr or from the default expression default. Which of these two val-
ues is chosen for an individual element depends on the element’s location, i.e.,

22 R. Bernecky et al.

it depends on its index position. If the index is within the range specified by
the lower bound lower and the upper bound upper, expr is chosen, otherwise
default is taken. As a simple example, consider this with-loop, which computes
the vector [0, 2, 2, 2, 0]:

with ([1] <= iv < [4]) : 2
genarray ([5], 0)

Note that the use of vectors for the shape of the result and the bounds of the in-
dex space (also referred to as the ”generator”‘) allows with-loops to denote arrays
of arbitrary rank. Furthermore, the “generator expression” expr may refer to the
index position through the “generator variable” iv. For example, the with-loop

with ([1,1] <= iv < [3,4]) : sel([0], iv) + sel([1], iv)
genarray ([3,5], 0)

yields the matrix

�
�

0 0 0 0 0
0 2 3 4 0
0 3 4 5 0

�
� .

We can formalize the semantics of SaCλ by a standard big-step operational
semantics for λ-calculus-based applicative languages as defined in several text-
books, e.g., [8]. The core relations, i.e., those for conditionals, abstractions, and
function applications can be used in their standard form. Hence, only those re-
lations pertaining to the array specific features of SaCλ are shown in Figure 2.

As a unified representation for n-dimensional arrays we use pairs of vectors
< [shp1, . . . , shpn], [data1, . . . , datam] > where the vector [shp1, . . . , shpn]
denotes the shape of the array, i.e., its extent with respect to the n individual
axes, and the vector [data1, . . . , datam] contains all elements of the array
in a linearized form. Since the number of elements within an array equals the

product of the number of elements per individual axis, we have m =
n∏

i=1

shpi. The

linearization we choose is row-major, i.e., elements that correspond to variations
in the rightmost index only are consecutive in the vector of elements.

The first two evaluation rules of Figure 2 show how scalars as well as vectors
are transformed into the internal representation. The rule vect requires that all
elements need to be of the same shape, thereby ensuring shape consistency in
the overall result.

The next three rules formalize the semantics of the main primitive operations
on arrays: dim, shape, and sel. There are two aspects of the sel rule to be
observed: Firstly, we require the selection index to be of the same length as the
shape of the array to be selected from. This ensures scalar values as results.
If a more versatile selection is required, i.e., a selection that may return entire
subarrays, this can be achieved by embedding the selection operation into a
with-loop. Secondly, the selection requires a transformation of the index vector
into a scalar offset l into the linearized form of the array. The sum of products
used here reflects the row-major linearization we have chosen.

Index Vector Elimination — Making Index Vectors Affordable 23

const :
n → < [], [n] >

vect :
∀i ∈ {1, . . . , n} : ei → < [s1, . . . , sm], [di

1, . . . , di
p] >

[e1, . . . , en] → < [n, s1, . . . , sm], [d1
1, . . . , d1

p, . . . , dn
1 , . . . , dn

p] >

dim :
e → < [s1, . . . , sn], [d1, . . . , dm] >

dim(e) → < [], [n] >

shape :
e → < [s1, . . . , sn], [d1, . . . , dm] >

shape(e) → < [n], [s1, . . . , sn] >

sel :

iv → < [n], [i1, . . . , in] >
e → < [s1, . . . , sn], [d1, . . . , dm] >

sel(iv, e) → < [], [dl+1] >

where l =
n�

j=1
(ij ∗

n�
k=j+1

sk)

⇐⇒ ∀k ∈ {1, . . . , n} : 0 ≤ ik < sk

* :

e1 → < [s1, . . . , sn], [d1
1, . . . , d1

m] >
e2 → < [s1, . . . , sn], [d2

1, . . . , d2
m] >

*(e1, e2) → < [s1, . . . , sn], [d1
1 ∗ d2

1, . . . , d1
m ∗ d2

m] >

with :

el → < [n], [l1, . . . , ln] >
eu → < [n], [u1, . . . , un] >

eshp → < [n], [shp1, . . . , shpn] >
edef → < [], [d] >

∀i1 ∈ {l1, ..., u1 − 1} ... ∀in ∈ {ln, ..., un − 1} :

(λ Id . eb [i1, ..., in]) → < [], d[i1,...,in] >

with(el <= Id < eu) : eb genarray(eshp, edef)
→ < [shp1, . . . , shpn], [d[0,...,0] , . . . , d[shp1−1,...,shpn−1]] >

where d[x1,...,xn] = d
iff ∃j ∈ {1, ..., n} : xj ∈ {0, ..., lj − 1} ∪ {uj , ..., shpj − 1}

Fig. 2. An operational semantics for SaCλ

Element-wise extensions of standard operations such as the arithmetic and
relational operations are demonstrated by the example of the rule for
multiplication (*).

The last rule gives the formal semantics of the with-loop in SaCλ. The first
three conditions require the lower bound, the upper bound and the shape expres-
sion to evaluate to vectors of identical length. The next two conditions relate to
the default expression edef and the generator expression eb, respectively. They en-
sure that both the default expression and generator expression evaluate to scalar
values. Since the generator expression may refer to the index variable, this is for-
malized by transforming the generator expression into an anonymous function
and by evaluating a pseudo-application of this function to all indices specified in
the generator. The lower part of the with-loop-rule shows how the values from

24 R. Bernecky et al.

the individual generator expression evaluations and the value of the default ex-
pression are combined into the overall result. The result shape vector, which stems
from the shape expression, comprises a concatenation of the data vectors from the
individual generator expression evaluations. Since the generator does not neces-
sarily cover the entire index space, the default expression values need to be in-
serted whenever at least one element of the index vector [i1, . . . , in] is outside the
generator range, i.e., ∃j ∈ {1, ..., n} : xj ∈ {0, ..., lj − 1} ∪ {uj, ..., shpj − 1}.
Formally, this is achieved by the “where clause” of the rule with.

3 A Motivating Example

Let us consider the following definition of an n-dimensional array R:
. . .let

R = A + shift(cv, A + B)
in . . .

where A, B, and cv are variables that are defined by some surrounding context
indicated by the three dots. We assume here that A and B denote n-dimensional
arrays of identical shape and that cv is an identifier that denotes an n-element
vector. Let us, furthermore, assume that + is a user-defined function that extends
scalar addition to n-dimensional arrays in an element-wise fashion, and that
shift implements an n-dimensional shift operation. Inlining the definitions of
these functions results in a nesting of with-loop-defined let expressions of the
form:

. . .let
R = let

C = with(0*shape(A) <= iv < shape(A)) :
sel(iv, A) + sel(iv, B)

genarray(shape(A), 0)
in let

D = with(cv <= iv < shape(C)) :
sel(iv-cv, C)

genarray(shape(C), 0)
in with(0*shape(A) <= iv < shape(A)) :

sel(iv, A) + sel(iv, D)
genarray(shape(A), 0)

in . . .

Optimizations such as with-loop-folding[3] transform this expression into an
expression that contains a single with-loop:

. . .let
R = with(cv <= iv < shape(A)) :

sel(iv, A) + sel(iv-cv, A) + sel(iv-cv, B)
genarray(shape(A), 0)

in . . .

A translation of such an expression into C-code leads to a loop nesting where
the innermost loop contains the computation of sel(iv, A) + sel(iv-cv, A) +
sel(iv-cv, B) as well as an assignment of the resulting value into the array R at

Index Vector Elimination — Making Index Vectors Affordable 25

the index position iv. As we can see from the semantics definition in Section 2,
these operations require the indices iv and iv - cv to be translated into suitable
offsets. Using vect2offset(iv, shp) as a short-cut notation for this conversion
of indices into offsets, we obtain code within the innermost loop that is similar to:
A_off0 = vect2offset (iv , shape(A));
for(k = 0; k < shape(iv)[0]; k++) {

jv[k] = iv[k] - cv[k];
}
A_off1 = vect2offset (jv , shape(A));
B_off0 = vect2offset (jv , shape(B));
R[R_off0] = A[A_off0] + A[A_off1] + B[B_off0];

where the write-back offset R off0 is defined by the surrounding loop constructs.
The n-element vector jv serves as a compiler-introduced variable that holds the
result of the element-wise vector-subtraction iv-cv computed by the for-loop
in lines 2-4. A closer look at the example reveals that all arrays involved have
the same shape: we demanded A and B to have the same shape, which guarantees
the element-wise addition to be well-defined. Similarly, the result needs to be of
the same shape as well, since the shift operation’s result matches the shape of
its array argument.

With this knowledge of matching shapes, we can deduce that vect2offset(
jv, shape(A)) and vect2offset(jv, shape(B)) in fact compute the same
offset allowing us to reuse A off1 within the selection into B. Following the same
line of reasoning for R and A, we can reuse R off0 for A off0. These modifications
lead to an improved loop body of the form:
for(k = 0; k < shape(iv)[0]; k++) {

jv[k] = iv[k] - cv[k];
}
A_off1 = vect2offset (jv , shape(A));
R[R_off0] = A[R_off0] + A[A_off1] + B[A_off1];

In order to improve this code further, we need to exploit the relation between
iv and jv and the consequent relation between R off0 and A off1. This, in
turn, requires us to have a closer look at the definition of vect2offset. From
the semantics definition in Section 2 we obtain that an index vector [i1, ..., in]

into an array of shape [s1, ..., sn] corresponds to to the offset
n∑

j=1

(ij ∗
n∏

k=j+1

sk).

From linear algebra, we know that
Lemma 1. For all vectors iv, cv, shp ∈ ZZn we have vect2offset(iv + cv,
shp) = vect2offset(iv, shp) + vect2offset(cv, shp).

Proof. By definition of vect2offset we have:
vect2offset(iv + cv, shp)

=
n∑

i=1

((ivi+cvi)*
n∏

j=i+1

shpj)

=
n∑

i=1

(ivi*
n∏

j=i+1

shpj)+
n∑

i=1

(cvi*
n∏

j=i+1

shpj)

= vect2offset(iv, shp) + vect2offset(cv, shp)

26 R. Bernecky et al.

This linearity in the first argument of vect2offset lets us lift the loop-invariant
part of the index computation from the loop body by pre-computing an offset:

coffset = vect2offset(cv, shape(A))

and by defining A off1 as:

vect2offset(jv, shape(A)) + coffset

Subsequently, we can reuse the offset R off0 within the computation of
A off1, which yields a loop body of the form:

A_off1 = R_off0 + coffset;
R[R_off0] = A[R_off0] + A[A_off1] + B[A_off1];

Assuming A to be an n-dimensional array, our optimizations have reduced the
number of arithmetic operations within the loop body from 7 ∗ n− 4 to 3, i.e.,
we eliminate 70% of the arithmetic operations when A is a rank-2 matrix, and
84% when A is of rank 3. Furthermore, since all vect2offset operations have
been eliminated, neither iv nor jv need to be allocated or freed within the loop
body anymore.

4 Index Vector Elimination

From our example, we can see that the intended optimizations cannot be done on
the level of SaCλ itself. Instead, we need to apply them to a level that is closer
to the generated C code. The way we achieve this is to make the transformation
of index vectors into offsets explicit and to separate it from the selection into
the linearized array representation.

4.1 Splitting the Selection Operation

The basic idea is to introduce two new primitive operations: vect2offset and
idxsel, which represent the offset computation and the selection within the
linearized representation, respectively. A formal definition of their semantics is
given in Figure 3. The vect2offset rule is almost identical to the sel rule. The
only difference is that instead of returning an element from the array, only the
scalar offsel l is returned. This allows the idxsel rule to simply expect a scalar
as index argument for a selection in the linearized representation of the array.
Together, these two operations can be used to replace applications of the oper-
ation sel. The code transformation to that effect is shown in Figure 4. It shows
the essential rule of a transformation scheme SPLIT which recursively traverses
SaCλ programs and replaces every occurrence of an application sel(iv, A) by
an expression of the form idxsel(vect2offset(iv, A), A). However, the
nesting restrictions on SaCλ require a slightly more complex pattern to look
for and a nesting of let expressions as replacement. Note here, that all inserted

Index Vector Elimination — Making Index Vectors Affordable 27

vect2offset :

iv → < [n], [i1, . . . , in] >
e → < [s1, . . . , sn], [d1, . . . , dm] >

vect2offset(iv, e) → < [], [l] >

where l =
n�

j=1
(ij ∗

n�
k=j+1

sk)

⇐⇒ ∀k ∈ {1, . . . , n} : 0 ≤ ik < sk

idxsel :

idx → < [], l >
e → < [s1, . . . , sn], [d1, . . . , dm] >

idxsel(idx, e) → < [], [dl+1] >

⇐⇒ 0 ≤ l < m

Fig. 3. Operational semantics for vect2offset and idxsel

SPLIT

�
�
let

Id = Expr
in Exprb

�
� �

��������������	
�������������

let

idx = vect2offset(iv, A)

in let

Id = idxsel(idx, A)

in SPLIT�Exprb�

if Expr ≡ sel(iv, A)

let

Id = SPLIT�Expr�
in SPLIT�Exprb�

otherwise.

Fig. 4. Inserting explicit index computations

identifiers idx need to be unique, i.e., they must not be used anywhere else in
the given program. Those rules of the SPLIT scheme that match the remaining
constructs of SaCλ are not shown as they only propagate the scheme into all
existing sub-expressions.

The soundness of this transformation follows directly from the semantics of
sel, vect2offset, and idxsel:

Theorem 1. SPLIT is sound wrt. the semantics of SaCλ

Proof. From the semantics definitions in Figure 2 and Figure 3 we can see that
it suffices to show that

iv → < [n], [i1, . . . , in] >
e → < [s1, . . . , sn], [d1, . . . , dm] >

idxsel(vect2offset(iv, e), e) → < [], [dl+1] >

where l =
n∑

j=1

(ij ∗
n∏

k=j+1

sk)

⇐⇒ ∀k ∈ {1, . . . , n} : 0 ≤ ik < sk

28 R. Bernecky et al.

We have

e → < [s1, . . . , sn], [d1, . . . , dm] >
iv → < [n], [i1, . . . , in] >

vect2offset(iv, e) → < [], [l] >
[vect2offset]

e → < [s1, . . . , sn], [d1, . . . , dm] >

idxsel(vect2offset(iv, e), e) → < [], [dl+1] >

where l =
n∑

j=1

(ij ∗
n∏

k=j+1

sk)

[idxsel]

⇐⇒ ∀k ∈ {1, . . . , n} : 0 ≤ ik < sk ∧ 0 ≤ l < m

All that remains to show is that the condition 0 ≤ l < m is redundant. 0 ≤ l
follows directly from the definition of l and the requirement that 0 ≤ ik < sk for

all k. From the latter we can furthermore deduce that l =
n∑

j=1

(ij ∗
n∏

k=j+1

sk) ≤
n∑

j=1

((sj−1)∗
n∏

k=j+1

sk) =
n∑

j=1

(
n∏

k=j

sk−
n∏

k=j+1

sk) =
n∏

k=1

sk−
n∏

k=n+1

sk <
n∏

k=1

sk = m.

q.e.d.

Once all offset computations are explicit, the three optimizations explained in-
formally in the previous section can now be formalized.

4.2 Reusing Offset Computations

In order to reuse offset computations, we must identify expressions of the form
vect2offset(iv, A) and vect2offset(iv, B) where the shapes of A and B
are statically known to match. There are several ways to determine this equality.
Once the shapes of A and B are statically known [9], equality can be statically
decided. Even without the presence of static shape knowledge, shape equality
often can be statically decided using inference techniques such as Shape Clique
Inference, outlined in [10], or Symbolic Array Attributes, outlined in [11]. For our
purposes here, we assume this information to be available.

Figure 5 shows the key rule of a transformation scheme REUSE that identi-
fies such situations and replaces the second application of vect2offset by the
offset computed from the first one. The REUSE scheme maps SaCλ programs
and an environment S of identifier triples to a potentially modified program.
Triples (iv, A, idx) each represent an existing definition of an offset idx by an
application of vect2offset to an index vector iv and an array A. The scheme
starts out with an empty environment and traverses into all subexpressions.
Whenever an application vect2offset(iv, A) is found, the environment is
searched for an entry (iv, B, idx) with shape(B) = shape(A). If found, the
application of vect2offset is replaced by the variable idx, otherwise a new triple
is appended to the end of S, denoted by ++ as symbol for concatenation. Note
that our syntactic restrictions ensure that we always find identifiers in argument
position.

Index Vector Elimination — Making Index Vectors Affordable 29

REUSE

�
�
let

Id = Expr
in Exprb

, S

�
�

�

������������������	
�����������������

let

Id = idx
in REUSE�Exprb , S�

if Expr ≡ vect2offset(iv, A)

and ∃ < iv, B, idx> ∈ S
with shape(A) = shape(B)

let

Id = Expr
in REUSE�Exprb , S ++ < iv , A, Id >�

if Expr ≡ vect2offset(iv, A)

and � ∃ < iv, B, idx> ∈ S
with shape(A) = shape(B)

let

Id = REUSE�Expr , S�
in REUSE�Exprb , S�

otherwise.

Fig. 5. Reusing index computations

The soundness of this transformation follows almost directly from the shape
equality predicate:

Theorem 2. REUSE is sound wrt. the semantics of SaCλ.

Proof. Given a subexpression vect2offset(iv, A). From the definitions in Fig-
ure 5 we know that < iv, B, idx> ∈ S, iff we already encountered a subexpression
of the form idx = vect2offset(iv, B) while traversing the program. Given that
vect2offset(iv, A) → < [], [l] > and the shape equivalence of A and B, we
can conclude that vect2offset(iv, B) → < [], [l] >. As all identifiers and idx
in particular are unique, i.e. there is only a single assignment, it follows that
idx→ < [], [l] >. q.e.d.

4.3 Reusing with-loop Offsets

The REUSE scheme introduced in the previous subsection only detects previous
applications of vect2offset as potential reuse candidates. From our example
in Section 3, we have seen that we often can reuse the offset for storing individ-
ual with-loop-computed elements into the overall with-loop-result. Due to the
data-parallel nature of with-loops, this ”assignment“ and thus the required off-
set is not explicit in SaCλ. We formalize this optimization on a higher level than
the generated C-code by taking a similar approach as with the initial splitting of
the sel operation. We transform our with-loops into a slightly lower-level vari-
ant idxwith that makes the ”write-back-offset“ explicit. Its syntax differs from
that of standard with-loops only by an additional identifier within the genera-
tor. This second generator variable introduces a name for the write-back-offset
which in the body of the with-loop can be referred to. The formal semantics
of idxwith are given in Figure 6. As we can see from the semantics it is almost
identical to that of the standard with-loop. In fact, the only difference is that

30 R. Bernecky et al.

idxwith :

el → < [n], [l1, . . . , ln] >
eu → < [n], [u1, . . . , un] >

eshp → < [n], [shp1, . . . , shpn] >
edef → < [], [d] >

∀i1 ∈ {l1, ..., u1 − 1} ... ∀in ∈ {ln, ..., un − 1} :

(λ Id . (λ Idx . eb p) [i1, ..., in]) → < [], d[i1,...,in] >

idxwith(el <= Id,Idx < eu) : eb genarray(eshp, edef)
→ < [shp1, . . . , shpn], [d[0,...,0] , . . . , d[shp1−1,...,shpn−1]] >

where d[x1,...,xn] = d
iff ∃j ∈ {1, ..., n} : xj ∈ {0, ..., lj − 1} ∪ {uj , ..., shpj − 1}

and p =
n�

j=1
(ij ∗

n�
k=j+1

shpk)

Fig. 6. Further extended operational semantics for SaCλ

REUSE

�
���
let

Id = with(lb <= iv < ub) : Exprbody

genarray(shp, def)
in Expr

, S

�
		�

�

let
Id = idxwith(lb <= iv, wlidx < ub) :

REUSE�Exprbody , S ++ < iv , Id , wlidx >�
genarray(shp, def)

in REUSE�Expr , S�

Fig. 7. Reusing WITH-loop offsets

the body expression eb now is extended by two variable definitions rather than
one: Id for the actual index vector and Idx for the corresponding write-back-
offset.

Before we can try to use this new offset, we need to transform all with-loops
accordingly. This is achieved by slightly extending the REUSE scheme from the
previous section. The additional rule presented in Figure 7 replaces all standard
with-loops by the new idxwith-version. Again, all introduced identifiers wlidx
need to be unique.

Whenever a with-loop is transformed, a new triplet is added to the environ-
ment containing the name of the index variable iv, the name of the array to
be computed Id, and the write-back-offset wlidx introduced by the idxwith-
version of the with-loop. This information can then be used for the substi-
tution of redundant vect2offset computations as described in the previous
subsection.

Theorem 3. The extended REUSE is sound wrt. the semantics of SaCλ.

Proof. Analog to Theorem 2. q.e.d.

Index Vector Elimination — Making Index Vectors Affordable 31

4.4 Splitting Offset Computations

In our motivating example, we have seen that splitting an offset computation
whose index vector stems from a sum/difference of vectors into a sum/differ-
ence of offset computations often triggers further reuse or other optimizations
such as loop-invariant-removal [12]. With the offset computations being
made explicit by the SPLIT scheme, we can now define another scheme SOC

which detects such situations and transforms the offset computation accordingly.
Similar to the REUSE scheme, the SOC scheme takes an additional parameter
which carries quadruples consisting of 3 identifiers and one arithmetic operation;
it collects these quadruples (Id, LinOp, jv, kv), which represent an application
of either + or - (denoted by LinOp) to two arrays jv and kv whose result is kept
in a variable Id, while traversing through the program. Whenever the traversal
finds an application of vect2offset to an identifier that is the first compo-
nent of any of the quadruples seen so far, the code transformation is triggered.
Figure 8 shows the main rule of the SOC scheme. Due to our restricted syntax
both situations of interest are captured in the context of a let expression. If an
addition or a subtraction is encountered, a new quadruple is inserted into the
environment. Applications of vect2offset are only transformed if the index ar-
gument is known to be a sum/difference of vectors, i.e., if a quadruple with the
index variable as first component is contained in the environment. Note here,
that the scheme is applied recursively to the result of the transformation. This
ensures that arbitrary nestings of index operations will be properly split. In all
other cases, the transformation is applied to the subexpressions only.

SOC

�
�
let

Id = Expr
in Exprb

, E

�
�

�

���������������������������	
��������������������������

let

Id = Expr
in SOC�Exprb , E ∪ < Id , LinOp, jv , kv >�

if Expr ≡
LinOp(jv, kv),

SOC

�
������������

let

jvoff = vect2offset(jv, A)

in let

kvoff = vect2offset(kv, A)

in let

Id = LinOp(jvoff , kvoff)

in Exprb

, E

�
											�

if Expr ≡
vect2offset(iv, A)

and

< iv, LinOp, jv, kv> ∈ E

.

let

Id = Expr
in SOC�Exprb , E�

otherwise.

Fig. 8. Splitting of vect2offset operations on linear combinations

32 R. Bernecky et al.

Theorem 4. SOC is sound wrt. the semantics of SaCλ.

Proof. The theorem follows immediately from Lemma 1. q.e.d.

Although the transformation is correct wrt. the semantics of SaCλ its application
bears several problems.

Firstly, the semantics does not make any assumptions about the representa-
tion of the indices. However, Lemma 1 only holds for index vectors from ZZn not
for finite subsets of ZZn such as n-element integer-vectors. Here, we may have
to deal with overflow problems: while an expression vect2offset(iv-cv, A)
may be within the limits of a given integer format, vect2offset(iv, A) or
vect2offset(cv, A) may not. As a consequence, a transformed program may
yield a runtime error although the untransformed one does not. The only way to
avoid this problem is to restrict the transformation to those cases where we can
statically prove that the offset computations are within the limits of the chosen
index representation. It turns out that this is the frequent case as the indices
are usually composed from a with-loop-generated index and a constant offset
vector. For both of these, a static guarantee can be computed if the shape of the
array to be selected from is statically known.

The second difficulty with this transformation stems from the fact that the
transformation by itself leads to a code degradation if we are dealing with vectors
of length ≥ 2: We replace a vector addition of an n-element vector (n operations)
and an offset computation (2∗n−2 operations) by one scalar operation and two
offset computations (4∗n−4 operations). Only the fact that this transformation
often triggers other optimizations such as the REUSE scheme of the IVE or
loop-invariant-removal has a positive runtime effect. As a consequence, a
conservative implementation needs to apply a reverse transformation if such
sums of offset computations remain after an application of the aforementioned
optimizations.

These considerations lead to the following order of transformations during in-

dex-vector-elimination: First, we apply the SPLIT-scheme in order to make
the offsets explicit, followed by the SOC-scheme which may generate further
offset computations. Then, we apply REUSE and loop-invariant-removal

in order to get rid of as many offset computations as possible. Finally, we revert
those transformations of the SOC-scheme whose components have neither been
eliminated nor have been moved by loop-invariant-removal.

5 Performance

In our motivation example, we were able to save at least 70% of the arithmetic
instructions within the inner loop by applying index-vector-elimination pro-
vided we were dealing with at least rank 2 arrays. Of course, this represents a
best-case scenario, as we were able to remove all index computations. To get an
idea of the impact of index-vector-elimination on real-world applications, we
measured the performance gains archived by applying index-vector-elimina-

tion to two sets of benchmarks: The first set is taken from a SaC benchmark

Index Vector Elimination — Making Index Vectors Affordable 33

IVE
 NOIVE

 0x

 2x

 4x

 6x

 8x

 10x

 12x

 14x

 16x

 18x

tjk
c(

2−
D

)

sd
yn

4(
2−

D
)

sc
s(

2−
D

)

re
la

x_
fi

x(
2−

D
)

re
la

x_
fi

x_
ro

ta
te

(2
−

D
)

nm
o(

2−
D

)

m
co

nv
(2

−
D

)

m
at

m
ul

(2
−

D
)

ip
dd

(2
−

D
)

ip
bd

(2
−

D
)

ip
bb

(2
−

D
)

ip
ap

e(
2−

D
)

hi
st

op
(2

−
D

)

dt
b2

(2
−

D
)

A
PL

to
m

ca
tv

(2
−

D
)

up
gr

ad
eB

oo
l(

1−
D

)

un
ir

an
d(

1−
D

)

sc
he

dr
(1

−
D

)

rl
e(

1−
D

)

pr
im

es
(1

−
D

)

nt
ho

ne
(1

−
D

)

lo
op

is
(1

−
D

)

lo
gd

2(
1−

D
)

llt
op

(1
−

D
)

hi
st

lp
(1

−
D

)

do
w

ng
ra

de
PV

(1
−

D
)

A
PL

lo
gd

1(
1−

D
)

Sp
ee

du
p

re
la

tiv
e

to
 N

O
IV

E

Benchmark

Run−time speedup: IVE vs NOIVE

Fig. 9. Performance with and without IVE

suite that has previously been used for comparisons with Fortran, whereas the
remainder are APL-derived, APEX-generated SaC programs. Our benchmark
suite represents a mix of array ranks. However, all our benchmarks are either
dominated by rank-1 or by rank-2 arrays.

5.1 Experimental Framework

We used an AMD-based platform (Opteron 165 (1.8GHz)) equipped with 4GB
of RAM, operating SuSE Linux 10.1 64-bit. For compiling the SaC source code
we used the current version of the sac2c compiler (rev 15076) with the GNU
gcc compiler version 4.1.0 as the back-end compiler. We enabled the default set
of optimizations, which include standard optimizations, such as common-sub-

expression-elimination, loop-invariant-removal and loop-unrolling,
as well as SaC-specific optimizations like with-loop folding, with-loop

scalarization and with-loop fusion (for details on the default optimiza-
tions of SaC see [3]). The resulting C code was compiled using the -O3 option
of gcc.

To enable measurement of the impact of index-vector-elimination on the
run time of each benchmark, we created one executable with index-vector-

elimination enabled and one with that optimization disabled. We measured
execution time using user time from the Linux /usr/bin/time function.

34 R. Bernecky et al.

5.2 Analysis

Our results are presented in Figure 9. For each benchmark there are two bars:
a black one representing the runtime with IVE enabled and a light gray one de-
noting the runtime with IVE disabled. Since the IVE-enabled times were always
faster, we use the non-IVE times as a reference time, displaying speedups against
that time rather than absolute runtimes. Higher black bars indicate higher run-
time performance.

We sorted the benchmarks according to their dominant array rank: rank-1
examples are on the left; rank-2 ones are on the right. We can see that the
rank-1 examples gain by a factor of 2 to 4 times. Since we know that rank-
1 arrays cannot profit from any reuse or splitting of offset computations, this
effect can be attributed to the avoidance of dynamic allocation of 1-element
vectors. The stark variation in the effect derives from the differences in memory
access/computation ratios found in the various benchmarks.

For the rank-2 examples, the gains vary even more. Here, our reuse opti-
mizations and the offset computation splittings contribute as well, producing
speedups between about 3 and 16 times. The gain in speedup vs. the rank-1
examples thus varies between a factor of 1.5 and 4, showing that our theoretical
example falls nicely into that range.

6 Related Work

index-vector-elimination addresses a rather specific setting: the translation
of n-dimensional selections specified as shape vectors into scalar offsets into lin-
earized representations of n-dimensional arrays. This setting prevails in array
languages such as APL, Nial, and J. However, most of these languages have
traditionally been interpreted, rather than compiled, because it was thought,
for many years, that language semantics precluded effective application of op-
timizations such as index-vector-elimination. Of the several APL compiler
projects that have been conducted, including [13,14,15,16,17,18], most do not
achieve a very high-level of optimization. The APEX [18] compiler is the only
project we are aware of that aims at utmost run-time efficiency. That run-time
efficiency was enabled, in some degree, by the advent of Static Single Assign-
ment, and the SISAL project. The former was a key factor in improving data
flow analysis; the latter pushed the state of the art with respect to vector-
oriented optimizations. Both of these ultimately had an impact on run-time code
efficiency.

Although the SISAL compiler achieved very good run-time performance [19],
a counterpart to index-vector-elimination was not required, as SISAL rep-
resents n-dimensional arrays as nestings of vectors. However, that run-time rep-
resentation is less favorable for higher-dimensional problems, as described in
[18,20]. These observations led to a proposal for true n-dimensional arrays in
SISAL [21]. Although several implementation issues and optimizations on these
linearized representations are described in [20,22] none of them pertains to IVE.

Index Vector Elimination — Making Index Vectors Affordable 35

The APEX project recently switched from generating SISAL code to gener-
ating SaC code, to avoid fundamental algebraic limitations of nested vectors as
a method of representing arrays. and in order to be able to make use of opti-
mizations such as index-vector-elimination. In fact, run-time deficiencies of
APEX-generated SaC-code partially triggered this research.

One key element of index-vector-elimination is the existence and use of a
shape predicate as explained in Section 4. It can be derived from such techniques
as Shape Clique Analysis [10] or Symbolic Array Attributes [11].

7 Conclusions

This paper presents index-vector-elimination, an optimization for avoiding
run-time overhead arising from index vectors and their conversions into scalar
offsets for linearized array representations. We describe three program traversals
which, when orchestrated properly, for most examples, eliminate all index vectors
within the innermost loop and reuse, to a large extent, offset computations. We
formally describe the transformations, prove their soundness, and discuss their
effectiveness in terms of arithmetic operations involved.

Although the run-time overhead may seem negligible, it turns out that nearly
all array-dominated applications can benefit significantly from IVE. Our mea-
surements for a set of benchmark kernels on a variety of array ranks show that
speedups of 2 to 16 can be expected depending on the predominant array rank
and the nature of the application.

Acknowledgments

We thank the anonymous referees for their valuable feedback and the Euro-
pean Union IST-FET research project Æther for funding this work. For more
information on Æther, see www.aether-ist.org.

References

1. Iverson, K.E.: Notation as a tool of thought. Communications of the ACM vol.
23(8) (1979)

2. International Standards Organization: International Standard for Programming
Language APL. ISO N8485 edn (1984)

3. Scholz, S.B.: Single Assignment C — efficient support for high-level array opera-
tions in a functional setting. Journal of Functional Programming 13(6), 1005–1059
(2003)

4. Hui, R.K., Iverson, K.E.: J Dictionary (1998)
5. Cann, D.: Compilation Techniques for High Performance Applicative Computation.

Technical Report CS-89-108, Lawrence Livermore National Laboratory, LLNL, Liv-
ermore California (1989)

6. Cann, D., Evripidou, P.: Advanced Array Optimizations for High Performance
Functional Languages. IEEE Transactions on Parallel and Distributed Sys-
tems 6(3), 229–239 (1995)

36 R. Bernecky et al.

7. Grelck, C., Trojahner, K.: Implicit Memory Management for SaC. In: Grelck, C.,
Huch, F., Michaelson, G.J., Trinder, P. (eds.) IFL 2004. LNCS, vol. 3474, pp.
335–348. Springer, Heidelberg (2005)

8. Pierce, B.: Types and Programming Languages. MIT Press, Cambridge, ISBN
0-262-16209-1 (2002)

9. Grelck, C., Scholz, S.B., Shafarenko, A.: A Binding-Scope Analysis for Generic
Programs on Arrays. In: Butterfield, A., Grelck, C., Huch, F. (eds.) IFL 2005.
LNCS, vol. 4015, Springer, Heidelberg (2006)

10. Bernecky, R.: Shape Cliques. In: Horváth, Z., Zsók, V., eds.: Proceedings of the 18th
International Symposium on Implementation of Functional Languages (IFL’06),
Eötvös Loránd University (2006)

11. Trojahner, K., Grelck, C., Scholz, S.B.: On Optimising Shape-Generic Array Lan-
guage Programs using Symbolic Structural Information. In: Horváth, Z., Zsók,
V. (eds.) Proceedings of the 18th International Symposium on Implementation
of Functional Languages (IFL’06). Revised Selected Papers, LNCS, vol. 4449,
Springer, Heidelberg (2006)

12. Morel, E., Renvoise, C.: Global optimization by suppression of partial redundan-
cies. Commun. ACM 22(2), 96–103 (1979)

13. Bernecky, R., Brenner, C., Jaffe, S.B., Moeckel, G.P.: ACORN: APL to C on real
numbers. ACM SIGAPL Quote Quad 20(4), 40–49 (1990)

14. Weigang, J.: An Introduction to STSC’s apl compiler. APL89 Conference Proceed-
ings, ACM SIGAPL Quota Quad 15, 231–238 (1989)

15. Ching, W.M.: An APL/370 compiler and some performance comparisons with APL
interpreter and FORTRAN. ACM SIGAPL Quote Quad 16(4), 143–147 (1986)

16. Wiedmann, C.: Field results with the APL compiler. ACM SIGAPL Quote
Quad 16(4), 187–196 (1986)

17. Budd, T.A.: An APL compiler for the UNIX timesharing system. ACM SIGAPL
Quote Quad 13(3) (1983)

18. Bernecky, R.: APEX: The APL parallel executor. Master’s thesis, University of
Toronto (1997)

19. Cann, D.: The Optimizing SISAL Compiler: Version 12.0. Lawrence Livermore
National Laboratory, LLNL, Livermore California. Part of the SISAL distribution
(1993)

20. Oldehoeft, R.: Implementing Arrays in SISAL 2.0. In: Proceedings of the Second
SISAL Users’ Conference. pp. 209–222 (1992)

21. Böhm, A., Cann, D., Oldehoeft, R., Feo, J.: SISAL Reference Manual Language
Version 2.0. CS 91-118, Colorado State University, Fort Collins, Colorado (1991)

22. Fitzgerald, S., Oldehoeft, R.: Update-in-place Analysis for True Multidimensional
Arrays. In: Böhm, A., Feo, J., eds.: High Performance Functional Computing. pp.
105–118 (1995)

Functional–Based Synthesis

of a Systolic Array for GCD Computation

Laura Ruff1 and Tudor Jebelean2

1 Babeş-Bolyai University Cluj
laura@cs.ubbcluj.ro

2 RISC-Linz
tjebelea@risc.uni-linz.ac.at

Abstract. We synthesise a systolic pass-through array for the compu-
tation of the greatest common divisor (GCD) of multiple precision inte-
gers. The synthesis method uses the conceptual similarity between the
inductive structure of a systolic array (a head processor followed by an
identical tail array) and the inductive decomposition of the argument
by a functional program. By formal analysis, we identify the structure
of the functions which can be realized by pass-through arrays. Then,
by equational rewriting, we transform the expression of the list function
which must be realized into an expression having the required struc-
ture. The resulting expression reveals the scalar function which must be
implemented by each individual processor.

1 Introduction

Systolic parallelisation of GCD computation was quite challenging, because the
traditional Euclidean algorithm is not appropriate for systolic computations,
since it works in most–significant–digits–first (MSF) manner. The first systolic
device was developed in [1] using an improvement of the least–significant–digits–
first (LSF) binary GCD algorithm of [8], namely the plus–minus algorithm. A
slight improvement of the latter is presented in [5] together with its systolic
implementation in a parallel–serial fashion (input parallel, output serial). It
turns out that a serial version (pass-through auto-configurable array with pre-
processed input) is much simpler to realize in hardware [6]. The array synthesised
in this paper is an extension of the latter, as it additionally detects termination.

The literature on [semi]automatic synthesis of systolic arrays is abundant.
However, most of these methods (see a short survey in [7] or in [9]) follow an
iterative view of systolic arrays (and computations): the arrays (and the compu-
tations) are represented as [multidimensional] matrices of a certain size (many
methods only work for a fixed size). This leads to complex operations over the
multidimensional index space, and to many repetitions in the synthesis process.

In this paper we use a functional view (or inductive view): an infinite systolic
array is composed of a head processor and an identical tail array. Similarly,
functional programs for list operations are usually described in terms of the

Z. Horváth, V. Zsók, and A. Butterfield (Eds.): IFL 2006, LNCS 4449, pp. 37–54, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

38 L. Ruff and T. Jebelean

head and the tail of the argument. By exploiting this similarity, we demonstrate
on the GCD algorithm that the synthesis problem can be solved by [essentially]
rewriting of the functional programs. This approach has been pioneered in our
previous paper [7], where we presented the synthesis of online systolic arrays for
the multiplication of polynomials and integers.

The concrete synthesis process is based on a formal study of the structure
of the functions which can be realized by systolic arrays. A scalar function –
that is, a function which takes a fixed set of scalars and produces a fixed set of
scalars – can be realized by an individual processor without internal state. We
are interested in synthesising list functions – that is, functions which take a list
of scalars and produce a list of scalars (in fact, each element of these lists may
be a fixed set of scalars). For instance, by pipelining a list through an individual
processing element (PE), one realizes a list function, which we call the transitive
extension of the scalar function realized by the respective processor. Of course,
not all list functions can be realized in such a way. More complex functions can
be realized by using a feed back of the output into the input (this leads to a
processor with internal state). Moreover, the internal state can store a fixed set of
previous inputs, and furthermore one can construct an array of such processors
in which the communication is unidirectional. The list function realized by any
of such devices satisfies certain equations which involve the scalar function of the
individual processors and certain “standard” list functions (like head and tail).

We express the algorithm for GCD computation as a recursive list function,
and then we transform the respective expression by systematic rules until it fits
to the equations found above. This transformation process also reveals the scalar
functions which describe the behaviour of the individual processors in the array.

The method works completely automatically and it is implemented in the The-
orema system (www.theorema.org) [2], basically as a set of rewrite rules, together
with a simulator which allows the visualisation of concrete computations. The
Theorema system is a mathematical assistant developed at RISC–Linz under the
supervision of B. Buchberger, and combines facilities for proving, solving, and
computing for the purpose of exploring mathematical theories and algorithms.

2 Formal Background

In order to make the paper [as much as possible] self–contained, we repeat here
the description of the main concepts from [7], however with some significant
additions: definition of regular and of transitive functions and some of their
basic properties.

2.1 Scalars and Lists

Both the systolic arrays and the functional programs which we consider in this
paper act upon lists (finite or infinite) of fixed-size objects.

A fixed-size object is an object of a scalar type: a scalar type is an elementary
type or a fixed-size tuple of scalar types. An elementary type (such as a finite

Functional–Based Synthesis of a Systolic Array 39

set of symbols or a fixed-precision number type) can have only a finite number
of instantiations. A fixed-size object will be called a scalar.

A list type over a certain scalar type characterises all the tuples (finite and
infinite) of objects of that scalar type. A list is an object of a certain list type.

The length of a list X is denoted by ‖X‖ and it is ∞ if the list is infinite.
We will denote by an the list of n elements all equal to a and by a∞ the

infinite constant list with elements a.
For any list X = 〈x0, x1, . . . , xn, . . .〉, we denote by H [X] = x0 the head of

it, and by T [X] = 〈x1, . . . , xn, . . .〉 the tail of it. The kth tail of X : Tk[X] =
〈xk, xk+1, . . . , xn, . . .〉 is obtained by iterating T k times and removes the first k
elements of X . By convention, T0[X] = X, and note that T1 = T . The kth head
of X is Hk[X] = H [Tk[X]] and gives the (k + 1)th element of X (thus H0 = H).

The prefix of order n of a list is Pn[X] = 〈x0, . . . , xn−1〉, that is, it selects the
first n elements of the list.

The concatenation of two lists is denoted by “�”:

〈a0, a1, . . . , ak〉 �X = 〈a0, a1, . . . , ak, x0, x1, . . .〉.

The first operand must be finite, but the second may also be infinite. We also
use “ �

� ” for prepending a scalar to a (finite or infinite) list: a
�
� X = 〈a〉�X.

Since in practice one actually uses only finite lists, we consider here only lists
having a finite number of “interesting” values. Namely, we use (as in the theory
of cellular automata) a special quiescent symbol “$” (which belongs to all scalar
types) in order to encode the “blank” values. Thus, an infinite list will start to
have only blank values after a certain finite number of elements. Furthermore we
will not allow “$” to be interspersed among other elements, however we allow a
list to start with a certain number of blanks.

2.2 Functions

Functions from scalar types to scalar types will be called scalar functions. Infor-
mally, scalar functions can be computed in constant time.

Functions from list types to list types will be called list functions. We will
consider only list functions acting upon infinite lists and producing infinite lists.

We assume that our scalar functions produce blanks when applied to blanks,
and our list functions are producing lists of blanks when applied to lists of blanks.

Since we have in mind concrete computations over lists, it is reasonable to
consider those list functions F whose values can be computed in an incremental
fashion: the values of any finite prefix of F [X] can always be computed from
some finite prefix of X :

Definition. A function F on infinite lists is called regular iff, for any natural n,
there exists a natural m, such that for any list X of length n + m, and for any
infinite lists Y, Y ′:

Pn[F [X�Y]] = Pn[F [X�Y ′]] .

The minimal m as above is called the regularity index of F , denoted rF [n].

40 L. Ruff and T. Jebelean

A function whose regularity index is constant is called look–ahead function.
The constant rF [n] = k is called the look–ahead index. We also use the term
k–look–ahead function for a look–ahead function whose look–ahead index is k.

A 0–look–ahead function is called online function. That is, the nth value of
an online function depends only on the first n elements of the input.
Hereafter we will consider only list functions which are regular and look–ahead.

Note that for an online function, the regularity condition for n = 0 is:

H [F [x �
� X]] = H [F [x �

� X ′]],

thus one may define the function FH [x] = H [F [x �
� $∞]]. FH is called the scalar

projection of the online function F , and obviously:

FH [x] = H [F [x �
� X]] and F[x �

� X] = FH[x] �
� T[F[x �

� X]].

However, one must take care that only online functions have a scalar projection.
A special rôle will be played by list functions which commute with T :

F [T [X]] = T [F [X]], or simply FT = TF.

We will call these functions transitive.
For online transitive functions we have: F [x �

� X] = FH [x] �
� F [X], thus the

function F is “constructed” by its scalar projection FH . In other words, if one
has a scalar function f , one can construct its transitive extension f by

f [x �
� X] = f [x] �

� f [X].

From this follows:

Property 1. An online function is transitive if and only if it is the transitive
extension of its scalar projection.

2.3 Functional Programs

A program describing a scalar function f is an expression involving elementary
scalar functions (considered as “known”): f [x] = E. (Note that we use square
brackets for function application, but we will sometimes omit them when the
context is sufficiently clear.) A program describing a list function F must indi-
cate how to compute the result, by starting from the tail and the head of the
argument: F [x �

� X] = E [x, X], where E is a mixed (scalar–list) expression in-
volving already known functions, but also F . The simplest definitions have the
shape: F [x �

� X] = E[x] �
� E [X], where E is a scalar–and E is a list–expression.

Note that the syntactic restriction to one argument (and one value) is not
essential. Indeed, a multiple scalar can be assigned a new scalar type, and a
multiple list can be seen as single list by transposition:

〈x �
� X, y

�
� Y, . . .〉T = 〈x, y, . . .〉T �

� 〈X, Y, . . .〉T .

Functional–Based Synthesis of a Systolic Array 41

Therefore functions with mixed-type (scalar and list) argument and/or mixed-
type value reduce to functions taking one scalar and one list and producing one
scalar and one list. The most general case is:

F [x, y
�
� Y] = 〈E[x, y], E ′[x, y, Y]〉 .

For the sake of presentation, in the sequel we will use sometimes functions hav-
ing multiple arguments, however these are understood to be of the form exhibited
above. That is, if several scalars occur as arguments, the function is assumed to
have only one scalar argument, which is the transposed of the tuple of those scalars.
Similarly, if several lists occur as arguments, the function is assumed to have only
one list argument, which is the transposed of the tuple of those list arguments.

Unfolding: A very important transformation of expressions describing list func-
tions is unfolding. This consists in isolating the scalar expression which represents
the first element of the list computed by the list function, by transformations of
the expression of the function. The transformations use certain straightforward
unfolding rules (presented in more detail in [7]), as well as the functional defin-
itions of the functions which occur in the expressions. The examples presented
in the rest of this paper illustrate this transformation, and also give a hint that
it is relatively easy to implement as a set of equational rewrite rules.

Unfolding provides a systematic method for the detection of online transitive
functions: if we manage to transform the expression of F [x �

� X] into the expres-
sion E[x] �

� E [x, X], then the function is online and E[x] is its scalar projection.
Moreover, the function is transitive if and only if F [X] = E [x, X].

3 GCD Computation

Let a = a0 + 2 ∗ a1 + 22 ∗ a2 + . . . and b = b0 + 2 ∗ b1 + 22 ∗ b2 + . . . be two
integers expressed in radix two.We use the lists of digits as representations of the
numbers, and we assume that the least significant digits are at the beginning.
The lists may be considered infinite, since padding zeroes at the end of the
finite representation does not change the value of the number. In fact, the GCD
algorithm below may produce intermediate negative values, and it is designed for
numbers in complement representation. The representation of a negative number
will be padded with ones.

The PlusMinus algorithm for GCD computation (from [5], which improves
[1], which is based on [8]) proceeds in three steps:

First step: We remove the common least significant null digits of a and b and
obtain as and bs, that is, we divide both a and b by the same power of 2, say 2k.
The GCD of these numbers, GCD′ = GCD(as, bs) is called the ”pseudo-GCD”
of a and b, and obviously GCD = 2k ∗GCD′, and GCD′ is not divisible by 2.

Our systolic device will perform this operation, and then compute the pseudo-
GCD, but will not handle the computation of k, neither the multiplication by 2k.
In a practical situation, it is reasonable to assume that the systolic array is under

42 L. Ruff and T. Jebelean

the control of some main device (either a usual computer or some other complex
hardware), which supplies the input operands and collects the result. We assume
that the final multiplication (in fact a shift) by 2k is performed by this main
device, and also one sees that it is straightforward to add to the systolic array a
counter which identifies the value of k and sends it to the main device.

Second step: We interchange as and bs if necessary, such that the least signif-
icant digit of as is 1. This is an invariant throughout the rest of the algorithm,
which simplifies the operations.

Third step: We calculate now the pseudo GCD of a and b (the a and b from the
following algorithm are actually the as and bs obtained in the previous steps).

GCD[a, b] = a, if b = 0 (1)

= GCD

[

a,
b

2

]

, if b0 = 0 (2)

= GCD

[

b,
a + b

4

]

, if (b0 = 1) ∧ (a1 �= b1) (3)

= GCD

[

b,
a− b

4

]

, if (b0 = 1) ∧ (a1 = b1) (4)

The last three transformations are correct because the pseudo GCD is not divis-
ible by 2. Note also that these transformations preserve the invariant (a0 = 1),
thus a cannot become 0 (therefore GCD[0, b] = b is not necessary).

Termination follows from the decrease of maximum of the significant lengths
of a and b. Indeed, by adding or subtracting the arguments in the respective
cases, the last two bits of the numbers always become zero. Since the sum or the
difference will be at most one bit longer, after two shifts it will become one bit
shorter. (The full details of the analysis are presented in [4].)

Note that the usage of complement arithmetic is essential for the correct
implementation of this algorithm. Indeed, since only the least significant digits
of a and b are inspected,it is not known which is greater, thus at a certain
moment one or both of the arguments may be negative.

4 Systolic Processors

We use the term “systolic processor” for designating just a fixed size1 processor,
with or without internal memory. In this section we study the behaviour of
several types of such processors, namely we investigate the properties of the
functions which are realized by them.

4.1 Systolic Processor Without Internal State

This is the simplest building block of a systolic array. The processor depicted in
Fig. 1 receives as input the list X = 〈x0, x1, x2, . . .〉 and computes the output
1 As opposed to an arbitrary size systolic array.

Functional–Based Synthesis of a Systolic Array 43

list Y = 〈y1, y2 . . .〉. The transition function, that is the computation performed
by the processor at each time step is f , such that yt+1 = f [xt], for t = 0, 1, 2,
If the processor computes Y = F [X], then its functioning is characterised by:

F [x �
� X] = f [x] �

� F [X] . (5)

From the discussion in the previous section, it follows that the class
of functions which can be realized by a systolic stateless processor is
exactly the class of online transitive functions.

� �X Y
Computation:

yt+1 = f [xt]

Fig. 1. Systolic processor without internal state

Problem: Find f , when F is given.
Method: Unfold F and if the result is an equation of the form (5), then f is
found by projection.

Example 1. Polynomial addition.
Let A, B be the list of the coefficients of two univariate polynomials (least degree
first, padded with $ at the end). We want to compute F [A, B] = A + B.

We unfold F :

F [A, B] = (a0
�
� A1) + (b0

�
� B1) = (a0

� �
+ b0)

�
� F [A1, B1] . (6)

Equation (6) is of the form (5), thus we conclude that the transition function

should be f [a, b] = a
� �
+ b. (Where $

� �
+ x = x

� �
+ $ = x).

4.2 Systolic Processor with Internal State

The architecture of a systolic processor with internal state, depicted in Fig. 2
has as additional element the internal state register r. The list of values of the
internal state register is denoted by R.

The output list Y computed by the processor is characterised by the equation:

F [r, x �
� X] = fy[r, x] �

� F [fr[r, x], X] . (7)

We denote by G[R, X] the function computed by the array, that includes all the
values of the internal state:

G[r �
� R, x

�
� X] = 〈fy[r, x], fr[r, x]〉 �

� G[R, X] . (8)

44 L. Ruff and T. Jebelean

� �

�

�

�
r0

X Y

R
Computations:

r0 − given,
rt+1 = fr[rt, xt], ∀t ≥ 0
yt+1 = fy [rt, xt]

Fig. 2. Systolic processor with internal state register

One notes that G is the transitive extension of g[r, x] = 〈fy[r, x], fr[r, x]〉.
Such a PE is similar to one without internal state, but having input 〈R, X〉.
Problem: Find F [r, X], r0, fy and fr, when F ′[X] is given, such that (7) holds
and F ′[X] = F [r0, X].

Method:We first unfold F ′[X]:
F ′[x �

� X] = f ′[x] �
� F ′[x, F ′[X]]. From F ′ we guess F and r0, then we un-

fold F .

Example 2. Integer addition.
Let A, B be the list of digits of two arbitrary large integers (least significant digits
first) in some radix β. We want to compute the function F ′[A, B] = A + B.

F ′[A, B] = (a0

� �
+ b0)modβ

�
� (

⌊a0

� �
+ b0

β

⌋ �
+ A1 + B1

︸ ︷︷ ︸
F

) .

The result of unfolding suggests for F the form F [c, A, B] = c
�
+ (A + B).

F [c, A, B] = (a0

� �
+ b0

� �
+ c)modβ

�
� (

⌊a0

� �
+ b0

� �
+ c

β

⌋ �
+ A1 + B1) .

From here we have
fy[c, a, b] = (a

� �
+ b

� �
+ c)modβ

fc[c, a, b] = �a
� �
+ b

� �
+ c

β �

The initial value c0 = 0 is obtained from F [c0, A, B] = F ′[A, B].

4.3 Systolic Processor with Delay

For a positive constant k, let us consider functions F [X] having the property:

F [X] = G[X, T [X], T [T [X]], . . . , Tk[X]] . (9)

for some online transitive function G. We show now that such a function can be
computed by a so called systolic processor with k-delay.

Functional–Based Synthesis of a Systolic Array 45

Since G can be computed by a single processor, we only need to use k input
channels for the shifted elements of the same input X.

One can in fact avoid the multiplication of the input by introducing k transi-
tion registers, denoted by dx|1|, dx|2|, . . . , dx|k|, which perform the computation
shown on Fig. 3. This solution will result in a delay of the result with k steps.

� �

� �

X Y

SI SQ

dx|1|

...

dx|k|
Computations:

dx|1|t+1 = xt

dx|j|t+1 = dx|j − 1|t, ∀2 ≤ j ≤ k
yt+1 = f [xt, dx|1|t, . . . , dx|k|t]
sqt+1 = sit

Fig. 3. Systolic processor with k-delay

We denote the initial values of the transition registers dx|1|, dx|2|, . . ., dx|k|
with x−1 = T−1[X], x−2 = T−2[X], . . ., x−k = T−k[X] respectively. These are
blank values, which do not contribute to the computation of the result.

Register dx|k| realizes the list X−k, dx|k − 1| the list X−(k−1) and so on. . . ,
finally dx|1| realizes the list X−1, while the input x generates the list X . However
such a processor can output the first result only beginning with the k +1th time
step. If we consider the generated list expressions after k steps, then register
dx|k| can be associated with the list Tk[X−k] = X , register dx|k − 1| with the
list Tk[X−(k−1)] = T [X] . . . , register dx|1| with the list Tk[X−1] = Tk−1[X] and
the input x with the list Tk[X].

The processor has an output y at each time step, but in case of this processor-
type the first ”interesting” output appears only at the k + 1th time step. If the
constant k is known, one can obtain the result by simply dropping the first k
elements of Y (that is one considers only Tk[Y]), but a more general solution is
to introduce a control signal S that indicates the appearance of the real results.

The elements of the control signal SI are output unchanged at the next time
step (SQ) as shown on Fig. 3. The the first k − 1 elements of the SI input
representing the control signal are 0, while the other elements starting with the
kth one are 1, thus an output y at time step t is considered to be a valid output
if the corresponding sqt is 1.

Problem: Find the scalar projection of G, when F [X] = G[X, T [X], . . . Tk[X]]
is given.

Method: Unfold F and verify that the result has property (9).
Introduce the transition registers dx|1|, . . . , dx|k| and add the control signal SI,
then project the occurrence of Tk[X] into register x, and all occurrences of Ti[X]
(0 ≤ i ≤ k − 1) into the corresponding transition register dx|k − i| to find f .

Note that some of the arguments X, T [X], . . . , Tk−1[X] could also be missing.
In this case we only need the transition registers from the one corresponding to
Tk−1[X] to the register associated with Tmin[X].

In the case when F [X] = G[Tk[X]] no transition register is needed, but the
control signal still can be used to indicate the appearance of the first result.

46 L. Ruff and T. Jebelean

Example 3. The shift operation.
Let X = 〈A, B〉 be the input consisting of two lists, and let Y = 〈A, T2[B]〉 be
the desired output.

By using the selector functions FA[X] = A and FB [X] = B, the result is ex-
pressed as Y = 〈FA[X], FB[T2[X]]〉. Since both FA and FB have property (5), it
results that F [X, T2[X]] = 〈FA[X], FB[T2[X]]〉 has property (9).

Because in this example k = 2, we introduce two transition registers dx|1| and
dx|2| (each of them has a component for A and B, thus we also can talk about
four registers denoted by da|1|, db|1|, da|2| and db|2|. Similarly we can see the
input channels a and b, being the two components of the input x).

By projecting X into dx|2| and T2[X] into the input channel x we get the com-
putations performed by the processor: y = 〈FA[dx|2|], FB [x]〉. In other terms: y =
〈da|2|, b〉. The list corresponding to the control signal is SI = 〈0, 0, 1, 1, 1, . . .〉.

4.4 Auto-Configurable Systolic Processor (with Delay)

Let us suppose that F [X] depends on a fixed length (say k) prefix of X . That
is, F [X] = G[〈H [X], H1[X], . . . , Hk−1[X]〉, Tk[X]], where G has the property

G[a, x
�
� X] = g[a, x] �

� G[a, X]. (10)

Note that in the case of a mixed type function G[a, X], this property can be
rewritten (by considering the scalar a as a parameter) as:

Ga[x �
� X] = ga[x] �

� Ga[X],

which is of the form of (5) – thus Ga is the transitive extension of ga.
We used the notation a = 〈H [X], H1[X], . . . , Hk−1[X]〉, in order to write the

property (10) in the form of (5), however this means that the processor ”knows”
the H [X], H1[X], . . .Hk−1[X] scalar values, or at least these values are preloaded
in some local registers of the processor. Alternatively, we can use k static registers
(denoted by x|0|, x|1|, . . . x|k− 1|, as shown on Fig. 4) that will store the first k
values of the input, then beginning with the k + 1th time step the “interesting”
results start to appear on the output.

� �X Y

x|0|

...

x|k − 1|
st

Computations:

x|j|t+1 = x|j|t, if (stt > j) ∨ (stt < j)
= xt, if stt = j, ∀0 ≤ j ≤ k − 1

stinit = 0
stt+1 = stt + 1, if stt < k

= stt, otherwise
yt+1 = f [xt, x|0|t, . . . , x|k − 1|t]

Fig. 4. Systolic processor that computes F [x0, x1, . . . , xk−1, Tk[X]]

Functional–Based Synthesis of a Systolic Array 47

A static register x|j| stores the input x at time step t = j, then it keeps its
value unchanged. As the PE is not aware of the time, a state register st is intro-
duced, initialized with 0, then incremented at each time step up to the value of k.

An auto-configurable processor constitutes a particular case of such processors:
If in the expression of the function G[〈x0, x1, . . . , xk−1〉, Tk[X]] the scalars x0,

x1, . . ., xk−1 do not contribute directly to the computation of the result, they
are only used to verify whether a condition holds or not, then the functioning
of the processor can be optimized by introducing a state register s. Rather then
verifying the condition at each time step, the state register s will be set at
the kth time step according to the condition that depends on x0, x1, . . . , xk−1.
Afterwards, beginning with time step k + 1 (when the first interesting result
should be computed), the result will depend on the value of the state register
s which does not change anymore. (Thus the respective PE is “configured” to
perform a certain operation.)

Note that in this case we actually do not need the values x0, x1, . . . , xk−1 after
the kth time step, so it is useless to store them. In this case we can use transition
registers instead of static registers, and the state register st is not needed. k− 1
transition registers are sufficient, then in the kth time step Hk−1[X] = xk−1

is input to the processor, while x0, x1, . . ., xk−2 are stored in the transition
registers dx|k − 2|, dx|k − 3|, . . ., dx|1|, respectively. At this time step the state
register s can be set according to the first k values of X , then beginning with the
k+1th step the results can be computed in function of the state register’s value.

Except for the state register, the processor is functioning just like a processor
with k − 1-delay, that is, it also can compute a function of the form
F [x0, . . . , xk−1, X, T [X], . . . , Tk−1[X]] (with the restriction that in the case of
the first k − 1 elements of the result – Hj [F], 0 ≤ j ≤ k − 1 – the jth result
depends only on the first j elements of the input, that is on x0, . . . xj , the state
register is not involved). Thus we can call it auto-configurable systolic processor
with k−1 delay. Moreover an auto-configurable processor, that sets its state reg-
ister according to the first k values of the input can be combined wit a processor
with m-delay. The number of transition registers used should be max(k− 1, m).

The question is how does the processor know when the state register s should
be set. This problem can be solved by using the same control signal SI as in the
case of a PE with delay. The list of input signals SI will have k − 2 leading 0
elements, then starting with position k − 1 the value of the elements will be 1
and the first 1 value will indicate the moment when s has to be set. The state
register s is initialized with a blank value, denoted by $.

The computations performed by such a processor are shown on Fig. 5.

Problem:
Find f = 〈gy, gcond〉, when F [X] = G[x0, . . . , xk−1, (X, T [X], . . . ,)Tk[X]] is
given, such that for G the property (5) (respectively property (9)) holds.

Method: Unfold F and verify that the appropriate property holds.
Introduce the k − 1 transition registers.

48 L. Ruff and T. Jebelean

� �

� �

X Y

SI SQ

dx|1|

...

dx|k − 1|
s

Computations:

dx|1|t+1 = xt

dx|j|t+1 = dx|j − 1|t, ∀2 ≤ j ≤ k − 1
yt+1 = fy [st, xt(, dx|1|t, . . . , dx|k − 1|t)]
sqt+1 = sit
sinit = $ (blank value)
st+1 = fcond[x, dx|1|t, . . . , dx|k − 1|t],

if (st = $) ∧ (sit = 1)
= st, otherwise

Fig. 5. Auto-configurable systolic processor (with k − 1-delay)

gcond is a function that associates to ”if” statements integer values from
{1, 2, . . .m}, where m is the number of different cases that depend on
x0, x1, . . . , xk−1 in the definition of F .

Obtain gy by projection. Each ”if condi(x0, x1, . . . , xk−1)” statement is pro-
jected to a corresponding ”if s = i” statement. (The other projection rules are
similar to the rules for processors with delay.)

Neither of the following two examples is a typical one, but we will use them in
building up the systolic array for GCD computation. A more complex example
for such a processor is presented in Sect. 6.

Example 4. Conditional exchange.
Let X = 〈A, B〉 be the input consisting of two lists. The input should be trans-
formed into 〈B, A〉 only if a0 equals a certain constant α.

Using FA[X] = A and FB [X] = B we can write:

F [H [X], X] = 〈FB [X], FA[X]〉, if FA[H [X]] = α
= X, if FA[H [X]] �= α

Both FA and FB have property (5), so one can easily verify that FH[X] also
satisfies property (5). Because k = 1 no transition register is needed, but because
F depends on X , the first output will already appear at the first time step, at
the same moment when the state register s is set.

The function F involves two ”if”-statements. The first one will be projected
to s = 1 and the second one to s = 2. The computations performed by the
processor are described on Fig. 6. For the list of results we use the notation
Y = 〈YA, YB〉. The list corresponding to the control signal is SI = 〈1, 1, . . .〉

Example 5. Deleting the least significant zeroes.
Let A = 〈a0, a1, . . .〉 be the list representation of a binary integer. We want
to cut off the least significant zeroes of A, which means we want to compute
Y = F [A] = Tk[A] such that Hk[A] = 1 and Hj [A] = 0, ∀0 ≤ j ≤ k − 1.

The first remark is that here only the kth tail of the input appears in the com-
putation of the result, which means that we do not need any transition register.

Functional–Based Synthesis of a Systolic Array 49

� �

� �

� �

B YB

A YA

SI SQ

s

Computations:

yt+1 = 〈bt, at〉, if (st = 1) ∨ ((st = $) ∧ (at = exch))
= 〈at, bt〉, if (st = 2) ∨ ((st = $) ∧ (at �= exch))

sqt+1 = sit
sinit = $
st+1 = 1 if (st = $) ∧ (sit = 1) ∧ (at = exch)

= 2 if (st = $) ∧ (sit = 1) ∧ (at �= exch)
= st, otherwise

Fig. 6. Auto-configurable systolic processor for the input-exchange problem

The second remark is that here k is not known in advance, but it can be
computed in function of the input, which induces a slight modification in the
computation of the control signal that indicates the appearance of the first result,
respectively in the computation of the state register s: both of them will be
computed in function of the input A rather then using the input SI. The output
SQ is computed in the following way:

sqt+1 = 0 , if (st = $) ∧ (xt = 0)
= 1 , if (st �= $) ∨ (xt = 1)

The computations for s are:

st+1 = 1, if (st = $) ∧ (xt = 1)
= st, if (st �= $) ∨ (xt = 0)

The first 1 value of SQ indicates the beginning of the output.
Tk[A] is projected to the input register a, thus the computation of the result

(we denote the output register associated to it with y) is very simple: yt+1 = at.

5 Unidirectional Pass–Through Array

An unidirectional array consists of processing elements (PEs) that modify the
input and send the result to the next PEs in serial manner.

Head Tail

� �. . .� � �X Y

PE0

Fig. 7. Unidirectional Pass-Through array

50 L. Ruff and T. Jebelean

Figure 7 presents the functional view of such an array: we can say that it is
composed of a head processor (PE0), while the rest of PEs form the tail array
(the part of the array marked with dashed line), the functioning of which is
similar to the whole array.

The list X is the global input to the array (its elements are fed into the array
through PE0 at each time step). If the array computes the function F [X] and
the head processor PE0 outputs the modified list G[X] that satisfies property
(5), then the tail array will compute F [G[X]].
The recursive equation characterizing the functioning of the array has the form

F [X] = F [G[X]] , (11)

where G is an online transitive function.

Problem: Find the scalar projection of G when a recursive description of the
form (11) of F is given.

Method: Determine G[X] from the recursive description of F . The problem
reduces to the design of a single systolic processor computing G.

The condition for termination has to be analyzed separately. Note that (11)
does not tell anything about the termination of the problem. We either know
the number of iterations (and from here we can conclude the number of PEs),
or a special termination condition is given (which also depends on the input),
then the transition function should also verify this condition.

6 Unidirectional Systolic Array for GCD Computation

In Sect. 3 we described an algorithm for GCD computation. Hereafter we describe
the design of the corresponding unidirectional systolic array.

Let A = 〈a0, a1, . . .〉 and B = 〈b0, b1, . . .〉 be the list representation of the two
inputs a and b.

Step 1 can be performed by a single processor (see example 5).
Step 2 can also be performed by a single processor (see example 4).
Step 3 The expression (2) contains b/2, which means a shift to the right of

the digits of b, that is T [B] in the list representation. Similarly, the equivalent
of b/4 is T2[B].

Therefore we can rewrite (1)-(4) as:

GCD[A, B] = A, if B = 0
= GCD[A, T [B]], if H [B] = 0
= GCD[B, T2[A + B]], if (H [B] = 1) ∧ (H1[A] �= H1[B])
= GCD[B, T2[A−B]], if (H [B] = 1) ∧ (H1[A] = H1[B])

The function GCD appears three times on the RHS of the definition. Thus the
computation of the GCD function can be also written as:

GCD[〈A, B〉] = A, if B = 0
= GCD[〈A, T [B]〉, if H [B] = 0,
〈B, T2[A + B]〉, if (H [B] = 1) ∧ (H1[A] �= H1[B]),
〈B, T2[A−B]〉, if (H [B] = 1) ∧ (H1[A] = H1[B])] ,

Functional–Based Synthesis of a Systolic Array 51

which is of the form (11) (except for the first equation, which is the stop condition
and will be discussed later).

We know that if a0 = b0 = 1, then T2[A− B] = T2[A]− T2[B], when a1 = b1

and T2[A + B] = 1
�
+ T2[A] + T2[B], when a1 �= b1 . If we use the notation

X = 〈A, B〉 and FA and FB are the already used functions that return the A
respectively B component of the input, the function K computed by a PE is:

K[H [X], H1[X], X, T [X], T2[X]] =
= 〈FA[X], FB[T [X]]〉 if FB[H [X]] = 0 (12)

= 〈FB [X], 1
�
+ FA[T2[X]] + FB [T2[X]]〉 if (FB[H [X]] = 1) ∧

∧(FA[H1[X]] �= FB [H1[X]]) (13)
= 〈FB [X], FA[T2[X]]− FB[T2[X]]〉 if (FB[H [X]] = 1) ∧

∧(FA[H1[X]] = FB [H1[X]]) (14)

Equation (12) satisfies property (5), while (13) and (14) satisfy property (7).
The latter two equations induce the introduction of an internal state register,
denoted by r. It will store the carry from the addition (respectively subtraction)
operation (for details see example 2). The carry is initialized with 1 respectively
0 when s is set, depending whether addition or subtraction has to be performed.

On the other hand we can conclude from the form of the definition of the K
function (equations (12)-(14)) that the function can be computed by an auto-
configurable processor with 2-delay. Two transition variables are introduced to
delay the input. Because in the ”if” statements appear only the first two elements
of the input, the state register will be set at the time step when the second input
is fed into the PE. The list of control signals will be SI = 〈0, 1, 1, 1, . . .〉.

Note that here we are not interested in indicating the appearance of the first
result (k = 2 is known), but it is very important that the list of control signals
SQ that leaves the processor PE0 is an adequate sequence of control signals
which are input to the next PE. This means that the control signals associated
to the first element of the result should be 0, the other values 1. To obtain such a
list of output signals one needs to delay the control signal, too by k = 2 elements
(two transition registers for the control signal have to be included, as shown on
Fig. 8, in the same way as the inputs are delayed).
Stop condition: The condition B = 0 as it is can only be verified if we provide
some information about the length of the inputs. If the processor knows the
beginning of the input (from the control signal) and another signal indicates the
end of the input, then the processor can decide when the input is null (note that
in our case this can only be the input B).

The indication of the size of the input is achieved by associating an additional
tag-bit to each binary digit of the input. The value of the tag-bit is 0 for each signif-
icant digit of the binary number and 1 beginning with the sign bit of the number.

Now the input lists A and B both have two components xx = 〈tx, x〉, where
tx is the tag-bit (indicating the end of the input) and x is the digit. Let Tag,
and Dig be the selector functions for the tag-bits respectively the digits.

52 L. Ruff and T. Jebelean

Because A and B are binary numbers, in the expression (A+B)/4 (T2[A+B]
in list notation) A + B can have at most one more digit than the longest of A
and B. This means that (A + B)/4 is at least one digit shorter than the longest
argument. This insures the termination of the algorithm [4].

The list of tag-bits that indicate the longest argument is given by Tag[A] ∧
Tag[B] (where ∧ is the bitwise “and” operation). Therefore the tag-list corre-
sponding to a number that is ”one digit shorter” than the longest argument is:
T [Tag[A]∧ Tag[B]] = T [Tag[A]]∧ T [Tag[B]].

The computation of the GCD can now be rewritten in the following way:

GCD[〈A, B〉] = A, if (H [Dig[B]] = 0)∧
(H1[Tag[B]] = 1)

= GCD[〈A, T [B]〉, if (H [Dig[B]] = 0)∧
(H1[Tag[B]] = 0),

〈B, 〈T [Tag[A]] ∧ T [Tag[B]],

1
�
+ T2[Dig[A]] + T2[Dig[B]]〉〉, if (H [Dig[B]] = 1)∧

(H1[Dig[A]] �= H1[Dig[B]]),
〈B, 〈T [Tag[A]] ∧ T [Tag[B]],
T2[Dig[A]]− T2[Dig[B]]〉〉, if (H [Dig[B]] = 1)∧

(H1[Dig[A]] = H1[Dig[B]])]

The final expression for K can be automatically projected into the scalar space
(using the rules described in Sect. 4.4) in order to obtain the description of a PE.

Figure 8 presents the structure of a PE for the 3rd step of the GCD com-
putation. dxx|j| (where x stands for either a or b and j is 1 or 2) denotes the
transition register with two components: 〈dtx|j|, dx|j|〉, where the first compo-
nent is the correspondent of the tag-bit and the second one corresponds to the
digit. We use the notation xxi for the two components of the input 〈tai, ai〉 or
〈tbi, bi〉. Note that both functions, Dig and Tag commute with T and H .

