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Abstract. Modern reactive control system are typically very complex entities,
and their design poses substantial challenges. In addition to ensuring functional
correctness, other steps may be required: with safety analysis, the behavior is an-
alyzed, and proved compliant to some requirements considering possible faulty
behaviors; diagnosis and diagnosability are forms of reasoning on the run-time
explanation of faulty behaviors; planning and synthesis allow the automated con-
struction of controllers that implement desired behaviors. Symbolic Model
Checking (SMC) is a formal technique for ensuring functional correctness that
has achieved a substantial industrial penetration in the last decade. In this paper,
we show how SMC can be used as a convenient framework to express safety
analysis, diagnosis and diagnosability, and synthesis. We also discuss how model
checking tools can be used and extended to solve the resulting computational
challenges.

1 Introduction

In recent years, complex applications increasingly rely on implementations based on
software and digital systems. Typical examples are transportation domains (e.g. rail-
ways, avionics, space), telecommunications, hardware, industrial control. The design of
such complex systems is a very hard task. On the one hand, more and more functional-
ities must be implemented, in order to provide for flexible, user-configurable products.
On the other hand, there is a need to achieve higher degrees of assurance, given the
criticality of the functions.

For the above reasons, the engineering of complex systems has witnessed the intro-
duction of model-based design techniques and tools. The idea is to write system models,
expressed at different levels of abstraction, and to provide support tools to automatically
analyze them. Different languages can be used to express such models; in general, they
can be encoded and treated in terms of transition systems. Model checking is a verifi-
cation technique to check whether a system (modeled as a transition system) satisfies
certain requirements (modeled as temporal logic).

Goal of this paper is to draw a unifying view between different aspects of engineer-
ing, within the framework of model checking. We show how many different stages in
model-based design can be cast in the framework of model checking, and can benefit
from the advanced symbolic model checking techniques and tools.
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We proceed in order of increasing complexity. We start by defining the problem
of model checking, and providing an overview of the available techniques. Then, we
consider the field of safety analysis: while in model checking the behavior of the system
is analyzed under nominal conditions, in safety analysis the problem is to check the
behavior of the design in presence of failures. This phase is carried out at design time.
The only increase required in the framework is the specification of a selected set of
failure mode variables. The next problem is diagnosis, that can be seen as the problem
of safety analysis carried out at run-time. On one side, only one trace at the time is
considered. On the other side, diagnosis is usually performed on systems which provide
limited run-time sensing, making the problem much harder. Another interesting and
related problem, known as diagnosability, is the analysis, at design time, of diagnosis
capabilities. We conclude with the problem of planning, which in the general setting
used in this paper amounts to the problem of synthesis, i.e. automatic generation of
controllers from specifications. The problem has been addressed in many variations,
and has interesting overlappings with diagnosis. In particular, in the case of planning
under partial observability, actions must be planned in order to achieve a given amount
of information.

This paper is structured as follows. In Section 2 we describe model checking, and
overview the main symbolic implementation techniques. In Section 3 we present the
ideas underlying safety analysis. In Section 4 we discuss the role of model checking
in diagnosis and diagnosability. In Section 5 we discuss planning based on symbolic
model checking, and in Section 6 we draw some conclusions, and outline directions for
future work.

2 Symbolic Model Checking

Model checking [21,22,45] is a formal verification technique that is widely used to
complement classical techniques such as testing and simulation. In particular, while
testing and simulation may only verify a limited portion of the possible behaviors of
complex, asynchronous systems, model checking provides a formal guarantee that some
given specification is obeyed. In model checking, the verified system is modeled as
a state transition system (typically of finite size). The specifications are expressed as
temporal logic formulæ, that express constraints over the dynamics of systems. Model
checking then consists in exhaustively exploring every possible system behavior, to
check automatically that the specifications are satisfied. In the case of finite models,
termination is guaranteed. Very relevant for debugging purposes, when a specification
is not satisfied, a counterexample is produced, witnessing the offending behavior of the
system. Formally, model checking relies on the following definition of a system:

Definition 1 (System). A system is a tuple M = 〈S, Si, I, R〉 where:

– S is a finite set of states,
– Si ⊆ S is the set of initial states,
– I is a finite set of inputs,
– R ⊆ S × I × S is the transition relation
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The transition relation specifies the possible transitions from state to state, triggered by
the applications of inputs to the system. For technical reasons, it is required to be total,
i.e. for each state there exists at least a successor state. From such a tuple, abstract-
ing away from inputs, one can immediately extract a state transition graph, a Kripke
structure that only describes transitions from states to states.
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Fig. 1. A State Transition Graph and its unwinding

