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Abstract. In this work we study string kernel methods for sequence
analysis and focus on the problem of species-level identification based
on short DNA fragments known as barcodes. We introduce efficient
sorting-based algorithms for exact string k-mer kernels and then de-
scribe a divide-and-conquer technique for kernels with mismatches. Our
algorithms for mismatch kernel matrix computations improve currently
known time bounds for these computations. We then consider the mis-
match kernel problem with feature selection, and present efficient algo-
rithms for it. Our experimental results show that, for string kernels with
mismatches, kernel matrices can be computed 100-200 times faster than
traditional approaches. Kernel vector evaluations on new sequences show
similar computational improvements. On several DNA barcode datasets,
k-mer string kernels considerably improve identification accuracy com-
pared to prior results. String kernels with feature selection demonstrate
competitive performance with substantially fewer computations.

1 Introduction

Biological species identification through DNA barcodes has been proposed re-
cently in [1]. In the DNA barcoding setting, DNA sequencing of the mitochon-
drial region is used to obtain a relatively short sequence, DNA barcode, that is
subsequently used as a marker for species identification and classification. This
approach contrasts traditional identification methods that rely on markers from
multiple genomic locations. DNA barcoding has shown great promise due to in-
creased robustness, and predictive value for rapid and accurate identification of
species. For instance, barcoding analysis via cox1 gene of moth and fly specimens
intercepted at New Zealand’s borders resulted in improved correct placement of
previously unknown species or increased resolution of specimens [2].

Reliance of DNA barcoding on a short single fragment of DNA sequence
necessitates new computational methods to deal efficiently with this single
sequence-based assignment. Several methods, based on pairwise alignments [3] or
statistical approaches using evolutionary distances [4], have been applied to the
tasks of identification and analysis of the DNA barcode data. However, a num-
ber of challenges remain to be addressed, including the accuracy of identification
[3,4,5,6], as well as the efficiency and scalability of computational methods.
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In this study we investigate kernel classification methods for the DNA bar-
coding. Kernel-based classification demonstrated strong performance in many
related tasks of biological sequence analysis, such as protein classification and
remote homology detection [7,8,9]. There are several types of kernels for the
biological sequences, including kernels derived from probabilistic models [10],
k-mer string kernels [7,8], and weighted-decomposition kernels [11]. In this work
we focus on recently proposed k-mer string kernels.

In our approach, species identification is performed by first transforming se-
quences (potentially of varying length) into fixed-length representations (string
spectra) and then classifying them into one of many established species classes
using Support Vector Machine (SVM) classifiers [12,13]. As a result, the string
kernel-based species identification in our study demonstrates high accuracy and
improved classification performance compared to previously employed methods.

The improved accuracy of kernel-based classification methods in the sequence
domain is typically challenged by their computational complexity. To address the
computational aspects of the method, we propose novel and efficient algorithms
for solving the string kernel-based learning problems. We also introduce string
kernels with feature selection which perform as well as the methods based on
the full feature sets while having significantly lower computation cost.

Our experimental results show that, for string kernels with mismatches, ker-
nel matrices can be computed by factors of 100-200 times faster. Identification
of new sequences similarly requires significantly less time than the standard ap-
proaches. We also observe that the k-mer string kernels considerably improve
identification accuracy compared to the previously reported results on several
barcode datasets. String kernels with feature selection demonstrate competitive
classification performance with substantially fewer computations.

This paper is organized as follows. We start by introducing efficient sorting-
based algorithms for exact string k-mer kernels (Section 3) . In Section 4 we
describe a divide-and-conquer technique for exact k-spectrum kernels and k-mer
kernels with m mismatches which combined with the sorting improves currently
known time bounds for the mismatch kernel computations. We then introduce
the mismatch kernel problem with feature selection and present algorithms for
efficient computations of the string kernels with feature selection (Section 5).
A comparison of our kernel method with a baseline computational approach
is discussed in Section 6. Finally, we evaluate several feature spaces and pro-
vide comparative analysis of the performance of our method on three publicly
available barcode datasets in Section 8.