� �

� �

� �

〈tai, ai〉 〈taq, aq〉

〈tbi, bi〉 〈tbq, bq〉

si sq
s r

ds|1| ds|2|
〈 〉:
〈 〉:
〈 〉:
〈 〉:

daa|1|
dbb|1|
daa|2|
dbb|2|

Fig. 8. PE for the problem of GCD computation

The computations of the PE are (with x standing for both a and b for brevity):

〈aqt+1, bqt+1〉 = 〈$, $〉 if st = $ (15)
= 〈da|2|t, $〉 if st = 1 (16)

Functional–Based Synthesis of a Systolic Array 53

= 〈da|2|t, db|1|t〉 if st = 2 (17)

= 〈db|2|t, low[ait
� �
+ bit

� �
+ rt]〉 if st = 3 (18)

= 〈db|2|t, low[ait
� �
− bit

� �
− rt]〉 if st = 4 (19)

〈taqt+1, tbqt+1〉 = 〈$, $〉 if st = $ (20)
= 〈dta|2|t, $〉 if st = 1 (21)
= 〈dta|2|t, dtb|1|t〉 if st = 2 (22)
= 〈dtb|2|t, dta|1|t ∧ dtb|1|t〉 if (st = 3) ∨ (st = 4) (23)

rinit = $ (24)
rt+1 = 1 if (st = $) ∧ (sit = 1) ∧ (db|1|t = 1) ∧ (bit �= ait) (25)

= high[ait
� �
+ bit

� �
+ rt] if st = 3 (26)

= 0 if (st = $) ∧ (sit = 1) ∧ (db|1|t = 1) ∧ (bit = ait) (27)

= high[ait
� �
− bit

� �
− rt] if st = 4 (28)

= rt otherwise (29)
dxx|1|t+1 = xxit (30)
dxx|2|t+1 = dxx|1|t (31)

sqt+1 = ds|2|t (32)
ds|2|t+1 = ds|1|t (33)
ds|1|t+1 = sit (34)

sinit = $ (35)
st+1 = 1 if (st = $) ∧ (sit = 1) ∧ (db|1|t = 0) ∧ (tbit = 1) (36)

= 2 if (st = $) ∧ (sit = 1) ∧ (db|1|t = 0) ∧ (tbit = 0) (37)
= 3 if (st = $) ∧ (sit = 1) ∧ (db|1|t = 1) ∧ (bit �= ait) (38)
= 4 if (st = $) ∧ (sit = 1) ∧ (db|1|t = 1) ∧ (bit = ait) (39)
= st, otherwise (40)

The result is given by the PE whose the state register s is set to 1.

Note: The stop condition only detects the termination of the transformations
of the argument: from this point on, all the remaining PE’s must leave the argu-
ments unchanged. Effective termination of the algorithm on a concrete systolic
array is a closely related, but different issue. Since a concrete systolic array has
a finite number of PE’s, the result (i. e. pseudo GCD) will be generated at the
right-hand-side of the array only if the number of PE’s exceeds the number of
steps which are necessary for the particular arguments of the respective com-
putation. In practice, this problem can be tackled in various ways, which are in
fact the same for all the arrays of this type. One solution is to handle arguments
of a maximum known size by an array having a number of processors superior
to the upper bound of the number of steps. Another solution is to pick-up the
output even if the computation is not finished, and then to re-enter it into the

54 L. Ruff and T. Jebelean

re-initialized array. The latter allows to handle arguments of arbitrary size, even
though the array is fixed, which is an interesting feature specific to pass-through
arrays.

7 Conclusions

By exploiting the similarity between the inductive structure of a systolic array
and the inductive decomposition of the argument by a functional program, we
developed an elegant and efficient method for the automatic synthesis of a quite
non-trivial array for the computation of the integer GCD of binary numbers.

The case study presented here paves the way for further theoretical investiga-
tion into the applications and theoretical development related to this similarity.

Acknowledgements. The Theorema system is supported by FWF (Austrian
National Science Foundation) – SFB project F1302. The research presented here
is also part of the project e-Austria Timisoara, which is supported by BMBWK
(Austrian Ministry of Education, Science, and Culture), BMWA (Austrian Min-
istry of Economy and Work). The first author was partially supported by a
CEEPUS scholarship.

References

1. Brent, R.P., Kung, H.T.: A systolic algorithm for integer GCD computation. 7th
Symp. on Computer Arithmetic, pp. 118–125. IEEE Computer Society Press, Los
Alamitos (1985)

2. Buchberger, B., et al.: Theorema: Towards Computer-Aided Mathematical Theory
Exploration, Journal of Applied Logic 4(4), 470-504 (2006)

3. Jebelean, T.: A Generalization of the Binary GCD Algorithm. In: ISSAC’93, pp.
111–116. ACM Press, New York (1993)

4. Jebelean, T.: Systolic Multiprecision Arithmetic (PhD Thesis). Technical Report
94-37, RISC-Linz (April 1994)

5. Jebelean, T.: Designing Systolic Arrays for Integer GCD Computation. In: ASAP
94, pp. 295–301. IEEE Computer Society Press, Los Alamitos (1994)

6. Jebelean, T.: Auto-Configurable Array for GCD Computation. In: Glesner, M., Luk,
W. (eds.) FPL 1997. LNCS, vol. 1304, pp. 457–461. Springer, Heidelberg (1997)

7. Jebelean, T., Szakács, L.: Functional-Based Synthesis of Systolic Online Multipliers.
In: SYNASC-05, pp. 267–275. IEEE Computer Society Press, Los Alamitos (2005)

8. Stein, J.: Computational problems associated with Racah algebra. J. Comp. Phys. 1,
397–405 (1967)

9. Szakács, L.: Automatic Design of Systolic Arrays: A Short Survey. RISC Technical
report 02-27, University of Linz, Austria (December 2002)

Comparing Alternative Evaluation Strategies for

Stream-Based Parallel Functional Languages�

Mercedes Hidalgo-Herrero, Yolanda Ortega-Mallén, and Fernando Rubio

Universidad Complutense de Madrid, Spain
mhidalgo@edu.ucm.es, yolanda@sip.ucm.es, fernando@sip.ucm.es

Abstract. In parallel functional languages, like Eden, lazy and strict
evaluation are commonly mixed. Thus, the parallel performance of these
languages depends on the strategy used to fix the degrees of laziness/
strictness. By using an implementation of Eden’s operational semantics,
we analyze the influence of alternative evaluation models on Eden skele-
tons performance. In particular, we assess the performance of different
implementations of a skeleton that uses stream-based communications.

Keywords: Parallel functional programming, skeletons, semantics.

1 Introduction

Declarative programming languages in general, and functional languages in par-
ticular, have shown excellent possibilities for their parallelization. The parallel
functional language Eden [2,12] keeps its high-level nature inherited from the
non-strict functional language Haskell [13], which Eden extends with a set of
coordination features to control the parallel evaluation of processes.

Haskell uses normal order evaluation with share of reductions to avoid re-
peating computations. However, if expressions are evaluated only under demand
then the exploitation of parallelism is highly restricted. Therefore, Eden over-
rides the pure lazy approach by combining non-strict functional application with
eager process creation and eager communication, so that there is always demand
for the evaluation of the output of an Eden process. This produces speculative
computations that calculate results that may finally not be used. Moreover, the
degree of speculation for an Eden program is variable, depending on the number
of processors, the speed of basic operations, and so on.

The explicit definition of processes is done in Eden by using abstract schemes
for describing the behavior of processes (process abstractions) and process instan-
tiations that provide process abstractions with input parameters for the dynamic
creation of child processes together with the unidirectional channels necessary
to communicate with the corresponding parent process. Once a process is run-
ning, only fully evaluated data objects are communicated. The only exceptions
are lists, which are transmitted in a stream-like fashion, i.e. element by element.
Each list element is first evaluated to full normal form and then transmitted.
� Work supported by projects TIC2003-07848-C02-01, TIC2003-01000, TIN2006-

15660-C02-01, PAC06-0008.

Z. Horváth, V. Zsók, and A. Butterfield (Eds.): IFL 2006, LNCS 4449, pp. 55–72, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

56 M. Hidalgo-Herrero, Y. Ortega-Mallén, and F. Rubio

Table 1. Evaluation alternatives

Evaluation before Process abstraction Instantiation
copy (EC) evaluation (PAE) copy (IC)

1 yes parent yes

2 yes parent no

3 yes child yes

4 yes child no

5 no child yes

6 no child no

7 no parent yes

8 no parent no

A crucial decision is how to distribute the computation between a process and
its offspring. If the parent completes as much work as possible before delegating
to its children —for instance by bounding to a weak head normal form (whnf)
every dependent variable of the process body (or abstraction) before creating a
process— then this may lead to a poor parallelization. On the contrary, if each
child evaluates the process abstraction as well as its application to the input
parameters then repeated computations can be produced when certain subex-
pressions are evaluated independently by several children of the same parent.
Although this can be avoided by the programmer by forcing the evaluation in
the parent of these common subexpressions, this requires more programming
work and it is error-prone. Currently, the latter option has been adopted for
Eden and its actual implementation. Nevertheless, we are interested in studying
other possibilities; specifically the combinations that are gathered in Table 1,
where EC (evaluation before copy) stands for the option of evaluating every
needed binding before being copied to the initial heap of a newly created pro-
cess (or the receiver process in the case of a communication); IC (instantiation
copy) represents the copy of bindings from one process to another correspond-
ing to pending process instantiations; and PAE (process abstraction evaluation)
indicates the alternatives for the evaluation of a process abstraction in the case
of an instantiation: either by the parent process, or by the child.

We investigate these alternative semantics for Eden, in particular how the
behaviour of parallel skeletons in Eden can be affected. To this end, we have
defined a formal semantics for each variation (see [5] and [12] for details), and we
have implemented (in Haskell) an interpreter capable of dealing with all of them
and of providing several measures (parallelism, communications, etc.) useful for
the analysis. By doing so, we can compare the advantages and disadvantages of
each strategy from a semantical and an efficiency point of view.

This paper is a continuation of the work presented in [6] and devoted to
the analysis of different variations to override laziness in order to introduce
parallelism. The analysis in that first work is quite limited because streams were

Comparing Alternative Evaluation Strategies 57

not considered, thus greatly reducing the choice of skeletons that we could use
for our examples. Let us remark that dealing with streams is a key issue in Eden.
Without streams, processes would communicate in a monolitic way: they would
only receive a single data at the beginning, and produce a single data at the
end of its computation. Thus, processes could not compute and communicate in
interleaving. This fact reduces the versatility of the language. In fact, streams
are needed for most of the skeletons and programs written in Eden. In the
present work we have extended our interpreter with streams for communication,
so that we are able to analyze more interesting examples. For instance, we have
implemented parallel versions of the map&reduce skeleton, and we can analyze
the advantages of each of these implementations.

Organization of the paper. We start by describing the calculus that assembles
the essentials of Eden and that is used to write the examples shown in the
present work. Next, in Section 3 we explain how to define and implement in
Eden some simple parallel skeletons. Section 4 describes the environment that
we have developed for obtaining profiling information. In Section 5 these profiling
tools are used with a parallel version for calculating the sum of Euler numbers by
using the map&reduce skeleton. We end the paper by presenting our conclusions
and by outlining our future work in this topic.

2 Eden’s Essentials

Figure 1 shows the (abstract) syntax of an untyped λ-calculus extended with
natural numbers, arithmetic operators, recursive lets, conditional expressions,
process instantiation, and a simple mechanism for defining lists and dealing with
them. This simple calculus captures the essential features of Eden: a non-strict
high level language extended with a coordination level represented by processes.
Besides, it proves to be sufficient for our purposes.

E ::= n number
| E1 op E2 arithmetic
| x identifier
| \x.E λ-abstraction
| E1E2 application
| E1#E2 process instantiation
| let {xi = Ei}n

i=1 in E local declaration
| if0 E1 E2 E3 conditional
| /\[x1 : x2].E1[]E2 Λ-abstraction
| L list

L ::= [E1 : E2] non empty list
| Nil empty list

op ::= + | − | ∗ | /

Fig. 1. Eden core syntax

58 M. Hidalgo-Herrero, Y. Ortega-Mallén, and F. Rubio

p E1#E2−→

p

�E1E2�E2

q

Fig. 2. Process creation in Eden

In the syntax description n ∈ N denotes natural numbers, x ∈ Var denotes
identifiers, E ∈ Exp represents expressions, L ∈ List represents lists, and op ∈
OP corresponds to the arithmetic operations over natural numbers, i.e. addition,
substraction, multiplication and division. The expression let {xi = Ei}n

i=1 in E
is an abbreviation of let x1 = E1, . . . , xn = En in E.

The calculus identifies process abstractions with one-argument functions, so
that processes are created with a unique input channel and a unique output
channel. When evaluating an expression E1#E2 inside a process p, a new child
process q is created. The parent process, p, sends through the input channel
for q the value of E2 to q which evaluates E1 E2 and returns the result (to its
parent) via its output channel. This behaviour is illustrated by the diagram in
Figure 2. The key difference between application and instantiation is the former
non-strictness versus the latter eagerness.

A conditional expression if0 E1 E2 E3 evaluates to E2 when the expression
E1 evaluates to 0, and it evaluates to E3 otherwise.

The /\-construction is a combination of lambda-abstraction and pattern mat-
ching for lists; thus, the expression ((/\[x1 : x2].E1[]E2) L) evaluates to E1 if the
list L is empty, and evaluates to E2 otherwise. In the latter the pattern [x1 : x2]
is matched against the list L.

We use two simple examples to illustrate the behaviour of our calculus. In the
first example we compute in parallel x2 +y2, being x and y the input parameters
of our main function f :

sqr = \x. x * x
f = \x. \y. let a = sqr # x

b = sqr # y
in a + b

During the evaluation of f applied to any two numerical values two new processes
are created: One to compute x2 and the other to compute y2. Both processes
are created by the unique parent process, that is also responsible for adding the
results obtained from both children.

We can easily generate more complex process topologies. For instance, given
a list of numbers we can define a function computing the square of each of the
numbers:

sqrs = /\[x:xs].Nil [] [sqr x : sqrs xs]

Comparing Alternative Evaluation Strategies 59

g 4 g 3 g 2 g 1 g 0

[1, 2, 3]

[1, 2, 3]

[1, 2, 3]

[12, 22, 32]

[1, 2, 3]

[14, 24, 34]

[1, 2, 3]

[18, 28, 38]

[1, 2, 3]

[116, 216, 316]

Fig. 3. Processes hierarchy for g 4 [1,2,3]

Then, given a natural number n and a list of numbers xs we can use the following
program to compute x2n

i for each xi ∈ xs:

g = \n. \xs. if0 n
xs
let n’ = n sub 1

xs’ = (g n’) # xs
in sqrs xs’

Notice that we do not create a new process to compute x20

i . However, in or-
der to compute x2n+1

i , a new process is created to recursively compute x2n

i

and the parent process computes the squares of the values received. In prac-
tice, this definition creates a pipeline-like topology. For instance, for computing
(g 4 [1:[2:[3:Nil]]]) four new processes are created following the scheme
shown in Figure 3. It is important to remark that in Eden lists are transmitted
in a stream-like fashion. Thus, a process receiving as input a list of elements
can start working on its first task without needing to receive the rest of inputs.
Analogously, in case a list is to be sent as output, its elements are sent as soon
as they are available. So, in our example all the processes shown in Figure 3 can
be working simultaneously on different data.

In the second example we have used an instantiation of the form (g n’) # xs
so that the process abstraction is not just a variable, but the application of a
function to a parameter. Thus, depending on the model of evaluation used (see
Table 1), the responsible for evaluating such application can be either the parent
or the child process.

The following example illustrates how options in Table 1 lead to different
evaluations. We have chosen a short although intricate example, so that many
differences can be appreciated:

main = let idId = id id
id = \x. x
qidId = \z. idId
p1 = id # id
p2 = idId # id
p3 = p2 # id
p4 = qidId # id

in p2

60 M. Hidalgo-Herrero, Y. Ortega-Mallén, and F. Rubio

Options 1 and 2 Option 3 Option 4

main

p1

main

p1 p2

main

p1 p2

Option 5 Option 6 Options 7 and 8

main

p1 p2 p3 p4

main

p1 p2 p4

main

p1 p4

Fig. 4. Different topologies depending on semantic options

This expression contains four instantiations, but depending on the semantic
option they give rise to new processes or not in the first step of the evaluation
(the corresponding process topologies/trees are shown in Figure 4):

p1: The process is created regardless of the semantic option.
p2: This process is created only if the children evaluate process abstractions

(PAE = child), i.e. options 3, 4, 5, and 6.
p3: This instantiation depends on the evaluation of p2, which in turn is a process

creation. Consequently, it is created if the abstraction is evaluated by the
child (PAE = child) and variables bound to process creations are copied (IC
= yes). Moreover, since it depends on unevaluated free variables, the process
creation is subject to their evaluation when EC = yes. Consequently, this
process only appears in the sixth semantics.

p4: The abstraction of this expression is already evaluated, but it contains a
free variable that has not been evaluated yet. The creation of the process
will take place only if unevaluated bindings are allowed to be copied, that
is, options 5, 6, 7, and 8.

Notice that in this example all variables correspond semantically to the iden-
tity function.

3 Defining Skeletons

Eden has proven to be highly suitable for a programming methodology based
on algorithmic skeletons (see [9,11]), with the double advantage that skeletons
can be implemented and used within the same language. Thus, the programmer
can either directly use the skeletons previously provided, or modify them to suit
his needs; or even create new skeletons, thus extending the collection. Actually,

Comparing Alternative Evaluation Strategies 61

Eden’s library provides a rich set of skeletons covering many common parallel
patterns such as parallel map, parallel divide-and-conquer, parallel search, and
others, as well as typical process topologies like pipelines, grids, rings, and so
on. The interested reader can find in [9,14,11,12] Eden’s definition of these and
other skeletons, together with their corresponding cost models, examples of ap-
plication, and runtime results.

The concrete implementations of the skeletons have a heavy influence on its
effectiveness. Thus, the majority of skeleton-oriented approaches use low-level
languages for the implementation of their skeletons; aiming to produce correct
and highly efficient implementations, but reduces the flexibility and versatility
of the approach, as the set of skeletons is usually fixed. In contrast, Eden offers
the possibility of implementing and using skeletons for parallel programming,
by implementing them as polymorphic higher-order functions. Let us remark
that process abstractions in Eden are not just annotations, but first class values
which can be manipulated by the programmer (i.e. passed as parameters, stored
in data structures, and so on). This facilitates the definition of skeletons as
higher order functions. The Eden programmer can choose the process topology
and the task granularity, but cannot decide on matters like the placement of
processes in processors. Thus, the efficiency of Eden’s skeletons depends on the
implementation of Eden, and it is influenced by the semantics of the language.
Hence, a detailed analysis of different semantics options can help to improve the
efficiency of Eden’s skeletons.

The most classical and simple skeleton is map. Given a list of inputs xs, and
a function f to be applied to each of them, a different process can be used to
compute the application of the function to each element of the list:

parMap = \f.(/\[y:ys].Nil [] [(f # y):((parMap f) ys)])

Notice that each new process receives its input data through an input channel.
Then, it applies function f to the received data, and finally it returns the result
of the computation through an output channel. Let us remark that, in case a
list is to be sent through a channel, its elements will be sent one by one in a
stream-like fashion.

It is not necessary to explicitly use constructions for synchronizing the pro-
cesses. The main process initially sends a task to each of the worker processes
of the parMap. Afterwards, as soon as any of the workers finishes its assignment,
the result is automatically sent to the main process. The computation finishes
when the main process has received all the results needed.

Different variations of this skeleton can be considered. For instance, input data
could be passed as a parameter to the process. Notice that when the parent pass
data to the child through a channel, the responsible for evaluating such data is
always the parent. However, if data are not passed through a channel, but they
are passed as a parameter, in many situations the child will be responsible for
its computation. That is, the process has to extract every input value. As each
child computes its own inputs, it can be considered as a self-service variation of
the basic parMap:

62 M. Hidalgo-Herrero, Y. Ortega-Mallén, and F. Rubio

parMapSS = (\f.(/\[y:ys].Nil []
(Let f’ = (\x (\dummy (f x)))
in [((f’ y) # 0):((parMapSS f) ys)])))

parMap and parMapSS are essential primitive skeletons used to create a set of
independent processes, but they can be improved easily by reducing the number
of processes to be created. In a mapFarm the number of processes to be created is
fixed (for instance, it can be the number of processors). The implementation first
distributes evenly the tasks among the processes, then parMap is applied, and
finally the results are collected. Notice that, due to the lazy evaluation, these
three tasks are not done sequentially, but in interleaving. As soon as any of the
workers has computed one of the elements of its output list, it sends this sub-
result to the main process, and it goes on computing the next element. Notice
that communications are asynchronous, so that it is not necessary to wait for
acknowledgments from the main process. When the main process has received
all the needed results, it finishes the computation.

The Eden source code of this skeleton is shown below, where the number of
processors, as well as the distribution and collection functions, are parameters
of the skeleton:

mapFarm = \np.\unshuffle.\shuffle.\f.\xs.
shuffle (parMap (map f) (unshuffle np xs))

Different strategies to split the work into the different processes can be used
provided that, for every list xs, (shuffle (unshuffle np xs)) == xs. In fact,
we have already predefined several pairs of functions, so that the programmer
can choose the best strategy for each case. For instance, we can distribute the
tasks in a round-robin fashion.

3.1 Map&Reduce

Next we present how to define the map&reduce skeleton we will use in section 5
to implement our running example. The sequential specification of this classical
scheme is a combination of a map and a fold function:

mr :: (a->b) -> (b->b->b) -> b -> [a] -> b
mr = \f.\g.\e.\tasks.foldl g e (map f tasks)

where function b is expected to be commutative and associative.
Different parallel implementations of the map&reduce skeleton can be easily

implemented. For instance, following the ideas presented before for the parallel
map, we can implement a farm-like version:

mrFarm = \np.\unshuffle.\f.\g.\e.\tasks.
let taskss = unshuffle np tasks

workingF = mr f g e tasks
results = parMap (workingF f g e) taskss

in foldl g e results

Comparing Alternative Evaluation Strategies 63

Let us remark that an unshuffle function is used to distribute the tasks among
processes, but it is unnecessary to merge them afterwards with a shuffle func-
tion. The reason is that we assume that the function g is associative and com-
mutative. Thus, the order in which the results are combined does not matter.

As we have commented in the case of the map skeleton, sometimes we can use
a better implementation if the list of tasks can be easily created by the workers.
In case the time needed to communicate the list of tasks is greater than the time
needed to compute it, a self-service version is better. In that case, each of the
children can select its own tasks:

mrSS = \np.\unshuffle.\f.\g.\e.\tasks.
let taskss = unshuffle np tasks

workingF = mr f g e tasks
results = parMapSS (workingF f g e) taskss

in foldl g e results

Obviously, the previous skeletons can be simplified by providing a predefined
unshuffle function, and by assuming that the number of processes to be created
is equal to the number of available processors (noPe):

mrFarm’ = \f.\g.\e.\tasks.
mrFarm noPe myUnshuffle f g e tasks

mrSS’ = \f.\g.\e.\tasks.
mrSS noPe myUnshuffle f g e tasks

4 Environment

In order to implement an interpreter for Eden core, we have completely based
its development on the operational semantics presented in [5]. Therefore, its
correctness is guaranteed. The development of interpreters based on formal se-
mantics is common in the literature (see e.g. [3,1]). Our interpreter is written
in Haskell, so the flexibility of the implementation is increased. Therefore, it
can be easily modified to obtain different versions. Particularly, all the semantic
alternatives shown in Table 1 have been programmed. That is, eight different
implementations for Eden core are provided. Besides, all the versions of the se-
mantics are implemented using the same basic machinery, that is, there is only
one interpreter that offers eight different modes. Thus, the code is reused for im-
plementing all the strategies. Moreover, it is ensured that the variations among
the various implementations are just those originated by the different semantics.
That is, the efficiency of the implementations cannot interfere the performance
measures of the various modes.

This environment is more than a simple interpreter to execute our programs
under diverse semantics. In addition to obtaining the final result of the execution,
other useful pieces of information are also provided. First, the user can ask the
interpreter to produce as output an html file showing the evolution of the state of

64 M. Hidalgo-Herrero, Y. Ortega-Mallén, and F. Rubio

the processes step by step. By doing so, we can use this output as a pedagogical
tool to show what is the actual behaviour of a semantics.

Second, our environment incorporates a set of profiling tools to help to anal-
yse the performance of the executions. In this sense, the output is similar to
other profilers such as GranSim [10], Paradise [4], or GranSP [8]. Although our
results are not so realistic because our environment is not implemented by modi-
fying the runtime system of the corresponding compiler, we have more flexibility.
In fact, the main advantage of our environment compared to Paradise is that
we can analyze the performance of the same program using different semantic
alternatives.

As it can be expected, our tools can be used independently of the concrete
semantics mode used in each execution. The interpreter output data allows us
to obtain simple information as:

– Total number of overall steps needed to finish the execution (i.e. time needed
to execute it assuming infinite processors).

– Total number of basic steps needed to finish the execution (i.e. time needed
to execute it with a unique processor).

– Total number of messages sent during the execution.
– Maximal parallelism degree during the execution.
– Average parallelism degree during the execution.
– Amount of extra work done by the parallel execution compared to the work

done in the sequential version.

Apart form the information about the overall system, the same data is returned
for each concrete process. That is, the tools can show us the number of steps or
the number of communications separately performed by each process. Moreover,
our environment allows us to generate more complex profiling information. Par-
ticularly, several graphical outputs can be produced. The most useful graphics
we can currently generate are the following:

Overall parallelism. It shows the evolution in time of the number of active
threads of the system. An example of such graphics can be seen in Figure 5.

Parallelism per process. It shows the evolution in time of the number of
active threads inside each process. An example of such graphics can be seen
in Figure 6.

5 Application Example: Sum of Euler Numbers

In this section we consider a very simple example implemented by using the
parallel map&reduce skeleton explained in Section 3.1. The aim of the example
is twofold: (1) to illustrate what kind of profiling information can be obtained
by using our system; and (2) to analyze the differences between alternative im-
plementations of the same skeleton when considering the semantics options dis-
cussed in the introduction.

The Euler number of a given value x is the number of integers smaller than
x that are relatively prime to x. We are interested in computing the sum of

Comparing Alternative Evaluation Strategies 65

Table 2. Measures for SumEuler 8 with noPe = 2 and using Farm

Run Maximum Average Number of Number of

Time
Work

Parallelism Parallelism Processes Comms

1(2) 1213 2828 7 2.331 3 12

3(4) 1217 2841 7 2.334 3 12

5(6) 1217 2841 7 2.334 3 12

7(8) 1213 2828 7 2.331 3 12

Table 3. Measures for SumEuler 8 with noPe = 2 and using Self-service

Run Maximum Average Number of Number of

Time
Work

Parallelism Parallelism Processes Comms

1(2) 1538 2836 8 1.8439 3 4

3(4) 1538 2836 8 1.8439 3 4

5(6) 1546 2851 8 1.8441 3 4

7(8) 1545 2849 8 1.8440 3 4

the Euler numbers of the first n numbers. This problem has been proposed in
[15] to compare the way in which different parallel languages based on Haskell
are used, and we think it can also be useful to compare the semantic options
of our language, as well as to compare alternative implementations of the basic
skeletons.

The sequential version of the program (written in Haskell) is as follows:

euler x = length (filter (relprime x) [1..(x-1)])
relprime x y = gcd x y == 1
sumEuler n = sum (map euler [n,n-1..1])

5.1 Farm vs. Self-service

The program fits perfectly the map&reduce scheme, since the euler function
is mapped while sum folds the set of results into a single one. Moreover, it is
relatively simple to compute the list of tasks that each worker should receive.
Thus, it can be interesting to analyze the advantages/disadvantages of using a
self-service implementation compared to using a farm-like version of the skeleton.

The implementation in core Eden is trivial:

euler = \x. let numbers = numsLessThanTo n 1
in length (filter (relPrime x) numbers)

sumEuler = \n. let numbers = numsLessThanTo n 1
in mrSS’ euler add 0 numbers

66 M. Hidalgo-Herrero, Y. Ortega-Mallén, and F. Rubio

Fig. 5. Total number of active threads for SumEuler 8 with noPe = 2 using the farm
(left) and self-service (right) implementations with option 6

Obviously, in case we want to use the farm implementation of the skeleton we
only need to replace mrSS’ with mrFarm’.

In the rest of this section we analyze the performance differences obtained with
this example when considering the semantic options shown in Table 1. Let us
remark that in this example it is irrelevant how we treat the copy of instantiations
(column IC in Table 1), because none of the processes to be created depends on
a not yet evaluated instantiation. Therefore, options 1 and 2 are equivalent, as
well as 3 with 4, 5 with 6, and, finally, 7 with 8.

The measures for farm and self-service computations are gathered in Tables 2
and 3. It is clear that the farm computations end up sooner than those corre-
sponding to self-service. Besides, the amount of work is also less in the farm
case. Then, it could seem that the self-service version is less efficient. However,
we have to consider another parameter: communication. The communication
ratios satisfy the following formula:

commFarm = commSS + [number of tasks]

If communications in the system were expensive, then either both versions would
result equally efficient or the farm algorithm would be less efficient.

Graphics in Figure 5 show the total activity using a concrete evaluation alter-
native (number 6 in Table 1) both with the farm and the self-service implemen-
tations. Analogously, the activity for each process created during the computa-
tions is represented in the graphics gathered in Figure 6. Due to lack of space,
we do not include the graphics obtained with the rest of evaluation options. The
interested reader can find them in [7]. Next we study four issues: amount of
duplication of work, execution time, parallelism degree, and load balance.

Work Duplication. In the skeletons that we are considering, it is more relevant
to study work duplication in the case of self-service. Since when a process is going
to be created there are parameters that have to be evaluated, work duplication
may occur in option 6.

Comparing Alternative Evaluation Strategies 67

Fig. 6. Processes activity for SumEuler 8 with noPe = 2 using the farm (left) and
self-service (right) implementations with option 6

Options 2 and 4 stipulate that free variables must be evaluated before being
copied. Then, the instantiation parameters must be evaluated by the parent
process. Consequently, work duplication does not take place.

In the case of option 8 the parent must evaluate the abstraction of the in-
stantiation, and by doing so it evaluates the parameters as well. Therefore, work
duplication increases and processes are created sooner than in the previous cases.

Finally, in option 6 bindings can be copied unevaluated and the process ab-
straction is evaluated by the children. Thus, child processes are created even
earlier.

This fact becomes clear when an enlargement is applied to the graphics (see
Figure 7). The reason is that the amount of computation of these parameters
is small with respect to the evaluation of the output of the processes (greatest
common divisor, sums, and so on).

68 M. Hidalgo-Herrero, Y. Ortega-Mallén, and F. Rubio

Fig. 7. Zoom of processes activity for self-service and for semantic options T2,T4,T6
and T8, with 2 processors

Comparing Alternative Evaluation Strategies 69

Parallelism Degree. We observe that the maximal degree of thread parallelism
in the main process is greater in the self-service version (3 threads). In options
2, 4, and 8, the reason for this is that there are two potential processes waiting
for the evaluation of their parameters —the whole list of tasks— in order to be
created. Then, the evaluation of all the unevaluated free variables is demanded,
and this evaluation is carried out by the parent. However, in option 6, the increase
is due to the creation of the first child when the main process is demanding the
addends.

In contrast, the processes in the farm only wait for the first value of their list of
tasks. Therefore, the evaluation demand for their creation is small in comparison
to the self-service algorithm. Consequently, the amount of activity in the main
process is reduced, although the time to produce it is enlarged.

In both cases, farm and self-service, the maximal parallelism degree of the
system is registered when at least one child is computing its output. This proves
that the system profits from this instantiations. Besides, this parallelism entails
activity of the parent process. Therefore, without the creation of the children
the runtime would increase considerably.

With respect to the average parallelism, in the farm algorithm it is higher.
This result is due to the reduction in the runtime, keeping a similar amount of
work in both, the farm and the self-service schemes.

Load Balance. In the graphics we observe that in the self-service version the
period of inactivity of the main process is greater than in the farm. The reason
for this behaviour is that the main process is waiting for the children to finish
their tasks, and this waiting period begins just after the creation of the children.
Then it is easy to deduce that the farm algorithm produces a better load balance
between the parent and the children. This reduction of process parallelism in the
self-service produces the runtime increase mentioned above.

The difference in load balance is due to the way information is passed to the
children. In the farm, the parent/main process sends the elements of the list of
tasks one by one to the children, so that the latter are working while the former
is preparing the next value.

By contrast, in the self-service version the list is a parameter, not a value to
be communicated. Then, in options 2 and 8 the list is evaluated by the parent.
Besides, in option 4 the list is also evaluated by the parent because bindings must
be evaluated before being copied. Only in option 6 the evaluation of the list is
carried out by the children, so that the parent can be considered overloaded at
the beginning and remains almost idle the rest of the time.

Let us now analyze in more detail the semantic option influence in load bal-
ance. We have already recalled that in options 2 and 8 the parent must evaluate
the process abstractions of its children. Consequently, the graphics for the farm
scheme show differences in the parent activity periods, for instance when process
main.1 is created. These periods are larger in options 2 and 8 than the corre-
sponding lapses for options 4 and 6. A similar behaviour is observed when the
self-service skeleton is used.

70 M. Hidalgo-Herrero, Y. Ortega-Mallén, and F. Rubio

Table 4. Measures for the short example in Section 2

Run Maximum Average Number of Number of

Time
Work

Parallelism Parallelism Processes Comms

1(2) 7 17 4 2.429 5 8

3(4) 8 20 6 2.5 5 8

5 8 28 11 3.5 6 10

6 8 21 7 2.625 5 8

7(8) 7 20 6 2.857 5 8

Summarizing Results. We have observed that the main differences do not
arise by the chosen semantic option, instead they are due to the version of the
skeleton. When communications in the system are expensive or difficult, the
self-service algorithm is more suitable. Otherwise, the farm structure reduces
considerably the runtime and the computing activity.

Although the impact on the performance of the version of the skeleton is
greater than the impact of the semantic option, the latter is relevant too. More-
over, the improvements due to the chosen semantics do not require programming
effort: The semantic options are already available.

Regarding the analysis of the best semantic option, we have already stated
that the decision about copying instantiations is irrelevant in the present case,
although there are some differences between the other semantic choices. Option 1
produces the fastest computations, although, as we have analyzed above, it en-
tails work duplication and reduces the load balance between the parent and the
children.

In order to analyze an example where the decision about copying instantia-
tions is important, we will consider again the example presented in Section 2.
The measures obtained in that case are summarized in Table 4. Observing the
rows corresponding to options 5 and 6, it is clear that copying process instantia-
tions influences on the number of processes in the system and the total amount
of work: One extra process is created in the case of option 5, and work dupli-
cation is increased (28 vs 21 work units). In case the number or processors is
limited, the runtime would increase considerably. Besides, any benefit associated
to option 5 is insignificant if communications are expensive.

6 Conclusions and Future Work

Analyzing the influence of different lazy/strict semantic alternatives on the ef-
ficiency of parallel functional languages is an important topic. Throughout this
paper, we have presented an integrated framework to deal with such analyses. By
using our tools, we have studied how diverse semantic options may influence the
performance of programs written in Eden. Moreover, we have also used our tools
to compare the efficiency of different implementations of a skeleton. As it can be

Comparing Alternative Evaluation Strategies 71

Table 5. Measures using the divide&conquer skeleton

Run Maximum Average Number of

Time
Work

Parallelism Parallelism Processes

1(2) 452 1715 14 3.79 7

3(4) 410 1719 11 4.19 7

5(6) 446 1838 10 4.12 7

7(8) 459 1836 8 4 7

expected, the influence of the concrete implementation of the skeleton is greater
than the influence of the evaluation strategy. However, choosing the appropriate
semantics option can also improve the performance without programming effort.

Our framework is made up of two parts: an interpreter easily adaptable to
cover diverse semantic options (indeed eight different semantics are currently
supported), and a set of profiling tools that return data about the programs
executed with the interpreter.

In order to test the usefulness of our framework, we have analysed the well-
known parallel map&reduce skeleton. This case study has helped us to show the
influence of the semantic options on several aspects of the parallel execution. In
particular, changes in the amount of duplicated work, in the execution time, in
the parallelism degree, and in the load balance.

Our first line of future work is to extend our profiling tools to obtain infor-
mation about the amount of speculative work. Because of Eden’s override of
laziness, we are interested in measuring how much unnecessary calculation is
done. Nevertheless, our future work will mainly focus on analysing a wider set
of skeletons, and also a wider set of programs implemented by using those skele-
tons. For instance, we have already tested the divide&conquer skeleton (Table 5
summarizes the measures obtained using it to compute the factorial of a given
number), and we are currently working on more complex topologies. So, after a
more detailed study, we will be able to arrive at a decision about which semantic
options should be used to improve Eden’s performance. Besides, we will be able
to detect (and correct) inefficiencies in the current implementation of Eden’s
skeletons library.

Since our main aim is to improve the efficiency of Eden’s implementation, first
we have to decide which semantic option is better on average from an efficiency
point of view; not only the efficiency in time determines the decision, but also
other aspects such as the amount of communications. Second, the Eden abstract
machine should be adapted to fulfill the characteristics of such semantic option.
Finally, the corresponding adjustment should be carried out on the compiler.

Acknowledgments

The authors would like to thank the anonymous referees for their valuable com-
ments on a draft version of the paper.

72 M. Hidalgo-Herrero, Y. Ortega-Mallén, and F. Rubio

References

1. Baker-Finch, C., King, D.J., Hall, J., Trinder, P.W.: An operational semantics for
parallel call-by-need. Technical Report 99/1, Faculty of Mathematics and Comput-
ing, The Open University (1999)

2. Breitinger, S., Loogen, R., Ortega -Mallén, Y., Peña, R.: Eden: Lan-
guage definition and operational semantics. Technical Report 96/10, Reihe
Informatik, FB Mathematik, Philipps-Universität Marburg, Germany,
http://www.mathematik.uni-marburg.de/∼eden/, (1996)

3. Broy, M., Hinkel, U., Nipkow, T., Prehofer, C., Schieder, B.: Interpreter verification
for a functional language. In: Thiagarajan, P.S. (ed.) Foundations of Software Tech-
nology and Theoretical Computer Science. LNCS, vol. 880, pp. 77–88. Springer,
Heidelberg (1994)

4. Hernández, F., Peña, R., Rubio, F.: From GranSim to Paradise. Trends in Func-
tional Programming (Selected papers of the First Scottish Functional Programming
Workshop) 1, 11–19 (2000)

5. Hidalgo-Herrero, M., Ortega-Mallén, Y.: An operational semantics for the paral-
lel language Eden. Parallel Processing Letters (World Scientific Publishing Com-
pany) 12(2), 211–228 (2002)

6. Hidalgo-Herrero, M., Ortega-Mallén, Y., Rubio, F.: Analyzing the influence of
mixed evaluation on the performance of Eden skeletons. Parallel Computing
32(7-8), 523–538 (2006)

7. Hidalgo-Herrero, M., Ortega-Mallén, Y., Rubio, F.: An integrated framework for
comparing alternative semantics for parallel functional languages. In: Draft Pro-
ceedings of the 20th International Workshop on Implementation of Functional Lan-
guages, IFL’06 (2006)

8. King, D.J., Hall, J., Trinder, P.W.: A Strategic Profiler for Glasgow Parallel
Haskell. In: Hammond, K., Davie, T., Clack, C. (eds.) IFL 1998. LNCS, vol. 1595,
pp. 465–474. Springer, Heidelberg (1999)

9. Klusik, U., Loogen, R., Priebe, S., Rubio, F.: Implementation skeletons in Eden:
Low-effort parallel programming. In: Mohnen, M., Koopman, P. (eds.) IFL 2000.
LNCS, vol. 2011, pp. 71–88. Springer, Heidelberg (2001)

10. Loidl, H.W.: GranSim user’s guide. GRASP/AQUA Proyect, Glasgow University
(1996)

11. Loogen, R., Ortega-Mallén, Y., Peña, R., Priebe, S., Rubio, F.: Patterns and Skele-
tons for Parallel and Distributed Computing. In: Rabhi, F.A., Gorlatch, S. (eds.)
Parallelism Abstractions in Eden, ch. 4, pp. 95–128. Springer, Heidelberg (2002)

12. Loogen, R., Ortega-Mallén, Y., Peña, R.: Parallel functional programming in Eden.
Journal of Functional Programming 15(3), 431–475 (2005)

13. Peyton Jones, S.L. (ed.): Haskell 98 language and libraries: the Revised Report.
Cambridge University Press, Cambridge (2003)

14. Rubio, F.: Programación funcional paralela eficiente en Eden. PhD thesis, Dept.
Sistemas Informáticos y Programación, Universidad Complutense de Madrid (2001)

15. Trinder, P.W., Loidl, H.W., Pointon, R.F.: Parallel and Distributed Haskells. Jour-
nal of Functional Programming 12(4+5), 469–510 (2003)

http://www.mathematik.uni-marburg.de/~eden/

Parallel Coordination Made Explicit

in a Functional Setting

Jost Berthold and Rita Loogen

Philipps-Universität Marburg, Fachbereich Mathematik und Informatik
Hans Meerwein Straße, D-35032 Marburg, Germany
{berthold,loogen}@informatik.uni-marburg.de

Abstract. We present a low-level coordination language for Haskell
which can be used as an implementation language for parallel Haskell
extensions. It has been developed in the context of the latest Eden im-
plementation (based on the Glasgow-Haskell-Compiler, GHC, version 6)
and it is thus referred to as the “EDen Implementation language”, EDI.
EDI provides a small set of directly implemented primitive operations
for basic thread control, system information, and communication. We ex-
plore the expressiveness and performance of both Eden and its low-level
implementation language EDI in comparison. It turns out that hardly
any differences in performance can be observed. The main advantage of
EDI in comparison to Eden is more accurate control of parallel execution.
Our long-term goals are maintenance and structured implementation of
Eden and a solid low-level implementation language, which can be used
for other parallel Haskells as well.

1 Introduction

The area of parallel functional programming exhibits a variety of approaches, the
common bases of which are referential transparency of functional programs and
the ability to independently evaluate subexpressions. While some approaches
pursue the target of (semi-)automatic parallelisation for special data structures
(i.e. data parallelism), other dialects are more explicit in parallel coordination
and allow what we call general-purpose parallelism, able to capture task-oriented
parallelism. It is generally accepted [2,17] that functional languages allow a clean
distinction between a computation (or “base”) language and independent coor-
dination constructs for parallelism control.

The parallel functional language Eden [7] adds constructs for the dynamic
creation of processes and communication channels to the non-strict functional
computation language Haskell. The Eden programming model is semi-explicit
general-purpose parallelism: Parallel processes are programmer-controlled, while
communication is system-controlled. Eden has been implemented by layers on
top of the Glasgow Haskell compiler (GHC) [14]. The central part is the Eden
module, which implements the Eden constructs in Haskell using a few primi-
tive operations provided by the parallel extension of the GHC runtime environ-
ment (RTE).

Z. Horváth, V. Zsók, and A. Butterfield (Eds.): IFL 2006, LNCS 4449, pp. 73–90, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

74 J. Berthold and R. Loogen

Any explicit parallel runtime support must express operational properties of
the execution entities and will – in the end – rely on an imperative-style descrip-
tion. Parallelism support in its basic form must be considered as imperative and
thus encapsulated in monads. Yet programmers might wish for a higher level of
abstraction in their parallel programs and, for instance, use algorithmic skele-
tons [13] (higher-order functions for common parallel patterns), because they are
not interested in gory details of implementation. Some parallel languages and
libraries offer a fixed set of predefined skeletons and special, highly optimised im-
plementations. On the other hand, with a more explicit general-purpose parallel
language, a programmer can express new skeletons specific to the application.

Whether to hide or show the imperative basics is a question of language de-
sign. Eden tries to achieve a compromise between extremes in these matters: it
exposes the execution unit of parallel processes to the programmer, but sticks
to a functional model for their use. Eden processes differ from functions by ad-
ditional strictness and remote evaluation. Further Eden language features allow
for reactive systems and arbitrary programmer-controlled communication, which
is (necessarily) opposed to referential transparency.

In this paper, the Eden implementation primitives will be considered as a
language of their own, the EDen Implementation language, EDI for short. In
contrast to Eden, EDI uses explicit communication and the IO monad to encap-
sulate side-effects. We compare expressiveness and performance of Eden and EDI.
While the differences in performance can be neglected, the programming styles
are substantially different. EDI allows an accurate control of parallelism, useful
for system programming, whereas the higher abstraction of Eden is favourable for
application programming, but often obscures what exactly is happening during
parallel execution. The primary goal of this work is a structured Eden implemen-
tation, using a low-level implementation language which can be used for other
parallel Haskells as well.

The paper is organised as follows: Section 2 describes Eden and its implemen-
tation. The primitive operations used in Eden’s implementation constitute the
Eden implementation language EDI. Section 3 discusses skeleton programming
in Eden and EDI. Selected Eden skeletons have been re-programmed in EDI.
Moreover, pitfalls of EDI programming are discussed. The paper ends with a
discussion of related work in Section 4 and conclusions in Section 5.

2 Eden Language and Implementation

2.1 Eden Language Constructs

The parallel Haskell extension Eden [7] is an explicit general-purpose language
for parallel programming, which gives programmers control over parallel pro-
cesses. Eden allows to define process abstractions by a constructing function
process and to explicitly instantiate (i.e. run) them on remote processors using
the operator (#). Processes are distinguished from functions by their opera-
tional property of remote execution.

Parallel Coordination Made Explicit in a Functional Setting 75

process :: (Trans a, Trans b) => (a -> b) -> Process a b
(#) :: (Trans a, Trans b) => Process a b -> a -> b

For a given function f, evaluation of the expression (process f) # arg leads to
the creation of a new (remote) process which evaluates the application of function
f to argument arg. The argument is evaluated locally and sent to the new process.

Processes are encapsulated units of computation which communicate their
inputs and results via channels. All values are reduced to normal form prior to
sending, which implies additional strictness for processes. If input or output of
a process is a tuple, each component will be evaluated and communicated by an
own concurrent thread. Lists will be communicated element by element, values
of other types will be communicated in single messages.

Communication between processes is automatically managed by the system
and hidden from the programmer, but additional language constructs allow to ex-
plicitly create and access communication channels and to create arbitrary process
networks. In the next subsection, we are showing how this feature is used to han-
dle the hidden communication explicitly in the lower levels of the Eden system.

The task of parallel programming is simplified by a library of predefined skele-
tons [6]. Skeletons are higher-order functions defining parallel interaction pat-
terns shared in many parallel applications. The programmer may use such known
schemes from the library to achieve an instant parallelisation of a program.

2.2 Layers of the Eden Implementation

The implementation of Eden extends the runtime environment (RTE) of the
Glasgow-Haskell-Compiler (GHC) [14] by a small set of primitive operations for
process creation and communication between processes. These primitives merely
provide very simple basic actions for process creation, data transmission between
the machines’ heaps, and system information. More complex operations are en-
coded in a functional module, called the Eden module. This module relies on

Eden Program

Sequential Haskell
Libraries

Sequential RTE

Skeleton Library

Eden Module
Primitive Ops

Parallel RTE

Fig. 1. Layered Eden implementation

the side-effecting primitive
operations to encode Eden’s
process creation and com-
munication semantics. The
code on module level
abstracts from many ad-
ministrative issues, profiting
from Haskell’s support in
genericity and code reuse.
Moreover, it will protect the
basic primitives from being
misused. This leads to an organisation of the Eden system in layers (see Fig. 1):
program level – skeleton library – Eden module – primitive operations – parallel
runtime environment. This will greatly improve the maintainability of the highly
complex system.

The basic layer implementing the primitive operations is the GHC runtime en-
vironment, extended for parallel execution on clusters using MPI [9] or PVM [12]

76 J. Berthold and R. Loogen

as a middleware. The runtime system manages communication channels and
thread termination; this will not be discussed further in this paper.

Primitive Operations. The current implementation of Eden is based on six
primitives for system information, communication, and thread creation. The
lowest level of the Eden module (shown in Fig. 2) consists of embedding the
primitives in the IO monad to encapsulate the side-effects, and adds Haskell
data types for communication mode and channels.

noPe :: IO Int number of processor elements
selfPe :: IO Int ID of own processor element
createC :: IO (ChanName’ a, a) channel name creation
connectToPort :: ChanName’ a -> IO () channel installation
sendData :: Mode -> a -> IO () send data on implicitly given channel
fork :: IO () -> IO () new thread in same process

data ChanName’ = Chan Int# Int# Int# a single channel: IDs from RTE
data Mode = Stream | Data data modes: Stream or Single data

| Connect | Instantiate Int special modes: Connection, Instantiation

Fig. 2. Primitive operations to implement Eden

The first two primitives provide system information like the total number
of processor elements (noPe) or the number of the processor element running a
thread (selfPe).

For communication between processes, createC creates a new channel on the
receiver side. It returns a channel name, containing three RTE-internal IDs:
(PE, processID, portID) and (a handle for) the channel contents. Primitives
connectToPort and sendData are executed on the sender side to connect a
thread to a channel and to asynchronously send data. The send modes specify
how the receiver sends data: either as an element of a stream (mode Stream),
or in a single message (mode Data), or (optionally) just opening the connection
(mode Connect). The purpose of the Connect mode is to provide information
about future communication between processes to the runtime system. If every
communication starts by a Connect message, the runtime system on the receiver
side can terminate threads on the sender side evaluating unnecessary data.

For thread management, there is only the primitive fork, which creates a new
thread (in the same process). Spawning a new process is implemented as sending
data with the send mode Instantiate. The Int argument allows to explicitly
place the new process on a certain processor. If it is zero, the RTE automatically
places new processes in round-robin manner.

Eden Module: Overloaded Communication. The primitives for commu-
nication are used inside the Eden Module to implement Eden’s specific data

Parallel Coordination Made Explicit in a Functional Setting 77

newtype ChanName a = Comm (a -> IO())

class NFData a => Trans a where
-- overloading for channel creation:
createComm :: IO (ChanName a, a)
createComm = do (c,v) <- createC

return (Comm (sendVia c), v)
-- overloading for streams:
write :: a -> IO()
write x = rnf x ‘seq‘ sendData Data x

sendVia ch d = do connectToPort ch
write d

Fig. 3. Type class Trans of transmissible data

-- list instance (stream communication)
instance Trans a => Trans [a]
where write l@[] = sendData Data l

write (x:xs) = do (rnf x ‘seq‘ sendData Stream x)
write xs

-- tuple instances (concurrency by component)
instance (Trans a, Trans b) => Trans (a,b)
where createComm = do (c1,v1) <-createC

(c2,v2) <-createC
return (Comm (send2Via c1 c2), (v1,v2))

send2Via :: ChanName’ a -> ChanName’ b -> (a,b) -> IO ()
send2Via c1 c2 (v1,v2) = do fork (sendVia c1 v1)

sendVia c2 v2

Fig. 4. Eden Module: Overloading for communication

transmission semantics. The module defines type class Trans of transmissible
data, which contains overloaded functions, namely createComm to create a high-
level channel (type ChanName), and write to send data over channels.

As shown in Fig.3, the high-level channel ChanName is a data communicator, a
function which performs the required send operation. It is composed by supply-
ing the created primitive channel as a first argument to the auxiliary function
sendVia. The latter, evaluated on sender side, first connects to the channel, and

78 J. Berthold and R. Loogen

then calls function write to evaluate its second argument to normal form1 and
send it to the receiver in Data mode.

The two functions in Trans are overloaded as follows: write is overloaded for
streams, which are communicated elementwise, and createComm is overloaded
for tuples, which are evaluated concurrently by one thread for each component.
Fig. 4 shows the instance declarations for lists and pairs. write communicates
lists elementwise in Stream mode, and createComm for pairs creates two primitive
channels, using the auxiliary function sendVia for forking threads.

Eden Module: Process Abstraction and Instantiation. The Eden con-
structs process and (#) render installation of communication channels between
parent and child process, as well as communication, completely implicit, whereas
the module internally uses explicit communication channels provided by Trans

and the primitive operations.
Fig. 5 shows the definition of process abstractions and instantiations in the

Eden module. Process abstractions embed a function f remote that is executed by
a newly created remote process. This function takes a communicator sendResult
to return the results of the process to the parent process, and a primitive channel
inCC to send a communicator function (of type ChanName a) for its input channels
to the parent process. The remote process first creates input channels, i.e. the
corresponding communicator functions and the handle to access the received
input. It connects to the channel inCC and sends the input communicator with
mode Data on it. Afterwards, the process will evaluate the expression (f input)

and send the result to the parent process, using the communicator function
sendResult.

The instantiation operator (#) relies on the function instantiateAt, which
defines the parent side actions for the instantiation of a new child process. The
embedded function f remote is applied to a previously created result communi-
cator and a primitive channel for receiving the input, and the resulting IO action
is sent to the designated processor unevaluated. A new thread is forked to send
the input to the new process. As its name suggests, instantiateAt may place the
new process on the PE specified by the parameter pe; or else uses the automatic
round-robin placement if the parameter is 0.

Additionally the Eden module provides a variant createProcess of the instan-
tiation, which differs in the type of the result value, lifted to immediately deliver
a value in weak head normal form (whnf). This is e.g. necessary to create a
series of processes without waiting for process results (see the parMap skeleton
explained in the next section).

Eden coordination constructs have a purely functional interface, as opposed to
the primitive operations encapsulated in the IO monad. Instantiation and process
behaviour are described as a sequence of IO actions based on the primitives but,
finally, the functional type of the instantiation operator (#) will be obtained
by unsafePerformIO, the back door out of the IO monad.

1 The NFData class provides an evaluation strategy [15] rnf to force normal-form
evaluation of any data type.

Parallel Coordination Made Explicit in a Functional Setting 79

data Process a b = Proc (ChanName b -> ChanName’ (ChanName a) -> IO())

process :: (Trans a, Trans b) => (a -> b) -> Process a b
process f = Proc f_remote

where f_remote (Comm sendResult) inCC
= do (sendInput, input) <- createComm -- input communicator

connectToPort inCC -- sent back...
sendData Data sendInput -- ...to parent
sendResult (f input) -- sending result

(#) :: (Trans a, Trans b) => Process a b -> a -> b
p # x = unsafePerformIO (instantiateAt 0 p x)

instantiateAt :: (Trans a, Trans b) =>
Int -> Process a b -> a -> IO b

instantiateAt pe (Proc f_remote) procInput
= do (sendResult, r) <- createComm -- result communicator

(inCC, Comm sendInput) <- createC -- input comm. (reply)
sendData (Instantiate pe) -- spawn process

(f_remote sendResult inCC)
fork (sendInput procInput) -- send input concurrently
return r -- return placeholder

-- variant of (#) which immediately delivers a whnf
data Lift a = Lift a
deLift (Lift x) = x

createProcess :: (Trans a, Trans b) => Process a b -> a -> Lift b
createProcess p i

= unsafePerformIO (instantiateAt 0 p i >>= \x ->
return (Lift x))

Fig. 5. Eden Module: Process abstraction and instantiation

3 Imperative Coordination in a Declarative Setting

Eden provides a purely declarative interface, but aims to give the programmer
explicit control of parallelism in the program. Eden programs can be read two-
fold, from a computational and from a coordinational perspective:

– Instantiation of a previously defined process abstraction denotationally dif-
fers from function application by the additional strictness due to Eden’s
eager communication policy, but yields the same result as application of a
strict function.

80 J. Berthold and R. Loogen

– Process abstraction and instantiation will hide any process communication,
but expose the degree of parallelism of an algorithm directly by the number
of instantiations.

However, the additional strictness introduced by eager communication is a cru-
cial point for tuning parallel programs. On the one hand, it is required to start
subcomputations at an early stage and in parallel. On the other hand, adding
too much artificial strictness to a program can easily lead to deadlock situations.
A complex Eden program normally uses a suitable skeleton library, optimised
for the common case and circumventing common pitfalls of parallelism. Eden
can also describe new specialised skeletons, and programming these is a different
matter. Efficiently programming skeletons in Eden requires intimate knowledge
of Eden specifics and a clear concept of the evaluation order in a demand-driven
evaluation. Concentrating on the coordination view of Eden, programming skele-
tons can profit from a more explicit approach, as offered by Eden’s implementa-
tion language EDI. EDI can be considered – necessarily at a lower level – as a
fully-fledged alternative Eden-type language, which renders communication and
side-effects explicit and will force to use the IO monad for parallel execution.

3.1 Low-Level Parallel Programming in EDI

Evaluation and Communication Decoupled. In contrast to Eden’s com-
munication semantics, EDI communication is completely independent of the un-
derlying computation. If a communicated value is not needed by the sender for
a local computation, it will be left unevaluated by sending. This, of course, is
not intended for parallel processes supposed to compute subresults. Programs in
EDI therefore use evaluation strategies [15] to explicitly initiate the computation
of a value to be sent. Although EDI does not encode coordination by strategies,
using the class NFData and its normal form evaluation strategy rnf is a neces-
sary part of EDI programming. We present and evaluate some parallel skeletons
programmed in EDI and compare them with Eden skeletons.

Parallel Map. The higher-order function map applies a given function to all
elements of a list. In a straightforward parallelisation, a process is created for
each element of the resulting list. This can be expressed easily in Eden using
process abstraction and instantiation, or programmed explicitly in EDI.

-- Eden’s parallel map
parMap :: (Trans a, Trans b) => (a -> b) -> [a] -> [b]
parMap f xs = map deLift ([createProcess (process f) x | x <- xs]

‘using‘ whnfspine)

-- auxiliary function for demand control
whnfspine :: Strategy [a]
whnfspine [] = ()
whnfspine (x:xs) = x ‘seq‘ whnfspine xs

The Eden version shown here uses the instantiation operator createProcess,
which encodes all necessary communication and concurrency. Additional

Parallel Coordination Made Explicit in a Functional Setting 81

demand by ‘using‘ whnfspine is necessary to force the immediate creation of
all processes. Please note the use of createProcess instead of (#), which is
necessary because the strategy whnfspine would otherwise wait for the whnf of
each process’ result prior to forcing the creation of the next process.

-- monadic Edi parmap using primitive operations only:
parMapIO :: NFData b => (a -> b) -> [a] -> IO [b]
parMapIO f xs = do cs <- createCs (length xs)

sequence_ [sendData (Instantiate 0) (doF ch x)
| (x,ch) <- zip xs (fst cs)]

return (snd cs)
where doF c x = do connectToPort c

let fx = f x
(rnf fx ‘seq‘ sendData Data fx)

createCs :: NFData a => Int -> IO ([ChanName’ a],[a])
createCs n = do cList <- sequence (replicate n createC)

let lists@(cs, vs) = unzip cList
(rnf cs ‘seq‘ return lists)

The EDI version is explicitly monadic (but might, of course, escape from the IO
monad by unsafePerformIO at top level). Prior to spawning the child processes,
the caller creates a set of channels (by a simple abstraction createCs over the
single channel creation createC). Each remote computation (defined by function
doF) will receive one of these channels for sending back the result. The second
parameter of doF is the input, potentially unevaluated. Whilst the Eden process
instantiation spawns an own concurrent thread in the calling machine to send
this input in normal form, the EDI version acts as a demand-driven parallel map
(parmap dm), useful to avoid bottlenecks in the caller. The latter can, of course, be
modelled in Eden as well, by adding a dummy argument to the function applied
to the list elements:

parmap_dm:: (Trans a, Trans b) => (a -> b) -> [a] -> IO [b]
parmap_dm f xs = map deLift

([createProcess (process (\() -> f x)) () | x <- xs]
‘using‘ whnfspine)

An advantage of the EDI code is that the Lift - deLift trick as well as the
explicit demand control using the strategy whnfspine is no longer necessary to
create a series of processes.

Figure 6 shows runtime and speedup measurements for a small test program
with the two demand-driven parMap versions, also including the previous Eden
implementation (based on GHC 5) for comparisons. The program computes the
sum of Euler Totients,

∑n
1 ϕ(k) for n = 25000. Of course, the test program does

not spawn an own process for every number ϕ(k) to be computed – the task
granularity would be much too fine. Numbers are distributed evenly among few
processes, one on each available processor. And since the values are summed up
afterwards (map is followed by a parallel fold), each process(or) computes the
partial sum in parallel as well.

82 J. Berthold and R. Loogen

 0

 20

 40

 60

 80

 100

 120

 5 10 15 20 25
 0

 4

 8

 12

 16

 20

 24
R

un
tim

e
(s

ec
)

S
pe

ed
up

Machines

Parallel Map: Euler Totient (up to 25000)

Eden 5
Eden 6

Edi
Speedup E.5
Speedup E.6
Speedup Edi

Linear

Fig. 6. Parallel map/fold example, Eden 5, Eden 6 and EDI

The sequential base performance of the previous Eden 5 system apparently is
much worse (44% longer runtime); therefore speedup degrades slightly for the
new implementation. The negligible difference between Eden 6 and EDI shows
that the overhead for the module code is minor, and only the way input data is
transmitted is relevant, depending on the concrete application.

Nondeterminism, Concurrency and Parallelism. In the previous example,
tasks have been distributed statically, in advance. When subtasks are of highly
irregular complexity, or when the number of subtasks may vary depending on
the input, dynamic load balancing is one of the most desired properties of a
parallel map skeleton. The purely functional coordination constructs of Eden
are not sufficient to describe dynamic task distribution; therefore Eden offers a
nondeterministic additional construct merge for merging a list of streams into a
single stream. Data is added to the output stream as soon as it is available in
any of the input streams, in nondeterministic order. As shown in Fig. 7, this
can be used for a workpool scheme, i.e. a map skeleton in master/worker scheme,
where a worker process gets a new task every time it returns a result. A prefetch
parameter determines the number of initial tasks assigned to a worker. It should
be used to avoid workers running out of work.

In this simple version, the computation results are returned unsorted, in the
order in which they have been sent back by the workers. In order to indicate
which worker has completed a task, every worker tags its results with its id, a
number between 1 and np. All result streams fromWorkers are merged nondeter-
ministically in the master process. The worker numbers are then separated from
the proper results, and serve as requests for new work. The auxiliary function
distribute takes as arguments the list of requests and the available tasks, and
distributes the tasks to np sublists, as indicated by the requests list. The num-
ber of initial requests is determined by skeleton parameter prefetch. A crucial

Parallel Coordination Made Explicit in a Functional Setting 83

edenWP :: (Trans t, Trans r) =>
Int -> Int -> (t -> r) -> [t] -> [r]

edenWP np prefetch f tasks = results
where fromWorkers = map deLift

(zipWith createProcess workerProcs toWorkers)
‘using‘ whnfspine

workerProcs = [process (zip [n,n..] . map f) | n<-[1..np]]
toWorkers = distribute tasks requests
(newReqs, results) = (unzip . merge) fromWorkers
requests = initialReqs ++ newReqs
initialReqs = concat (replicate prefetch [1..np])
distribute :: [t] -> [Int] -> [[t]]
distribute tasks reqs = [taskList reqs tasks n | n<-[1..np]]
where taskList (r:rs) (t:ts) pe

| pe == r = t:(taskList rs ts pe)
| otherwise = taskList rs ts pe

taskList _ _ _ = []

Fig. 7. Eden workpool skeleton using merge

ediWP :: (NFData t, NFData r) =>
Int -> Int -> (t -> r) -> [t] -> IO [r]

ediWP np prefetch f tasks = do
(wInCCs, wInCs) <- createCs np
(wOutCs, wOuts) <- createCs np
sequence_ [sendData (Instantiate 0) (worker f wOutC wInCC)

| (wOutC,wInCC) <- zip wOutCs wInCCs]
taskChan <- newChan
fork (writeList2Chan taskChan

((map Just tasks) ++ (replicate np Nothing)))
sequence_ [fork (inputSender prefetch inC taskChan answers)

| (inC,answers) <- zip wInCs wOuts]
return (concat wOuts)

Fig. 8. EDI workpool skeleton, using concurrent inputSender threads

property of the function distribute is that it must be “incremental”, i.e. can
deliver partial result lists without the need to evaluate requests not yet available.

A recent extension to this skeleton may even be nested and applied to com-
putations where the results computed by workers may lead to new additional
tasks [11].

84 J. Berthold and R. Loogen

worker :: (NFData t, NFData r) =>
(t -> r) -> ChanName’ [r] -> ChanName’(ChanName’[t]) -> IO ()

worker f outC inCC
= do (inC, inTasks) <- createC -- create channel for input

connectToPort inCC -- send channel to parent
sendData Data inC
connectToPort outC -- send result stream
sendStream ((map f) inTasks)

where sendStream :: NFData r => [r] -> IO ()
sendStream [] = sendData Data []
sendStream (x:xs) = do (rnf x ‘seq‘ sendData Stream x)

sendStream xs

inputSender :: (NFData t) =>
Int -> ChanName’ [t] -> Chan (Maybe t) -> [r] -> IO ()

inputSender prefetch inC concHsC answers
= do connectToPort inC

react (replicate prefetch dummy ++ answers)
where dummy = undefined

react :: [r] -> IO ()
react [] = return ()
react (_:as) = do

task <- readChan concHsC -- get a task
case task of

(Just t) -> do (rnf t ‘seq‘ sendData Stream t)
react as

Nothing -> sendData Data [] -- and done.

Fig. 9. worker process and inputSender thread for EDI workpool

However, the workpool skeleton can also be implemented without the need
for Eden’s merge construct, nor the sophisticated distribute. Instead, we can
use a nondeterministic construct of Concurrent Haskell: a channel which is read
by concurrent sender threads inside the master. A channel (data type Chan) in
Concurrent Haskell models a potentially infinite stream of data which may be
consumed concurrently by different threads. Due to nondeterministic schedul-
ing, channel operations are in the IO monad, like the EDI coordination con-
structs. Figure 8 shows a workpool skeleton which returns its result in the IO
monad.

The master needs channels not only to receive the results, but also to initiate
input communication with the workers, thus two sets of np channels are created.
A set of worker processes is instantiated with these channels as parameters. As
shown in Fig.9, each worker creates a channel to receive input, sends it to the
parent, and then connects to the given output channel to send the results as a
stream.

Parallel Coordination Made Explicit in a Functional Setting 85

ring :: (Trans a, Trans b,
Trans r) =>

Int ->
(Int -> i -> [a]) ->
([b] -> o) ->
((a,[r]) -> (b,[r]))
-> i -> o

RingSkel

...

i o

r

a b a b a b a b

ring size makeInput processOutput ringWorker input = ...

Fig. 10. A ring skeleton in Eden, type and communication structure

We use a Maybe type in order to indicate termination. The taskChan is created
and (concurrently) filled with the tagged task list (map Just tasks), followed
by np termination signals (Nothing). The task channel is concurrently read by
several input senders, one for every worker process, which will be forked next.
Every input sender consumes the answers of one worker and emits one new
task per answer, after an initial prefetch phase. The master process collects the
answers using concat, the Haskell prelude function to concatenate a list of lists.
A slight variant of this would be to sort the answers list in the order indicated
by tags which are added to tasks to memorise their initial order.

It should be noted that the EDI version of the workpool looks slightly more
specialised and seems to use more concurrent threads than the – considerably
shorter – Eden version. Since EDI uses explicit communication, the separate
threads to supply the input become obvious. The Eden version works in quite
the same way, but the concurrent threads are created implicitly by the process
instantiation operation createProcess. Apart from one separate thread filling
the channel with available tasks, both versions have exactly the same degree of
concurrency; it is not surprising that both workpool implementations are similar
in runtime and speedup.

Once the master process uses concurrent threads and the IO monad, it may
easily be extended in different ways. One very useful extension would be to
include a state in the master process, e.g. a “current optimal” solution for a
branch-and-bound algorithm, or a dynamically increasing task pool, or using a
stack instead of a FIFO queue for task management. Depending on the particular
requirements for the master state, its implementation in a purely functional
style may become quite cumbersome (see [8] for a case study). The explicitness
of parallelism, communication and concurrency inflates the EDI code, but is
advantageous when implementing specialised versions of skeletons.

A Ring Skeleton. The examples given up to now are showing, more or less,
how Eden and EDI are interchangeable and comparable in performance. There
are however situations where Eden’s implicit concurrency and eagerness can lead
to unwanted behaviour, and the source code usually does not clearly indicate
the errors.

A ring of interconnected processes can be defined using Eden channels [1].
Fig. 10 shows the type signature of a highly parameterised ring skeleton, and

86 J. Berthold and R. Loogen

 0

 10

 20

 30

 40

 5 10 15 20 25
 0

 6

 12

 18

 24

R
un

tim
e

(s
ec

)

S
pe

ed
up

Machines

Eden Ring
Ring directly programmed

Recursive direct Ring
Speedup Eden Ring
Speedup direct Ring

Speedup recursive direct Ring
Linear Speedup

Fig. 11. Ring example: Warshall’s algorithm (500 node graph), Eden vs. directly pro-
grammed, specialised ring

depicts its process and communication structure. Parameters are the ring size,
a function makeInput preparing the initial input to all ring processes, a similar
function (processOutput) to construct the final output, and the functionality of
the ring processes. All ring processes are identical and receive two inputs, one
(of type a) from the caller and one (of type [r], a stream) from their predecessor
in the ring.

This skeleton may also be specified at a lower level in EDI, with the advan-
tage that the communication, explicit anyway, may be optimised for the special
application, e.g. when input is statically determined, or when the ring output is
not relevant.

As in the previous examples, there are no big runtime differences in the general
case. Fig. 11 shows measurements for an example program, Warshall’s algorithm
to compute the complex hull of a directed graph.

This skeleton description is coherent at first sight, but some questions may
arise when using it. The given type restricts the ring communication to a stream.
This is a sensible restriction since, with a non-stream type, the ring necessarily
degenerates to a pipeline, or simply deadlocks. Likewise, Eden constructs can
express the case where the initial input (of type a) to the ring processes is static
and thus embeddable into the process abstraction, as shown for parMap.

A more subtle detail can lead to problems when the general ring skeleton
is used in a special context: If the initial ring process input (or output) hap-
pens to be a tuple, the programmer might expect that each component will
be evaluated concurrently, as usual in Eden. However, the ring implementation
adds an additional parameter to the input: Channels to the ring neighbours
must be exchanged prior to computation. The ring process abstraction inter-
nally is of type Process (a,ChanName [r]) (b,ChanName [r]) and, thus, does not
use concurrency for components of their external input and output – the ring will

Parallel Coordination Made Explicit in a Functional Setting 87

immediately deadlock if the components of type a expose non-local data depen-
dencies. A different Eden implementation of the ring, specialised to avoid this
problem, is possible, but the difficulty is to find out the reason for the deadlock.
Neither the calling program, nor the skeleton source code will clearly indicate
the problem; it will remain hidden in the overloaded communication inside the
Eden module.

Downside of Explicitness. As we have shown previously, the explicitness
of EDI can help to optimise skeletons for particular cases and save time in
spotting errors due to Eden’s complex implicit communication semantics. On the
other hand, programming in EDI considerably inflates the code and may have
other pitfalls. Evaluation control prior to communication is the most important
of these, since the implemented sendData primitive does not imply any prior
evaluation. As EDI is purely monadic and deliberately simple, the programmer
has to specify every single action.

Another possible source of errors is the all-purpose character of sendData,
which uses the same primitive for data transmission, communication manage-
ment, and process instantiation, distinguished only by the different send modes.
Sending data by the wrong mode may lead to, e.g., a bogus process without any
effect, as shown here:

badIdea_no1 :: Int -> a -> IO ()
badIdea_no1 pe data = sendData (Instantiate pe) data

If the data sent is, say, a number, its remote evaluation will have no effect at all,
although its type is perfectly correct, due to the liberal typing of the primitive.
In the example above, an auxiliary function for instantiation should force that
the data sent is an action of type IO().

spawnProcessAt :: Int -> IO () -> IO ()
spawnProcessAt pe action = sendData (Instantiate pe) action

Moreover, for data communication, threads are supposed to connect to a
channel prior to communication and might cause obscure runtime errors if the
wrong connections are created. Although the simple channels of EDI are strongly
typed, this two-step communication allows to create erroneous communication
sequences not discovered at compile time. The following (perfectly well-typed)
function expects a wrong channel type and then does not connect prior to sending
in one case, or alternatively uses the wrong send mode.

badIdea_no2 :: ChanName’ Double -> [Double] -- types do not match
-> IO ()

badIdea_no2 c (n:ns)= do sendData Stream n -- not yet connected
badIdea_no2 c ns

badIdea_no2 c [] = do connectToPort c
sendData Stream [] -- wrong send mode

When evaluating this function, a run-time error will occur because the receiver’s
heap becomes corrupted.