A path in such a Kripke structure is obtained starting from a state s ∈ Si, and then re-
peatedly appending states reachable through R; since inputs have been abstracted away,
a path corresponds to the evolution of the system for some sequence of inputs. Given
the totality of R, behaviors are infinite. Since a state can have more than one successor,
the structure can be thought of as unwinding into an infinite tree, representing all the
possible executions of the system starting from the initial states. Figure 1 shows a state
transition graph and its unwinding from the initial (colored) state. A Kripke structure is
typically associated with a set of propositions P , and with a labeling function that maps
each state onto a truth assignment to such propositions. In the following, we assume
that one truth assignment to the variables in P is associated to at most one state, and we
write s |= p to indicate that a proposition p holds in a state s.

Traditionally, two temporal logics are most commonly used for model checking,
CTL and LTL [31]. Computation Tree Logic (CTL) is interpreted over the computation
tree of the Kripke structure, while Linear Temporal Logic (LTL) is interpreted over
the set of its paths. These two logics have incomparable expressive power, and differ in
how they handle branching in the underlying computation tree: CTL temporal operators
quantify over the paths departing from a given state, while LTL operators describe
properties of all possible computation paths.

Model checking is the problem of deciding whether a certain temporal formula ϕ
holds in a given Kripke structure M (see [24] for a detailed overview). In the following
we use the notation M |= ϕ. The first model checking algorithms used an explicit rep-
resentation of the Kripke structure as a labeled, directed graph [21,22,45]. Explicit state
model checking is based on the exploration of the Kripke structure based on the ex-
pansion and storage of individual states. Over the years, explicit state model checking
has reached impressive performance (see for instance the SPIN model checker [38]).
The key problem, however, is that explicit state techniques are subject to the so-called
state explosion problem, i.e. they need to explore and store the states of the state tran-
sition graph. In industrial sized systems, this amounts to an extremely large number of
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Fig. 2. A BDD for the formula (a1 ↔ a2) ∧ (b1 ↔ b2)

states. In fact, the Kripke structure is typically the result of the combination of a num-
ber of components (e.g. the communicating processes in a protocol), and the size of the
resulting structure may be exponential in the number of components.

A major breakthrough was enabled by the introduction of symbolic model check-
ing [40]. In symbolic model checking, rather than individual states and transitions,
the idea is to manipulate sets of states and transitions, using a logical formalism to
represent the characteristic functions of such sets [26,43,52,15]. Since a small logical
formula may admit a large number of models, this results in most cases in a very com-
pact representation which can be effectively manipulated. Each state is presented by
an assignment to the propositions (variables) in P (equivalently, by the corresponding
conjunction of literals). A set of states is represented by the disjunction of the formulae
representing each of its states. The basic set theoretic operations (intersection, union,
projection) are given by logical operations (such as conjunction, disjunction, and quan-
tification). In the following we use x to denote the vector of variables representing the
states of a given system; we write Si(x) for the formula representing the initial states.
A similar construction can be applied to represent inputs (for which we use a vector of
variables i). A set of “next” variables x′ is used for the state resulting after the transi-
tion: a transition from s to s′ is then represented as a truth assignment to the current and
next variables. We use R(x, i, x′) for the formula representing the transition relation
expressed in terms of those variables.

Obviously, the key issue is the use of an efficient logical representation. The first
one used for symbolic model checking was provided by Ordered Binary Decision Dia-
grams [12,13] (BDDs for short). BDDs are a representation for boolean formulas, which
is canonical once an order on the variables has been established. This allows equiv-
alence checking in constant time. Figure 2 depicts the BDD for the boolean formula
(a1 ↔ a2) ∧ (b1 ↔ b2), using the variable ordering a1, a2, b1, b2. Solid lines repre-
sent “then” arcs (the corresponding variable has to be considered positive), dashed lines
represent “else” arcs (the corresponding variable has to be considered negative). Paths
from the root to the node labeled with “1” represent the satisfying assignments of the
represented boolean formula (e.g., a1 ← 1, a2 ← 1, b1 ← 0, b2 ← 0).
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Such a powerful logical computation machinery provides the ideal basis for the im-
plementation of algorithms manipulating sets of states. In fact, the use of BDDs makes
it possible to verify very large systems (larger than 1020 states [15,40,14]). Symbolic
model checking has been successful in various fields, allowing the discovery of de-
sign bugs that were very difficult to highlight with traditional techniques. For instance,
in [23] the authors discovered previously undetected and potential errors in the design of
the cache coherence protocol described in the IEEE Futurebus+ Standard 896.1.1991,
and in [29] the cache coherence protocol of the Scalable Coherent Interface, IEEE Stan-
dard 1596-1992 was verified, finding several errors.