2 Species Identification Problem in the DNA Barcoding
Setting

Species identification problem can be described in the following way: given an
unlabeled sample (specimen) X and a set SP of known species represented by
their reference barcode sequences or models, the task is to assign the given sample
to one of the known species (or decide that this sample does not belong to any of
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the known categories). We solve this global multiclass problem by dividing it into
a collection of binary membership problems. In a binary membership problem,
the task is to decide whether an input sequence belongs to a particular class.

We apply the kernel-based formalism [12,13] to design of classifiers for binary
species identification. Given a training set of species barcodes SP and their
corresponding species labels S, a sequence kernel is used in a SVM setting to
learn a species classifier for new sequences:

species(x = s) =
{

yes,
∑

i∈M αi,sks(x, xi) > 0
no, otherwise

where αi,s and M ⊆ SP are estimated using standard SVM methods [13].
A critical point in this formalism, when applied to the domain of sequences,

is the complexity of kernel computations. [7,8] proposed an efficient algorithm
using suffix-trees to address this problem. We next describe an alternative al-
gorithm for sequence kernels that exhibits improved performance both in time
and in space, compared to the traditional approach. The proposed algorithm can
further incorporate feature selection to reduce dimensionality of the problems.
Selection of a small subset of features not only implies computationally more ef-
ficient procedures, but also is biologically interesting since selected features can
facilitate understanding of the species identity.

3 Counting-Sort Formalism for String Kernel Algorithms

In this section we introduce sorting-based algorithms to more efficiently compute
string k-mer kernels. Counting-sort based framework leads to fast and scalable
practical algorithms for string kernels suitable for large k and m. In a counting-
sort framework each substring of length k (k-mer) is considered as a k-digit
integer number base |Σ|. A list of n integer k-digit numbers where each digit
is from integer alphabet 1 . . . |Σ| can be sorted in Θ(kn) time using k passes
of counting sort. Space complexity of this approach is Θ(n) since we can reuse
space and store only the current column to be sorted. Given n integers in a sorted
order, one pass over the list is sufficient to output for each distinct element in the
list frequency of its occurrence. Then the exact k-spectrum kernel for the two
sequences can be computed in time Θ(kn) linear in the length n of sequences.

Given a set of N sequences, the spectrum kernel matrix can be computed
in linear O(nN) space and O(knN + min(u, n) · N2) time, where the last term
reflects the complexity of updating the kernel matrix 1 and u is the number
of unique k-mers in the set bounded above by min(nN, |Σ|k). The proposed
algorithm improves the time bounds compared to the suffix tree algorithms with
higher O(N2kn) complexity, and is simpler and easy to implement. In summary,
our counting sort algorithm for the spectrum kernel performs the following steps:
1 It is easy to see that the complexity of updating the matrix is min(u, n)N2. Consider

the u-by-N matrix C = [ci,j ] of k-mer counts, where ci,j is the number of times k-
mer i occurs in the jth sequence. Since there are no more than min(u, n)N non-zero
elements in C, the update complexity kernel matrix is min(u, n)N2.
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Step 1.Extract and store k-mers from the input sequences, O(knN) time.2

Step 2. Sort obtained list L using counting sort, O(knN).
Step 3. Compute feature counts by scanning the sorted list and update the
kernel matrix on each change in the feature value, O(knN + min(u, n) · N2).

For each unique feature f (there are u of them), in step 3 kernel matrix is
updated as follows:

K(updf , updf ) = K(updf , updf ) + cfcT
f (1)

where updf = {i : f ∈ xi} is a set of input sequences that contain f and
cf = [nxi(f)]i∈updf

is a vector of feature counts for each sequence from updf .
In the case of (k, m)-mismatch kernel when up to m mismatches are allowed, a

set of unique features u can be extracted first using the above algorithm and then
used in computations instead of the original redundant set. This preprocessing
step takes O(knN) time, however, since nN (number of features collected from
all the input sequences) is much larger than u in the case of DNA sequences,
this preprocessing step results in the improved performance of the algorithm.

4 Divide-and-Conquer Algorithms for Exact and
Mismatch String Kernels

While the sorting formalism results in an improved computational method for
kernel evaluation it is also possible to gain further reduction in computational
complexity. The efficient computation is achieved by using linear time character-
based clustering to divide the problem into subproblems and the merging pro-
cedure that updates the kernel matrix.