88 J. Berthold and R. Loogen

As above, combining connection and send operation by a type-enforcing aux-
iliary function can detect the error. The applied evaluation strategy can as well
be included in such a combined function.

sendEvalDataOver :: Strategy a -> ChanName’ a -> a -> IO()
sendEvalDataOver eval ch d = do connectToPort c

(eval d ‘seq‘
sendData Data d)

The only disadvantage here is that a separate function for sending lists is needed,
since the send mode becomes hard-coded.

In order to streamline the interface between Haskell and the runtime system,
the primitive sendData has been given the liberal type Mode -> a -> IO (), which
is why erroneous usage of the primitive will not be detected at compile time.
Hence, the solution to these problems consists in typed auxiliary functions which
will restrict the argument types in such a way that the primitives will be used as
intended. Obviously, it is necessary to superimpose a layer of type-checking aux-
iliary functions over the primitive operations to improve error detection during
type checking in EDI.

4 Related Work

EDI considered as a language provides extensions to existing concepts of Con-
current Haskell [5], as implemented in GHC. Thread concurrency is extended by
process parallelism, communication in EDI is handled using channel communica-
tion instead of the shared synchronised heap cells (MVars) of Concurrent Haskell.
As we have already underlined by one of our examples, both approaches can be
sensibly combined. Latest efforts in Haskell implementations aim to extend Con-
current Haskell’s thread concurrency to OS level for multiprocessor support in
the threaded GHC runtime system [3]. Combining this future multicore support
with the distributed-memory-parallelism provided by EDI is one of our long-term
goals.

In the field of parallel functional languages, many language concepts fol-
low more implicit approaches than Eden and, necessarily, its implementation
language. Although intended as a low-level implementation language, EDI can
be used as a language for distributed programming with explicit asynchronous
communication.

Glasgow Distributed Haskell (GdH) [10] is the closest relative to EDI in this
respect and provides comparable language features, especially location-awareness
and dynamically spawning remote IO actions. However, GdH has been designed
with the explicit aim to extend the virtual shared memory model of Glasgow
Parallel Haskell (GpH) [16] by features of explicit concurrency (Concurrent
Haskell [5]). Our implementation primarily aimed at a simple implementation
concept for Eden and thus does not include the shared-memory-related concepts
of GdH. Indeed, we think that GdH can be implemented with minimal extensions
to our implementation.

Parallel Coordination Made Explicit in a Functional Setting 89

Port-based distributed Haskell (PdH) [4] is an extension of Haskell for dis-
tributed programming. PdH offers a dynamic, server-oriented port-based com-
munication for first-order values between different Haskell programs. In contrast
to our implementation, its primary aim is to obtain open distributed systems,
interconnecting different applications – integrating a network library and a stock
Haskell compiler.

5 Conclusions and Future Work

We have presented a new implementation for the parallel functional language
Eden, based on a lean low-level interface (EDI) to a sophisticated parallel Haskell
runtime environment. Although essentially following previous concepts, the new
implementation makes the side-effecting primitive operations explicit and allows
to express parallel coordination in an imperative manner, while the computation
language remains purely functional.

While EDI provides a low-level flexible and powerful approach to controlling
coordination in a functional setting, Eden abstracts from many details, thereby
simplifying the development of parallel programs, but partly losing coordination
control. Runtime comparisons show that programs written in Eden and EDI

will show the same performance as long as their behaviour is equivalent. This is
because Eden is implemented on top of EDI. From the programmer’s point of
view, the Eden level of abstraction would be an asset if everything worked out
fine. On the other hand, getting things right is much more difficult in Eden than
on the EDI level of abstraction.

We have briefly mentioned the spectrum of parallel functional languages ex-
pressible by EDI and using our framework. Our Eden implementation based on
EDI can be used to easily obtain prototype implementations for other parallel
extensions of Haskell, mainly extensions at higher abstraction levels.

One of our research goals is to keep alive and advance a general-purpose par-
allel Haskell. The comparison of Eden and EDI undertaken in this paper is a
step towards redesigning Eden and will need further investigation. Several other
areas lend themselves to further research. Combining the concepts we developed
for the runtime with state-of-the-art hardware techniques, such as multicore sup-
port, or modern wide-area network infrastructure (Grid Technology), is the most
important goal. Likewise, by applying these concepts to a different computation
language, the influences of the host language will emerge, and parallelism exten-
sions can be cleanly separated from their sequential base or concrete application.

References

1. Berthold, J., Loogen, R.: The Impact of Dynamic Channels on Functional Topol-
ogy Skeletons. In: Tiskin, A., Loulergue, F., (eds.), HLPP 2005: 3rd International
Workshop on High-level Parallel Programming and Applications, Coventry, UK
(2005)

2. Hammond, K., Michaelson, G. (eds.): Research Directions in Parallel Functional
Programming. Springer, Heidelberg (1999)

90 J. Berthold and R. Loogen

3. Harris, T., Marlow, S., Jones, S.P.: Haskell on a Shared-Memory Multiprocessor.
In: Haskell ’05: Proceedings of the 2005 ACM SIGPLAN workshop on Haskell,
ACM Press, New York (September 2005)

4. Huch, F., Stolz, V.: Implementation of Port-based Distributed Haskell. In: Mohnen,
M., Koopman, P. W. M., (eds.), IFL’01: Implementation of Functional Languages,
13th International Workshop, Draft Proceedings, Stockholm, Sweden (2001)

5. Jones, S.P., Gordon, A., Finne, S.: Concurrent Haskell. In: POPL ’96: Proceedings
of the 23rd ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, ACM Press, New York (1996)

6. Loogen, R., Ortega-Mallén, Y., Peña, R., Priebe, S., Rubio, F.: Parallelism Ab-
stractions in Eden. In: Rabhi, F.A., Gorlatch, S. (eds.) Patterns and Skeletons for
Parallel and Distributed Computing, ch. 4, Springer, Heidelberg (2003)

7. Loogen, R., Ortega-Mallén, Y., Peña-Maŕı, R.: Parallel Functional Programming
in Eden. Journal of Functional Programming 15(3), 431–475 (2005)

8. Mart́ınez, R., Pena, R.: Building an Interface Between Eden and Maple: A Way of
Parallelizing Computer Algebra Algorithms. In: IFL’03: Implementation of Func-
tional Languages, 15th International Workshop, Edinburgh, UK, Selected Papers,
LNCS vol. 3145, Springer, Heidelberg (2003)

9. MPI-2: Extensions to the Message-Passing Interface. Technical report, University
of Tennessee, Knoxville (July 1997)

10. Pointon, R., Trinder, P., Loidl, H.-W.: The design and implementation of Glas-
gow Distributed Haskell. In: IFL’00: Implementation of Functional Languages,
12th International Workshop, Aachen, Germany, Selected Papers, LNCS vol. 2011,
Springer, Heidelberg (2000)

11. Priebe, S.: Dynamic Task Generation and Transformation within a Nestable
Workpool Skeleton. In: Nagel, W.E., Walter, W.V., Lehner, W. (eds.) Euro-Par
2006. LNCS, vol. 4128, Springer, Heidelberg (2006)

12. PVM: Parallel Virtual Machine. Web page. http://www.epm.ornl.gov/pvm/
13. Rabhi, F.A., Gorlatch, S. (eds.): Patterns and Skeletons for Parallel and Dis-

tributed Computing. Springer, Heidelberg (2003)
14. The GHC Developer Team. The Glasgow Haskell Compiler. Website

http://www.haskell.org/ghc.
15. Trinder, P., Hammond, K., Loidl, H.-W., Peyton Jones, S.: Algorithm + Strategy

= Parallelism. Journal of Functional Programming 8(1), 23–60 (1998)
16. Trinder, P., Hammond, K., Mattson, Jr., J., Partridge, A., Peyton Jones, S.: GUM:

a Portable Parallel Implementation of Haskell. In: PLDI’96: Proceedings of the
ACM SIGPLAN’96 Conference on Programming Language Design and Implemen-
tation, ACM Press, New York (1996)

17. Trinder, P.W., Loidl, H.W., Pointon, R.F.: Parallel and distributed Haskells. Jour-
nal of Functional Programming 12(4, 5), 469–510 (2002)

Low-Level Programming in Hume:
An Exploration of the HW-Hume Level

Kevin Hammond1, Gudmund Grov2, Greg Michaelson2, and Andrew Ireland2

1 School of Computer Science,
University of St Andrews, St Andrews, Scotland

Tel.: �44-1334-463241
���������	
���
����

2 Dept. of Mathematics and Computer Science,
Heriot-Watt University, Edinburgh, Scotland

Tel.: �44-131-451-3422
��������
��������
������
����

Abstract. This paper describes the HW-Hume level of the novel Hume language.
HW-Hume is the simplest subset of Hume that we have identified. It provides
strong formal properties but posseses limited abstraction capabilities. In this pa-
per, we introduce HW-Hume, show some simple example programs, describe an
eÆcient software implementation, and demonstrate how important properties can
be exposed as part of an integrated formally-based verification approach.

1 Introduction

The novel Hume language embeds a strict, purely functional expression layer, that de-
scribes computations, within a process layer, that describes a system of asynchronous
communicating processes. By varying the structure of the Hume expression layer, a
number of distinct Hume levels can be identified, where each level fully contains the
level below, but increases the diÆculty of providing accurate cost information and other
properties. Full-Hume, or Hume, is a Turing-Complete language based on concurrent
finite state automata whose transitions are controlled by pattern matching over rich
types to initiate actions described by general recursive expressions. PR-Hume, restricts
repetition to primitive recursion, enabling decidable termination. Template-Hume only
permits repetition through pre-defined higher-order operators. FSM-Hume is a finite-
state language with fixed size types and first order functions. Finally, HW-Hume, aimed
at hardware realisation, is a relatively impoverished language for manipulating tuples
and vectors of bits, with exact time and space use prediction.

We have previously introduced the Hume language [22], defining the di�erent levels
of Hume, as outlined above, and shown how translations may be made between lev-
els [21]. We have also demonstrated that it is possible to construct bounded space cost
models for FSM-Hume [23], and for time and space up to PR-Hume [34,35]. We are in
the process of constructing automatic analyses to provide bounds on amortised time and
space cost information on levels up to PR-Hume. This paper considers HW-Hume in
considerably more depth than in the general papers mentioned above [21,22]. Section 2
introduces HW-Hume and provides some simple examples; Section 3 discusses formal
verification of safety, liveness and real-time properties using model-checking; Section 4

Z. Horváth, V. Zsók, and A. Butterfield (Eds.): IFL 2006, LNCS 4449, pp. 91–107, 2007.
c� Springer-Verlag Berlin Heidelberg 2007

92 K. Hammond et al.

describes a software implementation of HW-Hume and provides some performance
results; Section 5 discusses possible hardware implementations; Section 6 describes
related work; and finally, Section 7 concludes.

2 HW-Hume

HW-Hume programs (Figure 1) are built from a series of box declarations linked using
static wires. Multiple identical instances of a box may be defined using a template for
subsequent instantiation. A single HW-Hume box comprises a set of pattern-directed
rules, rewriting a set of inputs to a set of outputs, plus appropriate type information for
each input�output. The most primitive type of value is a bit, which may be grouped into
fixed-size vectors or tuples in either a pattern or an expression. Patterns and expres-
sions may be formed from bit literals, variables, the wildcard pattern , vector or tuple
structures, or (at the top level) the asynchronous * construct, which ignores its input
and produces no output. � defines the valid HW-Hume types: bit types, word �; the unit
type, (); tuple types �1 � � � � � �n; bounded vector types, vector n of �, where n is
the bound; and named types, typeid.

2.1 Boxes and Coordination

HW-Hume boxes are abstractions of processes that correspond to (usually finite) state
machines. The left-hand-side (pattern part) of each rule defines the situations in which
that rule may be active, i.e. could be executed. The right-hand-side of each rule is an
expression specifying the results of the box when the rule is activated and matches the
corresponding pattern. A box may become active when any of its rules are active, i.e.

program ::� decl1 � � � � � decln � n � 1
decl ::� box � wire � type � template � instantiation

box ::� box boxid ins outs (match � fair) matches
ins�outs ::� � ioid1 �� �1 � � � � � ioidn �� �n � n � 0
� ::� word � � () � (�1 , � � � , �m) � vector n of � � typeid m � 2� n � 1

matches ::� match1 � � � � � matchn n � 1
match ::� � pat1 � � � � � patn � � expr n � 0
expr�pat ::� � � � � varid � � * � �� � � expr1�pat1 � � � � � exprn�patn � n � 2

� vector expr1�pat1 � � � exprn�patn n � 1

wire ::� wire link1 to link2 [initially expr]
link ::� boxid � ioid � deviceid

type ::� type typeid � �

template ::� template templateid ins outs (match � fair) matches
instantiation ::� instantiate templateid as boxid [* nat]

Fig. 1. HW-Hume Syntax

Low-Level Programming in Hume: An Exploration of the HW-Hume Level 93

or

half adder

half adder

x yc

sum carry

fanout

yx

sum carry

xor and

Fig. 2. a) Half-adder b) Full-adder

they may match the inputs that have been provided. In this case, the box runs to comple-
tion, producing any required outputs. For example, we can define boxes to implement
xor, and, and a two-in to four-out fanout as:

��� ���

�� �
��������

��� ��������

�
���

����� 	 �

� ����� 	 �

� �!�!� 	 ��

���
��

�� �
��������

��� ��������

�
���

����� 	 �

� �!�!� 	 ��

��� "
����

�� ���#������

��� ����#���$�#$������

�
���

���#� 	 ���#���#��

For each box, we first specify the names and types of the inputs and outputs – here all
single bits. Note that boxes may use the same names: these are always qualified exter-
nally by the box name. We then specify the pattern-matching rules that take the given
inputs and produce the correct output. The final rule in the first two cases uses “anony-
mous” variable patterns, defined using . HW-Hume boxes are connected into a static
process network using wires to connect one specific output to one specific input. For ex-
ample, Figure 2 shows: (a) a half adder built from a ������ box, an ��� box and an 	�

box; (b) a full adder built from two half adders and an �
, where the half adder is either
built from simpler components as in (a) or defined in its own right from a truth table:

��� ��

�� �
��������

��� ��������

�
���

����� 	 �

� �!�!� 	 ��

��� �
%"	
����

�� ���#������

�������������

�
���

����� 	 �����

� ����� 	 �����

� ����� 	 �����

� ����� 	 ������

In either case, the boxes are then wired into a static process network using the obvious
wiring declarations. The use of a static process network allows strong program proper-
ties to be obtained, as discussed in Section 3.

Asynchronous Language Constructs. Unlike the widely-used synchronous languages
for real-time systems, such as Lustre [10], Signal [17] or Esterel [8], HW-Hume is an

94 K. Hammond et al.

asynchronous language, allowing the expression of hardware�software systems that are
not explicitly clocked, and where individual boxes may produce outputs without syn-
chronising on their inputs. The two main mechanisms for asynchronicity in Hume are
to allow some or all inputs�outputs to be ignored, using �, and to allow fair matching
on rules, where on each box cycle the first rule considered is that after the one that
succeeded on the previous cycle. The *-pattern indicates that the corresponding input
position should be ignored, i.e. the match always succeeds without demanding any in-
put. * can also be used in a top-level expression position. For example, a multiplexer
can be described by the rules below, where the fourth rule will discard the selector if no
other input is available.

�#&� ��� � ���� ��

�#&� �#�� � '����� (�" ����

�#&�)�%����� � ����������

��� ��%��&%����

�� ���� �$� �* �� �#��� ��% ��)�%������ ��� �� �� �#���

"
��

��� +� +� ������ 	 �

� �+� �� +� ������ 	 �

� �+� +� �� ������ 	 �

� �+� +� +� ! � 	 +�

Note that, in this example, although there is no explict input clock signal, the selector
input acts as a trigger, e�ectively requiring synchronisation between the selector and
the corresponding input. A more asynchronous version can be produced, if required, by
simply eliminating the selector input.

��� ��%��&%����$

�� ���� �$� �* �� �#��� ��� �� �� �#���

"
��

��� +� +� 	 �

� �+� �� +� 	 �

� �+� +� �� 	 ��

Now each input is immediately mapped to the output without waiting for some selector
to be present. Outputs are chosen from the three possibilities fairly [5,22]. Multiplexing
is an example of an operation that cannot easily be expressed in a single-layer purely
functional notation, since it is non-deterministic at the box level. Despite this local idea
of non-determinacy (an essential part of the problem specification), it is important to
realise that the system as a whole is still deterministic in that it will respond identically
to the same inputs received at the same relative times [22].

2.2 A Simple TraÆc Lights Example in HW-Hume

As a more detailed example, we consider a set of traÆc lights, as used in the UK, which
displays a sequence of red (stop), red and amber (prepare to go), green (go) and amber
(prepare to stop) lights1. We might encode these state changes as:

1 A variant of this example has also been used in [21] to illustrate inter-level transformations.

Low-Level Programming in Hume: An Exploration of the HW-Hume Level 95

light(s) state meaning red amber green
red 0 stop 1 0 0
red�amber 1 prepare to go 1 1 0
green 2 go 0 0 1
amber 3 prepare to stop 0 1 0

where a � indicates that the corresponding light is on and a � that it is o�. In HW-
Hume, we could model a traÆc light as a box which changes state when it receives
a signal. We encode the state as a two-bit binary number, and the light settings as a
tuple of bits. So that we can reuse the lights definition later, we will use a template
definition:

������� �
�����������

�� ������������� �����������������

��� ���

����

��������� �� ���������������

� ��������� �� ���������������

� ��������� �� ���������������

� ��������� �� ����������������

����������� �
����������� �� �������

��
� ������ �� ������ �������

��
� ������ ����� �� ������ �������

��
� ������ ������ �� ������!�

where ������ and ������! are unspecified external connections. On each box cycle, if
the ������ on ������ is � then, for the current �����, a new setting on ������ is sent
to ������! and a new state is produced on ������. Unlike the earlier, combinational
examples we have seen, this is an example of sequential logic: it is necessary to record
the ����� value as feedback between box iterations.

3 Verifying HW-Hume Programs

Because of the cost and diÆculty involved in applying bug fixes, low-level system de-
signs often possess strong correctness criteria. This is especially true for hardware,
where there is a long tradition of using automated verification and formal methods to en-
hance confidence in the correctness of such systems. In particular model checking [12]
has been successfully applied to many hardware systems. In this approach, a property
is specified in a temporal logic, and its correctness against a given model (program) is
verified algorithmically by exploring the complete state space of the model.

We exploit TLA� [29] which combines TLA (Temporal Logic of Actions [28])
with a variant of ZF set-theory and which allows both system (model) and properties
to be specified in the same logic. The validity of a program property can therefore be

96 K. Hammond et al.

expressed by logical implication: Program � Property. This validity can then be
checked by the TLC model checker [29] for TLA�. TLA(�) also have a proof sys-
tem, meaning we can give deductive proofs of properties, which will be required in
the higher levels of Hume. It has a similar layering to Hume, and this together with
both the algorithmic and deductive proofs support, made TLA fit really well into our
work. In HW-Hume, individual box definitions are fairly simple, and the most inter-
esting properties (and errors!) consequently arise when combining two or more boxes.
We therefore illustrate our approach using a slightly extended version of the traÆc light
example, where two instances of the �
����������� template are connected to model
a complete road junction under the control of the ����
����
 box below.

����
���
�� ��
""��%����
� %���� + $�

��� ������%%��

�� ���
�� �� ��������������

��� ���
��, �� �������������� %������%����$ �� ����

�
���

������� 	 �����������+� 		 %������ -�� 	 -��	
����

� ������� 	 �����������+� 		 %������ -��	
���� 	 .����

� ������� 	 �����������+� 		 %������ .���� 	 /����

� ������� 	 �����������+� 		 %������ /���� 	 -��

� ������� 	 ���������+��� 		 %����$� -�� 	 -��	
����

� ������� 	 ���������+��� 		 %����$� -��	
���� 	 .����

� ������� 	 ���������+��� 		 %����$� .���� 	 /����

� ������� 	 ���������+���� 		 %����$� /���� 	 -��

In the remainder of this section we will discuss both safety and liveness properties of
this program. We also show how time analysis of the expression layer can be combined
with TLA� to verify bounded real-time properties of the coordination layer.

3.1 Safety Properties

A safety property specifies that certain undesired behaviour never occurs [4]. The
safety-part of a specification therefore specifies what a good behaviour is, but does
not require that something actually happens. We formalise the safety part of the traf-
fic light example as follows. Let Prog denote the safety part of our program. The state
space consists of ı, all the internal variables used in any box, and w, all the wires used
in the program. These are given an initial value by Init. For each box, we define ac-
tions �l1, �l2 and �ctl which update the state space. Since TLA� is a logic rather than
a programming language, these actions are defined as predicates on a before-step and
an after-step, where all variables in the after-step are primed. For example, if l1 can
be executed then �l1 will match the (unprimed) input wires (unfairly). If it succeeds,
then the (primed) input wires are set to empty since there are no � in the pattern, and
the primed outputs are updated with the result of the computation. A next-action� up-
dates the complete state space, and is defined in terms of the execution of all the boxes

Low-Level Programming in Hume: An Exploration of the HW-Hume Level 97

in the program (�l1 � �l2 � �ctl). It must have the form [�](i�w), which abbreviates

� � (i� w)� � (i� w). This is an important feature since it allows “internal actions” that
do not alter the state space. Since we are working in a temporal logic, this next-action is
required to hold throughout execution. We therefore prefix the action with the temporal
always operator (�) to give �[�](i�w). In the traÆc lights program, only state transitions
are specified: at any given time�state we do not know which lights are on and which are
o�. Since we are interested in the current colour of the lights, we introduce two auxiliary
variables, tl1 and tl2, to expose this information in the model. These variables emulate
the actual lights, allowing us to formalise the required safety properties much more
naturally. We assume that the lights are initially red. The action �tl1�tl2

updates these
variables if (and only if) the corresponding light changes colour. Prog2 extends Prog
with these definitions. Note that these auxiliary definition do not change the behaviour
of Prog:

Prog2 � Ei : Inittl1�tl2
� Init � �[�l1 � �l2 � �ctl ��tl1�tl2

](i�w�tl1�tl2)

Here the Eoperator is a form of existential quantification that is used to hide the
state, that is, the internal variables of the boxes are hidden. The first safety property we
define is an invariant asserting that both lights cannot be green at the same time:

Prog2 � �
�
tl1 � (0� 0� 1) � tl2 � (0� 0� 1)

�

The �-prefix ensures that the property holds throughout execution. This can be stren-
gthened to show, e.g., that if one of the lights is not red, then the other light is red:

Prog2 � �

��
tl1 � (1� 0� 0) � tl2 � (1� 0� 0)

�
�

�
tl2 � (1� 0� 0) � tl1 � (1� 0� 0)

��

The final safety property we define is that the order of the light changes is correct.
This is no longer a state invariant, since we need to compare two states: that before the
change and that after the change. We define a pseudo-function "�	� as follows:

"�	� � # ���� � �� ������� �� �������

� ������� �� �������

� ������� �� �������

� ������� �� ��������

where "�	� is a meta-level definition used in the reasoning process and not part of
the HW-Hume program. We can then verify that the next-action of Prog2 implies
this change. We use "�	� tl1�tl2 to ensure that there exists a correspondence between
changes in the action and the associated value.

Prog2 � �[tl�1 � "�	� tl1]tl1

Prog2 � �[tl�2 � "�	� tl2]tl2

The subscripts to the actions ensure that only those steps where the lights actually
change value are considered. This is necessary if the formula is to be valid.

98 K. Hammond et al.

3.2 Liveness Properties

Liveness properties assert that something good will eventually occur [4]. The specifica-
tion must therefore be constrained to remove non-progress behaviours. We constrain it
with a type of liveness called fairness. There are two types of fairness, both building on
the enabled predicate: An action is enabled when it could successfully execute. Weak
fairness asserts that if an action remains enabled, then it will eventually execute, while
strong fairness asserts that if an action is enabled infinitely often then it will eventually
execute. The scheduling of Hume guarantees both strong and weak fairness of boxes.
This is because all boxes that can be executed are always executed. Further, since the
only way an executable (enabled) box can become non-executable (disabled) is by exe-
cuting it, weak and strong fairness are both equivalent for Hume. Note that this notion
of fairness is distinct from the notion of fair matching introduced earlier. We only re-
quire weak fairness for our proofs, extending Prog2 with the fairness predicate for all
the boxes:

Prog3 � Prog2 �WF(i�w)(�l1 ��l2 � �ctl)

The first liveness property we show is that at any given time, there will always be a time
in the future when the lights are green:

Prog3 � ��
�
tl1 � (0� 0� 1)

�
� ��

�
tl2 � (0� 0� 1)

�

�� is read as “always eventually”. One kind of liveness property which is very im-
portant for HW-Hume programs is a so-called leads-to property. For example, we can
specify that if tl1 is red then tl2 will eventually become green:

Prog3 � tl1 � (1� 0� 0)� tl2 � (0� 0� 1)� tl2 � (1� 0� 0)� tl1 � (0� 0� 1)

where A � B means that (always) when A is True then eventually B will be True. Note
that this property is strictly weaker than the previous property, which can be specified
simply as True � tl1 � (0� 0� 1). Note that ��T specifies termination, i.e. the produc-
tion of some result. This termination property can be strengthened to only check for
termination under certain condition P: This is formalised as a leads-to property P � T .

3.3 Real-Time Properties

One of the novel aspects of, and indeed a prime motivation for, the design of Hume is
that upper bounds on time and space can be guaranteed for the expression layer. Since
HW-Hume is a language of bits, tuples and vectors, it is straightforward to produce
precise models of both space and time usage. For brevity, we omit formal definitions of
these models here (definitions for FSM-Hume can be found in [23]), but will show how
time bounds for the expression layer obtained from such a model can be combined with
TLA� to give time bounds for the Hume coordination layer.

We are interested in properties of the form “if tl1 � (1� 0� 0) then tl2 � (0� 0� 1) within
time Bound”, that is where Bound represents an upper bound on the time usage. Let
Tl1�l2�ctl be the time bounds guaranteed from the analysis of the expression layer. Fur-
ther, let Tcon and Twrite be respectively the upper bounds on the time it takes to consume

Low-Level Programming in Hume: An Exploration of the HW-Hume Level 99

and write all values. Error indicates that Bound has been exceeded and Disabled in-
dicates that we are not between tl1 � (1� 0� 0) and tl2 � (0� 0� 1). Let t be a variable
representing time, and �2 be the conjunction of all next-actions. We can then define
the real-time specification:

Prog4 � Ei : Inittl1�tl2
� Init � t � Disabled � �[�2

� t� � NextTime(t)](i�w�tl1�tl2�t)

where t is initially Disabled. For each step NextTime(t) calculates the new value of
t as follows: if tl�1 � (1� 0� 0) then t is set to Bound. For all the following steps t is
decremented with either Tl1 � Tl2 � Tctl � Tcon, if boxes are executed sequentially; or
Max(Tl1� Tl2� Tctl) � Tcon � Tcoord, if execution is concurrent. Tcoord is the coordination
cost, if applicable. If tl�2 � (0� 0� 1) then t is reset to Disabled. Finally, if t � 0 then t� is
set to Error. Since we want to verify that our specified time bound is never exceeded,
we must prove the property:

Prog4 � �(t � Error)

We use explicit-time model checking [30] to verify this property. This obviates the use
of a special real-time logic or model checker, and may not be much less eÆcient than
such a checker in practice [30]. In our experiment we used the value Tl1 � 2� Tl2 �

2� Tctl � 1� Tcon � 1� Twrite � 1. When executing the boxes sequentially, we found we
were unable to guarantee a Bound of 30 or 50, but were able to guarantee a Bound of
60. In general, concrete time values, such as Tl1� Tl2 and Tctl above, can be obtained by
using a worst-case execution time analysis on the expression layer; while Tcon, Twrite

and, if present, Tcoord will be platform-dependent, but should be easy to determine. A
companion paper [7] shows how this could be done, giving concrete values for a simple
architecture, and describes the construction of a worst-case execution time analysis for
Full-Hume. Note that these values are not fixed in the TLA� specification, but can be
supplied to TLC as part of the configuration of the model that must be checked.

4 A Software Implementation of HW-Hume

This section describes a high-performance software implementation of HW-Hume that
can be used as the basis for software�hardware codesigns (where some HW-Hume boxes
are implemented as described and others are replaced by hardware equivalents). The im-
plementation also serves as a low-memory, high-performance implementation of Hume,
where the source program is either restricted to the HW-Hume level, or can be trans-
formed from a higher level of Hume into HW-Hume, for example as shown in [21]. We
discuss hardware�software integration at the end of the section.

4.1 HW-Hume Abstract Machine Instructions

HW-Hume programs are compiled to a simple abstract machine which has a single
accumulator plus some temporary memory locations, and which is designed to be eas-
ily implementable using simple logical operations. Each box is compiled indepen-
dently, with each rule compiled into a sequence of abstract machine instructions. For

100 K. Hammond et al.

the pattern-part the abstract machine first determines the availability of the required
inputs, then if suÆcient inputs are available, matches these inputs against the patterns,
and finally consumes the inputs; and for the expression-part, it constructs each non-
ignored output by selecting any necessary parts of the inputs (so binding variables) and
combining these with any required literal values before writing the result to one of the
output wires. Finally, rules may be reordered according to fairness criteria, and control
then returned to the scheduler.

Expression-Level Instructions: There are two main instructions. Load lit loads literal
lit into the accumulator. Select i pos size shift loads size bits into the accumulator from
input i starting at bit pos, o�setting these in the accumulator by shift bits. So:

0�
� 1

)�%��� � 2 $ �

will load three bits into the accumulator, where the top bit is the constant 1 (specified
by Load 4), and the first and second bits are selected from the fifth and sixth bits of
input number 1, respectively (specified by the Select instruction). The result can then
be written to the appropriate output wire using a Write instruction.

Pattern-Matching Instructions: The Match fail i nlits lits nvars vars instruction
matches input i against literal pattern lits (whose size in bits is specified by nlits), dis-
regarding any input positions that will be bound to variables according to vars (whose
size in bits is specified by nvars). If the input doesn’t match, execution continues at
label fail, usually corresponding to the next rule.

3
��� ���� $ * 2 * $

requires the first and third bits of input 2 to be constant ones (as specified by the literal
5), but accepts any value for the second bit (as specified by the value 2 for vars). Both
literals and variables are three bits wide. Each set of Match instructions is preceded by a
CanConsume instruction which determines whether the necessary inputs are available,
and followed by a Consume instruction which unlatches the corresponding input. For
example,

4
�4������ ���� 1 5

4������ 1 5

checks whether the second and third input can be consumed (specified by the bit pattern
6), consuming them if so, and otherwise branching to the label ��	�. For example, we
can compile the simple selector box below:

��� ��% �� �� �� ���� ��� �$ �� �#��� ��� �# �� �#���

�
���

������!� 	 ��

� ���!��$� 	 �$�

into the following sequence of instructions (which have beeen wrapped in a pair of
Box�EndBox pseudo-instructions):

��� 6��%6 6��%6 * � $ 6��%!����6

Low-Level Programming in Hume: An Exploration of the HW-Hume Level 101

0
��% 6��%6 0
��% 6��%!�6

4
�4������ 6��%!�6 * 7 4
�4������ 6��%!$6 * 7

3
��� 6��%!�6 � � � � � 3
��� 6��%!$6 � � � � �

3
��� 6��%!�6 � ($22 ($22 3
��� 6��%!$6 � ($22 ($22

3
��� 6��%!�6 $ ($22 ($22 3
��� 6��%!$6 $ ($22 ($22

4������ * 7 4������ * 7

0�
� � 0�
� �

)�%��� � � (�)�%��� $ � (�

8���� � 8���� �

)�����%�)�����%�

0
��% 6��%!$6

9����� 6��%6

4.2 Compilation

We have produced a template-compiler that translates each abstract machine instruction
into portable C source code. This can then be compiled to give a native implementation
of HW-Hume. Each box is compiled as a $��� C function. We also define an associated
set of output wire bu�ers and a set of pointers that define the box’s inputs. Boxes are
placed in a scheduler queue and scheduled using a simple round-robin scheduler, where
%
� simply removes and returns the next function from the queue if there is one, or
else returns "&''. Boxes are added to the scheduler queue when they have suÆcient
inputs to be able to execute. When no boxes can execute, termination occurs.

'��� ���:��� �� ; ���%��������<������ =� >?00� �'���� �+�������� @

The ��� function adds the ������� function to the scheduling queue. This ensures
that wires are properly initialised with any required values. It then adds the����(�$����
function, which will check input availability for each box and add it to the scheduler
queue. Finally the ��� function enters the scheduler
��)��, shown above.

Individual abstract machine instructions are defined as C macros, with Hume Ab-
stract Machine (HAM) labels translated directly into C labels that can be branched to
using a ����. For the Match instruction, we define the macro shown below. By xoring
the input against the literal pattern, we will obtain a value which is 1 for each bit where
the pattern matches the input and 0 otherwise. We then complete the match by setting
each bit that is matched by a variable to 1. In this way, wherever the pattern matches,
we will obtain a 1, and wherever it does not match, we will obtain a 0. We then check
this against a mask that is all 1s for the number of input bits, branching to the ����

label if unsuccessful.

A��"��� 3
����"
�%���&����%����%�����'
���'
��� B

; ������� �
��� � C�C�������	 ��&D��&��E F C%���� � '
��� B

����� ������� �
�� � ��GG�%����	�� B

�"���
��� H �
��� =� �
��� ��� "
�%� B

@

Finally, the Load instruction simply loads the literal value into the accumulator and
the Select instruction is used to select the appropriate bits from the required input
position.

102 K. Hammond et al.

#define Load(val) { accum = val; }

#define Select(input,posn,size,shift)\

{ accum |= ((thisbox->inp[input] & ((1<<(posn+size))-1)) >> posn) << shift; }

4.3 Performance Results

Table 1 shows performance results for a number of HW-Hume programs running un-
der three di�erent implementations: thami gives execution times for the prototype Hume
Abstract Machine [20], a bytecode interpreter written in portable C; thumec gives corre-
sponding times under the general Hume to C template-compiler we are constructing as
part of the EmBounded project; and tHW gives times under the HW-Hume implemen-
tation we have described here. Space usage is given for the HAM interpreter, shami and
for the implementation described here, sHW . Figures in brackets are those predicted by
the cost model. All timings were obtained on a 1.67GHz Apple Powerbook G4 running
MacOSX 10.4.8 and represent the average of 10 executions. Timings were recorded
from box start to box end, and all C compilation was performed using gcc 4.0.0 using
�*+ optimisation. Our results show that, for these examples, the template compiler is
slightly more than ten times faster than the bytecode compiler, and that the HW-Hume
implementation is between 2.8 and 10.9 times faster than the latter implementation.
While dynamic memory usage is low for the HAM interpreter at between 130B and
740B, it represents only a few words of memory for the HW-Hume implementation,
being between 11 and 60 bits. Binary program size is also acceptably small. On an Intel
Pentium IV running Linux, the total binary size for the HW-Hume multiplexor program,
including all static and dynamic data and program code is 3526 bytes.

Table 1. Performance Comparisons

Program thami thumec tHW shami sHW

adder 442�s – 7.0�s 130B (130B) 17b
multiplexer 149�s 12.9�s 4.62�s 732B (740B) 60b
multiplexer2 275�s 24.4�s 5.25�s 660B (664B) 56b
lights 286�s 21.5�s 1.96�s 136B (240B) 11b

5 Hardware Implementation from HW-Hume

A hardware implementation can be obtained from HW-Hume in one of two main ways.
Firstly, netlists can be generated directly from the description of Hume boxes and wires.
Netlists, such as the widely-used EDIF [1], describe a collection of hardware devices,
in terms of instances of master definitions, plus the interconnections between those de-
vices, in terms of the ports associated with each device. It is then necessary to refine
these netlists to include timing, placement and detailed functional behaviour, so that
a hardware implementation can be obtained. Although substantial manual intervention
may be required in later stages, there is considerable flexibility over the form of the

Low-Level Programming in Hume: An Exploration of the HW-Hume Level 103

final hardware implementation. In HW-Hume terms, a template is a master definition,
a box is an instance, box inputs�outputs are ports, and wires define interconnections.
Alternatively, the C we have produced from our software implementation above could
be passed as input to Handel-C [9] or a similar FPGA notation. This will then gen-
erate netlists and other required information so that an FPGA implementation can be
produced. An example EDIF netlist for the half-adder above might be:

����" �
%"
����

		 '������ ��"�

����"I������ $ � �� ����"0�'�% �� ���#����3
& ���#����0�'�% ���

		 ���� %���
�#

�%���
�# ����&���
�

����"0�'�% �� �������%�# �������J�"������� � 		 &��
��%�

�����%
����K�"� �%���I
%�� :� �%���I
%�� 0���

���%% ����
�� :/0L/JJ9- 6�
%"
����6����%%M#&� .9>9-K4� 		 �
%"	
����

�'��� 4N3O/))!���!'��� �'���M#&� >9M0K)M� 		 ���%���

������"
��

�&���
 ���������� K>O?M�� 		 ��P��� &����

�&��� � ���������� K>O?M��

�&��� � ���������� N?MO?M��

�&��� � ���������� N?MO?M�����

		 ��&��� ��� �����

������ :/0L/JJ9- ���%%-�" :/0L/JJ9- �%���
�#-�" ����&���
������

It is also necessary to construct any required instances of HALFADDER and link these
into a coherent network.

5.1 Hardware�Software Integration Issues

Hardware components can be integrated into HW-Hume software programs either by
completely replacing some box, where they are equivalent to the HW-Hume source,
or as unspecified “pseudo-boxes”. In either case, it is necessary to provide linkages
between software and hardware so that such boxes will react to (possibly software)
inputs and produce outputs that can be directed to software boxes. For example

�&��
���� 6������6 �� 671:4*Q*P�6 �� '����� $ �" ��� 	 '����� 1 �" ����

�&��
���� 6�����$6 �� 671:4*Q*P$6 �� '����� $ �" ��� 	 '����� 1 �" ����

might specify two pseudo-boxes ������ and �����+, one attached to each half of
a 74HC393 four-bit binary counter. The two one-bit inputs are a clock signal and a
master reset input in each case. These boxes can be connected to software in the usual
way. Note that in this case, an explicit clock signal must be threaded as an additional
input to each HW-Hume box where it is required.

104 K. Hammond et al.

6 Related Work

Declarative hardware description languages are an attractive approach, allowing clean
separation of functionality from behavioural detail, supporting automatic circuit gen-
eration, and promoting much higher level of abstraction than found in the industry-
standard VHDL notation, for example. One early declarative approach, Ruby [27], was
based on relational calculus. While there is an obvious link between logic gates and
logical relations, in practice, most hardware circuits map some inputs to some outputs.
It follows that functional approaches to hardware description are not only possible, but
also completely appropriate, and several examples have been described previously.

There have been several approaches to developing functionally-based notations for
hardware. Lava [6,11], produced in association with Xilinx Corporation, uses an embed-
ded domain-specific language approach, extending Haskell with operations that allow
the high-level description of FPGA circuits. Where Lava uses non-strictness to spec-
ify links between hardware components, in Hume, boxes�wires serve the same purpose.
Other similar approaches include Intel’s ReFLect language [19], which is used commer-
cially to verify properties of their processor designs; the Hawk hardware verification
language [26]; the Hydra system for logic circuit specification; the functional derivation
approach, for deriving FPGA circuits from Haskell specifications [25]; the lenient, purely
functional language Confluence for designing synchronous circuits [2], the imperative
HDCaml hardware design�verification language [3]; the SAFL hardware description lan-
guage [31]; and the same authors’ Flash notation for hardware�software codesign [32].
Compared with HW-Hume, the most obvious di�erences in these notations are their
use of a single-level language rather than a separation between coordination and ex-
pression, their inclusion of high-level features such as higher-order functions and direct
recursion (though these may be mapped from higher levels of Hume into HW-Hume
programs), and the general absence of asynchronous constructs. The decision to in-
clude asynchronous constructs in Hume is a careful one. The advantage of a synchro-
nous language design such as Lustre [10] is in terms of a simpler semantic model, that
consequently simplifies the construction of cost models. However, while asynchronous
systems can generally be restricted to synchronous cases, and this can be detected using
model-checking as we have done in this paper, it is considerably more diÆcult to de-
scribe asynchronous systems starting from a purely synchronous basis. Recent work has
therefore seen hybrid notations, such as Lucid-Synchrone [14], which combines finite-
state-automata and a synchronous communication model, or notations that explicitly
expose clocks as additional inputs to otherwise synchronous systems [13].

While model checking has been successfully applied to several imperative lan-
guages, for example in the shape of NASA’s Java Pathfinder [24] or Microsoft’s Termi-
nator [15] tools, there are fewer systems combining functional languages with model
checking. Apart from our own work on HW-Hume and Spin [18], the most relevant
work of which we are aware is that on ReFLect [19], on verifying SAFL programs [16],
and on verifying resource properties in Erlang [33]. A key di�erence from our work
is that we deal with real-time properties as well as liveness and safety. Since we have
constructed a formal model of the Hume coordination layer, which is identical to all
Hume levels, we are also able, in principle, to work at arbitrary levels of Hume and to
prove properties on transformed code.

Low-Level Programming in Hume: An Exploration of the HW-Hume Level 105

7 Conclusions and Future Work

This paper represents a first exploration of HW-Hume. HW-Hume targets low-level sys-
tem descriptions, using a declarative notation combining purely functional expressions
with a high-level process notation. We have shown how essential safety, liveness and
real-time properties of HW-Hume programs can be specified in TLA� and how they can
automatically verified with the TLC model checker. In doing this, we have provided the
first example of using TLA� to model check properties in a programming language. The
combination of time analysis on boxes with temporal logic is also novel, and reveals the
advantage of using a layered language when performing static analysis, allowing clear
separation between di�erent aspects of the time analysis.

Since TLA� is a much higher level notation than supported by most model checkers,
this allows a more direct embedding of HW-Hume semantics, and also helps mitigate
the “state-space explosion problem”, a major bugbear of model checking, where the
checker fails because too many states have been generated. Even more interestingly, we
have been able to extend the work reported here to model-check that the safety-part of
a property is preserved when transforming from a higher-level into a lower-level Hume
program.

We have also shown how an eÆcient software implementation can be produced for
HW-Hume, using a template-based compiler compiling through C. This implementa-
tion is highly space eÆcient. For example, for the ��� box above, we can determine
a total dynamic memory usage of 42 bits (including all wiring requirements), and the
complete C program in which it is embedded has a total dynamic memory requirement
of 620 bytes, including all system data structures and runtime queues. HW-Hume may
therefore be the world’s most space-eÆcient functional language.

7.1 Further Work

In addition to producing a concrete hardware implementation for HW-Hume, as dis-
cussed above, a number of important issues remain to be addressed. Firstly, hardware�
software co-design is becoming increasingly important as an approach to building em-
bedded computer systems. As we have shown above, it is possible to produce both
hardware and software implementations from a single HW-Hume definition. We believe
this gives a powerful tool for developing combined hardware�software implementations
from a single source specification, and intend to investigate this further. Secondly, we
have already developed a powerful transformational framework allowing higher levels
of Hume to be mapped into HW-Hume programs. In this way, programmers have access
to higher-order combinators, repetition and other abstractions. We need to investigate
whether this approach gives an e�ective way to provide high-level abstractions over
hardware circuits. Thirdly although TLA� has proved e�ective for HW-Hume, when
dealing with more expressive levels of Hume, it is likely to prove insuÆciently pow-
erful, since we will need to deal with more sophisticated forms of data structures, for
example. We are therefore working on formalising TLA in a theorem prover. Fourthly,
TLC supports a form of state-space reduction technique called symmetry which may
yield further performance benefits. We intend to address how we may exploit this in
HW-Hume. Fiftly, we have developed a specification language for HW-Hume, based

106 K. Hammond et al.

on [18], which captures all properties we have shown. We plan to create a translator
from HW-Hume and this specification language into TLA� which automatically veri-
fies the properties. We believe this should be a trivial thing to do. Finally, although we
have defined box templates and wiring macros to reduce repetition in describing collec-
tions of boxes, we have not developed a complete hierarchy of box-combining forms.
This would e�ectively involve constructing a higher-order calculus of boxes, and would
allow more modular and scalable verification of properties.

References

1. Electronic Design Interchange Format Version 2.0.0,Technical ANSI�EIA-548-1988 (1988)
2. Confluence: ���&�PP�������"%�������P����P�����&�&R������"%����� (2006)
3. Hdcaml: ���&�PP�������"%�������P����P�����&�& (2006)
4. Alpern, B., Schneider, F.B.: Defining liveness. Information Processing Letters 21, 181–185

(1985)
5. Apt, K.R., Olderog, E.-R.: Verification of Sequential and Concurrent Programs, 2nd edn.

Springer, Heidelberg (1997)
6. Bjesse, P., Claessen, K., Sheeran, M., Singh, S.: Lava: Hardware design in Haskell. ACM

SIGPLAN Notices 34(1), 174–184 (January 1999)
7. Bonenfant, A., Ferdinand, C., Hammond, K., Heckmann, R.: Worst-Case Execution Times

for a Purely Functional Language. In: This volume. Springer, Heidelberg (2007)
8. Boussinot, F., de Simone, R.: The Esterel Language. Proceedings of the IEEE 79(9),

1293–1304 (September 1991)
9. Butterfield, A., Woodcock, J.: prialt in Handel-C: an operational semantics. Int. J. Softw.

Tools Technol. Transf. 7(3), 248–267 (2005)
10. Caspi, P., Pilaud, D., Halbwachs, N., Place, J.: Lustre: a Declarative Language for Program-

ming Synchronous Systems. In: Proc. POPL ’87 – 1987 Symposium on Principles of Pro-
gramming Languages, München, Germany, pp. 178–188 (January 1987)

11. Claessen, K., Pace, G.: An Embedded Language Framework for Hardware Compilation. In:
Proc. Conf. on Designing Correct Circuits (DCC 2002) (2002)

12. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge (1999)
13. Cohen, A., Duranton, M., Eisenbeis, C., Pagetti, C., Plateau, F., Pouzet, M.: N-Synchronous

Kahn Networks: a Relaxed Model of Synchrony for Real-Time Systems. In: Proc. POPL ’06:
ACM Symposium on Principles of Programming Languages, pp. 180–193. ACM Press, New
York (2006)

14. Colaço, J.-L., Pagano, B., Pouzet, M.: A Conservative Extension of Synchronous Data-flow
with State Machines. In: Proc. ACM International Conference on Embedded Software (EM-
SOFT’05), Jersey City, New Jersey, USA (September 2005)

15. Cook, B., Podelski, A., Rybalchenko, A.: Terminator: Beyond Safety. In: Ball, T., Jones, R.B.
(eds.) CAV 2006. LNCS, vol. 4144, Springer, Heidelberg (2006)

16. Foster, J.N.: Model Checking for a Functional Hardware Description Language, BSc Disser-
tation, Cambridge University. PhD thesis (2002)

17. Gautier, T., Le Guernic, P., Besnard, L.: SIGNAL: A Declarative Language For Synchronous
Programming of Real-Time Systems. In: Kahn, G. (ed.) Functional Programming Languages
and Computer Architecture. LNCS, vol. 274, pp. 257–277. Springer, Heidelberg (1987)

18. Grov, G., Ireland, A., Michaelson, G.J., Hammond, K.: Verifying Temporal Properties in
HW-Hume. Technical report, Heriot-Watt University, School of Mathematical and Computer
Sciences (February 2006)

http://www.confluent.org/wiki/doku.php?id=confluence
http://www.confluent.org/wiki/doku.php

Low-Level Programming in Hume: An Exploration of the HW-Hume Level 107

19. Grundy, J., Melham, T., O’Leary, J.: A Reflective Functional Language for Hardware Design
and Theorem Proving. J. Funct. Program 16(2), 157–196 (2006)

20. Hammond, K.: Exploiting Purely Functional Programming to Obtain Bounded Resource Be-
haviour: the Hume Approach. In: Central European Summer School on Functional Program-
ming, July 2005, Springer, Heidelberg (to appear)

21. Hammond, K., Michaelson, G.: Bounded Space Programming using Finite State Machines
and Recursive Functions: the Hume Approach. Submitted to ACM Transactions on Software
Engineering and Methodology (TOSEM), in preparation(2006)

22. Hammond, K., Michaelson, G.J.: Hume: a Domain-Specific Language for Real-Time Em-
bedded Systems. In: Pfenning, F., Smaragdakis, Y. (eds.) GPCE 2003. LNCS, vol. 2830, pp.
37–56. Springer, Heidelberg (2003)

23. Hammond, K., Michaelson, G.J.: Predictable Space Behaviour in FSM-Hume. In: Peña, R.,
Arts, T. (eds.) IFL 2002. LNCS, vol. 2670, Springer, Heidelberg (2003)

24. Havelund, K., Pressburger, T.: Model Checking JAVA Programs using JAVA PathFinder. Int.
Journal on Software Tools for Technology Transfer 2(4), 366–381 (2000)

25. Hawkins, J., Abdallah, A.E.: Behavioural Synthesis of a Parallel Hardware JPEG Decoder
from a Functional Specification. In: Monien, B., Feldmann, R.L. (eds.) Euro-Par 2002.
LNCS, vol. 2400, pp. 615–619. Springer, Heidelberg (August 2002)

26. Launchbury, J., Matthews, J., Cook, B.: Microprocessor Specification in Hawk. In: Proc.
International Conference on Computer Languages, pp. 90–101 (1998)

27. Jones, G., Sheeran, M.: Circuit design in Ruby. In: J. Staunstrup, editor, Formal Methods for
VLSI Design, pp. 13–70. North-Holland (1990)

28. Lamport, L.: The Temporal Logic of Actions. ACM TOPLAS 16(3), 872–923 (1994)
29. Lamport, L.: Specifying Systems — The TLA� Language and Tools for Hardware and Soft-

ware Engineers, Reading, Massachusetts. Addison-Wesley, London (2002)
30. Lamport, L.: Real-Time Model Checking Is Really Simple. In: Borrione, D., Paul, W. (eds.)

CHARME 2005. LNCS, vol. 3725, pp. 162–175. Springer, Heidelberg (2005)
31. Mycroft, A., Sharp, R.: A Statically Allocated Parallel Functional Language. Automata, Lan-

guages and Programming, pp. 37–48 (2000)
32. Mycroft, A., Sharp, R.: Hardware�Software Co-Design Using Functional Languages. In:

Margaria, T., Yi, W. (eds.) ETAPS 2001 and TACAS 2001. LNCS, vol. 2031, pp. 236–251.
Springer, Heidelberg (2001)

33. Earle, C.B., Arts, T., Derrick, J.: Verifying Erlang Code: a Resource Locker Case-Study. In:
Eriksson, L.-H., Lindsay, P.A. (eds.) FME 2002. LNCS, vol. 2391, pp. 184–203. Springer,
Heidelberg (2002)

34. Vasconcelos, P.B.: Cost Inference and Analysis for Recursive Functional Programs. PhD
thesis, University of St Andrews, in preparation (2006)

35. Vasconcelos, P.B., Hammond, K.: Inferring Costs for Recursive, Polymorphic and Higher-
Order Functional Programs. In: Trinder, P., Michaelson, G.J., Peña, R. (eds.) IFL 2003.
LNCS, vol. 3145, pp. 86–101. Springer, Heidelberg (2004)

A Conference Management System Based on the

iData Toolkit

Rinus Plasmeijer and Peter Achten

Software Technology, Nijmegen Institute for Computing and Information Sciences,
Radboud University Nijmegen
{rinus,P.Achten}@cs.ru.nl

Abstract. The iData Toolkit is a purely functional toolkit for the Clean
programming language to create highly dynamic, interactive, thin client
web applications on a high level of abstraction. Its main building block
is the iData element. With this element the programming effort of the
application programmer is reduced significantly because it takes care of
state handling, rendering, user interaction, and storage management au-
tomatically. In this paper we show that it can be used for even more
tasks: handle destructively shared model data, perform version manage-
ment, and state consistency management. This can be done entirely on
top of the iData Toolkit. The toolkit comes with a new programming
paradigm. We illustrate the extended power of the toolkit and program-
ming paradigm by a case study of a conference management system.

1 Introduction

The purely functional language Clean has a library to create highly dynamic, in-
teractive, thin client web applications on a high level of abstraction. This library
is the iData Toolkit [11,13,12].It is based on the language support for generic pro-
gramming [2,3]. The toolkit’s main building block is the iData element, which is
a versatile unit that automates a great deal of things for the programmer:
– it manages a state of arbitrary type;
– it renders an HTML form representation of its state;
– it handles user actions made with these forms in a type safe way;
– it stores its state either in the page or at the server side on disk.

Web applications are created by interconnecting an arbitrary collection of iData
elements via their states and rendered forms. In the past years we have obtained
experience in programming applications with iData elements, and their desktop
GUI predecessors, the GEC elements of the GEC Toolkit [1]. This has resulted in
a new programming paradigm. In the iData Toolkit programming paradigm the
application programmer models the application as an information system, by
identifying the entities and entity-relations and specify them as pure functional
data structures and pure functions. The generic power of the toolkit is used
subsequently to handle as much as possible automatically. Human intervention is
still required, but the power of generic programming is that it allows application
programmers to specialize the generic scheme where needed.

Z. Horváth, V. Zsók, and A. Butterfield (Eds.): IFL 2006, LNCS 4449, pp. 108–125, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Conference Management System Based on the iData Toolkit 109

When constructing programs with the programming paradigm, it turns out
that the ‘classic’ version of the toolkit has a number of limitations:

– Model types are pure functional data structures. Although functional lan-
guages can define and handle shared data structures, they cannot handle
destructively shared data because this destroys referential transparency.
However, in information systems destructive sharing is a natural pheno-
menon, because data should not be stored redundantly. Hence, an iData
Toolkit application programmer can not model destructive sharing directly,
but instead has to program this on top of the functional data structures and
for each and every edit operation. This is cumbersome, error-prone, and an
example of boilerplate code that should be automated once and for all.

– It is important in multi-user web applications with several persistent shared
states to manage versions of these states correctly. Again, the programmer
might be able to program this, but it should be dealt with once and for all.

– The final limitation concerns the consistency of states. The iData Toolkit is
edit driven, i.e.: it reacts to (type safe) edit operations of the application user
who can alter a part of the state of one of the iData elements. In general, it
may well be the case that during a sequence of edit operations, the set of
states is inconsistent. In that case, the application should not commit this
configuration of states to disk, but rather work on a local version.

In this paper we show that the above concerns can be handled automatically
by the iData elements, on top of the ‘classic’ iData Toolkit. We believe that this
provides further evidence to the fact that iData elements form a powerful ab-
straction mechanism to create highly interactive and dynamic web applications
with. We illustrate the use of the new techniques by studying the case of a
conference management system. Conference management systems are software
systems that support conference managers, programme committee members, and
authors with a number of tasks, such as the electronic paper submission process,
paper distribution and reviewing process, deadline management, and the paper
discussion process. They serve as a good example of the domain of web applica-
tions that suffer from the limitations that have been presented above. We show
that the resulting system widens the application domain of the toolkit while still
adhering to its programming paradigm.

This paper is structured as follows: we first briefly present the iData Toolkit in
Sect. 2. Next, in Sect. 3, we discuss the case study of a conference management
system. Implementation details are presented in Sect. 4. Finally, related work is
discussed in Sect. 5, and we conclude in Sect. 6.

2 The iData Toolkit

In this section we present the ‘classic’ iData Toolkit, i.e. the toolkit without the
extensions that are discussed in the next sections. First, we give an informal
explanation of iData elements, which are the building blocks of the iData Toolkit
(Sect. 2.1). Second, we present the programming paradigm (Sect. 2.2).

110 R. Plasmeijer and P. Achten

2.1 iData Elements

iData elements are the fundamental building blocks of the iData Toolkit. An iData
element is a typed unit that provides the application user with a GUI (an HTML
form) that allows him to edit values of that given type only. The GUI is derived
automatically from the type and value using the generic programming facilities
of Clean. In this paper, we use one toolkit function to create iData elements:

class iData d | gForm{|�|} , gUpd{|�|} , gPrint{|�|} , gParse{|�|} d

mkEditForm :: (InIDataId d) → HStIO d | iData d
:: HStIO d :== *HSt → (Form d ,*HSt)

The function mkEditForm uses four generic cornerstone functions that are collected
in the type class iData. The (InIDataId d) argument of mkEditForm describes the
type and value of the iData element that is to be created:

:: InIDataId d :== (Init ,FormId d)
:: Init = Const | Init | Set
:: FormId d = { id::String , ival::d , lifespan::Lifespan , mode::Mode }
:: Lifespan = Persistentp | PersistentROr | Sessions | Pagen | Tempt

:: Mode = Edit | Displayd | NoFormx

Here it suffices to state that it is a pair of an Init value that specifies the use
of the ival::d value inside the (FormId d) record. The lifespan and mode fields
control the lifespan and rendering mode of the iData element. An iData element
can be stored persistently (Persistent(RO)) on the server side on disk, or locally
in the page (Session, Page, Temp). Although the default mode of an iData element
is Edit, it can also be used to display its state (Display), or even without any
rendering at all (NoForm). For each of these variants, a FormId constructor func-
tion {p ,r ,s ,n ,t}[d ,x]FormId :: String d → FormId d has been defined. *HSt is an
opaque environment that contains the internal administration that is required
to create HTML pages and form handling. It can be updated destructively, hence
the uniqueness type attribute *. (Please consult [13] for details.)

When evaluated, mkEditForm basically performs the following actions: it first
checks whether an earlier incarnation of the iData element (identified by the
id::String1 label) exists. If this is not the case, or the Init value is Set, then the
ival value of the FormId argument is used. If it already existed, then it contains
a possibly user-edited value. This value is used subsequently. Hence, the final
iData element is up-to-date. This is recorded in the (Form d) record:

:: Form d = { changed :: Bool , value :: d , form :: [BodyTag] }

The changed field records the fact if the application user has edited the value
of the iData element; the value is the up-to-date value, and form is the HTML
rendering of this iData element that can be used within an arbitrary HTML
page.

1 We are aware that the use of strings for form identification can be a source of (hard
to locate) errors, but we have yet to find a better system of equal expressiveness.

A Conference Management System Based on the iData Toolkit 111

As an example, the following code snippet creates an iData element for Int

values that, initially, looks as :

� (intF ,hst) = mkEditForm (Init ,nFormId "My first iData!" 42) hst

If included in a web page, the application user can only create integer values with
this iData element. A web application is any function that computes an HTML
page, using an *HSt environment. Hence, its type is (HStIO Html). The wrapper
function doHtmlServer transforms it into a real Clean interactive function:

doHtmlServer :: (HStIO Html) *World → *World

As an example, the following, complete code, creates a web application that
allows users to edit integer values (Fig. 1(a)):

Start world = doHtmlServer tiny world
where tiny :: (HStIO Html)

tiny hst
� (intF ,hst) = mkEditForm (Init ,nFormId "My first iData!" 42) hst
= mkHtml "Simple Example" intF.form hst

Fig. 1. (a) A single integer editor. (b) Display the sum of two integer input fields.

2.2 The iData Toolkit Programming Paradigm

The iData Toolkit programming paradigm advocates the use of pure data types
and pure functions to model the UoD (Universe of Discourse) of the application
that is to be constructed. From these types, the iData Toolkit derives the required
forms automatically that can be used in the HTML pages of the application. The
application programmer can specialize the derived GUI where needed, and in
the end interconnect all iData elements that are relevant to his application. This
amounts to the following four-step programming paradigm:

1. Model the UoD with pure data types and pure functions.
2. Derive iData from the data types generically.
3. Specialize iData where needed.
4. Define the logic of the application by interconnecting iData functionally.

Below, we illustrate the paradigm by constructing a small program that allows
the application user to enter two integer values, and display their sum (Fig.1(b)).
The same technique can be used to construct real-world applications such as a
CD shop and a work administration [12].

112 R. Plasmeijer and P. Achten

1. Modelling the UoD. In this step the application programmer models the
entities and their relations by means of pure data types and pure functions over
these data domains. For the sake of the example, the second integer editor is
modeled distinctively as IntCounter, accompanied by two conversion functions:

:: IntCounter = IntCounter Int

instance toInt IntCounter where toInt (IntCounter i) = i
instance fromInt IntCounter where fromInt i = IntCounter i

2. Deriving iData. In this step the application programmer unleashes the gen-
erative power of the toolkit, and automatically derives instances for the four
cornerstone functions of the toolkit. In the example the model types are either
the basic Int type for which instances are already defined, or the integer counter
type, that is specialized below.

3. Specializing iData. In general, the created GUI of an iData element displays
the structure of the type. For many types, this is sufficient. However, this is not
always the case, and the generically derived GUI needs to be overruled by the
application programmer. Overruling a generic recipe is known as specialization.
Specialization is a delicate task, and hence the iData Toolkit provides a function
that aids the application programmer with this:

specialize :: ((InIDataId a) → HStIO (Form a))
(InIDataId a) → HStIO (Form a) | gUpd{|�|} a

As an example, assume that there is a function

counterIData :: (InIDataId Int) → HStIO (Form Int)

that renders Int iData elements as (in [12] we show how such a
function is implemented). If we decide that from now on all Int iData elements
should be rendered in this way, then this is enforced by:

gForm{|Int|} iDataId hst = specialize counterIData iDataId hst

In the example, however, we want to model the integer counter with the model
type IntCounter. This amounts to calling counterIData, except that the Int values
need to be converted to IntCounter values and vice versa. This is done with:

gForm{|IntCounter|} iDataId hst
= specialize (coerceWith (toInt ,fromInt) counterIData) iDataId hst

The coerceWith function is just a higher-order wrapper function that applies the
conversion functions just before and immediately after the core function.

coerceWith :: (a → b ,c → d) ((InIDataId b) → HStIO (Form c))
(InIDataId a) → HStIO (Form d)

coerceWith (f_ab ,f_cd) f (init ,formId=:{ival}) hst
� ({changed ,value ,form} ,hst) = f (init,{formId & ival=f_ab ival}) hst
= ({changed=changed ,value=f_cd value ,form=form} ,hst)

A Conference Management System Based on the iData Toolkit 113

4. Interconnecting iData. The final step is to interconnect iData elements.
Interconnecting means that we define a functional dependency relation between
the iData elements. The application programmer can exploit two important as-
pects of iData elements. First, the behavior of iData elements (discussed in Sect.
2.1) implies that they can be shared, i.e.: referring to the same iData element
within the interconnection relation refers to the same iData element. In this
way cyclic dependency relationships can be defined. Second, every iData element
has a rendering that can be used subsequently arbitrarily many times, or even
not at all. Each rendering refers to the same iData element. In the example,
interconnecting the iData elements is straightforward:

Start world = doHtmlServer add world 1.

where add :: (HStIO Html) 2.

add hst 3.

� (i1F ,hst) = mkEditForm (Init ,nFormId "i1" 0) hst 4.

� (i2F ,hst) = mkEditForm (Init ,nFormId "i2" (IntCounter 0)) hst 5.

� (i3F ,hst) = mkEditForm (Set , ndFormId "sum" 6.

(toInt i1F.value + toInt i2F.value)) hst 7.

= mkHtml "Sum" [STable [] [i1F.form ,i2F.form ,i3F.form]] hst 8.

The input elements are activated in lines 4–5. Their values are used by the sum
display in line 7. Their forms are displayed in a single column in line 8. The
resulting HTML page is displayed in Fig. 1(b).

3 A Conference Management System

In this section we show how to design a conference management system with
the ‘classic’ iData Toolkit, its new tools, and the programming paradigm. The
new tools are: (i) modeling destructively shared data with reference types ; (ii)
automatically guard the consistency of database and reference type values; (iii)
automatic version management. Fig. 2(a) shows the initial screen of the system.

3.1 Modelling a Conference Management System

Examples of the logical entities of a conference management system are members,
accounts, papers, and discussions. Appendix A.1 is a self-explanatory and self-
contained subset of the collection of data types that have been defined. The
types PasswordBox, HtmlDate, and HtmlTime are ‘classic’ iData Toolkit data types
that have been specialized to model standard GUI elements. The types Account

and Login are generally useful types for login handling. Examples of the entity-
relations are determining the status of a member, determine the reviews of a
programme committee member, and setting conflicts of interest. Appendix A.2
gives a subset of the functional relations between these entities.

In the modeling step, the application programmer can use two of the above
mentioned features (i) and (ii) of the ‘non-classic’ iData Toolkit.

114 R. Plasmeijer and P. Achten

Fig. 2. (a) The initial system look. (b) The initial author page look. (c) An exception
in the author page look when editing personal information.

Modelling Destructively Shared Data. In Sect. 1, we have argued that de-
structive sharing of entities is a natural phenomenon when modeling information
systems. In case of the conference management system, the programmer wants
to model the fact that members, papers, reports, and discussions are destruc-
tively shared. As a result, whenever the application user alters a destructively
shared (sub)value in any iData element, then this (sub)value should be altered
everywhere where it appears in a destructively shared context. Clearly, destruc-
tive sharing cannot be handled directly with pure data types in pure functional
languages. For this purpose reference types have been introduced.

A reference type (Ref2 d) is a phantom type that creates a reference to a
value of type d. Using the same reference value in a collection of data values
results in a destructively shared occurrence of that value. (Sect. 4.2 discusses the
implementation.) Briefly, a reference type ‘connects’ a type with an identifier:

:: Ref2 a = Ref2 String

Just as iData identifiers, this identifier is required to be unique. Hence, the
application programmer needs to set up an additional name space for refer-
ence type identifiers. In the conference management system, this has been done
by the function setInvariantAccounts :: ConfAccounts → ConfAccounts that tra-
verses the complete administration for reference type occurrences, and assigns
unique identifiers in such a way that the same entity obtains the desired

A Conference Management System Based on the iData Toolkit 115

destructive sharing structure. For reasons of space, we omit its code. It im-
plements the following rules: persons are identified by their unique login name;
refereed reports are identified by the identifier of the referee and their unique
paper number; discussions by the author identifier and unique paper number;
papers by author name and paper number.

Guarding Consistency of iData. In Sect. 1, we have argued that due to the
edit-driven evaluation mechanism of the iData Toolkit, the consistency of the
iData states cannot be guaranteed. We have included a mechanism to judge the
consistency of destructively shared and persistent data. A Judgement is either Ok

(Nothing), or raises an issue (Just (id ,issue)) where id is the identifier of the
judging entity, and issue a text that describes the issue. The value of an entity
is committed to disk only if the corresponding judgement is Ok. Judgements can
be rather syntactic. For instance, for Person, Paper, and Login, the judgements
basically state that every field has to have a non-empty value:

invariantPerson :: String Person → Judgement
invariantPerson id {firstName ,lastName ,affiliation ,emailAddress}
| any ((==) "") [firstName ,lastName ,affiliation ,emailAddress]

= Just (id ,"all person fields need to be filled in.")
| otherwise = Ok

A more challenging example of a judgement is given below.

invariantConfAccounts :: String ConfAccounts → Judgement 1.

invariantConfAccounts id accs 2.

| any ((≥) 0) papers = Just (id ,"paper number must be positive") 3.

| not (noDups papers) = Just (id ,"paper number in use") 4.

| not uniqConflicts = Just (id ,"conflict already assigned to referee") 5.

| not uniqAssigns = Just (id ,"paper already assigned to referee") 6.

| conflicting = Just (id ,"assigned paper in conflict") 7.

| not (allMembers reports papers) 8.

= Just (id ,"non-existing assigned paper") 9.

| not (allMembers conflicts papers) 10.

= Just (id ,"non-existing assigned conflict") 11.

| otherwise = Ok 12.

where 13.

papers = [nr \\ (nr ,_) ← getRefPapers accs] 14.

conflicts = flatten [nrs \\ (_ ,nrs) ← getConflicts accs] 15.

reports = flatten [nrs \\ (_ ,nrs) ← getAssignments accs] 16.

uniqConflicts = and [noDups nrs \\ (_ ,nrs) ← getConflicts accs] 17.

uniqAssigns = and [noDups nrs \\ (_ ,nrs) ← getAssignments accs] 18.

conflicting = or [isAnyMember cNrs aNrs 19.

\\ (_ ,cNrs ,aNrs) ← getConflictsAssign accs] 20.

This is a judgement over the complete content of the conference management
system’s database. Paper numbers should be positive (line 3) and uniquely iden-
tify a paper (line 4). The list of conflicts and assigned papers should contain no
duplicates (lines 5–6). Referees should not review papers for which they have a
conflicting interest (line 7). Finally, the set of reports and conflicts should be a
subset of the set of papers (line 8 and 10).

116 R. Plasmeijer and P. Achten

Judgements are connected with reference type values and database values by
the following two new functions that have been built on top of the iData Toolkit:

universalRefEditor
:: (InIDataId (Ref2 a)) (a → Judgement) → HStIO (Form a)

| iData a
universalDB :: (Init ,a ,String) (String a → Judgement) → HStIO a | iData a

Their implementation is discussed in Sect. 4. Applications of universalRefEditor
are all alike, and proceed as in the case of persons:

editorRefPerson :: (InIDataId RefPerson) → HStIO (Form Person)
editorRefPerson (init ,formid=:{ival=RefPerson refp=:(Ref2 name)})

= universalRefEditor (init ,{formid & ival=refp}) (invariantPerson name)

As an example of universalDB, we create the main conference database:

AccountsDB :: Init ConfAccounts → HStIO ConfAccounts
AccountsDB init accounts

= universalDB (init ,setInvariantAccounts accounts ,uniqueDBname)
invariantConfAccounts

3.2 Deriving iData

We can be very brief about this step, as this simply involves enumerating all
instances to derive of almost all types for the generic cornerstone functions gForm,
gUpd, gPrint, and gParse. The exceptions are that gForm needs to be specialized for
the four reference types, the four custom types Reports, Conflicts, Co_authors,
and Discussion, and the standard list type (display only the elements, not the
list data constructors). In total, derivation concerns 27 data types, hence there
are 99 derived instances and 9 specialized gForm instances.

3.3 Specializing iData

Reference types are specialized in boilerplate style, as illustrated with RefPerson

(editorRefPerson is given above; invokeRefEditor is discussed in Sect. 4):

gForm{|RefPerson|} iDataId hst
= specialize (invokeRefEditor editorRefPerson) iDataId hst

The four model types that need to be specialized are Reports, Conflicts,
Co_authors, and Discussion. The first three are all basically list structures, but
the application designer wants to display them in a column. They all proceed as
given here for the case of Co_authors:

gForm{|Co_authors|} inIDataId hst
= specialize (coerceWith (toList ,fromList) vertlistFormButs) inIDataId hst

where toList (Co_authors authors) = authors
fromList authors = Co_authors authors

A Conference Management System Based on the iData Toolkit 117

Discussions are displayed in a table:

gForm{|Discussion|} inIDataId hst = specialize discussion inIDataId hst
where

discussion (init ,formid=:{ival=Discussion d}) hst
= ({changed=False ,form=flatten (map htmlOf d) ,value=formid.ival} ,hst)

where
htmlOf {messageFrom ,date ,time ,message}

= [mkTable [[Txt "date: " , toHtml date , Txt "time: " , toHtml time]
, [Txt "from: " , B [] messageFrom]]

, Txt "message:" , Txt message , Hr []]

3.4 Interconnecting iData

The conference management system basically proceeds along the following steps:
it reads in the current accounts database, and then attempts to establish the
identity of the application user. If this is a known user, then the application
needs to present the current application page that the application user was
visiting. This is determined by means of a conference portal, that determines
and produces the correct page. If the user is unknown, then he is a guest, and
should attempt to login to the system.

As shown in Sect. 2, the main entry of every iData Toolkit application is a
function of type (HStIO Html):

Start world = doHtmlServer mainEntrance world 1.

mainEntrance :: (HStIO Html) 2.

mainEntrance hst 3.

� (body ,hst) = loginhandling hst 4.

= mkHtml "Conference Manager" body hst 5.

loginhandling :: (HStIO [BodyTag]) 6.

loginhandling hst 7.

� (accounts ,hst) = AccountsDB Init 8.

[initManagerAccount initManagerLogin] hst 9.

= case loginHandlingPage accounts hst of 10.