A more recent advance in the field originates from the introduction of bounded model
checking (BMC) [7,6]. The idea is twofold. First, we look for a witness to a property
violation that can be presented within a certain bound, say k transitions. Second, we
generate a propositional formula that is satisfiable if and only if a witness to the property
violation exists. The formula is obtained by unwinding the symbolic description of
the transition relation over time. In particular, we use k + 1 vectors of state variables
x0, . . . , xk, whose assignments represent the states at the different steps, and k vectors
of input variables i1, . . . , ik, that represent the inputs at the different transitions:

Si(x0) ∧ R(x0, i1, x1) ∧ . . . ∧ R(xk−1, ik, xk)

Additional constraints are used to limit such assignments to witness the violation of the
property, and to impose a cyclic behaviour when required. The solution technique lever-
ages the power of modern SAT solvers [30], which are able to check the satisfiability of
formulae with hundreds of thousands of variables, and millions of clauses.

In comparison to BDD-based algorithms, the advantages of SAT-based techniques are
twofold [25]. First, SAT-based algorithms have higher capacity, i.e. they can deal with
a larger number of variables. Second, SAT solvers have a high degree of automation,
and are less sensitive than BDDs to the specific parameters (e.g. variable ordering). As
a result, SAT-based technologies have been introduced in industrial settings to com-
plement and often to replace BDD-based techniques. In addition, SAT has become the
core of many other algorithms and approaches, such as inductive reasoning (e.g. [50]),
incremental bounded model checking (e.g. [36]), and abstraction (e.g. [35]). A survey
of the recent developments can be found in [44].

3 Safety Analysis

The goal of safety analysis is to investigate the behavior of a system in degraded condi-
tions, that is, when some parts of the system are not working properly, due to malfunc-
tions. Safety analysis includes a set of activities, that have the goal of identifying all
possible hazards of the system, and that are performed in order to ensure that the sys-
tem meets the safety requirements that are required for its deployment and use. Safety
analysis activities are particularly critical in the case of reactive systems, because haz-
ards can be the result of complex interactions involving the dynamics of the system
[51]. Traditionally, safety analysis activities have been performed manually. Recently,
there has been a growing interest in model-based safety analysis using formal methods
[11,9,1,10] and in particular symbolic model checking.



6 P. Bertoli, M. Bozzano, and A. Cimatti

Model-based safety analysis is carried out on formally specified models which take
into account system behavior in the presence of malfunctions, that is, possible faults of
some components. Symbolically, the occurrence of such faults is modeled with a set of
additional propositions, called failure mode variables. Intuitively, a failure mode vari-
able is true when the corresponding fault has occurred in the system (different failure
mode variables are associated to different faults). In the rest of this section, we assume
to have a system M = 〈S, Si, I, R〉 with a set of failure mode variables F ⊆ P . Fur-
thermore, for the sake of simplicity, we assume that failure modes are permanent (once
failed, always failed), that is, we assume that the following condition holds:

∀f ∈ F , s1, s2 ∈ S, i ∈ I (〈s1, i, s2〉 ∈ R ∧ s1 |= f) ⇒ s2 |= f (1)

The theory can be extended to the more general case of sporadic or transient failure
modes, that is, when faults are allowed to occur sporadically (e.g., a sensor showing
an invalid reading for a limited period of time), possibly repeatedly over time, or when
repairing is possible.

In this section we briefly describe two of the most popular safety analysis activities,
that is, fault tree analysis (FTA) and failure mode and effect analysis (FMEA), and we
discuss their relationship with the symbolic model checking techniques illustrated in
Section 2. Fault Tree Analysis [53] is an example of deductive analysis, which, given the
specification of an undesired state, usually referred to as a top level event, systematically
builds all possible chains of one of more basic faults that contribute to the occurrence of
the event. The result of the analysis is a fault tree, that is, a representation of the logical
interrelationships of the basic events that lead to the undesired state. In its simpler form
(see Fig. 3) a fault tree can be represented with a two-layer logical structure, namely a
top level disjunction of the combinations of basic faults causing the top level event. Each
combination, which is called cut set, is in turn the conjunction of the corresponding
basic faults. In general, logical structures with multiple layers can be used. A cut set is
formally defined via CTL as follows.