Using a divide-and-conquer technique, the exact and mismatch kernel prob-
lems can be solved recursively as follows:

Step 1: Original set L of features composed of all k-mers extracted from N
input sequences is divided into subsets L1, . . . , L|Σ| using character-based
clustering.
Step 2: The same procedure (Divide step) is applied to each of the subsets
L1, . . . , L|Σ| recursively. The depth of recursion is bounded by k (since clus-
tering continues until there is no substrings left or depth k reached). Each
node at depth k corresponds to some feature f and stores counts nxi(f)
(number of times f appears in xi) for all the sequences that contain f , these
counts are used to update kernel matrix as in (1).

2 Complexity of the feature extraction step can be reduced if k-mers are stored as
integers (e.g. 32-bit word can store k-mers with value of k up to 16 when |Σ| = 4).
Features then can be extracted from all the input sequences in O(N(n + k)) time
since feature i can be computed from feature i − 1 in O(1) time and it takes O(k)
time to compute the first feature. Extracted features then can be sorted in Θ(knN)
time and Θ(nN) space.
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The procedure above builds one recursion tree for all input sequences. At each
level l = 1 . . . k of the recursion tree there are |Σ|l clusters, each of the l-level
cluster corresponds to a distinct substring of length l. Each cluster C consists
of a number of subclusters SC where each subcluster is formed by k-mers from
one particular sequence. At level k of the recursion tree, each node contains a
collection of subclusters where each subcluster corresponds to a set of substrings
from one particular sequence that are in the neighborhood of node feature, i.e.,
each node points to all the substrings that are in the neighborhood of the base
string (node feature). The recursion procedure above results in an incremental
algorithm for the mismatch kernel computation.

4.1 Analysis of Incremental Mismatch Kernel Algorithm

The time complexity of the incremental mismatch kernel algorithm can be ex-
pressed as

u ·
k∑

l=1

min(m,l)∑
i=0

(
l

i

)
(Σ − 1)i + u · N2

At each level l algorithm gives solution for the (l, min(m, l))-mismatch problem.
Last term in the expression for the time complexity reflects the cost of comput-
ing kernel matrix using N -length vectors of feature counts. For small values of m
(m � k) complexity of processing each k-mer can be approximated as km|Σ|m.
As m grows, time complexity approaches limit of |Σ| |Σ|k−1|

|Σ|−1 , i.e. O(u · |Σ|k)3.
Incremental mismatch kernel algorithm and recursive exact spectrum kernel al-
gorithm are very similar with the only difference being that at each step of
clustering some of the features that do not match base character may remain in
the subset provided that the number of mismatches is no more than m. Number
of mismatches can be tracked using an indicator array that is initialized with
k. At each step indicator value is reduced by 1 for features that match the base
character, then at step l all the features for which indicator value is greater than
k− l+m are removed. The filtering step takes linear time. From implementation
point of view, exact spectrum and incremental mismatch algorithms utilizing
character-based clustering are the same except the filtering step.

5 Kernels with Feature Selection

A common approach to feature selection relies on the filtering paradigm, when
the subset F of the most informative features is extracted prior to learning. In
our experiments, we use term-frequency tfc(fi) = numc(fi)

num(fi)
for feature selection,

where numc(fi) and num(fi) are the number of times term fi occurs in class c
and in all classes, respectively. We characterize utility of each feature fi using

3 It should be noted, however, that m = k represents a special case that essentially
takes into account only sequence lengths and kernel matrix can be computed in
O(N2) time as |Σ|klen · len′, where len is N × 1 vector of sequence lengths.
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the maximum value tfmax(fi) = maxc tfc(fi). Features are then selected globally
according to the maximum of log tfmax(fi). The criteria above is similar to the
mutual information when all classes are equally likely, and is also suitable for
imbalanced data sets when number of sequences per class varies substantially.

5.1 Mismatch Algorithm with Feature Selection

Brute force algorithms for exact spectrum and mismatch kernels with feature
selection have the same time complexity of O(|F |(knN + N2)). Using counting-
sort formalism (section 3) the exact matching and mismatch kernels with feature
selection can be computed in O(knN+|F |N2) and O(|F |(k·u+N2)+knN) time,
respectively, where u is the number of unique features and is bounded above by
min(|Σ|k, nN). In case of DNA barcode sequences (|Σ| = 4), for typical k, n
and N , u � nN , which gives substantial performance improvement.