(Left account ,hst) = doConfPortal account accounts hst 11.

(Right body , hst) = (body ,hst) 12.

The loginhandling function checks the current user account. In order to do so,
first the main accounts database needs to be accessed (lines 8–9). This is done
with the function AccountsDB that was presented in Sect. 3.1. Initially, the ac-
counts database contains a single entry for the conference manager. Later on, it
contains all current member accounts. Hence, at this stage the application has the
complete current accounts information. Second, the application needs to know
the current user and his status (conference manager, program committee mem-
ber, author, or guest) in order to generate the correct HTML page. The function
loginHandlingPage :: ConfAccounts → HStIO (Either ConfAccount [BodyTag]) ei-
ther yields the valid account of the current user or the HTML code body of the

118 R. Plasmeijer and P. Achten

login page that is displayed in Fig. 2(a). For conciseness, we omit its code. In case
of an unknown user, body is displayed (line 12); otherwise the application uses
account to switch to the proper page (line 11) using the function doConfPortal:

doConfPortal :: ConfAccount ConfAccounts → HStIO [BodyTag] 1.

doConfPortal account accounts hst 2.

� (navButtons ,hst) = navigationButtons account.state hst 3.

� (currPage , hst) = currPageStore (homePage account.state) 4.

navButtons.value hst 5.

� (navBody , hst) = handleCurrPage currPage.value account accounts hst 6.

� (exception , hst) = eStore id hst 7.

= ([mkSTable2 [[EmptyBody ,B [] "Conference" <.||.> B [] "Manager " 8.

,oops exception currPage.value] 9.

, [mkColForm navButtons.form ,EmptyBody ,BodyTag navBody] 10.

] 11.

] , hst) 12.

This function creates a page that consists of four areas (lines 8–12): 1. a set
of navigation buttons (navButtons.form) that depend dynamically on the user
status; 2. the static “Conference Manager” title; 3. the user status and page in
case of no issues, and the issue otherwise (line 9); 4. the actual page content
that the user is visiting (navBody). Fig. 2(b) shows the initial look in case of an
author; Fig. 2(c) shows a failing judgement (empty entry in the person data).
The navigation buttons are created by navigationButtons simply by enumerating
the buttons, that, when pressed, yield the corresponding page that should be
displayed. If no button is pressed, then its function result is the identity function.
Here we only show the code for the author case:

navigationButtons :: Member → HStIO (Form (CurrPage → CurrPage))
navigationButtons member

= ListFuncBut (Init , sFormId "navigation" (navButtons member))
where navButtons :: Member → [(Button ,a → CurrPage)]

navButtons (Authors _)
= [(LButton defpixel "Home" , const AuthorsHomePage)

, (LButton defpixel "SubmitPaper" , const SubmitPaper)
, (LButton defpixel "ChangeInfo" , const ChangeInfo)
, (LButton defpixel "ChangePsswrd" ,const ChangePassword)]

navButtons . . .

CurrPage enumerates the possible pages that can be visited:

:: CurrPage = RootHomePage | AssignPapers | ModifyStates // root pages
| AuthorsHomePage | SubmitPaper // authors
| ChangePassword | ChangeInfo // common
| ListPapers | ListReports | DiscussPapers // referees + root

| ShowPapersStatus | RefereeForm
| RefereeHomePage // referees
| GuestHomePage // guests

The current page is stored in an iData element. The function currPageStore uses
the iData Toolkit library function mkStoreForm for this purpose, which extends

A Conference Management System Based on the iData Toolkit 119

the library function mkEditForm with a function argument that is applied to the
current value. Hence, when combined with the function result of the navigation
buttons, this is the page that should be displayed.

currPageStore :: CurrPage → (CurrPage → CurrPage) → HStIO (Form CurrPage)
currPageStore currpage = mkStoreForm (Init , sFormId "cf_currPage" currpage)

The functions homePage and handleCurrPage enumerate the default starting pages
and page content creation functions:

homePage :: Member → CurrPage
homePage (ConfManager _) = RootHomePage
homePage (Referee _) = RefereeHomePage
homePage (Authors _) = AuthorsHomePage
homePage (Guest _) = GuestHomePage

handleCurrPage :: CurrPage → ConfAccount → ConfAccounts → HStIO [BodyTag]
handleCurrPage RootHomePage = rootHomePage

...
handleCurrPage ChangeInfo = changeInfo

These functions define the final content of the HTML pages. As an example, here
is the function that computes the page that is displayed in Fig. 2(c) in which
members can modify their personal information:

changeInfo :: ConfAccount ConfAccounts → HStIO [BodyTag]
changeInfo {state} _ hst

� ({form} ,hst) = mkEditForm (Init ,nFormId "sh_changeInfo"
(fromJust (getRefPerson state))) hst

= ([Br , Txt "Change your personal information:" , Br , Br] ++ form ,hst)

As this example demonstrates, some of these page generating functions are very
short, and basically use one iData element; others can be rather extensive. The
14 page generating functions consume 232 lines of code, three of which consume
the largest part: guestHomePage (55 loc), assignPapersConflictsPage (52 loc), and
discussPapersPage (44 loc). Hence, this amounts to an average of 6–7 loc for the
remaining 11 functions.

3.5 Summary

In the above sections we have given an impression of working with the iData
Toolkit and its programming paradigm. We would like to emphasize the fact
that the data types and functions that are created in the modeling step of the
programming paradigm belong to the programming repertoire of any novice
functional programmer. We also note that the relatively largest programming
effort is in the interconnection step of the paradigm. The application logic is
guided using local stores of application state to determine the proper status
of the application. The current version of the conference management system
consumes 945 loc.

120 R. Plasmeijer and P. Achten

4 Implementation

In this section we present the implementation of the new iData Toolkit tools. In
Sect. 3 we enumerated them as (i) reference types ; (ii) guarding consistency;
(iii) version management. We first explain how to implement (ii) and (iii) for
database values in Sect. 4.1. Due to their complexity, reference types earn a
separate discussion in Sect. 4.2.

4.1 Universal Database

In Sect. 2, we have seen that an iData can store its value persistently by using
the Persistent(RO) Lifespan value. This implies that we can readily use iData
elements as primitive databases:

universalDB1 :: (Init ,a ,String) → HStIO a | iData a 1.

universalDB1 (init ,v ,file) hst 2.

� (dbf ,hst) = mkEditForm (init ,pxFormId file v) hst 3.

= (dbf.value ,hst) 4.

It is rather easy to add version handling to this scheme:

universalDB2 :: (Init ,a ,String) → HStIO a | iData a 1.

universalDB2 (init ,v ,file) hst 2.

� (dbf ,hst) = mkEditForm (Init ,rxFormId file (0 ,v)) hst 3.

� (dbversion ,dbvalue)= dbf.value 4.

� (versionf ,hst) = versionNr Init dbversion hst 5.

| init == Init || dbversion �= versionf.value 6.

= (dbvalue ,snd (versionNr Set dbversion hst)) 7.

� (versionf ,hst) = versionNr Set (dbversion+1) hst 8.

= (v ,snd (mkEditForm (Set , pxFormId file (versionf.value ,v)) hst)) 9.

where 10.

versionNr init c = mkEditForm (init ,txFormId ("vrs_db_"+++file) c) 11.

Instead of storing a single value, we store a pair of the version number and the
value (line 3). In addition, we maintain a version counter per database that keeps
track of the correct version. The version counter is accessible by all applications
that refer to this database. This storage is defined in line 11, and read in line
5. If we are only reading the database, or in case of a conflicting version (line
6), we always adhere to the database version and store its version number (line
7). In any other case, we increase the version number, and store it in both the
global version counter (line 8) and the database (line 9).

The final addition is consistency handling:

universalDB3 :: (Init ,a ,String) (String a → Judgement) → HStIO a 1.

| iData a 2.

universalDB3 (init ,v ,file) invariant hst 3.

� (dbf ,hst) = mkEditForm (Init ,rxFormId file (0 ,v)) hst 4.

� (dbversion ,dbvalue) 5.

= dbf.value 6.

� (versionf ,hst) = versionNr Init dbversion hst 7.

A Conference Management System Based on the iData Toolkit 121

| init == Init 8.

= (dbvalue ,snd (versionNr Set dbversion hst)) 9.

| dbversion �= versionf.value 10.

� (_ ,hst) = versionNr Set dbversion hst 11.

� (_ ,hst) = eStore ((+) (Just (file ,"Screen out of date."))) hst 12.

= (dbvalue ,hst) 13.

� exception = invariant file v 14.

| isJust exception 15.

= (v ,snd (eStore ((+) exception) hst)) 16.

� (versionf ,hst) = versionNr Set (dbversion+1) hst 17.

= (v ,snd (mkEditForm (Set , pxFormId file (versionf.value ,v)) hst)) 18.

where 19.

versionNr init c = mkEditForm (init ,txFormId ("vrs_db_"+++file) c) 20.

The second argument in line 1 and 3 of universalDB is the consistency check of
the database data. It is checked in line 14 just before updating the database. If
it raises an exception (line 15), then the new value is not stored in the database,
but instead the exception is passed on to a global exception store (line 16). This
exception store is again a simple storage iData element:

eStore :: (Judgement → Judgement) → HStIO Judgement
eStore f hst
� ({value} ,hst) = mkStoreForm (Init ,{txFormId "handle_exception" Ok})f hst
= (value , hst)

Exceptions are also stored here in case of conflicting version numbers (line 10–
13). Any exception thus raised is reported to the application user as explained
in Sect. 3.4 (doConfPortal).

4.2 Reference Types

Reference types are used by application programmers to model destructively
shared data. Recall that a reference type is defined as :: Ref2 a = Ref2 String.
Suppose we want to destructively share values of some type A. In Sections 3.1
and 3.4 we have shown what needs to be programmed. Recapitulating:

:: RefA = RefA (Ref2 A) 1.

gForm{|RefA|} id hst = specialize (invokeRefEditor editorRefA) id hst 2.

editorRefA :: (InIDataId RefA) → HStIO (Form A) 3.

editorRefA (init ,formid=:{ival=(RefA ref=:(Ref2 name))}) 4.

= universalRefEditor (init ,{formid & ival=ref}) (invariantA name) 5.

The new type RefA serves as a reference to A values (line 1). For each RefA value
within a model data type, the user wants an iData element of A values. Clearly,
this requires specialization (line 2). The new library function universalRefEditor

handles this ‘dereferencing’. It is provided with the appropriate consistency
checking function invariantA (line 3–5).

The function invokeRefEditor evaluates its higher-order argument, and sub-
stitutes the given value parameter in the resulting iData:

122 R. Plasmeijer and P. Achten

invokeRefEditor :: ((InIDataId b) → HStIO (Form d))
(InIDataId b) → HStIO (Form b)

invokeRefEditor f (init ,{ival}) = coerceWith (id ,const ival) f

The function universalRefEditor puts everything together.

universalRefEditor :: (InIDataId (Ref2 a)) → HStIO (Form a) | iData a 1.

universalRefEditor (init ,ref2Id=:{ival=Ref2 filename}) hst 2.

� ({value} ,hst) = mkEditForm (Init ,databaseId createDefault) hst 3.

� (valueF , hst) = mkEditForm (Init ,copyId value) hst 4.

� (_ , hst) = mkEditForm (Set , databaseId valueF.value) hst 5.

= ({valueF & changed = True} ,hst) 6.

where 7.

databaseId v = {pxFormId "" v & id = filename} 8.

copyId v = {ref2Id & ival = v ,id = "copy_r_"+++filename} 9.

The clue of the implementation is that a persistent iData element databaseId

is created that is identified by the reference label filename (line 8). For this
iData a default value is generated using the function createDefault (line 3). The
application user never edits this iData, but instead is offered an iData on a copy
iData, that is identified by copyId (line 9). The altered value is written back to the
database (line 5), and the altered user iData is returned by universalRefEditor

(line 6).
We can extend universalRefEditor with version and consistency handling as

described in Sect. 4.1. For reasons of space, we omit these steps.

4.3 Summary

We have shown how the new tools can be implemented on top of the ‘classic’
iData Toolkit. We use existing toolkit capabilities: elementary storages that can
be destructively shared, specialization, and the flexibility of name space man-
agement. It allows us to manipulate persistent storage in a way that cannot be
done directly in a functional language without special structures such as heaps
or mutable variables. The toolkit itself has not been changed, but applications
can now use the new tools for their purposes.

5 Related Work

In the realm of functional programming, many solutions have been proposed
to program web applications. We mention just a few of them in a number of
languages: the Haskell CGI library by Meijer [10]; the Curry approach by Hanus
[6] (the CurryWeb application [7] shares a number of application concerns as
the conference management system described in this paper); writing XML appli-
cations [5] by Elsman and Larsen in SMLserver [4]. One sophisticated system
is Thiemann’s WASH/CGI [14], based on Haskell. Here, HTML is produced as
an effect of the CGI monad whereas we consider HTML as first-class citizens,
using data types. Instead of storing state, WASH/CGI logs all user responses

A Conference Management System Based on the iData Toolkit 123

and I/O operations. These are replayed when needed to bring the application
to its desired, most recent state. Forms are programmed explicitly in HTML,
and their elements may, or may not, contain values. In the iData Toolkit, forms
are generated from arbitrary data types, and always have value. Interconnecting
forms in WASH/CGI is done by adding callback actions to submit fields, whereas
the iData Toolkit uses a functional dependency relation. The above systems have
proven to be highly inspiring. Our contribution is the identification of a single
versatile unit, the iData element, that provides an integrated handling of all
of their concerns while maintaining a high level of abstraction. In addition, we
have shown that the programming paradigm advocates “classic” style functional
programming.

The popular framework Rails [15] is based on the object oriented programming
language Ruby [8]. With Rails, database front-end applications can be quickly
developed. The application programmer is provided with scripts to configure di-
rectories and initial class files. The database tabling structure is used as a data
structure specification language. A Rails application is a set of classes structured
as a classic model-controller-view [9] application. Browser-server communication
is based on urls that adhere to the configured directory structure, and the Ruby
controller classes that are supposed to reside there. Server-database commu-
nication is realized by the model classes. These reflect on the database table
structure, and generate the appropriate methods for the class scripts. Views are
created via HTML templates that contain Ruby code to manipulate its content.
This is similar to WASH/CGI in which HTML code is defined as an effect of the
CGI monad. Rails shares with the iData Toolkit the goal of generating as much
as possible from data structures. In Rails these are limited to table structures of
basic types. The iData Toolkit can handle arbitrary, recursive, higher-order data
structures. Rails applications are extremely vulnerable to configuration changes,
in contrast with iData Toolkit applications. These are single executables that
maintain their own state. (One can even remove all persistent files on-the-fly.
Any iData Toolkit application recreates them in their initial state.)

6 Conclusions

In this paper we have presented the programming paradigm of the iData Toolkit.
This four-step paradigm advocates the use of traditional, well-known, functional
programming techniques to model information systems, and uses the generative
power of the toolkit to automatically create interactive applications from these
models. When modeling information systems, programmers need tools to model
destructively shared data structures, deal with versions in a transparent way,
and guard the consistency of the data. We have shown how these tools can be
added on top of the ‘classic’ iData Toolkit, thus demonstrating its expressive
power. As a representative example, we have developed a prototype conference
management system, using the programming paradigm. The system is a single,
compact (1kloc), application.

124 R. Plasmeijer and P. Achten

References

1. Achten, P., van Eekelen, M., Plasmeijer, R., van Weelden, A.: GEC: a toolkit for
Generic Rapid Prototyping of Type Safe Interactive Applications. In: Vene, V.,
Uustalu, T. (eds.) AFP 2004. LNCS, vol. 3622, pp. 210–244. Springer, Heidelberg
(August 2005)

2. Alimarine, A.: Generic Functional Programming - Conceptual Design, Implemen-
tation and Applications. PhD thesis, University of Nijmegen, The Netherlands,
ISBN 3-540-67658-9, (2005)

3. Alimarine, A., Plasmeijer, R.: A Generic Programming Extension for Clean. In:
Arts, T., Mohnen, M. (eds.) IFL 2002. LNCS, vol. 2312, pp. 168–186. Springer,
Heidelberg (September 2002)

4. Elsman, M., Hallenberg, N.: Web programming with SMLserver. In: Dahl, V.,
Wadler, P. (eds.) PADL 2003. LNCS, vol. 2562, Springer, Heidelberg (January
2003)

5. Elsman, M., Larsen, K.F.: Typing XHTML Web applications in ML. In: Jayara-
man, B. (ed.) PADL 2004. LNCS, vol. 3057, pp. 224–238. Springer, Heidelberg
(June 2004)

6. Hanus, M.: High-Level Server Side Web Scripting in Curry. In: Ramakrishnan, I.V.
(ed.) PADL 2001. LNCS, vol. 1990, pp. 76–92. Springer, Heidelberg (2001)

7. Hanus, M., Huch, F.: An Open System to Support Web-based Learning. In: Proc.
of the 12th International Workshop on Functional and (Constraint) Logic Pro-
gramming (WFLP 2003), Valencia (Spain) (2003)

8. Hunt, A., Thomas, D.: Programming Ruby: The Pragmatic Programmer’s Guide,
1st edn. Addison Wesley Professional, London (2000)

9. Krasner, G., Pope, S.: A cookbook for using the Model-View-Controller user in-
terface paradigm in Smalltalk-80. Journal of Object-Oriented Programming 1(3),
26–49 (August 1988)

10. Meijer, E.: Server Side Web Scripting in Haskell. Journal of Functional Program-
ming 10(1), 1–18 (2000)

11. Plasmeijer, R., Achten, P.: Generic Editors for the World Wide Web. In: Central-
European Functional Programming School, Eötvös Loránd University, Budapest,
Hungary, Jul 4-16 (2005)

12. Plasmeijer, R., Achten, P.: iData For The World Wide Web - Programming In-
terconnected Web Forms. In: Hagiya, M., Wadler, P. (eds.) FLOPS 2006. LNCS,
vol. 3945, Springer, Heidelberg (April 2006)

13. Plasmeijer, R., Achten, P.: The Implementation of iData - A Case Study in Generic
Programming. In: Butterfield, A., Grelck, C., Huch, F. (eds.) IFL 2005. LNCS,
vol. 4015, Springer, Heidelberg (September 2006)

14. Thiemann, P.: WASH/CGI: Server-side Web Scripting with Sessions and Typed,
Compositional Forms. In: Krishnamurthi, S., Ramakrishnan, C.R. (eds.) PADL
2002. LNCS, vol. 2257, pp. 192–208. Springer, Heidelberg (January 2002)

15. Thomas, D., Hansson, H. D.: Agile Web Development with Rails. The Pragmatic
Programmers, 1st edition (August 2005)

A Conference Management System Based on the iData Toolkit 125

A Appendix

A.1 A Sample of the UoD Model Types Specified as Pure Data
Types

:: ConfAccounts :== [ConfAccount]
:: ConfAccount :== Account Member
:: Account s = { login :: Login , state :: s }
:: Login = { loginName :: String , password :: PasswordBox }
:: Member = ConfManager ManagerInfo | Authors PaperInfo

| Referee RefereeInfo | Guest Person
:: ManagerInfo = { person :: RefPerson }
:: PaperInfo = { person :: RefPerson , nr :: PaperNr

, discussion :: RefDiscussion , paper :: RefPaper
, status :: PaperStatus }

:: PaperNr :== Int
:: PaperStatus = Accepted | CondAccepted | Rejected | Submitted

| UnderDiscussion DiscussionStatus
:: DiscussionStatus = ProposeAccept | ProposeCondAccept | ProposeReject

| DoDiscuss
:: RefereeInfo = { person :: RefPerson , reports :: Reports

, conflicts :: Conflicts }
:: Reports = Reports [(PaperNr , RefReport)]
:: Conflicts = Conflicts [PaperNr]
:: Person = { firstName :: String , lastName :: String

, affiliation :: String , emailAddress :: String }
:: Discussion = Discussion [Message]
:: Message = { messageFrom :: String , date :: HtmlDate

, message :: String , time :: HtmlTime }
:: Paper = { title :: String , first_author :: Person

, abstract :: String , co_authors :: Co_authors
, pdf :: String }

:: Co_authors = Co_authors [Person]
:: Report = { recommendation:: Recommendation

, familiarity :: Familiarity }
:: Recommendation = StrongAccept | Accept | WeakAccept | Discuss

| StrongReject | Reject | WeakReject
:: Familiarity = Expert | Knowledgeable | Low
:: RefPerson = RefPerson (Ref2 Person)
:: RefPaper = RefPaper (Ref2 Paper)
:: RefReport = RefReport (Ref2 (Maybe Report))
:: RefDiscussion = RefDiscussion (Ref2 Discussion)

A.2 A Sample of the Entity-Relations Specified as Functions

getRefPapers :: ConfAccounts → [(PaperNr ,RefPaper)]
getConflicts :: ConfAccounts → [(RefPerson , [PaperNr])]
getAssignments :: ConfAccounts → [(RefPerson , [PaperNr])]
getConflictsAssign :: ConfAccounts → [(RefPerson , [PaperNr] , [PaperNr])]

A Pattern Logic for Prompt Lazy Assertions

in Haskell�

Olaf Chitil1 and Frank Huch2

1 University of Kent, UK
oc@kent.ac.uk

2 CAU Kiel, Germany
fhu@informatik.uni-kiel.de

Abstract. Assertions test expected properties of run-time values with-
out disrupting the normal computation of a program. Here we present
a library for enriching programs in the lazy language Haskell with as-
sertions. Expected properties are written in an expressive pattern logic
that combines pattern matching with logical operations and predicates.
The presented assertions are lazy: they do not force evaluation but only
examine what is evaluated by other parts of the program. They are also
prompt: assertion failure is reported as early as possible, before a faulty
value is used by the main computation.

1 Introduction

Large programs are composed of algorithms and numerous (more or less) ab-
stract data types which interact in complex ways. A bug in the implementation
of a basic data structure can result in the whole program going wrong. Such a
bug can be hard to locate, because the faulty data structure may not be part of
the wrong result, it may just be an intermediate data structure. Even worse, the
program may produce wrong results for a long time before the user even notices.

Testing abstract data types exhaustively is difficult. However, interesting test
cases often occur when data structures are used within other algorithms. Hence it
is a good idea to check for bugs in basic data structures and functions during the
execution of larger programs. Using assertions is a common approach to do so.
The programmer specifies intended properties of data structures and functions
by writing assertions. During program execution, these assertions are tested and
failure of an assertion is reported to the programmer. Examples of assertions
are restricting the square root function to positive arguments or the property of
being sorted for a search tree.

The Glasgow Haskell Compiler (GHC) already provides the possibility to
define assertions:
assert :: Bool -> a -> a

� This work has been partially supported by the German Research Council (DFG)
under grant Ha 2457/5-2 and by the United Kingdom under EPSRC grant
EP/C516605/1.

Z. Horváth, V. Zsók, and A. Butterfield (Eds.): IFL 2006, LNCS 4449, pp. 126–144, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Pattern Logic for Prompt Lazy Assertions in Haskell 127

The first argument is the asserted property. If this property evaluates to True,
then assert behaves like the identity function. Otherwise, an error is reported
with detailed information about the source code position of the failed assertion.
For example, consider an assertion that checks whether a list is sorted:
checkSorted :: Ord a => [a] -> [a]
checkSorted xs = assert (sorted xs) xs

sorted :: Ord a => [a] -> Bool
sorted (x:y:ys) = x<=y && sorted (y:ys)
sorted _ = True

Unfortunately assert is strict in its Boolean argument which clashes with
Haskell’s laziness. The asserted property is evaluated and the tested data struc-
ture is evaluated as far as necessary to decide the property. Hence, programming
with assertions will result in strict programs with loss of the expressive power of
laziness, e.g., the use of infinite data structures.

We conclude that assertions in lazy languages should respect laziness. They
should only be evaluated as far as possible, i.e., an assertion should only be
checked for the part of the data structure which is evaluated during the compu-
tation. A first approach for lazy assertions is [2]. It is based on
assert :: String -> (a -> Bool) -> a -> a

The first parameter is a label naming the assertion. When an assertion fails, the
computation aborts with an appropriate message that includes the assertion’s
label. As further parameters assert takes the property and the value on which
it behaves as a partial identity.

To prevent an assertion from evaluating too much, the property has to be de-
fined as a predicate on the tested data structure. The implementation of assert
ensures that only the context in which the application of assert appears deter-
mines how far the tested data structure is evaluated. Only the evaluated part is
passed as argument to the predicate.

We can redefine checkSorted as follows:
checkSorted xs = assert "sorted" sorted xs

Applying checkSorted to the list [1,3,2,4] yields:
Assertion (sorted) failed: 1:3:2:_

The failure is reported as early as possible, before the whole list is evaluated.
However, the approach of [2] has a major drawback. If we evaluate only the
tail of the observed list, no failure occurs, although the evaluated part of the
observed data structure is not sorted:
> tail (checkSorted [1,3,2,4])
[3,2,4]

The reason for this behaviour is that the function (&&) used in the definition
of the predicate sorted is sequentially defined. The assertion is suspended on
checking the sorted property for the first two elements of the list. The conjunction

128 O. Chitil and F. Huch

is never evaluated to False, although there are two elements in the evaluated
part which are not in order.

In practice, many lazy assertions are suspended exactly for this reason. Many
asserted properties may not hold for evaluated parts of data structures, but
the assertions do not fail and hence, the programmer wrongly believes their
program to be correct. The evaluation of an assertions involves a sequential
evaluation order, which may not be related to the evaluation order of the program
generating/evaluating the data structures.

In this paper we introduce a new approach for lazy assertions. The basic
idea is to define assertions by means of a pattern logic instead of arbitrary
Haskell functions. In this logic, we express properties with parallel versions of
(&&) and (||). If any of the arguments of such a parallel operator makes the
whole assertion fail, then this is reported independently of the other parts of the
assertion. Furthermore, our assertions are checked as early as possible, which
we call promptness. Whenever a new part of a data structure is required by the
main computation, assertions are checked for this part and any assertion failure
is reported before a faulty value is used by the main computation.

Although in some cases this approach may be more complicated than defining
assertions within the programming language Haskell itself, there is also an oppor-
tunity. Our pattern logic is more a specification language than a programming
language. Hence, properties are asserted in a style that is completely different
to ordinary programs. So it is unlikely that programmers will make the same
mistakes in the assertions as in the program, which may happen easily using the
same language for programming as for specifying properties.

Beside reporting failed assertions, reporting how many and which assertions
have succeeded may also be useful. We collect succeeded assertions in a file, so
that the programmer can later analyse which assertions succeeded. However,
not every assertion is supposed to succeed in the presence of laziness. The user
must be aware that in many cases checking assertions suspends and cannot be
decided on the evaluated parts of the data structures. This behaviour is even
required when a property shall be tested on a never fully evaluated infinite data
structure. However, if an assertion fails because of any part of an evaluated data
structure, then this is reported immediately.

Our assertions have the following properties:

– They do not modify the lazy behaviour of a program.
– Whenever some part of a data structure is evaluated and this part violates

an asserted property, this is promptly reported to the programmer.
– Assertions are implemented as a library and do not need any compiler or

run-time modifications; the only extension to Haskell 98 used for the imple-
mentation are unsafePerformIO and IORefs.

In Sections 2 to 5 we explain how to use our pattern logic by means of examples.
Section 6 outlines how the implementation works. In Section 7 we discuss related
work and we close in Section 8.

A Pattern Logic for Prompt Lazy Assertions in Haskell 129

2 Patterns and Quantification

In the following sections we introduce our pattern logic step by step and justify
our design decisions through examples.

2.1 Patterns

Pattern matching is a powerful feature of modern functional languages. The
pattern is a kind of prototype of a function’s argument. For example, it allows a
simple definition of a function that tests whether a list has exactly two elements:
hasTwoElements :: [Int] -> Bool
hasTwoElements (_:_:[]) = True
hasTwoElements _ = False

We can define a function that is basically the identity function on lists but
additionally asserts that the argument has exactly two elements as follows:
twoElements :: [Int] -> [Int]
twoElements = assert "two elements" (p_ <:> p_ <:> pNil)

So what are the new functions used in this definition? We cannot use built-in
pattern matching for prompt lazy assertions and we do not want to extend the
language Haskell. Therefore, we implement our pattern logic using an abstract
type constructor Pat. We provide functions for constructing Pats:
p_ :: Pat a is the wildcard pattern that matches everything;
pNil :: Pat [a] and (<:>) :: Pat a -> Pat [a] -> Pat [a]

construct patterns that match the two data constructors of the list type. Using
these pattern constructors we can write p_ <:> p_ <:> pNil to express a Pat
similar to the pattern : :[] used in the definition of hasTwoElements. For
every predefined data type appropriate patterns are defined, e.g., pNothing and
pJust for matching Maybe values and pPair for matching pairs.

The assertion itself is expressed with
assert :: Observe a => String -> Pat a -> a -> a

The type of any value we make assertions about has to be an instance of class
Observe, whose rôle is explained later.

Whereas hasTwoElements forces the evaluation of the list constructors of its
argument to perform pattern matching, twoElements is lazy: the argument is
only evaluated as far as its result is demanded by the caller of twoElements.

In many cases it will be useful to combine patterns by means of the logical
conjunction and disjunction operators:
(|||) :: Pat a -> Pat a -> Pat a (&&&) :: Pat a -> Pat a -> Pat a

For instance, we can now define an assertion which expresses that a list contains
less than two elements:
shortList :: [a] -> [a]
shortList = assert "length less than two" (pNil ||| p_ <:> pNil)

130 O. Chitil and F. Huch

2.2 Context Patterns

When specifying properties of large data structures, it is not sufficient to match
a finite initial part of the data structure. We would like to be able to match
patterns in arbitrarily deep contexts, for example, to select an arbitrary element
of a list. Hence we provide context patterns within our pattern logic. The pattern
constructor
pListC :: Pat [a] -> Pat [a]

matches its argument pattern against arbitrary sublists of a list. For example
oneTrue :: [Bool] -> [Bool]
oneTrue = assert "True in list" (pListC (pTrue <:> p_))

asserts that there exists an element True in the argument list.

2.3 Universal and Existential Quantification

Why does the preceding example assert that there exists an element True? Could
it not mean that all elements should be True? Indeed we will sometimes want to
assert a property for all sublists and sometimes want to assert that there exists
a sublist with a given property. Hence we introduce the quantifier patterns
forAll, exists :: Pat a -> Pat a

which change the meaning of context patterns within their scope. So
exists (pListC (pTrue <:> p_))

asserts that there exists an element True whereas
forAll (pListC ((exists pTrue) <:> p_))

asserts that all list elements are True.
Why is there a nested exists in the last example? Because quantifiers do

not only change the semantics of context patterns, but also of normal patterns.
Within the scope of forAll a constructor pattern such as pTrue matches any
other constructor. Because of the quantifier forAll the context pattern pListC
has to match all sublists with its argument pattern. In any finite list one sublist
will be []. We could list this alternative in our definition:
forAll (pListC (pTrue <:> p_ ||| pNil))

This is acceptable for lists, but not for more complex types with more construc-
tors, such as abstract syntax trees. We would have to add a disjunction for every
constructor and the size of assertions would blow-up unacceptably. Therefore we
decided that within the scope of forAll a pattern built from (<:>) also matches
the empty list. In contrast, in an existential context the pattern describes which
structure is supposed to exist. Hence, non-matching sub-data-structures should
not match the pattern inside exists. So within the scope of forAll the pat-
tern exists pTrue <:> p_ matches both the empty list and a non-empty list
that does start with True. In contrast, the pattern pTrue <:> p_ also matches a
non-empty list starting with False. Additionally, the dependence of the pattern
semantics on quantification becomes crucial in the context of predicates with
several arguments, as we will show in Section 3.4.

The function assert implicitly surrounds its pattern by exists. Hence in the
preceding subsection the pattern context is existentially quantified.

A Pattern Logic for Prompt Lazy Assertions in Haskell 131

3 Predicates

Pattern matching cannot express properties of primitive types, such as a number
being positive or a number being greater than another. For expressing such
properties, Haskell enriches standard pattern matching with guards, in which
the programmer specifies restrictions for the bound variables.

3.1 Unary Predicates

Because we cannot define a new variable binding construct within Haskell, we
cannot bind normal variables in our patterns. Instead, we introduce a new pat-
tern val that represents binding a variable to a value. To check a property of
such a “variable” we provide a function check.

For example, we define an assertion that checks whether a number is positive:
posInt :: Int -> Int
posInt = assert "positive" (check val (>0))

Similarly, we can define a more complex assertion that checks whether all ele-
ments of a list are positive:
allPos :: [Int] -> [Int]
allPos =

assert "all positive" (forAll (pListC ((check val (>0)) <:> p_)))

3.2 Predicates with Several Arguments

Unary predicates are not very expressive. For instance, it is not possible to
compare two elements of a data structure, as it is necessary for expressing the
property of being sorted. Hence we extend the function check so that values
from different vals can be compared in a predicate:
sortedList :: [Int] -> [Int]
sortedList = assert "sorted"

(forAll (check (pListC (val <:> (pListC (val <:> p_)))) (<=)))

We select two elements within a list (respecting their positions in the list) by
means of two list contexts, and check whether these two elements are in order.
The assertion is checked for every possible combination of elements in the list.
Evaluating sortedList [2,4,6,3,5], the following failure is reported:
Assertion (sorted) failed: 2: 4 :6: 3 :_

The result of the application is the list itself. For printing this list, the list has to
be evaluated from left to right. When the list element 3 is evaluated, the assertion
fails. The list elements which cause the assertion to fail are highlighted. Because
the remaining list is not evaluated at all, an underscore is presented to the user
for the unevaluated tail of the list. With a different evaluation order of the values
within the list other failure positions may be reported. However, our assertions
are prompt. When an assertion fails during the evaluation of a data structure,
this is directly reported to the user. The data structure is not evaluated any
further.

Checking sortedList is expensive in time (O(n2), where n is the length of
the list). Using the transitivity of (<=), we can define a linear variant instead:

132 O. Chitil and F. Huch

sortedLin :: [Int] -> [Int]
sortedLin = assert "sortedLin"

(forAll (check (pListC (val <:> val <:> p_)) (<=)))

However, assertions should be seen as high-level specifications for which it is
more important to be understandable and correct than to be efficient. Further-
more, this more efficient implementation has another drawback. If only every
second element of the list is evaluated, then sortedLin will not compare any
list element, i.e., for a list which is only evaluated to 1: :2: :1: sortedLin
does not fail, whereas the less efficient assertion sortedList would fail. On the
other hand, in practice evaluation orders like this one are uncommon and failure
of sortedLin will in most cases be detected as early as failure of sorted.

3.3 The Pattern Type

When introducing predicates with more than one argument, we have to extend
the definition of patterns (Pat) as well. Applying check to a pattern and a pred-
icate function, we have to guarantee that the predicate takes as many arguments
as vals occur in the pattern. Furthermore, the type of each value matched by
val and the corresponding argument of the predicate must agree. In other words,
check should have a type like
check :: Pat a (b1,. . .,bn) -> (b1->. . .->bn->Bool) -> Pat a ()

where b1,. . .,bn are the types of the values matched by vals. How can such a
type be expressed within Haskell 98? We want check to work with predicates of
any arity. Even a set of check functions indexed by arity would not do as a first
take at the type of a simple constructor pattern demonstrates:
(<:>) :: Pat a (b1,. . .,bn) -> Pat [a] (bn+1,. . .,bm)

-> Pat [a] (b1,. . .,bm)

How shall we handle all these varying numbers of arguments collected by val
for the predicate tested by check? The solution is to extend the type constructor
Pat not by one but by two type arguments. The first is the type of a predicate
passed as input to the pattern and the second is the type of a predicate resulting
from the pattern. We revise the types as follows:
check :: Pat a (b1->. . .->bn->Bool) Bool -> (b1->. . .->bn->Bool)

-> Pat a Bool Bool

(<:>) :: Pat a (b1->. . .->bm->Bool) (bn+1->. . .->bm->Bool) ->
Pat [a] (bn+1->. . .->bm->Bool) Bool
-> Pat [a] (b1->. . .->bm->Bool) Bool

These are still not Haskell 98 types, but they are instances of types that we can
use:
check :: Pat a b Bool -> b -> Pat a c c
(<:>) :: Pat a b c -> Pat [a] c d -> Pat [a] b d

So the second type argument of Pat is the type of a value passed into the pattern
and the third type argument is the type of a value passed back out of the pattern,
if the pattern matches. We always use patterns for which these passed values are
predicates or simply Boolean values.

A Pattern Logic for Prompt Lazy Assertions in Haskell 133

The type of check expresses that the predicate of type b has to be applied
to all its arguments in the pattern to return a Boolean value. The variable
bindings within check are encapsulated. Also, while check tests the predicate
for its argument pattern, it also accepts a predicate as input which it passes
back unchanged, if the pattern matches.

We have the following type for the variable pattern:

val :: Pat a (a -> b) b

This type expresses that the input function is applied to the matched value and
the result is passed back. We do not discuss all modified type signatures here.

To make our assertions lazy, val can only be performed if the selected data
structure is fully evaluated. Otherwise the predicate would be tested on partially
evaluated values, which could involve further evaluation destroying the laziness
of our assertions. However, the pattern val is usually used for values of primitive
types, which cannot be evaluated partially at all.

3.4 Example: Equal Sets

Let us define the property that two sets (implemented as unordered lists with-
out repeated items) contain the same elements. A simple way to describe this
property would be the following:

For each element of the first list, there exists an equal element in the
second list and
for each element of the second list, there exists an equal element in the
first list.

Using our quantifiers, the first of these two assertions can easily be defined as
follows:

subset :: ([Int],[Int]) -> ([Int],[Int])
subset = assert "already subset"

(check (pPair (forAll (pListC (val <:> p_)))
(exists (pListC (val <:> p_))))

(==))

The quantifiers are nested with respect to the order in which they appear within
the linearly written formula. Hence, for every element of the first list an equal
element within the second list has to exist. Expressing the other direction is more
difficult, because the nesting of quantifiers (forAll exists) has to be applied
in the reverse order of the tuple elements. We need to first select any element of
the second list and then check whether there exists the same element within the
first list. This can be expressed by matching the same data structure twice, by
means of a modified conjunction operator

(+++) :: Pat a b c -> Pat a c d -> Pat a b d

which applies both argument patterns to the same data structure and collects
all vals within the two argument patterns (all combinations — like a product)
to apply a predicate to these by means of check. Using this operator, we can
define the complete assertion as:

134 O. Chitil and F. Huch

equalSets :: ([Int],[Int]) -> ([Int],[Int])
equalSets = assert "equal sets"

(check (pPair (forAll (pListC (val <:> p_)))
(exists (pListC (val <:> p_)))

&&& (pPair p_ (forAll (pListC (val <:> p_)))
+++ pPair (exists (pListC (val <:> p_))) p_)))

(==))

Evaluation of equalSets ([1,2,3],[3,2,2,1]) just yields the tuple of sets,
whereas the call equalSets ([1,2,3],[3,2,4,2,1]) aborts with the message:

Assertion (equal sets) failed: (1:(2:(3: [])),3:(2:(4 :_)))

For the element 4 of the second list, no element was found in the first list. In the
presence of existential properties it is not so easy to show the programmer where
an assertion failed. The first list does not contain the element 4. Marking the
first list completely would present the reason for the failure of the existentially
quantified part. However, this would often mean that the whole data structure
is marked. Hence, we decided to mark only that part of the data structure,
at which the failure of the existential pattern is observed. To distinguish these
sub-terms from those causing failure of a universally quantified val we use a
lighter colour for marking. In this application the lists were evaluated from left
to right. As a consequence, the empty list made the decision that the assertion
fails possible and we mark it. If the elements of the list were evaluated in another
order, another element might be highlighted.

This example also shows why the design decision of making the constructor
pattern semantics dependent on quantification is crucial. If the constructor pat-
tern <:> does not match the empty list within a forAll context, then we have to
add patterns for all other constructors (the empty list), i.e., replace the pattern

(forAll (pListC (val <:> p_)))

by the disjunction
(forAll (pListC ((val <:> p_) ||| pNil)))

Unfortunately, this is not possible and results in a type error. The pattern pNil
does not yield a value for which we can check whether it occurs in the other list.

4 Further Patterns and Assertion Features

4.1 Functions

So far, our approach allows programmers to annotate arbitrary data structures
with assertions. However, where should a programmer add such assertions? To
express pre- and post-conditions, it would be nice to add assertions directly
to functions. Furthermore, in a higher-order language, it should be possible to
add assertions to functional arguments, functional return values, and functions
within data structures as well.

In our pattern logic we handle functions just like any other data structure.
The idea is that a function can be seen as a set of argument/result pairs which
are matched by the function pattern
(-->) :: Pat a c d -> Pat b d e -> Pat (a -> b) c e

A Pattern Logic for Prompt Lazy Assertions in Haskell 135

The first argument of (-->) is matched against the argument the function is
applied to. The second argument is matched against the function result. An
assertion for functions will usually contain predicates relating arguments and
results. Hence, its type is similar to any pattern constructor of arity two.

Because again b can be a functional type, patterns for functions with higher
arity can be defined by nested (-->) applications. As an example we consider
the greatest common divisor (gcd) of two numbers. A reasonable assertion for
gcd is that the result is a factor of both arguments:
gcd :: Int -> Int -> Int
gcd = assert "result is factor of arguments"

(forAll (check (val --> val --> val)
(\x y res -> mod x res==0 && mod y res==0))) gcd’

gcd’ :: Int -> Int -> Int
gcd’ n m = let r = n ‘mod‘ m in if r == 0 then m else gcd n r

The algorithm is implemented by the function gcd’. For the assertion, we add
a wrapper gcd which checks every application of gcd’. The function works cor-
rectly for many arguments, but we finally get a report like:

Assertion (result is factor of arguments) failed: 6 -> 9 -> 6

The function gcd applied to the arguments 6 and 9 yields 6, which is wrong,
because 6 is not a factor of 9. The reason is the wrong argument of gcd in the
recursive call to gcd: we wrote n instead of m. After fixing the bug, the assertion
is always satisfied.

In contrast to data structures, which are only evaluated once during the com-
putation, functions can be applied many times. The assertion is checked for each
application and any failure is reported to the programmer.

The definition of gcd demonstrates how programmers should add assertions
to their functions. The defined function is renamed (here to gcd’) and a wrapper
with the original name (gcd) is defined.

Because (-->) is just a standard pattern constructor, its usage is not re-
stricted to top-level function definitions. We can also use it for asserting proper-
ties of functional arguments and results as well as for functions occurring within
data structures.

4.2 Negation and Implication

Finally we add negation to the logic: neg :: Pat a b Bool -> Pat a b Bool

We restrict negation to Boolean formulas, because using values selected by both
negated and non-negated patterns in the same predicate does not make sense.
We can, for example, define implication in the common way:
(==>) :: Pat a b Bool -> Pat a b Bool -> Pat a b Bool
(==>) pat1 pat2 = neg pat1 ||| pat2

136 O. Chitil and F. Huch

4.3 Positions in Data Structures

For tree-like data structures it can be useful to compare positions of selected
values in the structure. We provide positional information by means of
valPos :: Pat a ((Pos,a) -> b) b

where Pos is an abstract data type which can be compared by functions such as
moreLeft :: Pos -> Pos -> Bool above :: Pos -> Pos -> Bool

p1 ‘moreLeft‘ p2 is true iff in an in-order traversal of the data structure p1
is reached before p2 is reached. p1 ‘above‘ p2 is true iff position p2 is within
the substructure at position p1 . For example, using positions, the property of
being sorted can be defined as follows:
sortedPos = assert "sortedPos"

(forAll (check (pListC (valPos <:> p_) +++ pListC (valPos <:> p_))
(\ (p1,x1) (p2,x2) -> p2 ‘moreLeft‘ p1 || x1<=x2))

We non-deterministically select two elements of the list and compare them taking
their positions into account.

4.4 Deactivating Assertions

Any system supporting assertions enables the programmer to easily deactivate
assertions. Hence we provide a module AssertWithoutCheck with a function
assert that is just implemented as the identity function on its third argument
and does not check any assertion. To deactivate assertions the programmer re-
places import Assert by import AssertWithoutCheck in their program.

While it may be advisable to leave simple assertions (“argument greater zero”)
in production code, our pattern logic encourages the formulation of properties
of large data structures. Testing these properties is inherently time consuming.
For example, it is infeasible in practice to check in a compiler after every update
of the symbol table that the whole table is sorted with respect to a key.

5 Defining New Patterns

Using our library does not come for free. The user has to define pattern con-
structors for their own data types. For each algebraic data type they usually
have to define – a context pattern,

– pattern constructors for all its constructors, and
– an instance of the class Observe.

To make these definitions as simple as possible, we provide a set of combina-
tors, shown in Figure 1. The implementation of observers and the abstract data
type Obs a, will be discussed in more detail in Section 6. Here we concentrate
on what a programmer has to do to assert properties for their data types. As an
example, we introduce a data type Tree for polymorphic trees in Figure 2 and
show the definitions the programmer has to write for the pattern logic.

First, the programmer has to define an instance of the class Observe: for each
constructor, they have to define an observation function. We provide generic

A Pattern Logic for Prompt Lazy Assertions in Haskell 137

class Observe a where
observe :: a -> Obs a

o0 :: a -> String -> Obs a
o1 :: Observe a => (a -> b) -> String -> a -> Obs b
o2 :: (Observe a,Observe b) => (a -> b -> c) ->

String -> a -> b -> Obs c
o3 :: (Observe a,Observe b,Observe c) => (a -> b -> c -> d) ->

String -> a -> b -> c -> Obs d
. . .
pat0 :: (a -> Maybe ()) -> Pat a b b
pat1 :: (a -> Maybe b) -> Pat b e f -> Pat a e f
pat2 :: (a -> Maybe (b,c)) -> Pat b e f -> Pat c f g -> Pat a e g
pat3 :: (a -> Maybe (b,c,d)) -> Pat b e f -> Pat c f g -> Pat d g h ->

Pat a e h
. . .
patContext :: (a -> [(Int,a)]) -> Pat a b c -> Pat a b c

Fig. 1. Combinators for defining patterns for new types

data Tree a = Node (Tree a) a (Tree a) | Empty

instance Observe a => Observe (Tree a) where
observe (Node lt n rt) = o3 Node "Node" lt n rt
observe Empty = o0 Empty "Empty"

pNode :: Pat (Tree a) b c -> Pat a c d -> Pat (Tree a) d e
-> Pat (Tree a) b e

pNode = pat3 (\t -> case t of Node tl n tr -> Just (tl,n,tr)
_ -> Nothing)

pEmpty :: Pat (Tree a) b b
pEmpty = pat0 (\t -> case t of Empty -> Just ()

_ -> Nothing)

pTreeC :: Pat (Tree a) b c -> Pat (Tree a) b c
pTreeC = patContext (\t -> case t of Node tl n tr -> [(0,tl),(2,tr)]

Empty -> [])

Fig. 2. Extending the pattern logic for polymorphic trees

observers for constructors of any reasonable arity. These observers have to be
applied to the constructor function itself, a string representation of the construc-
tor and the arguments obtained from pattern matching. The programmer also
has to define the pattern constructors. Again, we provide generic versions for
pattern constructors (patn) for each arity. The only argument of these generic
patterns is a function which makes pattern matching a total function by means
of a Maybe type and a tuple of the same arity as the constructor. Finally, the
programmer has to define the context pattern for their new type. They should
use the generic function patContext, which takes a function that determines

138 O. Chitil and F. Huch

all arguments in which the type is recursive. We encode these arguments as a
list of the argument number and the corresponding actual argument. Note, that
descending within a data type only makes sense for arguments of the same data
type. Whenever we want to descend another type, we have to add a context of
this type. For instance, consider a tree of lists of Ints. An arbitrary Int within
this tree can be selected by the pattern
pTreeC (pNode p_ (pListC (val <:> p_)) p_)

Although a user has to generate some boilerplate code, we minimised the
required amount of work and possible mistakes by defining the abstractions
on, patn and patContext. In practice the effort for introducing observers and
patterns for each user defined datatype should be small. For GHC users we
additionally provide a module that enables fully automatic derivation of such
instances and functions by means of Template Haskell [14].

5.1 Example: Clausify

The program clausify by Colin Runciman takes a propositional formula of type
data Prop = Sym Char | Neg Prop | Dis Prop Prop |

Con Prop Prop | Imp Prop Prop | Eqv Prop Prop

and transforms it into clausal form. The program is a composition of several sim-
ple transformation stages. After each successive stage, the following properties
should hold, cumulatively:

1. neg . exists $ pPropC (pImp p_ p_ ||| pEqv p_ p_)
Implication (Imp) and equivalence (Eqv) have been eliminated.

2. forAll (pPropC (exists (pNeg p_) ==> exists (pNeg (pSym p_))))
Neg (Sym) is the only permitted form of negation. Note, that ==> matches
its argument patterns against the same data.

3. neg . exists $ pPropC (pDis (pCon p_ p_) p_ |||
pDis p_ (pCon p_ p_))

No conjunction occurs within a disjunction.

Intentionally introduced faults usually cause the program to abort with a
pattern-match failure at a later stage. Our assertions always report a failed
assertion before such a pattern-match failure occurs, in contrast to [2], where
the same properties are asserted.

6 Implementation

We have space to give only a rough outline of how our assertion library works.
The implementation combines two ideas: We use the technique of the Haskell
Object Observation Debugger (HOOD) [6] to observe when a part of a value is
demanded and get access to this part of the value. We check assertion patterns
in coroutines that are implemented via continuations.

We have to check an assertion pattern for the argument of assert before
the argument is used by the context of the assertion application, but we can-
not evaluate the argument further than the context of the assertion application

A Pattern Logic for Prompt Lazy Assertions in Haskell 139

instance Observe a => Observe [a] where
observe [] r = ...
observe (x:xs) r = unsafePerformIO $ do
Uneval routines <- readIORef r
rx <- newIORef (Uneval (return ()))
rxs <- newIORef (Uneval (return ()))
writeIORef r (Cons "(:)" [rx,rxs])
routines -- activate suspended assertions
return (observe x rx : observe xs rxs)

Fig. 3. Observe instance for lists

demands. So we use the technique of HOOD and wrap the argument with a
function observe :: Observe a => a -> EvalTreeRef -> a. This function is
a non-strict identity, except that as a side-effect it records how far the value of
the argument has been demanded by the context. This information is recorded
in an evaluation tree1:
data EvalTree = Cons String [EvalTreeRef] | Uneval (IO ())
type EvalTreeRef = IORef EvalTree

Every time the argument is further evaluated, the evaluation tree grows at a leaf
via a mutable variable EvalTreeRef.

All suspended assertions (pattern matches) are stored as IO actions in un-
evaluated leaves. When the corresponding part is evaluated, the IO actions are
executed and thus checking continues, as the non-empty list case of the Observe

instance declaration for lists in Figure 3 shows. Checking an assertion pattern
is performed on the evaluation tree. The checking functions are defined in con-
tinuation style. So when a checking function comes across a leaf of the tree that
indicates a yet unevaluated part, the IO action is extended by further checks
(which themselves can again extend other actions when executed). So we have
implemented a scheduler for coroutines with waiting coroutines stored in the
evaluation tree. Assuming that the predicates used in patterns terminate, all
pattern checking terminates and hence we do not need preemptive concurrency
but cooperating coroutines suffice. The observe function ensures that all check-
ing coroutines run before a part of an argument is returned to the program
context. Thus an assertion will always report failure before a faulty value is
returned to the program context.

To illustrate the mechanism of extending suspended checks in more detail, we
briefly discuss the code of some patterns. The type Pat is defined as a function
with result type IO() which is stored in the initially unevaluated EvalTreeRef
within assert2:
type Join = Bool -> IO ()
type Pat a b c = Bool -> EvalTreeRef -> a -> b -> Join ->

(Join -> c -> IO ()) -> IO ()

1 Hence, the type Obs already used in Figure 1 can be defined as:
type Obs a = EvalTreeRef -> a

2 To obtain better type error messages, Pat is defined as an abstract datatype guarded
by a constructor in the real implementation.

140 O. Chitil and F. Huch

Successively, the arguments of the Pat function have the following meanings

– a Boolean value distinguishing the two quantification contexts,
– the evaluation tree on which the pattern is supposed to be checked,
– the real value (which may not be evaluated further),
– the partially applied check function,
– a join function which combines results of parallel pattern matching by means

of (&&&) or (|||) and which depends on quantification,
– and a continuation passing a join function and the remaining checks (c) to

be performed in val patterns.

The pattern matching itself can be illustrated with the definition of (<:>):
(<:>) :: Pat a b c -> Pat [a] c d -> Pat [a] b d
(patx <:> patxs) ex r y p join c = do

evalT <- readIORef r
case evalT of
Uneval routines -> -- extend suspended assertions
writeIORef r (Uneval (routines >> patx <:> patxs ex r y p join c))

Cons _ rs -> case y of
(y:ys) -> let [rx,rxs] = rs in

patx ex rx x p join
(\join2 p2 -> patxs ex rxs xs p2 join2 c)

_ -> join (not ex)
If the data structure to be matched has not been evaluated yet, then the sus-
pended check action is extended with the actual matching. Otherwise, pattern
matching is performed. If it succeeds, the sub-patterns are matched (in continua-
tion style). If it fails, no further pattern matches have to be performed; the local
result of pattern matching can be combined with other pattern matches executed
in “parallel”, which should become clearer from the definition of the parallel con-
junction and disjunction of patterns. Both can be defined by means of a more
general function (***) which stores two patterns within the evaluation tree:
(***) :: Pat a b c -> Pat a b c -> Pat a b c
(***) pat1 pat2 ex r x p join c = do

rcount <- newIORef 2
pat1 ex r x p (newJoin rcount join) c
pat2 ex r x p (newJoin rcount join) c
where
newJoin = if ex then ... else ...

forAll :: Pat a b c -> Pat a b c
forAll pat _ = pat False

exists :: Pat a b c -> Pat a b c
exists pat _ = pat True

(&&&) :: Pat a -> Pat a -> Pat a
pat1 &&& pat2 = forAll (pat1 *** pat2)

(|||) :: Pat a -> Pat a -> Pat a
pat1 ||| pat2 = exists (pat1 *** pat2)

A Pattern Logic for Prompt Lazy Assertions in Haskell 141

The initial value of join is a function that prints that the assertion succeeded or
failed, depending on the Boolean value. In the definition of the combinator (***)
the join continuation is extended. The newJoin applied in both coroutines uses
a common reference so that a coroutine can determine if it is the first to do
the join. Thus a parallel conjunction or disjunction can be implemented. When
the first coroutine yields False for an argument of a conjunction, the result of
the conjunction is determined and the coroutine evaluates the remaining join.
When the first coroutine yields True for an argument of a conjunction, it updates
the common reference accordingly and terminates. The second coroutine will
evaluate the remaining join. We obtain a parallel implementation of conjunction
and disjunction.

Unlike [2] our implementation of assertions does not use any features of Con-
current Haskell [12], which is a substantial extension of Haskell that is fully im-
plemented only in GHC. Like [2] we need references to mutable variables in the
IO monad (IORefs) and the function unsafePerformIO :: IO a -> a. These
two language extension are provided by all Haskell systems. Using the function
unsafePerformIO is dangerous, because it bypasses the safety net of the type
system. The alternative would be to modify a compiler and its run-time system,
which would be non-portable and far more complex.

7 Related Work

Assertions have been used in programs since the 1970s [11,13] and are directly
supported by many programming languages. In particular the object-oriented
programming language Eiffel is based on a “Design by Contract” philosophy
and language constructs directly support assertions to express contracts [8,9].

Assertion-based contracts have been introduced into the Scheme community
[5]. Findler and Felleisen motivate how assertions enable the programmer to
express interesting properties that they cannot express in existing type sys-
tems. The two issues dealt with here, ensuring that assertions are both lazy
and prompt, do not arise for a strict language such as Scheme, because all ex-
pressions are fully evaluated before an asserted property needs to be checked.
Hence arbitrary Scheme expressions can be used to express properties, but a
pattern logic might increase the usability of such contracts as well. Properties of
functions are also expressed as properties of the argument-result pairs. A major
concern of [5] is to determine which part of a program has to be blamed for the
failure of an assertion. For example, when the pre-condition of a function fails,
the caller of the function is to blame, when the post-condition fails, the function
itself is to blame. Because in a lazily evaluated language the runtime stack does
not reflect the call-structure, assigning blame is more complex. A cooperation
with the Haskell tracer Hat [4] and its redex trail view may provide a solution in
the future. Recently the contracts for Scheme have been transferred to Haskell
[7], but without taking account of its lazy semantics.

Chitil, McNeill and Runciman [2] previously expressed the need for assertions
to be lazy in a lazy language. They give several implementations but because

142 O. Chitil and F. Huch

properties are expressed as arbitrary Boolean-valued functions, assertions are
not prompt but often get stuck. Their most advanced implementation requires
Concurrent Haskell and their synchronisation that gives assertion threads higher
priority than the main computation can cause deadlocks. Properties of functions
can only be asserted by a special assertion combinator for functions with limited
expressibility. We can define a similar combinator with our pattern logic as well:
assertFun :: (Observe a, Observe b) => String ->

Pat a c d -> Pat b d Bool -> c -> (a -> b) -> (a -> b)
assertFun label patA patB p fun a = b’

where (a’,b’) = assert label (check (pPair patA patB) p) (a,fun a’)

To make assertions lazy, we have adapted the lazy observation technique of
the Haskell Object Observation Debugger (HOOD) [6]. In every application area
we know of it is used slightly differently. So the original HOOD records a linear
trace of events, in [2] a copy of the observed value is recorded, and here we
record the evaluation tree. We also intimately link scheduling of coroutines with
observations. Nonetheless we believe that it is possible to wrap up this useful
technique once and for all in a library that can then be used for the listed and
future application areas.

There are numerous proposals in the literature for extending the pattern
matching facilities of functional programming languages. Our context pattern
combinators were inspired by [10] and the pattern logic is similar to regular
expressions [1]. All these proposals aim to extend the expressiveness of the pro-
gramming language and the semantics of extended patterns is similar to that of
normal patterns. The pattern logic for prompt lazy assertions requires a different
semantics. Previous papers propose language extensions that require compiler
modifications or preprocessors, whereas we provide a portable library. Also, each
of our context pattern combinators matches only the data constructors of a single
type. Thus they are more specific and easier to use.

Basically our patterns describe a grammar and our pattern combinators are
parser combinators [15]. They do not parse a string or list of tokens but tree-
structured data. Hence our combinators have to leave the sequential structure of
normal parser combinators. As grammars describe context-free properties, the
similarity to parsing combinators gives an indication of the expressiveness of our
pattern logic; however, the combinator check used with several arguments goes
beyond grammars and allows the specification of context-sensitive properties.

QuickCheck is a library for testing Haskell programs with random data [3].
Properties are expressed as Haskell functions. For example, the property that
the function insert preserves order can be expressed as follows:
prop :: Int -> [Int] -> Property
prop x xs = sorted xs ==> sorted (insert x xs)

QuickCheck properties can use normal pattern matching and Boolean functions,
because they are only checked for total, finite data structures that are randomly
generated. Testing with random data and testing with real data as our assertions
do are two different methods which complement each other. A combined tool is
feasible, but to handle laziness it would need to use our pattern logic.

QuickCheck and assertions handle preconditions (like sorted xs in the ex-
ample) in distinct ways. In QuickCheck a precondition is a filter on the test data,

A Pattern Logic for Prompt Lazy Assertions in Haskell 143

so that a strong precondition makes it hard to obtain a sufficient amount of test
data. When that is the case, the user is left with the difficult task of defining a
special test generator that generates data fulfilling the precondition (for example
generate sensible abstract syntax trees for testing compiler phases). In contrast,
our assertions check for every call of a function that its preconditions are met by
the caller. So assertions naturally support the contract between caller and callee
whereas for QuickCheck preconditions cause additional problems.

8 Conclusions

We have presented a new approach for assertions in lazy functional programming
languages such as Haskell. Our assertions do not modify the run-time behaviour
of lazy execution (unless a predicate used by check fails to terminate). Assertions
are implemented by means of a pattern logic, a high level, abstract specification
language. Assertions provide a parallel implementation of conjunction and dis-
junction, which makes it possible to report failure of assertions promptly, before
faulty values can effect the rest of the computation. Our approach is implemented
as a library, without any modification of the compiler or the run-time system,
and only needs common extensions of Haskell 98.

For future work, we plan to add assertions to more real-life programs. The
practical experience we will gain will guide us in improving our pattern logic.
We may revise some design decisions and possibly add further combinators to
make the logic more expressive and/or easier to use.

We will also investigate which function should be blamed when an assertion
fails. Combining assertions with the Haskell tracer Hat [4] should enable the
programmer to locate the function to blame and even the precise fault location.

References

1. Broberg, N., Farre, A., Svenningsson, J.: Regular expression patterns. In: ICFP ’04:
Proceedings of the ninth ACM SIGPLAN international conference on Functional
programming, pp. 67–78. ACM Press, New York (2004)

2. Chitil, O., McNeill, D., Runciman, C.: Lazy assertions. In: Trinder, P., Michaelson,
G., Peña, R. (eds.) IFL 2003. LNCS, vol. 3145, pp. 1–19. Springer, Heidelberg
(November 2004)

3. Claessen, K., Hughes, R.J.M.: QuickCheck: a lightweight tool for random testing of
Haskell programs. In: Proc. 5th Intl. ACM Conference on Functional Programming,
pp. 268–279. ACM Press, New York (2000)

4. Claessen, K., Runciman, C., Chitil, O., Hughes, J., Wallace, M.: Testing and Trac-
ing Lazy Functional Programs using QuickCheck and Hat. In: Jeuring, J., Jones,
S.L.P. (eds.) AFP 2002. LNCS, vol. 2638, pp. 59–99. Springer, Heidelberg (August
2003)

5. Findler, R.B., Felleisen, M.: Contracts for higher-order functions. In: ICFP ’02:
Proceedings of the seventh ACM SIGPLAN international conference on Functional
programming, pp. 48–59. ACM Press, New York (2002)

144 O. Chitil and F. Huch

6. Gill, A.: Debugging Haskell by observing intermediate datastructures. Electronic
Notes in Theoretical Computer Science, In: Proc. 2000 ACM SIGPLAN Haskell
Workshop. vol. 41(1), (2001)

7. Hinze, R., Jeuring, J., Löh, A.: Typed contracts for functional programming. In:
Hagiya, M., Wadler, P. (eds.) FLOPS 2006. LNCS, vol. 3945, pp. 208–225. Springer,
Heidelberg (2006)

8. Meyer, B.: Applying “design by contract”. Computer 25(10), 40–51 (1992)
9. Meyer, B.: Eiffel: The Language. Prentice-Hall, Inc, Englewood Cliffs (1992)

10. Mohnen, M.: Context patterns, part II. In: Clack, C., Hammond, K., Davie, T.
(eds.) IFL 1997. LNCS, vol. 1467, pp. 338–357. Springer, Heidelberg (1998)

11. Parnas, D.L.: A technique for software module specification with examples. Com-
mun. ACM 15(5), 330–336 (1972)

12. Jones, S.P., Gordon, A., Finne, S.: Concurrent Haskell. In: Conference Record
of POPL ’96: The 23rd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pp. 295–308, 21–24 (January 1996)

13. Rosenblum, D.S.: A practical approach to programming with assertions. IEEE
Trans. Softw. Eng. 21(1), 19–31 (1995)

14. Sheard, T., Jones, S.P.: Template metaprogramming for haskell. In: Haskell Work-
shop 2002, (October 2002)

15. Swierstra, Alcocer.: Fast, error correcting parser combinators: A short tutorial. In:
Bartosek, M., Tel, G., Pavelka, J. (eds.) SOFSEM 1999. LNCS, vol. 1725, Springer,
Heidelberg (1999)

Ivor, a Proof Engine

Edwin Brady

School of Computer Science,
University of St Andrews, St Andrews, Scotland
Tel.: +44-1334-463253; Fax: +44-1334-463278

eb@cs.st-andrews.ac.uk

Abstract. Dependent type theory has several practical applications in
the fields of theorem proving, program verification and programming lan-
guage design. Ivor is a Haskell library designed to allow easy extending
and embedding of a type theory based theorem prover in a Haskell appli-
cation. In this paper, I give an overview of the library and show how it
can be used to embed theorem proving technology in an implementation
of a simple functional programming language; by using type theory as a
core representation, we can construct and evaluate terms and prove cor-
rectness properties of those terms within the same framework, ensuring
consistency of the implementation and the theorem prover.

1 Introduction

Type theory based theorem provers such as Coq [7] and Agda [8] have been
used as tools for verification of programs (e.g. [20,13,28]), extraction of correct
programs from proofs (e.g. [21]) and formal proofs of mathematical properties
(e.g. [14,16]). However, these tools are designed with a human operator in mind;
the interface is textual which makes it difficult for an external program to interact
with them. In contrast, the Ivor library is designed to provide an implemen-
tation of dependent type theory (i.e. dependently typed λ-calculus) and tactics
for proof and program development to a Haskell application programmer, via
a stable, well-documented and lightweight (as far as possible) API. The goal is
to allow: i) easy embedding of theorem proving tools in a Haskell application;
and ii) easy extension of the theorem prover with domain specific tactics, via a
domain specific embedded language (DSEL) for tactic construction.

1.1 Motivating Examples

Many situations can benefit from a dependently typed proof and programming
framework accessible as a library from a Haskell program. For each of these, by
using an implementation of a well understood type theory, we can be confident
that the underlying framework is sound.

Programming Languages. Dependent type theory is a possible internal rep-
resentation for a functional programming language. Correctness properties

Z. Horváth, V. Zsók, and A. Butterfield (Eds.): IFL 2006, LNCS 4449, pp. 145–162, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

146 E. Brady

of programs in purely functional languages can be proven by equational rea-
soning, e.g. with Sparkle [11] for the Clean language [32], or Cover [1] for
translating Haskell into Agda [8]. However these tools separate the language
implementation from the theorem prover — every language feature must be
translated into the theorem prover’s representation, and any time the lan-
guage implementation is changed, this translation must also be changed. In
section 4.2, we will see how Ivor can be used to implement a language with
a built-in theorem prover, with a common representation for both.

Verified DSL Implementation. We have previously implementated a veri-
fied domain specific language [5] with Ivor. The abstract syntax tree of a
program is a dependent data structure, and the type system guarantees that
invariant properties of the program are maintained during evaluation. Using
staging annotations [36], such an interpreter can be specialised to a transla-
tor. We are continuing to explore these techniques in the context of resource
aware programming [4].

Formal Systems. A formal system can be modelled in dependent type theory,
and derivations within the system can be constructed and checked. A simple
example is propositional logic — the connectives ∧, ∨ and→ are represented
as types, and a theorem prover is used to prove logical formulae. Having an
implementation of type theory and an interactive theorem prover accessible
as an API makes it easy to write tools for working in a formal system,
whether for educational or practical purposes. In section 4.1, I will give
details of an implementation of propositional logic.

In general, the library can be used wherever formally certified code is needed
— evaluation of dependently typed Ivor programs is possible from Haskell pro-
grams and the results can be inspected easily. Domain specific tactics are often
required; e.g. an implementation of a programming language with subtyping may
require a tactic for inserting coercions, or a computer arithmetic system may re-
quire an implementation of Pugh’s Omega decision procedure [34]. Ivor’s API
is designed to make implementation of such tactics as easy as possible.

In Ivor’s dependent type system, types may be predicated on arbitrary val-
ues. Programs and properties can be expressed within the same self-contained
system — properties are proved by construction, at the same time as the pro-
gram is written. The tactic language can thus be used not only for constructing
proofs but also for interactive program development.

2 The Type Theory, TT

2.1 The Core Calculus

The core type theory of Ivor is a strongly normalising dependently typed λ-
calculus with inductive families [12], similar to Luo’s UTT [22], the Calculus
of Inductive Constructions in Coq [7], or Epigram’s ETT [6]. This language,
which I call TT [3], is an enriched lambda calculus, with the usual reduction
rules, and properties of subject reduction, Church Rosser, and uniqueness of

Ivor, a Proof Engine 147

types up to conversion. More details on programming in TT are given in [3,4].
The strong normalisation property (i.e. that evaluation always terminates) is
guaranteed by allowing only primitive recursion over strictly positive inductive
datatypes. The syntax of terms (t) and binders (b) in this language is:

t ::= �i (type universes) b ::= λx : t (abstraction)
| x (variable) | let x �→ t : t (let binding)
| b. t (binding) | ∀x : t (function space)
| t t (application)

We may also write the function space ∀x :S . T as (x : S)→ T , or abbreviate
it to S → T if x is not free in T . This is both for readability and a notation
more consistent with traditional functional programming languages. Universe
levels on types (e.g. �0 for values, �1 for types, etc.) may be inferred as in [33].
Contexts (Γ) are collections of binders.

The typing rules, given below, depend on a conversion relation Γ � x � y ,
which holds if and only if x and y have a common reduct. This requires the
typechecker to normalise terms, to find the common reduct, so it is important
for decidability of typechecking that the language is strongly normalising.

Γ � valid
Γ � �n : �n+1

Type

(λx :S) ∈ Γ
Γ � x : S Var1

(∀x :S) ∈ Γ
Γ � x : S Var2

(let x : S �→ s) ∈ Γ
Γ � x : S Val

Γ � f : (x : S)→ T Γ � s : S
Γ � f s : T [s/x] App

Γ ; λx :S � e : T Γ � (x : S)→ T : �n

Γ � λx :S .e : (x : S)→ T Lam

Γ ; ∀x :S � T : �n Γ � S : �n

Γ � (x : S)→ T : �n
Forall

Γ � e1 : S Γ ; let x �→ e1 : S � e2 : T
Γ � S : �n Γ ; let x �→ e1 : S � T : �n

Γ � let x �→ e1 : S . e2 : T [e1/x] Let

Γ � x : A Γ � A′ : �n Γ � A � A′
Γ � x : A′ Conv

2.2 Inductive Families

Inductive families [12] are a form of simultaneously defined collection of algebraic
data types (such as Haskell data declarations) which can be parametrised over
values as well as types. An inductive family is declared in a similar style to a
Haskell GADT declaration [31] as follows, using the de Bruijn telescope notation,
	x , to indicate a sequence of zero or more x :

data T (x : 	t) : t where c1 : t | . . . | cn : t

148 E. Brady

Constructors may take recursive arguments in the family T. Furthermore these
arguments may be indexed by another type, as long it does not involve T — this
restriction is known as strict positivity and ensures that recursive arguments
of a constructor are structurally smaller than the value itself.

The Peano style natural numbers can be declared as follows:

data N : � where 0 : N | s : (k : N)→ N

A data type may have zero or more parameters (which are invariant across
a structure) and a number of indices, given by the type. For example, a list is
parametrised over its element type:

data List (A : �) : � where nil : List A
| cons : (x : A)→ (xs : List A)→ List A

Types can be parametrised over values. Using this, we can declare the type
of vectors (lists with length), where the empty list is statically known to have
length zero, and the non empty list is statically known to have a non zero length.
Vect is parametrised over its element type, like List, but indexed over its length.

data Vect (A : �) : N → � where
vnil : Vect A 0
| vcons : (k : N)→ (x : A)→ (xs : Vect A k)→ Vect A (s k)

2.3 Elimination Rules

When we declare an inductive family D, we give the constructors which explain
how to build objects in that family. Ivor generates from this an elimination
operator D-Elim and corresponding reductions, which implements the reduc-
tion and recursion behaviour of terms in the family — it is a fold operator. The
method for constructing elimination operators automatically is well documented,
in particular by [12,22,24]. For Vect, Ivor generates the following operator:

Vect-Elim : (A : �)→ (n : N) → (v : Vect A n)→
(P : (n : N)→ (v : Vect A n)→ �)→
(mvnil : P 0 (vnil A))→
(mvcons : (k : N)→ (x : A)→ (xs : Vect A k) →

(ih : P k xs) → P (s k) (vcons A k x xs))→
P n v

Vect-Elim A 0 (vnil A) P mvnil mvcons � mvnil

Vect-Elim A (s k) (vcons A k x xs) P mvnil mvcons

� mvcons k x xs (Vect-Elim A k xs P mvnil mvcons)

The arguments are the parameters and indices (A and n here), the target
(the object being eliminated; v here), the motive (a function which computes the
return type of the elimination; P here) and the methods (which describe how
to achieve the motive for each constructor form). Note the distinction between
parameters and indices — the parameter A is invariant across the structure so
is not passed to the methods as an argument, but n does vary, so is passed. A

Ivor, a Proof Engine 149

more detailed explanation of this distinction can be found in [22,3]. A case analy-
sis operator D-Case, is obtained similarly, but without the induction hypotheses.