Definition 2 (Cut set). Let M = 〈S, Si, I, R〉 be a system with a set of failure mode
variables F ⊆ P , let FC ⊆ F be a fault configuration, and TLE ∈ P a top level event.
We say that FC is a cut set of TLE, written cs(FC, TLE) if

M |= EF (
∧

f∈FC

f ∧
∧

f∈(F\FC)

¬f ∧ TLE).

Intuitively, a fault configuration corresponds to the set of active failure mode variables.
Typically, among the possible fault configurations, one is interested in isolating those
that are minimal in terms of failure mode variables, that is, those that represent simpler
explanations, in terms of system faults, for the occurrence of the top level event. Under
the hypothesis of independent faults, these configurations also represent the most prob-
able explanations for the top level event, and therefore they have a higher importance in
reliability analysis. Minimal configurations are called minimal cut sets and are formally
defined as follows.

Definition 3 (Minimal Cut Sets). Let M = 〈S, Si, I, R〉 be a system with a set of
failure mode variables F ⊆ P , let F = 2F be the set of all fault configurations, and
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Fig. 3. An example of fault tree
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TLE ∈ P a top level event.We define the set of cut sets and minimal cut sets of TLE
as follows:

CS(TLE) = {FC ∈ F | cs(FC, TLE)}
MCS(TLE) = {cs ∈ CS(TLE) | ∀cs′ ∈ CS(TLE) (cs′ ⊆ cs ⇒ cs′ = cs)}

As a side remark, we mention that the notion of minimal cut set can be extended to
the more general notion of prime implicant (see [27]). The notion of prime implicants
is based on a different definition of minimality, involving both the activation and the
absence of faults (we refer to [27] for more details). Formally, the previous definition for
MCS(TLE) needs to be modified to take into account the different notion of minimality.

We also notice that, compared to the case of purely combinational systems, here fail-
ure mode variables may be associated to dynamics, and thus it is possible that different
models of failure (e.g. persistent vs sporadic) may have different impact on the results.
Moreover, the temporal relationships between failures may be important, e.g. a certain
top level event may require f1 to occur before f2. There have been proposals to enrich
the notion of minimal cut set with such information [1].

Based on the previous definitions, fault tree analysis can therefore be described as
the activity that, given a top level event, involves the computation of the (minimal) cut
sets (or prime implicants) and their arrangement in the form of a tree. An example of
fault tree, generated with the FSAP safety analysis platform [33], is shown in Fig. 3.
Fault trees with multiple layers can also be obtained, for instance based on the hierarchy
of the system model (see [2]).

Failure mode and effect analysis is similar to fault tree analysis. It takes as input a
set of fault configurations and a set of top level events, and it produces a table mapping
elements in the two sets. An entry in the table means that a given fault configuration
is a possible explanation for the corresponding top level event. The formal definition is
as follows.

Definition 4 (Failure Mode and Effect Analysis). Let M = 〈S, Si, I, R〉 be a sys-
tem with a set of failure mode variables F ⊆ P , let F = {FC1, . . . , FCn} ⊆ 2F

be a set of fault configurations, and T = {TLE1, . . . , TLEm} ⊆ P be a set of top
level events. An FMEA table for F and TLE, denoted FMEA(F, T ) is the set of pairs
{〈FCi, TLEj〉 | cs(FCi, TLEj)}.

Both FMEA and FTA can be realized with model checking techniques, as witnessed
by the FSAP platform [33,10]. As advocated in [11], it is important to have a complete
decoupling between the system model and the fault model. For this reason, the FSAP
platform relies on the notions of nominal system model and extended system model. The
nominal model formalizes the behavior of the system when it is working as expected,
whereas the extended model defines the behavior of the system in presence of faults.
The decoupling between the two models is achieved in the FSAP platform by generating
the extended model automatically via a so-called model extension step.