Mismatch kernel problem with feature selection can be solved in linear time
using additional space. It takes O(|F |vk) operations to build a suffix tree for
the selected features and their neighbors, where v is the size of the mismatch
neighborhood. The complexity of the mismatch kernel matrix computation using
this tree is then O(Nkn+ |F |N2). Alternative solution is to add selected features
and their neighbors to the set of features extracted from the input sequences and
then compute feature counts in linear O(Nkn + |F |vk) time using sorting.

6 Comparison with Baseline Mismatch Kernel
Algorithms

In this section we discuss and compare baseline methods for mismatch kernel
computations, as well as kernels with feature selection and their complexity.

Explicit map algorithm. Each input sequence is mapped explicitly to the vector of
size |Σ|k indexed by all substrings of length k using O(Nnvk) time and O(|Σ|kN)
space, the kernel matrix can then be computed in O(|Σk|N2) time. Although
this method is well suited for the exact spectrum kernel (for small k and |Σ|)
with constant time mapping, mapping in the mismatch kernel is no longer a
constant time since each k-mer is now mapped to its v neighbors.

Explicit map with presorting. Unique k-mers are first extracted using sorting and
then mapped in O(uvk) time. The overall speed improvement can be substantial
since u � nN and the mapping can be performed O(nN/u) times faster.

In case of the feature selection, a small subset of k-mers is preselected and
only the selected features contribute to the kernel value. The explicit mapping
algorithm can be extended to incorporate feature selection by using only the
selected positions in the sequence spectrum representations to compute kernel
instead of all the positions.

Table 1 summarizes complexity of the different algorithms for the mismatch
kernel computations. It should be noted that EM approaches require larger
O(N |Σ|k) storage than our divide-and-conquer approaches.
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Table 1. Complexity of the mismatch kernel computations

Mismatch
kernel matrix

Mismatch kernel matrix
with feature selection

Mismatch
kernel vector

EM Nnvk + |Σ|kN2 Nnvk + |F |N2 Nnvk + |Σ|kN
EM+
Sort

Nnk + uvk+
uvN + |Σ|kN2 Nkn + uvk + uvN + |F |N2 Nnk + uvk + uvN + |Σ|kN

DC Nnvk + u′N2 Nn|F |k + |F |N2 Nnvk + u′N
DC+
Sort

Nkn + uvk + u′N2 Nkn + uk|F | + |F |N2 Nkn + uvk + u′N

EM=explicit map, EM+Sort=EM with presorting, DC=divide and conquer, v=neighborhood size,

u=number of different k-mers in the input, u′=number of different k-mers including neighbors

7 Related Work

Traditional algorithms for computing string kernels [7,8,14] rely on suffix trees
and arrays. Exact k-spectrum kernel for two sequences x and y of length n can
be computed in O(kn) time using suffix trees. All-substrings kernel problem [14]
has also been solved in the linear time using suffix trees and matching statistics.
However, it is not necessary to build suffix trees in order to obtain a kernel.
Commonly used linear suffix tree algorithms (e.g., Ukkonen algorithm [15]) have
large running time constants and large memory requirements. Moreover, in many
applications algorithms make no use of suffix links after construction of a tree.

In our framework, the exact k-spectrum kernel Kk(x, y) can be computed in
time Θ(kn) linear in the length of sequences x and y, however proposed counting
sort formalism provides a much simpler and more efficient implementation, as
well as minimal memory requirements. Also, in our framework, the k-mer spec-
trum kernel can be efficiently computed for N sequences of length n in O(Nnk)
time and linear space using sorting, resulting in the elimination of the large time
constants and storage overhead of the suffix-tree based algorithms [7].