2.4 The Development Calculus

For developing terms interactively, the type theory needs to support incomplete
terms, and a method for term construction. We extend TT with the concept
of holes, which stand for the parts of constructions which have not yet been
instantiated; this largely follows McBride’s Oleg development calculus [24].

The basic idea is to extend the syntax for binders with a hole binding and
a guess binding. The guess binding is similar to a let binding, but without any
computational force, i.e. the bound names do not reduce:

b ::= . . . | ?x : t (hole binding) | ?x : t ≈ t (guess)

Using binders to represent holes as discussed in [24] is useful in a dependently
typed setting since one value may determine another. Attaching a “guess” to
a binder ensures that instantiating one such value also instantiates all of its
dependencies. The typing rules for binders ensure that no ? bindings leak into
types, and are given below.

Γ ; ?x :S � e : T
Γ �?x :S . e : T x �∈ T Hole

Γ ; ?x :S ≈ e1 � e2 : T
Γ �?x :S ≈ e1. e2 : T x �∈ T Guess

3 The Ivor Library

The Ivor library allows the incremental, type directed development of TT terms.
In this section, I will introduce the basic tactics available to the library user,
along with the Haskell interface for constructing and manipulating TT terms.
This section includes only the most basic operations; the API is however fully
documented on the web1.

3.1 Definitions and Context

The central data type is Context (representing Γ in the typing rules), which is an
abstract type holding information about inductive types and function definitions
as well as the current proof state. All operations are defined with respect to the
context. An empty context is contructed with emptyContext :: Context.

Terms may be represented several ways; either as concrete syntax (a String),
an abstract internal representation (Term) or as a Haskell data structure
(ViewTerm). A typeclass IsTerm is defined, which allows each of these to be
converted into the internal representation. This typeclass has one method:

class IsTerm a where
check :: Monad m => Context -> a -> m Term

1 http://www.cs.st-andrews.ac.uk/~eb/Ivor/doc/

http://www.cs.st-andrews.ac.uk/~eb/Ivor/doc/

150 E. Brady

The check method parses and typechecks the given term, as appropriate, and
if successful returns the internal representation. Constructing a term in this way
may fail (e.g. due to a syntax or type error) so check is generalised over a monad
m — it may help to read m as Maybe. In this paper, for the sake of readability we
will use the syntax described in section 2.1, and assume an instance of IsTerm
for this syntax.

Similarly, there is a typeclass for inductive families, which may be represented
either as concrete syntax or a Haskell data structure.

class IsData a where
addData :: Monad m => Context -> a -> m Context

The addData method adds the constructors and elimination rules for the data
type to the context. Again, we assume an instance for the syntax presented in
section 2.2.

The simplest way to add new function definitions to the context is with the
addDef function. Such definitions may not be recursive, other than via the au-
tomatically generated elimination rules, ensuring termination:

addDef :: (IsTerm a, Monad m) => Context -> Name -> a -> m Context

However, Ivor is primarily a library for constructing proofs; the Curry-
Howard correspondence [10,18] identifies programs and proofs, and therefore
such definitions can be viewed as proofs; to prove a theorem is to add a well-
typed definition to the context. We would like to be able to construct more
complex proofs (and indeed programs) interactively — and so at the heart of
Ivor is a theorem proving engine.

3.2 Theorems

In the emptyContext, there is no proof in progress, so no proof state — the
theorem function creates a proof state in a context. This will fail if there is
already a proof in progress, or the goal is not well typed.

theorem::(IsTerm a, Monad m) => Context -> Name -> a -> m Context

A proof state can be thought of as an incomplete term, i.e. a term in the
development calculus. For example, calling theorem with the name plus and
type N → N → N, an initial proof state would be:

plus = ?plus :N → N → N

This theorem is, in fact, a specification (albeit imprecise) of a program for
adding two unary natural numbers, exploiting the Curry-Howard isomorphism.
Proving a theorem (i.e. also writing a program interactively) proceeds by apply-
ing tactics to each unsolved hole in the proof state. The system keeps track of
which subgoals are still to be solved, and a default subgoal, which is the next
subgoal to be solved. I will write proof states in the following form:

Ivor, a Proof Engine 151

bindings in the context of the subgoal x0

. . .

?x0 :default subgoal type
. . .
?xi :other subgoal types
. . .

Functions are available for querying the bindings in the context of any subgoal.
A tactic typically works on the bindings in scope and the type of the subgoal it
is solving.

When there are no remaining subgoals, a proof can be lifted into the context,
to be used as a complete definition, with the qed function:

qed :: Monad m => Context -> m Context

This function typechecks the entire proof. In practice, this check should never
fail — the development calculus itself ensures that partial constructions as well
as complete terms are well-typed, so it is impossible to build ill-typed partial
constructions. However, doing a final typecheck of a complete term means that
the soundness of the system relies only on the soundness of the typechecker for
the core language, e.g. [2]. We are free to implement tactics in any way we like,
knowing that any ill-typed constructions will be caught by the typechecker.

3.3 Basic Tactics

A tactic is an operation on a goal in the current system state; we define a type
synonym Tactic for functions which operate as tactics. Tactics modify system
state and may fail, hence a tactic function returns a monad:

type Tactic = forall m . Monad m => Goal -> Context -> m Context

A tactic operates on a hole binding, specified by the Goal argument. This can be a
named binding, goal :: Name -> Goal, or the default goal defaultGoal :: Goal.
The default goal is the first goal generated by the most recent tactic application.

Hole Manipulations. There are three basic operations on holes, claim, fill,
and abandon; these are given the following types:

claim :: IsTerm a => Name -> a -> Tactic
fill :: IsTerm a => a -> Tactic
abandon :: Tactic

The claim function takes a name and a type and creates a new hole. The fill
function takes a guess to attach to the current goal. In addition, fill attempts to
solve other goals by unification. Attaching a guess does not necessarily solve the
goal completely; if the guess contains further hole bindings, it cannot yet have any
computational force. A guess can be removed from a goal with the abandon tactic.

Introductions. A basic operation on terms is to introduce λ bindings into
the context. The intro and introName tactics operate on a goal of the form
(x : S) → T , introducing λx :S into the context and updating the goal to T .

152 E. Brady

That is, a goal of this form is solved by a λ-binding. introName allows a user
specified name choice, otherwise Ivor chooses the name.

intro :: Tactic
introName :: Name -> Tactic

For example, to define our addition function, we might begin with

?plus :N → N → N

Applying introName twice with the names x and y gives the following proof
state, with x and y introduced into the local context:

λx :N
λy :N

?plus H :N

Refinement. The refine tactic solves a goal by an application of a function
to arguments. Refining attempts to solve a goal of type T , when given a term
of the form t : (x : 	S) → T . The tactic creates a subgoal for each argument
xi, attempting to solve it by unification.

refine :: IsTerm a => a -> Tactic

For example, given a goal

?v :Vect N (s n)

Refining by vcons creates subgoals for each argument, attaching a guess to v :

?A :�
?k :N
?x :A
?xs :Vect A k
?v :Vect N (s n) ≈ vcons A k x xs

However, for vcons A k x xs to have type Vect N (s n) requires that A = N and
k = n. Refinement unifies these, leaving the following goals:

?x :N
?xs :Vect N n
?v :Vect N (s n) ≈ vcons N n x xs

Elimination. Refinement solves goals by constructing new values; we may also
solve goals by deconstructing values in the context, using an elimination operator
as described in section 2.3. The induction and cases tactics apply the D-Elim
and D-Case operators respectively to the given target:

induction, cases :: IsTerm a => a -> Tactic

These tactics proceed by refinement by the appropriate elimination operator.
The motive for the elimination is calculated automatically from the goal to

Ivor, a Proof Engine 153

be solved. Each tactic generates subgoals for each method of the appropriate
elimination rule.

An example of induction is in continuing the definition of our addition func-
tion. This can be defined by induction over the first argument. We have the proof
state

λx :N
λy :N

?plus H :N

Applying induction to x leaves two subgoals, one for the case where x is
zero, and one for the inductive case2:

λx :N
λy :N

?plus O :N
?plus S : (k : N) → (k H : N)→ N

By default, the next goal to solve is plus O . However, the focus tactic can
be used to change the default goal. The k H argument to the plus S goal is the
result of a recursive call on k .

Rewriting. It is often desirable to rewrite a goal given an equality proof, to
perform equational reasoning. The replace tactic replaces occurrences of the
left hand side of an equality with the right hand side. To do this, it requires:

1. The equality type; for example Eq : (A : �)→ A→ A→ �.
2. A replacement lemma, which explains how to substitute one term for an-

other; for example
repl : (A : �)→ (a, b : A)→ Eq a b → (P : A→ �)→ P a → P b

3. A symmetry lemma, proving that equality is symmetric; for example
sym : (A : �)→ (a, b : A)→ Eq a b → Eq b a

4. An equality proof.

The Ivor distribution contains a library of TT code with the appropriate
definitions and lemmas. Requiring the lemmas to be supplied as arguments makes
the library more flexible — for example, heterogeneous equality [24] may be
preferred. The tactic will fail if terms of inappropriate types are given; recall
from sec. 2.4 that the development calculus requires that incomplete terms are
also well-typed, so that all tactic applications can be typechecked. The type is:

replace :: (IsTerm a, IsTerm b, IsTerm c, IsTerm d) =>
a -> b -> c -> d -> Bool -> Tactic

The Bool argument determines whether to apply the symmetry lemma to the
equality proof first, which allows rewriting from right to left. This replace tactic
is similar to Lego’s Qrepl tactic [23].

2 c.f. the Haskell function natElim :: Nat -> a -> (Nat -> a -> a) -> a).

154 E. Brady

For example, consider the following fragment of proof state:

. . .
λx :Vect A (plus x y)

?vect H :Vect A (plus y x)

Since plus is commutative, x ought to be a vector of the correct length.
However, the type of x is not convertible to the type of vect H . Given a lemma
plus commutes : (n,m : N) → Eq (plus n m) (plus m n), we can use the
replace tactic to rewrite the goal to the correct form. Applying replace to Eq,
repl, sym and plus commutes y x yields the following proof state, which is
easy to solve using the fill tactic with x .

. . .
λx :Vect A (plus x y)

?vect H :Vect A (plus x y)

3.4 Tactic Combinators

Ivor provides an embedded domain specific language for building tactics, in the
form of a number of combinators for building more complex tactics from the
basic tactics previously described. By providing an API for basic tactics and
a collection of combinators, it becomes easy to extend the library with more
complex domain specific tactics. We will see examples in sections 4.1 and 4.2.

Sequencing Tactics. There are three basic operators for combining two tactics
to create a new tactic:

(>->), (>+>), (>=>) :: Tactic -> Tactic -> Tactic

1. The >-> operator constructs a new tactic by sequencing two tactic applica-
tions to the same goal.

2. The >+> operator constructs a new tactic by applying the first, then applying
the second to the next default goal.

3. The >=> operator constructs a new tactic by applying the first tactic, then
applying the second to every subgoal generated by the first.

Finally, tacs takes a list of tactics and applies them in turn to the default goal:

tacs :: Monad m => [Goal -> Context -> m Context] ->
Goal -> Context -> m Context

Note that the type of this is better understood as [Tactic] -> Tactic, but
the Haskell typechecker requires that the same monad be abstracted over all of
the combined tactics.

Handling Failure. Tactics may fail (for example a refinement may be ill-
typed). Recovering gracefully from a failure may be needed, for example to try a
number of possible ways of rewriting a term. The try combinator is an exception
handling combinator. The identity tactic, idTac, is often appropriate on success.

Ivor, a Proof Engine 155

try :: Tactic -> -- apply this tactic
Tactic -> -- apply if the tactic succeeds
Tactic -> -- apply if the tactic fails
Tactic

4 Examples

In this section we show two examples of embedding Ivor in a Haskell program.
The first shows an embedding of a simple theorem prover for propositional logic.
The second example extends this theorem prover by using the same logic as a
basis for showing properties of a functional language.

4.1 A Propositional Logic Theorem Prover

Propositional logic is straightforward to model in dependent type theory; here
we show how Ivor can be used to implement a theorem prover for propositional
logic. The full implementation is available from http://www.cs.st-andrews.
ac.uk/ eb/Ivor/. The language of propositional logic is defined as follows,
where x stands for an arbitrary free variable:

L ::= x | L ∧ L | L ∨ L | L→ L | ¬L

There is a simple mapping from this language to dependent type theory —
the ∧ and ∨ connectives can be declared as inductive families, where the auto-
matically derived elimination rules give the correct elimination behaviour, and
the → connective follows the same rules as the function arrow. Negation can be
defined with the empty type.

The ∧ connective is declared as an inductive family, where an instance of the
family gives a proof of the connective. The and intro constructor builds a proof
of A ∧ B , given a proof of A and a proof of B :

data And (A,B : �) : � where
and intro : (a : A)→ (b : B) → And A B

Similarly, ∨ is declared as an inductive family; an instance of A ∨ B is built
either from a proof of A (inl) or a proof of B (inr):

data Or (A,B : �) : � where
inl : (a : A)→ Or A B
| inr : (b : B)→ Or A B

I will write �e� to denote the translate from an expression e ∈ L to an im-
plementation in TT; in the implementation, this is a parser from strings to
ViewTerms:

�e1 ∧ e2� = And �e1� �e2�
�e1 ∨ e2� = Or �e1� �e2�
�e1 → e2� = �e1�→ �e2�

protect protect protect edef OT1{OT1}let enc@update elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef OT1/cmr/m/sc/10 {OT1/cmr/m/n/10 }OT1/cmr/m/sc/10 size@update enc@update ignorespaces elax protect elax protect edef cmr{cmtt}protect xdef OT1/cmr/m/sc/10 {OT1/cmr/m/n/10 }OT1/cmr/m/sc/10 size@update enc@update http://www.cs.st-andrews.ac.uk/~eb/Ivor/
protect protect protect edef OT1{OT1}let enc@update elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef OT1/cmtt/m/n/10 {OT1/cmr/m/n/10 }OT1/cmtt/m/n/10 size@update enc@update ignorespaces elax protect elax protect edef cmr{cmtt}protect xdef OT1/cmtt/m/n/10 {OT1/cmr/m/n/10 }OT1/cmtt/m/n/10 size@update enc@update http://www.cs.st-andrews.ac.uk/~eb/Ivor/

156 E. Brady

To implement negation, we declare the empty type:

data False : � where

Then �¬e� = �e� → False. The automatically derived elimination shows that
a value of any type can be created from a proof of the empty type:

False-Elim : (x : False)→ (P : False→ �)→ P x

In the implementation, we initialise the Context with these types (using
addData) and propositional variables A . . .Z (using addAxiom3).

Domain Specific Tactics. Mostly, the implementation of a propositional logic
theorem prover consists of a parser and pretty printer for the language L, and a
top level loop for applying introduction and elimination tactics. However, some
domain specific tactics are needed, in particular to deal with negation and proof
by contradiction.

To prove a negation ¬A, we assume A and attempt to prove False. This is
achieved with an assumeFalse tactic which assumes the negation of the goal.
Negation is defined with a function not; the assumeFalse tactic then unfolds
this name so that a goal (in TT syntax) not A is transformed to A → False,
then A can be introduced.

assumeFalse :: Tactic
assumeFalse = unfold (name "not") >+> intro

The proof by contradiction tactic is implemented as follows:

contradiction :: String -> String -> Tactic
contradiction x y = claim (name "false") "False" >+>

induction "false" >+>
(try (fill $ x ++ " " ++ y)

idTac
(fill $ y ++ " " ++ x))

This tactic takes the names of the two contradiction premises. One is of type
A → False for some A, the other is of type A. The tactic works by claiming
there is a contradiction and solving the goal by induction over that assumed
contradiction (which gives no subgoals, since False-Elim has no methods). Fi-
nally, using >+> to solve the next subgoal (and discharge the assumption of the
contradiction), it looks for a value of type False by first applying y to x then, if
that fails, applying x to y.

4.2 Funl, a Functional Language with a Built-In Theorem Prover

Propositional logic is an example of a simple formal system which can be em-
bedded in a Haskell program using Ivor; however, more complex languages can
be implemented. Funl is a simple functional language, with primitive recursion
3 This adds a name with a type but no definition to the context.

Ivor, a Proof Engine 157

over integers and higher order functions. It is implemented on top of Ivor as
a framework for both language representation and correctness proofs in that
language. By using the same framework for both, it is a small step from imple-
menting the language to implementing a theorem prover for showing properties
of programs, making use of the theorem prover developed in sec. 4.1. An imple-
mentation is available from http://www.cs.st-andrews.ac.uk/~eb/Funl/; in
this section I will sketch some of the important details of this implementation.
Like the propositional logic theorem prover, much of the detail is in the parsing
and pretty printing of terms and propositions, relying on Ivor for typechecking
and evaluation.

Programs and Properties. The Funl language allows programs and state-
ments of the properties those programs should satisfy to be expressed within the
same input file. Functions are defined as in the following examples, using rec to
mark a primitive recursive definition:

fac : Int -> Int =
lam x . rec x 1 (lam k. lam recv. (k+1)*recv);

myplus : Int -> Int -> Int =
lam x. lam y. rec x y (lam k. lam recv. 1+recv);

The myplus function above defines addition by primitive recursion over its
input. To show that this really is a definition of addition, we may wish to show
that it satisfies some appropriate properties of addition. In the Funl syntax, we
declare the properties we wish to show as follows:

myplusn0 proves
forall x:Int. myplus x 0 = x;

myplusnm1 proves
forall x:Int. forall y:Int. myplus x (1+y) = 1+(myplus x y);

myplus_commutes proves
forall x:Int. forall y:Int. myplus x y = myplus y x;

On compiling a program, the compiler requires that proofs are provided for
the stated properties. Once built, the proofs can be saved as proof terms, so that
properties need only be proved once.

Building Terms. Terms are parsed into a data type Raw; the name Raw reflects
the fact that these are raw, untyped terms; note in particular that Rec is an
operator for primitive recursion on arbitrary types, like the D-Elim operators in
TT — it would be fairly simple to write a first pass which translated recursive
calls into such an operator using techniques similar to McBride and McKinna’s
labelled types [27], which are implemented in Ivor. Using this, we could easily
extend the language with more primitive types (e.g. lists) or even user defined
data types. The representation is as follows:

data Raw = Var String | Lam String Ty Raw | App Raw Raw
| Num Int | Boolval Bool | InfixOp Op Raw Raw
| If Raw Raw Raw | Rec Raw [Raw]

http://www.cs.st-andrews.ac.uk/~eb/Funl/

158 E. Brady

Building a Funl function consists of creating a theorem with a goal rep-
resenting the function’s type, then using the buildTerm tactic to traverse the
structure of the raw term, constructing a proof of the theorem — note especially
that rec translates into an application of the appropriate elimination rule via
the induction tactic:

buildTerm :: Raw -> Tactic
buildTerm (Var x) = refine x
buildTerm (Lam x ty sc) = introName (name x) >+> buildTerm sc
buildTerm (Language.App f a) = buildTerm f >+> buildTerm a
buildTerm (Num x) = fill (mkNat x)
buildTerm (If a t e) =

cases (mkTerm a) >+> buildTerm t >+> buildTerm e
buildTerm (Rec t alts) =

induction (mkTerm t) >+> tacs (map buildTerm alts)
buildTerm (InfixOp Plus x y) =

refine "plus" >+> buildTerm x >+> buildTerm y
buildTerm (InfixOp Times x y) = ...

A helper function, mkTerm, is used to translate simple expressions into
ViewTerms. This is used for the scrutinees of if and rec expressions, although if
more complex expressions are desired here, it would be possible to use buildTerm
instead.

mkTerm :: Raw -> ViewTerm
mkTerm (Var x) = (Name Unknown (name x))
mkTerm (Lam x ty sc) = Lambda (name x) (mkType ty) (mkTerm sc)
mkTerm (Apply f a) = App (mkTerm f) (mkTerm a)
mkTerm (Num x) = mkNat x
mkTerm (InfixOp Plus x y) =

App (App (Name Free (name "plus")) (mkTerm x)) (mkTerm y)
mkTerm (InfixOp Times x y) = ...

Ivor handles the typechecking and any issues with renaming, using tech-
niques from [26]; if there are any type errors in the Raw term, this tactic will
fail (although some extra work is required to produce readable error messages).
By using Ivor to handle typechecking and evaluation, we are in no danger of
constructing or evaluating an ill-typed term.

Building Proofs. We also define a language of propositions over terms in
Funl. This uses propositional logic, just like the theorem prover in section 4.1,
but extended with equational reasoning. For the equational reasoning, we use
a library of equality proofs to create tactics for applying commutativity and
associativity of addition and simplification of expressions.

Ivor, a Proof Engine 159

A basic language of propositions with the obvious translation to TT is:

data Prop = Eq Raw Raw
| And Prop Prop | Or Prop Prop
| All String Ty Prop | FalseProp

This allows equational reasoning over Funl programs, quantification over
variables and conjunction and disjunction of propositions. A more full featured
prover may require relations other than Eq or even user defined relations.

5 Related Work

The ability to extend a theorem prover with user defined tactics has its roots
in Robin Milner’s LCF [29]. This introduced the programming language ML to
allow users to write tactics; we follow the LCF approach in exposing the tactic
engine as an API. The implementation of Ivor is based on the presentation of
Oleg in Conor McBride’s thesis [24]. We use implementation techniques from
[26] for dealing with variables and renaming.

The core language of Epigram [27,6] is similar to TT, with extensions for ob-
servational equality. Epigram is a dependently typed functional programming
language, where types can be predicated on arbitrary values so that types can be
read as precise specifications. Another recent language which shares the aim of
begin theorem proving technology closer to programers is Sheard’s Ωmega [35].
While Ivor emphasises interactive theorem proving, Ωmega emphasises pro-
gramming but nevertheless allows more precise types to be given to programs
through Generalised Algebraic Data Types [31] and extensible kinds.

Other theorem provers such as Coq [7], Agda [8] and Isabelle [30] have vary-
ing degrees of extensibility. Coq includes a high level domain specific language
for combining tactics and creating new tactics, along the lines of the tactic com-
binators presented in section 3.4. This language is ideal for many purposes, such
as our contradiction tactic, but more complex examples such as buildTerm
would require extending Coq itself. Using a DSEL [19] as provided by Ivor

gives complete flexibility in the construction of tactics, and allows a close re-
lationship between the tactics and the structures on which they operate (e.g.
Raw).

Isabelle [30] is a generic theorem prover, in that it includes a large body of
object logics and a meta-language for defining new logics. It includes a typed,
extensible tactic language, and can be called from ML programs, but unlike
Ivor is not based on a dependent type theory. There is therefore no proof term
associated with an Isabelle proof — the proof term gives a derivation tree for the
proof, allowing easy and independent rechecking without referring to the tactics
used to build the proof.

The implementation of Funl allows a theorem prover to be attached to the
language in a straightforward way, using Ivor’s tactics directly. This would be a
possible method of attaching a theorem prover to a more full featured program-
ming language such as the Sparkle [11] prover for Clean [32]. Implementing a full

160 E. Brady

language in this way would require some extra work to deal with general recur-
sion and partial definitions (in particular, dealing with ⊥ as a possible value),
but the general method remains the same.

6 Conclusions and Further Work

We have seen an overview of the Ivor library, including the term and tactic
language. By exposing the tactic API and providing an interface for term con-
struction and evaluation, we are able to embed theorem proving technology in
a Haskell application. This in itself is not a new idea, having first been seen as
far back as the LCF [29] prover — however, the theorem proving technology is
not an end in itself, but a mechanism for constructing domain specific tools such
as the propositional logic theorem prover in section 4.1 and the programming
language with built in equational reasoning support in section 4.2.

The library includes several features we have not been able to discuss here,
e.g. dependently typed pattern matching [9], which gives a better notation for
programming as well as proof. There is experimental support for multi-stage
programming with dependent types, exploited in [5]. The term language can
be extended with primitive types and operations, e.g. integers and strings with
associated arithmetic and string manipulation operators. Such features would be
essential in a representation of a real programming language. In this paper, we
have stated that TT is strongly normalising, with no general recursion allowed,
but again in the representation of a real programming language general recursion
may be desirable — however, this means that correctness proofs can no longer
be total. The library can optionally allow general recursive definitions, but such
definitions cannot be reduced by the typechecker. Finally, a command driven
interface is available, which can be accessed as a Haskell API or used from a
command line driver program, and allows user directed proof scripts in the style
of other proof assistants. These and other features are fully documented on the
web site4.

Development of the library has been driven by the requirements of our re-
search into Hume [17], a resource aware functional language. We are investigat-
ing the use of dependent types in representing and verifying resource bounded
functional programs [4]. For this, automatic generation of injectivity and dis-
jointness lemmas for constructors will be essential [25]. Future versions will in-
clude optimisations from [3] and some support for compiling TT terms; this
would not only improve the efficiency of the library (and in particular its use
for evaluating certified code) but also facilitate the use of Ivor in a real lan-
guage implementation. Finally, an implementation of coinductive types [15] is
likely to be very useful; currently it can be achieved by implementing recursive
functions which do not reduce at the type level, but a complete implementation
with criteria for checking productivity would be valuable for modelling streams
in Hume.

4 http://www.cs.st-andrews.ac.uk/~eb/Ivor/

http://www.cs.st-andrews.ac.uk/~eb/Ivor/

Ivor, a Proof Engine 161

Acknowledgements

My thanks to Kevin Hammond and James McKinna for their comments on an
earlier draft of this paper, and to the anonymous reviewers for their helpful
comments. This work is generously supported by EPSRC grant EP/C001346/1.

References

1. Cover translator. http://coverproject.org/CoverTranslator/
2. Barras, B., Werner, B.: Coq in Coq (1997)
3. Brady, E.: Practical Implementation of a Dependently Typed Functional Program-

ming Language. PhD thesis, University of Durham (2005)
4. Brady, E., Hammond, K.: A dependently typed framework for static analysis of

program execution costs. In: Butterfield, A., Grelck, C., Huch, F. (eds.) IFL 2005.
LNCS, vol. 4015, pp. 74–90. Springer, Heidelberg (2006)

5. Brady, E., Hammond, K.: A verified staged interpreter is a verified compiler. In:
Proc. Conf. Generative Programming and Component Engineering (GPCE ’06)
(2006)

6. Chapman, J., Altenkirch, T., McBride, C.: Epigram reloaded: A standalone type-
checker for ETT. In: Trends in Functional Programming, 2005. To appear (2006)

7. Coq Development Team. The Coq proof assistant — reference manual. (2001)
http://coq.inria.fr/

8. Coquand, C.: Agda. (2005) http://agda.sourceforge.net/
9. Coquand, T.: Pattern matching with dependent types. Available from (1992)

http://www.cs.chalmers.se/~coquand/type.html
10. Curry, H.B., Feys, R.: Combinatory Logic, vol. 1. North Holland, Amsterdam (1958)
11. de Mol, M., van Eekelen, M., Plasmeijer, R.: Theorem proving for functional pro-

grammers. In: Arts, T., Mohnen, M. (eds.) IFL 2002. LNCS, vol. 2312, Springer,
Heidelberg (2002)

12. Dybjer, P.: Inductive families. Formal Aspects Of. Computing 6, 440–465 (1994)

13. Filliâtre, J.-C.: Why: a multi-language multi-prover verification tool. Research Re-
port 1366, LRI, Université Paris Sud (March 2003)

14. Geuvers, H., Wiedijk, F., Zwanenburg, J.: A constructive proof of the fundamental
theorem of algebra without using the rationals. In: TYPES 2000, pp. 96–111 (2000)

15. Giménez, E.: An application of co-inductive types in coq: Verification of the al-
ternating bit protocol. In: Berardi, S., Coppo, M. (eds.) TYPES 1995. LNCS,
vol. 1158, pp. 135–152. Springer, Heidelberg (1996)

16. Gonthier, G.: A computer-checked proof of the Four Colour Theorem. (2005)
http://research.microsoft.com/~gonthier/4colproof.pdf

17. Hammond, K., Michaelson, G.: Hume: a Domain-Specific Language for Real-Time
Embedded Systems. In: Proc. Conf. Generative Programming and Component En-
gineering (GPCE ’03), Springer, Heidelberg (2003)

18. Howard, W.A.: The formulae-as-types notion of construction, A reprint of an un-
published manuscript from 1969. In: Seldin, J.P., Hindley, J.R. (eds.) To H.B.Curry:
Essays on combinatory logic, lambda calculus and formalism, Academic Press, San
Diego (1980)

19. Hudak, P.: Building domain-specific embedded languages. ACM Computing Sur-
veys, 28A(4) (December 1996)

http://coverproject.org/CoverTranslator/
http://coq.inria.fr/
http://agda.sourceforge.net/
http://www.cs.chalmers.se/ ~ coquand/type.html
http://research.microsoft.com/ ~ gonthier/4colproof.pdf

162 E. Brady

20. Leroy, X.: Formal certification of a compiler back-end. In: Principles of Program-
ming Languages 2006, pp. 42–54. ACM Press, New York (2006)

21. Letouzey, P.: A new extraction for Coq. In: Geuvers, H., Wiedijk, F. (eds.) TYPES
2002. LNCS, vol. 2646, pp. 200–219. Springer, Heidelberg (2003)

22. Luo, Z.: Computation and Reasoning – A Type Theory for Computer Science. Intl.
Series of Monographs on Comp. Sci. OUP (1994)

23. Luo, Z., Pollack, R.: Lego proof development system: User’s manual. Technical
report, Department of Computer Science, University of Edinburgh (1992)

24. McBride, C.: Dependently Typed Functional Programs and their proofs. PhD the-
sis, University of Edinburgh (May 2000)

25. McBride, C., Goguen, H., McKinna, J.: Some constructions on constructors.
In: Filliâtre, J.-C., Paulin-Mohring, C., Werner, B. (eds.) TYPES 2004. LNCS,
vol. 3839, Springer, Heidelberg (2006)

26. McBride, C., McKinna, J.: I am not a number, I am a free variable. In: Proceedings
of the ACM SIGPLAN Haskell Workshop (2004)

27. McBride, C., McKinna, J.: The view from the left. Journal of Functional Program-
ming 14(1), 69–111 (2004)

28. McKinna, J., Wright, J.: A type-correct, stack-safe, provably correct, expression
compiler in Epigram. Journal of Functional Programming. To appear (2007)

29. Milner, R.: LCF: A way of doing proofs with a machine. In: Winkowski, J. (ed.)
Mathematical Foundations of Computer Science 1978. LNCS, vol. 64, pp. 146–159.
Springer, Heidelberg (1978)

30. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL - A proof assistant for higher
order logic. In: Nipkow, T., Paulson, L.C., Wenzel, M. (eds.) Isabelle/HOL. LNCS,
vol. 2283, Springer, Heidelberg (2002)

31. Jones, S.P., Vytiniotis, D., Weirich, S., Washburn, G.: Simple unification-based
type inference for GADTs. In: Proc. 2006 International Conf. on Functional Pro-
gramming (ICFP 2006) (2006)

32. Plasmeijer, R., van Eekelen, M.: The Concurrent CLEAN language report (draft).
Available from http://www.cs.kun.nl/~clean/ (2003)

33. Pollack, R.: Implicit syntax. Informal Proceedings of First Workshop on Logical
Frameworks, Antibes (May 1990)

34. Pugh, W.: The Omega Test: a fast and practical integer programming algorithm
for dependence analysis. Communication of the ACM, pp. 102–114 (1992)

35. Sheard, T.: Languages of the future. In: ACM Conference on Object Orientated
Programming Systems, Languages and Applications (OOPSLA’04) (2004)

36. Taha, W.: A gentle introduction to multi-stage programming. Available from (2003)
http://www.cs.rice.edu/~taha/publications/journal/dspg04a.pdf

http://www.cs.kun.nl/~clean/
http://www.cs.rice.edu/~taha/publications/journal/dspg04a.pdf

Proving Program Properties Specified with
Subtype Marks�

Tamás Kozsik

Department of Programming Languages and Compilers,
Eötvös Loránd University, Budapest, Hungary

tamas.kozsik@elte.hu

Abstract. This paper presents a method that facilitates formal reason-
ing about the correctness of programs. In this method, properties of pro-
grams (e.g. pre- and postconditions of functions) are described in terms
of type invariants. Subtype marks are annotations attached to types and
denote type invariants. A large amount of program properties expressed
with subtype marks are verifiable fully automatically by an appropriate
type system; the rest can be proven with a proof system. In this paper
an eager pure functional language with a type system supporting sub-
type marks is briefly described. By assigning an interpretation to subtype
marks, a concept of program correctness is introduced. The soundness of
the presented type system is investigated.

1 Introduction

The development of safety-critical applications may be facilitated with program-
ming environments in which formal reasoning about the correctness of programs
can be accomplished. Such a programming environment may include a proof
system that helps the programmer formally prove properties of the program
code. Sparkle [1] is such a proof system, integrated into the IDE of Clean [2].
An advantage of this tool is that it is based on and optimized for the semantics
of Clean. This paper proposes a possible extention to Clean and Sparkle which
could further improve the collaboration between the language and the proof tool
in the course of formal reasoning about the correctness of Clean programs. The
concept of subtype marks [3–7] can be used to bind a proof tool to the type
system of a programming language; here a Sparkle to Clean binding is being
studied.

Subtype marks provide a means to express properties of programs in terms of
type invariants. They appear as annotations attached to types, and each subtype
mark corresponds to a logical predicate describing the legal values of a type. The
argument and return types of functions may contain subtype marks. This is how
the specification of pre- and postconditions becomes feasible.

Proving those properties of programs which are specified with subtype marks
can be performed with the collaboration of a type system and a proof system.
� Supported by GVOP-3.2.2-2004-07-0005/3.0 ELTE IKKK.

Z. Horváth, V. Zsók, and A. Butterfield (Eds.): IFL 2006, LNCS 4449, pp. 163–180, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

164 T. Kozsik

Certain properties of programs can be proven fully automatically by the type
system. Other properties might require an automatic, semi-automatic or manual
proof carried out in the proof system.

Currently the presented technique supports only a subset of Clean: an ea-
ger, explicitly typed language without parametric polymorphism is considered.
(Type classes, lazy evaluation and type inference is left as future work.) The ex-
tention of this subset of Clean with subtype marks is called Senyv. For improved
readability, the syntax used for Senyv slightly differs from that of Clean. The
dynamic semantics of Senyv is independent of subtype marks, and it is defined
by a translation from Senyv to Clean. This translation removes subtype marks
and takes care of the syntactic differences.

The paper is structured as follows. In Sect. 2 the syntax and the semantics
of types with subtype marks in Senyv are given. Sect. 3 describes the rest of
Senyv. Type correctness is defined in Sect. 4. Sect. 5 presents the concept of
program correctness with respect to the properties specified with subtype marks.
A theorem formulating the soundness of the introduced type system is given in
Sect. 6. Finally, Sect. 7 provides some concluding remarks and the discussion of
related and future work.

2 Subtype Marks

Type invariants are predicates that select the legal values of types from a broader
set. The predicates are defined in a typed universe. For example, predicate
N(x) = (x ≥ 0) selects natural numbers, and predicate E(x) = (2|x) selects
even numbers from the set of integer numbers. Subtype marks provide a way to
describe type invariants in a programming language.

In a type system supporting subtype marks, annotations can be attached to
types. An annotation may consist of a set of subtype marks. Suppose that the
type of integer numbers is called Int; then the type of natural numbers can be
written as Int{N}. The type of even natural numbers is Int{E,N}, which is the
same as Int{N,E}. Note that Int is used as a shorthand for Int{}. Sect. 2.2
explains how a subtype mark (e.g. N) is assigned a meaning (like predicate N).

Sect. 2.1 introduces a syntax-based subtype/supertype relation (denoted by
<:) among the annotated types. For example, the type of even natural numbers
is a subtype of the type of natural numbers, which is, in turn, a subtype of the
type of integer numbers: Int{N, E} <: Int{N} <: Int.

The subtype relation induces subtype polymorphism in the type system. This
paper focuses on subtype marks, hence the utilized type system is kept very
simple; it even lacks for type inference and parametric polymorphism. Type con-
structors, all nullary, come from algebraic type definitions. The only exception
is the (binary) built-in “function space” type constructor.

Besides subtype marks, annotations attached to types have another con-
stituent: “believe-me marks”. Believe-me marks annotate subtype marks; they
are used to describe the division of labour between the type system and the
proof system. On the one hand, properties that are specified with subtype marks

Proving Program Properties Specified with Subtype Marks 165

without believe-me marks will be proven by the type system. On the other hand,
properties specified with subtype marks annotated with believe-me marks will
be proven with the proof system: the type system “believes” in these properties
without trying to prove them. (The compiler should generate the verification
conditions corresponding to the believe-me marks.) The type of natural num-
bers where the subtype mark is annotated with a believe-me mark is written as
Int{N!}. Believe-me marks have no effect on the subtype relation.

2.1 The Syntax of Subtype Marked Types

Let T denote the set of the type constructor symbols introduced by a system of
algebraic type definitions. Furthermore, let M be a fixed set of symbols; subtype
marks are chosen from this set. (Variable m is used to run through M.) It is
assumed that subtype marks are used in a “clean” manner, namely that a subtype
mark is never used to annotate two different types.

Definition 1 (Monomorphic subtype annotation). Monomorphic subtype
annotations are functions from M to the set {↑, ↓, !}. The values ↑, ↓ and ! are
read as “present”, “dubious” and “believe-me”, respectively.

Definition 2 (Abstract syntax of types). Types with monomorphic subtype
marks are defined inductively as follows.

T := Tα | T1
β−→ T2 ,

where T, T1, T2 are types, T ∈ T and α, β are monomorphic subtype annotations.

In the concrete syntax, as seen in earlier examples, only non-dubious subtype
marks are recorded. For instance, Int{N,E!} stands for Intγ , where

γ(m) =

⎧
⎨

⎩

↑ if m = N,
! if m = E,
↓ otherwise.

Definition 3 (Subtype relation).

– Tα <: Tβ , if
{
m ∈M

∣
∣ α(m) �=↓

}
⊇

{
m ∈M

∣
∣ β(m) �=↓

}
.

– (T1
α→ T2)<: (T ′

1
β→ T ′

2), if
{
m ∈ M

∣
∣ α(m) �=↓

}
⊇

{
m ∈ M

∣
∣ β(m) �=↓

}

and T ′
1 <:T1 and T2 <:T ′

2.
– In all other cases two types are not in subtype relation.

2.2 The Semantics of Subtype Marks

When reasoning about programs, a key question, in general statically unde-
cidable, is how to manage the undefinedness of programs: run-time errors or
exceptions and infinite computations. To alleviate the difficulties arisen from
undefinedness, the method presented here is based on an eager language. Hence

166 T. Kozsik

the only sources of undefinedness are partially defined functions and infinite
recursion. In an eager language, for instance, there are no infinite or partially
defined data structures.

Algebraic type definitions in Senyv are similar to those in Clean, but type
constructors are always nullary, and the data structures are implicitly strict:
the translation from Senyv to Clean (which defines the dynamic semantics of
Senyv) should insert strictness annotations into these definitions.

Example 1 (The algebraic data type List). The type of lists of integer numbers
in Senyv (to the left), and the definition translated to Clean (to the right) are
shown below. The definition in Clean contains strictness annotations.

:: List = Nil | Cons Int List :: List = Nil | Cons !Int !List

The intended interpretation of a subtype mark is a predicate over the corre-
sponding data type. There are many possibilities to define such a predicate, e.g.
in a first-order or a higher-order logic—the choice may depend on the program-
ming language and proof system in use. In the case of Senyv the predicates are
defined as Bool-functions with strict arguments written in Clean. (Bool is the
standard algebraic data type with data constructors True and False.) This ap-
proach – albeit that other choices might result in more expressive interpretations
– is advantageous because it is in compliance with the capabilities of Sparkle,
the proof system to be adapted to Senyv. Since no subtype marks will be used
in the interpretation of subtype marks, these Bool-functions need not be defined
in Senyv, but rather in Clean; therefore the power of full Clean can be exploited
in these definitions. Note that Clean is used for defining both the interpretation
of subtype marks in Senyv and the dynamic semantics of Senyv.

Example 2 (Sorted lists). Subtype mark S characterizes sorted lists of integer
numbers. Its interpretation is the following Clean function.

S :: !List -> Bool
S Nil = True

S (Cons x Nil) = True
S (Cons x xs=:(Cons y ys)) = (x<=y) && (S xs)

The Clean function which interprets a subtype mark attached to a function
type usually requires more than one argument. The additional arguments are
considered universally quantified. (The introduction of existential quantification
is also possible, but not yet supported in the current version of Senyv.)

Example 3 (Monotonically increasing functions). Let M be the subtype mark
characterizing monotonically increasing functions from Int to Int. It is inter-
preted with a Clean function with two (strict) arguments. The first argument
is the function concerned, and the second one is an element from its domain.
Assume that MAX_INT is the largest representable value of Int.

M :: !(Int->Int) !Int -> Bool
M f x = (x == MAX_INT) || f x <= f (x+1)

The formal definition of the meaning of subtype marks and that of subtype
marked types is given in Sect. 5.

Proving Program Properties Specified with Subtype Marks 167

3 A Language Supporting Subtype Marks

Programs written in Senyv are made up of algebraic type definitions (see Ex. 1),
type declarations for (function and data constructor) symbols and function def-
initions. Function definitions contain one or more alternatives. The program is
started with the evaluation of the nullary function Start.

Example 4 (Function type declarations and function definitions). Assume that
Zero is a (nullary) data constructor for Int, furthermore Succ and Pred are
functions from Int to Int.

Length :: List -> Int{N}
Length Nil = Zero
Length (Cons x xs) = Succ (Length xs)

Repeat :: Int{N} -> Int -> List{S!}
Repeat Zero e = Nil
Repeat n e = let n_minus_one :: Int{N!} = Pred n

in Cons e (Repeat n_minus_one e)

The meaning of these two functions is obtained by the translation to Clean.
The translation removes subtype annotations, introduces strictness annotations,
removes type declarations for local variables and modifies symbol type decla-
rations to reflect the arity of the symbol. The last transformation is necessary
because in Senyv the arity of a symbol can be found out from its definition, and
not from its type declaration. For instance, Repeat, the arity of which is two, is
translated into Clean in the following way.

Repeat :: !Int !Int -> List
Repeat Zero e = Nil
Repeat n e = let n_minus_one = Pred n

in Cons e (Repeat n_minus_one e)

Before formalizing the syntactical and semantic rules of Seny, the concept of
polymorphic subtype marks has to be introduced.

3.1 Polymorphic Subtype Marks

The Length function presented in Ex. 4 is polymorphic. Due to subtype poly-
morphism, it belongs into all of the following types.

Length :: List -> Int{N}
Length :: List -> Int

Length :: List{S} -> Int
Length :: List{S} -> Int{N}

However, Senyv supports another kind of polymorphism as well. Polymorphic
subtype marks may contain “subtype mark variables”, which may be instantiated
with the values ↑ and ↓ (present and dubious).

168 T. Kozsik

Example 5 (Polymorphic subtype marks).

Tail :: List{s:S} -> List{s:S} Tail (Cons x xs) = xs

Instantiating the subtype mark variable s with ↑ and ↓ yields two types with
monomorphic subtype marks.

Tail :: List{S} -> List{S} Tail :: List -> List

These two types tell us that the tail of a sorted list is a sorted list, and that the
tail of a not necessarily sorted list is not necessarily sorted. Further types for Tail
can be obtained by subtype polymorphism, e.g. “Tail :: List{S} -> List”.

Another popular function is Map, which can be defined in Senyv as follows.

Map :: (Int ->{s:M} Int) -> List{s:S} -> List{s:S!}
Map f Nil = Nil
Map f (Cons x xs) = Cons (f x) (Map f xs)

The types obtained by instantiating the subtype mark variable are the following.

Map :: (Int ->{M} Int) -> List{S} -> List{S!}
Map :: (Int -> Int) -> List -> List

In types with polymorphic subtype marks the subtype mark variables are univer-
sally quantified. Senyv supports only prenex (rank 1) quantification. Similarly
to the uniqueness type system of Clean [8], a type with polymorphic subtype
marks may contain “inequalities” over its subtype mark variables. Examples of
such types can be found in [7]. Without any further details on the structure of
inequalities and types with polymorphic subtype marks, the concept of substi-
tuting subtype mark variables is introduced.

Definition 4 (Substitution of subtype mark variables). Let T be a type
with polymorphic subtype marks, and let VT denote the subtype mark variables
occurring in it. The function “μ : VT → {↑, ↓}” is a legal substitution for T if it
does not violate the inequalities in T . The type with monomorphic subtype marks
obtained from T by μ is denoted by T [μ].

In Senyv every function is equipped with a single type declaration—with one
that may contain polymorphic subtype marks. The type system of Senyv uti-
lizes a type checking algorithm that works directly with such types. However,
the meaning of a type with polymorphic subtype marks is given as a set of types
with monomorphic subtype marks. Therefore, the type-correctness and the cor-
rectness of programs will be defined in terms of types with monomorphic subtype
marks.

3.2 Expressions and Function Definitions

Expressions are made up of (function and data constructor) symbols and vari-
ables, using application and (non-cyclic) sharing.

Proving Program Properties Specified with Subtype Marks 169

Definition 5 (Expressions). The abstract syntax of expressions is defined as:

E := S
∣
∣ x

∣
∣ E1 E2

∣
∣ let y :: T = E′ in E′′ ,

where S is a (function or data constructor) symbol, x, y are variables, E, E1,
E2, E′ and E′′ are expressions, and T is a type with polymorphic subtype marks.

Let-expressions are not recursive: the variable bound by the let-expression does
not occur free in the expression assigned to it. The declared type of a local variable
may not contain inequalities, and all of its subtype mark variables must occur in
the declared type of the function that contains the let-expression.

A substitution μ of subtype mark variables that turn the declared type of a
function into a type with monomorphic subtype marks will also turn the de-
clared types of the local variables into ones with monomorphic subtype marks.
The application of μ on an expression E is denoted by E[μ], and it is defined
inductively in such a way that μ is applied on the declared type of each local
variable.

The concrete syntax for expressions follows the conventions: applications are
left-associative, and have higher precedence than let-expressions. Subexpressions
can be delimited by parentheses.

Definition 6 (Function definitions). A function F is defined as a non-empty
sequence of alternatives: F P = E, and pattern expressions are P := x | C y,
where C is a data constructor symbol, and x and y are variables. |P | must be
equal for every pattern: this is the arity of F. Each pattern P must be linear,
and the free variables in E must occur in the corresponding P .

The dynamic semantics of function definitions are similar in Senyv and in
Clean: patterns are matched from top to bottom.

3.3 Type Declarations

In Senyv there is a type declaration for every function. A type declaration
assigns a type with (possibly polymorphic) subtype marks to a function, see e.g.
Length and Repeat in Ex. 4, and Tail and Map in Ex. 5.

Type declarations assign types to data constructors as well. In contrast to
functions, there are two types with polymorphic subtype marks (hence two sets
of types with monomorphic subtype marks) assigned to each data constructor.
“Composition types” (introduced with the token :>:) describe the behaviour
of data constructors in expressions occurring in the right-hand side of func-
tion definitions, while “decomposition types” (introduced with :<:) are used
for occurrences in patterns. Data constructor types never contain believe-me
marks.

Example 6 (Types declared for data constructors). The composition and decom-
position types for the data constructors of List can be the following.

Nil :>: List{S}
Nil :<: List{S}

Cons :>: Int -> List -> List
Cons :<: Int -> List{s:S} -> List{s:S}

170 T. Kozsik

The most interesting type here is the decomposition type of Cons: if a function
(say Tail in Ex. 5) has an argument that is a sorted list, and the function def-
inition pattern matches on this argument, then the types deduced for the two
variables occurring in a Cons pattern expression (x and xs in the example) are
Int and List{S}, respectively. This is how the type system checks that the tail
of a sorted list is indeed a sorted list. On the other hand, the deduced type
for the tail of a not necessarily sorted list is “not necessarily sorted list”, viz.
List.

The composition type for Cons cannot say anything about sortedness. If a
list is constructed from an integer number and a sorted list, then the result is
not guaranteed to be sorted. This is why the believe-me mark is necessary in
the declared type of Repeat (see Ex. 4). The type checker can guarantee the
sortedness of the result in the first alternative (according to the composition
type of Nil), but cannot guarantee it in the second one.

Decomposition types differ from composition types and from types declared
for functions in an important respect. If a subtype mark does not appear in
the right-hand side of the decomposition type of a data constructor, then this
fact does not mean dubiety of the corresponding property: it means that values
constructed with that data constructor never have the property. This approach,
as it will be shown later, enhances the capabilities of the type checker.

Example 7 (Non-empty lists). Let subtype mark C mean that a list is non-empty,
namely that it is constructed with a Cons data constructor.
C :: !List -> Bool C Nil = False

C _ = True
The declared type for the List data constructors can be adjusted for this

subtype mark in the following way.
Nil :>: List{S}
Nil :<: List{S}

Cons :>: Int -> List -> List{C}
Cons :<: Int -> List{s:S} -> List{s:S,C}

C is present in the right-hand side of the decomposition type for Cons, but it is
missing from that of Nil. This informs the type checker that values constructed
with Nil are “not non-empty” lists.

The introduced subtype mark can be used to describe a pre-condition for
function Tail. The type system can enforce the safe use of this function if its
declared type from Ex. 5 is changed to Tail :: List{C,s:S} -> List{s:S}.

Before talking about type-correctness, some more semantic rules about type
declarations – enforcing meaningful use of subtype marks – should be established.

Definition 7 (Legal type declaration). Type declarations is a Senyv pro-
gram are legal, if they satisfy the following four rules.

1. In a declared type of a function, believe-me marks are not allowed “to the
left of” a function space type constructor. Namely, if a declared type is in
the form T

α→ T ′, then T is not allowed to contain believe-me marks, and –
recursively – no believe-me marks are allowed in T ′ to the left of a function
space type constructor.

Proving Program Properties Specified with Subtype Marks 171

2. Let n be the arity of a function. The types with monomorphic subtype marks
obtained from the declared type of that function must be in the form T1

α1−→
· · · αn−1−→ Tn

αn−→ T . The declaration of the type of the function is legal, only
if for all such types with monomorphic subtype marks, for all i ∈ [1..n] and
for all m ∈ M: αi(m) �=↑.

3. Let n be the arity of a data constructor. The types with monomorphic subtype
marks obtained from the decomposition type of that data constructor must be
in the form T1

α1−→ · · · αn−1−→ Tn
αn−→ Tα. The decomposition type of the data

constructor is legal, if for all such types with monomorphic subtype marks,
for all i ∈ [1..n] and for all m ∈ M: αi(m) =↓.

4. Those types with polymorphic subtype marks from which no type with mono-
morphic subtype marks can be obtained are illegal in a type declaration.

The first rule is necessary because types with subtype marks correspond to
theorems: theorems to prove some properties of a certain program. In these
theorems, subtype annotations occurring to the left of a function space type
constructor will be part of some hypotheses, while annotations not to the left
of any “→” will be part of a goal. Subtype marks annotated with believe-me
marks denote properties that the type system might use, but need not prove.
Therefore believe-me marks are meaningless (and considered illegal) for subtype
marks corresponding to hypotheses.

The second rule is necessary because the type system has no possibility to
prove properties described by those subtype marks that occur in the mentioned
annotations. The typing rules (to be presented soon) ignore these subtype anno-
tations, therefore the proof of the corresponding properties should be prepared
with a proof system. The third rule is necessary because decomposition types
are used to type patterns, and in patterns non-dubious subtype marks in the
mentioned annotations make no sense. Finally, the fourth rule can be violated
by types with polymorphic subtype marks containing inequalities.

Example 8 (Legal and illegal type declarations). Consider the monotonically in-
creasing function Succ, which preserves non-negativeness. The only believe-me
mark appearing in the declared type of this function annotates M, attached to
the top-level type constructor, “→”. Hence it is not to the left of any “→”.

Succ :: Int{n:N} ->{M!} Int{n:N}
Succ x = ...

The arity of Succ (as its sketched definition reveals) is 1, hence the annotation
of the top-level “→” type constructor should be examined with respect to the
second part of Def. 7. There is a single non-dubious subtype mark in this anno-
tation, namely M. Since it is annotated with a believe-me mark, the given type
declaration satisfies the second rule as well. Finally, notice that two types with
monomorphic subtype marks can be obtained from the declared type of Succ
by substituting the subtype mark variable n, therefore the fourth rule is also
satisfied. Now let us show some illegal type declarations.
Bad :: (Int->Int{N!}) -> Int
Baad :<: Int ->{M} Int

Baaad :: Int ->{M} Int
Baaad x = Succ x

172 T. Kozsik

4 Type Correctness

The type system of Senyv is based on type checking: the type of every symbol
and every variable is provided by the programmer. The type checker has to deal
with those subtype marks which are not annotated with believe-me marks. In
order to formalize this, two transformations that manage believe-me marks are
defined; one that ignores believe-me marks and another that removes subtype
marks annotated with believe-me marks.

Definition 8 (ib and rb). Transformations ib and rb can be applied on types
with monomorphic subtype marks and on monomorphic subtype annotations.
Applying them on a type means applying them on all the annotations occurring
in the type. Furthermore, for any α monomorphic subtype annotation, ib(α) and
rb(α) are also monomorphic subtype annotations.

ib(α)(m) =
{
↓ if α(m) = ↓
↑ otherwise rb(α)(m) =

{
↑ if α(m) = ↑
↓ otherwise

The type checker of Senyv uses three type environments for symbols: C, D and
F . These environments contain information about the declared composition and
decomposition types of data constructors, and the declared type of functions.

Definition 9 (Type environments)

C � C : T means that C contains a type T with monomorphic subtype marks for
the data constructor C. All the types obtained from the declared composition
type of C (which is a type with polymorphic subtype marks) are stored in C.

D � C : T is defined in a similar way, but before computing the types with mono-
morphic subtype marks from the declared decomposition type of C, the result
type (with structure Tα, where α is a polymorphic subtype annotation) of
the declared decomposition type must be generalized: if α(m) =↑ for some
m ∈M, then α(m) should be set to a fresh subtype mark variable.

F � F : (T, μ) means that not only the types with monomorphic subtype marks
are stored in F , but also the substitutions that were used to create those types
from the declared type of F.

Example 9 (Generalization in decomposition types). Generalization in the de-
clared decomposition type of a data constructor C expresses that known subtype
invariants of a value constructed with C can be ignored when the value is pattern
matched against a function alternative. When creating the D type environment,
the decomposition types for Nil and Cons given in Ex. 7 are generalized:

Nil :>: List{S}
Nil :<: List{s:S}

Cons :>: Int -> List -> List{C}
Cons :<: Int -> List{s:S} -> List{s:S,c:C}

During typing, type information about variables will be stored in a basis. A basis
B is a partial function from variables to types with monomorphic subtype marks.
The type of a variable x in the basis B is denoted by B(x).

Proving Program Properties Specified with Subtype Marks 173

Table 1. Typing rules for Senyv

F � F : (T, μ)

B, F , C � F : ib(T)

C � C : T

B, F , C � C : T

D � C : T

B, D � C : T

B, F , C � x : ib
(
B(x)

)
B, F , C � E : T, T <: T ′

B, F , C � E : T ′

B, F , C � E1 : T1
α→ T2, B, F , C � E2 : T1

B, F , C � (E1 E2) : T2

B, F , C � E′ : rb(T
′), B ∪ x : T ′, F , C � E : T

B, F , C � (let x :: T ′ = E′ in E) : T

B, D � x : B(x)

B, D � xi : Ti for all i ∈ [1..n],

B, D � C : T1
β1−→ · · · βn−1−→ Tn

βn−→ T

B, D � C x1 . . . xn : T

Definition 10 (Type-correctness)

– A Senyv program is type-correct, if all the alternatives of its function def-
initions are type-correct with respect to the type environments C, D and F
created from the type declarations of the program.

– An alternative “F P1 . . . Pn = E” is type-correct with respect to C, D, F , if:
• there is at least one (T, μ) such that F � F : (T, μ) and rb(T) matches

the pattern 〈P1 . . . Pn〉, and
• for all F � F : (T, μ) such that rb(T) matches 〈P1 . . . Pn〉, the alternative

can be typed with
(
rb(T), μ

)
.

– The type “T1
α1−→ · · · αn−1−→ Tn

αn−→ T ” matches the pattern 〈P1 . . . Pn〉 if there
is a basis B such that for all i ∈ [1..n] the judgement B,D � Pi : Ti can be
derived with the rules in Table 1.

– An alternative “F P1 . . . Pn = E” can be typed with (T1
α1−→ · · · αn−1−→ Tn

αn−→
T, μ), if there is a basis B such that the judgements B,F , C � E[μ] : T and
B,D � Pi : Ti (for all i ∈ [1..n]) can be derived with the rules in Table 1.

Notice that in the above definition the composition and decomposition types
of data constructors are used as axioms during typing.

The concept of “types that match patterns” is sensible because of the special
treatment of missing subtype marks in the right-hand side of decomposition
types, illustrated by Ex. 7. This concept makes it possible to type-check e.g.
Reverse.

174 T. Kozsik

Example 10 (Types that match patterns). Function Snoc is the opposite to Cons:
it adds an element to the end of a list. Reverse reverses a list, hence it preserves
the non-emptiness property of its argument.

Snoc :: List -> Int -> List{C}
Snoc Nil e = Cons e Nil
Snoc (Cons x xs) e = Cons x (Snoc xs e)

Reverse :: List{c:C} -> List{c:C}
Reverse Nil = Nil
Reverse (Cons x xs) = Snoc (Reverse xs) x

The first alternative of Reverse does not match the type List{C} -> List{C},
because Nil does not match List{C}. However, due to the generalization of de-
composition types in Def. 9, Nil matches List: see Ex. 9. Hence List -> List,
the other type with monomorphic subtype marks obtained from the declared
type of Reverse is required to type the first alternative of this function.

Remark 1. If a Senyv program is type-correct, then the Clean program de-
scribing its dynamic semantics is also type-correct (according to the definition
of type-correctness in Clean). Hence “conventional type-correctness” (namely,
which is based on the translation to Clean) is a necessary condition for type-
correctness in Senyv.

Definition 11 (Conventional types, E|T | and |E|T ||). Let T be a type. |T | is
called the conventional type created from T , where

|T | =
{

T if T = Tα ,

|T1| → |T2| if T = T1
β→ T2 .

Given a conventionally type-correct Senyv program, let E|T | denote the set of
Senyv expressions (meaningful in that program) which can be conventionally
typed with |T |. Furthermore, let |E|T || denote the set of Clean expressions obtained
by translating the expressions in E|T | into Clean.

5 Correctness of Programs

Subtype marks in Senyv are interpreted as Bool-functions written in Clean.

Definition 12 (The meaning of a subtype mark). Consider a subtype
mark, say M ∈ M. Assume that it is used to annotate the conventional type
|T |. The meaning of this subtype mark is described by the Clean function M with
the following properties.

– The arity of M is at least one.
– The first argument type of M is |T |.
– The return type of M is Bool.
– The argument types of M are strict.

Proving Program Properties Specified with Subtype Marks 175

Let |T |, |T1|, . . . |Tn| be the argument types of M. Let L = {f , t} denote the set of
logical values. Predicate PM : E|T | → L is introduced in such a way that for any
E ∈ E|T |, PM(E) = t if and only if the following holds. Let E′ ∈ |E|T || denote the
Clean expression obtained by transforming E into Clean; for every Ei ∈ |E|Ti||
(where i ∈ [1..n]), the Clean expression M E′ E1 . . . En must reduce to True.

Remark 2. In Sparkle the symbol “=” corresponds to reduction. (More precisely,
A = B holds, if the reduction of A and B results in the same observable behaviour.)
Since True is in normal form, E = True means that the normal form of E is True.
Therefore, adopting the notations of Def. 12, PM(E) = t if the following theorem
holds in Sparkle.

∀p1 :: |T1| . . . ∀pn :: |Tn| :
(
M E ′ p1 . . . pn = True

)
(1)

A program is considered correct, if it uses subtype annotations in a proper way.
First a couple of examples illustrate this concept, then the formal definition is
presented. The focus is on the relation between the meaning of subtype marks
(Def. 12) and type-correctness (Def. 10). In accordance with Remark 1, in what
follows it is assumed that concerned programs and expressions are always con-
ventionally type-correct.

The meaning of subtype marks is irrelevant with respect to type-correctness.
The type system uses the composition and decomposition types as axioms. One
aspect of program correctness is the correctness of these axioms with respect to
Def. 12.

Example 11. Consider the composition and decomposition types of Nil in Ex. 7.
Ex. 2 tells us that S Nil reduces to True. By Remark 2 this can be rewritten to
PS(Nil). Hence Nil is sorted, and the composition type is correct.

The decomposition type requires a different point of view: those subtype marks
are interesting that do not appear in the right-hand side of the decomposition
type; in this case C is such a subtype mark. According to Ex. 7, C Nil reduces
to False, not True. Hence ¬PC(Nil). Therefore the decomposition type of Nil
is also correct.

The second aspect of program correctness is the correctness of the declared type
of functions. For example, it has to be proven that if k is the integer number
equal to Length list, then PN(k). (This shifty phrasing is intentional.) Finally,
the third aspect of program correctness is the correctness of the declared type of
local variables. Consider, for instance, the variable n_minus_one in the second
alternative of Repeat. It has to be proven that PN holds on this variable.

Now a notation capturing the meaning of subtype marked types is presented.
The proof system used for Senyv should support this notation. (Currently no
machine support exists for this notation; it is expanded for Sparkle by hand.)

Definition 13. Given a (conventionally type-correct) Senyv program, let T be
a type with monomorphic subtype marks, and E ∈ E|T | an expression that are
sensible with respect to this program. The formula E ∈ T denotes the following.

176 T. Kozsik

– If T = Tα, then “either E has no normal form, or Pm(E) = t for each
m ∈M such that α(m) �=↓.”

– If T = T1
α→ T2, then “either E has no normal form, or Pm(E) = t for each

m ∈M such that α(m) �=↓ and (E E′) ∈ T2 for all E′ ∈ T1.”

Remark 3. The formula E ∈ T can be formalized in Sparkle style in the following
way: (2) for T = Tα, and (3) for T = T1

α→ T2.

E = ⊥ ∨
(

∧

α(m) �=↓
Pm(E)

)

(2)

E = ⊥ ∨
((

∧

α(m) �=↓
Pm(E)

)

∧
(
∀x : x ∈ T1 → (E x) ∈ T2

)
)

(3)

Undefined computations are denoted by the ⊥ symbol: E = ⊥ means that E
has no normal form. The empty conjunction is considered t (true).

The method presented here is not aiming at reasoning about termination and
undefinedness. It attempts to avoid the problems related to these issues by being
very permissive towards infinite and undefined computations. This is reflected
in the above definition.

Example 12. Let us prove that Length ∈ List->Int{N}. This formula can be
rewritten to

Length = ⊥ ∨
(
∀x : Length x = ⊥ ∨ N (Length x) = True

)
.

In Sparkle (version 0.0.4b, 20-Apr-2004), using the definition of Length which is
transformed to Clean (as given in Ex. 4), it is possible to prove this theorem in
34 steps.

Definition 14 (Correct type environments). The type environment F is
correct, if for each function symbol F and for all judgements F � F : (T, μ) the
formula F ∈ T is valid.

The type environment C is correct, if for each data constructor C and for all
judgements C � C : T the formula C ∈ T is valid.

The type environment D is correct, if for each data constructor C the following
holds. Let n denote the arity of C, and for all i ∈ [1..n] let Ci be an auxiliary
projection function defined in this way: “Ci (C p1 . . . pi . . . pn) = pi”. For
all judgements “D � C : T1

α1−→ · · · αn−1−→ Tn
αn−→ Tα” the formula Ci ∈ Tα → Ti

should be valid. Furthermore, if β is a monomorphic subtype annotation such
that there is no judgement “D � C : T1

β1−→ · · · βn−1−→ Tn
βn−→ Tβ”, then the

formula “¬
(
∃x1 . . . ∃xn : (C x1 . . . xn) ∈ Tβ

)
” should also be valid.

Finally, the correct use of local variables should be investigated. For analyzing
let-expressions, the variables occurring in it must be identified first. These vari-
ables are introduced in the patterns of the function alternative containing the let-
expression, and the local variables introduced by the surrounding let-expressions.

Proving Program Properties Specified with Subtype Marks 177

Then the conditions that can be used during the proof of the correctness should
be collected. These conditions come from three sources: firstly, from the declared
type (the pre-condition) of the containing function; secondly, from the fact that
the alternatives preceeding the containing alternative did not match; and thirdly,
from the bindings of the surrounding let-expressions.

Definition 15 (Correct use of local variables). Local variables are used in
a correct way in a program, if for all function definitions of the program and all
let-expressions occurring in the function definitions satisfy the following.

Let function F with arity n be defined with m alternatives. Let Pi,j be a pattern
expression, and Ei is an expression (i ∈ [1..m], j ∈ [1..n]); alternative number i
is: F P1,1 . . . P1,n = E1.

For the sake of simplicity, assume that all variables (formal arguments and
local variables) occurring in this function definition are called differently. (This
can be achieved in a way that preserves the meaning of the program by renaming
variables.) Consider a let-expression in the rth alternative: let x :: T ′=E′ in E.
Assume that this let-expression occurs in a context where the local variables
x1, . . . , xu are bound with values E′

1, . . . , E
′
u. Let y1, . . . , yv(i,j) denote the vari-

ables introduced by the patterns P1,1, P1,2 . . . Pi,j . The following formula must
be valid for all judgements F � F : T1

α1−→ · · · αn−1−→ Tn
αn−→ (T, μ).

∀y1 . . . ∀yv(r,n) ∀x1 . . . ∀xu : (Pr,1 ∈ T1 ∧ · · · ∧ Pr,n ∈ Tn) →
¬(Pr,1 = P1,1 ∧ · · · ∧ Pr,n = P1,n) → (4)
. . .

¬(Pr,1 = Pr−1,1 ∧ · · · ∧ Pr,n = Pr−1,n) →
(
x1 = E′

1[μ] ∧ · · · ∧ xu = E′
u[μ]

)
→

E′[μ] ∈ T ′

Example 13. Consider function Repeat from Ex. 4. The let-expression in its
second alternative is correct, if the following formula is valid.

∀e1 ∀n ∀e : (N n = True)→
¬(n = Zero ∧ e = e1)→
(
Pred n = ⊥ ∨ N (Pred n) = True

)

The validity of this formula can indeed be proven in Sparkle in 40 proof steps.

Definition 16 (Correct program). A program is called correct with respect to
the subtype annotations, if the type environments F , C and D built up from the
program and the use of local variables in the program are correct (Def. 14 and 15).

6 The Soundness of the Type System

The idea of dividing labour between the Senyv type checker and a proof system
when reasoning about the correctness of programs with respect to subtype marks

178 T. Kozsik

is supported by believe-me marks. For type-correct programs it is sufficient to
restrict the use of a proof system for analyzing believe-me marked subtype marks.
First a transformation sb is introduced that selects believe-me marked subtype
marks.

Definition 17 (sb). Transformation sb can be applied on types with monomor-
phic subtype marks and on monomorphic subtype annotations. Applying it on
a type means applying on all the annotations occurring in the type. Further-
more, for any α monomorphic subtype annotation, sb(α) is also a monomorphic
subtype annotation.

sb(α)(m) =
{
↑ if α(m) = !
↓ if α(m) = ↑ ∨ α(m) = ↓

Now a notion of correctness similar to Def. 14 and Def. 15 is introduced.

Definition 18 (Believe-me correct programs). A Senyv program is called
“believe-me correct”, if its C and D type environments are correct, and for func-
tions the following holds.

1. For each function symbol F and for each judgement F � F : (T, μ), the
formula F ∈ sb(T) is valid.

2. Same as Def. 15, apart from that in the formula the validity of which is to
be proven (namely in formula (4)), T ′ must be replaced by sb(T ′). (That is
the consequence part of the formula becomes E′[μ] ∈ sb(T ′).)

The soundness of the Senyv type system is phrased with the following theorem.
The proof of the theorem can be found in [9].

Theorem 1 (Sufficient condition for correctness). If a Senyv program is
type-correct and believe-me correct, then it is correct with respect to the subtype
annotations.

7 Conclusions

This paper described Senyv, an eager functional language with a type system
supporting subtype marks. Subtype marks provide a mechanism to denote type
invariants, and this way express pre- and postconditions and – through subtype
mark variables – the preservation of invariants. They also induce subtype poly-
morphism in the type system. Similar type systems were proposed by [3, 4], and
a limited form of subject reduction and principal typing were proved in [5, 6].
Another such type system was presented and illustrated with several meaningful
examples in [7], which improved expressive power by introducing inequalities on
subtype mark variables – similarly to Clean uniqueness typing [8] –, and by pro-
viding special rules for typing patterns. The concept of “types match patterns”
in this latter is similar to type refinement in case alternatives for GADTs [10].

Senyv should be regarded as a subset of Clean extended with subtype marks:
its dynamic semantics is defined by a translation to Clean. The aim of this paper

Proving Program Properties Specified with Subtype Marks 179

is to explore a method to facilitate reasoning about Clean programs. According
to this method each subtype mark is assigned an interpretation, a Bool func-
tion written in Clean. Therefore belonging to a subtype marked type can be
defined as a predicate representable in Sparkle, the proof tool designed for and
integrated with Clean. Correctness of Senyv/Clean programs with respect to
such predicates is defined. The paper investigates the conditions required for the
soundness of the type system of Senyv, and formulates the soundness theorem.
This theorem guarantees that correctness of programs can be proved with the
collaboration of the Senyv type checker (full automation) and of a proof sys-
tem (Sparkle, semi-automation). The verification conditions passed to the proof
system are to be generated by the Senyv compiler.

The main alternative approach to subtype marks is the use of dependently
typed programming languages [11, 12]. Since subtype marks cannot depend on
values, dependent types are more powerful. They provide an elegant and consis-
tent way to reason about programs, even without using additional proof systems.
In some dependently typed programming languages it is possible to specify pro-
gram properties at the type level, and use the compiler to check the proof of
correctness – or use an interactive IDE to design those proofs. However, one
might claim that they are too complex to learn and to use by a not highly ed-
ucated, average programmer. Subtype marks add less to traditional types, and
they can be introduced gradually: proving the VCs can be optional; therefore
they are easier to learn, and they can make their way into practice faster.

Hoare Type Theory [13] integrates dependent types with a Hoare-style logic.
In HTT it is possible to specify Hoare-triples in types, thus pre- and postcon-
ditions are expressible. It is used mainly for creating correct effectful programs.
HTT splits reasoning into two phases similarly to Senyv: first a decidable com-
bination of type checking and verification condition generation, and then an
optional phase for proving the VCs either manually or with a theorem prover.

Type refinements of [14] primarily target effectful programming: they support
reasoning about values produced by computations as well as about the changes
in program state. Some of the examples given in [14] can also be written and
type-checked in Senyv. However, type refinements use a first-order specification
language and are based on linear logic.

There are many further static type systems that provide means to reason
about safety properties of high-level programs, typically in a specific domain.
To mention but a few: ownership types [15] and the alike let the programmer
reason about aliasing, the system described in [16] can be used for resource usage
analysis, and the dependently typed framework in [17] is capable of expressing
dynamic execution costs of programs.

Experiments [7] with subtype marks show that they are best at describing
data with multiple abstract states, when certain operations are permissible
in some, but not all states. In the future it should be analyzed how subtype
marks work together with parametric polymorphism, and especially with type
classes. Inference of subtype annotations would also be a nice feature, but – hold-
ing with [11] – considered a less important goal. Supporting subtype marks in

180 T. Kozsik

Distributed Clean [18] and in a mainstream language such as C++ is also subject
to future work.