The model extension step takes as input a system and a specification of the faults
to be added, and automatically generates the corresponding extended system. It can be
formalized as follows. Let M = 〈S, Si, I, R〉 be the nominal system model. A fault
is defined by the proposition p ∈ P to which it must be attached to, and by its type,
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specifying the “faulty behavior” of proposition p in the extended system (e.g., p can
non-deterministically assume a random value, or p is stuck at a particular value). Given
the proposition p, FSAP introduces a new proposition pFM , the failure mode variable,
modeling the possible occurrence of the fault, and two further propositions pFailed

and pExt, with the following intuitive meaning. The proposition pFailed models the
behavior of p when a fault has occurred. For instance, the following condition (where
S′ is the set of states of the extended system) defines a so-called inverted failure mode
(that is, proposition pFailed holds if and only if proposition p does not hold):

∀s ∈ S′ (s |= pFailed ⇐⇒ s �|= p) (2)

The proposition pExt models the extended behavior of p, that is, it behaves as the orig-
inal p when no fault is active, whereas it behaves as pFailed in presence of a fault.
Formally, we impose the following conditions:

∀s ∈ S′ s �|= pFM ⇒ (s |= pExt ⇐⇒ s |= p) (3)

∀s ∈ S′ s |= pFM ⇒ (s |= pExt ⇐⇒ s |= pFailed) (4)

The extended system MExt = 〈S′, S′
i, I, R′〉 can therefore be easily defined in terms

of the nominal system by adding the set of propositions {pFM , pFailed, pExt} to the
original set P , modifying the definition of the (initial) states and of the transition rela-
tion, and imposing the additional conditions (1), (2) (in the hypothesis of an inverted
failure mode), (3) and (4). We omit the details for the sake of simplicity. Finally, sys-
tem extension with respect to a set of propositions can be defined in a straightforward
manner, by iterating system extension over single propositions.

The extended system model resulting from the extension step is used in FSAP to
carry out the safety analysis activities, FMEA and FTA. The corresponding algorithms
are implemented as an extension of the NuSMV tool [41,16], a symbolic model-checker
developed at ITC-IRST. As far as FTA is concerned, the FSAP platform can be used
to compute both the minimal cut sets and the prime implicants of a given top level
event. The computation involves two different stages, both of them relying on symbolic
techniques. The first stage consists in computing the set of cut sets, that is, the set of
fault configurations satisfying the condition of Def. 2. This can be realized, as described
in [10], by using model checking symbolic techniques to compute a forward fixpoint of
a forward image primitive. The second stage of the computation consists in extracting
the set of minimal cut sets from the set computed at the previous stage. The extraction
is based on classical routines for computing the prime implicants of Boolean functions
[27,46].

4 Diagnosis and Diagnosability

Rarely physical systems are fully observable: parts of their state are hidden, and sen-
sors are used to expose (partial) information about otherwise unobservable aspects. Di-
agnosis starts from observed run time behavior of a system, and tries to provide an
explanation (in terms of hidden states). In particular, diagnosis is often the problem of
identifying the set of possible causes of a specific unexpected or faulty behavior.
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The seminal approaches to diagnosis are carried out considering combinational,
state-less models. These can be symbolically represented as a propositional formula
Φ(x, o), where x are the hidden variables, and o are the observable variables (e.g. con-
veyed inputs and observed outputs). Within this framework, it is possible to encompass
problems such as fault detection (that is, detecting whether the system is malfunction-
ing) and fault isolation (i.e. detecting a specific cause of malfunctioning). Let μ(o) de-
note an assignment to the observable variables. Then, we say that an assignment D(x) is
a diagnosis (alternatively, an explanation) for μ(o) if Φ(x, o) is true under the interpre-
tation μ(o) ∪ D(x). Notice that diagnoses need not be total, i.e. some hidden variables
may be unassigned (in which case any extension to D(x) is also an explanation).

In general, several possible explanations may exist, and some may be preferable
over others, according to some criterion. For example, an explanation may be minimal
(i.e. any of its subsets is not an explanation); alternatively, it could be of least cardinality,
based on the number of assigned literals, or could be required to have the least number
of variables assigned to true. Probabilistic information can be taken into account, in
order to require the most likely explanation.

In contrast to model checking and safety analysis, that are typically carried out at de-
sign time, diagnosis deals with the run-time of a system. Thus, we reject the assumption
(that is used for for verification and safety analysis) that the system is fully observable.
When considering the problem of diagnosis for reactive systems, failure modes and
other hidden variables may have their own dynamics, leading to the following exten-
sion of Def. 1:

Definition 5 (Partially Observable System). A system is a tuple M =
〈S, Si, I, O, R, X〉 where:

– S is a finite set of states,
– Si ⊆ S is the set of initial states,
– I is a set of inputs to the system,
– R ⊆ S × I × S is the transition relation
– O is a set of possible observations;
– X ⊆ S × O is the observation relation;

We require X to be total, i.e. for each state s there exists an observation o such that
X (s, o). Two states associated to the same observation may be indistinguishable. Notice
that this model of observation is extremely expressive, as it makes it possible for a state
to be associated to many different observations.