Mismatch kernel over a set S of N sequences each of length n reported in [8,16]
to have complexity of O(N2nkm+1|Σ|m). Our divide-and-conquer algorithm for
mismatch kernel computation improves this bound and has running time of
O(u · km+1|Σ|m + u · N2), where u is the number of different k-mers in the
input sequences. In [8] mismatch algorithm considers (k, m)-neighborhood of
size O(km|Σ|m) for each k-mer. It should be noted that in this case the total
number of features considered by the algorithm can exceed the natural upper
bound4 of |Σ|k. In our divide-and-conquer algorithm for mismatch kernel we take
a different approach: our algorithm clusters unique features of S and naturally
finds groups of features that are (k, m)-neighbors, size of the resulting clusters
(subclusters that correspond to different input strings) gives desired counts of
number of times features occur in the input strings.

4 For example, one of our datasets contains N=466 DNA sequences of length n = 600,
for |Σ| = 4, k = 5, m = 1, u is bounded by |Σ|k = 1024, N2nkm+1|Σ|m is 1.3e+10,
u(km+1|Σ|m + N2) = 2.2e+08 which is approximately 50 times less.
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8 Experiments and Results

In our experiments we use three data sets of DNA barcodes. Fish larvae5 dataset
consists of 56 barcode sequences from 7 species. The Astraptes.Fulgerator6 dataset
contains 466 barcodes from 12 species. The number of sequences per species in
the second dataset varies from as few as 3 barcodes to as many as 100 barcodes.
Finally, a large Hesperiidae dataset has 2185 sequences and 355 classes.

8.1 Classification Performance

We evaluate performance of all methods using the ROC50 score [18] as well as
the cross-validation error. In case of the Fisher kernel, profile HMM models are
estimated from multiple sequence alignments for each sequence class. For clas-
sification, we use the existing implementation of SVM from a machine-learning
package Spider 7. In the experiments with feature selection, we preselect a small
subset of k-mers before learning a classifier using filtering approach.

We compare the performance of full feature kernels and kernels based on the
reduced feature set in Fig. 1 on the basis of the number of families with the score
higher than corresponding ROC50 score. For the Fisher kernel, ROC50 plots
clearly demonstrate that Fisher kernel with feature selection achieves higher
performance compared with the full feature set kernel and performs as well as
the mismatch kernel with feature selection. However, Fisher kernel offers position
information and can therefore facilitate interpretation of the resulting model.

Table 2 displays performance results of all six methods on the A.fulgerator
dataset. Similar validations are provided in Table 3 for the fish larvae dataset.
The performance of the kernels with feature selection (SFK, SSK, SMK) on both
datasets is, at worst, indistinguishable from that of full feature kernels (FK, SK,
MK). In some cases, as with the Fisher kernel, the feature reduction has resulted
in significant improvement (on A.fulgerator dataset, SFK is better than FK with
a p-value of 0.0063 as measured by a two-tailed signed rank test).

Figure 2 shows performance on the Hesperiidae dataset. The string kernels
with feature selection performed extremely well on this dataset obtaining perfect
results in more than 94% test cases. Feature selection improved performance for
the exact spectrum kernel, and demonstrated performance very similar to that
of the full feature mismatch kernel, however the computation cost is significantly
lower, as shown in Sec. 5. Average cross-validation error rates on the Hesperiidae
dataset are 3.7 · 10−4 for spectrum and 3.5 · 10−4 for mismatch kernels.

The use of feature selection for string kernels has resulted in a substantial
reduction in the number of features (only 10% of features were selected) for all
our test data sets, whereas performance has remained the same or improved.
Feature selection for the Fisher kernel not only improved performance, but also
even more dramatically decreased the number of features (see Table 2).
5 See [3] for the details on dataset.
6 From Barcode of Life Data Systems (BOLD) collection www.barcodinglife.org. see [17]

for detailed description of the dataset.
7 Available from http://www.kyb.mpg.de/bs/people/spider/
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Fig. 1. Comparison of performance of the
Fisher and string kernels with and with-
out feature selection (Astraptes dataset).
Note the positive role of the feature selec-
tion, especially in the case of Fisher ker-
nels.
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Fig. 2. Comparison of performance of
string kernels with and without feature
selection (Hesperiidae dataset). Reducing
the number of features correlates mostly
positively with the identification perfor-
mance.