References

1. de Mol, M., van Eekelen, M., Plasmeijer, R.: Theorem Proving for Functional
Programmers, Sparkle: A Functional Theorem Prover. In: Arts, T., Mohnen, M.
(eds.) IFL 2002. LNCS, vol. 2312, pp. 55–71. Springer, Heidelberg (2002)

2. Plasmeijer, R., van Eekelen, M.: Concurrent Clean Version 2.0 Language Report.
(2001) http://www.cs.ru.nl/~clean/Manuals/manuals.html

3. Koopman, P.: Language support to enforce constraints on data types. Technical
Report 96-37, Computer Science, Leiden University, The Netherlands (1996)

4. van Arkel, D.F.R.: Annotated Types. M.Sc. thesis, Rijksuniversiteit te Leiden,
Vakgroep Informatica (1998)

5. Kozsik, T., van Arkel, D., Plasmeijer, R.: Subtyping with strengthening type in-
variants. In: Mohnen, M., Koopman, P., eds.: Proceedings of the 12th International
Workshop on Implementation of Functional Languages. Aachener Informatik-
Berichte, Aachen, Germany pp. 315–330 (2000)

6. Kozsik, T.: Subtyping with subtype marks. Technical Report 2003-P05, Eötvös
Loránd University, Faculty of Informatics, Budapest, Hungary (2003)

7. Kozsik, T.: Tutorial on Subtype Marks. In: Horváth, Z. (ed.) CEFP 2005. LNCS,
vol. 4164, pp. 191–222. Springer, Heidelberg (2006)

8. Barendsen, E., Smetsers, S.: Uniqueness typing for functional languages with graph
rewriting semantics. Mathematical Structures in Comp. Sci. 6, 579–612 (1996)

9. Kozsik, T.: Soundness of the type system of Senyv. Technical Report, Eötvös
Loránd University, Faculty of Informatics, Budapest, Hungary (2007) To appear

10. Peyton Jones, S., Washburn, G., Weirich, S.: Wobbly types: type inference for
generalised algebraic data types. Technical Report MS-CIS-05-26, Computer and
Information Science Department, University of Pennsylvania (2004)

11. McBride, C.: Epigram: Practical Programming with Dependent Types. In: Vene,
V., Uustalu, T. (eds.) AFP 2004. LNCS, vol. 3622, pp. 130–170. Springer, Heidel-
berg (2005)

12. Chen, C., Xi, H.: Combining Programming with Theorem Proving. In: ACM SIG-
PLAN Int’l Conf. on Functional Programming. pp. 66–77 (2005)

13. Nanevski, A., Morrisett, G., Birkedal, L.: Polymorphism and Separation in Hoare
Type Theory. In: ACM SIGPLAN Int’l Conf. on Functional Programming. pp.
62–73 (2006)

14. Mandelbaum, Y., Walker, D., Harper, R.: An Effective Theory of Type Refine-
ments. In: ACM SIGPLAN Int’l Conf. on Functional Programming. pp. 213–225
(2003)

15. Clark, D., Potter, J., Noble, J.: Ownership types for flexible alias protection. In:
Proceedings of Conference on Object-Oriented Programming, Languages, and Ap-
plications, ACM Press, New York (1998)

16. Igarashi, A., Kobayashi, N.: Resource usage analysis. In: Symposium on Principles
of Programming Languages. pp. 331–342 (2002)

17. Brady, E., Hammond, K.: A dependently typed framework for static analysis of
program execution costs. In: Butterfield, A., Grelck, C., Huch, F. (eds.) IFL 2005.
LNCS, vol. 4015, pp. 74–90. Springer, Heidelberg (2006)

18. Horváth, Z., Hernyák, Z., Zsók, V.: Control Language for Distributed Clean. Acta
Cybernetica 17, 247–271 (2005)

Uniqueness Typing Redefined

Edsko de Vries1,�, Rinus Plasmeijer2, and David M. Abrahamson1

1 Trinity College Dublin, Ireland
{devriese,david}@cs.tcd.ie

2 Radboud Universiteit Nijmegen, Netherlands
rinus@cs.ru.nl

Abstract. We modify Clean’s uniqueness type system in two ways.
First, while Clean functions that are partially applied to a unique argu-
ment are necessarily unique (they cannot lose their uniqueness), we just
require that they must be unique when applied. This ultimately makes
subtyping redundant. Second, we extend the type system to allow for
higher-rank types. To be able to do this, we explicitly associate type con-
straints (attribute inequalities) with type schemes. Consequently, types
in our system are much more precise about constraint propagation.

1 Background

The problem of modelling side effects in pure functional languages, without losing
referential transparency, is well-known. Consider the function freadi that reads
the next integer from a file. The type of this function might be

freadi :: File → Int

To be able to return the next integer on every invocation, freadi advances
the file pointer before returning. This side effect causes a loss of referential
transparency. For instance, f and g are not interchangeable1:

f1 file = (freadi file) + (freadi file)
g1 file = (freadi file) ∗ 2

One way to make freadi’s side effect explicit is modifying its signature to

freadi :: World → File → (World, Int)

where World is some data type representing “the world”. We must then redefine
f and g as

f2 world file =
let (world1, a) = freadi world file in
let (world2, b) = freadi world1 file in
(a + b, world2)

� Supported by the Irish Research Council for Science, Engineering and Technology:
funded by the National Development Plan.

1 The subscripts of f and g are used only to be able to refer to particular versions of f
and g, and are not part of the code.

Z. Horváth, V. Zsók, and A. Butterfield (Eds.): IFL 2006, LNCS 4449, pp. 181–198, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

182 E. de Vries, R. Plasmeijer, and D.M. Abrahamson

g2 world file =
let (world1, a) = freadi world file in
(a ∗ 2, world1)

which makes it clear that f and g are different functions. But the problem has
not gone away, because nothing is stopping us from writing f as

f3 world file =
let (world1, a) = freadi world file in
let (world2, b) = freadi world file in
(a + b, world2)

In the language Haskell this problem is essentially solved by hiding the “state
threading” in a monad and never giving direct access to the World object. This
makes programs “correct by construction”, but rather affects the style of pro-
gramming. By contrast, uniqueness typing enforces correct state threading in
the type system. The main idea is to ensure that there is never more than one
reference to a particular world state. This is reflected in the type of freadi:

freadi :: World• → File → (World•, Int)

The bullets (•) indicate that freadi requires a unique reference to the World,
and in turn promises to return a unique reference. When the compiler type-
checks f3, it finds that there are two references to world, which violates the
uniqueness requirements; f2 however is accepted.

The type system presented in this paper depends on a sharing analysis of
the program, which is explained briefly in Sect. 2. Since the typing rules for
rank-1 are easier to understand than the typing rules for arbitrary rank, we first
present the rank-1 typing rules in Sect. 3 and then extend them to arbitrary
rank in Sect. 4. We consider a few examples in Sect. 5, outline a type inference
algorithm in Sect. 6, compare our system to the original Clean type system in
Sect. 7, and present our conclusions and list future work in Sect. 8.

2 Sharing Analysis

The typing rules that we will present in this paper depend on a sharing analysis
that marks variable uses as exclusive () or shared (⊗). This sharing analysis
could be more or less sophisticated [1], but if in any derivation of the program
the same variable could be evaluated twice, it must be marked as shared. In
this paper, we assume sharing analysis has been done, leaving a formal defi-
nition to future work. Here we look at an example only. Compare again the
definitions of f2 and f3 from Sect. 1. In the correct definition (f2), the variable
marking indicates that the reference to world is indeed unique (as required by
freadi)2:

2 The sharing analysis does not make a distinction between variables that happen to
be functions and other variables.

Uniqueness Typing Redefined 183

f2 world file =
let (world1, a) = freadi⊗ world� file⊗ in
let (world2, b) = freadi⊗ world1� file⊗ in
(a� + b�, world2�)

The marking in the incorrect definition indicates that there is more than one
reference to the same world state, violating the uniqueness requirement:

f3 world file =
let (world1, a) = freadi⊗ world⊗ file⊗ in
let (world2, b) = freadi⊗ world⊗ file⊗ in
(a� + b�, world2�)

In Sect. 5, we will look at an example that can be typed only if a more sophis-
ticated sharing analysis is applied.

3 Introducing Uniqueness Typing

We will present a uniqueness type system that allows for rank-1 types only,
before showing the full type system in Sect. 4. Although both the expression
language and the type language must be modified to support arbitrary rank
types, the typing rules as presented in this section are easier to understand and
provide a better way to introduce the type system.

3.1 The Language

We define our type system over a core lambda calculus:

e ::= expression
x�, x⊗ variable (exclusive, shared)
λx · e abstraction
e1 e2 application
i integer

The typing rules assign an attributed type τν to an expression e, given a type
environment Γ and a uniqueness attribute uγ (explained in Sect. 3.4), denoted

Γ, uγ � e : τν

The language of types and uniqueness attributes is defined as

τ ::= type ν ::= uniqueness attribute
a, b type variable u, v variable
τν1
1 −→

νa

τν2
2 function • unique

Int constant type × non-unique

The syntax for arrows (function space constructor) warrants a closer look. The
domain and codomain of the arrow are two attributed types τν1

1 and τν2
2 . The ar-

row itself has an additional attribute νa, whose role will become apparent when

184 E. de Vries, R. Plasmeijer, and D.M. Abrahamson

we discuss the rule for abstractions. We will adopt the notational convention of
writing (τν1

1 −→
νa

τν2
2)νf , where νf is “normal” uniqueness attribute of the arrow,

as (τν1
1

νf−→
νa

τν2
2).

As is customary, all type and attribute variables in an attributed type τν are
implicitly universally quantified at the outermost level (of course, this will not
be true for the arbitrary rank system). In this section, a type environment maps
variable names to attributed types (in Sect. 4, it will map variable names to type
schemes).

3.2 Integers

We can specify two alternative rules for integers (only one of which is required):

Γ, uγ � i : Intν Int

Γ, uγ � i : Int•
Int

′

Int says that integers have type Intν , for an arbitrary ν: the programmer is free
to assume the integer is unique or non-unique. Alternatively, Int

′ states that an
integer is always unique. We will discuss why we prefer Int in Sect. 3.4.

3.3 Variables

To find the type of the variable, we look up the variable in the environment,
correcting the type to be non-unique for shared variables:

(Γ, x : τν), uγ � x� : τν
Var

�
(Γ, x : τν), uγ � x⊗ : τ× Var

⊗

Note that Var
⊗ leaves the uniqueness attribute of the variable in the envi-

ronment arbitrary. This means that variables can “lose” their uniqueness. For
example, the function mkPair defined as λx · (x⊗, x⊗) has type au → (a×, a×)
(assuming a product type); in other words, no matter what the uniqueness of a
on input is, each a in the pair will be non-unique.

3.4 Abstractions

Before we discuss the typing rule for abstractions, we must return to the example
discussed in Sect. 1 and point out a subtlety. Consider f3 again:

f3 world file =
let (world1, a) = freadi⊗ world⊗ file⊗ in
let (world2, b) = freadi⊗ world⊗ file⊗ in
(a� + b�, world2�)

The compiler is able to reject this definition because world is marked as shared,
which will cause its type to be inferred as non-unique by rule Var

⊗. But what
happens if we “curry” freadi?

Uniqueness Typing Redefined 185

f world file =
let curried = freadi� world� in
let (world1, a) = curried⊗ file⊗ in
let (world2, b) = curried⊗ file⊗ in
(a� + b�, world2�)

Both programs are semantically equivalent, so the type-checker should reject
both. However, the argument world to freadi is in fact exclusive in the second
example, so how can we detect the type error? The general principle is

when a function accesses unique objects from its closure, that closure
(i.e., the function) must be unique itself (∗)

In the example above, curried accesses the unique world state from its closure,
and must therefore be unique itself—but is not, resulting in a type error. We
can approximate3 (∗) by

if a function is curried, and its curried argument is unique, the resulting
function must be unique when applied (∗′)

In the lambda calculus, functions only take a single argument, and the notion of
currying translates into lambda abstractions returning new lambda abstractions.
Thus, we can rephrase (∗′) as

if a lambda abstraction returns a new lambda abstraction, and the ar-
gument to the outer lambda abstraction is unique, the inner lambda ab-
straction must be unique when applied (∗′′)

In our type language, the additional attribute νa in the arrow type τν1
1 −→

νa

τν2
2

indicates whether the function is required to be “unique when applied”. The
purpose of uγ in the typing rules is to indicate whether we are currently in the
body of an (outer) lambda abstraction whose argument must be unique. Thus
we arrive at rule Abs:

(Γ, x : τν1
1), uγ′ � e : τν2

2 νa ≤ uγ , uγ′ ≤ ν1, uγ′ ≤ uγ

Γ, uγ � λx · e : τν1
1

νf−→
νa

τν2
2

Abs

This rule is very similar to the normal rule for abstractions in a Hindley/Milner
type system, with the exception of the attribute inequalities in the premise of
the rule. The u ≤ v operator can be read as an implication: if v is unique, then
u must be unique (v implies u, u← v)4.

3 This is an approximation since the function may not use the curried argument. In
λx · λy · y�, x is not used in the body of the function, so its uniqueness need not
affect the type of the function.

4 Perhaps the choice of the symbol ≤ is unfortunate. In logic a ≤ b denotes ab′ = 0
(i.e., a implies b), whereas here we use u ≤ v to mean v implies u. We use it here to
conform to Clean conventions.

186 E. de Vries, R. Plasmeijer, and D.M. Abrahamson

The first constraint establishes the conclusion of (∗′′): if we are in the body of
an outer lambda abstraction whose argument must be unique (uγ), then the inner
lambda abstraction must be unique when applied (νa). The second constraint
uγ′ ≤ ν1 is a near direct translation of the premise of (∗′′). Finally, uγ′ ≤ uγ

simply propagates uγ : if the premise of (∗′′) already holds (uγ), it will continue
to do so in the body of the abstraction (uγ′). Note that Abs is the only rule that
changes the value of uγ ; all the other rules simply propagate it. When typing an
expression, uγ is initially assumed to be non-unique.

It is instructive to consider an example at this point. We show the type deriva-
tion for λx · λy · x�, the function that returns the first of its two arguments:

(x : τν1
1 , y : τν2

2), uγ′′ � x� :: τν1
1 νa′ ≤ uγ′ , uγ′′ ≤ ν2, uγ′′ ≤ uγ′

Var
�

(x : τν1
1), uγ′ � λy · x� :: τν2

2

νf′
−−→
νa′

τν1
1 νa ≤ ×, uγ′ ≤ ν1, uγ′ ≤ ×

Abs

∅,× � λx · λy · x� :: τν1
1

νf−→
νa

(τν2
2

νf′
−−→
νa′

τν1
1)

Abs

Noting that νa ≤ × and uγ′ ≤ × are vacuously true, that uγ′′ ≤ ν2 and uγ′′ ≤ uγ′

are irrelevant as uγ′′ does not constrain any other attributes, and that νa′ ≤ uγ′

and uγ′ ≤ ν1 imply that νa′ ≤ ν1 (by transitivity), we arrive at the type

λx · λy · x� :: τν1
1

νf−→
νa

(τν2
2

νf′
−−→
νa′

τν1
1) νa′ ≤ ν1

where the constraint νa′ ≤ ν1 says that if we curry the function (specify x but
not y), and x happens to be unique, the result function must be unique on
application (its attribute νa′ must be •).

If we now consider rule Int
′, which says that integers are always unique,

this definition of Abs would imply that if we curry a function by passing in an
integer, the result function must be unique on application, which is unnecessary.
For example, we want the following expression to be type correct:

let fst = λx · λy · x in let one = fst 1 in (one 2, one 3)

For the same reason, nothing in Abs constrains νf , and the actual uniqueness
of the function is left free.

3.5 Application

The rule for function application is relatively straightforward. The only difference
between the rule as presented here and the usual definition is that App enforces
the constraint that functions that must be unique when applied, are unique when
applied (νf ≤ νa):

Γ, uγ � e1 : τν1
1

νf−→
νa

τν2
2 Γ, uγ � e2 : τν1

1 νf ≤ νa

Γ, uγ � e1 e2 : τν2
2

App

Uniqueness Typing Redefined 187

4 Arbitrary Rank Types

The rank of a type is the depth at which universal quantifiers appear in the
domain of functions. In most cases, universal quantifiers appear only at the
outermost level, for example

id :: ∀a.a→ a

which is a type of rank 1. In higher-rank types, we have nested universal quan-
tifiers. For example [2],

g :: (∀a.[a] → [a])→ ([Bool], [Int]) = λf. (f [True, False], f [1, 2, 3])

In this example, g requires a function f that works on lists of type [a] for all a
(the rank of the type of g is 2). Type inference is undecidable for types with rank
n > 2, but we can support type inference by combining type inference with type
checking. Thus, higher-rank types are only supported when function arguments
are given an explicit type signature. We extend the expression language with
annotated lambda expressions (and let expressions):

e += expression (ctd.)
λx :: σ · e annotated abstraction
let x = e in e′ local definition

In the rank-1 system presented in section 3 (as well as in Clean’s type system),
constraints are never explicitly associated with types, but are left implicit in
the typing rules. Although this makes the types simpler, we can no longer do
so if we want to support arbitrary rank types. When we generalize a type τν

to a type scheme σ, τν may be constrained by a set of constraints C. Those
constraints should be associated with the type scheme σ, because if at a later
stage we instantiate σ to get a type τν ′, the same set of constraints should apply
to τν ′ as well. This makes the types more complicated, but it also makes them
more precise (see sections 7 and 8). So, we define a type scheme as

σ ::= ∀	x.τν , C type scheme

where 	x is a set of type and uniqueness variables, and C is set of constraints or
a constraint variable. We modify the type language to allow for type schemes in
the domain of the arrow. We follow [2] and do not allow for type schemes in the
codomain:

τ ::= type
a, b type variable
σ −→

νa

τν2
2 arrow type (functions)

Int constant type

188 E. de Vries, R. Plasmeijer, and D.M. Abrahamson

Γ, uγ � i : Intν | ∅ Int

�inst
σ � τν | C

(Γ, x : σ), uγ � x� : τν | C Var
�

�inst
σ � τν | C

(Γ, x : σ), uγ � x⊗ : τ× | C Var
⊗

(Γ, x : ∀.τν1
1 , C1), uγ′ � e : τν2

2 | C2

Γ, uγ � λx · e : (∀.τν1
1 , C1)

νf−→
νa

τν2
2 | C2, νa ≤ uγ , uγ′ ≤ uγ , uγ′ ≤ ν1

Abs

Γ, uγ � e1 : σ1
νf−→
νa

τν2
2 | C Γ, uγ �gen e2 : σ2 �subs

σ2 � σ1

Γ, uγ � e1 e2 : τν2
2 | C, νf ≤ νa

App

Γ, uγ �gen e : σ (Γ, x : σ), uγ � e′ : τν | C
Γ, uγ � let x = e in e′ : τν | C Let

(Γ, x : σ), uγ′ � e : τν2
2 | C

Γ, uγ � λx :: σ · e : σ
νf−→
νa

τν2
2 | C, νa ≤ uγ , uγ′ ≤ uγ , uγ′ ≤ �σ�

Annot

Γ, uγ � e : τν | C
x = freevars(τν) − freevars(Γ)

Γ, uγ �gen e : ∀
x.τν , C
Gen

�inst ∀
x.τν , C � Sxτν | SxC
Inst

y /∈ freevars(∀
x.τν1
1) �subs

Sxτν1
1 � τν2

2 C2 � SxC1

�subs ∀
x.τν1
1 , C1 � ∀
y.τν2

2 , C2

Subs
σ

�subs
σ2 � σ1 �subs ∀.τν1

1 , ∅ � ∀.τν2
2 , ∅

�subs
σ1 → τν1

1 � σ2 → τν2
2

Subs
→

�subs
τν � τν

Subs
τ

Fig. 1. Uniqueness Typing Rules

Typing derivations now have the structure

Γ, uγ � e : τν | C

which says that e has type τν , given an environment Γ and uniqueness attribute
uγ (see Sect. 3.4), provided constraints C are satisfied (where environments now
map variable names to type schemes). The full typing rules are listed in Fig. 1;
we will explain them separately below.

Uniqueness Typing Redefined 189

4.1 Variables

Because the type environment now associates variable names with type schemes
rather than types, to find the type of a variable we must look up the associated
type scheme in the environment, and instantiate it. Instantiation is defined as

�inst ∀	x.τν , C $ Sxτν | SxC
Inst

where Sx is some substitution [x �→ . . .] mapping all variables 	x to fresh vari-
ables. Since we associate a set of constraints C with a type scheme, a type Sxτν

is only an instance of a type scheme σ if those constraints are satisfied.

4.2 Abstraction

The rule for abstraction remains unchanged except for the domain of the arrow
operator which is now a type scheme. However, since we can only infer rank-1
types, the type scheme for unannotated lambda expressions must be a “degen-
erate” type scheme with no quantified variables (∀.τν , C)—in other words, a
type5.

4.3 Application

The rule for application looks slightly different from the rank-1 version. Previ-
ously, with App the type of the actual parameter had to equal the type of the
formal parameter of the function:

Γ, uγ � e1 : τν1
1

νf−→
νa

τν2
2 Γ, uγ � e2 : τν1

1 νf ≤ νa

Γ, uγ � e1 e2 : τν2
2

App1

In the rank-n case, the only requirement is that the type of the actual parameter
is an instance of the type of the formal parameter. To this end, we infer a type
scheme for the actual parameter, and do a subsumption check:

Γ, uγ � e1 : σ1
νf−→
νa

τν2
2 | C Γ, uγ �

gen
e2 : σ2 �subs

σ2 $ σ1

Γ, uγ � e1 e2 : τν2
2 | C, νf ≤ νa

App

(We will explain subsumption separately in section 4.5.) To infer a type scheme,
we first infer a type, and then generalize over all the free variables in the type,
excluding the free variables in the environment:

Γ, uγ � e : τν | C 	x = freevars(τν)− freevars(Γ)
Γ, uγ �

gen
e : ∀	x.τν , C

Gen

5 In [2] the arrow → is overloaded; there is an arrow τ → τ and an arrow σ → τ . Since
we do not use the notion of ρ–types, our arrows always have type σ → τν .

190 E. de Vries, R. Plasmeijer, and D.M. Abrahamson

4.4 Annotated Lambda Abstractions

The rule for annotated lambda abstractions is similar to the rule for “ordinary”
lambda abstractions, except that programmers can now specify a type scheme
manually, allowing for higher-rank types:

(Γ, x : σ), uγ′ � e : τν2
2 | C

Γ, uγ � λx :: σ · e : σ
νf−→
νa

τν2
2 | C, νa ≤ uγ , uγ′ ≤ uγ , uγ′ ≤ %σ&

Annot

We have to be careful defining %∀	x.τν&, used to constrain uγ′. The obvious answer
(ν) is only correct if ν is not itself universally quantified. For example, consider

λx :: ∀u.au · λy · x� :: (∀u.au)
uf−−→
ua

bv uf′
−−→
ua′

aw, ?

(Note that this is a rank-2 type.) What should the constraint at the question
mark be? One possible solution is

∀u · ua′ ≤ u

which is equivalent to saying
ua′ ≤ •

So, to avoid unnecessary complication by introducing universal quantification
into the constraint language, we define % & as

%∀	x.τν& =

{
ν if ν /∈ 	x

• otherwise

4.5 Subsumption

The rules for subsumption are defined as in [2], except that we have collapsed
rules Skol and Spec into one rule (Subs

σ) and added one additional premise.
Subs

σ is the main rule that checks whether one type scheme is a (generic)
instance of another.

	y /∈ freevars(∀	x.τν1
1) �subs

Sxτν1
1 $ τν2

2 C2 � SxC1
�subs ∀	x.τν1

1 , C1 $ ∀	y.τν2
2 , C2

Subs
σ

In a standard type system, as here, a type scheme σ1 = ∀	x.τ1 is at least
as polymorphic as another type scheme σ2 = ∀	y.τ2 if a unifier Sx can be
found that instantiates τ1 to an arbitrary instantiation of τ2 (guaranteed by
	y /∈ freevars(∀	x.τν1

1)). In our system, however, we need an additional con-
straint C2 � SxC1, which is best explained by example. Suppose we have two
functions f , g

f :: (∀u, v.au uf−−→
ua

bv) → . . .

g :: au uf−−→
ua

bv, [u ≤ v]

Uniqueness Typing Redefined 191

Should the application f g type-check? Intuitively, f expects to be able to use
the function it is passed to obtain a b with uniqueness v (say, a unique b), inde-
pendent of the uniqueness of a. However, g only promises to return a unique b
if a is also unique! Thus, the application f g should be disallowed. Conversely, if
we instead define f ′ and g′ as

f ′ :: (∀u, v.au uf−−→
ua

bv, [u ≤ v])→ . . .

g′ :: au uf−−→
ua

bv

the application f ′ g′ should be allowed because the type of g′ is more general than
the type expected by f ′. The condition C2 � SxC1, where the � symbol stands
for logical entailment from propositional logic, means that if constraints C2 are
satisfied, constraints C1 must also be satisfied6. In other words, the constraints
of the offered type must be the same or less restrictive than the constraints of
the requested type.

5 Examples

In this section we consider a few example expressions and their associated types.
We start with very simple expressions and slowly build up from there. First, we
consider a single integer:

5 :: ∀u.Intu, ∅
Rule Int says that integers have type Int with an arbitrary uniqueness, hence
the universally quantified u. Next we consider the identity function id:

λx.x� :: ∀a, u, uf , ua, c.(∀.au, c)
uf−−→
ua

au, c

This type may appear more complicated than it really is, because we show top-
level attributes and degenerate type schemes; we can be slightly less formal:

λx.x� :: (au, c)
uf−−→
ua

au, c

Either way, this is the type one would expect an identity function to have.
Note that this function is polymorphic in the constraints of its argument: if the
argument has type au under constraints c, then the result has type au only if
the same set of constraints is satisfied.

The function apply ($ in Haskell) behaves like id restricted to function types:

λf.λx.f� x� ::
(

(au, c1)
uf′′−−→
ua′′

bv, c2

)
uf−−→
ua

(

(au, c1)
uf′−−→
ua′

bv

)

, [c2,

ua′ ≤ ua′′ , ua′ ≤ uf ′′ , uf ′′ ≤ ua′′]

6 If either C1 or C2 in C1 � C2 is a constraint variable, we apply unification instead of
the entailment check.

192 E. de Vries, R. Plasmeijer, and D.M. Abrahamson

With the exception of the constraints, this type should be self-explanatory. We
consider each constraint in turn:

c2 If f has type (au, c1)
uf′′−−→
ua′′

bv only when constraints c2 are

satisfied, then apply f also has that type only when those con-
straints are satisfied (cf. the constraint c in the type of id.)

ua′ ≤ ua′′ If f can only be executed once (in other words, if f must be
unique on application, if ua′′ is unique), then apply f can also
only be executed once.

ua′ ≤ uf ′′ If f is unique, then apply f can only be executed once; this is
a direct consequence of the “currying rule” from Sect. 3.4.

uf ′′ ≤ ua′′ Finally, apply f applies f , so if f must be unique on application,
we require that it is unique.

The next example emphasises a point with respect to the sharing analysis.
Suppose that we have a primitive type Array and two functions resize to (de-
structively) resize the array, and size to return the current size of the
array:

resize :: Array•
uf−−→
ua

Intv uf′
−−→• Array•

size :: Arrayu uf−−→
ua

Intv

Then the following expression is correctly marked and type correct:

λarr · if size� arr⊗ < 10 then resize⊗ arr� 20 else resize⊗ arr� 30

This expression is marked correctly, because only one of the two branches of
the conditional expression will be executed, and the shared mark arr⊗ in the
condition guarantees that the condition cannot modify arr .

To conclude this section, we consider two examples that contain a type error,
which in both cases will be detected in the subsumption check (although for
different reasons). The first example shows a simple case of an argument not
being polymorphic enough:

let id f = λf :: ∀u.au uf−−→
ua

au · f�

in let id int = λi :: Int• · i�

in id�
f id�

int

Here, id f demands that its argument is polymorphic in u, but id int is not (it works
only on unique integers). The problem is detected when we do the subsumption
check

�subs ∀.Int•
uf−−→
ua

Int• $ ∀u.au uf′
−−→
ua′

au

Uniqueness Typing Redefined 193

We have to check that we can unify Int• and au for an arbitrary instantiation of
u, but that will clearly fail7. The second “incorrect” example that we consider
fails due to the entailment check explained in section 4.5:

let first = λf :: au uf−−→
ua

bv uf′
−−→
ua′

au · λx · λy · f� x� y�

in first� (λx · λy · x�)

The function that is passed as an argument to first has type8

λx · λy · x� :: au uf−−→
ua

bv uf′
−−→
ua′

au, [ua′ ≤ u]

whereas the type specified for the argument f of first does not allow for the
constraint ua′ ≤ u; so, the type-checker will fail with

[] does not entail [ua′ ≤ u]

6 Type Inference

We have written a prototype implementation of the type system presented in this
paper. The typing rules as presented in Fig. 1 allow for a relatively straightfor-
ward translation to an algorithm W [3] style type-checker (our prototype is just
under a thousand lines long) once the following subtleties have been observed.

When doing unification, a unification goal, τν1
1 ≡ τν2

2 should be expanded
into two subgoals τ1 ≡ τ2 and ν1 ≡ ν2. In other words, the base types and the
uniqueness attributes should be unified independently.

Unification should not be used to unify functions because, as far as unifica-
tion is concerned, σ1 → τν1

1 ≡ σ2 → τν2
2 is the same as σ2 → τν2

2 ≡ σ1 → τν1
1 ,

but to compare two type schemes we need to use subsumption, which clearly
gives different answers for �subs

σ1 $ σ2 and �subs
σ2 $ σ1. However, when prop-

erly implemented, by the time we need unification, the subsumption rules (in
particular, Subs

→) will have taken care of all arrows9.
To implement the subsumption check, the technique suggested by Peyton

Jones [2] of using skolem constants can be applied, introducing skolem constants
both type and uniqueness variables.

Logical entailment of two sets of constraints C1 and C2 can be implemented
as a validity check for the propositional logic formula C1 → C2, where the
7 The implementation of Subs

σ will have instantiated u with a fresh “skolem con-
stant”: an unknown, but fixed, uniqueness attribute. These skolem constants are the
“rigid variables” known from, for example, ghc, and the type error the user will get
is Cannot unify rigid attribute u and •.

8 There are additional “polymorphic” constraint variables in these types that we are
leaving out for conciseness.

9 In [2], due to the distinction between ρ functions and τ functions, unification must
still deal with arrows τ → τ ; since we only have one arrow type, this is unnecessary
in our approach.

194 E. de Vries, R. Plasmeijer, and D.M. Abrahamson

u ≤ v operator is regarded as an implication v → u. Although the complexity of
checking the validity of functions in propositional logic is exponential, that will
not matter much in practice since the formulae generated by the type-checker
will be small (most type schemes will not have many associated constraints).
A simple algorithm (the one we have implemented) to check the validity of a
formula in propositional logic is to convert the formula to conjunctive normal
form. Then inspect every conjunct and search for atoms in the conjunct such
that the conjunct contains the atom and its negation. If such a match is found
for all conjuncts, the formula is valid (see [4, Sect. 1.5] for details).

Finally, when generalizing a type τν with respect to a set of constraints C, the
set should be checked for inconsistencies; these should be reported as type errors.
For improved readability of types, it is also useful to take the transitive closure of
C instead of C itself, and add only the “relevant” inequalities to the type scheme
(rule Abs might generate unnecessary constraints [uγ′ ≤ uγ , uγ′ ≤ ν1] if uγ′ is
never used to constrain other attributes); this is demonstrated in the example
in Sect. 3.4.

7 Comparison with Clean

The uniqueness type system presented here is based on that of the programming
language Clean [1,5], which is in turn strongly related to substructural logics
(see [6] for an accessible introduction to linear logic; [7] is a good introduction to
substructural type systems). However, there are a number of important differ-
ences, one being that Clean’s system is defined over graph rewrite rules rather
than the lambda calculus; this gives the type system a very different “feel”.

A rather more important difference is the treatment of curried functions.
In Clean, a function that is (partially) applied to a unique argument, is it-
self unique. Moreover, unique functions are necessarily unique: they cannot lose
their uniqueness. In the curry example in Sect. 3.4, there are two references to
curried, causing curried to be marked as ⊗. The type correction in rule Var

⊗

(a trivial operation in our system) must check whether the variable represents
a function, and if so, reject the program. While this solves the curried function
problem, it has far reaching consequences for the type system.

The first is that type variables, as well as functions, are not allowed to lose
their uniqueness, since a type variable can be instantiated to a function type. In
Clean, for example, the function mkPair has type

λx · (x⊗, x⊗) :: a× → (a×, a×)

and not
λx · (x⊗, x⊗) :: au → (a×, a×)

The type assigned by Clean is not as restrictive at is seems, however, due to
Clean’s subtyping relation: a unique type is considered to be subtype of its non-
unique counterpart. For example, the following is a correct Clean program:

Uniqueness Typing Redefined 195

five :: Int•

five = 5

mkPair :: a× → (a×, a×)
mkPair x = (x, x)

Start = mkPair five

where Start is assigned the type (Int×, Int×). Of course, the subtyping relation
is adapted for arrows [5]:

S
u−→ S′ ≤ T

v−→ T ′ iff u = v and T ≤ S and S′ ≤ T ′

There are two things to note about this definition: a unique function is never
a subtype of its non-unique version (condition u = v), since functions are not
allowed to lose their uniqueness (a similar restriction applies to type variables);
and subtyping is contravariant in the function argument. Although this is not
surprising, it complicates the type system—especially in the presence of algebraic
data types. We have not discussed ADTs in this paper (see Sect. 8), but they
are easy to add to our system. However, algebraic data constructors can include
arrows, for example

data Fun a b = Fun (a → b)

which means that arguments to constructors must be analysed to check whether
they have covariant, contravariant or invariant subtyping behaviour.

By contrast, in our system we do not have the notion of “necessarily unique”;
instead, we add a single additional attribute νa as explained before, and the con-
dition that (some) curried functions can only be executed once becomes a local
constraint νf ≤ νa in the rule for function application. There are no global effects
(for example, type variables are unaffected) and we do not need subtyping10.

That last point is worth emphasizing. The subtyping relation in Clean is very
shallow. The only advantage of subtyping is that we can pass in a unique object
to a function that expects a non-unique object. So, in Clean, marking a formal
parameter as non-unique really means, “I do not care about the uniqueness
of this parameter”. However, in our system, we can always use an attribute
variable to mean the same thing. That is not always possible in Clean, since
type variables are not allowed to lose their uniqueness (the type we assign to the
function mkPair above would be illegal in Clean).

Since we do not have subtyping, functions can specify that their arguments
must be unique (a•), non-unique (a×), or indicate that the uniqueness of the
input does not matter (au). In Clean, it is only possible to specify that arguments
must be unique (a•) or that the uniqueness of an argument does not matter (au

or, due to subtyping, a×). Experience will tell whether this extra functionality
is useful.
10 One might argue that subsumption introduces subtyping between type schemes;

however, due to the predicative nature of our type system, this does not have an
effect on algebraic data type arguments; see the discussion in [2, Sect. 7.3].

196 E. de Vries, R. Plasmeijer, and D.M. Abrahamson

Another consequence is mentioned in [5, Sect. Uniqueness Type Inference]:

However, because of our treatment of higher-order functions (involving a
restriction on the subtype relation w.r.t. variables), it might be the case
that lifting this most general solution fails, whereas some specific in-
stance is attributable. (...) Consequently, there is no “Principal Unique-
ness Type Theorem”.

The authors hope that the system presented here does have principal types,
although a formal proof is future work.

An additional benefit of allowing for type schemes in the domain of arrows
(necessary to support higher-rank types) is that we can be more conscientious
about associating uniqueness inequalities (constraints) with types. For example,
in Clean, the function apply from Sect. 5 has type

λf · λx · f x :: (au → bv)→ au → bv

But given a function f with type

f :: au → bv, [u ≤ v]

the Clean type-checker assigns the following type to applyf :

apply f :: au → bv, [u ≤ v]

This type is quite reasonable, and similar to the type we would assign. However,
it contains constraints that do not appear in the type of apply, which suggests
that the type of apply as assigned by the Clean type-checker is somehow “in-
complete”. The type we assign to apply is explicit about the propagation of
constraints11:

λf · λx · f x :: ((au, c1)→ bv, c2)→ (au, c1)→ bv, c2

8 Future Work and Conclusions

We have designed a uniqueness type system for the lambda calculus that can be
used to add side effects to a pure functional language without losing referential
transparency. This type system is based on the type system of the functional
programming language Clean, but modifies it in a number of ways. First, it is
defined over the lambda calculus rather than a graph rewrite system. Second, our
treatment of curried functions is completely different and makes the type system
much simpler; in particular, there is no need for subtyping. Third, our system
supports arbitrary rank types, and it is much more careful about associating
constraints with types.

11 Not showing the attributes on the arrows.

Uniqueness Typing Redefined 197

The system as presented in this paper deals only with the core lambda calcu-
lus; however, extensions to deal with algebraic data types and recursive defini-
tions are straightforward. For recursive definitions μ ·e, the type of e is corrected
to be non-unique (this is the same approach as taken in [5] for letrec expres-
sions). The main principle in dealing with algebraic data types is that if a unique
object is extracted from an enclosing container, the enclosing container must in
turn be unique (this is a slightly more permissive definition than the one used
in Clean, which requires that a container must be unique when it is constructed
if any of its elements are unique).

We need to define a semantics for our small core language and show that
a number of standard properties of the type system hold with respect to the
semantics (in particular, subject reduction). Also, we would like to prove that
our system has principal types. Given an appropriate semantics with an explicit
representation of sharing (for example, Launchbury’s natural semantics for lazy
evaluation [8], or perhaps a graph rewriting semantics), we should also prove
that our type system guarantees that there is never more than one reference to
an object with a unique type.

The inference algorithm described briefly in Sect. 6 is based on algorithm W
and inherits its associated problems, in particular unhelpful error messages. We
are planning to investigate the feasibility of other approaches—the constraint
based algorithm proposed by Heeren looks promising [9].

The formalization of the constraint language in this paper is not as precise as
it could be, but a more precise definition is difficult to give. Moreover, constraints
considerably complicate the type system and the types assigned to terms. We
are currently investigating the possibility of removing the constraints altogether
by replacing the inequalities in the constraints with equalities. This will make
the type system more restrictive, but will also make it much simpler. It remains
to be seen whether this trade-off between simplicity and generality is desirable.

In the explanation of the rule for abstractions Abs in Sect. 3.4, we mentioned
that our method of constraining νa is conservative. For example, the constraint
ua′ ≤ u in

λx.λy.y� :: (au, c1)
uf−−→
ua

(bv, c2)
uf′
−−→
ua′

bv, [c2, ua′ ≤ u]

is not actually necessary since x is not referenced in λy · x. Hence, it may be
possible to relax the rules to be less conservative. This would only affect how νa

in Abs is established; it would not change the type language.
Finally, the original motivation for wanting to extend Clean’s uniqueness sys-

tem to arbitrary rank is the fact that generic programming [10] frequently gener-
ates higher-rank types. We plan to extend our prototype implementation of the
system to support generics, with the ultimate goal of proving that if a function
defined generically is type correct (with respect to some “generic” uniqueness
type system), then the functions derived from the generic function will also be
type correct. This will give us some experience with the type system, which may
provide more insights into whether the extra power that our uniqueness system
gives over Clean’s system (see Sect. 7) is useful in practice.

198 E. de Vries, R. Plasmeijer, and D.M. Abrahamson

Acknowledgements

We thank Bastiaan Heeren, Dervla O’Keeffe, John Gilbert, Wendy Verbruggen,
and Sjaak Smetsers for their comments on various drafts of this paper, and the
anonymous referees for their thorough reviews and helpful suggestions.

References

1. Barendsen, E., Smetsers, S.: Conventional and uniqueness typing in graph rewrite
systems. Technical Report CSI-R9328, University of Nijmegen (1993)

2. Peyton Jones, S., Shields, M.: Practical type inference for arbitrary rank types.
Under consideration for publication in J. Functional Programming (2004)

3. Damas, L., Milner, R.: Principal type-schemes for functional programs. In: POPL
’82: Proceedings of the 9th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pp. 207–212. ACM Press, New York (1982)

4. Huth, M., Ryan, M.: Logic in Computer Science: Modelling and Reasoning about
Systems. Cambridge University Press, New York (2004)

5. Barendsen, E., Smetsers, S.: Uniqueness typing for functional languages with graph
rewriting semantics. Mathematical Structures in Computer Science 6, 579–612
(1996)

6. Wadler, P.: A taste of linear logic. In: Borzyszkowski, A.M., Sokolowski, S. (eds.)
MFCS 1993. LNCS, vol. 711, pp. 185–210. Springer, Heidelberg (1993)

7. Walker, D.: Substructural type systems. In: Pierce, B. (ed.) Advanced Topics in
Types and Programming Languages, MIT Press, Cambridge (2005)

8. Launchbury, J.: A natural semantics for lazy evaluation. In: POPL ’93: Proceedings
of the 20th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pp. 144–154. ACM Press, New York (1993)

9. Heeren, B., Hage, J., Swierstra, S.D.: Generalizing Hindley-Milner type inference
algorithms. Technical Report UU-CS-2002-031, Institute of Information and Com-
puting Science, University Utrecht, Netherlands (2002)

10. Alimarine, A., Plasmeijer, M.J.: A generic programming extension for Clean. In:
Arts, T., Mohnen, M. (eds.) IFL 2002. LNCS, vol. 2312, pp. 168–185. Springer,
Heidelberg (2002)

Heuristics for Type Error Discovery and Recovery

Jurriaan Hage and Bastiaan Heeren

Department of Information and Computing Sciences, Universiteit Utrecht
P.O.Box 80.089, 3508 TB Utrecht, The Netherlands

{jur,bastiaan}@cs.uu.nl

Abstract. Type error messages that are reported for incorrect functional programs
can be difficult to understand. The reason for this is that most type inference al-
gorithms proceed in a mechanical, syntax-directed way, and are unaware of in-
ference techniques used by experts to explain type inconsistencies. We formulate
type inference as a constraint problem, and analyze the collected constraints to
improve the error messages (and, as a result, programming efficiency). A special
data structure, the type graph, is used to detect global properties of a program,
and furthermore enables us to uniformly describe a large collection of heuristics
which embed expert knowledge in explaining type errors. Some of these also sug-
gest corrections to the programmer. Our work has been fully implemented and is
used in practical situations, showing that it scales up well. We include a number
of statistics from actual use of the compiler showing us the frequency with which
heuristics are used, and the kind and number of suggested corrections.

Keywords: type inferencing, type graph, constraints, heuristics, error messages,
error recovery.

1 Introduction

Type inference algorithms for Hindley-Milner type systems typically proceed in a
syntax-directed way. The main disadvantage of such a rigid and local approach is that
the reported type error messages not always reflect the actual problem. Over the last
five years we have developed the TOP framework to support flexible and customizable
type inference. This framework has been used to build the Helium compiler [6], which
implements almost the entire Haskell 98 standard, and which is especially designed for
learning the programming language.

An important issue is that the order in which constraints on types are resolved can
strongly influence at which point an inconsistency is detected. In existing compilers
(which tend to solve constraints as they go), this has the disadvantage that a bias exists
for finding errors towards the end of a program. In this paper we discuss a constraint
solver that uses type graphs, a data structure that allows a global analysis of the types
in a program. More importantly, type graphs naturally support heuristics, which embed
expert knowledge in explaining type errors.

Some of these heuristics correspond closely to earlier proposals for improving error
messages. Some are new, such as heuristics which can discover commonly made mis-
takes (like confusing addition + and append ++), and a sophisticated heuristic which
considers function applications in detail to discover incorrectly ordered, missing, or
superfluous arguments.

Z. Horváth, V. Zsók, and A. Butterfield (Eds.): IFL 2006, LNCS 4449, pp. 199–216, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

200 J. Hage and B. Heeren

A number of these heuristics are tried in parallel, and a voting mechanism decides
which constraints will be blamed for the inconsistency. These constraints are then re-
moved from the type graph, and each of them results in a type error message reported
back to the programmer. The use of type graphs thus leads naturally to reporting multi-
ple, possibly independent type error messages.

The contributions we make in this paper are the following: we have integrated a large
collection of heuristics into a comprehensive and extensible framework. Although some
of these are known from the literature, this is the first time, to our knowledge, that they
have been integrated into a full working system. In addition, we have defined a num-
ber of new heuristics based on our experiences as teachers of Haskell. Our work has
been fully implemented into the Helium compiler which shows that it scales to a full
programming language. Helium has been used in a course of functional programming
at Universiteit Utrecht since 2002, comprising several hundreds of students. It is freely
available for download [6]. Furthermore, we have applied the compiler to a large collec-
tion of programs written by students, and considered how often the various heuristics
influence the outcome. Many of the examples in this paper are taken from this collection
of programs.

This paper is organized as follows. After setting the scene in the next section, we
introduce each heuristic in turn in Section 3. In Section 5 we show how the heuristics are
put together in the Helium compiler, and Section 6 gives statistical information about
the usage of heuristics based on a large collection of programs compiled by first-year
students. Section 4 considers the type graph data structure on which the implementation
of our heuristics in Helium are based. In Section 7 we consider related work, after which
we conclude.

2 Constraints

In this paper we consider only sets of equality constraints. Naturally, polymorphism is
part of the language, but it is used only For every such use, the polymorphic type will
be replaced by a fresh instance of that type. The major consequence of this approach
is that definitions from previous binding groups are considered given and can not be
blamed for a type error, only their use can. Due to space restrictions, we refer the reader
to [2] for more details of this process.

For the purposes of this paper, we can thus simply assume that constraints are of
the form τ1 ≡ τ2, in which τ1 and τ2 are monomorphic types, either type variables
v1, v2, . . ., type constants (such as Int and →), or the application of a type to an-
other. For example, the type of functions from integers to booleans is written (((→
) Int) Bool). Type application is left-associative, and we omit parentheses where al-
lowed. We often write the function constructor infix, resulting in Int → Bool . We
assume the types are well-kinded: types like Int Bool do not occur.

3 Heuristics

In principle, all the constraints that contribute to an error are candidates for removal.
However, some constraints are better candidates for removal than others. To select the

Heuristics for Type Error Discovery and Recovery 201

“best” candidate for removal, we use a number of heuristics. These heuristics are usually
based on common techniques used by experts to explain type errors. In addition to
selecting what is reported, heuristics can specialize error messages, for instance by
including hints and probable fixes. For each removed constraint, we create a single type
error message using the constraint information stored with that constraint. The approach
naturally leads to multiple, independent type error messages being reported.

Many of our heuristics are considered in parallel, so we need some facility to co-
ordinate the interaction between them. The Helium compiler uses a voting mechanism
based on weights attached to the heuristics, and the “confidence” that a heuristic has
in its choice. Some heuristics, the tie-breakers, are only considered if none of the other
heuristics came up with a suggestion.

A consideration is how to present the errors to a user, taking into consideration the
limitations imposed by the used output format. In this paper we restrict ourselves to
simple textual error messages.

In the following we shall consider a number of heuristics, a subset of what is cur-
rently available in Helium. Heuristics available in Helium have been omitted for vari-
ous reasons: some of the heuristics are still in their experimental stages (e.g., the repair
heuristics developed as part of a Master Thesis project by Langebaerd [7]), some have
been considered elsewhere (e.g., the type inference directives [5]), and some deal exclu-
sively with overloading, an issue we considered in an earlier paper [4]. Note, however,
that all of the heuristics described do work in the presence of type classes, as evidenced
by the Helium implementation (with overloading turned on).

We have grouped the heuristics into three major groups: the general heuristics that
apply to constraint solving in general, the language dependent heuristics that are specific
for functional programming languages and Haskell in particular, and, finally, a number
of program correcting heuristics that include a probable fix as part of the type error
message.

We illustrate the heuristics by means of examples. The ones that are followed by an
error message are taken from a collection of 11,256 actual compiles made by students
in the course year 2004/2005. For reasons of brevity we only include the parts of the
program that are involved in the error, and in some cases have translated identifiers to
English and removed some unimportant aspects of the code, for reasons of clarity and
concision.

3.1 General Heuristics

The heuristics in this section are not restricted to type inference, but they can be used
for other constraint satisfaction problems as well.

Participation Ratio Heuristic. Our first heuristic applies some common sense reason-
ing: if a constraint is involved in more than one conflict, then it is a better candidate for
removal. The set of candidates is thus reduced to the constraints that occur most often
in conflicts. This heuristic is driven by a ratio r (typically at least 95%): only constraints
that occur in at least r percent of the conflicts are retained as candidates. This percent-
age is computed relative to the maximum number of conflicts any of the constraints in
the set was involved in.

202 J. Hage and B. Heeren

Note that this heuristic also helps to decrease the number of reported error messages,
as multiple conflicts are resolved by removing a single constraint. However, it does not
guarantee that the compiler returns the minimum number of error messages.

The participation-ratio heuristic implements the approach suggested by Johnson and
Walz [14]: if we have three pieces of evidence that a value should have type Int, and
only one for type Bool, then we should focus on the latter.

First Come, First Blamed Heuristic. The next heuristic we present is used as a final
tie-breaker since it always reduces the number of candidates to one. This is an important
task: without such a selection criteria, it would be unclear (even worse: arbitrary) what is
reported. We propose a tie-breaker heuristic which considers the position of a constraint
in the constraint list.

In [1] we address how to flatten an abstract syntax tree decorated with constraints into
a constraint list L. Although the order of the constraints is irrelevant while constructing
the type graph, we store it in the constraint information, and use it for this particular
heuristic: for each error path, we take the constraint which completes the path – i.e.,
which comes latest in L. This results in a list of constraints that complete an error path,
and out of these constraints we pick the one that came first in L.

3.2 Language Dependent Heuristics

The second class of heuristics involves those that are driven by domain knowledge.
Although the instances we give depend to some extent on the language under consider-
ation, it is likely that other programming languages allow similarly styled heuristics.

Trust Factor Heuristic. The trust factor heuristic computes a trust factor for each
constraint, which reflects the level of trust we have in the validity of a constraint. Obvi-
ously, we prefer to report constraints with a low trust factor. We discuss four cases that
we found to be useful.

(1) Some constraints are introduced pro forma: they trivially hold. An example is
the constraint expressing that the type of a let-expression equals the type of its body.
Reporting such a constraint as incorrect would be highly inappropriate. Thus, we make
this constraint highly trusted. The following definition is ill-typed because the type
signature declared for squares does not match with the type of the body of the let-
expression.

squares :: Int
squares = let f i = i ∗ i

in map f [1 . . 10]

Dropping the constraint that the type of the let-expression equals the type of the body
would remove the type inconsistency. However, the high trust factor of this constraint
prevents us from doing so. In this case, we select a different constraint, and report, for
instance, the incompatibility between the type of squares and its right-hand side.

(2) The type of a function imported from the standard Prelude, that comes with
the compiler, should not be questioned. Ordinarily, such a function can only be used
incorrectly.

Heuristics for Type Error Discovery and Recovery 203

(3) Although not mandatory, type annotations provided by a programmer can guide
the type inference process. In particular, they can play an important role in the reporting
of error messages. These type annotations reflect the types expected by a programmer,
and are a significant clue where the actual types of a program differ from his perception.
We can decide to trust the types that are provided by a user. In this way, we can mimic a
type inference algorithm that pushes a type signature into its definition. Practice shows,
however, that one should not rely too much on type information supplied by a novice
programmer: these annotations are frequently in error themselves.

(4) A final consideration for the trust factor of a constraint is in which part of the
program the error is reported. Not only types of expressions are constrained, but errors
can also occur in patterns, declarations, and so on. Hence, patterns and declarations
can be reported as the source of a type conflict. Whenever possible, we report an error
for an expression. In the definition of increment , the pattern (: x) (x must be a list)
contradicts with the expression x + 1 (x must be of type Int).

increment (: x) = x + 1

We prefer to report the expression, and not the pattern. If a type signature supports the
assumption that x must be of type Int, then the pattern can still be reported as being
erroneous.

Avoid Folklore Constraints Heuristic. Some of the constraints restrict the type of a
subterm (e.g., the condition of a conditional expression must be of type Bool), whereas
others constrain the type of the complete expression at hand (e.g., the type of a pair is a
tuple type). These two classes of constraints correspond very neatly to the unifications
that are performed by algorithm W and algorithm M [8], respectively. We refer to
constraints corresponding to M as folklore constraints. Often, we can choose between
two constraints – one which is folklore, and one which is not. In the following definition,
the condition should be of type Bool , but is of type String .

test :: Bool → String
test b = if "b" then "yes!" else "no!"

Algorithm W detects the inconsistency at the conditional, when the type inferred for
"b" is unified with Bool . As a consequence, it mentions the entire conditional and
complains that the type of the condition is String instead of Bool . Algorithm M, on
the other hand, pushes down the expected type Bool to the literal "b", which leads to
a similar error report, but now only the literal "b" will be mentioned. The former gives
more context information, and is thus easier to understand for novice programmers. For
this reason we prefer not to blame folklore constraints for an inconsistency.

Avoid Application Constraints Heuristic. This heuristic is surprising in the sense that
we only found out that we needed it after using our compiler, and discovering that some
programs gave counterintuitive error messages. Consider the following fragment

if plus 1 2 then ... else ...

in which plus has type Int → Int → Int .
The application heuristic (a program correcting heuristic discussed in Section 3.3)

finds that the arguments to plus indeed fit the type of the function. However, the result

204 J. Hage and B. Heeren

of the application does not match the expected Bool for the condition. In this situation,
algorithm W would put the blame on the condition, while M would blame the use of
plus . Because our constraints are very fine-grained and introduce some intermediary
constraints, there is (unfortunately) another possibility: the application itself is blamed.
However, given that the arguments do fit, it is quite unlikely that the application as
a whole is at fault, and such an error message becomes unnatural. The task of this
heuristic is to remove these constraints from the candidate set.

Unifier Vertex Heuristic. At this point, the reader may have the impression that heuris-
tics always put the blame on a single location. If we have only two locations that con-
tradict, however, then preferring one over another introduces a bias. Our last heuristic
illustrates that we can also design heuristics to restore balance and symmetry in er-
ror messages, by reporting multiple program locations with contradicting types. This
technique is comparable to the approach suggested by Yang [15].

The design of our type rules (Chapter 6 of [2]) accommodates such a heuristic: at
several locations, a fresh type variable is introduced to unify two or more types, e.g.,
the types of the elements in a list. We call such a type variable a unifier. In our heuris-
tic, we use unifiers in the following way: we remove the edges from and to a unifier
type variable. Then, we try to determine the types of the program fragments that were
equated via this unifier. With these types we create a specialized error message. In the
following example, the type of the context is also a determining factor.

All the elements of a list should be of the same type, which is not the case in f ’s
definition.

f x y = [x , y, id ,"\n"]

In the absence of a type signature for f , we choose to ignore the elements x and y in
the error message, because their types are unconstrained. We report that id , which has
a function type, cannot appear in the same list as the string "\n". By considering how
f is applied in the program, we could obtain information about the types of x and y . In
our system, however, we never let the type of a function depend on the way it is used.
An example from the collection of logged programs is the following.

simplify :: Prop → Prop
simplify = (...)
simplifyAnd :: [Prop]→ [Prop]
simplifyAnd (p : ps) = [simplify p, simplifyAnd ps]

yields the error message

(5,22): Type error in list (elements have different types)

expression : [simplify p, simplifyAnd ps]
1st element : simplify p
type : Prop

2nd element : simplifyAnd ps
type : [Prop]

which simply lists all the participating uses and the types inferred for these uses, and
leaves putting the blame in the hands of the programmer.

Heuristics for Type Error Discovery and Recovery 205

Without the unifier heuristic, Helium returns the following message

(5,22): Type error in element of list

expression : [simplify p, simplifyAnd ps]
term : simplifyAnd ps
type : [Prop]
does not match : Prop

which puts the blame squarely on the second element in the list.

3.3 Program Correcting Heuristics

A different direction in error reporting is trying to discover what a user was trying to ex-
press, and how the program could be corrected accordingly. Given a number of possible
edit actions, we can start searching for the closest well-typed program. An advantage
of this approach is that we can report locations with more confidence. Additionally, we
can equip our error messages with hints how the program might be corrected. However,
this approach has a disadvantage too: suggesting program fixes is potentially harmful
since there is no guarantee that the proposed correction is the semantically intended
one (although we can guarantee that the correction will result in a well-typed program).
Furthermore, it is not immediately clear when to stop searching for a correction, nor
how we could present a complicated correction to a programmer.

An approach to automatically correcting ill-typed programs is that of type isomor-
phisms [10]. Two types are considered isomorphic if they are equivalent under
(un)currying and permutation of arguments. Such an isomorphism is witnessed by two
morphisms: expressions that transform a function of one type to a function of the other
type, in both directions. For each ill-typed application, one may search for an isomor-
phism between the type of the function and the type expected by the arguments and the
context of that function. The heuristics described in this section elaborate on this idea.

the application, the permutation and the sibling heuristics take into account that
class predicates that need to be satisfied due to program corrections can indeed be re-
solved [3]. These heuristics can therefore be said to work correctly in the presence of
overloading.

The Application Heuristic. Function applications are often involved in type inconsis-
tencies. Hence, we introduce a special heuristic to improve error messages involving
applications. It is advantageous to have all the arguments of a function available when
analyzing such a type inconsistency. Although mapping n-ary applications to a num-
ber of binary ones simplifies type inference, it does not correspond to the way most
programmers view their programs.

The heuristic behaves as follows. First, we try to determine the type of the func-
tion. We can do this by inspecting the type graph after having removed the constraint
created for the application. In some cases, we can determine the maximum number
of arguments that a function can consume. However, if the function is polymorphic
in its result, then it can receive infinitely many arguments (since a type variable can
always be instantiated to a function type). For instance, every constant has zero argu-
ments, the function map :: (a → b)→ [a] → [b] has two, and the function foldr ::
(a → b → b)→ b → [a] → b a possibly infinite number.

206 J. Hage and B. Heeren

If the number of arguments passed to a function exceeds the maximum, then we
can report that too many arguments are given – without considering the types of the
arguments. In the special case that the maximum number of arguments is zero, we
report that it is not a function.

To conclude the opposite, namely that not enough arguments have been supplied,
we do not only need the type of the function, but also the type that the context of the
application is expecting. An example follows.

The following definition is ill-typed: map should be given more arguments (or xs
should be removed from the left-hand side).

doubleList :: [Int]→ [Int]
doubleList xs = map (∗2)

At most two arguments can be given to map: only one is supplied. The type signature for
doubleList provides an expected type for the result of the application, which is [Int].
Note that the first [Int] from the type signature belongs to the left-hand side pattern
xs. We may report that not enough arguments are supplied to map, but we can do even
better. If we are able to determine the types inferred for the arguments (this is not always
the case), then we can determine at which position we have to insert an argument, or
which argument should be removed. We achieve this by unification with holes. First, we
have to establish the type of map’s only argument: (∗2) has type Int → Int . Because
we are one argument short, we insert one hole (•) to indicate a forgotten argument.
(Similarly, for each superfluous argument, we would insert one hole in the function
type.) This gives us the two configurations depicted in Figure 1.

Configuration 1 does not work out, since column-wise unification fails. The second
configuration, on the other hand, gives us the substitution S = [a := Int , b := Int].
This informs us that our function (map) requires a second argument, and that this argu-
ment should be of type S([a]) = [Int].

The final technique we discuss attempts to blame one argument of a function appli-
cation in particular, because there is reason to believe that the other arguments are all
right. If such an argument exists, then we put extra emphasis on this argument in the
reported error message.

evaluate :: Prop → [String]→ Bool
evaluate (And [p : q]) xs = all [p | p ← xs]

(2,27): Type error in application

expression : all [p | p ← xs]
term : all
type : (a → Bool) → [a] → Bool
does not match : [String]→ Bool

probable fix : insert a first argument

The Tuple Heuristic. Many of the considerations for the application heuristic also
apply to tuples. As a result, this heuristic can suggest that elements of a tuple should be
permuted, or that some component(s) should be inserted or removed.

Heuristics for Type Error Discovery and Recovery 207

configuration 1 :
function (a → b) → [a] → [b]
arguments + context • → (Int → Int) → [Int]

configuration 2 :
function (a → b) → [a] → [b]
arguments + context (Int → Int) → • → [Int]

Fig. 1. Two configurations for column-wise unification

The Permutation Heuristic. A mistake that is often made is the simple exchange of
one or more arguments to a function. The permutation heuristic considers applications
which are type incorrect, and tries to determine whether there is a single permutation
that makes the application correct. For this to work, we need the type of the application
expected by the context, and the types of the arguments (if any of these cannot be
typed, then it makes no sense to apply this heuristic). By local changes to the type
graph, the compiler then determines how many permutations result in a correctly typed
application. If there is only one, then a fix to the program is suggested (in addition to
the usual error message). If there are more, then we deem it impossible to suggest a
probable fix, and no additional hint is given.

zero :: (Float → Float)→ Float → Float
zero f y0 = until (λb → b −. f b /. diff f b)

(λb → f b <. 0.000001) y0

with the following error message as a result

(2,13): Type error in application

expression : until (λb → b −. f b /. ...) (λb → ...) y0
term : until
type : (a → Bool) → (a → a)→ a → a
does not match : (Float→Float)→(Float→Bool)→Float→Float

probable fix : re-order arguments

The Sibling Function Heuristic. Novice students often have problems distinguishing
between specific functions, e.g., concatenate two lists (++) and insert an item at the front
of a list (:). We call such functions siblings. If we encounter an error in an application in
which the function that is applied has a sibling, then we can try to replace it by its sibling
to see if this solves the problem (naturally only at the type level). This can be done quite
easily and efficiently on type graphs by a local modification of the type graph. The main
benefit is that the error message may include a hint suggesting to replace the function
with its sibling. (Helium allows programmers to add new pairs of siblings, which the
compiler then takes into account [5].)

smash :: [a] → [a]
smash [] = []
smash [a] = head [a] ++ smash (tail [a])

208 J. Hage and B. Heeren

with the following error message as a result

(3,22): Type error in variable

expression : ++
type : [a] → [a] → [a]
expected type : b → [b]→ [b]

because : unification would give infinite type

probable fix : use : instead

The Sibling Literal Heuristic. A similar kind of confusion that students have is that
they mix floating points numbers with integers (in Helium we distinguish the two), and
characters with strings. This gives rise to a heuristic that may replace a string literal
"c" with a character literal ’c’ if that resolves the inconsistency.

writeRow :: [[String]]→ Int → String
writeRow tab n = if n == (length tab + 3) then ""

else replicate (columnWidth tab n) " "++ " "++

results in

(3,61): Type error in literal

expression : " "
type : String
expected type : Char

probable fix : use a char literal instead

4 Type Graphs

The heuristics of the previous section share the characteristic that they have all been
implemented in Helium as functions that work on type graphs. Essentially, a type graph
represents a set of constraints, and as such is similar to a substitution. The main dif-
ference is that type graphs can also represent inconsistent sets of constraints. In this
section, we first describe what type graphs are, and then describe for a few of the pre-
viously described heuristics how they can be handled in terms of operations on type
graphs. Due to lack of space we only try to convey the essential ideas, intuitions, and
features of type graphs and how they may be used. For a complete description we refer
the reader to Chapter 7 of the PhD thesis of the second author [2].

Our type graphs resemble the path graphs that were proposed by Port [11], and which
can be used to find the cause of non-unifiability for a set of equations. However, we
follow a more effective approach in dealing with derived equalities (i.e., equalities ob-
tained by decomposing terms, and by taking the transitive closure).

McAdam has also used graphs to represent type information [9]. In his case, parts
of the graph are duplicated to handle let-constructs, which implies a lot of duplication
of effort, and, worse, it can give rise to duplication of errors if the duplicated parts
themselves are inconsistent. We avoid this complication by first handling the definitions
of a let (which gives us the complete types of those definitions), before continuing with
the let body. This implies that in case of a mismatch between the definition and the use
of an identifier, the blame is always on the latter.

Heuristics for Type Error Discovery and Recovery 209

→

()

()

(r)

v1
#0 #1

() (r)

(r)()

(r)

v0
#2

v2

v3

@4

@5

@7

@8

#3

→ Int

Bool

Fig. 2. An inconsistent type graph

We consider a set of equality constraints as a running example and show how type
graphs may be used to determine which constraints should be removed to make the set
of constraints consistent. The resulting constraint set can then be converted into a sub-
stitution (the usual outcome of the type inference process). As explained in Section 2,
we may assume that we deal with equality constraints exclusively: polymorphism is
handled at a different level.

Consider the following set of equality constraints.

{v1
#0≡ v0 → v0, v1

#1≡ v2 → v3, v2
#2≡ Int , v3

#3≡ Bool}

Annotations like #0 are used for reference purpose only. For each left and right hand
side of a constraint we construct a term graph, which reflects the hierarchical structure
of type terms. These term graphs consist of vertices and directed edges, as shown on
the left and right hand side of Figure 2. Recall that the type v0 → v0 is represented
by a binary type application ((→) v0) v0, and it is this type that is used in type graph
construction. For readability, we continue to use v0 → v0 in the text.

The equality constraints between terms introduce undirected edges in the type graph.
Thus each constraint results in a single undirected edge (with its number as a label),
called an initial edge. When we equate two structured types, we implicitly equate the
subtypes of these types. In the example, v0 and v2 become equated, because through v1,
v0 → v0 and v2 → v3 become equated. This gives rise to the derived edges, occurring
as dashed edges in Figure 2. The connected components that arise when considering all
vertices that are connected via an initial or derived edge, are called equivalence groups.
Clearly, each vertex in an equivalence groups should represent the same type. This is
not the case in Figure 2, because Int and Bool end up in the same equivalence group.
The paths between such clashing constants are called error paths, which may contain
both initial and derived edges. When we encounter such an error path, we unfold the
derived edges until we end up with a path that consists solely of initial edges (remember
that these relate directly to the constraints from which the type graph was built).

The example type graph has only a single error path, but can in principle contain
many. The task of the type graph solver is to dissolve all error paths and it may do
so by selecting a constraint from each error path. This is exactly where the heuristics
discussed earlier in this paper come in: they operationalize what are the best places to

210 J. Hage and B. Heeren

cut. After a set of constraints is selected, the removal of which dissolves all error paths,
then we can use the resulting type graph to construct a substitution as the end result of
the solving process.

In the example, there are a number of possibilities to dissolve the error path. This is
generally the case, and this is where the heuristics play a role in selecting the most likely
candidate for removal. We can choose to remove any of the four constraints to make the
type graph consistent, each choice leading to a substitution obtained from the remaining
type graph. For example, if we remove #0, then the resulting substitution maps v1 to
Int → Bool , v2 to Int , and v3 to Bool . If we choose to remove #3 instead, then the
substitution maps v0, v2 and v3 to Int , and v1 to Int → Int . In our implementation,
the constraint is provided with enough information to be able to generate a precise error
message that tells the user why it was removed, in terms of types computed from the
remainder of the type graph. For example, in the latter case it will contrast the type it
expected for v3, which is Int , with the type it found for v3, which is Bool .

Thus far, we have explained rather informally how type graphs are built and handled,
but in practice there are a number of complications: The number of vertices in a type
graph grows quickly, as does the number of derived edges. The number of error paths
in any given type graph can be very large, even when one disregards error paths that
may be considered superfluous. Furthermore, how can one effectively deal with infinite
types, which occur as a result of constraints such as v1 ≡ v1 → Int? How does one
deal with type synonyms, that introduce new type constants as abbreviations for existing
types? Detailed descriptions of solutions to these complications can be found in [2].

The Implementation of Heuristics

The type graph data structure is well-suited for implementing the heuristics we have
defined. Because it is important for many heuristics to know what kind of constraint
we are dealing with, this information is included explicitly during the constraint gener-
ation process. For example, this is how the heuristics can tell that a certain constraint
is a so-called folklore constraint. Implementing the avoid folklore constraints heuris-
tic is then simply a matter of removing these constraints from the current candidate
set.

A slightly more complicated example is the implementation of the siblings heuristic.
When applied to a given edge e, it first decides whether that edge directly relates to
the type of some identifier, say id. Then it considers whether siblings were defined for
id. If so, then it tries to discover whether replacing id with any of its siblings resolves
the type error. This is accomplished by removing the edge e, computing the type id is
supposed to have based on the context in which it was used, and determining whether
any of the candidates fit this context. If so, then a hint is given that suggests to use
any of the matching candidates (there may be more than one). Care must be taken to
verify that the possible class predicates generated by the context, and by the use of the
candidate are satisfied.

The application heuristic works in a similar fashion: we remove and add a few edges
in the type graph and consider whether that removes the error paths we are currently
considering. Indeed, the idea of adding and removing edges is central to many of the
heuristics.

Heuristics for Type Error Discovery and Recovery 211

5 Putting It All Together

The Helium compiler includes all the heuristics we have discussed (and more), and
has been used for a number of years to teach students to program in Haskell. Reac-
tions in the first year were very promising (some of these students had used Hugs
before and indicated that the quality of error messages was much improved). Since
then we have improved the compiler in many ways, adding new language features and
new heuristics. Unfortunately, the students who currently do the course have never en-
countered any other system for programming in Haskell and thus cannot compare their
experiences.

Another issue we would like to address here is that of efficiency of the compiler.
We have constructed a special kind of solver that partitions the program into a number
of relatively independent chunks (in a first approximation, every top level definition is
a chunk), applies a fast greedy solver to each, and only when it finds a type error in
one of the chunks, does it apply the slower but more sophisticated type graph solver
to this erroneous chunk (but not to the foregoing chunks). This means that the type
graph solver is only used when a type error is encountered, and only on a small part
of the program. Additionally, there is a maximum to the number of error paths that the
type graph solver will consider in a single compile. Still, constructing and inspecting a
type graph involves additional overhead, which slows down the inference process. In a
practical setting (teaching Haskell to students), we have experienced that the extra time
spent on type inference does not hinder programming productivity.

To give the reader some idea how the ideas of the previous section take form in an
actual compiler, we have included the function listOfHeuristics in Figure 3. It takes
a (partially user specified) list of siblings to generate the list of available heuristics for
this compilation.

Each heuristic can be categorized as either a filtering heuristic or a selector heuristic.
The heuristic avoidTrustedConstraints is an example of the former: it filters out all
the constraints from the candidate set that have a high trust value, thus making sure
that these are never reported. Note that avoidForbiddenConstraints avoids constraints
of the sort described under (1) of the trust factor heuristic, only (3) and (4) are part of
avoidTrustedConstraints (case (2) is already taken care of by our choice that the use
of an identifier can never influence its type). It is easy to make the distinction between
selectors and filters in listOfHeuristics: all the heuristics that are part of the Voting
construct in the middle are selectors, the others are filters.

A voting heuristic is built out of a number of subsidiary heuristics, each of which
looks to see whether it can suggest a constraint likely to be responsible for the type
inconsistency. Each voting heuristic also returns a value that gives a measure of trust the
heuristic has in its suggestion. Based on these measures the combined voting heuristic
will decide which constraint to select, if any.

Most of the heuristics in Figure 3 are connected directly with heuristics discussed
in the paper. There are a few special cases, however: variableFunction has largely
the same functionality as the applicationHeuristic , but the latter is only triggered on
applications (a function followed by at least one argument). Instead, variableFunction
is triggered on identifiers that have a function type, but that do not have arguments at
all. It may for instance suggest to insert certain arguments to make the program type

212 J. Hage and B. Heeren

listOfHeuristics siblings path =
earlyFilters ++ [Heuristic (Voting selectors)] ++ tiebreakers

where
earlyFilters = [avoidForbiddenConstraints , highParticipation 0.95 path]

selectors = [siblingFunctions siblings, similarNegation
, applicationHeuristic, fbHasTooManyArguments
, siblingLiterals , variableFunction , tupleHeuristic]

tiebreakers = [avoidApplicationConstraints , avoidNegationConstraints
, avoidTrustedConstraints , avoidFolkloreConstraints
,firstComeFirstBlamed]

Fig. 3. The list of heuristics taken from the Helium compiler

correct. Another thing to remark is that the permutation of arguments in applications is
implemented as part of the applicationHeuristic as well.