The symbolic representation used in previous sections can be generalized to deal
with the new notions. In particular, the set of observations O is presented symbolically
by introducing a set of observation variables; each observation is represented by a
valuation to the observation variables. The observation relation is then represented as a
formula in the state variables and the observation variables.

Definition 6. An execution in M is a sequence σ = s0, o0, i1, s1, o1, i2, . . . , ik, sk, ok,
such that s0 ∈ S0, R(si−1, ii, si) for 1 ≤ i ≤ k, and X (si, oi) for 0 ≤ i ≤ k. The
observable trace of an execution σ is w = o0, i1, o1, . . . , ik, ok, and we write σ : s0

w−→
sk. We also write s0

w−→ sk if such a σ exists.
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The above definition captures the dynamics of a plant and its observable counterpart. If
an execution σ has k steps, then it is associated to a trace w ∈ O × (I × O)k . The set
of traces is in general a subset of O × (I × O)∗. In the following we use σ to denote a
feasible execution, and w to denote the corresponding (observable) trace.

The problem of diagnosis in the setting of reactive systems generalizes the combina-
tional case in the following directions. First, an explanation is no longer an assignment
to the hidden variables, but rather an assignment to the hidden variables over time: in
order to explain a sequence of length k, a suitable amount of assignments are in order.
Second, the notion of preferable explanation may be generalized according to tempo-
ral aspects. As a result, there may be many more definitions of preference between
explanations.

Remarkably, given an observable trace w of specific length, it is possible to recast the
problem of diagnosis within the framework of bounded model checking. In particular,
we start from the formula describing all the executions of length k:

Si(x0) ∧ X (x0, o0) ∧ R(x0, i1, x1) ∧ X (x1, o1) ∧ . . . ∧ R(xk−1, ik, xk) ∧ X (xk, ok)

We then restrict the set of models by conjoining it with the formula that restricts the
input and output variables to assume the values required by the observable trace w:

w[0](o0) ∧ w[1](i1) ∧ w[2](o1) ∧ . . . ∧ w[2k−1](ik) ∧ w[2k](ok)

where w[i] stands for the formula encoding the constraint expressed by i-th element
of w. With this constraint, the input and output variables are assigned specific truth
values: the formula resulting after the simplification only contains state variables, and
the set of satisfying assignments to the (temporal instantiations of the) state variables
is a description of the sequences of states that may be associated with the observable
trace w.

The problem of diagnosis has a design-time counterpart. In fact, it is often an im-
portant question whether a diagnoser will be able to carry out its tasks for all possible
run-time executions of the observed system. This task, called diagnosability, can for
instance be used in order to analyze the effectiveness and displacement of sensors in a
design.

The task of diagnosability has been tackled with several methods, based on automata
theory and similar techniques, see e.g. [39,48,49]. Intuitively, a system is not diagnos-
able if two executions exist that share the same observable trace, but have different
properties (e.g. in one a failure occurs, while the other one models a nominal behavior),
and should be distinguishable. In [17], the problem is tackled by means of bounded
model checking techniques, by reduction to a so-called twin model:

Si(xl
0) ∧ X (xl

0, o0) ∧ Si(xr
0) ∧ X (xr

0, o0)∧
R(xl

0, i1, x
l
1) ∧ X (xl

1, o1) ∧ R(xr
0, i1, x

r
1) ∧ X (xr

1, o1) ∧ . . . ∧
R(xl

k−1, ik, xl
k) ∧ X (xl

k, ok) ∧ R(xr
k−1, ik, xr

k) ∧ X (xr
k, ok)

Two (left and right, l and r) copies of the system are fed with the same sequence of
inputs, and forced to exhibit the same outputs. Additional constraints on the state vari-
ables are used to express the required properties of the left and right executions. If the
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problem is satisfiable, then the system is not diagnosable; in addition, it is possible
to provide as diagnostic information the critical pair, i.e. the pair of indistinguishable
executions. The usage of SMC techniques for this purpose has allowed checking the
diagnosability of significantly complex system models developed within Nasa [17].

5 Planning

We now introduce planning, and discuss its relationships with (symbolic) model check-
ing and diagnosis.