Table 2. Cross-validation error rates (%)
for A.fulgerator species

class FK SK MK SFK SSK SMK
BYTTNER 0.43 0 0 0 0 0
CELT 1.07 0 0 0 0 0
FABOV 1.29 0 0 0 0.21 0.21
HIHAMP 0.86 0 0 0 0 0
INGCUP 1.30 0 0.64 0.22 0.64 0.64
LOHAMP 1.30 0 0 0 0 0
LONCHO 1.06 0 0 0 0.21 0
MYST 0.64 0.64 0.85 1.07 1.28 0.64
NUMT 0.22 0 0 0 0 0
SENNOV 2.57 1.07 0.86 1.71 1.07 1.29
TRIGO 0.86 0 0 0 0 0
YESENN 3.86 0.43 0.43 1.29 0.86 0.43
number of features for SSK and SMK is 100, for

SFK number of features is class-specific: 5, 2, 5,

30, 10, 10, 5, 5, 50, 5, 5, and 50, respectively

Table 3. Cross-validation error rates (%)
for Fish larvae species

class SK MK SSK SMK
Perca 1.66 1.66 0 1.66
Rutilus 3.33 0.05 5.0 3.33
Gasterosteus 0 0 1.66 0
Barbatula 0 1.66 0 0
Lota 3.33 3.33 3.66 3.33
Anguilla 0 0 0 0
Phoxinus 3.09 3.09 3.66 5.33

FK=SVM-Fisher, SK=5-spectrum,

MK=(5,1)-mismatch kernel, S=with feature

selection

Table 4. Comparison of the identification accuracy (avg.error/s.d.)

method Astraptes species Fish species Hesperiidae species
svm w/ linear kernel (one-vs-rest) 0.0074/0.0092 0.1342/0.1358 0.0132/0.0022
svm + pca 0.0067/0.0074 0.1692/0.0707 0.0168/0.0038
nearest neighbor 0.0251/0.0304 0.1552/0.0893 0.1038/0.0130
ridge regression (one-vs-rest) 0.0215/0.0207 0.3077/0.1203 0.1121/0.0165
nearest neighbor + pca 0.0300/0.0271 0.1521/0.1387 0.0895/0.0153
PSI-BLAST 0.0963/0.0658 0.1615/0.0765 0.0160/0.0042
Fisher kernel 0.0415/0.0182 0.1245/0.0903 -
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8.2 Comparison to Other Methods

We compared performance of the string kernel-based method using SVM with a
number of other classification methods. In particular, we evaluated Fisher ker-
nel method [10], PSI-BLAST, ridge regression and nearest neighbor methods.
Table 4 displays classification performance results on the three barcode datasets
(note that the complexity of estimating Fisher kernel is very high and the re-
sults are not included for the large Hesperiidae set). We observe that k-mer
string kernels considerably improve identification accuracy compared to previ-
ously reported results of [4,5] (for example, on Astraptes dataset [17], the test
error rate of multi-class SVM is only 0.67% compared to 9% in [5] or 20%
in [4]).

8.3 Running Time Analysis

We performed running time analysis of the proposed algorithms to demonstrate
their behavior under variety of circumstances, including various feature filter-
ing levels, mismatch factors, and sequence feature lengths. We implemented
and tested our algorithms in MATLAB. On a 2.8Ghz machine with 1GB RAM
(MATLAB v.7.0.4.352), the running time of our mismatch kernel algorithm on
Astraptes.fulgerator data set (N = 466, n = 600) is 16.92 seconds and 240.36 sec-
onds on a larger Hesperiidae dataset (N=2185, n=600) (to compute full (N ×N)-
kernel matrix, k = 5, m = 1). It takes about 2820 seconds and about 20 hours, re-
spectively, to compute the same matrices when we used publicly available string
kernel package that implements the state-of-art method for spectrum/mismatch
kernel8. Our experiments show order of magnitude running time improvement
(Table 5) for the k-mer kernel with m mismatches (by factors of 100-200 times de-
pending on the dataset size)9. We also observe that our extension of the explicit
map (EM) algorithm that uses sorting as a preprocessing step results in sig-
nificant speed improvements, however the explicit map algorithm requires much
larger storage (exponential in |Σ| and k) than the divide-and-conquer algorithm.