The heuristic similarNegation provides the same functionality as siblingFunctions ,
but specifically for the negation function, which is a syntactic construct in Haskell and
must be treated somewhat differently. The heuristic fbHasTooManyArguments (fb is
short for function binding) tries to discover whether the type inconsistency can be ex-
plained by a discrepancy between the number of formal arguments, and the expected
number of arguments derived from the function’s explicit type signature.

The heuristics in the final block, starting with avoidApplicationConstraints are low
priority heuristics that are used as tie-breakers. Note that avoidNegationConstraints
provides the same functionality as avoidApplicationConstraints , but specifically for
negation.

The function that applies the list of heuristics starts with a set of constraints that lie
on an error path. It considers the heuristics in listOfHeuristics in sequence. A filtering
heuristic may remove any number of candidates from the set, but never all. If a con-
straint is selected by a selector heuristic, all other constraints will be removed from the
set of candidates leaving only the selected constraint.

6 Validation and Statistics

The existence of an actual implementation of our work immediately raises another is-
sue: it should be possible to establish whether the implemented heuristics are effective
by means of this implementation. However, the “quality” of a type error message is not
likely to get a precise definition any time soon, which means that the usability of Helium
can only be verified empirically. To perform such experiments is a difficult problem in
itself and beyond the scope of this paper.

The best way to judge the quality of the improved error messages of Helium is, sim-
ply, by using it. Still, to give the reader an idea of how often heuristics are applied, we
indicate for each kind of heuristics how often it was responsible for choosing or con-
tributing to finding what Helium considered to be the erroneous constraint. We present
a number of statistics computed from programs collected by logging Helium compila-
tions in a first year programming course. Each logging corresponds to a unique compile

Heuristics for Type Error Discovery and Recovery 213

heuristic type contributing deciding
Avoid forbidden constraints filter 3756 22
Participation ratio (ratio=0.95) filter 3791 202
Function siblings selector 479 433
Similar negation selector 0 0
Literal siblings selector 196 145
Application heuristic selector 2229 1891
Variable function selector 123 111
Tuple heuristic selector 5 5
Function binding has too many arguments selector 35 35
Avoid application constraints filter 726 15
Avoid negation constraints filter 0 0
Avoid trusted constraints filter 2371 1146
Avoid folklore constraints filter 1298 922
First come, first blamed filter 963 963

Fig. 4. The frequency of heuristics for the loggings of 2004/2005

performed by a student in the student network. We use the data sets collected for the
course year 2004-2005, with a total of 11, 256 loggings of which 3, 448 resulted in one
or more type errors. In total, the type incorrect programs produced 5, 890 type error
messages.

Figure 4 shows how often each heuristic contributed to eliminating candidate con-
straints, and in how many cases it was also decisive in bringing the number of candi-
dates down to one. In other words, it was responsible for selecting the constraint to be
removed and as such strongly influences the error message reported to the program-
mer. Note that the contributing count includes the deciding count. One thing that can be
noted from the results is that the tuple heuristic and the special heuristics for negation
are hardly used. The reason for this is that the programming assignments in 2004/2005
did not call for heavy use of tuples and negation.

Note that the heuristics below are applied in the given order, starting with Avoid for-
bidden constraints. Note that a filter heuristic such as this contributes often, but only
rarely is the deciding factor. This should not be surprising, because it can only be deci-
sive if all but one of the candidate constraints is forbidden, and this is not very likely. In
many programs there are cases of forbidden constraints, such as the one that says that
the body of the let and the let-expression as a whole have the same type. In the case of
the selector heuristics, the number of contributing and deciding occurrences should be
quite close, because typically they select a single candidate to remain.

Figure 5 focuses on the type of probable fixes given to the programmer. Of the 5,890
error messages, a total of 1,116 actually gave such a probable fix (in addition to the
standard error message). Note that for example the application heuristic in Figure 4 may
result in a variety of probable fixes: re-order arguments, insert missing argument, and
so on. On the other hand, some of the fixes suggested by the variable function heuristic
are the same as those of the application heuristic. As explained before, the variable
function heuristic is conceptually the same as the application heuristic. For reasons of
brevity, we have kept the table compact, lumping a number of similar probable fixes of

214 J. Hage and B. Heeren

probable fix generated by frequency
insert a first/second/... argument application/variable function 142
insert one/two/three/... argument(s) application/variable function 107
remove a first/second/... argument application 139
swap the two arguments application 57
re-order arguments application 56
re-order elements of tuple tuple 3
use a char/int/float/string literal instead sibling literals 154
use ++ instead sibling functions 100
use : instead instead sibling functions 142
use concatMap instead sibling functions 62
use eqString instead sibling functions 45
other sibling fixes sibling functions 109

Fig. 5. Probable fix frequency for the loggings of 2004/2005

lesser frequency together. For example “insert a first and second argument” falls into
the category of “insert a first/second/... argument”. We do make the distinction between
“insert a first argument” and “insert one argument”. In the former case, the compiler
was able to conclude unambiguously that the first argument was missing.

7 Related Work

There is quite a large body of work on improving type error messages for polymorphic,
higher-order functional programming languages such as Haskell, cf. [14,11,9,10,15].
The drawback of these papers is that they have not led to full scale implementations
and in many cases disregard issues such as efficiency and scalability. Since we refer to
the articles who have influenced our choice of heuristic where we discuss the heuristic,
we shall consider only some of the more current approaches in the remainder of this
section. For a very detailed description of the literature in this area, see Chapter 3 of the
PhD thesis of the second author [2].

In recent years, there is a trend towards implementation. One of these systems is
Chameleon [12] which is an interactive system for type-debugging Haskell. The view-
point here is that no static type inference process will come up with a good message in
every possible situation. For this reason, they prefer to support an interactive dialogue
to find the source of the error. A disadvantage of such a system is that is not very easy
to use by novice programmers, and more time consuming as well. An advantage is that
the process itself may give the programmer insight into the process of type inferencing,
helping him to avoid repeating the mistake. In a later paper, the authors move in the di-
rection of type error reporting [13], using the same algorithm to compute the locations
contributing to the error. As far as we know, Chameleon has not been used on groups of
(non-expert) programmers.

Ideally, a compiler provides a combination of feedback and interaction: if the pro-
vided heuristics are reasonably sure that they have located the source of error, then a
type error message may suffice, otherwise an interactive session can be used to examine

Heuristics for Type Error Discovery and Recovery 215

the situation in detail. Our unifier heuristic occupies a middle point: it makes no judg-
ment on who is to blame, but only describes which types clash and where they arise
from. It only applies if there is no overwhelming amount of evidence against one of the
candidates for removal (for a particular choice of “overwhelming”).

Finally, our focus on expert knowledge was inspired by work of Jun, Michaelson,
and Trinder [16]. Their idea of interviewing experts has appeal, but a drawback of their
work is that the resulting algorithm H is very incomplete (only 10 out of 40 rules are
given), and we have not been able to find an implementation.

8 Conclusion

We have discussed heuristics for the discovery of and the recovery from type errors in
Haskell. Knowledge of our problem domain allows us to define special purpose heuris-
tics that can suggest how to change parts of the source program so that they become
type correct. Although there is no guarantee that the hints always reflect what the pro-
grammer intended, we do think that they help in many cases. Moreover, we have shown
that it is possible to integrate various heuristics known from the literature with our own
resulting in a full scale, practical system that can be easily extended with new heuristics
as the need arises. We have applied our compiler to a large body of programs that have
been compiled by students during a first year functional programming course, resulting
in information about the frequency of hints and particular heuristics. Many of the ex-
amples in the paper are taken from this body of programs, lending additional strength
to our work.

References

1. Hage, J., Heeren, B.: Ordering type constraints: A structured approach. Technical Report
UU-CS-2005-016, Department of Information and Computing Science, Utrecht University,
Netherlands, Technical Report (April 2005)

2. Heeren, B.: Top Quality Type Error Messages. PhD thesis, Universiteit Utrecht, The Nether-
lands, http://www.cs.uu.nl/people/bastiaan/phdthesis (2005)

3. Heeren, B., Hage, J.: A first attempt at type class directives. Technical Report UU-CS-2002-
031, Department of Information and Computing Science, University Utrecht, Netherlands,
Technical Report (September 2004)

4. Heeren, B., Hage, J.: Type class directives. In: Seventh International Symposium on Practical
Aspects of Declarative Languages, pp. 253–267. Springer, Heidelberg (2005)

5. Heeren, B., Hage, J., Swierstra, S.D.: Scripting the type inference process. In: Eighth ACM
Sigplan International Conference on Functional Programming, pp. 3–13. ACM Press, New
York (2003)

6. Heeren, B., Leijen, D., van IJzendoorn, A.: Helium, for learning Haskell. In: ACM Sigplan
2003 Haskell Workshop, pp. 62–71. ACM Press, New York (2003)

7. Langebaerd, A.: Repair systems, automatic correction of type errors in functional programs.
http://www.cs.uu.nl/wiki/Top/Publications

8. Lee, O., Yi, K.: Proofs about a folklore let-polymorphic type inference algorithm. ACM
Transanctions on Programming Languages and Systems 20(4), 707–723 (July 1998)

http://www.cs.uu.nl/people/bastiaan/phdthesis
http://www.cs.uu.nl/wiki/Top/Publications

216 J. Hage and B. Heeren

9. McAdam, B.J.: Generalising techniques for type debugging. In: Trinder, P.,Michaelson, G.,
Loidl, H-W. (eds.), Trends in Functional Programming, Bristol, UK, Intellect, vol. 1, pp.
50–59 (2000)

10. McAdam, B.J.: How to repair type errors automatically. Trends in Functional Program-
ming 3, 87–98 (2002)

11. Port, G.S.: A simple approach to finding the cause of non-unifiability. In: Kowalski, R.A.,
Bowen, K.A. (eds.) Proceedings of the Fifth International Conference and Symposium on
Logic Programming, pp. 651–665. The MIT Press, Cambridge (1988)

12. Stuckey, P.J., Sulzmann, M., Wazny, J.: Interactive type debugging in Haskell. In: Haskell’03:
Proceedings of the ACM SIGPLAN Workshop on Haskell, pp. 72–83. ACM Press, New York
(2003)

13. Stuckey, P.J., Sulzmann, M., Wazny, J.: Improving type error diagnosis. In: Haskell’04: Pro-
ceedings of the ACM SIGPLAN Workshop on Haskell, pp. 80–91. ACM Press, New York
(2004)

14. Walz, J.A., Johnson, G.F.: A maximum flow approach to anomaly isolation in unification-
based incremental type inference. In: Conference Record of the 13th Annual ACM Sym-
posium on Principles of Programming Languages, pp. 44–57, St. Petersburg, FL (January
1986)

15. Yang, J.: Explaining type errors by finding the sources of type conflicts. In: Greg Michael-
son, Phil Trindler, and Hans-Wolfgang Loidl, editors, Trends in Functional Programming,
pp. 58–66. Intellect Books (2000)

16. Yang, J., Michaelson, G., Trinder, P.: Explaining polymorphic types. The. Computer Jour-
nal 45(4), 436–452 (2002)

Testing Properties of Generic Functions

Patrik Jansson1, Johan Jeuring2, Laurence Cabenda, Gerbo Engels3,
Jacob Kleerekoper3, Sander Mak3, Michiel Overeem3, and Kees Visser3

1 CSE, Chalmers University of Technology, Sweden
patrikj@chalmers.se

2 ICS, Utrecht University, the Netherlands
johanj@cs.uu.nl

3 Students of the Utrecht University Generic Programming class

Abstract. A datatype-generic function is a family of functions indexed
by (the structure of) a type. Examples include equality tests, maps and
pretty printers. Property based testing tools like QuickCheck and Gast
support the definition of properties and test-data generators, and they
check if a monomorphic property is satisfied by the test cases. Generic
functions satisfy generic properties and this paper discusses specifying
and testing such properties. It shows how generic properties and gener-
ators can be expressed, and explains three bugs we found and corrected
in the Generic Haskell library.

1 Introduction

Software testing aims to find faults in software by comparing its behaviour with
a specification. Testing comes in many flavours: validation testing, integration
testing, system testing, unit testing, etc. We focus on property-based unit testing
for datatype-generic functional programs.

In property-based testing, a specification is expressed in terms of executable
properties. Together with a function a programmer writes one or more properties
that should be satisfied by the function. Such properties can be used both as
documentation (executable specifications) and as part of a test suite for regres-
sion testing. For example, consider the following excerpt from a Haskell module
for manipulating bits.

data Bit = O | I deriving (Show ,Eq)
bits2int :: [Bit]→ Int
bits2int bs = bits2int ′ bs (length bs − 1)

where bits2int ′ [] n = 0
bits2int ′ (x : xs) n = bits2int ′ xs (n − 1) + bit2int x ∗ 2 n̂

int2bits :: Int→ [Bit]
int2bits n = if n � 0 then int2bits ′ n [] else []

where int2bits ′ 0 bs = bs
int2bits ′ n bs = int2bits ′ (n ‘div ‘ 2) (int2bit (n ‘mod ‘ 2) : bs)

bit2int b = if b O then 0 else 1
int2bit n = if n 0 then O else I

Z. Horváth, V. Zsók, and A. Butterfield (Eds.): IFL 2006, LNCS 4449, pp. 217–234, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

218 P. Jansson et al.

Functions bits2int and int2bits convert a list of bits to an integer and vice versa.
To see if these functions are inverses we could check the following properties:

prop int2bits bits2int :: [Bit]→ Bool
prop int2bits bits2int bs = (int2bits . bits2int) bs bs
prop bits2int int2bits :: Int→ Bool
prop bits2int int2bits n = (bits2int . int2bits) n n

Checking with a property checker immediately reveals that they don’t hold. A
counterexample to the first property is [O , I , I] (leading zeroes should be ignored
in the first property), and to the second property is −3 (negative numbers are
not properly encoded). Mistakes like these are common in specifications and pro-
grams, and ideas like Design-by-Contract [13] and Test-Driven Development [1]
are now widely used in software development. For monomorphic programs and
properties this is well understood, but for datatype-generic programs the testing
area is largely unexplored.

A datatype-generic function is a family of functions indexed by a type. Ex-
amples of generic functions are equality, map, and pretty printers. A generic
function can be seen as a template algorithm that can be instantiated with (the
structure of) a data type. Similarly, a generic property can be seen as a template
property that can be instantiated with a data type to obtain a simple property.
A generic library is a highly reusable software component, and by stating and
verifying properties for such a library, the effort spent on verification pays off
over and over again.

QuickCheck [2] is one of the most advanced tools for testing properties of
functional programs. It supports the definition of properties and random test-
data generators in Haskell, and checks that a monomorphic property passes
the test cases. Gast [8] is a tool similar to QuickCheck, but for property-based
testing in Clean [15]. Gast comes with generic test-data generators which work
for arbitrary data types. But Gast enumerates data which leads to bad coverage
for infinite datatypes (we expand on this later).

This paper

– discusses specifying and testing properties of generic functions,
– shows how parts of the Generic Haskell [4] library can be specified and tested

using QuickCheck (revealing three bugs), and
– defines generic QuickCheck generators using Generic Haskell. This means we

get the best of both worlds — we combine the strengths of QuickCheck with
generic support inspired by Gast.

The paper is organised as follows. Section 2 briefly introduces and compares
a few property-based testing tools. Section 3 introduces generic programming in
Generic Haskell. Section 4 shows how QuickCheck is used to check properties of
generic functions. Section 5 discusses verification of the Generic Haskell library
and explains the bugs found. Section 6 presents different ways of generating test
cases for arbitrary data types. Section 7 concludes and discusses future work.

Testing Properties of Generic Functions 219

2 Property-Based Testing Tools

This section introduces the testing tools QuickCheck, Gast and SmallCheck.

QuickCheck
QuickCheck is an automatic testing tool for Haskell programs. The programmer
provides a specification of the program, in the form of executable properties that
functions should satisfy, and QuickCheck then tests that the properties hold
in a large number of randomly generated cases. Specifications are expressed
in Haskell, using combinators defined in the QuickCheck library. The library
provides combinators to define properties, observe the distribution of test data,
and define test-case generators.

Many properties are simple Boolean functions, implicitly universally quanti-
fied over all arguments:

prop PlusAssoc :: Float→ Float→ Float→ Bool
prop PlusAssoc x y z = (x + y) + z x + (y + z)

To test a property it is passed to the function test :

Main> test prop_PlusAssoc
Falsifiable, after 8 tests:
-4.6
-4.0
3.6

Here QuickCheck finds a simple counterexample illustrating that finite precision
Floats don’t behave like ideal real numbers.

The QuickCheck library also provides conditional properties, where tests not
satisfying the precondition are discarded:

prop SmallPrime :: Integer → Property
prop SmallPrime x = prime x =⇒ x < 88

Main> test prop_SmallPrime
OK, passed 100 successful tests.

Here QuickCheck has generated a few hundred test cases (randomly chosen num-
bers x) out of which 100 were prime and all of those were unfortunately <88. In
this case the brute force solution of asking QuickCheck to generate even more
test cases works, but in general the coverage for the default generators is bad for
“sparse” properties. Fortunately, it is also possible to define custom generators
— here is an example using the infinite list of primes :

primeNumbers :: Gen Integer
primeNumbers = do n ← arbitrary

return (primes !! abs n)
prop SmallPrime2 :: Property
prop SmallPrime2 = forAll primeNumbers (λx → x < 88)

220 P. Jansson et al.

Falsifiable, after 39 successful tests:
97

QuickCheck also supports a simple but powerful way of searching for small
counter examples. When a test case fails, QuickCheck tries to shrink the test
case until a “local minimum” is found. As an example, for the first property of
the bits example in the introduction we get the following result:

Main> test prop_int2bits_bits2int
Falsifiable, after 2 successful tests
(shrunk failing case 3 times):
[O]

Gast
Gast (Generic Automated Software Testing) [8] is a property-based testing tool
which can be seen as a QuickCheck for Clean. Gast is implemented in the non-
strict functional language Clean [15], a close relative to Haskell. From the users
perspective, Gast is very similar to QuickCheck — properties can be defined as
normal Boolean functions and tests can be run by calling the function test :

listsAreShort :: [Int]→ Bool
listsAreShort xs = length xs < 5
Start = test listsAreShort

which in this case results in the answer

Passed after 500 tests.

This example is chosen to show that some care needs to be taken in interpreting
the results from testing: Gast enumerates data in a breadth-first manner, only
randomising the order “within each level”. For recursive data types this is prob-
lematic, because of the exponential growth of the search space — as we can see,
the first 500 test cases do not contain a single list with more than four elements.
QuickCheck generates lists up to length around 200 in the same situation.

The enumeration approach used by Gast does have a few advantages: it avoids
generating the same test case more than once and it makes it possible to actually
prove properties over finite domains within the same framework (using exhaus-
tive testing). Gast does not need to shrink failing test cases because they are
generated and tested in order of increasing size. The Clean implementation of
Gast is fast, but for recursive data types the exponential search space means
that reaching reasonably sized test cases just takes too long.

SmallCheck
While finishing this paper we learnt about Runcimans recent work on Small-
Check — a combinator library for lightweight testing in Haskell closely based
on QuickCheck. SmallCheck tests properties for all values up to some depth,
progressively increasing the depth used. The SmallCheck library shares many of
the strengths and weaknesses of Gast, but has no generic programming support.
Both our generic generators and our methodology for testing generic properties
would be useful in combination with SmallCheck, but that is left as future work.

Testing Properties of Generic Functions 221

3 Generic Programming in Generic Haskell

In this section we introduce type-indexed functions by means of an example and
we explain how type-indexed functions become generic in Generic Haskell.

Type-Indexed Functions
A type-indexed function takes an explicit type argument, and can have behaviour
that depends on this type argument. For example, suppose the unit type Unit,
sum type :+:, and product type :*: are defined as follows:

data Unit = U
data a :+: b = Inl a | Inr b
data a :*: b = a :*: b.

We use infix type constructors :+: and :*: and an infix value constructor :*:
to ease the presentation. The type-indexed function eq checks equality of two
values. We define the function eq on booleans, the unit type, sums, and products
as follows in Generic Haskell:

eq{|Bool|} b1 b2 = eqBool b1 b2

eq{|Unit|} U U = True
eq{|α :+: β|} (Inl x1) (Inl x2) = eq{|α|} x1 x2

eq{|α :+: β|} (Inr y1) (Inr y2) = eq{|β|} y1 y2

eq{|α :+: β|} = False
eq{|α :*: β|} (x1 :*: y1) (x2 :*: y2) = eq{|α|} x1 x2 ∧ eq{|β|} y1 y2,

where eqBool is the standard equality function on Booleans. The eq type signa-
ture is eq{|a :: ∗|} :: (eq{|a|}) ⇒ a → a → Bool. The context (eq{|a|}) ⇒ in this
signature says that eq has a dependency [11] on eq. A type-indexed function f
depends on another type-indexed function g if g is used on a type argument (a
dependency variable) α in the definition of f . The occurrences of α and β in the
definition of eq are dependency variables.

Generic Functions
A type-indexed function such as eq does not only work on the types that appear
as type indices in its definition. To see why eq is in fact generic and works
on arbitrary data types, we give a mapping from data types to structure types
such as units, sums, and products. If there is no specific case for a type in the
definition of a generic function, generic behaviour is derived automatically by
the compiler by exploiting the structural representation.

For example, the definition of the function eq that is generically derived for
lists is equivalent to the following specific definition:

eq{|[α]|} [] [] = True
eq{|[α]|} (x : xs) (y : ys) = eq{|α|} x y ∧ eq{|[α]|} xs ys
eq{|[α]|} = False

To obtain this instance, the compiler needs to know the structural representation
of lists, and how to convert between lists and their structural representation. We
will describe these components in the remainder of this section.

222 P. Jansson et al.

Structure Types
The structural representation (or structure type) of types is expressed in terms
of units, sums, products, and base types such as integers, characters, etc. For
example, for the list and tree data types defined by

data [a] = [] | a : [a]
data Tree a b = Tip a | Node (Tree a b) b (Tree a b),

we obtain the following structural representations:

type [a]◦ = Unit :+: a :*: [a]
type Tree◦ a b = a :+: Tree a b :*: b :*: Tree a b,

where we assume that :*: binds stronger than :+: and both type constructors
associate to the right. Note that the representation of a recursive type is not
recursive, and refers to the recursive type itself: the representation of a type in
Generic Haskell only represents the structure of the top level of the type.

Embedding-Projection Pairs
If a type a can be embedded in, or represented by, another type b, a witness of
this property can be stored as a pair of functions converting back and forth (an
embedding-projection pair):

data EP a b = Ep{from :: a → b, to :: b → a}.

A type T can be embedded in its structure-representation type T◦, witnessed by
a value convT :: EP T T◦. For example we get conv [] = Ep from [] to[]:

from [] :: [a]→ [a]◦

from [] [] = Inl U
from [] (x : xs) = Inr (x :*: xs)

to[] :: [a]◦ → [a]
to[] (Inl U) = []
to[] (Inr (x :*: xs)) = x : xs.

The definitions of such embedding-projection pairs are automatically generated
by the Generic Haskell compiler for all data types that appear in a program.

Tying the Knot
Using structure-representation types and embedding-projection pairs, a call to a
generic function on a data type T is reduced to a call on type T◦. The inductive
definition of a generic function is used to generate an instance on the structure
type T◦. For example, for equality we obtain a function of type T◦ → T◦ → Bool.
To convert this function back to a function of type T → T → Bool we use the
function bimap [3]. Function bimap is a bi-directional generic variant of the
well-known map function, of the following type:

bimap{|a :: ∗, b :: ∗|} :: (bimap{|a, b|})⇒ EP a b.

Testing Properties of Generic Functions 223

When using bimap, it is only applied to one type argument which is used both
for a and b. So bimap{|a|} is an embedding-projection pair of type EP a a. The
type index can have higher kind, and the fully generic type for bimap is actually
kind-indexed. For example, the instance of bimap on the type constructor Tree
has the following type:

bimap{|Tree|} :: EP a c → EP b d→ EP (Tree a b) (Tree c d)

Kind-indexed types can be defined in GH but are not used in this paper.
To turn a function of type T◦ → T◦ → Bool into a function of type T→ T →

Bool, we call bimap{|T → T → Bool|} in which we use convT for the T-values.
Thus we obtain a function of type EP (T◦ → T◦ → Bool) (T → T → Bool). The
from-component of this embedding-projection pair is the function that converts
the implementation of the generic function on structure types back to a function
that works on the original data type values. Hence, if the generic function is
defined for structure types such as Unit, :+:, and :*:, we do not need cases for
specific data types such as List or Tree anymore. For primitive types such as Int,
Float, IO or →, no structure type is available. Therefore, for a generic function
to work on these types, specific cases are necessary.

Generic Abstractions, Local Redefinitions, and Default Cases
Generic Haskell supports a number of extensions that simplify defining and using
generic functions. First, using a generic abstraction, we can define a generic
function in terms of another generic function instead of by induction on the
structure types. For example, we can test pointwise equality of functions by
means of the following generic function:

feq{|b :: ∗|} :: (eq{|b|}) ⇒ (a → b)→ (a → b)→ a → Bool
feq{|b|} f g = λx → eq{|b|} (f x) (g x)

which is a generic abstraction that is defined in terms of, and depends on, the
generic equality function. Note that each generic abstraction (including feq)
works for types of of fixed kind. This is in contrast to generic functions defined
by induction on the type structure which work for types of arbitrary kinds.

Generic functions may have dependencies. We can use local redefinition to
redefine the dependencies of generic functions. For example, if we want equality
on lists of characters to be case insensitive, we can write

equalCaseInsensitive :: Char → Char → Bool
equalCaseInsensitive x y = toUpper x toUpper y
let eq{|α|} = equalCaseInsensitive
in eq{|[α]|} "Generic Programming" "GENERIC programming"

Another way in which we may obtain this behaviour is via a so-called default
case, which allows us to extend an existing generic function by adding new cases
or overriding existing ones.

224 P. Jansson et al.

cieq{|a :: ∗|} :: (cieq{|a|}) ⇒ a → a → Bool
cieq extends eq -- default for cieq is eq
cieq{|Char|} x y = toUpper x toUpper y

Many more examples of these extensions, and a discussion about the merits and
disadvantages of these constructs can be found in Löh’s thesis [10].

4 QuickCheck for Generic Functions

This section explains how we use QuickCheck for testing properties of generic
functions. The biggest challenge here is to formulate generic properties. We start
this section with a number of generic properties, and then discuss how we can
use QuickCheck to test them.

Minimal and Maximal Values
Haskell’s prelude contains a class Bounded defined by

class Bounded a where minBound ,maxBound :: a

The methods minBound and maxBound should satisfy

prop minBound x = compare minBound x � GT
prop maxBound x = compare maxBound x � LT

that is, minBound is smaller than or equal to any other value, and maxBound is
larger than or equal to any other value. The method compare ::a → a → Ordering,
in the class Ord (used for totally ordered data types) allows a single comparison
to determine the precise ordering of two elements:

data Ordering = LT | EQ | GT

Haskell allows to derive the bounds automatically for some user-defined data
types (enumeration types and single-constructor data types whose constituent
types are in Bounded). Generic Haskell’s library contains definitions of the
generic values gminBound and gmaxBound for all algebraic types (not only for
those types for which Haskell supports deriving). To formulate generalisations of
the properties above, we also need the generic compare function gcompare from
Generic Haskell’s library. The desired properties now read as follows:

prop gminBound{|t :: ∗|} :: (gcompare{|t|}, gminBound{|t|})⇒ t → Bool
prop gminBound{|t|} x = gcompare{|t|} (gminBound{|t|}) x � GT
prop gmaxBound{|t :: ∗|} :: (gcompare{|t|}, gmaxBound{|t|}) ⇒ t → Bool
prop gmaxBound{|t|} x = gcompare{|t|} (gmaxBound{|t|}) x � LT

Note that the properties are formulated as generic abstractions, thus restricting
t to types of kind ∗. Later we will see an example of using local redefinition as
a work-around.

Testing Properties of Generic Functions 225

Properties of gmap
The generic equivalent gmap of the well-known map function applies zero or more
functions (depending on the kind of its data-type argument) to the appropriate
elements in a value of the data type.

gmap{|a :: ∗, b :: ∗|} :: (gmap{|a, b|})⇒ a → b

Function gmap is defined as the deep identity function, and local redefinition
can be used to obtain map-like behaviour. For tree :: Tree Int Char we can write

let gmap{|α|} = toEnum
gmap{|β|} = fromEnum

in gmap{|Tree α β|} tree

to convert the integers to characters, and the characters to integers.
Properties of gmap can be derived from properties of map. Function map on

lists is a part of a functor, and satisfies the functor laws: it preserves the identity,
and distributes over composition:

map id id
map (f . g) map f .map g

Here () is pointwise equality of functions on lists, implemented by feq{|[α]|},
see Section 3. Generalised versions of these properties should hold for the generic
map function gmap. We take the composition law as an example.

For a type constructor c :: ∗ → ∗ we have two function arguments (the f and
g in the above property), and for a type constructor d :: ∗ → ∗ → ∗ we have four
function arguments (two functions per type argument):

prop gmap comp1 {|c|} f g = gmap{|c|}(f . g) (gmap{|c|} f . gmap{|c|}g)
prop gmap comp2 {|d|} f g h j = gmap{|d|} (f . g) (h . j)

(gmap{|d|} f h . gmap{|d|} g j)

Hinze [3] shows how to generalise this property to types of arbitrary kinds. The
resulting, fully generic property is kind-indexed, but cannot be expressed in GH.

Testing Generic Properties
As the examples of generic properties for gmap show, a generic property may
involve kinds, type constructors, polymorphic types, higher-order functions, and
plain values. To test a property, we have to supply values for each of the above
components. QuickCheck can generate values of monomorphic types and func-
tions, but generating type constructors, let alone kinds, is out of reach. This
implies, amongst others, that we have to instantiate the properties on fixed
monomorphic types.

Happily, generating type constructors and kinds is not necessary. To prove a
generic property, it suffices to prove instances of the property on the structure
types [3]. Similarly, to test the validity of a generic property, it suffices to test the

226 P. Jansson et al.

validity of a property on the structure types. To test the validity of a property on
all structure types, we would have to write a separate instance of the property
for each structure type. Take the property prop gminBound as an example. The
simplest structure type is Unit. For this case, the following expression would be
tested:

gcompare{|Unit|} (gminBound{|Unit|}) U � GT

By definition of gminBound and gcompare, this test, and the equivalent tests
for Int and Char trivially pass. For the sum type case QuickCheck would need to
test something like

prop gminBound Sum cmpa cmpb mba mbb x =
(∀a . cmpa mba a � GT) =⇒
(∀b . cmpb mbb b � GT) =⇒
(gminBound Sum cmpa cmpb mba mbb x � GT)

Since gminBound depends on gcompare and on itself, prop gminBound Sum
takes five arguments. The last argument is a value of type a :+: b, and the other
arguments are instances of gcompare and gminBound on the types a and b,
respectively.

In general, implications P =⇒ Q may be hard to test in QuickCheck. In
particular when the condition P is often False, Q is only tested for a few of the
generated test cases. For many of the properties this turns out to be a problem —
for example, for most properties of equality the condition requires independently
generated values to be equal. For prop gminBound Sum the problem is even
worse, because the left-hand side of the implication includes a local universal
quantification which is not implementable with QuickCheck properties. We can
solve this problem by supplying generators: instead of testing λx → P x =⇒ Q x
we test forAll genP (λx → Q x). In general it is hard or impossible to convert
a property to a generator, but to obtain testable properties we need at least a
good approximation of genP .

To avoid some of the problems with implications and local quantification, we
define a data type which combines the structure types in a single data type,
and use that data type for testing generic functions. The following data type
combines the most important structure types, and is easily extended with more
cases for basic structure types. (In the code we have also used an infix constructor
for STProd .)

data StructureTypes a = STUnit
| STInt Int
| STChar Char
| STProd (StructureTypes a) (StructureTypes a)
| STLabel{anA :: a}

The data type StructureTypes contains cases for units, integers, characters, prod-
ucts, and labels. The cases for sums and constructors are implicit, but appear

Testing Properties of Generic Functions 227

since there is a choice between constructors in the data type, and there are con-
structor names in the data type. The type is parameterised to make it possible
to test gmap — in all other tests we instantiate the type parameter (to Int).

To test the validity of the property prop gminBound with this approach we
use the QuickCheck function test on the data type StructureTypes Int:

test (prop gminBound{|StructureTypes Int|})

QuickCheck generates test cases from the data type StructureTypes Int if we
provide a generator (an element of Gen (StructureTypes Int)). We have used an
instance of the generic generator arb3 (defined later in Section 6).

5 Properties of the Generic Haskell Library

The Generic Haskell library consists of a number of basic generic functions that
are used often in generic programs. Many functions of the Generic Haskell library
are generic versions of Haskell’s prelude [14] functions. This includes functions
that implement the methods that are derivable in Haskell, and generalisations of
list functions such as map, sum, prod , and , etc. Another source of inspiration for
the Generic Haskell library is PolyLib [7], the library of PolyP, which contains
many basic generic functions and some properties.

Since generic functions from the library will often be used as basic building
blocks in generic-programming applications, it is important that they are cor-
rect. Therefore, the generic functions in the Generic Haskell library are natural
candidates for applying our approach to testing generic functions.

The Generic Haskell library consists of twelve modules, of which we will con-
sider the following six: Eq, Compare, Enum, Bounds, and ReadShow, corresponding
to the derivable Haskell classes Eq , Ord , Enum, Bounded , Read , and Show , and
the module Map, which implements the generic map function gmap. We will in-
troduce the generic functions used in this section briefly, often referring to their
non-generic Haskell equivalents. More information about the functions in the
Generic Haskell library can be found in the user’s guide [12].

Properties of gread and gshow
Functions gread and gshow implement the derivable read and show functions
from Haskell. Just as in Haskell, they are defined in terms of helper functions
gshowsPrec and greadsPrec. Reading a value after showing it should be the
identity. Showing after reading need not be the identity: parsing may fail or
the original value might contain concrete syntax (spaces, newlines) that is not
generated by the show function (like the leading zeros in the bits example from
the introduction). We have tested the following property:

prop gread gshow{|t :: ∗|} :: (eq{|t|}, greadsPrec{|t|}, gshowsPrec{|t|})⇒
t → Bool

prop gread gshow{|t|} = feq{|t|} (gread{|t|} . gshow{|t|}) id

where feq is pointwise equality of functions, see Section 3.

228 P. Jansson et al.

It turned out that gread could not cope with named fields in data types.
The StructureTypes a data type contains the constructor STLabel{anA ::a}. The
anA field triggered a runtime error (pattern match failure) in gread . QuickCheck
does not trap exceptions, so when a property fails, QuickCheck fails instead of
just counting this as a failed test case. Fortunately, the Haskell compiler ghc
includes (unsafe) functions to catch exceptions in pure code, so by wrapping the
property in an exception handler returning False for all exceptions, we have used
QuickCheck to find the bug.

Main> test (protect prop_gread_gshow_STInt)
Falsifiable, after 3 successful tests
(shrunk failing case 3 times):
STLabel {anA =-2}

The problem was actually not in gread , but in gshow . There was no space charac-
ter after the equality sign, so when a negative integer was shown, the two char-
acters "=-" were later parsed by gread as one token. A one-character change
to the source code fixed this problem, but revealed another bug, this time in
gread . Function gread did not allow parentheses around STLabel{anA = 2},
while gshow (and the derived show in Haskell) printed parentheses. After this
second fix, all tests passed. (Adding infix constructors to StructureTypes a we
revealed yet another bug, but constructor fixity problems was already noted in
the Generic Haskell release notes so we already knew that.)

Properties of gmap
Function gmap preserves the identity:

prop gmap id{|t|} :: (eq{|t|}, gmap{|t, t|}) ⇒ t → Bool
prop gmap id{|t|} = feq{|t|} (gmap{|t|}) id

To test this function, we instantiate it on the type StructureTypes a.

prop gmap id ST :: (Eq a)⇒ StructureTypes a→ Bool
prop gmap id ST = let eq{|a|} = ()

gmap{|a|} = id
in prop gmap id{|StructureTypes a|}

Function gmap distributes over composition. We formulate the distributivity
property by means of three copies of gmap, of which we only define gmap1 here.

gmap1 {|a :: ∗, b :: ∗|} :: (gmap1 {|a, b|})⇒ a → b
gmap1 extends gmap
prop gmap comp{|a :: ∗, b :: ∗, c :: ∗|} ::

(eq{|c|}, gmap1 {|b, c|}, gmap2 {|a, b|}, gmap3 {|a, c|})⇒ a → Bool
prop gmap comp{|t|} = feq{|t|} (gmap1 {|t|} . gmap2 {|t|}) (gmap3 {|t|})

To instantiate this property on the data type StructureTypes a, we locally redefine
the gmap copies.

Testing Properties of Generic Functions 229

prop gmap comp ST op f g =
let eq{|a|} = op

gmap1 {|a|} = f ; gmap2 {|a|} = g; gmap3 {|a|} = f . g
in prop gmap comp{|StructureTypes a|}

We have also tested gmap on the structure types (:+:), (:*:), etc.

Properties of enum
Function enum exhaustively enumerates all possible instances of a particular
data type.

enum{|t :: ∗|} :: (enum{|t|})⇒ [t]

For example, enum{|Int|} yields the list of all possible (machine-) integers. A
property that should hold for this function is the following:

prop enum{|t|} :: t → Bool
prop enum{|t|} value = value ∈ enum{|t |}

This property says that any value of type t should be in the enumeration of
that type. Interestingly, checking this property is not really an option — at
least for most real-life data types. Recursive data types often have infinitely
many values, so using QuickCheck to test whether or not a value appears in the
enumeration may take infinitely long. When testing the property instantiated
with the StructureTypes Int data type QuickCheck just looped, and at first we
thought this was just to be expected. But a more careful examination revealed
that the property looped already for the first test case, which should have been
small enough to be found early in the enumeration list. It turned out to be
a subtle bug in the definition of the generic enum function. The enumeration
used a version of Cantor diagonalisation which was “non-productive” in the
case of infinite lists. By replacing just the diagonalisation function, the generic
enum implementation worked as expected. Still, the property remains effectively
untestable — already some trees built from just seven constructors are more than
10000 elements down the list.

The problem is just another instance of the problem Gast has with coverage for
recursive data types (remember that Gast also uses (randomised) enumeration):
While every element is somewhere in the enumeration list, and will eventually
be generated by Gast, only small elements are reachable (will be tested by Gast)
within reasonable time. Testing the enumeration property with Gast (instead
of QuickCheck) is possible but not very useful — it is not very surprising that
values (test cases) generated from an enumeration list actually are elements of
a very similar enumeration list.

Another property of enum relates enum to the generic function empty that
returns the ‘least’ value of a type. For example, for the List type empty would
return the empty list.

prop enum empty{|t|} :: Bool
prop enum empty{|t|} = empty{|t|} ∈ enum{|t|}

230 P. Jansson et al.

As the type signature reveals, this is more a unit test than a QuickCheck prop-
erty. No random value is generated, so QuickCheck tests the same thing in each
test. It would be more interesting to range over different types for t, but this
does not fit the (current, non-generic) QuickCheck framework.

Properties of gcompare
Function gcompare generalises the derivable compare function from Haskell. We
have tested what corresponds to reflexivity, anti-symmetry and transitivity for
gcompare. Transitivity can be expressed as a QuickCheck property by:

prop gcompare trans{|t :: ∗|} :: (gcompare{|t|})⇒ t → t → t → Property
prop gcompare trans{|t|} x y z = gcompare{|t|} x y gcompare{|t|} y z =⇒

gcompare{|t|} x y gcompare{|t|} x z

This captures transitivity for (<), () and (>) when gcompare{|t|} x y has values
LT , EQ and GT . We use the QuickCheck conditional operator =⇒ to rule out
non-interesting test cases. Reflexivity and anti-symmetry are implemented in a
similar fashion.

Another property relates function gcompare with the generic equality function
eq. Function gcompare returns EQ iff function eq returns True.

prop gcompare eq{|t :: ∗|} :: (gcompare{|t|}, eq{|t|})⇒ t → t → Bool
prop gcompare eq{|t|} x y = (gcompare{|t|} x y EQ) eq{|t|} x y

This concludes the section on properties for generic functions in the Generic
Haskell library. Formulating and testing these properties has been useful: we
have discovered three bugs in the library.

6 Generic Generators

Normally, QuickCheck requires a user to write a test-case generator for a user-
defined data type on which QuickCheck is used. Generic programming allows
us to automatically generate test cases for any given data type. This makes
testing properties of (generic) functions easier. This section shows the imple-
mentation of generic generators in Generic Haskell. We could have chosen any
of the approaches to generic programming to implement generic generators. The
expressivity and type safety of Generic Haskell, and the recently added generic
views feature, are the most important reasons why we use Generic Haskell. A de-
tailed comparison of the different approaches to generic programming in Haskell
can be found elsewhere [5].

Porting the Gast Generator to Generic Haskell
For Clean a generic approach to generating test cases is already available: Gast
(Generic Automated Software Testing) [8]. We have translated their implemen-
tation of pseudo random data generation [9] into Generic Haskell.

generate{|g :: ∗|} :: Int→ StdGen→ [g]

Testing Properties of Generic Functions 231

To make this a generator we can use the same technique as in the primeNumbers
example — let gast be the (often infinite) list from generate and pick the value
at a random index n. We just have to be careful not to index outside the list in
case it turns out to be finite.

Thus we obtain a QuickCheck generator, written in Generic Haskell, which
works for all Haskell data types. But, unfortunately, it has the same weakness
for recursive types as the Gast generator in that it takes very long before any
reasonably sized elements are generated. Worse, where Gast can use the system-
atic generation of test data for exhaustive checking for finite types, QuickCheck
cannot guarantee to generate all elements (incompleteness). Still, it is convenient
to have a fully generic generator around, and it can be modified with default
cases and local redefinitions to customise its behaviour for selected constructors
or types.

Non-terminating Generators
Instead of first enumerating and then selecting it should be possible to define
a generic generator directly. As a first try we can define the following generic
generator:

arb1{|a :: ∗|} :: (arb1 {|a|})⇒ Gen a
arb1{|Unit|} = return U
arb1{|Int|} = arbitrary
arb1{|Char|} = arbitrary
arb1{|α :+: β|} = arb Sum (arb1{|α|}) (arb1{|β|})
arb1{|α :*: β|} = liftM2 (:*:) (arb1{|α|}) (arb1{|β|})

arb Sum :: Gen a → Gen b → Gen (a :+: b)
arb Sum ga gb = oneof [liftM Inl ga, liftM Inr gb]

This generator is very simple, works for all data types and does generate reason-
ably sized values, but it has at least two drawbacks: a skewed distribution and
possible non-termination.

The first problem is because Generic Haskell encodes multiple-constructor
data types with nested binary sums, which means that arb1 will give a very
skewed distribution of the constructors. If pi denotes the probability of con-
structor Ci we get pi = 1/2i for i ∈ {1..n− 1}. Here a balanced encoding would
help and the next Generic Haskell release will support this as described in the
Generic Views [6] paper. It is possible to work around this problem already in
the current version of Generic Haskell by first analysing the data type, but we
have not done so.

The second problem is more subtle, but it was noted already in the first
QuickCheck paper (for a specific Tree data type). For recursive data types that
branch into more than one subtree, it is fairly easy to accidentally define a
generator that often fails to terminate (or, actually, terminates but with an
infinite tree as the result). The problem is that if a branching constructor is
often generated, the final tree is only finite if all the subtrees are finite and after

232 P. Jansson et al.

a few branches the number of subtrees is high. The skewed distribution offers
some degree of protection against these infinite trees, but this Bin data type is
an example of the problem:

data Bin = B1 Bin Bin | B2 Bin Bin | L.

Here the probability to generate L is 1/4 and the probability for a finite tree is
only 1/3.

A Terminating Generic Generator
The solution to the termination problem is to use sized generators — we use a pa-
rameter n to limit the size of the generated trees. For a generic function it is not
obvious to define what “size” should measure, but one simple choice is the num-
ber of constructors in the tree. Using a sized generator, we generate trees of size
at most n. The first few cases in the definition are simple generalisations of arb1 :

arb2{|a :: ∗|} :: (arb2 {|a|}, empty{|a|})⇒ Int→ Gen a
arb2{|Unit|} n = return U
arb2{|Int|} n = arbitrary
arb2{|Char|} n = arbitrary
arb2{|α :+: β|} n = arb Sum (arb2{|α|} n) (arb2 {|β|} n)

Our size measure tells us that we should reduce the size when passing through a
constructor and distribute the size over the two subtrees in the product. In the
product case it is tempting to just use

arb2{|α :*: β|} n = liftM2 (:*:) (arb2{|α|} (n / 2)) (arb2 {|β|} (n / 2))

but that would tend to generate almost balanced trees. Instead we divide the
size randomly over the two subtree:

arb2{|Con c α|} n = liftM Con (arb2{|α|} (n − 1))
arb2{|α :*: β|} n
| n > 1 = do m ← choose (1,n − 1)

x ← arb2 {|α|} m
y ← arb2 {|β|} (n −m)
return (x :*: y)

| n � 1 = return (empty{|α|} :*: empty{|β|})

This generator works for all data types, it always terminates and generates finite
trees (if there are any). It still has the skewed constructor distribution and it
has a similar problem with a skewed size distribution for nested products. Both
these problems can be avoided with a balanced view or with an analysis of the
data type. Initial experiments are promising, but messy, so we leave that for
future work.

Testing Properties of Generic Functions 233

Better Distribution for Regular Data Types
A problem with all the “fully generic” generators is that they cannot treat the
recursive case differently from other cases. As an example, the arb2 generator
for a normal list will distribute the size parameter evenly between the element
and the tail. This makes long lists very unusual and the sizes of the elements
will decrease exponentially along the list. For lists we can include a special case
in the definition, but similar problems occur also for other data types. Generic
Haskell has been extended with some Generic Views [6], and using the Fix view
it is possible to detect the recursive case, at least for regular data types.

Using the latest version of Generic Haskell (1.61) we have implemented yet
another (sized) generic generator:

arb3{|a :: ∗|} :: Int→ Gen a

This generator produces finite elements and has an even distribution of con-
structor probabilities and subtree sizes. The limitation is that it only works for
regular data types (no mutual recursion and recursive occurrences must have
the same parameters). The code depends on the generic function

children{|a :: ∗ viewed Fix|} :: a → [a]

which is the classical example of what could be done in PolyP but cannot be
done in the “old” Generic Haskell implementation.

7 Conclusions and Future Work

We have shown how we can formulate and test properties of generic functions, we
have used QuickCheck to test the Generic Haskell libraries and we have defined
a few generic QuickCheck generators.

Since an inductive proof of a property of a generic function only requires cases
for the structure types used to represent data types, it suffices to test properties
of generic functions on these structure types. We go one step further and collect
the structure types into one representative type, StructureTypes a, which we use
to instantiate the generic functions before testing them.

We have implemented a number of properties for generic functions in the
Generic Haskell library. Formulating and testing these properties has revealed
three bugs in the library. We have not yet completed the description of the
properties of the functions in the library, so we expect (but do not hope) to find
more bugs.

The generic QuickCheck test-case generators produce test data with a much
better spread than the Gast generator. We have explored several variants with
different random distributions and we have identified the Generic Views exten-
sion of GH as an important step towards better generic generators.

While implementing the different tests using QuickCheck we encountered a
few problems, in particular with exception handling and a better control of the
size of generated test cases. It turned out that the latest version of QuickCheck
(obtained from CVS) solves most of these problems.

234 P. Jansson et al.

Future work consists of finishing formulating properties for the functions in
the Generic Haskell library, further fine-tuning the generic QuickCheck test-data
generators and adding tests of (non-)strictness. Another idea we would like to
investigate is to generate random types as well as random values, and use these
randomly generated types for testing, instead of the StructureTypes a type. It
would also be natural to add generic support to SmallCheck.

Acknowledgements. A. Rodriguez, N.A. Danielsson and anonymous referees com-
mented on previous versions of this paper.

References

1. Beck, K.: Test-Driven Development by Example. Addison-Wesley, London (2003)
2. Claessen, K., Hughes, J.: QuickCheck: A lightweight tool for random testing of

Haskell programs. In: ICFP’00, pp. 268–279. ACM Press, New York (2000)
3. Hinze, R.: Generic Programs and Proofs. Bonn University, Habilitation (2000)
4. Hinze, R., Jeuring, J.: Generic Haskell: practice and theory. In: Backhouse, R.,

Gibbons, J. (eds.) Generic Programming. LNCS, vol. 2793, pp. 1–56. Springer,
Heidelberg (2003)

5. Hinze, R., Jeuring, J., Löh, A.: Comparing approaches to generic programming in
Haskell. In: Technical Report UU-CS-2006-022, ICS, Utrecht University. To appear
in Datatype-Generic Programming, LNCS, Springer, Heidelberg (2007)

6. Holdermans, S., Jeuring, J., Löh, A., Rodriguez, A.: Generic views on data types.
In: Uustalu, T. (ed.) MPC 2006. LNCS, vol. 4014, Springer, Heidelberg (2006)

7. Jansson, P., Jeuring, J.: PolyLib – a polytypic function library. In: Workshop on
Generic Programming, Marstrand (June 1998)

8. Koopman, P., Alimarine, A., Tretmans, J., Plasmeijer, R.: Gast: Generic auto-
mated software testing. In: Arts, T., Mohnen, M. (eds.) IFL 2002. LNCS, vol. 2312,
pp. 84–100. Springer, Heidelberg (2002)

9. Koopman, P., Plasmeijer, R.: Generic generation of elements of types. In: TFP’05,
pp. 167–179. Tallinn (2005)

10. Löh, A.: Exploring Generic Haskell. PhD thesis, Utrecht University (2004)
11. Löh, A., Clarke, D., Jeuring, J.: Dependency-style Generic Haskell. In: Shivers, O.

(ed.) ICFP’03, pp. 141–152. ACM Press, New York (August 2003)
12. Löh, A., Jeuring, J., Rodriguez, A.: (editors) et al. The Generic Haskell user’s

guide, Version 1.60 - Diamond release. Technical Report UU-CS-2006-049, ICS,
Utrecht University (2006)

13. Mitchelland, R., McKim, J.: Design by Contract: by example. Addison-Wesley,
London (2002)

14. Peyton Jones, S. et al.: Haskell 98, Language and Libraries. In: The Revised Report,
Cambridge University Press, Cambridge (2003)

15. Plasmeijer, R., van Eekelen, M.: Clean Language Report version 2.1 (2005)

Worst-Case Execution Times for a Purely
Functional Language

Armelle Bonenfant1, Christian Ferdinand2, Kevin Hammond1,
and Reinhold Heckmann2

1 School of Computer Science, University of St Andrews, St Andrews, UK
2 AbsInt GmbH, Saarbrücken, Germany

Abstract. This paper provides guaranteed bounds on worst-case exe-
cution times for a strict, purely functional programming notation. Our
approach involves combining time information obtained using a low-level
commercial analyser with a high-level source-derived model to give worst-
case execution time information. We validate our results using concrete
timing information obtained using machine code fragments executing on
a Renesas M32C/85 microcontroller development board. Our results con-
firm experimentally that our worst-case execution time model is a good
predictor of execution times.

1 Introduction

Information on worst-case execution time is essential for programming a variety
of dependable systems, such as those found in safety-critical or mission-critical do-
mains. With their emphasis on functional correctness, functional programming
languages would appear to be a good match to dependable systems require-
ments. However, it is also necessary to provide an equally rigorous approach to
behavioural information, especially worst-case execution times. In the functional
programming community, there have been some successes in obtaining recursion
bounds, typically for linearly-bounded programs (e.g. [20]), and we are working
on extending these approaches to non-linear cases [31]. However, without good
quality time information, these approaches will not provide strong guarantees of
worst-case execution time. Simple timing metrics, based on e.g. step counts [10]
are clearly inadequate in this respect.

In this paper, we consider how to obtain guaranteed upper bounds on exe-
cution time for a strict, purely functional expression notation. Expressions are
related to an underlying abstract machine implementation through a formal
translation process. We obtain concrete costs for each abstract machine instruc-
tion and provide a model to relate these costs to the functional language source.
Our work is undertaken in the context of Hume [17,16], a functionally-based
language that takes a layered approach to language design. embedding purely
functional expressions within a high-level process model. In principle, however,
our approach is equally applicable to other strict functional programing lan-
guages, or even, by extrapolation, to other paradigms. This paper provides the
first set of guaranteed WCET results for a functional language (in fact to our

Z. Horváth, V. Zsók, and A. Butterfield (Eds.): IFL 2006, LNCS 4449, pp. 235–252, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

236 A. Bonenfant et al.

knowledge, the first set that has been formally related to any high-level program-
ming language), and develops a new approach to WCET based on aggregating
costs of individual abstract machine examples. For the simple architecture we
have tested (a Renesas M32C/85 microprocessor typical of real-time embedded
systems applications), this approach gives a surprisingly good estimate of the
actual execution cost.

This paper is structured as follows: the remainder of this section discusses
possible approaches to predicting worst-case executions; Section 2 describes the
Hume Abstract Machine [14] that forms the target for our measurements; Sec-
tion 3 introduces AbsInt’s aiT tool for measuring worst-case execution times
of low-level programs; Section 4 discusses experimental results and provides a
comparison with the aiT tool; Section 5 outlines a cost model for Hume and
gives experimental results showing that the cost model correctly predicts up-
per bounds on worst-case execution times for a compiled implementation of the
HAM on a Renesas M32C/85 microcontroller development board; in Section 6,
we discuss related work; finally, Section 7 concludes and considers further work.

1.1 Predicting Worst-Case Execution Time (WCET)

Obtaining high-quality WCET results is important in order to avoid seriously
over-engineering real-time embedded systems, which would result in consider-
able and unnecessary hardware costs for the large production runs that are
often required. Three competing technologies can be used to obtain worst-case
execution times: experimental (or testing-based) approaches, probabilistic mea-
surement and static analysis. Experimental approaches determine worst-case
execution costs by (repeated and careful) measurement of real executions, using
either software or hardware monitoring. While they may give good estimates
of actual execution costs, they cannot usually guarantee upper bounds on ex-
ecution cost. Probabilistic approaches build on experimental measurements by
measuring costs for repeated executions over a suite of test cases [2,3]. Under
the assumption that the test suite provides representative data, it is then pos-
sible to construct statistical profiles that can be used to determine worst-case
execution time to some stated probability. Absolute guarantees cannot, however,
be provided. Finally, static analysis approaches (e.g. [10,23]) construct detailed
and precise models of processor instruction timings in order to be able to predict
worst-case timings. This typically involves constructing accurate models of the
processor state, including cache and pipeline information.

The primary advantage of measurement or probabilistic approaches is that
they may be applied to arbitrary computer architectures, without detailed knowl-
edge of the underlying design, and using relatively unsophisticated timing tech-
niques. In contrast, static analyses require detailed architectural knowledge and
painstaking effort to construct. Moreover, some architectural features, such as
Pseudo-LRU replacement policies for caches present specific difficulties. How-
ever static analysis approaches provide the only guaranteed bounds of worst-
case execution time, and are therefore to be preferred for use in safety-critical
or mission-critical systems.

Worst-Case Execution Times for a Purely Functional Language 237

1.2 Research Methodology

Our approach involves extending recent work on static analysis of space costs
for source-level functional programs [18], where we have considered the use of
sized types [32] to expose bounds on recursive function definitions, to cover
worst-case execution times. This involves combining information about high-level
language constructs obtained from source-level analysis with low-level timing
information. By basing our time metrics on a high-level abstract machine, the
Hume Abstract Machine (HAM), we can provide a strong compilation structure
that can easily be re-targeted to different platforms, without restricting future
compilation directly to machine code. We also obtain a set of metrics that can
be rapidly applied to the analysis of as-yet-unwritten programs, without the
need for sophisticated and time-consuming programmer intervention to guide
the tools, as is currently required. The disadvantage is that there may be some
performance losses compared with the most sophisticated global optimisation
techniques. At this point in our research, we feel that this is a reasonable trade,
though it is an issue that we intend to revisit in future.

This paper reports results based on comparing the bounds obtained by static
analysis against measured execution times for individual HAM instructions on
a concrete target architecture: the Renesas M32C/85 microcontroller [7]. This is
a microprocessor architecture typical of many used in sensor network and sim-
ilar embedded systems – desktop processors such as modern Pentium IVs are
rarely used in real-time embedded systems, both for cost reasons, and because
their architectures make it hard to predict real-time acosts. While not seriously
restricting future architectural choices for our analyses, it provides a relatively
simple, but realistic architecture on which we may be able to obtain accurate
timings. It also exploits an existing Hume port compiling to concrete machine
code: we use the ham2c translation, which compiles HAM instructions through
C to produce machine code that can be executed directly on a bare-bones devel-
opment board. The use of bare hardware is important, since it gives us a good
real-time experimental framework. The microcontroller board we are using has
a total of 16KB of memory. We use a compiled implementation of the HAM for
the M32C, and assemble the machine code, the runtime system and all dynamic
memory requirements into this space.

2 The Hume Abstract Machine (HAM)

This section outlines a formal compilation scheme for translating Hume pro-
grams into HAM instructions. Our intention is to demonstrate that a formal
(and ultimately provable) model of compilation can be constructed for Hume.
By constructing a formal translation to real machine code from HAM code, it is
then possible to verify both correctness of the compiler output and time/space
cost models. We provide full information here so that it is possible to properly
situate the time cost results given in Section 3.2 and so that the cost model of
Section 5 can both be understood and extended by the reader. A formal seman-
tics of the HAM would, of course, clearly be redundant for this purpose (since

238 A. Bonenfant et al.

CE ρ (c e1 . . . en) = CE ρ en ++ . . .++ CE ρ e1 ++ 〈 MkCon c n 〉
CE ρ (f e1 . . . en) = CE ρ en ++ . . .++ CE ρ e1 ++ 〈 Call f, Slide n 〉
CE ρ (i) = 〈 MkInt32 i 〉
. . .
CE ρ (∗) = 〈 MkNone 〉

CE ρ (var) = 〈 PushVar (ρ var) 〉

CE ρ (if c then t else f) = CE ρ c ++ 〈 If lt 〉 ++ CE ρ f ++
〈 Goto ln, Label lt 〉 ++ CE ρ t ++
〈 Label ln 〉

CE ρ (let d1 . . . dn in e) = let ρ′ = bindDefs 〈 d1, . . . , dn 〉 ρ in
〈 Call ll, Goto ln, Label ll, CreateFrame n 〉 ++
CLet ρ 0 d1 ++ . . .++ CLet ρ (n − 1) dn ++
CE ρ′ e ++ 〈 Return, Label ln 〉

CLet ρ n (id = e) = CE ρ e ++ 〈 MakeVar n 〉

Fig. 1. Compilation Rules for Expressions

it does not convey time information it would, in fact, be useless), and we there-
fore omit a description here (a complete description of the HAM may, however,
be obtained, if required, from http://www.embounded.org). Figures 1–4 out-
line rules for compiling Hume abstract syntax forms into the HAM in [14], as
a formal compilation scheme similar to that for the G-machine [1]. These rules
have been used to construct a compiler from Hume source code to the HAM,
whose main component is a 500-line Haskell module translating abstract syntax
to HAM instructions. The compilation scheme makes extensive use of a simple
sequence notation: 〈 i1, . . . , in 〉 denotes a sequence of n items. The ++ oper-
ation concatenates two such sequences. Many rules also use an environment ρ
which maps identifiers to 〈 depth, offset 〉 pairs.

Four auxiliary functions are used, but not defined here: maxVars calculates
the maximum number of variables in a list of patterns; bindDefs augments the
environment with bindings for the variable definitions taken from a declaration
sequence – the depth of these new bindings is 0, whilst the depth of existing vari-
able bindings in the environment is incremented by 1; bindVars does the same
for a sequence of patterns; and labels generates new labels for a set of func-
tion/box rules. Note that where labels lt, ln, lx etc. are used, these are assumed
to be unique in the obvious way: there is at most one Label pseudo-instruction
for each label in the translated program. Labels for boxes and function blocks
are derived in a standard way from the (unique) name of the box or function.
Finally, priming (e.g. ρ′) is simply used for naming purposes.

The rules are structured by abstract syntax class. The rules for translating
expressions (CE etc. – Figure 1) are generally straightforward, but note that func-
tion frames are created to deal with let -expressions and other similar structures,

http://www.embounded.org

Worst-Case Execution Times for a Purely Functional Language 239

CD ρ (box b ins outs fair rs handle xs) = CB ρ true b ins outs rs
CD ρ (box b ins outs unfair rs handle xs) = CB ρ false b ins outs rs
CD ρ (f = 〈 p1 → e1 . . . pn → en 〉) =

let nvars = maxV ars 〈 p1, . . . , pn 〉 in
〈 Label f, CreateFrame nvars 〉 ++
CF ρ 〈 〈 p1 〉 → e1, . . . , 〈 pn 〉 → en 〉 ++
〈 Function f (labels f) 〉

CB ρ f b (in1, . . . , ini) (out1, . . . , outm) rs =
let nvars = maxV ars 〈 in1, . . . , ini 〉 in
〈 Label b 〉 ++
〈 CopyInput (i − 1), . . . , CopyInput 0 〉 ++
〈 Push 2, CreateFrame nvars 〉 ++
(if f then 〈 StartMatches 〉 else 〈 〉) ++ CR ρ f m rs ++
〈 Box b . . .〉

Fig. 2. Compilation Rules for Declarations and Box Bodies

which then exploit the function calling mechanism. This allows the creation of
local stack frames. It would obviously be possible to eliminate the function call
for let -expressions provided the stack frame was properly set up in order to allow
access to non-local definitions.

Hume programs define a number of concurrent processes. Each process is
defined in terms of a “box” that maps some inputs to some outputs [17]. Box in-
puts/outputs are connected to form a static process network. The rules for trans-
lating box and function declarations are shown in Figure 2. These rules create
new stack frames for the evaluation of the box or function, label the entry points
and introduce appropriate pseudo-instructions. In the case of box declarations, it
is also necessary to copy inputs to the stack using CopyInput instructions and
to deal with fair matching. Box bodies are compiled using CR/CR′ (Figure 3).
These rules compile matches for the outer level patterns using CP , then compile
inner pattern matches using CA, before introducing Consume instructions for
non-* input positions. The RHS can now be compiled. If more than one result
is to be produced, the tuple of outputs is unpacked onto the stack. A Check-
Outputs is inserted to verify that the outputs can be written using appropriate
Write instructions. Finally, a Reorder is inserted if needed to deal with fair
matching, and a Schedule returns control to the scheduler. The compilation of
function/handler bodies using CF /CF ′ is similar, except that CP ′ is used rather
than CP , there is no need to deal with box inputs/outputs or fair matching, and
a Return rather than Schedule is inserted at the end of each compiled rule.
For simplicity, but without loss of generality, we ignore exception handlers.

Finally patterns are compiled using CP /CP ′ (Figure 4), where CP inserts
the MatchNone/ MatchAvailable instructions that are needed at the box
level, and CP ′ compiles simple patterns. Constructed values are matched in two
stages: firstly the constructor is matched, and then if the match is successful, the
matched object is deconstructed on the stack to allow its inner components to

240 A. Bonenfant et al.

CR ρ f m 〈 r1, . . . , rn 〉 = CR′ ρ f m r1 ++ . . . ++ CR′ ρ f m rn

CR′ ρ f m (〈 p1, . . . , pn〉 → e) = let ρ′ = bindV ars 〈 p1 , . . . , pn 〉ρ in
〈 Label lr, MatchRule 〉 ++
CP p1 ++ . . . ++ CP pn ++
CA p1 ++ . . . ++ CA pn ++
CC 0 p1 ++ . . . ++ CC (n − 1) pn ++
CE ρ′ e ++
(if m > 1 then 〈 Unpack 〉 else 〈 〉) ++
〈 CheckOutputs 〉 ++
〈 Write (n − 1) . . . Write 0 〉 ++
(if f then 〈 Reorder 〉 else 〈 〉) ++
〈 Schedule 〉

CC n (*) = 〈 〉
CC n (p) = 〈 Consume n 〉

CF ρ 〈 r1, . . . , rn 〉 = CF ′ ρ r1 ++ . . . ++ CF ′ ρ rn

CF ′ ρ (〈 p1, . . . , pn 〉 → e) = let ρ′ = bindV ars 〈 p1 , . . . , pn 〉ρ in
〈 Label lf, MatchRule 〉 ++
CP ′ p1 ++ . . . ++ CP ′ pn ++
CA p1 ++ . . . ++ CA pn ++
CE ρ′ e ++
〈 Return 〉

Fig. 3. Compilation Rules for Rule Matches and Functions

be matched against the inner patterns. These nested patterns are compiled using
CA and CN . CA inserts CopyArg and Unpack instructions to decompose func-
tion/box arguments, where CN deals with the general nested case using Copy
instructions to replicate items that are in the local stack frame.

3 Static Analysis Using the aiT Tool

Motivated by the problems of measurement-based methods for WCET estima-
tion, AbsInt GmbH has investigated an approach based on static program analy-
sis [22,19,13]. The approach relies on the computation of abstract cache and
pipeline states for every program point and execution context using abstract in-
terpretation. These abstract states provide safe approximations for all possible
concrete cache and pipeline states, and provide the basis for an accurate tim-
ing of hardware instructions, which leads to safe and precise WCET calculations
that are valid for all executions of the application. The results of AbsInt GmbH’s
aiT tool [12] can be combined using Integer Linear Programming techniques to
safely predict the worst-case execution time and a corresponding worst-case ex-
ecution path. Whilst the analysis works at a level that is more abstract than

Worst-Case Execution Times for a Purely Functional Language 241

CP (*) = 〈 MatchNone 〉
CP (_*) = 〈 MatchNone 〉
CP (p) = 〈 MatchAvailable 〉 ++ CP ′ p

CP ′ (i) = 〈 MatchInt32 i 〉
. . .
CP ′ (c p1 . . . pn) = 〈 MatchCon c n 〉
CP ′ (var) = 〈 MatchVar var 〉
CP ′ _ = 〈 MatchAny 〉

CA (c p1 . . . pn) = CA′ 〈 p1, . . . , pn 〉
CA (p1, . . . , pn) = CA′ 〈 p1, . . . , pn 〉
CA (x p) = CA′ 〈 p 〉
CA p = 〈 〉

CA′ 〈 p1, . . . , pn 〉 = 〈 CopyArg n , Unpack 〉 ++
CN p1 ++ . . . ++ CN pn ++
CP ′ p1 ++ . . . ++ CP ′ pn

CN 〈 p1, . . . , pn 〉 = 〈 Copy n , Unpack 〉 ++
CN p1 ++ . . . ++ CN pn ++
CP ′ p1 ++ . . . ++ CP ′ pn

Fig. 4. Compilation Rules for Patterns

simple basic blocks, it is not capable of managing the complex high-level con-
structs that we require. It can, however, provide useful and accurate worst-case
time information about lower level constructs. We are thus motivated to link
the two levels of analysis, combining information on recursion bounds and other
high-level constructs that we will obtain from the Hume source analysis we are
constructing, with the low-level worst-case execution time analysis that can be
obtained from the AbsInt analysis. In order to achieve this, we will eventually
require two-way information flow between the analyses. In the short-term, it is
sufficient to provide one-way flow from the language-level analysis to the lower-
level analysis.

The aiT tool is a robust commercial tool. It has previously been applied to
several other architectures used in embedded systems with similarly good re-
sults. It has also proved sufficiently flexible to deal with a variety of application
domains including real-time operating systems [26], an automotive communi-
cations system [5], construction vehicles [27], and avionics [28]. The use of an
abstract machine as the analysis target represents a new challenge for the aiT
tool, however, since the structure of instructions that need to be analysed can
be significantly different from those that are hand-produced, and the associ-
ated technical problems in producing cost information can therefore be more
complex.

242 A. Bonenfant et al.

Fig. 5. Phases of WCET computation

3.1 Determining WCET Using the aiT Tool

The aiT tool determines the worst-case execution time of a program task in
several phases, as shown in Figure 5. These phases are:

– CFG Building decodes, i.e. identifies instructions, and reconstructs the
control-flow graph (CFG) from an executable binary program;

– Value Analysis computes address ranges for instructions accessing mem-
ory;

– Cache Analysis classifies memory references as cache misses or hits [11];
– Pipeline Analysis predicts the behavior of the program on the processor

pipeline [22];
– Path Analysis determines a worst-case execution path of the program [30].

The cache analysis phase uses the results of the value analysis phase to predict
the behavior of the (data) cache based on the range of values that can occur in
the program. The results of the cache analysis are then used within the pipeline
analysis to allow prediction of those pipeline stalls that may be due to cache
misses. The combined results of the cache and pipeline analyses are used to
compute the execution times of specific program paths. By separating the WCET
determination into several phases, it becomes possible to use different analysis
methods that are tailored to the specific subtasks. Value analysis, cache analysis,
and pipeline analysis are all implemented using abstract interpretation [9], a
semantics-based method for static program analysis. Integer linear programming
is then used for the final path analysis phase.

Worst-Case Execution Times for a Purely Functional Language 243

Instruction gcc IAR Ratio
Call 73 70 1.04
Copy 43
CopyArg 40 35 1.14
CreateFrame 76 72 1.06
Goto 5 3 1.67
If (true) 41 32 1.28
If (false) 41 32 1.28
MakeVar 43 36 1.19
MatchExn 808
MatchedRule 11 11 1.00
MatchInt 811 137 5.92
MatchRule 22 22 1.00
MatchVar 46 36 1.28
MkBool 136

Instruction gcc IAR Ratio
MkChar 136
MkCon 2 348 242 1.44
MkFun 0 198 165 1.20
MkInt 136 91 1.49
MkNone 26 21 1.24
MkVector 3 392 205 1.91
Pop 13
Push 12 11 1.09
PushVar 40 35 1.14
Return 1756
Schedule 410 602 0.68
Slide 62 53 1.17
SlideVar 94
TailCall 91 178 0.51

Fig. 6. aiT HAM analysis: gcc and IAR compiled code

3.2 Worst-Case Execution Time for HAM Instructions

Figure 6 lists guaranteed worst-case execution time results for a subset of Hume
Abstract Machine instructions, ordered alphabetically, and reported in terms of
clock cycles. These timings were obtained using the aiT tool from code gener-
ated using the ham2c Hume to C compiler, cross-compiling through either gcc
Version 3.4 or the IAR C compiler [29] to the Renesas M32C. As expected from
a commercial compiler targeting a few architectures, the IAR compiler gener-
ally produces more efficient code than gcc, with our results being 42% lower
on average, and up to 5.92 times more efficient in the case of MatchInt. In a
few cases, the aiT tool was unable to provide timing information directly, re-
quiring additional information such as loop bounds to be provided in order to
produce timing results. Missing entries in this table represent cases where this
information could not be obtained. In the long term, we anticipate that we will
be able to provide this information by analysis of Hume source constructs. In
the short term, we have calculated the information by hand, where possible. For
some instructions, however, we were unable to provide this information for the
IAR-compiled code, and results for these instructions are therefore given only
for gcc-produced code.

4 Experimental Timings

We have developed an approach based on repeated timing of code fragments.
Each fragment to be timed is executed a certain (large) number of times. This
ensures that we obtain a measurable time, even for times that are below the clock
threshold. In order to ensure that computations can be repeated, it is necessary
to save and restore the computation state between executions, thereby incurring

244 A. Bonenfant et al.

some time overhead. So that this overhead does not affect our timing results,
we must therefore first take a witness timing that simply incurs this overhead.
This is subtracted from the measured time to give an average time for the code
fragment of interest. Since the M32C/85 clock is cycle-accurate, it is also possible
to obtain an exact execution time for a given code fragment. We have adapted the
timing approach described above to give measured worst-case execution times,
by recording the measured maximum time for the code fragment of interest. The
same approach can also be used to give best-case timings.