Planning is the problem of identifying a plan whose execution controls the system
(called in that context planning domain) so that, when the system executes under the
control of the plan, certain properties (over its states) are obeyed. Several specializations
of this general statement are possible and relevant, both theoretically and for practical
purposes. For instance, in classical planning [32,34] it is assumed that the domain is
deterministic, that its state can be observed at runtime, and that the desired execution
properties amount to a set of goal states which must be finally reached. The deter-
ministic nature of the controlled system allows restricting to plans structured simply
as sequences of inputs that must be provided to the domain. In strong planning [20],
the assumption that the domain is deterministic is removed. This makes it necessary to
consider plans that have a conditional, loop-free structure, and that branch depending
on the currently observed system state. Loops are also considered by a relaxation of
the problem called strong cyclic planning [18]. These same problems can be consid-
ered when the hypothesis of full observability of the domain is removed. In conformant
planning [19], the opposite hypothesis is made: nothing can ever be observed about the
status of the domain; therefore, plans may not branch and have a sequential structure
like in classical planning. In this case, however, goal achievement has to be guaranteed
regardless of nondeterminism - i.e. several different, but equally plausible executions
must be considered for the plan. Contingent planning [8,5] deals with the more gen-
eral case where a domain is partially observable, i.e. it has the same features of the
systems considered for diagnosis in Section. 4. On top of having to consider multiple
executions, of course, contingent plans have a branching structure, and take choices at
runtime depending on the currently perceived observations. Different planning prob-
lems have also been tackled where goals are not anymore set of states to be reached,
but define constraints over the behavior of the domain during the whole plan execution,
using CTL [42] or different logics [28].

In all instantiations of the planning problem, the plan can be interpreted as an au-
tomaton, whose execution controls the system (the planning domain) by synchronously
reading the system’s outputs (the observations) and providing the system’s inputs (the
planning actions). The specific plan structures considered in the various problems sim-
ply correspond to constraints over the structure of the corresponding automata. Thus
planning refers to a framework where the system and diagnoser described in the previ-
ous sections are complemented by a controller (the plan). Here, we provide the most
general definition, referring to a partially observable domain - its simplifications for the
special cases of full or null observability are trivial.
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Definition 7 (controller). A controller for system M = 〈S, Si, I, O, R, X〉 is a tuple
Π = 〈Σ, σ0, α, ε〉, where:

– Σ is the set of contexts.
– σ0 ∈ Σ is the initial context.
– α : Σ × O ⇀ I is the action function; it associates to a context c and an observa-

tion o an input a = α(c, o) for the system.
– ε : Σ × O ⇀ Σ is the context evolution function; it associates to a context c and

an observation o a new context c′ = ε(c, o).

Naturally, a symbolic representation in terms of variables is also possible, and indeed
used, for the controller as well as for the system. Notice that the controller is a deter-
ministic Moore machine; nondeterministic controllers are not useful for our purposes
and therefore we will not consider them.

The execution of the system under the control of the plan can be represented by a
Kripke structure, called execution structure, whose states are configurations that couple
system states and plan contexts. In fact, the execution structure is a finite presentation
of every possible execution trace, and corresponds to the standard synchronous product
of the plan and the system, denoted M × Π .

This makes it possible to define a notion of satisfactory plan, for some property φ,
in terms of a model checking problem: plan Π satisfies goal φ for domain M if and
only if M × Π |= φ. When the goal φ is expressed as a CTL or LTL formula, standard
model checking techniques can be used for this purpose.

Therefore, the planning problem can be formulated as follows: given a system M
and a goal φ, find an executable controller Π such that their synchronous execution
satisfies the goal φ, i.e. Π × M |= φ.

This statement highlights the main differences and similarities between planning and
model checking: they both refer to properties of execution of a system modeled as a fi-
nite state automata (eventually constrained by a controller), but the latter is a synthesis
problem rather than a verification one. In general, planning is a (theoretically and prac-
tically) harder problem than model checking, which intuitively requires searching for a
single execution witness, rather than for a complex plan.

The fact that model checking also synthesizes a counterexample for a non-valid prop-
erty makes it possible to exploit it in a direct way to solve planning problems in the
specific ’classical’ setting. This is performed by stating, as the property that needs be
verified, that the goal φ can never be finally achieved. As usual, the application of model
checking returns one of two possible answers: either such property holds, or it does not
and a counterexample is given. In the former case, this indicates that it is actually im-
possible to achieve the goal, therefore no plan exists. In the latter, a plan exists, and it
corresponds to the sequence of inputs given as a counterexample.

For more complex cases, such a direct usage of model checking to generate solution
controllers is not possible, either because controllers have a branching/looping structure
or because the goal language must be richer then the CTL/LTL used in model checking.