Table 6 shows running times for mismatch kernel matrix computations with
feature selection (filtering level in the table is a fraction of features filtered out).
As we can see from the results, EM algorithms do not scale with the number
of selected features, while divide-and-conquer approach scales almost linearly.
Similarly to kernel matrix computations, extracting unique k-mers from support
vectors using sorting (O(Nkn) time) accelerates kernel vector computations for
new sequences during testing. In mismatch kernel vector computations (Table 7),
divide-and-conquer approach outperforms in many cases explicit mapping with
sorting, especially for larger k and m (note that for the large k, EM algorithm
exceeded memory capacity), which makes our algorithms also particularly suited
for the fast identification of new sequences.

8 From http://www1.cs.columbia.edu/compbio/string-kernels/
9 This improvement is especially significant in light of the differences in the two im-

plementations: MATLAB is an interpretive language while the competing package
is implemented in C.
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Table 5. Running time comparison. Mismatch kernel matrix computation.

data set K EM EM+Sort D&C String kernel package
Astraptes 5 202.11 3.14 16.92 2820
Hesperiidae 5 938.79 14.73 240.36 75219

Table 6. Computation of mismatch kernel
matrices with feature selection (time, s)

Astraptes data Hesperiidae data
filt.
level EM

EM+
Sort

D&C EM
EM+
Sort

D&C

0.1 212.23 4.03 12.91 961.94 17.75 163.80
0.2 212.01 3.62 11.43 964.55 19.83 144.61
0.3 185.62 3.88 10.41 982.72 17.20 122.34
0.4 193.08 3.76 9.51 974.43 18.73 113.83
0.5 193.74 2.31 8.54 989.4 18.56 89.25
0.6 196.87 2.30 7.47 969.48 17.37 78.12
0.7 192.54 2.51 6.31 977.07 14.85 52.32
0.8 200.59 2.51 5.18 964.67 10.73 39.18
0.9 184.75 3.60 3.74 966.68 10.57 23.92

Table 7. Computation of the mismatch
kernel vector (time, s)

km Astraptes data Hesperiidae data

D&C
DC+
Sort

EM+
Sort

D&C
D&C+
Sort

EM+
Sort

51 9.25 3.25 3.06 53.36 14.44 13.70
61 12.64 4.95 3.92 70.70 12.31 18.74
71 18.01 9.15 5.84 78.39 16.35 48.62
81 26.58 20.379.99 113.4629.57 -
91 39.88 42.70 - 200.6299.37 -
52 33.28 3.9 5.30 197.3426.23 20.03
62 53.09 5.71 8.28 354.1134.92 35.60
72 80.65 10.1412.50 537.6149.31 75.63
82 121.0223.7920.00 797.6582.53 -
92 192.0470.88 - 1166.6173.9 -

9 Conclusions

In this paper, we present a kernel classification based approach to the DNA bar-
coding problem that substantially improved identification accuracy compared to
traditional approaches. We also present a framework for efficient computations
of string kernels that results in substantial speed improvements. We introduce
string kernels with feature selection which have lower computational cost and,
at the same time, comparable or improved classification performance. Presented
algorithmic approaches to implementing string kernels are general and can be
applied to many other problems of biological sequence analysis.

We have presented a counting-sort formalism and a divide-and-conquer tech-
nique for the string kernels that provides a fast and scalable solution for many
string kernel computation problems. In particular, for an input set S of N se-
quences over alphabet Σ with each sequence of typical length n we developed:

An Θ(knN + min(u, n) · N2) time and O(nN) space algorithm based on
counting sort for the exact k-spectrum kernel;
An O(ukm+1|Σ|m+u·N2) time divide-and-conquer algorithm for the (k, m)-
mismatch kernel;
An improved O(Nkn + |F |N2) time mismatch algorithm with feature selec-
tion for the kernel matrix computation.

We have demonstrated that the use of feature selection applied to the high
dimensional space of string sequence features can often result in dramatic re-
duction in the number of features and may be of particular interest in the DNA
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barcoding setting. Reduced set of features not only implies more effective compu-
tations, but may also facilitate biological interpretability of the resulting models,
a task that is being addressed in our ongoing work.
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