4.1 Timing Results

Figure 7 shows average execution and worst-case execution times obtained using
the timing approach described above, for HAM instructions compiled using the
IAR compiler. Each average and worst-case entry has been obtained from 10000
individual timings. We can see from the table that the worst-case times and
average-case times are very similar for most instructions, indicating that the
instruction timings are highly consistent in practice. Since certain instructions
are parameterised on some argument (for example, MkVector is parameterised
on the vector size), in these cases, we have measured several points and applied
linear interpolation to obtain a cost formula. It is interesting to note that in
these case, the linear factor is identical for both WCET and average times and
the constants are also very close. In each case, we have subtracted the least time
obtained from timing the empty sequence of instructions (39 clock cycles), in
order to give a conservative worst-case time. Since the worst-case time for the
empty sequence was 42 cycles, this means that the worst-case may, in fact, be
up to three cycles less than the numbers reported here. Since we must save and
restore the abstract machine state (and this will, as a side effect, clear the cache
and other processsor state), we needed to develop code that does this correctly.
A few abstract machine instructions have therefore not been costed, mainly
because they perform more complex state changes that may require additional
intervention. It is worth noting that the values included in this table give a good
timing predictor, but one that could only be used to provide absolute worst-case
guarantees under some statistical probability.

4.2 Quality of the Static Analysis Using the aiT Tool

Figure 8 compares the upper bounds on worst-case execution timing obtained
using the aiT tool from Figure 6 with the corresponding measured worst cases
from Figure 7. We can see that in all cases apart from MatchRule, the static
analyis gives an upper bound that is greater than or equal to the measured ex-
ecution time. For MatchRule, the static analysis yields an upper bound that
is one cycle smaller than our measured worst-case. Since our worst case tim-
ings are conservative, and may have an experimental error of up to three clock
cycles, as described above, we conclude that the static analysis correctly yields
upper bounds on execution costs for these HAM instructions. For the instruc-
tions we have compared, the bound given by the static analyis is at most 50%

Worst-Case Execution Times for a Purely Functional Language 245

Instructions AVG WCET Ratio
Ap 760 761 1.00
Call 61 62 1.02
Callprim

== Bool 246 251 1.02
∗ Float 240 242 1.01
+ Float 262 267 1.02
== Float 255 260 1.02
− Int 114 119 1.04
∗ Int 130 132 1.02
/ Int 168 177 1.05
+ Int 114 119 1.04
< Int 215 220 1.02
== Int 216 221 1.02
> Int 217 223 1.03

Consume 27 31 1.24
Copy 27 31 1.15
CopyArg 27 30 1.11
CreateFrame 51 57 1.12
Goto 1 2 2.00
If (true) 24 29 1.21
If (false) 24 26 1.08
MakeVar 26 31 1.19
MatchAny 6 10 1.67
MatchAvailable 7 10 1.43
MatchBool 24 29 1.21
MatchCon 22 26 1.18
MatchedRule 8 12 1.50
MatchExn 22 28 1.27
MatchFloat 24 29 1.21
MatchInt 23 29 1.26

Instructions AVG WCET Ratio
MatchNone 6 10 1.67
MatchRule 18 23 1.28
MatchString n 3 × n 3 × n

+ 45 + 47
MatchTuple 6 10 1.67
MatchVar 26 31 1.19
MaybeConsume 20 28 1.40
MkBool 63 70 1.11
MkChar 63 70 1.11
MkCon n 41 × n 41 × n

+ 84 + 89
MkFun n 42 × n 42 × n

+ 108 + 113
MkInt 64 65 1.02
MkNone 15 21 1.40
MkString n 13 × n 13 × n

+ 133 + 140
MkTuple n 41 × n 41 × n

+ 63 + 66
MkVector n 41 × n 41 × n

+ 63 + 65
Pop 6 9 1.50
Push 6 9 1.50
PushVar 27 30 1.11
PushVarF 37 40 1.08
Raise 374 377 1.01
Return 112 116 1.04
Slide 41 44 1.07
SlideVar 58 63 1.09
Unpack 114 118 1.04

Fig. 7. Experimental average and worst-case timings for HAM instructions

greater than the measured worst-case (for Goto, representing a difference of
only one clock cycle); the mean difference is 22%, with a standard deviation of
16%. We conclude that the static analysis provides an accurate upper bound on
execution time.

5 Worst-Case Execution Time for Hume Expressions

In this section, we outline a cost model for deriving worst-case time based on the
Hume operational semantics, and compare the results we obtain against mea-
sured execution times. Our cost model is defined in terms of a formal operational

246 A. Bonenfant et al.

Instructions aiT Measured Ratio
bound WCET

Call 70 62 1.13
CopyArg 35 30 1.17
CreateFrame 72 57 1.26
Goto 3 2 1.50
If (true) 32 29 1.10
If (false) 32 26 1.23
MakeVar 36 31 1.16
MatchRule 22 23 0.96

Instructions aiT Measured Ratio
bound WCET

MatchVar 36 31 1.16
MkCon 2 242 170 1.42
MkFun 0 165 113 1.46
MkInt 91 65 1.40
MkNone 21 21 1.00
Push 11 9 1.22
PushVar 35 30 1.17
Slide 53 44 1.20

Fig. 8. Quality of the Static Analysis

semantics for the Hume Abstract Machine that is related back to Hume source
expressions. Our cost rules are given in a derivation form as follows:

V, η
t

t′ e � �, η′

where e represents an expression in our source language. t is an upper bound
of the number of time units available to evaluate e, and t′ is the number of time
units available left after execution of e. The time required for evaluating e will
then be t− t′. η/η′ are the dynamic memory before/after execution of e, � is the
result value after execution, and V represents a mapping of variable names to
values. In order to provide pattern matching costs, we add rules of the form:

η
t

t′ � : 	�, pat : 	pat, V, A � 	�, 	pat, V′, A ′

This means that a single step match of � against pat succeeds (with � interpreted
within heap η). In order to complete the whole pattern match, the sublists 	�
and 	pat must still be matched. Further, V′ is the environment V extended with
any bindings made in this, and A ′ extends A with the locations that have been
matched successfully in this step. Finally, t − t′ is the time required to match
the location � against pat. We then write

η
t

t′ 	�, 	pat, V, A �∗ 	�′, 	pat
′
, V′, A ′

to denote that the quadruple 	�, 	pat, V, A reduces in several steps to the quadruple
	�′, 	pat

′
, V′, A ′, which is irreducible under �.

In order to illustrate our approach we include only a few representative rules
here. A complete set of rules, forming a complete cost model for Hume in terms of
the costs incurred by the HAM, may be found at http://www.embounded.org.
Each rule in the cost model is derived from the formal translation of Section 2,
and this translation also allows us to derive formal properties including the
soundness of the cost model against the formal operational semantics of the HAM
which we have previously constructed. The first rule we consider (Const Int)

http://www.embounded.org

Worst-Case Execution Times for a Purely Functional Language 247

deals with contant integers. We first allocate a new location � for the given
constant n. The cost of the evaluation is given by the constant Tmkint, which
is the time required by the MkInt instruction, as calculated above. Similar rules
can be constructed for any other kind of constant.

n ∈ Z New(η) = � w = (int, n)

V, η
t′ + Tmkint

t′ n � �, η[� �→ w]
(Const Int)

The Variable rule looks up x in V to obtain the variable location. The time
this takes is given by the cost of the underlying PushVar instruction, Tpushvar.

V(x) = �

V, η
t′ + Tpushvar

t′ x � �, η
(Variable)

The Vector rule deals with costs for literal arrays (vectors). It is an example of
a typical rule that exposes costs for constructed expressions. Each component of
the vector is evaluated to yield a heap location. Since memory must be allocated
for each component and this will incur some time cost, the cost of constructing
the vector therefore depends on the number of components Tmkvec(k) plus the
time costs for evaluating each component. While this is not theoretically neces-
sary, we use the convention of showing the Tmkvec() costs below the line to make
it clear that they are incurred after evaluating each of the vector components in
the HAM implementation.

V, η(i−1)
t(i−1)

ti
ei � �i, ηi (for i = 1, . . . , k)

k ≥ 1 New(ηk) = � w = (constrc, �k, . . . , �1)

V, η0
t0

tk − Tmkvec(k) 〈〈ek · · · e1〉〉� �, ηk[� �→ w]
(Vector)

Finally, the App rule is broken down into several steps. First, all the given
arguments have to be matched against the patterns, where the first j−1 matches
will fail. For each match, the cost of Tmatchrule is added to the cost of evaluating
the match. The successful match incurs an additional cost of Tmatchedrule.
Finally the function body is evaluated. Before and after evaluation, we incur
costs of Tcreateframe and Treturn respectively, corresponding to the time costs
of constructing a stack frame and returning from the function call.

ΣF (fid) = (k, [pat1 -> e1, · · · , 	path -> eh]) 1 ≤ k = b
(for i = 1, . . . , j − 1){

η
t(i−1) − Tmatchrule

ti
[�1, . . . , �b], 	pati, ∅, ∅ �∗ 	�i, 	pati

′
, Vi, Ai

	�i �= [] 	pati
′ �= []

η
t(j−1) − Tmatchrule
tj + Tmatchedrule [�1, . . . , �b], 	patj , ∅, ∅ �∗ [], [], Vj , Aj

Vj , η
tj

t′
ej

ej � �, η′

V, η
Tcreateframe + t0

t′
ej

− Treturn App
(
fid , [�1, . . . , �b]

)
� �, η′ (App)

248 A. Bonenfant et al.

5.1 Example: findNewCentre

As an example, we have chosen to use findNewCentre, a key function from the
mean-shift image tracking algorithm [6], which we have recoded in Hume [4].
The input to the algorithm is an image sequence, and the output is a track of
the target in the image plane over the whole sequence. The idea is to model a
region of an initial image by a probability density function that describes the
first order statistics of that region. If the image sequence is in colour then the
usual choice is to employ a colour histogram. Then, the task is to find a candidate
position for the target in a subsequent image by finding the minimum distance
between the model and candidate histograms using an iterative procedure. This
findNewCentre function corresponds to the inner loop of the algorithm that
determines the final candidate position, and can be defined as:

findNewCentre centre dx old_dx nloops frame Qu =
if dx==<<0,0>> || nloops>4 || addCoord dx old_dx == <<0,0>>
then centre
else findNewCentre (addCoord centre dx)

(computeDisplacement
(updateWeights (updateModel

frame
(addCoord centre dx)
theKern)

Qu frame (addCoord centre dx)) theDeriv)
dx (nloops+1) frame Qu;

The cost model gives us the following two formulae for calculating time costs:

Tinit = Tcall+ 5× Tpushvar+ 3× Tmkint+ Tmkvec(2) +
Tcreateframe+ Tmatchrule+ 6× Tmatchvar+ Tmatchedrule+
Tc + Tiftrue+ Treturn+ Tslide

Tloop = Tmatchrule+ 6× Tmatchvar+ Tmatchedrule+
Tc + Tiffalse+ Trec

Where Tc is the time for the conditional computation, and Trec for the recursive
branch. The time consumption of k iterations of the function (depending on Tc

and Trec) is then Tglobal = Tinit + k × Tloop.
Figure 9 gives concrete values for these variables produced using either the aiT

tool or by measurement. Experimental figures for Tcall etc are obtained from
Figure 7, while those for aiT are obtained from Figure 6. Note that while there
is, in principle, no technical problem with obtaining upper bounds on Tc and Trec

using the aiT tool, since we do not have figures for all HAM instructions, we have
chosen to measure these values, giving worst-case execution times of Tc = 1429
and Trec = 539. For similar reasons, we have also used the gcc figure for the
Return instruction. This is a clear over-estimate of the worst-case time. We can
see from the figure that the aiT tool gives a result that is within 24% or 19% of

Worst-Case Execution Times for a Purely Functional Language 249

Clock cycles aiT (gcc)aiT (IAR)average (IAR)WCET (IAR)Measured
Tinit 4704 4314 2390 2449
Tloop 2317 2249 2173 2215
Tglobal 16289 15559 13255 13524 13120
Ratio predicted/measured 1.24 1.19 1.01 1.03

Fig. 9. Example: findNewCentre

the actual measured cost for Tglobal, and that the experimental result is within
1% for the average measurement and 3% for the WCET measurement. This
shows both that good predictions can be obtained for code fragments using the
aiT tool, and that the approach of summing abstract machine costs to provide
an overall time predictor can be a valid one.

6 Related Work

This paper represents the first study of guaranteed worst-case execution times
for functional languages of which we are aware, and the first to consider time
predictions based on analysis of underlying abstract machine instructions. Our
static analysis approach is unusual in being based on high-level analysis of source
code, rather than being reconstructed from the more usual low-level control-flow
or data-flow graphs (e.g. [2,5,8,27]), which are inevitably approximate in terms
of representing programmer intent or high-level language constructs. A good
survey of other recent work on WCET analysis can be found in [33].

The use of atomic timings to predict overall worst-case execution times has
previously been addressed in the literature. For example, Wong [34] has consid-
ered the use of sequences of bytecodes, and Meyerhöfer and Lauterwald [24] have
considered code blocks for the same purpose. Generally, however, authors have
concluded that bytecodes (and even basic blocks) are at too small a granularity
to form reliable timings. Where individual JVM bytecodes are measured, it can
also be tedious and problematic to save/restore system state by hand [25]. There
are also issues with garbage collection etc., and a real-time implementation is
clearly required. By considering a simple architecture with a cycle-accurate clock
we have, however, been able to obtain measured worst-case execution times for
bytecode instructions. Because we have full access to the abstract machine im-
plementation, we are able to systematically save/restore complete system states
for many HAM instructions. We have also confirmed that, for at least one simple
architecture, the Renesas M32C, composition of bytecode cost information is a
good WCET predictor for sequences of such bytecodes. We are not aware of any
previous work that gives similar results.

7 Conclusions and Further Work

By conducting a series of experiments and applying a low-level static analysis
to a representative subset of the Hume Abstract Machine instructions, we have

250 A. Bonenfant et al.

been able to demonstrate that our time cost model is capable of predicting good
upper bounds on execution time of a given Hume program both on a bytecode-
by-bytecode basis (Section 4) and overall for a simple function (Section 5). Our
results are shown on a microcontroller hardware platform that is typical of those
found in small embedded systems. We have shown that we can obtain guar-
anteed worst-case execution times for a number of HAM instructions that are
within 50% of the measured worst-case. Although we need to conduct further
experiments to verify our results, we have been able to show that we can derive
guaranteed worst-case times that are within 24% of the measured worst-case.
While we have given aiT timings for a sufficiently representative subset of HAM
instructions to allow us to explore cost information for some simple examples,
we have not yet been able to obtain information for all HAM instructions. We do
not anticipate any technical problems in doing this, however. We also anticipate
that the general approach we have described here will apply to similar abstract
machine settings, such as the JVM.

The time cost model we have outlined here is formally derived from an under-
lying operational semantics of the HAM. We are in the process of constructing
a static analysis to automatically obtain time information for Hume source pro-
grams. This analysis builds in an essential way both on the time cost model
and on the concrete time information we have presented here. By demonstrating
that the cost model is a good predictor of worst-case execution time, we have in-
creased confidence that, provided our static analysis conforms to the cost model,
it will also be a good predictor of worst-case execution times.

Acknowledgments

This work has been generously supported by the Systems Engineering for Au-
tonomous Systems (SEAS) Defence Technology Centre established by the UK
Ministry of Defence; by EU Framework VI grant IST-2004-510255 (EmBounded);
by EPSRC Grant EPC/0001346; and by a personal Support Fellowship from the
Royal Society of Edinburgh. We would like to thank Charlotte Bjuren, who as-
sisted with obtaining detailed timing information; Robert Pointon, who assisted
with the Renesas implementation and timing instructions; and Steffen Jost and
Hans-Wolfgang Loidl, who assisted with the cost model.

References

1. Augustsson, L.: Compiling Lazy Functional Languages, Part II. PhD thesis, Dept.
of Computer Science, Chalmers University of Technology, Göteborg, Sweden (1987)

2. Bernat, G., Burns, A., Wellings, A.: Portable Worst-Case Execution Time Analysis
Using Java Byte Code. In: Proc. 12th Euromicro Intl. Conf. on Real-Time Systems
(ECRTS 2000), Stockholm (June 2000)

3. Bernat, G., Colin, A., Petters, S.M.: WCET Analysis of Probabilistic Hard Real-
Time Systems. In: Proc. 23rd IEEE Real-Time Systems Symposium (RTSS 2002)
(December 2002)

Worst-Case Execution Times for a Purely Functional Language 251

4. Bonenfant, A., Chen, Z., Hammond, K., Michaelson, G.J., Wallace, A., Wallace, I.:
Towards resource-certified software: A formal cost model for time and its applica-
tion to an image-processing example. In: ACM Symposium on Applied Computing
(SAC ’07), Seoul, Korea, March 11-15 (2007)

5. Byhlin, S., Ermedahl, A., Gustafsson, J., Lisper, B.: Applying static WCET analy-
sis to automotive communication software. In: 17th Euromicro Conference of Real-
Time Systems, (ECRTS’05), Mallorca, Spain (July 2005)

6. Comaniciu, D., Ramesh, V., Meer, P.: Kernel-based object tracking. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 25(5), 564–575 (2003)

7. Renesas Technology Corp. (2006) Home Page http://www.renesas.com.
8. Corti, M., Gross, T.: Approximation of the Worst-Case Execution Time Using

Structural Analysis. In: Proc. ACM International Conference on Embedded Soft-
ware (EMSOFT ’04) (2004)

9. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: 4th ACM
Symposium on Principles of Programming Languages, pp. 238–252. ACM Press,
New York (1977)

10. Crary, K., Weirich, S.: Resource Bound Certification. In: POPL’00 — Symposium
on Principles of Prog. Langs. pp. 184–198, Boston, MA (January 2000)

11. Ferdinand, C.: Cache Behavior Prediction for Real-Time Systems, Saarland Uni-
versity, Saarbrücken, Germany. PhD thesis (1997)

12. Ferdinand, C., Heckmann, R., Langenbach, M., Martin, F., Schmidt, M., Theiling,
H., Thesing, S., Wilhelm, R.: Reliable and precise WCET determination for a
real-life processor. In: Henzinger, T.A., Kirsch, C.M. (eds.) EMSOFT 2001. LNCS,
vol. 2211, pp. 469–485. Springer, Heidelberg (2001)

13. Ferdinand, C., Martin, F., Wilhelm, R., Alt, M.: Cache behavior prediction by
abstract interpretation. Science of Computer Programming 35(2), 163–189 (1999)

14. Hammond, K.: Exploiting Purely Functional Programming to Obtain Bounded
Resource Behaviour: the Hume Approach. In: Horváth, Z. (ed.) CEFP 2005. LNCS,
vol. 4164, pp. 100–134. Springer, Heidelberg (2006)

15. Hammond, K., Ferdinand, C., Heckmann, R., Dyckhoff, R., Hofmann, M., Jost,
S., Loidl, H.-W., Michaelson, G.J., Pointon, R., Scaife, N., Sérot, J., Wallace, A.:
Towards Formally Verifiable WCET Analysis for a Functional Programming Lan-
guage. In: Proc. Intl. Workshop on Worst-Case Execution Time (WCET) Analysis
(April 2006)

16. Hammond, K., Michaelson, G.: Bounded Space Programming using Finite State
Machines and Recursive Functions: the Hume Approach. ACM Transactions on
Software Engineering and Methodology (TOSEM), in preparation. (2006)

17. Hammond, K., Michaelson, G.J.: Hume: a Domain-Specific Language for Real-
Time Embedded Systems. In: Pfenning, F., Smaragdakis, Y. (eds.) GPCE 2003.
LNCS, vol. 2830, pp. 37–56. Springer, Heidelberg (2003)

18. Hammond, K., Michaelson, G.J.: Predictable Space Behaviour in FSM-Hume. In:
Peña, R., Arts, T. (eds.) IFL 2002. LNCS, vol. 2670, Springer, Heidelberg (2003)

19. Heckmann, R., Langenbach, M., Thesing, S., Wilhelm, R.: The influence of proces-
sor architecture on the design and the results of WCET tools. Proceedings of the
IEEE 91(7), 1038–1054 (July 2003) Special Issue on Real-Time Systems.

20. Hofmann, M., Jost, S.: Static Prediction of Heap Space Usage for First-Order
Functional Programs. In: POPL’03 — Symposium on Principles of Programming
Languages, New Orleans, LA, USA, ACM Press, New York (January 2003)

21. Hughes, R.J.M.: The Design and Implementation of Programming Languages,
DPhil Thesis, Programming Research Group, Oxford (July 1983)

http://www.renesas.com

252 A. Bonenfant et al.

22. Langenbach, M., Thesing, S., Heckmann, R.: Pipeline modeling for timing analysis.
In: Hermenegildo, M.V., Puebla, G. (eds.) SAS 2002. LNCS, vol. 2477, pp. 294–309.
Springer, Heidelberg (2002)

23. Li, Y.-T.S., Malik, S., Wolfe, A.: Efficient Microarchitecture Modeling and Path
Analysis for Real-Time Software. In: Proc. RTSS ’95: IEEE Real-Time Systems
Symposium, pp. 298 (1995)

24. Meyerhöfer, M., Lauterwald, F.: Towards Platform-Independent Component Mea-
surement. In: Proc. WCOP 2005 – Tenth International Workshop on Component-
Oriented Programming, Glasgow (July 2005)

25. Puschner, P., Bernat, G.: WCET Analysis of Reusable Portable Code. In: Proc.
13th Euromicro Intl. Conf. on Real-Time Syst. (ECRTS 2001), pp. 45–52 (2001)

26. Sandell, D., Ermedahl, A., Gustafsson, J., Lisper, B.: Static timing analysis of
real-time operating system code. In: Margaria, T., Steffen, B. (eds.) ISoLA 2004.
LNCS, vol. 4313, Springer, Heidelberg (2006)

27. Sehlberg, D.: Static WCET analysis of task-oriented code for construction vehicles.
Master’s thesis, Mälardalen University, (October 2005)

28. Souyris, J., Le Pavec, E., Himbert, G., Jégu, V., Borios, G., Heckmann, R.: Com-
puting the Worst Case Execution Time of an Avionics Program by Abstract Inter-
pretation. In: Proc. 2005 Intl Workshop on Worst-Case Execution Time (WCET)
Analysis, pp. 21–24 (2005)

29. IAR Systems. http://www.iar.com/. Home Page, (2006)
30. Theiling, H., Ferdinand, C.: Combining abstract interpretation and ILP for mi-

croarchitecture modelling and program path analysis. In: Proc. RTSS ’98: IEEE
Real-Time Systems Symposium, pp. 144–153, Madrid, Spain (December 1998)

31. Vasconcelos, P.B.: Cost Inference and Analysis for Recursive Functional Programs.
PhD thesis, University of St Andrews, 2006, in preparation

32. Vasconcelos, P.B., Hammond, K.: Inferring Costs for Recursive, Polymorphic and
Higher-Order Functional Programs. In: Trinder, P., Michaelson, G.J., Peña, R.
(eds.) IFL 2003. LNCS, vol. 3145, pp. 86–101. Springer, Heidelberg (2004)

33. Wilhelm, R.: Determining bounds on execution times. In: Zurawski, R. (ed.) Hand-
book on Embedded Systems, CRC Press, Boca Raton pp. 14–1,14–23. (2005)

34. Wong, P.: Bytecode Monitoring of Java Programs, MSc thesis, University of War-
wick (2003)

http://www.iar.com/

Automatic Partial Inversion of

Inductively Sequential Functions�

Jesús M. Almendros-Jiménez1 and Germán Vidal2

1 University of Almeŕıa, Spain
jalmen@ual.es

2 Technical University of Valencia, Spain
gvidal@dsic.upv.es

Abstract. We introduce a new partial inversion technique for first-order
functional programs. Our technique is simple, fully automatic, and (when
it succeeds) returns a program that belongs to the same class of the orig-
inal program, namely the class of inductively sequential programs (i.e.,
typical functional programs). To ease the definition, our method pro-
ceeds in a stepwise manner: normalization (introduction of let expres-
sions), proper inversion, and removal of let expressions. Furthermore,
it can easily be implemented. Therefore, it forms an appropriate ba-
sis for developing a practically applicable transformation tool. Prelimi-
nary experiments with a prototype implementation of the partial inverter
demonstrates the usefulness and viability of our approach.

1 Introduction

Program inversion is a fundamental transformation within the functional pro-
gramming paradigm. Having a fully automatic inversion tool could be very useful
for programmers because there are many functions that can be seen as the inverse
of other, sometimes easier, functions (e.g., encoding and decoding, compression
and decompression, etc). Moreover, having a function and its inverse can also
be useful for defining views [19], where one needs to implement translation func-
tions from a built-in data type to an algebraic data type and vice versa, so that
both functions are inverses of each other.

Intuitively speaking, given a function f of arity n, the total inversion of func-
tion f is a new function f−1 such that

f−1(t) = 〈t1, . . . , tn〉 if and only if f(t1, . . . , tn) = t

for all terms t1, . . . , tn, t. Computing the total inversion of a function is a difficult
task and, in most cases, the inverse of a function does not exist (e.g., when the
given function is not injective).

� This work has been partially supported by the EU (FEDER) and the Spanish MEC
under grant TIN2005-09207-C03-02 and by the ICT for EU-India Cross-Cultural
Dissemination Project ALA/95/23/2003/077-054.

Z. Horváth, V. Zsók, and A. Butterfield (Eds.): IFL 2006, LNCS 4449, pp. 253–270, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

254 J.M. Almendros-Jiménez and G. Vidal

In this paper, and in contrast to most of the previous work on program
inversion, we consider the computation of partial inverses. Roughly speaking,
given a function f , the partial inversion of f w.r.t. the set of parameters I =
{i1, . . . , im} ⊂ {1, . . . , n} is a new function fI such that

f I(t, ti1 , . . . , tim) = 〈tj1 , . . . , tjk
〉 if and only if f(t1, . . . , tn) = t

for all terms t1, . . . , tn, t, with {j1, . . . , jk} = {1, . . . , n} \ I. Clearly, partial in-
version subsumes total inversion (when I = ∅). In contrast to total inversion,
however, the considered function needs not be injective in order to be acceptable
for partial inversion. Nevertheless, some form of injectivity w.r.t. the parameters
I is required (see Sect. 3.1).

Consider, for instance, the usual definition of the addition on natural numbers
(built from zero and succ):

add(zero, y) → y
add(succ(x), y) → succ(add(x, y))

Here, there exist three possible partial inverses: add∅ (the total inversion),
add{1} and add{2}. The specifications of these partial inversions are as follows:

add∅(t) = 〈t1, t2〉 ⇔ add(t1, t2) = t

add{1}(t, t1) = t2 ⇔ add(t1, t2) = t

add{2}(t, t2) = t1 ⇔ add(t1, t2) = t

Their definitions can be given, respectively, as follows:

add∅(y) → 〈zero, y〉
add∅(succ(w)) → let 〈x, y〉 = add∅(w) in 〈succ(x), y〉

add{1}(y, zero) → y

add{1}(succ(w), succ(x)) → add{1}(w, x)

add{2}(y, y) → zero
add{2}(succ(w), y) → succ(add{2}(w, y))

Observe that both add{1} and add{2} define the subtraction on natural numbers
(though they are syntactically different).

The original definition of function add is inductively sequential [1]; roughly
speaking, a function is inductively sequential when its definition is left-linear
(i.e., there are no multiple occurrences of the same variable in the left-hand
sides) and does not have overlapping left-hand sides (i.e., no left-hand sides
unify). However, in the above partial inversions,

– the definition of the partial inverse add∅ has overlapping left-hand sides,
and

– the definition of the partial inverse add{2} is not left-linear.

Automatic Partial Inversion of Inductively Sequential Functions 255

Therefore, program inversion can generally produce programs which do not be-
long to the same class of the original programs.

In this work, we consider that ensuring that partially inverted programs are
inductively sequential (as the original ones) is mandatory, since otherwise the
practical applicability of these partially inverted functions is unclear. For in-
stance, although add{1} and add{2} are semantically equivalent (in the sense
that both implement subtraction: add{1}(t, t1) = t2 iff add{2}(t, t2) = t1), the
first function add{1} can be used in any functional programming language or en-
vironment, while the second one add{2} is often illegal (e.g., in Haskell) because
it is not left-linear.

Furthermore, we consider partial inverses because they subsume the compu-
tation of total inverses and because functions need not be injective. Moreover,
there are many practical cases where the computation of a partial inverse is
more useful; e.g., while function add{1} implements the subtraction on natural
numbers, the practical use of the total inverse add∅ is not so obvious.

The main features of the partial inversion method that we introduce in this
paper can be summarized as follows:

– The method proceeds in a stepwise manner: normalization (introduction of
let expressions), partial inversion, and removal of let expressions.

– The method is purely static, i.e., no (partial) computations are performed.
As a consequence, it can be efficiently implemented.

– Finally, our method always terminates, either returning an inductively se-
quential program—defining the partial inversion of a function—or a failure.

2 Preliminaries

We follow the standard framework of term rewriting [2] since it suffices to model
the first-order component of many functional programming languages.

Term Rewriting Systems. In term rewriting, a set of rewrite rules (or oriented
equations) l → r such that l is a nonvariable term and r is a term is called a term
rewriting system (TRS for short); terms l and r are called the left-hand side and
the right-hand side of the rule, respectively. If there are variables in the right-
hand side of a rule that do not appear in the corresponding left-hand side, we
say that the TRS contains extra variables. In this work, we only consider TRSs
without extra variables. Given a TRS R over a signature F , the defined symbols
D are the root symbols of the left-hand sides of the rules and the constructors
are C = F\D. We often write f/n to denote that the arity of the function or
constructor f is n. We restrict ourselves to finite signatures and TRSs. We denote
the domain of terms and constructor terms by T (F ,V) and T (C,V), respectively,
where V is a set of variables with F ∩ V = ∅.

A TRS R is constructor-based if the left-hand sides of its rules have the
form f(s1, . . . , sn) where si are constructor terms, i.e., si ∈ T (C,V), for all
i = 1, . . . , n. The set of variables appearing in a term t is denoted by Var(t). A

256 J.M. Almendros-Jiménez and G. Vidal

term t is linear if every variable of V occurs at most once in t. R is left-linear if
l is linear for all rule l → r ∈ R. The definition of f in R is the set of rules in
R whose root symbol in the left-hand side is f . A function f ∈ D is left-linear if
the rules in its definition are left-linear.

The root symbol of a term t is denoted by root(t). A term t is operation-
rooted (resp. constructor-rooted) if root(t) ∈ D (resp. root(t) ∈ C). As it is
common practice, a position p in a term t is represented by a sequence of natural
numbers, where ε denotes the root position. Positions are used to address the
nodes of a term viewed as a tree: t|p denotes the subterm of t at position p and
t[s]p denotes the result of replacing the subterm t|p by the term s. A term t is
ground if Var(t) = ∅. A substitution σ is a mapping {x1 �→ t1, . . . , xn �→ tn}
from variables to terms such that its domain Dom(σ) = {x ∈ V | x �= σ(x)} is
finite. The identity substitution is denoted by id. We write on for the sequence
of syntactic objects o1, . . . , on.

The evaluation of terms w.r.t. a TRS is formalized with the notion of rewriting.
A rewrite step is an application of a rewrite rule to a term, i.e., t→p,R s if there
exists a position p in t, a rewrite rule R = (l → r) and a substitution σ with
t|p = σ(l) and s = t[σ(r)]p (p and R will often be omitted in the notation of a
reduction step). A term t is called irreducible or in normal form if there is no
term s with t → s. We denote by →+ the transitive closure of → and by →∗

its reflexive and transitive closure. Given a TRS R and a term t, we say that t
evaluates to s iff t→∗ s and s is in normal form.

Inductively Sequential Systems. Inductively sequential TRSs [1] are a sub-
class of constructor-based left-linear TRSs. The formal definition of this class
of programs requires the notion of definitional tree [1]. Essentially, a TRS is in-
ductively sequential [1] when all its operations are defined by rewrite rules that,
recursively, make on their arguments a case distinction analogous to a data type
(or structural) induction (i.e., a typical functional program).

Example 1. Consider the following definition of the less-or-equal relation:

zero � y → true
succ(x) � zero → false
succ(x) � succ(y) → x � y

This function is inductively sequential because the left-hand sides can be induc-
tively organized as follows:1

n � m ⇒

⎧
⎨

⎩

zero � m → true (first rule)

succ(x) � m ⇒
{

succ(x) � zero → false (second rule)
succ(x) � succ(y)→ x � y (third rule)

Inductive sequentiality is not a limiting condition for programming. In fact, the
first-order components of many functional and functional logic programs written
in, e.g., Haskell, ML or Curry, are inductively sequential.
1 Actually, this is the definitional tree of function “�”.

Automatic Partial Inversion of Inductively Sequential Functions 257

3 A Method for Partial Inversion

In this section, we present our stepwise method for the partial inversion of in-
ductively sequential TRSs.

In the following, we consider the partial inversion of a given function f/n w.r.t.
a set I ⊂ {1, . . . , n} of input (or “known”) parameters. Therefore, we want to
obtain a new function, which we call f I , which takes the output of the original
function and the input parameters (according to I), and returns the remaining
parameters of the original function, which we denote by Ī = {1, . . . , n}\I (the
“unknown” parameters).

Observe that I = {1, . . . , n} is not allowed because it would imply that, in
the inverted function, all arguments, together with the output, would be known,
which would be meaningless unless one wants to produce a sort of “Boolean
test”. Now, we formally introduce our notion of partial inversion:

Definition 1 (partial inversion). Let R be an inductively sequential TRS
that includes the definition of function f/n. Then, R′ is a partial inversion of
R w.r.t. f and I = {i1, . . . , im} ⊂ {1, . . . , n} iff the following conditions hold:

1. R′ is inductively sequential and
2. it includes the definition of a function f I such that f(t1, . . . , tn) →∗ t iff

f I(t, ti1 , . . . , tim)→∗ 〈tj1 , . . . , tjk
〉 for all ground constructor terms t1, . . . , tn,

t, where Ī = {j1, . . . , jk}.

In this case, we say that f I is the partial inverse of f w.r.t. I.

As mentioned before, the first condition above is often ignored (e.g., [15]), but
we require it in order to produce partially inverted programs which are useful in
practice.

3.1 Preconditions

In this section, we present three preconditions for our partial inversion algorithm
to be successful. These preconditions are local, i.e., should be checked for every
function involved in the partial inversion process (see Sect. 3.3).

As mentioned in the introduction, functions need not be injective to be par-
tially inverted. However, some form of injectivity is still necessary. Let us con-
sider a function f/n that we want to partially invert w.r.t. I = {i1, . . . , im} ⊂
{1, . . . , n}. Assume a relation Rel(f), defined as follows:

Rel(f) = {(t1, . . . , tn, t) | f(t1, . . . , tn) →∗ t}

where t1, . . . , tn, t are ground constructor terms (i.e., values). Then, we say that
the partial inversion of f w.r.t. I is well-defined if (tj1 , . . . , tjk

) �= (sj1 , . . . , sjk
)

implies (ti1 , . . . , tim , t) �=(si1 , . . . , sim , s) for all tuples (t1, . . . , tn, t), (s1, . . . , sn, t)
in Rel(f), where Īfrm[o]−− ={j1, . . . , jk}.

Trivially, a total inversion is well-defined when the considered function is
injective. In general, however, the set of functions that can be partially inverted
is greater than the set of functions that can be totally inverted.

258 J.M. Almendros-Jiménez and G. Vidal

For instance, the total inversion of the addition function add shown in Sect. 1
is not well-defined because add is not injective. On the other hand, the par-
tial inversion of add w.r.t. {1} is well-defined because, given the evaluations
add(t1, t2) →∗ t and add(s1, s2)→∗ s, whenever t2 �= s2, we have (t1, t) �= (s1, s),
where t1, t2, t, s1, s2, s are ground constructor terms.

Unfortunately, determining if a partial inversion is well-defined is generally
undecidable. Therefore, we introduce three (decidable) preconditions for partial
inversion. The first precondition, which regards extra variables, is very simple:

Precondition 1 (extra variables). Let f/n be a function to be partially in-
verted w.r.t. I = {i1, . . . , im} ⊂ {1, . . . , n}. Then, function f/n must fulfill the
following condition: Var({tj1 , . . . , tjk

}) ⊆ Var({r, ti1 , . . . , tim}) for every rule
f(t1, . . . , tn)→ r in the definition of f , with Ī = {j1, . . . , jk}.

For instance, a function fst defined by a rule of the form fst(x, y) → x cannot
be partially inverted w.r.t. {1} since Var({y}) �⊆ Var({x, x}). Indeed, the defi-
nition of the partially inverted function fst{1} would contain an extra variable:
fst{1}(x, x) → y.

In the following, we denote by C[e1, . . . , en] a term with a constructor con-
text C and maximal operation-rooted subterms e1, . . . , en. For instance, the
term c(f(a), s(g(b))), with f, g ∈ D defined functions and a, b, c ∈ C construc-
tor symbols, can be represented by C[f(a), g(b)], where the context C denotes
the constructor term c(•, s(•)) with two “holes”. A constructor term (or a vari-
able) can thus be denoted by C[], i.e., a term with no maximal operation-rooted
subterms.

The second precondition regards left-linearity and is also rather simple:

Precondition 2 (left-linearity). Let f/n be a function to be partially in-
verted w.r.t. I = {i1, . . . , im} ⊂ {1, . . . , n}. Then, C must be linear and must
not share variables with ti1 , . . . , tim for every rule f(t1, . . . , tn) → C[e1, . . . , el]
in the definition of function f .

Consider, e.g., the following function double:

double([]) → []
double(x : xs) → x : x : double(xs)

where lists are built from [] and “:”. This function does not fulfill the second
precondition because the constructor part in the right-hand side of the second
rule, x : x : •, is not linear. Actually, the partial inversion of double w.r.t. ∅

would return the following rules:

double∅([])→ []
double∅(x : x : xs) → x : double∅(xs)

Also, the partial inversion of function fst w.r.t. {1} above does not fulfill the
second precondition because the right-hand side x is linear but also occur in the

Automatic Partial Inversion of Inductively Sequential Functions 259

first input parameter x. On the other hand, the second precondition holds for
function fst w.r.t. {2} since x and y do not share variables.

We note that the second precondition could be removed by allowing the re-
placement of repeated occurrences of the same variable in the left-hand side of
a rule by equality tests in the corresponding right-hand side. For example, the
definition of double∅ could be transformed as follows:

double∅([]) → []
double∅(x : y : xs) → cond(eq(x, y), x : double∅(xs))

where cond(c, t) returns t if c evaluates to true and eq(t1, t2) is a Boolean equality
test. Such a transformation, however, would not be useful in a lazy context
because eq should be regarded as a strict equality and, thus, the inverted function
would be more strict than the original function. It could be useful in the context
of a strict language though.

We now present our last precondition for ensuring the inductive sequentiality
of the partially inverted function.

Precondition 3 (inductive sequentiality). Let f/n be a function to be par-
tially inverted w.r.t. I = {i1, . . . , im} ⊂ {1, . . . , n}. Then, there must be a defi-
nitional tree for a function f I whose definition contains the following left-hand
sides:

{ f I(C[x1, . . . , xl], ti1 , . . . , tim) | f(t1, . . . , tn) → C[e1, . . . , el] ∈ Rf

and x1, . . . , xl are fresh variables }

where Rf contains the rules in the definition of function f .

Observe that the above precondition can be tested before partial inversion pro-
ceeds, since only the left-hand sides are relevant to determine the existence of a
definitional tree associated to a function.

Consider, for instance, the following function app:

app([], y)→ y
app(x : xs, y)→ x : app(xs, y)

If we consider its partial inversion w.r.t. {2}, then the third precondition does
not hold since there is no definitional tree for a function defined by a set of rules
whose left-hand sides are {app{2}(y, y), app{2}(x : w, y)} (roughly speaking,
because the left-hand sides overlap).

Now, we present our stepwise process for partial inversion.

3.2 Normalization

The first stage of our transformation is used to flatten the right-hand sides of
the rules so that no nested function calls occur. This transformation is not really
necessary for partially inverting functions, but it greatly simplifies the definition
of the inversion algorithm in Sect. 3.3.

260 J.M. Almendros-Jiménez and G. Vidal

Definition 2 (normalized TRS). A normalized TRS contains either rules of
the form

l → p0 or l → let p1 = e1, . . . , pn = en in p0

where p0, p1, . . . , pn are constructor terms and e1, . . . , en are operation-rooted
terms with constructor terms as arguments (i.e., nested defined function symbols
are not allowed). Each equality, pi = ei, is called a pattern definition. We further
require that Var(ei) ⊆ Var(l) ∪ Var(p1) ∪ . . . ∪ Var(pi−1), for i = 1, . . . , n, and
Var(p0) ⊆ Var(l) ∪ Var(p1) ∪ . . . ∪ Var(pn).2

Although let expressions may introduce extra variables, these are a kind of local
variables that can easily be removed by either inlining or lambda lifting (see
below). The following definition introduces our normalization process:

Definition 3 (normalization). Given a TRS R, the normalized TRS N (R) is
obtained by replacing every rewrite rule l → r ∈ R by l → r′ in N (R), where r′

is obtained from r by applying the following transformations as much as possible:

C[ek] =⇒ let x1 = e1, . . . , xk = ek in C[xk]
f(ek) =⇒ let x = f(ek) in x
let p1 = e1,

. . . ,
pi = f(. . . , C[ejmj], . . .)
. . . ,
pk = ek in p

=⇒ let xjmj = ejmj , p1 = e1,
. . . ,
pi = f(. . . , C[xjmj], . . .),
. . . ,
pk = ek in p

where x, x1, . . . , xk, xj1, . . . , xjmj are fresh variables. The process stops when no
rule is applicable—clearly a terminating process.

Roughly speaking, normalization proceeds as follows: if the right-hand side is a
constructor term, then it is already normalized; otherwise,

– If it is an operation-rooted term, then it is completely replaced by a fresh
variable and a new pattern definition in a let expression is returned.

– If it is a constructor-rooted term that contains some maximal operation-
rooted subterms, normalization replaces those operation-rooted subterms by
fresh variables and adds new pattern definitions by means of a let declaration.

– Once the right-hand side is transformed into a let expression, we continue by
flattening the arguments of operation-rooted terms in the right-hand sides of
pattern definitions so that all function arguments become constructor terms.
We note that new pattern definitions are added to the left in order to fulfill
the condition on the variables of Def. 2.

Observe that, if we take a TRS and normalize it using Def. 3, then it could be
transformed back into an ordinary TRS by applying inlining, i.e., by applying the
following rules to the right-hand sides of normalized TRSs as much as possible:

let p1 = e1 in p ⇒ {p1 �→ e1}(p)
let pn = en in p ⇒ {pn �→ en}(let p1 = e1, . . . , pn−1 = en−1 in p) n > 1

2 This is similar to the notion of deterministic conditional TRS.

Automatic Partial Inversion of Inductively Sequential Functions 261

Input: a normalized TRS R, a function f/n, and a set I ⊂ {1, . . . , n};
Output: a normalized TRS R′ (the partial inversion of R w.r.t. f and I) or a failure;
Initialization: R′ := { }, Inv := { }, Pend := {(f/n, I)};
Repeat

1. select a pair (f/n, I) ∈ Pend
2. if I = {1, . . . , n}

then stop with failure; /* Boolean tests are not allowed */
else update Inv := Inv ∪ {(f, I)} and Pend := Pend \ {(f, I)}

3. if the Preconditions 1, 2 and 3 hold
then proceed with step 4
else stop with failure /* R′ would not be inductively sequential */

4. let RI
f = pinv(R, f, I); update R′ := R′ ∪ RI

f

5. Pend := Pend ∪ (pcalls(RI
f) \ Inv)

Until Pend = { }
Return R′

Fig. 1. Partial inversion algorithm

Note that these rules are well-defined in our case because patterns pi are always
variables in TRSs obtained by applying Def. 3. In general, however, some form
of lambda-lifting [9] is required to remove let expressions (see Sect. 3.4).

Example 2. Consider the following inductively sequential TRS that defines the
function incL for incrementing all the elements of a list by a given value:

incL([], i) → [] add(zero, y) → y
incL(x : xs, i) → add(i, x) : incL(xs, i) add(succ(x), y) → succ(add(x, y))

The normalization of this program returns

incL([], i) → [] add(zero, y) → y
incL(x : xs, i) → let w1 = add(i, x), add(succ(x), y) → let w = add(x, y)

w2 = incL(xs, i) in succ(w)
in w1 : w2

3.3 Partial Inversion Algorithm

Our algorithm for partial inversion is shown in Fig. 1. Roughly speaking, our
iterative algorithm for computing the partial inversion of a function proceeds as
follows:

– The algorithm takes a normalized program and returns either a failure or a
normalized program (the desired partial inversion).

– In every iteration, the partial inversion of a function denoted by a pair
(f/n, I) is considered, where f is a function symbol of arity n and I ⊂
{1, . . . , n}.

– Given such a pair (f/n, I), we first check the preconditions of Sect. 3.1 in
order to stop the inversion process if the partial inversion of f w.r.t. I would
not be inductively sequential (with no extra variables).

262 J.M. Almendros-Jiménez and G. Vidal

((let . . . , pl = el, . . . in p))l
V = ((let . . . , pl = el, . . . in p))l−1

V ∪Var(pl)

if Var(el) ⊆ V and pl �∈ V

((let p1 = e1,
. . . ,
pl = g(qb)
. . . ,

pa = ea in p))l
V

= ((let p1 = e1,
. . . ,
〈qj1 , . . . , qjk 〉 = g{i1,...,im}(pl, qi1 , . . . , qim)

. . . ,

pa = ea in p))l−1
V ∪Var(qj1)∪...∪Var(qjk

)

if Var(qw) ⊆ V for all w = i1, . . . , im, m ≥ 0,
Var(qu) �⊆ V for all u = j1, . . . , jk, k ≥ 0, and
{i1, . . . , im} � {j1, . . . , jk} = {1, . . . , b}

((let pa = ea in p))0V = let pa = ea in p

Fig. 2. Auxiliary function (())

– If the preconditions hold, then we compute the partial inversion f I of f
w.r.t. I by means of function pinv (see Def. 4).

– The iteration terminates by updating the set of pending partial inversions;
this is done by using the auxiliary function pcalls , which simply traverses the
right-hand sides of a function definition and then returns a set which includes
a pair (g/m, J) for each call gJ(t1, . . . , tm) in these right-hand sides.

The following definition formalizes the main component of our partial inversion
algorithm:

Definition 4 (function pinv). Let R be a normalized TRS, f/n be a function,
and I ⊂ {1, . . . , n} be a set. The partial inversion of f w.r.t. I, in symbols
pinv (R, f, I), is obtained as the set

{ [[l → r]]I | l → r belongs to the definition of f in R }

Function [[]] is defined as follows:

[[f(pn)→ C[]]]I = f I(C[], pi1 , . . . , pim) → 〈pj1 , . . . , pjk
〉

[[f(pn)→ let ql = el in C[]]]I = f I(C[], pi1 , . . . , pim) → ((let ql = el

in 〈pj1 , . . . , pjk
〉))l

V

where I = {i1, . . . , im}, Ī = {j1, . . . , jk}, and V = Var(f I(C[], pi1 , . . . , pim)).
The auxiliary function (()) is defined inductively as shown in Fig. 2.

Essentially, function pinv above considers sequentially3 each pattern definition
pl = g(q1, . . . , qb) in the let declaration and transforms it into a new pattern
definition according to the set V of “known” variables (which is initialized to
the variables of the new left-hand side) as follows:

– If all variables in q1, . . . , qb are known (i.e., belong to V), then we do not
modify this pattern definition (i.e., a call to a function of the original program
is performed);

3 It proceeds from right to left in order to transform outer function calls first.

Automatic Partial Inversion of Inductively Sequential Functions 263

– Otherwise, we divide the parameters of g into a set {i1, . . . , im} of input
parameters—i.e., associated to those arguments of g whose variables be-
long to the current set V of “known” variables—and output parameters
{j1, . . . , jk}, and replace the original pattern definition by 〈qj1 , . . . , qjk

〉 =
g{i1,...,im}(pl, qi1 , . . . , qim).

Example 3. Consider the normalized TRS of Example 2. The stepwise compu-
tation of pinv (R, incL, {2}) proceeds as follows:

[[incL([], i)→ []]]{2} = incL{2}([], i)→ []

[[incL(x : xs, i)→ let w1 = add(i, x), w2 = incL(xs, i) in w1 : w2]]{2}
= incL{2}(w1 : w2, i)→((let w1 =add(i, x), w2 = incL(xs, i) in x : xs))2{w1,w2,i}

where

((let w1 = add(i, x), w2 = incL(xs, i) in x : xs))2{w1,w2,i}
= ((let w1 = add(i, x), xs = incL{2}(w2, i) in x : xs))1{w1,w2,i,xs}
= ((let x = add{1}(w1, i), xs = incL{2}(w2, i) in x : xs))0{w1,w2,i,xs,x}
= let x = add{1}(w1, i), xs = incL{2}(w2, i) in x : xs

Now, function pcalls would return the set {(add/2, {1}), (incL/2, {2})}, though
only (add/2, {1}) is added to Pend since (incL/2, {2}) already belongs to Inv .
Then, the computation of pinv (R, add , {1}) begins so that the following partial
inversion is computed:

add{1}(y, zero)→ y

add{1}(succ(w), succ(x)) → let y = add{1}(w, x) in y

The final transformed program is thus as follows:

incL{2}([], i) → []
incL{2}(w1 : w2, i) → let x=add {1}(w1, i), xs= incL{2}(w2, i) in x : xs

add{1}(y, zero) → y

add{1}(succ(w), succ(x)) → let y = add{1}(w, x) in y

which implements a function incL{2} that decrements all the elements of the
input list by a given value (using the auxiliary function add{1} to perform sub-
traction on natural numbers).

3.4 Removal of Let Declarations

Let expressions in transformed programs can easily be removed by applying a
simplified version of lambda lifting [9]. In particular, we follow the transformation
presented in [4, Appendix D], where a rule of the form

l → let p1 = e1, . . . , pi−1 = ei−1, pi = ei, pi+1 = ei+1, . . . , pm = em in e

264 J.M. Almendros-Jiménez and G. Vidal

is transformed into the rules

l → g(xk, ei)
g(xk, z) → g′(xk, g1(z), . . . , gm(z))
g′(xk, ym)→ let p1 = e1, . . . , pi−1 = ei−1, pi+1 = ei+1, . . . , pm = em in e
g1(pi) → y1

. . .
gm(pi) → ym

where x1, . . . , xk are the variables of l, y1, . . . , ym are the variables occurring in
pi, z is a fresh variable, and g, g′, g1, . . . , gm are new function symbols. This step
is repeated until all local patterns are eliminated.

Nevertheless, we allow the application of the simpler transformation of inlining
(see Sect. 3.2) when the pattern definition has the form x = e.

Example 4. Consider the partially inverted TRS of Example 3. Here, inlining
suffices to remove let expressions, so that the following inductively sequential
system is obtained:

incL{2}([], i) → []
incL{2}(w1 : w2, i) → add{1}(w1, i) : incL{2}(w2, i)

add{1}(y, zero) → y

add{1}(succ(w), succ(x)) → add{1}(w, x)

3.5 Correctness

Although there exist several approaches to function inversion in the literature
(e.g., [6,8,10,17]), we only found a formal proof of correctness for the transfor-
mation in the work of Nishida et al. [15].

Basically, the correctness of our technique relies on [15, Theorem 9], regard-
ing normalization and partial inversion, and the correctness of lambda lifting,
regarding the removal of let expressions.

Let us first consider the work of Nishida et al. [15]. There are two kinds of
differences between our method and that of [15]:

– Restrictions. In comparison with [15], we added several new restrictions in
order to ensure that the result is “acceptable”. For instance, [15] may pro-
duce non-deterministic functions containing extra-variables which require a
logical extension of reduction—called narrowing [18]—in order to be able to
evaluate inverse functions.

– Simplifications. Thanks to the new restrictions, the overall method can be
presented in a simpler and more intuitive way.

Obviously, the addition of new restrictions do not affect to the correctness result
of [15] and, thus, Theorem 9 is still applicable.

Regarding the simplifications, they are not difficult to prove. For instance,
we could easily prove that partially inverted functions are indeed inductively

Automatic Partial Inversion of Inductively Sequential Functions 265

sequential and do not contain extra-variables; this is an immediate consequence
of the preconditions in Sect. 3.1. Also, we have replaced the (more complex)
unraveling of [15] by a simpler form of lambda-lifting. This is not as immediate
as the above property, but could easily be proved by showing that the partial
inversion of each function returns a normalized TRS. In this case, since the par-
tial inversion is a deterministic TRS (in the terminology of [15]), then standard
inlining (in most of the cases) or lambda-lifting suffices to produce a program
without extra variables.

On the other hand, the correctness of the removal of let expressions is derived
from the correctness of either inlining or lambda lifting [9] (see also [3,13]), whose
correctness is proved in [5]. We note that a similar transformation is considered
in [15] by means of the definition of a so called unraveling [11].

4 Extensions of the Method

In this section, we describe how our method can be extended to cope with
higher-order functions and lazy evaluation.

Higher-Order. Let us first consider a straightforward application of
our method to a higher-order program. Consider, for instance, the well-known
function map:

map(f, [])→ []
map(f, x : xs) → f(x) : map(f, xs)

Then, in order to compute the partial inversion of map w.r.t. {1}, our method
proceeds as follows. First, the normalized program is computed:

map(f, [])→ []
map(f, x : xs) → let w = f(x), ws = map(f, xs) in w : ws

Now, the partial inversion step returns the following program:

map{1}([], f)→ []
map{1}(w : ws, f) → let x = f{1}(w), xs = map{1}(ws, f) in x : xs

Finally, by removing let expressions we get

map{1}([], f)→ []
map{1}(w : ws, f) → f{1}(w) : map{1}(ws, f)

so that map{1} maps the inverse of a function to each element of a given list.
Now, the problem of how the partial inverse f{1} can be computed arises. Since
function f is not known at compile time, the pair (f, {1}) cannot be considered
in the next iteration of the partial inversion algorithm.

In order to deal with such a situation, we could produce a partial inversion of
the form

map{1}([], f)→ []
map{1}(w : ws, f) → inv(f, {1})(w) : map{1}(ws, f)

266 J.M. Almendros-Jiménez and G. Vidal

where the auxiliary function inv is used to compute the name of the partially in-
verted function at run-time. In order to determine the possible values of variable
f above, one could apply a standard closure analysis and/or ask the programmer.
For instance, if we determine that function map is only called with functions foo
and boh, then only foo{1} and boh{1} should be computed. Moreover, we should
add the following definition of inv to the partially inverted program:

inv (foo, {1})→ foo{1}
inv(boh, {1})→ boh{1}

Laziness. Regarding non-strict functions, our method can already be applied
to lazy programs. Consider the following program:

foo(n, m) → take(n, repeat(m))
take(zero, xs) → []

take(succ(n), x : xs) → x : take(n, xs)
repeat(m) → m : repeat(m)

where foo(n, m) returns a list of n elements, all of which are m. The normaliza-
tion step returns the following program:

foo(n, m) → let x = repeat(m), xs = take(n, x) in xs
take(zero, xs) → []

take(succ(n), x : xs) → let w = take(n, xs) in x : w
repeat(m) → let w = repeat(m) in m : w

Then, the partial inversion of foo w.r.t. {1} returns

foo{1}(xs, n) → let m = repeat{}(w), w = take{1}(xs, n) in m

Now, the next iteration computes the partial inversion of take w.r.t. {1}:4

take{1}([], zero)→ xs

take{1}(x : w, succ(n)) → let xs = take{1}(w, n) in x : xs

Therefore, the next iteration computes the partial inversion of repeat w.r.t. {},
and the problem shows up:

repeat{}(m : w) → let () = repeat{1}(w, m) in m

In our current method, the last step suspends the partial inversion process and
returns a failure because “Boolean tests” (i.e., function calls where both the
arguments and the result are known) are not allowed.

The method of [15] allows the partial inversion of functions even when the
result includes Boolean tests. However, observe that if one would allow such
4 Although the first rule violates the first precondition, we ignore this fact in this

example since it is orthogonal to the kind of problem that we want to illustrate.

Automatic Partial Inversion of Inductively Sequential Functions 267

Boolean tests, we would have obtained a program like the following one (after
removal of let expressions):

foo{1}(xs, n) → repeat{}(take{1}(xs, n))
take{1}([], zero)→ xs

take{1}(x : w, succ(n)) → x : take{1}(w, n)
repeat{}(m : w) → m

Observe that the let expression in the right-hand side of repeat{}, i.e., the
Boolean test, does not appear in the rule above because in a non-strict lan-
guage its computation is not needed. Here, the meaning of function repeat{} is
as follows: given a call repeat{}(xs), return the first element of list xs, which is
clearly incorrect! (it should also check that all elements of xs are equal). This
situation does not happen in our technique because the so called Boolean tests
are forbidden.

5 An Inversion Tool

We have undertaken a prototype implementation of our partial inversion method
in order to test its applicability and usefulness. It is implemented in Prolog
(around 500 lines of code) and it is publicly available at

http://www.dsic.upv.es/~gvidal/german/finv/

Once the program is loaded into Prolog,5 the user can load in a functional
program from a file using the predicate loadf/1. The functional program should
be written according to the following syntax for rules:

lhs := rhs.

Function and constructor symbols start with a lowercase letter and variables
start with an uppercase letter (i.e., typical Prolog notation). Function definitions
may also include type declarations. For instance, function add (see Sect. 1) can
be defined as follows:

add :: nat -> nat -> nat.

add(0,X) := X.
add(s(X),Y) := s(add(X,Y)).

Arbitrary data types (like nat above) can also be defined by the user. For in-
stance, natural numbers and lists can be defined as follows

datatype nat ::= 0 | s(nat).
datatype list(A) ::= nil | (A : list(A)).

Partial inversion is then started by executing a goal of the form

?- invert(function_name, input_parameters_list).

5 Currently, it has only been tested on SWI Prolog.

268 J.M. Almendros-Jiménez and G. Vidal

For instance, if we type in the following goal

?- invert(add,[1]).

we get the partially inverted program:

add_[1](A,0) := A.
add_[1](s(A),s(B)) := add_inv(A,B).

where the partial inversion of the given function is denoted by add_[1].
Our preliminary results point out the viability and potential usefulness of the

technique. We note, however, that one should be very careful with the election
of the function and input set used for partial inversion, i.e., by choosing an
arbitrary function and input set, the result is often a failure.

We also note that the current tool can only deal with first-order programs,
but it could be extended to higher-order programs along the lines of the previous
section. A web interface for the partial inverter can be accessed from the URL
above so that the reader can easily test the system.

6 Related Work

The work by Glück and Kawabe [6] (further improved in [7]) presents an auto-
matic program inversion algorithm for first-order functional programs. In con-
trast to ours, a total inversion algorithm is considered (a particular case of our
partial inversion) and, thus, only injective functions produce useful results.

The closest approach is that of Nishida et al. [15], where the authors present a
very general inversion algorithm for term rewriting systems which is able to per-
form both partial and total inversions. The main differences with our approach
are the following:

– The method of [15] allows the partial inversion of functions even when the
result includes “Boolean tests”. As discussed in Sect. 4, such a situation
is avoided in our method in order to have a method applicable to a lazy
language.

– The (more general) inversion technique of [15] introduces some additional
rules that are not needed in our approach. For instance, in order to preserve
the correctness, [15] adds the following rule:

add{2}(add(x, y), y) → 〈x〉

to the definition of add{2}. These rules are not needed in our restricted
method.

– Furthermore, they require a form of narrowing [18] to perform computations
in the inverted program due to extra variables, while functional reduction
suffices in our case because extra variables in partially inverted functions are
not allowed.

Automatic Partial Inversion of Inductively Sequential Functions 269

To summarize, our method is simpler than that of [15] and can be applied in
fewer cases, but when it succeeds, the resulting program is inductively sequential.

Partial inversions were also considered in [16] but, in contrast to ours, their aim
is not the definition of an automatic method. Function inversion is extensively
considered by Mu [14], though the author considers a different, calculational
approach.

Finally, Mogensen [12] has recently introduced a method for computing the
semi-inversion of a functional program with guarded equations. Basically, semi-
inversion means taking a program and producing a new program that as input
takes part of the input and part of the output of the original program and
as output produces the rest of the input and output of the original program.
This work tackles a more general objective than ours but might produce func-
tions that are non-deterministic, contain extra-variables, etc., and, thus, it is not
appropriate in the context of the most common functional languages. Further-
more, in contrast to ours, the semi-inversion method is rather inefficient (due
to a number of non-deterministic choices); therefore, it is unclear whether an
efficient implementation would be possible.

7 Discussion and Future Work

We have presented a novel method for the partial inversion of inductively se-
quential rewrite systems. When the method succeeds, it returns an inductively
sequential system without extra variables, which is essential to have a practically
applicable method. In contrast to other related approaches, our method is easy
to implement and works well in the context of lazy evaluation.

As future work, we plan to extend the partial inversion method to cope with
higher-order functions along the lines of Sect. 4. This is an interesting challenge
that will allow us to design a partial inversion tool for a realistic functional
programming language like Haskell.

Acknowledgements

We gratefully acknowledge the participants of IFL 2006 and the anonymous
reviewers for many useful comments and suggestions.

References

1. Antoy, S.: Definitional trees. In: Kirchner, H., Levi, G. (eds.) Algebraic and Logic
Programming. LNCS, vol. 632, pp. 143–157. Springer, Heidelberg (1992)

2. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press,
Cambridge (1998)

3. Danvy, O., Schultz, U.P.: Lambda-Lifting in Quadratic Time. Journal of Functional
and Logic Programming, 2004 (2004)

4. Hanus, M. (ed.): Curry: An Integrated Functional Logic Language Available
at:http://www.informatik.uni-kiel.de/∼mh/curry/

http://www.informatik.uni-kiel.de/~mh/curry/

270 J.M. Almendros-Jiménez and G. Vidal

5. Fischbach, A., Hannan, J.: Specification and correctness of lambda lifting. J. Funct.
Program. 13(3), 509–543 (2003)

6. Glück, R., Kawabe, M.: A Program Inverter for a Functional Language with Equal-
ity and Constructors. In: Ohori, A. (ed.) APLAS 2003. LNCS, vol. 2895, pp.
246–264. Springer, Heidelberg (2003)

7. Glück, R., Kawabe, M.: Derivation of deterministic inverse programs based on LR
parsing. In: Kameyama, Y., Stuckey, P.J. (eds.) FLOPS 2004. LNCS, vol. 2998,
pp. 291–306. Springer, Heidelberg (2004)

8. Harrison, P.G.: Function Inversion. In: Proc. of Int’l Workshop on Partial Evalua-
tion and Mixed Computation, pp. 153–166. North-Holland, Amsterdam (1988)

9. Johnsson, T.: Lambda Lifting: Transforming Programs to Recursive Equations. In:
Jouannaud, J.-P. (ed.) Functional Programming Languages and Computer Archi-
tecture(Nancy,France). LNCS, vol. 201, pp. 190–203. Springer, Heidelberg (1985)

10. Khoshnevisan, H., Sephton, K.M.: InvX: An Automatic Function Inverter. In: Der-
showitz, N. (ed.) Rewriting Techniques and Applications. LNCS, vol. 355, pp.
564–568. Springer, Heidelberg (1989)

11. Marchiori, M.: Unraveling and Ultraproperties. In: Hanus, M., Rodŕıguez-Artalejo,
M. (eds.) ALP 1996. LNCS, vol. 1139, pp. 107–121. Springer, Heidelberg (1996)

12. Mogensen, T.Æ.: Semi-inversion of Guarded Equations. In: Glück, R., Lowry, M.
(eds.), Proc. of the 4th Int’l Conf. on Generative Programming and Component
Engineering (GPCE’05), LNCS 3676, pp. 189–204. Springer (2005)

13. Morazán, M.T., Mucha, B.: Improved Graph-Based Lambda Lifting. In: Proc. of
the Int’l Conf. on Software Engineering Research and Practice (SERP’06), pp.
896–902. CSREA Press (2006)

14. Mu, S.-C.: A Calculational Approach to Program Inversion. PhD thesis, Oxford
University Computing Laboratory (2003)

15. Nishida, N., Sakai, M., Sakabe, T.: Partial Inversion of Constructor Term Rewriting
Systems. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 264–278. Springer,
Heidelberg (2005)

16. Pareja-Flores, C., Velázquez-Iturbide, J.A.: Synthesis of Functions by Transfor-
mations and Constraints. In: Proc. of the Int’l Conf. on Functional Programming
(ICFP’97), pp. 317–317. ACM Press, New York Poster (1997)

17. Romanenko, A.: Inversion and metacomputation. In: Partial Evaluation and
Semantics-Based Program Manipulation, Sigplan Notices, vol. 26(9), pp. 12–22.
ACM, New York (1991)

18. Slagle, J.R.: Automated Theorem-Proving for Theories with Simplifiers, Commu-
tativity and Associativity. Journal of the ACM 21(4), 622–642 (1974)

19. Wadler, P.: Views: A Way for Pattern Matching to Cohabit with Data Abstraction.
In: Proc. of 14th ACM Symp. on Principles of Programming Languages (POPL’87),
pp. 307–313. ACM Press, New York (1987)

Author Index

Abrahamson, David M. 181
Achten, Peter 108
Almendros-Jiménez, Jesús M. 253

Bernecky, Robert 19
Berthold, Jost 73
Bonenfant, Armelle 235
Brady, Edwin 145

Cabenda, Laurence 217
Chitil, Olaf 126

de Vries, Edsko 181

Engels, Gerbo 217

Ferdinand, Christian 235

Grelck, Clemens 1, 19
Grov, Gudmund 91

Hage, Jurriaan 199
Hammond, Kevin 91, 235
Heckmann, Reinhold 235
Heeren, Bastiaan 199
Herhut, Stephan 19
Hidalgo-Herrero, Mercedes 55
Huch, Frank 126

Ireland, Andrew 91

Jansson, Patrik 217
Jebelean, Tudor 37
Jeuring, Johan 217

Kleerekoper, Jacob 217
Kozsik, Tamás 163

Loogen, Rita 73

Mak, Sander 217
Michaelson, Greg 91

Ortega-Mallén, Yolanda 55
Overeem, Michiel 217

Plasmeijer, Rinus 108, 181

Rubio, Fernando 55
Ruff, Laura 37

Scholz, Sven-Bodo 1, 19
Shafarenko, Alex 19

Trojahner, Kai 1, 19

Vidal, Germán 253
Visser, Kees 217

	Title Page
	Preface
	Organization
	Table of Contents
	On Optimising Shape-Generic Array Programs Using Symbolic Structural Information
	Introduction
	Introducing SaC_{mini}
	Symbolic Array Attributes
	Effects of Symbolic Array Attributes
	Case Study
	Related Work
	Conclusion and Future Work
	References

	Index Vector Elimination — Making Index Vectors Affordable
	Introduction
	\sc SaC$_{\lambda}$
	A Motivating Example
	Index Vector Elimination
	Splitting the Selection Operation
	Reusing Offset Computations
	Reusing with-loop Offsets
	Splitting Offset Computations

	Performance
	Experimental Framework
	Analysis

	Related Work
	Conclusions
	References

	Functional–Based Synthesis of a Systolic Array for GCD Computation
	Introduction
	Formal Background
	Scalars and Lists
	Functions
	Functional Programs

	GCD Computation
	Systolic Processors
	Systolic Processor Without Internal State
	Systolic Processor with Internal State
	Systolic Processor with Delay
	Auto-Configurable Systolic Processor (with Delay)

	Unidirectional Pass–Through Array
	Unidirectional Systolic Array for GCD Computation
	Conclusions
	References

	Comparing Alternative Evaluation Strategies for Stream-Based Parallel Functional Languages
	Introduction
	Eden’s Essentials
	Defining Skeletons
	Map&Reduce

	Environment
	Application Example: Sum of Euler Numbers
	Farm vs. Self-service

	Conclusions and Future Work
	References

	Parallel Coordination Made Explicit in a Functional Setting
	Introduction
	Eden Language and Implementation
	Eden Language Constructs
	Layers of the Eden Implementation

	Imperative Coordination in a Declarative Setting
	Low-Level Parallel Programming in EDI

	Related Work
	Conclusions and Future Work
	References

	Low-Level Programming in Hume: An Exploration of the HW-Hume Level
	Introduction
	HW-Hume
	Boxes and Coordination
	A Simple TraÆc Lights Example in HW-Hume

	Verifying HW-Hume Programs
	Safety Properties
	Liveness Properties
	Real-Time Properties

	A Software Implementation of HW-Hume
	HW-Hume Abstract Machine Instructions
	Compilation
	Performance Results

	Hardware Implementation from HW-Hume
	Hardware�Software Integration Issues

	Related Work
	Conclusions and Future Work
	FurtherWork

	References

	A Conference Management System Based on the iData Toolkit
	Introduction
	The iData Toolkit
	iData Elements
	The iData Toolkit Programming Paradigm

	A Conference Management System
	Modelling a Conference Management System
	Deriving iData
	Specializing iData
	Interconnecting iData
	Summary

	Implementation
	Universal Database
	Reference Types
	Summary

	Related Work
	Conclusions
	References
	Appendix

	A Pattern Logic for Prompt Lazy Assertions in Haskell
	Introduction
	Patterns and Quantification
	Patterns
	Context Patterns
	Universal and Existential Quantification

	Predicates
	Unary Predicates
	Predicates with Several Arguments
	The Pattern Type
	Example: Equal Sets

	Further Patterns and Assertion Features
	Functions
	Negation and Implication
	Positions in Data Structures
	Deactivating Assertions

	Defining New Patterns
	Example: Clausify

	Implementation
	Related Work
	Conclusions
	References

	\sc{Ivor}, a Proof Engine
	Introduction
	Motivating Examples

	TheTypeTheory, \tt{TT}
	The Core Calculus
	Inductive Families
	Elimination Rules
	The Development Calculus

	The Ivor Library
	Definitions and Context
	Theorems
	Basic Tactics
	Tactic Combinators

	Examples
	A Propositional Logic Theorem Prover
	Funl, a Functional Language with a Built-In Theorem Prover

	Related Work
	Conclusions and Further Work
	References

	Proving Program Properties Specified with Subtype Marks
	Introduction
	Subtype Marks
	The Syntax of Subtype Marked Types
	The Semantics of Subtype Marks

	A Language Supporting Subtype Marks
	Polymorphic Subtype Marks
	Expressions and Function Definitions
	Type Declarations

	Type Correctness
	Correctness of Programs
	The Soundness of the Type System
	Conclusions
	References

	Uniqueness Typing Redefined
	Background
	Sharing Analysis
	Introducing Uniqueness Typing
	The Language
	Integers
	Variables
	Abstractions
	Application

	Arbitrary Rank Types
	Variables
	Abstraction
	Application
	Annotated Lambda Abstractions
	Subsumption

	Examples
	Type Inference
	Comparison with Clean
	Future Work and Conclusions
	References

	Heuristics for Type Error Discovery and Recovery
	Introduction
	Constraints
	Heuristics
	General Heuristics
	Language Dependent Heuristics
	Program Correcting Heuristics

	Type Graphs
	Putting It All Together
	Validation and Statistics
	Related Work
	Conclusion
	References

	Testing Properties of Generic Functions
	Introduction
	Property-Based Testing Tools
	Generic Programming in Generic Haskell
	QuickCheck for Generic Functions
	Properties of the Generic Haskell Library
	Generic Generators
	Conclusions and Future Work
	References

	Worst-Case Execution Times for a Purely Functional Language
	Introduction
	Predicting Worst-Case Execution Time (WCET)
	Research Methodology

	The Hume Abstract Machine (HAM)
	Static Analysis Using the aiT Tool
	Determining WCET Using the aiT Tool
	Worst-Case Execution Time for HAM Instructions

	Experimental Timings
	Timing Results
	Quality of the Static Analysis Using the aiT Tool

	Worst-Case Execution Time for Hume Expressions
	Example: findNewCentre

	Related Work
	Conclusions and Further Work
	References

	Automatic Partial Inversion of Inductively Sequential Functions
	Introduction
	Preliminaries
	A Method for Partial Inversion
	Preconditions
	Normalization
	Partial Inversion Algorithm
	Removal of Let Declarations
	Correctness

	ExtensionsoftheMethod
	An Inversion Tool
	Related Work
	Discussion and Future Work
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