In these cases, the commonalities between the elements involved in model checking
and planning are exploited by making use of model checking’s symbolic techniques
and primitives to manipulate planning domains. For instance, strong planning under
full observability can be tackled by a backward fixpoint of a backward image primitive.
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Such strong backward image must be defined to derive all the strong predecessors of a
set of states φ, i.e. all those states such that there exists some action whose outcomes,
applied to them, all belong to φ. This primitive can be defined as a QBF formula and
implemented on top of the basic BDD primitives used to compute the semantics of the
temporal CTL formula AXφ in model checking. Similar primitives are adopted for
the remaining planning problems: in every case, the ability to manipulate sets of states
by means of basic primitives is used to describe (forward/backward) images either on
search frontiers, or on sets of observationally equivalent states.

Concerning the relationships between diagnosis and planning, they are evident once
partially observable domains are considered. In this case, as stated in [4], CTL is not
adequate to express many interesting planning goals. Such inadequacy is related with
the fact that in this setting, during plan execution, a monitor has only limited run-time
information, which in general is not sufficient to rule out uncertainty about the state of
the controlled system. To express that a certain property must not only be achieved, but
also detected by the monitor, the knowledge operator K must be added to CTL, i.e. the
K-CTL logic developed for diagnosis is adopted. For instance, a strong requirement of
the form “finally achieve and detect property φ”, such as those considered in most con-
tingent planning approaches ([5,47,37]), can be written as the K-CTL formula AF K φ.
That is, those approaches solve the problem of identifying a controller Π such that

M × Π |= AF K φ

Two remarks are in order. First, as discussed in [3], considering CTL goals may nev-
ertheless be interesting in some cases, where goal detection is not possible, and only
goal achievement can be pursued. Second, symbolic model checking techniques can
also be used when looking for plans that satisfy K-CTL goals. For this purpose one
needs to consider the search space called belief space, whose nodes are sets of obser-
vationally equivalent states called beliefs, representing the epistemic knowledge of a
universal monitor. Contingent planning on K-CTL goals can be formulated as and/or
search in the belief space [8], and, as shown in [5,47], it is possible to represent be-
liefs symbolically, as formulas modeling sets of states, and progress or regress them by
appropriate image primitives.

The relationship between diagnosability and (contingent) planning becomes evident
when a K-CTL goal formula of the form AF (K(φ) ∨ K(¬φ)) is used. In this case,
the generated plan is one that finally achieves knowing whether φ holds or not, i.e.
diagnosing φ. That is, contingent planning is to diagnosability what classical planning
is to model checking: it generates a controller that drives the system to achieve a goal
that can be otherwise verified by a diagnosability check.

This paves the way to the use of K-CTL planning to generate active diagnosers,
that is controllers that can be used to appropriately drive systems so that faults can be
discovered.

Notice the major difference with the passive diagnosing of Section 4: here, we are
not given the execution trace for diagnosing, but rather we generate from scratch a
controller that - interacting with the system in a non trivial way - drives it so that the
observer will obtain a univocal diagnosis. We also remark that the generality of the
approach allows conjoining “diagnosis-oriented” goals such as the above with differ-
ent requirements; e.g a formula of the form AFφ actually forces the system to finally
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achieve φ, and a formula of the form AGψ requires that ψ holds throughout the execu-
tion of the plan. This way, we obtain a controller that conjoins a diagnosis task with a
control task that aims at driving the system according to some desirable behavior. The
way in which the different tasks are mixed within a unique controller is responsibility
of the specific and/or search algorithm used to visit the belief space, and in particular
of search heuristics.

By now, we conducted some preliminary experiments with active diagnosis by en-
riching the goal language of the MBP system with the modal knowledge operator, and
leaving implicit - as usual - the top-level CTL AF operator. We conducted the experi-
ments on a model of the Cassini spacecraft and we were able to synthesize a diagnoser
for several goals of the form AF (K(φ)∨K(¬φ)). We implemented a prototype, based
on MBP, which is able to synthesize the diagnoser for the given goal and to automati-
cally generate the model corresponding to the synchronous product of the synthesized
controller and the original model. The diagnosability properties of the resulting model
were further verified using the FSAP platform [33].

6 Conclusions and Future Work

In this paper we have discussed how the framework of symbolic model checking can
be used to model several interesting problems for the development of reactive systems:
safety analysis, diagnosis, diagnosability, and synthesis. Symbolic model checking also
provides effective computational primitives and tools for the implementation of special
purpose, highly effective algorithms to tackle the above problems. We believe that one
of the most interesting challenges in the field is to provide an effective support toolset,
where different design tasks can be cast in a uniform working framework.
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